WorldWideScience

Sample records for environmental degradation mechanisms

  1. Calcium-Magnesium-Aluminosilicate (CMAS) Reactions and Degradation Mechanisms of Advanced Environmental Barrier Coatings

    Science.gov (United States)

    Ahlborg, Nadia L.; Zhu, Dongming

    2013-01-01

    The thermochemical reactions between calcium-magnesium-aluminosilicate- (CMAS-) based road sand and several advanced turbine engine environmental barrier coating (EBC) materials were studied. The phase stability, reaction kinetics and degradation mechanisms of rare earth (RE)-silicates Yb2SiO5, Y2Si2O7, and RE-oxide doped HfO2 and ZrO2 under the CMAS infiltration condition at 1500 C were investigated, and the microstructure and phase characteristics of CMAS-EBC specimens were examined using Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). Experimental results showed that the CMAS dissolved RE-silicates to form crystalline, highly non-stoichiometric apatite phases, and in particular attacking the silicate grain boundaries. Cross-section images show that the CMAS reacted with specimens and deeply penetrated into the EBC grain boundaries and formed extensive low-melting eutectic phases, causing grain boundary recession with increasing testing time in the silicate materials. The preliminary results also showed that CMAS reactions also formed low melting grain boundary phases in the higher concentration RE-oxide doped HfO2 systems. The effect of the test temperature on CMAS reactions of the EBC materials will also be discussed. The faster diffusion exhibited by apatite and RE-doped oxide phases and the formation of extensive grain boundary low-melting phases may limit the CMAS resistance of some of the environmental barrier coatings at high temperatures.

  2. Degradation Mechanisms of Military Coating Systems

    National Research Council Canada - National Science Library

    Keene, L. T; Halada, G. P; Clayton, C. R; Kosik, W. E; McKnight, S. H

    2004-01-01

    This work describes the development and application of specialized characterization techniques used to study the environmental degradation mechanisms of organic coating systems employed by the United...

  3. Effect of Environmental Degradation on Mechanical Properties of Kenaf/Polyethylene Terephthalate Fiber Reinforced Polyoxymethylene Hybrid Composite

    Directory of Open Access Journals (Sweden)

    Mohamad Zaki Abdullah

    2013-01-01

    Full Text Available The main objective of this research is to investigate the effect of environmental degradation on the mechanical properties of kenaf/PET fiber reinforced POM hybrid composite. Kenaf and PET fibers were selected as reinforcements because of their good mechanical properties and resistance to photodegradation. The test samples were produced by compression molding. The samples were exposed to moisture, water spray, and ultraviolet penetration in an accelerated weathering chamber for 672 hours. The tensile strength of the long fiber POM/kenaf (80/20 composite dropped by 50% from 127.8 to 64.8 MPa while that of the hybrid composite dropped by only 2% from 73.8 to 72.5 MPa. This suggests that the hybrid composite had higher resistance to tensile strength than the POM/kenaf composite. Similarly, the results of flexural and impact strengths also revealed that the hybrid composite showed less degradation compared to the kenaf fiber composite. The results of the investigation revealed that the hybrid composite had better retention of mechanical properties than that of the kenaf fiber composites and may be suitable for outdoor application in the automotive industry.

  4. Environmental Degradation: Causes and Consequences

    Directory of Open Access Journals (Sweden)

    Swati Tyagi

    2014-08-01

    Full Text Available The subject of environmental economics is at the forefront of the green debate: the environment can no longer be viewed as an entity separate from the economy. Environmental degradation is of many types and have many consequences. To address this challenge a number of studies have been conducted in both developing and developed countries applying different methods to capture health benefits from improved environmental quality. Minimizing exposure to environmental risk factors by enhancing air quality and access to improved sources of drinking and bathing water, sanitation and clean energy is found to be associated with significant health benefits and can contribute significantly to the achievement of the Millennium Development Goals of environmental sustainability, health and development. In this paper, I describe the national and global causes and consequences of environmental degradation and social injustice. This paper provides a review of the literature on studies associated with reduced environmental risk and in particular focusing on reduced air pollution, enhanced water quality and climate change mitigation.

  5. Charcoal production and environmental degradation

    International Nuclear Information System (INIS)

    Hosier, R.H.

    1993-01-01

    This paper examines the environmental impacts of continued tree harvesting for charcoal production to supply the urban areas in Tanzania. Woodlands appear to recover relatively well following harvesting for charcoal production. Selective harvesting, where the high quality, low cost fuel production species and specimens are culled first from a piece of land, serves to maintain the viability of the woodlands resource while providing charcoal. This recovery period can be prolonged through any number of human induced activities, such as heavy grazing, multiple burns and extended cultivation periods. At the same time, post-harvest management techniques, such as coppice management, sprout protection and fertilization, can also improve the ability of woodlands to recover following harvesting. The environmental history of a given area determines why certain areas continue to be strong suppliers of woodfuel while others are not. For example, Shinyanga started from a low productivity base and has been degraded by successive waves of tree harvesting compounded by heavy grazing pressure. It is this multiple complex of pressures over a long period of time on land which is intrinsically of low productivity, and not the harvesting of woodlands for fuels, which has led to the environmental degradation in these areas. (author)

  6. Geochemical induced degradation of environmental chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Parlar, H

    1984-09-01

    Attempts to correlate the concentration of organic chemicals in the environment with their production figures have resulted in a large deficit; this includes environmental chemicals such as chlorinated hydrocarbons. It has been assumed that analytical errors accounted for this deficit. Another explanation, however, allows for reactions of compounds under biotic and abiotic conditions. Because of the biostability of many organic chemicals biological transformation mechanisms can bring about slight change only. By contrast, abiotic environmental factors such as the UV-irradiation or decomposition on natural surfaces contribute considerably to the transformation of this substance class. An investigation of such abiotic charges of organic chemicals must therefore pay particular attention to dynamic and catalytic effects primarily attributable to the respective molecular state and interactions with the environment. This paper deals with the photoinduced reactions of organic substances adsorbed on natural surfaces and their significance for the degradability of environmental chemicals.

  7. Environmental Compliance Mechanisms

    NARCIS (Netherlands)

    Merkouris, Panagiotis; Fitzmaurice, Malgosia

    2017-01-01

    Compliance mechanisms can be found in treaties regulating such diverse issues as human rights, disarmament law, and environmental law. In this bibliography, the focus will be on compliance mechanisms of multilateral environmental agreements (MEAs). Compliance with norms of international

  8. Effect of environmental conditions on the mechanical properties and fungal degradation of polycaprolactone/microcrystalline cellulose/wood flour composites

    Science.gov (United States)

    Ronald Sabo; Liwei Jin; Nicole Stark; Rebecca E. Ibach

    2013-01-01

    Polycaprolactone (PCL) filled with microcrystalline cellulose (MCC), wood flour (WF), or both were characterized before and after exposure to various environmental conditions for 60 days. PCL/WF composites had the greatest tensile strength and modulus compared to neat PCL or PCL composites containing MCC. Electron microscopy indicated better adhesion between WF...

  9. Simulated degradation of biochar and its potential environmental implications

    International Nuclear Information System (INIS)

    Liu, Zhaoyun; Demisie, Walelign; Zhang, Mingkui

    2013-01-01

    A simulated oxidation technique was used to examine the impacts of degradation on the surface properties of biochar and the potential implications of the changes in biochar properties were discussed. To simulate the short- and long-term environmental degradation, mild and harsh degradation were employed. Results showed that after mild degradation, the biochar samples showed significant reductions in surface area and pore volumes. After harsh degradation, the biochar samples revealed dramatic variations in their surface chemistry, surface area, pore volumes, morphology and adsorption properties. The results clearly indicate that changes of biochar surface properties were affected by biochar types and oxidative conditions. It is suggested that biochar surface properties are likely to be gradually altered during environmental exposure. This implies that these changes have potential effects for altering the physicochemical properties of biochar amended soils. -- Highlights: •Mild and harsh degradation were employed to simulate natural degradation of biochar. •Mild degradation could reduce the surface area and micropore volumes of biochar. •Harsh degradation caused severe changes of all of the biochar surface properties. •Biochar types and oxidative conditions may dominate the changes of its properties. -- The simulated degradation of biochar in this study could provide a mechanism for forecasting short- or long-term environmental degradation of biochar

  10. Mechanisms of metallization degradation in high power diodes

    DEFF Research Database (Denmark)

    Brincker, Mads; Kristensen, Peter Kjær; Pedersen, Kristian Bonderup

    2016-01-01

    Under operation the topside metallization of power electronic chips is commonly observed to degrade and thereby affecta device's electrical characteristics. However, the mechanisms of the degradation process and the role of environmental factors are not yet fully understood. In this work, we...

  11. Durability Improvements Through Degradation Mechanism Studies

    Energy Technology Data Exchange (ETDEWEB)

    Borup, Rodney L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mukundan, Rangachary [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Spernjak, Dusan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baker, Andrew M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lujan, Roger W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Langlois, David Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ahluwalia, Rajesh [Argonne National Lab. (ANL), Argonne, IL (United States); Papadia, D. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Weber, Adam Z. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kusoglu, Ahmet [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shi, Shouwnen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); More, K. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Grot, Steve [Ion Power, New Castle, DE (United States)

    2015-08-03

    The durability of polymer electrolyte membrane (PEM) fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. By investigating cell component degradation modes and defining the fundamental degradation mechanisms of components and component interactions, new materials can be designed to improve durability. To achieve a deeper understanding of PEM fuel cell durability and component degradation mechanisms, we utilize a multi-institutional and multi-disciplinary team with significant experience investigating these phenomena.

  12. Evaluation of 1,3,5 trimethylbenzene degradation in the detailed tropospheric chemistry mechanism, MCMv3.1, using environmental chamber data

    Directory of Open Access Journals (Sweden)

    A. Metzger

    2008-11-01

    Full Text Available The degradation mechanism of 1,3,5-trimethyl- benzene (TMB as implemented in the Master Chemical Mechanism version 3.1 (MCM was evaluated using data from the environmental chamber at the Paul Scherrer Institute. The results show that the MCM provides a consistent description of the photo-oxidation of TMB/NOx mixtures for a range of conditions. In all cases the agreement between the measurement and the simulation decreases with decreasing VOC-NOx ratio and in addition with increasing precursor concentration. A significant underestimation of the decay rate of TMB and thus underestimation of reactivity in the system, consistent with results from previous appraisals of the MCM, was observed.

    Much higher nitrous acid (HONO concentrations compared to simulations and expected from chamber characterization experiments were measured during these smog chamber experiments. A light induced NO2 to HONO conversion at the chamber walls is suggested to occur. This photo-enhanced NO2 to HONO conversion with subsequent HONO photolysis enhances the reactivity of the system. After the implementation of this reaction in the model it describes the decay of TMB properly. Nevertheless, the model still over-predicts ozone at a later stage of the experiment. This can be attributed to a too slow removal of NO2. It is also shown that this photo-enhanced HONO formation is not restricted to TMB photo-oxidation but also occurs in other chemical systems (e.g. α-pinene. However, the influence of HONO as a source of OH radicals is less important in these more reactive systems and therefore the importance of the HONO chemistry is less obvious.

  13. Environmental toxicology: Degradation of herbicides

    International Nuclear Information System (INIS)

    Corbin, F.T.; Monaco, T.J.; Bjelk, L.A.

    1991-01-01

    This chapter focuses on the advances that have been made for the quantitative analysis of radiotracers in thin-layer chromatography through the development of computer controlled imaging proportional counters (IPC). IPC has been developed to give high sensitivity digital data from an entire TLC separation in one measurement. The imaging capability provides a 100 percent improvement over mechanical scanners. Sensitivity is 100 DPM or less with 14 C and higher energy isotopes. Investigations of herbicide metabolism in plant cell suspension cultures are presented with procedures for the use of this technique

  14. Degradation mechanisms in organic photovoltaic devices

    NARCIS (Netherlands)

    Grossiord, Nadia; Kroon, Jan M.; Andriessen, Ronn; Blom, Paul W. M.

    In the present review, the main degradation mechanisms occurring in the different layer stacking (i.e. photoactive layer, electrode, encapsulation film, interconnection) of polymeric organic solar cells and modules are discussed. Bulk and interfacial, as well as chemical and physical degradation

  15. Environmental degradation and its relationship with the ...

    African Journals Online (AJOL)

    The results indicated that stress and environmental degradation, contributed significantly to the development of globus pharyngeus; suggesting the need for action in this regard, by governments and relevant governmental agencies saddled with the task of guaranteeing overall public safety and health. Keywords: Globus ...

  16. Land Tenure Induced Deforestation and Environmental Degradation ...

    African Journals Online (AJOL)

    Land Tenure Induced Deforestation and Environmental Degradation in Ethiopia: The Case of Arbagugu State Forest Development and Protection Project (A ... The objective of this paper is to explore the cause and impact of this overarching problem by focusing on Arbagugu State Forest Development and Protection Project, ...

  17. Poverty, population and environmental degradation in China.

    Science.gov (United States)

    Rozelle, S; Huang, J; Zhang, L

    1997-06-01

    This article examines the relationship between poverty, population, and environmental degradation in China. Environmental conditions include water pollution, deforestation, destruction of grasslands, soil erosion, and salinization. The authors review China's success in controlling environmental degradation through leadership, environmental policies, and institutional capacity. Findings suggest that environmental progress is best achieved indirectly by poverty alleviation, market integration, and population control. Government policies were not very effective. Degradation occurs due to limited financial resources, poorly trained personnel, and political factors. Control of water pollution was instituted since the 1980s. The levels of pollutants have been reduced, but the type of pollutant determines the seriousness of impact. Water pollution is due to industrial wastes, agricultural run-off, and soil erosion. Since the 1970s, reforestation targets have not been met. Technical extension and monitoring of planting is not available in most areas, and private, profit seeking interests control acreage. Grassland destruction is due to deforestation, agricultural expansion, and overgrazing. Independent regional authorities have successfully managed pasture programs. Erosion is the most serious in Loess Plateau, the Red Soils area, the Northeast China Plain, and the Northwest Grasslands, which comprise 70% of total land area. In 1990, erosion control was practiced in 39% of eroded land area. Salinization has remained fairly constant. Environmental controls (direct regulation, planned recovery, and state-mandated technological improvements) are uneven. The main tool for environmental management is the State Environmental Protection Commission and its executive unit, SEPA. Problems stem from vague laws, lack of means of enforcement, lack of coordination of laws, and lack of standards, schedules, and other provisions in ordinances.

  18. Degradation mechanisms of small scale piping systems

    International Nuclear Information System (INIS)

    Bartonicek, J.; Koenig, G.; Blind, D.

    1996-01-01

    Operational experience shows that many degradation mechanisms can have an effect on small-scale piping systems. We can see from the analyses carried out that the degradation which has occurred is primarily linked with the fact that these piping systems were classified as being of low safety relevance. This is mainly due to such components being classified into low safety relevance category at the design stage, as well as to the low level of operational monitoring. Since in spite of the variety of designs and operational modes the degradation mechanisms detected may be attributed to the piping systems, we can make decisive statements on how to avoid such degradation mechanisms. Even small-scale piping systems may achieve guaranteed integrity in such cases by taking the appropriate action. (orig.) [de

  19. Mechanisms in environmental control

    International Nuclear Information System (INIS)

    Lindeneg, K.

    1994-01-01

    The theory of implementation provides methods for decentralization of decisions in societies. By using mechanisms (game forms) it is possible (in theory) to implement attractive states in different economic environments. As an example the market mechanisms can implement Pareto-efficient and individual rational allocations in an Arrow-Debreu economic environment without market failures. And even when there exists externalities the market mechanism sometime can be used if it is possible to make a market for the goods not allocated on a market already - examples are marketable emission permits, and deposit refund systems. But environmental problems can often be explained by the existence of other market failures (e.g. asymmetric information), and then the market mechanism do not work properly. And instead of using regulation or traditional economic instruments (subsidies, charges, fees, liability insurance, marketable emission permits, or deposit refund systems) to correct the problems caused by market failures, some other methods can be used to deal with these problems. This paper contains a survey of mechanisms that can be used in environmental control when the problems are caused by the existence of public goods, externalities, asymmetric information, and indivisible goods in the economy. By examples it will be demonstrated how the Clarke-Groves mechanism, the Cournot-Lindahl mechanism, and other mechanisms can be used to solve specific environmental problems. This is only theory and examples, but a recent field study have used the Cournot-Lindahl mechanism to solve the problem of lake liming in Sweden. So this subject may be of some interests for environmental policy in the future. (au) 23 refs

  20. Atmospheric degradation mechanism of organic sulfur compounds

    Energy Technology Data Exchange (ETDEWEB)

    Benter, T; Arsene, C

    2002-02-01

    In the present work a detailed product study has been performed on the OH radical initiated oxidation of dimethyl sulphide and dimethyl sulphoxide, under different conditions of temperature, partial pressure of oxygen and NO{sub x} concentration, in order to better define the degradation mechanism of the above compounds under conditions which prevail in the atmosphere. (orig.)

  1. Seepage into drifts with mechanical degradation

    International Nuclear Information System (INIS)

    Li, Guomin; Tsang, Chin-Fu

    2002-01-01

    Seepage into drifts in unsaturated tuff is an important issue for the long-term performance of the potential nuclear waste repository at Yucca Mountain, Nevada. Drifts in which waste packages will potentially be emplaced are subject to degradation in the form of rockfall from the drift ceiling induced by stress relief, seismic, or thermal effects. The objective of this study is to calculate seepage rates for various drift-degradation scenarios and for different values of percolation flux for the Topopah Spring middle nonlithophysal (Tptpmn) and the Topopah Spring lower lithophysal (Tptpll) units. Seepage calculations are conducted by (1) defining a heterogeneous permeability model on the drift scale that is consistent with field data, (2) selecting calibrated parameters associated with the Tptpmn and Tptpll units, and (3) simulating seepage on detailed degraded-drift profiles, which were obtained from a separate rock mechanics engineering analysis. The simulation results indicate (1) that the seepage threshold (i.e., the percolation flux at which seepage first occurs) is not significantly changed by drift degradation, and (2) the degradation-induced increase in seepage above the threshold is influenced more by the shape of the cavity created by rockfall than the rockfall volume

  2. Environment assisted degradation mechanisms in aluminum-lithium alloys

    Science.gov (United States)

    Gangloff, Richard P.; Stoner, Glenn E.; Swanson, Robert E.

    1988-01-01

    Section 1 of this report records the progress achieved on NASA-LaRC Grant NAG-1-745 (Environment Assisted Degradation Mechanisms in Al-Li Alloys), and is based on research conducted during the period April 1 to November 30, 1987. A discussion of work proposed for the project's second year is included. Section 2 provides an overview of the need for research on the mechanisms of environmental-mechanical degradation of advanced aerospace alloys based on aluminum and lithium. This research is to provide NASA with the basis necessary to permit metallurgical optimization of alloy performance and engineering design with respect to damage tolerance, long term durability and reliability. Section 3 reports on damage localization mechanisms in aqueous chloride corrosion fatigue of aluminum-lithium alloys. Section 4 reports on progress made on measurements and mechanisms of localized aqueous corrosion in aluminum-lithium alloys. Section 5 provides a detailed technical proposal for research on environmental degradation of Al-Li alloys, and the effect of hydrogen in this.

  3. Photocatalytic degradation kinetics and mechanism of environmental pharmaceuticals in aqueous suspension of TiO{sub 2}: A case of {beta}-blockers

    Energy Technology Data Exchange (ETDEWEB)

    Yang Hai [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Kehua Street, Tianhe District, Guangzhou 510640 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); An Taicheng, E-mail: antc99@gig.ac.cn [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Kehua Street, Tianhe District, Guangzhou 510640 (China); Li Guiying [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Kehua Street, Tianhe District, Guangzhou 510640 (China); Song Weihua; Cooper, William J. [Urban Water Research Center, Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175 (United States); Luo Haiying [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Kehua Street, Tianhe District, Guangzhou 510640 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Guangzhou Product Quality Supervision and Testing Institute, National Centre for Quality Supervision and Testing of Processed Food (Guangzhou), Guangzhou 510110 (China); Guo Xindong [Guangzhou Product Quality Supervision and Testing Institute, National Centre for Quality Supervision and Testing of Processed Food (Guangzhou), Guangzhou 510110 (China)

    2010-07-15

    This study investigated the photocatalytic degradation of three {beta}-blockers in TiO{sub 2} suspensions. The disappearance of the compounds followed pseudo-first-order kinetics according to the Langmuir-Hinshelwood model and the rate constants were 0.075, 0.072 and 0.182 min{sup -1} for atenolol, metoprolol and propranolol, respectively. After 240 min irradiation, the reaction intermediates were completely mineralized to CO{sub 2} and the nitrogen was predominantly as NH{sub 4}{sup +}. The influence of initial pH and {beta}-blocker concentration on the kinetics was also studied. From adsorption studies it appears that the photocatalytic degradation occurred mainly on the surface of TiO{sub 2}. Further studies indicated that surface reaction with {center_dot}OH radical was principally responsible for the degradation of these three {beta}-blockers. The major degradation intermediates were identified by HPLC/MS analysis. Cleavage of the side chain and the addition of the hydroxyl group to the parent compounds were found to be the two main degradation pathways for all three {beta}-blockers.

  4. Environmental Degradation in Oil Producing Areas of Niger Delta ...

    African Journals Online (AJOL)

    Due to oil exploration and other human activities in the Niger Delta region, there is evidence of environmental degradation all over the area (Oronto, 1998). Environmental degradation is occasioned by consistent flow of industrial waste, oil spills, gas flares, fire disaster, acid rain, flooding erosion, etc., which has led to the ...

  5. Natural Resource Extraction, Armed Violence, and Environmental Degradation.

    Science.gov (United States)

    Downey, Liam; Bonds, Eric; Clark, Katherine

    2010-12-01

    The goal of this article is to demonstrate that environmental sociologists cannot fully explain the relationship between humans and the natural world without theorizing a link between natural resource extraction, armed violence, and environmental degradation. The authors begin by arguing that armed violence is one of several overlapping mechanisms that provide powerful actors with the means to (a) prevail over others in conflicts over natural resources and (b) ensure that natural resources critical to industrial production and state power continue to be extracted and sold in sufficient quantities to promote capital accumulation, state power, and ecological unequal exchange. The authors then identify 10 minerals that are critical to the functioning of the U.S. economy and/or military and demonstrate that the extraction of these minerals often involves the use of armed violence. They further demonstrate that armed violence is associated with the activities of the world's three largest mining companies, with African mines that receive World Bank funding, and with petroleum and rainforest timber extraction. The authors conclude that the natural resource base on which industrial societies stand is constructed in large part through the use and threatened use of armed violence. As a result, armed violence plays a critical role in fostering environmental degradation and ecological unequal exchange.

  6. Mechanical degradation processes: The Belgian experience

    International Nuclear Information System (INIS)

    Lafaille, J.P.; Hennart, J.C.

    1998-01-01

    Design life is merely used in Belgium as a requirement in the 'Design Specification' of some components subjected to known degradation processes, such as stress induced fatigue, embrittlement (irradiation or other), various types of corrosion, wear, erosion, thermal aging (electrical insulation, ...), etc. Design life is in no way directly related to the duration of the plant operation. In that sense design life for the Belgian NPP components includes the values of 20, 30 and 40 years. The oldest plant (20 years design life) has been decommissioned in 1991. The most recent units (40 years design life) have still a good time to go. The intermediate units (30 years design life) started around 1975. Consequently components of these plants need be looked at to determine whether or not deteriorations have occurred. The paper presents the various known mechanical degradation processes and how they affect various components. Emphasis is laid on prevention, mitigation or repair measures that have been or are being taken to avoid that the 'Equipment design life' be the limiting factor in the duration of the plant operation. (author)

  7. Mechanical degradation temperature of waste storage materials

    International Nuclear Information System (INIS)

    Fink, M.C.; Meyer, M.L.

    1993-01-01

    Heat loading analysis of the Solid Waste Disposal Facility (SWDF) waste storage configurations show the containers may exceed 90 degrees C without any radioactive decay heat contribution. Contamination containment is primarily controlled in TRU waste packaging by using multiple bag layers of polyvinyl chloride and polyethylene. Since literature values indicate that these thermoplastic materials can begin mechanical degradation at 66 degrees C, there was concern that the containment layers could be breached by heating. To better define the mechanical degradation temperature limits for the materials, a series of heating tests were conducted over a fifteen and thirty minute time interval. Samples of a low-density polyethylene (LDPE) bag, a high-density polyethylene (HDPE) high efficiency particulate air filter (HEPA) container, PVC bag and sealing tape were heated in a convection oven to temperatures ranging from 90 to 185 degrees C. The following temperature limits are recommended for each of the tested materials: (1) low-density polyethylene -- 110 degrees C; (2) polyvinyl chloride -- 130 degrees C; (3) high-density polyethylene -- 140 degrees C; (4) sealing tape -- 140 degrees C. Testing with LDPE and PVC at temperatures ranging from 110 to 130 degrees C for 60 and 120 minutes also showed no observable differences between the samples exposed at 15 and 30 minute intervals. Although these observed temperature limits differ from the literature values, the trend of HDPE having a higher temperature than LDPE is consistent with the reference literature. Experimental observations indicate that the HDPE softens at elevated temperatures, but will retain its shape upon cooling. In SWDF storage practices, this might indicate some distortion of the waste container, but catastrophic failure of the liner due to elevated temperatures (<185 degrees C) is not anticipated

  8. Molecular mechanism and genetic determinants of buprofezin degradation.

    Science.gov (United States)

    Chen, Xueting; Ji, Junbin; Zhao, Leizhen; Qiu, Jiguo; Dai, Chen; Wang, Weiwu; He, Jian; Jiang, Jiandong; Hong, Qing; Yan, Xin

    2017-07-14

    Buprofezin is a widely used insect growth regulator whose residue has been frequently detected in the environment, posing a threat to aquatic organisms and non-target insects. Microorganisms play an important role in the degradation of buprofezin in the natural environment. However, the relevant catabolic pathway has not been fully characterized, and the molecular mechanism of catabolism is still completely unknown. Rhodococcus qingshengii YL-1 can utilize buprofezin as a sole source of carbon and energy for growth. In this study, the upstream catabolic pathway in strain YL-1 was identified using tandem mass spectrometry. Buprofezin is composed of a benzene ring and a heterocyclic ring. The degradation is initiated by the dihydroxylation of the benzene ring and continues via dehydrogenation, aromatic ring cleavage, breaking of an amide bond and the release of the heterocyclic ring 2- tert -butylimino-3-isopropyl-1,3,5-thiadiazinan-4-one (2-BI). A buprofezin degradation-deficient mutant strain YL-0 was isolated. Comparative genomic analysis combined with gene deletion and complementation experiments revealed that the gene cluster bfzBA3A4A1A2C is responsible for the upstream catabolic pathway of buprofezin. bfzA3A4A1A2 encodes a novel Rieske non-heme iron oxygenase (RHO) system that is responsible for the dihydroxylation of buprofezin at the benzene ring; bfzB is involved in dehydrogenation, and bfzC is in charge of benzene ring cleavage. Furthermore, the products of bfzBA3A4A1A2C can also catalyze dihydroxylation, dehydrogenation and aromatic ring cleavage of biphenyl, flavanone, flavone and bifenthrin. In addition, a transcriptional study revealed that bfzBA3A4A1A2C is organized in one transcriptional unit that is constitutively expressed in strain YL-1. Importance There is an increasing concern about the residue and environmental fate of buprofezin. Microbial metabolism is an important mechanism responsible for the buprofezin degradation in natural environment

  9. Fluid mechanics of environmental interfaces

    CERN Document Server

    Gualtieri, Carlo

    2008-01-01

    Fluid Mechanics of Environmental Interfaces describes the concept of the environmental interface, defined as a surface between two either abiotic or biotic systems. These are in relative motion and exchange mass, heat and momentum through biophysical and/or chemical processes. These processes are fluctuating temporally and spatially.The book will be of interest to graduate students, PhD students as well as researchers in environmental sciences, civil engineering and environmental engineering, (geo)physics and applied mathematics.

  10. Degradation mechanisms and accelerated testing in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Borup, Rodney L [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory

    2010-01-01

    The durability of PEM fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. Although there has been recent progress in improving durability, further improvements are needed to meet the commercialization targets. Past improvements have largely been made possible because of the fundamental understanding of the underlying degradation mechanisms. By investigating component and cell degradation modes; defining the fundamental degradation mechanisms of components and component interactions new materials can be designed to improve durability. Various factors have been shown to affect the useful life of PEM fuel cells. Other issues arise from component optimization. Operational conditions (such as impurities in either the fuel and oxidant stream), cell environment, temperature (including subfreezing exposure), pressure, current, voltage, etc.; or transient versus continuous operation, including start-up and shutdown procedures, represent other factors that can affect cell performance and durability. The need for Accelerated Stress Tests (ASTs) can be quickly understood given the target lives for fuel cell systems: 5000 hours ({approx} 7 months) for automotive, and 40,000 hrs ({approx} 4.6 years) for stationary systems. Thus testing methods that enable more rapid screening of individual components to determine their durability characteristics, such as off-line environmental testing, are needed for evaluating new component durability in a reasonable turn-around time. This allows proposed improvements in a component to be evaluated rapidly and independently, subsequently allowing rapid advancement in PEM fuel cell durability. These tests are also crucial to developers in order to make sure that they do not sacrifice durability while making improvements in costs (e.g. lower platinum group metal [PGM] loading) and performance (e.g. thinner membrane or a GDL with better water management properties). To

  11. Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation

    OpenAIRE

    Joo, Seongjoon; Cho, In Jin; Seo, Hogyun; Son, Hyeoncheol Francis; Sagong, Hye-Young; Shin, Tae Joo; Choi, So Young; Lee, Sang Yup; Kim, Kyung-Jin

    2018-01-01

    Plastics, including poly(ethylene terephthalate) (PET), possess many desirable characteristics and thus are widely used in daily life. However, non-biodegradability, once thought to be an advantage offered by plastics, is causing major environmental problem. Recently, a PET-degrading bacterium, Ideonella sakaiensis, was identified and suggested for possible use in degradation and/or recycling of PET. However, the molecular mechanism of PET degradation is not known. Here we report the crystal ...

  12. Anthocyanin Biosynthesis and Degradation Mechanisms in Solanaceous Vegetables: A Review

    Directory of Open Access Journals (Sweden)

    Ying Liu

    2018-03-01

    Full Text Available Anthocyanins are a group of polyphenolic pigments that are ubiquitously found in the plant kingdom. In plants, anthocyanins play a role not only in reproduction, by attracting pollinators and seed dispersers, but also in protection against various abiotic and biotic stresses. There is accumulating evidence that anthocyanins have health-promoting properties, which makes anthocyanin metabolism an interesting target for breeders and researchers. In this review, the state of the art knowledge concerning anthocyanins in the Solanaceous vegetables, i.e., pepper, tomato, eggplant, and potato, is discussed, including biochemistry and biological function of anthocyanins, as well as their genetic and environmental regulation. Anthocyanin accumulation is determined by the balance between biosynthesis and degradation. Although the anthocyanin biosynthetic pathway has been well-studied in Solanaceous vegetables, more research is needed on the inhibition of biosynthesis and, in particular, the anthocyanin degradation mechanisms if we want to control anthocyanin content of Solanaceous vegetables. In addition, anthocyanin metabolism is distinctly affected by environmental conditions, but the molecular regulation of these effects is poorly understood. Existing knowledge is summarized and current gaps in our understanding are highlighted and discussed, to create opportunities for the development of anthocyanin-rich crops through breeding and environmental management.

  13. Anthocyanin biosynthesis and degradation mechanisms in Solanaceous vegetables: a review

    Science.gov (United States)

    Liu, Ying; Tikunov, Yury; Schouten, Rob E.; Marcelis, Leo F. M.; Visser, Richard G. F.; Bovy, Arnaud

    2018-03-01

    Anthocyanins are a group of polyphenolic pigments that are ubiquitously found in the plant kingdom. In plants, anthocyanins play a role not only in reproduction, by attracting pollinators and seed dispersers, but also in protection against various abiotic and biotic stresses. There is accumulating evidence that anthocyanins have health-promoting properties, which makes anthocyanin metabolism an interesting target for breeders and researchers. In this review, the state of the art knowledge concerning anthocyanins in the Solanaceous vegetables, i.e. pepper, tomato, eggplant and potato, is discussed, including biochemistry and biological function of anthocyanins, as well as their genetic and environmental regulation. Anthocyanin accumulation is determined by the balance between biosynthesis and degradation. Although the anthocyanin biosynthetic pathway has been well studied in Solanaceous vegetables, more research is needed on the inhibition of biosynthesis and, in particular, the anthocyanin degradation mechanisms if we want to control anthocyanin content of Solanaceous vegetables. In addition, anthocyanin metabolism is distinctly affected by environmental conditions, but the molecular regulation of these effects is poorly understood. Existing knowledge is summarized and current gaps in our understanding are highlighted and discussed, to create opportunities for the development of anthocyanin-rich crops through breeding and environmental management.

  14. Relevance of Green Marketing on Environmental Degradation: An ...

    African Journals Online (AJOL)

    Relevance of Green Marketing on Environmental Degradation: An Empirical ... to others through product, process, packaging and advertising modification(s). ... thus appropriate strategies for effective application of green marketing are lacking.

  15. Linkages between Poverty and Environmental Degradation ...

    African Journals Online (AJOL)

    This study conceptualizes environmental concerns of the poor so as to formulate appropriate policy measures for environmental awareness and sustainable development. It is limited to poverty -environment interrelationships through an overview of the perception of the poor about the environment and their behaviour to the ...

  16. Poverty and Environmental Degradation in Uyo Urban, Akwa Ibom ...

    African Journals Online (AJOL)

    The high level of poverty in the world today is a major force behind contemporary environmental problems. It is true that the degradation of our environment has been exacerbated by widespread poverty. Thus, it is virtually impossible to effectively discuss the idea of urban environmental sustainability without paying serious ...

  17. Photochemically enhanced microbial degradation of environmental pollutants

    International Nuclear Information System (INIS)

    Katayama, A.; Matsumura, F.

    1991-01-01

    Biodegradation of persistent halogenated organic pollutants is of great interest from the viewpoint of its potential use to cleanup the contaminated sites and industrial waste streams on-site (i.e., in situ remediation). Recent studies have shown that lignin-degrading white rot fungi possess capabilities to degrade a variety of highly recalcitrant and toxic compounds. On the other hand, photodegradation by sunlight or ultraviolet light (UV) has not been considered as a potential technology to detoxify the contaminated sites, in spite of the availability of extensive research data, because of its limited reaching ability to subsurface locations. In view of the urgent needs for the development of technology to deal with mounting problems of toxic wastes, the authors have decided to experiment with the ideas of combining photochemical and microbial technologies. The main obstacle in developing such simultaneous combination systems has been the susceptibilities of microorganisms in general to UV irradiation. To overcome this problem, the authors have developed an ultraviolet- and fungicide-resistant strain of white rot fungus and now report their results

  18. Mechanisms of Photo Degradation for Layered Silicate-Polycarbonate Nanocomposites

    National Research Council Canada - National Science Library

    Sloan, James M; Patterson, Philip

    2005-01-01

    ...., lightweight structure, rugged abrasion resistance, and high ballistic impact strength). However, as with any polymer system, these materials are susceptible to degradation over time when exposed to various environmental (i.e...

  19. 1 Evaluating Biophysical Attributes of Environmentally Degraded ...

    African Journals Online (AJOL)

    `123456789jkl''''#

    Ethiopian Journal of Environmental Studies and Management Vol.4 No. 1 2011. 1 Department of .... land cover types and other physical attributes. (soils and landform ..... Natural water bodies (Rivers). Figure 4: .... permanent or ephemeral rivers. .... evaluating land use/land cover change using participatory ... First Edition.

  20. Advances in Environmental Fluid Mechanics

    CERN Document Server

    Mihailovic, Dragutin T

    2010-01-01

    Environmental fluid mechanics (EFM) is the scientific study of transport, dispersion and transformation processes in natural fluid flows on our planet Earth, from the microscale to the planetary scale. This book brings together scientists and engineers working in research institutions, universities and academia, who engage in the study of theoretical, modeling, measuring and software aspects in environmental fluid mechanics. It provides a forum for the participants, and exchanges new ideas and expertise through the presentations of up-to-date and recent overall achievements in this field.

  1. Environmental Degradation and Durability of Epoxy-Clay Nanocomposites

    Directory of Open Access Journals (Sweden)

    Raman P. Singh

    2010-01-01

    Full Text Available This experimental investigation reports on the durability of epoxy-clay nanocomposites upon exposure to multiple environments. Nanocomposites are fabricated by mixing the clay particles using various combinations of mechanical mixing, high-shear dispersion, and ultrasonication. Clay morphology is characterized using X-ray diffraction and transmission electron microscopy. Specimens of both neat epoxy and the epoxy-clay nanocomposite are subjected to two environmental conditions: combined UV radiation and condensation on 3-hour repeat cycle and constant temperature-humidity, for a total exposure duration of 4770 hours. The presence of nanoscale clay inhibits moisture uptake, as demonstrated by exposure to constant temperature-humidity. Nonetheless, both materials lose mass under exposure to combined UV radiation and condensation due to the erosion of epoxy by a synergistic process. Surprisingly, the epoxy-clay specimens exhibit greater mass loss, as compared to neat epoxy. Mechanical testing shows that either environment does not significant affect the flexure modulus of either material. On the other hand, both materials undergo degradation in flexural strength when exposed to either environment. However, the epoxy-clay nanocomposite retains 37% more flexure strength than the neat epoxy after 4072 hours of exposure.

  2. Environmental Degradation and Durability of Epoxy-Clay Nanocomposites

    International Nuclear Information System (INIS)

    Singh, R.P.; Zunjarrao, S.C.; Pandey, G.; Khait, M.; Korach, C.S.

    2010-01-01

    This experimental investigation reports on the durability of epoxy-clay nanocomposites upon exposure to multiple environments. Nanocomposites are fabricated by mixing the clay particles using various combinations of mechanical mixing, high-shear dispersion, and ultrasonication. Clay morphology is characterized using X-ray diffraction and transmission electron microscopy. Specimens of both neat epoxy and the epoxy-clay nanocomposite are subjected to two environmental conditions: combined UV radiation and condensation on 3-hour repeat cycle and constant temperature-humidity, for a total exposure duration of 4770 hours. The presence of nanoscale clay inhibits moisture uptake, as demonstrated by exposure to constant temperature-humidity. Nonetheless, both materials lose mass under exposure to combined UV radiation and condensation due to the erosion of epoxy by a synergistic process. Surprisingly, the epoxy-clay specimens exhibit greater mass loss, as compared to neat epoxy. Mechanical testing shows that either environment does not significant affect the flexure modulus of either material. On the other hand, both materials undergo degradation in flexural strength when exposed to either environment. However, the epoxy-clay nanocomposite retains 37% more flexure strength than the neat epoxy after 4072 hours of exposure.

  3. Environmental degradation of materials and corrosion control in metals

    International Nuclear Information System (INIS)

    Lou, J.; Elboujdaini, M.; Shoesmith, D.; Patnaik, P.C.

    2003-01-01

    The first International Symposium on Environmental Degradation of Materials and Corrosion Control In Metals (EDMCCM), held in Quebec City in 1999, was very successful. Encouraged by this success. the Metallurgical Society of CIM organized the Second International Conference in what is hoped will be an on-going series. This meeting was held in Vancouver, British Columbia, Canada, in August 2003. The objective of this conference was to provide a wide-ranging forum for the discussion of recent developments in the study and understanding of corrosion degradation of metals and alloys and the variety of processes by which corrosion damage accumulates. The scope of the meeting ranged from the fundamental to the very applied with a primary emphasis on the inter-relationships between chemical, electrochemical, mechanical and metallurgical features of corrosion. This symposium was an excellent forum for the exchange of ideas and approaches between generally disparate fields of endeavour. The success of the symposium can be gauged from the large number of papers presented and the outstanding level of international participation, with authors from China, Iran, Japan, North America, Russia, United Kingdom and Venezuela. In addition authors from six Canadian provinces (Alberta, British Columbia, New Brunswick, Ontario, Quebec, Saskatchewan) participated. Six keynote presentations covered a wide range of topics and industries in corrosion and corrosion control, and a total 45 papers were presented, spread over three days in six individual sessions; Electrochemistry and Corrosion of Metals, Corrosion and Cracking Behaviour. Hydrogen in Steel and Pipeline Corrosion, Corrosion Case Studies and Applications, Characterization of Corrosion Behaviour, and Corrosion Protection Coatings. (author)

  4. Degradation of polyethylene microplastics in seawater: Insights into the environmental degradation of polymers.

    Science.gov (United States)

    Da Costa, João P; Nunes, Ana R; Santos, Patrícia S M; Girão, Ana V; Duarte, Armando C; Rocha-Santos, Teresa

    2018-04-06

    Microplastic contamination of aquatic environments has become an increasingly alarming problem. These, defined as particles degradation of this material. These results highlight the importance of determining the mechanisms of degradation of microplastics in marine settings and what the implications may be for the environment. Overall, the herein presented results show that a relatively short period of time of accelerated exposure can yield quantifiable chemical and physical impacts on the structural and morphological characteristics of PE pellets.

  5. Degradation mechanism of polyurethane foam induced by electron beam irradiation

    International Nuclear Information System (INIS)

    Huang Wei; Fu Yibei; Bian Zhishang; He Meiying

    2002-01-01

    The degradation mechanism of irradiated polyurethane foam has been studied in detail. The changes of chemical structure and micro-phase separation have been determined by DTG. The gas products from irradiated samples are analyzed quantitatively and qualitatively by GC. The degradation mechanism of irradiated polyurethane foam has been deduced according to the experimental results. It provides some basis of the application on the polyurethane in the radiation field

  6. Methods for Evaluating the Biodegradability of Environmentally Degradable Polymers

    NARCIS (Netherlands)

    Zee, van der M.

    2014-01-01

    This chapter presents an overview of the current knowledge on experimental methods for monitoring the biodegradability of polymeric materials. The focus is, in particular, on the biodegradation of materials under environmental conditions. Examples of in vivo degradation of polymers used in

  7. Environmental Degradation, Livelihood and Conflicts: A Focus on ...

    African Journals Online (AJOL)

    Environmental Degradation, Livelihood and Conflicts: A Focus on the Implications of the Diminishing Water Resources of Lake Chad for North-Eastern Nigeria. ... The impact of this depletion is being felt by Lake Chad basin population who depend on the lake for their means of livelihood. This paper focuses on the ...

  8. Overview of environmental materials degradation in light-water reactors

    International Nuclear Information System (INIS)

    Shaaban, H.I.; Wu, P.

    1986-08-01

    This report provides a brief overview of analyses and conclusions reported in published literature regarding environmentally induced degradation of materials in operating light-water reactors. It is intended to provide a synopsis of subjects of concern rather than to address a licensing basis for any newly discovered problems related to reactor materials

  9. Vicious cycle of poverty and environmental degradation: Haiti

    DEFF Research Database (Denmark)

    Conde, Dalia Amor; Christensen, Norman

    2008-01-01

    Haiti is the poorest country in the Western Hemisphere and one of the most environmentally degraded. Over 60% of its income comes as aid from the USA and other countries, and 65% of its people survive on less than $1 a day. Almost all of the country was originally forested but now there is less t...

  10. Environmental impacts and sustainability of degraded water reuse

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, D.L.; Bradford, S.A. [USDA ARS, Riverside, CA (United States). US Salin Laboratory

    2008-09-15

    Greater urban demand for finite water resources to meet domestic, agricultural, industrial, and recreational needs; increased frequency of drought resulting from erratic weather; and continued degradation of available water resources from point and nonpoint sources of pollution have focused attention on the reuse of degraded waters as a potential water source. However, short- and long-term detrimental environmental impacts and sustainability of degraded water reuse are not well known or understood. These concerns led to the organization of the 2007 ASA-CSSA-SSSA Symposium entitled Environmental Impacts and Sustainability of Degraded Water Reuse. Out of this symposium came a special collection of 4 review papers and 12 technical research papers focusing on various issues associated with the reuse of agricultural drainage water, well water generated in the production of natural gas from coalbeds, municipal wastewater and biosolids, wastewater from confined animal operations, urban runoff, and food-processing wastewater. Overviews of the papers, gaps in knowledge, and future research directions are presented. The future prognosis of degraded water reuse is promising, provided close attention is paid to managing constituents that pose short- and long-term threats to the environment and the health of humankind.

  11. Understanding Mechanism of Photocatalytic Microbial Decontamination of Environmental Wastewater

    Directory of Open Access Journals (Sweden)

    Chhabilal Regmi

    2018-02-01

    Full Text Available Several photocatalytic nanoparticles are synthesized and studied for potential application for the degradation of organic and biological wastes. Although these materials degrade organic compounds by advance oxidation process, the exact mechanisms of microbial decontamination remains partially known. Understanding the real mechanisms of these materials for microbial cell death and growth inhibition helps to fabricate more efficient semiconductor photocatalyst for large-scale decontamination of environmental wastewater or industries and hospitals/biomedical labs generating highly pathogenic bacteria and toxic molecules containing liquid waste by designing a reactor. Recent studies on microbial decontamination by photocatalytic nanoparticles and their possible mechanisms of action is highlighted with examples in this mini review.

  12. Influence of foreign direct investment on indicators of environmental degradation.

    Science.gov (United States)

    Solarin, Sakiru Adebola; Al-Mulali, Usama

    2018-06-21

    This study aims to contribute to the existing literature by looking at the influence of foreign direct investment on carbon dioxide emissions, carbon footprint, and ecological footprint. In order to realize the aim of this study, we have utilized the augmented mean group estimator, which is supported by common correlated effect mean group estimator in the analysis for 20 countries. The panel results reveal that foreign direct investment has no effect on environmental degradation indicators. The panel results further reveal that gross domestic product, energy consumption, and urbanization are the main contributors to environmental degradation. The results at country level show that foreign direct investment and urbanization increase pollution in the developing countries while they mitigate pollution in the developed countries. Moreover, gross domestic product and energy consumption increase pollution for both developed and developing countries, which includes China and the USA. The negative impact of foreign direct investment on environmental degradation in the developed countries can be explained on the basis that these countries have strong environmental regulations, which makes it almost impossible for dirty foreign industries to invest therein. From the output of this research, several policy recommendations are enumerated for the investigated countries.

  13. Detection and Location of Structural Degradation in Mechanical Systems

    International Nuclear Information System (INIS)

    Blakeman, E.D.; Damiano, B.; Phillips, L.D.

    1999-01-01

    The investigation of a diagnostic method for detecting and locating the source of structural degradation in a mechanical system is described in this paper. The diagnostic method uses a mathematical model of the mechanical system to determine relationships between system parameters and measurable spectral features. These relationships are incorporated into a neural network, which associates measured spectral features with system parameters. Condition diagnosis is performed by presenting the neural network with measured spectral features and comparing the system parameters estimated by the neural network to previously estimated values. Changes in the estimated system parameters indicate the location and severity of degradation in the mechanical system

  14. Evaluating mechanical properties and degradation of YTZP dental implants

    International Nuclear Information System (INIS)

    Sevilla, Pablo; Sandino, Clara; Arciniegas, Milena; Martinez-Gomis, Jordi; Peraire, Maria; Gil, Francisco Javier

    2010-01-01

    Lately new biomedical grade yttria stabilized zirconia (YTZP) dental implants have appeared in the implantology market. This material has better aesthetical properties than conventional titanium used for implants but long term behaviour of these new implants is not yet well known. The aim of this paper is to quantify the mechanical response of YTZP dental implants previously degraded under different time conditions and compare the toughness and fatigue strength with titanium implants. Mechanical response has been studied by means of mechanical testing following the ISO 14801 for Standards for dental implants and by finite element analysis. Accelerated hydrothermal degradation has been achieved by means of water vapour and studied by X-ray diffraction and nanoindentation tests. The results show that the degradation suffered by YTZP dental implants will not have a significant effect on the mechanical behaviour. Otherwise the fracture toughness of YTZP ceramics is still insufficient in certain implantation conditions.

  15. Linking degradation status with ecosystem vulnerability to environmental change

    Science.gov (United States)

    Angeler, David G.; Baho, Didier L.; Allen, Craig R.; Johnson, Richard K.

    2015-01-01

    Environmental change can cause regime shifts in ecosystems, potentially threatening ecosystem services. It is unclear if the degradation status of ecosystems correlates with their vulnerability to environmental change, and thus the risk of future regime shifts. We assessed resilience in acidified (degraded) and circumneutral (undegraded) lakes with long-term data (1988–2012), using time series modeling. We identified temporal frequencies in invertebrate assemblages, which identifies groups of species whose population dynamics vary at particular temporal scales. We also assessed species with stochastic dynamics, those whose population dynamics vary irregularly and unpredictably over time. We determined the distribution of functional feeding groups of invertebrates within and across the temporal scales identified, and in those species with stochastic dynamics, and assessed attributes hypothesized to contribute to resilience. Three patterns of temporal dynamics, consistent across study lakes, were identified in the invertebrates. The first pattern was one of monotonic change associated with changing abiotic lake conditions. The second and third patterns appeared unrelated to the environmental changes we monitored. Acidified and the circumneutral lakes shared similar levels and patterns of functional richness, evenness, diversity, and redundancy for species within and across the observed temporal scales and for stochastic species groups. These similar resilience characteristics suggest that both lake types did not differ in vulnerability to the environmental changes observed here. Although both lake types appeared equally vulnerable in this study, our approach demonstrates how assessing systemic vulnerability by quantifying ecological resilience can help address uncertainty in predicting ecosystem responses to environmental change across ecosystems.

  16. The role of environmental degradation in population displacement.

    Science.gov (United States)

    Lonergan, S

    1998-01-01

    This article answers a series of questions about the role of environmental degradation in population displacement, refugee movement, and migration. The environment tends not to be included in the reasons for migration. Roger's indicators of migration potential include population growth, economic restructuring, increased economic disparities, and increased refugee flows. Myers (1993) estimated that international displacement and internal displacement may amount to about 25 million and may rise to 150 million by 2050. The role of the environment in displacement must be examined in the broader political and cultural context. Definitions of environmental refugees are ambiguous and inconsistent, and research has not answered why people continue to move to Mexico City and Chongqing, China, which both have very high levels of pollution. El-Hinnawi (1985) defined 3 groups of environmental refugees: those displaced due to natural disasters; those displaced due to permanent habitat changes; and those displaced who migrated from areas that cannot support their basic needs and who desire an improved quality of life. Lonergan (1994) identified environmental stresses as natural disasters, cumulative or slow-onset changes, accidental disruptions or industrial accidents, development projects, and conflict and warfare. These 5 causes must be treated separately and not lumped together as environmental degradation. Shoreline erosion, coastal flooding, and agricultural disruption associated with climate change may increase migration. Global measures must address world poverty and promote sustainable development.

  17. Fast degradation of dyes in water using manganese-oxide-coated diatomite for environmental remediation

    Science.gov (United States)

    Dang, Trung-Dung; Banerjee, Arghya Narayan; Tran, Quang-Tung; Roy, Sudipta

    2016-11-01

    By a simple wet-chemical procedure using a permanganate in the acidic medium, diatomite coated with amorphous manganese oxide nanoparticles was synthesized. The structural, microstructural and morphological characterizations of the as-synthesized catalysts confirmed the nanostructure of MnO2 and its stabilization on the support - diatomite. The highly efficient and rapid degradation of methylene blue and methyl orange over synthesized MnO2 coated Diatomite has been carried out. The results revealed considerably faster degradation of the dyes against the previously reported data. The proposed mechanism of the dye-degradation is considered to be a combinatorial effect of chemical, physicochemical and physical processes. Therefore, the fabricated catalysts have potential application in waste water treatment, and pollution degradation for environmental remediation.

  18. Degradation model and application in life prediction of rotating-mechanism

    International Nuclear Information System (INIS)

    Zhou Yuhui

    2009-01-01

    The degradation data can provide additional information beyond that provided by the failure observations, both sets of observations need to be considered when doing inference on the statistical parameters of the product and system lifetime distributions. By the degradation model showing the wear out failure, the predicted results of mechanism life is more accurate. Strength is one of the important capabilities of the rotating mechanism. In this paper, the degradation data of strength are described as a stochastic process model. Accelerated tests expose the products to greater environmental stress levels so that we can obtain lifetime and degradation measurements in a more timely fashion. Using the Best Linear Unbiased Estimation (BLUE) Method, the parameters under the degradation path were estimated from the accelerated life test (ALT) data of the rotating mechanism. Based on solving the singularity of degradation equation, at any time the reliability is estimated by the using the strength-stress interference theory. So we can predict the life of the rotating mechanism. (authors)

  19. Physical and mechanical properties of degraded waste surrogate material

    International Nuclear Information System (INIS)

    Hansen, F.D.; Mellegard, K.D.

