WorldWideScience

Sample records for environmental device materials

  1. Environmental test program for superconducting materials and devices

    Science.gov (United States)

    Haertling, Gene; Randolph, Henry; Hsi, Chi-Shiung; Verbelyi, Darren

    1991-01-01

    This report is divided into two parts. The first dealing with work involved with Clemson University and the second with the results from Westinghouse/Savannah River. Both areas of work involved low noise, low thermal conductivity superconducting grounding links used in the NASA-sponsored Spectroscopy of the Atmosphere using Far Infrared Emission (SAFIRE) Project. Clemson prepared the links from YBa2Cu3O(7-x) superconductor tape that was mounted on a printed circuit board and encapsulated with epoxy resin. The Clemson program includes temperature vs. resistance, liquid nitrogen immersion, water immersion, thermal cycling, humidity, and radiation testing. The evaluation of the links under a long term environmental test program is described. The Savannah River program includes gamma irradiation, vibration, and long-term evaluation. The progress made in these evaluations is discussed.

  2. First Principles Investigations of Technologically and Environmentally Important Nano-structured Materials and Devices

    Science.gov (United States)

    Paul, Sujata

    In the course of my PhD I have worked on a broad range of problems using simulations from first principles: from catalysis and chemical reactions at surfaces and on nanostructures, characterization of carbon-based systems and devices, and surface and interface physics. My research activities focused on the application of ab-initio electronic structure techniques to the theoretical study of important aspects of the physics and chemistry of materials for energy and environmental applications and nano-electronic devices. A common theme of my research is the computational study of chemical reactions of environmentally important molecules (CO, CO2) using high performance simulations. In particular, my principal aim was to design novel nano-structured functional catalytic surfaces and interfaces for environmentally relevant remediation and recycling reactions, with particular attention to the management of carbon dioxide. We have studied the carbon-mediated partial sequestration and selective oxidation of carbon monoxide (CO), both in the presence and absence of hydrogen, on graphitic edges. Using first-principles calculations we have studied several reactions of CO with carbon nanostructures, where the active sites can be regenerated by the deposition of carbon decomposed from the reactant (CO) to make the reactions self-sustained. Using statistical mechanics, we have also studied the conditions under which the conversion of CO to graphene and carbon dioxide is thermodynamically favorable, both in the presence and in the absence of hydrogen. These results are a first step toward the development of processes for the carbon-mediated partial sequestration and selective oxidation of CO in a hydrogen atmosphere. We have elucidated the atomic scale mechanisms of activation and reduction of carbon dioxide on specifically designed catalytic surfaces via the rational manipulation of the surface properties that can be achieved by combining transition metal thin films on oxide

  3. Environmental test program for superconducting materials and devices. Mid-Term Report, May 1990 - Jun. 1991

    International Nuclear Information System (INIS)

    Haertling, G.; Randolph, H.; Hsi, Chi-Shiung; Verbelyi, D.

    1991-07-01

    This report is divided into two parts. The first dealing with work involved with Clemson University and the second with the results from Westinghouse/Savannah River. Both areas of work involved low noise, low thermal conductivity superconducting grounding links used in the NASA-sponsored Spectroscopy of the Atmosphere using Far Infrared Emission (SAFIRE) Project. Clemson prepared the links from YBa2Cu3O(7-x) superconductor tape that was mounted on a printed circuit board and encapsulated with epoxy resin. The Clemson program includes temperature vs. resistance, liquid nitrogen immersion, water immersion, thermal cycling, humidity, and radiation testing. The evaluation of the links under a long term environmental test program is described. The Savannah River program includes gamma irradiation, vibration, and long-term evaluation. The progress made in these evaluations is discussed

  4. Materials for electrochemical device safety

    Science.gov (United States)

    Vissers, Daniel R.; Amine, Khalil; Thackeray, Michael M.; Kahaian, Arthur J.; Johnson, Christopher S.

    2015-04-07

    An electrochemical device includes a thermally-triggered intumescent material or a gas-triggered intumescent material. Such devices prevent or minimize short circuits in a device that could lead to thermal run-away. Such devices may include batteries or supercapacitors.

  5. Ergonomic material-handling device

    Science.gov (United States)

    Barsnick, Lance E.; Zalk, David M.; Perry, Catherine M.; Biggs, Terry; Tageson, Robert E.

    2004-08-24

    A hand-held ergonomic material-handling device capable of moving heavy objects, such as large waste containers and other large objects requiring mechanical assistance. The ergonomic material-handling device can be used with neutral postures of the back, shoulders, wrists and knees, thereby reducing potential injury to the user. The device involves two key features: 1) gives the user the ability to adjust the height of the handles of the device to ergonomically fit the needs of the user's back, wrists and shoulders; and 2) has a rounded handlebar shape, as well as the size and configuration of the handles which keep the user's wrists in a neutral posture during manipulation of the device.

  6. Environmental materials and interfaces

    International Nuclear Information System (INIS)

    1991-11-01

    A workshop that explored materials and interfaces research needs relevant to national environmental concerns was conducted at Pacific Northwest Laboratory. The purposes of the workshop were to refine the scientific research directions being planned for the Materials and Interface Program in the Molecular Science Research Center (MSRC) and further define the research and user equipment to the included as part of the proposed Environmental and Molecular Science Laboratory (EMSL). Three plenary information sessions served to outline the background, objectives, and status of the MSRC and EMSL initiatives; selected specific areas with environmentally related materials; and the status of capabilities and facilities planned for the EMSL. Attention was directed to four areas where materials and interface science can have a significant impact on prevention and remediation of environmental problems: in situ detection and characterization of hazardous wastes (sensors), minimization of hazardous waste (separation membranes, ion exchange materials, catalysts), waste containment (encapsulation and barrier materials), and fundamental understanding of contaminant transport mechanisms. During all other sessions, the participants were divided into three working groups for detailed discussion and the preparation of a written report. The working groups focused on the areas of interface structure and chemistry, materials and interface stability, and materials synthesis. These recommendations and suggestions for needed research will be useful for other researchers in proposing projects and for suggesting collaborative work with MSRC researchers. 1 fig

  7. Polymer electronic devices and materials.

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, William Kent; Baca, Paul Martin; Dirk, Shawn M.; Anderson, G. Ronald; Wheeler, David Roger

    2006-01-01

    Polymer electronic devices and materials have vast potential for future microsystems and could have many advantages over conventional inorganic semiconductor based systems, including ease of manufacturing, cost, weight, flexibility, and the ability to integrate a wide variety of functions on a single platform. Starting materials and substrates are relatively inexpensive and amenable to mass manufacturing methods. This project attempted to plant the seeds for a new core competency in polymer electronics at Sandia National Laboratories. As part of this effort a wide variety of polymer components and devices, ranging from simple resistors to infrared sensitive devices, were fabricated and characterized. Ink jet printing capabilities were established. In addition to promising results on prototype devices the project highlighted the directions where future investments must be made to establish a viable polymer electronics competency.

  8. Devices for SRF material characterization

    International Nuclear Information System (INIS)

    Goudket, Philippe; Xiao, B.; Junginger, T.; Helmholtz-Zentrum Berlin

    2016-01-01

    The surface resistance Rs of superconducting materials can be obtained by measuring the quality factor of an elliptical cavity excited in a transverse magnetic mode (TM010). The value obtained has however to be taken as averaged over the whole surface. A more convenient way to obtain Rs, especially of materials which are not yet technologically ready for cavity production, is to measure small samples instead. These can be easily man ufactured at low cost, duplicated and placed in film deposition and surface analytical tools. A commonly used design for a device to measure Rs consists of a cylindrical cavity excited in a transverse electric (TE110) mode with the sample under test serving as one replaceable endplate. Such a cavity has two drawbacks. For reasonably small samples the resonant frequency will be larger than frequencies of interest concerning SRF application and it requires a reference sample of known Rs. In this article we review several devices which have been designed to overcome these limitations, reaching sub - nΩ resolution in some cases. Some of these devices also comprise a parameter space in frequency and temperature which is inaccessible to standard cavity tests, making them ideal tools to test theoretical surface resistance models.

  9. Spintronics from materials to devices

    CERN Document Server

    Felser, Claudia

    2013-01-01

    Spintronics is an emerging technology exploiting the spin degree of freedom and has proved to be very promising for new types of fast electronic devices. Amongst the anticipated advantages of spintronics technologies, researchers have identified the non-volatile storage of data with high density and low energy consumption as particularly relevant. This monograph examines the concept of half-metallic compounds perspectives to obtain novel solutions and discusses several oxides such as perovskites, double perovskites and CrO2 as well as Heusler compounds. Such materials can be designed and made

  10. Uranium material removing and recovering device

    International Nuclear Information System (INIS)

    Takita, Shin-ichi.

    1997-01-01

    A uranium material removing and recovering device for use in removing surplus uranium heavy metal (UO 2 ) generated in a uranium handling facility comprises a uranium material removing device and a uranium material recovering device. The uranium material removing device comprises an adsorbing portion filled with a uranium adsorbent, a control portion for controlling the uranium adsorbent of the uranium adsorbing portion by a controlling agent, a uranium adsorbing device connected thereto and a jetting device for jetting the adsorbing liquid to equipments deposited with uranium. The recovering device comprises a recovering apparatus for recovering uranium materials deposited with the adsorbent liquid removed by the jetting device and a recovering tank for storing the recovered uranium materials. The device of the present invention can remove surplus uranium simply and safely, mitigate body's load upon removing and recovering operations, facilitate the processing for the exchange of the adsorbent and reduces the radioactive wastes. (T.M.)

  11. Environmental TEM for Materials Research

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum

    Over the last decades, electron microscopy has played a large role in materials research. The increasing use of particularly environmental transmission electron microscopy (ETEM) in materials science provides new possibilities for investigating nanoscale components at work. Careful experimentation...

  12. Environmental TEM in Materials Research

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Wagner, Jakob Birkedal

    Over the last decades, electron microscopy has played a large role in materials research. The increasing use of particularly environmental transmission electron microscopy (ETEM) in materials science provides new possibilities for investigating nanoscale components at work. Careful experimentation...

  13. Hierarchically Nanostructured Materials for Sustainable Environmental Applications

    Directory of Open Access Journals (Sweden)

    Zheng eRen

    2013-11-01

    Full Text Available This article presents a comprehensive overview of the hierarchical nanostructured materials with either geometry or composition complexity in environmental applications. The hierarchical nanostructures offer advantages of high surface area, synergistic interactions and multiple functionalities towards water remediation, environmental gas sensing and monitoring as well as catalytic gas treatment. Recent advances in synthetic strategies for various hierarchical morphologies such as hollow spheres and urchin-shaped architectures have been reviewed. In addition to the chemical synthesis, the physical mechanisms associated with the materials design and device fabrication have been discussed for each specific application. The development and application of hierarchical complex perovskite oxide nanostructures have also been introduced in photocatalytic water remediation, gas sensing and catalytic converter. Hierarchical nanostructures will open up many possibilities for materials design and device fabrication in environmental chemistry and technology.

  14. Flexible devices: from materials, architectures to applications

    Science.gov (United States)

    Zou, Mingzhi; Ma, Yue; Yuan, Xin; Hu, Yi; Liu, Jie; Jin, Zhong

    2018-01-01

    Flexible devices, such as flexible electronic devices and flexible energy storage devices, have attracted a significant amount of attention in recent years for their potential applications in modern human lives. The development of flexible devices is moving forward rapidly, as the innovation of methods and manufacturing processes has greatly encouraged the research of flexible devices. This review focuses on advanced materials, architecture designs and abundant applications of flexible devices, and discusses the problems and challenges in current situations of flexible devices. We summarize the discovery of novel materials and the design of new architectures for improving the performance of flexible devices. Finally, we introduce the applications of flexible devices as key components in real life. Project supported by the National Key R&D Program of China (Nos. 2017YFA0208200, 2016YFB0700600, 2015CB659300), the National Natural Science Foundation of China (Nos. 21403105, 21573108), and the Fundamental Research Funds for the Central Universities (No. 020514380107).

  15. Bio-inspired materials for electrochemical devices

    Science.gov (United States)

    Pawlicka, A.; Firmino, A.; Sentanin, F.; Sabadini, R. C.; Jimenez, D. E. Q.; Jayme, C. C.; Mindroiu, M.; Zgarian, R. G.; Tihan, G. T.; Rau, I.; Silva, M. M.; Nogueira, A. F.; Kanicki, J.; Kajzar, F.

    2015-10-01

    Natural macromolecules are very promising row materials to be used in modern technology including security and defense. They are abundant in nature, easy to extract and possess biocompatibility and biodegradability properties. These materials can be modified throughout chemical or physical processes, and can be doped with lithium and rare earth salts, ionic liquids, organic and inorganic acids. In this communication samples of DNA and modified DNA were doped with Prussian Blue (PB), poly(ethylene dioxythiophene) (PEDOT), europium and erbium triflate and organic dyes such as Nile Blue (NB), Disperse Red 1 (DR1) and Disperse Orange 3 (DO3). The colored or colorless membranes were characterized by electrochemical and spectroscopic measurements, and they were applied in electrochromic devices (ECDs) and dye sensitized solar cells (DSSC). ECDs change the color under applied potential, so they can modulate the intensity of transmitted light of 15 to 35%. As the electrochromic materials, WO3 or Prussian blue (PB), are usually blue colored, the color change is from transparent to blue. DNA, and the complexes: DNA-CTMA, DNA-DODA and DNAPEDOT: PSS were also investigated as either hole carrier material (HTM) or polymer electrolyte in dye-sensitized solar cells (DSSC). The DNA-based samples as HTM in small DSSCs revealed a solar energy conversion efficiency of 0.56%. Polymer electrolytes of DNA-CTMA and DNA-DODA, both with 10 wt% of LiI/I2, applied in small DSSC, exhibited the efficiencies of 0.18 and 0.66%, respectively. The obtained results show that natural macromolecules-based membranes are not only environmentally friendly but are also promising materials to be investigated for several electrochemical devices. However, to obtain better performances more research is still needed.

  16. Synaptic electronics: materials, devices and applications.

    Science.gov (United States)

    Kuzum, Duygu; Yu, Shimeng; Wong, H-S Philip

    2013-09-27

    In this paper, the recent progress of synaptic electronics is reviewed. The basics of biological synaptic plasticity and learning are described. The material properties and electrical switching characteristics of a variety of synaptic devices are discussed, with a focus on the use of synaptic devices for neuromorphic or brain-inspired computing. Performance metrics desirable for large-scale implementations of synaptic devices are illustrated. A review of recent work on targeted computing applications with synaptic devices is presented.

  17. Synaptic electronics: materials, devices and applications

    International Nuclear Information System (INIS)

    Kuzum, Duygu; Yu, Shimeng; Philip Wong, H-S

    2013-01-01

    In this paper, the recent progress of synaptic electronics is reviewed. The basics of biological synaptic plasticity and learning are described. The material properties and electrical switching characteristics of a variety of synaptic devices are discussed, with a focus on the use of synaptic devices for neuromorphic or brain-inspired computing. Performance metrics desirable for large-scale implementations of synaptic devices are illustrated. A review of recent work on targeted computing applications with synaptic devices is presented. (topical review)

  18. Microfiber devices based on carbon materials

    OpenAIRE

    Gengzhi Sun; Xuewan Wang; Peng Chen

    2015-01-01

    Microfiber devices are able to extend the micro/nano functionalities of materials or devices to the macroscopic scale with excellent flexibility and weavability, promising a variety of unique applications and, sometimes, also improved performance as compared with bulk counterparts. The fiber electrodes in these devices are often made of carbon materials (e.g. carbon nanotubes and graphene) because of their exceptional electrical, mechanical, and structural properties. Covering the latest deve...

  19. Nanoscale phase-change materials and devices

    International Nuclear Information System (INIS)

    Zheng, Qinghui; Wang, Yuxi; Zhu, Jia

    2017-01-01

    Phase-change materials (PCMs) that can reversibly transit between crystalline and amorphous phases have been widely used for data-storage and other functional devices. As PCMs scale down to nanoscale, the properties and transition procedures can vary, bringing both challenges and opportunities in scalability. This article describes the physical structures, properties and applications of nanoscale phase-change materials and devices. The limitations and performance of scaling properties in phase-change materials and the recent progress and challenges in phase-change devices are presented. At the end, some emerging applications related to phase-change materials are also introduced. (topical review)

  20. Nanoscale phase-change materials and devices

    Science.gov (United States)

    Zheng, Qinghui; Wang, Yuxi; Zhu, Jia

    2017-06-01

    Phase-change materials (PCMs) that can reversibly transit between crystalline and amorphous phases have been widely used for data-storage and other functional devices. As PCMs scale down to nanoscale, the properties and transition procedures can vary, bringing both challenges and opportunities in scalability. This article describes the physical structures, properties and applications of nanoscale phase-change materials and devices. The limitations and performance of scaling properties in phase-change materials and the recent progress and challenges in phase-change devices are presented. At the end, some emerging applications related to phase-change materials are also introduced.

  1. Energy harvesting: an integrated view of materials, devices and applications

    Science.gov (United States)

    Radousky, H. B.; Liang, H.

    2012-12-01

    Energy harvesting refers to the set of processes by which useful energy is captured from waste, environmental, or mechanical sources and is converted into a usable form. The discipline of energy harvesting is a broad topic that includes established methods and materials such as photovoltaics and thermoelectrics, as well as more recent technologies that convert mechanical energy, magnetic energy and waste heat to electricity. This article will review various state-of-the-art materials and devices for direct energy conversion and in particular will include multistep energy conversion approaches. The article will highlight the nano-materials science underlying energy harvesting principles and devices, but also include more traditional bulk processes and devices as appropriate and synergistic. Emphasis is placed on device-design innovations that lead to higher efficiency energy harvesting or conversion technologies ranging from the cm/mm-scale down to MEMS/NEMS (micro- and nano-electromechanical systems) devices. Theoretical studies are reviewed, which address transport properties, crystal chemistry, thermodynamic analysis, energy transfer, system efficiency and device operation. New developments in experimental methods; device design and fabrication; nanostructured materials fabrication; materials properties; and device performance measurement techniques are discussed.

  2. Device for encapsulating radioactive materials

    International Nuclear Information System (INIS)

    Suthanthiran, K.

    1994-01-01

    A capsule for encapsulating radioactive material for radiation treatment comprising two or more interfitting sleeves, wherein each sleeve comprises a closed bottom portion having a circumferential wall extending therefrom, and an open end located opposite the bottom portion. The sleeves are constructed to fit over one another to thereby establish an effectively sealed capsule container. 3 figs

  3. Special nuclear material simulation device

    Science.gov (United States)

    Leckey, John H.; DeMint, Amy; Gooch, Jack; Hawk, Todd; Pickett, Chris A.; Blessinger, Chris; York, Robbie L.

    2014-08-12

    An apparatus for simulating special nuclear material is provided. The apparatus typically contains a small quantity of special nuclear material (SNM) in a configuration that simulates a much larger quantity of SNM. Generally the apparatus includes a spherical shell that is formed from an alloy containing a small quantity of highly enriched uranium. Also typically provided is a core of depleted uranium. A spacer, typically aluminum, may be used to separate the depleted uranium from the shell of uranium alloy. A cladding, typically made of titanium, is provided to seal the source. Methods are provided to simulate SNM for testing radiation monitoring portals. Typically the methods use at least one primary SNM spectral line and exclude at least one secondary SNM spectral line.

  4. Material detection method and device

    International Nuclear Information System (INIS)

    Shigenaka, Naoto; Fujimori, Haruo; Ono, Shigeki; Fuse, Motomasa; Uchida, Shunsuke.

    1994-01-01

    A specimen A sampled from an objective member for integrity evaluation, as well as a virgin specimen B having the same composition as the member are prepared. Ion injection, for example, is performed to the specimens A and B under the same condition to form deposits derived from ions, and the shape of the deposits of the specimens A and B are compared. The deposits formed on the crystal grain boundary has a convex shape, and a relative value for the energy of crystal grain boundary can be determined based on the aspect ratio. In addition, since the energy of the crystal grain boundary is in proportion to the grain boundary corrosion rate, the relative value for the grain boundary corrosion rate can be evaluated by measuring the shape of the deposits formed in the crystal grain boundary. If the grain boundary corrosion rate of the virgin specimen is previously measured, the change of the grain boundary corrosion rate can quantitatively be evaluated. A crack propagating rate of the reactor material upon evaluation of integrity, which has been difficult so far, can be determined, thereby enabling to forecast the remaining life time of the material at high accuracy. (N.H.)

  5. Organic optoelectronics:materials,devices and applications

    Institute of Scientific and Technical Information of China (English)

    LIU Yi; CUI Tian-hong

    2005-01-01

    The interest in organic materials for optoelectronic devices has been growing rapidly in the last two decades. This growth has been propelled by the exciting advances in organic thin films for displays, low-cost electronic circuits, etc. An increasing number of products employing organic electronic devices have become commercialized, which has stimulated the age of organic optoelectronics. This paper reviews the recent progress in organic optoelectronic technology. First, organic light emitting electroluminescent materials are introduced. Next, the three kinds of most important organic optoelectronic devices are summarized, including light emitting diode, organic photovoltaic cell, and photodetectors. The various applications of these devices are also reviewed and discussed in detail. Finally, the market and future development of optoelectronic devices are also demonstrated.

  6. Multifunctional magnetoelectric materials for device applications

    International Nuclear Information System (INIS)

    Ortega, N; Katiyar, Ram S; Kumar, Ashok; Scott, J F

    2015-01-01

    Over the past decade magnetoelectric (ME) mutiferroic (MF) materials and their devices are one of the highest priority research topics that has been investigated by the scientific ferroics community to develop the next generation of novel multifunctional materials. These systems show the simultaneous existence of two or more ferroic orders, and cross-coupling between them, such as magnetic spin, polarisation, ferroelastic ordering, and ferrotoroidicity. Based on the type of ordering and coupling, they have drawn increasing interest for a variety of device applications, such as magnetic field sensors, nonvolatile memory elements, ferroelectric photovoltaics, nano-electronics etc. Since single-phase materials exist rarely in nature with strong cross-coupling properties, intensive research activity is being pursued towards the discovery of new single-phase multiferroic materials and the design of new engineered materials with strong magneto-electric (ME) coupling. This review article summarises the development of different kinds of multiferroic material: single-phase and composite ceramic, laminated composite and nanostructured thin films. Thin-film nanostructures have higher magnitude direct ME coupling values and clear evidence of indirect ME coupling compared with bulk materials. Promising ME coupling coefficients have been reported in laminated composite materials in which the signal to noise ratio is good for device fabrication. We describe the possible applications of these materials. (topical review)

  7. An afterloading brachytherapy device utilizing thermoplastic material

    International Nuclear Information System (INIS)

    Kim, T.H.; Gerbi, J.B.; Deibel, F.C.; Khan, F.M.; Priest, J.R.

    1989-01-01

    An afterloading brachytherapy device for treatment of residual cancer in an enucleated orbit with two cesium-137 sources was designed using a thermoplastic material, Aquaplast. The device consists of a face-mask support held in place with elastic bands around the head and an acrylic afterloading applicator. The device is very easy to make, holds the sources firmly in place, allows full mobility of the patient, and gives excellent dose distribution to the target area. It was easily tolerated by a 7-year-old child during the 50 h of treatment. (author). 3 refs.; 4 figs

  8. Thermoelectric Energy Conversion: Materials, Devices, and Systems

    International Nuclear Information System (INIS)

    Chen, Gang

    2015-01-01

    This paper will present a discussion of challenges, progresses, and opportunities in thermoelectric energy conversion technology. We will start with an introduction to thermoelectric technology, followed by discussing advances in thermoelectric materials, devices, and systems. Thermoelectric energy conversion exploits the Seebeck effect to convert thermal energy into electricity, or the Peltier effect for heat pumping applications. Thermoelectric devices are scalable, capable of generating power from nano Watts to mega Watts. One key issue is to improve materials thermoelectric figure- of-merit that is linearly proportional to the Seebeck coefficient, the square of the electrical conductivity, and inversely proportional to the thermal conductivity. Improving the figure-of-merit requires good understanding of electron and phonon transport as their properties are often contradictory in trends. Over the past decade, excellent progresses have been made in the understanding of electron and phonon transport in thermoelectric materials, and in improving existing and identify new materials, especially by exploring nanoscale size effects. Taking materials to real world applications, however, faces more challenges in terms of materials stability, device fabrication, thermal management and system design. Progresses and lessons learnt from our effort in fabricating thermoelectric devices will be discussed. We have demonstrated device thermal-to-electrical energy conversion efficiency ∼10% and solar-thermoelectric generator efficiency at 4.6% without optical concentration of sunlight (Figure 1) and ∼8-9% efficiency with optical concentration. Great opportunities exist in advancing materials as well as in using existing materials for energy efficiency improvements and renewable energy utilization, as well as mobile applications. (paper)

  9. Thermoelectric materials and devices made therewith

    International Nuclear Information System (INIS)

    Moore, D.E.

    1985-01-01

    The disclosed invention includes improved devices and materials for thermoelectric conversion, particularly for operation at temperatures of 300 0 C. and below. Disordered p-type semiconductor elements incorporate compound adjuvants of silver and lead to achieve enhanced ''figure of merit'' values and corresponding increased efficiencies of thermoelectric conversion. Similar results are obtained with disordered n-type elements by employing lowered selenium contents, preferably in combination with cuprous bromide. Improved conversion devices include powder pressed elements from one or both of these materials

  10. Nano materials for Energy and Environmental Applications

    International Nuclear Information System (INIS)

    Srinivasan, S.; Kannan, A.M.; Kothurkar, N.; Khalil, Y.; Kuravi, S.

    2015-01-01

    Nano materials enabled technologies have been seamlessly integrated into applications such as aviation and space, chemical industry, optics, solar hydrogen, fuel cell, batteries, sensors, power generation, aeronautic industry, building/construction industry, automotive engineering, consumer electronics, thermoelectric devices, pharmaceuticals, and cosmetic industry. Clean energy and environmental applications often demand the development of novel nano materials that can provide shortest reaction pathways for the enhancement of reaction kinetics. Understanding the physicochemical, structural, microstructural, surface, and interface properties of nano materials is vital for achieving the required efficiency, cycle life, and sustain ability in various technological applications. Nano materials with specific size and shape such as nano tubes, nano fibers/nano wires, nano cones, nano composites, nano rods, nano islands, nanoparticles, nanospheres, and nano shells to provide unique properties can be synthesized by tuning the process conditions.

  11. Microelectronics to nanoelectronics materials, devices & manufacturability

    CERN Document Server

    Kaul, Anupama B

    2012-01-01

    Composed of contributions from top experts, Microelectronics to Nanoelectronics: Materials, Devices and Manufacturability offers a detailed overview of important recent scientific and technological developments in the rapidly evolving nanoelectronics arena.Under the editorial guidance and technical expertise of noted materials scientist Anupama B. Kaul of California Institute of Technology's Jet Propulsion Lab, this book captures the ascent of microelectronics into the nanoscale realm. It addresses a wide variety of important scientific and technological issues in nanoelectronics research and

  12. Background radioactivity in environmental materials

    International Nuclear Information System (INIS)

    Maul, P.R.; O'Hara, J.P.

    1989-01-01

    This paper presents the results of a literature search to identify information on concentrations of 'background' radioactivity in foodstuffs and other commonly available environmental materials. The review has concentrated on naturally occurring radioactivity in foods and on UK data, although results from other countries have also been considered where appropriate. The data are compared with established definitions of a 'radioactive' substance and radionuclides which do not appear to be adequately covered in the literature are noted. (author)

  13. III-V semiconductor materials and devices

    CERN Document Server

    Malik, R J

    1989-01-01

    The main emphasis of this volume is on III-V semiconductor epitaxial and bulk crystal growth techniques. Chapters are also included on material characterization and ion implantation. In order to put these growth techniques into perspective a thorough review of the physics and technology of III-V devices is presented. This is the first book of its kind to discuss the theory of the various crystal growth techniques in relation to their advantages and limitations for use in III-V semiconductor devices.

  14. Holmium hafnate: An emerging electronic device material

    International Nuclear Information System (INIS)

    Pavunny, Shojan P.; Sharma, Yogesh; Kooriyattil, Sudheendran; Dugu, Sita; Katiyar, Rajesh K.; Katiyar, Ram S.; Scott, James F.

    2015-01-01

    We report structural, optical, charge transport, and temperature properties as well as the frequency dependence of the dielectric constant of Ho 2 Hf 2 O 7 (HHO) which make this material desirable as an alternative high-k dielectric for future silicon technology devices. A high dielectric constant of ∼20 and very low dielectric loss of ∼0.1% are temperature and voltage independent at 100 kHz near ambient conditions. The Pt/HHO/Pt capacitor exhibits exceptionally low Schottky emission-based leakage currents. In combination with the large observed bandgap E g of 5.6 eV, determined by diffuse reflectance spectroscopy, our results reveal fundamental physics and materials science of the HHO metal oxide and its potential application as a high-k dielectric for the next generation of complementary metal-oxide-semiconductor devices

  15. Holmium hafnate: An emerging electronic device material

    Science.gov (United States)

    Pavunny, Shojan P.; Sharma, Yogesh; Kooriyattil, Sudheendran; Dugu, Sita; Katiyar, Rajesh K.; Scott, James F.; Katiyar, Ram S.

    2015-03-01

    We report structural, optical, charge transport, and temperature properties as well as the frequency dependence of the dielectric constant of Ho2Hf2O7 (HHO) which make this material desirable as an alternative high-k dielectric for future silicon technology devices. A high dielectric constant of ˜20 and very low dielectric loss of ˜0.1% are temperature and voltage independent at 100 kHz near ambient conditions. The Pt/HHO/Pt capacitor exhibits exceptionally low Schottky emission-based leakage currents. In combination with the large observed bandgap Eg of 5.6 eV, determined by diffuse reflectance spectroscopy, our results reveal fundamental physics and materials science of the HHO metal oxide and its potential application as a high-k dielectric for the next generation of complementary metal-oxide-semiconductor devices.

  16. Holmium hafnate: An emerging electronic device material

    Energy Technology Data Exchange (ETDEWEB)

    Pavunny, Shojan P., E-mail: shojanpp@gmail.com, E-mail: rkatiyar@hpcf.upr.edu; Sharma, Yogesh; Kooriyattil, Sudheendran; Dugu, Sita; Katiyar, Rajesh K.; Katiyar, Ram S., E-mail: shojanpp@gmail.com, E-mail: rkatiyar@hpcf.upr.edu [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, P.O. Box 70377, San Juan, Puerto Rico 00936-8377 (United States); Scott, James F. [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, P.O. Box 70377, San Juan, Puerto Rico 00936-8377 (United States); Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge CB3 OHE (United Kingdom)

    2015-03-16

    We report structural, optical, charge transport, and temperature properties as well as the frequency dependence of the dielectric constant of Ho{sub 2}Hf{sub 2}O{sub 7} (HHO) which make this material desirable as an alternative high-k dielectric for future silicon technology devices. A high dielectric constant of ∼20 and very low dielectric loss of ∼0.1% are temperature and voltage independent at 100 kHz near ambient conditions. The Pt/HHO/Pt capacitor exhibits exceptionally low Schottky emission-based leakage currents. In combination with the large observed bandgap E{sub g} of 5.6 eV, determined by diffuse reflectance spectroscopy, our results reveal fundamental physics and materials science of the HHO metal oxide and its potential application as a high-k dielectric for the next generation of complementary metal-oxide-semiconductor devices.

  17. MDOT Materials Laboratories : Environmental Management Plan

    Science.gov (United States)

    2012-06-01

    The goal of this EMP was to develop and implement a comprehensive Environmental : Management Plan for MDOT Materials Laboratories. This goal was achieved through : perfonnance of environmental audits to identify potential environmental impacts, and b...

  18. Environmental testing techniques for electronics and materials

    CERN Document Server

    Dummer, Geoffrey W A; Fry, D W; Higinbotham, W

    2013-01-01

    Environmental Testing Techniques for Electronics and Materials reviews environmental testing techniques for evaluating the performance of electronic equipment, components, and materials. Environmental test planning, test methods, and instrumentation are described, along with the general environmental conditions under which equipment must operate. This book is comprised of 15 chapters and begins by explaining why environmental testing is necessary and describing the environment in which electronics must operate. The next chapter considers how an environmental test plan is designed; the methods

  19. Oxide bipolar electronics: materials, devices and circuits

    International Nuclear Information System (INIS)

    Grundmann, Marius; Klüpfel, Fabian; Karsthof, Robert; Schlupp, Peter; Schein, Friedrich-Leonhard; Splith, Daniel; Yang, Chang; Bitter, Sofie; Von Wenckstern, Holger

    2016-01-01

    We present the history of, and the latest progress in, the field of bipolar oxide thin film devices. As such we consider primarily pn-junctions in which at least one of the materials is a metal oxide semiconductor. A wide range of n-type and p-type oxides has been explored for the formation of such bipolar diodes. Since most oxide semiconductors are unipolar, challenges and opportunities exist with regard to the formation of heterojunction diodes and band lineups. Recently, various approaches have led to devices with high rectification, namely p-type ZnCo 2 O 4 and NiO on n-type ZnO and amorphous zinc-tin-oxide. Subsequent bipolar devices and applications such as photodetectors, solar cells, junction field-effect transistors and integrated circuits like inverters and ring oscillators are discussed. The tremendous progress shows that bipolar oxide electronics has evolved from the exploration of various materials and heterostructures to the demonstration of functioning integrated circuits. Therefore a viable, facile and high performance technology is ready for further exploitation and performance optimization. (topical review)

  20. Advanced Materials and Devices for Bioresorbable Electronics.

    Science.gov (United States)

    Kang, Seung-Kyun; Koo, Jahyun; Lee, Yoon Kyeung; Rogers, John A

    2018-05-15

    Recent advances in materials chemistry establish the foundations for unusual classes of electronic systems, characterized by their ability to fully or partially dissolve, disintegrate, or otherwise physically or chemically decompose in a controlled fashion after some defined period of stable operation. Such types of "transient" technologies may enable consumer gadgets that minimize waste streams associated with disposal, implantable sensors that disappear harmlessly in the body, and hardware-secure platforms that prevent unwanted recovery of sensitive data. This second area of opportunity, sometimes referred to as bioresorbable electronics, is of particular interest due to its ability to provide diagnostic or therapeutic function in a manner that can enhance or monitor transient biological processes, such as wound healing, while bypassing risks associated with extended device load on the body or with secondary surgical procedures for removal. Early chemistry research established sets of bioresorbable materials for substrates, encapsulation layers, and dielectrics, along with several options in organic and bio-organic semiconductors. The subsequent realization that nanoscale forms of device-grade monocrystalline silicon, such as silicon nanomembranes (m-Si NMs, or Si NMs) undergo hydrolysis in biofluids to yield biocompatible byproducts over biologically relevant time scales advanced the field by providing immediate routes to high performance operation and versatile, sophisticated levels of function. When combined with bioresorbable conductors, dielectrics, substrates, and encapsulation layers, Si NMs provide the basis for a broad, general class of bioresorbable electronics. Other properties of Si, such as its piezoresistivity and photovoltaic properties, allow other types of bioresorbable devices such as solar cells, strain gauges, pH sensors, and photodetectors. The most advanced bioresorbable devices now exist as complete systems with successful demonstrations of

  1. Device for sampling liquid radioactive materials

    International Nuclear Information System (INIS)

    Vlasak, L.

    1987-01-01

    Remote sampling of radioactive materials in the process of radioactive waste treatment is claimed by the Czechoslovak Patent Document 238599. The existing difficulties are eliminated consisting in a complex remote control of sampling featuring the control of sliding and rotary movements of the sampling device. The new device consists of a vertical pipe with an opening provided with a cover. A bend is provided above the opening level housing flow distributors. A sampling tray is pivoted in the cover. In sampling, the tray is tilted in the vertical pipe space while it tilts back when filled. The sample flows into a vessel below the tray. Only rotary movement is thus sufficient for controlling the tray. (Z.M.)

  2. Conjugated polymer photovoltaic devices and materials

    International Nuclear Information System (INIS)

    Mozer, A.J.; Niyazi, Serdar Sariciftci

    2006-01-01

    The science and technology of conjugated polymer-based photovoltaic devices (bulk heterojunction solar cells) is highlighted focusing on three major issues, i.e. (i) nano-morphology optimization, (ii) improving charge carrier mobility, (iii) improving spectral sensitivity. Successful strategies towards improved photovoltaic performance are presented using various novel materials, including double-cable polymers, regioregular polymers and low bandgap polymers. The examples presented herein demonstrate that the bulk heterojunction concept is a viable approach towards developing photovoltaic systems by inexpensive solution-based fabrication technologies. (authors)

  3. Oxide materials for spintronic device applications

    Science.gov (United States)

    Prestgard, Megan Campbell

    Spintronic devices are currently being researched as next-generation alternatives to traditional electronics. Electronics, which utilize the charge-carrying capabilities of electrons to store information, are fundamentally limited not only by size constraints, but also by limits on current flow and degradation, due to electro-migration. Spintronics devices are able to overcome these limitations, as their information storage is in the spin of electrons, rather than their charge. By using spin rather than charge, these current-limiting shortcomings can be easily overcome. However, for spintronic devices to be fully implemented into the current technology industry, their capabilities must be improved. Spintronic device operation relies on the movement and manipulation of spin-polarized electrons, in which there are three main processes that must be optimized in order to maximize device efficiencies. These spin-related processes are: the injection of spin-polarized electrons, the transport and manipulation of these carriers, and the detection of spin-polarized currents. In order to enhance the rate of spin-polarized injection, research has been focused on the use of alternative methods to enhance injection beyond that of a simple ferromagnetic metal/semiconductor injector interface. These alternatives include the use of oxide-based tunnel barriers and the modification of semiconductors and insulators for their use as ferromagnetic injector materials. The transport of spin-polarized carriers is heavily reliant on the optimization of materials' properties in order to enhance the carrier mobility and to quench spin-orbit coupling (SOC). However, a certain degree of SOC is necessary in order to allow for the electric-field, gate-controlled manipulation of spin currents. Spin detection can be performed via both optical and electrical techniques. Using electrical methods relies on the conversion between spin and charge currents via SOC and is often the preferred method for

  4. Glass solidification material confinement test device

    International Nuclear Information System (INIS)

    Namiki, Shigekazu.

    1997-01-01

    In a device for confining glass solidification materials, a pipeline connecting a detection vessel and a detector is formed to have a double walled structure, and air blowing holes are formed on the wall of the inner pipe, and an air supply mechanism is connected to inner and outer pipes for supplying blowing air thereby preventing deposition on the inner pipe wall. The air blowing holes are formed by constituting the pipe by using a porous sintered material and porous portions thereof are defined as the air blowing holes, or holes are formed on the pipe wall made of a metal by machining. A blowing boundary layer is formed by blowing the supplied air along the pipe wall of the inner pipe, by which deposition of the sucked materials to the inner wall of the inner pipe is prevented, and all of the materials sucked from the detection vessel are collected to the detector. In addition, an air exit pipe is formed into a double walled structure so as to be supplied blowing air from the air supply mechanism thereby enabling to prevent deposition of sucked materials more reliably. (N.H.)

  5. New Layered Materials and Functional Nanoelectronic Devices

    Science.gov (United States)

    Yu, Jaeeun

    This thesis introduces functional nanomaterials including superatoms and carbon nanotubes (CNTs) for new layered solids and molecular devices. Chapters 1-3 present how we incorporate superatoms into two-dimensional (2D) materials. Chapter 1 describes a new and simple approach to dope transition metal dichalcogenides (TMDCs) using the superatom Co6Se8(PEt3)6 as the electron dopant. Doping is an effective method to modulate the electrical properties of materials, and we demonstrate an electron-rich cluster can be used as a tunable and controllable surface dopant for semiconducting TMDCs via charge transfer. As a demonstration of the concept, we make a p-n junction by patterning on specific areas of TMDC films. Chapter 2 and Chapter 3 introduce new 2D materials by molecular design of superatoms. Traditional atomic van der Waals materials such as graphene, hexagonal boron-nitride, and TMDCs have received widespread attention due to the wealth of unusual physical and chemical behaviors that arise when charges, spins, and vibrations are confined to a plane. Though not as widespread as their atomic counterparts, molecule-based layered solids offer significant benefits; their structural flexibility will enable the development of materials with tunable properties. Chapter 2 describes a layered van der Waals solid self-assembled from a structure-directing building block and C60 fullerene. The resulting crystalline solid contains a corrugated monolayer of neutral fullerenes and can be mechanically exfoliated. Chapter 3 describes a new method to functionalize electroactive superatoms with groups that can direct their assembly into covalent and non-covalent multi-dimensional frameworks. We synthesized Co6Se8[PEt2(4-C6H4COOH)]6 and found that it forms two types of crystalline assemblies with Zn(NO3)2, one is a three-dimensional solid and the other consists of stacked layers of two-dimensional sheets. The dimensionality is controlled by subtle changes in reaction conditions. CNT

  6. Novel Photovoltaic Devices Using Ferroelectric Material and Colloidal Quantum Dots

    Science.gov (United States)

    Paik, Young Hun

    As the global concern for the financial and environmental costs of traditional energy resources increases, research on renewable energy, most notably solar energy, has taken center stage. Many alternative photovoltaic (PV) technologies for 'the next generation solar cell' have been extensively studied to overcome the Shockley-Queisser 31% efficiency limit as well as tackle the efficiency vs. cost issues. This dissertation focuses on the novel photovoltaic mechanism for the next generation solar cells using two inorganic nanomaterials, nanocrystal quantum dots and ferroelectric nanoparticles. Lead zirconate titanate (PZT) materials are widely studied and easy to synthesize using solution based chemistry. One of the fascinating properties of the PZT material is a Bulk Photovoltaic effect (BPVE). This property has been spotlighted because it can produce very high open circuit voltage regardless of the electrical bandgap of the materials. However, the poor optical absorption of the PZT materials and the required high temperature to form the ferroelectric crystalline structure have been obstacles to fabricate efficient photovoltaic devices. Colloidal quantum dots also have fascinating optical and electrical properties such as tailored absorption spectrum, capability of the bandgap engineering due to the wide range of material selection and quantum confinement, and very efficient carrier dynamics called multiple exciton generations. In order to utilize these properties, many researchers have put numerous efforts in colloidal quantum dot photovoltaic research and there has been remarkable progress in the past decade. However, several drawbacks are still remaining to achieve highly efficient photovoltaic device. Traps created on the large surface area, low carrier mobility, and lower open circuit voltage while increasing the absorption of the solar spectrum is main issues of the nanocrystal based photovoltaic effect. To address these issues and to take the advantages of

  7. Environmental performances of gas pipe materials

    International Nuclear Information System (INIS)

    Van Nifterik, G.

    1996-01-01

    In constructing new gas pipelines energy distribution companies are increasingly dealing with the question of which material has the lowest environmental impact. Gastec (Dutch gas research institute) and the 'Centrum voor Milieukunde Leiden' (Centre for Environmental Studies of the University of Leiden) studied and compared the environmental aspects of such materials. The study concerns the entire life cycle from raw materials production through digging and welding or fusion joining to the moment the materials are discarded as waste. 2 figs

  8. Hybrid Solar Cells: Materials, Interfaces, and Devices

    Science.gov (United States)

    Mariani, Giacomo; Wang, Yue; Kaner, Richard B.; Huffaker, Diana L.

    Photovoltaic technologies could play a pivotal role in tackling future fossil fuel energy shortages, while significantly reducing our carbon dioxide footprint. Crystalline silicon is pervasively used in single junction solar cells, taking up 80 % of the photovoltaic market. Semiconductor-based inorganic solar cells deliver relatively high conversion efficiencies at the price of high material and manufacturing costs. A great amount of research has been conducted to develop low-cost photovoltaic solutions by incorporating organic materials. Organic semiconductors are conjugated hydrocarbon-based materials that are advantageous because of their low material and processing costs and a nearly unlimited supply. Their mechanical flexibility and tunable electronic properties are among other attractions that their inorganic counterparts lack. Recently, collaborations in nanotechnology research have combined inorganic with organic semiconductors in a "hybrid" effort to provide high conversion efficiencies at low cost. Successful integration of these two classes of materials requires a profound understanding of the material properties and an exquisite control of the morphology, surface properties, ligands, and passivation techniques to ensure an optimal charge carrier generation across the hybrid device. In this chapter, we provide background information of this novel, emerging field, detailing the various approaches for obtaining inorganic nanostructures and organic polymers, introducing a multitude of methods for combining the two components to achieve the desired morphologies, and emphasizing the importance of surface manipulation. We highlight several studies that have fueled new directions for hybrid solar cell research, including approaches for maximizing efficiencies by controlling the morphologies of the inorganic component, and in situ molecular engineering via electrochemical polymerization of a polymer directly onto the inorganic nanowire surfaces. In the end, we

  9. High-performance green semiconductor devices: materials, designs, and fabrication

    Science.gov (United States)

    Jung, Yei Hwan; Zhang, Huilong; Gong, Shaoqin; Ma, Zhenqiang

    2017-06-01

    From large industrial computers to non-portable home appliances and finally to light-weight portable gadgets, the rapid evolution of electronics has facilitated our daily pursuits and increased our life comforts. However, these rapid advances have led to a significant decrease in the lifetime of consumer electronics. The serious environmental threat that comes from electronic waste not only involves materials like plastics and heavy metals, but also includes toxic materials like mercury, cadmium, arsenic, and lead, which can leak into the ground and contaminate the water we drink, the food we eat, and the animals that live around us. Furthermore, most electronics are comprised of non-renewable, non-biodegradable, and potentially toxic materials. Difficulties in recycling the increasing amount of electronic waste could eventually lead to permanent environmental pollution. As such, discarded electronics that can naturally degrade over time would reduce recycling challenges and minimize their threat to the environment. This review provides a snapshot of the current developments and challenges of green electronics at the semiconductor device level. It looks at the developments that have been made in an effort to help reduce the accumulation of electronic waste by utilizing unconventional, biodegradable materials as components. While many semiconductors are classified as non-biodegradable, a few biodegradable semiconducting materials exist and are used as electrical components. This review begins with a discussion of biodegradable materials for electronics, followed by designs and processes for the manufacturing of green electronics using different techniques and designs. In the later sections of the review, various examples of biodegradable electrical components, such as sensors, circuits, and batteries, that together can form a functional electronic device, are discussed and new applications using green electronics are reviewed.

  10. Materials, processes, and environmental engineering network

    Science.gov (United States)

    White, Margo M.

    1993-01-01

    The Materials, Processes, and Environmental Engineering Network (MPEEN) was developed as a central holding facility for materials testing information generated by the Materials and Processes Laboratory. It contains information from other NASA centers and outside agencies, and also includes the NASA Environmental Information System (NEIS) and Failure Analysis Information System (FAIS) data. Environmental replacement materials information is a newly developed focus of MPEEN. This database is the NASA Environmental Information System, NEIS, which is accessible through MPEEN. Environmental concerns are addressed regarding materials identified by the NASA Operational Environment Team, NOET, to be hazardous to the environment. An environmental replacement technology database is contained within NEIS. Environmental concerns about materials are identified by NOET, and control or replacement strategies are formed. This database also contains the usage and performance characteristics of these hazardous materials. In addition to addressing environmental concerns, MPEEN contains one of the largest materials databases in the world. Over 600 users access this network on a daily basis. There is information available on failure analysis, metals and nonmetals testing, materials properties, standard and commercial parts, foreign alloy cross-reference, Long Duration Exposure Facility (LDEF) data, and Materials and Processes Selection List data.

  11. Handbook of materials for medical devices

    National Research Council Canada - National Science Library

    Davis, J. R

    2003-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Introduction Chapter 1 Overview of Biomaterials and Their Use in Medical Devices . . . . . . . . . . . . . . . . 1 Uses for Biomaterials...

  12. Tomographic Environmental Sections for Environmental Mitigation Devices in Historical Centers

    Directory of Open Access Journals (Sweden)

    Roberta Cocci Grifoni

    2017-03-01

    Full Text Available Urban heat waves and the overall growing trend in the annual global temperature underline the importance of urban/architectural resilience and the need to reduce energy consumption. By designing urban voids, it is possible to create thermodynamic buffers, i.e., bubbles of controlled atmosphere that act as mediators between the natural and built environments, between the human body and the surrounding air, between meteorology and physiology (meteorological architecture. Multiple small actions in the urban fabric’s open spaces, such as replacing dark pavements or inserting vegetation and green spaces, are intended to improve outdoor comfort conditions and therefore the resilience of the city itself. This not only benefits the place’s quality, which is intrinsic to the new project, but also the insulating capacity of buildings, which are relieved of an external heat load. The design emphasis therefore changes from solid structures to the climate and weather conditions, which are invisible but perceivable. To design and control these constructed atmopheres, tomographic sections processed with computational fluid dynamics software (tomographic environmental section, TENS becomes necessary. It allows the effects of an extreme event on an outdoor environment to be evaluated in order to establish the appropriate (adaptive climate mitigation devices, especially in historical centers where energy retrofits are often discouraged. By fixing boundary conditions after a local intervention, the virtual environment can be simulated and then "sliced" to analyze initial values and verify the design improvements.

  13. Silicon based light-emitting materials and devices

    International Nuclear Information System (INIS)

    Chen Weide

    1999-01-01

    Silicon based light-emitting materials and devices are the key to optoelectronic integration. Recently, there has been significant progress in materials engineering methods. The author reviews the latest developments in this area including erbium doped silicon, porous silicon, nanocrystalline silicon and Si/SiO 2 superlattice structures. The incorporation of these different materials into devices is described and future device prospects are assessed

  14. Test device for measuring permeability of a barrier material

    Science.gov (United States)

    Reese, Matthew; Dameron, Arrelaine; Kempe, Michael

    2014-03-04

    A test device for measuring permeability of a barrier material. An exemplary device comprises a test card having a thin-film conductor-pattern formed thereon and an edge seal which seals the test card to the barrier material. Another exemplary embodiment is an electrical calcium test device comprising: a test card an impermeable spacer, an edge seal which seals the test card to the spacer and an edge seal which seals the spacer to the barrier material.

  15. Modeling Emerging Solar Cell Materials and Devices

    Science.gov (United States)

    Thongprong, Non

    Organic photovoltaics (OPVs) and perovskite solar cells are emerging classes of solar cell that are promising for clean energy alternatives to fossil fuels. Understanding fundamental physics of these materials is crucial for improving their energy conversion efficiencies and promoting them to practical applications. Current density-voltage (JV) curves; which are important indicators of OPV efficiency, have direct connections to many fundamental properties of solar cells. They can be described by the Shockley diode equation, resulting in fitting parameters; series and parallel resistance (Rs and Rp), diode saturation current ( J0) and ideality factor (n). However, the Shockley equation was developed specifically for inorganic p-n junction diodes, so it lacks physical meanings when it is applied to OPVs. Hence, the puRposes of this work are to understand the fundamental physics of OPVs and to develop new diode equations in the same form as the Shockley equation that are based on OPV physics. We develop a numerical drift-diffusion simulation model to study bilayer OPVs, which will be called the drift-diffusion for bilayer interface (DD-BI) model. The model solves Poisson, drift-diffusion and current-continuity equations self-consistently for charge densities and potential profiles of a bilayer device with an organic heterojunction interface described by the GWWF model. We also derive new diode equations that have JV curves consistent with the DD-BI model and thus will be called self-consistent diode (SCD) equations. Using the DD-BI and the SCD model allows us to understand working principles of bilayer OPVs and physical definitions of the Shockley parameters. Due to low carrier mobilities in OPVs, space charge accumulation is common especially near the interface and electrodes. Hence, quasi-Fermi levels (i.e. chemical potentials), which depend on charge densities, are modified around the interface, resulting in a splitting of quasi-Fermi levels that works as a driving

  16. RESOURCE MATERIALS DEVELOPMENT IN ENVIRONMENTAL ...

    African Journals Online (AJOL)

    the importance of linking environmental issues with educational ... the teacher's role and status, gender discrimination, ... school teachers are dedicated to their work and are ... been developed and shaped through critical reflection .... Ongoing literature reviews and deepening theoretical ... orientations to research stress the.

  17. Diamond: a material for acoustic devices

    OpenAIRE

    MORTET, Vincent; WILLIAMS, Oliver; HAENEN, Ken

    2008-01-01

    Diamond has been foreseen to replace silicon for high power, high frequency electronic applications or for devices that operates in harsh environments. However, diamond electronic devices are still in the laboratory stage due to the lack of large substrates and the complexity of diamond doping. On another hand, surface acoustic wave filters based on diamond are commercially available. Diamond is especially suited for acoustic applications because of its exceptional mechanical properties. The ...

  18. Integrated Photonic Devices Incorporating Low-Loss Fluorinated Polymer Materials

    Directory of Open Access Journals (Sweden)

    Hyung-Jong Lee

    2011-06-01

    Full Text Available Low-loss polymer materials incorporating fluorinated compounds have been utilized for the investigation of various functional optical devices useful for optical communication and optical sensor systems. Since reliability issues concerning the polymer device have been resolved, polymeric waveguide devices have been gradually adopted for commercial application systems. The two most successfully commercialized polymeric integrated optic devices, variable optical attenuators and digital optical switches, are reviewed in this paper. Utilizing unique properties of optical polymers which are not available in other optical materials, novel polymeric optical devices are proposed including widely tunable external cavity lasers and integrated optical current sensors.

  19. Nature-Inspired Structural Materials for Flexible Electronic Devices.

    Science.gov (United States)

    Liu, Yaqing; He, Ke; Chen, Geng; Leow, Wan Ru; Chen, Xiaodong

    2017-10-25

    Exciting advancements have been made in the field of flexible electronic devices in the last two decades and will certainly lead to a revolution in peoples' lives in the future. However, because of the poor sustainability of the active materials in complex stress environments, new requirements have been adopted for the construction of flexible devices. Thus, hierarchical architectures in natural materials, which have developed various environment-adapted structures and materials through natural selection, can serve as guides to solve the limitations of materials and engineering techniques. This review covers the smart designs of structural materials inspired by natural materials and their utility in the construction of flexible devices. First, we summarize structural materials that accommodate mechanical deformations, which is the fundamental requirement for flexible devices to work properly in complex environments. Second, we discuss the functionalities of flexible devices induced by nature-inspired structural materials, including mechanical sensing, energy harvesting, physically interacting, and so on. Finally, we provide a perspective on newly developed structural materials and their potential applications in future flexible devices, as well as frontier strategies for biomimetic functions. These analyses and summaries are valuable for a systematic understanding of structural materials in electronic devices and will serve as inspirations for smart designs in flexible electronics.

  20. Contact materials for nanowire devices and nanoelectromechanical switches

    KAUST Repository

    Hussain, Muhammad Mustafa

    2011-02-01

    The impact of contact materials on the performance of nanostructured devices is expected to be signifi cant. This is especially true since size scaling can increase the contact resistance and induce many unseen phenomenon and reactions that greatly impact device performance. Nanowire and nanoelectromechanical switches are two emerging nanoelectronic devices. Nanowires provide a unique opportunity to control the property of a material at an ultra-scaled dimension, whereas a nanoelectromechanical switch presents zero power consumption in its off state, as it is physically detached from the sensor anode. In this article, we specifi cally discuss contact material issues related to nanowire devices and nanoelectromechanical switches.

  1. Sterilization and reprocessing of materials and medical devices--reusability.

    Science.gov (United States)

    Jayabalan, M

    1995-07-01

    Problems associated with reprocessing of disposable medical devices such as hemodialysers with resterilization for reuse and changes in material properties with resterilization of polymeric (PVC, polypropylene, polyester, polycarbonate) materials intended for development of disposable devices are reviewed. Reprocessing of hospital supplies, polystyrene microtiter plate and angiographic catheter for reuse is also discussed.

  2. Nano-Bio Quantum Technology for Device-Specific Materials

    Science.gov (United States)

    Choi, Sang H.

    2009-01-01

    The areas discussed are still under development: I. Nano structured materials for TE applications a) SiGe and Be.Te; b) Nano particles and nanoshells. II. Quantum technology for optical devices: a) Quantum apertures; b) Smart optical materials; c) Micro spectrometer. III. Bio-template oriented materials: a) Bionanobattery; b) Bio-fuel cells; c) Energetic materials.

  3. Advances in ferrite microwave materials and devices

    International Nuclear Information System (INIS)

    Schloemann, Ernst

    2000-01-01

    The application of ferrites in non-reciprocal components is discussed, with the emphasis on broadband isolators and circulators. The performance of such devices may be characterized by the ratio f max /f min of the frequencies that define the edges of the frequency band, within which satisfactory performance has been achieved. For the best currently available devices this ratio is approx. 3 : 1, but larger values appear feasible according to a detailed analysis of the 'low-field, low-frequency loss' that limits the performance

  4. Polymer matrix electroluminescent materials and devices

    Science.gov (United States)

    Marrocco, III, Matthew L.; Motamedi, Farshad J [Claremont, CA; Abdelrazzaq, Feras Bashir [Covina, CA; Abdelrazzaq, legal representative, Bashir Twfiq

    2012-06-26

    Photoluminescent and electroluminescent compositions are provided which comprise a matrix comprising aromatic repeat units covalently coordinated to a phosphorescent or luminescent metal ion or metal ion complexes. Methods for producing such compositions, and the electroluminescent devices formed therefrom, are also disclosed.

  5. Materials and Reliability Handbook for Semiconductor Optical and Electron Devices

    CERN Document Server

    Pearton, Stephen

    2013-01-01

    Materials and Reliability Handbook for Semiconductor Optical and Electron Devices provides comprehensive coverage of reliability procedures and approaches for electron and photonic devices. These include lasers and high speed electronics used in cell phones, satellites, data transmission systems and displays. Lifetime predictions for compound semiconductor devices are notoriously inaccurate due to the absence of standard protocols. Manufacturers have relied on extrapolation back to room temperature of accelerated testing at elevated temperature. This technique fails for scaled, high current density devices. Device failure is driven by electric field or current mechanisms or low activation energy processes that are masked by other mechanisms at high temperature. The Handbook addresses reliability engineering for III-V devices, including materials and electrical characterization, reliability testing, and electronic characterization. These are used to develop new simulation technologies for device operation and ...

  6. Topological Material-Based Spin Devices

    Science.gov (United States)

    Zhang, Minhao; Wang, Xuefeng

    Three-dimensional topological insulators have insulating bulk and gapless helical surface states. One of the most fascinating properties of the metallic surface states is the spin-momentum helical locking. The giant current-driven torques on the magnetic layer have been discovered in TI/ferromagnet bilayers originating from the spin-momentum helical locking, enabling the efficient magnetization switching with a low current density. We demonstrated the current-direction dependent on-off state in TIs-based spin valve devices for memory and logic applications. Further, we demonstrated the Bi2Se3 system will go from a topologically nontrivial state to a topologically trivial state when Bi atoms are replaced by lighter In atoms. Here, topologically trivial metal (BixIny)2 Se3 with high mobility also facilitates the realization of its application in multifunctional spintronic devices.

  7. Diamond-shaped electromagnetic transparent devices with homogeneous material parameters

    International Nuclear Information System (INIS)

    Li Tinghua; Huang Ming; Yang Jingjing; Yu Jiang; Lan Yaozhong

    2011-01-01

    Based on the linear coordinate transformation method, two-dimensional and three-dimensional electromagnetic transparent devices with diamond shape composed of homogeneous and non-singular materials are proposed in this paper. The permittivity and permeability tensors of the transparent devices are derived. The performance and scattering properties of the transparent devices are confirmed by a full-wave simulation. It can physically protect electric devices such as an antenna and a radar station inside, without sacrificing their performance. This work represents important progress towards the practical realization of metamaterial-assisted transparent devices and expands the application of transformation optics.

  8. Device and materials modeling in PEM fuel cells

    CERN Document Server

    Promislow, Keith

    2009-01-01

    Device and Materials Modeling in PEM Fuel Cells is a specialized text that compiles the mathematical details and results of both device and materials modeling in a single volume. Proton exchange membrane (PEM) fuel cells will likely have an impact on our way of life similar to the integrated circuit. The potential applications range from the micron scale to large scale industrial production. Successful integration of PEM fuel cells into the mass market will require new materials and a deeper understanding of the balance required to maintain various operational states. This book contains articles from scientists who contribute to fuel cell models from both the materials and device perspectives. Topics such as catalyst layer performance and operation, reactor dynamics, macroscopic transport, and analytical models are covered under device modeling. Materials modeling include subjects relating to the membrane and the catalyst such as proton conduction, atomistic structural modeling, quantum molecular dynamics, an...

  9. Introduction to organic electronic and optoelectronic materials and devices

    CERN Document Server

    Sun, Sam-Shajing

    2008-01-01

    Introduction to Optoelectronic Materials, N. Peyghambarian and M. Fallahi Introduction to Optoelectronic Device Principles, J. Piprek Basic Electronic Structures and Charge Carrier Generation in Organic Optoelectronic Materials, S.-S. Sun Charge Transport in Conducting Polymers, V.N. Prigodin and A.J. Epstein Major Classes of Organic Small Molecules for Electronic and Optoelectronics, X. Meng, W. Zhu, and H. Tian Major Classes of Conjugated Polymers and Synthetic Strategies, Y. Li and J. Hou Low Energy Gap, Conducting, and Transparent Polymers, A. Kumar, Y. Ner, and G.A. Sotzing Conjugated Polymers, Fullerene C60, and Carbon Nanotubes for Optoelectronic Devices, L. Qu, L. Dai, and S.-S. Sun Introduction of Organic Superconducting Materials, H. Mori Molecular Semiconductors for Organic Field-Effect Transistors, A. Facchetti Polymer Field-Effect Transistors, H.G.O. Sandberg Organic Molecular Light-Emitting Materials and Devices, F. So and J. Shi Polymer Light-Emitting Diodes: Devices and Materials, X. Gong and ...

  10. Microelectronics to nanoelectronics: materials, devices & manufacturability

    National Research Council Canada - National Science Library

    Kaul, Anupama B

    2013-01-01

    .... They highlight new technologies that have successfully transitioned from the laboratory to the marketplace as well as technologies that have near-term market applications in electronics, materials, and optics...

  11. Materials for optoelectronic devices, OEICs and photonics

    International Nuclear Information System (INIS)

    Schloetterer, H.; Quillec, M.; Greene, P.D.; Bertolotti, M.

    1991-01-01

    The aim of the contributors in this volume is to give a current overview on the basic properties of nonlinear optical materials for optoelectronics and integrated optics. They provide a cross-linkage between different materials (III-V, II-VI, Si-Ge, etc.), various sample dimensions (from bulk crystals to quantum dots), and a range of techniques from growth (LPE to MOMBE) and for processing from surface passivation to ion beams. Major growth techniques and materials are discussed, including the sophisticated technologies required to exploit the exciting properties of low dimensional semiconductors. These proceedings will prove an invaluable guide to the current state of optoelectronic materials development, as well as indicating the growth techniques that will be in use around the year 2000

  12. Processing device for discharged water from radioactive material handling facility

    International Nuclear Information System (INIS)

    Kono, Takao; Kono, Hiroyuki; Yasui, Katsuaki; Kataiki, Koichi.

    1995-01-01

    The device of the present invention comprises a mechanical floating material-removing means for removing floating materials in discharged water, an ultrafiltration device for separating processed water discharged from the removing means by membranes, a reverse osmotic filtration device for separating the permeated water and a condensing means for evaporating condensed water. Since processed water after mechanically removing floating materials is supplied to the ultrafiltration device, the load applied on the filtering membrane is reduced, to simplify the operation control as a total. In addition, since the amount of resultant condensed water is reduced, and the devolumed condensed water is condensed and dried, the condensing device is made compact and the amount of resultant wastes is reduced. (T.M.)

  13. Environmental safety issues for semiconductors (research on scarce materials recycling)

    International Nuclear Information System (INIS)

    Izumi, Shigekazu

    2004-01-01

    In the 21st century, in the fabrication of various industrial parts, particularly, current and future electronics devices in the semiconductor industry, environmental safety issues should be carefully considered. We coined a new term, environmental safety issues for semiconductors, considering our semiconductor research and technology which include environmental and ecological factors. The main object of this analysis is to address the present situation of environmental safety problems in the semiconductor industry; some of which are: (1) the generation and use of hazardous toxic gases in the crystal growth procedure such as molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD), (2) the generation of industrial toxic wastes in the semiconductor process and (3) scarce materials recycling from wastes in the MBE and MOCVD growth procedure

  14. Isotopically enriched structural materials in nuclear devices

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, L.W.G., E-mail: Lee.Morgan@ccfe.ac.uk [CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Shimwell, J. [CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Gilbert, M.R. [CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom)

    2015-01-15

    Highlights: • C-B analysis of isotopic enrichment of structural materials is presented. • Some, previously, prohibited elements could be used as alloying elements in LAM's. • Adding enriched molybdenum and nickel, to EUROFER, could increase availability. • Isotope enrichment for EUROFER could be cost-effective. • Isotopically enriching copper, in CuCrZr, can reduce helium production by 50%. - Abstract: A large number of materials exist which have been labeled as low activation structural materials (LAM). Most often, these materials have been designed in order to substitute-out or completely remove elements that become activated and contribute significantly to shut-down activity after being irradiated by neutrons in a reactor environment. To date, one of the fundamental principles from which LAMs have been developed is that natural elemental compositions are the building blocks of LAMs. Thus, elements such as Co, Al, Ni, Mo, Nb, N and Cu that produce long-lived decay products are significantly reduced or removed from the LAM composition. These elements have an important part to play in the composition of steels and the removal/substitution can have a negative impact on materials properties such as yield stress and fracture toughness. This paper looks in more detail at whether using isotopic selection of the more mechanically desirable, but prohibited due to activation, elements can improve matters. In particular, this paper focuses on the activation of Eurofer. Carefully chosen isotopically enriched elements, which are normally considered to be on the prohibited element list, are added to EUROFER steel as potential alloying elements. The EUROFER activation results show that some prohibited elements can be used as alloying elements in LAM steels, providing the selected isotopes do not have a significant impact on waste disposal rating or shut-down dose. The economic implications of isotopically enriching elements and the potential implications for

  15. Materials for a uranium enrichment device

    International Nuclear Information System (INIS)

    Ito, Masayuki; Okamoto, Jiro; Machi, Sueo; Shirayama, Kenzo.