    1998-03-01

    This paper discusses rock mechanics testing of surrogate materials to provide failure criteria for compacted, degraded nuclear waste. This daunting proposition was approached by first assembling all known parameters such as the initial waste inventory and rock mechanics response of the underground setting after the waste is stored. Conservative assumptions allowing for extensive degradation processes helped quantify the lowest possible strength conditions of the future state of the waste. In the larger conceptual setting, computations involve degraded waste behavior in transient pressure gradients as gas exits the waste horizon into a wellbore. Therefore, a defensible evaluation of tensile strength is paramount for successful analyses and intentionally provided maximal failed volumes. The very conservative approach assumes rampant degradation to define waste surrogate composition. Specimens prepared from derivative degradation product were consolidated into simple geometries for rock mechanics testing. Tensile strength thus derived helped convince a skeptical peer review panel that drilling into the Waste Isolation Pilot Plant (WIPP) would not likely expel appreciable solids via the drill string

  20. Stabilization and Degradation Mechanisms of Cytoplasmic Ataxin-1

    Directory of Open Access Journals (Sweden)

    Mayumi F. Kohiyama

    2015-01-01

    Full Text Available Aggregation-prone proteins in neurodegenerative disease disrupt cellular protein stabilization and degradation pathways. The neurodegenerative disease spinocerebellar ataxia type 1 (SCA1 is caused by a coding polyglutamine expansion in the Ataxin-1 gene ( ATXN1 , which gives rise to the aggregation-prone mutant form of ATXN1 protein. Cerebellar Purkinje neurons, preferentially vulnerable in SCA1, produce ATXN1 protein in both cytoplasmic and nuclear compartments. Cytoplasmic stabilization of ATXN1 by phosphorylation and 14-3-3-mediated mechanisms ultimately drive translocation of the protein to the nucleus where aggregation may occur. However, experimental inhibition of phosphorylation and 14-3-3 binding results in rapid degradation of ATXN1, thus preventing nuclear translocation and cellular toxicity. The exact mechanism of cytoplasmic ATXN1 degradation is currently unknown; further investigation of degradation may provide future therapeutic targets. This review examines the present understanding of cytoplasmic ATXN1 stabilization and potential degradation mechanisms during normal and pathogenic states.

  1. Degradation Mechanisms of Poly(ester urethane) Elastomer

    Energy Technology Data Exchange (ETDEWEB)

    Edgar, Alexander S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-30

    This report describes literature regarding the degradation mechanisms associated with a poly(ester urethane) block copolymer, Estane® 5703 (Estane), used in conjunction with Nitroplasticizer (NP), and 1,3,5,7-tetranitro-1,3,5,7-tetrazocane, also known as high molecular weight explosive (HMX) to produce polymer bonded explosive PBX 9501. Two principal degradation mechanisms are reported: NO2 oxidative reaction with the urethane linkage resulting in crosslinking and chain scission events, and acid catalyzed hydrolysis of the ester linkage. This report details future work regarding this PBX support system, to be conducted in late 2017 and 2018 at Engineered Materials Group (MST-7), Materials Science and Technology Division, Los Alamos National Laboratory. This is the first of a series of three reports on the degradation processes and trends of the support materials of PBX 9501.

  2. Biologically Safe Poly(l-lactic acid) Blends with Tunable Degradation Rate: Microstructure, Degradation Mechanism, and Mechanical Properties.

    Science.gov (United States)

    Oyama, Hideko T; Tanishima, Daisuke; Ogawa, Ryohei

    2017-04-10

    Although poly(l-lactic acid) (PLLA) is reputed to be biodegradable in the human body, its hydrophobic nature lets it persist for ca. 5.5 years. This study demonstrates that biologically safe lactide copolymers, poly(aspartic acid-co-l-lactide) (PAL) and poly(malic acid-co-l-lactide) (PML), dispersed in the PLLA function as detonators (triggers) for its hydrolytic degradation under physiological conditions. The copolymers significantly enhance hydrolysis, and consequently, the degradation rate of PLLA becomes easily tunable by controlling the amounts of PAL and PML. The present study elucidates the effects of uniaxial drawing on the structural development, mechanical properties, and hydrolytic degradation under physiological conditions of PLLA blend films. At initial degradation stages, the mass loss was not affected by uniaxial drawing; however, at late degradation stages, less developed crystals as well as amorphous chains were degradable at low draw ratio (DR), whereas not only highly developed crystals but also the oriented amorphous chains became insensitive to hydrolysis at high DR. Our work provides important molecular level results that demonstrate that biodegradable materials can have superb mechanical properties and also disappear in a required time under physiological conditions.

  3. Degradation Mechanisms of Colloidal Organic Matter in Biofilm Reactors

    DEFF Research Database (Denmark)

    Larsen, Tove; Harremoës, Poul

    1994-01-01

    -diffusible organic matter in a biofilm reactor. DH depends on the combined volumetric and surface hydraulic loading rate, Q2/(AV). In full-scale wastewater treatment plants, the degradation mechanism presented in this paper can explain important differences between the performance of trickling filters and RBC...

  4. Wire bond degradation under thermo- and pure mechanical loading

    DEFF Research Database (Denmark)

    Pedersen, Kristian Bonderup; Nielsen, Dennis Achton; Czerny, Bernhard

    2017-01-01

    This paper presents a fundamental study on degradation of heavy Al bond wires typically used in high power modules. Customized samples are designed to only consist of Al bond wires on standard Si diodes. These samples are subjected to pure mechanical and passive thermal cycling to investigate...

  5. Fluid mechanics of environmental interfaces

    CERN Document Server

    Gualtieri, Carlo

    2012-01-01

    Preface Preface of the first editionBiographies of the authors Part one - Preliminaries1. Environmental fluid mechanics: Current issues and future outlook B. Cushman-Roisin, C. Gualtieri & D.T. MihailovicPart two - Processes at atmospheric interfaces2. Point source atmospheric diffusionB. Rajkovic, I. Arsenic & Z. Grsic3. Air-sea interaction V. Djurdjevic & B. Rajkovic4. Modelling of flux exchanges between heterogeneous surfaces and atmosphere D.T. Mihailovic & D. Kapor5. Desert dust uptake-transport and deposition mechanisms - impacts of dust on radiation, clouds and precipitation G. Kallos, P. Katsafados & C. SpyrouPart three - Processes at water interfaces6. Gas-transfer at unsheared free-surfaces C. Gualtieri & G. Pulci Doria7. Advective diffusion of air bubbles in turbulent water flows H. Chanson8. Exchanges at the bed sediments-water column interface F.A. Bombardelli & P.A. Moreno9. Surface water and streambed sediment interaction: The hyporheic exchange D. Tonina10. Environm...

  6. Safety significance of steam generator tube degradation mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Roussel, G; Mignot, P [AIB-Vincotte Nuclear - AVN, Brussels (Belgium)

    1991-07-01

    Steam generator (SG) tube bundle is a part of the Reactor Coolant Pressure Boundary (RCPB): this means that its integrity must be maintained. However, operating experience shows various types of tube degradation to occur in the SG tubing, which may lead to SG tube leaks or SG tube ruptures and create a loss of primary system coolant through the SG, therefore providing a direct path to the environment outside the primary containment structure. In this paper, the major types of known SG tube degradations are described and analyzed in order to assess their safety significance with regard to SG tube integrity. In conclusion: The operational reliability and the safety of the PWR steam generator s requires a sufficient knowledge of the degradation mechanisms to determine the amount of degradation that a tube can withstand and the time that it may remain in operation. They also require the availability of inspection techniques to accurately detect and characterize the various degradations. The status of understanding of the major types of degradation summarized in this paper shows and justifies why efforts are being performed to improve the management of the steam generator tube defects.

  7. Steam Generator Analysis Tools and Modeling of Degradation Mechanisms

    International Nuclear Information System (INIS)

    Yetisir, M.; Pietralik, J.; Tapping, R.L.

    2004-01-01

    The degradation of steam generators (SGs) has a significant effect on nuclear heat transport system effectiveness and the lifetime and overall efficiency of a nuclear power plant. Hence, quantification of the effects of degradation mechanisms is an integral part of a SG degradation management strategy. Numerical analysis tools such as THIRST, a 3-dimensional (3D) thermal hydraulics code for recirculating SGs; SLUDGE, a 3D sludge prediction code; CHECWORKS a flow-accelerated corrosion prediction code for nuclear piping, PIPO-FE, a SG tube vibration code; and VIBIC and H3DMAP, 3D non-linear finite-element codes to predict SG tube fretting wear can be used to assess the impacts of various maintenance activities on SG thermal performance. These tools are also found to be invaluable at the design stage to influence the design by determining margins or by helping the designers minimize or avoid known degradation mechanisms. In this paper, the aforementioned numerical tools and their application to degradation mechanisms in CANDU recirculating SGs are described. In addition, the following degradation mechanisms are identified and their effect on SG thermal efficiency and lifetime are quantified: primary-side fouling, secondary-side fouling, fretting wear, and flow-accelerated corrosion (FAC). Primary-side tube inner diameter fouling has been a major contributor to SG thermal degradation. Using the results of thermalhydraulic analysis and field data, fouling margins are calculated. Individual effects of primary- and secondary-side fouling are separated through analyses, which allow station operators to decide what type of maintenance activity to perform and when to perform the maintenance activity. Prediction of the fretting-wear rate of tubes allows designers to decide on the number and locations of support plates and U-bend supports. The prediction of FAC rates for SG internals allows designers to select proper materials, and allows operators to adjust the SG maintenance

  8. Supercritical water oxidation of ion exchange resins: Degradation mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Leybros, A.; Roubaud, A. [CEA Marcoule, DEN DTCD SPDE LFSM, F-30207 Bagnols Sur Ceze (France); Guichardon, P. [Ecole Cent Marseille, F-13451 Marseille 20 (France); Boutin, O. [Aix Marseille Univ, UMR CNRS 6181, F-13545 Aix En Provence 4 (France)

    2010-07-01

    Spent ion exchange resins are radioactive process wastes for which there is no satisfactory industrial treatment. Supercritical water oxidation could offer a viable treatment alternative to destroy the organic structure of resins and contain radioactivity. IER degradation experiments were carried out in a continuous supercritical water reactor. Total organic carbon degradation rates in the range of 95-98% were obtained depending on operating conditions. GC-MS chromatography analyses were carried out to determine intermediate products formed during the reaction. Around 50 species were identified for cationic and anionic resins. Degradation of poly-styrenic structure leads to the formation of low molecular weight compounds. Benzoic acid, phenol and acetic acid are the main compounds. However, other products are detected in appreciable yields such as phenolic species or heterocycles, for anionic IERs degradation. Intermediates produced by intramolecular rearrangements are also obtained. A radical degradation mechanism is proposed for each resin. In this overall mechanism, several hypotheses are foreseen, according to HOO center dot radical attack sites. (authors)

  9. Children as a resource: environmental degradation and fertility.

    Science.gov (United States)

    Joekes, S

    1994-06-01

    Through the use of case studies from Kenya, Malaysia, Mexico, and Morocco, the influence of environmental degradation on women's livelihoods and fertility is broadly examined. The aim is to show how the environment impacts on women's childbearing decisions, and the consequences. The evidence appears to support the notion that environmental pressures on women will contribute to higher fertility, under conditions of gender division of labor, a very low social status for women, and women's limited educational opportunity. The Kenya experiences were among rural villages in various agro-ecological zones in Embu, on the slopes of Mt. Kenya, and involved coping strategies with poor soils and very little rainfall. The Malaysian research focused on river communities in the rain forests of Limbang River Basin in Sarawak and the logging industry and government regulation of tribal land use rights. In mountainous Tetouan and A1 Hoceimain, Moroccan populations struggle with poor social services and little rainfall. The study areas in Morocco and Kenya had very high population growth, but declining growth rates nationally. The study areas suffered from deforestation, declines in water quality and availability, and soil erosion and depletion. Family planning services would be welcome: 1) when women do not have to solely bear the responsibility for the additional work involved in environmentally degraded areas; and 2) when the value of children is not increased. Policy must recognize that where rigid gender division of labor is prominent, children are a crucial resource for women in the provision of household support. The Morocco case exemplified the extremes of men's refusal to ease women's workloads with time and labor saving technology. Family planning promotion in such situations must be accompanied by provision of alternative resources to address the adverse environmental impacts on women. Blaming women for environmental problems and family planning promotion will fail to

  10. Silk Fibroin Degradation Related to Rheological and Mechanical Properties.

    Science.gov (United States)

    Partlow, Benjamin P; Tabatabai, A Pasha; Leisk, Gary G; Cebe, Peggy; Blair, Daniel L; Kaplan, David L

    2016-05-01

    Regenerated silk fibroin has been proposed as a material substrate for biomedical, optical, and electronic applications. Preparation of the silk fibroin solution requires extraction (degumming) to remove contaminants, but results in the degradation of the fibroin protein. Here, a mechanism of fibroin degradation is proposed and the molecular weight and polydispersity is characterized as a function of extraction time. Rheological analysis reveals significant changes in the viscosity of samples while mechanical characterization of cast and drawn films shows increased moduli, extensibility, and strength upon drawing. Fifteen minutes extraction time results in degraded fibroin that generates the strongest films. Structural analysis by wide angle X-ray scattering (WAXS) and Fourier transform infrared spectroscopy (FTIR) indicates molecular alignment in the drawn films and shows that the drawing process converts amorphous films into the crystalline, β-sheet, secondary structure. Most interesting, by using selected extraction times, films with near-native crystallinity, alignment, and molecular weight can be achieved; yet maximal mechanical properties for the films from regenerated silk fibroin solutions are found with solutions subjected to some degree of degradation. These results suggest that the regenerated solutions and the film casting and drawing processes introduce more complexity than native spinning processes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Internal oxidation as a mechanism for steam generator tube degradation

    Energy Technology Data Exchange (ETDEWEB)

    Gendron, T.S. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Scott, P.M. [Framatome, Paris (France); Bruemmer, S.M. [Pacific Northwest National Laboratory, Richland, WA (United States); Thomas, L.E. [Washington State Univ., School of Mechanical and Materials Engineering, Pullman, WA (United States)

    1999-12-01

    Internal oxidation has been proposed as a plausible mechanism for intergranular stress-corrosion cracking (IGSCC) of alloy 600 steam generator tubing. This theory can reconcile the main thermodynamic and kinetic characteristics of the observed cracking in hydrogenated primary water. Although secondary-side IG attack or IGSCC is commonly attributed to the presence of strong, caustic or acidic solutions, more recent evidence suggests that this degradation takes place in a near neutral environment, possibly dry polluted steam. As a result, internal oxidation is also a feasible mechanism for secondary side degradation. The present paper reviews experimental work conducted in an attempt to determine the validity of this mechanism. The consequences for the expected behaviour of alloys 690 and 800 replacement materials are also described. (author)

  12. Internal oxidation as a mechanism for steam generator tube degradation

    Energy Technology Data Exchange (ETDEWEB)

    Gendron, T.S. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Scott, P.M. [Framatome, Paris (France); Bruemmer, S.M. [Pacific Northwest National Lab., Richland, Washington (United States); Thomas, L.E. [Washington State Univ., School of Mechanical and Materials Engineering, Pullman, WA (United States)

    1998-07-01

    Internal oxidation has been proposed as a plausible mechanism for intergranular stress corrosion cracking (IGSCC) of alloy 600 steam generator tubing. This theory can reconcile the main thermodynamic and kinetic characteristics of the observed cracking in hydrogenated primary water. Although secondary side IG attack or IGSCC is commonly attributed to the presence of strong caustic or acidic solutions, more recent evidence suggests that this degradation takes place in a near-neutral environment, possibly dry polluted steam. As a result, internal oxidation is also a feasible mechanism for secondary side degradation. The present paper reviews experimental work carried out in an attempt to determine the validity of this mechanism. The consequences for the expected behaviour of alloys 690 and 800 replacement materials are also described. (author)

  13. Internal oxidation as a mechanism for steam generator tube degradation

    International Nuclear Information System (INIS)

    Gendron, T.S.; Scott, P.M.; Bruemmer, S.M.; Thomas, L.E.

    1998-01-01

    Internal oxidation has been proposed as a plausible mechanism for intergranular stress corrosion cracking (IGSCC) of alloy 600 steam generator tubing. This theory can reconcile the main thermodynamic and kinetic characteristics of the observed cracking in hydrogenated primary water. Although secondary side IG attack or IGSCC is commonly attributed to the presence of strong caustic or acidic solutions, more recent evidence suggests that this degradation takes place in a near-neutral environment, possibly dry polluted steam. As a result, internal oxidation is also a feasible mechanism for secondary side degradation. The present paper reviews experimental work carried out in an attempt to determine the validity of this mechanism. The consequences for the expected behaviour of alloys 690 and 800 replacement materials are also described. (author)

  14. The influence of environmental sound training on the perception of spectrally degraded speech and environmental sounds.

    Science.gov (United States)

    Shafiro, Valeriy; Sheft, Stanley; Gygi, Brian; Ho, Kim Thien N

    2012-06-01

    Perceptual training with spectrally degraded environmental sounds results in improved environmental sound identification, with benefits shown to extend to untrained speech perception as well. The present study extended those findings to examine longer-term training effects as well as effects of mere repeated exposure to sounds over time. Participants received two pretests (1 week apart) prior to a week-long environmental sound training regimen, which was followed by two posttest sessions, separated by another week without training. Spectrally degraded stimuli, processed with a four-channel vocoder, consisted of a 160-item environmental sound test, word and sentence tests, and a battery of basic auditory abilities and cognitive tests. Results indicated significant improvements in all speech and environmental sound scores between the initial pretest and the last posttest with performance increments following both exposure and training. For environmental sounds (the stimulus class that was trained), the magnitude of positive change that accompanied training was much greater than that due to exposure alone, with improvement for untrained sounds roughly comparable to the speech benefit from exposure. Additional tests of auditory and cognitive abilities showed that speech and environmental sound performance were differentially correlated with tests of spectral and temporal-fine-structure processing, whereas working memory and executive function were correlated with speech, but not environmental sound perception. These findings indicate generalizability of environmental sound training and provide a basis for implementing environmental sound training programs for cochlear implant (CI) patients.

  15. Quantitative Mapping of Mechanisms for Photoinitiated Coating Degradation

    DEFF Research Database (Denmark)

    Kiil, Søren

    2015-01-01

    be used toimplement the various effects of water on the degradation mechanisms of cross-linked coatings is also presented and experiments to test the approach are suggested. Additionally, simulations with an existing degradation model for an epoxy–amine coating are used to map the influence of model......This work concerns the mathematical modeling of photoinitiated coating degradation. Using experimental evidence available, some of the most importantassumptions underlying existing models for the rmoset coatings are analyzed and suggestions for further work provided. A modeling approach that can...... parameters on the lag time (i.e., the time passing prior to the onset of erosion) and the stable erosion rate. The simulation results can be used in the optimization of UV radiation-induced intercoat adhesion losses, which are often observed in multilayer coating systems based on top coated epoxy coatings...

  16. Mechanisms of polymer degradation using an oxygen plasma generator

    Science.gov (United States)

    Colony, Joe A.; Sanford, Edward L.

    1987-01-01

    An RF oxygen plasma generator was used to produce polymer degradation which appears to be similar to that which has been observed in low Earth orbit. Mechanisms of this type of degradation were studied by collecting the reaction products in a cryogenic trap and identifying the molecular species using infrared, mass spectral, and X-ray diffraction techniques. No structurally dependent species were found from Kapton, Teflon, or Saran polymers. However, very reactive free radical entities are produced during the polymer degradation, as well as carbon dioxide and water. Reactions of the free radicals with the glass reaction vessel, with copper metal in the cold trap, and with a triphenyl phosphate scavenger in the cold trap, demonstrated the reactivity of the primary products.

  17. Protein degradation during reconsolidation as a mechanism for memory reorganization

    Directory of Open Access Journals (Sweden)

    Bong-Kiun Kaang

    2011-02-01

    Full Text Available Memory is a reference formed from a past experience that is used to respond to present situations. However, the world is dynamic and situations change, so it is important to update the memory with new information each time it is reactivated in order to adjust the response in the future. Recent researches indicate that memory may undergo a dynamic process that could work as an updating mechanism. This process which is called reconsolidation involves destabilization of the memory after it is reactivated, followed by restabilization. Recently, it has been demonstrated that the initial destabilization process of reconsolidation requires protein degradation. Using protein degradation inhibition as a method to block reconsolidation, recent researches suggest that reconsolidation, especially the protein degradation-dependent destabilization process is necessary for memory reorganization.

  18. Classification of structural component and degradation mechanisms for containment systems

    International Nuclear Information System (INIS)

    Judge, R.C.B.

    1994-01-01

    UK licence requirements for operation of nuclear power plants is dependent, inter alia, upon the licensee making and implementing adequate arrangements for the regular and systematic examination, inspection, maintenance and testing of all plant which may affect safety (Licence Condition 28). Similarly, the US NRC's Maintenance Rule (published in 10CFR50.65) specifies that a maintenance programme should be developed for plant systems, structures and components determined to be sensitive to ageing which will be used for the balance of the current (and, if relevant, extended) operating licence period. Against this background, the plant operators are seeking to minimise operating and maintenance costs and to enhance plant availability. This leads to a need to optimise the plant inspection and monitoring regimes whilst meeting regulatory requirements. In this paper, a conceptual framework for classifying civil structures and significant ageing mechanisms is described. This provides a systematic approach to making quantitative assessments of the likelihood and of potential degradation mechanisms and forms a consistent framework and a logical basis for prioritising inspection and maintenance schedules. The proposed method is analogous to a fault tree assessment, in which the likelihood of degradation due to a specific mechanism is considered as an event. The structures are considered in terms of their subcomponents. For each subcomponent, the value assigned to the likelihood of degradation is progressively reduced by a sequence of factors which make allowance for the structural and safety significance of any degradation and for the potential for timely detection of any degradation. Illustrative values for these factors are quoted in the text; it is recommended that these values are reviewed following a trial application of the method. (author)

  19. Coupling between chemical degradation and mechanical behaviour of leached concrete

    International Nuclear Information System (INIS)

    Nguyen, V.H.

    2005-10-01

    This work is in the context of the long term behavior of concrete employed in radioactive waste disposal. The objective is to study the coupled chemo-mechanical modelling of concrete. In the first part of this contribution, experimental investigations are described where the effects of the calcium leaching process of concrete on its mechanical properties are highlighted. An accelerated method has been chosen to perform this leaching process by using an ammonium nitrate solution. In the second part, we present a coupled phenomenological chemo-mechanical model that represents the degradation of concrete materials. On one hand, the chemical behavior is described by the simplified calcium leaching approach of cement paste and mortar. Then a homogenization approach using the asymptotic development is presented to take into account the influence of the presence of aggregates in concrete. And on the other hand, the mechanical part of the modelling is given. Here continuum damage mechanics is used to describe the mechanical degradation of concrete. The growth of inelastic strains observed during the mechanical tests is describes by means of a plastic like model. The model is established on the basis of the thermodynamics of irreversible processes framework. The coupled nonlinear problem at hand is addressed within the context of the finite element method. Finally, numerical simulations are compared with the experimental results for validation. (author)

  20. Molecular Mechanism and Genetic Determinants of Buprofezin Degradation

    OpenAIRE

    Chen, Xueting; Ji, Junbin; Zhao, Leizhen; Qiu, Jiguo; Dai, Chen; Wang, Weiwu; He, Jian; Jiang, Jiandong; Hong, Qing; Yan, Xin

    2017-01-01

    Buprofezin is a widely used insect growth regulator whose residue has been frequently detected in the environment, posing a threat to aquatic organisms and nontarget insects. Microorganisms play an important role in the degradation of buprofezin in the natural environment. However, the relevant catabolic pathway has not been fully characterized, and the molecular mechanism of catabolism is still completely unknown. Rhodococcus qingshengii YL-1 can utilize buprofezin as a sole source of carbon...

  1. Stability and degradation mechanisms in organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, Bernhard

    2012-04-26

    This thesis deals with stability improvements and the investigation of degradation mechanisms in organic solar cells. Organic solar cells have been in the focus of extensive academic research for over almost two decades and are currently entering the market in small scale applications. For successful large scale applications, next to the improvement of the power conversion efficiency, the stability of organic solar cells has to be increased. This thesis is dedicated to the investigation of novel materials and architectures to study stability-related issues and degradation mechanisms in order to contribute to the basic understanding of the working principles of organic solar cells. Here, impedance spectroscopy, a frequency domain technique, is used to gain information about stability and degradation mechanisms in organic solar cells. In combination with systematic variations in the preparation of solar cells, impedance spectroscopy gives the possibility to differentiate between interface and bulk dominated effects. Additionally, impedance spectroscopy gives access to the dielectric properties of the device, such as capacitance. This offers among other things the opportunity to probe the charge carrier concentration and the density of states. Another powerful way of evaluation is the combination of experimentally obtained impedance spectra with equivalent circuit modelling. The thesis presents results on novel materials and solar cell architectures for efficient hole and electron extraction. This indicates the importance of knowledge over interlayers and interfaces for improving both the efficiency and stability of organic solar cells.

  2. High Temperature Degradation Mechanisms in Polymer Matrix Composites

    Science.gov (United States)

    Cunningham, Ronan A.

    1996-01-01

    Polymer matrix composites are increasingly used in demanding structural applications in which they may be exposed to harsh environments. The durability of such materials is a major concern, potentially limiting both the integrity of the structures and their useful lifetimes. The goal of the current investigation is to develop a mechanism-based model of the chemical degradation which occurs, such that given the external chemical environment and temperatures throughout the laminate, laminate geometry, and ply and/or constituent material properties, we can calculate the concentration of diffusing substances and extent of chemical degradation as functions of time and position throughout the laminate. This objective is met through the development and use of analytical models, coupled to an analysis-driven experimental program which offers both quantitative and qualitative information on the degradation mechanism. Preliminary analyses using a coupled diffusion/reaction model are used to gain insight into the physics of the degradation mechanisms and to identify crucial material parameters. An experimental program is defined based on the results of the preliminary analysis which allows the determination of the necessary material coefficients. Thermogravimetric analyses are carried out in nitrogen, air, and oxygen to provide quantitative information on thermal and oxidative reactions. Powdered samples are used to eliminate diffusion effects. Tests in both inert and oxidative environments allow the separation of thermal and oxidative contributions to specimen mass loss. The concentration dependency of the oxidative reactions is determined from the tests in pure oxygen. Short term isothermal tests at different temperatures are carried out on neat resin and unidirectional macroscopic specimens to identify diffusion effects. Mass loss, specimen shrinkage, the formation of degraded surface layers and surface cracking are recorded as functions of exposure time. Geometry effects

  3. Degradation of creatinine using boron-doped diamond electrode: Statistical modeling and degradation mechanism.

    Science.gov (United States)

    Zhang, Zhefeng; Xian, Jiahui; Zhang, Chunyong; Fu, Degang

    2017-09-01

    This study investigated the degradation performance and mechanism of creatinine (a urine metabolite) with boron-doped diamond (BDD) anodes. Experiments were performed using a synthetic creatinine solution containing two supporting electrolytes (NaCl and Na 2 SO 4 ). A three-level central composite design was adopted to optimize the degradation process, a mathematical model was thus constructed and used to explore the optimum operating conditions. A maximum mineralization percentage of 80% following with full creatinine removal had been achieved within 120 min of electrolysis, confirming the strong oxidation capability of BDD anodes. Moreover, the results obtained suggested that supporting electrolyte concentration should be listed as one of the most important parameters in BDD technology. Lastly, based on the results from quantum chemistry calculations and LC/MS analyses, two different reaction pathways which governed the electrocatalytic oxidation of creatinine irrespective of the supporting electrolytes were identified. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Degradation of azo dyes by environmental microorganisms and helminths

    Energy Technology Data Exchange (ETDEWEB)

    Kingthom Chung; Stevens, S.E. Jr. (Memphis State Univ., TN (United States). Dept. of Biology)

    1993-11-01

    The degradation of azo dyes by environmental microorganisms, fungi, and helminths is reviewed. Azo dyes are used in a wide variety of products and can be found in the effluent of most sewage treatment facilities. Substantial quantities of these dyes have been deposited in the environment, particularly in streams and rivers. Azo dyes were shown to affect microbial activities and microbial population sizes in the sediments and in the water columns of aquatic habitats. Only a few aerobic bacteria have been found to reduce azo dyes under aerobic conditions, and little is known about the process. A substantial number of anaerobic bacteria capable of azo dye reduction have been reported. The enzyme responsible for azo dye reduction has been partially purified, and characterization of the enzyme is proceeding. The nematode Ascaris lumbricoides and the cestode Moniezia expanza have been reported to reduce azo dyes anaerobically. Recently the fungus Phanerochaete chrysoporium was reported to mineralize azo dyes via a peroxidation-mediated pathway. A possible degradation pathway for the mineralization of azo dye is proposed and future research needs are discussed.

  5. Agronomic and environmental implications of enhanced s-triazine degradation

    Science.gov (United States)

    Krutz, L. J.; Dale L. Shaner,; Mark A. Weaver,; Webb, Richard M.; Zablotowicz, Robert M.; Reddy, Krishna N.; Huang, Y.; Thompson, S. J.

    2010-01-01

    Novel catabolic pathways enabling rapid detoxification of s-triazine herbicides have been elucidated and detected at a growing number of locations. The genes responsible for s-triazine mineralization, i.e. atzABCDEF and trzNDF, occur in at least four bacterial phyla and are implicated in the development of enhanced degradation in agricultural soils from all continents except Antarctica. Enhanced degradation occurs in at least nine crops and six crop rotation systems that rely on s-triazine herbicides for weed control, and, with the exception of acidic soil conditions and s-triazine application frequency, adaptation of the microbial population is independent of soil physiochemical properties and cultural management practices. From an agronomic perspective, residual weed control could be reduced tenfold in s-triazine-adapted relative to non-adapted soils. From an environmental standpoint, the off-site loss of total s-triazine residues could be overestimated 13-fold in adapted soils if altered persistence estimates and metabolic pathways are not reflected in fate and transport models. Empirical models requiring soil pH and s-triazine use history as input parameters predict atrazine persistence more accurately than historical estimates, thereby allowing practitioners to adjust weed control strategies and model input values when warranted. 

  6. Chemical degradation mechanisms of membranes for alkaline membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Choe, Yoong-Kee [National Institute of Advanced Industrial Science and Technology, Umezono 1-1-1, Tsukuba (Japan); Henson, Neil J.; Kim, Yu Seung [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2015-12-31

    Chemical degradation mechanisms of membranes for alkaline membrane fuel cells have been investigated using density functional theory (DFT). We have elucidated that the aryl-ether moiety of membranes is one of the weakest site against attack of hydroxide ions. The results of DFT calculations for hydroxide initiated aryl-ether cleavage indicated that the aryl-ether cleavage occurred prior to degradation of cationic functional group. Such a weak nature of the aryl-ether group arises from the electron deficiency of the aryl group as well as the low bond dissociation energy. The DFT results suggests that removal of the aryl-ether group in the membrane should enhance the stability of membranes under alkaline conditions. In fact, an ether fee poly(phenylene) membrane exhibits excellent stability against the attack from hydroxide ions.

  7. Degradation in perovskite solar cells stored under different environmental conditions

    Science.gov (United States)

    Chauhan, Abhishek K.; Kumar, Pankaj

    2017-08-01

    Investigations carried out on the degradation of perovskite solar cells (PSCs) stored in different open air environmental conditions are reported here. The solar cells were stored in the open in the dark inside the laboratory (relative humidity 47  ±  5%, temperature 23  ±  4 °C), under compact fluorescent lamp (CFL) illumination (irradiance 10 mW cm2, relative humidity 47  ±  5%, temperature 23  ±  4 °C) and under natural sunlight outside the laboratory. In the outdoor storage situation the surrounding conditions varied from time to time and the environmental conditions during the day (irradiance 100 mW/cm2, relative humidity ~18%, temperature ~45 °C at noon) were entirely different from those at night (irradiance 0 mW/cm2, relative humidity ~66%, temperature ~16 °C at midnight). The photovoltaic parameters were measured from time to time inside the laboratory as per the International Summit on Organic Photovoltaic Stability (ISOS) protocols. All the photovoltaic parameters, such as short circuit current density (J sc), open circuit voltage (V oc), fill factor (FF) and power conversion efficiency (PCE), of the solar cells stored outdoors decayed more rapidly than those stored under CFL or in the dark. The solar cells stored in the dark exhibited maximum stability. While the encapsulated solar cells stored outdoors were completely dead after about 560 h, the solar cells stored under CFL illumination retained  >60% of their initial efficiency even after 1100 h. However, the solar cells stored in the dark and tested up to ~1100 h did not show any degradation in PCE but on the contrary exhibited slight improvement, and this improvement was mainly because of improvement in their V oc. Rapid degradation in the open air outside the laboratory under direct sunlight compared with the dark and CFL storage has been attributed to high temperature during the day, high humidity at night, high solar illumination intensity and the

  8. Hydrogen in trapping states innocuous to environmental degradation of high-strength steels

    International Nuclear Information System (INIS)

    Takai, Kenichi

    2003-01-01

    Hydrogen in trapping states innocuous to environmental degradation of the mechanical properties of high-strength steels has been separated and extracted using thermal desorption analysis (TDA) and slow strain rate test (SSRT). The high-strength steel occluding only hydrogen desorbed at low temperature (peak 1), as determined by TDA, decreases in maximum stress and plastic elongation with increasing occlusion time of peak 1 hydrogen. Thus the trapping state of peak 1 hydrogen is directly associated with environmental degradation. The trap activation energy for peak 1 hydrogen is 23.4 kJ/mol, so the peak 1 hydrogen corresponds to weaker binding states and diffusible states at room temperature. In contrast, the high-strength steel occluding only hydrogen desorbed at high temperature (peak 2), by TDA, maintains the maximum stress and plastic elongation in spite of an increasing content of peak 2 hydrogen. This result indicates that the peak 2 hydrogen trapping state is innocuous to environmental degradation, even though the steel occludes a large amount of peak 2 hydrogen. The trap activation energy for peak 2 hydrogen is 65.0 kJ/mol, which indicates a stronger binding state and nondiffusibility at room temperature. The trap activation energy for peak 2 hydrogen suggests that the driving force energy required for stress-induced, diffusion during elastic and plastic deformation, and the energy required for hydrogen dragging by dislocation mobility during plastic deformation are lower than the binding energy between hydrogen and trapping sites. The peak 2 hydrogen, therefore, is believed to not accumulate in front of the crack tip and to not cause environmental degradation in spite of being present in amounts as high as 2.9 mass ppm. (author)

  9. Secondary degradation mechanisms - A theoretical approach to remedial actions

    International Nuclear Information System (INIS)

    Rudling, P.

    2001-04-01

    A failed BWR fuel rod may degrade either by developing long axial cracks and/or transversal breaks. The tendency of failed BWR rods to degrade depends on the fuel design and reactor operation of the failed rod. The knowledge of the degradation mechanisms may be used to develop secondary degradation resistant fuel and/or to mitigate the degradation tendencies during operation of failed fuel. Literature data from three different categories has been analysed: Open literature data on failed BWR rods that have and have not degraded; Data generated in experimental reactors where primary failures have been simulated either by drilling a hole in the intact cladding before the test or by letting water/steam into the rod from a capsule connected to the otherwise intact rod. In addition data related to hydrogen production in the pellet-cladding gap in a failed rod and the subsequent hydrogen ingress and finally the hydride formation in zirconium alloys; Open literature data out-of-pile material tests to improve the knowledge of the secondary degradation mechanisms. To get an idea of the degradation mechanisms one may first characterise the failed fuel rods in commercial BWRs that form axial splits, transversal breaks and also failed rods that do not degrade at all. Considering axial splits in BWRs, they seem to occur mostly for failed fuel rods with intermediate and high burnups, i.e., in rods with small pellet-cladding gaps, that have been subjected to a power ramp. Such data indicate that the axial crack propagation rate is larger than 0.16 mm/h. It is also clear that the axial cracks formed in commercial reactors show mostly brittle cleavage features at reactor operating temperature even though the hydrogen content in the fuel cladding is low, 150-300 wtppm. Macroscopically the brittle cleavage fractures are characterised by: a fracture surface that is perpendicular to the main tensile stress direction i.e., in the cladding circumferential direction, no or very little clad

  10. Fuel starvation. Irreversible degradation mechanisms in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Rangel, Carmen M.; Silva, R.A.; Travassos, M.A.; Paiva, T.I.; Fernandes, V.R. [LNEG, National Laboratory for Energy and Geology, Lisboa (Portugal). UPCH Fuel Cells and Hydrogen Unit

    2010-07-01

    PEM fuel cell operates under very aggressive conditions in both anode and cathode. Failure modes and mechanism in PEM fuel cells include those related to thermal, chemical or mechanical issues that may constrain stability, power and lifetime. In this work, the case of fuel starvation is examined. The anode potential may rise to levels compatible with the oxidization of water. If water is not available, oxidation of the carbon support will accelerate catalyst sintering. Diagnostics methods used for in-situ and ex-situ analysis of PEM fuel cells are selected in order to better categorize irreversible changes of the cell. Electrochemical Impedance Spectroscopy (EIS) is found instrumental in the identification of fuel cell flooding conditions and membrane dehydration associated to mass transport limitations / reactant starvation and protonic conductivity decrease, respectively. Furthermore, it indicates that water electrolysis might happen at the anode. Cross sections of the membrane catalyst and gas diffusion layers examined by scanning electron microscopy indicate electrode thickness reduction as a result of reactions taking place during hydrogen starvation. Catalyst particles are found to migrate outwards and located on carbon backings. Membrane degradation in fuel cell environment is analyzed in terms of the mechanism for fluoride release which is considered an early predictor of membrane degradation. (orig.)

  11. Analysis of the degradation mechanisms in an impacted ceramic

    International Nuclear Information System (INIS)

    Denoual, C.; Cottenot, C. E.; Hild, F.

    1998-01-01

    To analyze the degradation mechanisms in a natural sintered SiC (SSiC) ceramic during impact, three edge-on impact configurations are considered. First, the ceramic is confined by aluminum to allow a post-mortem analysis. In the second configuration, a polished surface of the ceramic is observed each micro-second by a high-speed camera to follow the damage generation and evolution. The third configuration uses a high-speed Moire photography system to measure dynamic 2-D strain fields. Sequences of fringe patterns are analyzed

  12. Secondary degradation mechanisms - A theoretical approach to remedial actions

    Energy Technology Data Exchange (ETDEWEB)

    Rudling, P. [Advanced Nuclear Technology, Uppsala (Sweden)

    2001-04-01

    A failed BWR fuel rod may degrade either by developing long axial cracks and/or transversal breaks. The tendency of failed BWR rods to degrade depends on the fuel design and reactor operation of the failed rod. The knowledge of the degradation mechanisms may be used to develop secondary degradation resistant fuel and/or to mitigate the degradation tendencies during operation of failed fuel. Literature data from three different categories has been analysed: Open literature data on failed BWR rods that have and have not degraded; Data generated in experimental reactors where primary failures have been simulated either by drilling a hole in the intact cladding before the test or by letting water/steam into the rod from a capsule connected to the otherwise intact rod. In addition data related to hydrogen production in the pellet-cladding gap in a failed rod and the subsequent hydrogen ingress and finally the hydride formation in zirconium alloys; Open literature data out-of-pile material tests to improve the knowledge of the secondary degradation mechanisms. To get an idea of the degradation mechanisms one may first characterise the failed fuel rods in commercial BWRs that form axial splits, transversal breaks and also failed rods that do not degrade at all. Considering axial splits in BWRs, they seem to occur mostly for failed fuel rods with intermediate and high burnups, i.e., in rods with small pellet-cladding gaps, that have been subjected to a power ramp. Such data indicate that the axial crack propagation rate is larger than 0.16 mm/h. It is also clear that the axial cracks formed in commercial reactors show mostly brittle cleavage features at reactor operating temperature even though the hydrogen content in the fuel cladding is low, 150-300 wtppm. Macroscopically the brittle cleavage fractures are characterised by: a fracture surface that is perpendicular to the main tensile stress direction i.e., in the cladding circumferential direction, no or very little clad

  13. Environmental degradation and intra-household welfare: the case of the Tanzanian rural South Pare Highlands

    NARCIS (Netherlands)

    Dimoso, R.L.

    2009-01-01

    Key words: Environmental degradation, intrahousehold labour allocation, intrahousehold welfare.
    Rural south Pare highlands in Tanzania experience a deteriorating environmental situation. Of particular importance is the disappearance of forests and woodlands. The consequence are declining

  14. Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation.

    Science.gov (United States)

    Joo, Seongjoon; Cho, In Jin; Seo, Hogyun; Son, Hyeoncheol Francis; Sagong, Hye-Young; Shin, Tae Joo; Choi, So Young; Lee, Sang Yup; Kim, Kyung-Jin

    2018-01-26

    Plastics, including poly(ethylene terephthalate) (PET), possess many desirable characteristics and thus are widely used in daily life. However, non-biodegradability, once thought to be an advantage offered by plastics, is causing major environmental problem. Recently, a PET-degrading bacterium, Ideonella sakaiensis, was identified and suggested for possible use in degradation and/or recycling of PET. However, the molecular mechanism of PET degradation is not known. Here we report the crystal structure of I. sakaiensis PETase (IsPETase) at 1.5 Å resolution. IsPETase has a Ser-His-Asp catalytic triad at its active site and contains an optimal substrate binding site to accommodate four monohydroxyethyl terephthalate (MHET) moieties of PET. Based on structural and site-directed mutagenesis experiments, the detailed process of PET degradation into MHET, terephthalic acid, and ethylene glycol is suggested. Moreover, other PETase candidates potentially having high PET-degrading activities are suggested based on phylogenetic tree analysis of 69 PETase-like proteins.

  15. High Doses Gamma Radiolysis of PVC: Mechanisms of Degradation

    International Nuclear Information System (INIS)

    Colombani, J.

    2006-01-01

    PVC radiolysis leads to the formation of various degradation products: radicals, gas, oxidized products or polyenes. In order to predict the formation of the degradation products with regard to irradiation and ageing parameters, it is important to improve the understanding of the radiolysis mechanisms of PVC. Thus, we used several analytical techniques (Electron Spin Resonance, Fourier Transform Infrared spectroscopy, Nuclear Magnetic Resonance, Size Exclusion Chromatography) to get information on PVC samples irradiated at high doses (up to 4MGy) under different conditions. Gamma irradiation induces the formation of various radicals into PVC. Older studies were generally focused on the effect of low dose and/or low temperature irradiations on PVC. We present here ESR signals of PVC irradiated at high doses and at room temperature. We show that peroxyl radicals are producted by radiolysis under aerobe conditions and that polyenyl radicals are formed under anaerobe conditions. PVC radiolysis induces gas production and especially hydrogen chloride. Production of hydrogen chloride is well known until 1 MGy. We have studied by FTIR, the evolution of the quantity of HCl produced until 4 MGy. We show that higher irradiation dose leads to the lower radiolytic yield of HCl (G(HCl)). Moreover, G(HCl) obtained in aerobe conditions is about fourfold as great as G(HCl) observed in anaerobe radiolysis. Propagation and termination reactions induce degradation products: polyene sequences and crosslinking reactions are observed under anaerobe conditions; oxidized products with addition of chain scissions are formed under aerobe conditions. Although the literature about PVC radiolysis is rich, the main reacting pathways are not well established. Moreover the high doses studies are almost non-existent. We show by FTIR that aerobe radiolysis induces formation of ketons and acids. NMR experiments confirme these results but also focuse on small acids formed (with 2, 3 or 4 carbons). The

  16. DIAGNOSIS OF ENVIRONMENTAL DEGRADED PASTURES IN AREAS OF MUNICIPAL GURUPI-TO

    Directory of Open Access Journals (Sweden)

    Gilson Araújo de Freitas

    2016-03-01

    Full Text Available Environmental degradation in grassland areas is a major constraint for the performance of ranching, which dominates the extensive grazing system on pasture. Therefore, this study aimed to carry out environmental assessment of pasture degradation areas in the municipality of Gurupi-TO. An environmental diagnosis was conducted in four properties: farm “Morada do Boi III”, farm “Jatobá”, and farm “Nova Esperança”. The environmental degradation was evaluated according to the following methods: (a Interview structured in a questionnaire in order to survey: formation, degradation, rehabilitation and maintenance of pastures; (B Soil sample collecting, 0-20 cm; and (c Visual assessment of the environmental degradation level. With regard to the third method, five different parameters such as: Strength and Quality of pasture, Plant population, Weeds, Ground cover, and Erosion were utilized in this evaluation. According to this, individual keys were set up for each parameter, keys that range from 1 to four 4, in which 1 was 75%. It was observed that the four properties are in degradation, but each at a different level. It was found moderate to very strong degradation, as is the case of farm “Jatobá”. It was observed, in all properties, that the soil fertility in decline is related to pasture degradation. Thus, environmental recovery strategies in the four properties are required. Keywords: soil fertility; degradation of pastures; Brachiaria brizantha.

  17. EFFECT OF ENVIRONMENTAL DEGRADATION ON ANIMAL DIVERSITY IN BALI, INDONESSIA

    Directory of Open Access Journals (Sweden)

    I Wayan Kasa

    2015-11-01

    Full Text Available Bali is a small beautiful tropical island of Indonesia archipelago, lies between the continent of Asia and Australia, as well as the Indian and Pacific Ocean. As a tropical archipelago, many kinds of biodiversity can be found. The island of Bali in particular, there are typical animal diversity that could not be investigated beyond such island, such as, Bali cattle, Bali dog, Bali starling and others. As time goes on, the existance of such biodiversity decreases in both body weight and population number. Both global warming/climate change and land use change are the main factors affecting such phenomenon. This study has been conducted by employing field observation as well as literature study. It was found that, the quality of purebred Bali cattle species decreases genetically that could be notified of smaller bodysize for both male and female. Land use change of agriculture activity to the hotels, house of living, roads and other infrastructures are the main factors for Bali cattle existence. For typical famous bird of Balistarling, the problem is because of deforestation which cause natural habitat loss, due to land use change for agricultural activity and house building by local people. In case of Bali dog, the mad dog of rabies is just introduce and spreading over Bali island, whichis formerly the island of Bali has been recognised as free zone area of the rabies. As consequence, suffering dogs must be eliminated by  mass killing cause decrease total number of such poor dog. Overall, it could be concluded that environmental degradations of land use change, deforestation and desease are the main causes of biodiversity decreasing number of the Bali cattle, Bali white starling and Bali dog respectively, beside global warming/climate change natural disaster. Key words: Environment, Bali cattle, Bali starling, Bali dog, Bali island.

  18. EFFECT OF ENVIRONMENTAL DEGRADATION ON ANIMAL DIVERSITY IN BALI, INDONESIA

    Directory of Open Access Journals (Sweden)

    I Waya Kasa

    2015-09-01

    Full Text Available Bali is a small beautiful tropical island of Indonesia archipelago lies betweens the continent of Asia and Australia as well as the Indian and Pacific Ocean. As a tropical archipelago, of course, many kinds of biodiversity can be found over there. In the island of Bali in particular, there are typical animal diversity that could not be investigated beyond such island, such as, Bali cattle, Bali dog, Bali white starling and others. As time goes on, the existance of such biodiversity decreases in both quality and quantity. Both global warming/climate change and land use change are the main factors affecting such phenomenon. This study has been conducted by employing field observation as well as literature study. It was found that, the quality of purebred Bali cattle species decreases genetically that could be notified of smaller bodysize for both male and female. Land use change of agriculture activity to the hotels, house of living, roads and other infrastructures are the main factors for Bali cattle existancy. For typical famous bird of white starling, the problem is because of deforestation which cause natural habitat loss, due to land use change for agricultural activity and house building by local people. In case of Bali dog, the mad dog of rabies is just introduce and spreading over Bali island, whichis formerly the island of Bali has been recognised as free zone area of the rabies. As consequency, suffering dogs must be eliminated by a mass killing cause decrease total number of such poor dog. Overall, it could be concluded that environmental degradations of land use change, deforestation and desease are the main causes of biodiversity decreasing number of the Bali cattle, Bali white starling and Bali dog respectively, beside global warming/climate change natural disaster.

  19. Rapid population growth and environmental degradation: ultimate versus proximate factors.

    Science.gov (United States)

    Shaw, R P

    1989-01-01

    This philosophical review of 2 arguments about responsibility for and solutions to environmental degradation concludes that both sides are correct: the ultimate and the proximal causes. Ultimate causes of pollution are defined as the technology responsible for a given type of pollution, such as burning fossil fuel; proximate causes are defined as situation-specific factors confounding the problem, such as population density or rate of growth. Commoner and others argue that developed countries with low or negative population growth rates are responsible for 80% of world pollution, primarily in polluting technologies such as automobiles, power generation, plastics, pesticides, toxic wastes, garbage, warfaring, and nuclear weapons wastes. Distortionary policies also contribute; examples are agricultural trade protection, land mismanagement, urban bias in expenditures, and institutional rigidity., Poor nations are responsible for very little pollution because poverty allows little waste or expenditures for polluting, synthetic technologies. The proximal causes of pollution include numbers and rate of growth of populations responsible for the pollution. Since change in the ultimate cause of pollution remains out of reach, altering the numbers of polluters can make a difference. Predictions are made for proportions of the world's total waste production, assuming current 1.6 tons/capita for developed countries and 0.17 tons/capita for developing countries. If developing countries grow at current rates and become more wealthy, they will be emitting half the world's waste by 2025. ON the other hand, unsustainable population growth goes along with inadequate investment in human capital: education, health, employment, infrastructure. The solution is to improve farming technologies in the 117 non-self-sufficient countries, fund development in the most unsustainable enclaves of growing countries, break institutionalized socio-political rigidity in these enclaves, and focus on

  20. Study of polypropylene irradiation to ensure the control of its environmental degradation

    International Nuclear Information System (INIS)

    Romano, Rebeca da Silva Grecco

    2017-01-01

    UV light, heat, and pollutants can interact with Polypropylene (PP) molecules, mainly with the tertiary carbon producing free radicals which can react with oxygen producing changes in its properties. PP has outstanding chemical and physical properties and a good processability at very low market price. In addition, PP is extensively used for manufacturing various kinds of products, however due to its large-scale consumption a lot of waste is generated at the end of their life cycle to the environment with low rate degradation. Controlled degradation of PP can be achieved by exposing the polymers to well defined parameters, such as absorbed dose, intemperies, oxygen, etc. In this study, structural changes in PP macro-molecule are created upon exposure to ionizing radiation such as: main chain scission, crosslinking and peroxidation (in presence of air). This study has the objective of comparing the environmental and accelerated exposures of PP neat, PP irradiated with 12,5 kGy and 20 kGy and the incorporation of the commercial pro-degradant d2w®. Dumbbell samples were manufactured by injection molding and exposed to the environment during 180 days and to accelerated aging to 192 days. The samples were characterized by Mechanical Testing, Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), X-ray Diffraction (DRX) and Differential Scanning Calorimetry (DSC). The samples previously irradiated, PP 20 kGy, after environmental aging showed higher oxidation and presence of surface cracks than the PP d2w® and PP neat. They also showed presence of carbonyl groups, decreases in elongation at break, increase in Strength Modulus and decrease of melting temperature corroborating with degradation. (author)

  1. Environmental degradation of NdFeB magnets

    Energy Technology Data Exchange (ETDEWEB)

    Yan Gaolin [Wuhan University, School of Physics and Technology, Wuhan 430072 (China)], E-mail: gaolinyan@whu.edu.cn; McGuiness, P.J. [Jozef Stefan Institute (Slovenia); Farr, J.P.G.; Harris, I.R. [School of Metallurgy and Materials, University of Birmingham, Elms Road, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2009-06-10

    A mechanism for pitting of NdFeB magnet because of differential-aeration beneath a water droplet is proposed and observations of the localised corrosions are presented. NdFeB magnets exhibit general corrosion along the grain boundaries when etched in Viella's reagent. However, localised corrosion of these magnets results in a crater-like feature when corrosion is produced in an environmental chamber, e.g. when Nd{sub 16}Fe{sub 76}B{sub 8} magnets are corroded in the environmental chamber at 85 deg. C, relative humidity (RH): 80%. This is attributed to the condensation of water droplets on the surface of samples and the concentration gradient of oxygen dissolved in the droplets then influencing the corrosion process. It is thought that during the process of pitting, the high concentration of H{sup +} in the center of the pit accelerates the pit development; meanwhile, the cathodic Nd{sub 2}Fe{sub 14}B matrix phase absorbs the nascent hydrogen atoms. It is believed that pits start at the Nd-rich phase and then propagate along the grain boundaries.

  2. Does finance affect environmental degradation: evidence from One Belt and One Road Initiative region?

    Science.gov (United States)

    Hafeez, Muhammad; Chunhui, Yuan; Strohmaier, David; Ahmed, Manzoor; Jie, Liu

    2018-04-01

    This paper explores the effects of finance on environmental degradation and investigates environmental Kuznets curve (EKC) of each country among 52 that participate in the One Belt and One Road Initiative (OBORI) using the latest long panel data span (1980-2016). We utilized panel long run econometric models (fully modified ordinary least square and dynamic ordinary least square) to explore the long-run estimates in full panel and country level. Moreover, the Dumitrescu and Hurlin (2012) causality test is applied to examine the short-run causalities among our considered variables. The empirical findings validate the EKC hypothesis; the long-run estimates point out that finance significantly enhances the environmental degradation (negatively in few cases). The short-run heterogeneous causality confirms the bi-directional causality between finance and environmental degradation. The empirical outcomes suggest that policymakers should consider the environmental degradation issue caused by financial development in the One Belt and One Road region.

  3. Human-induced environmental degradation during Anthropocene in Turkey

    Science.gov (United States)

    Efe, Recep; Curebal, Isa; Soykan, Abdullah; Sönmez, Suleyman

    2015-04-01

    ., 2011; Dalton et al., 2014). Domestic tourism boomed after 1970, which led the Sea of Marmara, Aegean, and Mediterranean coasts to become secondary settlement areas for city-dwellers. This, in turn, sparked the construction of concrete buildings along the coastlines, making them less natural. The shift from the agricultural society to the industrial society made it possible for the service sector to grow and develop. Land transportation among large cities gained importance, and road construction gained pace. Development of industry, rapid rise in population, migration from rural areas to cities, unplanned settlement, and wrong agricultural practices are main factors for the environmental degradation in Turkey. Key Words: Human, habitat, anthropocene, industrialization, Turkey. References Andersson, A.J.; Mackenzie, F.T.; Lerman, A. (2006), Coastal ocean CO 2 carbonic acid carbonate sediment system of the Anthropocene, Global Biogeochemical Cycles, 20: 1-13 Braje, T.J.; Erlandson, J.M. (2014), Looking forward, looking back: Humans, anthropogenic change and the Anthropocene, Anthropocene, 4: 116-121 Crossland, C.J. ed (2005), Coastal fluxes in the Anthropocene. Berlin: Springer. 231-pp. Crutzen, P. J. and Stoermer, E.F. (2000), The Anthropocene. Global Change Newsletter (41): 17-18. Crutzen, P.J. (2002), Geology of Mankind: The Anthropocene. Nature, 415: 23 Crutzen P.J.; Steffen, W. (2003), How long have we been in the Anthropocene Era? Climatic Change, Vol. 61, No. 3. Cürebal, I.; Efe, R.; Soykan, A.; Sonmez, S. (2015), Impacts of anthropogenic factors on land degradation during the anthropocene in Turkey, Journal of Environmental Biology, Volume 36, Special Issue, 51-58 Dalton, C.; ODwyer, B.; Taylor, D.; de Eyto, E.; Jennings, E.; Chen, G.; Poole, R.; Dillane, M.; McGinnity, P. (2014), Anthropocene environmental change in an internationally important oligotrophic catchment on the Atlantic seaboard of western Europe, Anthropocene, 5: 9-21 Foley, S.F.; Gronenborn, D

  4. Metagenomic and proteomic analyses to elucidate the mechanism of anaerobic benzene degradation

    Energy Technology Data Exchange (ETDEWEB)

    Abu Laban, Nidal [Helmholtz (Germany)

    2011-07-01

    This paper presents the mechanism of anaerobic benzene degradation using metagenomic and proteomic analyses. The objective of the study is to find out the microbes and biochemistry involved in benzene degradation. Hypotheses are proposed for the initial activation mechanism of benzene under anaerobic conditions. Two methods for degradation, molecular characterization and identification of benzene-degrading enzymes, are described. The physiological and molecular characteristics of iron-reducing enrichment culture are given and the process is detailed. Metagenome analysis of iron-reducing culture is presented using a pie chart. From the metagenome analysis of benzene-degrading culture, putative mobile element genes were identified in the aromatic-degrading configurations. Metaproteomic analysis of iron-reducing cultures and the anaerobic benzene degradation pathway are also elucidated. From the study, it can be concluded that gram-positive bacteria are involved in benzene degradation under iron-reducing conditions and that the catalysis mechanism of putative anaerobic benzene carboxylase needs further investigation.

  5. Explanation of enhanced mechanical degradation rate for radiation- aged polyolefins as the aging temperature is decreased

    International Nuclear Information System (INIS)

    Gillen, K.T.; Clough, R.L.; Wise, J.; Malone, M.G.

    1994-01-01

    Degradation rates are normally increased by increasing the responsible environmental stresses. We describe results for a semi-crystalline, crosslinked polyolefin material that contradicts this assumption. In particular, under combined radiation plus thermal environments, this material mechanically degrades much faster at room temperature than it does at elevated temperatures. The probable explanation for this phenomenon relates to the importance on mechanical properties of the tie molecules connecting crystalline and amorphous regions. Partial melting and reforming/ reorganization of crystallites occurs throughout the crystalline melting region (at least room temperature up to 126 C), with the rate of such processes increasing with an increase in temperature. At low temperatures, this process is sufficiently slow such that a large percentage of the radiation-damaged tie molecules will still connect the amorphous and crystalline regions at the end of aging, leading to rapid reductions in tensile properties. At higher temperatures, the enhanced annealing rate will lead, during the aging, to the establishment of new, undamaged tie molecules connecting crystalline and amorphous regions. This healing process will reduce the degradation rate. Evidence in support of this model is presented

  6. Environmental degradation of 316 stainless steel in high temperature low cycle fatigue

    Science.gov (United States)

    Kalluri, Sreeramesh; Manson, S. Stanford; Halford, Gary R.

    1987-01-01

    Procedures based on modification of the conventional Strainrange Partitioning method are proposed to characterize the time-dependent degradation of engineering alloys in high-temperature, low-cycle fatigue. Creep-fatigue experiments were conducted in air using different waveforms of loading on 316 stainless steel at 816 C (1500 F) to determine the effect of exposure time on cyclic life. Reductions in the partitioned cyclic lives were observed with an increase in the time of exposure (or with the corresponding decrease in the steady-state creep rate) for all the waveforms involving creep strain. Excellent correlations of the experimental data were obtained by modifying the Conventional Strainrange Partitioning life relationships involving creep strain using a power-law term of either: (1) time of exposure, or (2) steady-state creep rate of the creep-fatigue test. Environmental degradation due to oxidation, material degradation due to the precipitation of carbides along the grain boundaries and detrimental deformation modes associated with the prolonged periods of creep were observed to be the main mechanisms responsible for life reductions at long exposure times.

  7. Dealing with extreme environmental degradation: stress and marginalization of Sahel dwellers.

    Science.gov (United States)

    Van Haaften, E H; Van de Vijver, F J

    1999-07-01

    Psychological aspects of environmental degradation are hardly investigated. In the present study these aspects were examined among Sahel dwellers, who live in environments with different states of degradation. The degradation was assessed in terms of vegetation cover, erosion, and loss of organic matter. Subjects came from three cultural groups: Dogon (agriculturalists, n = 225), Mossi (agriculturalists, n = 914), and Fulani (pastoralists, n = 844). Questionnaires addressing marginalization, locus of control, and coping were administered. Environmental degradation was associated with higher levels of stress, marginalization, passive coping (avoidance), a more external locus of control, and lower levels of active coping (problem solving and support seeking). Compared to agriculturalists, pastoralists showed a stronger variation in all psychological variables across all regions, from the least to the most environmentally degraded. Women showed higher scores of stress, (external) locus of control, problem solving, and support seeking than men. The interaction of gender and region was significant for several variables. It was concluded that environmental degradation has various psychological correlates: people are likely to display an active approach to environmental degradation as long as the level of degradation is not beyond their control.

  8. Mechanisms of long-term concrete degradation in LLW disposal facilities

    International Nuclear Information System (INIS)

    Rogers, V.C.

    1987-01-01

    Most low-level waste (LLW) disposal alternatives, except shallow land burial and improved shallow land burial, involve the use of concrete as an extra barrier for containment. Because concrete is a porous-type material, its moisture retention and transport properties can be characterized with parameters that are also used to characterize the geohydrologic properties of soils. Several processes can occur with the concrete to degrade it and to increase both the movement of water and contaminants through the disposal facility. The effect of these processes must be quantified in designing and estimating the long-term performance of disposal facilities. Modeling the long-term performance of LLW disposal technologies involves, first, estimating the degradation rate of the concrete in a particular facility configuration and environmental setting; second, calculating the water flow through the facility as a function of time; third, calculating the contaminant leaching usually by diffusion or dissolution mechanisms, and then coupling the facility water and contaminant outflow to a hydrogeological and environmental uptake model for environmental releases or doses

  9. Influence of Environmental Stressors on the Physiology of Pollutant Degrading Bacteria

    DEFF Research Database (Denmark)

    Svenningsen, Nanna Bygvraa

    of model degrader bacteria to nutrient- and oxidative stress, two highly relevant stress scenarios in natural environments, and at evaluating the impact of these environmental stress conditions on catabolic gene expression. The results suggest that environmental bacteria, here represented by the toluene...... biodegradative or catabolic performance. To date, details concerning the physiology of degrader microorganisms and their ability to express the relevant catabolic genes in the context of a complex and stressful environment have yet to be elucidated. In order to fully exploit the catabolic potential of degrader......- and xylene degrading bacterium Pseudomonas putida mt-2 and the phenoxy acid herbicide degrading bacterium Cupriavidus pinatubonensis JMP134, have a high defense capacity towards archetypical environmental stressors. However, the results also showed that induction of a stress defense may have a cost in regard...

  10. Interim Report on Concrete Degradation Mechanisms and Online Monitoring Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Sankaran [Idaho National Lab. (INL), Idaho Falls, ID (United States); Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States); Neal, Kyle [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kosson, David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Adams, Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    The existing nuclear power plants in the United States have initial operating licenses of 40 years, though most of these plants have applied for and received license extensions. As plant structures, systems, and components age, their useful life—considering both structural integrity and performance—is reduced as a result of deterioration of the materials. The research on online monitoring of concrete structures conducted under the Advanced Instrumentation, Information, and Control Systems Technologies Pathway of the Light Water Reactor Sustainability Program at Idaho National Laboratory will develop and demonstrate concrete structures health monitoring capabilities. Assessment and management of aging concrete structures in nuclear plants require a more systematic approach than simple reliance on existing code margins of safety. Therefore, structural health monitoring is required to produce actionable information regarding structural integrity that supports operational and maintenance decisions. Through this research project, several national laboratories and Vanderbilt University propose to develop a framework of research activities for the health monitoring of nuclear power plant concrete structures that includes the integration of four elements—damage modeling, monitoring, data analytics, and uncertainty quantification. This report briefly discusses available techniques and ongoing challenges in each of the four elements of the proposed framework with emphasis on degradation mechanisms and online monitoring techniques.

  11. Tutorial review of spent-fuel degradation mechanisms under dry-storage conditions

    International Nuclear Information System (INIS)

    Einziger, R.E.

    1983-02-01

    This tutorial reviews our present understanding of fuel-rod degradation over a range of possible dry-storage environments. Three areas are covered: (1) why study fuel-rod degradation; (2) cladding-degradation mechanisms; and (3) the status of fuel-oxidation studies

  12. Environmentally assisted cracking mechanisms in repository environments

    International Nuclear Information System (INIS)

    Mills, W.J.

    1987-02-01

    This paper assesses how environmentally assisted cracking (EAC) mechanisms in candidate container materials can be identified to enhance the accuracy of long-term projections of performance in the repository. In low and intermediate strength steels, the role of the two principal mechanisms, slip dissolution/film rupture (SD/FR) and hydrogen embrittlement (HE), is a very complex and controversial issue. No unanimity exists concerning the operative cracking mechanisms, and there is no unique or rigorous approach that would be persuasive in selecting an appropriate model. Both of the proposed mechanisms have common rate controlling processes such as surface adsorption rate, passivation rate, and oxidation rupture rate, which makes it difficult to identify the operative mechanism. Development of a quantitative model for predicting environmental effects for low-carbon steels in repository environments would provide a theoretical basis for assuring the long-term structural integrity of waste-package containment. To date, only one quantitative model has been developed. The agreement between predicted and observed behavior suggests that SD/FR processes control the environmental acceleration in crack growth rates for this class of materials. Deviations from predicted behavior due to HE effects should be uncovered experimentally. 59 refs., 4 figs., 4 tabs

  13. Teaching with Tolkien: environmental degradation of a fantasy world

    Science.gov (United States)

    Kuhn, N. J.

    2012-04-01

    of Gondor, most notably a lack of forest in Gondor. A discussion of the reasons for this "mistake" in Tolkien's fantasy world can be used to develop situations leading to soil and land degradation and draw analogues to past and current events in the real world, e.g. the decline of the Roman empire or the desertification in the Sahel. The lack of detailed information about the environment of Middle Earth, combined with its popularity, offers pupils a new freedom to apply their environmental knowledge and formulate a scientific hypothesis outside the pressure of delivering a correct answer. In our experience, this stimulates discussion and a vigorous exploration of the pupils' existing knowledge. Furthermore, a first case of breaking up the traditional barriers between humanities and natural sciences can be achieved by studying Middle-earth.

  14. application of gis on environmental degradation due to the offshoots

    African Journals Online (AJOL)

    Osondu

    HIGHWAY DEVELOPMENT PROJECTS: CENTRAL ETHIOPIAN HIGHLANDS. ... impacts of the road on land degradation has been studied. ... of the gullies, as explained by farmers, include loss of land, dissection of farms, and ... systems for roads such as small number of .... passes through the major towns of Holeta, Addis.

  15. Rubbish tips rehabilitation. Degradation mechanisms and impacts; Rehabilitation des decharges. Mecanismes de degradation et impacts

    Energy Technology Data Exchange (ETDEWEB)

    Chassagnac, Th. [CSZ AZUR, 69 - Lyon (France)

    2005-06-01

    Waste storage activity really started in the beginning of the industrial era when the consumption of goods has led to a production of wastes higher than the environment assimilation capacity. The waste storage and disposal activity has led to environmental impacts and risks which need to be evaluated and, if needed, processed. Waste storage remains the most common way of wastes elimination because of its simpleness and low cost. However, the closing down of sites is today strictly controlled by the law and the rehabilitation problems concerns mainly the ancient sites. The waste storage domain is at the crossroads of multiple scientific domains like: hydrogeology, rudology, biology, hydraulics and hydrology, water and gases processing, ecology, health sciences and risk assessments, and thus requires a multi-disciplinary approach. This article deals with the rehabilitation of rubbish tips and presents: 1 - the typology and regulatory evolution of waste storage centers; 2 - the main pollutants, their mechanisms and way of impact on the environment: typology of pollutants (origin and nature; mobility influencing factors; risk, hazard, exposure and impact notions); impacts on air (origin and mechanism of biogas generation, biogas composition, mass status of biogas production, risks linked with biogas); impact on waters (leachates; hydric status; impact on groundwaters; impact on surface waters; impact on soils and natural ecosystems; other harmful effects: aesthetics, noise, vermin; stability). (J.S.)

  16. Resin Systems and Chemistry-Degradation Mechanisms and Durability in Long-Term Durability of Polymeric Matrix Composites. Chapter 1

    Science.gov (United States)

    Hinkley, Jeffrey A.; Connell, John W.

    2012-01-01

    In choosing a polymer-matrix composite material for a particular application, a number of factors need to be weighed. Among these are mechanical requirements, fabrication method (e.g. press-molding, resin infusion, filament winding, tape layup), and use conditions. Primary among the environmental exposures encountered in aerospace structures are moisture and elevated temperatures, but certain applications may require resistance to other fluids and solvents, alkaline agents, thermal cycling, radiation, or rapid, localized heating (for example, lightning strike). In this chapter, the main classes of polymer resin systems found in aerospace composites will be discussed. Within each class, their responses to environmental factors and the associated degradation mechanisms will be reviewed.

  17. Mechanism and kinetics of parathion degradation under ultrasonic irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yao Juanjuan, E-mail: yao_juanjuan@yahoo.cn [State Key laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092 (China); Gao Naiyun; Li Cong; Li Lei; Xu Bin [State Key laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092 (China)

    2010-03-15

    The parathion degradation under ultrasonic irradiation in aqueous solution was investigated. The results indicate that at the conditions in question, degradation rate of parathion decreased with increasing initial concentration and decreasing power. The optimal frequency for parathion degradation was 600 kHz. The free radical reactions predominate in the sonochemical degradation of parathion and the reaction zones are predominately at the bubble interface and, to a much lesser extent, in bulk solution. The gas/liquid interfacial regions are the real effective reaction sites for sonochemical degradation of parathion. The reaction can be well described as a gas/liquid heterogeneous reaction which obeys a kinetic model based on Langmuir-Hinshelwood model. The main pathways of parathion degradation by ultrasonic irradiation were also proposed by qualitative and quantitative analysis of organic and inorganic byproducts. It is indicated that the N{sub 2} in air takes part in the parathion degradation through the formation of {center_dot}NO{sub 2} under ultrasonic irradiation. Parathion is decomposed into paraoxon and 4-nitrophenol in the first step via two different pathways, respectively, which is in agreement with the theoretical molecular orbital (MO) calculations.

  18. 13th International conference on environmental degradation of materials in nuclear power systems

    International Nuclear Information System (INIS)

    2007-01-01

    The 13th International Conference on Environmental Degradation of Materials in Nuclear Power Systems was held on August 19-23, 2007 in Whistler, British Columbia, Canada. More of a scientific meeting than a convention, this conference series is the premier nuclear industry corrosion meeting where the 225 registrations consisted of world experts of the field from utilities, engineering and service organizations, manufacturers, research establishments and universities gathered to listen to 144 technical papers on new work and to explore new insights into corrosion mechanisms in the many water cooled systems in nuclear power plants. Over 225 delegates attended the conference, over 144 technical papers were presented in the following sessions: IASCC; Waste; PWR Secondary; Ni-Base Welds; Operating Experience; Low Alloy Steels; Alloy 800 Steam Generator Tubing; Zirconium Alloys; Crack Growth; SCWR; PWR Primary; BWR SCC; Irradiation Effects; Flow Accelerated Corrosion; and, Nobel Metal

  19. Semi-degradable poly(β-amino ester) networks with temporally controlled enhancement of mechanical properties.

    Science.gov (United States)

    Safranski, David L; Weiss, Daiana; Clark, J Brian; Taylor, W Robert; Gall, Ken

    2014-08-01

    Biodegradable polymers are clinically used in numerous biomedical applications, and classically show a loss of mechanical properties within weeks of implantation. This work demonstrates a new class of semi-degradable polymers that show an increase in mechanical properties through degradation via a controlled shift in a thermal transition. Semi-degradable polymer networks, poly(β-amino ester)-co-methyl methacrylate, were formed from a low glass transition temperature crosslinker, poly(β-amino ester), and high glass transition temperature monomer, methyl methacrylate, which degraded in a manner dependent upon the crosslinker chemical structure. In vitro and in vivo degradation revealed changes in mechanical behavior due to the degradation of the crosslinker from the polymer network. This novel polymer system demonstrates a strategy to temporally control the mechanical behavior of polymers and to enhance the initial performance of smart biomedical devices. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. In-vivo degradation mechanism of Ti-6Al-4V hip joints

    DEFF Research Database (Denmark)

    Lomholt, Trine Colding; Pantleon, Karen; Somers, Marcel A. J.

    2011-01-01

    In-vivo exposed Ti-6Al-4V implants were investigated to determine the degradation mechanism occurring during the articulating movements of the hip joint in the human body. Failed implants were compared to Ti-6Al-4V samples, which were tested in the laboratory for their tribocorrosion performance....... The results strongly indicate that degradation of Ti-6Al-4V has occurred with the same mechanism for both the implants and the laboratory tested samples and, hence, block-on-ring tribocorrosion testing was found to be a useful tool for mimicking the degradation occurring in the body.The degradation mechanism...

  1. Dissection of membrane protein degradation mechanisms by reversible inhibitors

    International Nuclear Information System (INIS)

    Hare, J.F.

    1988-01-01

    The degradation of slowly turning over 125I-lactoperoxidase-labeled plasma membrane polypeptides in response to reversible temperature and lysosomotropic inhibitors was studied in rat hepatoma cultures. Cells were radiolabeled and left for 24 h to allow the removal of rapidly degraded proteins. Remaining trichloroacetic acid-precipitable protein was degraded (t 1/2 = 40-68 h) by an apparent first order process 60-86% sensitive to 10 mM NH4Cl or 5 mM methylamine and greater than 95% inhibited by temperature reduction to 18 degrees C. Thus, membrane proteins are selected for degradation in a time-dependent manner by a system which is sensitive to both 18 degrees C and to lysosomotropic amines. When inhibitory conditions were removed after 40-48 h, degradation of 125I-labeled protein resumed at the same rate as that seen in their absence. Since membrane proteins do not exhibit accelerated degradation after removal of inhibitory conditions, there can be no marking or sorting of those proteins destined for degradation during the 40-h exposure to inhibitory conditions. Exposure to amines or 18 degrees C did not affect the position of two-dimensionally resolved labeled polypeptides. Fractionation of labeled cells on Percoll gradients after 40 h of exposure to low temperature or amines showed that labeled protein remained in the plasma membrane fractions of the gradient although shifted to a slightly lower buoyant density in the presence of amines. These results support the notion that selection of plasma membrane proteins for degradation requires their internalization into acidic vesicles. Lysosomotropic amines and reduced temperature interfere with the selection process by preventing membrane fusion events

  2. Effects of fatigue on the chemical and mechanical degradation of model stent sub-units.

    Science.gov (United States)

    Dreher, Maureen L; Nagaraja, Srinidhi; Batchelor, Benjamin

    2016-06-01

    Understanding the fatigue and durability performance of implantable cardiovascular stents is critical for assessing their performance. When the stent is manufactured from an absorbable material, however, this durability assessment is complicated by the transient nature of the device. Methodologies for evaluating the fatigue performance of absorbable stents while accurately simulating the degradation are limited and little is known about the interaction between fatigue and degradation. In this study, we investigated the fatigue behavior and effect of fatigue on the degradation rate for a model absorbable cardiovascular stent. Custom v-shaped stent sub-units manufactured from poly(L-lactide), i.e., PLLA, were subjected to a simultaneous fatigue and degradation study with cycle counts representative of one year of expected in vivo use. Fatigue loading was carried out such that the polymer degraded at a rate that was aligned with a modest degree of fatigue acceleration. Control, un-loaded specimens were also degraded under static immersion conditions representative of simulated degradation without fatigue. The study identified that fatigue loading during degradation significantly increased specimen stiffness and lowered the force at break. Fatigue loading also significantly increased the degree of molecular weight decline highlighting an interaction between mechanical loading and chemical degradation. This study demonstrates that fatigue loading during degradation can affect both the mechanical properties and the chemical degradation rate. The results are important for defining appropriate in vitro degradation conditions for absorbable stent preclinical evaluation. Published by Elsevier Ltd.

  3. Valuing the cost of environmental degradation in the face of ...

    African Journals Online (AJOL)

    Dr. Peter Odjugo

    2012-01-03

    Jan 3, 2012 ... Although these environmental problems affect all parts of Nigeria, some are ..... rainfall pattern coincided with the El Nino and drought years in Nigeria with the ..... South Africa: Floods killed 120 and destroy crops. http://.www.

  4. Determining the degradation efficiency and mechanisms of ethyl violet using HPLC-PDA-ESI-MS and GC-MS

    Directory of Open Access Journals (Sweden)

    Chung Wen-Hsin

    2012-06-01

    Full Text Available Abstract Background The discharge of wastewater that contains high concentrations of reactive dyes is a well-known problem associated with dyestuff activities. In recent years, semiconductor photocatalysis has become more and more attractive and important since it has a great potential to contribute to such environmental problems. One of the most important aspects of environmental photocatalysis is in the selection of semiconductor materials like ZnO and TiO2, which are close to being two of the ideal photocatalysts in several respects. For example, they are relatively inexpensive, and they provide photo-generated holes with high oxidizing power due to their wide band gap energy. In this work, nanostructural ZnO film on the Zn foil of the Alkaline-Manganese Dioxide-Zinc Cell was fabricated to degrade EV dye. The major innovation of this paper is to obtain the degradation mechanism of ethyl violet dyes resulting from the HPLC-PDA-ESI-MS analyses. Results The fabrication of ZnO nanostructures on zinc foils with a simple solution-based corrosion strategy and the synthesis, characterization, application, and implication of Zn would be reported in this study. Other objectives of this research are to identify the reaction intermediates and to understand the detailed degradation mechanism of EV dye, as model compound of triphenylmethane dye, with active Zn metal, by HPLC-ESI-MS and GC-MS. Conclusions ZnO nanostructure/Zn-foils had an excellent potential for future applications on the photocatalytic degradation of the organic dye in the environmental remediation. The intermediates of the degradation process were separated and characterized by the HPLC-PDA-ESI-MS and GC-MS, and twenty-six intermediates were characterized in this study. Based on the variation of the amount of intermediates, possible degradation pathways for the decolorization of dyes are also proposed and discussed.

  5. Stereoselective Degradation and Molecular Ecological Mechanism of Chiral Pesticides Beta-Cypermethrin in Soils with Different pH Values.

    Science.gov (United States)

    Yang, Zhong-Hua; Ji, Guo-Dong

    2015-12-15

    For decades, pesticides have been widely used for agricultural activities around the world, and the environmental problems caused by these compounds have raised widespread concern. However, the different enantioselective behaviors of chiral pesticide enantiomers are often ignored. Here, the selective degradation patterns and mechanisms of chiral pesticide enantiomers were successfully investigated for the first time in the soils of three cultivation areas with different pH values. Beta-cypermethrin was chosen as the target analyte. We found that the degradation rates of the four isomers of beta-cypermethrin were different. We used stepwise regression equations between degradation rates and functional genes to quantitatively study their relationships. Quantitative response analysis revealed that different isomers have different equations even under identical conditions. The results of path analysis showed that a single functional gene can make different direct and indirect contributions to the degradation of different isomers. Finally, the high-throughput technology was used to analysis the genome of the three tested soils and then compared the main microbial communities in them. We have successfully devised a method to investigate the molecular biological mechanisms of the selective degradation behavior of chiral compounds, thus enabling us to better understand these mechanisms.

  6. Breaking the Link between Environmental Degradation and Oil Palm Expansion: A Method for Enabling Sustainable Oil Palm Expansion

    NARCIS (Netherlands)

    Smit, H.H.; Meijaard, E.; Laan, van der C.; Mantel, S.; Budiman, A.; Verweij, P.

    2013-01-01

    Land degradation is a global concern. In tropical areas it primarily concerns the conversion of forest into non-forest lands and the associated losses of environmental services. Defining such degradation is not straightforward hampering effective reduction in degradation and use of already degraded

  7. Atrazine degradation using chemical-free process of USUV: Analysis of the micro-heterogeneous environments and the degradation mechanisms

    International Nuclear Information System (INIS)

    Xu, L.J.; Chu, W.; Graham, Nigel

    2014-01-01

    Graphical abstract: - Highlights: • Two chemical-free AOP processes are combined to enhance atrazine degradation. • ATZ degradation in sonophotolytic process was analyzed using a previous proposed model. • The micro-bubble/liquid heterogeneous environments in sonolytic processes were investigated. • The salt effects on different sonolytic processes were examined. • ATZ degradation mechanisms were investigated and pathways were proposed. - Abstract: The effectiveness of sonolysis (US), photolysis (UV), and sonophotolysis (USUV) for the degradation of atrazine (ATZ) was investigated. An untypical kinetics analysis was found useful to describe the combined process, which is compatible to pseudo first-order kinetics. The heterogeneous environments of two different ultrasounds (20 and 400 kHz) were evaluated. The heterogeneous distribution of ATZ in the ultrasonic solution was found critical in determining the reaction rates at different frequencies. The presence of NaCl would promote/inhibit the rates by the growth and decline of “salting out” effect and surface tension. The benefits of combining these two processes were for the first time investigated from the aspect of promoting the intermediates degradation which were resistant in individual processes. UV caused a rapid transformation of ATZ to 2-hydroxyatrazine (OIET), which was insensitive to UV irradiation; however, US and USUV were able to degrade OIET and other intermediates through • OH attack. On the other hand, UV irradiation also could promote radical generation via H 2 O 2 decomposition, thereby resulting in less accumulation of more hydrophilic intermediates, which are difficult to degradation in the US process. Reaction pathways for ATZ degradation by all three processes are proposed. USUV achieved the greatest degree of ATZ mineralization with more than 60% TOC removed, contributed solely by the oxidation of side chains. Ammeline was found to be the only end-product in both US and USUV

  8. Atrazine degradation using chemical-free process of USUV: Analysis of the micro-heterogeneous environments and the degradation mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Xu, L.J., E-mail: xulijie827@gmail.com [Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Chu, W., E-mail: cewchu@polyu.edu.hk [Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Graham, Nigel, E-mail: n.graham@imperial.ac.uk [Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom)

    2014-06-30

    Graphical abstract: - Highlights: • Two chemical-free AOP processes are combined to enhance atrazine degradation. • ATZ degradation in sonophotolytic process was analyzed using a previous proposed model. • The micro-bubble/liquid heterogeneous environments in sonolytic processes were investigated. • The salt effects on different sonolytic processes were examined. • ATZ degradation mechanisms were investigated and pathways were proposed. - Abstract: The effectiveness of sonolysis (US), photolysis (UV), and sonophotolysis (USUV) for the degradation of atrazine (ATZ) was investigated. An untypical kinetics analysis was found useful to describe the combined process, which is compatible to pseudo first-order kinetics. The heterogeneous environments of two different ultrasounds (20 and 400 kHz) were evaluated. The heterogeneous distribution of ATZ in the ultrasonic solution was found critical in determining the reaction rates at different frequencies. The presence of NaCl would promote/inhibit the rates by the growth and decline of “salting out” effect and surface tension. The benefits of combining these two processes were for the first time investigated from the aspect of promoting the intermediates degradation which were resistant in individual processes. UV caused a rapid transformation of ATZ to 2-hydroxyatrazine (OIET), which was insensitive to UV irradiation; however, US and USUV were able to degrade OIET and other intermediates through • OH attack. On the other hand, UV irradiation also could promote radical generation via H{sub 2}O{sub 2} decomposition, thereby resulting in less accumulation of more hydrophilic intermediates, which are difficult to degradation in the US process. Reaction pathways for ATZ degradation by all three processes are proposed. USUV achieved the greatest degree of ATZ mineralization with more than 60% TOC removed, contributed solely by the oxidation of side chains. Ammeline was found to be the only end-product in both US

  9. Characterization of adhesion at carbon fiber-fluorinated epoxy interface and effect of environmental degradation

    Science.gov (United States)

    Dasgupta, Suman

    2011-12-01

    Carbon fiber reinforced polymers are excellent candidates for aerospace, automobile and other mobile applications due to their high specific strength and modulus. The most prominent aerospace application of carbon fiber composites in recent times is the Boeing 787 Dreamliner, which is the world's first major commercial airliner to extensively use composite materials. The critical issue, which needs to be addressed hereby, is long-term safety. Hence, long-term durability of composite materials in such applications becomes a point of concern. Conventional polymer matrices, such as thermosetting resins, which are used as matrix material in carbon fiber composites, are susceptible to degradation in the form of chemical corrosion, UV degradation and moisture, in severe environmental conditions. Fluorinated polymers offer a viable alternative as matrix material, due to their reduced susceptibility to environmental degradation. The epoxy system used in this study is fluorinated Tetra-glycidyl methylene di-aniline (6F-TGMDA), which was developed by polymer scientists at NASA Langley Research Center. The hydrophobic nature of this epoxy makes it a potential matrix material in aerospace applications. However, its compatibility in carbon fiber-reinforced composites remains to be investigated. This study aims to characterize the interfacial properties in carbon fiber reinforced fluorinated epoxy composites. Typical interfacial characterization parameters, like interfacial shear strength, estimated from the microbond test, proved to be inadequate in accurately estimating adhesion since it assumes a uniform distribution of stresses along the embedded fiber length. Also, it does not account for any residual stresses present at the interface, which might arise due to thermal expansion differences and Poisson's ratio differences of the fiber and matrix. Hence, an analytical approach, which calculates adhesion pressure at the interface, was adopted. This required determination of

  10. Mechanisms of Degradation and Identification of Connectivity and Erosion Hotspots

    NARCIS (Netherlands)

    Hooke, J.; Sandercock, P.; Cammeraat, L.H.; Lesschen, J.P.; Borselli, L.; Torri, D.; Meerkerk, A.; van Wesemael, B.; Marchamalo, M.; Barbera, G.; Boix-Fayos, C.; Castillo, V.; Navarro-Cano, J.A.; Hooke, J.; Sandercock, P.

    2017-01-01

    The context of processes and characteristics of soil erosion and land degradation in Mediterranean lands is outlined. The concept of connectivity is explained. The remainder of the chapter demonstrates development of methods of mapping, analysis and modelling of connectivity to produce a spatial

  11. Cytokinin oxidase or dehydrogenase? Mechanism of cytokinin degradation in cereals

    DEFF Research Database (Denmark)

    Galuszka, P.; Frebort, I.; Sebela, M.

    2001-01-01

    An enzyme degrading cytokinins with isoprenoid side chain, previously named cytokinin oxidase, was purified to near homogeneity from wheat and barley grains. New techniques were developed for the enzyme activity assay and staining on native electrophoretic gels to identify the protein. The purifi...

  12. Valuing the cost of environmental degradation in the face of ...

    African Journals Online (AJOL)

    There are numerous environmental problems that plague different parts of the world in the face of climate change. These range from pollution, deforestation, indiscriminate bush burning and natural wild fire, desertification, climate change, rain and windstorms, flood, earthquake, volcanicity, drought and erosion among ...

  13. 475 Linkages between Poverty and Environmental Degradation (Pp ...

    African Journals Online (AJOL)

    FIRST LADY

    2011-01-18

    Jan 18, 2011 ... concerns of the poor so as to formulate appropriate policy measures for environmental ... in the protection of the environment within the ambit of improved health and nutritional practices, .... man-made hazards include wastes, food poisoning, bush burning and .... Sada, P.O. and Odernerho, F.O. (1988).

  14. Polyester-Based (Bio)degradable Polymers as Environmentally Friendly Materials for Sustainable Development

    Science.gov (United States)

    Rydz, Joanna; Sikorska, Wanda; Kyulavska, Mariya; Christova, Darinka

    2014-01-01

    This review focuses on the polyesters such as polylactide and polyhydroxyalkonoates, as well as polyamides produced from renewable resources, which are currently among the most promising (bio)degradable polymers. Synthetic pathways, favourable properties and utilisation (most important applications) of these attractive polymer families are outlined. Environmental impact and in particular (bio)degradation of aliphatic polyesters, polyamides and related copolymer structures are described in view of the potential applications in various fields. PMID:25551604

  15. Environmental degradation and remediation: is economics part of the problem?

    Science.gov (United States)

    Dore, Mohammed H I; Burton, Ian

    2003-01-01

    It is argued that standard environmental economic and 'ecological economics', have the same fundamentals of valuation in terms of money, based on a demand curve derived from utility maximization. But this approach leads to three different measures of value. An invariant measure of value exists only if the consumer has 'homothetic preferences'. In order to obtain a numerical estimate of value, specific functional forms are necessary, but typically these estimates do not converge. This is due to the fact that the underlying economic model is not structurally stable. According to neoclassical economics, any environmental remediation can be justified only in terms of increases in consumer satisfaction, balancing marginal gains against marginal costs. It is not surprising that the optimal policy obtained from this approach suggests only small reductions in greenhouse gases. We show that a unidimensional metric of consumer's utility measured in dollar terms can only trivialize the problem of global climate change.

  16. Mechanism of chromatin degradation in thymocytes of irradiated rats

    International Nuclear Information System (INIS)

    Nikonova, L.V.; Nelipovich, P.A.; Umanskij, S.R.

    1983-01-01

    Chromatin digestion in isolated thymocyte nuclei with DNAase I, micrococcal nuclease and nuclease from Serratia marcescens was studied. It was shown that 3 h after irradiation (10 Gy), the kinetics of accumulation of acid soluble and salt soluble products of DNA degradation, caused by exogenous nucleases, remains unchanged. The administration of cycloheximide does not influence the sensitivity of chromatin to DNAase I and somewhat increases the rate of salt soluble products formation upon the nuclease from S, marcescens treatment

  17. Coupling between chemical degradation and mechanical behaviour of leached concrete; Couplage degradation chimique - comportement en compression du beton

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, V H

    2005-10-15

    This work is in the context of the long term behavior of concrete employed in radioactive waste disposal. The objective is to study the coupled chemo-mechanical modelling of concrete. In the first part of this contribution, experimental investigations are described where the effects of the calcium leaching process of concrete on its mechanical properties are highlighted. An accelerated method has been chosen to perform this leaching process by using an ammonium nitrate solution. In the second part, we present a coupled phenomenological chemo-mechanical model that represents the degradation of concrete materials. On one hand, the chemical behavior is described by the simplified calcium leaching approach of cement paste and mortar. Then a homogenization approach using the asymptotic development is presented to take into account the influence of the presence of aggregates in concrete. And on the other hand, the mechanical part of the modelling is given. Here continuum damage mechanics is used to describe the mechanical degradation of concrete. The growth of inelastic strains observed during the mechanical tests is describes by means of a plastic like model. The model is established on the basis of the thermodynamics of irreversible processes framework. The coupled nonlinear problem at hand is addressed within the context of the finite element method. Finally, numerical simulations are compared with the experimental results for validation. (author)

  18. Management of the environmental restoration of degraded areas

    Directory of Open Access Journals (Sweden)

    Izabel Cristina Leinig Araujo

    2014-04-01

    Full Text Available The aim of this work was to study ecotechnology for the management of degraded areas originally covered by the Atlantic Rainforest and located at the coordinates 25º31'50''S, 9º09'30''W. The area included 12 islands, each consisting of six jute bags with 20 kg of substrate (cattle manure and soil transposed from forest fragments. In six of these bags, native plants and seeds were also included. Six additional islands were selected randomly in the vicinity as the control. The process of evaluation was monitored through the chemical and granulometric soil analysis and surveys of survival, biometrics, floristic and phytosociological vegetation. An improvement in soil properties was observed where the model was implemented, which could be attributed to the substrate and re-vegetation. In the floristic and phytosociological studies, out of the 118 identified species, 65 were observed in the first floristic inventory and 86 in the second floristic inventory with similarities between the subfields of 27.69% and 11.36%, respectively. The influence of the substrate seed bank in the implemented islands was also observed. Increased diversity was only significant in the subareas with the model. It was concluded that this technology was effective in accelerating the succession and promoting the beginning of the restoration.

  19. The mechanisms for social and environmentally responsible agricultural land use

    OpenAIRE

    Ye. Mishenin; I. Yarova

    2015-01-01

    This paper deals with arguments that the most effective mechanism for greening use of land resources is to increase the level of social and environmental responsibility. The mechanisms for social and environmentally responsible agricultural land use are formed.

  20. Environmental degradation of oxidation resistant and thermal barrier coatings for fuel-flexible gas turbine applications

    Science.gov (United States)

    Mohan, Prabhakar

    O 5 mixture (50-50 mol. %) demonstrated that Na2SO4 itself did not degrade the YSZ, however, in the presence of V2O 5, Na2SO4 formed vanadates such as NaVO3 that degraded the YSZ through YVO4 formation at temperature as low as 700°C. The APS YSZ was found to react with the P2O 5 melt by forming ZrP2O7 at all temperatures. This interaction led to the depletion of ZrO2 in the YSZ (i.e., enrichment of Y2O3 in t'-YSZ) and promoted the formation of the fluorite-cubic ZrO2 phase. Above 1250°C, CMAS deposits were observed to readily infiltrate and significantly dissolve the YSZ coating via thermochemical interactions. Upon cooling, zirconia reprecipitated with a spherical morphology and a composition that depended on the local melt chemistry. The molten CMAS attack destabilized the YSZ through the detrimental phase transformation (t' → t → f + m). Free standing APS CoNiCrAlY was also prone to degradation by corrosive molten deposits. The V2O5 melt degraded the APS CoNiCrAlY through various reactions involving acidic dissolution of the protective oxide scale, which yielded substitutional-solid solution vanadates such as (Co,Ni) 3(VO4)2 and (Cr,Al)VO4. The molten P2O5, on the other hand, was found to consume the bond coat constituents significantly via reactions that formed both Ni/Co rich phosphates and Cr/Al rich phosphates. Sulfate deposits such as Na2SO 4, when tested in encapsulation, damaged the CoNiCrAlY by Type I acidic fluxing hot corrosion mechanisms at 1000°C that resulted in accelerated oxidation and sulfidation. The formation of a protective continuous Al 2O3 oxide scale by preoxidation treatment significantly delayed the hot corrosion of CoNiCrAlY by sulfates. However, CoNiCrAlY in both as-sprayed and preoxidized condition suffered a significant damage by CaSO4 deposits via a basic fluxing mechanism that yielded CaCrO4 and CaAl2O4. The CMAS melt also dissolved the protective Al2O3 oxide scale developed on CoNiCrAlY by forming anorthite platelets and

  1. Food security and environmental degradation in northern Nigeria: demographic perspectives.

    Science.gov (United States)

    Lockwood, M

    1991-07-01

    The Malthusian controversy about the causes of environmental change and food insecurity in Hausaland in northern Nigeria is examined. The argument is irresolvable based on available data at the macro level. The individual and household level are appropriate for answering the question about how high density populations survive on a savannah. To understand population pressure in Hausaland, it is important to read Malthus very carefully and to understand the existing demographic structure in which economic and kinship relations support high fertility even where land is scarce. Demographic responses vary with economic strata. Policies ignore individual level differences. Since 1953, the densely populated areas of Sokoto, Katsina, Zaria, and Kano have spread in an area that is largely dry with a moderate-to-high risk of desertification. Food insecurity exists not only in times of drought, but also annually in the form of chronic shortages of staples for poor farmers. Average land holdings/capita have become smaller. Population pressure has also contributed to shifts in land use. Food prices have increased. Possible explanations include 1) the drought and the oil boom have a greater impact on environmental change and food insecurity and rural Hausa farmers have responded by raising yields, managing tree resources, and practicing soil conservation and 2) an independent source of income from non-agricultural activities is an essential part of the economy. The relationship among population pressure, land shortage, and food insecurity is complex. It is inaccurate to label Hausa as subsistence farmers, when trading in grain is an important enterprise. The role that commercialization of agriculture plays in food insecurity is discussed. Malthusian disaster is not imminent. The proximate determinants of fertility, birth spacing practices and infertility, should lead to high fertility rates, but in this case they do not. Determinants responsive to economic factors tend to be

  2. Mechanism of chromatin degradation in thymocytes of irradiated rats

    International Nuclear Information System (INIS)

    Zotova, R.N.; Umanskij, S.R.; Tokarskaya, V.I.

    1983-01-01

    A biphase change in poly (ADP-ribose) polymerase activity of the thymocyte chromatin was observed after 10 Gy irradiation of rats: during the first minutes the incorporation of 14 C-NAD increased by 40% then started decreasing to make 110, 60 and 35% after 1, 2 and 3 h, respectively. Irradiation of rat thymus chromatin in vitro sharply decreased poly (ADP-ribose) polymerase activity. The possible role of changes in the poly (ADP-ribose) synthesis in the activation of nuclear Ca/Mg-dependent endonuclease and in the postirradiation degradation of the thymocyte chromatin is discussed

  3. Mechanism Of Environmental Franchising In The Sustainable Development Potential

    OpenAIRE

    Inna Illyashenko

    2011-01-01

    Reveals the types of environmental franchising: franchise environmental goods, manufacturing, service and environmental business format. Presents the methodological principles for the formation mechanisms of environmental franchise in implementing sustainable development potential. Proved economic, legal and organizational technology contractual relations regarding environmental franchise.

  4. Mechanisms of ionizing-radiation-induced gain degradation in lateral PNP BJTs

    International Nuclear Information System (INIS)

    Schmidt, D.M.; Wu, A.; Schrimpf, R.D.; Pease, R.L.; Combs, W.E.

    1996-01-01

    The physical mechanisms for gain degradation in laterals PNP bipolar transistors are examined experimentally and through simulation. The effect of increased surface recombination velocity at the base surface is moderated by positive oxide charge

  5. A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies

    Science.gov (United States)

    Feng, Qi; Yuan, Xiao-Zi; Liu, Gaoyang; Wei, Bing; Zhang, Zhen; Li, Hui; Wang, Haijiang

    2017-10-01

    Proton exchange membrane water electrolysis (PEMWE) is an advanced and effective solution to the primary energy storage technologies. A better understanding of performance and durability of PEMWE is critical for the engineers and researchers to further advance this technology for its market penetration, and for the manufacturers of PEM water electrolyzers to implement quality control procedures for the production line or on-site process monitoring/diagnosis. This paper reviews the published works on performance degradations and mitigation strategies for PEMWE. Sources of degradation for individual components are introduced. With degradation causes discussed and degradation mechanisms examined, the review emphasizes on feasible strategies to mitigate the components degradation. To avoid lengthy real lifetime degradation tests and their high costs, the importance of accelerated stress tests and protocols is highlighted for various components. In the end, R&D directions are proposed to move the PEMWE technology forward to become a key element in future energy scenarios.

  6. Sulfate radical degradation of acetaminophen by novel iron-copper bimetallic oxidation catalyzed by persulfate: Mechanism and degradation pathways

    Science.gov (United States)

    Zhang, Yuanchun; Zhang, Qian; Hong, Junming

    2017-11-01

    A novel iron coupled copper oxidate (Fe2O3@Cu2O) catalyst was synthesized to activate persulfate (PS) for acetaminophen (APAP) degradation. The catalysts were characterized via field-emission scanning electron microscopy and energy-dispersive X-ray spectrometry. The effects of the catalyst, PS concentration, catalyst dosage, initial pH, dissolved oxygen were analyzed for treatment optimization. Results indicated that Fe2O3@Cu2O achieved higher efficiency in APAP degradation than Fe2O3/PS and Cu2O/PS systems. The optimal removal efficiency of APAP (90%) was achieved within 40 min with 0.6 g/L PS and 0.3 g/L catalyst. To clarify the mechanism for APAP degradation, intermediates were analyzed with gas chromatography-mass spectrometry. Three possible degradation pathways were identified. During reaction, Cu(I) was found to react with Fe(III) to generate Fe(II), which is the most active phase for PS activation. Through the use of methanol and tert-butyl alcohol (TBA) as radical trappers, SO4rad - was identified as the main radical species that is generated during oxidation.

  7. Environmental persistence of pesticides and their ecotoxicity: A review of natural degradation processes

    International Nuclear Information System (INIS)

    Narvaez Valderrama, Jhon Fredy; Palacio Baena, Jaime Alberto; Molina Perez, Francisco Jose

    2012-01-01

    Pesticides are allochthonous pollutants discharged in natural environments. Once in the environment, natural factors such as biodegradation, photodegradation and chemical hydrolysis trigger partial or total pesticide transformation and reduce their environmental persistence. However, some degraded compounds have a greater ecotoxicological effect on the biota that the parent compounds and the change in the physicochemical properties increase the bioaccumulation, toxicity and transference processes. Therefore, knowledge about degradation processes in the environment is crucial in studies related to the dynamics and behavior of these substances in the environment and the impact on aquatic and terrestrial ecosystems. This review aims to show the influence of natural degradation processes on the persistence of pesticides, their ecotoxicity and dynamics. Also discuss the application of the degradation processes in water treatment and pesticides removal. While biodegradation processes have been improved by using genetically engineered microorganisms, in the photodegradation has been applied advanced oxidation technologies (TAOS) in the treatment of water contaminated with pesticides.

  8. Does higher economic and financial development lead to environmental degradation: Evidence from BRIC countries

    Energy Technology Data Exchange (ETDEWEB)

    Tamazian, Artur [Department of Financial Economics and Accounting, University of Santiago de Compostela, Santiago de Compostela (Spain)], E-mail: artur.tamazian@usc.es; Chousa, Juan Pineiro [Department of Financial Economics and Accounting, University of Santiago de Compostela, Santiago de Compostela (Spain)], E-mail: efjpch@usc.es; Vadlamannati, Krishna Chaitanya [Department of Financial Economics and Accounting, University of Santiago de Compostela, Santiago de Compostela (Spain)], E-mail: kc_dcm@yahoo.co.in

    2009-01-15

    A vast number of studies addressed the environmental degradation and economic development but not financial development. Moreover, as argued by Stern [2004. The rise and fall of the environmental Kuznets curve. World Development 32, 1419-1439] they present important econometric weaknesses. Using standard reduced-form modeling approach and controlling for country-specific unobserved heterogeneity, we investigate the linkage between not only economic development and environmental quality but also the financial development. Panel data over period 1992-2004 is used. We find that both economic and financial development are determinants of the environmental quality in BRIC economies. We show that higher degree of economic and financial development decreases the environmental degradation. Our analysis suggests that financial liberalization and openness are essential factors for the CO{sub 2} reduction. The adoption of policies directed to financial openness and liberalization to attract higher levels of R and D-related foreign direct investment might reduce the environmental degradation in countries under consideration. In addition, the robustness check trough the inclusion of US and Japan does not alter our main findings.

  9. Does higher economic and financial development lead to environmental degradation. Evidence from BRIC countries

    Energy Technology Data Exchange (ETDEWEB)

    Tamazian, Artur; Chousa, Juan Pineiro; Vadlamannati, Krishna Chaitanya [Department of Financial Economics and Accounting, University of Santiago de Compostela, Santiago de Compostela (Spain)

    2009-01-15

    A vast number of studies addressed the environmental degradation and economic development but not financial development. Moreover, as argued by Stern [2004. The rise and fall of the environmental Kuznets curve. World Development 32, 1419-1439] they present important econometric weaknesses. Using standard reduced-form modeling approach and controlling for country-specific unobserved heterogeneity, we investigate the linkage between not only economic development and environmental quality but also the financial development. Panel data over period 1992-2004 is used. We find that both economic and financial development are determinants of the environmental quality in BRIC economies. We show that higher degree of economic and financial development decreases the environmental degradation. Our analysis suggests that financial liberalization and openness are essential factors for the CO{sub 2} reduction. The adoption of policies directed to financial openness and liberalization to attract higher levels of R and D-related foreign direct investment might reduce the environmental degradation in countries under consideration. In addition, the robustness check trough the inclusion of US and Japan does not alter our main findings. (author)

  10. Does higher economic and financial development lead to environmental degradation. Evidence from BRIC countries

    International Nuclear Information System (INIS)

    Tamazian, Artur; Chousa, Juan Pineiro; Vadlamannati, Krishna Chaitanya

    2009-01-01

    A vast number of studies addressed the environmental degradation and economic development but not financial development. Moreover, as argued by Stern [2004. The rise and fall of the environmental Kuznets curve. World Development 32, 1419-1439] they present important econometric weaknesses. Using standard reduced-form modeling approach and controlling for country-specific unobserved heterogeneity, we investigate the linkage between not only economic development and environmental quality but also the financial development. Panel data over period 1992-2004 is used. We find that both economic and financial development are determinants of the environmental quality in BRIC economies. We show that higher degree of economic and financial development decreases the environmental degradation. Our analysis suggests that financial liberalization and openness are essential factors for the CO 2 reduction. The adoption of policies directed to financial openness and liberalization to attract higher levels of R and D-related foreign direct investment might reduce the environmental degradation in countries under consideration. In addition, the robustness check trough the inclusion of US and Japan does not alter our main findings. (author)

  11. Carbohydrate degradation mechanisms and compounds from pretreated biomass

    DEFF Research Database (Denmark)

    Rasmussen, Helena

    The formation of inhibitors during pretreatment of lignocellulosic feedstocks is a persistent problem, and notably the compounds that retard enzymatic cellulose conversion represent an obstacle for achieving optimal enzymatic productivity and high glucose yields. Compounds with many chemical...... pretreated wheat straw after enzymatic treatment. It was found that formation of the oligophenolic degradation compounds were common across biomass sources as sugar cane bagasse and oil palm empty fruit bunches. These findings were in line with that the oligophenolic compounds arise from reactions involving...... functionalities are formed during biomass pretreatment, which gives possibilities for various chemical reactions to take place and hence formation of many new potential inhibitor compounds. This somehow overlooked contemplation formed the basis for the main hypothesis investigated in this work: Hypothesis 1...

  12. Environmental characteristics, agricultural land use, and vulnerability to degradation in Malopolska Province (Poland).

    Science.gov (United States)

    Nowak, Agnieszka; Schneider, Christian

    2017-07-15

    Environmental degradation encompasses multiple processes that are rarely combined in analyses. This study refers to three types of environmental degradation resulting from agricultural activity: soil erosion, nutrient loss, and groundwater pollution. The research was conducted in seven distinct study areas in the Malopolska Province, Poland, each characterized by different environmental properties. Calculations were made on the basis of common models, i.e., USLE (soil erosion), InVEST (nutrient loss), and DRASTIC (groundwater pollution). Two scenarios were calculated to identify the areas contributing to potential and actual degradation. For the potential degradation scenario all study areas were treated as arable land. To identify the areas actually contributing to all three types of degradation, the de facto land use pattern was used for a second scenario. The results show that the areas most endangered by agricultural activity are located in the mountainous region, whereas most of the degraded zones were located in valley bottoms and areas with intensive agriculture. The different hazards rarely overlap spatially in the given study areas - meaning that different areas require different management approaches. The distribution of arable land was negatively correlated with soil erosion hazard, whereas no linkage was found between nutrient loss or groundwater pollution hazards and the proportion of arable land. This indicates that the soil erosion hazard is the most influential factor in the distribution of arable land, whereas nutrient loss and groundwater pollution is widely ignored during land use decision-making. Slope largely and most frequently influences all hazard types, whereas land use also played an important role in the case of soil and nutrient losses. In this study we presented a consistent methodology to capture complex degradation processes and provide robust indicators which can be included in existing impact assessment approaches like Life Cycle

  13. The effect of mechanical loads on the degradation of aliphatic biodegradable polyesters.

    Science.gov (United States)

    Li, Ying; Chu, Zhaowei; Li, Xiaoming; Ding, Xili; Guo, Meng; Zhao, Haoran; Yao, Jie; Wang, Lizhen; Cai, Qiang; Fan, Yubo

    2017-06-01

    Aliphatic biodegradable polyesters have been the most widely used synthetic polymers for developing biodegradable devices as alternatives for the currently used permanent medical devices. The performances during biodegradation process play crucial roles for final realization of their functions. Because physiological and biochemical environment in vivo significantly affects biodegradation process, large numbers of studies on effects of mechanical loads on the degradation of aliphatic biodegradable polyesters have been launched during last decades. In this review article, we discussed the mechanism of biodegradation and several different mechanical loads that have been reported to affect the biodegradation process. Other physiological and biochemical factors related to mechanical loads were also discussed. The mechanical load could change the conformational strain energy and morphology to weaken the stability of the polymer. Besides, the load and pattern could accelerate the loss of intrinsic mechanical properties of polymers. This indicated that investigations into effects of mechanical loads on the degradation should be indispensable. More combination condition of mechanical loads and multiple factors should be considered in order to keep the degradation rate controllable and evaluate the degradation process in vivo accurately. Only then can the degradable devise achieve the desired effects and further expand the special applications of aliphatic biodegradable polyesters.