    1976-01-01

    Object: To provide packing or lining materials or vibration resisting materials, possessing superior characteristics of both elasticity and corrosion resistance against UF 6 , made from ethylene-hexafluoropropylene copolymers. Method: Ethylene-hexafluoropropylene copolymers, containing hexafluoropropylene by 10 - 50 mol %, are prepared by means of various methods. The copolymer is cross-linked in the form of powder or sheet or after it has been moulded into appropriate product forms. Crosslinking is achieved by either heating the raw copolymer mixed with t-butylperoxybenzoate by 3 to 100 at about 150 0 C, or irradiating with ionizing radiation, i.e., an electron beam by 12 Mrad under air-free atmosphere. The obtained cross-linked copolymer shows strong resistance against UF 6 gas even at 100 0 C and keeps high mechanical strength

  16. Patents - Superconductor materials, processes and devices

    International Nuclear Information System (INIS)

    Test, A.

    1987-01-01

    A patent is a grant by a country to an inventor or his assignee of the right to exclude others for a limited period of time from making, using or selling the patented invention within its territory. It is reported that basic patents have been filed by IBM and the University of Houston to protect a broad range of warm superconducting materials or compounds. It is believed that other researchers are seeking patents to protect related or improved materials, processes and apparatus. Because of the importance of this field and to speed up the patent process, the United States Patent Office is giving, upon request, special expedited status to these patent applications. A survey of Japanese companies shows that more than 1500 patents have been applied for in Japan relating to superconducting materials, compositions, apparatus using superconductors and improvements. It appears that the goal of the Japanese companies is to obtain a patent position in Japan so that they can trade with companies wishing to do business in Japan for rights in other parts of the world

  17. Space Environmental Effects on Materials and Processes

    Science.gov (United States)

    Sabbann, Leslie M.

    2009-01-01

    The Materials and Processes (M&P) Branch of the Structural Engineering Division at Johnson Space Center (JSC) seeks to uphold the production of dependable space hardware through materials research, which fits into NASA's purpose of advancing human exploration, use, and development of space. The Space Environmental Effects projects fully support these Agency goals. Two tasks were assigned to support M&P. Both assignments were to further the research of material behavior outside of Earth's atmosphere in order to determine which materials are most durable and safe to use in space for mitigating risks. One project, the Materials on International Space Station Experiments (MISSE) task, was to compile data from International Space Station (ISS) experiments to pinpoint beneficial space hardware. The other project was researching the effects on composite materials of exposure to high doses of radiation for a Lunar habitat project.

  18. "Green" electronics: biodegradable and biocompatible materials and devices for sustainable future.

    Science.gov (United States)

    Irimia-Vladu, Mihai

    2014-01-21

    "Green" electronics represents not only a novel scientific term but also an emerging area of research aimed at identifying compounds of natural origin and establishing economically efficient routes for the production of synthetic materials that have applicability in environmentally safe (biodegradable) and/or biocompatible devices. The ultimate goal of this research is to create paths for the production of human- and environmentally friendly electronics in general and the integration of such electronic circuits with living tissue in particular. Researching into the emerging class of "green" electronics may help fulfill not only the original promise of organic electronics that is to deliver low-cost and energy efficient materials and devices but also achieve unimaginable functionalities for electronics, for example benign integration into life and environment. This Review will highlight recent research advancements in this emerging group of materials and their integration in unconventional organic electronic devices.

  19. Applied solid state science advances in materials and device research

    CERN Document Server

    Wolfe, Raymond

    2013-01-01

    Applied Solid State Science: Advances in Materials and Device Research, Volume 4 covers articles on single crystal compound semiconductors and complex polycrystalline materials. The book discusses narrow gap semiconductors and solid state batteries. The text then describes the advantages of hot-pressed microcrystalline compacts of oxygen-octahedra ferroelectrics over single crystal materials, as well as heterostructure junction lasers. Solid state physicists, materials scientists, electrical engineers, and graduate students studying the subjects being discussed will find the book invaluable.

  20. Transparent oxide electronics from materials to devices

    CERN Document Server

    Martins, Rodrigo; Barquinha, Pedro; Pereira, Luis

    2012-01-01

    Transparent electronics is emerging as one of the most promising technologies for the next generation of electronic products, away from the traditional silicon technology. It is essential for touch display panels, solar cells, LEDs and antistatic coatings. The book describes the concept of transparent electronics, passive and active oxide semiconductors, multicomponent dielectrics and their importance for a new era of novel electronic materials and products. This is followed by a short history of transistors, and how oxides have revolutionized this field. It concludes with a glance at lo

  1. Molecular and nanoscale materials and devices in electronics.

    Science.gov (United States)

    Fu, Lei; Cao, Lingchao; Liu, Yunqi; Zhu, Daoben

    2004-12-13

    Over the past several years, there have been many significant advances toward the realization of electronic computers integrated on the molecular scale and a much greater understanding of the types of materials that will be useful in molecular devices and their properties. It was demonstrated that individual molecules could serve as incomprehensibly tiny switch and wire one million times smaller than those on conventional silicon microchip. This has resulted very recently in the assembly and demonstration of tiny computer logic circuits built from such molecular scale devices. The purpose of this review is to provide a general introduction to molecular and nanoscale materials and devices in electronics.

  2. Inorganic Photovoltaics Materials and Devices: Past, Present, and Future

    Science.gov (United States)

    Hepp, Aloysius F.; Bailey, Sheila G.; Rafaelle, Ryne P.

    2005-01-01

    This report describes recent aspects of advanced inorganic materials for photovoltaics or solar cell applications. Specific materials examined will be high-efficiency silicon, gallium arsenide and related materials, and thin-film materials, particularly amorphous silicon and (polycrystalline) copper indium selenide. Some of the advanced concepts discussed include multi-junction III-V (and thin-film) devices, utilization of nanotechnology, specifically quantum dots, low-temperature chemical processing, polymer substrates for lightweight and low-cost solar arrays, concentrator cells, and integrated power devices. While many of these technologies will eventually be used for utility and consumer applications, their genesis can be traced back to challenging problems related to power generation for aerospace and defense. Because this overview of inorganic materials is included in a monogram focused on organic photovoltaics, fundamental issues and metrics common to all solar cell devices (and arrays) will be addressed.

  3. Polymeric Smart Skin Materials: Concepts, Materials, and Devices

    Science.gov (United States)

    2006-03-31

    Fudouzi, H. and Xia, Y., Langmuir 2003, 19, 9653-9658 (also see the highlight in Materials Today, 2003, December, p. 7). 15. Langmuir - Blodgett Silver...development of electroactive dendrimers, dendronized polymers, hyperbranched polymers, and phase- separating block copolymers. Development of such materials...Dalton, and A. K-Y. Jen, " Hyperbranched Fluorinated Aromatic Polyester from Mild One-Pot Polymerization of AB 2 Hydroxy Acid Monomer," Macromolecules

  4. Materials Lifecycle and Environmental Consideration at NASA

    Science.gov (United States)

    Clark-Ingram, Marceia

    2010-01-01

    The aerospace community faces tremendous challenges with continued availability of existing material supply chains during the lifecycle of a program. Many obsolescence drivers affect the availability of materials: environmental safety ahd health regulations, vendor and supply economics, market sector demands,and natural disasters. Materials selection has become increasingly more critical when designing aerospace hardware. NASA and DoD conducted a workshop with subject matter experts to discuss issues and define solutions for materials selections during the lifecycle phases of a product/system/component. The three primary lifecycle phases were: Conceptualization/Design, Production & Sustainment, and End of life / Reclamation. Materials obsolescence and pollution prevention considerations were explored for the aforementioned lifecycle phases. The recommended solutions from the workshop are being presented.

  5. Atomtronics: Material and Device Physics of Quantum Gases

    Science.gov (United States)

    matter physics to electrical engineering. Our projects title Atomtronics: Material and device physics of quantum gases illustrates the chasm we bridged...starting from therich and fundamental physics already revealed with cold atoms systems, then leading to an understanding of the functional materials

  6. Materials And Devices In Electrochromic Window Development

    Science.gov (United States)

    Cogan, Stuart F.; Anderson, Elizabeth J.; Plante, Timothy D.; Rauh, R. David

    1985-12-01

    Windows with switchable electrochromic glazings are potentially useful for regulating solar input to building interiors. In this article, we describe the structure and operation of a proposed solid-state electrochromic glazing based on crystalline LixWO3 (c-LiXWO3) and a low coloration efficiency counter electrode material such as amorphous Nb2O5 (a-Nb2O5). The importance of reversibility in electrochromic glazing operation is emphasized, and optical switching experiments that demonstrate reversible lithium insertion/extraction in c-LixW03, a-LixWO3, and a-LixNb2O5 are described. Additional optical switching experiments in tandem electrochromic cells comprised of c-LixWO3/a-Nb2O5 and a-LixWO3/a-Nb2O5 demonstrated the proposed design, indicating reversible optical switching over 500 and 200 complete cycles, respectively, without degradation. Optical data on the evolution of reflective and absorp-tive modulation in c-LixWO3 are presented and solar attenuation results are used to demon-strate the advantage of using crystalline electrochromics to conserve daylighting during electrochromic window operation.

  7. Transparent semiconducting oxides: materials and devices

    Energy Technology Data Exchange (ETDEWEB)

    Grundmann, Marius; Frenzel, Heiko; Lajn, Alexander; Lorenz, Michael; Schein, Friedrich; von Wenckstern, Holger [Universitaet Leipzig, Institut fuer Experimentelle Physik II, Linnestr. 5, 04103 Leipzig (Germany)

    2010-06-15

    Transparent conductive oxides (TCOs) are a well-known material class allowing Ohmic conduction. A large free carrier concentration in the 10{sup 21} cm{sup -3} range and high conductivity (beyond 10{sup 4} S/cm) is feasible simultaneously with high transparency. Applications are manifold and include touch screens and front contacts for displays or solar cells. Transparent semiconducting oxides (TSO) are oxides with an intermediate free carrier concentration (typically 10{sup 14}-10{sup 18} cm{sup -3}) allowing the formation of depletion layers. We review recent results on TSO-based transistors and inverters. Most work has been reported on MISFETs. We show that MESFETs exhibit high performance and low voltage operation of oxide electronics. MESFET-based inverters offer superior performance compared to results reported for TSO MISFET-based circuits. Optical image of inverter based on thin film MESFETs with Mg{sub 0.003}Zn{sub 0.997}O channels (left) and experimental inverter characteristic for supply voltage of V{sub DD} = + 2.0 V (right). (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  8. International Conference on Recent Trends in Materials and Devices

    CERN Document Server

    Rattan, Sunita; Verma, Abhishek

    2017-01-01

    This book presents the proceedings of the International Conference on Recent Trends in Materials and Devices, which was conceived as a major contribution to large-scale efforts to foster Indian research and development in the field in close collaboration with the community of non-resident Indian researchers from all over the world. The research articles collected in this volume - selected from among the submissions for their intrinsic quality and originality, as well as for their potential value for further collaborations - document and report on a wide range of recent and significant results for various applications and scientific developments in the areas of Materials and Devices. The technical sessions covered include photovoltaics and energy storage, semiconductor materials and devices, sensors, smart and polymeric materials, optoelectronics, nanotechnology and nanomaterials, MEMS and NEMS, as well as emerging technologies.

  9. Materials Challenges for High Performance Magnetocaloric Refrigeration Devices

    DEFF Research Database (Denmark)

    Smith, Anders; Bahl, Christian; Bjørk, Rasmus

    2012-01-01

    Magnetocaloric materials with a Curie temperature near room temperature have attracted signifi cant interest for some time due to their possible application for high-effi ciency refrigeration devices. This review focuses on a number of key issues of relevance for the characterization, performance....... The question of how to evaluate the suitability of a given material for use in a magnetocaloric device is covered in some detail, including a critical assessment of a number of common performance metrics. Of particular interest is which non-magnetocaloric properties need to be considered in this connection....... An overview of several important materials classes is given before considering the performance of materials in actual devices. Finally, an outlook on further developments is presented....

  10. Photoelectrochemical devices for solar water splitting - materials and challenges.

    Science.gov (United States)

    Jiang, Chaoran; Moniz, Savio J A; Wang, Aiqin; Zhang, Tao; Tang, Junwang

    2017-07-31

    It is widely accepted within the community that to achieve a sustainable society with an energy mix primarily based on solar energy we need an efficient strategy to convert and store sunlight into chemical fuels. A photoelectrochemical (PEC) device would therefore play a key role in offering the possibility of carbon-neutral solar fuel production through artificial photosynthesis. The past five years have seen a surge in the development of promising semiconductor materials. In addition, low-cost earth-abundant co-catalysts are ubiquitous in their employment in water splitting cells due to the sluggish kinetics of the oxygen evolution reaction (OER). This review commences with a fundamental understanding of semiconductor properties and charge transfer processes in a PEC device. We then describe various configurations of PEC devices, including single light-absorber cells and multi light-absorber devices (PEC, PV-PEC and PV/electrolyser tandem cell). Recent progress on both photoelectrode materials (light absorbers) and electrocatalysts is summarized, and important factors which dominate photoelectrode performance, including light absorption, charge separation and transport, surface chemical reaction rate and the stability of the photoanode, are discussed. Controlling semiconductor properties is the primary concern in developing materials for solar water splitting. Accordingly, strategies to address the challenges for materials development in this area, such as the adoption of smart architectures, innovative device configuration design, co-catalyst loading, and surface protection layer deposition, are outlined throughout the text, to deliver a highly efficient and stable PEC device for water splitting.

  11. 3D printing functional materials and devices (Conference Presentation)

    Science.gov (United States)

    McAlpine, Michael C.

    2017-05-01

    The development of methods for interfacing high performance functional devices with biology could impact regenerative medicine, smart prosthetics, and human-machine interfaces. Indeed, the ability to three-dimensionally interweave biological and functional materials could enable the creation of devices possessing unique geometries, properties, and functionalities. Yet, most high quality functional materials are two dimensional, hard and brittle, and require high crystallization temperatures for maximal performance. These properties render the corresponding devices incompatible with biology, which is three-dimensional, soft, stretchable, and temperature sensitive. We overcome these dichotomies by: 1) using 3D printing and scanning for customized, interwoven, anatomically accurate device architectures; 2) employing nanotechnology as an enabling route for overcoming mechanical discrepancies while retaining high performance; and 3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This three-dimensional blending of functional materials and `living' platforms may enable next-generation 3D printed devices.

  12. Environmentally assisted cracking of LWR materials

    International Nuclear Information System (INIS)

    Chopra, O.K.; Chung, H.M.; Kassner, T.F.; Shack, W.J.

    1995-12-01

    Research on environmentally assisted cracking (EAC) of light water reactor materials has focused on (a) fatigue initiation in pressure vessel and piping steels, (b) crack growth in cast duplex and austenitic stainless steels (SSs), (c) irradiation-assisted stress corrosion cracking (IASCC) of austenitic SSs, and (d) EAC in high- nickel alloys. The effect of strain rate during different portions of the loading cycle on fatigue life of carbon and low-alloy steels in 289 degree C water was determined. Crack growth studies on wrought and cast SSs have been completed. The effect of dissolved-oxygen concentration in high-purity water on IASCC of irradiated Type 304 SS was investigated and trace elements in the steel that increase susceptibility to intergranular cracking were identified. Preliminary results were obtained on crack growth rates of high-nickel alloys in water that contains a wide range of dissolved oxygen and hydrogen concentrations at 289 and 320 degree C. The program on Environmentally Assisted Cracking of Light Water Reactor Materials is currently focused on four tasks: fatigue initiation in pressure vessel and piping steels, fatigue and environmentally assisted crack growth in cast duplex and austenitic SS, irradiation-assisted stress corrosion cracking of austenitic SSs, and environmentally assisted crack growth in high-nickel alloys. Measurements of corrosion-fatigue crack growth rates (CGRs) of wrought and cast stainless steels has been essentially completed. Recent progress in these areas is outlined in the following sections

  13. The environmental interactions of tidal and wave energy generation devices

    International Nuclear Information System (INIS)

    Frid, Chris; Andonegi, Eider; Depestele, Jochen; Judd, Adrian; Rihan, Dominic; Rogers, Stuart I.; Kenchington, Ellen

    2012-01-01

    Global energy demand continues to grow and tidal and wave energy generation devices can provide a significant source of renewable energy. Technological developments in offshore engineering and the rising cost of traditional energy means that offshore energy resources will be economic in the next few years. While there is now a growing body of data on the ecological impacts of offshore wind farms, the scientific basis on which to make informed decisions about the environmental effects of other offshore energy developments is lacking. Tidal barrages have the potential to cause significant ecological impacts particularly on bird feeding areas when they are constructed at coastal estuaries or bays. Offshore tidal stream energy and wave energy collectors offer the scope for developments at varying scales. They also have the potential to alter habitats. A diversity of designs exist, including floating, mid-water column and seabed mounted devices, with a variety of moving-part configurations resulting in a unique complex of potential environmental effects for each device type, which are discussed to the extent possible. - Highlights: ► We review the environmental impacts of tidal barrages and fences, tidal stream farms and wave energy capture devices. ► Impacts on habitats, species and the water column, and effects of noise and electromagnetic fields are considered. ► Tidal barrages can cause significant impacts on bird feeding areas when constructed at coastal estuaries or bays. ► Wave energy collectors can alter water column and sea bed habitats locally and over large distances.

  14. ELECTROKINETIC DEVICE AND METHOD FOR CONSOLIDATING POROUS MATERIALS

    DEFF Research Database (Denmark)

    2017-01-01

    The invention relates to a device and an associated electrokinetic method which allows the pores (superficial and deep) of a porous material to be filled, by forcing the precipitation therein of a product of low solubility in water by creating an electric field which will mobilise the cations...... and anions supplied by previously selected solutions. This method comprises two phases. In the first phase, the pores located at a specified distance from the surface of contact between the porous material and the anodic or cathodic compartment are plugged. In a second phase, the rest of the pores, mainly...... those which are on the surface level, are collapsed. As a result of the designed device and the plugging system contained therein, the porous material is not affected at any moment by chemical alteration processes caused by contact with extreme pH values. This device allows the treatment to be applied...

  15. Progress in high-efficient solution process organic photovoltaic devices fundamentals, materials, devices and fabrication

    CERN Document Server

    Li, Gang

    2015-01-01

    This book presents an important technique to process organic photovoltaic devices. The basics, materials aspects and manufacturing of photovoltaic devices with solution processing are explained. Solution processable organic solar cells - polymer or solution processable small molecules - have the potential to significantly reduce the costs for solar electricity and energy payback time due to the low material costs for the cells, low cost and fast fabrication processes (ambient, roll-to-roll), high material utilization etc. In addition, organic photovoltaics (OPV) also provides attractive properties like flexibility, colorful displays and transparency which could open new market opportunities. The material and device innovations lead to improved efficiency by 8% for organic photovoltaic solar cells, compared to 4% in 2005. Both academic and industry research have significant interest in the development of this technology. This book gives an overview of the booming technology, focusing on the solution process fo...

  16. Transmission environmental scanning electron microscope with scintillation gaseous detection device

    International Nuclear Information System (INIS)

    Danilatos, Gerasimos; Kollia, Mary; Dracopoulos, Vassileios

    2015-01-01

    A transmission environmental scanning electron microscope with use of a scintillation gaseous detection device has been implemented. This corresponds to a transmission scanning electron microscope but with addition of a gaseous environment acting both as environmental and detection medium. A commercial type of low vacuum machine has been employed together with appropriate modifications to the detection configuration. This involves controlled screening of various emitted signals in conjunction with a scintillation gaseous detection device already provided with the machine for regular surface imaging. Dark field and bright field imaging has been obtained along with other detection conditions. With a progressive series of modifications and tests, the theory and practice of a novel type of microscopy is briefly shown now ushering further significant improvements and developments in electron microscopy as a whole. - Highlights: • Novel scanning transmission electron microscopy (STEM) with an environmental scanning electron microscope (ESEM) called TESEM. • Use of the gaseous detection device (GDD) in scintillation mode that allows high resolution bright and dark field imaging in the TESEM. • Novel approach towards a unification of both vacuum and environmental conditions in both bulk/surface and transmission mode of electron microscopy

  17. Application of Nanostructures in Electrochromic Materials and Devices: Recent Progress

    Directory of Open Access Journals (Sweden)

    Jin Min Wang

    2010-11-01

    Full Text Available The recent progress in application of nanostructures in electrochromic materials and devices is reviewed. ZnO nanowire array modified by viologen and WO3, crystalline WO3 nanoparticles and nanorods, mesoporous WO3 and TiO2, poly(3,4-ethylenedioxythiophene nanotubes, Prussian blue nanoinks and nanostructures in switchable mirrors are reviewed. The electrochromic properties were significantly enhanced by applying nanostructures, resulting in faster switching responses, higher stability and higher optical contrast. A perspective on the development trends in electrochromic materials and devices is also proposed.

  18. Nanostructured materials for advanced energy conversion and storage devices

    Science.gov (United States)

    Aricò, Antonino Salvatore; Bruce, Peter; Scrosati, Bruno; Tarascon, Jean-Marie; van Schalkwijk, Walter

    2005-05-01

    New materials hold the key to fundamental advances in energy conversion and storage, both of which are vital in order to meet the challenge of global warming and the finite nature of fossil fuels. Nanomaterials in particular offer unique properties or combinations of properties as electrodes and electrolytes in a range of energy devices. This review describes some recent developments in the discovery of nanoelectrolytes and nanoelectrodes for lithium batteries, fuel cells and supercapacitors. The advantages and disadvantages of the nanoscale in materials design for such devices are highlighted.

  19. Carbon-Nanotube-Based Thermoelectric Materials and Devices

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn, Jeffrey L. [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden CO 80401-3305 USA; Ferguson, Andrew J. [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden CO 80401-3305 USA; Cho, Chungyeon [Department of Mechanical Engineering, Texas A& M University, College Station TX 77843-3003 USA; Grunlan, Jaime C. [Department of Mechanical Engineering, Texas A& M University, College Station TX 77843-3003 USA

    2018-01-22

    Conversion of waste heat to voltage has the potential to significantly reduce the carbon footprint of a number of critical energy sectors, such as the transportation and electricity-generation sectors, and manufacturing processes. Thermal energy is also an abundant low-flux source that can be harnessed to power portable/wearable electronic devices and critical components in remote off-grid locations. As such, a number of different inorganic and organic materials are being explored for their potential in thermoelectric-energy-harvesting devices. Carbon-based thermoelectric materials are particularly attractive due to their use of nontoxic, abundant source-materials, their amenability to high-throughput solution-phase fabrication routes, and the high specific energy (i.e., W g-1) enabled by their low mass. Single-walled carbon nanotubes (SWCNTs) represent a unique 1D carbon allotrope with structural, electrical, and thermal properties that enable efficient thermoelectric-energy conversion. Here, the progress made toward understanding the fundamental thermoelectric properties of SWCNTs, nanotube-based composites, and thermoelectric devices prepared from these materials is reviewed in detail. This progress illuminates the tremendous potential that carbon-nanotube-based materials and composites have for producing high-performance next-generation devices for thermoelectric-energy harvesting.

  20. Carbon-Nanotube-Based Thermoelectric Materials and Devices.

    Science.gov (United States)

    Blackburn, Jeffrey L; Ferguson, Andrew J; Cho, Chungyeon; Grunlan, Jaime C

    2018-03-01

    Conversion of waste heat to voltage has the potential to significantly reduce the carbon footprint of a number of critical energy sectors, such as the transportation and electricity-generation sectors, and manufacturing processes. Thermal energy is also an abundant low-flux source that can be harnessed to power portable/wearable electronic devices and critical components in remote off-grid locations. As such, a number of different inorganic and organic materials are being explored for their potential in thermoelectric-energy-harvesting devices. Carbon-based thermoelectric materials are particularly attractive due to their use of nontoxic, abundant source-materials, their amenability to high-throughput solution-phase fabrication routes, and the high specific energy (i.e., W g -1 ) enabled by their low mass. Single-walled carbon nanotubes (SWCNTs) represent a unique 1D carbon allotrope with structural, electrical, and thermal properties that enable efficient thermoelectric-energy conversion. Here, the progress made toward understanding the fundamental thermoelectric properties of SWCNTs, nanotube-based composites, and thermoelectric devices prepared from these materials is reviewed in detail. This progress illuminates the tremendous potential that carbon-nanotube-based materials and composites have for producing high-performance next-generation devices for thermoelectric-energy harvesting. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Transmission environmental scanning electron microscope with scintillation gaseous detection device.

    Science.gov (United States)

    Danilatos, Gerasimos; Kollia, Mary; Dracopoulos, Vassileios

    2015-03-01

    A transmission environmental scanning electron microscope with use of a scintillation gaseous detection device has been implemented. This corresponds to a transmission scanning electron microscope but with addition of a gaseous environment acting both as environmental and detection medium. A commercial type of low vacuum machine has been employed together with appropriate modifications to the detection configuration. This involves controlled screening of various emitted signals in conjunction with a scintillation gaseous detection device already provided with the machine for regular surface imaging. Dark field and bright field imaging has been obtained along with other detection conditions. With a progressive series of modifications and tests, the theory and practice of a novel type of microscopy is briefly shown now ushering further significant improvements and developments in electron microscopy as a whole. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. 3D Printing of Living Responsive Materials and Devices.

    Science.gov (United States)

    Liu, Xinyue; Yuk, Hyunwoo; Lin, Shaoting; Parada, German Alberto; Tang, Tzu-Chieh; Tham, Eléonore; de la Fuente-Nunez, Cesar; Lu, Timothy K; Zhao, Xuanhe

    2018-01-01

    3D printing has been intensively explored to fabricate customized structures of responsive materials including hydrogels, liquid-crystal elastomers, shape-memory polymers, and aqueous droplets. Herein, a new method and material system capable of 3D-printing hydrogel inks with programed bacterial cells as responsive components into large-scale (3 cm), high-resolution (30 μm) living materials, where the cells can communicate and process signals in a programmable manner, are reported. The design of 3D-printed living materials is guided by quantitative models that account for the responses of programed cells in printed microstructures of hydrogels. Novel living devices are further demonstrated, enabled by 3D printing of programed cells, including logic gates, spatiotemporally responsive patterning, and wearable devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The environmental interactions of tidal and wave energy generation devices

    OpenAIRE

    Frid, C.; Andonegi, E.; Depestele, J.; Judd, A.; Rihan, D.; Rogers, S.I.; Kenchington, E.

    2012-01-01

    Global energy demand continues to grow and tidal and wave energy generation devices can provide a significant source of renewable energy. Technological developments in offshore engineering and the rising cost of traditional energy means that offshore energy resources will be economic in the next few years. While there is now a growing body of data on the ecological impacts of offshore wind farms, the scientific basis on which to make informed decisions about the environmental effects of other...

  4. Consumer mechatronics: a challenging playground for transducing materials and devices

    Science.gov (United States)

    Skjolstrup, Carl E.; Vonsild, Asbjorn L.

    2003-03-01

    The authors of this article are characterised by having a background within robotics technology, and have within the last 2-3 years moved into a material & process dominated environment. The authors are among other things responsible within LEGO Company; an internationally known toy developer and producer, for identification, prioritisation and procurement of new technological opportunities within materials, processes and devices providing new functionalities for the LEGO product.

  5. Biological and environmental reference materials in CENAM.

    Science.gov (United States)

    Arvizu-Torres, R; Perez-Castorena, A; Salas-Tellez, J A; Mitani-Nakanishi, Y

    2001-06-01

    Since 1994, when the NIST/NOAA Quality Assurance Program in Chemical Measurements was discussed in Queretaro, CENAM, the National Measurement Institute (NMI) of Mexico, has become involved in the development of reference materials. In the field of biological and environmental reference materials, in particular, the NORAMET collaboration program with NIST and NRC, and the North-American Environmental Cooperation signed among three free-trade treaty organizations, have greatly helped the development of the materials metrology program in the newly established CENAM. This paper describes some particularly significant efforts of CENAM in the development of biological and environmental reference materials, on the basis of inter-comparison studies organized with local and governmental environmental agencies of Mexico. In the field of water pollution CENAM has developed a practical proficiency testing (PT) scheme for field laboratories, as a part of registration by local government in the metropolitan area, according to the Mexican Ecological Regulation. The results from these eight PTs in the last 5 years have demonstrated that this scheme has helped ensure the reliability of analytical capability of more than 50 field laboratories in three states, Mexico, D.F., and the States of Mexico and Queretaro. Similar experience has been obtained for more than 70 service units of stack emission measurements in the three states in 1998 and 1999, as a result of the design of a PT scheme for reference gas mixtures. This PT scheme has been accomplished successfully by 30 analytical laboratories who provide monitoring services and perform research on toxic substances (Hg, methylmercury, PCB, etc.) in Mexico. To support these activities, reference samples have been produced through the NIST SRMs, and efforts have been made to increase CENAM's capability in the preparation of primary reference materials in spectrometric solutions and gas mixtures. Collaboration among NMIs has also

  6. Emerging Semitransparent Solar Cells: Materials and Device Design.

    Science.gov (United States)

    Tai, Qidong; Yan, Feng

    2017-09-01

    Semitransparent solar cells can provide not only efficient power-generation but also appealing images and show promising applications in building integrated photovoltaics, wearable electronics, photovoltaic vehicles and so forth in the future. Such devices have been successfully realized by incorporating transparent electrodes in new generation low-cost solar cells, including organic solar cells (OSCs), dye-sensitized solar cells (DSCs) and organometal halide perovskite solar cells (PSCs). In this review, the advances in the preparation of semitransparent OSCs, DSCs, and PSCs are summarized, focusing on the top transparent electrode materials and device designs, which are all crucial to the performance of these devices. Techniques for optimizing the efficiency, color and transparency of the devices are addressed in detail. Finally, a summary of the research field and an outlook into the future development in this area are provided. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Tm2+ luminescent materials for solar radiation conversion devices

    NARCIS (Netherlands)

    Van der Kolk, E.

    2015-01-01

    A solar radiation conversion device is described that comprises a luminescent Tm 2+ inorganic material for converting solar radiation of at least part of the UV and/or visible and/or infra red solar spectrum into infrared solar radiation, preferably said infrared solar radiation having a wavelength

  8. Preservice Teachers' Experiences on Accessing Course Materials Using Mobile Devices

    Science.gov (United States)

    Unal, Zafer; Unal, Aslihan

    2014-01-01

    This study investigates and reports the first time experiences of mobile device users accessing the course materials on both the web and mobile version of course management system (Web Moodle & Mobile Moodle) during an online course offered at the University of South Florida, St. Petersburg College of Education.

  9. The environmental interactions of tidal and wave energy generation devices

    Energy Technology Data Exchange (ETDEWEB)

    Frid, Chris, E-mail: c.l.j.frid@liv.ac.uk [School of Environmental Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB (United Kingdom); Andonegi, Eider, E-mail: eandonegi@azti.es [AZTI-Tecnalia, Txatxarramendi ugartea, z/g E-48395 Sukarrieta (Bizkaia) (Spain); Depestele, Jochen, E-mail: jochen.depestele@ilvo.vlaanderen.be [Institute for Agricultural and Fisheries Research, Ankerstraat 1, B-8400 Oostende (Belgium); Judd, Adrian, E-mail: Adrian.Judd@cefas.co.uk [Centre for Environment, Fisheries and Aquaculture Science , Lowestoft Laboratory, Pakefield Road, Lowestoft NR33 0HT United Kingdom (United Kingdom); Rihan, Dominic, E-mail: Dominic.RIHAN@ec.europa.eu [Irish Sea Fisheries Board, P.O. Box 12 Dun Laoghaire, Co. Dublin (Ireland); Rogers, Stuart I., E-mail: stuart.rogers@cefas.co.uk [Centre for Environment, Fisheries and Aquaculture Science , Lowestoft Laboratory, Pakefield Road, Lowestoft NR33 0HT United Kingdom (United Kingdom); Kenchington, Ellen, E-mail: Ellen.Kenchington@dfo-mpo.gc.ca [Fisheries and Oceans Canada, Bedford Institute of Oceanography, P.O. Box 1006, Dartmouth Canada, NS B2Y 4A2 (Canada)

    2012-01-15

    Global energy demand continues to grow and tidal and wave energy generation devices can provide a significant source of renewable energy. Technological developments in offshore engineering and the rising cost of traditional energy means that offshore energy resources will be economic in the next few years. While there is now a growing body of data on the ecological impacts of offshore wind farms, the scientific basis on which to make informed decisions about the environmental effects of other offshore energy developments is lacking. Tidal barrages have the potential to cause significant ecological impacts particularly on bird feeding areas when they are constructed at coastal estuaries or bays. Offshore tidal stream energy and wave energy collectors offer the scope for developments at varying scales. They also have the potential to alter habitats. A diversity of designs exist, including floating, mid-water column and seabed mounted devices, with a variety of moving-part configurations resulting in a unique complex of potential environmental effects for each device type, which are discussed to the extent possible. - Highlights: Black-Right-Pointing-Pointer We review the environmental impacts of tidal barrages and fences, tidal stream farms and wave energy capture devices. Black-Right-Pointing-Pointer Impacts on habitats, species and the water column, and effects of noise and electromagnetic fields are considered. Black-Right-Pointing-Pointer Tidal barrages can cause significant impacts on bird feeding areas when constructed at coastal estuaries or bays. Black-Right-Pointing-Pointer Wave energy collectors can alter water column and sea bed habitats locally and over large distances.

  10. Molten core material holding device in a nuclear reactor

    International Nuclear Information System (INIS)

    Nakamura, Hisashi; Tanaka, Nobuo; Takahashi, Katsuro.

    1985-01-01

    Purpose: To improve the function of cooling to hold molten core materials in a molten core material holding device. Constitution: Plenum structures are formed into a pan-like configuration, in which liners made of metal having high melting point and relatively high heat conductivity such as tantalum, tungsten, rhenium or alloys thereof are integrally appended to hold and directly cool the molten reactor core materials. Further, a plurality of heat pipes, passing through the plenum structures, facing the cooling portion thereof to the coolants at the outer side and immersing the heating portion into the molten core materials fallen to deposit in the inner liners are disposed radially. Furthermore, heat pipes embodded in the plenum structure are disposed in the same manner below the liners. Thus, the plenum structures and the molten reactor core materials can be cooled at a high efficiency. (Seki, T.)

  11. Performance of GPS-devices for environmental exposure assessment.

    Science.gov (United States)

    Beekhuizen, Johan; Kromhout, Hans; Huss, Anke; Vermeulen, Roel

    2013-01-01

    Integration of individual time-location patterns with spatially resolved exposure maps enables a more accurate estimation of personal exposures to environmental pollutants than using estimates at fixed locations. Current global positioning system (GPS) devices can be used to track an individual's location. However, information on GPS-performance in environmental exposure assessment is largely missing. We therefore performed two studies. First, a commute-study, where the commute of 12 individuals was tracked twice, testing GPS-performance for five transport modes and two wearing modes. Second, an urban-tracking study, where one individual was tracked repeatedly through different areas, focused on the effect of building obstruction on GPS-performance. The median error from the true path for walking was 3.7 m, biking 2.9 m, train 4.8 m, bus 4.9 m, and car 3.3 m. Errors were larger in a high-rise commercial area (median error=7.1 m) compared with a low-rise residential area (median error=2.2 m). Thus, GPS-performance largely depends on the transport mode and urban built-up. Although ~85% of all errors were 50 m. Modern GPS-devices are useful tools for environmental exposure assessment, but large GPS-errors might affect estimates of exposures with high spatial variability.

  12. Organic materials and devices for detecting ionizing radiation

    Science.gov (United States)

    Doty, F Patrick [Livermore, CA; Chinn, Douglas A [Livermore, CA

    2007-03-06

    A .pi.-conjugated organic material for detecting ionizing radiation, and particularly for detecting low energy fission neutrons. The .pi.-conjugated materials comprise a class of organic materials whose members are intrinsic semiconducting materials. Included in this class are .pi.-conjugated polymers, polyaromatic hydrocarbon molecules, and quinolates. Because of their high resistivities (.gtoreq.10.sup.9 ohmcm), these .pi.-conjugated organic materials exhibit very low leakage currents. A device for detecting and measuring ionizing radiation can be made by applying an electric field to a layer of the .pi.-conjugated polymer material to measure electron/hole pair formation. A layer of the .pi.-conjugated polymer material can be made by conventional polymer fabrication methods and can be cast into sheets capable of covering large areas. These sheets of polymer radiation detector material can be deposited between flexible electrodes and rolled up to form a radiation detector occupying a small volume but having a large surface area. The semiconducting polymer material can be easily fabricated in layers about 10 .mu.m to 100 .mu.m thick. These thin polymer layers and their associated electrodes can be stacked to form unique multi-layer detector arrangements that occupy small volume.

  13. Materials growth and characterization of thermoelectric and resistive switching devices

    Science.gov (United States)

    Norris, Kate J.

    In the 74 years since diode rectifier based radar technology helped the allied forces win WWII, semiconductors have transformed the world we live in. From our smart phones to semiconductor-based energy conversion, semiconductors touch every aspect of our lives. With this thesis I hope to expand human knowledge of semiconductor thermoelectric devices and resistive switching devices through experimentation with materials growth and subsequent materials characterization. Metal organic chemical vapor deposition (MOCVD) was the primary method of materials growth utilized in these studies. Additionally, plasma enhanced chemical vapor deposition (PECVD), atomic layer deposition (ALD),ion beam sputter deposition, reactive sputter deposition and electron-beam (e-beam) evaporation were also used in this research for device fabrication. Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), and Electron energy loss spectroscopy (EELS) were the primary characterization methods utilized for this research. Additional device and materials characterization techniques employed include: current-voltage measurements, thermoelectric measurements, x-ray diffraction (XRD), reflection absorption infra-red spectroscopy (RAIRS), atomic force microscopy (AFM), photoluminescence (PL), and raman spectroscopy. As society has become more aware of its impact on the planet and its limited resources, there has been a push toward developing technologies to sustainably produce the energy we need. Thermoelectric devices convert heat directly into electricity. Thermoelectric devices have the potential to save huge amounts of energy that we currently waste as heat, if we can make them cost-effective. Semiconducting thin films and nanowires appear to be promising avenues of research to attain this goal. Specifically, in this work we will explore the use of ErSb thin films as well as Si and InP nanowire networks for thermoelectric applications. First we will discuss the growth of

  14. Some limitations on processing materials in acoustic levitation devices

    Science.gov (United States)

    Oran, W. A.; Witherow, W. K.; Ross, B. B.; Rush, J. E.

    1979-01-01

    The spot heating of samples, suspended in an acoustic field, was investigated to determine if the technique could be used to process materials. A single axis resonance device operating in air at 25 C with an rms pressure maximum of 160 to 170 db was used in the experiments. The heat flow from a hot object suspended in a levitation node is dominated by the effects of the field, with the heat loss approximately 20 times larger than that due to natural convection. The acoustic forces which suspend the body at a node also serve to eject the heated air. The coupling between the locally heated region around the body and the acoustic field results in instabilities in both the pressure wave and force field. The investigations indicated the extreme difficulties in developing a materials processing device based on acoustic/spot heating for use in a terrestrial environment.

  15. From molecular design and materials construction to organic nanophotonic devices.

    Science.gov (United States)

    Zhang, Chuang; Yan, Yongli; Zhao, Yong Sheng; Yao, Jiannian

    2014-12-16

    CONSPECTUS: Nanophotonics has recently received broad research interest, since it may provide an alternative opportunity to overcome the fundamental limitations in electronic circuits. Diverse optical materials down to the wavelength scale are required to develop nanophotonic devices, including functional components for light emission, transmission, and detection. During the past decade, the chemists have made their own contributions to this interdisciplinary field, especially from the controlled fabrication of nanophotonic molecules and materials. In this context, organic micro- or nanocrystals have been developed as a very promising kind of building block in the construction of novel units for integrated nanophotonics, mainly due to the great versatility in organic molecular structures and their flexibility for the subsequent processing. Following the pioneering works on organic nanolasers and optical waveguides, the organic nanophotonic materials and devices have attracted increasing interest and developed rapidly during the past few years. In this Account, we review our research on the photonic performance of molecular micro- or nanostructures and the latest breakthroughs toward organic nanophotonic devices. Overall, the versatile features of organic materials are highlighted, because they brings tunable optical properties based on molecular design, size-dependent light confinement in low-dimensional structures, and various device geometries for nanophotonic integration. The molecular diversity enables abundant optical transitions in conjugated π-electron systems, and thus brings specific photonic functions into molecular aggregates. The morphology of these micro- or nanostructures can be further controlled based on the weak intermolecular interactions during molecular assembly process, making the aggregates show photon confinement or light guiding properties as nanophotonic materials. By adoption of some active processes in the composite of two or more

  16. Organic Light-Emitting Transistors: Materials, Device Configurations, and Operations.

    Science.gov (United States)

    Zhang, Congcong; Chen, Penglei; Hu, Wenping

    2016-03-09

    Organic light-emitting transistors (OLETs) represent an emerging class of organic optoelectronic devices, wherein the electrical switching capability of organic field-effect transistors (OFETs) and the light-generation capability of organic light-emitting diodes (OLEDs) are inherently incorporated in a single device. In contrast to conventional OFETs and OLEDs, the planar device geometry and the versatile multifunctional nature of OLETs not only endow them with numerous technological opportunities in the frontier fields of highly integrated organic electronics, but also render them ideal scientific scaffolds to address the fundamental physical events of organic semiconductors and devices. This review article summarizes the recent advancements on OLETs in light of materials, device configurations, operation conditions, etc. Diverse state-of-the-art protocols, including bulk heterojunction, layered heterojunction and laterally arranged heterojunction structures, as well as asymmetric source-drain electrodes, and innovative dielectric layers, which have been developed for the construction of qualified OLETs and for shedding new and deep light on the working principles of OLETs, are highlighted by addressing representative paradigms. This review intends to provide readers with a deeper understanding of the design of future OLETs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Spintronic materials and devices based on antiferromagnetic metals

    OpenAIRE

    Wang, Y.Y.; Song, C.; Zhang, J.Y.; Pan, F.

    2017-01-01

    In this paper, we review our recent experimental developments on antiferromagnet (AFM) spintronics mainly comprising Mn-based noncollinear AFM metals. IrMn-based tunnel junctions and Hall devices have been investigated to explore the manipulation of AFM moments by magnetic fields, ferromagnetic materials and electric fields. Room-temperature tunneling anisotropic magnetoresistance based on IrMn as well as FeMn has been successfully achieved, and electrical control of the AFM exchange spring i...

  18. Applied solid state science advances in materials and device research

    CERN Document Server

    Wolfe, Raymond

    2013-01-01

    Applied Solid State Science: Advances in Materials and Device Research, Volume 1 presents articles about junction electroluminescence; metal-insulator-semiconductor (MIS) physics; ion implantation in semiconductors; and electron transport through insulating thin films. The book describes the basic physics of carrier injection; energy transfer and recombination mechanisms; state of the art efficiencies; and future prospects for light emitting diodes. The text then discusses solid state spectroscopy, which is the pair spectra observed in gallium phosphide photoluminescence. The extensive studies

  19. Advanced materials and processes for polymer solar cell devices

    DEFF Research Database (Denmark)

    Petersen, Martin Helgesen; Søndergaard, Roar; Krebs, Frederik C

    2010-01-01

    The rapidly expanding field of polymer and organic solar cells is reviewed in the context of materials, processes and devices that significantly deviate from the standard approach which involves rigid glass substrates, indium-tin-oxide electrodes, spincoated layers of conjugated polymer/fullerene...... be performing less than the current state-of-the-art in their present form but that may have the potential to outperform these pending a larger investment in effort....

  20. Processing method and device for iodine adsorbing material

    International Nuclear Information System (INIS)

    Watanabe, Shin-ichi; Shiga, Reiko.

    1997-01-01

    An iodine adsorbing material adsorbing silver compounds is reacted with a reducing gas, so that the silver compounds are converted to metal silver and stored. Then, the silver compounds are not melted or recrystallized even under a highly humid condition, accordingly, peeling of the adsorbed materials from a carrier can be prevented, and the iodine adsorbing material can be stored stably. Since the device is disposed in an off gas line for discharging off gases from a nuclear power facility, the iodine adsorbing material formed by depositing silver halides to the carrier is contained, and a reducing or oxidizing gas is supplied to the vessel as required, and silver halides can be converted to metal silver or the metal silver can be returned to silver halide. (T.M.)

  1. 5th Conference on Aerospace Materials, Processes, and Environmental Technology

    Science.gov (United States)

    Cook, M. B. (Editor); Stanley, D. Cross (Editor)

    2003-01-01

    Records are presented from the 5th Conference on Aerospace Materials, Processes, and Environmental Technology. Topics included pollution prevention, inspection methods, advanced materials, aerospace materials and technical standards,materials testing and evaluation, advanced manufacturing,development in metallic processes, synthesis of nanomaterials, composite cryotank processing, environmentally friendly cleaning, and poster sessions.

  2. Plasma processing of soft materials for development of flexible devices

    International Nuclear Information System (INIS)

    Setsuhara, Yuichi; Cho, Ken; Takenaka, Kosuke; Shiratani, Masaharu; Sekine, Makoto; Hori, Masaru

    2011-01-01

    Plasma-polymer interactions have been studied as a basis for development of next-generation processing of flexible devices with soft materials by means of low-damage plasma technologies (soft materials processing technologies). In the present article, interactions between argon plasmas and polyethylene terephthalate (PET) films have been examined for investigations of physical damages induced by plasma exposures to the organic material via chemical bonding-structure analyses using hard X-ray photoelectron spectroscopy (HXPES) together with conventional X-ray photoelectron spectroscopy (XPS). The PET film has been selected as a test material for investigations in the present study not merely because of its specific applications, such as a substrate material, but because PET is one of the well defined organic materials containing major components in a variety of functional soft materials; C-C main chain, CH bond, oxygen functionalities (O=C-O bond and C-O bond) and phenyl group. Especially, variations of the phenyl group due to argon plasma exposures have been investigated in the present article in order to examine plasma interactions with π-conjugated system, which is in charge of electronic functions in many of the π-conjugated electronic organic materials to be utilized as functional layer for advanced flexible device formations. The PET films have been exposed to argon plasmas sustained via inductive coupling of RF power with low-inductance antenna modules. The HXPES analyses exhibited that the degradations of the oxygen functionalities and the phenyl group in the deeper regions up to 50 nm from the surface of the samples were insignificant indicating that the bond scission and/or the degradations of the chemical bonding structures due to photoirradiation from the plasma and/or surface heating via plasma exposure were relatively insignificant as compared with damages in the vicinity of the surface layers.

  3. Neutron protection material and neutron protection devices made of such material

    International Nuclear Information System (INIS)

    Ries, W.

    1984-01-01

    This is concerned with a neutron protection material made of thermoplastic or thermosetting plastic from high molecule hydrocarbon compounds with particularly high hydrogen and carbon contents as braking or shielding material (moderator) for fast neutrons. The plastic can contain boron for absorbing low energy neutrons. The material is used to manufacture foil, plates, pipes, shielding walls, components, bodies for radiation protection equipment, devices and plant and for neutron protection clothes. (orig./HP) [de

  4. Creating Active Device Materials for Nanoelectronics Using Block Copolymer Lithography

    Directory of Open Access Journals (Sweden)

    Cian Cummins

    2017-09-01

    Full Text Available The prolonged and aggressive nature of scaling to augment the performance of silicon integrated circuits (ICs and the technical challenges and costs associated with this has led to the study of alternative materials that can use processing schemes analogous to semiconductor manufacturing. We examine the status of recent efforts to develop active device elements using nontraditional lithography in this article, with a specific focus on block copolymer (BCP feature patterning. An elegant route is demonstrated using directed self-assembly (DSA of BCPs for the fabrication of aligned tungsten trioxide (WO3 nanowires towards nanoelectronic device application. The strategy described avoids conventional lithography practices such as optical patterning as well as repeated etching and deposition protocols and opens up a new approach for device development. Nanoimprint lithography (NIL silsesquioxane (SSQ-based trenches were utilized in order to align a cylinder forming poly(styrene-block-poly(4-vinylpyridine (PS-b-P4VP BCP soft template. We outline WO3 nanowire fabrication using a spin-on process and the symmetric current-voltage characteristics of the resulting Ti/Au (5 nm/45 nm contacted WO3 nanowires. The results highlight the simplicity of a solution-based approach that allows creating active device elements and controlling the chemistry of specific self-assembling building blocks. The process enables one to dictate nanoscale chemistry with an unprecedented level of sophistication, forging the way for next-generation nanoelectronic devices. We lastly outline views and future research studies towards improving the current platform to achieve the desired device performance.

  5. Creating Active Device Materials for Nanoelectronics Using Block Copolymer Lithography.

    Science.gov (United States)

    Cummins, Cian; Bell, Alan P; Morris, Michael A

    2017-09-30

    The prolonged and aggressive nature of scaling to augment the performance of silicon integrated circuits (ICs) and the technical challenges and costs associated with this has led to the study of alternative materials that can use processing schemes analogous to semiconductor manufacturing. We examine the status of recent efforts to develop active device elements using nontraditional lithography in this article, with a specific focus on block copolymer (BCP) feature patterning. An elegant route is demonstrated using directed self-assembly (DSA) of BCPs for the fabrication of aligned tungsten trioxide (WO₃) nanowires towards nanoelectronic device application. The strategy described avoids conventional lithography practices such as optical patterning as well as repeated etching and deposition protocols and opens up a new approach for device development. Nanoimprint lithography (NIL) silsesquioxane (SSQ)-based trenches were utilized in order to align a cylinder forming poly(styrene)- block -poly(4-vinylpyridine) (PS- b -P4VP) BCP soft template. We outline WO₃ nanowire fabrication using a spin-on process and the symmetric current-voltage characteristics of the resulting Ti/Au (5 nm/45 nm) contacted WO₃ nanowires. The results highlight the simplicity of a solution-based approach that allows creating active device elements and controlling the chemistry of specific self-assembling building blocks. The process enables one to dictate nanoscale chemistry with an unprecedented level of sophistication, forging the way for next-generation nanoelectronic devices. We lastly outline views and future research studies towards improving the current platform to achieve the desired device performance.

  6. Flexible organic electronic devices: Materials, process and applications

    International Nuclear Information System (INIS)

    Logothetidis, Stergios

    2008-01-01

    The research for the development of flexible organic electronic devices (FEDs) is rapidly increasing worldwide, since FEDs will change radically several aspects of everyday life. Although there has been considerable progress in the area of flexible inorganic devices (a-Si or solution processed Si), there are numerous advances in the organic (semiconducting, conducting and insulating), inorganic and hybrid (organic-inorganic) materials that exhibit customized properties and stability, and in the synthesis and preparation methods, which are characterized by a significant amount of multidisciplinary efforts. Furthermore, the development and encapsulation of organic electronic devices onto flexible polymeric substrates by large-scale and low-cost roll-to-roll production processes will allow their market implementation in numerous application areas, including displays, lighting, photovoltaics, radio-frequency identification circuitry and chemical sensors, as well as to a new generation of modern exotic applications. In this work, we report on some of the latest advances in the fields of polymeric substrates, hybrid barrier layers, inorganic and organic materials to be used as novel active and functional thin films and nanomaterials as well as for the encapsulation of the materials components for the production of FEDs (flexible organic light-emitting diodes, and organic photovoltaics). Moreover, we will emphasize on the real-time optical monitoring and characterization of the growing films onto the flexible polymeric substrates by spectroscopic ellipsometry methods. Finally, the potentiality for the in-line characterization processes for the development of organic electronics materials will be emphasized, since it will also establish the framework for the achievement of the future scientific and technological breakthroughs

  7. Evaluating Graphene as a Channel Material in Spintronic Logic Devices

    Science.gov (United States)

    Anugrah, Yoska

    Spintronics, a class of devices that exploit the spin properties of electrons in addition to the charge properties, promises the possibility for nonvolatile logic and memory devices that operate at low power. Graphene is a material in which the spin orientation of electrons can be conserved over a long distance, which makes it an attractive channel material in spintronics devices. In this dissertation, the properties of graphene that are interesting for spintronics applications are explored. A robust fabrication process is described for graphene spin valves using Al2O3 tunnel tunnel barriers and Co ferromagnetic contacts. Spin transport was characterized in both few-layer exfoliated and single-layer graphene, and spin diffusion lengths and spin relaxation times were extracted using the nonlocal spin valve geometry and Hanle measurements. The effect of input-output asymmetry on the spin transport was investigated. The effect of an applied drift electric field on spin transport was investigated and the spin diffusion length was found to be tunable by a factor of 8X (suppressed to 1.6 microm and enhanced to 13 microm from the intrinsic length of 4.6 microm using electric field of +/-1800 V/cm). A mechanism to induce asymmetry without excess power dissipation is also described which utilizes a double buried-gate structure to tune the Fermi levels on the input and output sides of a graphene spin logic device independently. It was found that different spin scattering mechanisms were at play in the two halves of a small graphene strip. This suggests that the spin properties of graphene are strongly affected by its local environment, e.g. impurities, surface topography, defects. Finally, two-dimensional materials beyond graphene have been explored as spin channels. One such material is phosphorene, which has low spin-orbit coupling and high mobility, and the interface properties of ferromagnets (cobalt and permalloy) with this material were explored. This work could

  8. Nanowire transistors physics of devices and materials in one dimension

    CERN Document Server

    Colinge, Jean-Pierre

    2016-01-01

    From quantum mechanical concepts to practical circuit applications, this book presents a self-contained and up-to-date account of the physics and technology of nanowire semiconductor devices. It includes a unified account of the critical ideas central to low-dimensional physics and transistor physics which equips readers with a common framework and language to accelerate scientific and technological developments across the two fields. Detailed descriptions of novel quantum mechanical effects such as quantum current oscillations, the metal-to-semiconductor transition and the transition from classical transistor to single-electron transistor operation are described in detail, in addition to real-world applications in the fields of nanoelectronics, biomedical sensing techniques, and advanced semiconductor research. Including numerous illustrations to help readers understand these phenomena, this is an essential resource for researchers and professional engineers working on semiconductor devices and materials in ...

  9. A study of radiation vulnerability of ferroelectric material and devices

    International Nuclear Information System (INIS)

    Coiec, Y.M.; Musseau, O.; Leray, J.L.

    1994-01-01

    The radiation effects on ferroelectric material and devices are presented, based on commercially available samples. After recalling the background, effects in ferroelectric PZT capacitors are presented, concerning dose, neutrons and fatigue associated with dose effects. Physical implications and interpretations are sketched. In a second stage, effects are studied at the complete non-volatile RAM device level. Vulnerability in dose, dose rate and neutron fluence of commercial 4 kbit ferroelectric RAM is addressed. 64 kbit results are mentioned in dose rate. These results are compared to previously published data from other manufacturers or laboratories and supplement them. In the appendix, equivalence between rad(Si) and rad (PZT) is discussed in the case of low energy ''10 keV Aracor'' x-rays and 60 Co gamma rays

  10. A study of radiation vulnerability of ferroelectric material and devices

    Energy Technology Data Exchange (ETDEWEB)

    Coic, Y M; Musseau, O; Leray, J L [CEA Centre d` Etudes de Bruyeres-le-Chatel, 91 (France)

    1994-12-31

    The radiation effects on ferroelectric material and devices are presented, based on commercially available samples. After recalling the background, effects in ferroelectric PZT capacitors are presented, concerning dose, neutrons and fatigue associated with dose effects. Physical implications and interpretations are sketched. In a second stage, effects are studied at the complete non-volatile RAM device level. Vulnerability in dose, dose rate and neutron fluence of commercial 4 kbit ferroelectric RAM is addressed. 64 kbit results are mentioned in dose rate. These results are compared to previously published data from other manufacturers or laboratories and supplement them. In the appendix, equivalence between rad (Si) and rad (PZT) is discussed in the case of low energy ``10 keV Aracor`` s-rays and {sup 60}Co gamma rays. (author). 24 refs., 11 figs., 7 tabs.

  11. A study of radiation vulnerability of ferroelectric material and devices

    International Nuclear Information System (INIS)

    Coic, Y.M.; Musseau, O.; Leray, J.L.

    1994-01-01

    The radiation effects on ferroelectric material and devices are presented, based on commercially available samples. After recalling the background, effects in ferroelectric PZT capacitors are presented, concerning dose, neutrons and fatigue associated with dose effects. Physical implications and interpretations are sketched. In a second stage, effects are studied at the complete non-volatile RAM device level. Vulnerability in dose, dose rate and neutron fluence of commercial 4 kbit ferroelectric RAM is addressed. 64 kbit results are mentioned in dose rate. These results are compared to previously published data from other manufacturers or laboratories and supplement them. In the appendix, equivalence between rad (Si) and rad (PZT) is discussed in the case of low energy ''10 keV Aracor'' s-rays and 60 Co gamma rays. (author). 24 refs., 11 figs., 7 tabs

  12. Electronic and optoelectronic materials and devices inspired by nature

    Science.gov (United States)

    Meredith, P.; Bettinger, C. J.; Irimia-Vladu, M.; Mostert, A. B.; Schwenn, P. E.

    2013-03-01

    Inorganic semiconductors permeate virtually every sphere of modern human existence. Micro-fabricated memory elements, processors, sensors, circuit elements, lasers, displays, detectors, etc are ubiquitous. However, the dawn of the 21st century has brought with it immense new challenges, and indeed opportunities—some of which require a paradigm shift in the way we think about resource use and disposal, which in turn directly impacts our ongoing relationship with inorganic semiconductors such as silicon and gallium arsenide. Furthermore, advances in fields such as nano-medicine and bioelectronics, and the impending revolution of the ‘ubiquitous sensor network’, all require new functional materials which are bio-compatible, cheap, have minimal embedded manufacturing energy plus extremely low power consumption, and are mechanically robust and flexible for integration with tissues, building structures, fabrics and all manner of hosts. In this short review article we summarize current progress in creating materials with such properties. We focus primarily on organic and bio-organic electronic and optoelectronic systems derived from or inspired by nature, and outline the complex charge transport and photo-physics which control their behaviour. We also introduce the concept of electrical devices based upon ion or proton flow (‘ionics and protonics’) and focus particularly on their role as a signal interface with biological systems. Finally, we highlight recent advances in creating working devices, some of which have bio-inspired architectures, and summarize the current issues, challenges and potential solutions. This is a rich new playground for the modern materials physicist.

  13. Flexible robotic entry device for a nuclear materials production reactor

    International Nuclear Information System (INIS)

    Heckendorn, F.M. II.

    1988-01-01

    The Savannah River Laboratory has developed and is implementing a flexible robotic entry device (FRED) for the nuclear materials production reactors now operating at the Savannah River Plant (SRP). FRED is designed for rapid deployment into confinement areas of operating reactors to assess unknown conditions. A unique smart tether method has been incorporated into FRED for simultaneous bidirectional transmission of multiple video/audio/control/power signals over a single coaxial cable. This system makes it possible to use FRED under all operating and standby conditions, including those where radio/microwave transmissions are not possible or permitted, and increases the quantity of data available

  14. Flexible Organic Electronics in Biology: Materials and Devices.

    Science.gov (United States)

    Liao, Caizhi; Zhang, Meng; Yao, Mei Yu; Hua, Tao; Li, Li; Yan, Feng

    2015-12-09

    At the convergence of organic electronics and biology, organic bioelectronics attracts great scientific interest. The potential applications of organic semiconductors to reversibly transmit biological signals or stimulate biological tissues inspires many research groups to explore the use of organic electronics in biological systems. Considering the surfaces of movable living tissues being arbitrarily curved at physiological environments, the flexibility of organic bioelectronic devices is of paramount importance in enabling stable and reliable performances by improving the contact and interaction of the devices with biological systems. Significant advances in flexible organic bio-electronics have been achieved in the areas of flexible organic thin film transistors (OTFTs), polymer electrodes, smart textiles, organic electrochemical ion pumps (OEIPs), ion bipolar junction transistors (IBJTs) and chemiresistors. This review will firstly discuss the materials used in flexible organic bioelectronics, which is followed by an overview on various types of flexible organic bioelectronic devices. The versatility of flexible organic bioelectronics promises a bright future for this emerging area. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Photonic devices based on black phosphorus and related hybrid materials

    International Nuclear Information System (INIS)

    Vitiello, M.S.; Viti, L.

    2016-01-01

    Artificial semiconductor heterostructures played a pivotal role in modern electronic and photonic technologies, providing a highly effective means for the manipulation and control of carriers, from the visible to the far-infrared, leading to the development of highly efficient devices like sources, detectors and modulators. The discovery of graphene and the related fascinating capabilities have triggered an unprecedented interest in devices based on inorganic two-dimensional (2D) materials. Amongst them, black phosphorus (BP) recently showed an extraordinary potential in a variety of applications across micro-electronics and photonics. With an energy gap between the gapless graphene and the larger gap transition metal dichalcogenides, BP can form the basis for a new generation of high-performance photonic devices that could be specifically engineered to comply with different applications, like transparent saturable absorbers, fast photocounductive switches and low noise photodetectors, exploiting its peculiar electrical, thermal and optical anisotropy. This paper will review the latest achievements in black-phosphorus–based THz photonics and discuss future perspectives of this rapidly developing research field.

  16. Carbon nanotubes for gas detection: materials preparation and device assembly

    International Nuclear Information System (INIS)

    Terranova, M L; Lucci, M; Orlanducci, S; Tamburri, E; Sessa, V; Reale, A; Carlo, A Di

    2007-01-01

    An efficient sensing device for NH 3 and NO x detection has been realized using ordered arrays of single-walled C nanotubes deposited onto an interdigitated electrode platform operating at room temperature. The sensing material has been prepared using several chemical-physical techniques for purification and positioning of the nanotubes inside the electrode gaps. In particular, both DC and AC fields have been applied in order to move and to align the nanostructures by electrophoresis and dielectrophoresis processes. We investigated the effects of different voltages applied to a gate contact on the back side of the substrate on the performances of the device and found that for different gas species (NH 3 , NO x ) a constant gate bias increases the sensitivity for gas detection. Moreover, in this paper we demonstrate that a pulsed bias applied to the gate contact facilitates the gas interaction with the nanotubes, either reducing the absorption times or accelerating the desorption times, thus providing a fast acceleration and a dramatic improvement of the time dependent behaviour of the device

  17. Chalcogenide Glass Radiation Sensor; Materials Development, Design and Device Testing

    Energy Technology Data Exchange (ETDEWEB)

    Mitkova, Maria; Butt, Darryl; Kozicki, Michael; Barnaby, Hugo

    2013-04-30

    For many decades, various radiation detecting material have been extensively researched, to find a better material or mechanism for radiation sensing. Recently, there is a growing need for a smaller and effective material or device that can perform similar functions of bulkier Geiger counters and other measurement options, which fail the requirement for easy, cheap and accurate radiation dose measurement. Here arises the use of thin film chalcogenide glass, which has unique properties of high thermal stability along with high sensitivity towards short wavelength radiation. The unique properties of chalcogenide glasses are attributed to the lone pair p-shell electrons, which provide some distinctive optical properties when compared to crystalline material. These qualities are derived from the energy band diagram and the presence of localized states in the band gap. Chalcogenide glasses have band tail states and localized states, along with the two band states. These extra states are primarily due to the lone pair electrons as well as the amorphous structure of the glasses. The localized states between the conductance band (CB) and valence band (VB) are primarily due to the presence of the lone pair electrons, while the band tail states are attributed to the Van der Waal's forces between layers of atoms [1]. Localized states are trap locations within the band gap where electrons from the valence band can hop into, in their path towards the conduction band. Tail states on the other hand are locations near the band gap edges and are known as Urbach tail states (Eu). These states are occupied with many electrons that can participate in the various transformations due to interaction with photons. According to Y. Utsugi et. al.[2], the electron-phonon interactions are responsible for the generation of the Urbach tails. These states are responsible for setting the absorption edge for these glasses and photons with energy near the band gap affect these states. We have

  18. Novel nano materials for high performance logic and memory devices

    Science.gov (United States)

    Das, Saptarshi

    After decades of relentless progress, the silicon CMOS industry is approaching a stall in device performance for both logic and memory devices due to fundamental scaling limitations. In order to reinforce the accelerating pace, novel materials with unique properties are being proposed on an urgent basis. This list includes one dimensional nanotubes, quasi one dimensional nanowires, two dimensional atomistically thin layered materials like graphene, hexagonal boron nitride and the more recently the rich family of transition metal di-chalcogenides comprising of MoS2, WSe2, WS2 and many more for logic applications and organic and inorganic ferroelectrics, phase change materials and magnetic materials for memory applications. Only time will tell who will win, but exploring these novel materials allow us to revisit the fundamentals and strengthen our understanding which will ultimately be beneficial for high performance device design. While there has been growing interest in two-dimensional (2D) crystals other than graphene, evaluating their potential usefulness for electronic applications is still in its infancies due to the lack of a complete picture of their performance potential. The fact that the 2-D layered semiconducting di-chalcogenides need to be connected to the "outside" world in order to capitalize on their ultimate potential immediately emphasizes the importance of a thorough understanding of the contacts. This thesis demonstrate that through a proper understanding and design of source/drain contacts and the right choice of number of MoS2 layers the excellent intrinsic properties of this 2D material can be harvested. A comprehensive experimental study on the dependence of carrier mobility on the layer thickness of back gated multilayer MoS 2 field effect transistors is also provided. A resistor network model that comprises of Thomas-Fermi charge screening and interlayer coupling is used to explain the non-monotonic trend in the extracted field effect

  19. Advances in phosphors based on organic materials for light emitting devices

    International Nuclear Information System (INIS)

    Sharma, Kashma; Kumar, Vijay; Kumar, Vinod; Swart, Hendrik C.