  14. A tuneable switch for controlling environmental degradation of bioplastics: addition of isothiazolinone to polyhydroxyalkanoates.

    Science.gov (United States)

    Woolnough, Catherine Anne; Yee, Lachlan Hartley; Charlton, Timothy Stuart; Foster, Leslie John Ray

    2013-01-01

    Controlling the environmental degradation of polyhydroxybutyrate (PHB) and polyhydroxyvalerate (P(HB-co-HV)) bioplastics would expand the range of their potential applications. Combining PHB and P(HB-co-HV) films with the anti-fouling agent 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOI, bioplastics increases their potential use in biodegradable applications.

  15. Coupled Thermo-Mechanical and Photo-Chemical Degradation Mechanisms that determine the Reliability and Operational Lifetimes for CPV Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Dauskardt, Reinhold H. [Stanford Univ., CA (United States)

    2017-04-30

    This project sought to identify and characterize the coupled intrinsic photo-chemo-mechanical degradation mechanisms that determine the reliability and operational lifetimes for CPV technologies. Over a three year period, we have completed a highly successful program which has developed quantitative metrologies and detailed physics-based degradation models, providing new insight into the fundamental reliability physics necessary for improving materials, creating accelerated testing protocols, and producing more accurate lifetime predictions. The tasks for the program were separated into two focus areas shown in the figure below. Focus Area 1, led by Reinhold Dauskardt and Warren Cai with a primary collaboration with David Miller of NREL, studied the degradation mechanisms present in encapsulant materials. Focus Area 2, led by Reinhold Dauskardt and Ryan Brock with a primary collaboration with James Ermer and Peter Hebert of Spectrolab, studied stress development and degradation within internal CPV device interfaces. Each focus area was productive, leading to several publications, including findings on the degradation of silicone encapsulant under terrestrial UV, a model for photodegradation of silicone encapsulant adhesion, quantification and process tuning of antireflective layers on CPV, and discovery of a thermal cycling degradation mechanism present in metal gridline structures.

  16. Degradation of the pharmaceuticals diclofenac and sulfamethoxazole and their transformation products under controlled environmental conditions

    International Nuclear Information System (INIS)

    Poirier-Larabie, S.; Segura, P.A.; Gagnon, C.

    2016-01-01

    Contamination of the aquatic environment by pharmaceuticals via urban effluents is well known. Several classes of drugs have been identified in waterways surrounding these effluents in the last 15 years. To better understand the fate of pharmaceuticals in ecosystems, degradation processes need to be investigated and transformation products must be identified. Thus, this study presents the first comparative study between three different natural environmental conditions: photolysis and biodegradation in aerobic and anaerobic conditions both in the dark of diclofenac and sulfamethoxazole, two common drugs present in significant amounts in impacted surface waters. Results indicated that degradation kinetics differed depending on the process and the type of drug and the observed transformation products also differed among these exposure conditions. Diclofenac was nearly degraded by photolysis after 4 days, while its concentration only decreased by 42% after 57 days of exposure to bacteria in aerobic media and barely 1% in anaerobic media. For sulfamethoxazole, 84% of the initial concentration was still present after 11 days of exposure to light, while biodegradation decreased its concentration by 33% after 58 days of exposure under aerobic conditions and 5% after 70 days of anaerobic exposure. In addition, several transformation products were observed and persisted over time while others degraded in turn. For diclofenac, chlorine atoms were lost primarily in the photolysis, while a redox reaction was promoted by biodegradation under aerobic conditions. For sulfamethoxazole, isomerization was favored by photolysis while a redox reaction was also favored by the biodegradation under aerobic conditions. To summarize this study points out the occurrence of different transformation products under variable degradation conditions and demonstrates that specific functional groups are involved in the tested natural attenuation processes. Given the complexity of environmental

  17. Degradation of the pharmaceuticals diclofenac and sulfamethoxazole and their transformation products under controlled environmental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Poirier-Larabie, S. [Aquatic Contaminants Research Division, Science and Water Technology Directorate, Environment Canada, Montréal, Québec H2Y 2E7 (Canada); Segura, P.A. [Department of Chemistry, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1 (Canada); Gagnon, C., E-mail: christian.gagnon@canada.ca [Aquatic Contaminants Research Division, Science and Water Technology Directorate, Environment Canada, Montréal, Québec H2Y 2E7 (Canada)

    2016-07-01

    Contamination of the aquatic environment by pharmaceuticals via urban effluents is well known. Several classes of drugs have been identified in waterways surrounding these effluents in the last 15 years. To better understand the fate of pharmaceuticals in ecosystems, degradation processes need to be investigated and transformation products must be identified. Thus, this study presents the first comparative study between three different natural environmental conditions: photolysis and biodegradation in aerobic and anaerobic conditions both in the dark of diclofenac and sulfamethoxazole, two common drugs present in significant amounts in impacted surface waters. Results indicated that degradation kinetics differed depending on the process and the type of drug and the observed transformation products also differed among these exposure conditions. Diclofenac was nearly degraded by photolysis after 4 days, while its concentration only decreased by 42% after 57 days of exposure to bacteria in aerobic media and barely 1% in anaerobic media. For sulfamethoxazole, 84% of the initial concentration was still present after 11 days of exposure to light, while biodegradation decreased its concentration by 33% after 58 days of exposure under aerobic conditions and 5% after 70 days of anaerobic exposure. In addition, several transformation products were observed and persisted over time while others degraded in turn. For diclofenac, chlorine atoms were lost primarily in the photolysis, while a redox reaction was promoted by biodegradation under aerobic conditions. For sulfamethoxazole, isomerization was favored by photolysis while a redox reaction was also favored by the biodegradation under aerobic conditions. To summarize this study points out the occurrence of different transformation products under variable degradation conditions and demonstrates that specific functional groups are involved in the tested natural attenuation processes. Given the complexity of environmental

  18. Mechanism of radiation-induced degradation in mechanical properties of polymer matrix composites

    International Nuclear Information System (INIS)

    Egusa, Shigenori

    1988-01-01

    Four kinds of polymer matrix composites (filler, E-glass or carbon fibre cloth; matrix, epoxy or polyimide resin) and pure epoxy and polyimide resins were irradiated with 60 Co γ-rays or 2 MeV electrons at room temperature. Mechanical tests were then carried out at 77K and at room temperature. Following irradiation, the Young's (tensile) modulus of these composites and pure resins remains practically unchanged even at 170 MGy for both test temperatures. The ultimate strength, however, decreases appreciably with increasing dose. The dose dependence of the composite strength depends not only on the combination of fibre and matrix in the composite but also on the test temperature. A relationship is found between the composite ultimate strain and the matrix ultimate strain, thus indicating that the dose dependence of the composite strength is virtually determined by a change in the matrix ultimate strain due to irradiation. Based on this finding, we propose a mechanism of radiation-induced degradation of a polymer matrix composite in order to explain the dose dependence of the composite strength measured at 77 K and at room temperature. (author)

  19. Oxidative degradation of triclosan by potassium permanganate: Kinetics, degradation products, reaction mechanism, and toxicity evaluation.

    Science.gov (United States)

    Chen, Jing; Qu, Ruijuan; Pan, Xiaoxue; Wang, Zunyao

    2016-10-15

    In this study, we systematically investigated the potential applicability of potassium permanganate for removal of triclosan (TCS) in water treatment. A series of kinetic experiments were carried out to study the influence of various factors, including the pH, oxidant doses, temperature, and presence of typical anions (Cl(-), SO4(2-), NO3(-)), humic acid (HA), and fulvic acid (FA) on triclosan removal. The optimal reaction conditions were: pH = 8.0, [TCS]0:[KMnO4]0 = 1:2.5, and T = 25 °C, where 20 mg/L of TCS could be completely degraded in 120 s. However, the rate of TCS (20 μg/L) oxidation by KMnO4 ([TCS]0:[KMnO4]0 = 1:2.5) was 1.64 × 10(-3) mg L(-1)·h(-1), lower than that at an initial concentration of 20 mg/L (2.24 × 10(3) mg L(-1)·h(-1)). A total of eleven products were detected by liquid chromatography-quadrupole-time-of-flight-mass spectrometry (LC-Q-TOF-MS) analysis, including phenol and its derivatives, benzoquinone, an organic acid, and aldehyde. Two main reaction pathways involving CO bond cleavage (-C(8)O(7)-) and benzene ring opening (in the less chlorinated benzene ring) were proposed, and were further confirmed based on frontier electron density calculations and point charges. Furthermore, the changes in the toxicity of the reaction solution during TCS oxidation by KMnO4 were evaluated by using both the luminescent bacteria Photobacterium phosphoreum and the water flea Daphnia magna. The toxicity of 20 mg/L triclosan to D. magna and P. phosphoreum after 60 min was reduced by 95.2% and 43.0%, respectively. Phenol and 1,4-benzoquinone, the two representative degradation products formed during permanganate oxidation, would yield low concentrations of DBPs (STHMFP, 20.99-278.97 μg/mg; SHAAFP, 7.86 × 10(-4)-45.77 μg/mg) after chlorination and chloramination. Overall, KMnO4 can be used as an effective oxidizing agent for TCS removal in water and wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Micro-mechanical model for the tension-stabilized enzymatic degradation of collagen tissues

    Science.gov (United States)

    Nguyen, Thao; Ruberti, Jeffery

    We present a study of how the collagen fiber structure influences the enzymatic degradation of collagen tissues. Experiments of collagen fibrils and tissues show that mechanical tension can slow and halt enzymatic degradation. Tissue-level experiments also show that degradation rate is minimum at a stretch level coincident with the onset of strain-stiffening in the stress response. To understand these phenomena, we developed a micro-mechanical model of a fibrous collagen tissue undergoing enzymatic degradation. Collagen fibers are described as sinusoidal elastica beams, and the tissue is described as a distribution of fibers. We assumed that the degradation reaction is inhibited by the axial strain energy of the crimped collagen fibers. The degradation rate law was calibrated to experiments on isolated single fibrils from bovine sclera. The fiber crimp and properties were fit to uniaxial tension tests of tissue strips. The fibril-level kinetic and tissue-level structural parameters were used to predict tissue-level degradation-induced creep rate under a constant applied force. We showed that we could accurately predict the degradation-induce creep rate of the pericardium and cornea once we accounted for differences in the fiber crimp structure and properties.

  1. The Socio-ecological Fit of Human Responses to Environmental Degradation: An Integrated Assessment Methodology.

    Science.gov (United States)

    Briassoulis, Helen

    2015-12-01

    The scientific and policy interest in the human responses to environmental degradation usually focuses on responses sensu stricto and 'best practices' that potentially abate degradation in affected areas. The transfer of individual, discrete instruments and 'best practices' to different contexts is challenging, however, because socio-ecological systems are complex and environmental degradation is contextual and contingent. To sensibly assess the effectiveness of formal and informal interventions to combat environmental degradation, the paper proposes an integrative, non-reductionist analytic, the 'response assemblage', for the study of 'responses-in-context,' i.e., products of human decisions to utilize environmental resources to satisfy human needs in socio-ecological systems. Response assemblages are defined as geographically and historically unique, provisional, open, territorial wholes, complex compositions emerging from processes of assembling biophysical and human components, including responses sensu stricto, from affected focal and other socio-ecological systems, to serve human goals, one of which may be combatting environmental degradation. The degree of match among the components, called the socio-ecological fit of the response assemblage, indicates how effectively their contextual and contingent interactions maintain the socio-ecological resilience, promote sustainable development, and secure the continuous provision of ecosystem services in a focal socio-ecological system. The paper presents a conceptual approach to the analysis of the socio-ecological fit of response assemblages and details an integrated assessment methodology synthesizing the resilience, assemblage, and 'problem of fit' literature. Lastly, it summarizes the novelty, value, and policy relevance of conceptualizing human responses as response assemblages and of the integrated assessment methodology, reconsiders 'best practices' and suggests selected future research directions.

  2. The Socio-ecological Fit of Human Responses to Environmental Degradation: An Integrated Assessment Methodology

    Science.gov (United States)

    Briassoulis, Helen

    2015-12-01

    The scientific and policy interest in the human responses to environmental degradation usually focuses on responses sensu stricto and `best practices' that potentially abate degradation in affected areas. The transfer of individual, discrete instruments and `best practices' to different contexts is challenging, however, because socio-ecological systems are complex and environmental degradation is contextual and contingent. To sensibly assess the effectiveness of formal and informal interventions to combat environmental degradation, the paper proposes an integrative, non-reductionist analytic, the `response assemblage', for the study of `responses-in-context,' i.e., products of human decisions to utilize environmental resources to satisfy human needs in socio-ecological systems. Response assemblages are defined as geographically and historically unique, provisional, open, territorial wholes, complex compositions emerging from processes of assembling biophysical and human components, including responses sensu stricto, from affected focal and other socio-ecological systems, to serve human goals, one of which may be combatting environmental degradation. The degree of match among the components, called the socio- ecological fit of the response assemblage, indicates how effectively their contextual and contingent interactions maintain the socio-ecological resilience, promote sustainable development, and secure the continuous provision of ecosystem services in a focal socio-ecological system. The paper presents a conceptual approach to the analysis of the socio-ecological fit of response assemblages and details an integrated assessment methodology synthesizing the resilience, assemblage, and `problem of fit' literature. Lastly, it summarizes the novelty, value, and policy relevance of conceptualizing human responses as response assemblages and of the integrated assessment methodology, reconsiders `best practices' and suggests selected future research directions.

  3. Stigma and attachment: performance of identity in an environmentally degraded place

    Energy Technology Data Exchange (ETDEWEB)

    Broto, V.C.; Burningham, K.; Carter, C.; Elghali, L. [University of Durham, Durham (United Kingdom). Dept. of Geology

    2010-07-01

    Research examining the relationship between place and identity shows that the experience of places influences a person's process of identification, through which an emotional bond with the place may be developed. However, the implications of this literature for land restoration remain unexplored. This is partially due to a gap in empirical research that explores the performance of identities in environmentally degraded settings. This article examines the relationship between identity and place among residents living around five coal ash disposal sites in Tuzla, Bosnia and Herzegovina. The article develops a qualitative model to understand the emergence of divergent responses toward the pollution and illustrates that in an environmentally degraded setting the bonds between the individuals and the place are not necessarily dislocated; in some cases, these bonds may be even reinforced by the performance of adaptative identities in response to environmental change.

  4. Mechanical Characteristics of Chemically Degraded Surface Layers of Wood

    Czech Academy of Sciences Publication Activity Database

    Frankl, Jiří; Kloiber, Michal; Drdácký, Miloš; Tippner, J.; Bryscejn, Jan

    2012-01-01

    Roč. 2, č. 11 (2012), s. 694-700 ISSN 2159-5275 R&D Projects: GA ČR(CZ) GPP105/11/P628 Institutional support: RVO:68378297 Keywords : wood * corrosion * defibering * mechanical properties Subject RIV: JN - Civil Engineering http://www.davidpublishing.com

  5. Fundamental Degradation Mechanisms of Multi-Functional Nanoengineered Surfaces

    Science.gov (United States)

    2018-04-08

    not simultaneously). The first student (Patricia Weisensee) has graduated and is currently an Assistant Professor in the Mechanical Engineering ...is planning on remaining for his PhD after obtaining his masters and Hyeongyun is planning on pursuing an academic career in the US after obtaining...progress, Hyeongyun Cha has recently received the Mavis Faculty Fellowship, developed in the College of Engineering to facilitate the training of the

  6. Molecular and genetic mechanisms of environmental mutagens

    International Nuclear Information System (INIS)

    Kubitschek, H.E.; Derstine, P.L.; Griego, V.M.; Matsushita, T.; Peak, J.G.; Peak, M.J.; Reynolds, P.R.; Webb, R.B.; Williams-Hill, D.

    1981-01-01

    This program is primarily concerned with elucidation of the nature of DNA lesions produced by environmental and energy related mutagens, their mechanisms of action, and their repair. The main focus is on actions of chemical mutagens and electromagnetic radiations. Synergistic interactions between mutagens and the mutational processes that lead to synergism are being investigated. Mutagens are chosen for study on the basis of their potential for analysis of mutation (as genetic probes), for development of procedures for reducing mutational damage, for their potential importance to risk assessment, and for development of improved mutagen testing systems. Bacterial cells are used because of the rapidity and clarity of scientific results that can be obtained, the detailed genetic maps, and the many well-defined mutand strains available. The conventional tools of microbial and molecular genetics are used, along with intercomparison of genetically related strains. Advantage is taken of tcollective dose commitment will result in more attention being paid to potential releases of radionuclides at relatively short times after disposal

  7. Mechanisms Underpinning Degradation of Protective Oxides and Thermal Barrier Coatings in High Hydrogen Content (HHC) - Fueled Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Mumm, Daniel

    2013-08-31

    /thermo-chemical attack mechanisms; (iv) developing a mechanics-based analysis of the driving forces for crack growth and delamination, based on molten phase infiltration, misfit upon cooling, and loss of compliance; (v) understanding changes in TGO growth mechanisms associated with these emerging combustion product streams; and (vi) identifying degradation resistant alternative materials (including new compositions or bi-layer concepts) for use in mitigating the observed degradation modes. To address the materials stability concerns, this program integrated research thrusts aimed at: (1) Conducting tests in simulated syngas and HHC environments to evaluate materials evolution and degradation mechanisms; assessing thermally grown oxide development unique to HHC environmental exposures; carrying out high-resolution imaging and microanalysis to elucidate the evolution of surface deposits (molten phase formation and infiltration); exploring thermo-chemical instabilities; assessing thermo-mechanical drivers and thermal gradient effects on degradation; and quantitatively measuring stress evolution due to enhanced sintering and thermo-chemical instabilities induced in the coating. (2) Executing experiments to study the melting and infiltration of simulated ash deposits, and identifying reaction products and evolving phases associated with molten phase corrosion mechanisms; utilizing thermal spray techniques to fabricate test coupons with controlled microstructures to study mechanisms of instability and degradation; facilitating thermal gradient testing; and developing new materials systems for laboratory testing; (3) Correlating information on the resulting combustion environments to properly assess materials exposure conditions and guide the development of lab-scale simulations of material exposures; specification of representative syngas and high-hydrogen fuels with realistic levels of impurities and contaminants, to explore differences in heat transfer, surface degradation, and deposit

  8. Effect of indoor climate on the rate and degradation mechanism of plasticized poly (vinyl chloride)

    DEFF Research Database (Denmark)

    Shashoua, Yvonne

    2003-01-01

    Many PVC materials deteriorate only 5 years after manufacture. The extent, rate and mechanisms of deterioration of model and naturally aged PVC containing di (2-ethylhexyl) phthalate (DEHP), have been examined during thermal ageing in various environments. Weight loss was used to quantify loss...... inhibited degradation of the PVC polymer, therefore when it was lost, discolouration, tackiness and embrittlement resulted. Less plasticized materials degraded more rapidly than those more highly plasticized. Degradation was inhibited in both model sheets and naturally aged materials by enclosing them...

  9. Mechanisms promoting and inhibiting the process of proteasomal degradation of cells

    Directory of Open Access Journals (Sweden)

    Pedrycz Agnieszka

    2016-03-01

    Full Text Available Defects in the process of degradation of unneeded cellular proteins underlie many diseases. This article discusses one of the most important systems of removal of abnormal proteins. It describes the process of ubiquitination of proteins for proteasome degradation. It also describes the structure of the 26S and 20S proteasomes and the mechanism of ubiquitin-proteasome system. Proteasome proteolytic system is highly specialized and organized. Protease-proteasome 26S is particularly important for proper cell functioning. It recognizes and degrades marked proteins. Inhibition of proteasome pathway leads to cell cycle arrest and apoptosis.

  10. Degradation of oxcarbazepine by UV-activated persulfate oxidation: kinetics, mechanisms, and pathways.

    Science.gov (United States)

    Bu, Lingjun; Zhou, Shiqing; Shi, Zhou; Deng, Lin; Li, Guangchao; Yi, Qihang; Gao, Naiyun

    2016-02-01

    The degradation kinetics and mechanism of the antiepileptic drug oxcarbazepine (OXC) by UV-activated persulfate oxidation were investigated in this study. Results showed that UV/persulfate (UV/PS) process appeared to be more effective in degrading OXC than UV or PS alone. The OXC degradation exhibited a pseudo-first order kinetics pattern and the degradation rate constants (k obs) were affected by initial OXC concentration, PS dosage, initial pH, and humic acid concentration to different degrees. It was found that low initial OXC concentration, high persulfate dosage, and initial pH enhanced the OXC degradation. Additionally, the presence of humic acid in the solution could greatly inhibit the degradation of OXC. Moreover, hydroxyl radical (OH•) and sulfate radical (SO4 (-)••) were identified to be responsible for OXC degradation and SO4 (-)• made the predominant contribution in this study. Finally, major intermediate products were identified and a preliminary degradation pathway was proposed. Results demonstrated that UV/PS system is a potential technology to control the water pollution caused by emerging contaminants such as OXC.

  11. Understanding Irreversible Degradation of Nb3Sn Wires with Fundamental Fracture Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Yuhu [PPPL; Calzolaio, Ciro [Univ of Geneva; Senatore, Carmine [Univ of Geneva

    2014-08-01

    Irreversible performance degradation of advanced Nb3Sn superconducting wires subjected to transverse or axial mechanical loading is a critical issue for the design of large-scale fusion and accelerator magnets such as ITER and LHC. Recent SULTAN tests indicate that most cable-in-conduit conductors for ITER coils made of Nb3Sn wires processed by various fabrication techniques show similar performance degradation under cyclic loading. The irreversible degradation due to filament fracture and local strain accumulation in Nb3Sn wires cannot be described by the existing strand scaling law. Fracture mechanic modeling combined with X-ray diffraction imaging of filament micro-crack formation inside the wires under mechanical loading may reveal exciting insights to the wire degradation mechanisms. We apply fundamental fracture mechanics with a singularity approach to study influence of wire filament microstructure of initial void size and distribution to local stress concentration and potential crack propagation. We report impact of the scale and density of the void structure on stress concentration in the composite wire materials for crack initiation. These initial defects result in an irreversible degradation of the critical current beyond certain applied stress. We also discuss options to minimize stress concentration in the design of the material microstructure for enhanced wire performance for future applications.

  12. Photocatalytic degradation of paracetamol: intermediates and total reaction mechanism.

    Science.gov (United States)

    Moctezuma, Edgar; Leyva, Elisa; Aguilar, Claudia A; Luna, Raúl A; Montalvo, Carlos

    2012-12-01

    The advanced oxidation of paracetamol (PAM) promoted by TiO(2)/UV system in aqueous medium was investigated. Monitoring this reaction by HPLC and TOC, it was demonstrated that while oxidation of paracetamol is quite efficient under these conditions, its mineralization is not complete. HPLC indicated the formation of hydroquinone, benzoquinone, p-aminophenol and p-nitrophenol in the reaction mixtures. Further evidence of p-nitrophenol formation was obtained following the reaction by UV-vis spectroscopy. Continuous monitoring by IR spectroscopy demonstrated the breaking of the aromatic amide present in PAM and subsequent formation of several aromatic intermediate compounds such as p-aminophenol and p-nitrophenol. These aromatic compounds were eventually converted into trans-unsaturated carboxylic acids. Based on these experimental results, an alternative deacylation mechanism for the photocatalytic oxidation of paracetamol is proposed. Our studies also demonstrated IR spectroscopy to be a useful technique to investigate oxidative mechanisms of pharmaceutical compounds. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Kinetics and mechanism of thermal degradation of pentose- and hexose-based carbohydrate polymers.

    Science.gov (United States)

    Akbar, Jamshed; Iqbal, Mohammad S; Massey, Shazma; Masih, Rashid

    2012-10-15

    This work aims at study of thermal degradation kinetics and mechanism of pentose- and hexose-based carbohydrate polymers isolated from Plantago ovata (PO), Salvia aegyptiaca (SA) and Ocimum basilicum (OB). The analysis was performed by isoconversional method. The materials exhibited mainly two-stage degradation. The weight loss at ambient-115°C characterized by low activation energy corresponds to loss of moisture. The kinetic triplets consisting of E, A and g(α) model of the materials were determined. The major degradation stage represents a loss of high boiling volatile components. This stage is exothermic in nature. Above 340°C complete degradation takes place leaving a residue of 10-15%. The master plots of g(α) function clearly differentiated the degradation mechanism of hexose-based OB and SA polymers and pentose-based PO polymer. The pentose-based carbohydrate polymer showed D(4) type and the hexose-based polymers showed A(4) type degradation mechanism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Progress in Understanding Degradation Mechanisms and Improving Stability in Organic Photovoltaics

    KAUST Repository

    Mateker, William R.

    2016-12-23

    Understanding the degradation mechanisms of organic photovoltaics is particularly important, as they tend to degrade faster than their inorganic counterparts, such as silicon and cadmium telluride. An overview is provided here of the main degradation mechanisms that researchers have identified so far that cause extrinsic degradation from oxygen and water, intrinsic degradation in the dark, and photo-induced burn-in. In addition, it provides methods for researchers to identify these mechanisms in new materials and device structures to screen them more quickly for promising long-term performance. These general strategies will likely be helpful in other photovoltaic technologies that suffer from insufficient stability, such as perovskite solar cells. Finally, the most promising lifetime results are highlighted and recommendations to improve long-term performance are made. To prevent degradation from oxygen and water for sufficiently long time periods, OPVs will likely need to be encapsulated by barrier materials with lower permeation rates of oxygen and water than typical flexible substrate materials. To improve stability at operating temperatures, materials will likely require glass transition temperatures above 100 °C. Methods to prevent photo-induced burn-in are least understood, but recent research indicates that using pure materials with dense and ordered film morphologies can reduce the burn-in effect.

  15. Progress in Understanding Degradation Mechanisms and Improving Stability in Organic Photovoltaics

    KAUST Repository

    Mateker, William R.; McGehee, Michael D.

    2016-01-01

    Understanding the degradation mechanisms of organic photovoltaics is particularly important, as they tend to degrade faster than their inorganic counterparts, such as silicon and cadmium telluride. An overview is provided here of the main degradation mechanisms that researchers have identified so far that cause extrinsic degradation from oxygen and water, intrinsic degradation in the dark, and photo-induced burn-in. In addition, it provides methods for researchers to identify these mechanisms in new materials and device structures to screen them more quickly for promising long-term performance. These general strategies will likely be helpful in other photovoltaic technologies that suffer from insufficient stability, such as perovskite solar cells. Finally, the most promising lifetime results are highlighted and recommendations to improve long-term performance are made. To prevent degradation from oxygen and water for sufficiently long time periods, OPVs will likely need to be encapsulated by barrier materials with lower permeation rates of oxygen and water than typical flexible substrate materials. To improve stability at operating temperatures, materials will likely require glass transition temperatures above 100 °C. Methods to prevent photo-induced burn-in are least understood, but recent research indicates that using pure materials with dense and ordered film morphologies can reduce the burn-in effect.

  16. Calcium-Magnesium-Aluminosilicate (CMAS) Infiltration and Cyclic Degradations of Thermal and Environmental Barrier Coatings in Thermal Gradients

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan; Smialek, Jim; Miller, Robert A.

    2014-01-01

    In a continuing effort to develop higher temperature capable turbine thermal barrier and environmental barrier coating systems, Calcium-Magnesium-Aluminosilicate (CMAS) resistance of the advanced coating systems needs to be evaluated and improved. This paper highlights some of NASA past high heat flux testing approaches for turbine thermal and environmental barrier coatings assessments in CMAS environments. One of our current emphases has been focused on the thermal barrier - environmental barrier coating composition and testing developments. The effort has included the CMAS infiltrations in high temperature and high heat flux turbine engine like conditions using advanced laser high heat flux rigs, and subsequently degradation studies in laser heat flux thermal gradient cyclic and isothermal furnace cyclic testing conditions. These heat flux CMAS infiltration and related coating durability testing are essential where appropriate CMAS melting, infiltration and coating-substrate temperature exposure temperature controls can be achieved, thus helping quantify the CMAS-coating interaction and degradation mechanisms. The CMAS work is also playing a critical role in advanced coating developments, by developing laboratory coating durability assessment methodologies in simulated turbine engine conditions and helping establish CMAS test standards in laboratory environments.

  17. DEGRADATION WORKS OF MONUMENTAL ART CAST BRONZE UNDER THE INFLUENCE OF ENVIRONMENTAL FACTORS

    Directory of Open Access Journals (Sweden)

    Delia NICA-BADEA

    2012-11-01

    Full Text Available Intensive pollution, combined with the lack of conservation of monuments exposed to these environments make the main cause of deterioration of cultural objects to atmospheric corrosion metal. This paper proposes a study of the main factors leading to degradation Bronze alloy, cast bronze monuments exposed to open atmosphere: corrosive environmental factors, stability and products of corrosion of bronze. In general, all corrosion products present on a metal surface are indicated as 'skate', can be composed of single-layer or multilayer products. The paper also includes a case study on the influence of environmental factors on degradation Matthias monument statue in Cluj-Napoca, Romania. Visual inspection of the monument informs us that have white spots, gray, reddish not consistent with the base color green patina, surfaces showing depigmentation, the rain washed areas, crystallization, deposition of air-borne particles.

  18. Environmental degradation, population displacement and global security: An overview of the issues

    International Nuclear Information System (INIS)

    1992-12-01

    An initial investigation is presented on the interrelationship between environmental degradation and population displacements, in the broader context of how this linkage affects human security. Emphasis is placed on both the causes and effects of population movements, with specific examples drawn from Southeast Asia. Types of migrants, the importance of environmental degradation with respect to other contributing factors, and the effects on origin and destination regions are considered. A key issue is the multi-causality of population displacements and the importance of improving understanding of the issues in order to develop appropriate policies. It is clear from the study that the discussion of environment as a cause or contributing factor to population displacement has, to date, been speculative, and the information provided largely anecdotal. 58 refs., 1 fig., 3 tabs

  19. Degradation mechanism and thermal stability of urea nitrate below the melting point

    International Nuclear Information System (INIS)

    Desilets, Sylvain; Brousseau, Patrick; Chamberland, Daniel; Singh, Shanti; Feng, Hongtu; Turcotte, Richard; Anderson, John

    2011-01-01

    Highlights: → Decomposition mechanism of urea nitrate. → Spectral characterization of the decomposition mechanism. → Thermal stability of urea nitrate at 50, 70 and 100 o C. → Chemical balance of decomposed products released. - Abstract: Aging and degradation of urea nitrate below the melting point, at 100 o C, was studied by using thermal analysis and spectroscopic methods including IR, Raman, 1 H and 13 C NMR techniques. It was found that urea nitrate was completely degraded after 72 h at 100 o C into a mixture of solids (69%) and released gaseous species (31%). The degradation mechanism below the melting point was clearly identified. The remaining solid mixture was composed of ammonium nitrate, urea and biuret while unreacted residual nitric and isocyanic acids as well as traces of ammonia were released as gaseous species at 100 o C. The thermal stability of urea nitrate, under extreme storage conditions (50 o C), was also examined by isothermal nano-calorimetry.

  20. Degradation of the insecticide ethyl parathion in different environmental matrices by gamma radiation from Cobalt-60

    International Nuclear Information System (INIS)

    Luchini, Luiz Carlos

    1995-01-01

    This work studies the use of gamma radiation from cobalt-60 to induce parathion degradation in different matrices, as well as, quantified GC-NPD and identified by GC-MS, the radiolysis resulting products. Results show that the insecticide was completely degraded in aqueous solution after treatment with 1.0 kGy dosis in a dosis rate of 3.12 kGy h -1 . In methanol, parathion was completely degraded only with 30 kGy at 3.12 kGy h -1 . The metabolites detected after radiolysis were the same formed by biological degradation, i.e, p-nitrophenol, p-aminophenol, paraoxon and aminoparathion. The gamma radiation also degraded paraoxon which is the most toxic metabolite of parathion. It was verified that, not only the total radiation, but also the dosis rate supplied to the aqueous solution had a significant effect on the insecticide degradation, and the formation of metabolites occurred in a selective way respecting the dosis and dosis rate. Otherwise, the gamma radiation did almost not degraded the parathion adsorbed in solid matrices as rice, moist and dry soil, even using dosis of 5,30 and 50 kGy, respectively. The parathion yield and the dosis of gamma radiation needed for 50% reduction of the insecticide initial concentration in aqueous solution were also calculated and presented. Thus, it was verified that irradiation of parathion besides to be an important instrument for environmental decontamination of this pesticide in aqueous matrix, it allows the production of parathion metabolites for ecotoxicological studies. (author)

  1. Trade Unions facing the dual challenge of globalising work division and globalising environmental degradation

    OpenAIRE

    Räthzel, N; Uzzell, David

    2011-01-01

    This paper presents results of a project aimed at investigating the ways in which trade unions in the “Global North” and the “Global South” respond to the dual challenge of a globalising work division and globalising environmental degradation, and whether and under what conditions trade unions perceive and address these issues as connected. While globalising corporations are forming new international relations of power, trade unions are lagging behind in unifying their efforts to counter glob...

  2. Determinants of Environmental Degradation under the Perspective of Globalization: A Panel Analysis of Selected MENA Nations

    OpenAIRE

    Audi, Marc; Ali, Amjad

    2018-01-01

    This paper has examined the determinants of environmental degradation under the perspective of globalization in the case of selected MENA nations (Jordan, United Arab Emirates, Saudi Arabia, Algeria, Qatar, Lebanon, Egypt, Bahrain, Iran, Morocco, Israel, Kuwait, Oman and Tunisia) over the period of 1980 to 2013. ADF - Fisher Chi-square, Im, Pesaran and Shin W-stat, Levin, Lin & Chu t*, and PP-Fisher Chi-square unit root tests are used for analyzing the stationarity of the variables. This stud...

  3. [Between everyday practices and interventions: narrative fragments on environmental degradation and health in Aracaju, Brazil].

    Science.gov (United States)

    da Fonseca, Lázaro Batista; Nobre, Maria Teresa; dos Santos, João José Gomes

    2014-10-01

    The scope of this paper is to describe the relationship between health production, urban growth and environmental degradation in the community of the "Urban Expansion Zone" of Aracaju in the State of Sergipe. It also touches on the impacts on the health of the population due to tourism and real estate speculation associated with the absence of basic services. Based on the assumption that illnesses caused by such changes only appear on the public health care system as a worsening of symptoms, neglecting the complex health-environment relationship, this paper highlights the possibility of pondering the bases upon which urban growth occurs in the light of imminent environmental degradation. The activities of health community agents were monitored duly connecting them to regional growth and environmental degradation. This was done from March 2010 and June 2011 adopting the ethnographic perspective as the method of choice. Other ways of inclusion in the community were mapped: contact with older residents, religious leaderships and the members of the traditional professions, etc. The results show the changes that have been occurring in the region, especially with respect to the extinction of traditional practices, increase in violence, unemployment, loss of community ties and illness.

  4. Environmental degradation costs in electricity generation: The case of the Brazilian electrical matrix

    International Nuclear Information System (INIS)

    Alves, Laura Araujo; Uturbey, Wadaed

    2010-01-01

    The main purpose of this paper is to emphasize the importance of including environmental degradation costs in the long-term planning of the Brazilian electricity sector. To this aim, environmental external costs associated to both hydro-power and thermal-power electricity generation are investigated. Monetary valuation methodologies are applied and environmental degradation costs, expressed in per kWh of generated energy, are obtained for the main types of generation sources of the Brazilian electricity matrix. Both local pollution due to particulate matter emissions and global warming effects are assessed. A classification of the sources from the point of view of their impact on the environment is given. Degradation costs associated to the installed capacity expansion in the Brazilian electricity sector during the time horizon 2007-2016 are estimated. These resulting costs represent lower boundary damage estimates associated only with the energy to be generated during the period. Results indicate that local pollution caused by a small number of plants could be even more costly to society than global warming and, also, show the importance of considering not only unitary damage costs but the participation of each source on the generated energy during the time horizon, as a guide to planning and policy making.

  5. Producing Gorongosa: Space and the Environmental Politics of Degradation in Mozambique

    Directory of Open Access Journals (Sweden)

    Michael Madison Walker

    2015-01-01

    Full Text Available This article examines the spatial production of the greater Gorongosa ecosystem, linking the production of space with scientific discourses on environmental degradation. Ecological research conducted in Gorongosa National Park (GNP in the 1960s established the spatial contours and produced the greater Gorongosa ecosystem that is continually under threat from Mozambican cultivators. This discursive production and its material effects obscure a long history of human occupancy and transformation of the landscape that is now categorised as a national park. The use of aerial surveys and satellite imagery by conservationists to chart biophysical changes in the landscape is central to the spatial production of the greater Gorongosa ecosystem. The knowledge produced through these ways of seeing the landscape is used to justify various socio-technical and legal interventions to protect the environment. Through analysing the discourse on human-induced environmental degradation in GNP between 2005 and 2010, I suggest that when nature and space are taken as self evident by conservation practitioners, there is a danger of reproducing narratives of environmental degradation that simplify historically dynamic interactions between people, institutions, and their biophysical surroundings, and serve as further justification for intervening in the lives and livelihoods of adjacent residents.

  6. Elucidating PID Degradation Mechanisms and In Situ Dark I-V Monitoring for Modeling Degradation Rate in CdTe Thin-Film Modules

    DEFF Research Database (Denmark)

    Hacke, Peter; Spataru, Sergiu; Johnston, Steve

    2016-01-01

    A progression of potential-induced degradation (PID) mechanisms are observed in CdTe modules, including shunting/junction degradation and two different manifestations of series resistance depending on the stress level and water ingress. The dark I-V method for in-situ characterization of Pmax bas...

  7. Legal Mechanism for Achieving Environmental Sustainability in ...

    African Journals Online (AJOL)

    Nekky Umera

    law as a means of social change and social engineering would be used to checkmate ... breach and an effective implementation process/strategies established to ..... responsibility of care of the environment and environmental related issues.

  8. Accelerated Degradation Test and Predictive Failure Analysis of B10 Copper-Nickel Alloy under Marine Environmental Conditions

    Science.gov (United States)

    Sun, Bo; Ye, Tianyuan; Feng, Qiang; Yao, Jinghua; Wei, Mumeng

    2015-01-01

    This paper studies the corrosion behavior of B10 copper-nickel alloy in marine environment. Accelerated degradation test under marine environmental conditions was designed and performed based on the accelerated testing principle and the corrosion degradation mechanism. With the prolongation of marine corrosion time, the thickness of Cu2O film increased gradually. Its corrosion product was Cu2(OH)3Cl, which increased in quantity over time. Cl− was the major factor responsible for the marine corrosion of copper and copper alloy. Through the nonlinear fitting of corrosion rate and corrosion quantity (corrosion weight loss), degradation data of different corrosion cycles, the quantitative effects of two major factors, i.e., dissolved oxygen (DO) and corrosion medium temperature, on corrosion behavior of copper alloy were analyzed. The corrosion failure prediction models under different ambient conditions were built. One-day corrosion weight loss under oxygenated stirring conditions was equivalent to 1.31-day weight loss under stationary conditions, and the corrosion rate under oxygenated conditions was 1.31 times higher than that under stationary conditions. In addition, corrosion medium temperature had a significant effect on the corrosion of B10 copper sheet. PMID:28793549

  9. Accelerated Degradation Test and Predictive Failure Analysis of B10 Copper-Nickel Alloy under Marine Environmental Conditions.

    Science.gov (United States)

    Sun, Bo; Ye, Tianyuan; Feng, Qiang; Yao, Jinghua; Wei, Mumeng

    2015-09-10

    This paper studies the corrosion behavior of B10 copper-nickel alloy in marine environment. Accelerated degradation test under marine environmental conditions was designed and performed based on the accelerated testing principle and the corrosion degradation mechanism. With the prolongation of marine corrosion time, the thickness of Cu₂O film increased gradually. Its corrosion product was Cu₂(OH)₃Cl, which increased in quantity over time. Cl - was the major factor responsible for the marine corrosion of copper and copper alloy. Through the nonlinear fitting of corrosion rate and corrosion quantity (corrosion weight loss), degradation data of different corrosion cycles, the quantitative effects of two major factors, i.e. , dissolved oxygen (DO) and corrosion medium temperature, on corrosion behavior of copper alloy were analyzed. The corrosion failure prediction models under different ambient conditions were built. One-day corrosion weight loss under oxygenated stirring conditions was equivalent to 1.31-day weight loss under stationary conditions, and the corrosion rate under oxygenated conditions was 1.31 times higher than that under stationary conditions. In addition, corrosion medium temperature had a significant effect on the corrosion of B10 copper sheet.

  10. Accelerated Degradation Test and Predictive Failure Analysis of B10 Copper-Nickel Alloy under Marine Environmental Conditions

    Directory of Open Access Journals (Sweden)

    Bo Sun

    2015-09-01

    Full Text Available This paper studies the corrosion behavior of B10 copper-nickel alloy in marine environment. Accelerated degradation test under marine environmental conditions was designed and performed based on the accelerated testing principle and the corrosion degradation mechanism. With the prolongation of marine corrosion time, the thickness of Cu2O film increased gradually. Its corrosion product was Cu2(OH3Cl, which increased in quantity over time. Cl− was the major factor responsible for the marine corrosion of copper and copper alloy. Through the nonlinear fitting of corrosion rate and corrosion quantity (corrosion weight loss, degradation data of different corrosion cycles, the quantitative effects of two major factors, i.e., dissolved oxygen (DO and corrosion medium temperature, on corrosion behavior of copper alloy were analyzed. The corrosion failure prediction models under different ambient conditions were built. One-day corrosion weight loss under oxygenated stirring conditions was equivalent to 1.31-day weight loss under stationary conditions, and the corrosion rate under oxygenated conditions was 1.31 times higher than that under stationary conditions. In addition, corrosion medium temperature had a significant effect on the corrosion of B10 copper sheet.

  11. Organizational and legal mechanism of the environmental protection

    Directory of Open Access Journals (Sweden)

    А. П. Гетьман

    2014-12-01

    Full Text Available Organizational and legal mechanisms of environmental protection are defined by the author of the article as a mechanism of organization and system of activities of state executive power bodies and local self-government bodies in the field of environmental public relations arising in connection with environmental protection and environmental safety provision. The rules of administrative law are its legal basis, alongside with the norms of environmental law. The former designed to reflect the specifics of the subject, objects, subjects and principles of legal regulation of social relations in this area. The latter define common goals, objectives and functions of state public relations management nature.

  12. Characterization of mechanisms underlying degradation of sclerotia of Sclerotinia sclerotiorum by Aspergillus aculeatus Asp-4 using a combined qRT-PCR and proteomic approach.

    Science.gov (United States)

    Hu, Xiaojia; Qin, Lu; Roberts, Daniel P; Lakshman, Dilip K; Gong, Yangmin; Maul, Jude E; Xie, Lihua; Yu, Changbing; Li, Yinshui; Hu, Lei; Liao, Xiangsheng; Liao, Xing

    2017-08-31

    The biological control agent Aspergillus aculeatus Asp-4 colonizes and degrades sclerotia of Sclerotinia sclerotiorum resulting in reduced germination and disease caused by this important plant pathogen. Molecular mechanisms of mycoparasites underlying colonization, degradation, and reduction of germination of sclerotia of this and other important plant pathogens remain poorly understood. An RNA-Seq screen of Asp-4 growing on autoclaved, ground sclerotia of S. sclerotiorum for 48 h identified 997 up-regulated and 777 down-regulated genes relative to this mycoparasite growing on potato dextrose agar (PDA) for 48 h. qRT-PCR time course experiments characterized expression dynamics of select genes encoding enzymes functioning in degradation of sclerotial components and management of environmental conditions, including environmental stress. This analysis suggested co-temporal up-regulation of genes functioning in these two processes. Proteomic analysis of Asp-4 growing on this sclerotial material for 48 h identified 26 up-regulated and 6 down-regulated proteins relative to the PDA control. Certain proteins with increased abundance had putative functions in degradation of polymeric components of sclerotia and the mitigation of environmental stress. Our results suggest co-temporal up-regulation of genes involved in degradation of sclerotial compounds and mitigation of environmental stress. This study furthers the analysis of mycoparasitism of sclerotial pathogens by providing the basis for molecular characterization of a previously uncharacterized mycoparasite-sclerotial interaction.

  13. Environmental, biochemical and genetic drivers of DMSP degradation and DMS production in the Sargasso Sea.

    Science.gov (United States)

    Levine, Naomi Marcil; Varaljay, Vanessa A; Toole, Dierdre A; Dacey, John W H; Doney, Scott C; Moran, Mary Ann

    2012-05-01

    Dimethylsulfide (DMS) is a climatically relevant trace gas produced and cycled by the surface ocean food web. Mechanisms driving intraannual variability in DMS production and dimethylsulfoniopropionate (DMSP) degradation in open-ocean, oligotrophic regions were investigated during a 10-month time-series at the Bermuda Atlantic Time-series Study site in the Sargasso Sea. Abundance and transcription of bacterial DMSP degradation genes, DMSP lyase enzyme activity, and DMS and DMSP concentrations, consumption rates and production rates were quantified over time and depth. This interdisciplinary data set was used to test current hypotheses of the role of light and carbon supply in regulating upper-ocean sulfur cycling. Findings supported UV-A-dependent phytoplankton DMS production. Bacterial DMSP degraders may also contribute significantly to DMS production when temperatures are elevated and UV-A dose is moderate, but may favour DMSP demethylation under low UV-A doses. Three groups of bacterial DMSP degraders with distinct intraannual variability were identified and niche differentiation was indicated. The combination of genetic and biochemical data suggest a modified 'bacterial switch' hypothesis where the prevalence of different bacterial DMSP degradation pathways is regulated by a complex set of factors including carbon supply, temperature and UV-A dose. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  14. Degradation kinetics of a potent antifouling agent, butenolide, under various environmental conditions

    KAUST Repository

    Chen, Lianguo

    2015-01-01

    © 2014 Elsevier Ltd. Here, we investigated the degradation kinetics of butenolide, a promising antifouling compound, under various environmental conditions. The active ingredient of the commercial antifoulant SeaNine 211, 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT), was used as positive control. The results showed that the degradation rate increased with increasing temperature. Half-lives of butenolide at 4. °C, 25. °C and 40. °C were. >64. d, 30.5. d and 3.9. d, respectively. Similar half-lives were recorded for DCOIT: >64. d at 4. °C, 27.9. d at 25. °C and 4.5. d at 40. °C. Exposure to sunlight accelerated the degradation of both butenolide and DCOIT. The photolysis half-lives of butenolide and DCOIT were 5.7. d and 6.8. d, respectively, compared with 9.7. d and 14.4. d for the dark control. Biodegradation led to the fastest rate of butenolide removal from natural seawater, with a half-life of 0.5. d, while no obvious degradation was observed for DCOIT after incubation for 4. d. The biodegradative ability of natural seawater for butenolide was attributed mainly to marine bacteria. During the degradation of butenolide and DCOIT, a gradual decrease in antifouling activity was observed, as indicated by the increased settlement percentage of cypris larvae from barnacle Balanus amphitrite. Besides, increased cell growth of marine diatom Skeletonema costatum demonstrated that the toxicity of seawater decreased gradually without generation of more toxic by-products. Overall, rapid degradation of butenolide in natural seawater supported its claim as a promising candidate for commercial antifouling industry.

  15. Unequal Ecological Exchange and Environmental Degradation: A Theoretical Proposition and Cross-National Study of Deforestation, 1990-2000

    Science.gov (United States)

    Jorgenson, Andrew K.

    2006-01-01

    Political-economic sociologists have long investigated the dynamics and consequences of international trade. With few exceptions, this area of inquiry ignores the possible connections between trade and environmental degradation. In contrast, environmental sociologists have made several assumptions about the environmental impacts of international…

  16. Mechanical properties, morphology, and hydrolytic degradation behavior of polylactic acid / natural rubber blends

    Science.gov (United States)

    Buys, Y. F.; Aznan, A. N. A.; Anuar, H.

    2018-01-01

    Due to its biodegradability and renewability, polylactic acid (PLA) has been receiving enormous attention as a potential candidate to replace petroleum based polymers. However, PLA has limitation due to its inherent brittleness. In order to overcome this limitation, blending PLA with elastomeric materials such as natural rubber (NR) are commonly reported. In previous, several researches on PLA/NR blend had been reported, with most of them evaluated the mechanical properties. On the other hand, study of degradation behavior is significance of importance, as controlling materials degradation is required in some applications. This research studied the effect of blend composition on mechanical properties, morphology development, and hydrolytic degradation behavior of PLA/NR blends. Various compositions of PLA/NR blends were prepared by melt blending technique. Tensile test and impact test of the blends were performed to evaluate the mechanical properties. Addition of NR improved the elongation at break and impact strength of the blends, but reduced the tensile strength and stiffness of the specimens. Dynamic Mechanical Analysis (DMA) measurements of the blends displayed two peaks at temperature -70˚C which corresponded to T g of NR and 65˚C which corresponded to T g of PLA. Field Emission Scanning Electron Microscopy (FE-SEM) micrograph of 70/30 PLA/NR specimen also showed two distinct phases, which lead to indication that PLA/NR blends are immiscible. Hydrolytic degradation behavior was evaluated by measuring the remaining weight of the samples immersed in sodium hydroxide solution for a predetermined times. It was shown that the degradation behavior of PLA/NR blends is affected by composition of the blends, with 100 PLA and 70/30 PLA/NR blend showed the fastest degradation rate and 100 NR displayed the slowest one.

  17. Degradation mechanisms of sulfonated poly-aromatic membranes in fuel cell

    International Nuclear Information System (INIS)

    Perrot, C.

    2006-11-01

    Fuel cell development requires an improvement in the electrode-membrane assembly durability which depends on both the polymer used and the fuel cell operating conditions. The origin of the degradation can be either electrochemical, chemical and/or mechanical. This study deals with the understanding of alternative membranes ageing mechanisms, i.e. non fluorinated membranes, such as sPEEK and sPI. For this kind of membranes, the first process is chemical. Understanding these mechanisms is the first essential step to develop more stable structures. An original approach is developed to overcome the analytical difficulties encountered with polymers. It consists in studying the degradation mechanism on model structures. Ageing are carried out in water, with H 2 O 2 in some cases (identified as a cause of membrane chemical ageing in the fuel cell system), and at different temperatures. The approach consists in separating the different products formed by chromatography. Then they are identified (NMR, IR, MS) and quantified. This method allows us to establish the ageing mechanism. We show that the ageing of a sPEEK structure mainly results from an attack by end chains which spreads to the whole. This mechanism is confirmed on ex-situ and in-situ aged membranes. These two kinds of ageing lead to an important decrease in polymerisation degree (determined by SEC). Formation of the same degradation products is observed. In fuel cells, a heterogeneous degradation is noticed. It takes place mainly on the cathode side. sPI are known for their high sensitivity to hydrolysis. Nevertheless, we highlight a limited degradation at 80 Celsius degrees due to the recombination of hydrolyzed species at this temperature. (author)

  18. Environmental degradation of Opalinus Clay with cyclic variations in relative humidity

    Science.gov (United States)

    Wild, Katrin; Walter, Patric; Madonna, Claudio; Amann, Florian

    2016-04-01

    Clay shales are considered as favorable host rocks for nuclear waste repositories due to their low permeability, high sorption capacity and the potential for self-sealing. However, the favorable characteristics of the rock mass may change during tunnel excavation. Excavation is accompanied by stress redistribution and the development of an excavation damage zone. Furthermore, unloading and exposure to atmospheric conditions with a lower relative humidity (RH) causes desaturation of the rock mass close to the tunnel. This leads to shrinkage and the formation of desiccation cracks. During the open drift stage, seasonal atmospheric changes, especially RH variations, may alter the rock mass and influence the long-term crack evolution. This contribution discusses the influence of RH variation on the mechanical behavior of OPA. A series of specimens were exposed to short-term and long-term, stepwise cyclic RH variations between about 60 and 95% at constant temperature. Strains were measured using strain gauges to monitor the volumetric response during RH cycles. After each applied RH cycle, Brazilian tensile strength (BTS) tests were performed to identify whether there is a change in tensile strength due to environmental damage caused by the change in RH. Swelling and shrinkage of the specimens accompanied by irreversible volumetric expansion was observed as a consequence of the exposure to RH cycles. However, the irreversible strain was limited to the direction normal to bedding suggesting that internal damage is restricted along the bedding planes. No significant effect of cyclic RH variations on the BTS of the specimens was observed. The strength parallel to bedding remained constant over several cycles while the strength normal to bedding shows a slightly decreasing trend after 2 cycles. Furthermore, the water retention characteristics of the specimens were not altered significantly during stepwise RH cycling as the evolution of the water content was reversible

  19. Photo-degradation of poly(neopentyl isophthalate). Part II: Mechanism of cross-linking.

    NARCIS (Netherlands)

    Malanowski, P.; Benthem, van R.A.T.M.; Ven, van der L.G.J.; Laven, J.; Kisin, S.; With, de G.