    2016-01-01

    A brief overview is presented in the light emitting diodes (LEDs) based on purely organic materials. Organic LEDs are of great interest to the research community because of their outstanding properties and flexibility. Comparison between devices made using different organic materials and their derivatives with respect to synthetic protocols, characterizations, quantum efficiencies, sensitivity, specificity and their applications in various fields have been discussed. This review also discusses the essential requirement and scientific issues that arise in synthesizing cost-effective and environmental friendly organic LEDs diodes based on purely organic materials. This mini review aims to capture and convey some of the key current developments in phosphors formed by purely organic materials and highlights some possible future applications. Hence, this study comes up with a widespread discussion on the various contents in a single platform. Also, it offers avenues for new researchers for futuristic development in the area.

  20. Compression device for feeding a waste material to a reactor

    Science.gov (United States)

    Williams, Paul M.; Faller, Kenneth M.; Bauer, Edward J.

    2001-08-21

    A compression device for feeding a waste material to a reactor includes a waste material feed assembly having a hopper, a supply tube and a compression tube. Each of the supply and compression tubes includes feed-inlet and feed-outlet ends. A feed-discharge valve assembly is located between the feed-outlet end of the compression tube and the reactor. A feed auger-screw extends axially in the supply tube between the feed-inlet and feed-outlet ends thereof. A compression auger-screw extends axially in the compression tube between the feed-inlet and feed-outlet ends thereof. The compression tube is sloped downwardly towards the reactor to drain fluid from the waste material to the reactor and is oriented at generally right angle to the supply tube such that the feed-outlet end of the supply tube is adjacent to the feed-inlet end of the compression tube. A programmable logic controller is provided for controlling the rotational speed of the feed and compression auger-screws for selectively varying the compression of the waste material and for overcoming jamming conditions within either the supply tube or the compression tube.

  1. Environmental assessment of wood burning in independent heating devices

    International Nuclear Information System (INIS)

    Rogaume, C.; Rogaume, Y.; Zoulalian, A.; Trouve, G.

    2009-01-01

    An environmental assessment has been achieved on two domestic wood-heating devices, a closed fireplace and an open fireplace which represent 80% of the sale market of wood small-scale combustion units and around 65% of the use of wood-energy in France. Not only deals this study with the atmospheric polluting emissions produced in the exhaust stack, but also with the indoor air quality. Therefore, different pollutants were measured at the emission stage and as indoor air concentrations: carbon monoxide (CO), carbon dioxide (CO 2 ), volatile organic compounds (VOC), methane (CH 4 ), nitrogen oxides (NO X ), particulate matter with different sizes (PM 10 to PM 0.1 ), polycyclic aromatic hydrocarbons (PAH) and dioxines and furans. The results concerning indoor air were compared to measurements that showed the influence of residential heating devices. without exhaust duct like an oil stove or a gas stove (space heater) on indoor air quality. Some combustion emission experiments achieved in normal conditions showed that the combustion in open fireplace pollutes more than the combustion in closed fire-place: around 10 times more of PM 2.5 (mass concentration), more than 4 times of total VOC, 1.5 times more of dioxines and furans. On the other hand, the opposite trend was shown for PAH emissions (between 2 and 3 times less depending on the regulations considered). The comparison of the impact of different heating appliances on indoor air quality shows that the rate of CO is the same for all the devices except for the open fireplace which is higher. The CO 2 rate is 10 times higher for the oil stove and 8 times higher for the gas stove than for the fireplaces, which is due to the lack of exhaust duct. The concentration of PM 2.5 is 16 times higher for the open fireplace, 1.6 times higher for the oil stove and 4.4 times higher for the gas stove than the closed fireplace. The percentage of the number distribution of nano-particles, that represents an enhanced health risk

  2. Medical Devices; Immunology and Microbiology Devices; Classification of the Assayed Quality Control Material for Clinical Microbiology Assays. Final order.

    Science.gov (United States)

    2017-07-27

    The Food and Drug Administration (FDA, Agency, or we) is classifying the assayed quality control material for clinical microbiology assays into class II (special controls). The special controls that will apply to the device are identified in this order and will be part of the codified language for the assayed quality control material for clinical microbiology assays' classification. The Agency is classifying the device into class II (special controls) to provide a reasonable assurance of safety and effectiveness of the device.

  3. Electronic and optoelectronic materials and devices inspired by nature

    International Nuclear Information System (INIS)

    Meredith, P; Schwenn, P E; Bettinger, C J; Irimia-Vladu, M; Mostert, A B

    2013-01-01

    Inorganic semiconductors permeate virtually every sphere of modern human existence. Micro-fabricated memory elements, processors, sensors, circuit elements, lasers, displays, detectors, etc are ubiquitous. However, the dawn of the 21st century has brought with it immense new challenges, and indeed opportunities—some of which require a paradigm shift in the way we think about resource use and disposal, which in turn directly impacts our ongoing relationship with inorganic semiconductors such as silicon and gallium arsenide. Furthermore, advances in fields such as nano-medicine and bioelectronics, and the impending revolution of the ‘ubiquitous sensor network’, all require new functional materials which are bio-compatible, cheap, have minimal embedded manufacturing energy plus extremely low power consumption, and are mechanically robust and flexible for integration with tissues, building structures, fabrics and all manner of hosts. In this short review article we summarize current progress in creating materials with such properties. We focus primarily on organic and bio-organic electronic and optoelectronic systems derived from or inspired by nature, and outline the complex charge transport and photo-physics which control their behaviour. We also introduce the concept of electrical devices based upon ion or proton flow (‘ionics and protonics’) and focus particularly on their role as a signal interface with biological systems. Finally, we highlight recent advances in creating working devices, some of which have bio-inspired architectures, and summarize the current issues, challenges and potential solutions. This is a rich new playground for the modern materials physicist. (review article)

  4. Printable organic and inorganic materials for flexible electrochemical devices

    Science.gov (United States)

    Wojcik, Pawel Jerzy

    The growing demand of consumer printed electronics such as smart cards, smart packaging, automotive displays, electronic paper and others led to the increased interest in fully printed electrochemical devices. These components are expected to be developed based on printed thin films derived from cheap and widely accessible compounds. This dissertation presents the long stretch of technical research that was performed to realize printed energy efficient concepts such as electrochromic displays and smart-windows. Within this broad theme, the presented study had a number of specific objectives, however, the overall aim was to develop low-cost material systems (i.e. printable mixtures) at a lab-scale, which would be compatible with large-scale roll-to-roll processing. Presented results concern three main topics: (i) dual-phase inorganic electrochromic material processed at low temperature, (ii) enhancement in electrochromic performance via metaloxide nanoparticles engineering, and (iii) highly conductive and mechanically stable solid-state electrolyte. First two topics are related to crystallographic structure of metal-oxide films derived from sol-gel precursor, which is shown to be critical for electrochemical performance. The proposed method of microstructure control enables development of electrochromic films which outperform their amorphous or nanocrystalline analogues presented in the state-of-the-art due to their superior chemical and physical properties. Developed materials and processes resulted in electrochemical devices exhibiting optical density on the level of 0.82 and switching time shorter than 3 seconds, reaching performance at practical level. Third topic concerns a new concept of solid state electrolyte based on plastic crystal doped with lithium salt, dispersed in a thermosetting polymer resin network. This soft matter printable electrolyte meets requirements for electrochromic applications, exhibiting ionic conductivities of 10. -6 - 10. -4 S cm-1 at

  5. Tungsten as First Wall Material in Fusion Devices

    International Nuclear Information System (INIS)

    Kaufmann, M.

    2006-01-01

    In the PLT tokamak with a tungsten limiter strong cooling of the central plasma was observed. Since then mostly graphite has been used as limiter or target plate material. Only a few tokamaks (limiter: FTU, TEXTOR; divertor: Alcator C-Mod, ASDEX Upgrade) gained experience with high-Z-materials. With the observed strong co- deposition of tritium together with carbon in JET and as a result of design studies of fusion reactors, it became clear that in the long run tungsten is the favourite for the first-wall material. Tungsten as a plasma facing material requires intensive research in all areas, i.e. in plasma physics, plasma wall-interaction and material development. Tungsten as an impurity in the confined plasma reveals considerable differences to carbon. Strong radiation at high temperatures, in connection with mostly a pronounced inward drift forms a particular challenge. Turbulent transport plays a beneficial role in this regard. The inward drift is an additional problem in the pedestal region of H-mode plasmas in ITER-like configurations. The erosion by low energy hydrogen atoms is in contrast to carbon small. However, erosion by fast particles from heating measures and impurity ions, accelerated in the sheath potential, play an important role in the case of tungsten. Radiation by carbon in the plasma boundary reduces the load to the target plates. Neon or Argon as substitutes will increase the erosion of tungsten. So far experiments have demonstrated that in most scenarios the tungsten content in the central plasma can be kept sufficiently small. The material development is directed to the specific needs of existing or future devices. In ASDEX Upgrade, which will soon be a divertor experiment with a complete tungsten first-wall, graphite tiles are coated with tungsten layers. In ITER, the solid tungsten armour of the target plates has to be castellated because of its difference in thermal expansion compared to the cooling structure. In a reactor the technical

  6. Hibiscus fiber carbon for fuel cell device material

    International Nuclear Information System (INIS)

    Nanik Indayaningsih; Anne Zulfia; Dedi Priadi; Suprapedi

    2010-01-01

    The objective of this research is carbon of hibiscus fibers for the application as basic material of fuel cell device. The carbon is made using a pyrolysis process in inert gas (nitrogen) for 1 hour at temperature of 500 °C, 700 °C and 900 °C. The X-Ray Diffractometer (XRD), Scanning Electron Microscope (SEM) and Impedance-Capacitance-Resistance-meter are used to find out the microstructure, morphology and electrical properties respectively. The results of the experiment showed that the carbon had a structure of amorphous, and as the semiconductor material the electrical conductivity was 5 x 10"-"5 S.cm"-"1 to 4.9 x 10"-"5 S.cm"-"1 increasing in accordance with the pyrolysis temperature. The morphology resembled to plaited mats constructed by porous fibers having width of 50 µm to 300 µm, thickness of 25 µm to 35 µm, and the porous size of 0.5 µm to 5 µm. This morphology enables carbon to be applied as a candidate for a basic material of the Proton Exchange Membrane Fuel Cell. (author)

  7. Organic material reducing device in nuclear power plant

    International Nuclear Information System (INIS)

    Minakata, Noriyuki; Takada, Takao

    1998-01-01

    A total organic carbon (TOC) removing device is disposed between a filtration device and a desalting device or between a condensator and the desalting device disposed to a radioactive liquid waste processing facility or a condensate cleaning system of a BWR type nuclear reactor. Since the removing ratio of the TOC removing device is generally high if impurities are not contained, and ionic ingredients are formed after decomposition, TOC can be decomposed and removed more efficiently and removal in a short period of time can be expected by disposing the TOC device downstream of the filtration device or a condensator to be disposed instead of the filtration device and upstream of the desalting device. Then, further enhanced effect can be expected, if two series of the TOC removing line and the bypass line are disposed between the filtration device or the condensator and the desalting device so as to enable selection of processed liquids. (T.M.)

  8. Binary copper oxide semiconductors: From materials towards devices

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, B.K.; Polity, A.; Reppin, D.; Becker, M.; Hering, P.; Klar, P.J.; Sander, T.; Reindl, C.; Benz, J.; Eickhoff, M.; Heiliger, C.; Heinemann, M. [1. Physics Institute, Justus-Liebig University of Giessen (Germany); Blaesing, J.; Krost, A. [Institute of Experimental Physics (IEP), Otto-von-Guericke University Magdeburg (Germany); Shokovets, S. [Institute of Physics, Ilmenau University of Technology (Germany); Mueller, C.; Ronning, C. [Institute of Solid State Physics, Friedrich Schiller University Jena (Germany)

    2012-08-15

    Copper-oxide compound semiconductors provide a unique possibility to tune the optical and electronic properties from insulating to metallic conduction, from bandgap energies of 2.1 eV to the infrared at 1.40 eV, i.e., right into the middle of the efficiency maximum for solar-cell applications. Three distinctly different phases, Cu{sub 2}O, Cu{sub 4}O{sub 3}, and CuO, of this binary semiconductor can be prepared by thin-film deposition techniques, which differ in the oxidation state of copper. Their material properties as far as they are known by experiment or predicted by theory are reviewed. They are supplemented by new experimental results from thin-film growth and characterization, both will be critically discussed and summarized. With respect to devices the focus is on solar-cell performances based on Cu{sub 2}O. It is demonstrated by photoelectron spectroscopy (XPS) that the heterojunction system p-Cu{sub 2}O/n-AlGaN is much more promising for the application as efficient solar cells than that of p-Cu{sub 2}O/n-ZnO heterojunction devices that have been favored up to now. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Material and Phonon Engineering for Next Generation Acoustic Devices

    Science.gov (United States)

    Kuo, Nai-Kuei

    This thesis presents the theoretical and experimental work related to micromachining of low intrinsic loss sapphire and phononic crystals for engineering new classes of electroacoustic devices for frequency control applications. For the first time, a low loss sapphire suspended membrane was fabricated and utilized to form the main body of a piezoelectric lateral overtone bulk acoustic resonator (LOBAR). Since the metalized piezoelectric transducer area in a LOBAR is only a small fraction of the overall resonant cavity (made out of sapphire), high quality factor (Q) overtones are attained. The experiment confirms the low intrinsic mechanical loss of the transferred sapphire thin film, and the resonators exhibit the highest Q of 5,440 at 2.8 GHz ( f·Q of 1.53.1013 Hz). This is also the highest f·Q demonstrated for aluminum-nitride-(AIN)-based Lamb wave devices to date. Beyond demonstrating a low loss device, this experimental work has laid the foundation for the future development of new micromechanical devices based on a high Q, high hardness and chemically resilient material. The search for alternative ways to more efficiently perform frequency control functionalities lead to the exploration of Phononic Crystal (PnC) structures in AIN thin films. Four unit cell designs were theoretically and experimentally investigated to explore the behavior of phononic bandgaps (PBGs) in the ultra high frequency (UHF) range: (i) the conventional square lattice with circular air scatterer, (ii) the inverse acoustic bandgap (IABG) structure, (iii) the fractal PnC, and (iv) the X-shaped PnC. Each unit cell has its unique frequency characteristic that was exploited to synthesize either cavity resonators or improve the performance of acoustic delay lines. The PBGs operate in the range of 770 MHz to 1 GHz and exhibit a maximum acoustic rejection of 40 dB. AIN Lamb wave transducers (LWTs) were employed for the experimental demonstration of the PBGs and cavity resonances. Ultra

  10. 2D Material Device Architectures: Process Optimisation and Characterisation

    DEFF Research Database (Denmark)

    Gammelgaard, Lene

    to stack two-dimensional crystals with atomically clean interphases, through a procedure termed van der Waals assembly. We have further developed this assembly method with the \\Hot pick-up" method, which enables batch assembly as well as assembly with pre-patterned crystals. Inclusion of pre...... devices. Additionally, the long-term stability of transition metal dichalcogenides has been studied, and the order of the layers has been demonstrated detectable by atomic force microscopy. The encapsulated van der Waals heterostructures give high performance and long-term stability of two......-dimensional layered materials. The integration of pre-patterned layers, postpatterning of van der Waals heterostructures and detection of the layer order enables control { not only of the vertical ordering of atomic layers { but also in the lateral dimension, facilitating fabrication of advanced metamaterials...

  11. Smart electrochemical biosensors: From advanced materials to ultrasensitive devices

    Energy Technology Data Exchange (ETDEWEB)

    Sadik, Omowunmi A., E-mail: osadik@binghamton.ed [Department of Chemistry, Center for Advanced Sensors and Environmental Monitoring (CASE), State University of New York-Binghamton, P.O. Box 6000, Binghamton, NY 13902 (United States); Mwilu, Samuel K.; Aluoch, Austin [Department of Chemistry, Center for Advanced Sensors and Environmental Monitoring (CASE), State University of New York-Binghamton, P.O. Box 6000, Binghamton, NY 13902 (United States)

    2010-05-30

    The specificity, simplicity, and inherent miniaturization afforded by advances in modern electronics have allowed electrochemical sensors to rival the most advanced optical protocols. One major obstacle in implementing electrochemistry for studying biomolecular reaction is its inadequate sensitivity. Recent reports however showed unprecedented sensitivities for biomolecular recognition using enhanced electronic amplification provided by new classes of electrode materials (e.g. carbon nanotubes, metal nanoparticles, and quantum dots). Biosensor technology is one area where recent advances in nanomaterials are pushing the technological limits of electrochemical sensitivities, thus allowing for the development of new sensor chemistries and devices. This work focuses on our recent work, based on metal-enhanced electrochemical detection, and those of others in combining advanced nanomaterials with electrochemistry for the development of smart sensors for proteins, nucleic acids, drugs and cancer cells.

  12. Optimization of Materials and Interfaces for Spintronic Devices

    Science.gov (United States)

    Clark, Billy

    In recent years' Spintronic devices have drawn a significant amount of research attention. This interest comes in large part from their ability to enable interesting and new technology such as Spin Torque Transfer Random Access Memory or improve existing technology such as High Signal Read Heads for Hard Disk Drives. For the former we worked on optimizing and improving magnetic tunnel junctions by optimizing their thermal stability by using Ta insertion layers in the free layer. We further tried to simplify the design of the MTJ stack by attempting to replace the Co/Pd multilayer with CoPd alloy. In this dissertation, we detail its development and examine the switching characteristics. Lastly we look at a highly spin polarized material, Fe2MnGe, for optimizing Hard Drive Disk read heads.

  13. Smart electrochemical biosensors: From advanced materials to ultrasensitive devices

    International Nuclear Information System (INIS)

    Sadik, Omowunmi A.; Mwilu, Samuel K.; Aluoch, Austin

    2010-01-01

    The specificity, simplicity, and inherent miniaturization afforded by advances in modern electronics have allowed electrochemical sensors to rival the most advanced optical protocols. One major obstacle in implementing electrochemistry for studying biomolecular reaction is its inadequate sensitivity. Recent reports however showed unprecedented sensitivities for biomolecular recognition using enhanced electronic amplification provided by new classes of electrode materials (e.g. carbon nanotubes, metal nanoparticles, and quantum dots). Biosensor technology is one area where recent advances in nanomaterials are pushing the technological limits of electrochemical sensitivities, thus allowing for the development of new sensor chemistries and devices. This work focuses on our recent work, based on metal-enhanced electrochemical detection, and those of others in combining advanced nanomaterials with electrochemistry for the development of smart sensors for proteins, nucleic acids, drugs and cancer cells.

  14. Critical materialism: science, technology, and environmental sustainability.

    Science.gov (United States)

    York, Richard; Clark, Brett

    2010-01-01

    There are widely divergent views on how science and technology are connected to environmental problems. A view commonly held among natural scientists and policy makers is that environmental problems are primarily technical problems that can be solved via the development and implementation of technological innovations. This technologically optimistic view tends to ignore power relationships in society and the political-economic order that drives environmental degradation. An opposed view, common among postmodernist and poststructuralist scholars, is that the emergence of the scientific worldview is one of the fundamental causes of human oppression. This postmodernist view rejects scientific epistemology and often is associated with an anti-realist stance, which ultimately serves to deny the reality of environmental problems, thus (unintentionally) abetting right-wing efforts to scuttle environmental protection. We argue that both the technologically optimistic and the postmodernist views are misguided, and both undermine our ability to address environmental crises. We advocate the adoption of a critical materialist stance, which recognizes the importance of natural science for helping us to understand the world while also recognizing the social embeddedness of the scientific establishment and the need to challenge the manipulation of science by the elite.

  15. Novel High Temperature Materials for In-Situ Sensing Devices

    Energy Technology Data Exchange (ETDEWEB)

    Florian Solzbacher; Anil Virkar; Loren Rieth; Srinivasan Kannan; Xiaoxin Chen; Hannwelm Steinebach

    2009-12-31

    The overriding goal of this project was to develop gas sensor materials and systems compatible with operation at temperatures from 500 to 700 C. Gas sensors operating at these temperatures would be compatible with placement in fossil-energy exhaust streams close to the combustion chamber, and therefore have advantages for process regulation, and feedback for emissions controls. The three thrusts of our work included investigating thin film gas sensor materials based on metal oxide materials and electroceramic materials, and also development of microhotplate devices to support the gas sensing films. The metal oxide materials NiO, In{sub 2}O{sub 3}, and Ga{sub 2}O{sub 3} were investigated for their sensitivity to H{sub 2}, NO{sub x}, and CO{sub 2}, respectively, at high temperatures (T > 500 C), where the sensing properties of these materials have received little attention. New ground was broken in achieving excellent gas sensor responses (>10) for temperatures up to 600 C for NiO and In{sub 2}O{sub 3} materials. The gas sensitivity of these materials was decreasing as temperatures increased above 500 C, which indicates that achieving strong sensitivities with these materials at very high temperatures (T {ge} 650 C) will be a further challenge. The sensitivity, selectivity, stability, and reliability of these materials were investigated across a wide range of deposition conditions, temperatures, film thickness, as using surface active promoter materials. We also proposed to study the electroceramic materials BaZr{sub (1-x)}Y{sub x}O{sub (3-x/2)} and BaCe{sub (2-x)}Ca{sub x}S{sub (4-x/2)} for their ability to detect H{sub 2}O and H{sub 2}S, respectively. This report focuses on the properties and gas sensing characteristics of BaZr{sub (1-x)}Y{sub x}O{sub (3-x/2)} (Y-doped BaZrO{sub 3}), as significant difficulties were encounter in generating BaCe{sub (2-x)}Ca{sub x}S{sub (4-x/2)} sensors. Significant new results were achieved for Y-doped BaZrO{sub 3}, including

  16. Determination of carbon-14 in environmental level, solid reference materials

    Energy Technology Data Exchange (ETDEWEB)

    Blowers, Paul, E-mail: paul.blowers@cefas.co.uk [Cefas Lowestoft Laboratory, Pakefield Road, Lowestoft, Suffolk, NR33 0HT (United Kingdom); Caborn, Jane, E-mail: jane.a.caborn@nnl.co.uk [NNL, Springfields, Salwick, Preston, Lancashire, PR4 0XJ (United Kingdom); Dell, Tony [Veterinary Laboratories Agency, New Haw, Addlestone, Surrey, KT15 3NB (United Kingdom); Gingell, Terry [DSTL, Radiation Protection Services, Crescent Road, Alverstoke, Gosport, Hants, PO12 2DL (United Kingdom); Harms, Arvic [National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW (United Kingdom); Long, Stephanie [Radiological Protection Institute of Ireland, 3 Clonskeagh Square, Clonskeagh Road, Dublin 14, Ireland (United Kingdom); Sleep, Darren [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP (United Kingdom); Stewart, Charlie [UKAEA (Waste Management Group), Chemical Support Services, D1310/14, Dounreay, Thurso, Caithness, KW14 7TZ (United Kingdom); Walker, Jill [Radiocarbon Dating, The Old Stables, East Lockinge, Wantage, Oxon OX12 8QY (United Kingdom); Warwick, Phil E. [GAU-Radioanalytical, National Oceanography Centre Southampton, European Way, Southampton, SO14 3ZH (United Kingdom)

    2011-10-15

    An intercomparison exercise to determine the {sup 14}C activity concentrations in a range of solid, environmental level materials was conducted between laboratories in the UK. IAEA reference materials, C2, C6 and C7, and an in-house laboratory QA material were dispatched in 2006 to ten laboratories comprising of members of the Analyst Informal Working Group (AIWG) and one other invited party. The laboratories performed the determinations using a number of techniques, and using the results each one was evaluated in terms of levels of precision, sensitivity and limits of detection. The results of the study show that all techniques are capable of successfully analysing {sup 14}C in environmental level materials, however, a shortage of certified environmental reference materials exists. The suitability of the IAEA reference materials and other material for use as reference materials was also assessed.

  17. Determination of carbon-14 in environmental level, solid reference materials

    International Nuclear Information System (INIS)

    Blowers, Paul; Caborn, Jane; Dell, Tony; Gingell, Terry; Harms, Arvic; Long, Stephanie; Sleep, Darren; Stewart, Charlie; Walker, Jill; Warwick, Phil E.

    2011-01-01

    An intercomparison exercise to determine the 14 C activity concentrations in a range of solid, environmental level materials was conducted between laboratories in the UK. IAEA reference materials, C2, C6 and C7, and an in-house laboratory QA material were dispatched in 2006 to ten laboratories comprising of members of the Analyst Informal Working Group (AIWG) and one other invited party. The laboratories performed the determinations using a number of techniques, and using the results each one was evaluated in terms of levels of precision, sensitivity and limits of detection. The results of the study show that all techniques are capable of successfully analysing 14 C in environmental level materials, however, a shortage of certified environmental reference materials exists. The suitability of the IAEA reference materials and other material for use as reference materials was also assessed.

  18. Memory Device and Nanofabrication Techniques Using Electrically Configurable Materials

    Science.gov (United States)

    Ascenso Simões, Bruno

    Development of novel nanofabrication techniques and single-walled carbon nanotubes field configurable transistor (SWCNT-FCT) memory devices using electrically configurable materials is presented. A novel lithographic technique, electric lithography (EL), that uses electric field for pattern generation has been demonstrated. It can be used for patterning of biomolecules on a polymer surface and patterning of resist as well. Using electrical resist composed of a polymer having Boc protected amine group and iodonium salt, Boc group on the surface of polymer was modified to free amine by applying an electric field. On the modified surface of the polymer, Streptavidin pattern was fabricated with a sub-micron scale. Also patterning of polymer resin composed of epoxy monomers and diaryl iodonium salt by EL has been demonstrated. Reaction mechanism for electric resist configuration is believed to be induced by an acid generation via electrochemical reduction in the resist. We show a novel field configurable transistor (FCT) based on single-walled carbon nanotube network field-effect transistors in which poly (ethylene glycol) crosslinked by electron-beam is incorporated into the gate. The device conductance can be configured to arbitrary states reversibly and repeatedly by applying external gate voltages. Raman spectroscopy revealed that evolution of the ratio of D- to G-band intensity in the SWCNTs of the FCT progressively increases as the device is configured to lower conductance states. Electron transport studies at low temperatures showed a strong temperature dependence of the resistance. Band gap widening of CNTs up to ˜ 4 eV has been observed by examining the differential conductance-gate voltage-bias voltage relationship. The switching mechanism of the FCT is attributed a structural transformation of CNTs via reversible hydrogenation and dehydrogenations induced by gate voltages, which tunes the CNT bandgap continuously and reversibly to non-volatile analog values

  19. Space Environmental Effects on Coated Tether Materials

    Science.gov (United States)

    Gittemeier, Keith A.; Hawk, Clark W.; Finckenor, Miria M.; Watts, Ed

    2005-01-01

    The University of Alabama in Huntsville s Propulsion Research Center has teamed with NASA's Marshall Space Flight Center (MSFC) to research the effects of atomic oxygen (AO) bombardment on coated tether materials. Tethers Unlimited Inc. has provided several candidate tether materials with various coatings for AO exposure in MSFC s Atomic Oxygen Beam Facility. Additional samples were exposed to ultraviolet (UV) radiation at MSFC. AO erodes most organic materials, and ultraviolet radiation embrittles polymers. This test series was performed to determine the effect of AO and UV on the mechanical integrity of tether materials that were treated with AO-protective coatings, such as polyhedral oligomeric silsesquioxane (POSS) or metallization. Both TUI's Multi-Application Survivable Tether (MAST) Experiment and Marshall Space Flight Center s Momentum Exchange Electrodynamic Reboost (MXER) programs will benefit from this research by helping to determine tether materials and coatings that give the longest life with the lowest mass penalty.

  20. Environmental assessment of biomass based materials

    DEFF Research Database (Denmark)

    Jørgensen, Susanne Vedel

    of these impacts in LCA, in order to get a realistic picture of the overall impacts from a biomass feedstock crop establishment, and thus downstream products. However, there is a challenge in terms of e.g. the preliminary state of methods, and the requirements to availability of local data. Available biomass...... level. The temporal scope is defined by the impact category considered. The technological scope includes both current environmental performance of biomaterials and a discussion of future perspectives, including potentials for future change in their environmental impacts compared to fossil based...... place in biomaterials, on which there is currently no consensus. Other important environmental aspects related to biomaterials that are currently not generally included in LCAs are land use and land use change (LULUC) related impacts, such as changes in biogenic carbon stocks (especially including soil...

  1. Advances in superconductivity: new materials, critical currents and devices

    International Nuclear Information System (INIS)

    Pinto, R.; Malik, S.K.; Grover, A.K.; Ayyub, P.

    1997-01-01

    The discovery of superconductivity in the cuprates produced an explosive growth in research, driven by the quest for higher and higher superconducting transition temperatures. In the initial stages, the excitement was tremendous both in the physical sciences and in engineering. However, the complexity of the new materials on the one hand, and the absence of a viable theory on the other, have made further developments much more difficult. It is to be expected therefore, that the early excitement and the subsequent rapid advances have paved the way for more systematic and detailed studies of all aspects of superconductivity. The International Symposium was intended to provide a forum to review the progress in selected areas in superconductivity. The emphasis was on experimental and theoretical studies of the new superconductors, advances in the theoretical understanding, progress in studies of flux pinning and vortex dynamics which affect critical currents, and developments of novel material synthesis methods. Recent developments in the twin areas of thin films and devices were extensively discussed during the symposium. Papers relevant to INIS are indexed separately

  2. Illusion thermal device based on material with constant anisotropic thermal conductivity for location camouflage

    Science.gov (United States)

    Hou, Quanwen; Zhao, Xiaopeng; Meng, Tong; Liu, Cunliang

    2016-09-01

    Thermal metamaterials and devices based on transformation thermodynamics often require materials with anisotropic and inhomogeneous thermal conductivities. In this study, still based on the concept of transformation thermodynamics, we designed a planar illusion thermal device, which can delocalize a heat source in the device such that the temperature profile outside the device appears to be produced by a virtual source at another position. This device can be constructed by only one kind of material with constant anisotropic thermal conductivity. The condition which should be satisfied by the device is provided, and the required anisotropic thermal conductivity is then deduced theoretically. This study may be useful for the designs of metamaterials or devices since materials with constant anisotropic parameters have great facility in fabrication. A prototype device has been fabricated based on a composite composed by two naturally occurring materials. The experimental results validate the effectiveness of the device.

  3. Environmental efficiency of energy, materials, and emissions.

    Science.gov (United States)

    Yagi, Michiyuki; Fujii, Hidemichi; Hoang, Vincent; Managi, Shunsuke

    2015-09-15

    This study estimates the environmental efficiency of international listed firms in 10 worldwide sectors from 2007 to 2013 by applying an order-m method, a non-parametric approach based on free disposal hull with subsampling bootstrapping. Using a conventional output of gross profit and two conventional inputs of labor and capital, this study examines the order-m environmental efficiency accounting for the presence of each of 10 undesirable inputs/outputs and measures the shadow prices of each undesirable input and output. The results show that there is greater potential for the reduction of undesirable inputs rather than bad outputs. On average, total energy, electricity, or water usage has the potential to be reduced by 50%. The median shadow prices of undesirable inputs, however, are much higher than the surveyed representative market prices. Approximately 10% of the firms in the sample appear to be potential sellers or production reducers in terms of undesirable inputs/outputs, which implies that the price of each item at the current level has little impact on most of the firms. Moreover, this study shows that the environmental, social, and governance activities of a firm do not considerably affect environmental efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Plasmonic devices and sensors built from ordered nanoporous materials.

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Benjamin W.; Kobayashi, Yoji (University of California, Berkeley); Houk, Ronald J. T.; Allendorf, Mark D.; Long, Jeffrey R. (University of California, Berkeley); Robertson, Ian M. (University of Illinois Urbana-Champaign, Urbana, IL); House, Stephen D. (University of Illinois Urbana-Champaign, Urbana, IL); Graham, Dennis D. (University of Illinois Urbana-Champaign, Urbana, IL); Talin, Albert Alec (National Institute of Standards & Technology, Gaithersburg, MD); Chang, Noel N. (University of Illinois Urbana-Champaign, Urbana, IL); El Gabaly Marquez, Farid

    2009-09-01

    The objective of this project is to lay the foundation for using ordered nanoporous materials known as metal-organic frameworks (MOFs) to create devices and sensors whose properties are determined by the dimensions of the MOF lattice. Our hypothesis is that because of the very short (tens of angstroms) distances between pores within the unit cell of these materials, enhanced electro-optical properties will be obtained when the nanopores are infiltrated to create nanoclusters of metals and other materials. Synthetic methods used to produce metal nanoparticles in disordered templates or in solution typically lead to a distribution of particle sizes. In addition, creation of the smallest clusters, with sizes of a few to tens of atoms, remains very challenging. Nanoporous metal-organic frameworks (MOFs) are a promising solution to these problems, since their long-range crystalline order creates completely uniform pore sizes with potential for both steric and chemical stabilization. We report results of synthetic efforts. First, we describe a systematic investigation of silver nanocluster formation within MOFs using three representative MOF templates. The as-synthesized clusters are spectroscopically consistent with dimensions {le} 1 nm, with a significant fraction existing as Ag{sub 3} clusters, as shown by electron paramagnetic resonance. Importantly, we show conclusively that very rapid TEM-induced MOF degradation leads to agglomeration and stable, easily imaged particles, explaining prior reports of particles larger than MOF pores. These results solve an important riddle concerning MOF-based templates and suggest that heterostructures composed of highly uniform arrays of nanoparticles within MOFs are feasible. Second, a preliminary study of methods to incorporate fulleride (K{sub 3}C{sub 60}) guest molecules within MOF pores that will impart electrical conductivity is described.

  5. Lanthanum Gadolinium Oxide: A New Electronic Device Material for CMOS Logic and Memory Devices

    Directory of Open Access Journals (Sweden)

    Shojan P. Pavunny

    2014-03-01

    Full Text Available A comprehensive study on the ternary dielectric, LaGdO3, synthesized and qualified in our laboratory as a novel high-k dielectric material for logic and memory device applications in terms of its excellent features that include a high linear dielectric constant (k of ~22 and a large energy bandgap of ~5.6 eV, resulting in sufficient electron and hole band offsets of ~2.57 eV and ~1.91 eV, respectively, on silicon, good thermal stability with Si and lower gate leakage current densities within the International Technology Roadmap for Semiconductors (ITRS specified limits at the sub-nanometer electrical functional thickness level, which are desirable for advanced complementary metal-oxide-semiconductor (CMOS, bipolar (Bi and BiCMOS chips applications, is presented in this review article.

  6. Chemical Fingerprinting of Materials Developed Due To Environmental Issues

    Science.gov (United States)

    Smith, Doris A.; McCool, A. (Technical Monitor)

    2000-01-01

    This paper presents viewgraphs on chemical fingerprinting of materials developed due to environmental issues. Some of the topics include: 1) Aerospace Materials; 2) Building Blocks of Capabilities; 3) Spectroscopic Techniques; 4) Chromatographic Techniques; 5) Factors that Determine Fingerprinting Approach; and 6) Fingerprinting: Combination of instrumental analysis methods that diagnostically characterize a material.

  7. Environmental Evaluation of Building Materials of 5 Slovak Buildings

    Science.gov (United States)

    Porhincak, Milan; Estokova, Adriana

    2013-11-01

    Building activity has recently led to the deterioration of environment and has become unsustainable. Several strategies have been introduced in order to minimize consumption of energy and resulting CO2 emissions having their origin in the operational phase. But also other stages of Life Cycle should are important to identify the overall environmental impact of construction sector. In this paper 5 similar Slovak buildings (family houses) were analyzed in terms of environmental performance of building materials used for their structures. Evaluation included the weight of used materials, embodied energy and embodied CO2 and SO2 emissions. Analysis has proven that the selection of building materials is an important factor which influences the environmental profile. Findings of the case study indicated that materials like concrete, ceramic or thermal insulation materials based on polystyrene and mineral wool are ones with the most negative environmental impact.

  8. Radiation sensitive devices and systems for detection of radioactive materials and related methods

    Science.gov (United States)

    Kotter, Dale K

    2014-12-02

    Radiation sensitive devices include a substrate comprising a radiation sensitive material and a plurality of resonance elements coupled to the substrate. Each resonance element is configured to resonate responsive to non-ionizing incident radiation. Systems for detecting radiation from a special nuclear material include a radiation sensitive device and a sensor located remotely from the radiation sensitive device and configured to measure an output signal from the radiation sensitive device. In such systems, the radiation sensitive device includes a radiation sensitive material and a plurality of resonance elements positioned on the radiation sensitive material. Methods for detecting a presence of a special nuclear material include positioning a radiation sensitive device in a location where special nuclear materials are to be detected and remotely interrogating the radiation sensitive device with a sensor.

  9. Environmental restoration waste materials co-disposal

    International Nuclear Information System (INIS)

    Phillips, S.J.; Alexander, R.G.; England, J.L.; Kirdendall, J.R.; Raney, E.A.; Stewart, W.E.; Dagan, E.B.; Holt, R.G.

    1993-09-01

    Co-disposal of radioactive and hazardous waste is a highly efficient and cost-saving technology. The technology used for final treatment of soil-washing size fractionization operations is being demonstrated on simulated waste. Treated material (wasterock) is used to stabilize and isolate retired underground waste disposal structures or is used to construct landfills or equivalent surface or subsurface structures. Prototype equipment is under development as well as undergoing standardized testing protocols to prequalify treated waste materials. Polymer and hydraulic cement solidification agents are currently used for geotechnical demonstration activities

  10. Artificial radioactivity in the environmental samples as IAEA reference materials

    International Nuclear Information System (INIS)

    Salagean, M.; Pantelica, A.

    1998-01-01

    Radioactivity levels of 110m Ag, 241 Am, 60 Co, 134 Cs, 137 Cs, 106 Ru, 125 Sb in some biological and environmental materials have been determined by gamma-ray spectrometry in the frame of 15 intercomparison runs organized by IAEA during 1986-1995. The investigated materials were polluted by various nuclear activities, as follows: 1. Nuclear experiments: IAEA-367, sediment collected in 1982 at the Enewetak Atoll (Marshall Islands in the Pacific Ocean). This atoll was used by the USA during 1948-1958 to test nuclear devices; IAEA-368, sediment collected in June 1989 from the Pacific Ocean at the Mururoa Atoll. Since 1966 this atoll has been used by France to test different nuclear devices. 2. Nuclear installations: IAEA-134, cockle flesh of Cardium edule collected in March 1991 from the Irish Sea (Morecambe Bay), England, about 45 km S-E of Sellafield radioactive discharge; IAEA-135, sediment collected in July 1991 in Lune Estuary-England. This area is influenced by the radioactive discharges of the nuclear installations of Sellafield; IAEA-326, soil collected in 1990 in the region of Kursk Atomic Power Plant (Russia). 3. Nuclear accidents (Chernobyl): IAEA-306, sediment collected in the Baltic Sea during October-November 1986; IAEA-307, seaplant Posidonia oceanica, collected in October 1986 in Mediterranean Sea along the shore, in the vicinity of the Principality of Monaco; IAEA-308, mixed seaweeds collected in October 1986 in Mediterranean Sea along the shore, in the vicinity of the Principality of Monaco; IAEA-156, clover collected during the summer harvest 1986 in Austria; IAEA-321, milk powder collected in autumn 1987 from a processing plant in Europe; IAEA-352, tuna fish flesh collected in April 1988 in the Western Mediterranean Sea; IAEA-373, grass collected from Kiev region during the summer harvest 1990; IAEA-375, soil collected in July 1990 from Brjansk region, Russia; IAEA-300, sediment collected in July 1992 in Bothnian Sea (Baltic Sea). 4

  11. Solitonic guides in photopolymerizable materials for optical devices

    Science.gov (United States)

    Dorkenoo, Kokou D.; Cregut, Olivier; Fort, Alain

    2003-11-01

    These last twenty years, advanced studies in integrated optics have demonstrated the capacity to elaborate optical circuits in planar substrates. Most of the optical integrated devices are realized on glass substrate and the guide areas are usually obtained by photolithography techniques. We present here a new approach based on the use of compounds photopolymerizable in the visible range. The conditions of self written channel creation by solitonic propagation inside the bulk of the photopolymerizable formulation are analyzed. Waveguides can be self-written in photopolymerizable materials1,2 due to the dependence of their refractive index on intensity and duration of the active light. This process results from the competition between the diffraction of the incident Gaussian beam and the photopolymerization which tends to increase the refractive index where light intensity is the highest. By controlling the difference between the refractive index values of the polymerized and non polymerized zones, the beam can be self-trapped along the propagation axis giving rise to a waveguide over distances as large as 10 cm without any broadening. Such permanent waveguides can be structured by inscription of gratings and doped with a dye in a plastic cell leading to the elaboration of a completely plastic laser.

  12. Graphene nanocomposites as thermal interface materials for cooling energy devices

    Science.gov (United States)

    Dmitriev, A. S.; Valeev, A. R.

    2017-11-01

    The paper describes the technology of creating samples of graphene nanocomposites based on graphene flakes obtained by splitting graphite with ultrasound of high power. Graphene nanocomposites in the form of samples are made by the technology of weak sintering at high pressure (200-300 bar) and temperature up to 150 0 C, and also in the form of compositions with polymer matrices. The reflection spectra in the visible range and the near infrared range for the surface of nanocomposite samples are studied, the data of optical and electronic spectroscopy of such samples are givenIn addition, data on the electrophysical and thermal properties of the nanocomposites obtained are presented. Some analytical models of wetting and spreading over graphene nanocomposite surfaces have been constructed and calculated, and their effective thermal conductivity has been calculated and compared with the available experimental data. Possible applications of graphene nanocomposites for use as thermal interface materials for heat removal and cooling for power equipment, as well as microelectronics and optoelectronics devices are described.

  13. Carbon material based microelectromechanical system (MEMS): Fabrication and devices

    Science.gov (United States)

    Xu, Wenjun

    This PhD dissertation presents the exploration and development of two carbon materials, carbon nanotubes (CNTs) and carbon fiber (CF), as either key functional components or unconventional substrates for a variety of MEMS applications. Their performance in three different types of MEMS devices, namely, strain/stress sensors, vibration-powered generators and fiber solar cells, were evaluated and the working mechanisms of these two non-traditional materials in these systems were discussed. The work may potentially enable the development of new types of carbon-MEMS devices. Carbon nanotubes were selected from the carbon family due to several advantageous characteristics that this nanomaterial offers. They carry extremely high mechanical strength (Ey=1TPa), superior electrical properties (current density of 4x109 A/cm2), exceptional piezoresistivity (G=2900), and unique spatial format (high aspect ratio hollow nanocylinder), among other properties. If properly utilized, all these merits can give rise to a variety of new types of carbon nanotube based micro- and nanoelectronics that can greatly fulfill the need for the next generation of faster, smaller and better devices. However, before these functions can be fully realized, one substantial issue to cope with is how to implement CNTs into these systems in an effective and controllable fashion. Challenges associated with CNTs integration include very poor dispersibility in solvents, lack of melting/sublimation point, and unfavorable rheology with regard to mixing and processing highly viscous, CNT-loaded polymer solutions. These issues hinder the practical progress of CNTs both in a lab scale and in the industrial level. To this end, a MEMS-assisted electrophoretic deposition technique was developed, aiming to achieve controlled integration of CNT into both conventional and flexible microsystems at room temperature with a relatively high throughput. MEMS technology has demonstrated strong capability in developing

  14. Spintronic materials and devices based on antiferromagnetic metals

    Directory of Open Access Journals (Sweden)

    Y.Y. Wang

    2017-04-01

    Full Text Available In this paper, we review our recent experimental developments on antiferromagnet (AFM spintronics mainly comprising Mn-based noncollinear AFM metals. IrMn-based tunnel junctions and Hall devices have been investigated to explore the manipulation of AFM moments by magnetic fields, ferromagnetic materials and electric fields. Room-temperature tunneling anisotropic magnetoresistance based on IrMn as well as FeMn has been successfully achieved, and electrical control of the AFM exchange spring is realized by adopting ionic liquid. In addition, promising spin-orbit effects in AFM as well as spin transfer via AFM spin waves reported by different groups have also been reviewed, indicating that the AFM can serve as an efficient spin current source. To explore the crucial role of AFM acting as efficient generators, transmitters, and detectors of spin currents is an emerging topic in the field of magnetism today. AFM metals are now ready to join the rapidly developing fields of basic and applied spintronics, enriching this area of solid-state physics and microelectronics.

  15. Application of Green Environmentally Friendly Materials in Food Packaging

    OpenAIRE

    Jixia Li

    2017-01-01

    With social development, requirements on the spiritual and material life have increased. However, some environmental issues appear, for example, in food packaging. Application of environment-friendly materials in food packaging has been more and more attractive. This study analyses the characteristics of degradable food packaging material and the existing problems, proposes the manufacturing of food packaging with poly(lactic acid)/nanocrystalline cellulose composite material, tests its therm...

  16. 2D materials for renewable energy storage devices: Outlook and challenges.

    Science.gov (United States)

    Sahoo, Ramkrishna; Pal, Anjali; Pal, Tarasankar

    2016-11-15

    Scientists are looking for cost-effective, clean and durable alternative energy devices. Superior charge storage devices can easily meet the demands of our daily needs. In this respect, a material with suitable dimensions for charge storage devices has been considered to be very important. Improved performance of charge storage devices has been derived from whole-body participation and the best are from 2D materials, which provide a viable and acceptable solution.

  17. Coated silicon comprising material for protection against environmental corrosion

    Science.gov (United States)

    Hazel, Brian Thomas (Inventor)

    2009-01-01

    In accordance with an embodiment of the invention, an article is disclosed. The article comprises a gas turbine engine component substrate comprising a silicon material; and an environmental barrier coating overlying the substrate, wherein the environmental barrier coating comprises cerium oxide, and the cerium oxide reduces formation of silicate glass on the substrate upon exposure to corrodant sulfates.

  18. Development of a green supercapacitor composed entirely of environmentally friendly materials.

    Science.gov (United States)

    Dyatkin, Boris; Presser, Volker; Heon, Min; Lukatskaya, Maria R; Beidaghi, Majid; Gogotsi, Yury

    2013-12-01

    Owing to recent power- and energy-density advances, higher efficiencies, and almost unlimited lifetimes, electrical double-layer capacitors (EDLCs, also known as supercapacitors) are now used in a wide range of energy harvesting and storage systems, which include portable power and grid applications. Despite offering key performance advantages, many device components pose significant environmental hazards once disposed. They often contain fluorine, sulfur, and cyanide groups, which are harmful if discarded by using conventional landfill or incineration methods, and they are constructed by using multiple metallic parts, which contribute to a high ash content. We explore designs for a fully operational supercapacitor that incorporates materials completely safe to dispose of and easy to incinerate. The components, which include material alternatives for the current collector, electrolyte, separator, particle binder, and packaging, are all mutually compatible, and most of them exhibit better performance than commonly used materials. We selected a graphite foil as current collector, sodium acetate as electrolyte, an ester as porous membrane based on acetate cellulose, and polymers based on polyvinyl alcohol as environmentally benign solutions for device components. The presented materials all originate from simple and inexpensive source compounds, which decreases the environmental impact of their manufacture and renders them more viable for integration into commercial devices for large-scale stationary and transportation energy storage applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Container for storage of environmental incompatible materials

    International Nuclear Information System (INIS)

    Ruggenthaler, P.T.

    1984-01-01

    The container consists of a cuboid chamber, closed to five sides, just as the cover made of concrete. Iron mountings for use with lifting gears are coupled with the armouring of the container. The cover is made in such a way that mountings are hidden by the recesses at its borders. Therefore it is possible to stick these boxes. Concrete employed for is enriched with sealing materials of synthetics, the box is painted too. Sensors on the outside ensure telemetering of closeness of the boxes. (J.K.) [de

  20. Multidimensional materials and device architectures for future hybrid energy storage

    Science.gov (United States)

    Lukatskaya, Maria R.; Dunn, Bruce; Gogotsi, Yury

    2016-09-01

    Electrical energy storage plays a vital role in daily life due to our dependence on numerous portable electronic devices. Moreover, with the continued miniaturization of electronics, integration of wireless devices into our homes and clothes and the widely anticipated `Internet of Things', there are intensive efforts to develop miniature yet powerful electrical energy storage devices. This review addresses the cutting edge of electrical energy storage technology, outlining approaches to overcome current limitations and providing future research directions towards the next generation of electrical energy storage devices whose characteristics represent a true hybridization of batteries and electrochemical capacitors.

  1. Nuclear Materials Stewardship Within the DOE Environmental Management Program

    International Nuclear Information System (INIS)

    Bilyeu, J. D.; Kiess, T. E.; Gates, M. L.

    2002-01-01

    The Department of Energy (DOE) Environmental Management (EM) Program has made significant progress in planning disposition of its excess nuclear materials and has recently completed several noteworthy studies. Since establishment in 1997, the EM Nuclear Material Stewardship Program has developed disposition plans for excess nuclear materials to support facility deactivation. All nuclear materials have been removed from the Miamisburg Environmental Management Project (Mound), and disposition planning is nearing completion for the Fernald Environmental Management Project and the Rocky Flats Environmental Technology Site. Only a few issues remain for materials at the Hanford and Idaho sites. Recent trade studies include the Savannah River Site Canyons Nuclear Materials Identification Study, a Cesium/Strontium Management Alternatives Trade Study, a Liquid Technical Standards Trade Study, an Irradiated Beryllium Reflectors with Tritium study, a Special Performance Assessment Required Trade Study, a Neutron Source Trade Study, and development of discard criteria for uranium. A Small Sites Workshop was also held. Potential and planned future activities include updating the Plutonium-239 storage study, developing additional packaging standards, developing a Nuclear Material Disposition Handbook, determining how to recover or dispose of Pu-244 and U-233, and working with additional sites to define disposition plans for their nuclear materials

  2. Overview of environmental materials degradation in light-water reactors

    International Nuclear Information System (INIS)

    Shaaban, H.I.; Wu, P.

    1986-08-01

    This report provides a brief overview of analyses and conclusions reported in published literature regarding environmentally induced degradation of materials in operating light-water reactors. It is intended to provide a synopsis of subjects of concern rather than to address a licensing basis for any newly discovered problems related to reactor materials

  3. Device for separating ruthenium ion from spent fuel material

    International Nuclear Information System (INIS)

    Izumida, Tatsuo; Sasahira, Akira; Ozawa, Yoshihiro; Kawamura, Fumio.

    1988-01-01

    Purpose: To separate plutonium ions efficiently and selectively from organic solvent containing tributyl phosphate used in the main step of reprocessing process. Constitution: The device comprises, as the main constituent factor, a liquid-liquid contact device for bringing not water soluble organic solvent into contact with a nitric acid solution of spent fuel substances and a liquid-liquid contact-separation device for bringing an organic solvent solution containing spent fuel substances separated with nitric acid into contact again with nitric acid. Then, a device is disposed between two liquid-liquid contact devices for staying ruthenium ions and organic solvent for a sufficient time. In this way, ruthenium ions in the organic solvent containing butyl phosphate are gradually converted into complex compounds combined with tributyl phosphate thereby enabling to separate ruthenium ions efficiently and remarkably reduce the corrosion of equipments. (Horiuchi, T.)

  4. Environmental Survey preliminary report, Feed Materials Production Center, Fernald, Ohio

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    This report presents the preliminary findings from the first phase of the environmental survey of the United States Department of Energy (DOE) Feed Materials Production Center (FMPC), conducted June 16 through 27, 1986. The survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the survey is to identify environmental problems and areas of environmental risk associated with the FMPC. The survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the survey involves the review of existing site environmental data, observations of the operations carried on at FMPC, and interviews with site personnel. The survey team developed a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its onsite activities. The Sampling and Analysis Plan will be executed by a DOE national laboratory or a support contractor. When completed, the results will be incorporated into the FMPC Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the FMPC survey. 41 refs., 20 figs., 25 tabs.

  5. Electrochromic device containing metal oxide nanoparticles and ultraviolet blocking material

    Science.gov (United States)

    Garcia, Guillermo; Koo, Bonil; Gregoratto, Ivano; Basu, Sourav; Rosen, Evelyn; Holt, Jason; Thomsen, Scott

    2017-10-17

    An electrochromic device includes a nanostructured transition metal oxide bronze layer that includes one or more transition metal oxide and one or more dopant. The electrochromic device also includes nanoparticles containing one or more transparent conducting oxide (TCO), a solid state electrolyte, a counter electrode, and at least one protective layer to prevent degradation of the one or more nanostructured transition metal oxide bronze. The nanostructured transition metal oxide bronze selectively modulates transmittance of near-infrared (NIR) and visible radiation as a function of an applied voltage to the device.

  6. Survey of reference materials. V. 2: Environmentally related reference materials for trace elements, nuclides and microcontaminants

    International Nuclear Information System (INIS)

    1996-05-01

    The present report presently contains over 250 reference materials with trace element and organic contaminant information on fuel, geological and mineral, anthropogenic disposal, soil reference and miscellaneous reference materials. Not included in the current report is information on most biological and environmental reference materials with trace element, stable isotope, radioisotope and organic contaminant information. 8 refs, tabs

  7. Post-material values and environmental policy change

    Energy Technology Data Exchange (ETDEWEB)

    Watts, N. (International Inst. for Environmental and Society, Berlin, Germany); Wandesforde-Smith, G.

    Environmental policy may be particularly suited as a vehicle to articulate post-material values in advanced industrial societies, and recognition of this is likely to prove enormously helpful in future comparative and cross-national research into the origins of environmentalism and the causes of environmental policy change. The paper notes the salient characteristics of post-materialism and the overlap of these with the leading indicators of environmentalism. Possible structural causes for this overlap are noted and opposed to the prevailing socialization explanation for the adoption of post-material and environmental values. To help understand the impact of environmentalism on policy, an idealized development of the movement is sketched. This leads to the description of a set of general factors likely to be related to the way environmentalism finds political expressions in various countries. In the final section, the focus is on what we might want to know about the policy process in order to be able to gauge environmentalist influence on policy outputs. 20 references.

  8. Preliminary Finding from a New Device for Monitoring Performance and Environmental Factors in the Field

    National Research Council Canada - National Science Library

    Lieberman, Harris

    2000-01-01

    .... This paper will introduce a new device, the U.S. Army Research Institute of Environmental Medicine vigilance monitor, which was developed for assessment of human performance in an automated, continuous manner in the field...

  9. Application of Green Environmentally Friendly Materials in Food Packaging

    Directory of Open Access Journals (Sweden)

    Jixia Li

    2017-11-01

    Full Text Available With social development, requirements on the spiritual and material life have increased. However, some environmental issues appear, for example, in food packaging. Application of environment-friendly materials in food packaging has been more and more attractive. This study analyses the characteristics of degradable food packaging material and the existing problems, proposes the manufacturing of food packaging with poly(lactic acid/nanocrystalline cellulose composite material, tests its thermal and mechanical properties, and applies it to the design of food packaging. The results demonstrate that the thermal and mechanical properties of the material could satisfy the requirements of food packaging and that the material is applicable to the design of food packaging in the future. This work provides a reference for the application of green, environment-friendly materials in the design of food packaging.

  10. Consensus stability testing protocols for organic photovoltaic materials and devices

    DEFF Research Database (Denmark)

    Reese, Matthew O.; Gevorgyan, Suren; Jørgensen, Mikkel

    2011-01-01

    Procedures for testing organic solar cell devices and modules with respect to stability and operational lifetime are described. The descriptions represent a consensus of the discussion and conclusions reached during the first 3 years of the international summit on OPV stability (ISOS). The proced......Procedures for testing organic solar cell devices and modules with respect to stability and operational lifetime are described. The descriptions represent a consensus of the discussion and conclusions reached during the first 3 years of the international summit on OPV stability (ISOS...

  11. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications.

    Science.gov (United States)

    Zhu, Hongli; Luo, Wei; Ciesielski, Peter N; Fang, Zhiqiang; Zhu, J Y; Henriksson, Gunnar; Himmel, Michael E; Hu, Liangbing

    2016-08-24

    With the arising of global climate change and resource shortage, in recent years, increased attention has been paid to environmentally friendly materials. Trees are sustainable and renewable materials, which give us shelter and oxygen and remove carbon dioxide from the atmosphere. Trees are a primary resource that human society depends upon every day, for example, homes, heating, furniture, and aircraft. Wood from trees gives us paper, cardboard, and medical supplies, thus impacting our homes, school, work, and play. All of the above-mentioned applications have been well developed over the past thousands of years. However, trees and wood have much more to offer us as advanced materials, impacting emerging high-tech fields, such as bioengineering, flexible electronics, and clean energy. Wood naturally has a hierarchical structure, composed of well-oriented microfibers and tracheids for water, ion, and oxygen transportation during metabolism. At higher magnification, the walls of fiber cells have an interesting morphology-a distinctly mesoporous structure. Moreover, the walls of fiber cells are composed of thousands of fibers (or macrofibrils) oriented in a similar angle. Nanofibrils and nanocrystals can be further liberated from macrofibrils by mechanical, chemical, and enzymatic methods. The obtained nanocellulose has unique optical, mechanical, and barrier properties and is an excellent candidate for chemical modification and reconfiguration. Wood is naturally a composite material, comprised of cellulose, hemicellulose, and lignin. Wood is sustainable, earth abundant, strong, biodegradable, biocompatible, and chemically accessible for modification; more importantly, multiscale natural fibers from wood have unique optical properties applicable to different kinds of optoelectronics and photonic devices. Today, the materials derived from wood are ready to be explored for applications in new technology areas, such as electronics, biomedical devices, and energy. The

  12. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hongli; Luo, Wei; Ciesielski, Peter N.; Fang, Zhiqiang; Zhu, J. Y.; Henriksson, Gunnar; Himmel, Michael E.; Hu, Liangbing

    2016-08-24

    With the arising of global climate change and resource shortage, in recent years, increased attention has been paid to environmentally friendly materials. Trees are sustainable and renewable materials, which give us shelter and oxygen and remove carbon dioxide from the atmosphere. Trees are a primary resource that human society depends upon every day, for example, homes, heating, furniture, and aircraft. Wood from trees gives us paper, cardboard, and medical supplies, thus impacting our homes, school, work, and play. All of the above-mentioned applications have been well developed over the past thousands of years. However, trees and wood have much more to offer us as advanced materials, impacting emerging high-tech fields, such as bioengineering, flexible electronics, and clean energy. Wood naturally has a hierarchical structure, composed of well-oriented microfibers and tracheids for water, ion, and oxygen transportation during metabolism. At higher magnification, the walls of fiber cells have an interesting morphology--a distinctly mesoporous structure. Moreover, the walls of fiber cells are composed of thousands of fibers (or macrofibrils) oriented in a similar angle. Nanofibrils and nanocrystals can be further liberated from macrofibrils by mechanical, chemical, and enzymatic methods. The obtained nanocellulose has unique optical, mechanical, and barrier properties and is an excellent candidate for chemical modification and reconfiguration. Wood is naturally a composite material, comprised of cellulose, hemicellulose, and lignin. Wood is sustainable, earth abundant, strong, biodegradable, biocompatible, and chemically accessible for modification; more importantly, multiscale natural fibers from wood have unique optical properties applicable to different kinds of optoelectronics and photonic devices. Today, the materials derived from wood are ready to be explored for applications in new technology areas, such as electronics, biomedical devices, and energy. The

  13. Device and materials modeling in PEM fuel cells

    National Research Council Canada - National Science Library

    Paddison, Stephen J; Promislow, Keith

    2009-01-01

    .... Materials modeling include subjects relating to the membrane and the catalyst such as proton conduction, atomistic structural modeling, quantum molecular dynamics, and molecular-level modeling...

  14. Preventing method and device for underground permeation of hazardous material

    International Nuclear Information System (INIS)

    Funabashi, Kiyomi; Kurokawa, Hideaki; Fukazawa, Tetsuo; Yamazaki, Tadashi.

    1996-01-01

    In a method of preventing hazardous materials from permeating into ground by burying adsorbing materials underground, a plurality of adsorbing layers are laminated being spaced apart from each other, the concentration of the hazardous materials between each of the adsorbent layers is measured. When the concentration reaches a predetermined value, the adsorbent layers are regenerated. A suppression means for preventing hazardous materials from permeating into the ground are formed by an upper adsorbent layer and a lower adsorbent layer, and a means for measuring the concentration of hazardous materials passing through the upper adsorbent layer and a means for charging and discharging regenerated liquid are disposed. When it is detected that the poisonous materials can not be eliminated, the poisonous materials are already permeated to the adsorbent layer, and they start to inflow into underground water. In order to prevent it, an adsorbent layer is additionally disposed at the lower side of the place of detection to eliminate the poisonous materials completely thereby enabling to prevent poisonous materials from permeating into underground for a long period of time. (T.M.)

  15. Non-binary Colour Modulation for Display Device Based on Phase Change Materials

    Science.gov (United States)

    Ji, Hong-Kai; Tong, Hao; Qian, Hang; Hui, Ya-Juan; Liu, Nian; Yan, Peng; Miao, Xiang-Shui

    2016-12-01

    A reflective-type display device based on phase change materials is attractive because of its ultrafast response time and high resolution compared with a conventional display device. This paper proposes and demonstrates a unique display device in which multicolour changing can be achieved on a single device by the selective crystallization of double layer phase change materials. The optical contrast is optimized by the availability of a variety of film thicknesses of two phase change layers. The device exhibits a low sensitivity to the angle of incidence, which is important for display and colour consistency. The non-binary colour rendering on a single device is demonstrated for the first time using optical excitation. The device shows the potential for ultrafast display applications.

  16. Non-binary Colour Modulation for Display Device Based on Phase Change Materials.

    Science.gov (United States)

    Ji, Hong-Kai; Tong, Hao; Qian, Hang; Hui, Ya-Juan; Liu, Nian; Yan, Peng; Miao, Xiang-Shui

    2016-12-19

    A reflective-type display device based on phase change materials is attractive because of its ultrafast response time and high resolution compared with a conventional display device. This paper proposes and demonstrates a unique display device in which multicolour changing can be achieved on a single device by the selective crystallization of double layer phase change materials. The optical contrast is optimized by the availability of a variety of film thicknesses of two phase change layers. The device exhibits a low sensitivity to the angle of incidence, which is important for display and colour consistency. The non-binary colour rendering on a single device is demonstrated for the first time using optical excitation. The device shows the potential for ultrafast display applications.

  17. Narcissism, Materialism, and Environmental Ethics in Business Students

    Science.gov (United States)

    Bergman, Jacqueline Z.; Westerman, James W.; Bergman, Shawn M.; Westerman, Jennifer; Daly, Joseph P.

    2014-01-01

    We investigate the relationships between narcissism, materialism, and environmental ethics in undergraduate business students. Data were collected from business students (n = 405) at an Association to Advance Collegiate Schools of Business-accredited business school at a comprehensive state university. Results indicate that narcissism has an…

  18. Some issues on environmental impact report of radioactive material transport

    International Nuclear Information System (INIS)

    Wang Jiaming

    2001-01-01

    The author puts forward some issues which should be paid attention to when compiling a environmental impact report of radioactive material transport. The main issues discussed are as follows: (1) Optimization analysis for transport routes. (2) Source terms under accident conditions in transport. (3) Precautions against accidents and emergency preparedness. (4) Quality assurance of transport, etc

  19. Application of radiochemical separation procedures to environmental and biological materials

    Energy Technology Data Exchange (ETDEWEB)

    Eakins, J D [UKAEA Atomic Energy Research Establishment, Harwell. Environmental and Medical Sciences Div.

    1984-06-15

    The measurement of low levels of radionuclides in environmental and biological materials often depends on separation of the nuclide of interest from a bulky matrix containing interfering radioelements. In such case, however sophisticated and elegant the counting technique, the quality of the final data will

  20. Finding Environmental Knowledge in SCUBA-Based Textual Materials

    Science.gov (United States)

    Gündogdu, Cemal; Aygün, Yalin; Ilkim, Mehmet

    2018-01-01

    As marine environments within the adventure domain are future key-settings for recreational SCUBA diving experience, SCUBA-based textual materials should provide insight into environmental knowledge that is well connected to the novice divers' behaviour and attitude. This research is concerned with a major recreational SCUBA diver manual for…

  1. New Materials for Gas Sensitive Field-Effect Device Studies

    OpenAIRE

    Salomonsson, Anette

    2005-01-01

    Gas sensor control is potentially one of the most important techniques of tomorrow for the environment. All over the world cars are preferred for transportation, and accordingly the number of cars increases, unfortunately, together with pollutants. Boilers and powerplants are other sources of pollutants to the environment. Metal-Insulator-Silicon Carbide (MISiC) Field-effect sensors in car applications and boilers have the potential to reduce the amount of pollutants. These devices are sensit...

  2. The development of an enhanced strain measurement device to support testing of radioactive material packages

    International Nuclear Information System (INIS)

    Uncapkher, W.L.; Arviso, M.

    1995-01-01

    Radioactive material package designers use structural testing to verify and demonstrate package performance. A major part of evaluating structural response is the collection of reliable instrumentation measurement data. Over the last four decades, Sandia National Laboratories (SNL) has been actively involved in the development, testing, and evaluation of measurement devices for a broad range of applications, resulting in the commercialization of several measurement devices commonly used today. SNL maintains an ongoing program sponsored by the US Department of Energy (DOE) to develop and evaluate measurement devices to support testing of packages used to transport radioactive or hazardous materials. The development of the enhanced strain measurement device is part of this program

  3. Environmentally sound management of hazardous waste and hazardous recyclable materials

    International Nuclear Information System (INIS)

    Smyth, T.

    2002-01-01

    Environmentally sound management or ESM has been defined under the Basel Convention as 'taking all practicable steps to ensure that hazardous wastes and other wastes are managed in a manner which will protect human health and the environment against the adverse effects which may result from such wastes'. An initiative is underway to develop and implement a Canadian Environmentally Sound Management (ESM) regime for both hazardous wastes and hazardous recyclable materials. This ESM regime aims to assure equivalent minimum environmental protection across Canada while respecting regional differences. Cooperation and coordination between the federal government, provinces and territories is essential to the development and implementation of ESM systems since waste management is a shared jurisdiction in Canada. Federally, CEPA 1999 provides an opportunity to improve Environment Canada's ability to ensure that all exports and imports are managed in an environmentally sound manner. CEPA 1999 enabled Environment Canada to establish criteria for environmentally sound management (ESM) that can be applied by importers and exporters in seeking to ensure that wastes and recyclable materials they import or export will be treated in an environmentally sound manner. The ESM regime would include the development of ESM principles, criteria and guidelines relevant to Canada and a procedure for evaluating ESM. It would be developed in full consultation with stakeholders. The timeline for the development and implementation of the ESM regime is anticipated by about 2006. (author)

  4. Fate and transport of fragrance materials in principal environmental sinks.

    Science.gov (United States)

    Zhang, Xiaolei; Brar, Satinder Kaur; Yan, Song; Tyagi, Rajeshwar Dayal; Surampalli, Rao Y

    2013-10-01

    Fragrance materials are widely present in the environment, such as air, water, and soil. Concerns have been raised due to the increasing utilization and suspected impact on human health. The bioaccumulating property is considered as one of the causes of the toxicity to human beings. The removal of fragrance materials from environmental sinks has not been paid enough attention due to the lack of regulation and research on their toxicity. This paper provides systematic information on how fragrance materials are transferred to the environment, how do they affect human lives, and what is their fate in water, wastewater, wastewater sludge, and soil. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Device for continuous analysis of a stream of material

    International Nuclear Information System (INIS)

    Krampe, G.

    1981-01-01

    A radioactive radiation source and a radioactive detector are associated, as a unit, with equipment for conveying coal or other material in a continuous stream. One part of the conveying path or the whole path lies in the irradiation zone of the source, and the detector receives the radiation reflected by the material. The radiation source and the detector are carried by impacting means situated on the conveying path in such a way as to deflect the material from a portion of the conveying means travelling in a first direction, on to another portion travelling in a second direction intersecting the first direction. (author)

  6. Leading the Charge: Exotic New Materials for Future Devices

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yulin

    2010-09-28

    How will we improve computer technology to create chips that are smaller, faster, and more efficient? For leaps in performance, we need to create new types of semiconductors. In this lecture, the speaker will describe a new class of materials -- the 'topological insulators' -- that achieve robust performance by tying the paths of electrons in knots. These materials arose from a bold theoretical proposal that was recently verified by X-ray experiments at SLAC. THe speaker will describe the special properties of these materials and the promise for their applications.

  7. Environmental risk analysis of hazardous material rail transportation

    International Nuclear Information System (INIS)

    Saat, Mohd Rapik; Werth, Charles J.; Schaeffer, David; Yoon, Hongkyu; Barkan, Christopher P.L.

    2014-01-01

    Highlights: • Comprehensive, nationwide risk assessment of hazardous material rail transportation. • Application of a novel environmental (i.e. soil and groundwater) consequence model. • Cleanup cost and total shipment distance are the most significant risk factors. • Annual risk varies from $20,000 to $560,000 for different products. • Provides information on the risk cost associated with specific product shipments. -- Abstract: An important aspect of railroad environmental risk management involves tank car transportation of hazardous materials. This paper describes a quantitative, environmental risk analysis of rail transportation of a group of light, non-aqueous-phase liquid (LNAPL) chemicals commonly transported by rail in North America. The Hazardous Materials Transportation Environmental Consequence Model (HMTECM) was used in conjunction with a geographic information system (GIS) analysis of environmental characteristics to develop probabilistic estimates of exposure to different spill scenarios along the North American rail network. The risk analysis incorporated the estimated clean-up cost developed using the HMTECM, route-specific probability distributions of soil type and depth to groundwater, annual traffic volume, railcar accident rate, and tank car safety features, to estimate the nationwide annual risk of transporting each product. The annual risk per car-mile (car-km) and per ton-mile (ton-km) was also calculated to enable comparison between chemicals and to provide information on the risk cost associated with shipments of these products. The analysis and the methodology provide a quantitative approach that will enable more effective management of the environmental risk of transporting hazardous materials

  8. Environmental risk analysis of hazardous material rail transportation

    Energy Technology Data Exchange (ETDEWEB)

    Saat, Mohd Rapik, E-mail: mohdsaat@illinois.edu [Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 1243 Newmark Civil Engineering Laboratory, 205 North Mathews Avenue, Urbana, IL 61801 (United States); Werth, Charles J.; Schaeffer, David [Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 1243 Newmark Civil Engineering Laboratory, 205 North Mathews Avenue, Urbana, IL 61801 (United States); Yoon, Hongkyu [Sandia National Laboratories, Albuquerque, NM 87123 (United States); Barkan, Christopher P.L. [Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 1243 Newmark Civil Engineering Laboratory, 205 North Mathews Avenue, Urbana, IL 61801 (United States)

    2014-01-15

    Highlights: • Comprehensive, nationwide risk assessment of hazardous material rail transportation. • Application of a novel environmental (i.e. soil and groundwater) consequence model. • Cleanup cost and total shipment distance are the most significant risk factors. • Annual risk varies from $20,000 to $560,000 for different products. • Provides information on the risk cost associated with specific product shipments. -- Abstract: An important aspect of railroad environmental risk management involves tank car transportation of hazardous materials. This paper describes a quantitative, environmental risk analysis of rail transportation of a group of light, non-aqueous-phase liquid (LNAPL) chemicals commonly transported by rail in North America. The Hazardous Materials Transportation Environmental Consequence Model (HMTECM) was used in conjunction with a geographic information system (GIS) analysis of environmental characteristics to develop probabilistic estimates of exposure to different spill scenarios along the North American rail network. The risk analysis incorporated the estimated clean-up cost developed using the HMTECM, route-specific probability distributions of soil type and depth to groundwater, annual traffic volume, railcar accident rate, and tank car safety features, to estimate the nationwide annual risk of transporting each product. The annual risk per car-mile (car-km) and per ton-mile (ton-km) was also calculated to enable comparison between chemicals and to provide information on the risk cost associated with shipments of these products. The analysis and the methodology provide a quantitative approach that will enable more effective management of the environmental risk of transporting hazardous materials.

  9. Environmental stability study of holographic solar spectrum splitting materials

    Science.gov (United States)

    Chrysler, Benjamin D.; Ayala Pelaez, Silvana; Wu, Yuechen; Vorndran, Shelby D.; Kostuk, Raymond K.

    2016-09-01

    In this study the impact of outdoor temperature variations and solar illumination exposure on spectral filter material and holographic optical elements is examined. Although holographic components have been shown to be useful for solar spectrum splitting designs, relatively little quantitative data exist to demonstrate the extent to which these materials can withstand outdoor conditions. As researchers seek to investigate practical spectrum splitting designs, the environmental stability of holographic materials should be considered as an important factor. In the experiment presented, two holographic materials, Covestro Bayfol HX photopolymer and dichromated gelatin, and 3M reflective polymer filter materials are exposed to outdoor conditions for a period of several months. The environmental effect on absorption, spectral and angular bandwidth, peak efficiency, and Bragg matching conditions for the holograms are examined. Spectral bandwidth and transmittance of the 3M reflective filter material are also monitored. Holographic gratings are recorded, measured, and mounted on glass substrates and then sealed with a glass cover plate. The test samples are then mounted on a photovoltaic panel to simulate realistic temperature conditions and placed at an outdoor test facility in Tucson, Arizona. A duplicate set of holograms and 3M filter material is stored as a control group and periodically compared over the test period.

  10. Recent advances in energy storage materials and devices

    CERN Document Server

    Lu, Li

    2017-01-01

    This book compiles nine comprehensive contributions from the principle of Li-ion batteries, cathode and anode electrode materials to future energy storage systems such as solid electrolyte for all-solid-state batteries and high capacity redox flow battery.

  11. High-efficiency solar cells physics, materials, and devices

    CERN Document Server

    Wang, Xiaodong

    2013-01-01

    This book creates a platform for knowledge sharing and dissemination of research on making current photovoltaic technology cheaper, creating advanced technologies based on new architectural designs, and developing new materials to serve as light absorbers.

  12. Environmentally Benign and Permanent Modifications to Prevent Biofouling on Marine and Hydrokinetic Devices

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Zhang

    2012-04-19

    Semprus Biosciences is developing environmentally benign and permanent modifications to prevent biofouling on Marine and Hydrokinetic (MHK) devices. Biofouling, including growth on external surfaces by bacteria, algae, barnacles, mussels, and other marine organisms, accumulate quickly on MHK devices, causing mechanical wear and changes in performance. Biofouling on crucial components of hydrokinetic devices, such as rotors, generators, and turbines, imposes substantial mass and hydrodynamic loading with associated efficiency loss and maintenance costs. Most antifouling coatings leach toxic ingredients, such as copper and tributyltin, through an eroding process, but increasingly stringent regulation of biocides has led to interest in the development of non-biocidal technologies to control fouling. Semprus Biosciences research team is developing modifications to prevent fouling from a broad spectrum of organisms on devices of all shapes, sizes, and materials for the life of the product. The research team designed and developed betaine-based polymers as novel underwater coatings to resist the attachment of marine organisms. Different betaine-based monomers and polymers were synthesized and incorporated within various coating formulations. The formulations and application methods were developed on aluminum panels with required adhesion strength and mechanical properties. The coating polymers were chemically stable under UV, hydrolytic and oxidative environments. The sulfobetaine formulations are applicable as nonleaching and stable underwater coatings. For the first time, coating formulations modified with highly packed sulfobetaine polymers were prepared and demonstrated resistance to a broad spectrum of marine organisms. Assays for comparing nonfouling performance were developed to evaluate protein adsorption and bacteria attachment. Barnacle settlement and removal were evaluated and a 60-day field test was performed. Silicone substrates including a commercial

  13. Solar Sail Material Performance Property Response to Space Environmental Effects

    Science.gov (United States)

    Edwards, David L.; Semmel, Charles; Hovater, Mary; Nehls, Mary; Gray, Perry; Hubbs, Whitney; Wertz, George

    2004-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) continues research into the utilization of photonic materials for spacecraft propulsion. Spacecraft propulsion, using photonic materials, will be achieved using a solar sail. A solar sail operates on the principle that photons, originating from the sun, impart pressure to the sail and therefore provide a source for spacecraft propulsion. The pressure imparted to a solar sail can be increased, up to a factor of two, if the sun-facing surface is perfectly reflective. Therefore, these solar sails are generally composed of a highly reflective metallic sun-facing layer, a thin polymeric substrate and occasionally a highly emissive back surface. Near term solar sail propelled science missions are targeting the Lagrange point 1 (Ll) as well as locations sunward of L1 as destinations. These near term missions include the Solar Polar Imager and the L1 Diamond. The Environmental Effects Group at NASA s Marshall Space Flight Center (MSFC) continues to actively characterize solar sail material in preparation for these near term solar sail missions. Previous investigations indicated that space environmental effects on sail material thermo-optical properties were minimal and would not significantly affect the propulsion efficiency of the sail. These investigations also indicated that the sail material mechanical stability degrades with increasing radiation exposure. This paper will further quantify the effect of space environmental exposure on the mechanical properties of candidate sail materials. Candidate sail materials for these missions include Aluminum coated Mylar[TM], Teonex[TM], and CPl (Colorless Polyimide). These materials were subjected to uniform radiation doses of electrons and protons in individual exposures sequences. Dose values ranged from 100 Mrads to over 5 Grads. The engineering performance property responses of thermo-optical and mechanical properties were

  14. Space Environmental Effects on Candidate Solar Sail Materials

    Science.gov (United States)

    Edwards, David L.; Nehls, Mary; Semmel, Charles; Hovater, Mary; Gray, Perry; Hubbs, Whitney; Wertz, George

    2004-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) continues research into the utilization of photonic materials for spacecraft propulsion. Spacecraft propulsion, using photonic materials, will be achieved using a solar sail. A solar sail operates on the principle that photons, originating from the sun, impart pressure to the sail and therefore provide a source for spacecraft propulsion. The pressure imparted ot a solar sail can be increased, up to a factor of two, if the sun-facing surface is perfectly reflective. Therefore, these solar sails are generally composed of a highly reflective metallic sun-facing layer, a thin polymeric substrate and occasionally a highly emissive back surface. Near term solar sail propelled science missions are targeting the Lagrange point 1 (L1) as well as locations sunward of L1 as destinations. These near term missions include the Solar Polar Imager and the L1 Diamond. The Environmental Effects Group at NASA's Marshall Space Flight Center (MSFC) continues to actively characterize solar sail material in preparation for these near term solar sail missions. Previous investigations indicated that space environmental effects on sail material thermo-optical properties were minimal and would not significantly affect the propulsion efficiency of the sail. These investigations also indicated that the sail material mechanical stability degrades with increasing radiation exposure. This paper will further quantify the effect of space environmental exposure on the mechanical properties of candidate sail materials. Candidate sail materials for these missions include Aluminum coated Mylar, Teonex, and CP1 (Colorless Polyimide). These materials were subjected to uniform radiation doses of electrons and protons in individual exposures sequences. Dose values ranged from 100 Mrads to over 5 Grads. The engineering performance property responses of thermo-optical and mechanical properties were characterized

  15. Monitoring of biofilm formation on different material surfaces of medical devices using hyperspectral imaging method

    Science.gov (United States)

    Kim, Do-Hyun; Kim, Moon S.; Hwang, Jeeseong

    2012-03-01

    Contamination of the inner surface of indwelling (implanted) medical devices by microbial biofilm is a serious problem. Some microbial bacteria such as Escherichia coli form biofilms that lead to potentially lifethreatening infections. Other types of medical devices such as bronchoscopes and duodenoscopes account for the highest number of reported endoscopic infections where microbial biofilm is one of the major causes for these infections. We applied a hyperspectral imaging method to detect biofilm contamination on the surface of several common materials used for medical devices. Such materials include stainless steel, titanium, and stainless-steeltitanium alloy. Potential uses of hyperspectral imaging technique to monitor biofilm attachment to different material surfaces are discussed.

  16. Silicon integrated circuits advances in materials and device research

    CERN Document Server

    Kahng, Dawon

    1981-01-01

    Silicon Integrated Circuits, Part B covers the special considerations needed to achieve high-power Si-integrated circuits. The book presents articles about the most important operations needed for the high-power circuitry, namely impurity diffusion and oxidation; crystal defects under thermal equilibrium in silicon and the development of high-power device physics; and associated technology. The text also describes the ever-evolving processing technology and the most promising approaches, along with the understanding of processing-related areas of physics and chemistry. Physicists, chemists, an

  17. Sputtering materials for VLSI and thin film devices

    CERN Document Server

    Sarkar, Jaydeep

    2010-01-01

    An important resource for students, engineers and researchers working in the area of thin film deposition using physical vapor deposition (e.g. sputtering) for semiconductor, liquid crystal displays, high density recording media and photovoltaic device (e.g. thin film solar cell) manufacturing. This book also reviews microelectronics industry topics such as history of inventions and technology trends, recent developments in sputtering technologies, manufacturing steps that require sputtering of thin films, the properties of thin films and the role of sputtering target performance on overall p

  18. River Devices to Recover Energy with Advanced Materials (River DREAM)

    Energy Technology Data Exchange (ETDEWEB)

    McMahon, Daniel P. [Bayer MaterialScience LLC

    2013-07-03

    The purpose of this project is to develop a generator called a Galloping Hydroelectric Energy Extraction Device (GHEED). It uses a galloping prism to convert water flow into linear motion. This motion is converted into electricity via a dielectric elastomer generator (DEG). The galloping mechanism and the DEG are combined to create a system to effectively generate electricity. This project has three research objectives: 1. Oscillator development and design a. Characterize galloping behavior, evaluate control surface shape change on oscillator performance and demonstrate shape change with water flow change. 2. Dielectric Energy Generator (DEG) characterization and modeling a. Characterize and model the performance of the DEG based on oscillator design 3. Galloping Hydroelectric Energy Extraction Device (GHEED) system modeling and integration a. Create numerical models for construction of a system performance model and define operating capabilities for this approach Accomplishing these three objectives will result in the creation of a model that can be used to fully define the operating parameters and performance capabilities of a generator based on the GHEED design. This information will be used in the next phase of product development, the creation of an integrated laboratory scale generator to confirm model predictions.

  19. Nanostructured silicon for photonics from materials to devices

    CERN Document Server

    Gaburro, Z; Daldosso, N

    2006-01-01

    The use of light to channel signals around electronic chips could solve several current problems in microelectronic evolution including: power dissipation, interconnect bottlenecks, input/output from/to optical communication channels, poor signal bandwidth, etc. It is unfortunate that silicon is not a good photonic material: it has a poor light-emission efficiency and exhibits a negligible electro-optical effect. Silicon photonics is a field having the objective of improving the physical properties of silicon; thus turning it into a photonic material and permitting the full convergence of elec

  20. Environmentally Sustainable Construction Products and Materials – Assessment of release

    DEFF Research Database (Denmark)

    Wahlström, Margareta; Laine-Yliijoki, Jutta; Järnström, helena

    The construction sector consumes yearly about half of all natural resourcesextracted in Europe and their transformation into building products has huge energy demands. Therefore the focus of today’s environmental policy is on the building end-of-life scenarios and material efficiency. Here waste...... hardly any construction product is designed keeping recycling/reuse in mind, the “Design for theEnvironment” -concept is one of the key steps towards increased recycling and reuse and thereby towards minimal environmental impacts. This project has been carried out by VTT with cooperation with the Danish...

  1. Leaching of spent fuel in the presence of environmental material

    International Nuclear Information System (INIS)

    Le Lous, Karine

    1997-01-01

    The aim of this work is the study of the alteration kinetics of spent fuels and the making of a status of the radioactivity released by spent fuels in conditions of direct disposal in deep underground. A system has been fitted inside a shielded cell to study the leaching by synthetic groundwater of fuel powder irradiated at 60 GWJ.tU -1 in the presence of environmental material (clay or granite) at 40 bars and 90 deg. C. This system allows to reach and keep reductive conditions characteristic of the redox conditions of a deep geological repository. The preparation of calibrated spent fuel powders and the recovery of the activity fixed by the environmental materials has required the implementation of specific procedures. Similar experiments have been performed in parallel with Simfuel in a controlled area. A first series of experiments has been carried out in 4 environments for each fuel. Important sorption phenomena take place in the environmental materials and the actinide concentrations stabilize rapidly at low values: 10 -8 mol/l for U, 10 -12 mol/l for Pu and 10 -13 -10 -14 mol/l for Cm. The activity released by 90 Sr at the end of each experiment is about two times higher in the presence of clay than in the presence of granite. The average alteration rates are of about 0.2 mg.m -2 /day in the presence of granite and 0.4 to 0.6 mg.m -2 /day in the presence of clay. They are comparable to those reported in the literature for reducing conditions. Such tests are necessary to determine the leaching rate of spent fuels in reducing conditions and in the absence of environmental materials in order to show the possible effects of these materials. (J.S.)

  2. Fundamentals and applications of organic electrochemistry synthesis, materials, devices

    CERN Document Server

    Fuchigami, Toshio; Inagi, Shinsuke

    2014-01-01

    This textbook is an accessible overview of the broad field of organic electrochemistry, covering the fundamentals and applications of contemporary organic electrochemistry.  The book begins with an introduction to the fundamental aspects of electrode electron transfer and methods for the electrochemical measurement of organic molecules. It then goes on to discuss organic electrosynthesis of molecules and macromolecules, including detailed experimental information for the electrochemical synthesis of organic compounds and conducting polymers. Later chapters highlight new methodology for organic electrochemical synthesis, for example electrolysis in ionic liquids, the application to organic electronic devices such as solar cells and LEDs, and examples of commercialized organic electrode processes. Appendices present useful supplementary information including experimental examples of organic electrosynthesis, and tables of physical data (redox potentials of various organic solvents and organic compounds and phy...

  3. Superconducting devices and materials. A literature survey issued quarterly, January-March 1980

    International Nuclear Information System (INIS)

    Olien, N.A.

    1980-01-01

    An extensive bibliography, i.e., over 200 pages of articles from 18 US and foreign journals, on superconducting devices and materials is presented. An author index is included. Upcoming conferences related to cryogenic research are listed

  4. Advanced Materials for Health Monitoring with Skin-Based Wearable Devices.

    Science.gov (United States)

    Jin, Han; Abu-Raya, Yasmin Shibli; Haick, Hossam

    2017-06-01

    Skin-based wearable devices have a great potential that could result in a revolutionary approach to health monitoring and diagnosing disease. With continued innovation and intensive attention to the materials and fabrication technologies, development of these healthcare devices is progressively encouraged. This article gives a concise, although admittedly non-exhaustive, didactic review of some of the main concepts and approaches related to recent advances and developments in the scope of skin-based wearable devices (e.g. temperature, strain, biomarker-analysis werable devices, etc.), with an emphasis on emerging materials and fabrication techniques in the relevant fields. To give a comprehensive statement, part of the review presents and discusses different aspects of these advanced materials, such as the sensitivity, biocompatibility and durability as well as the major approaches proposed for enhancing their chemical and physical properties. A complementary section of the review linking these advanced materials with wearable device technologies is particularly specified. Some of the strong and weak points in development of each wearable material/device are highlighted and criticized. Several ideas regarding further improvement of skin-based wearable devices are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A Maturity Grid Assessment Tool for Environmentally Conscious Design in the Medical Device Industry

    DEFF Research Database (Denmark)

    Moultrie, James; Sutcliffe, Laura Francesca Rose; Maier, Anja

    2016-01-01

    . This intervention tool provides designers and product marketers with insights on how to improve the design of their medical devices and specifically allows consideration of the complex trade-offs between decisions that influence different life-cycle stages. Through the tool, actionable insight is created......The medical device industry is growing increasingly concerned about environmental impact of products. Whilst there are many tools aiming to support environmentally conscious design, they are typically complex to use, demand substantial data collection and are not tailored to the specific needs...... of the medical device sector. This paper reports on the development of a Maturity Grid to address this gap. This novel design tool was developed iteratively through application in five case studies. The tool captures principles of eco-design for medical devices in a simple form, designed to be used by a team...

  6. Environmental effects associated with the transportation of radioactive material

    International Nuclear Information System (INIS)

    McClure, J.D.; Pope, R.B.; Yoshimura, H.R.

    1979-01-01

    The primary aim of this paper has been to describe some of the background information concerning nuclear materials transportation systems, accident statistics, accident severities, and test information - all of which when combined yield an environmental statement of the risks associated with the transportation of radioactive materials. The results of the ultimate risk analysis are expressed in terms of numbers of fatalities and, in that sense at least, tend to be an absolute measure of risk. When these risks are compared with other accepted societal risks, the relative risks associated with radioactive material transportation can be established. This information can be used to make decisions at the governmental level and to inform an interested public about these risks. It can be concluded that the risks associated with the transportation of radioactive material are low relative to the other risks that society has already accepted

  7. Tritium interactions with steel and construction materials in fusion devices

    International Nuclear Information System (INIS)

    Dickson, R.S.

    1990-11-01

    The literature on the interactions of tritium and tritiated water with metals, glasses, ceramics, concrete, paints, polymers and other organic materials is reviewed in this report Some of the processes affecting the amount of tritium found on various materials, such as permeation, sorption and the conversion of tritium found on various materials, such as permeation, sorption and conversion of elemental tritium (T 2 ) to tritiated water (HTO), are also briefly outlined. Tritium permeation in steels is fairly well understood, but effects of surface preparation and coatings on sorption are not yet clear. Permeation of T 2 into other metals with cleaned surfaces has been studied thoroughly at high temperature, and the effect of surface oxidation has also been explored. The room-temperature permeation rates of low-permeability metals with cleaned surfaces are much faster than indicated by high-temperature results, because of grain-boundary diffusion. Elastomers have been studied to a certain extent, but some mechanisms of interaction with tritium gas and sorbed tritium are unclear. Ceramics have some of the lowest sorption and permeation rates, but ceramic coatings on stainless steels do not lower permeation or tritium as effectively as coatings obtained by oxidation of the steel, probably because of cracking caused by differences in thermal expansion coefficient. Studies on concrete are in their early stages; they show that sorption of tritiated water on concrete is a major concern in cleanup of releases of elemental tritium into air in tritium handling facilities. Some of the codes for modelling releases and sorption of T 2 and HTO contain unproven assumptions about sorption and T 2 → HTO conversion. Several experimental programs will be required in order to clear up ambiguities in previous work and to determine parameters for materials which have not yet been investigated. (146 refs., tab.)

  8. Strategy on biological evaluation for biodegradable/absorbable materials and medical devices.

    Science.gov (United States)

    Liu, Chenghu; Luo, Hongyu; Wan, Min; Hou, Li; Wang, Xin; Shi, Yanping

    2018-01-01

    During the last two decades, biodegradable/absorbable materials which have many benefits over conventional implants are being sought in clinical practices. However, to date, it still remains obscure for us to perform full physic-chemical characterization and biological risk assessment for these materials and related devices due to their complex design and coherent processing. In this review, based on the art of knowledge for biodegradable/absorbable materials and biological risk assessment, we demonstrated some promising strategies to establish and improve the current biological evaluation systems for these biodegradable/absorbable materials and related medical devices.

  9. Scientific and Technical Challenges in Thermal Transport and Thermoelectric Materials and Devices

    KAUST Repository

    O'Dwyer, Colm

    2017-01-19

    This paper considers the state-of-the-art and open scientific and technological questions in thermoelectric materials and devices, from phonon engineering and scattering methods, to new and complex materials and their thermoelectric behavior. The paper also describes recent approaches to create structural and compositional material systems designed to enhance the thermoelectric figure of merit and power factors. We also summarize and contextualize recent advances in the use of superlattice structures and porosity or roughness to influence phonon scattering mechanisms and detail some advances in integrated thermoelectric materials for generators and coolers for thermally stable photonic devices.

  10. Scientific and Technical Challenges in Thermal Transport and Thermoelectric Materials and Devices

    KAUST Repository

    O'Dwyer, Colm; Chen, Renkun; He, Jr-Hau; Lee, Jaeho; Razeeb, Kafil M.

    2017-01-01

    This paper considers the state-of-the-art and open scientific and technological questions in thermoelectric materials and devices, from phonon engineering and scattering methods, to new and complex materials and their thermoelectric behavior. The paper also describes recent approaches to create structural and compositional material systems designed to enhance the thermoelectric figure of merit and power factors. We also summarize and contextualize recent advances in the use of superlattice structures and porosity or roughness to influence phonon scattering mechanisms and detail some advances in integrated thermoelectric materials for generators and coolers for thermally stable photonic devices.

  11. Assessing environmental effects on organic materials in cultural heritage

    DEFF Research Database (Denmark)

    Boyatzis, Stamatis; Ioakimoglou, Eleni; Facorellis, Yorgos

    2015-01-01

    Under the auspices of INVENVORG (Thales Research Funding Program – NRSF), and within a holistic approach for assessing environmental effects on organic materials in cultural heritage (CH) artefacts, the effect of artificial ageing on elemental and molecular damage and their effects...... on the structural integrity of bone was investigated. Metapodial roe deer bone samples were artificially aged under humidity and atmospheres of sulfur and nitrogen oxides in room temperature. Elemental micro-analysis of bone material through SEM-EDX and molecular investigations through FTIR and Raman spectroscopy...

  12. Fuels and Materials Examination Facility: Environmental assessment, Hanford site, Richland, Washington: Environmental assessment

    International Nuclear Information System (INIS)

    1980-07-01

    The Fuels and Materials Examination Facility (FMEF) and the High Performance Fuel Laboratory (HPFL) were originally proposed to be constructed as separate facilities in the 400 Area of the Hanford Site near Richland, Washington. The environmental effects of these two facilities were described and evaluated in the FMEF Environmental Assessment and the HPFL Final Environmental Impact Statement, ERDA-1550. For economic reasons, the two facilities will no longer be built as separate facilities. The FMEF facility plans have been modified to incorporate some of the features of the proposed HPFL facility while retaining essentially all of the capabilities of the original FMEF proposal. The purpose of this document is to update the FMEF Environmental Assessment to appropriately reflect addition of certain HPFL features into the FMEF facility and to assess the environmental affects of the facility which resulted from inclusion of HPFL features into the FMEF facility

  13. Development of advanced materials and devices for nuclear radiation measurements

    International Nuclear Information System (INIS)

    Gadkari, S.C.

    2015-01-01

    Single crystals of technologically important materials are grown in the Crystal Technology Section of the Technical Physics Division, BARC. These crystals find applications as scintillators and dosimeters in nuclear radiation detection/measurements. Scintillator crystals of some advanced materials like cerium doped Gd 3 Ga 3 Al 2 O 12 , Lu 2 SiO 5 , YAIO 3 etc and some conventional materials such as Bi 4 Ge 3 O 12 , CsI:Tl, NaI:Tl, etc have been grown from melts using the Czochralski and Bridgman techniques. Portable gamma-ray spectrometers that work from a USB port of a laptop have been developed using the grown scintillator crystals. In recent years there has been a flurry of research activities on materials containing Li 6 , B 10 , etc that have large capture cross-sections for neutrons to develop solid state detectors for neutrons. For this purpose single crystals of cerium doped Li 6 Y(BO 3 ) 3 and silver doped Li 2 B 4 O 7 have been developed. Optical, thermo-luminescence, photo-luminescence and scintillation properties of these crystals have been investigated with a view to develop detectors and dosimeters. The Li 2 B 4 O 7 :Ag is a tissue equivalent material (Z eff = 7.3 close to 7.4 of tissue) useful in the personal and medical dosimetry applications. As the emission of Ag + lies in the UV region (267 nm), a customized TL measurement set-up has been developed using a solar blind PMT that enabled the measurement of very low doses below 5 μGy and linearity up to 100 Gy. Films of CsI:TI in the 10 nm to 3 μm thickness range were deposited on silicon substrates using the physical vapor deposition technique under vacuum conditions. The deposited films investigated using SEM and AFM revealed a columnar growth behavior with a preferential orientation along <200>. The growth of single crystals from melts, recent efforts in the development of detectors and results of experiments conducted to detect thermal neutrons are described. (author)

  14. Increasing carbon and material productivity through environmental tax reform

    International Nuclear Information System (INIS)

    Ekins, Paul; Pollitt, Hector; Summerton, Philip; Chewpreecha, Unnada

    2012-01-01

    Environmental tax reform (ETR), a shift in taxation towards environmental taxes, has been implemented on a small scale in a number of European countries. This paper first gives a short review of the literature about ETR. An Appendix briefly describes the model used for a modelling exercise to explore, through scenarios with low and high international energy prices, the implications of a large-scale ETR in the European Union, sufficient to reach the EU's emission reduction targets for 2020. The paper then reports the results of the exercise. The ETR results in increased carbon and materials, but reduced labour, productivity, with the emission reductions distributed across all sectors as a reduction in the demand for all fossil fuels. There are also small GDP increases for most, but not all, EU countries for all the scenarios, and for the EU as a whole. Both the environmental and macroeconomic outcomes are better with low than with high energy prices, because the former both increases the scale of the ETR required to reach the targets, and reduces the outflow of foreign exchange to pay for energy imports. ETR emerges from the exercise as an attractive and cost-effective policy for environmental improvement. - Highlights: ► European experience with environmental tax reform (ETR) is reviewed. ► Scenarios which meet EU carbon emission targets are modelled. ► The ETR results in increased carbon and materials, but reduced labour, productivity. ► There are small GDP increases for most, but not all, EU countries. ► ETR emerges as an attractive and cost-effective environmental policy.

  15. Environmental monitoring of low-level radioactive materials

    International Nuclear Information System (INIS)

    Jester, W.A.; Yu, C.

    1985-01-01

    The authors discuss some of the current rationale behind the environmental monitoring of low-level radioactive materials are as follows: Committee 4 of the International commission on Radiological Protection (ICRP) defined three broad objectives for environmental monitoring: 1) assessment of the actual or potential exposure of humans to radioactive materials or radiation present in their environment or the estimation of the probable upper limits of such exposure; 2) scientific investigation, sometimes related to the assessment of exposures, sometimes to other objectives; 3) improved public relations. Various regulations have been written requiring environmental monitoring to ensure that the public is not being exposed to excessive amounts of radiation from natural sources or from human activities. An example of the monitoring of natural sources of radiation is a requirement of the Environmental Protection Agency's (EPA) National Interim Primary Drinking Water Regulations whereby U.S. water supply companies must have drinking water monitored at least once every four years for radionuclides, primarily the naturally occurring radium-226

  16. Feed Materials Production Center annual environmental report for calendar 1989

    Energy Technology Data Exchange (ETDEWEB)

    Dugan, T.A.; Gels, G.L.; Oberjohn, J.S.; Rogers, L.K.

    1990-10-01

    The mission of the Department of Energy's (DOE) Feed Materials Production Center (FMPC) has been to process uranium for United States' defense programs. On July 10, 1989, the FMPC suspended production operations, but remains on standby for certain segments of production. The FMPC also manages the storage of some radioactive and hazardous materials. As part of its operations, the FMPC continuously monitors the environment to determine that it is operating within federal and state standards and guidelines regarding emission of radioactive and nonradioactive materials. Data collected from the FMPC monitoring program are used to calculate estimates of radiation dose for residents due to FMPC operations. For 1989, the estimate of dose through the air pathway, excluding radon, indicated that people in the area were exposed to less than 6% of the DOE guideline established to protect the public from radiation exposure. When radon emissions are included, the dose from FMPC operations during 1989 was less than 22% of the annual background radiation dose in the Greater Cincinnati area. This report is a summary of FMPC's environmental activities and monitoring program for 1989. An Environmental Compliance Self-Assessment presents the FMPC's efforts to comply with environmental regulations through June 1990. 44 refs., 48 figs.

  17. High performance lithium insertion negative electrode materials for electrochemical devices

    Energy Technology Data Exchange (ETDEWEB)

    Channu, V.S. Reddy, E-mail: chinares02@gmail.com [SMC Corporation, College Station, TX 77845 (United States); Rambabu, B. [Solid State Ionics and Surface Sciences Lab, Department of Physics, Southern University and A& M College, Baton Rouge, LA 70813 (United States); Kumari, Kusum [Department of Physics, National Institute of Technology, Warangal (India); Kalluru, Rajmohan R. [The University of Southern Mississippi, College of Science and Technology, 730 E Beach Blvd, Long Beach, MS 39560 (United States); Holze, Rudolf [Institut für Chemie, AG Elektrochemie, Technische Universität Chemnitz, D-09107 Chemnitz (Germany)

    2016-11-30

    Highlights: • LiCrTiO{sub 4} nanostructures were synthesized for electrochemical applications by soft chemical synthesis followed by annealing. • The presence of Cr and Ti elements are confirmed from the EDS spectrum. • Oxalic acid assisted LiCrTiO{sub 4} electrode shows higher specific capacity (mAh/g). - Abstract: Spinel LiCrTiO{sub 4} oxides to be used as electrode materials for a lithium ion battery and an asymmetric supercapacitor were synthesized using a soft-chemical method with and without chelating agents followed by calcination at 700 °C for 10 h. Structural and morphological properties were studied with powder X-ray diffraction, scanning electron and transmission electron microscopy. Particles of 50–10 nm in size are observed in the microscopic images. The presence of Cr and Ti is confirmed from the EDS spectrum. Electrochemical properties of LiCrTiO{sub 4} electrode were examined in a lithium ion battery. The electrode prepared with oxalic acid-assisted LiCrTiO{sub 4} shows higher specific capacity.This LiCrTiO{sub 4} is also used as anode material for an asymmetric hybrid supercapacitor. The cell exhibits a specific capacity of 65 mAh/g at 1 mA/cm{sup 2}. The specific capacity decreases with increasing current densities.

  18. Material properties of CorCap passive cardiac support device.

    Science.gov (United States)

    Chitsaz, Sam; Wenk, Jonathan F; Ge, Liang; Wisneski, Andrew; Mookhoek, Aart; Ratcliffe, Mark B; Guccione, Julius M; Tseng, Elaine E

    2013-01-01

    Myocardial function deteriorates during ventricular remodeling in patients with congestive heart failure (HF). Ventricular restraint therapy using a cardiac support device (CSD) is designed to reduce the amount of stress inside the dilated ventricles, which in turn halts remodeling. However, as an open mesh surrounding the heart, it is unknown what the mechanical properties of the CSD are in different fiber orientations. Composite specimens of CorCap (Acorn Cardiovascular, Inc, St. Paul, MN) CSD fabric and silicone were constructed in different fiber orientations and tested on a custom-built biaxial stretcher. Silicone controls were made and stretched to detect the parameters of the matrix. CSD coefficients were calculated using the composite and silicone matrix stress-strain data. Stiffness in different fiber orientations was determined. Silicone specimens exerted a linear behavior, with stiffness of 2.57 MPa. For the composites with 1 fiber set aligned with respect to the stretch axes, stiffness in the direction of the aligned fiber set was higher than that in the cross-fiber direction (14.39 MPa versus 5.66 MPa), indicating greater compliance in the cross-fiber direction. When the orientation of the fiber sets in the composite were matched to the expected clinical orientation of the implanted CorCap, the stiffness in the circumferential axis (with respect to the heart) was greater than in the longitudinal axis (10.55 MPa versus 9.70 MPa). The mechanical properties of the CorCap demonstrate directionality with greater stiffness circumferentially than longitudinally. Implantation of the CorCap clinically should take into account the directionality of the biomechanics to optimize ventricular restraint. Copyright © 2013 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  19. Comparative environmental life cycle assessment of composite materials

    International Nuclear Information System (INIS)

    De Vegt, O.M.; Haije, W.G.

    1997-12-01

    The aim of the present study is to compare and quantify the environmental impact of three rotorblades made of different materials and to establish which stage in the life cycle contributes most. The life cycle of a product can be represented by the production phase, including depletion of raw materials (mining) and production (machining) of products, the utilisation phase, including use of energy, maintenance and cleaning, and the disposal phase, including landfill, incineration, recycling, etc. The environmental impact of a product is not only determined by the materials selected but also by the function of the product itself. E.g. when natural fibres are applied in vehicles as a substitution for metals the environmental impact in the use phase will be reduced due to a lower energy consumption caused by a lower car weight. The influence on the environmental impact of the production phase must also be taken into account. The material relation between the production phase and the use phase and the disposal phase is complicated. In general the lifetime of a product use phase can be extended (positive aspect), e.g. by application of a coating onto the surface. Due to the coating the product can not easily be recycled, which is a negative aspect. The three types of composites used in the rotorblade of the wind energy converter considered in this study are: flaxfibre reinforced epoxy, carbon fibre reinforced epoxy and glassfibre reinforced polyester. The assessment is performed using the computer program Simapro 3, which is based on the Dutch CML method for the environmental life-cycle assessment of products using the Eco-Indicator 95 evaluation method. The CML method defines five phases for an LCA: goal definition and scoping; inventory; classification; impact assessment; and improvement analysis. The improvement analysis is not part of this work. Performing an LCA is a time-consuming process due to the detailed information that is required. In chapter five some

  20. Basic mechanisms of radiation effects on electronic materials and devices

    International Nuclear Information System (INIS)

    Winokur, P.S.

    1989-01-01

    Many defense and nuclear reactor systems require complementary metal-oxide semiconductor integrated circuits that are tolerant to high levels of radiation. This radiation can result from space, hostile environments or nuclear reactor and accelerator beam environments. In addition, many techniques used to fabricate today's complex very-large-scale integration circuits expose the circuits to ionizing radiation during the process sequence. Whatever its origin, radiation can cause significant damage to integrated-circuit materials. This damage can lead to circuit performance degradation, logic upset, and even catastrophic circuit failure. This paper provides a brief overview of the basic mechanisms for radiation damage to silicon-based integrated circuits. Primary emphasis is on the effects of total-dose ionizing radiation on metal-oxide-semiconductor (MOS) structures

  1. Metal/graphite-composite materials for fusion device

    International Nuclear Information System (INIS)

    Kneringer, G.; Kny, E.; Fischer, W.; Reheis, N.; Staffler, R.; Samm, U.; Winter, J.

    1995-01-01

    The utilization of graphite as a structural material depends to an important extent on the availability of a joining technique suitable for the production of reliable large scale metal/graphite-composites. This study has been conducted to evaluate vacuum brazes and procedures for graphite and metals which can be used in fusion applications up to about 1500 degree C. The braze materials included: AgCuTi, CuTi, NiTi, Ti, ZrTi, Zr. Brazing temperatures ranged from 850 degree C to 1900 degree C. The influence of graphite quality on wettability and pore-penetration of the braze has been investigated. Screening tests of metal/graphite-assemblies with joint areas exceeding some square-centimeters have shown that they can only successfully be produced when graphite is brazed to a metal, such as tungsten or molybdenum with a coefficient of thermal expansion closely matching that of graphite. Therefore all experimental work on evaluation of joints has been concentrated on molybdenum/graphite brazings. The tensile strength of molybdenum/graphite-composites compares favorably with the tensile strength of bulk graphite from room temperature close to the melting temperature of the braze. In electron beam testing the threshold damage line for molybdenum/graphite-composites has been evaluated. Results show that even composites with the low melting AgCuTi-braze are expected to withstand 10 MW/m 2 power density for at least 10 3 cycles. Limiter testing in TEXTOR shows that molybdenum/graphite-segments with 3 mm graphite brazed on molybdenum-substrate withstand severe repeated TEXTOR plasma discharge conditions without serious damage. Results prove that actively cooled components on the basis of a molybdenum/graphite-composite can sustain a higher heat flux than bulk graphite alone. (author)

  2. Variations in daily quality assurance dosimetry from device levelling, feet position and backscatter material

    International Nuclear Information System (INIS)

    Ceylan, Abdurrahman; Cullen, Ashley; Butson, Martin; Yu, Peter K.N.; Alnawaf, Hani

    2012-01-01

    Daily quality assurance procedures are an essential part of radiotherapy medical physics. Devices such as the Sun Nuclear, DQA3 are effective tools for analysis of daily dosimetry including flatness, symmetry, energy, field size and central axis radiation dose measurement. The DQA3 can be used on the treatment couch of the linear accelerator or on a dedicated table/bed for superficial and orthovoltage x-ray machines. This device is levelled using its dedicated feet. This work has shown that depending on the quantity of backscatter material behind the DQA3 device, the position of the levelling feet can affect the measured central axis dose by up to 1.8 % (250 kVp and 6 MV) and that the introduction of more backscatter material behind the DQA3 can lead to up to 7.2 % (6 MV) variations in measured central axis dose. In conditions where no backscatter material is present, dose measurements can vary up to 1 %. As such this work has highlighted the need to keep the material behind the DQA3 device constant as well as maintaining the accuracy of the feet position on the device to effectively measure the most accurate daily constancy achievable. Results have also shown that variations in symmetry and energy calculations of up to 1 % can occur if the device is not levelled appropriately. As such, we recommend the position of the levelling feet on the device be as close as possible to the device so that a constant distance is kept between the DQA3 and the treatment couch and thus minimal levelling variations also occur. We would also recommend having no extra backscattering material behind the DQA3 device during use to minimise any variations which might occur from these backscattering effects.

  3. 10 CFR 1.41 - Office of Federal and State Materials and Environmental Management Programs.

    Science.gov (United States)

    2010-01-01

    ... Environmental Management Programs. (a) The Office of Federal and State Materials and Environmental Management...) The Office of Federal and State Materials and Environmental Management Programs— (1) Plans and directs... 10 Energy 1 2010-01-01 2010-01-01 false Office of Federal and State Materials and Environmental...

  4. 10 CFR 51.80 - Draft environmental impact statement-materials license.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Draft environmental impact statement-materials license. 51...-Regulations Implementing Section 102(2) Draft Environmental Impact Statements-Materials Licenses § 51.80 Draft environmental impact statement—materials license. (a) The NRC staff will either prepare a draft environmental...

  5. A reference device for evaluating the thermal behavior of installed multilayered wall containing a phase change material

    International Nuclear Information System (INIS)

    Pagliolico, S.L.; Sassi, G.; Cascone, Y.; Bongiovanni, R.M.

    2015-01-01

    Highlights: • Thermal analysis of installed wallboards embedding phase change material layer. • Simple devices and real conditions for thermal analysis toward a standardization. • Scanning calorimetric measurements as initial condition for data regression. • Bias correction of calorimetric measurements data by installation factors. • Practical approach to identify a reliable thermal curve for capacitive wallboards. - Abstract: Thermal inertia of lightweight building envelopes can be improved including phase change materials in multilayered wallboards. The thermal modeling of buildings for design purposes needs a robust description of the thermal properties of installed phase change materials. A standard method would improve the thermal characterization of commercial products. The aim of the study is to develop a simple methodology to obtain reliable thermal data for phase change materials integrated in multilayered wallboards. The methodology modifies differential scanning calorimetry measurements on phase change material by installation factors to obtain the apparent specific heat vs. temperature for the wallboard layer embedding phase change material. Simple cubic cells were realized as reference devices to simulate a confined environment. A dynamic model of heat transfer was developed to simulate the thermal behavior of devices. Installation factors were calculated by regression of the monitored temperatures inside and outside the devices operating under real environmental conditions. The apparent specific heat of phase change material, measured by differential scanning calorimetry at different rates, resulted in a spread of curves vs. temperature. Mean curves were used as initial condition for regression. The mean calculation method did not significantly affect the installed resulted curve. A unique curve of apparent specific heat vs. temperature best fit data measured over a wide range of experimental devices and conditions. Good regression

  6. Radioecological implementation of 'environmental friendly' materials alumosilicate origin

    International Nuclear Information System (INIS)

    Stojanovic, M.; Milojkovic, J.; Grubisic, M.; Iles, D.

    2009-01-01

    The problem of modern civilization is radionuclide contamination of soil, especially in Serbia.There was NATO aggression when were used munitions with depleted uranium, and after that waste material was deposed on the inhabited and mostly fertile soil. Having in mind that not all activities have been taken that would permanently eliminate the consequences of this radionuclide, means that entering depleted uranium in the food chain is a real danger now. Solving this problem requires a holistic approach including the application of safe and effective 'environmental friendly' materials that are economical, locally available and easily applicable. Our investigations have included testing the efficiency of natural and modified with domestic origin aluminosilicate materials, zeolite, phosphate, bentonite and diatomite for in situ remediation of soil. (author) [sr

  7. Novel Polymeric Dielectric Materials for the Additive Manufacturing of Microwave Devices

    Science.gov (United States)

    O'Keefe, Shamus E.

    The past decade has seen a rapid increase in the deployment of additive manufacturing (AM) due to the perceived benefits of lower cost, higher quality, and a smaller environmental footprint. And while the hardware behind most of AM processes is mature, the study and development of material feedstock(s) are in their infancy, particularly so for niche areas. In this dissertation, we look at novel polymeric materials to support AM for microwave devices. Chapter 1 provides an overview of the benefits of AM, followed by the specific motivation for this work, and finally a scope defining the core objectives. Chapter 2 delves into a higher-level background of dielectric theory and includes a brief overview of the two common dielectric spectroscopy techniques used in this work. The remaining chapters, summarized below, describe experiments in which novel polymeric materials were developed and their microwave dielectric properties measured. Chapter 3 describes the successful synthesis of polytetrafluroethylene (PTFE)/polyacrylate (PA) core-shell nanoparticles and their measured microwave dielectric properties. PTFE/PA core-shell nanoparticles with spherical morphology were successfully made by aerosol deposition followed by a brief annealing. The annealing temperature is closely controlled to exceed the glass transition (Tg) of the PA shell yet not exceed the Tg of the PTFE core. Furthermore, the annealing promotes coalescence amongst the PA shells of neighboring nanoparticles and results in the formation of a contiguous PA matrix that has excellent dispersion of PTFE cores. The measured dielectric properties agree well with theoretical predictions and suggest the potential of this material as a feedstock for AM microwave devices. Chapter 4 delves into the exploration of various polyimide systems with the aim of replacing the PA in the previously studied PTFE/PA core-shell nanoparticles. Fundamental relationships between polymer attributes (flexibility/rigidity and

  8. Status of NTD Ge bolometer material and devices

    International Nuclear Information System (INIS)

    Haller, E.E.; Haegel, N.M.; Park, I.S.

    1985-08-01

    This status report is a direct follow-up to the presentation given at the first IR Detector Technology Workshop which took place at NASA Ames Research Center on July 12 and 13, 1983. The conclusions which we presented at that meeting are still fully valid. In the meantime we have learned more about the physics of hopping conduction at very low temperatures which will be important for bolometer design and operation at ever decreasing temperatures. Resistivity measurements have been extended down to 50 mK. At such low temperatures, precise knowledge of the neutron capture cross sections sigma/sub n/ of the various Ge isotopes is critical if one is to make an accurate prediction of the dopant concentrations and compensation, and therefore resistivity, that will result from a given irradiation. We describe an empirical approach for obtaining the desired resistivity material and are in the process of conducting a set of experiments which will improve the knowledge of the effective sigma/sub n/ values for a given location in a particular reactor. A wider range of NTD Ge samples is now available. Noise measurements on bolometers with ion implanted contacts show that no 1/f noise component appears down to 1 Hz and probably lower. 4 refs., 5 figs

  9. Stretchable Materials for Robust Soft Actuators towards Assistive Wearable Devices

    Science.gov (United States)

    Agarwal, Gunjan; Besuchet, Nicolas; Audergon, Basile; Paik, Jamie

    2016-09-01

    Soft actuators made from elastomeric active materials can find widespread potential implementation in a variety of applications ranging from assistive wearable technologies targeted at biomedical rehabilitation or assistance with activities of daily living, bioinspired and biomimetic systems, to gripping and manipulating fragile objects, and adaptable locomotion. In this manuscript, we propose a novel two-component soft actuator design and design tool that produces actuators targeted towards these applications with enhanced mechanical performance and manufacturability. Our numerical models developed using the finite element method can predict the actuator behavior at large mechanical strains to allow efficient design iterations for system optimization. Based on two distinctive actuator prototypes’ (linear and bending actuators) experimental results that include free displacement and blocked-forces, we have validated the efficacy of the numerical models. The presented extensive investigation of mechanical performance for soft actuators with varying geometric parameters demonstrates the practical application of the design tool, and the robustness of the actuator hardware design, towards diverse soft robotic systems for a wide set of assistive wearable technologies, including replicating the motion of several parts of the human body.

  10. Radiation Damage Studies of Materials and Electronic Devices Using Hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Pellett, David; Baldwin, Andrew; Gallagher, Garratt; Olson, David; Styczinski, Marshall

    2014-05-14

    We have irradiated NdFeB permanent magnet samples from different manufacturers and with differing values of coercivity and remanence using stepped doses of 1 MeV equivalent neutrons up to a fluence of 0:64 1015n=cm2 to evaluate effects on magnetization and B field distributions. The samples with high coercivity, irradiated in open circuit configurations, showed no or minimal effects when compared with unirradiated samples, whereas the lower coercivity magnets suffered significant losses of magnetization and changes in the shapes of their field patterns. One such magnet underwent a fractional magnetization loss of 13.1% after a fluence of 0:59 1015 n=cm2. This demagnetization was not uniform. With increasing fluence, B field scans along the centerlines of the pole faces revealed that the normal component of B decreased more near the midpoint of the scan than near the ends. In addition, a fit to the curve of overall magnetization loss with fluence showed a significant deviation from linearity. The results are discussed in light of other measurements and theory. The high coercivity materials appear suitable for use in accelerator applications subject to irradiation by fast neutrons such as dipoles where the internal demagnetizing field is comparable to or less than that of the open circuit samples tested in this study.

  11. Efficient prion disease transmission through common environmental materials.

    Science.gov (United States)

    Pritzkow, Sandra; Morales, Rodrigo; Lyon, Adam; Concha-Marambio, Luis; Urayama, Akihiko; Soto, Claudio

    2018-03-02

    Prion diseases are a group of fatal neurodegenerative diseases associated with a protein-based infectious agent, termed prion. Compelling evidence suggests that natural transmission of prion diseases is mediated by environmental contamination with infectious prions. We hypothesized that several natural and man-made materials, commonly found in the environments of wild and captive animals, can bind prions and may act as vectors for disease transmission. To test our hypothesis, we exposed surfaces composed of various common environmental materials ( i.e. wood, rocks, plastic, glass, cement, stainless steel, aluminum, and brass) to hamster-adapted 263K scrapie prions and studied their attachment and retention of infectivity in vitro and in vivo Our results indicated that these surfaces, with the sole exception of brass, efficiently bind, retain, and release prions. Prion replication was studied in vitro using the protein misfolding cyclic amplification technology, and infectivity of surface-bound prions was analyzed by intracerebrally challenging hamsters with contaminated implants. Our results revealed that virtually all prion-contaminated materials transmitted the disease at high rates. To investigate a more natural form of exposure to environmental contamination, we simply housed animals with large contaminated spheres made of the different materials under study. Strikingly, most of the hamsters developed classical clinical signs of prion disease and typical disease-associated brain changes. Our findings suggest that prion contamination of surfaces commonly present in the environment can be a source of disease transmission, thus expanding our understanding of the mechanisms for prion spreading in nature. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Highly spin-polarized materials and devices for spintronics∗.

    Science.gov (United States)

    Inomata, Koichiro; Ikeda, Naomichi; Tezuka, Nobuki; Goto, Ryogo; Sugimoto, Satoshi; Wojcik, Marek; Jedryka, Eva

    2008-01-01

    The performance of spintronics depends on the spin polarization of the current. In this study half-metallic Co-based full-Heusler alloys and a spin filtering device (SFD) using a ferromagnetic barrier have been investigated as highly spin-polarized current sources. The multilayers were prepared by magnetron sputtering in an ultrahigh vacuum and microfabricated using photolithography and Ar ion etching. We investigated two systems of Co-based full-Heusler alloys, Co 2 Cr 1 - x Fe x Al (CCFA( x )) and Co 2 FeSi 1 - x Al x (CFSA( x )) and revealed the structure and magnetic and transport properties. We demonstrated giant tunnel magnetoresistance (TMR) of up to 220% at room temperature and 390% at 5 K for the magnetic tunnel junctions (MTJs) using Co 2 FeSi 0.5 Al 0.5 (CFSA(0.5)) Heusler alloy electrodes. The 390% TMR corresponds to 0.81 spin polarization for CFSA(0.5) at 5 K. We also investigated the crystalline structure and local structure around Co atoms by x-ray diffraction (XRD) and nuclear magnetic resonance (NMR) analyses, respectively, for CFSA films sputtered on a Cr-buffered MgO (001) substrate followed by post-annealing at various temperatures in an ultrahigh vacuum. The disordered structures in CFSA films were clarified by NMR measurements and the relationship between TMR and the disordered structure was discussed. We clarified that the TMR of the MTJs with CFSA(0.5) electrodes depends on the structure, and is significantly higher for L2 1 than B2 in the crystalline structure. The second part of this paper is devoted to a SFD using a ferromagnetic barrier. The Co ferrite is investigated as a ferromagnetic barrier because of its high Curie temperature and high resistivity. We demonstrate the strong spin filtering effect through an ultrathin insulating ferrimagnetic Co-ferrite barrier at a low temperature. The barrier was prepared by the surface plasma oxidization of a CoFe 2 film deposited on a MgO (001) single crystal substrate, wherein the spinel

  13. Experimental model of the device for detection of nuclear cycle materials by photoneutron technology

    International Nuclear Information System (INIS)

    Bakalyarov, A.M.; Karetnikov, M.D.; Kozlov, K.N.; Lebedev, V.I.; Meleshko, E.A.; Obinyakov, B.A.; Ostashev, I.E.; Tupikin, N.A.; Yakovlev, G.V.

    2007-01-01

    The inherent complexity of sea container control makes them potentially dangerous for smuggling nuclear materials. The experts believe that only active technologies based on recording the products of induced radiation from sensitive materials might solve the problem. The paper reports on the experimental model of the device on the basis of the electron LINAC U-28 for detection of nuclear materials by photonuclear technology. The preliminary numerical optimization of output units (converter, filter, collimator) for shaping the bremsstrahlung was carried out. The setup of experimental device and initial results of recording the prompt and delayed fission products are discussed

  14. Science and Emerging Technology of 2D Atomic Layered Materials and Devices

    Science.gov (United States)

    2017-09-09

    AFRL-AFOSR-JP-TR-2017-0067 Science & Emerging Technology of 2D Atomic Layered Materials and Devices Angel Rubio UNIVERSIDAD DEL PAIS VASCO - EUSKAL...DD-MM-YYYY)      27-09-2017 2.  REPORT TYPE      Final 3.  DATES COVERED (From - To)      19 Feb 2015 to 18 Feb 2017 4.  TITLE AND SUBTITLE Science ...reporting documents for AOARD project 144088, “2D Materials and Devices Beyond Graphene Science & Emerging Technology of 2D Atomic Layered Materials and

  15. Reusing Recycling Material as Teaching Strategy to Strengthen Environmental Values

    Directory of Open Access Journals (Sweden)

    Yudit Zaida del Carmen Alarcón de Palma

    2017-08-01

    Full Text Available The study was centered interest implement recycling reuse the material as a teaching strategy to strengthen environmental students “Adolfo Moreno” National Basic School Barinitas parish, municipality Bolivar, Barinas state values. School Year 2014 - 2015. The study was based on the paradigm of qualitative research and research in action type. From this point of view, the study focuses on participatory action this mode, it is limited in so-called field layouts. The study its characteristics was fulfilled in the following phases: diagnosis, planning, implementation, evaluation and systematization. Finally, it can be noted that the implementation of teaching strategies reuse recycle material for strengthening environmental students "Adolfo Moreno" National Basic School values; They will be incorporating parents and guardians as well as various educational actors to implement the activities involved in the proposal which seeks to change attitudes to improve through practical actions management standards and conservation practices to achieve an environmental change in institution through technical, theoretical and practical knowledge to strengthen the benefit of recyclables properly handle procedures.

  16. Environmental life cycle assessment of railway bridge materials using UHPFRC

    Directory of Open Access Journals (Sweden)

    Bizjak Karmen Fifer

    2016-10-01

    Full Text Available The railway infrastructure is a very important component of the world’s total transportation network. Investment in its construction and maintenance is significant on a global scale. Previously published life cycle assessment (LCA studies performed on road and rail systems very seldom included infrastructures in detail, mainly choosing to focus on vehicle manufacturing and fuel consumption. This article presents results from an environmental study for railway steel bridge materials for the demonstration case of the Buna Bridge in Croatia. The goal of these analyses was to compare two different types of remediation works for railway bridges with different materials and construction types. In the first part, the environmental impact of the classical concrete bridge construction was calculated, whereas in the second one, an alternative new solution, namely, the strengthening of the old steel bridge with ultra-high-performance fibre-reinforced concrete (UHPFRC deck, was studied. The results of the LCA show that the new solution with UHPFRC deck gives much better environmental performance. Up to now, results of LCA of railway open lines, railway bridges and tunnels have been published, but detailed analyses of the new solution with UHPFRC deck above the old bridge have not previously been performed.

  17. Environmental life cycle assessment of railway bridge materials using UHPFRC

    Science.gov (United States)

    Bizjak, Karmen Fifer; Šajna, Aljoša; Slanc, Katja; Knez, Friderik

    2016-10-01

    The railway infrastructure is a very important component of the world's total transportation network. Investment in its construction and maintenance is significant on a global scale. Previously published life cycle assessment (LCA) studies performed on road and rail systems very seldom included infrastructures in detail, mainly choosing to focus on vehicle manufacturing and fuel consumption. This article presents results from an environmental study for railway steel bridge materials for the demonstration case of the Buna Bridge in Croatia. The goal of these analyses was to compare two different types of remediation works for railway bridges with different materials and construction types. In the first part, the environmental impact of the classical concrete bridge construction was calculated, whereas in the second one, an alternative new solution, namely, the strengthening of the old steel bridge with ultra-high-performance fibre-reinforced concrete (UHPFRC) deck, was studied. The results of the LCA show that the new solution with UHPFRC deck gives much better environmental performance. Up to now, results of LCA of railway open lines, railway bridges and tunnels have been published, but detailed analyses of the new solution with UHPFRC deck above the old bridge have not previously been performed.

  18. Transmission electron microscopy of InP-based compound semiconductor materials and devices

    International Nuclear Information System (INIS)

    Chu, S.N.G.

    1990-01-01

    InP/InGaAsP-based heteroepitaxial structures constitute the major optoelectronic devices for state-of-the-art long wavelength optical fiber communication system.s Future advanced device structures will require thin heteroepitaxial quantum wells and superlattices a few tens of angstrom or less in thickness, and lateral dimensions ranging from a few tens angstrom for quantum dots and wires to a few μm in width for buried heterostructure lasers. Due to the increasing complexity of the device structure required by band-gap engineering, the performance of these devices becomes susceptible to any lattice imperfections present in the structure. Transmission electron microscopy (TEM), therefore, becomes the most important technique in characterizing the structural integrity of these materials. Cross-section transmission electron microscopy (XTEM) not only provides the necessary geometric information on the device structure; a careful study of the materials science behind the observed lattice imperfections provides directions for optimization of both the epitaxial growth parameters and device processing conditions. Furthermore, for device reliability studies, TEM is the only technique that unambiguously identifies the cause of device degradation. In this paper, the authors discuss areas of application of various TEM techniques, describe the TEM sample preparation technique, and review case studies to demonstrate the power of the TEM technique

  19. Irradiation devices for fusion reactor materials results obtained from irradiated lithium aluminate at the OSIRIS reactor

    International Nuclear Information System (INIS)

    Lefevre, F.; Thevenot, G.; Rasneur, B.; Botter, F.

    1986-06-01

    Studies about controlled fusion reactor of the Tokamak type require the examination of the radiation effects on the behaviour of various potential materials. Thus, in the first part of this paper, are presented the devices adapted to these materials studies and used in the OSIRIS reactor. In a second part, is described an experiment of irradiation ceramics used as candidates for breeding material and are given the first results

  20. The determination of technetium-99 in environmental materials

    International Nuclear Information System (INIS)

    Harvey, B.R.; Ibbett, R.D.; Williams, K.J.; Lovett, M.B.

    1991-01-01

    The Aquatic Environment Protection Division of the Directorate of Fisheries Research (DFR), Lowestoft carries out analyses, on a routine basis, for a considerable range of radionuclides in a wide variety of environmental materials. Technetium-99 is included in the list of radionuclides for which analysis is regularly carried out as part of the DFR monitoring programme. Its determination is inevitably somewhat labour-intensive and over the years the procedures used have changed to accommodate increasing demands for information on the environmental behaviour of the nuclide. Reliable analytical procedures for the radiochemical separation and assaying of 99 Tc are thus important. Radiometric and gravimetric analyses described in this publication have been developed over a substantial period of time and have given excellent results in international intercomparison exercises. (author)

  1. Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations.