    2011-01-01

    The mechanism of cross-linking of poly(neopentyl isophthalate) (PNI) by photo-degradation in nitrogen atmosphere was investigated. The exposure of PNI to UV light resulted in gel (insoluble material) formation. The gel material was collected and the morphology of the gel material was characterized

  20. Lifetimes of organic photovoltaics: Combining chemical and physical characterisation techniques to study degradation mechanisms

    DEFF Research Database (Denmark)

    Norrman, K.; Larsen, N.B.; Krebs, Frederik C

    2006-01-01

    Degradation mechanisms of a photovoltaic device with an Al/C-60/C-12-PSV/PEDOT:PSS/ITO/glass geometry was studied using a combination of in-plane physical and chemical analysis techniques: TOF-SIMS, AFM, SEM, interference microscopy and fluorescence microscopy. A comparison was made between...

  1. Change of mechanical properties of Norway Spruce wood due to degradation caused by fire retardants

    Czech Academy of Sciences Publication Activity Database

    Kloiber, Michal; Frankl, Jiří; Drdácký, Miloš; Kučerová, I.; Tippner, J.; Bryscejn, Jan

    2010-01-01

    Roč. 55, č. 4 (2010), s. 23-38 ISSN 1336-4561 Grant - others:GAČR(CZ) GA103/07/1091 Program:GA Institutional research plan: CEZ:AV0Z20710524 Keywords : wood degradation * fire retardant * mechanical properties * tensile strength * hardness Subject RIV: JN - Civil Engineering Impact factor: 0.284, year: 2010

  2. Degradation of the mechanical properties in ASR-affected concrete : Overview and modeling

    NARCIS (Netherlands)

    Esposito, R.; Hendriks, M.A.N.

    2012-01-01

    The Alkali-Silica Reaction (ASR) can generate harmful effects in the concrete structures. In this paper the degradation of the mechanical properties of ASR-affected concrete is studied by comparing the experimental results available in literature. An overview of the macroscopic material modelling

  3. Agrofibre reinforced poly(lactic acid) composites: Effect of moisture on degradation and mechanical properties

    NARCIS (Netherlands)

    Oever, van den M.J.A.; Beck, B.; Müssig, J.

    2010-01-01

    Natural fibre reinforced PLA composites are a 100% biobased material with a promising mechanical properties profile. However, natural fibres are hygroscopic whereas PLA is sensitive to hydrolytic degradation under melt processing conditions in the presence of small amounts of water. Here, we

  4. Impacts of environmental degradation and climate change on electricity generation in Malawi

    Energy Technology Data Exchange (ETDEWEB)

    Kaunda, Chiyembekezo S. [Department of Energy and Process Engineering – WaterPower Laboratory, Norway University of Science and Technology, Trondheim NO-7491 (Norway); Mtalo, Felix [Department of Water Resources Engineering, University of Dar es Salaam, P.O. Box 35031, Dar es Salaam (Tanzania, United Republic of)

    2013-07-01

    Hydropower is an important energy source in Malawi because it provides almost all of the country’s electricity generation capacity. This paper has reviewed the impacts of environmental degradation and climate change on hydropower generation in Malawi. Energy scenario and other issues that contribute towards the current state of environment have been discussed. All of Malawi’s hydropower stations are run-of-river schemes cascaded along the Shire River with an installed capacity of nearly 280 MW. The generation is impacted negatively by floods, siltation, droughts and aquatic weeds infestation. The way how these challenges are being exacerbated by the poor state of the environment, especially within the Shire River basin in particular is also discussed in the paper. Measures taken by the national electricity utility company on how to manage the impacts are discussed as well. The paper concludes that hydropower generation system in a highly environmental degraded area is difficult to manage both technically and economically. In the case of Malawi, diversifying to other energy sources of generating electricity is considered to be a viable option. Some mitigation measures concerning environment degradation and climate change challenges have been suggested in the paper.

  5. Taking the 'U' out of Kuznets. A comprehensive analysis of the EKC and environmental degradation

    International Nuclear Information System (INIS)

    Caviglia-Harris, Jill L.; Chambers, Dustin; Kahn, James R.

    2009-01-01

    Unlike most Environmental Kuznets Curve (EKC) studies which focus on narrow measures of pollution as proxies for environmental quality, we test the validity of the EKC using the Ecological Footprint (EF), a more comprehensive measure of environmental degradation. We find no empirical evidence of an EKC relationship between the EF and economic development, and only limited support for such a relationship among the components of the EF. In addition, we discover that energy is largely responsible for the lack of an EKC relationship, and that energy consumption levels would have to be cut by over 50% in order for a statistically significant EKC relationship to emerge from the data. Overall, these results suggest that growth alone will not lead to sustainable development. (author)

  6. Mechanical study of PLA-PCL fibers during in vitro degradation

    OpenAIRE

    Vieira, AC; Vieira, JC; Ferra, JM; Magalhaes, FD; Guedes, RM; Marques, AT

    2011-01-01

    The aliphatic polyesters are widely used in biomedical applications since they are susceptible to hydrolytic and/or enzymatic chain cleavage, leading to alpha-hydroxyacids, generally metabolized in the human body. This is particularly useful for many biomedical applications, especially, for temporary mechanical supports in regenerative medical devices. Ideally, the degradation should be compatible with the tissue recovering. In this work, the evolution of mechanical properties during degradat...

  7. Insights into the Mechanism and Kinetics of Thermo-Oxidative Degradation of HFPE High Performance Polymer.

    Science.gov (United States)

    Kunnikuruvan, Sooraj; Parandekar, Priya V; Prakash, Om; Tsotsis, Thomas K; Nair, Nisanth N

    2016-06-02

    The growing requisite for materials having high thermo-oxidative stability makes the design and development of high performance materials an active area of research. Fluorination of the polymer backbone is a widely applied strategy to improve various properties of the polymer, most importantly the thermo-oxidative stability. Many of these fluorinated polymers are known to have thermo-oxidative stability up to 700 K. However, for space and aerospace applications, it is important to improve its thermo-oxidative stability beyond 700 K. Molecular-level details of the thermo-oxidative degradation of such polymers can provide vital information to improve the polymer. In this spirit, we have applied quantum mechanical and microkinetic analysis to scrutinize the mechanism and kinetics of the thermo-oxidative degradation of a fluorinated polymer with phenylethenyl end-cap, HFPE. This study gives an insight into the thermo-oxidative degradation of HFPE and explains most of the experimental observations on the thermo-oxidative degradation of this polymer. Thermolysis of C-CF3 bond in the dianhydride component (6FDA) of HFPE is found to be the rate-determining step of the degradation. Reaction pathways that are responsible for the experimentally observed weight loss of the polymer is also scrutinized. On the basis of these results, we propose a modification of HFPE polymer to improve its thermo-oxidative stability.

  8. Mechanical degradation of Emplacement Drifts at Yucca Mountain - A Modeling Case Study. Part I: Nonlithophysal Rock

    International Nuclear Information System (INIS)

    M. Lin; D. Kicker; B. Damjanac; M. Board; M. Karakouzian

    2006-01-01

    This paper outlines rock mechanics investigations associated with mechanical degradation of planned emplacement drifts at Yucca Mountain, which is the designated site for the proposed U.S. high-level nuclear waste repository. The factors leading to drift degradation include stresses from the overburden, stresses induced by the heat released from the emplaced waste, stresses due to seismically related ground motions, and time-dependent strength degradation. The welded tuff emplacement horizon consists of two groups of rock with distinct engineering properties: nonlithophysal units and lithophysal units, based on the relative proportion of lithophysal cavities. The term 'lithophysal' refers to hollow, bubble like cavities in volcanic rock that are surrounded by a porous rim formed by fine-grained alkali feldspar, quartz, and other minerals. Lithophysae are typically a few centimeters to a few decimeters in diameter. Part I of the paper concentrates on the generally hard, strong, and fractured nonlithophysal rock. The degradation behavior of the tunnels in the nonlithophysal rock is controlled by the occurrence of keyblocks. A statistically equivalent fracture model was generated based on extensive underground fracture mapping data from the Exploratory Studies Facility at Yucca Mountain. Three-dimensional distinct block analyses, generated with the fracture patterns randomly selected from the fracture model, were developed with the consideration of in situ, thermal, and seismic loads. In this study, field data, laboratory data, and numerical analyses are well integrated to provide a solution for the unique problem of modeling drift degradation

  9. Mechanical behaviour of biodegradable AZ31 magnesium alloy after long term in vitro degradation.

    Science.gov (United States)

    Adekanmbi, Isaiah; Mosher, Christopher Z; Lu, Helen H; Riehle, Mathis; Kubba, Haytham; Tanner, K Elizabeth

    2017-08-01

    Biodegradable magnesium alloys including AZ31 are exciting candidates for temporary implants as they eliminate the requirement for surgical removal, yet have higher mechanical properties than degradable polymers. However, the very long term mechanical properties and degradation of these alloys have not been fully characterized. The tensile, bending and corrosion behaviour of biodegradable AZ31 Mg alloy specimens have been investigated for up to 9months in vitro in phosphate buffered saline (PBS). Small AZ31 Mg specimens showed a significant drop in bend yield strength and modulus after 3months in vitro degradation and an average mass loss of 6.1%. Larger dumbbell specimens showed significant drops in tensile strength from 251.96±3.53MPa to 73.5±20.2MPa and to 6.43±0.9MPa and in modulus from 47.8±5.6GPa to 25.01±3.4GPa and 2.36±0.89GPa after 3 and 9months respectively. These reductions were accompanied by an average mass loss of 18.3% in 9months. Degradation rate for the small and large specimens followed similar profiles with immersion time, with peak degradation rates of 0.1747gm -2 h - 1 and 0.0881gm -2 h - 1 , and average rates of 0.1038gm -2 h - 1 and 0.0397gm -2 h - 1 respectively. SEM fractography and polished specimen cross-sections revealed corrosion pits, cracks and corrosion induced defects. These data indicate the potential of AZ31 Mg for use in implants that require medium term degradation with load bearing mechanical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Laboratory test methods to determine the degradation of plastics in marine environmental conditions

    Directory of Open Access Journals (Sweden)

    Maurizio eTosin

    2012-06-01

    Full Text Available In this technology report, three test methods were developed to characterize the degradation of plastic in marine environment. The aim was to outline a test methodology to measure the physical and biological degradation in different habitats where plastic waste can deposit when littered in the sea. Previously, research has focused mainly on the conditions encountered by plastic items when floating in the sea water (pelagic domain. However, this is just one of the possible habitats that plastic waste can be exposed to. Waves and tides tend to wash up plastic waste on the shoreline, which is also a relevant habitat to be studied. Therefore, the degradation of plastic items buried under sand kept wet with sea water has been followed by verifying the disintegration (visual disappearing as a simulation of the tidal zone. Most biodegradable plastics have higher densities than water and also as a consequence of fouling, they tend to sink and lay on the sea floor. Therefore, the fate of plastic items lying on the sediment has been followed by monitoring the oxygen consumption (biodegradation. Also the effect of a prolonged exposure to the sea water, to simulate the pelagic domain, has been tested by measuring the decay of mechanical properties. The test material (Mater-Bi was shown to degrade (total disintegration achieved in less than 9 months when buried in wet sand (simulation test of the tidal zone, to lose mechanical properties but still maintain integrity (tensile strength at break = -66% in 2 years when exposed to sea water in an aquarium (simulation of pelagic domain, and substantially biodegrade (69% in 236 days; biodegradation relative to paper: 88% when located at the sediment/sea water interface (simulation of benthic domain. This study is not conclusive as the methodological approach must be completed by also determining degradation occurring in the supralittoral zone, on the deep sea floor, and in the anoxic sediment.

  11. Laboratory test methods to determine the degradation of plastics in marine environmental conditions.

    Science.gov (United States)

    Tosin, Maurizio; Weber, Miriam; Siotto, Michela; Lott, Christian; Degli Innocenti, Francesco

    2012-01-01

    In this technology report, three test methods were developed to characterize the degradation of plastic in marine environment. The aim was to outline a test methodology to measure the physical and biological degradation in different habitats where plastic waste can deposit when littered in the sea. Previously, research has focused mainly on the conditions encountered by plastic items when floating in the sea water (pelagic domain). However, this is just one of the possible habitats that plastic waste can be exposed to. Waves and tides tend to wash up plastic waste on the shoreline, which is also a relevant habitat to be studied. Therefore, the degradation of plastic items buried under sand kept wet with sea water has been followed by verifying the disintegration (visual disappearing) as a simulation of the tidal zone. Most biodegradable plastics have higher densities than water and also as a consequence of fouling, they tend to sink and lay on the sea floor. Therefore, the fate of plastic items lying on the sediment has been followed by monitoring the oxygen consumption (biodegradation). Also the effect of a prolonged exposure to the sea water, to simulate the pelagic domain, has been tested by measuring the decay of mechanical properties. The test material (Mater-Bi) was shown to degrade (total disintegration achieved in less than 9 months) when buried in wet sand (simulation test of the tidal zone), to lose mechanical properties but still maintain integrity (tensile strength at break = -66% in 2 years) when exposed to sea water in an aquarium (simulation of pelagic domain), and substantially biodegrade (69% in 236 days; biodegradation relative to paper: 88%) when located at the sediment/sea water interface (simulation of benthic domain). This study is not conclusive as the methodological approach must be completed by also determining degradation occurring in the supralittoral zone, on the deep sea floor, and in the anoxic sediment.

  12. Laboratory Test Methods to Determine the Degradation of Plastics in Marine Environmental Conditions

    Science.gov (United States)

    Tosin, Maurizio; Weber, Miriam; Siotto, Michela; Lott, Christian; Degli Innocenti, Francesco

    2012-01-01

    In this technology report, three test methods were developed to characterize the degradation of plastic in marine environment. The aim was to outline a test methodology to measure the physical and biological degradation in different habitats where plastic waste can deposit when littered in the sea. Previously, research has focused mainly on the conditions encountered by plastic items when floating in the sea water (pelagic domain). However, this is just one of the possible habitats that plastic waste can be exposed to. Waves and tides tend to wash up plastic waste on the shoreline, which is also a relevant habitat to be studied. Therefore, the degradation of plastic items buried under sand kept wet with sea water has been followed by verifying the disintegration (visual disappearing) as a simulation of the tidal zone. Most biodegradable plastics have higher densities than water and also as a consequence of fouling, they tend to sink and lay on the sea floor. Therefore, the fate of plastic items lying on the sediment has been followed by monitoring the oxygen consumption (biodegradation). Also the effect of a prolonged exposure to the sea water, to simulate the pelagic domain, has been tested by measuring the decay of mechanical properties. The test material (Mater-Bi) was shown to degrade (total disintegration achieved in less than 9 months) when buried in wet sand (simulation test of the tidal zone), to lose mechanical properties but still maintain integrity (tensile strength at break = −66% in 2 years) when exposed to sea water in an aquarium (simulation of pelagic domain), and substantially biodegrade (69% in 236 days; biodegradation relative to paper: 88%) when located at the sediment/sea water interface (simulation of benthic domain). This study is not conclusive as the methodological approach must be completed by also determining degradation occurring in the supralittoral zone, on the deep sea floor, and in the anoxic sediment. PMID:22737147

  13. Perception of the Environmental Degradation of Gold Mining on Socio-Economic Variables in Eastern Cameroon, Cameroon

    OpenAIRE

    Marc Anselme Kamga; Charles Olufisayo Olatubara; Moses Monday Atteh; Serge Nzali; Adeola Adenikinju; Théodore Yimgnia Mbiatso; Ralain Bryan Ngatcha

    2018-01-01

    Artisanal mining is associated with a number of environmental impacts, including deforestation and land degradation, open pits which pose animal traps and health hazards, and heavy metals contamination of land (water and soil), dust and noise pollution. The study examines the perception of environmental degradation of gold mining sites in eastern Cameroon. Human-environment interaction and distance decay models are the conceptual framework for this study.  This study employed a survey re...

  14. Physical mechanisms related to the degradation of LPCVD tungsten contacts at elevated temperatures

    International Nuclear Information System (INIS)

    Shenai, K.; Lewis, N.; Smith, G.A.; McConnell, M.D.; Burrell, M.

    1990-01-01

    The thermal stability of LPCVD (low pressure chemical vapor deposition) tungsten contacts to n-type silicon is studied at elevated temperatures in excess of 650 degrees C. The process variants studied include silicon doping, tungsten thickness, and post tungsten deposition dielectric stress temperatures. Detailed measurements of Kelvin contact resistance were made at room temperature as well as at elevated temperatures up to 165 degrees C. The tungsten contact resistance degradation at elevated stress temperatures is correlated with worm hole formation in silicon and the formation and diffusion of tungsten silicide. Extensive analytical measurements were used to characterize the material transformation at elevated stress temperatures to understand the physical mechanisms causing contact degradation

  15. Degradation Mechanisms for GaN and GaAs High Speed Transistors

    Directory of Open Access Journals (Sweden)

    Fan Ren

    2012-11-01

    Full Text Available We present a review of reliability issues in AlGaN/GaN and AlGaAs/GaAs high electron mobility transistors (HEMTs as well as Heterojunction Bipolar Transistors (HBTs in the AlGaAs/GaAs materials systems. Because of the complex nature and multi-faceted operation modes of these devices, reliability studies must go beyond the typical Arrhenius accelerated life tests. We review the electric field driven degradation in devices with different gate metallization, device dimensions, electric field mitigation techniques (such as source field plate, and the effect of device fabrication processes for both DC and RF stress conditions. We summarize the degradation mechanisms that limit the lifetime of these devices. A variety of contact and surface degradation mechanisms have been reported, but differ in the two device technologies: For HEMTs, the layers are thin and relatively lightly doped compared to HBT structures and there is a metal Schottky gate that is directly on the semiconductor. By contrast, the HBT relies on pn junctions for current modulation and has only Ohmic contacts. This leads to different degradation mechanisms for the two types of devices.

  16. Degradation Mechanisms for GaN and GaAs High Speed Transistors

    Science.gov (United States)

    Cheney, David J.; Douglas, Erica A.; Liu, Lu; Lo, Chien-Fong; Gila, Brent P.; Ren, Fan; Pearton, Stephen J.

    2012-01-01

    We present a review of reliability issues in AlGaN/GaN and AlGaAs/GaAs high electron mobility transistors (HEMTs) as well as Heterojunction Bipolar Transistors (HBTs) in the AlGaAs/GaAs materials systems. Because of the complex nature and multi-faceted operation modes of these devices, reliability studies must go beyond the typical Arrhenius accelerated life tests. We review the electric field driven degradation in devices with different gate metallization, device dimensions, electric field mitigation techniques (such as source field plate), and the effect of device fabrication processes for both DC and RF stress conditions. We summarize the degradation mechanisms that limit the lifetime of these devices. A variety of contact and surface degradation mechanisms have been reported, but differ in the two device technologies: For HEMTs, the layers are thin and relatively lightly doped compared to HBT structures and there is a metal Schottky gate that is directly on the semiconductor. By contrast, the HBT relies on pn junctions for current modulation and has only Ohmic contacts. This leads to different degradation mechanisms for the two types of devices.

  17. Mechanical study of PLA-PCL fibers during in vitro degradation.

    Science.gov (United States)

    Vieira, A C; Vieira, J C; Ferra, J M; Magalhães, F D; Guedes, R M; Marques, A T

    2011-04-01

    The aliphatic polyesters are widely used in biomedical applications since they are susceptible to hydrolytic and/or enzymatic chain cleavage, leading to α-hydroxyacids, generally metabolized in the human body. This is particularly useful for many biomedical applications, especially, for temporary mechanical supports in regenerative medical devices. Ideally, the degradation should be compatible with the tissue recovering. In this work, the evolution of mechanical properties during degradation is discussed based on experimental data. The decrease of tensile strength of PLA-PCL fibers follows the same trend as the decrease of molecular weight, and so it can also be modeled using a first order equation. For each degradation stage, hyperelastic models such as Neo-Hookean, Mooney-Rivlin and second reduced order, allow a reasonable approximation of the material behavior. Based on this knowledge, constitutive models that describe the mechanical behavior during degradation are proposed and experimentally validated. The proposed theoretical models and methods may be adapted and used in other biodegradable materials, and can be considered fundamental tools in the design of regenerative medical devices where strain energy is an important requirement, such as, for example, ligaments, cartilage and stents. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Metrics derived from fish assemblages as indicators of environmental degradation in Cerrado streams

    Directory of Open Access Journals (Sweden)

    Milton P. Ávila

    2018-04-01

    Full Text Available ABSTRACT The development of effective monitoring tools depends on finding sensitive metrics that are capable of detecting the most important environmental impacts at a given region. We assessed if metrics derived from stream fish assemblages reflect physical habitat degradation and changes in land cover. We sampled the ichthyofauna and environmental characteristics of 16 stream sites of first and second order in the Upper Tocantins River basin. The streams were classified according to their environmental characteristics into reference (n = 5, intermediate (n = 4, and impacted (n = 7. A total of 4,079 individuals in five orders, 12 families, and 30 species were collected. Of the 20 metrics tested, eight were non-collinear and were tested for their performance in discriminating among groups of streams. Three metrics were sensitive to the gradient of degradation: Berger-Parker dominance index, percentage of characiform fish, and percentage of rheophilic individuals. Some commonly used metrics did not reflect the disturbances and many others were redundant with those that did. These results indicate that the metrics derived from fish assemblages may be informative for identifying the conservation status of streams, with the potential to be used in biomonitoring.

  19. Environmental degradation and migration: the U.S.-Mexico case study.

    Science.gov (United States)

    1998-01-01

    This article provides a detailed account of the conclusions and policy recommendations of a study of environmental degradation and migration between the US and Mexico. Key recommendations and findings were included in the official US Congressional Commission on Immigration Reform report (September 1997). The Congressional report urges Congress to consider environment and development root causes of migration in establishing foreign policies with Mexico and other countries. It appears that the root cause of Mexican migration is rural land degradation or desertification. The study suggests feasible solutions, and not additional border security and employment-related sanctions. The US has the technology and expertise to facilitate programs that address environmental and development issues in targeted and integrated ways. The recommendations serve as a framework for policy reform and debate on rural development and agricultural productivity. Mexican states should be targeted that are new migration-sending states with extensive poverty and soil erosion problems and well-established migration states. Environment, population, and migration are all housed in the Global Affairs Office in the US Department of State, but there is little program integration. The USAID bureaucracy separates agricultural and environmental programs. Solutions include, for example, reducing the costs of remittances from the US to Mexico, conducting research on integrated solutions, and contributing to improved land and water management practices, forest management and land tenure, and the competitiveness of smallholders.

  20. THE IMPLEMENTATION OF LILIFUK CUSTOMARY LAW TOWARDS COASTAL ENVIRONMENTAL DEGRADATION OF KUPANG BAY

    Directory of Open Access Journals (Sweden)

    Ranny Christine Unbanunaek

    2017-02-01

    Full Text Available The kuanheun coastal communities have a customary law that help maintain coastal environmental sustainability resourceS called as lilifuk customary law(lilifuk atolan instrument. This research applied empirical method by formulating three problems: what are the values embedded in lilifuk customary law; how is the of lilifuk customary law contribution to prevent coastal environmental degradation; and how is the correlation between lilifuk customary law values and the law provision on coastal areas and small islands management. The result of the research identified the following; the first, Lilifuk customary law contains religious value, ecological value, communal value, social relations value, solidarity and responsibility value, social leadership value, and educational value. Second, the settlement of law violation by lilifuk customary law is conduted by the following steps: reporting; discussion; verdict; and  execution. Third, there is a correlation between the lilifuk customary lilifuk values and  WP3K Law values. Keywords: lilifuk customary law, environmental degradation, kupang bay

  1. Semi-Degradable Poly(β-amino ester) Networks with Temporally-Controlled Enhancement of Mechanical Properties

    Science.gov (United States)

    Safranski, David L.; Weiss, Daiana; Clark, J. Brian; Taylor, W.R.; Gall, Ken

    2014-01-01

    Biodegradable polymers are clinically used in numerous biomedical applications, and classically show a loss in mechanical properties within weeks of implantation. This work demonstrates a new class of semi-degradable polymers that show an increase in mechanical properties through degradation via a controlled shift in a thermal transition. Semi-degradable polymer networks, poly(β-amino ester)-co-methyl methacrylate, were formed from a low glass transition temperature crosslinker, poly(β-amino ester), and high glass transition temperature monomer, methyl methacrylate, which degraded in a manner dependent upon the crosslinker chemical structure. In vitro and in vivo degradation revealed changes in mechanical behavior due to the degradation of the crosslinker from the polymer network. This novel polymer system demonstrates a strategy to temporally control the mechanical behavior of polymers and to enhance the initial performance of smart biomedical devices. PMID:24769113

  2. Mechanism of radiation-induced degradation of poly(methyl methacrylate)

    International Nuclear Information System (INIS)

    Ichikawa, Tsuneki; Oyama, Ken-ichi; Yoshida, Hiroshi

    1995-01-01

    ESR and gel permeation chromatographic measurements of poly(methyl methacrylate) γ-irradiated between 77 K and 300 K have been carried out to elucidate the mechanism of radiation-induced degradation of the polymer. It is revealed that the scission of the main chain is not taken place immediately after the absorption of radiation energy but is induced by the intramolecular radical conversion of the side-chain -COOCH 2 radical to the tertiary -CH 2 -C(CH 3 )- radical followed by the main-chain β-scission of the latter radical. The degradation is not taken place below 190 K, because the side-chain radical starts to convert only above 190 K. The residual monomer in the polymer reacts with the side-chain radical below 190 K to generate the stable propagating-type radical, so that the degradation is suppressed even after warming the polymer to the ambient temperature. (author)

  3. Oxidative degradation of chlorophenol derivatives promoted by microwaves or power ultrasound: a mechanism investigation.

    Science.gov (United States)

    Cravotto, Giancarlo; Binello, Arianna; Di Carlo, Stefano; Orio, Laura; Wu, Zhi-Lin; Ondruschka, Bernd

    2010-03-01

    Phenols are the most common pollutants in industrial wastewaters (particularly from oil refineries, resin manufacture, and coal processing). In the last two decades, it has become common knowledge that they can be effectively destroyed by nonconventional techniques such as power ultrasound (US) and/or microwave (MW) irradiation. Both techniques may strongly promote advanced oxidation processes (AOPs). The present study aimed to shed light on the effect and mechanism of US- and MW-promoted oxidative degradation of chlorophenols; 2,4-dichlorophenoxyacetic acid (2,4-D), a pesticide widespread in the environment, was chosen as the model compound. 2,4-D degradation by AOPs was carried out either under US (20 and 300 kHz) in aqueous solutions (with and without the addition of Fenton reagent) or solvent-free under MW with sodium percarbonate (SPC). All these reactions were monitored by gas chromatography-mass spectrometry (GC-MS) analysis and compared with the classical Fenton reaction in water under magnetic stirring. The same set of treatments was also applied to 2,4-dichlorophenol (2,4-DCP) and phenol, the first two products that occur a step down in the degradation sequence. Fenton and Fenton-like reagents were employed at the lowest active concentration. The effects of US and MW irradiation were investigated and compared with those of conventional treatments. Detailed mechanisms of Fenton-type reactions were suggested for 2,4-D, 2,4-DCP, and phenol, underlining the principal degradation products identified. MW-promoted degradation under solvent-free conditions with solid Fenton-like reagents (viz. SPC) is extremely efficient and mainly follows pyrolytic pathways. Power US strongly accelerates the degradation of 2,4-D in water through a rapid generation of highly reactive radicals; it does not lead to the formation of more toxic dimers. We show that US and MW enhance the oxidative degradation of 2,4-D and that a considerable saving of oxidants and cutting down of

  4. Empirical research on drive mechanism of firms' environmental management

    Institute of Scientific and Technical Information of China (English)

    Cao Jingshan; Qin Ying

    2007-01-01

    Firms'transformation from passive envrionmental management to active environmental management is the key to solving environmental problems. This paper empirically studies the impact of environmental management incentives on environmental management through model construction. Based on the data and reality of China, we can build a concept model of environmental management driving mechanism, and put forward theoretical hypothesis that can be tested: take the 13 environmental management behaviors (EMBs) as substitute of the comprehensiveness, introduce counting variables, and use NB model, Possion Model and Ordered Probit model the regression analysis. The theory and methods brought forward in this paper will provide references for firms in China to further implement voluntary environmental management, and offer advises and countertneasures for leaders to implement environmental management effectively.

  5. Do economic, financial and institutional developments matter for environmental degradation? Evidence from transitional economies

    Energy Technology Data Exchange (ETDEWEB)

    Tamazian, Artur [School of Economics and Business Administration, University of Santiago de Compostela (Spain); Bhaskara Rao, B. [School of Economics and Finance, University of Western Sydney, Sydney (Australia)

    2010-01-15

    Several studies have examined the relationship between environmental degradation and economic growth. However, most of them did not take into account financial developments and institutional quality. Moreover, Stern [Stern, D., 2004. The rise and fall of the environmental Kuznets curve. World Development 32(8): 1419-1439.] noted that there are important econometric weaknesses in the earlier studies, such as endogeneity, heteroscedasticity, omitted variables, etc. The purpose of this paper is to fill this gap in the literature by investigating the linkage between not only economic development and environmental quality but also financial development and institutional quality. We employ the standard reduced-form modelling approach to control for country-specific unobserved heterogeneity and GMM estimation to control for endogeneity. Our study considers 24 transition economies and panel data for 1993-2004. Our results support the EKC hypothesis while confirming the importance of both institutional quality and financial development for environmental performance. We also found that financial liberalization may be harmful for environmental quality if it is not accomplished in a strong institutional framework. (author)

  6. Factors Affecting Farmers’ Adaptation Strategies to Environmental Degradation and Climate Change Effects: A Farm Level Study in Bangladesh

    Directory of Open Access Journals (Sweden)

    Mohammed Nasir Uddin

    2014-09-01

    Full Text Available Offering a case study of coastal Bangladesh, this study examines the adaptation of agriculturalists to degrading environmental conditions likely to be caused or exacerbated under global climate change. It examines four central components: (1 the rate of self-reported adoption of adaptive mechanisms (coping strategies as a result of changes in climate; (2 ranking the potential coping strategies based on their perceived importance to agricultural enterprises; (3 identification the socio-economic factors associated with adoption of coping strategies, and (4 ranking potential constraints to adoption of coping strategies based on farmers’ reporting on the degree to which they face these constraints. As a preliminary matter, this paper also reports on the perceptions of farmers in the study about their experiences with climatic change. The research area is comprised of three villages in the coastal region (Sathkhira district, a geographic region which climate change literature has highlighted as prone to accelerated degradation. One-hundred (100 farmers participated in the project’s survey, from which the data was used to calculate weighted indexes for rankings and to perform logistic regression. The rankings, model results, and descriptive statistics, are reported here. Results showed that a majority of the farmers self-identified as having engaged in adaptive behavior. Out of 14 adaptation strategies, irrigation ranked first among farm adaptive measures, while crop insurance has ranked as least utilized. The logit model explained that out of eight factors surveyed, age, education, family size, farm size, family income, and involvement in cooperatives were significantly related to self-reported adaptation. Despite different support and technological interventions being available, lack of available water, shortage of cultivable land, and unpredictable weather ranked highest as the respondent group’s constraints to coping with environmental

  7. A Mechanism of Land Degradation in Turf-Mantled Slopes of the Tibetan Plateau

    Science.gov (United States)

    Okin, Gregory S.; D'Odorico, Paolo; Liu, Jianquan

    2018-05-01

    Kobresia pygmaea meadows are typical of Tibetan Plateau landscapes in the 3,000 to 5,500 m elevation range and constitute the most extensive alpine ecosystem in the world. Kobresia pygmaea forms turf mats that stabilize the surface and shelter the underlying soils from water erosion. Large tracts of the Plateau, however, exhibit signs of ongoing degradation of the turf and erosion of the underlying soil. Despite the crucial role played by K. pygmaea turf mats in the stabilization of the headwaters of major Asian rivers, the mechanisms responsible for their degradation remain poorly investigated. Here we develop a process-based model of land degradation of Tibetan Plateau slopes, which accounts for (i) turf cracking, (ii) water flow concentration in the cracks, (iii) crack widening by scouring, and (iv) sheet-flow erosion. As expected, soil erosion increases with the slope and drainage area (hence the observation of stronger erosion in relatively steep downhill sites). Model simulations indicate that with a sensible set of parameters representative of soil and hydrologic conditions in the region, Tibetan Plateau landscapes are vulnerable to turf mat degradation and soil erosion. As soon as polygonal cracks develop, water flow widens them until the landscape is completely barren. At this point sheet flow eventually erodes the mineral soil leaving behind a highly degraded landscape.

  8. Mechanical behaviour of degradable phosphate glass fibres and composites-a review.

    Science.gov (United States)

    Colquhoun, R; Tanner, K E

    2015-12-23

    Biodegradable materials are potentially an advantageous alternative to the traditional metallic fracture fixation devices used in the reconstruction of bone tissue defects. This is due to the occurrence of stress shielding in the surrounding bone tissue that arises from the absence of mechanical stimulus to the regenerating bone due to the mismatch between the elastic modulus of bone and the metal implant. However although degradable polymers may alleviate such issues, these inert materials possess insufficient mechanical properties to be considered as a suitable alternative to current metallic devices at sites of sufficient mechanical loading. Phosphate based glasses are an advantageous group of materials for tissue regenerative applications due to their ability to completely degrade in vivo at highly controllable rates based on the specific glass composition. Furthermore the release of the glass's constituent ions can evoke a therapeutic stimulus in vivo (i.e. osteoinduction) whilst also generating a bioactive response. The processing of these materials into fibres subsequently allows them to act as reinforcing agents in degradable polymers to simultaneously increase its mechanical properties and enhance its in vivo response. However despite the various review articles relating to the compositional influences of different phosphate glass systems, there has been limited work summarising the mechanical properties of different phosphate based glass fibres and their subsequent incorporation as a reinforcing agent in degradable composite materials. As a result, this review article examines the compositional influences behind the development of different phosphate based glass fibre compositions intended as composite reinforcing agents along with an analysis of different potential composite configurations. This includes variations in the fibre content, matrix material and fibre architecture as well as other novel composites designs.

  9. Mechanical and degradation property improvement in a biocompatible Mg-Ca-Sr alloy by thermomechanical processing.

    Science.gov (United States)

    Henderson, Hunter B; Ramaswamy, Vidhya; Wilson-Heid, Alexander E; Kesler, Michael S; Allen, Josephine B; Manuel, Michele V

    2018-04-01

    Magnesium-based alloys have attracted interest as a potential material to comprise biomedical implants that are simultaneously high-strength and temporary, able to provide stabilization before degrading safely and able to be excreted by the human body. Many alloy systems have been evaluated, but this work reports on improved properties through hot extrusion of one promising alloy: Mg-1.0 wt% Ca-0.5 wt%Sr. This alloy has previously demonstrated promising toxicity and degradation properties in the as-cast and rolled conditions. In the current study extrusion causes a dramatic improvement in the mechanical properties in tension and compression, as well as a low in vitro degradation rate. Microstructure (texture, second phase distribution, and grain size), bulk mechanical properties, flow behavior, degradation in simulated body fluid, and effect on osteoblast cyctotoxicity are evaluated and correlated to extrusion temperature. Maximum yield strength of 300 MPa (above that of annealed 316 stainless steel) with 10% elongation is observed, making this alloy competitive with existing implant materials. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  10. Alternative contract mechanisms for environmental restoration

    International Nuclear Information System (INIS)

    Billings, R.M.; Geotze, P.; Billings, B.G.

    1994-01-01

    Remediation and investigation contracting mechanisms used by Billings and Associates, Inc. (BAI), for operations within New Mexico are described, and the advantages and disadvantages are considered. Methods discussed are: time and materials, unit pricing, and pay for performance. An emphasis is placed upon the pay for performance method. While there are alternative contracting mechanisms, the state has thus far been limited to traditional contract types, such as time and materials. While the undertaking of a pay for performance remediation scenario presents higher risk with an opportunity for comparable reward, application of this type of alternative contracting has been slow to materialize. The New Mexico Environment Department/Underground Storage Tank Bureau is mandated by regulation to seek complete remediation of petroleum contaminated soils and ground water within the shortest practicable period of time

  11. A tuneable switch for controlling environmental degradation of bioplastics: addition of isothiazolinone to polyhydroxyalkanoates.

    Directory of Open Access Journals (Sweden)

    Catherine Anne Woolnough

    Full Text Available Controlling the environmental degradation of polyhydroxybutyrate (PHB and polyhydroxyvalerate (P(HB-co-HV bioplastics would expand the range of their potential applications. Combining PHB and P(HB-co-HV films with the anti-fouling agent 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOI, <10% w/w restricted microbial colonisation in soil, but did not significantly affect melting temperature or the tensile strength of films. DCOI films showed reduced biofouling and postponed the onset of weight loss by up to 100 days, a 10-fold increase compared to unmodified films where the microbial coverage was significant. In addition, the rate of PHA-DCOI weight loss, post-onset, reduced by about 150%; in contrast a recorded weight loss of only 0.05% per day for P(HB-co-HV with a 10% DCOI loading was observed. This is in stark contrast to the unmodified PHB film, where a recorded weight loss of only 0.75% per day was made. The 'switch' that initiates film weight loss, and its subsequent reduced rate, depended on the DCOI loading to control biofouling. The control of biofouling and environmental degradation for these DCOI modified bioplastics increases their potential use in biodegradable applications.

  12. PCL-PLLA Semi-IPN Shape Memory Polymers (SMPs): Degradation and Mechanical Properties.

    Science.gov (United States)

    Woodard, Lindsay N; Page, Vanessa M; Kmetz, Kevin T; Grunlan, Melissa A

    2016-12-01

    Thermoresponsive shape memory polymers (SMPs) based on poly(ε-caprolactone) (PCL) whose shape may be actuated by a transition temperature (T trans ) have shown utility for a variety of biomedical applications. Important to their utility is the ability to modulate mechanical and degradation properties. Thus, in this work, SMPs are formed as semi-interpenetrating networks (semi-IPNs) comprised of a cross-linked PCL diacrylate (PCL-DA) network and thermoplastic poly(l-lactic acid) (PLLA). The semi-IPN uniquely allows for requisite crystallization of both PCL and PLLA. The influence of PLLA (PCL:PLLA wt% ratio) and PCL-DA molecular weight (n) on film properties are investigated. PCL-PLLA semi-IPNs are able to achieve enhanced mechanical properties and accelerated rates of degradation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Influence of slope and gradation on rip rap stability and degradation mechanisms

    International Nuclear Information System (INIS)

    Lefebvre, G.; Rohan, K.; Belfahdel, M. B.

    1997-01-01

    A major investigation was undertaken at the La Grande hydroelectric complex with some 220 dikes and dams to study rip rap stability and repair. Degradation mechanisms were also studied under laboratory conditions to verify the main field study conclusions and to test different repair techniques. The result of both laboratory and field observation was that rip rap gradation has only marginal effect on slope stability and degradation mechanisms. On the other hand, the inclusion of even a small fraction of fine blocks (as little as 10 per cent) into the rip rap was shown to be very detrimental to the stability of steep rip rap but only marginally effective on flat slopes. 15 refs., 8 figs

  14. Mechanisms of tolerance and high degradation capacity of the herbicide mesotrione by Escherichia coli strain DH5-α.

    Directory of Open Access Journals (Sweden)

    Luiz R Olchanheski

    Full Text Available The intensive use of agrochemicals has played an important role in increasing agricultural production. One of the impacts of agrochemical use has been changes in population structure of soil microbiota. The aim of this work was to analyze the adaptive strategies that bacteria use to overcome oxidative stress caused by mesotrione, which inhibits 4-hydroxyphenylpyruvate dioxygenase. We also examined antioxidative stress systems, saturation changes of lipid membranes, and the capacity of bacteria to degrade mesotrione. Escherichia coli DH5-á was chosen as a non-environmental strain, which is already a model bacterium for studying metabolism and adaptation. The results showed that this bacterium was able to tolerate high doses of the herbicide (10× field rate, and completely degraded mesotrione after 3 h of exposure, as determined by a High Performance Liquid Chromatography. Growth rates in the presence of mesotrione were lower than in the control, prior to the period of degradation, showing toxic effects of this herbicide on bacterial cells. Changes in the saturation of the membrane lipids reduced the damage caused by reactive oxygen species and possibly hindered the entry of xenobiotics in the cell, while activating glutathione-S-transferase enzyme in the antioxidant system and in the metabolizing process of the herbicide. Considering that E. coli DH5-α is a non-environmental strain and it had no previous contact with mesotrione, the defense system found in this strain could be considered non-specific. This bacterium system response may be a general adaptation mechanism by which bacterial strains resist to damage from the presence of herbicides in agricultural soils.

  15. Engaging degradation mechanisms of materials in a tourney. An investigation into the philosophy of material selection as a mitigating measure and strategy

    OpenAIRE

    Narasimhavarman, Arasilangkumari

    2014-01-01

    Master's thesis in Offshore Technology The aim of this project is to compare some important factors such as safety and environmental aspects, life cycle costing, reliability, availability and fabrication for selecting materials for flowlines for comparative study between carbon steel as a current practice with respect to various corrosion resistance alloys as an alternatives. In order to do that it is necessary to address all possible degradation mechanisms and the conditions that intensif...

  16. Mechanical properties of electrospun PCL scaffold under in vitro and accelerated degradation conditions

    DEFF Research Database (Denmark)

    Løvdal, Alexandra Liv Vest; Vange, Jakob; Nielsen, Lene Feldskov

    2014-01-01

    Within recent years, researchers have looked into using polycaprolactone (PCL) as a synthetic biodegradable scaffold for tissue engineering purposes. This study investigated the mechanical properties of an electrospun PCL, while being exposed to physiological fluids at 37C (in vitro conditions) w...... in buffer (pH 12). The accelerated study showed a linear decrease in both elastic modulus and yield stress as a function of degradation time....

  17. Environmental degradation, economic growth and energy consumption: Evidence of the environmental Kuznets curve in Malaysia

    International Nuclear Information System (INIS)

    Saboori, Behnaz; Sulaiman, Jamalludin

    2013-01-01

    This paper tests for the short and long-run relationship between economic growth, carbon dioxide (CO 2 ) emissions and energy consumption, using the Environmental Kuznets Curve (EKC) by employing both the aggregated and disaggregated energy consumption data in Malaysia for the period 1980–2009. The Autoregressive Distributed Lag (ARDL) methodology and Johansen–Juselius maximum likelihood approach were used to test the cointegration relationship; and the Granger causality test, based on the vector error correction model (VECM), to test for causality. The study does not support an inverted U-shaped relationship (EKC) when aggregated energy consumption data was used. When data was disaggregated based on different energy sources such as oil, coal, gas and electricity, the study does show evidences of the EKC hypothesis. The long-run Granger causality test shows that there is bi-directional causality between economic growth and CO 2 emissions, with coal, gas, electricity and oil consumption. This suggests that decreasing energy consumption such as coal, gas, electricity and oil appears to be an effective way to control CO 2 emissions but simultaneously will hinder economic growth. Thus suitable policies related to the efficient consumption of energy resources and consumption of renewable sources are required. - Highlights: • We investigated the EKC hypothesis by using Malaysian energy aggregated and disaggregated data. • It was found that the EKC is not supported, using the aggregated data (energy consumption). • However using disaggregated energy data (oil, coal and electricity) there is evidence of EKC. • Causality shows no causal relationship between economic growth and energy consumption in the short-run. • Economic growth Granger causes energy consumption and energy consumption causes CO 2 emissions in long-run

  18. Degradation of quinoline and isoquinoline by vacuum ultraviolet light and mechanism thereof

    International Nuclear Information System (INIS)

    Zhu Dazhang; Ni Yaming; Sun Dongmei; Wang Shilong; Sun Xiaoyu; Yao Side

    2010-01-01

    Since the wavelength is shorter than 190 nm, vacuum ultraviolet light has high energy enough to break the H-O bonds of water to produce HO·, as well as the protection is very easy, degradation of organic contaminants in water by vacuum ultraviolet light has obviously excellent feature of no reagent adding to the wastewater among advanced oxidation technologies. In this paper, it was reported that quinoline and isoquinoline were degraded in water by the irradiation of low-pressure quartz mercury light with the electric power of 200 W which mainly emitted the light of 185 nm and 254 nm. The change regulation of the concentration of substrates, chemical oxygen demand (COD) and total organic carbon (TOC) were investigated as well as the degradation processes of quinoline and isoquinoline were compared. It showed that both quinoline and isoquinoline could be degraded very fast under the given conditions. The concentration of the substrates decreased to nearly 0 in 10 minutes while the apparent first reaction rate constants were 0.41 ± 0.02 min -1 and 0.19 ± 0.01 min -1 , respectively. Meanwhile, the COD and TOC decreased to nearly 0 in 30 minutes. Quinoline has the faster degradation rate. In order to investigate mechanism thereof, pulse radiolysis and laser flash photolysis of quinoline and isoquinoline aqueous solution were performed, respectively. Pulse radiolysis indicated that the reaction rate constant of quinoline and HO· was faster than that of isoquinoline. In the meanwhile, laser flash photolysis indicated that both quinoline and isoquinoline could be ionized by the UV-C light while the photo-ionization efficiency of quinoline was higher than that of quinoline. These two reasons caused the faster degradation rate of quinoline. (authors)

  19. Mild MPP+ exposure impairs autophagic degradation through a novel lysosomal acidity-independent mechanism.

    Science.gov (United States)

    Miyara, Masatsugu; Kotake, Yaichiro; Tokunaga, Wataru; Sanoh, Seigo; Ohta, Shigeru

    2016-10-01

    Parkinson's disease (PD) is the second most common neurodegenerative disorder, but its underlying cause remains unknown. Although recent studies using PD-related neurotoxin MPP + suggest autophagy involvement in the pathogenesis of PD, the effect of MPP + on autophagic processes under mild exposure, which mimics the slow progressive nature of PD, remains largely unclear. We examined the effect of mild MPP + exposure (10 and 200 μM for 48 h), which induces a more slowly developing cell death, on autophagic processes and the mechanistic differences with acute MPP + toxicity (2.5 and 5 mM for 24 h). In SH-SY5Y cells, mild MPP + exposure predominantly inhibited autophagosome degradation, whereas acute MPP + exposure inhibited both autophagosome degradation and basal autophagy. Mild MPP + exposure reduced lysosomal hydrolase cathepsin D activity without changing lysosomal acidity, whereas acute exposure decreased lysosomal density. Lysosome biogenesis enhancers trehalose and rapamycin partially alleviated mild MPP + exposure induced impaired autophagosome degradation and cell death, but did not prevent the pathogenic response to acute MPP + exposure, suggesting irreversible lysosomal damage. We demonstrated impaired autophagic degradation by MPP + exposure and mechanistic differences between mild and acute MPP + toxicities. Mild MPP + toxicity impaired autophagosome degradation through novel lysosomal acidity-independent mechanisms. Sustained mild lysosomal damage may contribute to PD. We examined the effects of MPP + on autophagic processes under mild exposure, which mimics the slow progressive nature of Parkinson's disease, in SH-SY5Y cells. This study demonstrated impaired autophagic degradation through a reduction in lysosomal cathepsin D activity without altering lysosomal acidity by mild MPP + exposure. Mechanistic differences between acute and mild MPP + toxicity were also observed. Sustained mild damage of lysosome may be an underlying cause of Parkinson

  20. Effects and mechanism of diclofenac degradation in aqueous solution by US/Zn0.

    Science.gov (United States)

    Huang, Ting; Zhang, Guangming; Chong, Shan; Liu, Yucan; Zhang, Nan; Fang, Shunyan; Zhu, Jia

    2017-07-01

    A system of ultrasound radiation coupled with Zn 0 was applied to degrade diclofenac. The effects of initial pH, dosage of Zn 0 and ultrasound density were investigated. To further explore the mechanism of the microcosmic reaction, the fresh and used Zn 0 powders were characterized by SEM, XRD and XPS. Radical scavengers were used to determine the oxidation performance of strong oxidizing free radicals on diclofenac, including hydroxyl radicals and superoxide radicals. The results showed that the optimum removal of diclofenac reached to over 85% at pH of 2.0 in 15min, with Zn 0 dosage of 0.1g/L and ultrasound density of 0.6W/cm 3 . TOC removal of 72.6% in 15min and dechlorination efficiency of diclofenac reached 70% in 30min. Characterization results showed that a ZnO membrane was generated on the surface of Zn particles after use. According to the mass spectrometry results, several possible pathways of diclofenac degradation were proposed, and most diclofenac was turned into micro-molecules or CO 2 finally. The synergistic effect of US/Zn 0 in the reactions led to a proposed degradation mechanism in which zinc could directly attack the target contaminant diclofenac because of its good reducibility with the auxiliary functions of ultrasonic irradiation, mechanical shearing and free radical oxidation. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Poly(amido-amine)-based hydrogels with tailored mechanical properties and degradation rates for tissue engineering.

    Science.gov (United States)

    Martello, Federico; Tocchio, Alessandro; Tamplenizza, Margherita; Gerges, Irini; Pistis, Valentina; Recenti, Rossella; Bortolin, Monica; Del Fabbro, Massimo; Argentiere, Simona; Milani, Paolo; Lenardi, Cristina

    2014-03-01

    Poly(amido-amine) (PAA) hydrogels containing the 2,2-bisacrylamidoacetic acid-4-amminobutyl guanidine monomeric unit have a known ability to enhance cellular adhesion by interacting with the arginin-glycin-aspartic acid (RGD)-binding αVβ3 integrin, expressed by a wide number of cell types. Scientific interest in this class of materials has traditionally been hampered by their poor mechanical properties and restricted range of degradation rate. Here we present the design of novel biocompatible, RGD-mimic PAA-based hydrogels with wide and tunable degradation rates as well as improved mechanical and biological properties for biomedical applications. This is achieved by radical polymerization of acrylamide-terminated PAA oligomers in both the presence and absence of 2-hydroxyethylmethacrylate. The degradation rate is found to be precisely tunable by adjusting the PAA oligomer molecular weight and acrylic co-monomer concentration in the starting reaction mixture. Cell adhesion and proliferation tests on Madin-Darby canine kidney epithelial cells show that PAA-based hydrogels have the capacity to promote cell adhesion up to 200% compared to the control. Mechanical tests show higher compressive strength of acrylic chain containing hydrogels compared to traditional PAA hydrogels. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Elements for the expected mechanisms on 'reduced emissions from deforestation and degradation, REDD' under UNFCCC

    Science.gov (United States)

    Mollicone, D.; Freibauer, A.; Schulze, E. D.; Braatz, S.; Grassi, G.; Federici, S.

    2007-10-01

    Carbon emissions from deforestation and degradation account for about 20% of global anthropogenic emissions. Strategies and incentives for reduced emissions from deforestation and degradation (REDD) have emerged as one of the most active areas in the international climate change negotiations under the United Nations Framework Convention on Climate Change (UNFCCC). While the current negotiations focus on a REDD mechanism in developing countries, it should be recognized that risks of carbon losses from forests occur in all climate zones and also in industrialized countries. A future climate change agreement would be more effective if it included all carbon losses and gains from land use in all countries and climate zones. The REDD mechanism will be an important step towards reducing emissions from land use change in developing countries, but needs to be followed by steps in other land use systems and regions. A national approach to REDD and significant coverage globally are needed to deal with the risk that deforestation and degradation activities are displaced rather than avoided. Favourable institutional and governance conditions need to be established that guarantee in the long-term a stable incentive and control system for maintaining forest carbon stocks. Ambitious emission reductions from deforestation and forest degradation need sustained financial incentives, which go beyond positive incentives for reduced emissions but also give incentives for sustainable forest management. Current data limitations need—and can be—overcome in the coming years to allow accurate accounting of reduced emissions from deforestation and degradation. A proper application of the conservativeness approach in the REDD context could allow a simplified reporting of emissions from deforestation in a first phase, consistent with the already agreed UNFCCC reporting principles.

  3. Elements for the expected mechanisms on 'reduced emissions from deforestation and degradation, REDD' under UNFCCC

    International Nuclear Information System (INIS)

    Mollicone, D; Freibauer, A; Schulze, E D; Braatz, S; Grassi, G; Federici, S

    2007-01-01

    Carbon emissions from deforestation and degradation account for about 20% of global anthropogenic emissions. Strategies and incentives for reduced emissions from deforestation and degradation (REDD) have emerged as one of the most active areas in the international climate change negotiations under the United Nations Framework Convention on Climate Change (UNFCCC). While the current negotiations focus on a REDD mechanism in developing countries, it should be recognized that risks of carbon losses from forests occur in all climate zones and also in industrialized countries. A future climate change agreement would be more effective if it included all carbon losses and gains from land use in all countries and climate zones. The REDD mechanism will be an important step towards reducing emissions from land use change in developing countries, but needs to be followed by steps in other land use systems and regions. A national approach to REDD and significant coverage globally are needed to deal with the risk that deforestation and degradation activities are displaced rather than avoided. Favourable institutional and governance conditions need to be established that guarantee in the long-term a stable incentive and control system for maintaining forest carbon stocks. Ambitious emission reductions from deforestation and forest degradation need sustained financial incentives, which go beyond positive incentives for reduced emissions but also give incentives for sustainable forest management. Current data limitations need-and can be-overcome in the coming years to allow accurate accounting of reduced emissions from deforestation and degradation. A proper application of the conservativeness approach in the REDD context could allow a simplified reporting of emissions from deforestation in a first phase, consistent with the already agreed UNFCCC reporting principles

  4. Mechanism and kinetic properties for the OH-initiated atmospheric oxidation degradation of 9,10-Dichlorophenanthrene

    Energy Technology Data Exchange (ETDEWEB)

    Dang, Juan; Shi, Xiangli; Zhang, Qingzhu, E-mail: zqz@sdu.edu.cn; Hu, Jingtian; Wang, Wenxing

    2015-02-01

    Chlorinated polycyclic aromatic hydrocarbons (ClPAHs) have become a serious environmental concern due to their widespread occurrence and dioxin-like toxicities. In this work, the mechanism of the OH-initiated atmospheric oxidation degradation of 9,10-dichlorophenanthrene (9,10-Cl{sub 2}Phe) was investigated by using high-accuracy quantum chemistry calculations. The rate constants of the crucial elementary reactions were determined by the Rice–Ramsperger–Kassel–Marcus (RRKM) theory. The theoretical results were compared with the available experimental data. The main oxidation products are a group of ring-retaining and ring-opening compounds including chlorophenanthrols, 9,10-dichlorophenanthrene-3,4-dione, dialdehydes, chlorophenanthrenequinones, nitro-9,10-Cl{sub 2}Phe and epoxides et al. The overall rate constant of the OH addition reaction is 2.35 × 10{sup −12} cm{sup 3} molecule{sup −1} s{sup −1} at 298 K and 1 atm. The atmospheric lifetime of 9,10-Cl{sub 2}Phe determined by OH radicals is about 5.05 days. This study provides a comprehensive investigation of the OH-initiated oxidation degradation of 9,10-Cl{sub 2}Phe and should contribute to clarifying its atmospheric fate. - Highlights: • We studied a comprehensive mechanism of OH-initiated degradation of 9,10-Cl{sub 2}Phe. • The atmospheric lifetime of 9,10-Cl{sub 2}Phe determined by OH radical is about 5.05 d. • The rate constants of the crucial elementary steps were evaluated. • Water plays an important role in the formation of nitro-9,10-Cl{sub 2}Phe.

  5. Laccase-Catalyzed Decolorization of Malachite Green: Performance Optimization and Degradation Mechanism

    Science.gov (United States)

    Yang, Jie; Yang, Xiaodan; Lin, Yonghui; Ng, Tzi Bun; Lin, Juan; Ye, Xiuyun

    2015-01-01

    Malachite green (MG) was decolorized by laccase (LacA) of white-rot fungus Cerrena sp. with strong decolorizing ability. Decolorization conditions were optimized with response surface methodology. A highly significant quadratic model was developed to investigate MG decolorization with LacA, and the maximum MG decolorization ratio of 91.6% was predicted under the conditions of 2.8 U mL-1 LacA, 109.9 mg L-1 MG and decolorization for 172.4 min. Kinetic studies revealed the Km and kcat values of LacA toward MG were 781.9 mM and 9.5 s-1, respectively. UV–visible spectra confirmed degradation of MG, and the degradation mechanism was explored with liquid chromatography–mass spectrometry (LC-MS) analysis. Based on the LC-MS spectra of degradation products, LacA catalyzed MG degradation via two simultaneous pathways. In addition, the phytotoxicity of MG, in terms of inhibition on seed germination and seedling root elongation of Nicotiana tabacum and Lactuca sativa, was reduced after laccase treatment. These results suggest that laccase of Cerrena was effective in decolorizing MG and promising in bioremediation of wastewater in food and aquaculture industries. PMID:26020270

  6. Preformulation stability study of the EGFR inhibitor HKI-272 (Neratinib) and mechanism of degradation.

    Science.gov (United States)

    Lu, Qinghong; Ku, Mannching Sherry

    2012-03-01

    The stability in solution of HKI-272 (Neratinib) was studied as a function of pH. The drug is most stable from pH 3 to 4, and degradation rate increases rapidly around pH 6 and appears to approach a maximum asymptotic limit in the range of pH 812. Pseudo first-order reaction kinetics was observed at all pH values. The structure of the major degradation product indicates that it is formed by a cascade of reactions within the dimethylamino crotonamide group of HKI-272. It is assumed that the rate-determining step is the initial isomerization from allyl amine to enamine functionality, followed by hydrolysis and subsequent cyclization to a stable lactam. The maximum change in degradation rate as a function of pH occurs at about pH 6, which corresponds closely to the theoretical pKa value of the dimethylamino group of HKI-272 when accounting for solvent/temperature effects. The observed relationship between pH and degradation rate is discussed, and a self-catalyzed mechanism for the allylamine-enamine isomerization reaction is proposed. The relevance of these findings to other allylamine drugs is discussed in terms of the relative stability of the allylic anion intermediate through which, the isomerization occurs.

  7. Research on the degradation mechanism of dimethyl phthalate in drinking water by strong ionization discharge

    Science.gov (United States)

    Hong, ZHAO; Chengwu, YI; Rongjie, YI; Huijuan, WANG; Lanlan, YIN; I, N. MUHAMMAD; Zhongfei, MA

    2018-03-01

    The degradation mechanism of dimethyl phthalate (DMP) in the drinking water was investigated using strong ionization discharge technology in this study. Under the optimized condition, the degradation efficiency of DMP in drinking water was up to 93% in 60 min. A series of analytical techniques including high-performance liquid chromatography, liquid chromatography mass spectrometry, total organic carbon analyzer and ultraviolet-visible spectroscopy were used in the study. It was found that a high concentration of ozone (O3) produced by dielectric barrier discharge reactor was up to 74.4 mg l-1 within 60 min. Tert-butanol, isopropyl alcohol, carbonate ions ({{{{CO}}}3}2-) and bicarbonate ions ({{{{HCO}}}3}-) was added to the sample solution to indirectly prove the presence and effect of hydroxyl radicals (·OH). These analytical findings indicate that mono-methyl phthalate, phthalic acid (PA) and methyl ester PA were detected as the major intermediates in the process of DMP degradation. Finally, DMP and all products were mineralized into carbon dioxide (CO2) and water (H2O) ultimately. Based on these analysis results, the degradation pathway of DMP by strong ionization discharge technology were proposed.

  8. Laccase-catalyzed decolorization of malachite green: performance optimization and degradation mechanism.

    Directory of Open Access Journals (Sweden)

    Jie Yang

    Full Text Available Malachite green (MG was decolorized by laccase (LacA of white-rot fungus Cerrena sp. with strong decolorizing ability. Decolorization conditions were optimized with response surface methodology. A highly significant quadratic model was developed to investigate MG decolorization with LacA, and the maximum MG decolorization ratio of 91.6% was predicted under the conditions of 2.8 U mL(-1 LacA, 109.9 mg L(-1 MG and decolorization for 172.4 min. Kinetic studies revealed the Km and kcat values of LacA toward MG were 781.9 mM and 9.5 s(-1, respectively. UV-visible spectra confirmed degradation of MG, and the degradation mechanism was explored with liquid chromatography-mass spectrometry (LC-MS analysis. Based on the LC-MS spectra of degradation products, LacA catalyzed MG degradation via two simultaneous pathways. In addition, the phytotoxicity of MG, in terms of inhibition on seed germination and seedling root elongation of Nicotiana tabacum and Lactuca sativa, was reduced after laccase treatment. These results suggest that laccase of Cerrena was effective in decolorizing MG and promising in bioremediation of wastewater in food and aquaculture industries.

  9. [Mechanism of catalytic ozonation for the degradation of paracetamol by activated carbon].

    Science.gov (United States)

    Wang, Jia-Yu; Dai, Qi-Zhou; Yu, Jie; Yan, Yi-Zhou; Chen, Jian-Meng

    2013-04-01

    The degradation of paracetamol (APAP) in aqueous solution was studied with ozonation integrated with activated carbon (AC). The synergistic effect of ozonation/AC process was explored by comparing the degradation efficiency of APAP in three processes (ozonation alone, activated carbon alone and ozonation integrated with activated carbon). The operational parameters that affected the reaction rate were carefully optimized. Based on the intermediates detected, the possible pathway for catalytic degradation was discussed and the reaction mechanism was also investigated. The results showed that the TOC removal reached 55.11% at 60 min in the AC/O3 system, and was significantly better than the sum of ozonation alone (20.22%) and activated carbon alone (27.39%), showing the great synergistic effect. And the BOD5/COD ratio increased from 0.086 (before reaction) to 0.543 (after reaction), indicating that the biodegradability was also greatly improved. The effects of the initial concentration of APAP, pH value, ozone dosage and AC dosage on the variation of reaction rate were carefully discussed. The catalytic reaction mechanism was different at different pH values: the organic pollutions were removed by adsorption and direct ozone oxidation at acidic pH, and mainly by catalytic ozonation at alkaline pH.

  10. Identification of the primary mechanism for fungal lignin degradation. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    Many lignin-degrading fungi appear to lack lignin peroxidase (LiP), an enzyme generally thought important for fungal ligninolysis. The authors are working with one of these fungi, Ceriporiopsis subvermispora, an aggressive white-rotter that selectively removes lignin from wood. During this project period, they have obtained the following principal results: new polymeric lignin model compounds were developed to assist in the elucidation of fungal ligninolytic mechanisms; experiments with one of the polymeric lignin models showed that C. subvermispora cultures which express no detectable LiP activity are nevertheless able to degrade nonphenolic lignin structures, this result is significant because LiPs were previously considered essential for fungal attack on these recalcitrant structures, which constitute about 90% of lignin; manganese peroxidases (MnPs), which C. subvermispora does produce, catalyze the peroxidation of unsaturated fatty acids to give fatty acid hydroperoxides, fatty acid hydroperoxides are also used by MnP as oxidants (in place of H{sub 2}O{sub 2}) that support the MnP catalytic cycle, these results indicate that MnP turnover in the presence of unsaturated lipids generates reactive lipid oxyradicals that could act as oxidant of other molecules; MnP-mediated lipid peroxidation results in the co-oxidative cleavage of nonphenolic lignin structures, the MnP/lipid peroxidation system may therefore provide C. subvermispora and other LiP-negative fungi with a mechanism to degrade the principal structures of lignin.

  11. Kinetics and mechanism for degradation of dichlorvos by permanganate in drinking water treatment.

    Science.gov (United States)

    Liu, Chao; Qiang, Zhimin; Adams, Craig; Tian, Fang; Zhang, Tao

    2009-08-01

    The degradation kinetics and mechanism of dichlorvos by permanganate during drinking water treatment were investigated. The reaction of dichlorvos with permanganate was of second-order overall with negligible pH dependence and an activation energy of 29.5 kJ x mol(-1). At pH 7.0 and 25 degrees C, the rate constant was 25.2+/-0.4M(-1)s(-1). Dichlorvos was first degraded to trimethyl phosphate (TMP) and dimethyl phosphate (DMP) simultaneously which approximately accounted for or=95% with respect to phosphorus mass, respectively. Further oxidation of DMP generated a final byproduct, monomethyl phosphate (MMP). MMP was for the first time identified as a major byproduct in chemical oxidation of dichlorvos. The kinetic model based on degradation mechanism and determined reaction rate constants allowed us to predict the evolution of dichlorvos and its byproduct concentrations during permanganate pre-oxidation process at water treatment plants. These results suggest that even though the dichlorvos concentration in surface water complies with the surface water quality standards of China (50 microg L(-1)), its concentration after conventional water treatment will most probably exceed the drinking water quality standards (1 microg L(-1)). Moreover, luminescent bacteria test shows that the acute toxicity of dichlorvos solution evidently increased after permanganate oxidation.

  12. A New Alkali-Stable Phosphonium Cation Based on Fundamental Understanding of Degradation Mechanisms.

    Science.gov (United States)

    Zhang, Bingzi; Kaspar, Robert B; Gu, Shuang; Wang, Junhua; Zhuang, Zhongbin; Yan, Yushan

    2016-09-08

    Highly alkali-stable cationic groups are a critical component of hydroxide exchange membranes (HEMs). To search for such cations, we studied the degradation kinetics and mechanisms of a series of quaternary phosphonium (QP) cations. Benzyl tris(2,4,6-trimethoxyphenyl)phosphonium [BTPP-(2,4,6-MeO)] was determined to have higher alkaline stability than the benchmark cation, benzyl trimethylammonium (BTMA). A multi-step methoxy-triggered degradation mechanism for BTPP-(2,4,6-MeO) was proposed and verified. By replacing methoxy substituents with methyl groups, a superior QP cation, methyl tris(2,4,6-trimethylphenyl)phosphonium [MTPP-(2,4,6-Me)] was developed. MTPP-(2,4,6-Me) is one of the most stable cations reported to date, with <20 % degradation after 5000 h at 80 °C in a 1 m KOD in CD3 OD/D2 O (5:1 v/v) solution. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Applied rolling and sensitivity of Bi(2223)/Ag tapes on Ic degradation by mechanical stress

    International Nuclear Information System (INIS)

    Kovac, P.; Bukva, P.; Husek, I.; Richens, P.E.; Jones, H.

    1999-01-01

    An experimental study of multicore Bi(2223)/Ag tapes, roll-sintered by different methods and subjected to bending and tension stresses has been performed. The tapes, of various technological histories, were bent and tensioned and subsequently the transport current was measured at each stressed state. Comparison of I c degradation curves shows that applied rolling may influence the sensitivity of Bi-2223 filaments against the mechanical stress. The existence of transverse microcracks caused by intermediate rolling leads to a higher sensitivity of the tape to bending. A lowering of critical current degradation was observed for two-axially rolled tapes having a higher filament density and better homogeneity prior to sintering treatment. (author)

  14. Mechanical Degradation of Porous NiTi Alloys Under Static and Cyclic Loading

    Science.gov (United States)

    Hosseini, Seyyed Alireza

    2017-12-01

    Pore characteristics and morphology have significant effect on mechanical behavior of porous NiTi specimens. In this research, porous NiTi with different pore sizes, shapes and morphology were produced by powder metallurgy methods using space-holder materials. The effect of the pore characteristics on the mechanical properties was investigated by static and cyclic compression tests at body temperature. The results show that specimens with low porosity and isolated pores exhibit more mechanical strength and recoverable strain. The specimen with 36% porosity produced without space holder could preserve its properties up to 10% strain and its strain recovery was complete after cyclic compression tests. On the other hand, the specimens produced by a urea space holder with more than 60% interconnected porosity show rapid degradation of their scaffolds. The highly porous specimens degraded even below 5% strain due to crack formation and propagation in the thin pore walls. For highly porous specimens produced by a NaCl space holder, the pores are partially interconnected with a cubic shape; nevertheless, their mechanical behavior is close to low-porosity specimens.

  15. The Degradation of Mechanical Properties in Halloysite Nanoclay-Polyester Nanocomposites Exposed in Seawater Environment

    Directory of Open Access Journals (Sweden)

    Mohd Shahneel Saharudin

    2016-01-01

    Full Text Available Polyester based polymers are extensively used in aggressive marine environments; however, inadequate data is available on the effects of the seawater on the polyester based nanocomposites mechanical properties. This paper reports the effect of seawater absorption on the mechanical properties degradation of halloysite nanoclay-polyester nanocomposites. Results confirmed that the addition of halloysite nanoclay into polyester matrix was found to increase seawater uptake and reduce mechanical properties compared to monolithic polyester. The maximum decreases in microhardness, tensile and flexural properties, and impact toughness were observed in case of 1 wt% nanoclay. The microhardness decreased from 107 HV to 41.7 HV (61% decrease. Young’s modulus decreased from 0.6 GPa to 0.4 GPa (33% decrease. The flexural modulus decreased from 0.6 GPa to 0.34 GPa (43% decrease. The impact toughness dropped from 0.71 kJ/m2 to 0.48 kJ/m2 (32% decrease. Interestingly, the fracture toughness KIC increased with the addition of halloysite nanoclay due to the plasticization effect of the resin matrix. SEM images revealed the significant reduction in mechanical properties in case of 1 wt% reinforcement which is attributed to the degradation of the nanoclay-matrix interface influenced by seawater absorption and agglomeration of halloysite nanoclay.

  16. Climate, hydrology, land use, and environmental degradation in the lower Rhone Valley during the Roman period

    Science.gov (United States)

    van der Leeuw, Sander E.; The Archaeomedes Research Team

    2005-02-01

    This paper's aims are three: firstly, to demonstrate the importance of a long-term perspective on socio-environmental dynamics; secondly, to show the relevance of archaeological data in constructing such a long-term history of such dynamics; thirdly, to illustrate with a case study how one may identify the component processes of environmental change from archaeological materials. Taking the Roman occupation of the middle and lower Rhone Valley as a point of departure, the paper identifies some of the processes of regional environmental change. Firstly, it demonstrates the existence of a regional phase of climate degradation during the 2nd century AD. It is in all probability of anthropogenic origin. This degradation seems to have been caused by widespread deforestation in preparation for intensive cultivation of cereals, wine and olives for export to other parts of the Roman Empire. Next, it isolates the principal interactions occurring between relief, soils, and water on the one hand, and the societal dynamics on the other. The location of each settlement is considered representative of an environmental choice, made by its founders at the time the settlement is initiated. These environmental choices, in turn, reflect the perception of the landscape and its resources by the settlers. The principal indicators at our disposal for this study are the relief, soil, and hydrological maps. They are used as a basis for the calculation of the altitude, slope, orientation, annual solar radiation, exposure to the prevailing winds, and fertility of the soil of all sites and their environment. Subsequently, preferences are calculated statistically based on the 1000-odd settlements concerned. The third part of the paper concerns the evolution of the sites. It turns out that the earlier ones are the most successful, in part because they occupied the best locations, but also because they structured the landscape and the territory to their advantage, determined the road network

  17. Solar plants, environmental degradation and local socioeconomic contexts: A case study in a Mediterranean country

    Energy Technology Data Exchange (ETDEWEB)

    Delfanti, Lavinia [University of Viterbo, Department DAFNE, Via S. Camillo De Lellis snc, I-11100, Viterbo (Italy); Colantoni, Andrea, E-mail: colantoni@unitus.it [University of Viterbo, Department DAFNE, Via S. Camillo De Lellis snc, I-11100, Viterbo (Italy); Recanatesi, Fabio [University of Viterbo, Department DAFNE, Via S. Camillo De Lellis snc, I-11100, Viterbo (Italy); Bencardino, Massimiliano [University of Salerno, Department of Political, Social and Communication Sciences, Via Giovanni Paolo II 132, I-84084 Fisciano (Italy); Sateriano, Adele [Via A. Di Tullio 40, I-00136, Rome (Italy); Zambon, Ilaria [University of Viterbo, Department DAFNE, Via S. Camillo De Lellis snc, I-11100, Viterbo (Italy); Salvati, Luca, E-mail: luca.salvati@crea.gov.it [Council for Agricultural Research and Economics (CREA-RPS), Via della Navicella 2-4, I-00184, Rome (Italy)

    2016-11-15

    Photovoltaic plants developed on rural land are becoming a common infrastructure in the Mediterranean region and may contribute, at least indirectly, to various forms of environmental degradation including landscape deterioration, land take, soil degradation and loss in traditional cropland and biodiversity. Our study illustrates a procedure estimating (i) the extension of ground-mounted photovoltaic fields at the municipal scale in Italy and (ii) inferring the socioeconomic profile of the Italian municipalities experiencing different expansion rates of ground-mounted photovoltaic fields over the last years (2007-2014). The procedure was based on diachronic information derived from official data sources integrated into a geographical decision support system. Our results indicate that the surface area of ground-mounted photovoltaic fields into rural land grew continuously in Italy between 2007 and 2014 with positive and increasing growth rates observed during 2007-2011 and positive but slightly decreasing growth rates over 2012-2014, as a result of market saturation and policies containing the diffusion of solar plants on greenfields. We found important differences in the density of ground-mounted solar plants between northern and southern Italian municipalities. We identified accessible rural municipalities in southern Italy with intermediate population density and large availability of non-urban land as the most exposed to the diffusion of solar plants on greenfields in the last decade. Our approach is a promising tool to estimate changes in the use of land driven by the expansion of photovoltaic fields into rural land.

  18. Solar plants, environmental degradation and local socioeconomic contexts: A case study in a Mediterranean country

    International Nuclear Information System (INIS)

    Delfanti, Lavinia; Colantoni, Andrea; Recanatesi, Fabio; Bencardino, Massimiliano; Sateriano, Adele; Zambon, Ilaria; Salvati, Luca

    2016-01-01

    Photovoltaic plants developed on rural land are becoming a common infrastructure in the Mediterranean region and may contribute, at least indirectly, to various forms of environmental degradation including landscape deterioration, land take, soil degradation and loss in traditional cropland and biodiversity. Our study illustrates a procedure estimating (i) the extension of ground-mounted photovoltaic fields at the municipal scale in Italy and (ii) inferring the socioeconomic profile of the Italian municipalities experiencing different expansion rates of ground-mounted photovoltaic fields over the last years (2007-2014). The procedure was based on diachronic information derived from official data sources integrated into a geographical decision support system. Our results indicate that the surface area of ground-mounted photovoltaic fields into rural land grew continuously in Italy between 2007 and 2014 with positive and increasing growth rates observed during 2007-2011 and positive but slightly decreasing growth rates over 2012-2014, as a result of market saturation and policies containing the diffusion of solar plants on greenfields. We found important differences in the density of ground-mounted solar plants between northern and southern Italian municipalities. We identified accessible rural municipalities in southern Italy with intermediate population density and large availability of non-urban land as the most exposed to the diffusion of solar plants on greenfields in the last decade. Our approach is a promising tool to estimate changes in the use of land driven by the expansion of photovoltaic fields into rural land.

  19. An overview of environmental degradation of materials in nuclear power plant piping systems

    International Nuclear Information System (INIS)

    Shack, W.J.

    1988-01-01

    Several types of environmental degradation of piping in light water reactor (LWR) power systems have already had significant economic impact on the industry. These include intergranular stress corrosion cracking (IGSCC) of austenitic stainless steel piping, erosion-corrosion of carbon steel piping in secondary systems, and a variety of types of fatigue failures. In addition, other problems have been identified that must be addressed in considering extended lifetimes for nuclear plants. These include the embrittlement of cast stainless steels after extended thermal aging at reactor operating temperatures and the effect of reactor environments on the design margin inherent in the ASME Section III fatigue design curves especially for carbon steel piping. These problems are being addressed by wide-ranging research programs in this country and abroad. The purpose of this review is to highlight some of the accomplishments of these programs and to note some of the remaining unanswered questions

  20. Environmental degradation, global food production, and risk for large-scale migrations

    International Nuclear Information System (INIS)

    Doeoes, B.R.

    1994-01-01

    This paper attempts to estimate to what extent global food production is affected by the ongoing environmental degradation through processes, such as soil erosion, salinization, chemical contamination, ultraviolet radiation, and biotic stress. Estimates have also been made of available opportunities to improve food production efficiency by, e.g., increased use of fertilizers, irrigation, and biotechnology, as well as improved management. Expected losses and gains of agricultural land in competition with urbanization, industrial development, and forests have been taken into account. Although estimated gains in food production deliberately have been overestimated and losses underestimated, calculations indicate that during the next 30-35 years the annual net gain in food production will be significantly lower than the rate of world population growth. An attempt has also been made to identify possible scenarios for large-scale migrations, caused mainly by rapid population growth in combination with insufficient local food production and poverty. 18 refs, 7 figs, 6 tabs

  1. Use of solar energy: to eradicate poverty, prevent environmental degradation, and diseases in the developing countries

    International Nuclear Information System (INIS)

    Odey, J. A

    2006-01-01

    With intensive research conducted in to the usefulness of energy obtained from solar, result has indicate that the rate of environmental degradation with hardship associated with such natural discomfort, a readily solution could be found by using the simple and free natural solar radiation to control the menace. In a developing country like Nigeria this experiment was carried out and proved to be the medium by which solution could be built upon. This paper gives details about the success recorded at demonstration and workshops in selected areas around the country and recommend its findings to either developing or developed nations of the world to benefit from. Exorbitant cost of fossil fuel could be relieved for those living below the average of human endeavors.(Author)

  2. An overview of environmental degradation of materials in nuclear power plant piping systems

    International Nuclear Information System (INIS)

    Shack, W.J.

    1987-08-01

    Piping in light water reactor (LWR) power systems is affected by several types of environmental degradation: intergranular stress corrosion cracking (IGSCC) of austenitic stainless steel piping in boiling water reactors (BWRs) has required research, inspection, and mitigation programs that will ultimately cost several billion dollars; erosion-corrosion of carbon steel piping has been observed frequently in the secondary systems of both BWRs and pressurized water reactors (PWRs); the effect of the BWR environment can greatly diminish the design margin inherent in the ASME Section III fatigue design curves for carbon steel piping; and cast stainless steels are subject to embrittlement after extended thermal aging at reactor operating temperatures. These problems are being addressed by wide-ranging research programs in this country and abroad. The purpose of this review is to highlight some of the accomplishments of these programs and to note some of the remaining unanswered questions

  3. Economic development, income inequality and environmental degradation of fisheries resources in Mauritius.

    Science.gov (United States)

    Sobhee, Sanjeev K

    2004-07-01

    This article examines how environmental degradation of fisheries resources in the context of Mauritius is linked up with human investment in education, economic growth, and income inequality. Empirical evidence shows that public-sector investment in education promotes economic growth, but at the expense of greater inequality of income. Among the vulnerable groups affected by this type of development process lies the fisherman community. In fact, children of poor families in coastal Mauritius have constrained access to complete school education because of the persistently high opportunity cost involved. Hence, this community is caught up in a vicious circle, as its children or grandchildren would barely be redeployed elsewhere other than in the fisheries sector itself. Such exclusion might account for the overexploitation of marine resources of the island and the accompanying reduction in fish catch over recent years.

  4. Two African woodfuel markets: urban demand, resource depletion, and environmental degradation

    International Nuclear Information System (INIS)

    Hosier, R.H.; Milukas, M.V.

    1992-01-01

    This paper examines charcoal markets in two African cities: Mogadishu, Somalia and Kigali, Rwanda. Economic theory dictates that if woodfuel resources become scarce, their real price will increase commensurately with the interest rate. Although Rwanda and Somalia represent drastically different physical environments, both are considered to be wood-scarce. But neither market has demonstrated straightforward depletion effects. In Mogadishu, the price first rose and then fell in reaction to shifts in the structure of the charcoal market, relaxed regulations, and economic contraction. In Rwanda, the price began rising only after the closing of the Bugasera Region to charcoal producers. Charcoal must be increasingly produced from private farmland. These two case studies highlight the importance of agricultural land clearance, conflicting government regulations, and shifts in market structure in determining whether or not charcoal prices will demonstrate depletion effects, and whether or not charcoal production will lead to local environmental degradation. (author)

  5. Degradation Mechanism in a Direct Carbon Fuel Cell Operated with Demineralised Brown Coal

    International Nuclear Information System (INIS)

    Rady, Adam C.; Giddey, Sarbjit; Kulkarni, Aniruddha; Badwal, Sukhvinder P.S.; Bhattacharya, Sankar

    2014-01-01

    Graphical abstract: - Highlights: • Degradation mechanism studied for demineralised coal in a direct carbon fuel cell. • Diffusion limited processes dominate the electrode polarisation losses in pure N 2 . • Major fuel cell performance loss occurred due to loss of carbon/anode contacts. • The anode retained its phase structure with minor other phases formed in operation. - Abstract: The performance of a demineralised and devolatilised coal from the Morwell mine in the Latrobe Valley, Victoria, has been investigated in a direct carbon fuel cell (DCFC) operated at 850 °C. The focus of the investigation has been on understanding degradation issues as a function of time involving a sequence of electrochemical impedance spectroscopy and voltage-current characteristic. Diffusion limited processes dominate the electrode polarisation losses in pure N 2 atmosphere, however, these decrease substantially in the presence of CO 2 as the anode chamber purge gas, due to in situ generation of fuel species by the reaction of CO 2 with carbon. Post-mortem analysis of anode by SEM and XRD revealed only a minor degradation due to its reduction, particle agglomeration as well as the formation of small quantity of new phases. However, major fuel cell performance degradation (increase of ohmic resistive and electrode polarisation losses) occurred due to loss of carbon/anode contacts and a reduction in the electron-conducting pathways as the fuel was consumed. The investigations revealed that the demineralised coal char can be used as a viable fuel for DCFC, however, further developments on anode materials and fuel feed mechanism would be required to achieve long-term sustained performance

  6. Mechanical, degradation and cytocompatibility properties of magnesium coated phosphate glass fibre reinforced polycaprolactone composites.

    Science.gov (United States)

    Liu, Xiaoling; Hasan, Muhammad S; Grant, David M; Harper, Lee T; Parsons, Andrew J; Palmer, Graham; Rudd, Chris D; Ahmed, Ifty

    2014-11-01

    Retention of mechanical properties of phosphate glass fibre reinforced degradable polyesters such as polycaprolactone and polylactic acid in aqueous media has been shown to be strongly influenced by the integrity of the fibre/polymer interface. A previous study utilising 'single fibre' fragmentation tests found that coating with magnesium improved the fibre and matrix interfacial shear strength. Therefore, the aim of this study was to investigate the effects of a magnesium coating on the manufacture and characterisation of a random chopped fibre reinforced polycaprolactone composite. Short chopped strand non-woven phosphate glass fibre mats were sputter coated with degradable magnesium to manufacture phosphate glass fibre/polycaprolactone composites. The degradation behaviour (water uptake, mass loss and pH change of the media) of these polycaprolactone composites as well as of pure polycaprolactone was investigated in phosphate buffered saline. The Mg coated fibre reinforced composites revealed less water uptake and mass loss during degradation compared to the non-coated composites. The cations released were also explored and a lower ion release profile for all three cations investigated (namely Na(+), Mg(2+) and Ca(2+)) was seen for the Mg coated composite samples. An increase of 17% in tensile strength and 47% in tensile modulus was obtained for the Mg coated composite samples. Both flexural and tensile properties were investigated and a higher retention of mechanical properties was obtained for the Mg coated fibre reinforced composite samples up to 10 days immersion in PBS. Cytocompatibility study showed both composite samples (coated and non-coated) had good cytocompatibility with human osteosarcoma cell line. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  7. Growth-corruption-health triaca and environmental degradation: empirical evidence from Indonesia, Malaysia, and Thailand.

    Science.gov (United States)

    Azam, Muhammad; Khan, Abdul Qayyum

    2017-07-01

    This study examines the impact of economic growth, corruption, health, and poverty on environmental degradation for three countries from ASEAN, namely Indonesia, Malaysia, and Thailand using annual data over the period of 1994-2014. The relationship between environmental degradation (pollution) by carbon dioxide (CO 2 ) emissions and economic growth is examined along with some other variables, namely health expenditure, poverty, agriculture value added growth, industrial value added growth, and corruption. The ordinary least squares (OLS) method is applied as an analytical technique for parameter estimation. The empirical results reveal that almost all variables are statistically significant at the 5% level of significance, whereby test rejects the null hypotheses of non-cointegration, indicating that all variables play an important role in affecting the environment across countries. Empirical results also indicate that economic growth has significant positive impact, while health expenditures show significantly negative impact on the environment. Corruption has significant positive effect on environment in the case of Malaysia; while in the case of Indonesia and Thailand, it has insignificant results. However, for the individual analysis across countries, the regression estimate suggests that economic growth has a significant positive relationship with environment for Indonesia, while it is found insignificantly negative and positive in the case of Malaysia and Thailand, respectively, during the period under the study. Empirical findings of the study suggest that policy-makers require to make technological-friendly environment sequentially to surmount unregulated pollution, steady population transfers from rural areas to urban areas are also important, and poverty alleviation and better health provision can also help to improve the environment.

  8. Mechanism and kinetic properties for the OH-initiated atmospheric oxidation degradation of 9,10-Dichlorophenanthrene.

    Science.gov (United States)

    Dang, Juan; Shi, Xiangli; Zhang, Qingzhu; Hu, Jingtian; Wang, Wenxing

    2015-02-01

    Chlorinated polycyclic aromatic hydrocarbons (ClPAHs) have become a serious environmental concern due to their widespread occurrence and dioxin-like toxicities. In this work, the mechanism of the OH-initiated atmospheric oxidation degradation of 9,10-dichlorophenanthrene (9,10-Cl₂Phe) was investigated by using high-accuracy quantum chemistry calculations. The rate constants of the crucial elementary reactions were determined by the Rice-Ramsperger-Kassel-Marcus (RRKM) theory. The theoretical results were compared with the available experimental data. The main oxidation products are a group of ring-retaining and ring-opening compounds including chlorophenanthrols, 9,10-dichlorophenanthrene-3,4-dione, dialdehydes, chlorophenanthrenequinones, nitro-9,10-Cl₂Phe and epoxides et al. The overall rate constant of the OH addition reaction is 2.35 × 10(-12)cm(3) molecule(-1)s(-1) at 298 K and 1 atm. The atmospheric lifetime of 9,10-Cl₂Phe determined by OH radicals is about 5.05 days. This study provides a comprehensive investigation of the OH-initiated oxidation degradation of 9,10-Cl₂Phe and should contribute to clarifying its atmospheric fate. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Degradation mechanisms of sulfonated poly-aromatic membranes in fuel cell; Mecanismes de degradation des membranes polyaromatiques sulfonees en pile a combustible

    Energy Technology Data Exchange (ETDEWEB)

    Perrot, C

    2006-11-15

    Fuel cell development requires an improvement in the electrode-membrane assembly durability which depends on both the polymer used and the fuel cell operating conditions. The origin of the degradation can be either electrochemical, chemical and/or mechanical. This study deals with the understanding of alternative membranes ageing mechanisms, i.e. non fluorinated membranes, such as sPEEK and sPI. For this kind of membranes, the first process is chemical. Understanding these mechanisms is the first essential step to develop more stable structures. An original approach is developed to overcome the analytical difficulties encountered with polymers. It consists in studying the degradation mechanism on model structures. Ageing are carried out in water, with H{sub 2}O{sub 2} in some cases (identified as a cause of membrane chemical ageing in the fuel cell system), and at different temperatures. The approach consists in separating the different products formed by chromatography. Then they are identified (NMR, IR, MS) and quantified. This method allows us to establish the ageing mechanism. We show that the ageing of a sPEEK structure mainly results from an attack by end chains which spreads to the whole. This mechanism is confirmed on ex-situ and in-situ aged membranes. These two kinds of ageing lead to an important decrease in polymerisation degree (determined by SEC). Formation of the same degradation products is observed. In fuel cells, a heterogeneous degradation is noticed. It takes place mainly on the cathode side. sPI are known for their high sensitivity to hydrolysis. Nevertheless, we highlight a limited degradation at 80 Celsius degrees due to the recombination of hydrolyzed species at this temperature. (author)

  10. Organophosphate degrading microorganisms and enzymes as biocatalysts in environmental and personal decontamination applications.

    Science.gov (United States)

    Yair, Simo; Ofer, Butnaro; Arik, Eisenkraft; Shai, Shrot; Yossi, Rosman; Tzvika, Dushnitsky; Amir, Krivoy

    2008-01-01

    One of the major challenges in dealing with chemical warfare agent (CWA) dispersal, whether in the battlefield or after a terror act, is decontamination and rehabilitation of any contaminated area. Organophosphates (OPs) are considered to be among the deadliest CWAs to date. Other OPs are used as pesticides in modern agriculture, and are considered environmentally hazardous. Current methods for OP decontamination are either dangerous or insufficiently effective. As a promising solution for this problem, bioremediation--the use of biocomponents for environmental remediation--is a potentially effective, safe, and environment-friendly method. The technology relies on several enzymatic mechanisms, and can be applied in various ways. We will review recent achievements and potential applications, such as biocatalyst-containing foams and an enzymatic sponge, for environmental as well as personal exterior decontamination.

  11. Rural poverty and environmental degradation in the Philippines: A system dynamics approach

    Science.gov (United States)

    Parayno, Phares Penuliar

    Poverty among the small cultivators in the Philippines remains widespread despite a general increase in per capita income during the last three decades. At the same time, the degradation of agricultural land resources, as sources of daily subsistence for the rural workers, is progressing. Past policy studies on the alleviation of rural poverty in the developing countries have centered on the issue of increasing food production and expanding economic growth but gave little attention to the issue of constraints imposed by degradation of agricultural land resources. Only in recent years have there been increasing focus on the relationship between rural poverty and environmental degradation. Inquiry is, however, often done by simplistic one way causal relationships which, although often illuminating, does not provide a comprehensive understanding of the different interacting processes that create rural poverty and land degradation. Thus, policies ensuing from such analyses provide only short-term gains without effecting lasting improvement in the living conditions of the small cultivators. This dissertation examines the complex interrelationships between rural poverty and land degradation and attempts to explain the inefficacy of broad development programs implemented in alleviating rural poverty and reversing deterioration of land resources. The study uses the case of the Philippines for empirical validation. The analysis employs computer simulation experiments with a system dynamics model of a developing economy consisting of an agricultural sector whose microstructure incorporates processes influencing: agricultural production; disbursement of income; changes in the quality of agricultural land resources; demographic behavior; and rural-urban transfer of real and monetary resources. The system dynamics model used in this study extends the wage and income distribution model of Saeed (1988) by adding to it decision structures concerning changes in the quality of

  12. An evaluation of the MEDALUS ESA index (environmental sensitivity to land degradation), from regional to plot scale

    International Nuclear Information System (INIS)

    Lavado Contador, J. J.; Schnabel, S.; Gomez Gutierrez, A.

    2009-01-01

    An assessment of the sensitivity to land degradation have been carried out for the region of Extramadura, Sw Spain, by means of the modelling approach developed in the European Commission funded MEDALUS project (Mediterranean Desertification and Land Use) which identifies such areas on the basis of an index (ESA index) that incorporates data on environmental quality (climate, vegetation, soil) as well as on anthropogenic factors (management). Two maps of environmental sensitivity to degradation with different legend resolution (4 and 8 classes of sensitivity) have been made. (Author) 6 refs.

  13. Identification of degradation products of ionic liquids in an ultrasound assisted zero-valent iron activated carbon micro-electrolysis system and their degradation mechanism.

    Science.gov (United States)

    Zhou, Haimei; Lv, Ping; Shen, Yuanyuan; Wang, Jianji; Fan, Jing

    2013-06-15

    Ionic liquids (ILs) have potential applications in many areas of chemical industry because of their unique properties. However, it has been shown that the ILs commonly used to date are toxic and not biodegradable in nature, thus development of efficient chemical methods for the degradation of ILs is imperative. In this work, degradation of imidazolium, piperidinium, pyrrolidinium and morpholinium based ILs in an ultrasound and zero-valent iron activated carbon (ZVI/AC) micro-electrolysis system was investigated, and some intermediates generated during the degradation were identified. It was found that more than 90% of 1-alkyl-3-methylimidazolium bromide ([Cnmim]Br, n = 2, 4, 6, 8, 10) could be degraded within 110 min, and three intermediates 1-alkyl-3-methyl-2,4,5-trioxoimidazolidine, 1-alkyl-3-methylurea and N-alkylformamide were detected. On the other hand, 1-butyl-1-methylpiperidinium bromide ([C4mpip]Br), 1-butyl-1-methylpyrrolidinium bromide ([C4mpyr]Br) and N-butyl-N-methylmorpholinium bromide ([C4mmor]Br) were also effectively degraded through the sequential oxidization into hydroxyl, carbonyl and carboxyl groups in different positions of the butyl side chain, and then the N-butyl side chain was broken to form the final products of N-methylpiperidinium, N-methylpyrrolidinium and N-methylmorpholinium, respectively. Based on these intermediate products, degradation pathways of these ILs were suggested. These findings may provide fundamental information on the assessment of the factors related to the environmental fate and environmental behavior of these commonly used ILs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Study of the degradation of the mechanical resistance of an alumina

    International Nuclear Information System (INIS)

    Xavier, C.

    1981-02-01

    The strength degradation of a commercial, pure aluminum oxide was investigated in aqueous environment and at ambient temperature in static and dynamic loading, and the applicability of proof testing was studied. The fatigue parameters A and N of the basic equation of subcritical crack growth in ceramics, a sup(.)AK sup(N) sub(I), where a sup(.) is the crack growth rate and K sub(I) is the applied stress intensity factor, were determined from static and dynamic fatigue data using a numerical analysis method based on fracture statistics and fracture mechanics principles which has been published recently. (A.R.H.) [pt

  15. Chemical durability and degradation mechanisms of HT9 based alloy waste forms with variable Zr content

    Energy Technology Data Exchange (ETDEWEB)

    Olson, L. N. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-30

    In Corrosion studies were undertaken on alloy waste forms that can result from advanced electrometallurgical processing techniques to better classify their durability and degradation mechanisms. The waste forms were based on the RAW3-(URe) composition, consisting primarily of HT9 steel and other elemental additions to simulate nuclear fuel reprocessing byproducts. The solution conditions of the corrosion studies were taken from an electrochemical testing protocol, and meant to simulate conditions in a repository. The alloys durability was examined in alkaline and acidic brines.

  16. Radiation degradation in the mechanical properties of Polyetheretherketone–alumina composites

    International Nuclear Information System (INIS)

    Lawrence, Falix; Mallika, C.; Kamachi Mudali, U.; Natarajan, R.; Ponraju, D.; Seshadri, S.K.; Sampath Kumar, T.S.

    2012-01-01

    Polyetheretherketone (PEEK) is extensively employed in corrosive and radiation environments. To improve the radiation tolerance of PEEK in the presence of high energetic radiation, PEEK was reinforced with micron sized alumina powder (5–25% by weight) and PEEK–alumina composite sheets fabricated were irradiated to 10 MGy. Mechanical properties of the irradiated composites revealed significant reduction in the degradation of PEEK with addition of alumina as the polymer reinforced with ceramic additives is expected to increase the interface area of the constituents in the system resulting in an improvement in the performance of the reinforced material.

  17. Investigating Degradation Mechanisms in 130 nm and 90 nm Commercial CMOS Technologies Under Extreme Radiation Conditions

    Science.gov (United States)

    Ratti, Lodovico; Gaioni, Luigi; Manghisoni, Massimo; Traversi, Gianluca; Pantano, Devis

    2008-08-01

    The purpose of this paper is to study the mechanisms underlying performance degradation in 130 nm and 90 nm commercial CMOS technologies exposed to high doses of ionizing radiation. The investigation has been mainly focused on their noise properties in view of applications to the design of low-noise, low-power analog circuits to be operated in harsh environment. Experimental data support the hypothesis that charge trapping in shallow trench isolation (STI), besides degrading the static characteristics of interdigitated NMOS transistors, also affects their noise performances in a substantial fashion. The model discussed in this paper, presented in a previous work focused on CMOS devices irradiated with a 10 Mrad(SiO2) gamma -ray dose, has been applied here also to transistors exposed to much higher (up to 100 Mrad(SiO2 )) doses of X-rays. Such a model is able to account for the extent of the observed noise degradation as a function of the device polarity, dimensions and operating point.

  18. Changes in Structural-Mechanical Properties and Degradability of Collagen during Aging-associated Modifications*

    Science.gov (United States)

    Panwar, Preety; Lamour, Guillaume; Mackenzie, Neil C. W.; Yang, Heejae; Ko, Frank; Li, Hongbin; Brömme, Dieter

    2015-01-01

    During aging, changes occur in the collagen network that contribute to various pathological phenotypes in the skeletal, vascular, and pulmonary systems. The aim of this study was to investigate the consequences of age-related modifications on the mechanical stability and in vitro proteolytic degradation of type I collagen. Analyzing mouse tail and bovine bone collagen, we found that collagen at both fibril and fiber levels varies in rigidity and Young's modulus due to different physiological changes, which correlate with changes in cathepsin K (CatK)-mediated degradation. A decreased susceptibility to CatK-mediated hydrolysis of fibrillar collagen was observed following mineralization and advanced glycation end product-associated modification. However, aging of bone increased CatK-mediated osteoclastic resorption by ∼27%, and negligible resorption was observed when osteoclasts were cultured on mineral-deficient bone. We observed significant differences in the excavations generated by osteoclasts and C-terminal telopeptide release during bone resorption under distinct conditions. Our data indicate that modification of collagen compromises its biomechanical integrity and affects CatK-mediated degradation both in bone and tissue, thus contributing to our understanding of extracellular matrix aging. PMID:26224630

  19. Studies on adsorption, reaction mechanisms and kinetics for photocatalytic degradation of CHD, a pharmaceutical waste.

    Science.gov (United States)

    Sarkar, Santanu; Bhattacharjee, Chiranjib; Curcio, Stefano

    2015-11-01

    The photocatalytic degradation of chlorhexidine digluconate (CHD), a disinfectant and topical antiseptic and adsorption of CHD catalyst surface in dark condition has been studied. Moreover, the value of kinetic parameters has been measured and the effect of adsorption on photocatalysis has been investigated here. Substantial removal was observed during the photocatalysis process, whereas 40% removal was possible through the adsorption route on TiO2 surface. The parametric variation has shown that alkaline pH, ambient temperature, low initial substrate concentration, high TiO2 loading were favourable, though at a certain concentration of TiO2 loading, photocatalytic degradation efficiency was found to be maximum. The adsorption study has shown good confirmation with Langmuir isotherm and during the reaction at initial stage, it followed pseudo-first-order reaction, after that Langmuir Hinshelwood model was found to be appropriate in describing the system. The present study also confirmed that there is a significant effect of adsorption on photocatalytic degradation. The possible mechanism for adsorption and photocatalysis has been shown here and process controlling step has been identified. The influences of pH and temperature have been explained with the help of surface charge distribution of reacting particles and thermodynamic point of view respectively. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Development and validation of deterioration models for concrete bridge decks - phase 2 : mechanics-based degradation models.

    Science.gov (United States)

    2013-06-01

    This report summarizes a research project aimed at developing degradation models for bridge decks in the state of Michigan based on durability mechanics. A probabilistic framework to implement local-level mechanistic-based models for predicting the c...

  1. Adsorption and degradation of sulfadiazine and sulfamethoxazole in an agricultural soil system under an anaerobic condition: Kinetics and environmental risks.

    Science.gov (United States)

    Shen, Genxiang; Zhang, Yu; Hu, Shuangqing; Zhang, Hongchang; Yuan, Zhejun; Zhang, Wei

    2018-03-01

    Sulfonamides, one of the commonest antibiotics, were widely used on humans and livestock to control pathema and bacterial infections resulting in further environmental risks. The present study evaluated the adsorption and degradation of sulfadiazine (SDZ) and sulfamethoxazole (SMX) in an agricultural soil system under an anaerobic condition. Low sorption coefficients (K d , 1.22 L kg -1 for SDZ and 1.23 L kg -1 for SMX) obtained from Freundlich isotherms experiment indicated that poor sorption of both antibiotics may pose a high risk to environment due to their high mobility and possibility of entering surface and ground water. Degradation occurred at a lower rate under the anaerobic environment, where both two antibiotics had higher persistence in sterile and non-sterile soils with degradation ratio  20 d. Additionally, the addition of manure slightly increased degradation rates of SDZ and SMX, but there were no significant differences between single and repeated manure application at a later stage (p > 0.05), which suggested that the degradation was affected by both biotic and abiotic factors. Degradation rates would be slower at a higher concentration, indicating that degradation kinetics of SDZ and SMX were dependent on initial concentrations. During the degradation period, the antibiotics removal may change temperature, pH, sulfate and nitrate in soil, which suggested that the variation of antibiotics concentrations was related to the changes of soil physicochemical properties. An equation was proposed to elucidate the link between adsorption and degradation under different conditions, and to predict potential environmental risks of antibiotics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. 3. Poor countries: Breaking the cycle of poverty, environmental degradation, and human deprivation

    International Nuclear Information System (INIS)

    Philips, R.

    1992-01-01

    In the poor countries, where poverty, environmental degradation, and human deprivation are closely linked and are aggravated by high population growth, measures to address these problems can be mutually reinforcing. Improvements in people's health and skills contribute to economic progress and - when available to women - to reduced births. Slower population growth increases the opportunities available to the current population, which in turn increases the people's capacity for responding to opportunities and incentives that protect the environment and promote economic development. A secure resource base and increases in nonagricultural employment opportunities - again, especially for women - in turn contribute to economic growth and to improved human prospects. Because of these synergistic relationships, simultaneously pursuing action on all fronts - investing in the development of people, promoting economic growth, and arresting massive environmental destruction - offers the possibility of turning a vicious cycle into a virtuous cycle. But the challenge is formidable and will require political commitment and a host of policies to foster equity, participation, and resource conservation. The alternative, however, may well be increased ecological disaster and poverty - and the social cleavages they create - in poor countries. People are their own best advocates when they have the opportunity. They know what they want and understand better than outsiders the local ecological, social, political, and cultural context. Initiatives that respect local knowledge, support rather than supplant local leadership, and work within existing institutions, supplementing but not replacing local wisdom with technical expertise, have the best chances of success

  3. Environment, Agriculture and Sustainability Relations: From the Environmental Degradation to the Necessity of Conservation of Natural Resources.

    Directory of Open Access Journals (Sweden)

    Flórida Rosa Mali Assêncio

    2015-01-01

    Full Text Available This paper presents a brief approach on environmental aspects related to the development of agriculture in the world and especially in Brazil, detaching some historical aspects. Some characteristics of the social and environmental degradation generated by the processes of production of modern agriculture, based on studies of Environmental Sciences, in general, and, more specifically, of Agroecology, are presented, as well as the necessity of searching for new models of development according to the recent paradigm of sustainability (social, economic and environmental, debated in international conferences on 'environment and development'.

  4. Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model.

    Science.gov (United States)

    Yang, Hongtao; Wang, Cong; Liu, Chaoqiang; Chen, Houwen; Wu, Yifan; Han, Jintao; Jia, Zichang; Lin, Wenjiao; Zhang, Deyuan; Li, Wenting; Yuan, Wei; Guo, Hui; Li, Huafang; Yang, Guangxin; Kong, Deling; Zhu, Donghui; Takashima, Kazuki; Ruan, Liqun; Nie, Jianfeng; Li, Xuan; Zheng, Yufeng

    2017-11-01

    In the present study, pure zinc stents were implanted into the abdominal aorta of rabbits for 12 months. Multiscale analysis including micro-CT, scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM) and histological stainings was performed to reveal the fundamental degradation mechanism of the pure zinc stent and its biocompatibility. The pure zinc stent was able to maintain mechanical integrity for 6 months and degraded 41.75 ± 29.72% of stent volume after 12 months implantation. No severe inflammation, platelet aggregation, thrombosis formation or obvious intimal hyperplasia was observed at all time points after implantation. The degradation of the zinc stent played a beneficial role in the artery remodeling and healing process. The evolution of the degradation mechanism of pure zinc stents with time was revealed as follows: Before endothelialization, dynamic blood flow dominated the degradation of pure zinc stent, creating a uniform corrosion mode; After endothelialization, the degradation of pure zinc stent depended on the diffusion of water molecules, hydrophilic solutes and ions which led to localized corrosion. Zinc phosphate generated in blood flow transformed into zinc oxide and small amounts of calcium phosphate during the conversion of degradation microenvironment. The favorable physiological degradation behavior makes zinc a promising candidate for future stent applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Differing mechanisms of simple nitrile formation on glucosinolate degradation in Lepidium sativum and Nasturtium officinale seeds.

    Science.gov (United States)

    Williams, David J; Critchley, Christa; Pun, Sharon; Chaliha, Mridusmita; O'Hare, Timothy J

    2009-01-01

    Glucosinolates are sulphur-containing glycosides found in brassicaceous plants that can be hydrolysed enzymatically by plant myrosinase or non-enzymatically to form primarily isothiocyanates and/or simple nitriles. From a human health perspective, isothiocyanates are quite important because they are major inducers of carcinogen-detoxifying enzymes. Two of the most potent inducers are benzyl isothiocyanate (BITC) present in garden cress (Lepidium sativum), and phenylethyl isothiocyanate (PEITC) present in watercress (Nasturtium officinale). Previous studies on these salad crops have indicated that significant amounts of simple nitriles are produced at the expense of the isothiocyanates. These studies also suggested that nitrile formation may occur by different pathways: (1) under the control of specifier protein in garden cress and (2) by an unspecified, non-enzymatic path in watercress. In an effort to understand more about the mechanisms involved in simple nitrile formation in these species, we analysed their seeds for specifier protein and myrosinase activities, endogenous iron content and glucosinolate degradation products after addition of different iron species, specific chelators and various heat treatments. We confirmed that simple nitrile formation was predominantly under specifier protein control (thiocyanate-forming protein) in garden cress seeds. Limited thermal degradation of the major glucosinolate, glucotropaeolin (benzyl glucosinolate), occurred when seed material was heated to >120 degrees C. In the watercress seeds, however, we show for the first time that gluconasturtiin (phenylethyl glucosinolate) undergoes a non-enzymatic, iron-dependent degradation to a simple nitrile. On heating the seeds to 120 degrees C or greater, thermal degradation of this heat-labile glucosinolate increased simple nitrile levels many fold.