    Science.gov (United States)

    Liu, Lili; Niu, Zhiqiang; Chen, Jun

    2016-07-25

    As energy storage devices, supercapacitors that are also called electrochemical capacitors possess high power density, excellent reversibility and long cycle life. The recent boom in electronic devices with different functions in transparent LED displays, stretchable electronic systems and artificial skin has increased the demand for supercapacitors to move towards light, thin, integrated macro- and micro-devices with transparent, flexible, stretchable, compressible and/or wearable abilities. The successful fabrication of such supercapacitors depends mainly on the preparation of innovative electrode materials and the design of unconventional supercapacitor configurations. Tremendous research efforts have been recently made to design and construct innovative nanocarbon-based electrode materials and supercapacitors with unconventional configurations. We review here recent developments in supercapacitors from nanocarbon-based electrode materials to device configurations. The advances in nanocarbon-based electrode materials mainly include the assembly technologies of macroscopic nanostructured electrodes with different dimensions of carbon nanotubes/nanofibers, graphene, mesoporous carbon, activated carbon, and their composites. The electrodes with macroscopic nanostructured carbon-based materials overcome the issues of low conductivity, poor mechanical properties, and limited dimensions that are faced by conventional methods. The configurational design of advanced supercapacitor devices is presented with six types of unconventional supercapacitor devices: flexible, micro-, stretchable, compressible, transparent and fiber supercapacitors. Such supercapacitors display unique configurations and excellent electrochemical performance at different states such as bending, stretching, compressing and/or folding. For example, all-solid-state simplified supercapacitors that are based on nanostructured graphene composite paper are able to maintain 95% of the original capacity at

  2. Development and evaluation of measurement devices used to support testing of radioactive material transportation packages

    International Nuclear Information System (INIS)

    Uncapher, W.L.; Ammerman, D.J.; Stenberg, D.R.; Bronowski, D.R.; Arviso, M.

    1992-01-01

    Radioactive material package designers use structural testing to verify and demonstrate package performance. A major part of evaluating structural response is the collection of instrumentation measurement data. Sandia National Laboratories (SNL) has an ongoing program to develop and evaluate measurement devices to support testing of radioactive material packages. Measurement devices developed in support of this activity include evaluation channels, ruggedly constructed linear variable differential transformers, and piezoresistive accelerometers with enhanced measurement capabilities. In addition to developing measurement devices, a method has been derived to evaluate accelerometers and strain gages for measurement repeatability, ruggedness, and manufacturers' calibration data under both laboratory and field conditions. The developed measurement devices and evaluation technique will be discussed and the results of the evaluation will be presented

  3. Radiological environmental impacts from transportation of nuclear materials

    International Nuclear Information System (INIS)

    Shuai Zhengqing

    1994-01-01

    The author describes radiological impacts from transportation of nuclear materials. RADTRAN 4.0 supplied by IAEA was adopted to evaluate radiological consequence of incident-free transportation as well as the radiological risks from vehicular accidents occurring during transportation. The results of calculation show that the collective effective dose equivalent of incident-free transportation to the public and transportation workers is 7.94 x 10 -4 man·Sv. The calculated data suggest that the environmental impacts under normal and assumed accidental conditions are acceptable

  4. Secondary electron interactions in materials with environmental and radiological interest

    International Nuclear Information System (INIS)

    Garcia, G.; Blanco, F.; Pablos, J.L. de; Perez, J.M.; Williart, A.

    2003-01-01

    Important environmental and radiological applications require energy deposition models including the interactions between secondary electrons and the atoms or molecules of the medium. In this work we propose a method to obtain reliable cross-section data to be used in these models by combining total and ionization cross-section measurements with simple calculations of the differential and integral elastic cross-sections. The energy loss spectra obtained in this experiment have been also used to drive stopping power of the considered materials for electrons. Some examples of results for atomic (Xe) and molecular (CF 4 ) targets are presented and discussed in this paper. (author)

  5. Study of the space environmental effects on spacecraft engineering materials

    Science.gov (United States)

    Obrien, Susan K.; Workman, Gary L.; Smith, Guy A.

    1995-01-01

    The space environment in which the Space Station Freedom and other space platforms will orbit is truly a hostile environment. For example, the current estimates of the integral fluence for electrons above 1 Mev at 2000 nautical miles is above 2 x 10(exp 10) electrons/sq cm/day. and the proton integral fluence is above 1 x 109 protons/sq cm/day. At the 200 - 400 nautical miles, which is more representative of the altitude which will provide the environment for the Space Station, each of these fluences will be proportionately less; however, the data indicates that the radiation environment will obviously have an effect on structural materials exposed to the environment for long durations. The effects of this combined environment is the issue which needs to be understood for the long term exposure of structures in space. In order to better understand the effect of these hostile phenomena on spacecraft, several types of studies are worth performing in order to simulate at some level the effect of the environment. For example the effect of protons and electrons impacting structural materials are easily simulated through experiments using the Van de Graff and Pelletron accelerators currently housed in the Environmental Effects Facility at MSFC. Proton fluxes with energies of 700 Kev-2.5 Mev can be generated and used to impinge on sample targets to determine the effects of the particles. Also the Environmental Effects Facility has the capability to generate electron beams with energies from 700 Kev to 2.5 Mev. These facilities will be used in this research to simulate space environmental effects from energetic particles. Ultraviolet radiation, particularly in the ultraviolet (less than 400 nm wavelength) is less well characterized at this time. The Environmental Effects Facility has a vacuum system dedicated to studying the effects of ultraviolet radiation on specific surface materials. This particular system was assembled in a previous study (NAS8-38609) in order to

  6. Device for the generation of homogeneous dose distributions in irradiated materials

    International Nuclear Information System (INIS)

    Leonhardt, J.; Schulze, H.; Boes, J.; Decker, U.; Schmidt, J.

    1985-01-01

    The invention has been directed at a device for the generation of homogeneous dose distributions in materials irradiated by charged particles. This device can be applied to the initiation of radiation-chemical reactions in solids, of cross-linking and vulcanizing reactors, of crystal defect annealings, etc. A movable absorber (e.g. a wedge or a solid of revolution) which periodically changes the energy of particles striking the specimen has been installed in the beam hole of the beam generating system

  7. Efficient light-emitting devices based on platinum-complexes-anchored polyhedral oligomeric silsesquioxane materials

    KAUST Repository

    Yang, Xiaohui

    2010-08-24

    The synthesis, photophysical, and electrochemical characterization of macromolecules, consisting of an emissive platinum complex and carbazole moieties covalently attached to a polyhedral oligomeric silsesquioxane (POSS) core, is reported. Organic light-emitting devices based on these POSS materials exhibit a peak external quantum efficiency of ca. 8%, which is significantly higher than that of the analogous devices with a physical blend of the platinum complexes and a polymer matrix, and they represent noticeable improvement in the device efficiency of solution-processable phosphorescent excimer devices. Furthermore, the ratio of monomer and excimer/aggregate electroluminescent emission intensity, as well as the device efficiency, increases as the platinum complex moiety presence on the POSS macromolecules decreases. © 2010 American Chemical Society.

  8. Novel Materials, Processing, and Device Technologies for Space Exploration with Potential Dual-Use Applications

    Science.gov (United States)

    Hepp, A. F.; Bailey, S. G.; McNatt, J. S.; Chandrashekhar, M. V. S.; Harris, J. D.; Rusch, A. W.; Nogales, K. A.; Goettsche, K. V.; Hanson, W.; Amos, D.; hide

    2015-01-01

    We highlight results of a broad spectrum of efforts on lower-temperature processing of nanomaterials, novel approaches to energy conversion, and environmentally rugged devices. Solution-processed quantum dots of copper indium chalcogenide semiconductors and multi-walled carbon nanotubes from lower-temperature spray pyrolysis are enabled by novel (precursor) chemistry. Metal-doped zinc oxide (ZnO) nanostructured components of photovoltaic cells have been grown in solution at low temperature on a conductive indium tin oxide substrate. Arrays of ZnO nanorods can be templated and decorated with various semiconductor and metallic nanoparticles. Utilizing ZnO in a more broadly defined energy conversion sense as photocatalysts, unwanted organic waste materials can potentially be re-purposed. Current efforts on charge carrier dynamics in nanoscale electrode architectures used in photoelectrochemical cells for generating solar electricity and fuels are described. The objective is to develop oxide nanowire-based electrode architectures that exhibit improved charge separation, charge collection and allow for efficient light absorption. Investigation of the charge carrier transport and recombination properties of the electrodes will aid in the understanding of how nanowire architectures improve performance of electrodes for dye-sensitized solar cells. Nanomaterials can be incorporated in a number of advanced higher-performance (i.e. mass specific power) photovoltaic arrays. Advanced technologies for the deposition of 4H-silicon carbide are described. The use of novel precursors, advanced processing, and process studies, including modeling are discussed from the perspective of enhancing the performance of this promising material for enabling technologies such as solar electric propulsion. Potential impact(s) of these technologies for a variety of aerospace applications are highlighted throughout. Finally, examples are given of technologies with potential spin-offs for dual

  9. The reliability of mercury analysis in environmental materials

    International Nuclear Information System (INIS)

    Heinonen, J.; Suschny, O.

    1973-01-01

    Mercury occurs in nature in its native elemental as well as in different mineral forms. It has been mined for centuries and is used in many branches of industry, agriculture and medicine. Mercury is very toxic to man and reports of poisoning due to the presence of the element in fish and shellfish caught at Minamata and Niigata, Japan have led not only to local investigations but to multi-national research into the sources and the levels of mercury in the environment. The concentrations at which the element has to be determined in these studies are extremely small, usually of the order of a few parts in 10 9 parts of environmental material. Few analytical techniques provide the required sensitivity for analysis at such low concentrations, and only two are normally used for mercury: neutron activation analysis and atomic absorption photometry. They are also the most convenient end points of various separation schemes for different organic mercury compounds. Mercury analysis at the ppb-level is beset with many problems: volatility of the metal and its compounds, impurity of reagents, interference by other elements and many other analytical difficulties may influence the results. To be able to draw valid conclusions from the analyses it is necessary to know the reliability attached to the values obtained. To assist laboratories in the evaluation of their analytical performance, the International Atomic Energy Agency through its own laboratory at Seibersdorf already organised in 1967 an intercomparison of mercury analysis in flour. Based on the results obtained at that time, a whole series of intercomparisons of mercury determinations in nine different environmental materials was undertaken in 1971. The materials investigated included corn and wheat flour, spray-dried animal blood serum, fish solubles, milk powder, saw dust, cellulose, lacquer paint and coloric material

  10. The reliability of mercury analysis in environmental materials

    Energy Technology Data Exchange (ETDEWEB)

    Heinonen, J.; Suschny, O

    1973-01-01

    Mercury occurs in nature in its native elemental as well as in different mineral forms. It has been mined for centuries and is used in many branches of industry, agriculture and medicine. Mercury is very toxic to man and reports of poisoning due to the presence of the element in fish and shellfish caught at Minamata and Niigata, Japan have led not only to local investigations but to multi-national research into the sources and the levels of mercury in the environment. The concentrations at which the element has to be determined in these studies are extremely small, usually of the order of a few parts in 10{sup 9} parts of environmental material. Few analytical techniques provide the required sensitivity for analysis at such low concentrations, and only two are normally used for mercury: neutron activation analysis and atomic absorption photometry. They are also the most convenient end points of various separation schemes for different organic mercury compounds. Mercury analysis at the ppb-level is beset with many problems: volatility of the metal and its compounds, impurity of reagents, interference by other elements and many other analytical difficulties may influence the results. To be able to draw valid conclusions from the analyses it is necessary to know the reliability attached to the values obtained. To assist laboratories in the evaluation of their analytical performance, the International Atomic Energy Agency through its own laboratory at Seibersdorf already organised in 1967 an intercomparison of mercury analysis in flour. Based on the results obtained at that time, a whole series of intercomparisons of mercury determinations in nine different environmental materials was undertaken in 1971. The materials investigated included corn and wheat flour, spray-dried animal blood serum, fish solubles, milk powder, saw dust, cellulose, lacquer paint and coloric material.

  11. Effect on the insulation material of a MOSFET device submitted to a standard diagnostic radiation beam

    International Nuclear Information System (INIS)

    De Magalhaes, C M S; Dos Santos, L A P; Souza, D do N; Maia, A F

    2010-01-01

    MOSFET electronic devices have been used for dosimetry in radiology and radiotherapy. Several communications show that due to the radiation exposure defects appear on the semiconductor crystal lattice. Actually, the structure of a MOSFET consists of three materials: a semiconductor, a metal and an insulator between them. The MOSFET is a quadripolar device with a common terminal: gate-source is the input; drain-source is the output. The gate controls the electrical current passing through semiconductor medium by the field effect because the silicon oxide acts as insulating material. The proposal of this work is to show some radiation effects on the insulator of a MOSFET device. A 6430 Keithley sub-femtoamp SourceMeter was used to verify how the insulating material layer in the structure of the device varies with the radiation exposure. We have used the IEC 61267 standard radiation X-ray beams generated from a Pantak industrial unit in the radiation energy range of computed tomography. This range was chosen because we are using the MOSFET device as radiation detector for dosimetry in computed tomography. The results showed that the behaviour of the electrical current of the device is different in the insulator and semiconductor structures.

  12. Research trend in thermally stimulated current method for development of materials and devices in Japan

    Science.gov (United States)

    Iwamoto, Mitsumasa; Taguchi, Dai

    2018-03-01

    Thermally stimulated current (TSC) measurement is widely used in a variety of research fields, i.e., physics, electronics, electrical engineering, chemistry, ceramics, and biology. TSC is short-circuit current that flows owing to the displacement of charges in samples during heating. TSC measurement is very simple, but TSC curves give very important information on charge behaviors. In the 1970s, TSC measurement contributed greatly to the development of electrical insulation engineering, semiconductor device technology, and so forth. Accordingly, the TSC experimental technique and its analytical method advanced. Over the past decades, many new molecules and advanced functional materials have been discovered and developed. Along with this, TSC measurement has attracted much attention in industries and academic laboratories as a way of characterizing newly discovered materials and devices. In this review, we report the latest research trend in the TSC method for the development of materials and devices in Japan.

  13. Determination of polybrominated diphenyl ethers in environmental standard reference materials

    Energy Technology Data Exchange (ETDEWEB)

    Stapleton, Heather M.; Schantz, Michele M.; Wise, Stephen A. [National Institute of Standards and Technology, Analytical Chemistry Division, Gaithersburg, MD (United States); Keller, Jennifer M.; Kucklick, John R. [National Institute of Standards and Technology, Analytical Chemistry Division, Hollings Marine Laboratory, Charleston, SC (United States); Leigh, Stefan D. [National Institute of Standards and Technology, Statistical Engineering Division, Gaithersburg, MD (United States)

    2007-04-15

    Standard reference materials (SRMs) are valuable tools in developing and validating analytical methods to improve quality assurance standards. The National Institute of Standards and Technology (NIST) has a long history of providing environmental SRMs with certified concentrations of organic and inorganic contaminants. Here we report on new certified and reference concentrations for 27 polybrominated diphenyl ether (PBDE) congeners in seven different SRMs: cod-liver oil, whale blubber, fish tissue (two materials), mussel tissue and sediment (two materials). PBDEs were measured in these SRMs, with the lowest concentrations measured in mussel tissue (SRM 1974b) and the highest in sediment collected from the New York/New Jersey Waterway (SRM 1944). Comparing the relative PBDE congener concentrations within the samples, we found the biota SRMs contained primarily tetrabrominated and pentabrominated diphenyl ethers, whereas the sediment SRMs contained primarily decabromodiphenyl ether (BDE 209). The cod-liver oil (SRM 1588b) and whale blubber (SRM 1945) materials were also found to contain measurable concentrations of two methoxylated PBDEs (MeO-BDEs). Certified and reference concentrations are reported for 12 PBDE congeners measured in the biota SRMs and reference values are available for two MeO-BDEs. Results from a sediment interlaboratory comparison PBDE exercise are available for the two sediment SRMs (1941b and 1944). (orig.)

  14. 'No touch' technologies for environmental decontamination: focus on ultraviolet devices and hydrogen peroxide systems.

    Science.gov (United States)

    Weber, David J; Kanamori, Hajime; Rutala, William A

    2016-08-01

    This article reviews 'no touch' methods for disinfection of the contaminated surface environment of hospitalized patients' rooms. The focus is on studies that assessed the effectiveness of ultraviolet (UV) light devices, hydrogen peroxide systems, and self-disinfecting surfaces to reduce healthcare-associated infections (HAIs). The contaminated surface environment in hospitals plays an important role in the transmission of several key nosocomial pathogens including methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus spp., Clostridium difficile, Acinetobacter spp., and norovirus. Multiple clinical trials have now demonstrated the effectiveness of UV light devices and hydrogen peroxide systems to reduce HAIs. A limited number of studies have suggested that 'self-disinfecting' surfaces may also decrease HAIs. Many studies have demonstrated that terminal cleaning and disinfection with germicides is often inadequate and leaves environmental surfaces contaminated with important nosocomial pathogens. 'No touch' methods of room decontamination (i.e., UV devices and hydrogen peroxide systems) have been demonstrated to reduce key nosocomial pathogens on inoculated test surfaces and on environmental surfaces in actual patient rooms. Further UV devices and hydrogen peroxide systems have been demonstrated to reduce HAI. A validated 'no touch' device or system should be used for terminal room disinfection following discharge of patients on contact precautions. The use of a 'self-disinfecting' surface to reduce HAI has not been convincingly demonstrated.

  15. Screening of IAEA environmental samples for fissile material content

    International Nuclear Information System (INIS)

    Hembree, Doyle M. Jr.; Carter, Joel A.; Devault, Gerald L.; Whitaker, J. Michael; Glasgow, David

    2001-01-01

    Full text: Analysis of environmental samples for the International Atomic Energy Agency (IAEA) Strengthened Safeguards Systems program requires that stringent measures be taken to control contamination. To facilitate contamination control, it is extremely useful to have some estimate of the fissile content of a given sample prior to beginning sample preparation and analysis. This is particularly true for laboratories that employ clean rooms during sample preparation. A review of the analytical results for samples submitted between January 1, 1999 and September 1, 2000 revealed that the total uranium content values ranged from 0.2 to greater than 500,000 ng/sample. Poor estimates of the uranium or plutonium content in the samples have caused some of the laboratories in the IAEA Network of Analytical Laboratories (NWAL) to experience clean laboratory contamination, sample cross contamination, and non-ideal uranium spike additions. This has led to significant increases in analysis costs (e.g., recertification of clean rooms after removing contamination, and rerunning samples) and degradation in data quality. A number of methods have been proposed for screening environmental samples for fissile material content, including gamma spectrometry, x-ray fluorescence, kinetic phosphorimetry (KPA), and inductively coupled plasma-mass spectrometry (ICP-MS). Gamma spectrometry and x-ray fluorescence are suitable for screening samples with microgram or greater quantities of uranium. ICP-MS and KPA are used successfully in some DOE NWAL laboratories to screen environmental samples. A neutron activation analysis (NAA) method that offers numerous advantages over other screening techniques for environmental samples has recently been proposed. Fissile materials such as 239 Pu and 235 U can be made to undergo fission in the intense neutron field to which they are exposed during neutron activation analysis (NAA). Some of the fission products emit neutrons referred to as 'delayed

  16. Improving Device Efficiencies in Organic Photovoltaics through the Manipulation of Device Architectures and the Development of Low-Bandgap Materials

    Science.gov (United States)

    Rice, Andrew Hideo

    Over the past two decades, vast amounts of research have been conducted in the pursuit of suitable organic semiconductors to replace inorganic materials in electronic applications due to their advantages of being lightweight, flexible, and solution-processible. However, before organic photovoltaics (OPVs) can be truly competitive and commercially viable, their efficiencies must be improved significantly. In this examination, we pursue higher efficiency OPVs in two different ways. Our attempts focus on 1) altering the microstructure of devices to improve charge dissociation, charge transport, and our understanding of how these devices function, and 2) tailoring materials to achieve optimal band gaps and energy levels for use in organic electronics. First, we demonstrate how the vertical morphology of bulk heterojunction (BHJ) solar cells, with an active layer consisting of self-assembled poly(3-hexylthiophene) (P3HT) nanowires and (6,6)-phenyl C61-butyric acid methyl ester (PCBM), can be beneficially influenced. Most device fabrication routes using similar materials employ an annealing step to influence active layer morphology, but this process can create an unfavorable phase migration where P3HT is driven toward the cathode. In contrast, we demonstrate devices that exhibit an increase in relative fullerene concentration at the top of the active layer by introducing the donor phase as a solid nanowire in the active layer solution and altering the pre-spin drying time. X-ray photoelectron spectroscopy (XPS) and conductive and photoconductive atomic force microscopy (cAFM and pcAFM) provide detailed information about how the surface of the active layer can be influenced; this is done by tracking the concentration and alignment of P3HT and PCBM domains. Using this new procedure, devices are made with power conversion efficiencies surpassing 2%. Additionally, we show that nanowires grown in the presence of the fullerene perform differently than those that are grown and

  17. Environmental Effects on ISS Materials Aging (1998 to 2008)

    Science.gov (United States)

    Alred, John; Dasgupta, Rajib; Koontz, Steve; Soares, Carlos; Golden, John

    2009-01-01

    The performance of ISS spacecraft materials and systems on prolonged exposure to the low- Earth orbit (LEO) space flight are reported in this paper. In-flight data, flight crew observations, and the results of ground-based test and analysis directly supporting programmatic and operational decision-making are described. The space flight environments definitions (both natural and induced) used for ISS design, material selection, and verification testing are shown, in most cases, to be more severe than the actual flight environment accounting, in part, for the outstanding performance of ISS as a long mission duration spacecraft. No significant ISS material or system failures have been attributed to spacecraft-environments interactions. Nonetheless, ISS materials and systems performance data is contributing to our understanding of spacecraft material interactions with the spaceflight environment so as to reduce cost and risk for future spaceflight projects and programs. Orbital inclination (51.6 deg) and altitude (nominally near 360 km) determine the set of natural environment factors affecting the functional life of materials and systems on ISS. ISS operates in an electrically conducting environment (the F2 region of Earth s ionosphere) with well-defined fluxes of atomic oxygen, other charged and neutral ionospheric plasma species, solar UV, VUV, and x-ray radiation as well as galactic cosmic rays, trapped radiation, and solar cosmic rays. The LEO micrometeoroid and orbital debris environment is an especially important determinant of spacecraft design and operations. The magnitude of several environmental factors varies dramatically with latitude and longitude as ISS orbits the Earth. The high latitude orbital environment also exposes ISS to higher fluences of trapped energetic electrons, auroral electrons, solar cosmic rays, and galactic cosmic rays than would be the case in lower inclination orbits, largely as a result of the overall shape and magnitude of the

  18. Wood-derived materials for green electronics, biological Devices, and energy applications

    Science.gov (United States)

    Hongli Zhu; Wei Luo; Peter N. Ciesielski; Zhiqiang Fang; Junyong Zhu; Gunnar Henriksson; Michael E. Himmel; Liangbing Hu

    2016-01-01

    With the arising of global climate change and resource shortage, in recent years, increased attention has been paid to environmentally friendly materials. Trees are sustainable and renewable materials, which give us shelter and oxygen and remove carbon dioxide from the atmosphere. Trees are a primary resource that human society depends upon every day, for example,...

  19. Organic light emitting device architecture for reducing the number of organic materials

    Science.gov (United States)

    D'Andrade, Brian [Westampton, NJ; Esler, James [Levittown, PA

    2011-10-18

    An organic light emitting device is provided. The device includes an anode and a cathode. A first emissive layer is disposed between the anode and the cathode. The first emissive layer includes a first non-emitting organic material, which is an organometallic material present in the first emissive layer in a concentration of at least 50 wt %. The first emissive layer also includes a first emitting organic material. A second emissive layer is disposed between the first emissive layer and the cathode, preferably, in direct contact with the first emissive layer. The second emissive material includes a second non-emitting organic material and a second emitting organic material. The first and second non-emitting materials, and the first and second emitting materials, are all different materials. A first non-emissive layer is disposed between the first emissive layer and the anode, and in direct contact with the first emissive layer. The first non- emissive layer comprises the first non-emissive organic material.

  20. Novel material and structural design for large-scale marine protective devices

    International Nuclear Information System (INIS)

    Qiu, Ang; Lin, Wei; Ma, Yong; Zhao, Chengbi; Tang, Youhong

    2015-01-01

    Highlights: • Large-scale protective devices with different structural designs have been optimized. • Large-scale protective devices with novel material designs have been optimized. • Protective devices constructed of sandwich panels have the best anti-collision performance. • Protective devices with novel material design can reduce weight and construction cost. - Abstract: Large-scale protective devices must endure the impact of severe forces, large structural deformation, the increased stress and strain rate effects, and multiple coupling effects. In evaluation of the safety of conceptual design through simulation, several key parameters considered in this research are maximum impact force, energy dissipated by the impactor (e.g. a ship) and energy absorbed by the device and the impactor stroke. During impact, the main function of the ring beam structure is to resist and buffer the impact force between ship and bridge pile caps, which could guarantee that the magnitude of impact force meets the corresponding requirements. The means of improving anti-collision performance can be to increase the strength of the beam section or to exchange the steel material with novel fiber reinforced polymer laminates. The main function of the buoyancy tank is to absorb and transfer the ship’s kinetic energy through large plastic deformation, damage, or friction occurring within itself. The energy absorption effect can be improved by structure optimization or by the use of new sandwich panels. Structural and material optimization schemes are proposed on the basis of conceptual design in this research, and protective devices constructed of sandwich panels prove to have the best anti-collision performance

  1. Analysis of medical device materials with the local electrode atom probe

    International Nuclear Information System (INIS)

    Goodman, S.L.; Mengelt, T.J.; Ali, M.; Ulfig, R.M.; Martens, R.M.; Kelly, T.F.; Kostrna, S.L.P.; Kostrna, M.S.; Carmichael, W.J.

    2004-01-01

    Full text: As medical technology advances towards microsurgical and minimally invasive techniques, there is a drive to produce ever-smaller devices that demand higher material performance and hence enhanced nano and micro-scale control of material structure. These devices are made from stainless steel alloys, Nitinol, titanium, CoCrMo, and non-metals such as pyrolytic carbon and silicon. These applications are made possible due to suitable physical and mechanical properties, good corrosion resistance in biological environments, reasonable biocompatibility, and good manufacturability. With respect to the metals, the nano-structure and composition of the material surface, typically an oxide, is especially critical since biological responses and corrosion occur at the material-environment interface. Thus, there is an increasing need to understand the 3-D structure and composition of metallic biomaterials at the atomic scale. Three-dimensional atom probe microscopy can uniquely provide such atomic-level structural information. In the present study several of these medical device materials were examined. These include a 316L stainless steel alloy which is widely used in implanted spinal fixation devices, bone screws, cardiovascular and neurological stents, a cast CoCrMo acetabular hip cup of a Cormet metal-on-metal Hip Resurfacing System (Corin Group, Cirencester, England) that was rejected for clinical use, Nitinol wires specimens such as are used for stents and guide wires, and low temperature pyrolytic carbon as used in clinical heart valve prosthetics. (author)

  2. Conformity Assessment in Nuclear Material and Environmental Sample Analysis

    International Nuclear Information System (INIS)

    Aregbe, Y.; Jakopic, R.; Richter, S.; Venchiarutti, C.

    2015-01-01

    Safeguards conclusions are based to a large extent on comparison of measurement results between operator and safeguards laboratories. Measurement results must state traceability and uncertainties to be comparable. Recent workshops held at the IAEA and in the frame of the European Safeguards Research and Development Association (ESARDA), reviewed different approaches for Nuclear Material Balance Evaluation (MBE). Among those, the ''bottom-up'' approach requires assessment of operators and safeguards laboratories measurement systems and capabilities. Therefore, inter-laboratory comparisons (ILCs) with independent reference values provided for decades by JRC-IRMM, CEA/CETAMA and US DOE are instrumental to shed light on the current state of practice in measurements of nuclear material and environmental swipe samples. Participating laboratories are requested to report the measurement results with associated uncertainties, and have the possibility to benchmark those results against independent and traceable reference values. The measurement capability of both the IAEA Network of Analytical Laboratories (NWAL) and the nuclear operator's analytical services participating in ILCs can be assessed against the independent reference values as well as against internationally agreed quality goals, in compliance with ISO 13528:2005. The quality goals for nuclear material analysis are the relative combined standard uncertainties listed in the ITV2010. Concerning environmental swipe sample analysis, the IAEA defined measurement quality goals applied in conformity assessment. The paper reports examples from relevant inter-laboratory comparisons, looking at laboratory performance according to the purpose of the measurement and the possible use of the result in line with the IUPAC International Harmonized Protocol. Tendencies of laboratories to either overestimate and/or underestimate uncertainties are discussed using straightforward graphical tools to evaluate

  3. Micro- and nanofluidic systems in devices for biological, medical and environmental research

    Science.gov (United States)

    Evstrapov, A. A.

    2017-11-01

    The use of micro- and nanofluidic systems in modern analytical instruments allow you to implement a number of unique opportunities and achieve ultra-high measurement sensitivity. The possibility of manipulation of the individual biological objects (cells, bacteria, viruses, proteins, nucleic acids) in a liquid medium caused the development of devices on microchip platform for methods: chromatographic and electrophoretic analyzes; polymerase chain reaction; sequencing of nucleic acids; immunoassay; cytometric studies. Development of micro and nano fabrication technologies, materials science, surface chemistry, analytical chemistry, cell engineering have led to the creation of a unique systems such as “lab-on-a-chip”, “human-on-a-chip” and other. This article discusses common in microfluidics materials and methods of making functional structures. Examples of integration of nanoscale structures in microfluidic devices for the implementation of new features and improve the technical characteristics of devices and systems are shown.

  4. Graphene and Carbon Quantum Dot-Based Materials in Photovoltaic Devices: From Synthesis to Applications

    Science.gov (United States)

    Paulo, Sofia; Palomares, Emilio; Martinez-Ferrero, Eugenia

    2016-01-01

    Graphene and carbon quantum dots have extraordinary optical and electrical features because of their quantum confinement properties. This makes them attractive materials for applications in photovoltaic devices (PV). Their versatility has led to their being used as light harvesting materials or selective contacts, either for holes or electrons, in silicon quantum dot, polymer or dye-sensitized solar cells. In this review, we summarize the most common uses of both types of semiconducting materials and highlight the significant advances made in recent years due to the influence that synthetic materials have on final performance. PMID:28335285

  5. Graphene and Carbon Quantum Dot-Based Materials in Photovoltaic Devices: From Synthesis to Applications

    Directory of Open Access Journals (Sweden)

    Sofia Paulo

    2016-08-01

    Full Text Available Graphene and carbon quantum dots have extraordinary optical and electrical features because of their quantum confinement properties. This makes them attractive materials for applications in photovoltaic devices (PV. Their versatility has led to their being used as light harvesting materials or selective contacts, either for holes or electrons, in silicon quantum dot, polymer or dye-sensitized solar cells. In this review, we summarize the most common uses of both types of semiconducting materials and highlight the significant advances made in recent years due to the influence that synthetic materials have on final performance.

  6. 10 CFR 51.97 - Final environmental impact statement-materials license.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Final environmental impact statement-materials license. 51...-Regulations Implementing Section 102(2) Final Environmental Impact Statements-Materials Licenses § 51.97 Final environmental impact statement—materials license. (a) Independent spent fuel storage installation (ISFSI...

  7. Ferroelectric devices

    CERN Document Server

    Uchino, Kenji

    2009-01-01

    Updating its bestselling predecessor, Ferroelectric Devices, Second Edition assesses the last decade of developments-and setbacks-in the commercialization of ferroelectricity. Field pioneer and esteemed author Uchino provides insight into why this relatively nascent and interdisciplinary process has failed so far without a systematic accumulation of fundamental knowledge regarding materials and device development.Filling the informational void, this collection of information reviews state-of-the-art research and development trends reflecting nano and optical technologies, environmental regulat

  8. IN VITRO TESTING – AN ESENTIAL METHOD FOR EVALUATING THE PERFORMANCE OF DENTAL MATERIALS AND DEVICES

    Directory of Open Access Journals (Sweden)

    Anca VIŢALARIU

    2015-06-01

    Full Text Available Dentistry is unique among biomaterials specialties as to the large variety of materials used, and nature of the challenges they must resist. Intra-oral service demands materials adapted to a warm and moist environment, resisting the attack of digestive acids and enzymes. The materials subjected to mechanical forces should preserve their strength, fatigue and wear characteristics, for accomplishing their function. The wide range of materials available for restorative dentistry demands knowledge of their relative strengths and trade-offs, and offers the opportunity for many interesting lines of research. The spectrum extensively ranges from elastic impression materials to extremely stiff metal and ceramic appliances, so that familiarity with a variety of mechanical testing situations is required from a well-rounded dental materials laboratory. Evaluating the mechanical and wear characteristics of dental restorative materials and analyzing the durability of adhesives is critical to the development of improved dental devices

  9. Environmentally benign destruction of waste energetic materials (EMs)

    International Nuclear Information System (INIS)

    Schneider, R. L.; Donahue, B. A.

    1998-01-01

    Studies by the U. S. Army Corps of Engineers during 1991-1997 involving various methods for the destruction of waste generated by pyrotechnic, explosive and propellant materials are described. The methods assessed and evaluated include controlled incineration (CI), wet air oxidation (WAO), and hydrothermal oxidation (HTO), using a U.S. Army triple-base propellant as the initial common standard for all destructor comparative testing. All three of these methods has special feed line restrictions requiring mechanical diminution and comminution of the energetic material which, for safety reasons, cannot be used with contaminated heterogeneous production wastes. Supercritical fluid extraction with carbon dioxide, alkaline hydrolysis, electrolysis and fluid cutting with very high pressure water jets and liquid nitrogen are alternate technologies that were evaluated as pre-treatment for production wastes. Wet air oxidation and electrochemical reduction studies were conducted using the U.S. Navy double propellant NOSIH-AA2, which contains a lead-based ballistic modifier. Wet air oxidation and hydrothermal oxidation studies were done using potassium dinitramide phase-stabilized nitrate as an oxidizer. All of these technologies are considered to be suitable for the environmentally benign destruction of pyrotechnic materials, including fireworks. 17 refs., 8 tabs., 4 figs

  10. Theory-Guided Design of Organic Electro-Optic Materials and Devices

    Directory of Open Access Journals (Sweden)

    Stephanie Benight

    2011-08-01

    Full Text Available Integrated (multi-scale quantum and statistical mechanical theoretical methods have guided the nano-engineering of controlled intermolecular electrostatic interactions for the dramatic improvement of acentric order and thus electro-optic activity of melt-processable organic polymer and dendrimer electro-optic materials. New measurement techniques have permitted quantitative determination of the molecular order parameters, lattice dimensionality, and nanoscale viscoelasticity properties of these new soft matter materials and have facilitated comparison of theoretically-predicted structures and thermodynamic properties with experimentally-defined structures and properties. New processing protocols have permitted further enhancement of material properties and have facilitated the fabrication of complex device structures. The integration of organic electro-optic materials into silicon photonic, plasmonic, and metamaterial device architectures has led to impressive new performance metrics for a variety of technological applications.

  11. Performance evaluation of a thermoelectric energy harvesting device using various phase change materials

    International Nuclear Information System (INIS)

    Elefsiniotis, A; Becker, T; Kiziroglou, M E; Wright, S W; Toh, T T; Mitcheson, P D; Yeatman, E M; Schmid, U

    2013-01-01

    This paper compares the performance of a group of organic and inorganic phase change materials for a heat storage thermoelectric energy harvesting device. The device consists of thermoelectric generators and a closed container filled with a phase change material. One side of the generators is mounted on the aircraft fuselage and the other to the thermal mass. The group of inorganic and organic phase change materials was tested across two temperature ranges. These ranges are defined as ''positive'' and ''negative'', with the former being a sweep from +35°C to −5°C and the latter being a sweep from +5°C to −35°C. The performance in terms of electrical energy output and power produced is examined in detail for each group of materials

  12. Recent Progress of Textile-Based Wearable Electronics: A Comprehensive Review of Materials, Devices, and Applications.

    Science.gov (United States)

    Heo, Jae Sang; Eom, Jimi; Kim, Yong-Hoon; Park, Sung Kyu

    2018-01-01

    Wearable electronics are emerging as a platform for next-generation, human-friendly, electronic devices. A new class of devices with various functionality and amenability for the human body is essential. These new conceptual devices are likely to be a set of various functional devices such as displays, sensors, batteries, etc., which have quite different working conditions, on or in the human body. In these aspects, electronic textiles seem to be a highly suitable possibility, due to the unique characteristics of textiles such as being light weight and flexible and their inherent warmth and the property to conform. Therefore, e-textiles have evolved into fiber-based electronic apparel or body attachable types in order to foster significant industrialization of the key components with adaptable formats. Although the advances are noteworthy, their electrical performance and device features are still unsatisfactory for consumer level e-textile systems. To solve these issues, innovative structural and material designs, and novel processing technologies have been introduced into e-textile systems. Recently reported and significantly developed functional materials and devices are summarized, including their enhanced optoelectrical and mechanical properties. Furthermore, the remaining challenges are discussed, and effective strategies to facilitate the full realization of e-textile systems are suggested. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Counterpropagating wave acoustic particle manipulation device for the effective manufacture of composite materials.

    Science.gov (United States)

    Scholz, Marc-S; Drinkwater, Bruce W; Llewellyn-Jones, Thomas M; Trask, Richard S

    2015-10-01

    An ultrasonic assembly device exhibiting broadband behavior and a sacrificial plastic frame is described. This device is used to assemble a variety of microscopic particles differing in size, shape, and material into simple patterns within several host fluids. When the host fluid is epoxy, the assembled materials can be cured and the composite sample extracted from the sacrificial frame. The wideband performance means that within a single device, the wavelength can be varied, leading to control of the length scale of the acoustic radiation force field. We show that glass fibers of 50 μm length and 14 μm diameter can be assembled into a series of stripes separated by hundreds of microns in a time of 0.3 s. Finite element analysis is used to understand the attributes of the device which control its wideband characteristics. The bandwidth is shown to be governed by the damping produced by a combination of the plastic frame and the relatively large volume of the fluid particle mixture. The model also reveals that the acoustic radiation forces are a maximum near the substrate of the device, which is in agreement with experimental observations. The device is extended to 8-transducers and used to assemble more complex particle distributions.

  14. Thermo-fluidic devices and materials inspired from mass and energy transport phenomena in biological system

    Institute of Scientific and Technical Information of China (English)

    Jian XIAO; Jing LIU

    2009-01-01

    Mass and energy transport consists of one of the most significant physiological processes in nature, which guarantees many amazing biological phenomena and activ-ities. Borrowing such idea, many state-of-the-art thermo-fluidic devices and materials such as artificial kidneys, carrier erythrocyte, blood substitutes and so on have been successfully invented. Besides, new emerging technologies are still being developed. This paper is dedicated to present-ing a relatively complete review of the typical devices and materials in clinical use inspired by biological mass and energy transport mechanisms. Particularly, these artificial thermo-fluidic devices and materials will be categorized into organ transplantation, drug delivery, nutrient transport, micro operation, and power supply. Potential approaches for innovating conventional technologies were discussed, corresponding biological phenomena and physical mechan-isms were interpreted, future promising mass-and-energy-transport-based bionic devices were suggested, and prospects along this direction were pointed out. It is expected that many artificial devices based on biological mass and energy transport principle will appear to better improve vari-ous fields related to human life in the near future.

  15. Review of multi-layered magnetoelectric composite materials and devices applications

    Science.gov (United States)

    Chu, Zhaoqiang; PourhosseiniAsl, MohammadJavad; Dong, Shuxiang

    2018-06-01

    Multiferroic materials with the coexistence of at least two ferroic orders, such as ferroelectricity, ferromagnetism, or ferroelasticity, have recently attracted ever-increasing attention due to their potential for multifunctional device applications, including magnetic and current sensors, energy harvesters, magnetoelectric (ME) random access memory and logic devices, tunable microwave devices, and ME antenna. In this article, we provide a review of the recent and ongoing research efforts in the field of multi-layered ME composites. After a brief introduction to ME composites and ME coupling mechanisms, we review recent advances in multi-layered ME composites as well as their device applications based on the direct ME effect, magnetic sensors in particular. Finally, some remaining challenges and future perspective of ME composites and their engineering applications will be discussed.

  16. NATO Advanced Study Institute on Nondestructive Evaluation of Semiconductor Materials and Devices

    CERN Document Server

    1979-01-01

    From September 19-29, a NATO Advanced Study Institute on Non­ destructive Evaluation of Semiconductor Materials and Devices was held at the Villa Tuscolano in Frascati, Italy. A total of 80 attendees and lecturers participated in the program which covered many of the important topics in this field. The subject matter was divided to emphasize the following different types of problems: electrical measurements; acoustic measurements; scanning techniques; optical methods; backscatter methods; x-ray observations; accele­ rated life tests. It would be difficult to give a full discussion of such an Institute without going through the major points of each speaker. Clearly this is the proper task of the eventual readers of these Proceedings. Instead, it would be preferable to stress some general issues. What came through very clearly is that the measurements of the basic scientists in materials and device phenomena are of sub­ stantial immediate concern to the device technologies and end users.

  17. Optimisation of oxygen ion transport in materials for ceramic membrane devices.

    Science.gov (United States)

    Kilner, J A

    2007-01-01

    Oxygen transport in ceramic oxide materials has received much attention over the past few decades. Much of this interest has stemmed from the desire to construct high temperature electrochemical devices for energy conversion, an example being the solid oxide fuel cell. In order to achieve high performance for these devices, insights are needed in how to achieve optimum performance from the functional components such as the electrolytes and electrodes. This includes the optimisation of oxygen transport through the crystal lattice of electrode and electrolyte materials and across the homogeneous (grain boundary) and heterogeneous interfaces that exist in real devices. Strategies are discussed for the optimisation of these quantities and current problems in the characterisation of interfacial transport are explored.

  18. NATO Advanced Study Institute on Scanning Probe Microscopy : Characterization, Nanofabrication and Device Application of Functional Materials

    CERN Document Server

    Vilarinho, Paula Maria; Kingon, Angus; Scanning Probe Microscopy : Characterization, Nanofabrication and Device Application of Functional Materials

    2005-01-01

    As the characteristic dimensions of electronic devices continue to shrink, the ability to characterize their electronic properties at the nanometer scale has come to be of outstanding importance. In this sense, Scanning Probe Microscopy (SPM) is becoming an indispensable tool, playing a key role in nanoscience and nanotechnology. SPM is opening new opportunities to measure semiconductor electronic properties with unprecedented spatial resolution. SPM is being successfully applied for nanoscale characterization of ferroelectric thin films. In the area of functional molecular materials it is being used as a probe to contact molecular structures in order to characterize their electrical properties, as a manipulator to assemble nanoparticles and nanotubes into simple devices, and as a tool to pattern molecular nanostructures. This book provides in-depth information on new and emerging applications of SPM to the field of materials science, namely in the areas of characterisation, device application and nanofabrica...

  19. Surface Modification for Improved Design and Functionality of Nanostructured Materials and Devices

    Science.gov (United States)

    Keiper, Timothy Keiper

    Progress in nanotechnology is trending towards applications which require the integration of soft (organic or biological) and hard (semiconductor or metallic) materials. Many applications for functional nanomaterials are currently being explored, including chemical and biological sensors, flexible electronics, molecular electronics, etc., with researchers aiming to develop new paradigms of nanoelectronics through manipulation of the physical properties by surface treatments. This dissertation focuses on two surface modification techniques important for integration of hard and soft materials: thermal annealing and molecular modification of semiconductors. First, the effects of thermal annealing are investigated directly for their implication in the fundamental understanding of transparent conducting oxides with respect to low resistivity contacts for electronic and optoelectronic applications and the response to environmental stimuli for sensing applications. The second focus of this dissertation covers two aspects of the importance of molecular modification on semiconductor systems. The first of these is the formation of self-assembled monolayers in patterned arrays which leads explicitly to the directed self-assembly of nanostructures. The second aspect concerns the modification of the underlying magnetic properties of the preeminent dilute magnetic semiconductor, manganese-doped gallium arsenide. Tin oxide belongs to a class of materials known as transparent conducting oxides which have received extensive interest due to their sensitivity to environmental stimuli and their potential application in transparent and flexible electronics. Nanostructures composed of SnO2 have been demonstrated as an advantageous material for high performance, point-of-care nanoelectronic sensors, capable of detecting and distinguishing gaseous or biomolecular interactions on unprecedented fast timescales. Through bottom-up fabrication techniques, binary oxide nanobelts synthesized

  20. Reactive ion etching of polymer materials for an energy harvesting device

    DEFF Research Database (Denmark)

    Wang, Fei; Bertelsen, Christian Vinther; Skands, Gustav

    2012-01-01

    In this paper, we have demonstrated deep reactive ion etching (RIE) of two MEMS compatible polymer materials CYTOP and TOPAS, which may be useful for energy harvesting devices. The CYTOP polymer was patterned and used as the electret for the following corona charging while the TOPAS polymer...

  1. Functions, Use and Effects of Embedded Support Devices in Printed Distance Learning Materials.

    Science.gov (United States)

    Martens, Rob; And Others

    1996-01-01

    To support distance learning, printed materials for the course are enriched with embedded support devices (ESD) such as schemes, illustrations, examples, questions, or margin texts. Results of 3 studies involving 900 Dutch university students indicated that students used and appreciated ESD, and that they led to better study results. (SLD)

  2. Safety Features of Material and Personnel Movement Devices. Module SH-25. Safety and Health.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on safety features of material and personnel movement devices is one of 50 modules concerned with job safety and health. This module covers safe conditions and operating practices for conveyors, elevators, escalators, moving walks, manlifts, forklifts, and motorized hand trucks. Following the introduction, 10 objectives (each…

  3. Effect of interface of electronics devices constructed with different materials to X-ray

    International Nuclear Information System (INIS)

    Mu Weibing; Chen Panxun

    2003-01-01

    The behavior of X-ray nearby interface which is constructed with different materials is introduced in this paper. And the affect to electronics devices of this behavior is analyzed, the affect factors of four interfaces are calculated by Monte-Carlo method

  4. Investigation of Emerging Materials for Optoelectronic Devices Based on III-Nitrides

    KAUST Repository

    Mumthaz Muhammed, Mufasila

    2018-01-01

    performance due to dislocation defects, remains an obstacle to their further improvement. In this dissertation, I present a significant enhancement of III-nitride devices based on emerging materials. A promising substrate, (-201)-oriented β-Ga2O3 with unique

  5. Surface Modifications of Polymeric Materials for Application in Artificial Heart and Circulatory Assist Devices

    NARCIS (Netherlands)

    Feijen, J.; Engbers, G.H.M.; Terlingen, J.G.A.; van Delden, C.J.; Poot, A.A.; Vaudaux, P.; Akutsu, Tetsuzo; Koyanagi, Hitoshi

    1996-01-01

    Several methods have been developed to modify the surfaces of materials used in artificial hearts and circulatory assist devices to suppress the host response, especially with respect to the occurrence of clotting, cellular damage, and infections. In this review, special attention is paid to

  6. Bifunctional electroluminescent and photovoltaic devices using bathocuproine as electron-transporting material and an electron acceptor

    International Nuclear Information System (INIS)

    Chen, L.L.; Li, W.L.; Li, M.T.; Chu, B.

    2007-01-01

    Electroluminescence (EL) devices, using 4, 4',4''-tris (2-methylphenyl- phenylamino) triphenylamine (m-MTDATA) as hole-transporting material and bathocuproine (BCP) as an electron-transporting material, were fabricated, which emitted bright green light peaked at 520 nm instead of the emission of m-MTDATA or BCP. It was attributed to the exciplex formation and emission at the interface of m-MTDATA and BCP. EL performance was significantly enhanced by a thin mixed layer (5 nm) of m-MTDATA and BCP inserted between the two organic layers of the original m-MTDATA/BCP bilayer device. The trilayer device showed maximum luminance of 1,205 cd/m 2 at 8 V. At a luminance of 100 cd/m 2 , the power efficiency is 1.64 cd/A. Commission International De L'Eclairoge (CIE) color coordinates of the output spectrum of the devices at 8 V are x=0.244 and y=0.464. These devices also showed photovoltaic (PV) properties, which were sensitive to UV light. The PV diode exhibits high open-circuit voltage (V oc ) of 2.10 V under illumination of 365 nm UV light with 2 mW/cm 2 . And the short-circuit current (I sc ) of 92.5x10 -6 A/cm 2 , fill factor (FF) of 0.30 and power conversion efficiency (η e ) of 2.91% are respectively achieved. It is considered that strong exciplex emission in an EL device is a good indicator of efficient charge transfer at the organic interface, which is a basic requirement for good PV performance. Both the bilayer and trilayer devices showed EL and PV properties, suggesting their potential use as multifunction devices

  7. Bifunctional electroluminescent and photovoltaic devices using bathocuproine as electron-transporting material and an electron acceptor

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L.L. [Key Laboratory of the Excited States Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 (China); Graduate School of the Chinese Academy of Sciences, Beijing, 100039 (China); Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, 130024 (China); Li, W.L. [Key Laboratory of the Excited States Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 (China)]. E-mail: wllioel@yahoo.com.cn; Li, M.T. [Key Laboratory of the Excited States Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 (China); Graduate School of the Chinese Academy of Sciences, Beijing, 100039 (China); Chu, B. [Key Laboratory of the Excited States Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 (China)

    2007-01-15

    Electroluminescence (EL) devices, using 4, 4',4''-tris (2-methylphenyl- phenylamino) triphenylamine (m-MTDATA) as hole-transporting material and bathocuproine (BCP) as an electron-transporting material, were fabricated, which emitted bright green light peaked at 520 nm instead of the emission of m-MTDATA or BCP. It was attributed to the exciplex formation and emission at the interface of m-MTDATA and BCP. EL performance was significantly enhanced by a thin mixed layer (5 nm) of m-MTDATA and BCP inserted between the two organic layers of the original m-MTDATA/BCP bilayer device. The trilayer device showed maximum luminance of 1,205 cd/m{sup 2} at 8 V. At a luminance of 100 cd/m{sup 2}, the power efficiency is 1.64 cd/A. Commission International De L'Eclairoge (CIE) color coordinates of the output spectrum of the devices at 8 V are x=0.244 and y=0.464. These devices also showed photovoltaic (PV) properties, which were sensitive to UV light. The PV diode exhibits high open-circuit voltage (V {sub oc}) of 2.10 V under illumination of 365 nm UV light with 2 mW/cm{sup 2}. And the short-circuit current (I {sub sc}) of 92.5x10{sup -6} A/cm{sup 2}, fill factor (FF) of 0.30 and power conversion efficiency ({eta} {sub e}) of 2.91% are respectively achieved. It is considered that strong exciplex emission in an EL device is a good indicator of efficient charge transfer at the organic interface, which is a basic requirement for good PV performance. Both the bilayer and trilayer devices showed EL and PV properties, suggesting their potential use as multifunction devices.

  8. Precision of neutron activation analysis for environmental biological materials

    International Nuclear Information System (INIS)

    Hamaguchi, Hiroshi; Iwata, Shiro; Koyama, Mutsuo; Sasajima, Kazuhisa; Numata, Yuichi.

    1977-01-01

    Between 1973 and 1974 a special committee ''Research on the application of neutron activation analysis to the environmental samples'' had been organized at the Research Reactor Institute, Kyoto University. Eleven research groups composed mainly of the committee members cooperated in the intercomparison programme of the reactor neutron activation analysis of NBS standard reference material, 1571 Orchard Leaves and 1577 Bovine Liver. Five different type of reactors were used for the neutron irradiation; i.e. KUR reactor of the Research Reactor Institute, Kyoto University, TRIGA MARK II reactor of the Institute for Atomic Energy, Rikkyo University, and JRR-2, JRR-3, JRR-4 reactor of Japan Atomic Energy Research Institute. Analyses were performed mainly by instrumental method. Precision of the analysis of 23 elements in Orchard Leaves and 13 elements in Bovine Liver presented by the different research groups was shown in table 4 and 5, respectively. The coefficient of variation for these elements was from several to -- 30 percent. Averages given to these elements agreed well with the NBS certified or reference values. Thus, from the practical point of view for the routine multielement analysis of environmental samples, the validity of the instrumental neutron activation technique for this purpose has been proved. (auth.)

  9. Advanced Carbon Materials for Environmental and Energy Applications

    KAUST Repository

    Dua, Rubal

    2014-01-01

    Carbon based materials, including porous carbons and carbon layer composites, are finding increased usage in latest environmental and energy related research. Among porous carbon materials, hierarchical porous carbons with multi-modal porosity are proving out to be an effective solution for applications where the traditional activated carbons fail. Thus, there has been a lot of recent interest in developing low-cost, facile, easy to scale-up, synthesis techniques for producing such multi-modal porous carbons. This dissertation offers two novel synthesis techniques: (i) ice templating integrated with hard templating, and (ii) salt templating coupled with hard templating, for producing such hierarchically porous carbons. The techniques offer tight control and tunability of porosity (macro- meso- and microscale) in terms of both size and extent. The synthesized multi-modal porous carbons are shown to be an effective solution for three important environment related applications – (i) Carbon dioxide capture using amine supported hierarchical porous carbons, (ii) Reduction in irreversible fouling of membranes used for wastewater reuse through a deposition of a layer of hierarchical porous carbons on the membrane surface, (iii) Electrode materials for electrosorptive applications. Finally, because of their tunability, the synthesized multi-modal porous carbons serve as excellent model systems for understanding the effect of different types of porosity on the performance of porous carbons for these applications. Also, recently, there has been a lot of interest in developing protective layer coatings for preventing photo-corrosion of semiconductor structures (in particular Cu2O) used for photoelectrochemical water splitting. Most of the developed protective strategies to date involve the use of metals or co-catalyst in the protective layer. Thus there is a big need for developing low-cost, facile and easy to scale protective coating strategies. Based on the expertise

  10. Advanced Carbon Materials for Environmental and Energy Applications

    KAUST Repository

    Dua, Rubal

    2014-05-01

    Carbon based materials, including porous carbons and carbon layer composites, are finding increased usage in latest environmental and energy related research. Among porous carbon materials, hierarchical porous carbons with multi-modal porosity are proving out to be an effective solution for applications where the traditional activated carbons fail. Thus, there has been a lot of recent interest in developing low-cost, facile, easy to scale-up, synthesis techniques for producing such multi-modal porous carbons. This dissertation offers two novel synthesis techniques: (i) ice templating integrated with hard templating, and (ii) salt templating coupled with hard templating, for producing such hierarchically porous carbons. The techniques offer tight control and tunability of porosity (macro- meso- and microscale) in terms of both size and extent. The synthesized multi-modal porous carbons are shown to be an effective solution for three important environment related applications – (i) Carbon dioxide capture using amine supported hierarchical porous carbons, (ii) Reduction in irreversible fouling of membranes used for wastewater reuse through a deposition of a layer of hierarchical porous carbons on the membrane surface, (iii) Electrode materials for electrosorptive applications. Finally, because of their tunability, the synthesized multi-modal porous carbons serve as excellent model systems for understanding the effect of different types of porosity on the performance of porous carbons for these applications. Also, recently, there has been a lot of interest in developing protective layer coatings for preventing photo-corrosion of semiconductor structures (in particular Cu2O) used for photoelectrochemical water splitting. Most of the developed protective strategies to date involve the use of metals or co-catalyst in the protective layer. Thus there is a big need for developing low-cost, facile and easy to scale protective coating strategies. Based on the expertise

  11. The Materials Used and the Pupils Involved in Environmental Studies and Environmental Science at GCE 'O' and 'A' Level.

    Science.gov (United States)

    Gayford, Christopher

    1984-01-01

    Discusses types of students and materials and resources used in O- and A-level environmental studies and environmental science courses. Indicates that these subjects are very susceptable to the attitudes of teachers (as shown by their willingness to produce satisfactory materials) and by the motivation of students. (JN)

  12. Consensus values for NIST biological and environmental Standard Reference Materials

    International Nuclear Information System (INIS)

    Roelandts, I.; Gladney, E.S.

    1998-01-01

    The National Institute of Standards and Technology (NIST, formerly the National Bureau of Standards or NBS) has produced numerous Standard Reference Materials (SRM) for use in biological and environmental analytical chemistry. The value listed on the ''NIST Certificate of Analysis'' is the present best estimate of the ''true'' concentration of that element and is not expected to deviate from that concentration by more than the stated uncertainty. However, NIST does not certify the elemental concentration of every constituent and the number of elements reported in the NIST programs tends to be limited.Numerous analysts have published concentration data on these reference materials. Major journals in analytical chemistry, books, proceedings and ''technical reports'' have been surveyed to collect these available literature values. A standard statistical approach has been employed to evaluate the compiled data. Our methodology has been developed in a series of previous papers. Some subjective criteria are first used to reject aberrant data. Following these eliminations, an initial arithmetic mean and standard deviation (S.D.) are computed from remaining data for each element. All data now outside two S.D. from the initial mean are dropped and a second mean and S.D. recalculated. These final means and associated S.D. are reported as ''consensus values'' in our tables. (orig.)

  13. Characteristics of meat packaging materials and their environmental suitability assessment

    Directory of Open Access Journals (Sweden)

    Šuput Danijela Z.

    2013-01-01

    Full Text Available After functional phase, packaging becomes waste that is recycled or disposed of in landfills. Recently, numerus packages have been developed for assessing the packaging risk on the environment. We applied Gabi 4 Education software on polymer product packaging for meat products. The objective of first part of the paper was characterization of materials used for meat and meat products packaging in terms of mechanical and barrier properties. Results show that tested materials are able to keep protective atmosphere and contribute to the quality and sustainability of the product. Air permeability was 3.60 and 26.60 ml/m224h, and water vapor was 6.90 and 9.50 ml/m224h, respectively, for foils 1 and 2, as a result of different film composition. In second part, based on real data, Gabi 4 Education software is applied. The obtained results showed that organic compounds emissions have the highest impact on human health and the most damaging environmental impact observed was the emission of CO2.

  14. Development of Multiscale Materials in Microfluidic Devices: Case Study for Viral Separation from Whole Blood

    Science.gov (United States)

    Surawathanawises, Krissada

    Separation and concentration of nanoscale species play an important role in various fields such as biotechnology, nanotechnology and environmental science. Inevitably, the separation efficiency strongly affects the quality of downstream detections or productions. Innovations in materials science that can separate bionanoparticles efficiently and do not require complex setups, reagents or external fields are highly demanded. This work focuses on developing new materials for the affinity separation of bio-nanoparticles such as viruses or macromolecules from a complex mixture, such as whole blood. To enhance the interaction between target nanoparticles and the capture bed, methods to produce porous matrices with a uniform pore size matching the dimension of targets are studied. Furthermore, regarding viral separation from whole blood, macroporous materials are further patterned into microarrays to allow multiscale separation. Considering the needs in resource-limited settings, these materials are integrated with microfluidic technologies to reduce the volume of samples and reagents, simplify operating processes, and enable the use of inexpensive and portable components. Beyond the application of viral separation as demonstrated in the work, the fundamental study of macroporous material formation and transport in these materials also shed light to the separation of many other nanospecies in multiscale materials. Specifically, two macroporous materials, based on template synthesis, are created in this work. The first type employs porous anodic aluminum oxide (AAO) films as the template to create hexagonal arrays of nanoposts. However, pore sizes and interpore distances (cell size) of ordered porous AAO films are limited by the conventional fabrication process. Moreover, the process usually yields defective pore morphologies and large pore and cell size distributions. To overcome these limitations, a patterning method using nanobead indentation on aluminum substrate

  15. Molecular materials and devices: developing new functional systems based on the coordination chemistry approach

    Directory of Open Access Journals (Sweden)

    Toma Henrique E.

    2003-01-01

    Full Text Available At the onset of the nanotechnology age, molecular designing of materials and single molecule studies are opening wide possibilities of using molecular systems in electronic and photonic devices, as well as in technological applications based on molecular switching or molecular recognition. In this sense, inorganic chemists are privileged by the possibility of using the basic strategies of coordination chemistry to build up functional supramolecular materials, conveying the remarkable chemical properties of the metal centers and the characteristics of the ancillary ligands. Coordination chemistry also provides effective self-assembly strategies based on specific metal-ligand affinity and stereochemistry. Several molecular based materials, derived from inorganic and metal-organic compounds are focused on this article, with emphasis on new supramolecular porphyrins and porphyrazines, metal-clusters and metal-polyimine complexes. Such systems are also discussed in terms of their applications in catalysis, sensors and molecular devices.

  16. Factors that influence the tribocharging of pulverulent materials in compressed-air devices

    Energy Technology Data Exchange (ETDEWEB)

    Das, S; Medles, K; Mihalcioiu, A; Beleca, R; Dragan, C; Dascalescu, L [Laboratory of Aerodynamic Studies, University of Poitiers, University Institute of Technology, Angouleme, 16021 (France)], E-mail: ldascalescu@iutang.univ-poitiers.fr

    2008-12-01

    Tribocharging of pulverulent materials in compressed-air devices is a typical multi-factorial process. This paper aims at demonstrating the interest of using the design of experiments methodology in association with virtual instrumentation for quantifying the effects of various process varaibles and of their interactions, as a prerequisite for the development of new tribocharging devices for industrial applications. The study is focused on the tribocharging of PVC powders in compressed-air devices similar to those employed in electrostatic painting. A classical 2 full-factorial design (3 factors at two levels) was employed for conducting the experiments. The response function was the charge/mass ratio of the material collected in a modified Faraday cage, at the exit of the tribocharging device. The charge/mass ratio was found to increase with the injection pressure and the vortex pressure in the tribocharging device, and to decrease with the increasing of the feed rate. In the present study an in-house design of experiments software was employed for statistical analysis of experimental data and validation of the experimental model.

  17. Factors that influence the tribocharging of pulverulent materials in compressed-air devices

    International Nuclear Information System (INIS)

    Das, S; Medles, K; Mihalcioiu, A; Beleca, R; Dragan, C; Dascalescu, L

    2008-01-01

    Tribocharging of pulverulent materials in compressed-air devices is a typical multi-factorial process. This paper aims at demonstrating the interest of using the design of experiments methodology in association with virtual instrumentation for quantifying the effects of various process varaibles and of their interactions, as a prerequisite for the development of new tribocharging devices for industrial applications. The study is focused on the tribocharging of PVC powders in compressed-air devices similar to those employed in electrostatic painting. A classical 2 full-factorial design (3 factors at two levels) was employed for conducting the experiments. The response function was the charge/mass ratio of the material collected in a modified Faraday cage, at the exit of the tribocharging device. The charge/mass ratio was found to increase with the injection pressure and the vortex pressure in the tribocharging device, and to decrease with the increasing of the feed rate. In the present study an in-house design of experiments software was employed for statistical analysis of experimental data and validation of the experimental model.

  18. Recent Developments in p-Type Oxide Semiconductor Materials and Devices

    KAUST Repository

    Wang, Zhenwei

    2016-02-16

    The development of transparent p-type oxide semiconductors with good performance may be a true enabler for a variety of applications where transparency, power efficiency, and greater circuit complexity are needed. Such applications include transparent electronics, displays, sensors, photovoltaics, memristors, and electrochromics. Hence, here, recent developments in materials and devices based on p-type oxide semiconductors are reviewed, including ternary Cu-bearing oxides, binary copper oxides, tin monoxide, spinel oxides, and nickel oxides. The crystal and electronic structures of these materials are discussed, along with approaches to enhance valence-band dispersion to reduce effective mass and increase mobility. Strategies to reduce interfacial defects, off-state current, and material instability are suggested. Furthermore, it is shown that promising progress has been made in the performance of various types of devices based on p-type oxides. Several innovative approaches exist to fabricate transparent complementary metal oxide semiconductor (CMOS) devices, including novel device fabrication schemes and utilization of surface chemistry effects, resulting in good inverter gains. However, despite recent developments, p-type oxides still lag in performance behind their n-type counterparts, which have entered volume production in the display market. Recent successes along with the hurdles that stand in the way of commercial success of p-type oxide semiconductors are presented.

  19. Recent Developments in p-Type Oxide Semiconductor Materials and Devices

    KAUST Repository

    Wang, Zhenwei; Nayak, Pradipta K.; Caraveo-Frescas, Jesus Alfonso; Alshareef, Husam N.

    2016-01-01

    The development of transparent p-type oxide semiconductors with good performance may be a true enabler for a variety of applications where transparency, power efficiency, and greater circuit complexity are needed. Such applications include transparent electronics, displays, sensors, photovoltaics, memristors, and electrochromics. Hence, here, recent developments in materials and devices based on p-type oxide semiconductors are reviewed, including ternary Cu-bearing oxides, binary copper oxides, tin monoxide, spinel oxides, and nickel oxides. The crystal and electronic structures of these materials are discussed, along with approaches to enhance valence-band dispersion to reduce effective mass and increase mobility. Strategies to reduce interfacial defects, off-state current, and material instability are suggested. Furthermore, it is shown that promising progress has been made in the performance of various types of devices based on p-type oxides. Several innovative approaches exist to fabricate transparent complementary metal oxide semiconductor (CMOS) devices, including novel device fabrication schemes and utilization of surface chemistry effects, resulting in good inverter gains. However, despite recent developments, p-type oxides still lag in performance behind their n-type counterparts, which have entered volume production in the display market. Recent successes along with the hurdles that stand in the way of commercial success of p-type oxide semiconductors are presented.