  6. Degradation mechanism of AlInGaP light emitting diodes during PMMA encapsulation and operation

    Energy Technology Data Exchange (ETDEWEB)

    Preuss, S.

    2007-11-15

    In this thesis we investigate the degradation mechanism of AlInGaP light emitting diodes (LEDs) during encapsulation and operation. The AlInGaP LEDs are encapsulated using an injection moulding tool. The molded part acts as physical housing as well as tailors the radiation pattern. Thus a narrow light beam with a spread angle of {alpha}=10 has been observed. The LED temperature has been measured by the voltage variation of the LED which is caused by the temperature change at a constant current. Thus the thermal load of the LED chips during the encapsulation process is investigated. To verify the temperature measurement a simulation based on the finite element method has been carried out. The experimental and theoretical data are in good agreement. The LED properties are investigated before and after the encapsulation. The results are compared and we found a reduction of the serial resistance and an enhanced luminous efficiency. The peak emission energy remained constant, but a peak broadening of {delta}E=9meV has been observed. A slight polarisation of the emitted light is an indication for a polarization effect of the polymethylmethacrylat (PMMA) housing. Accelerated degradation experiments using high forward currents are performed to estimate the lifetime of the PMMA encapsulated LEDs. A diffusion model is presented to explain the decay in luminous flux versus degradation time and degradation current. We believe that the reduction of quantum efficiency is caused by p-type dopant diffusion into the active layer where it acts as a non-radiative recombination centre. Using this model we determine the lifetime under the recommended drive current of I=20mA. The resulting lifetime is t=1.5.10{sup 6}h using a reduction of 50% in the luminous flux as failure criteria. (orig.)

  7. Non-Destructive Analysis of Degradation Mechanisms in Cycle-Aged Graphite/LiCoO2 Batteries

    Directory of Open Access Journals (Sweden)

    Liqiang Zhang

    2014-09-01

    Full Text Available Non-destructive analysis of degradation mechanisms can be very beneficial for the prognostics and health management (PHM study of lithium-ion batteries. In this paper, a type of graphite/LiCoO2 battery was cycle aged at high ambient temperature, then 25 parameters of the multi-physics model were identified. Nine key parameters degraded with the cycle life, and they were treated as indicators of battery degradation. Accordingly, the degradation mechanism was discussed by using the multi-physics model and key parameters, and the reasons for capacity fade and the internal resistance increase were analyzed in detail. All evidence indicates that the formation reaction of the solid electrolyte interface (SEI film is the main cause of battery degradation at high ambient temperature.

  8. Assessment of the environmental degradation susceptibility of the Macaé River Hydrographic Basin with support of geoprocessing

    Directory of Open Access Journals (Sweden)

    Brunna Rocha Werneck

    2011-12-01

    Full Text Available This article presents a thematic exploration of the environmental degradation in the Macaé River Hydrographic Basin. The objective was to provide a cartographic base on relevant issues regarding the Basin, by doing environmental assessment with support of geoprocessing. This aims at providing assistance for public actions in environmental decisions, and suggest applications of data in local and/or regional plannings that may support the development of the Basin Plan. The AHP method – Hierarchic Analytical Process – was used. The resulting map shows the areas of potential environmental degradation, in which those with greater susceptibility are located at the top and middle sections of the river, and the less likely are found on its lower course.

  9. Breaking the Link between Environmental Degradation and Oil Palm Expansion: A Method for Enabling Sustainable Oil Palm Expansion

    Science.gov (United States)

    Smit, Hans Harmen; Meijaard, Erik; van der Laan, Carina; Mantel, Stephan; Budiman, Arif; Verweij, Pita

    2013-01-01

    Land degradation is a global concern. In tropical areas it primarily concerns the conversion of forest into non-forest lands and the associated losses of environmental services. Defining such degradation is not straightforward hampering effective reduction in degradation and use of already degraded lands for more productive purposes. To facilitate the processes of avoided degradation and land rehabilitation, we have developed a methodology in which we have used international environmental and social sustainability standards to determine the suitability of lands for sustainable agricultural expansion. The method was developed and tested in one of the frontiers of agricultural expansion, West Kalimantan province in Indonesia. The focus was on oil palm expansion, which is considered as a major driver for deforestation in tropical regions globally. The results suggest that substantial changes in current land-use planning are necessary for most new plantations to comply with international sustainability standards. Through visualizing options for sustainable expansion with our methodology, we demonstrate that the link between oil palm expansion and degradation can be broken. Application of the methodology with criteria and thresholds similar to ours could help the Indonesian government and the industry to achieve its pro-growth, pro-job, pro-poor and pro-environment development goals. For sustainable agricultural production, context specific guidance has to be developed in areas suitable for expansion. Our methodology can serve as a template for designing such commodity and country specific tools and deliver such guidance. PMID:24039700

  10. Mechanisms for the environmental regulation of gene expression

    Indian Academy of Sciences (India)

    2005-01-07

    Jan 7, 2005 ... The environment can play a significant role in the production of phenotypes. However, the developmental mechanisms by which the environmental agents effect normal development are just becoming known. At least three paths have been found through which the environment can modify gene activity.

  11. Analysis of Environmental Law Enforcement Mechanism Based on Economic Principle

    Science.gov (United States)

    Cao, Hongjun; Shao, Haohao; Cai, Xuesen

    2017-11-01

    Strengthening and improving the environmental law enforcement mechanism is an important way to protect the ecological environment. This paper is based on economical principles, we did analysis of the marginal management costs by using Pigou means and the marginal transaction costs by using Coase means vary with the quantity growth of pollutant discharge Enterprises. We analyzed all this information, then we got the conclusion as follows. In the process of strengthening the environmental law enforcement mechanism, firstly, we should fully mobilize all aspects of environmental law enforcement, such as legislative bodies and law enforcement agencies, public welfare organizations, television, newspapers, enterprises, people and so on, they need to form a reasonable and organic structure system; then we should use various management means, such as government regulation, legal sanctions, fines, persuasion and denounce, they also need to form an organic structural system.

  12. Spermidine mediates degradation of ornithine decarboxylase by a non-lysosomal, ubiquitin-independent mechanism

    International Nuclear Information System (INIS)

    Glass, J.R.; Gerner, E.W.

    1987-01-01

    The mechanism of spermidine-induced ornithine decarboxylase (OCD, E.C. 4.1.1.17) inactivation was investigated using Chinese hamster ovary (CHO) cells, maintained in serum-free medium, which display a stabilization of ODC owing to the lack of accumulation of putrescine and spermidine. Treatment of cells with 10 μM exogenous spermidine leads to rapid decay of ODC activity accompanied by a parallel decrease in enzyme protein. Analysis of the decay of [ 35 S]methionine-labeled ODC and separation by two-dimensional electrophoresis revealed no detectable modification in ODC structure during enhanced degradation. Spermidine-mediated inactivation of ODC occurred in a temperature-dependent manner exhibiting pseudo-first-order kinetics over a temperature range of 22-37 0 C. In cultures treated continuously, an initial lag was observed after treatment with spermidine, followed by a rapid decline in activity as an apparent critical concentration of intracellular spermidine was achieved. Treating cells at 22 0 C for 3 hours with 10 μ M spermidine, followed by removal of exogenous polyamine, and then shifting to varying temperatures, resulted in rates of ODC inactivation identical with that determined with a continuous treatment. Arrhenius analysis showed that polyamine mediated inactivation of ODC occurred with an activation energy of approximately 16 kcal/mol. Treatment of cells with lysosomotrophic agents had no effect of ODC degradation. ODC turnover was not dependent on ubiquitin-dependent proteolysis. These data support the hypothesis that spermidine regulates ODC degradation via a mechanism requiring new protein synthesis, and that this occurs via a non-lysosomal, ubiquitin-independent pathway

  13. Reaction mechanisms and rate constants of waste degradation in landfill bioreactor systems with enzymatic-enhancement.

    Science.gov (United States)

    Jayasinghe, P A; Hettiaratchi, J P A; Mehrotra, A K; Kumar, S

    2014-06-01

    Augmenting leachate before recirculation with peroxidase enzymes is a novel method to increase the available carbon, and therefore the food supply to microorganisms at the declining phase of the anaerobic landfill bioreactor operation. In order to optimize the enzyme-catalyzed leachate recirculation process, it is necessary to identify the reaction mechanisms and determine rate constants. This paper presents a kinetic model developed to ascertain the reaction mechanisms and determine the rate constants for enzyme catalyzed anaerobic waste degradation. The maximum rate of reaction (Vmax) for MnP enzyme-catalyzed reactors was 0.076 g(TOC)/g(DS).day. The catalytic turnover number (k(cat)) of the MnP enzyme-catalyzed was 506.7 per day while the rate constant (k) of the un-catalyzed reaction was 0.012 per day. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Formation of degradation compounds from lignocellulosic biomass in the biorefinery: sugar reaction mechanisms

    DEFF Research Database (Denmark)

    Rasmussen, Helena; Sørensen, Hanne R.; Meyer, Anne S.

    2014-01-01

    , several aldehydes and ketones and many different organic acids and aromatic compounds may be generated during hydrothermal treatment of lignocellulosic biomass. The reaction mechanisms are of interest because the very same compounds that are possible inhibitors for biomass processing enzymes......The degradation compounds formed during pretreatment when lignocellulosic biomass is processed to ethanol or other biorefinery products include furans, phenolics, organic acids, as well as mono- and oligomeric pentoses and hexoses. Depending on the reaction conditions glucose can be converted to 5......-(hydroxymethyl)-2-furaldehyde (HMF) and/or levulinic acid, formic acid and different phenolics at elevated temperatures. Correspondingly, xylose can follow different reaction mechanisms resulting in the formation of furan-2-carbaldehyde (furfural) and/or various C-1 and C-4 compounds. At least four routes...

  15. Radiation-thermal degradation of PE and PVC: Mechanism of synergism and dose rate effects

    Science.gov (United States)

    Clough, Roger L.; Gillen, Kenneth T.

    Polyethylene insulation and polyvinyl chloride jacketing materials that had been in use in a nuclear application were recently found to be substantially deteriorated. The damage had occurred under conditions where both the total estimated dose (about 2.5 Mrad) and the operating temperatures (about 43°C average) seemed relatively moderate. These results prompted us to initiate a program to study polyvinyl chloride and polyethylene degradation under conditions of combined γ-radiation and elevated temperature environments. A number of interesting aging effects were observed, including 1) a striking synergism between radiation and temperature and 2) strong dose-rate dependent effects which occur over a wide range of dose rates. The aging effects are explained in terms of a chain branching degradation mechanism involving thermally induced breakdown of peroxides which are formed in reactions initiated by the radiation. Evidence for this mechanism is derived from infrared spectra, from sequential radiation-elevated temperature experiments including experiments under inert atmosphere, from activation energy estimates and from a new technique involving treatment of intact samples with PH 3 for chemical reduction of peroxides. The results of our studies raise significant doubts about the utility of earlier compilations which purportedly serve as radiation life expectancy guides by indicating "tolerable radiation doses" for a variety of polymers.

  16. Bacteria and lignin degradation

    Institute of Scientific and Technical Information of China (English)

    Jing LI; Hongli YUAN; Jinshui YANG

    2009-01-01

    Lignin is both the most abundant aromatic (phenolic) polymer and the second most abundant raw material.It is degraded and modified by bacteria in the natural world,and bacteria seem to play a leading role in decomposing lignin in aquatic ecosystems.Lignin-degrading bacteria approach the polymer by mechanisms such as tunneling,erosion,and cavitation.With the advantages of immense environmental adaptability and biochemical versatility,bacteria deserve to be studied for their ligninolytic potential.

  17. Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling

    Energy Technology Data Exchange (ETDEWEB)

    Guangguo, Ying [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); CSIRO Land and Water, Adelaide Laboratory, PMB2, Glen Osmond SA 5064 (Australia)], E-mail: guang-guo.ying@gig.ac.cn; Xiangyang, Yu [CSIRO Land and Water, Adelaide Laboratory, PMB2, Glen Osmond SA 5064 (Australia); Food Safety Research Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014 (China); Kookana, Rai S [CSIRO Land and Water, Adelaide Laboratory, PMB2, Glen Osmond SA 5064 (Australia)

    2007-12-15

    Triclocarban and triclosan are two antimicrobial agents widely used in many personal care products. Their biodegradation behaviour in soil was investigated by laboratory degradation experiments and environmental fate modelling. Quantitative structure-activity relationship (QSAR) analyses showed that triclocarban and triclosan had a tendency to partition into soil or sediment in the environment. Fate modelling suggests that either triclocarban or triclosan 'does not degrade fast' with its primary biodegradation half-life of 'weeks' and ultimate biodegradation half-life of 'months'. Laboratory experiments showed that triclocarban and triclosan were degraded in the aerobic soil with half-life of 108 days and 18 days, respectively. No negative effect of these two antimicrobial agents on soil microbial activity was observed in the aerobic soil samples during the experiments. But these two compounds persisted in the anaerobic soil within 70 days of the experimental period. - Triclocarban and triclosan can be degraded by microbial processes in aerobic soil, but will persist in anaerobic soil.

  18. Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling

    International Nuclear Information System (INIS)

    Ying Guangguo; Yu Xiangyang; Kookana, Rai S.

    2007-01-01

    Triclocarban and triclosan are two antimicrobial agents widely used in many personal care products. Their biodegradation behaviour in soil was investigated by laboratory degradation experiments and environmental fate modelling. Quantitative structure-activity relationship (QSAR) analyses showed that triclocarban and triclosan had a tendency to partition into soil or sediment in the environment. Fate modelling suggests that either triclocarban or triclosan 'does not degrade fast' with its primary biodegradation half-life of 'weeks' and ultimate biodegradation half-life of 'months'. Laboratory experiments showed that triclocarban and triclosan were degraded in the aerobic soil with half-life of 108 days and 18 days, respectively. No negative effect of these two antimicrobial agents on soil microbial activity was observed in the aerobic soil samples during the experiments. But these two compounds persisted in the anaerobic soil within 70 days of the experimental period. - Triclocarban and triclosan can be degraded by microbial processes in aerobic soil, but will persist in anaerobic soil

  19. Land quality, sustainable development and environmental degradation in agricultural districts: A computational approach based on entropy indexes

    International Nuclear Information System (INIS)

    Zambon, Ilaria; Colantoni, Andrea; Carlucci, Margherita; Morrow, Nathan; Sateriano, Adele; Salvati, Luca

    2017-01-01

    Land Degradation (LD) in socio-environmental systems negatively impacts sustainable development paths. This study proposes a framework to LD evaluation based on indicators of diversification in the spatial distribution of sensitive land. We hypothesize that conditions for spatial heterogeneity in a composite index of land sensitivity are more frequently associated to areas prone to LD than spatial homogeneity. Spatial heterogeneity is supposed to be associated with degraded areas that act as hotspots for future degradation processes. A diachronic analysis (1960–2010) was performed at the Italian agricultural district scale to identify environmental factors associated with spatial heterogeneity in the degree of land sensitivity to degradation based on the Environmentally Sensitive Area Index (ESAI). In 1960, diversification in the level of land sensitivity measured using two common indexes of entropy (Shannon's diversity and Pielou's evenness) increased significantly with the ESAI, indicating a high level of land sensitivity to degradation. In 2010, surface area classified as “critical” to LD was the highest in districts with diversification in the spatial distribution of ESAI values, confirming the hypothesis formulated above. Entropy indexes, based on observed alignment with the concept of LD, constitute a valuable base to inform mitigation strategies against desertification. - Highlights: • Spatial heterogeneity is supposed to be associated with degraded areas. • Entropy indexes can inform mitigation strategies against desertification. • Assessing spatial diversification in the degree of land sensitivity to degradation. • Mediterranean rural areas have an evident diversity in agricultural systems. • A diachronic analysis carried out at the Italian agricultural district scale.

  20. Land quality, sustainable development and environmental degradation in agricultural districts: A computational approach based on entropy indexes

    Energy Technology Data Exchange (ETDEWEB)

    Zambon, Ilaria, E-mail: ilaria.zambon@unitus.it [Department of Agricultural and Forestry scieNcEs (DAFNE), Tuscia University, Via S. Camillo de Lellis, I-01100 Viterbo (Italy); Colantoni, Andrea [Department of Agricultural and Forestry scieNcEs (DAFNE), Tuscia University, Via S. Camillo de Lellis, I-01100 Viterbo (Italy); Carlucci, Margherita [Department of Social and Economic Science, University of Rome La Sapienza, Piazzale A. Moro 5, I-00185 Rome (Italy); Morrow, Nathan [Tulane University, Payson Program in International Development at the School of Law, New Orleans (United States); Sateriano, Adele; Salvati, Luca [Italian Council for Agricultural Research and Economics (CREA-RPS), Via della Navicella 2-4, I-00184 Rome (Italy)

    2017-05-15

    Land Degradation (LD) in socio-environmental systems negatively impacts sustainable development paths. This study proposes a framework to LD evaluation based on indicators of diversification in the spatial distribution of sensitive land. We hypothesize that conditions for spatial heterogeneity in a composite index of land sensitivity are more frequently associated to areas prone to LD than spatial homogeneity. Spatial heterogeneity is supposed to be associated with degraded areas that act as hotspots for future degradation processes. A diachronic analysis (1960–2010) was performed at the Italian agricultural district scale to identify environmental factors associated with spatial heterogeneity in the degree of land sensitivity to degradation based on the Environmentally Sensitive Area Index (ESAI). In 1960, diversification in the level of land sensitivity measured using two common indexes of entropy (Shannon's diversity and Pielou's evenness) increased significantly with the ESAI, indicating a high level of land sensitivity to degradation. In 2010, surface area classified as “critical” to LD was the highest in districts with diversification in the spatial distribution of ESAI values, confirming the hypothesis formulated above. Entropy indexes, based on observed alignment with the concept of LD, constitute a valuable base to inform mitigation strategies against desertification. - Highlights: • Spatial heterogeneity is supposed to be associated with degraded areas. • Entropy indexes can inform mitigation strategies against desertification. • Assessing spatial diversification in the degree of land sensitivity to degradation. • Mediterranean rural areas have an evident diversity in agricultural systems. • A diachronic analysis carried out at the Italian agricultural district scale.

  1. Photocatalytic degradation kinetics and mechanism of antivirus drug-lamivudine in TiO{sub 2} dispersion

    Energy Technology Data Exchange (ETDEWEB)

    An, Taicheng, E-mail: antc99@gig.ac.cn [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); An, Jibin [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Yang, Hai [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Li, Guiying [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Feng, Huixia [College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050 (China); Nie, Xiangping [Institute of Hydrobiology, Jinan University, Guangzhou 510632 (China)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Photocatalytic degradation kinetics of antivirus drug lamivudine. Black-Right-Pointing-Pointer The degradation kinetics was optimized by the single-variable-at-a-time. Black-Right-Pointing-Pointer The degradation kinetics was optimized by central composite design. Black-Right-Pointing-Pointer The contribution of reactive species was investigated with addition of scavengers. Black-Right-Pointing-Pointer Six intermediates were identified and a degradation mechanism was proposed. - Abstract: Photocatalytic degradation kinetics of antivirus drug-lamivudine in aqueous TiO{sub 2} dispersions was systematically optimized by both single-variable-at-a-time and central composite design based on the response surface methodology. Three variables, TiO{sub 2} content, initial pH and lamivudine concentration, were selected to determine the dependence of degradation efficiencies of lamivudine on independent variables. Response surface methodology modeling results indicated that degradation efficiencies of lamivudine were highly affected by TiO{sub 2} content and initial lamivudine concentration. The highest degradation efficiency was achieved at suitable amount of TiO{sub 2} and with maintaining initial lamivudine concentration to a minimum. In addition, the contribution experiments of various primary reactive species produced during the photocatalysis were investigated with the addition of different scavengers and found that hydroxyl radicals was the major reactive species involved in lamivudine degradation in aqueous TiO{sub 2}. Six degradation intermediates were identified using HPLC/MS/MS, and photocatalytic degradation mechanism of lamivudine was proposed by utilizing collective information from both experimental results of HPLC/MS/MS, ion chromatography as well as total organic carbon and theoretical data of frontier electron densities and point charges.

  2. Microstructure, mechanical properties and chemical degradation of brazed AISI 316 stainless steel/alumina systems

    International Nuclear Information System (INIS)

    Paiva, O.C.; Barbosa, M.A.

    2008-01-01

    The main aims of the present study are simultaneously to relate the brazing parameters with: (i) the correspondent interfacial microstructure, (ii) the resultant mechanical properties and (iii) the electrochemical degradation behaviour of AISI 316 stainless steel/alumina brazed joints. Filler metals on such as Ag-26.5Cu-3Ti and Ag-34.5Cu-1.5Ti were used to produce the joints. Three different brazing temperatures (850, 900 and 950 deg. C), keeping a constant holding time of 20 min, were tested. The objective was to understand the influence of the brazing temperature on the final microstructure and properties of the joints. The mechanical properties of the metal/ceramic (M/C) joints were assessed from bond strength tests carried out using a shear solicitation loading scheme. The fracture surfaces were studied both morphologically and structurally using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction analysis (XRD). The degradation behaviour of the M/C joints was assessed by means of electrochemical techniques. It was found that using a Ag-26.5Cu-3Ti brazing alloy and a brazing temperature of 850 deg. C, produces the best results in terms of bond strength, 234 ± 18 MPa. The mechanical properties obtained could be explained on the basis of the different compounds identified on the fracture surfaces by XRD. On the other hand, the use of the Ag-34.5Cu-1.5Ti brazing alloy and a brazing temperature of 850 deg. C produces the best results in terms of corrosion rates (lower corrosion current density), 0.76 ± 0.21 μA cm -2 . Nevertheless, the joints produced at 850 deg. C using a Ag-26.5Cu-3Ti brazing alloy present the best compromise between mechanical properties and degradation behaviour, 234 ± 18 MPa and 1.26 ± 0.58 μA cm -2 , respectively. The role of Ti diffusion is fundamental in terms of the final value achieved for the M/C bond strength. On the contrary, the Ag and Cu distribution along the brazed interface seem to

  3. Degradation of lithium ion batteries employing graphite negatives and nickel-cobalt-manganese oxide + spinel manganese oxide positives: Part 2, chemical-mechanical degradation model

    Science.gov (United States)

    Purewal, Justin; Wang, John; Graetz, Jason; Soukiazian, Souren; Tataria, Harshad; Verbrugge, Mark W.

    2014-12-01

    Capacity fade is reported for 1.5 Ah Li-ion batteries containing a mixture of Li-Ni-Co-Mn oxide (NCM) + Li-Mn oxide spinel (LMO) as positive electrode material and a graphite negative electrode. The batteries were cycled at a wide range of temperatures (10 °C-46 °C) and discharge currents (0.5C-6.5C). The measured capacity losses were fit to a simple physics-based model which calculates lithium inventory loss from two related mechanisms: (1) mechanical degradation at the graphite anode particle surface caused by diffusion-induced stresses (DIS) and (2) chemical degradation caused by lithium loss to continued growth of the solid-electrolyte interphase (SEI). These two mechanisms are coupled because lithium is consumed through SEI formation on newly exposed crack surfaces. The growth of crack surface area is modeled as a fatigue phenomenon due to the cyclic stresses generated by repeated lithium insertion and de-insertion of graphite particles. This coupled chemical-mechanical degradation model is consistent with the observed capacity loss features for the NCM + LMO/graphite cells.

  4. Microscopic degradation mechanism of polyimide film caused by surface discharge under bipolar continuous square impulse voltage

    International Nuclear Information System (INIS)

    Luo Yang; Wu Guang-Ning; Liu Ji-Wu; Peng Jia; Gao Guo-Qiang; Zhu Guang-Ya; Wang Peng; Cao Kai-Jiang

    2014-01-01

    Polyimide (PI) film is an important type of insulating material used in inverter-fed motors. Partial discharge (PD) under a sequence of high-frequency square impulses is one of the key factors that lead to premature failures in insulation systems of inverter-fed motors. In order to explore the damage mechanism of PI film caused by discharge, an aging system of surface discharge under bipolar continuous square impulse voltage (BCSIV) is designed based on the ASTM 2275 01 standard and the electrical aging tests of PI film samples are performed above the partial discharge inception voltage (PDIV). The chemical bonds of PI polymer chains are analyzed through Fourier transform infrared spectroscopy (FTIR) and the dielectric properties of unaged and aged PI samples are investigated by LCR testers HIOKI 3532-50. Finally, the micro-morphology and micro-structure changes of PI film samples are observed through scanning electron microscopy (SEM). The results show that the physical and chemical effects of discharge cut off the chemical bonds of PI polymer chains. The fractures of ether bond (C—O—C) and imide ring (C—N—C) on the backbone of a PI polymer chain leads to the decrease of molecular weight, which results in the degradation of PI polymers and the generation of new chemical groups and materials, like carboxylic acid, ketone, aldehydes, etc. The variation of microscopic structure of PI polymers can change the orientation ability of polarizable units when the samples are under an AC electric field, which would cause the dielectric constant ε to increase and dielectric loss tan δ to decrease. The SEM images show that the degradation path of PI film is initiated from the surface and then gradually extends to the interior with continuous aging. The injection charge could result in the PI macromolecular chain degradation and increase the trap density in the PI polymer bulk. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  5. Wetland degradation: its driving forces and environmental impacts in the Sanjiang Plain, China.

    Science.gov (United States)

    Song, Kaishan; Wang, Zongming; Du, Jia; Liu, Lei; Zeng, Lihong; Ren, Chunying

    2014-08-01

    This study investigated human-induced long-term wetland degradation that occurred in the Sanjiang Plain. Results from analyzing land-use/land-cover data sets derived from remotely sensed Landsat Multispectral Scanner/Thematic Mapper imagery for four time points showed that wetlands in the Sanjiang Plain have been severely transformed, and the area of wetlands decreased by 38 % from 1976 to 1986, by 16 % from 1986 to 1995, and by 31 % from 1995 to 2005. This study showed that transition to agricultural cultivation accounted for 91 % of wetland losses, whereas transition to grassland and forest accounted for 7 % of the wetlands losses. Institutional strategies and market policies probably exerted great impacts on agricultural practice that directly or indirectly influenced the decrease in wetlands. This study also indicated that an increased population likely led to wetland conversion to cropland by showing a high correlation between population and cropland (R (2) = 0.92, P reinforced further because of possible environmental consequences of wetland loss, such as enhanced soil carbon emission, changed hydrological cycling, and regional temperature increase.

  6. Ethanol and sodium acetate as a preservation method to delay degradation of environmental DNA

    Science.gov (United States)

    Ladell, Bridget A.; Walleser, Liza R.; McCalla, S. Grace; Erickson, Richard A.; Amberg, Jon J.

    2018-01-01

    Environmental DNA (eDNA) samples that are collected from remote locations depend on rapid stabilization of the DNA. The degradation of eDNA in water samples is minimized when samples are stored at ≤ 4 °C. Developing a preservation technique to maintain eDNA integrity at room temperature would allow a wider range of locations to be sampled. We evaluated an ethanol and sodium acetate solution to maintain the integrity of the DNA samples for the time between collection and lab testing. For this evaluation, replicate water samples taken from a tank housing Asian carp were placed on ice or held at room temperature. At both temperatures, water samples were left untreated or were preserved with an ethanol and sodium acetate solution (EtOH–NaAc). Every day for 6 days following collection, a subset of the samples was removed from each preservation method and DNA was extracted and nuclear and mitochondrial markers were assayed with qPCR. Results showed comparable persistence of DNA between iced samples without the EtOH–NaAc treatment and samples that received EtOH–NaAc treatment that were kept at room temperature. We found that DNA can be amplified from preserved samples using an EtOH–NaAc solution after up to 7 days at room temperature.

  7. Environmental Degradation of Dissimilar Austenitic 316L and Duplex 2205 Stainless Steels Welded Joints

    Directory of Open Access Journals (Sweden)

    Topolska S.

    2017-12-01

    Full Text Available The paper describes structure and properties of dissimilar stainless steels welded joints between duplex 2205 and austenitic 316L steels. Investigations were focused on environmentally assisted cracking of welded joints. The susceptibility to stress corrosion cracking (SCC and hydrogen embrittlement was determined in slow strain rate tests (SSRT with the strain rate of 2.2 × 10−6 s−1. Chloride-inducted SCC was determined in the 35% boiling water solution of MgCl2 environment at 125°C. Hydrogen assisted SCC tests were performed in synthetic sea water under cathodic polarization condition. It was shown that place of the lowest resistance to chloride stress corrosion cracking is heat affected zone at duplex steel side of dissimilar joins. That phenomenon was connected with undesirable structure of HAZ comprising of large fractions of ferrite grains with acicular austenite phase. Hydrogen assisted SCC tests showed significant reduction in ductility of duplex 2205 steel while austenitic 316L steel remains almost immune to degradation processes. SSR tests of dissimilar welded joints revealed a fracture in the area of austenitic steel.

  8. Device Engineering and Degradation Mechanism Study of All-Phosphorescent White Organic Light-Emitting Diodes

    Science.gov (United States)

    Xu, Lisong

    As a possible next-generation solid-state lighting source, white organic light-emitting diodes (WOLEDs) have the advantages in high power efficiency, large area and flat panel form factor applications. Phosphorescent emitters and multiple emitting layer structures are typically used in high efficiency WOLEDs. However due to the complexity of the device structure comprising a stack of multiple layers of organic thin films, ten or more organic materials are usually required, and each of the layers in the stack has to be optimized to produce the desired electrical and optical functions such that collectively a WOLED of the highest possible efficiency can be achieved. Moreover, device degradation mechanisms are still unclear for most OLED systems, especially blue phosphorescent OLEDs. Such challenges require a deep understanding of the device operating principles and materials/device degradation mechanisms. This thesis will focus on achieving high-efficiency and color-stable all-phosphorescent WOLEDs through optimization of the device structures and material compositions. The operating principles and the degradation mechanisms specific to all-phosphorescent WOLED will be studied. First, we investigated a WOLED where a blue emitter was based on a doped mix-host system with the archetypal bis(4,6-difluorophenyl-pyridinato-N,C2) picolinate iridium(III), FIrpic, as the blue dopant. In forming the WOLED, the red and green components were incorporated in a single layer adjacent to the blue layer. The WOLED efficiency and color were optimized through variations of the mixed-host compositions to control the electron-hole recombination zone and the dopant concentrations of the green-red layers to achieve a balanced white emission. Second, a WOLED structure with two separate blue layers and an ultra-thin red and green co-doped layer was studied. Through a systematic investigation of the placement of the co-doped red and green layer between the blue layers and the material

  9. Lattice distortion mechanism study of TiO2 nanoparticles during photocatalysis degradation and reactivation

    Science.gov (United States)

    Wu, Wenhui; Xue, Xudong; Jiang, Xudong; Zhang, Yupeng; Wu, Yichu; Pan, Chunxu

    2015-05-01

    In this paper, the photocatalytic process of TiO2 (P25) is directly characterized by using a positron annihilation lifetime spectroscopy (PALS), high-resolution transmission electron microscopy (HRTEM), Photoluminescence spectroscopy (PL) and UV Raman spectroscopy (Raman). The experimental results reveal that: 1) From PALS measurements, because τ1 and τ2 values and their intensity (I1 and I2) assigned to the different size and amounts of defects, respectively, their variations indicate the formation of different types and amounts of defects during the absorption and degradation. 2) HRTEM observations show that the lattice images become partly blurring when the methylene blue is fully degradated, and clear again after exposed in the air for 30 days. According to the results, we propose a mechanism that the lattice distortion induces the defects as electron capture sites and provides energy for improving photocatalytic process. Meanwhile, the lattice distortion relaxation after exposing in the air for 30 days perfectly explains the gradual deactivation of TiO2, because the smaller vacancy defects grow and agglomerate through the several photocatalytic processes. The instrumental PL and Raman are also used to analyze the samples and approved the results of PALS and HRTEM.

  10. Lattice distortion mechanism study of TiO2 nanoparticles during photocatalysis degradation and reactivation

    Directory of Open Access Journals (Sweden)

    Wenhui Wu

    2015-05-01

    Full Text Available In this paper, the photocatalytic process of TiO2 (P25 is directly characterized by using a positron annihilation lifetime spectroscopy (PALS, high-resolution transmission electron microscopy (HRTEM, Photoluminescence spectroscopy (PL and UV Raman spectroscopy (Raman. The experimental results reveal that: 1 From PALS measurements, because τ1 and τ2 values and their intensity (I1 and I2 assigned to the different size and amounts of defects, respectively, their variations indicate the formation of different types and amounts of defects during the absorption and degradation. 2 HRTEM observations show that the lattice images become partly blurring when the methylene blue is fully degradated, and clear again after exposed in the air for 30 days. According to the results, we propose a mechanism that the lattice distortion induces the defects as electron capture sites and provides energy for improving photocatalytic process. Meanwhile, the lattice distortion relaxation after exposing in the air for 30 days perfectly explains the gradual deactivation of TiO2, because the smaller vacancy defects grow and agglomerate through the several photocatalytic processes. The instrumental PL and Raman are also used to analyze the samples and approved the results of PALS and HRTEM.

  11. Thermal degradation mechanism of addition-cure liquid silicone rubber with urea-containing silane

    International Nuclear Information System (INIS)

    Fang, Weizhen; Zeng, Xingrong; Lai, Xuejun; Li, Hongqiang; Chen, Wanjuan; Zhang, Yajun

    2015-01-01

    Highlights: • The urea-containing silane was incorporated into addition-cure liquid silicone rubber (ALSR) via hydrosilylation reaction. • The thermal stability of the ALSR was improved by DEUPAS both in nitrogen and air • The TG–FTIR of evolved gases during degradation was performed. • The possible degradation mechanism of the ALSR samples was proposed. - Abstract: The reactive urea-containing silane, (γ-diethylureidopropyl) allyloxyethoxysilane (DEUPAS), was synthesized by the trans-etherification reaction. The chemical structure was characterized by Fourier transform infrared spectrometry (FTIR) and 1 H nuclear magnetic resonance spectrometry ( 1 H NMR). Subsequently, DEUPAS was incorporated into addition-cure liquid silicone rubber (ALSR) via hydrosilylation reaction. The thermal stability of the ALSR samples was investigated by thermogravimetry (TG) and thermogravimetry–Fourier transform infrared spectrometry (TG–FTIR). When DEUPAS was incorporated, the temperature of 10% weight loss and 20% weight loss under air atmosphere were respectively increased by 31 °C and 60 °C compared with those of the ALSR without DEUPAS. Meanwhile, the residual weight at 800 °C increased from 33.5% to 58.7%. It was found that the striking enhancement in thermal stability of the ALSR samples was likely attributed to the decomposition of the urea groups to isocyanic acid, which reacted with hydroxyl groups to inhibit the unzipping depolymerization

  12. Thermal degradation mechanism of addition-cure liquid silicone rubber with urea-containing silane

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Weizhen; Zeng, Xingrong, E-mail: psxrzeng@gmail.com; Lai, Xuejun; Li, Hongqiang; Chen, Wanjuan; Zhang, Yajun

    2015-04-10

    Highlights: • The urea-containing silane was incorporated into addition-cure liquid silicone rubber (ALSR) via hydrosilylation reaction. • The thermal stability of the ALSR was improved by DEUPAS both in nitrogen and air • The TG–FTIR of evolved gases during degradation was performed. • The possible degradation mechanism of the ALSR samples was proposed. - Abstract: The reactive urea-containing silane, (γ-diethylureidopropyl) allyloxyethoxysilane (DEUPAS), was synthesized by the trans-etherification reaction. The chemical structure was characterized by Fourier transform infrared spectrometry (FTIR) and {sup 1}H nuclear magnetic resonance spectrometry ({sup 1}H NMR). Subsequently, DEUPAS was incorporated into addition-cure liquid silicone rubber (ALSR) via hydrosilylation reaction. The thermal stability of the ALSR samples was investigated by thermogravimetry (TG) and thermogravimetry–Fourier transform infrared spectrometry (TG–FTIR). When DEUPAS was incorporated, the temperature of 10% weight loss and 20% weight loss under air atmosphere were respectively increased by 31 °C and 60 °C compared with those of the ALSR without DEUPAS. Meanwhile, the residual weight at 800 °C increased from 33.5% to 58.7%. It was found that the striking enhancement in thermal stability of the ALSR samples was likely attributed to the decomposition of the urea groups to isocyanic acid, which reacted with hydroxyl groups to inhibit the unzipping depolymerization.

  13. The Hydrolytic Stability and Degradation Mechanism of a Hierarchically Porous Metal Alkylphosphonate Framework

    Directory of Open Access Journals (Sweden)

    Kai Lv

    2018-03-01

    Full Text Available To aid the design of a hierarchically porous unconventional metal-phosphonate framework (HP-UMPF for practical radioanalytical separation, a systematic investigation of the hydrolytic stability of bulk phase against acidic corrosion has been carried out for an archetypical HP-UMPF. Bulk dissolution results suggest that aqueous acidity has a more paramount effect on incongruent leaching than the temperature, and the kinetic stability reaches equilibrium by way of an accumulation of a partial leached species on the corrosion conduits. A variation of particle morphology, hierarchical porosity and backbone composition upon corrosion reveals that they are hydrolytically resilient without suffering any great degradation of porous texture, although large aggregates crack into sporadic fractures while the nucleophilic attack of inorganic layers cause the leaching of tin and phosphorus. The remaining selectivity of these HP-UMPFs is dictated by a balance between the elimination of free phosphonate and the exposure of confined phosphonates, thus allowing a real-time tailor of radionuclide sequestration. Moreover, a plausible degradation mechanism has been proposed for the triple progressive dissolution of three-level hierarchical porous structures to elucidate resultant reactivity. These HP-UMPFs are compared with benchmark metal-organic frameworks (MOFs to obtain a rough grading of hydrolytic stability and two feasible approaches are suggested for enhancing their hydrolytic stability that are intended for real-life separation protocols.

  14. Heterogeneous electro-Fenton using modified iron-carbon as catalyst for 2,4-dichlorophenol degradation: influence factors, mechanism and degradation pathway.

    Science.gov (United States)

    Zhang, Chao; Zhou, Minghua; Ren, Gengbo; Yu, Xinmin; Ma, Liang; Yang, Jie; Yu, Fangke

    2015-03-01

    Modified iron-carbon with polytetrafluoroethylene (PTFE) was firstly investigated as heterogeneous electro-Fenton (EF) catalyst for 2,4-dichlorophenol (2,4-DCP) degradation in near neutral pH condition. The catalyst was characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), and the effects of some important operating parameters such as current intensity and pH on the 2,4-DCP degradation were investigated. After the catalyst modification with 20% PTFE, the degradation performance maintained well with much lower iron leaching, and at current intensity 100 mA, initial pH 6.7, catalyst loading 6 g/L, the degradation efficiency of 2,4-DCP could exceed 95% within 120 min treatment. Two-stage pseudo first-order kinetics of 2,4-DCP degradation was observed, including a slow anodic oxidation stage (first-stage) and much faster heterogeneous EF oxidation (second-stage), in which the automatic drop of pH in the first-stage initiated the Fe(2+) release from micro-electrolysis and thus benefited to the subsequent EF reaction. Aromatic intermediates such as 3,5-dichlorocatechol, 4,6-dichlororesorcinol and 2-chlorohydroquinone were detected by GC-MS. Oxalic acid, acetic acid, formic acid and Cl(-) were quantified by ion chromatograph. Based on these analysis as well as the detection of H₂O₂ and OH, a possible mechanism and degradation pathway for 2,4-DCP were proposed. This work demonstrated that such a heterogeneous EF using cheap modified Fe-C catalyst was promising for organic wastewater treatment in initial neutral pH condition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Inactivation of Cellobiose Dehydrogenases Modifies the Cellulose Degradation Mechanism of Podospora anserina.

    Science.gov (United States)

    Tangthirasunun, Narumon; Navarro, David; Garajova, Sona; Chevret, Didier; Tong, Laetitia Chan Ho; Gautier, Valérie; Hyde, Kevin D; Silar, Philippe; Berrin, Jean-Guy

    2017-01-15

    Conversion of biomass into high-value products, including biofuels, is of great interest to developing sustainable biorefineries. Fungi are an inexhaustible source of enzymes to degrade plant biomass. Cellobiose dehydrogenases (CDHs) play an important role in the breakdown through synergistic action with fungal lytic polysaccharide monooxygenases (LPMOs). The three CDH genes of the model fungus Podospora anserina were inactivated, resulting in single and multiple CDH mutants. We detected almost no difference in growth and fertility of the mutants on various lignocellulose sources, except on crystalline cellulose, on which a 2-fold decrease in fertility of the mutants lacking P. anserina CDH1 (PaCDH1) and PaCDH2 was observed. A striking difference between wild-type and mutant secretomes was observed. The secretome of the mutant lacking all CDHs contained five beta-glucosidases, whereas the wild type had only one. P. anserina seems to compensate for the lack of CDH with secretion of beta-glucosidases. The addition of P. anserina LPMO to either the wild-type or mutant secretome resulted in improvement of cellulose degradation in both cases, suggesting that other redox partners present in the mutant secretome provided electrons to LPMOs. Overall, the data showed that oxidative degradation of cellulosic biomass relies on different types of mechanisms in fungi. Plant biomass degradation by fungi is a complex process involving dozens of enzymes. The roles of each enzyme or enzyme class are not fully understood, and utilization of a model amenable to genetic analysis should increase the comprehension of how fungi cope with highly recalcitrant biomass. Here, we report that the cellobiose dehydrogenases of the model fungus Podospora anserina enable it to consume crystalline cellulose yet seem to play a minor role on actual substrates, such as wood shavings or miscanthus. Analysis of secreted proteins suggests that Podospora anserina compensates for the lack of cellobiose

  16. Mechanisms of cement leaching and degradation - integration of neutron imaging techniques

    International Nuclear Information System (INIS)

    Payne, Timothy E.; Aldridge, Laurence P.; Brew, Daniel R.M.; McGlinn, Peter J.; De Beer, Frikkie C.; Radebe, Mabuti J.; Nshimirimana, Robert

    2012-01-01

    Cementitious material is a commonly used wasteform for low and intermediate level radioactive waste, and comprises a major part of both structural components and barriers in many repository concepts. When exposed to water, cement-based barriers and waste-forms are expected to degrade by mechanisms involving both chemical and structural changes. The research program addresses several aspects of these processes, including the leaching of the waste-forms, water transport properties, as well as the effect of high pH cement leachates on the chemical and physical properties of surrounding materials (including clay barriers and host regolith materials). Chemical leaching tests and analyses by techniques such as electron microscopy can be augmented by neutron radiography and tomography. These methods provide a useful non-destructive method of determining properties related to water transport in cementitious materials, in particular the sorptivity and pore size distribution

  17. Photocatalytic degradation of water containing trichloroethylene with Ti/sub 2/O -mechanism

    International Nuclear Information System (INIS)

    Farooq, M.; Raja, I.A.; Farooq, R.; Bhutti, Z.A.

    2005-01-01

    Wastewater containing highly toxic materials such as trichloroethylene are released directly into rivers and streams. Most of the rivers have fallen into dangerous condition. These major fresh water supplies are contaminate to such a level where it may affect severely the human health and ecological system. There is a need to find out cost effective techniques to decontaminate these. Photo catalysis is a rapidly expanding technology for wastewater treatment. Among various catalyst titanium dioxide TiO/sub 2/ is widely used for wastewater detoxification. This paper describes the mechanism of photo catalytic degradation of trichloroethylene (TCE) using TiO/sub 2/. The result shows that no decomposition occurs in the absence UV radiation. (author)

  18. A hybrid degradation tendency measurement method for mechanical equipment based on moving window and Grey–Markov model

    International Nuclear Information System (INIS)

    Jiang, Wei; Zhou, Jianzhong; Zheng, Yang; Liu, Han

    2017-01-01

    Accurate degradation tendency measurement is vital for the secure operation of mechanical equipment. However, the existing techniques and methodologies for degradation measurement still face challenges, such as lack of appropriate degradation indicator, insufficient accuracy, and poor capability to track the data fluctuation. To solve these problems, a hybrid degradation tendency measurement method for mechanical equipment based on a moving window and Grey–Markov model is proposed in this paper. In the proposed method, a 1D normalized degradation index based on multi-feature fusion is designed to assess the extent of degradation. Subsequently, the moving window algorithm is integrated with the Grey–Markov model for the dynamic update of the model. Two key parameters, namely the step size and the number of states, contribute to the adaptive modeling and multi-step prediction. Finally, three types of combination prediction models are established to measure the degradation trend of equipment. The effectiveness of the proposed method is validated with a case study on the health monitoring of turbine engines. Experimental results show that the proposed method has better performance, in terms of both measuring accuracy and data fluctuation tracing, in comparison with other conventional methods. (paper)

  19. A hybrid degradation tendency measurement method for mechanical equipment based on moving window and Grey-Markov model

    Science.gov (United States)

    Jiang, Wei; Zhou, Jianzhong; Zheng, Yang; Liu, Han

    2017-11-01

    Accurate degradation tendency measurement is vital for the secure operation of mechanical equipment. However, the existing techniques and methodologies for degradation measurement still face challenges, such as lack of appropriate degradation indicator, insufficient accuracy, and poor capability to track the data fluctuation. To solve these problems, a hybrid degradation tendency measurement method for mechanical equipment based on a moving window and Grey-Markov model is proposed in this paper. In the proposed method, a 1D normalized degradation index based on multi-feature fusion is designed to assess the extent of degradation. Subsequently, the moving window algorithm is integrated with the Grey-Markov model for the dynamic update of the model. Two key parameters, namely the step size and the number of states, contribute to the adaptive modeling and multi-step prediction. Finally, three types of combination prediction models are established to measure the degradation trend of equipment. The effectiveness of the proposed method is validated with a case study on the health monitoring of turbine engines. Experimental results show that the proposed method has better performance, in terms of both measuring accuracy and data fluctuation tracing, in comparison with other conventional methods.

  20. Neurodevelopmental Disorders and Environmental Toxicants: Epigenetics as an Underlying Mechanism

    Directory of Open Access Journals (Sweden)

    Nguyen Quoc Vuong Tran

    2017-01-01

    Full Text Available The increasing prevalence of neurodevelopmental disorders, especially autism spectrum disorders (ASD and attention deficit hyperactivity disorder (ADHD, calls for more research into the identification of etiologic and risk factors. The Developmental Origin of Health and Disease (DOHaD hypothesizes that the environment during fetal and childhood development affects the risk for many chronic diseases in later stages of life, including neurodevelopmental disorders. Epigenetics, a term describing mechanisms that cause changes in the chromosome state without affecting DNA sequences, is suggested to be the underlying mechanism, according to the DOHaD hypothesis. Moreover, many neurodevelopmental disorders are also related to epigenetic abnormalities. Experimental and epidemiological studies suggest that exposure to prenatal environmental toxicants is associated with neurodevelopmental disorders. In addition, there is also evidence that environmental toxicants can result in epigenetic alterations, notably DNA methylation. In this review, we first focus on the relationship between neurodevelopmental disorders and environmental toxicants, in particular maternal smoking, plastic-derived chemicals (bisphenol A and phthalates, persistent organic pollutants, and heavy metals. We then review studies showing the epigenetic effects of those environmental factors in humans that may affect normal neurodevelopment.

  1. Neurodevelopmental Disorders and Environmental Toxicants: Epigenetics as an Underlying Mechanism

    Science.gov (United States)

    2017-01-01

    The increasing prevalence of neurodevelopmental disorders, especially autism spectrum disorders (ASD) and attention deficit hyperactivity disorder (ADHD), calls for more research into the identification of etiologic and risk factors. The Developmental Origin of Health and Disease (DOHaD) hypothesizes that the environment during fetal and childhood development affects the risk for many chronic diseases in later stages of life, including neurodevelopmental disorders. Epigenetics, a term describing mechanisms that cause changes in the chromosome state without affecting DNA sequences, is suggested to be the underlying mechanism, according to the DOHaD hypothesis. Moreover, many neurodevelopmental disorders are also related to epigenetic abnormalities. Experimental and epidemiological studies suggest that exposure to prenatal environmental toxicants is associated with neurodevelopmental disorders. In addition, there is also evidence that environmental toxicants can result in epigenetic alterations, notably DNA methylation. In this review, we first focus on the relationship between neurodevelopmental disorders and environmental toxicants, in particular maternal smoking, plastic-derived chemicals (bisphenol A and phthalates), persistent organic pollutants, and heavy metals. We then review studies showing the epigenetic effects of those environmental factors in humans that may affect normal neurodevelopment. PMID:28567415

  2. An efficient and environment-friendly method of removing graphene oxide in wastewater and its degradation mechanisms.

    Science.gov (United States)

    Zhang, Chao-Zhi; Li, Ting; Yuan, Yang; Xu, Jianqiang

    2016-06-01

    Graphene and graphene oxide (GO) have already existed in air, water and soil due to their popular application in functional materials. However, degradation of graphene and GO in wastewater has not been reported. Degradation of GO plays a key role in the elimination of graphene and GO in wastewater due to graphene being easily oxidized to GO. In this paper, GO was completely degraded to give CO2 by Photo-Fenton. The degradation intermediates were determined by UV-vis absorption spectra, elemental analysis (EA), fourier transform infrared (FT-IR) and liquid chromatography-mass spectrometry (LC-MS). Experimental results showed that graphene oxide was completely degraded to give CO2 after 28 days. Based on UV, FT-IR, LC-MS spectra and EA data of these degradation intermediates, the degradation mechanisms of GO were supposed. This paper suggests an efficient and environment-friendly method to degrade GO and graphene. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The mechanism of chitosan degradation by gamma and e-beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gryczka, U. [Institute of Nuclear Chemistry and Technology, ul. Dorodna 16, P.O. Box 97, 03-195 Warsaw (Poland)], E-mail: urszulagryczka@wp.pl; Dondi, D. [General Chemistry Department, University of Pavia, Viale Taramelli 12, 27100 Pavia (Italy); Chmielewski, A.G.; Migdal, W. [Institute of Nuclear Chemistry and Technology, ul. Dorodna 16, P.O. Box 97, 03-195 Warsaw (Poland); Buttafava, A.; Faucitano, A. [General Chemistry Department, University of Pavia, Viale Taramelli 12, 27100 Pavia (Italy)

    2009-07-15

    The mechanism of the radiolytic degradation of chitosan under vacuum and under air is investigated in the dose range 30-300 kGy by EPR spectroscopy coupled with FTIR and gel permeation chromatography (GPC) analysis. A decrease of the number average molecular weights by a factor of 3-4 was monitored in the dose range from 0 to 300 kGy. A deconvolution of the EPR spectra is proposed leading to the identification of intermediate radicals and to a radiolysis mechanism which validity is assessed with respect to free radical and radiation chemistry knowledge of carbohydrate systems. An important result is the EPR identification of stable nitroxyl radicals in the samples irradiated in presence of oxygen. This detection is a proof of the involvement of the amino group in the radiolysis mechanism and prompts the expectation of other related products as hydroxylamine ethers. A practical implication of such observation concerns possible toxicity effects. However, on the base of the low-concentration level of the nitroxyl detected, such risk is considered of negligible importance.

  4. On the interfacial degradation mechanisms of thermal barrier coating systems: Effects of bond coat composition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, R.T., E-mail: WU.Rudder@nims.go.jp [International Center for Young Scientists, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba City, Ibaraki (Japan); Wang, X.; Atkinson, A. [Department of Materials, Imperial College London, Prince Consort Road, London SW7 2BP (United Kingdom)

    2010-10-15

    Thermal barrier coating (TBC) systems based on an electron beam physical vapour deposited, yttria-stabilized zirconia (YSZ) top coat and a substrate material of CMSX-4 superalloy were identically prepared to systematically study the behaviour of different bond coats. The three bond coat systems investigated included two {beta}-structured Pt-Al types and a {gamma}-{gamma}' type produced by Pt diffusion without aluminizing. Progressive evolution of stress in the thermally grown aluminium oxide (TGO) upon thermal cycling, and its relief by plastic deformation and fracture, were studied using luminescence spectroscopy. The TBCs with the LT Pt-Al bond coat failed by a rumpling mechanism that generated isolated cracks at the interface between the TGO and the YSZ. This reduced adhesion at this interface and the TBC delaminated when it could no longer resist the release of the stored elastic energy of the YSZ, which stiffened with time due to sintering. In contrast, the TBCs with Pt diffusion bond coats did not rumple, and the adhesion of interfaces in the coating did not obviously degrade. It is shown that the different failure mechanisms are strongly associated with differences in the high-temperature mechanical properties of the bond coats.

  5. Radiation-induced microcrystal shape change as a mechanism of wasteform degradation

    Science.gov (United States)

    Ojovan, Michael I.; Burakov, Boris E.; Lee, William E.