  20. Carbon-Based Materials for Lithium-Ion Batteries, Electrochemical Capacitors, and Their Hybrid Devices.

    Science.gov (United States)

    Yao, Fei; Pham, Duy Tho; Lee, Young Hee

    2015-07-20

    A rapidly developing market for portable electronic devices and hybrid electrical vehicles requires an urgent supply of mature energy-storage systems. As a result, lithium-ion batteries and electrochemical capacitors have lately attracted broad attention. Nevertheless, it is well known that both devices have their own drawbacks. With the fast development of nanoscience and nanotechnology, various structures and materials have been proposed to overcome the deficiencies of both devices to improve their electrochemical performance further. In this Review, electrochemical storage mechanisms based on carbon materials for both lithium-ion batteries and electrochemical capacitors are introduced. Non-faradic processes (electric double-layer capacitance) and faradic reactions (pseudocapacitance and intercalation) are generally explained. Electrochemical performance based on different types of electrolytes is briefly reviewed. Furthermore, impedance behavior based on Nyquist plots is discussed. We demonstrate the influence of cell conductivity, electrode/electrolyte interface, and ion diffusion on impedance performance. We illustrate that relaxation time, which is closely related to ion diffusion, can be extracted from Nyquist plots and compared between lithium-ion batteries and electrochemical capacitors. Finally, recent progress in the design of anodes for lithium-ion batteries, electrochemical capacitors, and their hybrid devices based on carbonaceous materials are reviewed. Challenges and future perspectives are further discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications.

    Science.gov (United States)

    Zeng, Wei; Shu, Lin; Li, Qiao; Chen, Song; Wang, Fei; Tao, Xiao-Ming

    2014-08-20

    Fiber-based structures are highly desirable for wearable electronics that are expected to be light-weight, long-lasting, flexible, and conformable. Many fibrous structures have been manufactured by well-established lost-effective textile processing technologies, normally at ambient conditions. The advancement of nanotechnology has made it feasible to build electronic devices directly on the surface or inside of single fibers, which have typical thickness of several to tens microns. However, imparting electronic functions to porous, highly deformable and three-dimensional fiber assemblies and maintaining them during wear represent great challenges from both views of fundamental understanding and practical implementation. This article attempts to critically review the current state-of-arts with respect to materials, fabrication techniques, and structural design of devices as well as applications of the fiber-based wearable electronic products. In addition, this review elaborates the performance requirements of the fiber-based wearable electronic products, especially regarding the correlation among materials, fiber/textile structures and electronic as well as mechanical functionalities of fiber-based electronic devices. Finally, discussions will be presented regarding to limitations of current materials, fabrication techniques, devices concerning manufacturability and performance as well as scientific understanding that must be improved prior to their wide adoption. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Stroke rehabilitation: assistive technology devices and environmental modifications following primary rehabilitation in hospital--a therapeutic perspective

    DEFF Research Database (Denmark)

    Sørensen, Hanne Vinkel; Lendal, Susie; Schultz-Larsen, Kirsten

    2003-01-01

    The aim of this article is to describe the need for assistive devices and environmental modifications among long-living stroke survivors and to investigate if the need is continued and growing over time. The study sample of 155 consecutive stroke patients with stroke-related impairment, discharged...... home from three hospitals in Copenhagen from 1996 through 1998, constituted 20% of the total population of stroke survivors in this area. The results showed that 75% of these patients were provided with assistive devices and/or environmental modifications at discharge. Six months after discharge...... be required in order to target stroke survivors' changing needs for assistive devices and environmental modifications....

  3. Magnetic Shape Memory Alloys as smart materials for micro-positioning devices

    Directory of Open Access Journals (Sweden)

    A. Hubert

    2012-10-01

    Full Text Available In the field of microrobotics, actuators based on smart materials are predominant because of very good precision, integration capabilities and high compactness. This paper presents the main characteristics of Magnetic Shape Memory Alloys as new candidates for the design of micromechatronic devices. The thermo-magneto-mechanical energy conversion process is first presented followed by the adequate modeling procedure required to design actuators. Finally, some actuators prototypes realized at the Femto-ST institute are presented, including a push-pull bidirectional actuator. Some results on the control and performances of these devices conclude the paper.

  4. Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design

    Science.gov (United States)

    Liu, Jilei; Wang, Jin; Xu, Chaohe; Li, Chunzhong; Lin, Jianyi

    2017-01-01

    Abstract Tremendous efforts have been dedicated into the development of high‐performance energy storage devices with nanoscale design and hybrid approaches. The boundary between the electrochemical capacitors and batteries becomes less distinctive. The same material may display capacitive or battery‐like behavior depending on the electrode design and the charge storage guest ions. Therefore, the underlying mechanisms and the electrochemical processes occurring upon charge storage may be confusing for researchers who are new to the field as well as some of the chemists and material scientists already in the field. This review provides fundamentals of the similarities and differences between electrochemical capacitors and batteries from kinetic and material point of view. Basic techniques and analysis methods to distinguish the capacitive and battery‐like behavior are discussed. Furthermore, guidelines for material selection, the state‐of‐the‐art materials, and the electrode design rules to advanced electrode are proposed. PMID:29375964

  5. Latest advances in supercapacitors: from new electrode materials to novel device designs.

    Science.gov (United States)

    Wang, Faxing; Wu, Xiongwei; Yuan, Xinhai; Liu, Zaichun; Zhang, Yi; Fu, Lijun; Zhu, Yusong; Zhou, Qingming; Wu, Yuping; Huang, Wei

    2017-11-13

    Notably, many significant breakthroughs for a new generation of supercapacitors have been reported in recent years, related to theoretical understanding, material synthesis and device designs. Herein, we summarize the state-of-the-art progress toward mechanisms, new materials, and novel device designs for supercapacitors. Firstly, fundamental understanding of the mechanism is mainly focused on the relationship between the structural properties of electrode materials and their electrochemical performances based on some in situ characterization techniques and simulations. Secondly, some emerging electrode materials are discussed, including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), MXenes, metal nitrides, black phosphorus, LaMnO 3 , and RbAg 4 I 5 /graphite. Thirdly, the device innovations for the next generation of supercapacitors are provided successively, mainly emphasizing flow supercapacitors, alternating current (AC) line-filtering supercapacitors, redox electrolyte enhanced supercapacitors, metal ion hybrid supercapacitors, micro-supercapacitors (fiber, plane and three-dimensional) and multifunctional supercapacitors including electrochromic supercapacitors, self-healing supercapacitors, piezoelectric supercapacitors, shape-memory supercapacitors, thermal self-protective supercapacitors, thermal self-charging supercapacitors, and photo self-charging supercapacitors. Finally, the future developments and key technical challenges are highlighted regarding further research in this thriving field.

  6. Smart Materials Meet Multifunctional Biomedical Devices: Current and Prospective Implications for Nanomedicine

    Directory of Open Access Journals (Sweden)

    Giada Graziana Genchi

    2017-12-01

    Full Text Available With the increasing advances in the fabrication and in monitoring approaches of nanotechnology devices, novel materials are being synthesized and tested for the interaction with biological environments. Among them, smart materials in particular provide versatile and dynamically tunable platforms for the investigation and manipulation of several biological activities with very low invasiveness in hardly accessible anatomical districts. In the following, we will briefly recall recent examples of nanotechnology-based materials that can be remotely activated and controlled through different sources of energy, such as electromagnetic fields or ultrasounds, for their relevance to both basic science investigations and translational nanomedicine. Moreover, we will introduce some examples of hybrid materials showing mutually beneficial components for the development of multifunctional devices, able to simultaneously perform duties like imaging, tissue targeting, drug delivery, and redox state control. Finally, we will highlight challenging perspectives for the development of theranostic agents (merging diagnostic and therapeutic functionalities, underlining open questions for these smart nanotechnology-based devices to be made readily available to the patients in need.

  7. The Architecture of Colloidal Quantum Dot Solar Cells: Materials to Devices

    KAUST Repository

    Kramer, Illan J.

    2014-01-08

    The materials chemistry of Colloidal Quantum Dot (CQDs) suspended in solution and processed into films has provided a foundation onto which useful photovoltaic devices can be built. These active materials offer the benefits of solution processing paired with the flexibility of adjustable bandgaps, tailored to suit a particular need. In parallel with these advances, pursuing device geometries that better leverage the available electronic properties of CQD films has borne fruit in further advancing CQD solar cell performance. For active materials such as CQD films where 1/α, where alpha is the absorption coefficient, is of the same order as the free carrier extraction length, external quantum efficiency (EQE) measurements have proved useful in profiling the effectiveness of each nanometer of device thickness at extracting photogenerated carriers. Because CQD films have the added complications of being made of variable-sized constituent material building blocks as well as being deposited from solution, the nature of charge transport through the films can also be size-dependent and matrix dependent.

  8. Miniaturized supercapacitors: key materials and structures towards autonomous and sustainable devices and systems

    Science.gov (United States)

    Soavi, Francesca; Bettini, Luca Giacomo; Piseri, Paolo; Milani, Paolo; Santoro, Carlo; Atanassov, Plamen; Arbizzani, Catia

    2016-09-01

    Supercapacitors (SCs) are playing a key role for the development of self-powered and self-sustaining integrated systems for different fields ranging from remote sensing, robotics and medical devices. SC miniaturization and integration into more complex systems that include energy harvesters and functional devices are valuable strategies that address system autonomy. Here, we discuss about novel SC fabrication and integration approaches. Specifically, we report about the results of interdisciplinary activities on the development of thin, flexible SCs by an additive technology based on Supersonic Cluster Beam Deposition (SCBD) to be implemented into supercapacitive electrolyte gated transistors and supercapacitive microbial fuel cells. Such systems integrate at materials level the specific functions of devices, like electric switch or energy harvesting with the reversible energy storage capability. These studies might open new frontiers for the development and application of new multifunction-energy storage elements.

  9. Towards Efficient Spectral Converters through Materials Design for Luminescent Solar Devices.

    Science.gov (United States)

    McKenna, Barry; Evans, Rachel C

    2017-07-01

    Single-junction photovoltaic devices exhibit a bottleneck in their efficiency due to incomplete or inefficient harvesting of photons in the low- or high-energy regions of the solar spectrum. Spectral converters can be used to convert solar photons into energies that are more effectively captured by the photovoltaic device through a photoluminescence process. Here, recent advances in the fields of luminescent solar concentration, luminescent downshifting, and upconversion are discussed. The focus is specifically on the role that materials science has to play in overcoming barriers in the optical performance in all spectral converters and on their successful integration with both established (e.g., c-Si, GaAs) and emerging (perovskite, organic, dye-sensitized) cell types. Current challenges and emerging research directions, which need to be addressed for the development of next-generation luminescent solar devices, are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Iron: a versatile element to produce materials for environmental applications

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Ana Paula C.; Araujo, Maria H.; Oliveira, Luiz C.A.; Moura, Flavia C.C.; Lago, Rochel M., E-mail: rochel@ufmg.br, E-mail: anapct@ufmg.br [Departamento de Quimica, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Tristao, Juliana C. [Universidade Federal de Vicosa, Florestal, MG (Brazil); Ardisson, Jose D. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Lab. de Fisica Aplicada; Amorim, Camila C., E-mail: juliana@ufv.br [Departamento de Engenharia Sanitaria e Ambiental, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil)

    2012-09-15

    Iron is a versatile element forming several phases with different oxidation states and {sup s}tructures, such as Fe{sup 0}, FeO, Fe{sub 3}O{sub 4}, {gamma}-Fe{sub 2}O{sub 3}, {alpha}-Fe{sub 2}O{sub 3} and FeOOH. All these phases have unique physicochemical properties which can be used for different applications. In this work, it is described the use of different iron compounds, synthetic and also from natural and waste sources, in environmental and technological applications. Two main research areas are described. The first one is related to strategies to increase the reactivity of Fe phases, mainly by the formation of Fe{sup 0}/iron oxide composites and by the introduction of new metals in the iron oxide structure to promote new surface reactions. The second area is the use of the magnetic properties of some iron phases to produce versatile magnetic materials with focus in adsorption, catalysis and emulsions. (author)

  11. Optimization of material/device parameters of CdTe photovoltaic for solar cells applications

    Science.gov (United States)

    Wijewarnasuriya, Priyalal S.

    2016-05-01

    Cadmium telluride (CdTe) has been recognized as a promising photovoltaic material for thin-film solar cell applications due to its near optimum bandgap of ~1.5 eV and high absorption coefficient. The energy gap is near optimum for a single-junction solar cell. The high absorption coefficient allows films as thin as 2.5 μm to absorb more than 98% of the above-bandgap radiation. Cells with efficiencies near 20% have been produced with poly-CdTe materials. This paper examines n/p heterostructure device architecture. The performance limitations related to doping concentrations, minority carrier lifetimes, absorber layer thickness, and surface recombination velocities at the back and front interfaces is assessed. Ultimately, the paper explores device architectures of poly- CdTe and crystalline CdTe to achieve performance comparable to gallium arsenide (GaAs).

  12. Device Innovation and Material Challenges at the Limits of CMOS Technology

    Science.gov (United States)

    Solomon, P. M.

    2000-08-01

    Scaling of the predominant silicon complementary metal-oxide semiconductor (CMOS) technology is finally approaching an end after decades of exponential growth. This review explores the reasons for this limit and some of the strategies available to the semiconductor industry to continue the technology extension. Evolutionary change to the silicon transistor will be pursued as long as possible, with increasing demands being placed on materials. Eventually new materials such a silicon-germanium may be used, and new device topologies such as the double-gated transistor may be employed. These strategies are being pursued in research organizations today. It is likely that planar technology will reach its limit with devices on the 10-nm scale, and then the third dimension will have to be exploited more efficiently to achieve further performance and density improvements.

  13. Use of Silicon Carbide as Beam Intercepting Device Material: Tests, Issues and Numerical Simulations

    CERN Document Server

    Delonca, M; Gil Costa, M; Vacca, A

    2014-01-01

    Silicon Carbide (SiC) stands as one of the most promising ceramic material with respect to its thermal shock resistance and mechanical strengths. It has hence been considered as candidate material for the development of higher performance beam intercepting devices at CERN. Its brazing with a metal counterpart has been tested and characterized by means of microstructural and ultrasound techniques. Despite the positive results, its use has to be evaluated with care, due to the strong evidence in literature of large and permanent volumetric expansion, called swelling, under the effect of neutron and ion irradiation. This may cause premature and sudden failure, and can be mitigated to some extent by operating at high temperature. For this reason limited information is available for irradiation below 100°C, which is the typical temperature of interest for beam intercepting devices like dumps or collimators. This paper describes the brazing campaign carried out at CERN, the results, and the theoretical and numeric...

  14. Nanocrystalline silicon as the light emitting material of a field emission display device

    International Nuclear Information System (INIS)

    Biaggi-Labiosa, A; Sola, F; Resto, O; Fonseca, L F; Gonzalez-BerrIos, A; Jesus, J De; Morell, G

    2008-01-01

    A nanocrystalline Si-based paste was successfully tested as the light emitting material in a field emission display test device that employed a film of carbon nanofibers as the electron source. Stable emission in the 550-850 nm range was obtained at 16 V μm -1 . This relatively low field required for intense cathodoluminescence (CL) from the PSi paste may lead to longer term reliability of both the electron emitting and the light emitting materials, and to lower power consumption. Here we describe the synthesis, characterization, and analyses of the light emitting nanostructured Si paste and the electron emitting C nanofibers used for building the device, including x-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. The corresponding spectra and field emission curves are also shown and discussed

  15. The physics of degradation in engineered materials and devices fundamentals and principles

    CERN Document Server

    Swingler, Jonathan

    2015-01-01

    Degradation is apparent in all things and is fundamental to both manufactured and natural objects. It is often described by the second law of thermodynamics, where entropy, a measure of disorder, tends to increase with time in a closed system. Things age! This concise reference work brings together experts and key players engaged in the physics of degradation to present the background science, current thinking and developments in understanding, and gives a detailed account of emerging issues across a selection of engineering applications. The work has been put together to equip the upper level undergraduate student, postgraduate student, as well as the professional engineer and scientist, in the importance of physics of degradation. The aim of The Physics of Degradation in Engineered Materials and Devices is to bridge the gap between published textbooks on the fundamental science of degradation phenomena and published research on the engineering science of actual fabricated materials and devices. A history o...

  16. 10 CFR 32.74 - Manufacture and distribution of sources or devices containing byproduct material for medical use.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Manufacture and distribution of sources or devices... SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS CONTAINING BYPRODUCT MATERIAL Generally Licensed Items § 32.74 Manufacture and distribution of sources or devices containing byproduct material for...

  17. Evaluation of the performance characteristics of radon and radon-daughter concentration measurement devices under controlled environmental conditions

    International Nuclear Information System (INIS)

    Pearson, M.D.

    1989-04-01

    The Technical Measurements Center (TMC) conducted a study to expose 10 radon and 7 radon-daughter concentration measurement devices in the DOE/GJPO Radon/Radon-Daughter Environmental Chamber for a series of 24 controlled-environment tests. The tests evaluated the devices' response to temperature, relative humidity, dew point, condensation-nuclei concentration, radon-daughter/radon equilibrium ratio, and non-uniform radon and radon-daughter concentration. Devices were evaluated for linear response as a function of concentration. In addition to response to environmental parameters, the evaluation included determining the utility of the devices in providing reasonable assurance of compliance with the radon and radon-daughter concentration standards for DOE remedial action programs. This reasonable assurance criterion is based on a coefficient of variation of 25 percent for devices deployed for year-long measurements and a coefficient of variation of 18 percent for devices deployed for intermittent sampling. 39 refs., 65 figs., 33 tabs

  18. GaN and ZnO-based materials and devices

    CERN Document Server

    2012-01-01

    The AlInGaN and ZnO materials systems have proven to be one of the scientifically and technologically important areas of development over the past 15 years, with applications in UV/visible optoelectronics and in high-power/high-frequency microwave devices. The pace of advances in these areas has been remarkable and the wide band gap community relies on books like the one we are proposing to provide a review and summary of recent progress.

  19. Organic and Hybrid Organic Solid-State Photovoltaic Materials and Devices

    Science.gov (United States)

    2014-03-06

    extraction with minimization of electron -hole recombination, resistive losses, down conversions and so on and on device processing. Meeting the...the establishment of multiple feedback loops through Mexico/US video conferencing (including all students) needed to capitalize on the high degree of...PCBM) as electron acceptor material. The cells were not optimized in active layer preparation conditions such as solvent, thickness, annealing, or

  20. Incorporation of Novel Nanostructured Materials into Solar Cells and Nanoelectronic Devices

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Rene; Pak, Joshua; Holland, Andrew; Hunt, Alan; Bitterwolf, Thomas; Qiang, You; Bergman, Leah; Berven, Christine; Punnoose, Alex; Tenne, Dmitri

    2011-11-11

    Each of the investigators on this project has had significant accomplishments toward the production of semiconductor nanoparticles, particles, and thin films and attempts to incorporate these materials into photovoltaics or sensors; to use them for improving fluorescence diagnostics; or to employ them as cancer fighting agents. The synthesis and characterization of the nanomaterials, and more recently the device construction and testing of these materials, have been the subject of several publications and presentations by team members. During the course of the investigations, several students were fully involved as part of their graduate and undergraduate training. The nature of these projects in material development dictates that the students have gained significant experience in a diverse array of material-related topics.

  1. Protection of environmental contamination by radioactive materials and remediation of environment

    International Nuclear Information System (INIS)

    2003-05-01

    This report consisted of the environmental contamination of radioactive and non-radioactive materials. 38 important accident examples of environmental contamination of radioactive materials in the world from 1944 to 2001 are stated. Heavily polluted areas by accidents are explained, for example, Chernobyl, atomic reactor accidents, development of nuclear weapon in USA and USSR, radioactive waste in the sea. The environmental contamination ability caused by using radioactive materials, medical use, operating reactor, disposal, transferring, crashing of airplane and artificial satellite, release are reported. It contains measurements and monitor technologies, remediation technologies of environmental contamination and separation and transmutation of radioactive materials. On the environmental contamination by non-radioactive materials, transformation of the soil contamination in Japan and its control technologies are explained. Protection and countermeasure of environmental contamination of radioactive and non-radioactive materials in Japan and the international organs are presented. There are summary and proposal in the seventh chapter. (S.Y.)

  2. Realization of the Energy Saving of the Environmental Examination Device Temperature Control System in Consideration of Temperature Characteristics

    Science.gov (United States)

    Onogaki, Hitoshi; Yokoyama, Shuichi

    The temperature control of the environmental examination device has loss of the energy consumption to cool it while warming it. This paper proposed a tempareture control system method with energy saving for the enviromental examination device without using cooling in consideration of temperature characteristics.

  3. Phase-change materials for non-volatile memory devices: from technological challenges to materials science issues

    Science.gov (United States)

    Noé, Pierre; Vallée, Christophe; Hippert, Françoise; Fillot, Frédéric; Raty, Jean-Yves

    2018-01-01

    Chalcogenide phase-change materials (PCMs), such as Ge-Sb-Te alloys, have shown outstanding properties, which has led to their successful use for a long time in optical memories (DVDs) and, recently, in non-volatile resistive memories. The latter, known as PCM memories or phase-change random access memories (PCRAMs), are the most promising candidates among emerging non-volatile memory (NVM) technologies to replace the current FLASH memories at CMOS technology nodes under 28 nm. Chalcogenide PCMs exhibit fast and reversible phase transformations between crystalline and amorphous states with very different transport and optical properties leading to a unique set of features for PCRAMs, such as fast programming, good cyclability, high scalability, multi-level storage capability, and good data retention. Nevertheless, PCM memory technology has to overcome several challenges to definitively invade the NVM market. In this review paper, we examine the main technological challenges that PCM memory technology must face and we illustrate how new memory architecture, innovative deposition methods, and PCM composition optimization can contribute to further improvements of this technology. In particular, we examine how to lower the programming currents and increase data retention. Scaling down PCM memories for large-scale integration means the incorporation of the PCM into more and more confined structures and raises materials science issues in order to understand interface and size effects on crystallization. Other materials science issues are related to the stability and ageing of the amorphous state of PCMs. The stability of the amorphous phase, which determines data retention in memory devices, can be increased by doping the PCM. Ageing of the amorphous phase leads to a large increase of the resistivity with time (resistance drift), which has up to now hindered the development of ultra-high multi-level storage devices. A review of the current understanding of all these

  4. Design, modeling and utilization of thermoelectrical materials and devices in energy systems

    DEFF Research Database (Denmark)

    Chen, Min

    Thermoelectric generators can convert waste heat that abounds in modern societies into electricity in an environmentally-friendly and reliable manner, and many applications of thermoelectric devices can be envisaged. The research of this PhD dissertation focuses thermoelectric generator modeling...... at a device level as well as its applications in energy systems. The purpose is to introduce the use of thermoelectric generator into energy systems, and to indicate the impact of implementing thermoelectric generator on the design and operation of energy systems. For this purpose, this dissertation produces...... numerical models as versatile simulation tools to identify speci c optimum design criteria for thermoelectric generators used in various associated thermal and electrical systems, so that the generation performance can be improved due to the optimum system design....

  5. Proceedings of the 4th Conference on Aerospace Materials, Processes, and Environmental Technology

    Science.gov (United States)

    Griffin, D. E. (Editor); Stanley, D. C. (Editor)

    2001-01-01

    The next millennium challenges us to produce innovative materials, processes, manufacturing, and environmental technologies that meet low-cost aerospace transportation needs while maintaining US leadership. The pursuit of advanced aerospace materials, manufacturing processes, and environmental technologies supports the development of safer, operational, next-generation, reusable, and expendable aeronautical and space vehicle systems. The Aerospace Materials, Processes, and Environmental Technology Conference (AMPET) provided a forum for manufacturing, environmental, materials, and processes engineers, scientists, and managers to describe, review, and critically assess advances in these key technology areas.

  6. Environmentally assisted cracking of light-water reactor materials

    International Nuclear Information System (INIS)

    Chopra, O.K.; Chung, H.M.; Kassner, T.F.; Shack, W.J.

    1996-02-01

    Environmentally assisted cracking (EAC) of lightwater reactor (LWR) materials has affected nuclear reactors from the very introduction of the technology. Corrosion problems have afflicted steam generators from the very introduction of pressurized water reactor (PWR) technology. Shippingport, the first commercial PWR operated in the United States, developed leaking cracks in two Type 304 stainless steel (SS) steam generator tubes as early as 1957, after only 150 h of operation. Stress corrosion cracks were observed in the heat-affected zones of welds in austenitic SS piping and associated components in boiling-water reactors (BRWs) as early as 1965. The degradation of steam generator tubing in PWRs and the stress corrosion cracking (SCC) of austenitic SS piping in BWRs have been the most visible and most expensive examples of EAC in LWRs, and the repair and replacement of steam generators and recirculation piping has cost hundreds of millions of dollars. However, other problems associated with the effects of the environment on reactor structures and components am important concerns in operating plants and for extended reactor lifetimes. Cast duplex austenitic-ferritic SSs are used extensively in the nuclear industry to fabricate pump casings and valve bodies for LWRs and primary coolant piping in many PWRs. Embrittlement of the ferrite phase in cast duplex SS may occur after 10 to 20 years at reactor operating temperatures, which could influence the mechanical response and integrity of pressure boundary components during high strain-rate loading (e.g., seismic events). The problem is of most concern in PWRs where slightly higher temperatures are typical and cast SS piping is widely used

  7. Environmental degradation of materials and corrosion control in metals

    International Nuclear Information System (INIS)

    Lou, J.; Elboujdaini, M.; Shoesmith, D.; Patnaik, P.C.

    2003-01-01

    The first International Symposium on Environmental Degradation of Materials and Corrosion Control In Metals (EDMCCM), held in Quebec City in 1999, was very successful. Encouraged by this success. the Metallurgical Society of CIM organized the Second International Conference in what is hoped will be an on-going series. This meeting was held in Vancouver, British Columbia, Canada, in August 2003. The objective of this conference was to provide a wide-ranging forum for the discussion of recent developments in the study and understanding of corrosion degradation of metals and alloys and the variety of processes by which corrosion damage accumulates. The scope of the meeting ranged from the fundamental to the very applied with a primary emphasis on the inter-relationships between chemical, electrochemical, mechanical and metallurgical features of corrosion. This symposium was an excellent forum for the exchange of ideas and approaches between generally disparate fields of endeavour. The success of the symposium can be gauged from the large number of papers presented and the outstanding level of international participation, with authors from China, Iran, Japan, North America, Russia, United Kingdom and Venezuela. In addition authors from six Canadian provinces (Alberta, British Columbia, New Brunswick, Ontario, Quebec, Saskatchewan) participated. Six keynote presentations covered a wide range of topics and industries in corrosion and corrosion control, and a total 45 papers were presented, spread over three days in six individual sessions; Electrochemistry and Corrosion of Metals, Corrosion and Cracking Behaviour. Hydrogen in Steel and Pipeline Corrosion, Corrosion Case Studies and Applications, Characterization of Corrosion Behaviour, and Corrosion Protection Coatings. (author)

  8. Development of a Device for a Material Irradiation Test in the OR Test Hole

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Man Soon; Kang, Y. H.; Kim, B. G.; Choo, K. N.; Sohn, J. M.; Shin, Y. T.; Park, S. J.; Seo, C. K

    2008-05-15

    To develop a technology and a device for the irradiation test for utilization of the OR/IP holes according to the various requirements of users, the properties of the OR/IP holes were investigated and an irradiation device for the OR hole was designed and fabricated. The OR-4, 5 and the IP-9, 10, 11 holes were selected as those suitable to irradiation tests among the test holes located in the out core area. The conceptual design was performed to design a device to irradiate materials using the OR and IP holes. The capsule for the OR holes is fixed by pressing the protection tube using a clamping device, on the other hand the IP capsule is inserted in the hole without a special clamping device. In the basic design of the irradiation device for the OR hole, the capsules having the outside diameter of 50, 52, 54, 56mm were reviewed theoretically to investigate if they meet the hydraulic and vibration conditions required in the HANARO. The results of the pressure drop test showed that the 3 kinds of capsules having diameter of 52, 54, 56mm satisfied the requirement for the pressure difference and flow rate in HANARO. The capsule of {phi}56mm out of the above three satisfied the vibration condition and was finally selected giving consideration of a capacity of specimens. The capsule having a diameter of {phi}56mm was fabricated and the flow rate was measured. Using the velocity data measured at the out-core facility, the heat transfer coefficient, and the temperature on the surface of the capsule was evaluated to confirm it less than the ONB temperature. As a result, the capsule of {phi}56mm was selected for the irradiation test at the OR holes.

  9. Environmental barriers to participation and facilitators for use of three types of assistive technology devices.

    Science.gov (United States)

    Widehammar, Cathrine; Lidström, Helene; Hermansson, Liselotte

    2017-08-07

    The aim was to compare the presence of environmental barriers to participation and facilitators for assistive technology (AT) use and study the relation between barriers and AT use in three different AT devices. A cross-sectional survey was conducted. Inclusion criteria were ≥one year of experience as a user of myoelectric prosthesis (MEP), powered mobility device (PMD), or assistive technology for cognition (ATC) and age 20-90 years. Overall, 156 participants answered the Swedish version of the Craig Hospital Inventory of Environmental Factors and a study-specific questionnaire on facilitating factors. Non-parametric tests were used for comparisons. Barriers to participation were lowest in MEP users (md=0.12; p>0.001), and highest in ATC users (md=1.56; p>0.001) with the least support for AT use (p>0.001 - p=0.048). A positive correlation between fewer barriers and higher use of MEP was seen (r=0.30, p=0.038). The greatest barriers to participation were Natural environment, Surroundings and Information, and the most support came from relatives and professionals. Support, training and education are vital in the use of AT. These factors may lead to a more sustained and prolonged use of AT and may enable increased participation. Future research should focus on interventions that meet the needs of people with cognitive disabilities.

  10. Device for Detection of Explosives, Nuclear and Other Hazardous Materials in Luggage and Cargo Containers

    Science.gov (United States)

    Kuznetsov, Andrey; Evsenin, Alexey; Gorshkov, Igor; Osetrov, Oleg; Vakhtin, Dmitry

    2009-12-01

    Device for detection of explosives, radioactive and heavily shielded nuclear materials in luggage and cargo containers based on Nanosecond Neutron Analysis/Associated Particles Technique (NNA/APT) is under construction. Detection module consists of a small neutron generator with built-in position-sensitive detector of associated alpha-particles, and several scintillator-based gamma-ray detectors. Explosives and other hazardous chemicals are detected by analyzing secondary high-energy gamma-rays from reactions of fast neutrons with materials inside a container. The same gamma-ray detectors are used to detect unshielded radioactive and nuclear materials. An array of several neutron detectors is used to detect fast neutrons from induced fission of nuclear materials. Coincidence and timing analysis allows one to discriminate between fission neutrons and scattered probing neutrons. Mathematical modeling by MCNP5 and MCNP-PoliMi codes was used to estimate the sensitivity of the device and its optimal configuration. Comparison of the features of three gamma detector types—based on BGO, NaI and LaBr3 crystals is presented.

  11. Device for Detection of Explosives, Nuclear and Other Hazardous Materials in Luggage and Cargo Containers

    International Nuclear Information System (INIS)

    Kuznetsov, Andrey; Evsenin, Alexey; Osetrov, Oleg; Vakhtin, Dmitry; Gorshkov, Igor

    2009-01-01

    Device for detection of explosives, radioactive and heavily shielded nuclear materials in luggage and cargo containers based on Nanosecond Neutron Analysis/Associated Particles Technique (NNA/APT) is under construction. Detection module consists of a small neutron generator with built-in position-sensitive detector of associated alpha-particles, and several scintillator-based gamma-ray detectors. Explosives and other hazardous chemicals are detected by analyzing secondary high-energy gamma-rays from reactions of fast neutrons with materials inside a container. The same gamma-ray detectors are used to detect unshielded radioactive and nuclear materials. An array of several neutron detectors is used to detect fast neutrons from induced fission of nuclear materials. Coincidence and timing analysis allows one to discriminate between fission neutrons and scattered probing neutrons. Mathematical modeling by MCNP5 and MCNP-PoliMi codes was used to estimate the sensitivity of the device and its optimal configuration. Comparison of the features of three gamma detector types--based on BGO, NaI and LaBr 3 crystals is presented.

  12. Nanotemplated platinum fuel cell catalysts and copper-tin lithium battery anode materials for microenergy devices

    Energy Technology Data Exchange (ETDEWEB)

    Rohan, J.F., E-mail: james.rohan@tyndall.ie [Tyndall National Institute, University College Cork, Lee Maltings, Cork (Ireland); Hasan, M.; Holubowitch, N. [Tyndall National Institute, University College Cork, Lee Maltings, Cork (Ireland)

    2011-11-01

    Highlights: > Anodic Aluminum oxide formation on Si substrate. > High density nanotemplated Pt catalyst on Si for integrated energy and electronics. > CuSn alloy deposition from a single, high efficiency methanesulfonate plating bath. > Nanotemplated CuSn Li anode electrodes with high capacity retention. - Abstract: Nanotemplated materials have significant potential for applications in energy conversion and storage devices due to their unique physical properties. Nanostructured materials provide additional electrode surface area beneficial for energy conversion or storage applications with short path lengths for electronic and ionic transport and thus the possibility of higher reaction rates. We report on the use of controlled growth of metal and alloy electrodeposited templated nanostructures for energy applications. Anodic aluminium oxide templates fabricated on Si for energy materials integration with electronic devices and their use for fuel cell and battery materials deposition is discussed. Nanostructured Pt anode catalysts for methanol fuel cells are shown. Templated CuSn alloy anodes that possess high capacity retention with cycling for lithium microbattery integration are also presented.

  13. Application of radiation chemistry in materials modification and environmental protection

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    2007-01-01

    Radiation chemistry is a part of the physical chemistry similarly like photo-chemistry, plasma-chemistry, ultrasonic-chemistry etc. Ionizing radiation produces abundant secondary electrons. Following these primary events, the ions, secondary electrons and excited molecules undergo further transformations, exchanging charges and energy and reacting with surrounding molecules, thereby producing free radicals and other reactive species which finally evolve into new stable products. Three main sources of radiation are applied for radiation processing. These are electron accelerators, gamma sources and X-ray unit based on e-/X conversion process. Radiation processing was used early on for polymer modification. The intermediates formed during material irradiation can follow several reaction paths that result in disproportion, hydrogen abstraction, arrangements and/or the formation of new bonds. Nowadays, the modification of polymers covers radiation cross-linking, radiation-induced polymerization (graft polymerization and curing) and the degradation of polymers. Some polymers predominantly undergo crosslinking other degradation. However new techniques allow crosslinking of polymers which were considered to be degradable only, like PTFE and cellulose derivatives. Regarding natural polymers the biggest application concerns rubber pre-crosslinking in tire industry. The processing of natural polymers is also being developed to elaborate new biodegradable materials. The radiation crosslinked wires and cables show excellent heat resistance (long-term thermal stability and short-term thermal stability) as well as abrasion resistance. Other big application is crosslinking of XLPE type pipes which are widely used for hot water and floor heating [30]. Polybutelene terephthalate (PBT), which is a plastic for electronic industry, can be crosslinked by radiation and lead free soldering materials can be applied in such a case. This method of crosslinking is also applied to manufacture

  14. Interactive Near-Field Illumination for Photorealistic Augmented Reality with Varying Materials on Mobile Devices.

    Science.gov (United States)

    Rohmer, Kai; Buschel, Wolfgang; Dachselt, Raimund; Grosch, Thorsten

    2015-12-01

    At present, photorealistic augmentation is not yet possible since the computational power of mobile devices is insufficient. Even streaming solutions from stationary PCs cause a latency that affects user interactions considerably. Therefore, we introduce a differential rendering method that allows for a consistent illumination of the inserted virtual objects on mobile devices, avoiding delays. The computation effort is shared between a stationary PC and the mobile devices to make use of the capacities available on both sides. The method is designed such that only a minimum amount of data has to be transferred asynchronously between the participants. This allows for an interactive illumination of virtual objects with a consistent appearance under both temporally and spatially varying real illumination conditions. To describe the complex near-field illumination in an indoor scenario, HDR video cameras are used to capture the illumination from multiple directions. In this way, sources of illumination can be considered that are not directly visible to the mobile device because of occlusions and the limited field of view. While our method focuses on Lambertian materials, we also provide some initial approaches to approximate non-diffuse virtual objects and thereby allow for a wider field of application at nearly the same cost.

  15. Phosphorescent Organic Light-Emitting Devices: Working Principle and Iridium Based Emitter Materials

    Directory of Open Access Journals (Sweden)

    Emil J. W. List

    2008-08-01

    Full Text Available Even though organic light-emitting device (OLED technology has evolved to a point where it is now an important competitor to liquid crystal displays (LCDs, further scientific efforts devoted to the design, engineering and fabrication of OLEDs are required for complete commercialization of this technology. Along these lines, the present work reviews the essentials of OLED technology putting special focus on the general working principle of single and multilayer OLEDs, fluorescent and phosphorescent emitter materials as well as transfer processes in host materials doped with phosphorescent dyes. Moreover, as a prototypical example of phosphorescent emitter materials, a brief discussion of homo- and heteroleptic iridium(III complexes is enclosed concentrating on their synthesis, photophysical properties and approaches for realizing iridium based phosphorescent polymers.

  16. Environmental impacts of construction materials use: a life cycle perspective

    CSIR Research Space (South Africa)

    Ampofo-Anti, N

    2009-02-01

    Full Text Available of the environmental impacts of a product (or service). The Life Cycle Assessment (LCA) concept previously known as Life Cycle Analysis has emerged as one of the most appropriate tools for assessing product-related environmental impacts and for supporting an effective...

  17. OLED Fundamentals: Materials, Devices, and Processing of Organic Light-Emitting Diodes

    Energy Technology Data Exchange (ETDEWEB)

    Blochwitz-Nimoth, Jan; Bhandari, Abhinav; Boesch, Damien; Fincher, Curtis R.; Gaspar, Daniel J.; Gotthold, David W.; Greiner, Mark T.; Kido, Junji; Kondakov, Denis; Korotkov, Roman; Krylova, Valentina A.; Loeser, Falk; Lu, Min-Hao; Lu, Zheng-Hong; Lussem, Bjorn; Moro, Lorenza; Padmaperuma, Asanga B.; Polikarpov, Evgueni; Rostovtsev, Vsevolod V.; Sasabe, Hisahiro; Silverman, Gary; Thompson, Mark E.; Tietze, Max; Tyan, Yuan-Sheng; Weaver, Michael; Xin , Xu; Zeng, Xianghui

    2015-05-26

    What is an organic light emitting diode (OLED)? Why should we care? What are they made of? How are they made? What are the challenges in seeing these devices enter the marketplace in various applications? These are the questions we hope to answer in this book, at a level suitable for knowledgeable non-experts, graduate students and scientists and engineers working in the field who want to understand the broader context of their work. At the most basic level, an OLED is a promising new technology composed of some organic material sandwiched between two electrodes. When current is passed through the device, light is emitted. The stack of layers can be very thin and has many variations, including flexible and/or transparent. The organic material can be polymeric or composed small molecules, and may include inorganic components. The electrodes may consist of metals, metal oxides, carbon nanomaterials, or other species, though of course for light to be emitted, one electrode must be transparent. OLEDs may be fabricated on glass, metal foils, or polymer sheets (though polymeric substrates must be modified to protect the organic material from moisture or oxygen). In any event, the organic material must be protected from moisture during storage and operation. A control circuit, the exact nature of which depends on the application, drives the OLED. Nevertheless, the control circuit should have very stable current control to generate uniform light emission. OLEDs can be designed to emit a single color of light, white light, or even tunable colors. The devices can be switched on and off very rapidly, which makes them suitable for displays or for general lighting. Given the amazing complexity of the technical and design challenges for practical OLED applications, it is not surprising that applications are still somewhat limited. Although organic electroluminescence is more than 50 years old, the modern OLED field is really only about half that age – with the first high

  18. Physical concepts of materials for novel optoelectronic device applications II: Device physics and applications; Proceedings of the Meeting, Aachen, Federal Republic of Germany, Oct. 28-Nov. 2, 1990

    International Nuclear Information System (INIS)

    Razeghi, M.

    1991-01-01

    The present conference on physical concepts for materials for novel optoelectronic device applications encompasses the device physics and applications including visible, IR, and far-IR sources, optoelectronic quantum devices, the physics and applications of high-Tc superconducting materials, photodetectors and modulators, and the electronic properties of heterostructures. Other issues addressed include semiconductor waveguides for optical switching, wide band-gap semiconductors, Si and Si-Ge alloys, transport phenomena in heterostructures and quantum wells, optoelectronic integrated circuits, nonlinear optical phenomena in bulk and multiple quantum wells, and optoelectronic technologies for microwave applications. Also examined are optical computing, current transport in charge-injection devices, thin films of YBaCuO for electronic applications, indirect stimulated emission at room temperature in the visible range, and a laser with active-element rectangular geometry

  19. Corrosion resistant structural materials for use in lithium fluoride molten salts and thermonuclear device using it

    International Nuclear Information System (INIS)

    Kawamura, Kazutaka; Takagi, Ryuzo.

    1987-01-01

    Purpose: To provide blanket materials for thermo nuclear devices and structural materials for containers with less MHD effect and good heat exchanging efficiency. Constitution: LiF-PbF 2 is used as the liquid blanket material for moderating the MHD effect. That is, the lithium compound, in the form of a fluoride, can be made easily liquefiable being and PbF 2 is added for lowering the melting point. The reason of using the fluoride is that fluorine material is less activated by the adsorption of neutrons. Copper, phosphor bronze, nickel or nickel-based alloy, e.g., Monel metal is used as corrosion resistant structural material to LiF-PbF 2 molten salts. Use of copper as the low activating structural material can provide an excellent effect also in view of the maintenance and, further, a series of processes for purifying, separating injecting and recoverying tritium can be conducted safely and stationarily without contaminating the circumferences. (Kamimura, M.)

  20. Quantitative materials analysis of micro devices using absorption-based thickness measurements

    International Nuclear Information System (INIS)

    Sim, L M; Wog, B S; Spowage, A C

    2006-01-01

    Preliminary work in designing an X-ray inspection machine with the capability of providing quantitative thickness analysis based on absorption measurements has been demonstrated. This study attempts to use the gray levels data to investigate the nature and thickness of occluded features and materials within devices. The investigation focused on metallic materials essential to semiconductor and MEMS technologies such as tin, aluminium, copper, silver, iron and zinc. The materials were arranged to simulate different feature thicknesses and sample geometries. The X-ray parameters were varied in-order to modify the X-ray energy spectrum with the aim of optimising the measurement conditions for each sample. The capability of the method to resolve differences in thicknesses was found to be highly dependent on the material. The thickness resolution with aluminium was the poorest due to its low radiographic density. The thickness resolutions achievable for silver and tin were significantly better and of the order of 0.015 mm and 0.025 mm respectively. From the linear relationship between the X-ray attenuation and sample thickness established, the energy dependent linear attenuation coefficient for each material was determined for a series of specific energy spectra. A decrease in the linear attenuation coefficient was observed as the applied voltage and thickness of the material increased. The results provide a platform for the development of a novel absorption-based thickness measurement system that can be optimised for a range of industrial applications

  1. Materials and Devices Research of PPV-ZnO Nanowires for Heterojunction Solar Cells

    Directory of Open Access Journals (Sweden)

    Zhang Xiao-Zhou

    2012-01-01

    Full Text Available Bulk heterojunction photovoltaic devices, which use the conjugated polymer poly(2-methoxyl-5-(2′-ethylhexyloxy-1,4-phenylenevinylene (MEH-PPV as the electron donor and crystalline ZnO nanowires as the electron acceptor, have been studied in this work. The ZnO nanowires were prepared through a chemical vapor deposition mechanism. The dissolved MEH-PPV polymer was spin-coated onto the nanowires. The scanning electron microscope images showed that the ZnO nanowires were covered with a single layer of the polymer, and these materials were used to design a heterojunction solar cell. This solar cell displayed improved performance compared with the devices that were made from only the MEH-PPV polymer. This observed improvement is correlated with the improved electron transport that is perpendicular to the plane of the film. A solar power conversion efficiency of 1.37% was achieved under an AM1.5 illumination.

  2. Emerging materials and devices in spintronic integrated circuits for energy-smart mobile computing and connectivity

    International Nuclear Information System (INIS)

    Kang, S.H.; Lee, K.

    2013-01-01

    A spintronic integrated circuit (IC) is made of a combination of a semiconductor IC and a dense array of nanometer-scale magnetic tunnel junctions. This emerging field is of growing scientific and engineering interest, owing to its potential to bring disruptive device innovation to the world of electronics. This technology is currently being pursued not only for scalable non-volatile spin-transfer-torque magnetoresistive random access memory, but also for various forms of non-volatile logic (Spin-Logic). This paper reviews recent advances in spintronic IC. Key discoveries and breakthroughs in materials and devices are highlighted in light of the broader perspective of their application in low-energy mobile computing and connectivity systems, which have emerged as leading drivers for the prevailing electronics ecosystem

  3. Metasurfaces Based on Phase-Change Material as a Reconfigurable Platform for Multifunctional Devices

    Science.gov (United States)

    Raeis-Hosseini, Niloufar; Rho, Junsuk

    2017-01-01

    Integration of phase-change materials (PCMs) into electrical/optical circuits has initiated extensive innovation for applications of metamaterials (MMs) including rewritable optical data storage, metasurfaces, and optoelectronic devices. PCMs have been studied deeply due to their reversible phase transition, high endurance, switching speed, and data retention. Germanium-antimony-tellurium (GST) is a PCM that has amorphous and crystalline phases with distinct properties, is bistable and nonvolatile, and undergoes a reliable and reproducible phase transition in response to an optical or electrical stimulus; GST may therefore have applications in tunable photonic devices and optoelectronic circuits. In this progress article, we outline recent studies of GST and discuss its advantages and possible applications in reconfigurable metadevices. We also discuss outlooks for integration of GST in active nanophotonic metadevices. PMID:28878196

  4. Highly efficient quantum dot-based photoconductive THz materials and devices

    Science.gov (United States)

    Rafailov, E. U.; Leyman, R.; Carnegie, D.; Bazieva, N.

    2013-09-01

    We demonstrate Terahertz (THz) signal sources based on photoconductive (PC) antenna devices comprising active layers of InAs semiconductor quantum dots (QDs) on GaAs. Antenna structures comprised of multiple active layers of InAs:GaAs PC materials are optically pumped using ultrashort pulses generated by a Ti:Sapphire laser and CW dualwavelength laser diodes. We also characterised THz output signals using a two-antenna coherent detection system. We discuss preliminary performance data from such InAs:GaAs THz devices which exhibit efficient emission of both pulsed and continuous wave (CW) THz signals and significant optical-to-THz conversion at both absorption wavelength ranges, <=850 nm and <=1300 nm.

  5. The Structural Engineering Strategy for Photonic Material Research and Device Development

    Directory of Open Access Journals (Sweden)

    Yalin Lu

    2007-01-01

    Full Text Available A new structural engineering strategy is introduced for optimizing the fabrication of arrayed nanorod materials, optimizing superlattice structures for realizing a strong coupling, and directly developing nanophotonic devices. The strategy can be regarded as “combinatorial” because of the high efficiency in optimizing structures. In this article, this strategy was applied to grow ZnO nanorod arrays, and to develop a new multifunctional photodetector using such nanorod arrays, which is able to simultaneously detect power, energy, and polarization of an incident ultraviolet radiation. The strategy was also used to study the extraordinary dielectric behavior of relaxor ferroelectric lead titanate doped lead magnesium niobate heterophase superlattices in the terahertz frequencies, in order to investigate their dielectric polariton physics and the potential to be integrated with tunable surface resonant plasmonics devices.

  6. Torsional Shear Device for Testing the Dynamic Properties of Recycled Material

    Science.gov (United States)

    Gabryś, Katarzyna; Sas, Wojciech; Soból, Emil; Głuchowski, Andrzej

    2016-12-01

    From the viewpoint of environmental preservation and effective utilization of resources, it is beneficial and necessary to reuse wastes, for example, concrete, as the recycled aggregates for new materials. In this work, the dynamic behavior of such aggregates under low frequency torsional loading is studied. Results show that the properties of such artificial soils match with those reported in the literature for specific natural soils.

  7. Torsional Shear Device for Testing the Dynamic Properties of Recycled Material

    Directory of Open Access Journals (Sweden)

    Gabryś Katarzyna

    2016-12-01

    Full Text Available From the viewpoint of environmental preservation and effective utilization of resources, it is beneficial and necessary to reuse wastes, for example, concrete, as the recycled aggregates for new materials. In this work, the dynamic behavior of such aggregates under low frequency torsional loading is studied. Results show that the properties of such artificial soils match with those reported in the literature for specific natural soils.

  8. Hunger: The World Food Crisis. An NSTA Environmental Materials Guide.

    Science.gov (United States)

    Fowler, Kathryn Mervine

    This document provides a materials guide containing annotated bibliographies of literature for teachers and students, a film guide, and a curriculum materials guide for educational sources relating to hunger, food, and the world food crisis. Materials span the range from pre-school to grade 12. (SL)

  9. Using Bamboo as an Alternative Material for Environmental Friendly Building

    NARCIS (Netherlands)

    Mardjono, F.; Erkelens, P.A.; Jonge, S. de; Vliet, A.A.M. van

    2000-01-01

    Bamboo is one of natural resources that can be applied for building materials. In such bamboo growing countries, bamboo has main role as a building material for more than hundreds years ago. Sometimes bamboo can be used to replace wood based building material. Based on the detecting of problems on

  10. Modelling transport of waste material leachate in soils in support of environmental standards

    NARCIS (Netherlands)

    van Eijkeren JCH; Aalbers TG; de Wilde PGM

    1992-01-01

    In the Netherlands a process of defining environmental standards is going on. These standards serve to protect the environment at the one hand, and to stimulate the reuse of rest-materials, e.g. ash from blast-furnaces, as building materials at the other hand. In order to come to an environmental

  11. Transparent conductors based on microscale/nanoscale materials for high performance devices

    Science.gov (United States)

    Gao, Tongchuan

    Transparent conductors are important as the top electrode for a variety of optoelectronic devices, including solar cells, light-emitting diodes (LEDs), at panel displays, and touch screens. Doped indium tin oxide (ITO) thin films are the predominant transparent conductor material. However, ITO thin films are brittle, making them unsuitable for the emerging flexible devices, and suffer from high material and processing cost. In my thesis, we developed a variety of transparent conductors toward a performance comparable with or superior to ITO thin films, with lower cost and potential for scalable manufacturing. Metal nanomesh (NM), hierarchical graphene/metal microgrid (MG), and hierarchical metal NM/MG materials were investigated. Simulation methods were used as a powerful tool to predict the transparency and sheet resistance of the transparent conductors by solving Maxwell's equations and Poisson's equation. Affordable and scalable fabrication processes were developed thereafter. Transparent conductors with over 90% transparency and less than 10 O/square sheet resistance were successfully fabricated on both rigid and flexible substrates. Durability tests, such as bending, heating and tape tests, were carried out to evaluate the robustness of the samples. Haze factor, which characterizes how blurry a transparent conductor appears, was also studied in-depth using analytical calculation and numerical simulation. We demonstrated a tunable haze factor for metal NM transparent conductors and analyzed the principle for tuning the haze factor. Plasmonic effects, excited by some transparent conductors, can lead to enhanced performance in photovoltaic devices. We systematically studied the effect of incorporating metal NM into ultrathin film silicon solar cells using numerical simulation, with the aid of optimization algorithms to reduce the optimization time. Mechanisms contributing to the enhanced performance were then identified and analyzed. Over 72% enhancement in short

  12. Shirley Basin Uranium Mill. Environmental report to accompany source material license application

    International Nuclear Information System (INIS)

    1975-12-01

    This document summarizes all of the environmental monitoring conducted by Utah. This Environmental Report consequently supplements and updates the information presented in the Source Material License application of August 18, 1970 and the Final Environmental Statement (FES) of December 1974. Water and air quality, liquid waste management, soil/vegetation monitoring, and reclamation are covered

  13. Multimedia Environmental Assessment of Existing Materials Management Approaches for Communities

    Science.gov (United States)

    The Sustainable and Healthy Communities Program has a mission to develop data and tools that enable community leaders to integrate environmental, societal, and economic factors into their decision-making processes and thus foster community sustainability. This report examines on...

  14. A new device for X-ray Diffraction analyses of irradiated materials

    International Nuclear Information System (INIS)

    Valot, Christophe; Blay, Thierry; Caillot, Laurent; Ferroud-Plattet, Marie Pierre

    2008-01-01

    A new X-Ray Diffraction (XRD) equipment is being implemented in the LECA (Cea - Cadarache) hot laboratory. The device will be dedicated to structural characterization on irradiated fuels, as PWR fuels, transmutation targets and innovative fuels. The paper will present the specific design that was decided in order to reduce the number of components in contaminated volume and to make servicing easier. The analytical performances of this new equipment will be illustrated on some model samples: -) micro-diffraction capabilities will be detailed on heterogeneous material; -) strain and stress analyses on fresh uranium oxide pellets. (authors)

  15. Next Generation, Si-Compatible Materials and Devices in the Si-Ge-Sn System

    Science.gov (United States)

    2015-10-09

    and conclusions The work initially focused on growth of next generation Ge1-ySny alloys on Ge buffered Si wafers via UHV CVD depositions of Ge3H8...Abstract The work initially focused on growth of next generation Ge1-ySny alloys on Ge buffered Si wafers via UHV CVD depositions of Ge3H8, SnD4. The...AFRL-AFOSR-VA-TR-2016-0044 Next generation, Si -compatible materials and devices in the Si - Ge -Sn system John Kouvetakis ARIZONA STATE UNIVERSITY Final

  16. Rapid Atmospheric-Pressure-Plasma-Jet Processed Porous Materials for Energy Harvesting and Storage Devices

    Directory of Open Access Journals (Sweden)

    Jian-Zhang Chen

    2015-01-01

    Full Text Available Atmospheric pressure plasma jet (APPJ technology is a versatile technology that has been applied in many energy harvesting and storage devices. This feature article provides an overview of the advances in APPJ technology and its application to solar cells and batteries. The ultrafast APPJ sintering of nanoporous oxides and 3D reduced graphene oxide nanosheets with accompanying optical emission spectroscopy analyses are described in detail. The applications of these nanoporous materials to photoanodes and counter electrodes of dye-sensitized solar cells are described. An ultrashort treatment (1 min on graphite felt electrodes of flow batteries also significantly improves the energy efficiency.

  17. Specialists meeting on properties of primary circuit structural materials including environmental effects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-07-01

    The Specialists Meeting on Properties of Primary Circuit Structural Materials of LMFBRs covered the following topics: overview of materials program in different countries; mechanical properties of materials in air; fracture mechanics studies - component related activities; impact of environmental influences on mechanical properties; relationship of material properties and design methods. The purpose of the meeting was to provide a forum for exchange of information on structural materials behaviour in primary circuit of fast breeder reactors. Special emphasis was placed on environmental effects such as influence of sodium and irradiation on mechanical properties of reactor materials.

  18. Specialists meeting on properties of primary circuit structural materials including environmental effects

    International Nuclear Information System (INIS)

    1977-01-01

    The Specialists Meeting on Properties of Primary Circuit Structural Materials of LMFBRs covered the following topics: overview of materials program in different countries; mechanical properties of materials in air; fracture mechanics studies - component related activities; impact of environmental influences on mechanical properties; relationship of material properties and design methods. The purpose of the meeting was to provide a forum for exchange of information on structural materials behaviour in primary circuit of fast breeder reactors. Special emphasis was placed on environmental effects such as influence of sodium and irradiation on mechanical properties of reactor materials

  19. Development of natural matrix reference materials for monitoring environmental radioactivity

    International Nuclear Information System (INIS)

    Holmes, A.S.; Houlgate, P.R.; Pang, S.; Brookman, B.

    1992-01-01

    The Department of the Environment commissioned the Laboratory of the Government Chemist to carry out a contract on natural matrix reference materials. A survey of current availability of such materials in the western world, along with the UK's need, was conducted. Four suitable matrices were identified for production and validation. Due to a number of unforeseen problems with the collection, processing and validation of the materials, the production of the four identified reference materials was not completed in the allocated period of time. In the future production of natural matrix reference materials the time required, the cost and the problems encountered should not be underestimated. Certified natural matrix reference materials are a vital part of traceability in analytical science and without them there is no absolute method of checking the validity of measurement in the field of radiochemical analysis. (author)

  20. Environmental, Health, and Safety Research Needs for Engineered Nanoscale Materials

    National Research Council Canada - National Science Library

    Alderson, Norris; Alexander, Catherine; Merzbacher, Celia; Chernicoff, William; Middendorf, Paul; Beck, Nancy; Chow, Flora; Poster, Dianne; Danello, Mary Ann; Barrera, Enriqueta

    2006-01-01

    ...) research and information needs related to understanding and management of potential risks of engineered nanoscale materials that may be used, for example, in commercial or consumer products, medical...

  1. Device for manufacturing methane or synthetic gas from materials containing carbon using a nuclear reactor

    International Nuclear Information System (INIS)

    Jaeger, W.

    1984-01-01

    This invention concerns a device for manufacturing methane or synthetic gas from materials containing carbon using a nuclear reactor, where part of the carbon is gasified with hydration and the remaining carbon is converted to synthetic gas by adding steam. This synthetic gas consists mainly of H 2 , CO, CO 2 and CH 4 and can be converted to methane in so-called methanising using a nickel catalyst. The hydrogen gasifier is situated in the first of two helium circuits of a high temperature reactor, and the splitting furnace is situated in the second helium circuit, where part of the methane produced is split into hydrogen at high temperature, which is used for the hydrating splitting of another part of the material containing carbon. (orig./RB) [de

  2. Determination of the dynamical behaviour of biological materials during impact using a pendulum device

    Science.gov (United States)

    Van Zeebroeck, M.; Tijskens, E.; Van Liedekerke, P.; Deli, V.; De Baerdemaeker, J.; Ramon, H.

    2003-09-01

    A pendulum device has been developed to measure contact force, displacement and displacement rate of an impactor during its impact on the sample. Displacement, classically measured by double integration of an accelerometer, was determined in an alternative way using a more accurate incremental optical encoder. The parameters of the Kuwabara-Kono contact force model for impact of spheres have been estimated using an optimization method, taking the experimentally measured displacement, displacement rate and contact force into account. The accuracy of the method was verified using a rubber ball. Contact force parameters for the Kuwabara-Kono model have been estimated with success for three biological materials, i.e., apples, tomatoes and potatoes. The variability in the parameter estimations for the biological materials was quite high and can be explained by geometric differences (radius of curvature) and by biological variation of mechanical tissue properties.

  3. A discotic triphenylene dimer as organic hole transporting material for electroluminescence devices

    International Nuclear Information System (INIS)

    Mao Huaxiang; He Zhiqun; Wang Junling; Zhang Chunxiu; Xie, Ping; Zhang Rongben

    2007-01-01

    A triphenylene dimer, an intermediate between a discotic triphenylene molecule and the macromolecule, had been prepared by linking together two triphenylene units via phenylene carbamate linkages, which was formed through a reaction between one 1,4-phenylene diisocyanate and two hydroxyl end groups on flexible substituents of triphenylenes. The dimer exhibited good film-forming property. Its temperature-dependent phase transitions were investigated using differential scanning calorimetry and polarized optical microscopy. Room temperature microstructure of the dimer was analyzed by X-ray diffraction. Charge mobility of the triphenylene dimer was also measured. Our preliminary result using the materials in a sandwich light-emitting device is reported here. It demonstrates that the triphenylene dimer is a promising candidate as a hole transporting material

  4. Investigation of corrosion of materials of the irradiation device in the RA reactor

    International Nuclear Information System (INIS)

    Zaric, M.; Mance, A.; Vlajic, M.

    1963-12-01

    Devices for sample irradiation in the vertical RA reactor channels will be made of aluminium alloys. According to the regulations concerned with introducing materials into the RA reactor core, corrosion characterisation of these materials is an obligation. Corrosion properties of four aluminium alloys were investigated both in contact with stainless steel and without it. First part of this report deals with the corrosion testing of aluminium alloys in water by gravimetric and electrochemical methods. Bi-distilled water at temperatures less than 100 deg C was used. Second part is related to aluminium alloys corrosion in carbon dioxide gas under experimental conditions. The second part of research was initiated by the design of the head of the independent CO 2 loop for samples cooling [sr

  5. Solid thin film materials for use in thin film charge-coupled devices

    International Nuclear Information System (INIS)

    Lynch, S.J.

    1983-01-01

    Solid thin films deposited by vacuum deposition were evaluated to ascertain their effectiveness for use in the manufacturing of charge-coupled devices (CCDs). Optical and electrical characteristics of tellurium and Bi 2 Te 3 solid thin films were obtained in order to design and to simulate successfully the operation of thin film (TF) CCDs. In this article some of the material differences between single-crystal material and the island-structured thin film used in TFCCDs are discussed. The electrical parameters were obtained and tabulated, e.g. the mobility, conductivity, dielectric constants, permittivity, lifetime of holes and electrons in the thin films and drift diffusion constants. The optical parameters were also measured and analyzed. After the design was complete, experimental TFCCDs were manufactured and were successfully operated utilizing the aforementioned solid thin films. (Auth.)

  6. Forced intrusion of water and aqueous solutions in microporous materials: from fundamental thermodynamics to energy storage devices.

    Science.gov (United States)

    Fraux, Guillaume; Coudert, François-Xavier; Boutin, Anne; Fuchs, Alain H

    2017-12-07

    We review the high pressure forced intrusion studies of water in hydrophobic microporous materials such as zeolites and MOFs, a field of research that has emerged some 15 years ago and is now very active. Many of these studies are aimed at investigating the possibility of using these systems as energy storage devices. A series of all-silica zeolites (zeosil) frameworks were found suitable for reversible energy storage because of their stability with respect to hydrolysis after several water intrusion-extrusion cycles. Several microporous hydrophobic zeolite imidazolate frameworks (ZIFs) also happen to be quite stable and resistant towards hydrolysis and thus seem very promising for energy storage applications. Replacing pure water by electrolyte aqueous solutions enables to increase the stored energy by a factor close to 3, on account of the high pressure shift of the intrusion transition. In addition to the fact that aqueous solutions and microporous silica materials are environmental friendly, these systems are thus becoming increasingly interesting for the design of new energy storage devices. This review also addresses the theoretical approaches and molecular simulations performed in order to better understand the experimental behavior of nano-confined water. Molecular simulation studies showed that water condensation takes place through a genuine first-order phase transition, provided that the interconnected pores structure is 3-dimensional and sufficiently open. In an extreme confinement situations such as in ferrierite zeosil, condensation seem to take place through a continuous supercritical crossing from a diluted to a dense fluid, on account of the fact that the first-order transition line is shifted to higher pressure, and the confined water critical point is correlatively shifted to lower temperature. These molecular simulation studies suggest that the most important features of the intrusion/extrusion process can be understood in terms of equilibrium

  7. New Materials and Device Designs for Organic Light-Emitting Diodes

    Science.gov (United States)

    O'Brien, Barry Patrick

    Research and development of organic materials and devices for electronic applications has become an increasingly active area. Display and solid-state lighting are the most mature applications and, and products have been commercially available for several years as of this writing. Significant efforts also focus on materials for organic photovoltaic applications. Some of the newest work is in devices for medical, sensor and prosthetic applications. Worldwide energy demand is increasing as the population grows and the standard of living in developing countries improves. Some studies estimate as much as 20% of annual energy usage is consumed by lighting. Improvements are being made in lightweight, flexible, rugged panels that use organic light emitting diodes (OLEDs), which are particularly useful in developing regions with limited energy availability and harsh environments. Displays also benefit from more efficient materials as well as the lighter weight and ruggedness enabled by flexible substrates. Displays may require different emission characteristics compared with solid-state lighting. Some display technologies use a white OLED (WOLED) backlight with a color filter, but these are more complex and less efficient than displays that use separate emissive materials that produce the saturated colors needed to reproduce the entire color gamut. Saturated colors require narrow-band emitters. Full-color OLED displays up to and including television size are now commercially available from several suppliers, but research continues to develop more efficient and more stable materials. This research program investigates several topics relevant to solid-state lighting and display applications. One project is development of a device structure to optimize performance of a new stable Pt-based red emitter developed in Prof Jian Li's group. Another project investigates new Pt-based red, green and blue emitters for lighting applications and compares a red/blue structure with a red

  8. Improved Understanding of Space Radiation Effects on Exploration Electronics by Advanced Modeling of Nanoscale Devices and Novel Materials, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future NASA space exploration missions will use nanometer-scale electronic technologies which call for a shift in how radiation effects in such devices and materials...

  9. Processing method and processing device for liquid waste containing surface active agent and radioactive material

    International Nuclear Information System (INIS)

    Nishi, Takashi; Matsuda, Masami; Baba, Tsutomu; Yoshikawa, Ryozo; Yukita, Atsushi.

    1998-01-01

    Washing liquid wastes containing surface active agents and radioactive materials are sent to a deaerating vessel. Ozone is blown into the deaerating vessel. The washing liquid wastes dissolved with ozone are introduced to a UV ray irradiation vessel. UV rays are irradiated to the washing liquid wastes, and hydroxy radicals generated by photodecomposition of dissolved ozone oxidatively decompose surface active agents contained in the washing liquid wastes. The washing liquid wastes discharged from the UV ray irradiation vessel are sent to an activated carbon mixing vessel and mixed with powdery activated carbon. The surface active agents not decomposed in the UV ray irradiation vessel are adsorbed to the activated carbon. Then, the activated carbon and washing liquid wastes are separated by an activated carbon separating/drying device. Radioactive materials (iron oxide and the like) contained in the washing liquid wastes are mostly granular, and they are separated and removed from the washing liquid wastes in the activated carbon separating/drying device. (I.N.)

  10. Regularities of formation of granules at granulation of powdered materials in drum devices

    International Nuclear Information System (INIS)

    Kelbaliyev, G.I; Samedli, V.M.

    2008-01-01

    Full text:Granulation of powdered materials in the presence of binding agent is widely used in the most multi-tankage productions of chemical, food, pharmaceutical, metallurgical and agrarian technology. Granulation of powdered materials with participation of liquid phase is carried out in screw, disk, plase-shaped and drum devices and also in devices with mixers. In all cases a formation and growth of granules takes place owing to wetting of separate particles of powder leading to agglomeration and coagulation of particles in their contact with each other. It is apparent that in early stage of granule formation a growth and formation of granules takes place owing to adherence of small particles and agglomerates to larger granules. The content of liquid phase owing to which are appeared adhesive, capillary and surface forces, keeping particles on surface of granule exerts an essential influence on process of granule formation. Besides composition of mixture, its moisture and physical-chemical properties of initial components a mixing frequency degree of filling and angle of inclination of the device, ratio of liquid and hard phases which defines finally qualitative characteristics of the process exert an essential influence on formation of granules as a result of agglomeration of particles of powder. Powder lamination on granule surface is as consequence of its consolidation whereas as a result of consolidation and compression, a binding agent containing in pores squeezed out to a surface, which increases a possibility and probability of further sticking of dry particles of powder. In all cases the further growth and completeness of form of granule is determined by distribution of concentration of binding agent in volume of granule, i.e. moisture content or moisture of granule surface

  11. Development status of irradiation devices and instrumentation for material and nuclear fuel irradiation tests in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Goo; Sohn, Jae Min; Choo, Kee Nam [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-04-15

    The High flux Advanced Neutron Application ReactOr (HANARO), an open-tank-in-pool type reactor, is one of the multi-purpose research reactors in the world. Since the commencement of HANARO's operations in 1995, a significant number of experimental facilities have been developed and installed at HANARO, and continued efforts to develop more facilities are in progress. Owing to the stable operation of the reactor and its frequent utilization, more experimental facilities are being continuously added to satisfy various fields of study and diverse applications. The irradiation testing equipment for nuclear fuels and materials at HANARO can be classified into capsules and the Fuel Test Loop (FTL). Capsules for irradiation tests of nuclear fuels in HANARO have been developed for use under the dry conditions of the coolant and materials at HANARO and are now successfully utilized to perform irradiation tests. The FTL can be used to conduct irradiation testing of a nuclear fuel under the operating conditions of commercial nuclear power plants. During irradiation tests conducted using these capsules in HANARO, instruments such as the thermocouple, Linear Variable Differential Transformer (LVDT), small heater, Fluence Monitor (F/M) and Self-Powered Neutron Detector (SPND) are used to measure various characteristics of the nuclear fuel and irradiated material. This paper describes not only the status of HANARO and the status and perspective of irradiation devices and instrumentation for carrying out nuclear fuel and material tests in HANARO but also some results from instrumentation during irradiation tests

  12. Environmental, Health, and Safety Research Needs for Engineered Nanoscale Materials

    Science.gov (United States)

    2006-09-01

    tubes ), the report addresses concerns over potential environmental and health risks of nanomaterials. Following the publication of the RS... microfine titanium dioxide as physical UV filter, Int. J. Cosmetic Sci. 22(4), 271–283 (2000). J. Brant, H. Lecoanet, M. Hotze, M. Wiesner, Comparison of

  13. Teaching Materials for Environmental Related Courses in Agriculture Occupations Programs.

    Science.gov (United States)

    Bohning, Kermit B.; Stitt, Thomas R.

    The lesson plans were designed to provide the practicing applied biological and agricultural occupations teacher with a series of units setting down a basic foundation in Environmental Education. Nine lesson plans cover (1) ecosystems and agriculture, (2) biotic communities and food chains, (3) energy and nutrient flow, (4) land use and supply,…

  14. Comparative Environmental Sustainability Assessment of Bio-Based Fibre Reinforcement Materials for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Corona, Andrea; Markussen, Christen Malte; Birkved, Morten

    2015-01-01

    and flax/carbon, flax/glass mixed fibres) are compared in terms of environmental sustainability. Applying one of the most recent life cycle impact assessment methods, we demonstrate that the environmental sustainability of natural fibre based composite materials is similar or even lower, within certain...... turbines have therefore partially been focused on substitution of conventional fibre materials with bio-fibres assuming that this substitution was in the better for the environment and human health. The major question is if this material substitution, taking into account a multitude of environmental impact...... reinforcement materials. Since the environmental burden of the resin in addition is comparable to that of the fibres (especially in terms human health related impacts), the higher resin demand counterbalances the environmental sustainability improvements, obtained with the application of natural fibres....

  15. The Structural Characterisation of Risk in the R&D Process of Functional Raw Materials for Electronic Devices

    OpenAIRE

    Chikamori, Yoji; Nasu, Seigo

    2017-01-01

    The electronic materials and electronics device industries remain important to Japan in spite of the general decline of the Japanese electronics industry. There is risk and uncertainty when developing functional materials in the electronics industry. However, studies examining the uncertainty and risk variables in the development of functional materials are scarce. This study examines incremental research and development (R&D) developed for raw functional materials for electronics. Our analys...

  16. Low Earth Orbit Environmental Effects on Space Tether Materials

    Science.gov (United States)

    Finckernor, Miria M.; Gitlemeier, Keith A.; Hawk, Clark W.; Watts, Ed

    2005-01-01

    Atomic oxygen (AO) and ultraviolet (UV) radiation erode and embrittle most polymeric materials. This research was designed to test several different materials and coatings under consideration for their application to space tethers, for resistance to these effects. The samples were vacuum dehydrated, weighed and then exposed to various levels of AO or UV radiation at the NASA Marshall Space Flight Center. They were then re-weighed to determine mass loss due to atomic oxygen erosion, inspected for damage and tensile tested to determine strength loss. The experiments determined that the Photosil coating process, while affording some protection, damaged the tether materials worse than the AO exposure. TOR-LM also failed to fully protect the materials, especially from UV radiation. The POSS and nickel coatings did provide some protection to the tethers, which survived the entire test regime. M5 was tested, uncoated, and survived AO exposure, though its brittleness prevented any tensile testing.

  17. Two spruce shoot candidate reference materials from the German environmental specimen bank

    International Nuclear Information System (INIS)

    Backhaus, F.; Bagschik, U.; Burow, M.; Froning, M.; Mohl, C.; Ostapczuk, P.; Rossbach, M.; Schladot, J.D.; Stoeppler, M.; Waidmann, E.; Byrne, A.R.; Zeisler, R.

    1994-01-01

    Two new materials are introduced that might serve as useful aids for the harmonisation of analytical results. Spruce shoots, cryogenically homogenized and characterized for 50 elements from two sampling sites of the German Environmental Specimen Bank (ESB) are presented as possible third generation reference materials that might also act as calibrating materials in speciation analysis. (author)

  18. Sustainability of earth building materials - Environmental product declarations as an instrument of competition in building material industry

    OpenAIRE

    Schroeder, Horst; Lemke, Manfred

    2015-01-01

    [EN] The evaluation of the building process in terms of their environmental impact in all life cycle phases of a building leads to the key principle of sustainable building: the analysis of the life cycle of the materials used in a building. The goal of this analysis is to reduce waste and keep the environmental impact as low as possible by “closing” the cycle. During an inventory, the entire life cycle is assessed. This includes the sourcing and extracting of the raw material, the use of the...

  19. Interaction of powerful hot plasma and fast ion streams with materials in dense plasma focus devices

    Energy Technology Data Exchange (ETDEWEB)

    Chernyshova, M., E-mail: maryna.chernyshova@ipplm.pl [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Gribkov, V.A. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Institution of Russian Academy of Sciences A.A. Baikov Institute of Metallurgy and Material Science RAS, Moscow (Russian Federation); Kowalska-Strzeciwilk, E.; Kubkowska, M.; Miklaszewski, R.; Paduch, M.; Pisarczyk, T.; Zielinska, E. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Demina, E.V.; Pimenov, V.N.; Maslyaev, S.A. [Institution of Russian Academy of Sciences A.A. Baikov Institute of Metallurgy and Material Science RAS, Moscow (Russian Federation); Bondarenko, G.G. [National Research University Higher School of Economics (HSE), Moscow (Russian Federation); Vilemova, M.; Matejicek, J. [Institute of Plasma Physics of the CAS, Prague (Czech Republic)

    2016-12-15

    Highlights: • Materials perspective for use in mainstream nuclear fusion facilities were studied. • Powerful streams of hot plasma and fast ions were used to induce irradiation. • High temporal, spatial, angular and spectral resolution available in experiments. • Results of irradiation were investigated by number of analysis techniques. - Abstract: A process of irradiating and ablating solid-state targets with hot plasma and fast ion streams in two Dense Plasma Focus (DPF) devices – PF-6 and PF-1000 was examined by applying a number of diagnostics of nanosecond time resolution. Materials perspective for use in chambers of the mainstream nuclear fusion facilities (mainly with inertial plasma confinement like NIF and Z-machine), intended both for the first wall and for constructions, have been irradiated in these simulators. Optical microscopy, SEM, Atomic Emission Spectroscopy, images in secondary electrons and in characteristic X-ray luminescence of different elements, and X-ray elemental analysis, gave results on damageability for a number of materials including low-activated ferritic and austenitic stainless steels, β-alloy of Ti, as well as two types of W and a composite on its base. With an increase of the number of shots irradiating the surface, its morphology changes from weakly pronounced wave-like structures or ridges to strongly developed ones. At later stages, due to the action of the secondary plasma produced near the target materials they melted, yielding both blisters and a fracturing pattern: first along the grain and then “in-between” the grains creating an intergranular net of microcracks. At the highest values of power flux densities multiple bubbles appeared. Furthermore, in this last case the cracks were developed because of microstresses at the solidification of melt. Presence of deuterium within the irradiated ferritic steel surface nanolayers is explained by capture of deuterons in lattice defects of the types of impurity atoms

  20. Biological and environmental reference materials in neutron activation analysis work

    International Nuclear Information System (INIS)

    Guinn, V.P.; Gavrilas, M.

    1990-01-01

    The great usefulness of reference materials, especially ones of certified elemental composition, is discussed with particular attention devoted to their use in instrumental neutron activation analysis (INAA) work. Their use, including both certified and uncertified values, in calculations made by the INAA Advance Prediction Computer Program (APCP) is discussed. The main features of the APCP are described, and mention is made of the large number of reference materials run on the APCP (including the new personal computer version of the program), with NBS Oyster Tissue SRM-1566 used as the principal examle. (orig.)

  1. A novel in situ device based on a bionic piezoelectric actuator to study tensile and fatigue properties of bulk materials.

    Science.gov (United States)

    Wang, Shupeng; Zhang, Zhihui; Ren, Luquan; Zhao, Hongwei; Liang, Yunhong; Zhu, Bing

    2014-06-01

    In this work, a miniaturized device based on a bionic piezoelectric actuator was developed to investigate the static tensile and dynamic fatigue properties of bulk materials. The device mainly consists of a bionic stepping piezoelectric actuator based on wedge block clamping, a pair of grippers, and a set of precise signal test system. Tensile and fatigue examinations share a set of driving system and a set of signal test system. In situ tensile and fatigue examinations under scanning electron microscope or metallographic microscope could be carried out due to the miniaturized dimensions of the device. The structure and working principle of the device were discussed and the effects of output difference between two piezoelectric stacks on the device were theoretically analyzed. The tensile and fatigue examinations on ordinary copper were carried out using this device and its feasibility was verified through the comparison tests with a commercial tensile examination instrument.

  2. A method of producing garnet materials for use in circular magnetic domain devices

    International Nuclear Information System (INIS)

    Gill, G.P.

    1976-01-01

    A method is described for producing iron garnet materials for use in circular magnetic domain devices. It comprises providing material having complex domain wall behaviour, and implanting ions having an atomic number of at least 15 into the material. The energy and dose of the ions are such that the lattice is expanded and its crystallinity preserved, and the lattice expansion is such that the complex domain wall behaviour is substantially eliminated. The ions should have an energy in the range 100 to 500 keV and the dose should be in the range 10 12 to 10 14 ions/cm 2 . The implanted ions may be Ar, Sm, Te, or Lu. It is thought that the use of rare earth ions allows the magnetostriction constant of the implanted ion to operate in addition to that of the implanted garnet. An advantage of the method is that doses used for implantation using Ar or rare earth ions are less than for implantation using lighter ions, thereby allowing implantations to be performed in a shorter time for the same beam currency density. (UK)

  3. Materials and devices with applications in high-end organic transistors

    International Nuclear Information System (INIS)

    Takeya, J.; Uemura, T.; Sakai, K.; Okada, Y.

    2014-01-01

    The development of functional materials typically benefits from an understanding of the microscopic mechanisms by which those materials operate. To accelerate the development of organic semiconductor devices with industrial applications in flexible and printed electronics, it is essential to elucidate the mechanisms of charge transport associated with molecular-scale charge transfer. In this study, we employed Hall effect measurements to differentiate coherent band transport from site-to-site hopping. The results of tests using several different molecular systems as the active semiconductor layers demonstrate that high-mobility charge transport in recently-developed solution-crystallized organic transistors is the result of a band-like mechanism. These materials, which have the potential to be organic transistors exhibiting the highest speeds ever obtained, are significantly different from the conventional lower-mobility organic semiconductors with incoherent hopping-like transport mechanisms which were studied in the previous century. They may be categorized as “high-end” organic semiconductors, characterized by their coherent electronic states and high values of mobility which are close to or greater than 10 cm 2 /Vs. - Highlights: • Transport in high-mobility solution-crystallized organic transistors is band-like. • High-end organic semiconductors carry coherent electrons with mobility > 10 cm 2 /Vs. • Hall-effect measurement differentiates coherent band transport from hopping. • We found an anomalous pressure effect in organic semiconductors

  4. Investigation of Emerging Materials for Optoelectronic Devices Based on III-Nitrides

    KAUST Repository

    Muhammed, Mufasila Mumthaz

    2018-03-11

    III-nitride direct bandgap semiconductors have attracted significant research interest due to their outstanding potential for modern optoelectronic and electronic applications. However, the high cost of III-nitride devices, along with low performance due to dislocation defects, remains an obstacle to their further improvement. In this dissertation, I present a significant enhancement of III-nitride devices based on emerging materials. A promising substrate, (-201)-oriented β-Ga2O3 with unique properties that combine high transparency and conductivity, is used for the first time in the development of high-quality vertical III-nitride devices, which can be cost-effective for large-scale production. In addition, hybridizing GaN with emerging materials, mainly perovskite, is shown to extend the functionality of III-nitride applications. As a part of this investigation, high-performance and high-responsivity fast perovskite/GaN-based UV-visible broadband photodetectors were developed. State-of-the-art GaN epilayers grown on (-201)-oriented β-Ga2O3 using AlN and GaN buffer layers are discussed, and their high optical quality without using growth enhancement techniques is demonstrated. In particular, a low lattice mismatch (⁓4.7%) between GaN and the substrate results in a low density of dislocations ~4.8Å~107 cm−2. To demonstrates the effect of (-201)-oriented β-Ga2O3 substrate on the quality of III-nitride alloys, high-quality ternary alloy InxGa1−xN film is studied, followed by the growth of high quality InxGa1−xN/GaN single and multiple quantum wells (QWs). The optical characterization and carrier dynamics by photoluminescence (PL) and time-resolved PL measurements were subsequently performed. Lastly, to investigate the performance of a vertical emitting device based on InGaN/GaN multiple QWs grown on (-201)-oriented β-Ga2O3 substrate, high-efficiency vertical-injection emitting device is developed and extensively investigated. The conductive nature of

  5. Stochastic modeling of filtrate alkalinity in water filtration devices: Transport through micro/nano porous clay based ceramic materials

    Science.gov (United States)

    Clay and plant materials such as wood are the raw materials used in manufacture of ceramic water filtration devices around the world. A step by step manufacturing procedure which includes initial mixing, molding and sintering is used. The manufactured ceramic filters have numerous pores which help i...

  6. Development and Evaluation of English Listening Study Materials for Business People Who Use Mobile Devices: A Case Study

    Science.gov (United States)

    Yamada, Masanori; Kitamura, Satoshi; Shimada, Noriko; Utashiro, Takafumi; Shigeta, Katsusuke; Yamaguchi, Etsuji; Harrison, Richard; Yamauchi, Yuhei; Nakahara, Jun

    2011-01-01

    This study aims to verify the effectiveness of English language materials using mobile devices for business people in terms of the effect on motivation, overall learning performance, and practical performance in real business situations. We compared the use of materials developed from business English for a sales department in a company…

  7. Materials challenges for repeatable RF wireless device reconfiguration with microfluidic channels

    Science.gov (United States)

    Griffin, Anthony S.; Sottos, Nancy R.; White, Scott R.

    2018-03-01

    Recently, adaptive wireless devices have utilized displacement of EGaIn within microchannels as an electrical switching mechanism to enable reconfigurable electronics. Device reconfiguration using EGaIn in microchannels overcomes many challenges encountered by more traditional reconfiguration mechanisms such as diodes and microelectromechanical systems (MEMS). Reconfiguration using EGaIn is severely limited by undesired permanent shorting due to retention of the liquid in microchannels caused by wetting and rapid oxide skin formation. Here, we investigate the conditions which prevent repeatable electrical switching using EGaIn in microchannels. Initial contact angle tests of EGaIn on epoxy surfaces demonstrate the wettability of EGaIn on flat surfaces. SEM cross-sections of microchannels reveal adhesion of EGaIn residue to channel walls. Micro-computed tomography (microCT) scans of provide volumetric measurements of EGaIn remaining inside channels after flow cycling. Non-wetting coatings are proposed as materials based strategy to overcome these issues in future work.

  8. SMA foil-based elastocaloric cooling: from material behavior to device engineering

    Science.gov (United States)

    Bruederlin, F.; Ossmer, H.; Wendler, F.; Miyazaki, S.; Kohl, M.

    2017-10-01

    The elastocaloric effect associated with the stress-induced first order phase transformation in pseudoelastic shape memory alloy (SMA) films and foils is of special interest for cooling applications on a miniature scale enabling fast heat transfer and high cycling frequencies as well as tunable transformation temperatures. The focus is on TiNi-based materials having the potential to meet the various challenges associated with elastocaloric cooling including large adiabatic temperature change and ultra-low fatigue. The evolution of strain and temperature bands during tensile load cycling is investigated with respect to strain and strain-rate by in situ digital image correlation and infrared thermography with a spatial resolution in the order of 25 µm. Major design issues and challenges in fabrication of SMA film-based elastocaloric cooling devices are discussed including the efficiency of heat transfer as well as force recovery to enhance the coefficient of performance (COP) on the system level. Advanced demonstrators show a temperature span of 13 °C after 30 s, while the COP of the overall device reaches almost 10% of Carnot efficiency.

  9. Mid-infrared materials and devices on a Si platform for optical sensing

    Science.gov (United States)

    Singh, Vivek; Lin, Pao Tai; Patel, Neil; Lin, Hongtao; Li, Lan; Zou, Yi; Deng, Fei; Ni, Chaoying; Hu, Juejun; Giammarco, James; Soliani, Anna Paola; Zdyrko, Bogdan; Luzinov, Igor; Novak, Spencer; Novak, Jackie; Wachtel, Peter; Danto, Sylvain; Musgraves, J David; Richardson, Kathleen; Kimerling, Lionel C; Agarwal, Anuradha M

    2014-01-01

    In this article, we review our recent work on mid-infrared (mid-IR) photonic materials and devices fabricated on silicon for on-chip sensing applications. Pedestal waveguides based on silicon are demonstrated as broadband mid-IR sensors. Our low-loss mid-IR directional couplers demonstrated in SiNx waveguides are useful in differential sensing applications. Photonic crystal cavities and microdisk resonators based on chalcogenide glasses for high sensitivity are also demonstrated as effective mid-IR sensors. Polymer-based functionalization layers, to enhance the sensitivity and selectivity of our sensor devices, are also presented. We discuss the design of mid-IR chalcogenide waveguides integrated with polycrystalline PbTe detectors on a monolithic silicon platform for optical sensing, wherein the use of a low-index spacer layer enables the evanescent coupling of mid-IR light from the waveguides to the detector. Finally, we show the successful fabrication processing of our first prototype mid-IR waveguide-integrated detectors. PMID:27877641

  10. ACTIVATED CARBONS FROM VEGETAL RAW MATERIALS TO SOLVE ENVIRONMENTAL PROBLEMS

    Directory of Open Access Journals (Sweden)

    Viktor Mukhin

    2014-06-01

    Full Text Available Technologies for active carbons obtaining from vegetable byproducts such as straw, nut shells, fruit stones, sawdust, hydrolysis products of corn cobs and sunflower husks have been developed. The physico-chemical characteristics, structural parameters and sorption characteristics of obtained active carbons were determined. The ability of carbonaceous adsorbents for detoxification of soil against pesticides, purification of surface waters and for removal of organic pollutants from wastewaters has been evaluated. The obtained results reveal the effectiveness of their use in a number of environmental technologies.

  11. Cryogenic structural material and design of support structures for the Large Helical Device

    International Nuclear Information System (INIS)

    Nishimura, Arata; Imagawa, Shinsaku; Tamura, Hitoshi

    1997-01-01

    This paper describes a short history of material selection for the cryogenic support structures for the Large Helical Device (LHD) which has superconducting coils. Since the support structures are cooled down to 4.4 K together with the coils, SUS 316 was chosen because of its stable austenitic phase, sufficient mechanical properties at cryogenic temperature and good weldability. Also, outlines of the design and fabrication processes of the support structures are summarized. On the design of the support structures, a deformation analysis was carried out to maintain the proper magnetic field during operation. Afterwards, a stress analysis was performed. During machining and assembling, tolerance was noticed to keep coil positions accurate. Special welding grooves and fabrication processes were considered and achieved successfully. Finally, a cryogenic supporting post which sustains the cryogenic structures and superconducting coils is presented. CFRP was used in this specially developed supporting post to reduce the heat conduction from ambient 300 K structures. (author)

  12. Preparation and performance optimization of TPBISi green-light organic luminescent material devices

    Directory of Open Access Journals (Sweden)

    Zheng Huajing

    2017-01-01

    Full Text Available The Study analyzed and tested the absorption spectrum, photoluminescence spectrum, and device’s electroluminescence spectrum of a new silole material. The device with Silol as an emitting layer, emitted green-light whose structure is ITO/NPB/2,2,3,3-tetraphenyl-4,4-bisthienylsilole(TPBTSi/Alq3/Mg: A by improvement of preparation technology and optimization of thin film. It reaches the maximum luminescence of 11290.2 cd/m2, the maximum luminous efficiency of 0.84 lm/W, luminescence spectrum of 516 nm, chromaticity diagram CIE coordinate of(0.275, 0.4568 when voltage is 15V. All of the above is the green characteristic spectrum of TPBTSi.

  13. Characterization by ion beams of surfaces and interfaces of alternative materials for future microelectronic devices

    International Nuclear Information System (INIS)

    Krug, C.; Stedile, F.C.; Radtke, C.; Rosa, E.B.O. da; Morais, J.; Freire, F.L.; Baumvol, I.J.R.

    2003-01-01

    We present the potential use of ion beam techniques such as nuclear reactions, channelling Rutherford backscattering spectrometry, and low energy ion scattering in the characterization of the surface and interface of materials thought to be possible substitutes to Si (like SiC, for example) and to SiO 2 films (like Al 2 O 3 films, for example) in microelectronic devices. With narrow nuclear reaction resonance profiling the depth distribution of light elements such as Al and O in the films can be obtained non-destructively and with subnanometric depth resolution, allowing one to follow the mobility of each species under thermal treatments, for instance. Thinning of an amorphous layer at the surface of single-crystalline samples can be determined using channelling of He + ions and detection of the scattered light particles. Finally, the use of He + ions in the 1 keV range allows elemental analysis of the first monolayer at the sample surface

  14. The environmental suitability of industrial secondary products used as covering materials in landfills

    International Nuclear Information System (INIS)

    Laine-Ylijoki, J.; Wahlstroem, M.; Maekelae, E.

    2001-01-01

    The industrial secondary products and landmasses polluted in a minor way can be used as coverings and sealing materials and also restricted in the ground construction of landfills. By using suitable secondary products, natural materials can be reduced. Substitutes are needed due to the fact that the availability of natural materials is poor in many areas. The presented project is a part of the Streams technology programme financed by Tekes. It includes the development of the measuring methods to study the environmental suitability of industrial secondary products, which will be used as covering materials of landfills. Based on the results, a handbook addressing the environmental suitability procedure will be compiled

  15. Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture.

    Science.gov (United States)

    Heremans, Paul; Cheyns, David; Rand, Barry P

    2009-11-17

    Thin-film blends or bilayers of donor- and acceptor-type organic semiconductors form the core of heterojunction organic photovoltaic cells. Researchers measure the quality of photovoltaic cells based on their power conversion efficiency, the ratio of the electrical power that can be generated versus the power of incident solar radiation. The efficiency of organic solar cells has increased steadily in the last decade, currently reaching up to 6%. Understanding and combating the various loss mechanisms that occur in processes from optical excitation to charge collection should lead to efficiencies on the order of 10% in the near future. In organic heterojunction solar cells, the generation of photocurrent is a cascade of four steps: generation of excitons (electrically neutral bound electron-hole pairs) by photon absorption, diffusion of excitons to the heterojunction, dissociation of the excitons into free charge carriers, and transport of these carriers to the contacts. In this Account, we review our recent contributions to the understanding of the mechanisms that govern these steps. Starting from archetype donor-acceptor systems of planar small-molecule heterojunctions and solution-processed bulk heterojunctions, we outline our search for alternative materials and device architectures. We show that non-planar phthalocynanines have appealing absorption characteristics but also have reduced charge carrier transport. As a result, the donor layer needs to be ultrathin, and all layers of the device have to be tuned to account for optical interference effects. Using these optimization techniques, we illustrate cells with 3.1% efficiency for the non-planar chloroboron subphthalocyanine donor. Molecules offering a better compromise between absorption and carrier mobility should allow for further improvements. We also propose a method for increasing the exciton diffusion length by converting singlet excitons into long-lived triplets. By doping a polymer with a

  16. Effect of environmental enrichment devices on behaviors of single- and group-housed squirrel monkeys (Saimiri sciureus)

    Science.gov (United States)

    Spring, S. E.; Clifford, J. O.; Tomko, D. L.

    1997-01-01

    Squirrel monkeys display an interest in novel places, habituate to new situations, and spend most of their daily activity in the wild in large groups engaging in feeding behaviors over a broad area. Captivity limits these behaviors and consequently may disrupt normal social organizations. In captivity, squirrel monkeys may exhibit stereotypical behaviors that are believed to indicate decreased psychologic well-being. When a monkey's behavior can be made to approach that seen in the wild, and stereotypical behaviors are minimal, it is assumed that psychologic well-being is adequate. Environmental enrichment devices have been used to address the Animal Welfare Act requirement that psychologic well-being of captive nonhuman primates be considered. The purpose of the study reported here was to examine whether various environmental enrichment devices improve the psychologic well-being of captive squirrel monkeys. In the study, we used behavioral observation to quantify the effectiveness of several environmental enrichment devices for reducing stereotypical behaviors in squirrel monkeys housed alone or in groups. Analysis of our results revealed that the environmental enrichment devices did not affect the expression of normal or stereotypical behaviors, but that the type of housing did.

  17. Comparison of candidate materials for a synthetic osteo-odonto keratoprosthesis device.

    Science.gov (United States)

    Tan, Xiao Wei; Perera, A Promoda P; Tan, Anna; Tan, Donald; Khor, K A; Beuerman, Roger W; Mehta, Jodhbir S

    2011-01-05

    Osteo-odonto keratoprosthesis is one of the most successful forms of keratoprosthesis surgery for end-stage corneal and ocular surface disease. There is a lack of detailed comparison studies on the biocompatibilities of different materials used in keratoprosthesis. The aim of this investigation was to compare synthetic bioinert materials used for keratoprosthesis surgery with hydroxyapatite (HA) as a reference. Test materials were sintered titanium oxide (TiO(2)), aluminum oxide (Al(2)O(3)), and yttria-stabilized zirconia (YSZ) with density >95%. Bacterial adhesion on the substrates was evaluated using scanning electron microscopy and the spread plate method. Surface properties of the implant discs were scanned using optical microscopy. Human keratocyte attachment and proliferation rates were assessed by cell counting and MTT assay at different time points. Morphologic analysis and immunoblotting were used to evaluate focal adhesion formation, whereas cell adhesion force was measured with a multimode atomic force microscope. The authors found that bacterial adhesion on the TiO(2), Al(2)O(3), and YSZ surfaces were lower than that on HA substrates. TiO(2) significantly promoted keratocyte proliferation and viability compared with HA, Al(2)O(3,) and YSZ. Immunofluorescent imaging analyses, immunoblotting, and atomic force microscope measurement revealed that TiO(2) surfaces enhanced cell spreading and cell adhesion compared with HA and Al(2)O(3). TiO(2) is the most suitable replacement candidate for use as skirt material because it enhanced cell functions and reduced bacterial adhesion. This would, in turn, enhance tissue integration and reduce device failure rates during keratoprosthesis surgery.

  18. High performance yellow organic electroluminescent devices by doping iridium(III) complex into host materials with stepwise energy levels

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Rongzhen; Zhou, Liang, E-mail: zhoul@ciac.ac.cn; Jiang, Yunlong; Li, Yanan; Zhao, Xuesen; Zhang, Hongjie, E-mail: hongjie@ciac.ac.cn

    2015-10-15

    In this work, we aim to further improve the electroluminescent (EL) performances of a yellow light-emitting iridium(III) complex by designing double light-emitting layers (EMLs) devices having stepwise energy levels. Compared with single-EML devices, these designed double-EML devices showed improved EL efficiency and brightness attributed to better balance in carriers. In addition, the stepwise distribution in energy levels of host materials is instrumental in broadening the recombination zone, thus delaying the roll-off of EL efficiency. Based on the investigation of carriers' distribution, device structure was further optimized by adjusting the thickness of deposited layers. Finally, yellow EL device (Commission Internationale de l'Eclairage (CIE) coordinates of (0.446, 0.542)) with maximum current efficiency, power efficiency and brightness up to 78.62 cd/A (external quantum efficiency (EQE) of 21.1%), 82.28 lm/W and 72,713 cd/m{sup 2}, respectively, was obtained. Even at the high brightness of 1000 cd/m{sup 2}, EL efficiency as high as 65.54 cd/A (EQE=17.6%) can be retained. - Highlights: • Yellow electroluminescent devices were designed and fabricated. • P-type and n-type materials having stepwise energy levels were chosen as host materials. • Better balance of holes and electrons causes the enhanced efficiencies. • Improved carriers' trapping suppresses the emission of host material.

  19. A protocol for lifetime energy and environmental impact assessment of building insulation materials

    International Nuclear Information System (INIS)

    Shrestha, Som S.; Biswas, Kaushik; Desjarlais, Andre O.

    2014-01-01

    This article describes a proposed protocol that is intended to provide a comprehensive list of factors to be considered in evaluating the direct and indirect environmental impacts of building insulation materials, as well as detailed descriptions of standardized calculation methodologies to determine those impacts. The energy and environmental impacts of insulation materials can generally be divided into two categories: (1) direct impact due to the embodied energy of the insulation materials and other factors and (2) indirect or environmental impacts avoided as a result of reduced building energy use due to addition of insulation. Standards and product category rules exist, which provide guidelines about the life cycle assessment (LCA) of materials, including building insulation products. However, critical reviews have suggested that these standards fail to provide complete guidance to LCA studies and suffer from ambiguities regarding the determination of the environmental impacts of building insulation and other products. The focus of the assessment protocol described here is to identify all factors that contribute to the total energy and environmental impacts of different building insulation products and, more importantly, provide standardized determination methods that will allow comparison of different insulation material types. Further, the intent is not to replace current LCA standards but to provide a well-defined, easy-to-use comparison method for insulation materials using existing LCA guidelines. - Highlights: • We proposed a protocol to evaluate the environmental impacts of insulation materials. • The protocol considers all life cycle stages of an insulation material. • Both the direct environmental impacts and the indirect impacts are defined. • Standardized calculation methods for the ‘avoided operational energy’ is defined. • Standardized calculation methods for the ‘avoided environmental impact’ is defined

  20. Novel sorbent materials for environmental remediation via Pyrolysis of biomass

    Science.gov (United States)

    Zabaniotou, Anastasia

    2013-04-01

    One of the major challenges facing society at this moment is the transition from a non-sustainable, fossil resources-based economy to a sustainable bio-based economy. By producing multiple products, a biorefinery can take advantage of the differences in biomass components and intermediates and maximize the value derived from the biomass feedstock. The high-value products enhance profitability, the high-volume fuel helps meet national energy needs, and the power production reduces costs and avoids greenhouse-gas emissions From pyrolysis, besides gas and liquid products a solid product - char, is derived as well. This char contains the non converted carbon and can be used for activated carbon production and/or as additive in composite material production. Commercially available activated carbons are still considered expensive due to the use of non-renewable and relatively expensive starting material such as coal. The present study describes pyrolysis as a method to produce high added value carbon materials such as activated carbons (AC) from agricultural residues pyrolysis. Olive kernel has been investigated as the precursor of the above materials. The produced activated carbon was characterized by proximate and ultimate analyses, BET method and porosity estimation. Furthermore, its adsorption of pesticide compound in aqueous solution by was studied. Pyrolysis of olive kernel was conducted at 800 oC for 45min in a fixed reactor. For the production of the activated carbon the pyrolytic char was physically activated under steam in the presence of CO2 at 970oC for 3 h in a bench scale reactor. The active carbons obtained from both scales were characterized by N2 adsorption at 77 K, methyl-blue adsorption (MB adsorption) at room temperature and SEM analysis. Surface area and MB adsorption were found to increase with the degree of burn-off. The surface area of the activated carbons was found to increase up to 1500 m2/g at a burn-off level of 60-65wt.%, while SEM analysis

  1. Investigation of the Environmental Durability of a Powder Metallurgy Material

    Science.gov (United States)

    Ward, LaNita D.

    2004-01-01

    PM304 is a NASA-developed composite powder metallurgy material that is being developed for high temperature applications such as bushings in high temperature industrial furnace conveyor systems. My goal this summer was to analyze and evaluate the effects that heat exposure had on the PM304 material at 500 C and 650 C. The material is composed of Ni-Cr, Ag, Cr2O3, and eutectic BaF2-CaF2. PM304 is designed to eliminate the need for oil based lubricants in high temperature applications, while reducing friction and wear. However, further investigation was needed to thoroughly examine the properties of PM304. The effects of heat exposure on PM304 bushings were investigated. This investigation was necessary due to the high temperatures that the material would be exposed to in a typical application. Each bushing was cut into eight sections. The specimens were heated to 500 C or 650 C for time intervals from 1 hr to 5,000 hrs. Control specimens were kept at room temperature. Weight and thickness measurements were taken before and after the bushing sections were exposed to heat. Then the heat treated specimens were mounted and polished side by side with the control specimens. This enabled optical examination of the material's microstructure using a metallograph. The specimens were also examined with a scanning electron microscope (SEM). The microstructures were compared to observe the effects of the heat exposure. Chemical analysis was done to investigate the interactions between Ni-Cr and BaF2-CaF2 and between Cr2O3 and BaF2-CaF2 at high temperature. To observe this, the two compounds that were being analyzed were mixed in a crucible in varied weight percentages and heated to 1100 C in a furnace for approximately two hours. Then the product was allowed to cool and was then analyzed by X-ray diffraction. Interpretation of the results is in progress.

  2. Device for separating, purifying and recovering nuclear fuel material, impurities and materials from impurity-containing nuclear fuel materials or nuclear fuel containing material

    International Nuclear Information System (INIS)

    Sato, Ryuichi; Kamei, Yoshinobu; Watanabe, Tsuneo; Tanaka, Shigeru.

    1988-01-01

    Purpose: To separate, purify and recover nuclear fuel materials, impurities and materials with no formation of liquid wastes. Constitution: Oxidizing atmosphere gases are introduced from both ends of a heating furnace. Vessels containing impurity-containing nuclear fuel substances or nuclear fuel substance-containing material are continuously disposed movably from one end to the other of the heating furnace. Then, impurity oxides or material oxides selectively evaporated from the impurity-containing nuclear fuel substances or nuclear fuel substance-containing materials are entrained in the oxidizing atmosphere gas and the gases are led out externally from a discharge port opened at the intermediate portion of the heating furnace, filters are disposed to the exit to solidify and capture the nuclear fuel substances and traps are disposed behind the filters to solidify and capture the oxides by spontaneous air cooling or water cooling. (Sekiya, K.)

  3. Environmental Issues in the Didactic Materials in Schools in Republic of Serbia

    Science.gov (United States)

    Maravic, Milutin; Ivkovic, Sonja; Segedinac, Mirjana; Adamov, Jasna

    2014-01-01

    The main task of the examination is to establish environmental issues in the didactic materials for primary and secondary school in Republic of Serbia. Environmental issues in the secondary school curriculum in Serbia, according to the current educational curricula and educational programs, is limited to general subjects (chemistry and biology…

  4. ICP-MS applications for the analysis of geological materials and environmental samples

    International Nuclear Information System (INIS)

    Bendl, J.

    1997-01-01

    This work deals with applications of inductively coupled plasma - mass spectrometry applications for the analysis of geological materials and environmental samples. There are instrumentation, calibration, alternatives of sample introduction, interferences, trace elements analysis, rare earth elements and uranium and thorium, precious metals, isotopic analysis and environmental analysis discussed

  5. Preliminary Mass Spectrometric Analysis of Uranium on Environmental Swipe Materials

    International Nuclear Information System (INIS)

    Cheong, Chang-Sik; Jeong, Youn-Joong; Ryu, Jong-Sik; Shin, Hyung-Seon; Cha, Hyun-Ju; Ahn, Gil-Hoon; Park, Il-Jin; Min, Gyung-Sik

    2006-01-01

    It is well-known that uranium and plutonium isotopic compositions of safeguards samples are very useful to investigate the history of nuclear activities. To strengthen the capabilities of environmental sampling analysis in the ROK through MOST/DOE collaboration, round robin test for uranium and plutonium was designed in 2003. As the first round robin test, a set of dried uranium-containing solutions (∼35ng and (∼300ng) was distributed to the participating laboratories in November of 2003, with results reported in April of 2004. The KBSI (Korea Basic Science Institute) and ORNL (Oak Ridge National Laboratory) are currently in the process of analyzing uranium on cotton swipes for the second round robin test. As a preliminary test for the second round, KBSI intends to analyze home-made swipe samples into which international uranium standards are added. Here we describe technical steps of sample preparation and mass spectrometry at KBSI, and report some results of the preliminary test

  6. Environmental Barrier Coatings (EBC) for Ceramic Matrix Composite (CMC) Materials

    Science.gov (United States)

    Lee,Kang

    2001-01-01

    The upper use temperature of current Environmental Barrier Coatings (EBC's) based on mullite and BSAS (EPM EBC's) is limited to -255 F due to silica volatility, chemical reactions, and high thermal conductivity. Therefore, new EBC s having low CTE, good chemical compatibility, and high melting point (greater than 2700 F ) are being investigated. Sinter-resistant, low thermal conductivity EBC s are strongly desired to achieve the UEET EBC goal of 270 F EBC surface temperature and 30 F AT over long exposures (greater than 1000 hr). Key areas affecting the upper temperature limit of current EBC s as well as the ongoing efforts to develop next generation EBC s in the UEET Program will be discussed.

  7. Influence of the starting materials on performance of high temperature oxide fuel cells devices

    Directory of Open Access Journals (Sweden)

    Emília Satoshi Miyamaru Seo

    2004-03-01

    Full Text Available High temperature solid oxide fuel cells (SOFCs offer an environmentally friendly technology to convert gaseous fuels such as hydrogen, natural gas or gasified coal into electricity at high efficiencies. Besides the efficiency, higher than those obtained from the traditional energy conversion systems, a fuel cell provides many other advantages like reliability, modularity, fuel flexibility and very low levels of NOx and SOx emissions. The high operating temperature (950-1000 °C used by the current generation of the solid oxide fuel cells imposes severe constraints on materials selection in order to improve the lifetime of the cell. Besides the good electrical, electrochemical, mechanical and thermal properties, the individual cell components must be stable under the fuel cell operating atmospheres. Each material has to perform not only in its own right but also in conjunction with other system components. For this reason, each cell component must fulfill several different criteria. This paper reviews the materials and the methods used to fabricate the different cell components, such as the cathode, the electrolyte, the anode and the interconnect. Some remarkable results, obtained at IPEN (Nuclear Energy Research Institute in São Paulo, have been presented.

  8. Layered double hydroxide materials coated carbon electrode: New challenge to future electrochemical power devices

    International Nuclear Information System (INIS)

    Djebbi, Mohamed Amine; Braiek, Mohamed; Namour, Philippe; Ben Haj Amara, Abdesslem; Jaffrezic-Renault, Nicole

    2016-01-01

    Highlights: • MgAl and ZnAl LDH nanosheets were chemically synthesized and deposited over carbon electrode materials. • Catalytic performance of both LDHs was investigated for Fe(II) reduction reaction. • Satisfactory results have been achieved with the MgAl LDH material. • MgAl and ZnAl LDH modified carbon felt were applied in MFC as an efficient anode catalyst. • The LDH-modified anode significantly increased power performance of MFC. - Abstract: Layered double hydroxides (LDHs) have been widely used in the past years due to their unique physicochemical properties and promising applications in electroanalytical chemistry. The present paper is going to focus exclusively on magnesium-aluminum and zinc-aluminum layered double hydroxides (MgAl & ZnAl LDHs) in order to investigate the property and structure of active cation sites located within the layer structure. The MgAl and ZnAl LDH nanosheets were prepared by the constant pH co-precipitation method and uniformly supported on carbon-based electrode materials to fabricate an LDH electrode. Characterization by powder x-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy revealed the LDH form and well-crystallized materials. Wetting surface properties (hydrophilicity and hydrophobicity) of both prepared LDHs were recorded by contact angle measurement show hydrophilic character and basic property. The electrochemical performance of these hybrid materials was investigated by mainly cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry techniques to identify the oxidation/reduction processes at the electrode/electrolyte interface and the effect of the divalent metal cations in total reactivity. The hierarchy of the modified electrode proves that the electronic conductivity of the bulk material is considerably dependent on the divalent cation and affects the limiting parameter of the overall redox process. However

  9. Layered double hydroxide materials coated carbon electrode: New challenge to future electrochemical power devices

    Energy Technology Data Exchange (ETDEWEB)

    Djebbi, Mohamed Amine, E-mail: mohamed.djebbi@etu.univ-lyon1.fr [Institut des Sciences Analytiques UMR CNRS 5280, Université Claude Bernard-Lyon 1, 5 rue de la Doua, 69100 Villeurbanne (France); Laboratoire de Physique des Matériaux Lamellaires et Nano-Matériaux Hybrides, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Bizerte (Tunisia); Braiek, Mohamed [Institut des Sciences Analytiques UMR CNRS 5280, Université Claude Bernard-Lyon 1, 5 rue de la Doua, 69100 Villeurbanne (France); Namour, Philippe [Institut des Sciences Analytiques UMR CNRS 5280, Université Claude Bernard-Lyon 1, 5 rue de la Doua, 69100 Villeurbanne (France); Irstea, 5 rue de la Doua, 69100 Villeurbanne (France); Ben Haj Amara, Abdesslem [Laboratoire de Physique des Matériaux Lamellaires et Nano-Matériaux Hybrides, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Bizerte (Tunisia); Jaffrezic-Renault, Nicole [Institut des Sciences Analytiques UMR CNRS 5280, Université Claude Bernard-Lyon 1, 5 rue de la Doua, 69100 Villeurbanne (France)

    2016-11-15

    Highlights: • MgAl and ZnAl LDH nanosheets were chemically synthesized and deposited over carbon electrode materials. • Catalytic performance of both LDHs was investigated for Fe(II) reduction reaction. • Satisfactory results have been achieved with the MgAl LDH material. • MgAl and ZnAl LDH modified carbon felt were applied in MFC as an efficient anode catalyst. • The LDH-modified anode significantly increased power performance of MFC. - Abstract: Layered double hydroxides (LDHs) have been widely used in the past years due to their unique physicochemical properties and promising applications in electroanalytical chemistry. The present paper is going to focus exclusively on magnesium-aluminum and zinc-aluminum layered double hydroxides (MgAl & ZnAl LDHs) in order to investigate the property and structure of active cation sites located within the layer structure. The MgAl and ZnAl LDH nanosheets were prepared by the constant pH co-precipitation method and uniformly supported on carbon-based electrode materials to fabricate an LDH electrode. Characterization by powder x-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy revealed the LDH form and well-crystallized materials. Wetting surface properties (hydrophilicity and hydrophobicity) of both prepared LDHs were recorded by contact angle measurement show hydrophilic character and basic property. The electrochemical performance of these hybrid materials was investigated by mainly cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry techniques to identify the oxidation/reduction processes at the electrode/electrolyte interface and the effect of the divalent metal cations in total reactivity. The hierarchy of the modified electrode proves that the electronic conductivity of the bulk material is considerably dependent on the divalent cation and affects the limiting parameter of the overall redox process. However

  10. Synthesis of organic EL materials with cyano group and evaluation of emission characteristics in organic EL devices

    International Nuclear Information System (INIS)

    Kim, Dong Uk

    1999-01-01

    Nobel electroluminescent materials, polymer material, PU-BCN and low molar mass material, D-BCN with the same chromophores were designed and synthesized. A molecular structure of chromophore was composed of bisstyrylbenzene derivative with cyano groups as electron injection and transport and phenylamine groups as hole injection and transport. Device structures with PU-BCN and D-BCN as an emission layer were fabricated, which were a single-layer device(SL), Indium-tin oxide(ITO)/emission layer/MgAg, and two kinds of double-layer devices which were composed of ITO/emission layer/oxadiazole derivative/MgAg as a DL-E device and ITO/triphenylamine derivative/emission layer/MgAg as a DL-H device. The two emission materials, PU-BCN and D-BCN with the same emission-chromophore were evaluated as having excellent performance of charge injection and transport and revealed almost the same emission characteristics in high current density. EL emission maximum peaks of two material were detected at about 640 nm wavelength of red emission region

  11. The Contribution of Environmental Siting and Permitting Requirements to the Cost of Energy for Oscillating Water Column Wave Energy Devices

    Energy Technology Data Exchange (ETDEWEB)

    Copping, Andrea E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geerlofs, Simon H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hanna, Luke A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-01

    Responsible deployment of marine and hydrokinetic (MHK) devices in estuaries, coastal areas, and major rivers requires that biological resources and ecosystems be protected through siting and permitting (consenting) processes. Scoping appropriate deployment locations, collecting pre-installation (baseline) and post-installation data all add to the cost of developing MHK projects, and hence to the cost of energy. Under the direction of the U.S. Department of Energy, Pacific Northwest National Laboratory scientists have developed logic models that describe studies and processes for environmental siting and permitting. Each study and environmental permitting process has been assigned a cost derived from existing and proposed tidal, wave, and riverine MHK projects, as well as expert opinion of marine environmental research professionals. Cost estimates have been developed at the pilot and commercial scale. The reference model described in this document is an oscillating water column device deployed in Northern California at approximately 50 meters water depth.

  12. Polyimide-polyether mixed conductors as switchable materials for electrochromic devices

    Energy Technology Data Exchange (ETDEWEB)

    Michot, C; Baril, D; Armand, M [Laboratoire d` Ionique et d` Electrochimie du Solide, ENSEEG, Institut National Polytechnique de Grenoble, Saint-Martin d` Heres (France)

    1995-12-01

    A new family of redox-active polymers have been obtained by polycondensation of {alpha},{omega}-diamino oligopolyethers with various aromatic tetracarboxylic acid anhydrides. The polyether blocks retain the usual cation co-ordination ability leading to solid-state ionic conduction while the relatively large electron affinity of the bis-imide moieties formed in the block polymers allows the reversible formation of stable radical anions ({sup -} and {sup 2-}) in the range 2-2.6 V vs. Li. Either slow-scan or microelectrode voltammetry indicate that the totality of the redox centres in such materials are readily accessible for all polyether spacer lengths tested (6-22 ether fragments), suggesting both a fast electron-exchange mechanism between anion radicals and a tendency for self assembly (stacking) of the planar aromatic groups. When increasing the number of atoms in the aromatic ring, the peak separation became smaller (benzene>naphthalene>perylene), resulting ultimately in simultaneous 2-electrons injection. These materials, due to the high coloration efficiency of the reduced state and their ready processability in thin films are excellent candidate for the realisation of laminated solid-state electrochromic devices

  13. Development of glass/glass-ceramics materials and devices and their micro-structural studies

    International Nuclear Information System (INIS)

    Goswami, Madhumita; Sarkar, Arjun; Shingarvelan, Shobha; Kumar, Rakesh; Ananathanarayan, Arvind; Shrikhande, V.K.; Kothiyal, G.P.

    2009-01-01

    Materials and devices based on glass and glass-ceramics (GCs) find applications in various high pressure and vacuum applications. We have prepared different glasses/glass-ceramics with requisite thermal expansion coefficient, electrical, vacuum and wetting characteristics to fabricate hermetic seals with different metals/alloys as well as components for these applications. Some of these are, SiO 2 -Na 2 O-K 2 O-Al 2 O 3 -B 2O3 (BS) for matched type of seal fabricated with Kovar alloy, SiO 2 -Na 2 O-K 2 O-BaO-PbO(LS) for fabrication of compressive type seals with stainless steel and SS 446 alloys, P 2 O 5 -Na 2 O-B 2 O 3 -BaO-PbO(NAP) for fabrication of matched type of seal with relatively low melting metals/alloys like AI/Cu-Be and Li 2 O-ZnO-SiO 2 -P 2 O 5 -B 2 O 3 -Na 2 O (LZS) and Lithium aluminium silicate (LAS) glass-ceramics to fabricate matched and compression types feedtroughs/conductivity probes Magnesium aluminium silicate (MAS) machinable glass-ceramics is another development for high voltage and ultra high vacuum applications. Micro-structural studies have been carried out on these materials to understand the mechanism of their behaviour and have also been deployed in various systems and plants in DAE. (author)

  14. Applications of nano and smart materials in renewable energy production and storage devices

    Science.gov (United States)

    Ghasemi-Nejhad, Mehrdad N.

    2015-03-01

    This paper presents development of renewable energy production and storage devices employing nanomaterials and smart materials. The use of carbon nanotubes (CNTs) and graphene nanosheets (GNS) to improve the performance and durability of wind turbine and wave rotor blades will be explained. While GNS are primary used for the performance enhancement of the resin system called Nanoresin, CNT Nanoforests and Nanofilms are used to improve the performance of fiber systems in high-performance Nanocomposites. In addition, the use of CNTs and piezo-nanofibers will be explained as the health monitoring and smart systems within the composites. A self-healing mechanism will also be explained within the composites using these materials. Next the use of CNTs as gas diffusion layers and CNTs combined with in-situ generated platinum nanoparticles as catalyst layers will be explained to improve the performance, efficiency, and durability of proton exchange membrane fuel cells while reducing their costs, weight, and size. In addition, the use of CNTs and GNSs to improve the efficiency and performance of polymer solar cells will be explained. Finally, the use of CNTs and GNSs to enhance the performance, efficiency, and durability of batteries and supercapacitors while reducing their costs, weight, and size will be discussed.

  15. Control of electro-chemical processes using energy harvesting materials and devices.

    Science.gov (United States)

    Zhang, Yan; Xie, Mengying; Adamaki, Vana; Khanbareh, Hamideh; Bowen, Chris R

    2017-12-11

    Energy harvesting is a topic of intense interest that aims to convert ambient forms of energy such as mechanical motion, light and heat, which are otherwise wasted, into useful energy. In many cases the energy harvester or nanogenerator converts motion, heat or light into electrical energy, which is subsequently rectified and stored within capacitors for applications such as wireless and self-powered sensors or low-power electronics. This review covers the new and emerging area that aims to directly couple energy harvesting materials and devices with electro-chemical systems. The harvesting approaches to be covered include pyroelectric, piezoelectric, triboelectric, flexoelectric, thermoelectric and photovoltaic effects. These are used to influence a variety of electro-chemical systems such as applications related to water splitting, catalysis, corrosion protection, degradation of pollutants, disinfection of bacteria and material synthesis. Comparisons are made between the range harvesting approaches and the modes of operation are described. Future directions for the development of electro-chemical harvesting systems are highlighted and the potential for new applications and hybrid approaches are discussed.

  16. Recent progress in MBE grown HgCdTe materials and devices at UWA

    Science.gov (United States)

    Gu, R.; Lei, W.; Antoszewski, J.; Madni, I.; Umana-Menbreno, G.; Faraone, L.

    2016-05-01

    HgCdTe has dominated the high performance end of the IR detector market for decades. At present, the fabrication costs of HgCdTe based advanced infrared devices is relatively high, due to the low yield associated with lattice matched CdZnTe substrates and a complicated cooling system. One approach to ease this problem is to use a cost effective alternative substrate, such as Si or GaAs. Recently, GaSb has emerged as a new alternative with better lattice matching. In addition, implementation of MBE-grown unipolar n-type/barrier/n-type detector structures in the HgCdTe material system has been recently proposed and studied intensively to enhance the detector operating temperature. The unipolar nBn photodetector structure can be used to substantially reduce dark current and noise without impeding photocurrent flow. In this paper, recent progress in MBE growth of HgCdTe infrared material at the University of Western Australia (UWA) is reported, including MBE growth of HgCdTe on GaSb alternative substrates and growth of HgCdTe nBn structures.

  17. Constructal design of phase change material enclosures used for cooling electronic devices

    International Nuclear Information System (INIS)

    Kalbasi, Rasool; Salimpour, Mohammad Reza

    2015-01-01

    Recent developments in cooling methods for portable electronic devices have heightened the need for using the large latent heat capacity of phase change materials (PCM). The aim of the present study is to evaluate the thermal characteristics of a PCM-based heat sink with high conductive materials. The solution is acquired as a procession of optimization stages which starts with the elemental area and proceeds toward the first assembly. Every optimization stage is the result of maximizing the safe operation time without allowing the electronics to reach the critical temperature. Primarily, the degrees of freedom and constrains were defined and then by changing the geometrical parameters, the target function which is the maximization of operation time, was optimized. Results show that the melting process in rectangular enclosures with vertical fins attached to the heated bottom surface can be affected by the contact surface between the fin and PCM and the convection of the melted PCM. For a rectangular enclosure with a constant area, it is better to use wider enclosure than the square and thin one. Also results indicate that the ratio of the vertical fin thickness to the horizontal one does not have a considerable effect on performance. By increasing the number of enclosures, the contact surface is raised, but the performance is not necessarily improved. - Highlights: • Thermal characteristics of a finned PCM-based heat sink are studied. • Constructal theory was used to optimize the PCM enclosures. • By increasing the number of enclosures, the performance is not necessarily improved

  18. Development of environmental friendly lost circulation material from banana peel

    Science.gov (United States)

    Sauki, Arina; Hasan, Nur â.€˜Izzati; Naimi, Fardelen Binti Md; Othman, Nur Hidayati

    2017-12-01

    Loss of expensive mud could lead to major financial problem in executing a drilling project and is one of the biggest problems that need to be tackled during drilling. Synthetic Based Mud (SBM) is the most stable state of the art drilling mud used in current drilling technologies. However, the problem with lost circulation is still inevitable. The focus of this project is to develop a new potential waste material from banana peel in order to combat lost circulation in SBM. Standard industrial Lost Circulation Material (LCM) is used to compare the performance of banana peel as LCM in SBM. The effects of different sizing of banana peels (600 micron, 300 micron and 100 micron) were studied on the rheological and filtration properties of SBM and the bridging performance of banana peel as LCM additive. The tests were conducted using viscometer, HTHP filter press and sand bed tester. Thermal analysis of banana peel was also studied using TGA. According to the results obtained, 300 and 100 micron size of banana peel LCM exhibited an improved bridging performance by 65% as compared to industrial LCM. However, banana peel LCM with the size of 600 micron failed to act as LCM due to the total invasion of mud into the sand bed.

  19. NATO Advanced Research Workshop on Advanced Materials and Technologies for Micro/Nano-Devices, Sensors and Actuators

    CERN Document Server

    Gusev, Evgeni; Dideikin, Arthur

    2010-01-01

    The main goal of this book is to review recent progress and current status of MEMS/NEMS technologies and devices. Several important areas are discussed: history of research in the field, device physics, examples of sucessful applications, sensors, materials and processing aspects. The authors who have contributed to the book represent a diverse group of leading scientists from academic, industrial and governmental labs worldwide who bring a broad array of backgrounds such as device physics, technologists, electrical and mechanical engineering, surface chemistry and materials science). The contributions to this book are accessible to both expert scientists and engineers who need to keep up with leading edge research, and newcomers to the field who wish to learn more about the exciting basic and applied research issues relevant to micromechanical devices and technologies.

  20. A cost effective method for the determination of 210Po and 210Pb in environmental materials

    International Nuclear Information System (INIS)

    Clayton, R.F.; Bradley, E.J.

    1995-01-01

    The majority of the methods for the determination of 210 Pb and 210 Po in environmental materials were developed in the 1960s. However, with the advances in technology since that time, particularly in the areas of ion-exchange chromatography and instrumentation, new methods may be more appropriate to measure these radionuclides in environmental media such as foodstuffs. A review was conducted of potentially suitable methods. Four methods were selected for detailed evaluation on the basis of cost and sensitivity. A cheap, sensitive and simple method is recommended for the analysis of 210 Pb and 210 Po in environmental materials

  1. Device intended for measurement of induced trapped charge in insulating materials under electron irradiation in a scanning electron microscope

    International Nuclear Information System (INIS)

    Belkorissat, R; Benramdane, N; Jbara, O; Rondot, S; Hadjadj, A; Belhaj, M

    2013-01-01

    A device for simultaneously measuring two currents (i.e. leakage and displacement currents) induced in insulating materials under electron irradiation has been built. The device, suitably mounted on the sample holder of a scanning electron microscope (SEM), allows a wider investigation of charging and discharging phenomena that take place in any type of insulator during its electron irradiation and to determine accurately the corresponding time constants. The measurement of displacement current is based on the principle of the image charge due to the electrostatic influence phenomena. We are reporting the basic concept and test results of the device that we have built using, among others, the finite element method for its calibration. This last method takes into account the specimen chamber geometry, the geometry of the device and the physical properties of the sample. In order to show the possibilities of the designed device, various applications under different experimental conditions are explored. (paper)

  2. Selection of environmental sustainable fiber materials for wind turbine blades - a contra intuitive process?

    Energy Technology Data Exchange (ETDEWEB)

    Birkved, M.; Corona, A. [Technical Univ. of Denmark. DTU Management Engineering, Kgs. Lyngby (Denmark); Markussen, C.M.; Madsen, Bo [Technical Univ. of Denmark. DTU Wind Energy, Risoe Campus, Roskilde (Denmark)

    2013-09-01

    Over the recent decades biomaterials have been marketed successfully supported by the common perception that biomaterials and environmental sustainability de facto represents two sides of the same coin. The development of sustainable composite materials such as blades for small-scale wind turbines have thus partially been focused on the substitution of conventional fiber materials with bio-fibers. The major question is if this material substitution actually, is environmental sustainable. In order to assess a wide pallet of environmental impacts and taking into account positive and negative environmental trade-offs over the entire life-span of composite materials, life cycle assessment (LCA) can be applied. In the present case study, four different types of fibers (carbon, glass, flax and carbon/flax mixture) are compared in terms of environmental sustainability and cost. Applying one of the most recent life cycle impact assessment methods, it is demonstrated that the environmental sustainability of the mixed carbon/flax fiber based composite material is better than that of the flax fibers alone. This observation may be contra-intuitive, but is mainly caused by the fact that the bio-material resin demand is by far exceeding the resin demand of the conventional fibers, and since the environmental burden of the resin is comparable to that of the fibers, resin demand is in terms of environmental sustainability important. On the other hand is the energy demand and associated environmental impacts in relation to the production of the carbon and glass fibers considerable compared to the impacts resulting from resin production. The ideal fiber solution, in terms of environmental sustainability, is hence the fiber composition having the lowest resin demand and lowest overall energy demand. The optimum environmental solution hence turns out to be a 70:30 flax:carbon mix, thereby minimizing the use of carbon fibers and resin. On top of the environmental sustainability

  3. Designing advanced materials by environmental friendly plasma electrolytic oxidation

    International Nuclear Information System (INIS)

    Toader, I.; Valeca, M.; Rusu, O.; Coaca, E.; Marin, A.

    2016-01-01

    In the CANDU-PHWR nuclear reactors, Zr-2.5Nb coated with a black adherent oxide film of 1 to 2 μm in thickness is currently used for the manufacture of pressure tubes. The black oxide thin film has corrosion protective properties. However, it can be damaged during the regular refueling process, thus causing hydrogen/oxygen ingression. Therefore, an enhanced wear and corrosion resistance coating is needed. Plasma electrolytic oxidation (PEO) is an anodic electrochemical treatment, both cost-effective and environmentally friendly, widely used in the formation of a protective oxide film on the metal surface to enhance wear and corrosion resistance as well as prolonging component lifetime. The state of the art reveals that PEO method is suitable for improving the wear resistance of Zr-2.5Nb alloy. Few studies are performed in this field and thus, it is necessary to conduct a more detailed insight study on the processing parameters for PEO treatment. By understanding the influence of process parameters, such as electrolyte temperature and electrolyte composition, we can find the way to obtain a coating with improved mechanical and corrosion properties on zirconium alloys. (authors)

  4. Heterologous, Fresh, Human Donor Sclera as Patch Graft Material in Glaucoma Drainage Device Surgery.

    Science.gov (United States)

    Tsoukanas, Dimitrios; Xanthopoulou, Paraskevi; Charonis, Alexandros C; Theodossiadis, Panagiotis; Kopsinis, Gerasimos; Filippopoulos, Theodoros

    2016-07-01

    To determine the safety and efficacy of fresh, human sclera allografts as a patch graft material in glaucoma drainage device (GDD) surgery. Retrospective, noncomparative, interventional, consecutive case series. All GDD cases operated between 2008 and 2013 in which fresh human corneoscleral rims were used immediately after the central corneal button was used for penetrating or endothelial keratoplasty. Surgery was performed by 2 surgeons at 2 facilities. The Ahmed Glaucoma Valve (FP-7) was used exclusively in this cohort. Sixty-four eyes of 60 patients were identified; demographic data were recorded along with intraocular pressure (IOP), medication requirements, visual acuity, complications, and subsequent interventions. Incidence of complications. IOP and medication requirements at the last follow-up. Quilified success utilizing Tube Versus Trabeculectomy study criteria. The mean age of the cohort was 66.2±19.1 years; the average preoperative IOP was 33.2±11.1 mm Hg on 4.2±1.3 IOP-lowering agents before GDD surgery. IOP decreased significantly to 14.1±4.7 mm Hg (Pendophthalmitis, and there was 1 case of conjunctival erosion and tube/plate exposure (1.6%) occurring 30 days after surgery. Qualified success was estimated as 90.5% and 81% at 1 and 2 years, respectively, using Tube Versus Trabeculectomy study criteria. Heterologous, fresh, human donor sclera appears to be a safe material for GDD tube coverage. It provides a cost-efficient alternative compared with traditional patch graft materials associated with a low risk of pathogen transmission.

  5. Kinetics of absorption of the environmental moisture in grainy materials

    Energy Technology Data Exchange (ETDEWEB)

    Villar-Cocina, E.; Valencia-Morales, E.; Gonzalez-Rodriguez, R. [Universidad Central de las Villas, Villaclara (Cuba)

    2001-02-01

    The moisture absorption in granulated materials used in foundry technologies is analyzed. The absorption process has a diffusive behavior mainly. A simple experimental technique, in which the wet weight increment was recorded as the experimental variable and an analytic method with computing procedure to find the parameters characterizing the process was used. The determination of these parameters by traditional methods is a very difficult task, very refined and expensive trials are needed. The fitting of the model permits to determine the diffusion coefficient and the moisture concentration in the separation surface between the sample and the environment. The concentration profiles are established for different times. Finally, the possibility of occurrence of superimposed diffusive processes in some materials is analyzed and the diffusion coefficient and the amount of moisture incorporated by each process are calculated. [Spanish] Se analiza la absorcion de humedad en materiales granulados utilizados en tecnologias de funcion cuyo proceso tiene un comportamiento difusivo principalmente. Se utiliza una tecnica experimental simple en la cual el incremento en peso humedo es registrado como variable experimental. Un metodo analitico con procesamiento computacional es usado para determinar los parametros que caracterizan el proceso, cuya determinacion por metodos tradicionales es dificil y requiere de ensayos muy refinados y costosos. El ajuste del modelo permite determinar el coeficiente de difusion y la concentracion de humedad en la superficie de separacion de la muestra y la atmosfera circundante. Se establecen los perfiles de concentraciones para diferentes instantes de tiempo. Finalmente, la posibilidad de ocurrencia de procesos difusivos superpuestos en algunos materiales es analizada y son calculados los coeficientes de difusion y la cantidad de humedad incorporada por cada proceso.

  6. Sensor devices comprising a metal-organic framework material and methods of making and using the same

    Science.gov (United States)

    Wang, Alan X.; Chang, Chih-hung; Kim, Ki-Joong; Chong, Xinyuan; Ohodnicki, Paul R.

    2018-05-29

    Disclosed herein are embodiments of sensor devices comprising a sensing component able to determine the presence of, detect, and/or quantify detectable species in a variety of environments and applications. The sensing components disclosed herein can comprise MOF materials, plasmonic nanomaterials, or combinations thereof. In an exemplary embodiment, light guides can be coupled with the sensing components described herein to provide sensor devices capable of increased NIR detection sensitivity in determining the presence of detectable species, such as gases and volatile organic compounds. In another exemplary embodiment, optical properties of the plasmonic nanomaterials combined with MOF materials can be monitored directly to detect analyte species through their impact on external conditions surrounding the particle or as a result of charge transfer to and from the plasmonic material as a result of interactions with the plasmonic material and/or the MOF material.

  7. Magnetically responsive (nano) composites as perspective materials for environmental technology applications

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Šafaříková, Miroslava

    -, č. 0 (2010), s. 85-90 R&D Projects: GA MPO(CZ) 2A-1TP1/094; GA MŠk OC09052 Institutional research plan: CEZ:AV0Z60870520 Keywords : magnetically responsive materials * ( nano )biocomposites * environmental technology Subject RIV: JI - Composite Materials

  8. A study of production of radioactive environmental reference materials used for proficiency testing program in Taiwan

    International Nuclear Information System (INIS)

    Peng, En-Chi; Wang, Jeng-Jong

    2013-01-01

    To realise radioactive environmental reference materials in Taiwan, seven environmental materials of soil, water, vegetation, meat, airborne particles (filter paper), milk and mushroom samples that are frequently encountered were used to establish the preparation of the reference materials. These seven environmental materials were collected, checked for freedom from radioactivity and prepared according to their properties. The preparation was carried out by using activity about 10–100 times that of the minimum detectable activity (MDA) in routine measurements in the radioactive standard used to spike the inactive material and this standard is traceable to national ionising radioactivity standards (TAF, 2004). To demonstrate sample traceability to the added standard, each sample was carefully measured and its uncertainty evaluated. Based on the recommendations of ISO Guide 35 for evaluation of reference materials and with the above assessment and verification procedures, the uncertainties (k=1) of the spike activity used in making reference materials were: 60 Co≤4.6%, 134 Cs≤4.7%, 137 Cs≤5.0%, total β≤0.6% and 3 H≤1.3%. - Highlights: • Seven kinds environmental materials were used to establish the production of the RMs. • Spiking the traceable standard radioactive source to the blank substance. • Each sample was carefully evaluated for its uncertainty. • The performance of the RMs was estimated with the Proficiency Testing program report. • The ability of the environment RMs in the configuration is quite good

  9. Trends in the Use of Supplementary Materials in Environmental Science Journals

    Science.gov (United States)

    Kenyon, Jeremy; Sprague, Nancy R.

    2014-01-01

    Our research examined the use of supplementary materials in six environmental science disciplines: atmospheric sciences, biology, fisheries, forestry, geology, and plant sciences. Ten key journals were selected from each of these disciplines and the number of supplementary materials, such as data files or videos, in each issue was noted over a…

  10. Recent developments in the field of environmental reference materials at the JRC Ispra.

    Science.gov (United States)

    Muntau, H

    2001-06-01

    The production of reference materials for environmental analysis started in the Joint Research Centre at Ispra/Italy in 1972 with the objective of later certification by the BCR, but for obvious budget reasons only a fraction of the total production achieved at Ispra ever reached certification level, although all materials were produced according to the severe quality requirements requested for certified reference materials. Therefore, the materials not destinated to certification are in growing demand as inter-laboratory test materials and as laboratory reference materials, for internal quality control, e.g., by control charts. The history of reference material production within the Joint Research Centre is briefly reviewed and the latest additions described. New developments such as micro-scale reference materials intended for analytical methods requiring sample intakes at milligram or sub-milligram level and therefor not finding supply on the reference material market, and "wet" environmental reference materials, which meet more precisely the "real-world" environmental analysis conditions, are presented and the state-of-the-art discussed.

  11. Advances in SiC materials and devices: an industrial point of view

    Energy Technology Data Exchange (ETDEWEB)

    Siergiej, R.R.; Clarke, R.C.; Sriram, S.; Agarwal, A.K.; Bojko, R.J.; Morse, A.W.; Balakrishna, V.; MacMillan, M.F.; Brandt, C.D. [Northrop Grumman ESSS Sci. and Technol. Center, Pittsburgh, PA (United States); Burk, A.A. Jr. [Northrop Grumman ESSS Adv. Technol. Lab. Baltimore, MD (United States)

    1999-07-30

    Silicon carbide (SiC) is an emerging semiconductor that has proven itself especially well-suited to high temperature power switching and high-frequency power generation. In this paper we examine recent advances in materials development and device performance. In boule growth we have focused on increasing boule diameter and reducing defect counts. Two conductivity types have been developed (1) semi-insulating for MESFETs, and (2) highly conducting boules for SITs and power switches. Very uniform planetary multi-wafer epitaxial layer growth on these wafers is described, in which specular epitaxial layers have been obtained with growth rates of 3-5{mu}m h{sup -1} exhibiting unintentional n-type doping of {proportional_to}1 x 10{sup 15} cm{sup -3}, and room temperature Hall mobilities of {proportional_to}1000 cm{sup 2} V{sup -1} s{sup -1}. Controlled n-type doping between {proportional_to}5 x 10{sup 15} cm{sup -3} and >1 x 10{sup 19} cm{sup -3} has also been demonstrated using nitrogen doping. SiC finds application in high temperature power switching devices and microwave power transistors. MOS turn-off thyristors (MTO{sup TM}) are being investigated as power switches because they offer ease of turn-off, 500 C operation and reduced cooling requirements. In the fabrication of high-power, high-frequency transistors at UHF, L-, S-, and X-bands SiC has been found superior to both silicon and GaAs. For example, a 4H-SiC UHF television module has demonstrated good signal fidelity at the 2000 W PEP level, S-band transistor packages have shown 300 W peak power for radar applications, and 6 W power output has been obtained at X-band. (orig.)

  12. Influence of Nitrogen Doping on Device Operation for TiO2-Based Solid-State Dye-Sensitized Solar Cells: Photo-Physics from Materials to Devices

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2016-02-01

    Full Text Available Solid-state dye-sensitized solar cells (ssDSSC constitute a major approach to photovoltaic energy conversion with efficiencies over 8% reported thanks to the rational design of efficient porous metal oxide electrodes, organic chromophores, and hole transporters. Among the various strategies used to push the performance ahead, doping of the nanocrystalline titanium dioxide (TiO2 electrode is regularly proposed to extend the photo-activity of the materials into the visible range. However, although various beneficial effects for device performance have been observed in the literature, they remain strongly dependent on the method used for the production of the metal oxide, and the influence of nitrogen atoms on charge kinetics remains unclear. To shed light on this open question, we synthesized a set of N-doped TiO2 nanopowders with various nitrogen contents, and exploited them for the fabrication of ssDSSC. Particularly, we carefully analyzed the localization of the dopants using X-ray photo-electron spectroscopy (XPS and monitored their influence on the photo-induced charge kinetics probed both at the material and device levels. We demonstrate a strong correlation between the kinetics of photo-induced charge carriers probed both at the level of the nanopowders and at the level of working solar cells, illustrating a direct transposition of the photo-physic properties from materials to devices.

  13. An overview of safety and environmental considerations in the selection of materials for fusion facilities

    International Nuclear Information System (INIS)

    Petti, D.A.; Piet, S.J.; Seki, Y.

    1996-01-01

    Safety and environmental considerations can play a large role in the selection of fusion materials. In this paper, we review the attributes of different structural, plasma facing, and breeding materials from a safety perspective and discuss some generic waste management issues as they relate to fusion materials in general. Specific safety concerns exist for each material that must be dealt with in fusion facility design. Low activation materials offer inherent safety benefits compared with conventional materials, but more work is needed before these materials have the requisite certified databases. In the interim, the international thermonuclear experimental reactor (ITER) has selected more conventional materials and is showing that the safety concerns with these materials can be addressed by proper attention to design. In the area of waste management disposal criteria differ by country. However, the criteria are all very strict making disposal of fusion components difficult. As a result, recycling has gained increasing attention. (orig.)

  14. Materials science, integration, and performance characterization of high-dielectric constant thin film based devices

    Science.gov (United States)

    Fan, Wei

    To overcome the oxidation and diffusion problems encountered during Copper integration with oxide thin film-based devices, TiAl/Cu/Ta heterostructure has been first developed in this study. Investigation on the oxidation and diffusion resistance of the laminate structure showed high electrical conductance and excellent thermal stability in oxygen environment. Two amorphous oxide layers that were formed on both sides of the TiAl barrier after heating in oxygen have been revealed as the structure that effectively prevents oxygen penetration and protects the integrity of underlying Cu layer. Polycrystalline (BaxSr1-x)TiO3 (BST) thin films were subsequently deposited on the Cu-based bottom electrode by RF magnetron sputtering to investigate the interaction between the oxide and Cu layers. The thickness of the interfacial layer and interface roughness play critical roles in the optimization of the electrical performance of the BST capacitors using Cu-based electrode. It was determined that BST deposition at moderate temperature followed by rapid thermal annealing in pure oxygen yields BST/Cu capacitors with good electrical properties for application to high frequency devices. The knowledge obtained on the study of barrier properties of TiAl inspired a continuous research on the materials science issues related to the application of the hybrid TiAlOx, as high-k gate dielectric in MOSFET devices. Novel fabrication process such as deposition of ultra-thin TiAl alloy layer followed by oxidation with atomic oxygen has been established in this study. Stoichiometric amorphous TiAlOx layers, exhibiting only Ti4+ and Al3+ states, were produced with a large variation of oxidation temperature (700°C to room temperature). The interfacial SiOx formation between TiAlOx and Si was substantially inhibited by the use of the low temperature oxidation process. Electrical characterization revealed a large permittivity of 30 and an improved band structure for the produced TiAlOx layers

  15. Device and material characterization and analytic modeling of amorphous silicon thin film transistors

    Science.gov (United States)

    Slade, Holly Claudia

    Hydrogenated amorphous silicon thin film transistors (TFTs) are now well-established as switching elements for a variety of applications in the lucrative electronics market, such as active matrix liquid crystal displays, two-dimensional imagers, and position-sensitive radiation detectors. These applications necessitate the development of accurate characterization and simulation tools. The main goal of this work is the development of a semi- empirical, analytical model for the DC and AC operation of an amorphous silicon TFT for use in a manufacturing facility to improve yield and maintain process control. The model is physically-based, in order that the parameters scale with gate length and can be easily related back to the material and device properties. To accomplish this, extensive experimental data and 2D simulations are used to observe and quantify non- crystalline effects in the TFTs. In particular, due to the disorder in the amorphous network, localized energy states exist throughout the band gap and affect all regimes of TFT operation. These localized states trap most of the free charge, causing a gate-bias-dependent field effect mobility above threshold, a power-law dependence of the current on gate bias below threshold, very low leakage currents, and severe frequency dispersion of the TFT gate capacitance. Additional investigations of TFT instabilities reveal the importance of changes in the density of states and/or back channel conduction due to bias and thermal stress. In the above threshold regime, the model is similar to the crystalline MOSFET model, considering the drift component of free charge. This approach uses the field effect mobility to take into account the trap states and must utilize the correct definition of threshold voltage. In the below threshold regime, the density of deep states is taken into account. The leakage current is modeled empirically, and the parameters are temperature dependent to 150oC. The capacitance of the TFT can be

  16. The environmental and medical geochemistry of potentially hazardous materials produced by disasters

    Science.gov (United States)

    Plumlee, Geoffrey S.; Morman, Suzette A.; Meeker, G.P.; Hoefen, Todd M.; Hageman, Philip L.; Wolf, Ruth E.

    2014-01-01

    Many natural or human-caused disasters release potentially hazardous materials (HM) that may pose threats to the environment and health of exposed humans, wildlife, and livestock. This chapter summarizes the environmentally and toxicologically significant physical, mineralogical, and geochemical characteristics of materials produced by a wide variety of recent disasters, such as volcanic eruptions, hurricanes and extreme storms, spills of mining/mineral-processing wastes or coal extraction by-products, and the 2001 attacks on and collapse of the World Trade Center towers. In describing these characteristics, this chapter also illustrates the important roles that geochemists and other earth scientists can play in environmental disaster response and preparedness. In addition to characterizing in detail the physical, chemical, and microbial makeup of HM generated by the disasters, these roles also include (1) identifying and discriminating potential multiple sources of the materials; (2) monitoring, mapping, and modeling dispersal and evolution of the materials in the environment; (3) understanding how the materials are modified by environmental processes; (4) identifying key characteristics and processes that influence the materials' toxicity to exposed humans and ecosystems; (5) estimating shifts away from predisaster environmental baseline conditions; and (6) using geochemical insights learned from past disasters to help estimate, prepare for, and increase societal resilience to the environmental and related health impacts of future disasters.

  17. Do single-use medical devices containing biopolymers reduce the environmental impacts of surgical procedures compared with their plastic equivalents?

    Science.gov (United States)

    Unger, Scott R; Hottle, Troy A; Hobbs, Shakira R; Thiel, Cassandra L; Campion, Nicole; Bilec, Melissa M; Landis, Amy E

    2017-01-01

    Background While petroleum-based plastics are extensively used in health care, recent developments in biopolymer manufacturing have created new opportunities for increased integration of biopolymers into medical products, devices and services. This study compared the environmental impacts of single-use disposable devices with increased biopolymer content versus typically manufactured devices in hysterectomy. Methods A comparative life cycle assessment of single-use disposable medical products containing plastic(s) versus the same single-use medical devices with biopolymers substituted for plastic(s) at Magee-Women's Hospital (Magee) in Pittsburgh, PA and the products used in four types of hysterectomies that contained plastics potentially suitable for biopolymer substitution. Magee is a 360-bed teaching hospital, which performs approximately 1400 hysterectomies annually. Results There are life cycle environmental impact tradeoffs when substituting biopolymers for petroplastics in procedures such as hysterectomies. The substitution of biopolymers for petroleum-based plastics increased smog-related impacts by approximately 900% for laparoscopic and robotic hysterectomies, and increased ozone depletion-related impacts by approximately 125% for laparoscopic and robotic hysterectomies. Conversely, biopolymers reduced life cycle human health impacts, acidification and cumulative energy demand for the four hysterectomy procedures. The integration of biopolymers into medical products is correlated with reductions in carcinogenic impacts, non-carcinogenic impacts and respiratory effects. However, the significant agricultural inputs associated with manufacturing biopolymers exacerbate environmental impacts of products and devices made using biopolymers. Conclusions The integration of biopolymers into medical products is correlated with reductions in carcinogenic impacts, non-carcinogenic impacts and respiratory effects; however, the significant agricultural inputs associated

  18. Metal-Organic Frameworks as Active Materials in Electronic Sensor Devices.

    Science.gov (United States)

    Campbell, Michael G; Dincă, Mircea

    2017-05-12

    In the past decade, advances in electrically conductive metal-organic frameworks (MOFs) and MOF-based electronic devices have created new opportunities for the development of next-generation sensors. Here we review this rapidly-growing field, with a focus on the different types of device configurations that have allowed for the use of MOFs as active components of electronic sensor devices.

  19. Investigation of structural and electrical properties on substrate material for high frequency metal-oxide-semiconductor (MOS) devices

    Science.gov (United States)

    Kumar, M.; Yang, Sung-Hyun; Janardhan Reddy, K.; JagadeeshChandra, S. V.

    2017-04-01

    Hafnium oxide (HfO2) thin films were grown on cleaned P-type Ge and Si substrates by using atomic layer deposition technique (ALD) with thickness of 8 nm. The composition analysis of as-deposited and annealed HfO2 films was characterized by XPS, further electrical measurements; we fabricated the metal-oxide-semiconductor (MOS) devices with Pt electrode. Post deposition annealing in O2 ambient at 500 °C for 30 min was carried out on both Ge and Si devices. Capacitance-voltage (C-V) and conductance-voltage (G-V) curves measured at 1 MHz. The Ge MOS devices showed improved interfacial and electrical properties, high dielectric constant (~19), smaller EOT value (0.7 nm), and smaller D it value as Si MOS devices. The C-V curves shown significantly high accumulation capacitance values from Ge devices, relatively when compare with the Si MOS devices before and after annealing. It could be due to the presence of very thin interfacial layer at HfO2/Ge stacks than HfO2/Si stacks conformed by the HRTEM images. Besides, from current-voltage (I-V) curves of the Ge devices exhibited similar leakage current as Si devices. Therefore, Ge might be a reliable substrate material for structural, electrical and high frequency applications.

  20. Atomistic materials modeling of complex systems: Carbynes, carbon nanotube devices and bulk metallic glasses

    Science.gov (United States)

    Luo, Weiqi

    The key to understanding and predicting the behavior of materials is the knowledge of their structures. Many properties of materials samples are not solely determined by their average chemical compositions which one may easily control. Instead, they are profoundly influenced by structural features of different characteristic length scales. Starting in the last century, metallurgical engineering has mostly been microstructure engineering. With the further evolution of materials science, structural features of smaller length scales down to the atomic structure, have become of interest for the purpose of properties engineering and functionalizing materials and are, therefore, subjected to study. As computer modeling is becoming more powerful due to the dramatic increase of computational resources and software over the recent decades, there is an increasing demand for atomistic simulations with the goal of better understanding materials behavior on the atomic scale. Density functional theory (DFT) is a quantum mechanics based approach to calculate electron distribution, total energy and interatomic forces with high accuracy. From these, atomic structures and thermal effects can be predicted. However, DFT is mostly applied to relatively simple systems because it is computationally very demanding. In this thesis, the current limits of DFT applications are explored by studying relatively complex systems, namely, carbynes, carbon nanotube (CNT) devices and bulk metallic glasses (BMGs). Special care is taken to overcome the limitations set by small system sizes and time scales that often prohibit DFT from being applied to realistic systems under realistic external conditions. In the first study, we examine the possible existence of a third solid phase of carbon with linear bonding called carbyne, which has been suggested in the literature and whose formation has been suggested to be detrimental to high-temperature carbon materials. We have suggested potential structures for

  1. Evaluating the Environmental Dimension of Material Efficiency Strategies Relating to the Circular Economy

    Directory of Open Access Journals (Sweden)

    Stuart Walker

    2018-03-01

    Full Text Available Material efficiency is a key element of new thinking to address the challenges of reducing impacts on the environment and of resource scarcity, whilst at the same time meeting service and functionality demands on materials. Directly related to material efficiency is the concept of the Circular Economy, which is based on the principle of optimising the utility embodied in materials and products through the life-cycle. Although materials such as steel, on account of high recycling rates at end-of-life, are amongst the most ‘circular’ of manufactured materials, significant opportunities for greater material efficiency exist, which are yet to be widely implemented. Life Cycle Assessment (LCA is commonly used to assess the environmental benefits of recovering and recycling materials through the manufacturing supply chain and at end-of-life. Using an example taken from renewable energy generation, this paper explores the correlation between product circularity and the environmental case for strategies designed to improve material efficiency. An LCA-based methodology for accounting for the recovery and reuse of materials from the supply chain and at end-of-life is used as the basis for calculating the carbon footprint benefits of five material efficiency scenarios. The results are compared with a number of proposed material circularity indicators. Two conclusions from this exercise are that (i LCA methodologies based around end-of-life approaches are well placed for quantifying the environmental benefits of material efficiency and circular economy strategies and (ii when applying indicators relating to the circularity of materials these should also be supported by LCA-based studies.

  2. Li4 Ti5 O12 Anode: Structural Design from Material to Electrode and the Construction of Energy Storage Devices.

    Science.gov (United States)

    Chen, Zhijie; Li, Honsen; Wu, Langyuan; Lu, Xiaoxia; Zhang, Xiaogang

    2018-03-01

    Spinel Li 4 Ti 5 O 12 , known as a zero-strain material, is capable to be a competent anode material for promising applications in state-of-art electrochemical energy storage devices (EESDs). Compared with commercial graphite, spinel Li 4 Ti 5 O 12 offers a high operating potential of ∼1.55 V vs Li/Li + , negligible volume expansion during Li + intercalation process and excellent thermal stability, leading to high safety and favorable cyclability. Despite the merits of Li 4 Ti 5 O 12 been presented, there still remains the issue of Li 4 Ti 5 O 12 suffering from poor electronic conductivity, manifesting disadvantageous rate performance. Typically, a material modification process of Li 4 Ti 5 O 12 will be proposed to overcome such an issue. However, the previous reports have made few investigations and achievements to analyze the subsequent processes after a material modification process. In this review, we attempt to put considerable interest in complete device design and assembly process with its material structure design (or modification process), electrode structure design and device construction design. Moreover, we have systematically concluded a series of representative design schemes, which can be divided into three major categories involving: (1) nanostructures design, conductive material coating process and doping process on material level; (2) self-supporting or flexible electrode structure design on electrode level; (3) rational assembling of lithium ion full cell or lithium ion capacitor on device level. We believe that these rational designs can give an advanced performance for Li 4 Ti 5 O 12 -based energy storage device and deliver a deep inspiration. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A DEVICE TO MEASURE LOW LEVELS OF RADIOACTIVE CONTAMINANTS IN ULTRA-CLEAN MATERIALS

    International Nuclear Information System (INIS)

    James H Reeves; Matthew Kauer

    2006-01-01

    The purpose of this research was to develop a radiation detection device so sensitive that a decay rate of only one atom per 11.57 days per kilogram of material could be detected. Such a detector is needed for screening materials that will be used in exotic high energy physics experiments currently being planned for the near future. The research was performed deep underground at the Underground Mine State Park in Soudan, Minnesota. The overburden there is ∼1800 meters water equivalent. The reason for performing the research at such depth was to vastly reduce the effects of cosmic radiation. The flux of muons and fast neutrons is about 100,000 times lower than at the surface. A small clean room quality lab building was constructed so that work could be performed in such a manner that radioactive contamination could be kept at a minimum. Glove boxes filled with dry nitrogen gas were used to further reduce contamination from dirt and also help reduce the concentration of the radioactive gas 222Ra and daughter radionuclides which are normally present in air. A massive lead shield (about 20 tons) was constructed in such a manner that an eight inch cube of space in the center was available for the sample and detector. The innermost 4 inch thick lead walls were made of ∼460 year old lead previously used in double beta decay experiments and known to be virtually free of 210Pb. A one and one half inch thick shell of active plastic scintillator was imbedded in the center of the 16 inch thick lead walls, ceiling, and floor of the shield and is used to help reduce activity due to the few muons and fast neutrons seen at this depth. The thick lead shielding was necessary to shield the detector from gamma rays emitted by radionuclides in the rock walls of the mine. A sealable chamber was constructed and located on top of the shield that included a device for raising and lowering the detector and samples into and out of the center chamber of the shield. A plastic scintillator

  4. Proposed format and content of environmental reports for deep geologic terminal repositories for radioactive material

    International Nuclear Information System (INIS)

    Carrell, D.J.; Jones, G.L.

    1978-01-01

    As the Nuclear Regulatory Commission has not yet issued a format guide for the preparation of an environmental impact statement for radioactive waste repositories, Rockwell Hanford operations has developed an annotated outline which will serve as the basis for the environmental evaluation activities until replaced by an appropriate NRC regulatory guide. According to the outline, the applicant should summarize the major environmental effects that are expected to occur during the construction, operation, and terminal isolation phases of the radioactive material repository. Compare these environmental effects with the possible effect of continued use of interim storage facilities. Unless unforeseen environmental effects become apparent, the summary should be a positive statement indicating that the short-term environmental effects are outweighed by the long-term benefits of the repository

  5. Materials and devices for all-optical helicity-dependent switching

    Science.gov (United States)

    Salah El Hadri, Mohammed; Hehn, Michel; Malinowski, Grégory; Mangin, Stéphane

    2017-04-01

    Since the first observation of ultrafast demagnetization in Ni thin films by Beaurepaire et al 20 years ago, understanding the interaction between ultrashort laser pulses and magnetization has become a topic of huge interest. In 2007, an intriguing discovery related to ultrafast demagnetization was the observation of all-optical switching (AOS) of magnetization in ferrimagnetic GdFeCo alloy films using only femtosecond laser pulses. This review discusses the recent studies elucidating several key issues regarding the all-optical switching phenomenon. Although AOS had long been restricted to GdFeCo alloys, it turned out to be a more general phenomenon for a variety of ferrimagnetic as well as ferromagnetic materials. This discovery helped pave the way for the integration of all-optical writing in data storage industries. Nevertheless, theoretical models explaining the switching in GdFeCo alloy films do not appear to apply in the other materials, thus questioning the uniqueness of the microscopic origin of all-optical switching. By investigating the integration of all-optical switching in spintronic devices, two types of all-optical switching mechanism have been distinguished: a single-pulse heat-only switching in ferrimagnetic GdFeCo alloys, and a two regime helicity-dependent switching in both ferrimagnetic TbCo alloys and ferromagnetic Co/Pt multilayers. Another key issue discussed in this review is the necessary condition for the observation of all-optical switching. Many models have been proposed but are strongly challenged by the discovery of such switching in ferromagnets. A comprehensive investigation of the magnetic parameters governing all-optical switching demonstrate that its observation requires magnetic domains larger than the laser spot size during the cooling process; such a criterion is common for both ferri- and ferro-magnets. These investigations strongly improve our understanding and give intriguing insights into the rich physics of the ultrafast

  6. Carbon Nanotubes and Graphene for Flexible Electrochemical Energy Storage: from Materials to Devices.

    Science.gov (United States)

    Wen, Lei; Li, Feng; Cheng, Hui-Ming

    2016-06-01

    Flexible electrochemical energy storage (FEES) devices have received great attention as a promising power source for the emerging field of flexible and wearable electronic devices. Carbon nanotubes (CNTs) and graphene have many excellent properties that make them ideally suited for use in FEES devices. A brief definition of FEES devices is provided, followed by a detailed overview of various structural models for achieving different FEES devices. The latest research developments on the use of CNTs and graphene in FEES devices are summarized. Finally, future prospects and important research directions in the areas of CNT- and graphene-based flexible electrode synthesis and device integration are discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Nanomaterials for environmental studies: Classification, reference material issues, and strategies for physico-chemical characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Vicki, E-mail: v.stone@napier.ac.uk [School of Life Sciences, Edinburgh Napier University, 10 Colinton Road, Edinburgh EH10 5DT (United Kingdom); Nowack, Bernd [Materials, Products and the Environment Group, Empa - Swiss Federal Laboratories for Materials Testing and Research, Lerchenfeldstrasse 5 CH - 9014 St. Gallen (Switzerland); Baun, Anders [Department of Environmental Engineering, Technical University of Denmark, NanoDTU, Building 113, 2800 Kgs. Lyngby (Denmark); Brink, Nico van den [Alterra, P.O. Box 47, 6700 AA Wageningen (Netherlands); Kammer, Frank von der [Department of Environmental Geosciences, Vienna University, Althanstrasse 14, Wien 1090 (Austria); Dusinska, Maria [Health Effects Laboratory, Centre for Ecological Economics, Norwegian Institute for Air Research (NILU), Instituttveien, 18, 2027 Kjeller (Norway); Handy, Richard [University of Plymouth, Davy Building, Drake Circus, Plymouth PL4 8AA (United Kingdom); Hankin, Steven [Institute of Occupational Medicine, Research Avenue North, Riccarton, Edinburgh EH14 4AP (United Kingdom); Hasselloev, Martin [Department of Chemistry, Environmental Nanoparticle Research Group, Goeteborg University, SE-412 96 Goeteborg (Sweden); Joner, Erik [Bioforsk Soil and Environment, Fredrik A Dahls vei 20, N-1432 Aas (Norway); Fernandes, Teresa F. [School of Life Sciences, Edinburgh Napier University, 10 Colinton Road, Edinburgh EH10 5DT (United Kingdom)

    2010-03-01

    NanoImpactNet is a European Commission Framework Programme 7 (FP7) funded project that provides a forum for the discussion of current opinions on nanomaterials in relation to human and environmental issues. In September 2008, in Zurich, a NanoImpactNet environmental workshop focused on three key questions: 1.What properties should be characterised for nanomaterials used in environmental and ecotoxicology studies? 2.What reference materials should be developed for use in environmental and ecotoxicological studies? 3.Is it possible to group different nanomaterials into categories for consideration in environmental studies? Such questions have been, at least partially, addressed by other projects/workshops especially in relation to human health effects. Such projects provide a useful basis on which this workshop was based, but in this particular case these questions were reformulated in order to focus specifically on environmental studies. The workshop participants, through a series of discussion and reflection sessions, generated the conclusions listed below. The physicochemical characterisation information identified as important for environmental studies included measures of aggregation/agglomeration/dispersability, size, dissolution (solubility), surface area, surface charge, surface chemistry/composition, with the assumption that chemical composition would already be known. There is a need to have test materials for ecotoxicology, and several substances are potentially useful, including TiO{sub 2} nanoparticles, polystyrene beads labelled with fluorescent dyes, and silver nanoparticles. Some of these test materials could then be developed into certified reference materials over time. No clear consensus was reached regarding the classification of nanomaterials into categories to aid environmental studies, except that a chemistry-based classification system was a reasonable starting point, with some modifications. It was suggested, that additional work may be

  8. Nanomaterials for environmental studies: Classification, reference material issues, and strategies for physico-chemical characterisation

    International Nuclear Information System (INIS)

    Stone, Vicki; Nowack, Bernd; Baun, Anders; Brink, Nico van den; Kammer, Frank von der; Dusinska, Maria; Handy, Richard; Hankin, Steven; Hasselloev, Martin; Joner, Erik; Fernandes, Teresa F.

    2010-01-01

    NanoImpactNet is a European Commission Framework Programme 7 (FP7) funded project that provides a forum for the discussion of current opinions on nanomaterials in relation to human and environmental issues. In September 2008, in Zurich, a NanoImpactNet environmental workshop focused on three key questions: 1.What properties should be characterised for nanomaterials used in environmental and ecotoxicology studies? 2.What reference materials should be developed for use in environmental and ecotoxicological studies? 3.Is it possible to group different nanomaterials into categories for consideration in environmental studies? Such questions have been, at least partially, addressed by other projects/workshops especially in relation to human health effects. Such projects provide a useful basis on which this workshop was based, but in this particular case these questions were reformulated in order to focus specifically on environmental studies. The workshop participants, through a series of discussion and reflection sessions, generated the conclusions listed below. The physicochemical characterisation information identified as important for environmental studies included measures of aggregation/agglomeration/dispersability, size, dissolution (solubility), surface area, surface charge, surface chemistry/composition, with the assumption that chemical composition would already be known. There is a need to have test materials for ecotoxicology, and several substances are potentially useful, including TiO 2 nanoparticles, polystyrene beads labelled with fluorescent dyes, and silver nanoparticles. Some of these test materials could then be developed into certified reference materials over time. No clear consensus was reached regarding the classification of nanomaterials into categories to aid environmental studies, except that a chemistry-based classification system was a reasonable starting point, with some modifications. It was suggested, that additional work may be required

  9. Photonics in Environment and Energy. A technology roadmap for SMEs on new photonic devices and materials

    Energy Technology Data Exchange (ETDEWEB)

    Loeffler, Jonathan; Salingre, Anthony; Vitale, David; Yatsunenko, Sergey; Lojkowski, Witold

    2012-11-01

    Scientific and technological developments in photonics will have a major influence on lots of industries over the next ten to fifteen years. In this highly evolving field, the long-term competitiveness of companies, and especially of Small and Medium sized Enterprises (SMEs), mainly depends on their ability to offer a good product and to establish a successful market position, which is well connected to the management of the hidden potential in existing technological capabilities. Technology roadmaps are interesting tools used to portray the structural and temporal relationships among science, technology and applications and thus help in the decision-making process to remain successful on the market. The present roadmap aims at identifying technological trends for new photonic devices and nanophotonic materials, mainly in terms of market development. It has the main objective to inform SMEs about new scientific discoveries and developments in photonics and their related problem-solving potential for future products and applications in the Environment and Energy sector. This roadmap is part of a set of four roadmaps about the use of photonic technologies in the industrial sectors of ICT, Heath and Well-being, Environment and Energy and Safety and Security. They were developed in the course of the European project PhotonicRoadSME. Altogether, these roadmaps will contribute to support SMEs in their strategic planning for future applications and products.

  10. Solution-processed white organic light-emitting devices based on small-molecule materials

    International Nuclear Information System (INIS)

    Wang Dongdong; Wu Zhaoxin; Zhang Xinwen; Wang Dawei; Hou Xun

    2010-01-01

    We investigated solution-processed films of 4,4'-bis(2,2-diphenylvinyl)-1,1'-bibenyl (DPVBi) and its blends with N,N'-bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine (TPD) by atomic force microscopy (AFM). The AFM result shows that the solution-processed films are pin-free and their morphology is smooth enough to be used in OLEDs. We have developed a solution-processed white organic light-emitting device (WOLEDs) based on small-molecules, in which the light-emitting layer (EML) was formed by spin-coating the solution of small-molecules on top of the solution-processed hole-transporting layer. This WOLEDs, in which the EML consists of co-host (DPVBi and TPD), the blue dopant (4,4'-bis[2-(4-(N,N-diphenylamino)phenyl)vinyl]biphenyl) and the yellow dye (5,6,11,12-tetraphenylnaphtacene), has a current efficiency of 6.0 cd/A at a practical luminance of 1000 cd/m 2 , a maximum luminance of 22500 cd/m 2 , and its color coordinates are quite stable. Our research shows a possible approach to achieve efficient and low-cost small-molecule-based WOLEDs, which avoids the complexities of the co-evaporation process of multiple dopants and host materials in vacuum depositions.

  11. Optically reconfigurable metasurfaces and photonic devices based on phase change materials

    Science.gov (United States)

    Wang, Qian; Rogers, Edward T. F.; Gholipour, Behrad; Wang, Chih-Ming; Yuan, Guanghui; Teng, Jinghua; Zheludev, Nikolay I.

    2016-01-01

    Photonic components with adjustable parameters, such as variable-focal-length lenses or spectral filters, which can change functionality upon optical stimulation, could offer numerous useful applications. Tuning of such components is conventionally achieved by either micro- or nanomechanical actuation of their constituent parts, by stretching or by heating. Here, we report a novel approach for making reconfigurable optical components that are created with light in a non-volatile and reversible fashion. Such components are written, erased and rewritten as two-dimensional binary or greyscale patterns into a nanoscale film of phase-change material by inducing a refractive-index-changing phase transition with tailored trains of femtosecond pulses. We combine germanium-antimony-tellurium-based films with a diffraction-limited resolution optical writing process to demonstrate a variety of devices: visible-range reconfigurable bichromatic and multi-focus Fresnel zone plates, a super-oscillatory lens with subwavelength focus, a greyscale hologram, and a dielectric metamaterial with on-demand reflection and transmission resonances.

  12. Sustainable manufacturing: Effect of material selection and design on the environmental impact in the manufacturing process

    International Nuclear Information System (INIS)

    Harun, Mohd Hazwan Syafiq; Salaam, Hadi Abdul; Taha, Zahari

    2013-01-01

    The environmental impact of a manufacturing process is also dependent on the selection of the material and design of a product. This is because the manufacturing of a product is directly connected to the amount of carbon emitted in consuming the electrical energy for that manufacturing process. The difference in the general properties of materials such as strength, hardness and impact will have significant effect on the power consumption of the machine used to complete the product. In addition the environmental impact can also be reduced if the proposed designs use less material. In this study, an LCA tool called Eco-It is used. Evaluate the environmental impact caused by manufacturing simple jig. A simple jig with 4 parts was used as a case study. Two experiments were carried out. The first experiment was to study the environmental effects of different material, and the second experiment was to study the environmental impact of different design. The materials used for the jig are Aluminium and mild steel. The results showed a decrease in the rate of carbon emissions by 60% when Aluminium is use instead from mild steel, and a decrease of 26% when the-design is modified

  13. Environmental, economic and social analysis of materials for doors and windows in Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Abeysundra, U.G. Yasantha; Babel, Sandhya; Sharp, Alice [Environmental Technology Program, Sirindhorn International Institute of Technology (SIIT), Thammasat University, P.O. Box 22, Pathumthani 12121 (Thailand); Gheewala, Shabbir [The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology, School of Energy and Materials Building, Bangkok 10140 (Thailand)

    2007-05-15

    This paper compares the environmental, economic and social impacts of two types of doors and windows (elements), namely timber and aluminum taking into consideration the life cycle perspective. These elements are widely used for the buildings in Sri Lanka. Thus, it will help in the decision-making process when selecting materials for these elements. Major materials used for these elements are timber, brass, glass, paint, aluminum, rubber, steel and PVC boards. Environmental burdens associated with these materials are analyzed in terms of embodied energy, and environmental impacts that are relevant to Sri Lanka, such as global warming (GWP), acidification (ACP) and nutrient enrichment (NEP). Economic analysis is done using market prices of materials and affordability for those materials. Social concerns such as thermal comfort, good interior (aesthetics), ability to construct fast, and durability are analyzed based on the data collected through the questionnaires and also, interviews with the stakeholders of the buildings such as engineers, architects, building contractors and building users. It was found that timber elements are superior to aluminum elements in environmental scores (GWP, ACP and NEP). On economic score, also, timber elements are better. But on social score, aluminum elements are better than timber. It was also found that the higher the recycling percentage of aluminum, the higher the environmental favorability of the aluminum. (author)

  14. Plasma facing materials and components for future fusion devices - development, characterization and performance under fusion specific loading conditions

    Energy Technology Data Exchange (ETDEWEB)

    Linke, J. [Forschungszentrum Juelich (Germany). Inst. fuer Plasmaphysik

    2006-04-15

    The plasma exposed components in existing and future fusion devices are strongly affected by the plasma material interaction processes. These mechanisms have a strong influence on the plasma performance; in addition they have major impact on the lifetime of the plasma facing armour and the joining interface between the plasma facing material (PFM) and the heat sink. Besides physical and chemical sputtering processes, high heat quasi-stationary fluxes during normal and intense thermal transients are of serious concern for the engineers who develop reliable wall components. In addition, the material and component degradation due to intense fluxes of energetic neutrons is another critical issue in D-T-burning fusion devices which requires extensive RandD. This paper presents an overview on the materials development and joining, the testing of PFMs and components, and the analysis of the neutron irradiation induced degradation.

  15. Plasma facing materials and components for future fusion devices - development, characterization and performance under fusion specific loading conditions

    International Nuclear Information System (INIS)

    Linke, J.

    2006-01-01

    The plasma exposed components in existing and future fusion devices are strongly affected by the plasma material interaction processes. These mechanisms have a strong influence on the plasma performance; in addition they have major impact on the lifetime of the plasma facing armour and the joining interface between the plasma facing material (PFM) and the heat sink. Besides physical and chemical sputtering processes, high heat quasi-stationary fluxes during normal and intense thermal transients are of serious concern for the engineers who develop reliable wall components. In addition, the material and component degradation due to intense fluxes of energetic neutrons is another critical issue in D-T-burning fusion devices which requires extensive RandD. This paper presents an overview on the materials development and joining, the testing of PFMs and components, and the analysis of the neutron irradiation induced degradation

  16. Procedure and device for the radiometric determination of the quantity, quality and foreign substances in moved bulk materials

    International Nuclear Information System (INIS)

    Krone, C.; Jentsch, G.; Berger, J.

    1987-01-01

    This invention has to do with a procedure and device for the simultaneous radiometric determination of quantity, quality and foreign substances in moved bulk materials in particular lignite at one measuring point. The section of the bulk material discharge is transmitted by nuclides for soft and hard gamma radiation in pairs. The pulse rates are registered in pairs by means of detectors and evaluated in real-time operation

  17. Establishment of a clean laboratory for ultra trace analysis of nuclear materials in safeguards environmental samples

    International Nuclear Information System (INIS)

    Hanzawa, Yukiko; Magara, Masaaki; Watanabe, Kazuo

    2003-01-01

    The Japan Atomic Energy Research Institute has established a cleanroom facility with cleanliness of ISO Class 5: the Clean Laboratory for Environmental Analysis and Research (CLEAR). It was designed to be used for the analysis of nuclear materials in environmental samples mainly for the safeguards, in addition to the Comprehensive Nuclear-Test-Ban Treaty verification and research on environmental sciences. The CLEAR facility was designed to meet conflicting requirements of a cleanroom and for handling of nuclear materials according to Japanese regulations, i.e., to avoid contamination from outside and to contain nuclear materials inside the facility. This facility has been intended to be used for wet chemical treatment, instrumental analysis and particle handling. A fume-hood to provide a clean work surface for handling of nuclear materials was specially designed. Much attention was paid to the selection of construction materials for use to corrosive acids. The performance of the cleanroom and analytical background in the laboratory are discussed. This facility has satisfactory specification required for joining the International Atomic Energy Agency Network of Analytical Laboratories. It can be concluded that the CLEAR facility enables analysis of ultra trace amounts of nuclear materials at sub-pictogram level in environmental samples. (author)

  18. Selection of environmental sustainable fiber materials for wind turbine blades - a contra intuitive process?

    DEFF Research Database (Denmark)

    Birkved, Morten; Corona, Andrea; Markussen, Christen Malte

    2013-01-01

    environmental trade-offs over the entire life-span of composite materials, life cycle assessment (LCA) can be applied. In the present case study, four different types of fibers (carbon, glass, flax and carbon/flax mixture) are compared in terms of environmental sustainability and cost. Applying one of the most...... recent life cycle impact assessment methods, it is demonstrated that the environmental sustainability of the mixed carbon/flax fiber based composite material is better than that of the flax fibers alone. This observation may be contra-intuitive, but is mainly caused by the fact that the bio...... impacts in relation to the production of the carbon and glass fibers considerable compared to the impacts resulting from resin production. The ideal fiber solution, in terms of environmental sustainability, is hence the fiber composition having the lowest resin demand and lowest overall energy demand...

  19. Proceedings of the first international conference on indium phosphide and related materials for advanced electronic and optical devices

    International Nuclear Information System (INIS)

    Singh, R.; Messick, L.J.

    1989-01-01

    This book contains the proceedings of the first international conference on indium phosphide and related materials for advanced electronic and optical devices. Topics covered include: Growth and characterization of bulk and epitaxial films, Passivation technology, Processing technology, High speed optoelectronic integrated circuits, and Solar cells

  20. Influence of geometric and material properties on artifacts generated by interventional MRI devices: Relevance to PRF-shift thermometry

    Energy Technology Data Exchange (ETDEWEB)

    Tatebe, Ken, E-mail: Ken.Tatebe@gmail.com [Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390 (United States); Ramsay, Elizabeth; Kazem, Mohammad; Peikari, Hamed [Physical Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N3M5 (Canada); Mougenot, Charles [Philips Healthcare, 281 Hillmount Road, Markham, Ontario L6C 2S3 (Canada); Bronskill, Michael [Physical Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N3M5, Canada and Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, Ontario M5G2M9 (Canada); Chopra, Rajiv [Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390 (United States); Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390 (United States); Physical Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N3M5 (Canada); Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, Ontario M5G2M9 (Canada)

    2016-01-15

    Purpose: Magnetic resonance imaging (MRI) is capable of providing valuable real-time feedback during medical procedures, partly due to the excellent soft-tissue contrast available. Several technical hurdles still exist to seamless integration of medical devices with MRI due to incompatibility of most conventional devices with this imaging modality. In this study, the effect of local perturbations in the magnetic field caused by the magnetization of medical devices was examined using finite element analysis modeling. As an example, the influence of the geometric and material characteristics of a transurethral high-intensity ultrasound applicator on temperature measurements using proton resonance frequency (PRF)-shift thermometry was investigated. Methods: The effect of local perturbations in the magnetic field, caused by the magnetization of medical device components, was examined using finite element analysis modeling. The thermometry artifact generated by a transurethral ultrasound applicator was simulated, and these results were validated against analytic models and scans of an applicator in a phantom. Several parameters were then varied to identify which most strongly impacted the level of simulated thermometry artifact, which varies as the applicator moves over the course of an ablative high-intensity ultrasound treatment. Results: Key design parameters identified as having a strong influence on the magnitude of thermometry artifact included the susceptibility of materials and their volume. The location of components was also important, particularly when positioned to maximize symmetry of the device. Finally, the location of component edges and the inclination of the device relative to the magnetic field were also found to be important factors. Conclusions: Previous design strategies to minimize thermometry artifact were validated, and novel design strategies were identified that substantially reduce PRF-shift thermometry artifacts for a variety of device

  1. Design of a test device for subjecting materials to high strain rates: with application in nuclear area

    Energy Technology Data Exchange (ETDEWEB)

    Todesco, Sergio R.; Mucsi, Cristiano S.; Rossi, Jesualdo L., E-mail: sergio.todesco@usp.br, E-mail: csmucsi@ipen.br, E-mail: jelrossi@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    This paper presents a design of a device to gather characteristic data of materials subjected to high strain rates, this device named after the eminent English engineer Sir Bertram Hopkinson 'Split Hopkinson Pressure Bar', from here will be designated SHPB. More specifically, this work is inseparably linked to the development of packing for transportation of highly radioactive substances as a part to the general scope of a CAPES project in partnership with the CCTM Materials Department of IPEN, Institute of Energy and Nuclear Research, linked to the University of Sao Paulo. The development of the device is part of a scope, and collection of data necessary for the design and construction of this packing. The SHPB device can be divided into two parts, the first part concerning the mechanical design. The second, data collection that is indeed the challenging part of the device, and proper tests. The present paper, specifically, will only deals with the mechanical design of the device, importantly, divided into two parts, the size of the bars, which are the impact bar, the input bar, and the output bar, and the size of the impact device. The sizing of the bars involve knowledge of the concept of elastic waves in solid media for the length of the bars to serve as a wave-guide, which will cause a deformation of the specimen, and enables recording of these waves for data analysis. The impact device must be robust enough to produce the stress wave to deform the specimen, but not to plastically deform the bars, which have to continue throughout the test within the elastic range. (author)

  2. Influence of geometric and material properties on artifacts generated by interventional MRI devices: Relevance to PRF-shift thermometry

    International Nuclear Information System (INIS)

    Tatebe, Ken; Ramsay, Elizabeth; Kazem, Mohammad; Peikari, Hamed; Mougenot, Charles; Bronskill, Michael; Chopra, Rajiv

    2016-01-01

    Purpose: Magnetic resonance imaging (MRI) is capable of providing valuable real-time feedback during medical procedures, partly due to the excellent soft-tissue contrast available. Several technical hurdles still exist to seamless integration of medical devices with MRI due to incompatibility of most conventional devices with this imaging modality. In this study, the effect of local perturbations in the magnetic field caused by the magnetization of medical devices was examined using finite element analysis modeling. As an example, the influence of the geometric and material characteristics of a transurethral high-intensity ultrasound applicator on temperature measurements using proton resonance frequency (PRF)-shift thermometry was investigated. Methods: The effect of local perturbations in the magnetic field, caused by the magnetization of medical device components, was examined using finite element analysis modeling. The thermometry artifact generated by a transurethral ultrasound applicator was simulated, and these results were validated against analytic models and scans of an applicator in a phantom. Several parameters were then varied to identify which most strongly impacted the level of simulated thermometry artifact, which varies as the applicator moves over the course of an ablative high-intensity ultrasound treatment. Results: Key design parameters identified as having a strong influence on the magnitude of thermometry artifact included the susceptibility of materials and their volume. The location of components was also important, particularly when positioned to maximize symmetry of the device. Finally, the location of component edges and the inclination of the device relative to the magnetic field were also found to be important factors. Conclusions: Previous design strategies to minimize thermometry artifact were validated, and novel design strategies were identified that substantially reduce PRF-shift thermometry artifacts for a variety of device

  3. Design of a test device for subjecting materials to high strain rates: with application in nuclear area

    International Nuclear Information System (INIS)

    Todesco, Sergio R.; Mucsi, Cristiano S.; Rossi, Jesualdo L.

    2015-01-01

    This paper presents a design of a device to gather characteristic data of materials subjected to high strain rates, this device named after the eminent English engineer Sir Bertram Hopkinson 'Split Hopkinson Pressure Bar', from here will be designated SHPB. More specifically, this work is inseparably linked to the development of packing for transportation of highly radioactive substances as a part to the general scope of a CAPES project in partnership with the CCTM Materials Department of IPEN, Institute of Energy and Nuclear Research, linked to the University of Sao Paulo. The development of the device is part of a scope, and collection of data necessary for the design and construction of this packing. The SHPB device can be divided into two parts, the first part concerning the mechanical design. The second, data collection that is indeed the challenging part of the device, and proper tests. The present paper, specifically, will only deals with the mechanical design of the device, importantly, divided into two parts, the size of the bars, which are the impact bar, the input bar, and the output bar, and the size of the impact device. The sizing of the bars involve knowledge of the concept of elastic waves in solid media for the length of the bars to serve as a wave-guide, which will cause a deformation of the specimen, and enables recording of these waves for data analysis. The impact device must be robust enough to produce the stress wave to deform the specimen, but not to plastically deform the bars, which have to continue throughout the test within the elastic range. (author)

  4. Reference materials and their role in quality assurance in environmental monitoring

    International Nuclear Information System (INIS)

    Cortes, Eduardo

    2002-01-01

    The importance of a good and routine quality control procedure for the analyses of environmental samples is presented. The use of Reference Materials as one simple procedure for validating analytical methodologies and determining the accuracy of analytical data is emphasized. The quality of the reference materials is also discussed as well as their selection and correct use. The convenience of preparing 'in-house' reference materials is discussed and attention is called to relevant aspects to be considered. An example of the preparation of a reference material is presented and some aspects of the procedure are discussed. (author)

  5. Environmental aspects of the use of materials for solar water heaters

    International Nuclear Information System (INIS)

    Van der Leun, C.J.; De Jager, D.

    1994-10-01

    The study on the title subject has been carried out in order to apply the results in new designs and to improve the production of solar water heating systems. Attention is paid to solar water heaters that are under development and solar water heaters that are commercially available in the Netherlands. Use has been made of a IVAM-developed product analysis method. For seven solar water heater concepts, that were on the market or under development in the Netherlands in 1992, the applied amounts of materials have been inventorized. Data on the environmental effects of the production of these materials are outlined and aggregated on the level of the components and the systems. Based on those data, environmental profiles are drafted, comprising 'effect scores' on 9 environmental criteria. However, the environmental 'effect scores' are not reliable enough to determine the most important factors in order to identify options to reduce the negative environmental effects. Data on the energy consumption of the production of relevant materials are available and reliable. The solar water heaters, considered in this report, do not show large differences for that matter. It appears that the amounts of air pollution, water pollution and waste flow from the production of materials for solar water heaters are no reasons to further reduce environmental effects of the production. It is recommended to focus on the reduction of material quantities and to increase the quantity of recycled material. Also it is recommended that manufacturers of solar boilers set up a take-back system. 43 tabs., 1 appendix, 56 refs

  6. Improvement of Students’ Environmental Literacy by Using Integrated Science Teaching Materials

    Science.gov (United States)

    Suryanti, D.; Sinaga, P.; Surakusumah, W.

    2018-02-01

    This study aims to determine the improvement of student environmental literacy through the use of integrated science teaching materials on pollution topics. The research is used weak experiment method with the one group pre-test post-test design. The sample of the study were junior high school students in Bandung amounted to 32 people of 7th grade. Data collection in the form of environmental literacy test instrument consist of four components of environmental literacy that is (1) Knowledge, (2) Competencies (Cognitive Skill), (3) Affective and (4) Environmentally Responsible Behavior. The results show that the student’s environmental literacy ability is improved after using integrated science teaching materials. An increase in the medium category is occurring in the knowledge (N-gain=46%) and cognitive skill (N-gain=31%), while the increase in the low category occurs in the affective component (N-gain=25%) and behaviour (N-gain=24%). The conclusions of this study as a whole the improvement of students’ environmental literacy by using integrated science teaching material is in the medium category (N-gain=34%).

  7. Raw materials for the energy supply of the future. Geology, markets, environmental influences

    International Nuclear Information System (INIS)

    Hagelueken, Christian; Thauer, Rudolf K.; Buchholz, Peter; Gutzmer, Jens; Littke, Ralf; Angerer, Gerhard; Wellmer, Friedrich-Wilhelm

    2015-01-01

    More and more metals are needed to expand modern energy technologies, but we can not completely dispense with fossil raw materials and biomass in the near future either. Are the incidence of the conversion of energy sources sufficient? The analysis of the academy project ''Energy Systems of the Future'' (ESYS) comes to the conclusion that geologically enough raw materials are available. The challenge, however, is to make the supply safe, affordable and environmentally and socially compatible. The analysis explains the mechanisms of action on the global commodity markets and identifies supply risks. These include, for example, sudden demand on the international markets as well as the unequal distribution of the world's raw material reserves. This is followed by the analysis approaches, in order to recognize warning signals for potential raw material bottlenecks in time, to develop evasive strategies and to secure the raw material supply for the energy turnarounds. For example, the expansion of recycling can help to reduce the dependence on metal imports. In mining, on the other hand, innovative technologies have to be developed in order to improve the exploration and utilization of the deposits. By establishing binding environmental and social standards, the extraction of raw materials could also become more sustainable. The analysis also highlights the importance of bioenergy and fossil raw materials, such as oil and natural gas, for energy generation. The authors describe the advantages and disadvantages of these energy carriers and the measures that can be used to reduce environmental pollution such as greenhouse gas emissions. [de

  8. Device Performance of the Mott InsulatorDevice Performance of the Mott Insulator LaVO3 as a Photovoltaic Material

    KAUST Repository

    Wang, Lingfei

    2015-06-22

    Searching for solar-absorbing materials containing earth-abundant elements with chemical stability is of critical importance for advancing photovoltaic technologies. Mott insulators have been theoretically proposed as potential photovoltaic materials. In this paper, we evaluate their performance in solar cells by exploring the photovoltaic properties of Mott insulator LaVO3 (LVO). LVO films show an indirect band gap of 1.08 eV as well as strong light absorption over a wide wavelength range in the solar spectrum. First-principles calculations on the band structure of LVO further reveal that the d−d transitions within the upper and lower Mott-Hubbard bands and p−d transitions between the O 2p and V 3d band contribute to the absorption in visible and ultraviolet ranges, respectively. Transport measurements indicate strong carrier trapping and the formation of polarons in LVO. To utilize the strong light absorption of LVO and to overcome its poor carrier transport, we incorporate it as a light absorber in solar cells in conjunction with carrier transporters and evaluate its device performance. Our complementary experimental and theoretical results on such prototypical solar cells made of Mott-Hubbard transition-metal oxides pave the road for developing light-absorbing materials and photovoltaic devices based on strongly correlated electrons.

  9. The Oil Point Method - A tool for indicative environmental evaluation in material and process selection

    DEFF Research Database (Denmark)

    Bey, Niki

    2000-01-01

    to three essential assessment steps, the method enables rough environmental evaluations and supports in this way material- and process-related decision-making in the early stages of design. In its overall structure, the Oil Point Method is related to Life Cycle Assessment - except for two main differences...... of environmental evaluation and only approximate information about the product and its life cycle. This dissertation addresses this challenge in presenting a method, which is tailored to these requirements of designers - the Oil Point Method (OPM). In providing environmental key information and confining itself...

  10. Materials and devices for quantum information processing in Si/SiGe

    Energy Technology Data Exchange (ETDEWEB)

    Sailer, Juergen

    2010-12-15

    In this thesis, we cover and discuss the complete way from material science, the fabrication of two-dimensional electron systems (2DES) in Si/SiGe heterostructures in molecular beam epitaxy (MBE), to quantum effects in few-electron devices based on these samples. We applied and compared two different approaches for the creation of pseudo-substrates that are as smooth, relaxed and defect free as possible. In the 'graded buffer' concept, starting from pure Si, the Ge content of the SiGe alloy is slowly and linearly increased until the desired Ge content is reached. In contrast, in the so-called 'low-temperature Si' concept, the SiGe alloy is deposited directly with the final Ge content, but onto a layer of highly defective Si. In terms of crystal defects, the 'graded buffer' turned out to be superior in comparison to the 'low-temperature Si' concept at the expense of a significantly higher material consumption. By continued optimization of the growth process, aiming at reducing the influence of the impurity, it nevertheless became possible to improve the charge carrier mobility from a mere 2000 cm{sup 2}/(Vs) to a record mobility exceeding 100 000 cm{sup 2}/(Vs). Within this work, we extended our MBE system with an electron beam evaporator for nuclear spin free {sup 28}Si. Together with the already existing effusion cell for {sup 70}Ge we were able to realize first 2DES in a nuclear spin free environment after successfully putting it to operation. The highest mobility 2DES in a nuclear spin free environment which have been realized in this thesis exhibited electron mobilities of up to 55 000 cm{sup 2}/(Vs). Quantum effects in Si/SiGe have been investigated in two- and zero-dimensional nanostructures. A remarkable phenomenon in the regime of the integer quantum Hall effect in Si/SiGe 2DES has been discovered and researched. For applications in quantum information processing and for the creation of qubits it is mandatory to

  11. A review of Ga2O3 materials, processing, and devices

    Science.gov (United States)

    Pearton, S. J.; Yang, Jiancheng; Cary, Patrick H.; Ren, F.; Kim, Jihyun; Tadjer, Marko J.; Mastro, Michael A.

    2018-03-01

    Gallium oxide (Ga2O3) is emerging as a viable candidate for certain classes of power electronics, solar blind UV photodetectors, solar cells, and sensors with capabilities beyond existing technologies due to its large bandgap. It is usually reported that there are five different polymorphs of Ga2O3, namely, the monoclinic (β-Ga2O3), rhombohedral (α), defective spinel (γ), cubic (δ), or orthorhombic (ɛ) structures. Of these, the β-polymorph is the stable form under normal conditions and has been the most widely studied and utilized. Since melt growth techniques can be used to grow bulk crystals of β-GaO3, the cost of producing larger area, uniform substrates is potentially lower compared to the vapor growth techniques used to manufacture bulk crystals of GaN and SiC. The performance of technologically important high voltage rectifiers and enhancement-mode Metal-Oxide Field Effect Transistors benefit from the larger critical electric field of β-Ga2O3 relative to either SiC or GaN. However, the absence of clear demonstrations of p-type doping in Ga2O3, which may be a fundamental issue resulting from the band structure, makes it very difficult to simultaneously achieve low turn-on voltages and ultra-high breakdown. The purpose of this review is to summarize recent advances in the growth, processing, and device performance of the most widely studied polymorph, β-Ga2O3. The role of defects and impurities on the transport and optical properties of bulk, epitaxial, and nanostructures material, the difficulty in p-type doping, and the development of processing techniques like etching, contact formation, dielectrics for gate formation, and passivation are discussed. Areas where continued development is needed to fully exploit the properties of Ga2O3 are identified.

  12. Critical outlook and trends for environmental reference materials at the Measurements & Testing Generic Activity (European Commission).

    Science.gov (United States)

    Quevauviller, P; Bennink, D; Bøwadt, S

    2001-05-01

    It is now well recognised that the quality control (QC) of all types of analyses, including environmental analyses depends on the appropriate use of reference materials. One of the ways to check the accuracy of methods is based on the use of Certified Reference Materials (CRMs), whereas other types of (not certified) Reference Materials (RMs) are used for routine quality control (establishment of control charts) and interlaboratory testing (e.g. proficiency testing). The perception of these materials, in particular with respect to their production and use, differs widely according to various perspectives (e.g. RM producers, routine laboratories, researchers). This review discusses some critical aspects of RM use and production for the QC of environmental analyses and describes the new approach followed by the Measurements & Testing Generic Activity (European Commission) to tackle new research and production needs.

  13. ENVIRONMENTALLY SOUND DISPOSAL OF RADIOACTIVE MATERIALS AT A RCRA HAZARDOUS WASTE DISPOSAL FACILITY

    International Nuclear Information System (INIS)

    Romano, Stephen; Welling, Steven; Bell, Simon

    2003-01-01

    The use of hazardous waste disposal facilities permitted under the Resource Conservation and Recovery Act (''RCRA'') to dispose of low concentration and exempt radioactive materials is a cost-effective option for government and industry waste generators. The hazardous and PCB waste disposal facility operated by US Ecology Idaho, Inc. near Grand View, Idaho provides environmentally sound disposal services to both government and private industry waste generators. The Idaho facility is a major recipient of U.S. Army Corps of Engineers FUSRAP program waste and received permit approval to receive an expanded range of radioactive materials in 2001. The site has disposed of more than 300,000 tons of radioactive materials from the federal government during the past five years. This paper presents the capabilities of the Grand View, Idaho hazardous waste facility to accept radioactive materials, site-specific acceptance criteria and performance assessment, radiological safety and environmental monitoring program information

  14. Conductive transition metal oxide nanostructured electrochromic material and optical switching devices constructed thereof

    Science.gov (United States)

    Mattox, Tracy M.; Koo, Bonil; Garcia, Guillermo; Milliron, Delia J.; Trizio, Luca De; Dahlman, Clayton

    2017-10-10

    An electrochromic device includes a nanostructured transition metal oxide bronze layer that includes one or more transition metal oxide and one or more dopant, a solid state electrolyte, and a counter electrode. The nanostructured transition metal oxide bronze selectively modulates transmittance of near-infrared (NIR) spectrum and visible spectrum radiation as a function of an applied voltage to the device.

  15. Precision Controlled Carbon Materials for Next-Generation Optoelectronic and Photonic Devices

    Science.gov (United States)

    2018-01-08

    engineer next-generation carbon-based optoelectronic and photonic devices with superior performance and capabilities. These devices include carbon...electronics; (4) nanostructured graphene plasmonics; and (5) polymer-nanotube conjugate chemistry . (1) Semiconducting carbon nanotube-based...applications (In Preparation, 2018). (5) Polymer-nanotube conjugate chemistry Conjugated polymers can be exploited as agents for selectively wrapping and

  16. Effect of Environmental Variables on the Flammability of Fire Resistant Materials

    OpenAIRE

    Osorio, Andres Felipe

    2014-01-01

    This work investigates the effects of external radiation, ambient pressure and microgravity on the flammability limits of fire-resistant (FR) materials. Future space missions may require spacecraft cabin environments different than those used in the International Space Station, 21%O2, 101.3kPa. Environmental variables include flow velocity, oxygen concentration, ambient pressure, micro or partial-gravity, orientation, presence of an external radiant flux, etc. Fire-resistant materials are use...

  17. The use of bio-based materials to reduce the environmental impact of construction

    OpenAIRE

    Lawrence, Michael

    2014-01-01

    In the UK, the construction industry is responsible for over 50 % of total carbon emissions. 20% of these carbon emissions are embodied within the construction and materials of buildings and the balance is expended in environmental control (heating, lighting, air conditioning) and other ‘in use’ aspects of occupation of buildings. This is replicated in other countries to a similar extent. This lecture identifies ways in which the use of bio-based construction materials can significantly reduc...

  18. Standard and reference materials for environmental science. Part 1. Technical memo

    Energy Technology Data Exchange (ETDEWEB)

    Cantillo, A.Y.

    1995-11-01

    This is the fourth edition of the catalog of reference materials suited for use in environmental science, originally compiled in 1986 for NOAA, IOC, and UNEP. The catalog lists more than 1200 reference materials from 28 producers and contains information about their proper use, sources, availability, and analyte concentrations. Indices are included for elements, isotopes, and organic compounds, as are cross references to CAS registry numbers, alternate names, and chemical structures of selected organic compounds.

  19. Standard and reference materials for environmental science. Part 2. Technical memo

    Energy Technology Data Exchange (ETDEWEB)

    Cantillo, A.Y.

    1995-11-01

    This is the fourth edition of the catalog of reference materials suited for use in environmental science, originally compiled in 1986 for NOAA, IOC, and UNEP. The catalog lists more than 1200 reference materials from 28 producers and contains information about their proper use, sources, availability, and analyte concentrations. Indices are included for elements, isotopes, and organic compounds, as are cross references to CAS registry numbers, alternate names, and chemical structures of selected organic compounds.

  20. Characterization of Candidate Solar Sail Material Exposed to Space Environmental Effects

    Science.gov (United States)

    Edwards, David; Hovater, Mary; Hubbs, Whitney; Wertz, George; Hollerman, William; Gray, Perry

    2003-01-01

    Solar sailing is a unique form of propulsion where a spacecraft gains momentum from incident photons. Solar sails are not limited by reaction mass and provide continual acceleration, reduced only by the lifetime of the lightweight film in the space environment and the distance to the Sun. Once thought to be difficult or impossible, solar sailing has come out of science fiction and into the realm of possibility. Any spacecraft using this method would need to deploy a thin sail that could be as large as many kilometers in extent. The availability of strong, ultra lightweight, and radiation resistant materials will determine the future of solar sailing. The National Aeronautics and Space Administration's Marshall Space Flight Center (MSFC) is concentrating research into the utilization of ultra lightweight materials for spacecraft propulsion. The Space Environmental Effects Team at MSFC is actively characterizing candidate solar sail material to evaluate the thermo-optical and mechanical properties after exposure to space environmental effects. This paper will describe the exposure of candidate solar sail materials to emulated space environmental effects including energetic electrons, combined electrons and Ultraviolet radiation, and hypervelocity impact of irradiated solar sail material. This paper will describe the testing procedure and the material characterization results of this investigation.