    2018-04-01

    Experiments with actinide-containing insulating wasteforms such as devitrified glasses containing 244Cm, Ti-pyrochlore, single-phase La-monazite, Pu-monazite ceramics, Eu-monazite and zircon single crystals containing 238Pu indicate that mechanical self-irradiation-induced destruction may not reveal itself for many years (even decades). The mechanisms causing these slowly-occurring changes remain unknown therefore in addition to known mechanisms of wasteform degradation such as matrix swelling and loss of solid solution we have modelled the damaging effects of electrical fields induced by the decay of radionuclides in clusters embedded in a non-conducting matrix. Three effects were important: (i) electric breakdown; (ii) cluster shape change due to dipole interaction, and (iii) cluster shape change due to polarisation interaction. We reveal a critical size of radioactive clusters in non-conducting matrices so that the matrix material can be damaged if clusters are larger than this critical size. The most important parameters that control the matrix integrity are the radioactive cluster (inhomogeneity) size, specific radioactivity, and effective matrix electrical conductivity. We conclude that the wasteform should be as homogeneous as possible and even electrically conductive to avoid potential damage caused by electrical charges induced by radioactive decay.

  6. Fatigue degradation and failure of rotating composite structures - Materials characterisation and underlying mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Gamstedt, E K; Andersen, S I

    2001-03-01

    The present review concerns rotating composite structures, in which fatigue degradation is of key concern for in-service failure. Such applications are for instance rotor blades in wind turbines, helicopter rotor blades, flywheels for energy storage, marine and aeronautical propellers, and rolls for paper machines. The purpose is to identify areas where impending efforts should be made to make better use of composite materials in these applications. In order to obtain better design methodologies, which would allow more reliable and slender structures, improved test methods are necessary. Furthermore, the relation between structural, component and specimen test results should be better understood than what is presently the case. Improved predictive methods rely on a better understanding of the underlying damage mechanisms. With mechanism-based models, the component substructure or even the material microstructure could be optimised for best possible fatigue resistance. These issues are addressed in the present report, with special emphasis on test methods, and scaling from damage mechanisms to relevant material properties. (au)

  7. Investigation of the degradation mechanism of catalytic wires during oxidation of ammonia process

    International Nuclear Information System (INIS)

    Pura, Jarosław; Wieciński, Piotr; Kwaśniak, Piotr; Zwolińska, Marta; Garbacz, Halina; Zdunek, Joanna; Laskowski, Zbigniew; Gierej, Maciej

    2016-01-01

    Highlights: • Degradation mechanisms of precious metal catalytic gauzes is proposed. • Significant change of gauzes morphology and chemical composition was observed. • Samples were analyzed using SEM, EDS and micro-XCT techniques. - Abstract: The most common catalysts for the ammonia oxidation process are 80 μm diameter platinum-rhodium wires knitted or woven into the form of a gauze. In an aggressive environment and under extreme conditions (temperature 800–900 °C, intensive gas flow, high pressure) precious elements are drained from the surface of the wires. Part of this separated material quickly decomposes on the surface in the form of characteristic “cauliflower-shape protrusions”. The rest of the platinum is captured by palladium-nickel catalytic-capture gauzes located beneath. In our investigation we focused on the effects of the degradation of gauzes from one industrial catalytic system. The aim of the study was to compare the degree and the mechanism of degradation of gauzes from a different part of the reactor. The study covered PtRh7 catalytic and PdNi5 catalytic-capture gauzes. X-ray computer microtomography investigation revealed that despite strong differences in morphology, each Pt-Rh wire has a similar specific surface area. This indicates that the oxidation process and morphological changes of the wires occur in a self-regulating balance, resulting in the value of the specific surface area of the catalyst. Microtomography analysis of Pd-Ni wires revealed strong redevelopment of the wires’ surface, which is related to the platinum capture phenomenon. Scanning electron microscope observations also revealed the nanostructure in the cauliflower-shape protrusions and large grains in the wires’ preserved cores. The high temperature in the reactor and the long-term nature of the process do not favor the occurrence of the nanostructure in this type of material. Further and detailed analysis of this phenomena will provide a better

  8. Investigation of the degradation mechanism of catalytic wires during oxidation of ammonia process

    Energy Technology Data Exchange (ETDEWEB)

    Pura, Jarosław, E-mail: jaroslawpura@gmail.com [Faculty of Material Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw (Poland); Wieciński, Piotr; Kwaśniak, Piotr; Zwolińska, Marta; Garbacz, Halina; Zdunek, Joanna [Faculty of Material Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw (Poland); Laskowski, Zbigniew; Gierej, Maciej [Precious Metal Mint, Weteranów 95, 05-250 Radzymin (Poland)

    2016-12-01

    Highlights: • Degradation mechanisms of precious metal catalytic gauzes is proposed. • Significant change of gauzes morphology and chemical composition was observed. • Samples were analyzed using SEM, EDS and micro-XCT techniques. - Abstract: The most common catalysts for the ammonia oxidation process are 80 μm diameter platinum-rhodium wires knitted or woven into the form of a gauze. In an aggressive environment and under extreme conditions (temperature 800–900 °C, intensive gas flow, high pressure) precious elements are drained from the surface of the wires. Part of this separated material quickly decomposes on the surface in the form of characteristic “cauliflower-shape protrusions”. The rest of the platinum is captured by palladium-nickel catalytic-capture gauzes located beneath. In our investigation we focused on the effects of the degradation of gauzes from one industrial catalytic system. The aim of the study was to compare the degree and the mechanism of degradation of gauzes from a different part of the reactor. The study covered PtRh7 catalytic and PdNi5 catalytic-capture gauzes. X-ray computer microtomography investigation revealed that despite strong differences in morphology, each Pt-Rh wire has a similar specific surface area. This indicates that the oxidation process and morphological changes of the wires occur in a self-regulating balance, resulting in the value of the specific surface area of the catalyst. Microtomography analysis of Pd-Ni wires revealed strong redevelopment of the wires’ surface, which is related to the platinum capture phenomenon. Scanning electron microscope observations also revealed the nanostructure in the cauliflower-shape protrusions and large grains in the wires’ preserved cores. The high temperature in the reactor and the long-term nature of the process do not favor the occurrence of the nanostructure in this type of material. Further and detailed analysis of this phenomena will provide a better

  9. Features of legal mechanism environmental responsibility of citizens in Ukraine

    Directory of Open Access Journals (Sweden)

    О. О. Шинкарьов

    2015-05-01

    Full Text Available Problem setting. In this article it is examined the main conceptual approaches to understanding the legal arrangement for implementing citizens' environmental obligations. It is noted that despite the diversity of approaches to understanding the arrangement for implementing citizens' environmental responsibilities, most scientists include the concepts of: a a legal implementation arrangement, b the process of practical implementation, c the conditions and factors that influence it.  It is defined that the legal arrangement for implementing environmental obligations is guaranteed by prohibitions and legal regulations. In this case the regulatory legal act has two main functions:    1 prescribes the need to implement the legal obligation, determines it; 2 prescribes a result of the legal obligation implementation. Recent research and publications analysis. Particular attention is paid to the work of scientists in environmental law, including VI Andryeytseva, G. Anisimova, GI Baluk, AP Hetman M. Krasnov, II Karakash, V. Kostytsky, VV Nosik, M. Shulga, S. Shemshuchenko and others. However, most of them concerning coverage of only certain aspects, is a comprehensive analysis of the legal implementation mechanism is still lacking. It's analyzed the characteristics of the legal enforcement for implementing environmental responsibilities by citizens. It is determined that the legal arrangement for the implementation of environmental responsibilities is a part of a general arrangement of the law implementation. Ecological and legal arrangement for the implementation of environmental obligations is defined as a system of legal norms and legal relations by which the State provides the accomplishment of ecological  and legal regulations. Implementation of the constitutional obligations by the citizens is a process that is inherent in environmental responsibilities, in which there are several stages: 1 the ability to execute the obligations which are

  10. The invisible hand and EKC hypothesis: what are the drivers of environmental degradation and pollution in Africa?

    Science.gov (United States)

    Sarkodie, Samuel Asumadu

    2018-05-24

    This study examined the drivers of environmental degradation and pollution in 17 countries in Africa from 1971 to 2013. The empirical study was analyzed with Westerlund error-correction model and panel cointegration tests with 1000 bootstrapping samples, U-shape test, fixed and random effect estimators, and panel causality test. The investigation of the nexus between environmental pollution economic growth in Africa confirms the validity of the EKC hypothesis in Africa at a turning point of US$ 5702 GDP per capita. However, the nexus between environmental degradation and economic growth reveals a U shape at a lower bound GDP of US$ 101/capita and upper bound GDP of US$ 8050/capita, at a turning point of US$ 7958 GDP per capita, confirming the scale effect hypothesis. The empirical findings revealed that energy consumption, food production, economic growth, permanent crop, agricultural land, birth rate, and fertility rate play a major role in environmental degradation and pollution in Africa, thus supporting the global indicators for achieving the sustainable development goals by 2030.

  11. Molecular and Supramolecular Changes in Polybutylene Succinate (PBS and Polybutylene Succinate Adipate (PBSA Copolymer during Degradation in Various Environmental Conditions

    Directory of Open Access Journals (Sweden)

    Michał Puchalski

    2018-03-01

    Full Text Available In this paper, the influence of the various degradation conditions, on the molecular and supramolecular structure of polybutylene succinate (PBS and polybutylene succinate adipate (PBSA copolymer during degradation is described. The experiment was carried out by the use of injection molded samples and normalized conditions of biodegradation in soil, composting and artificial weathering. Materials were studied by size-exclusion chromatography (SEC coupled with multiangle laser light scattering (MALLS detection and wide-angle X-ray diffraction (WAXD. Additionally, the physical and mechanical properties of the samples were determined. The performed experiments clearly show difference impacts of the selected degradation conditions on the macroscopic, supramolecular and molecular parameters of the studied aliphatic polyesters. The structural changes in PBS and PBSA explain the observed changes in the physical and mechanical properties of the obtained injection molded samples.

  12. Resistance of CFRP structures to environmental degradation in low Earth orbit

    Science.gov (United States)

    Suliga, Agnieszka

    Within this study, a development of a protection strategy for ultra-thin CFRP structures from degrading effects of low Earth orbit (LEO) is presented. The proposed strategy involves an application of a modified epoxy resin system on outer layers of the structure, which is cycloaliphatic in its chemical character and reinforced with POSS nanoparticles. The core of the CFRP structure is manufactured using a highly aromatic epoxy resin system which provides excellent mechanical properties, however, its long-term ageing performance in space is not satisfactory, and hence a surface treatment is required to improve its longevity. The developed resin system presented in this thesis is a hybrid material, designed in such a way that its individual constituents each contribute to combating the detrimental effects of radiation, atomic oxygen (AO), temperature extremes and vacuum induced outgassing of exposed material surfaces while operating in LEO. The cycloaliphatic nature of the outer epoxy increases UV resistance and the embedded silicon nanoparticles improve AO and thermal stability. During the study, a material characterization of the developed cycloaliphatic epoxy resins was performed including the effects of nanoparticles on morphology, curing behaviour, thermal-mechanical properties and surface chemistry. Following on that, the efficacy of the modified resin system on space-like resistance was studied. It was found that when the ultra-thin CFRP structures are covered with the developed resin system, their AO resistance is approximately doubled, UV susceptibility decreased by 80% and thermal stability improved by 20%. Following on the successful launch of the InflateSail mission earlier this year, which demonstrated a sail deployment and a controlled de-orbiting, the findings of this study are of importance for the future generation of similar, but significantly longer missions. Ensuring resistance of CFRP structures in a highly corrosive LEO environment is a critical

  13. Photocatalytic Degradation Effect of μ-Dielectric Barrier Discharge Plasma Treated Titanium Dioxide Nanoparticles on Environmental Contaminant.

    Science.gov (United States)

    Seo, Hyeon Jin; Hwang, Ki-Hwan; Na, Young Hoon; Boo, Jin-Hyo

    2018-09-01

    This study focused on the photocatalytic degradation effect of the μ-dielectric barrier discharge (μ-DBD) plasma treated titanium dioxide (TiO2) nanoparticles on environmental contaminant such as formaldehyde. TiO2 nanoparticles were treated by a μ-DBD plasma source with nitrogen gas. We analyzed the degradation of formaldehyde with the plasma treated TiO2 nanoparticles by UV-visible spectrophotometer (UV-VIS), and demonstrated that the photocatalytic activity of the μ-DBD plasma-treated TiO2 nanoparticles showed significantly high catalytic efficiency rather than without plasma treated TiO2 nanoparticles. Field emission scanning electron microscopes (FE-SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and water contact angle analyzer were used to measure the effects of photocatalytic degradation for the plasma treated TiO2 nanoparticles.

  14. INTEGRATED MECHANISMS FOR APROACHING PRIORITY ENVIRONMENTAL ISSUES AT GLOBAL LEVEL

    Directory of Open Access Journals (Sweden)

    iLDIKO iOAN

    2011-03-01

    Full Text Available Integrated mechanisms for approaching priority environmentalissues at global level. At global level, there are considered priorityenvironmental issues two interdependent processes that are essential for thesupport the processes that provide living conditions and wellbeing for the entirehumankind: climate change and loss of biodiversity. Payments of ecosystemservices became already well-known and applied economic instruments, althoughthere are still many uncertainties in the knowledge of eco-economic interdependencies.The paper discusses these aspects in the first part highlighting advantagesand disadvantages, while in the second part there is analyzed an integratedprogram of the United Nations, which was designed for making progress towardboth climate change, and loss of biodiversity. The REDD program – Reduction ofEmissions from Deforestation and forest Degradation – is addressed to developingcountries and it started in 2008. Based on assessment reports we will try toformulate a number of conclusions regarding the program’s effectiveness.

  15. Vulnerability and Resilience of the Niger Delta Coastal Communities to Pollution and Environmental Degradation

    Science.gov (United States)

    Ndimele, P. E.; Whenu, O. O.; Anwan, H. R.; Anetekhai, M. A.

    2016-02-01

    The Niger Delta is Africa's largest delta consisting of the third largest mangrove forest in the world and covering 70,000km2 of Nigeria land mass. This delta is the largest wetland in Africa and among the ten most important wetland and marine ecosystems in the world. The delta is home to all of Nigeria's endemic or near-endemic mammal species and to six IUCN Red List mammals. The Niger Delta harbours globally outstanding fish fauna and displays exceptional evolutionary phenomena with its higher taxonomic endemism and distinct species assemblages. The Niger delta is blessed with abundance of natural and human resources, including the majority of Nigeria's oil and gas deposits, good agricultural land, extensive forests, excellent fisheries as well as a well-developed industrial base, a large labour force and a vibrant private sector. However, this fragile but rich ecosystem is seriously threatened by increased industrial pollution, resource over-exploitation and environmental degradation caused by over six decades of oil exploitation. Aquatic life has been destroyed with the pollution of traditional fishing grounds, exacerbating hunger and poverty in fishing communities. The multifarious use of the delta has led to human-induced changes in biota, habitats and landscapes necessitating the development of a holistic policy that considers all the interacting factors in the ecosystem. Taking a systems approach incorporating an understanding of The Ecosystem Approach, vulnerability, resilience, the DPSIR framework, ecosystem services and societal benefits are integrated in order to evolve a management tool that will result in sustainable resource exploitation, improvement in living standards of locals and restoration of the ecosystem.

  16. Impact of Urban Growth and Urbanization on the Environmental Degradation of Lakes in Hyderabad City, India

    Science.gov (United States)

    Nandan, M. J.; Sen, M. K.; Harini, P.; Sekhar, B. M.; Balaji, T.

    2013-12-01

    Lakes are a vital part of urban ecosystems which perform important ecological and environmental functions to safeguard local climate, groundwater and habitat. The incessant population growth coupled with low urban planning is causing severe damage to urban ecosystems throughout the world. Hyderabad is one of the largest growing metropolitan cities of India covering an area of 65000 ha situated on the banks of Musi River in the northern part of the Deccan Plateau. The city had a population of 1.25 million in 1961 which increased to 6.8 million in 2011 with a metropolitan population of 7.75 million, making it India's fourth most populous city and sixth most populous urban agglomeration. Hyderabad is popularly known as 'City of Lakes' which occupies the top position in India in terms of Urban Lakes. In 20th century, the number of lakes were around 925 which are now reduced to 521 and most of these lakes are facing extinction. The water spread area of these lakes has been considerably reduced due to steady urban growth and the carrying capacity and ecological status of these urban lakes are in real danger. Many of these lakes have shrunk in size while the waters of several lakes got polluted with the discharge of untreated domestic and industrial effluents. Taking into consideration the environmental degradation of urban lakes, an attempt was made to study the current status, loss of water bodies and water spread using remote sensing and GIS techniques. Time-series satellite images of MSS, IRS and RESOURCESAT and Survey of India maps of 1:50,000 and 1:25,000 were used for this study. Analysis of these together with other data sets was accomplished through integrated use of ERDAS Imagine Arc view and ArcGIS software packages. It is estimated that there were 925 lakes in 1982 in erstwhile Hyderabad Urban Development Authority (HUDA) area which came down to 521 in 2012. A total number of 404 lakes disappeared during the last 30 years period. Consequently the water spread

  17. Enhanced ozonation degradation of di-n-butyl phthalate by zero-valent zinc in aqueous solution: Performance and mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Gang [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710050 (China); State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Wang, Sheng-Jun [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Beijing General Municipal Engineering Design and Research Institute, Beijing 100082 (China); Ma, Jun, E-mail: majun@hit.edu.cn [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Huang, Ting-Lin [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710050 (China); Liu, Zheng-Qian, E-mail: liuzhengqian@gmail.com [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhao, Lei [School of Civil Engineering, Harbin Institute of Technology, Harbin 150090 (China); Su, Jun-Feng [State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (MARC), Tsinghua University, Beijing 100084 (China)

    2014-01-30

    Highlights: • ZVZ showed an obvious enhanced effect on DBP degradation in ozonation. • The recycling use of ZVZ resulted in the enhancement of DBP degradation. • The formed ZnO and reactive intermediates were responsible for the enhanced effect. • The enhanced effect on DBP degradation by ZVZ was also effective in actual waters. -- Abstract: Enhanced ozonation degradation of di-n-butyl phthalate (DBP) by zero-valent zinc (ZVZ) has been investigated using a semi-continuous reactor in aqueous solution. The results indicated that the combination of ozone (O{sub 3}) and ZVZ showed an obvious synergetic effect, i.e. an improvement of 54.8% on DBP degradation was obtained by the O{sub 3}/ZVZ process after 10 min reaction compared to the cumulative effect of O{sub 3} alone and O{sub 2}/ZVZ. The degradation efficiency of DBP increased gradually with the increase of ZVZ dosage, enhanced as solution pH increasing from 2.0 to 10.0, and more amount of DBP was degraded with the initial concentration of DBP arising from 0.5 to 2.0 mg L{sup −1}. Recycling use of ZVZ resulted in the enhancement of DBP degradation, because the newly formed zinc oxide took part in the reaction. The mechanism investigation demonstrated that the enhancement effect was attributed to the introduction of ZVZ, which could promote the utilization of O{sub 3}, enhance the formation of superoxide radical by reducing O{sub 2} via one-electron transfer, accelerate the production of hydrogen peroxide and the generation of hydroxyl radical. Additionally, the newly formed zinc oxide on ZVZ surface also contributed to the enhancement of DBP degradation in the recycling use of ZVZ. Most importantly, the O{sub 3}/ZVZ process was also effective in enhanced ozonation degradation of DBP under the background of actual waters.

  18. Mechanical behaviour׳s evolution of a PLA-b-PEG-b-PLA triblock copolymer during hydrolytic degradation.

    Science.gov (United States)

    Breche, Q; Chagnon, G; Machado, G; Girard, E; Nottelet, B; Garric, X; Favier, D

    2016-07-01

    PLA-b-PEG-b-PLA is a biodegradable triblock copolymer that presents both the mechanical properties of PLA and the hydrophilicity of PEG. In this paper, physical and mechanical properties of PLA-b-PEG-b-PLA are studied during in vitro degradation. The degradation process leads to a mass loss, a decrease of number average molecular weight and an increase of dispersity index. Mechanical experiments are made in a specific experimental set-up designed to create an environment close to in vivo conditions. The viscoelastic behaviour of the material is studied during the degradation. Finally, the mechanical behaviour is modelled with a linear viscoelastic model. A degradation variable is defined and included in the model to describe the hydrolytic degradation. This variable is linked to physical parameters of the macromolecular polymer network. The model allows us to describe weak deformations but become less accurate for larger deformations. The abilities and limits of the model are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Poverty Alleviation and Environmental Restoration Using the Clean Development Mechanism: A Case Study from Humbo, Ethiopia

    Science.gov (United States)

    Brown, Douglas R.; Dettmann, Paul; Rinaudo, Tony; Tefera, Hailu; Tofu, Assefa

    2011-08-01

    Poverty, hunger and demand for agricultural land have driven local communities to overexploit forest resources throughout Ethiopia. Forests surrounding the township of Humbo were largely destroyed by the late 1960s. In 2004, World Vision Australia and World Vision Ethiopia identified forestry-based carbon sequestration as a potential means to stimulate community development while engaging in environmental restoration. After two years of consultation, planning and negotiations, the Humbo Community-based Natural Regeneration Project began implementation—the Ethiopian organization's first carbon sequestration initiative. The Humbo Project assists communities affected by environmental degradation including loss of biodiversity, soil erosion and flooding with an opportunity to benefit from carbon markets while reducing poverty and restoring the local agroecosystem. Involving the regeneration of 2,728 ha of degraded native forests, it brings social, economic and ecological benefits—facilitating adaptation to a changing climate and generating temporary certified emissions reductions (tCERs) under the Clean Development Mechanism. A key feature of the project has been facilitating communities to embrace new techniques and take responsibility for large-scale environmental change, most importantly involving Farmer Managed Natural Regeneration (FMNR). This technique is low-cost, replicable, and provides direct benefits within a short time. Communities were able to harvest fodder and firewood within a year of project initiation and wild fruits and other non-timber forest products within three years. Farmers are using agroforestry for both environmental restoration and income generation. Establishment of user rights and local cooperatives has generated community ownership and enthusiasm for this project—empowering the community to more sustainably manage their communal lands.

  20. Durability comparison of four different types of high-power batteries in HEV and their degradation mechanism analysis

    International Nuclear Information System (INIS)

    Yan, Dongxiang; Lu, Languang; Li, Zhe; Feng, Xuning; Ouyang, Minggao; Jiang, Fachao

    2016-01-01

    Highlights: • Utilize a realistic current profile for an HEV to study the degradation mechanism of batteries. • Compare the durability of four different types of high-power battery. • Degradation mechanisms of four different types of high-power battery are analyzed by IC curves. • The prognostic model is used to quantitatively clarify the aging mechanism of batteries. - Abstract: There are many types of high-power batteries used in HEVs, and their durabilities and degradation mechanisms are different. In this paper, four types of commercial high-power batteries, including two types of LTO/NCM lithium-ion battery from two different manufacturers, a C/LMO battery and a supercapacitor (SC), are studied. A durability test with a realistic current profile for an HEV is used so that the durability results more closely reflect real operating conditions than a general cycle life test. Incremental capacity (IC) curves are used to qualitatively analyze the degradation mechanism. To compensate for defects in the IC method, a prognosis model, using a genetic algorithm to reconstruct constant current charge voltage curves, is adopted to quantitatively identify the battery aging mechanism.

  1. Ageing degradation mechanisms in nuclear power plants: lessons learned from operating experience

    International Nuclear Information System (INIS)

    Bieth, M.; Zerger, B.; Duchac, A.

    2014-01-01

    This paper presents main results of a comprehensive study performed by the European Clearinghouse on Operating Experience Feedback of Nuclear Power Plants (NPP) with the support of IRSN (Institut de Surete Nucleaire et de Radioprotection) and GRS (Gesellschaft fuer Anlagen und Reaktorsicherheit mbH). Physical ageing mechanisms of Structures, Systems and Components (SSC) that eventually lead to ageing related systems and components failures at nuclear power plants were the main focus of this study. The analysis of ageing related events involved operating experience reported by NPP operators in France, Germany, USA and to the IAEA/NEA International Reporting System on operating experience for the past 20 years. A list of relevant ageing related events was populated. Each ageing related event contained in the list was analyzed and results of analysis were summarized for each ageing degradation mechanism which appeared to be the dominant contributor or direct cause. This paper provides insights into ageing related operating experience as well as recommendations to deal with the physical ageing of nuclear power plant SSC important to safety. (authors)

  2. Thermal Degradation, Mechanical Properties and Morphology of Wheat Straw Flour Filled Recycled Thermoplastic Composites

    Directory of Open Access Journals (Sweden)

    Kadir Karakus

    2008-01-01

    Full Text Available Thermal behaviors of wheat straw flour (WF filled thermoplastic compositeswere measured applying the thermogravimetric analysis and differential scanningcalorimetry. Morphology and mechanical properties were also studied using scanningelectron microscope and universal testing machine, respectively. Presence of WF inthermoplastic matrix reduced the degradation temperature of the composites. One for WFand one for thermoplastics, two main decomposition peaks were observed. Morphologicalstudy showed that addition of coupling agent improved the compatibility between WFs andthermoplastic. WFs were embedded into the thermoplastic matrix indicating improvedadhesion. However, the bonding was not perfect because some debonding can also be seenon the interface of WFs and thermoplastic matrix. In the case of mechanical properties ofWF filled recycled thermoplastic, HDPE and PP based composites provided similar tensileand flexural properties. The addition of coupling agents improved the properties ofthermoplastic composites. MAPE coupling agents performed better in HDPE while MAPPcoupling agents were superior in PP based composites. The composites produced with thecombination of 50-percent mixture of recycled HDPE and PP performed similar with theuse of both coupling agents. All produced composites provided flexural properties requiredby the ASTM standard for polyolefin-based plastic lumber decking boards.

  3. Rationalizing the mechanism of HMDS degradation in air and effective control of the reaction byproducts

    Science.gov (United States)

    Seguin, Kevin; Dallas, Andrew J.; Weineck, Gerald

    2008-03-01

    The concern over molecular contamination on the surfaces of optics continues to grow. Most recently, this concern has focused on siloxane contamination resulting from hexamethyldisilazane (HMDS) which is commonly used as a wafer treatment to improve photoresist adhesion onto wafers. From this process, HMDS vapor can be found within FABs and process tools where it has been linked to issues related to lens hazing. This type of surface contamination is significantly detrimental to the imaging process and is generally corrected by extensive surface cleaning or even lens replacement. Additionally, this type of repair also requires adjustment of the optical axis, thereby contributing to an extended downtime. HMDS is known to be very sensitive to the presence of water and is therefore believed to degrade in humid airstreams. This research focuses on rationalizing the reaction mechanisms of HMDS in dry and humid airstreams and in the presence of several adsorbent surfaces. It is shown that HMDS hydrolyzes in humid air to trimethylsilanol (TMS) and ammonia (NH 3). Furthermore, it is shown that TMS can dimerize in air, or on specific types of adsorption media, to form hexamethyldisiloxane (HMDSO). Additionally, we report on the relative impact of these reaction mechanisms on the removal of both HMDS and its hydrolysis products (TMS, HMDSO and NH 3).

  4. How do polymers degrade?

    Science.gov (United States)

    Lyu, Suping

    2011-03-01

    Materials derived from agricultural products such as cellulose, starch, polylactide, etc. are more sustainable and environmentally benign than those derived from petroleum. However, applications of these polymers are limited by their processing properties, chemical and thermal stabilities. For example, polyethylene terephthalate fabrics last for many years under normal use conditions, but polylactide fabrics cannot due to chemical degradation. There are two primary mechanisms through which these polymers degrade: via hydrolysis and via oxidation. Both of these two mechanisms are related to combined factors such as monomer chemistry, chain configuration, chain mobility, crystallinity, and permeation to water and oxygen, and product geometry. In this talk, we will discuss how these materials degrade and how the degradation depends on these factors under application conditions. Both experimental studies and mathematical modeling will be presented.

  5. SPECIFIC DEGRADATION STRUCTURE FEATURES AND MECHANICAL PROPERTIES OF FURNACE AND HEAT POWER EQUIPMENT ELEMENTS AFTER LONG-TERM OPERATION

    Directory of Open Access Journals (Sweden)

    F. I. Panteleenko

    2012-01-01

    Full Text Available The paper presents results of investigations on structure and mechanical properties of technological equipment elements made of heat-resistant steels. A scale of chrome and molybdenum steel microstructure degradation based on evaluation of  coagulated carbide size and material mechanical properties (a point from 0-operation without time limits, up to 4-operation prohibition has been proposed in the paper. It has been  established that an analysis of  steel microstructure directly on equipment elements by means of a portable microscope is an efficient express method for evaluation of equipment condition and structures due to control of material structure degradation rate of a diagnosed object.

  6. Degradation mechanisms of poly (lactic-co-glycolic acid) films in vitro under static and dynamic environment

    Institute of Scientific and Technical Information of China (English)

    HUANG Ying-ying; QI Min; ZHANG Meng; LIU Hong-ze; YANG Da-zhi

    2006-01-01

    To understand their degradation mechanisms,PLGA (50:50) polymer films were prepared and eroded in the static and dynamic medium system. The degradation behavior was characterized through weight-average molecular weight change,mass loss,water uptake,etc. The results show that in dynamic system,significant mass loss begins until 10 d while mass loss does not begin until 30 d later,while weight-average molecular weight decreases observably at the beginning,and the appeasable mass loss happens in 20 d in static system,which suggests that the dynamic degradation rate is slower even than degradation in static medium. A mechanism was proposed that specimens in static medium take up water homogeneously and cause the polymer chains to degrade all over the specimen cross sections,which creates free carboxylic acid groups which lead to a decrease of pH value inside the swollen polymer and accelerate degradation of the polymer. While pH value inside polymer keeps constant in dynamic medium because of flowing of simulated medium,which make the hydrolytic cleavage of ester bonds inside specimen delayed.

  7. Lifetimes of organic photovoltaics: Design and synthesis of single oligomer molecules in order to study chemical degradation mechanisms

    DEFF Research Database (Denmark)

    Alstrup, J.; Norrman, K.; Jørgensen, M.

    2006-01-01

    Degradation mechanisms in organic and polymer photovoltaics are addressed through the study of an organic photovoltaic molecule based on a single phenylene-vinylene-type oligomer molecule. The synthesis of such a model compound with different end-groups is presented that allows for assignment...... of degradation products from different parts of the molecule. Photovoltaic devices with and without C(60) have been prepared and their characteristics under AM1.5 conditions are reported. The degradation of the active phenylene-vinylene compound in darkness and after 20h of illumination were investigated using...... a mass spectrometric technique (time-of-flight secondary ion mass spectrometry) allowing elucidation of the oxidative degradation pathways. (c) 2006 Elsevier B.V. All rights reserved....

  8. The mechanism for degrading Orange II based on adsorption and reduction by ion-based nanoparticles synthesized by grape leaf extract

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Fang; Yang, Die [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of Environments, University of South Australia, Mawson Lakes, SA 5095 (Australia); Chen, Zuliang, E-mail: zuliang.chen@unisa.edu.au [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of Environments, University of South Australia, Mawson Lakes, SA 5095 (Australia); Megharaj, Mallavarapu; Naidu, Ravendra [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of Environments, University of South Australia, Mawson Lakes, SA 5095 (Australia)

    2015-10-15

    Biomolecules taken from plant extracts have often been used in the single-step synthesis of iron-based nanoparticles (Fe NPs) due to their low cost, environmental safety and sustainable properties. However, the composition of Fe NPs and the degradation mechanism of organic contaminants by them are limited because these are linked to the reactivity of Fe NPs. In this study, Fe NPs synthesized by grape leaf extract served to remove Orange II. Batch experiments showed that more than 92% of Orange II was removed by Fe NPs at high temperature based on adsorption and reduction and confirmed by kinetic studies. To understand the role of Fe NPs in the removal process of azo dye, surface analysis via X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) were employed, showing that the Fe NPs were composed of biomolecules, hydrous iron oxides and Fe{sup 0}, thus providing evidence for the adsorption of Orange II onto hydrous iron oxides and its reduction by Fe{sup 0}. Degraded products such as 2-naphthol were identified using LC–MS analysis. A degradation mechanism based on asymmetrical azo bond cleavage for the removal of Orange II was proposed.

  9. The mechanism for degrading Orange II based on adsorption and reduction by ion-based nanoparticles synthesized by grape leaf extract

    International Nuclear Information System (INIS)

    Luo, Fang; Yang, Die; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravendra

    2015-01-01

    Biomolecules taken from plant extracts have often been used in the single-step synthesis of iron-based nanoparticles (Fe NPs) due to their low cost, environmental safety and sustainable properties. However, the composition of Fe NPs and the degradation mechanism of organic contaminants by them are limited because these are linked to the reactivity of Fe NPs. In this study, Fe NPs synthesized by grape leaf extract served to remove Orange II. Batch experiments showed that more than 92% of Orange II was removed by Fe NPs at high temperature based on adsorption and reduction and confirmed by kinetic studies. To understand the role of Fe NPs in the removal process of azo dye, surface analysis via X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) were employed, showing that the Fe NPs were composed of biomolecules, hydrous iron oxides and Fe 0 , thus providing evidence for the adsorption of Orange II onto hydrous iron oxides and its reduction by Fe 0 . Degraded products such as 2-naphthol were identified using LC–MS analysis. A degradation mechanism based on asymmetrical azo bond cleavage for the removal of Orange II was proposed

  10. Degradation Mechanisms of Electrochemically Cycled Graphite Anodes in Lithium-ion Cells

    Science.gov (United States)

    Bhattacharya, Sandeep

    This research is aimed at developing advanced characterization methods for studying the surface and subsurface damage in Li-ion battery anodes made of polycrystalline graphite and identifying the degradation mechanisms that cause loss of electrochemical capacity. Understanding microstructural aspects of the graphite electrode degradation mechanisms during charging and discharging of Li-ion batteries is of key importance in order to design durable anodes with high capacity. An in-situ system was constructed using an electrochemical cell with an observation window, a large depth-of-field digital microscope and a micro-Raman spectrometer. It was revealed that electrode damage by removal of the surface graphite fragments of 5-10 mum size is the most intense during the first cycle that led to a drastic capacity drop. Once a solid electrolyte interphase (SEI) layer covered the electrode surface, the rate of graphite particle loss decreased. Yet, a gradual loss of capacity continued by the formation of interlayer cracks adjacent to SEI/graphite interfaces. Deposition of co-intercalation compounds, LiC6, Li2CO3 and Li2O, near the crack tips caused partial closure of propagating graphite cracks during cycling and reduced the crack growth rate. Bridging of crack faces by delaminated graphite layers also retarded crack propagation. The microstructure of the SEI layer, formed by electrochemical reduction of the ethylene carbonate based electrolyte, consisted of ˜5-20 nm sized crystalline domains (containing Li2CO3, Li2O 2 and nano-sized graphite fragments) dispersed in an amorphous matrix. During the SEI formation, two regimes of Li-ion diffusion were identified at the electrode/electrolyte interface depending on the applied voltage scan rate (dV/dt). A low Li-ion diffusion coefficient ( DLi+) at dV/dt microscopic information to the electrochemical performance, novel Li2CO3-coated electrodes were fabricated that were durable. The SEI formed on pre-treated electrodes reduced

  11. Diagnostic examination of Generation 2 lithium-ion cells and assessment ofperformance degradation mechanisms.

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, D. P.; Dees, D. W.; Knuth, J.; Reynolds, E.; Gerald, R.; Hyung,Y.-E.; Belharouak, I.; Stoll, M.; Sammann, E.; MacLaren, S.; Haasch, R.; Twesten,R.; Sardela, M.; Battaglia, V.; Cairns, E.; Kerr, J.; Kerlau, M.; Kostecki, R.; Lei,J.; McCarthy, K.; McLarnon, F.; Reimer, J.; Richardson, T.; Ross, P.; Sloop,S.; Song, X.; Zhuang, V.; Balasubramanian, M.; McBreen, J.; Chung, K.-Y.; Yang, X.Q.; Yoon, W.-S.; Norin, L.

    2005-07-15

    The Advanced Technology Development (ATD) Program is a multilaboratory effort to assist industrial developers of high-power lithium-ion batteries overcome the barriers of cost, calendar life, abuse tolerance, and low-temperature performance so that this technology may be rendered practical for use in hybrid electric vehicles (HEVs). Included in the ATD Program is a comprehensive diagnostics effort conducted by researchers at Argonne National Laboratory (ANL), Brookhaven National Laboratory (BNL), and Lawrence Berkeley National Laboratory (LBNL). The goals of this effort are to identify and characterize processes that limit lithium-ion battery performance and calendar life, and ultimately to describe the specific mechanisms that cause performance degradation. This report is a compilation of the diagnostics effort conducted since spring 2001 to characterize Generation 2 ATD cells and cell components. The report is divided into a main body and appendices. Information on the diagnostic approach, details from individual diagnostic techniques, and details on the phenomenological model used to link the diagnostic data to the loss of 18650-cell electrochemical performance are included in the appendices. The main body of the report includes an overview of the 18650-cell test data, summarizes diagnostic data and modeling information contained in the appendices, and provides an assessment of the various mechanisms that have been postulated to explain performance degradation of the 18650 cells during accelerated aging. This report is intended to serve as a ready reference on ATD Generation 2 18650-cell performance and provide information on the tools for diagnostic examination and relevance of the acquired data. A comprehensive account of our experimental procedures and resulting data may be obtained by consulting the various references listed in the text. We hope that this report will serve as a roadmap for the diagnostic analyses of other lithium-ion technologies being

  12. (Environmental and geophysical modeling, fracture mechanics, and boundary element methods)

    Energy Technology Data Exchange (ETDEWEB)

    Gray, L.J.

    1990-11-09

    Technical discussions at the various sites visited centered on application of boundary integral methods for environmental modeling, seismic analysis, and computational fracture mechanics in composite and smart'' materials. The traveler also attended the International Association for Boundary Element Methods Conference at Rome, Italy. While many aspects of boundary element theory and applications were discussed in the papers, the dominant topic was the analysis and application of hypersingular equations. This has been the focus of recent work by the author, and thus the conference was highly relevant to research at ORNL.

  13. Integrated approach to the understanding of the degradation of an urban river: local perceptions, environmental parameters and geoprocessing.

    Science.gov (United States)

    Collier, Carolina A; Almeida Neto, Miguel S de; Aretakis, Gabriela M A; Santos, Rangel E; de Oliveira, Tiago H; Mourão, José S; Severi, William; El-Deir, Ana C A

    2015-09-15

    The use of interdisciplinary approaches such as the proposed report provides a broad understanding of the relationship between people and the environment, revealing reliable aspects not previously considered in the study of this relationship. This study compiled evidence on the environmental degradation of an urbanized river over the past few decades, providing a diagnosis of the consequences of this process for the river, its ichthyofauna, and the local human population. The study was focused on the Beira Rio community on the Capibaribe River in the municipality of São Lourenço da Mata, Pernambuco, Brazil. Data were collected using geoprocessing and ethnobiological approaches, as well as environmental parameters. This research was conducted with the most experienced long-term residents in the local community, through interviews and participatory methodologies to recovering information about the river environment, its ichthyofauna and its environmental services for the last decades. According to the GIS analysis, the study area was subject to an accelerated process of urbanization, with the total urban area increasing from 73 565, 98 m(2) in 1974 to 383 363, 6 m(2) in 2005. The informants perceived the urban growth, especially in the late twentieth century, being this period recognized as the phase of greatest negative changes in the river environment. The perceived decline of fish stocks was indicated by the community as one of the effects of river degradation. According to the interviews, the deterioration of the river affected the ecosystem services and the relationship of the adjacent human community with this ecosystem. The environmental data indicated that the river is suffering eutrophization and has fecal coliform concentrations 160 times higher than the maximum level permitted by Brazilian legislation. The interdisciplinary approach used in this research allowed the understanding of the degradation process of an urban river and some negative effects

  14. Evaluating potential chlorinated methanes degradation mechanisms and treatments in interception trenches filled with concrete-based construction wastes

    Science.gov (United States)

    Rodríguez-Fernandez, Diana; Torrentó, Clara; Rosell, Mònica; Audí-Miró, Carme; Soler, Albert

    2014-05-01

    conditions in the trenches with in situ chemical oxidation (ISCO), which would be able to remove the rest of the accompanying pollutants, is proposed and merits evaluation. Preliminary batch experiments were performed to evaluate the feasibility of different chemical oxidation reactions (permanganate, persulphate, hydrogen peroxide and Fenton) on the complex contaminated recharge water which were, in general, more effective for degrading the chlorinated ethenes than for the chlorinated methanes (Torrentó et al. EGU 2012). Therefore, this study seeks to improve the understanding of CF and CT degradation mechanisms/processes that are going on in the interception trenches as well as to select between the two most effective chemical oxidation remediation treatments (persulphate and permanganate) taking into account their efficiency respect the chlorinated methanes removal, the generated acute toxicity and the applicability of the carbon isotopic fractionation as an indicator of the effectiveness of the future in situ remediation. Additionally, ongoing batch experiments are expected to elucidate if CT is undergoing abiotic reductive dechlorination by Fe-bearing minerals such as hydrophobic green rust (Ayala-Luis et al., 2012) which transform CT into non-chlorinated substances such as formic acid and carbon monoxide. This unstable iron compound might be formed in the interception trenches during chloride induced corrosion of iron mineral phases present in the concrete-based construction wastes (Sagoe-Crentsil and Glasser, 1993). The role of other minerals like iron oxy-hydroxides, carbonates or sulphides cannot be discarded at all. The potential of δ13C values to assess the efficiency of this abiotic CT degradation reaction will be also evaluated. References Ayala-Luis, K.; Cooper, N.; Bender C. and Hansen. H. (2012) Efficient dechlorination of carbon tetrachloride by hydrophobic green rust intercaled with dodecanoate anions. Environmental Science & Technology 46, 3390

  15. Laboratory Test Methods to Determine the Degradation of Plastics in Marine Environmental Conditions

    OpenAIRE

    Tosin, Maurizio; Weber, Miriam; Siotto, Michela; Lott, Christian; Degli Innocenti, Francesco

    2012-01-01

    In this technology report, three test methods were developed to characterize the degradation of plastic in marine environment. The aim was to outline a test methodology to measure the physical and biological degradation in different habitats where plastic waste can deposit when littered in the sea. Previously, research has focused mainly on the conditions encountered by plastic items when floating in the sea water (pelagic domain). However, this is just one of the possible habitats that plast...

  16. Neuroprotective mechanism of Kai Xin San: upregulation of hippocampal insulin-degrading enzyme protein expression and acceleration of amyloid-beta degradation

    Directory of Open Access Journals (Sweden)

    Na Wang

    2017-01-01

    Full Text Available Kai Xin San is a Chinese herbal formula composed of Radix Ginseng , Poria , Radix Polygalae and Acorus Tatarinowii Rhizome . It has been used in China for many years for treating amnesia. Kai Xin San ameliorates amyloid-β (Aβ-induced cognitive dysfunction and is neuroprotective in vivo , but its precise mechanism remains unclear. Expression of insulin-degrading enzyme (IDE, which degrades Aβ, is strongly correlated with cognitive function. Here, we injected rats with exogenous Aβ42 (200 μM, 5 μL into the hippocampus and subsequently administered Kai Xin San (0.54 or 1.08 g/kg/d intragastrically for 21 consecutive days. Hematoxylin-eosin and Nissl staining revealed that Kai Xin San protected neurons against Aβ-induced damage. Furthermore, enzyme-linked immunosorbent assay, western blot and polymerase chain reaction results showed that Kai Xin San decreased Aβ42 protein levels and increased expression of IDE protein, but not mRNA, in the hippocampus. Our findings reveal that Kai Xin San facilitates hippocampal Aβ degradation and increases IDE expression, which leads, at least in part, to the alleviation of hippocampal neuron injury in rats.

  17. Prevenient dye-degradation mechanisms using UV/TiO{sub 2}/carbon nanotubes process

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, C.-Y. [Department of Safety Health and Environmental Engineering, National Yunlin University of Science and Technology, 123, Section 3, University Road, Douliu, Yunlin, Taiwan (China)], E-mail: kuocyr@ms35.hinet.net

    2009-04-15

    Photocatalysis research heavily emphasizes increasing photo-efficiency. This study presents the application of carbon nanotubes (CNTs) to increase the photocatalytic activity of TiO{sub 2}. It elucidates the effect of CNTs dose on the decolorization efficiency of aqueous azo dye, C.I. Reactive Red 2 (RR2), determines the effects of SO{sub 4}{sup 2-} formation and removal of total organic carbon (TOC), and measures the effects of various ultraviolet wavelengths. Scanning electron microscopy was used to elucidate the mixing phenomenon and the size of TiO{sub 2} and CNTs; X-ray diffraction was used to determine crystallinity; a BET meter was used to measure surface area and a spectrophotometry was used to determine the decolorization of RR2. Experimental results indicated significant effects of photodegradation on the combination of TiO{sub 2} with CNTs and electron transfer is higher for 410 nm irradiation than for 365 nm, revealing that solar light can be used. The electron transfer in the TiO{sub 2}/CNTs composites reduced the electron/hole recombination and increased the photon efficiency and the prevenient dye-degradation mechanisms using UV/TiO{sub 2}/CNTs were established.

  18. Quantification and modeling of mechanical degradation in lithium-ion batteries based on nanoscale imaging.

    Science.gov (United States)

    Müller, Simon; Pietsch, Patrick; Brandt, Ben-Elias; Baade, Paul; De Andrade, Vincent; De Carlo, Francesco; Wood, Vanessa

    2018-06-14

    Capacity fade in lithium-ion battery electrodes can result from a degradation mechanism in which the carbon black-binder network detaches from the active material. Here we present two approaches to visualize and quantify this detachment and use the experimental results to develop and validate a model that considers how the active particle size, the viscoelastic parameters of the composite electrode, the adhesion between the active particle and the carbon black-binder domain, and the solid electrolyte interphase growth rate impact detachment and capacity fade. Using carbon-silicon composite electrodes as a model system, we demonstrate X-ray nano-tomography and backscatter scanning electron microscopy with sufficient resolution and contrast to segment the pore space, active particles, and carbon black-binder domain and quantify delamination as a function of cycle number. The validated model is further used to discuss how detachment and capacity fade in high-capacity materials can be minimized through materials engineering.

  19. Influence of Mechanical and Chemical Degradation in the Surface Roughness, Gloss, and Color of Microhybrid Composites.

    Science.gov (United States)

    Lemos, Cleidiel Aa; Mauro, Silvio J; Dos Santos, Paulo H; Briso, Andre Lf; Fagundes, Ticiane C

    2017-04-01

    The aim of this study was to investigate the association of different degradations on the roughness, gloss, and color changes of microhybrid composites. Ten specimens were prepared for Charisma, Amelogen Plus, Point 4, and Opallis resins. Surfaces were polished and baseline measurements of roughness, gloss, and color were recorded. Specimens were then submitted to chemical and mechanical challenges, and the specimens were reevaluated. Roughness and gloss were analyzed by Kruskal -Wallis and Dunn's test (p one-way analysis of variance and Tukey's tests (p gloss (p gloss, there was no difference between composites before challenges. However, all composites showed a significant increase of roughness after challenges, with highest values for Charisma. The gloss was influenced by challenges, evidencing the best gloss for Point 4. Charisma showed the highest value of color change. There was no correlation between surface roughness and gloss for the initial analysis, and after the challenges. Composites were influenced by association of challenges, and Charisma showed the highest changes for roughness, gloss, and color. The type of composite resin influenced the properties of materials, which are surface roughness, gloss, and color change. The dentist should be aware of the performance of different brands, to choose the correct required composite resin for each type of patient or region to be restored.

  20. Competing Forces of Socioeconomic Development and Environmental Degradation on Health and Happiness for Different Income Groups in China.

    Science.gov (United States)

    Gu, Lijuan; Rosenberg, Mark W; Zeng, Juxin

    2017-10-01

    China's rapid socioeconomic growth in recent years and the simultaneous increase in many forms of pollution are generating contradictory pictures of residents' well-being. This paper applies multilevel analysis to the 2013 China General Social Survey data on social development and health to understand this twofold phenomenon. Multilevel models are developed to investigate the impact of socioeconomic development and environmental degradation on self-reported health (SRH) and self-reported happiness (SRHP), differentiating among lower, middle, and higher income groups. The results of the logit multilevel analysis demonstrate that income, jobs, and education increased the likelihood of rating SRH and SRHP positively for the lower and middle groups but had little or no effect on the higher income group. Having basic health insurance had an insignificant effect on health but increased the likelihood of happiness among the lower income group. Provincial-level pollutants were associated with a higher likelihood of good health for all income groups, and community-level industrial pollutants increased the likelihood of good health for the lower and middle income groups. Measures of community-level pollution were robust predictors of the likelihood of unhappiness among the lower and middle income groups. Environmental hazards had a mediating effect on the relationship between socioeconomic development and health, and socioeconomic development strengthened the association between environmental hazards and happiness. These outcomes indicate that the complex interconnections among socioeconomic development and environmental degradation have differential effects on well-being among different income groups in China.

  1. go to top Electrochemistry and Spectroscopy of an Energetic Material FOX-7. A molecular Approach to Degradation Mechanism

    Czech Academy of Sciences Publication Activity Database

    Šimková, Ludmila; Urban, Jiří; Klíma, Jiří; Ludvík, Jiří

    2012-01-01

    Roč. 4, č. 6 (2012), s. 554-560 ISSN 2035-1755 R&D Projects: GA MŠk ME09002 Institutional support: RVO:61388955 Keywords : 2,2-Dinitroethene-1,1-Diamine * Degradation Mechanism * Electrochemistry Subject RIV: CG - Electrochemistry

  2. Degradation Mechanism of Cyanobacterial Toxin Cylindrospermopsin by Hydroxyl Radicals in Homogeneous UV/H2O2 Process

    Science.gov (United States)

    The degradation of cylindrospermopsin (CYN), a widely distributed and highly toxic cyanobacterial toxin (cyanotoxin), remains poorly elucidated. In this study, the mechanism of CYN destruction by UV-254 nm/H2O2 advanced oxidation process (AOP) was investigated by mass spectrometr...

  3. Long-term degradation of chemical structures and mechanical properties in polyethylene induced by ion-beam irradiation

    International Nuclear Information System (INIS)

    Oka, T.; Hama, Y.

    2004-01-01

    The long-term degradation in polyethylene irradiated with ion beams was studied. We found the changes of the chemical structures and the mechanical properties with time storage. S-PE has a good resistance to ion-beam irradiation because the crystallinity and density were very low. (author)

  4. Effects of degradation on the mechanical properties and fracture toughness of a steel pressure-vessel weld metal

    International Nuclear Information System (INIS)

    Wu, S.J.; Knott, J.F.

    2003-01-01

    A degradation procedure has been devised to simulate the effect of neutron irradiation on the mechanical properties of a steel pressure-vessel weld metal. The procedure combines the application of cold prestrain together with an embrittling heat treatment to produce an increase in yield stress, a decrease in strain hardening rate, and an increased propensity for brittle intergranular fracture. Fracture tests were carried out using blunt-notch four-point-bend specimens in slow bend over a range of temperatures and the brittle/ductile transition was shown to increase by approximately 110 deg. C as a result of the degradation. Fractographic analysis of specimens broken at low temperatures showed about 30% intergranular failure in combination with transgranular cleavage. Predictions have been made of the ductile-brittle transition curves for the weld metal (sharp crack) fracture toughness in degraded and non-degraded states, based on the notched-bar test results and on finite element analyses of the stress distributions ahead of the notches and sharp cracks. The ductile-brittle transition temperature shift (ΔT=110 deg. C) between non-degraded and degraded weld metal at a notch opening displacement of 0.31 mm was combined with the Ritchie, Knott and Rice (RKR) model to predict an equivalent shift of 115 deg. C for sharp-crack specimens at a toughness level of 70 MN/m 3/2

  5. Photocatalytic degradation of bisphenol A in the presence of Ce–ZnO: Evolution of kinetics, toxicity and photodegradation mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Bechambi, Olfa [Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie des Matériaux et Catalyse, 2092, Tunis (Tunisia); Jlaiel, Lobna [Laboratoire de Bioprocédés Environnementaux, Centre de Biotechnologie de Sfax, B.P. 1177, 3018 Sfax (Tunisia); Najjar, Wahiba, E-mail: najjarwahiba2014@gmail.com [Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie des Matériaux et Catalyse, 2092, Tunis (Tunisia); Sayadi, Sami [Laboratoire de Bioprocédés Environnementaux, Centre de Biotechnologie de Sfax, B.P. 1177, 3018 Sfax (Tunisia)

    2016-04-15

    Ce–ZnO (2 mol %) and undoped ZnO catalysts have been synthesized through hydrothermal method and characterized by X-ray diffraction (XRD), Nitrogen physisorption at 77 K; Fourier transformed infrared spectroscopy (FTIR), UV–Visible spectroscopy, Photoluminescence spectra (PL), and Raman spectroscopy. Ce-doping reduces the average crystallite size, increases the BET surface area, shifts the absorption edge, reduces the electron–hole recombination and consequently improves photodegradation efficiency of Bisphenol A (BPA) in the presence of UV irradiation and hydrogen peroxide. The photocatalytic optimum conditions were established by studying the influence of various operational parameters including catalyst concentration, initial BPA concentration, H{sub 2}O{sub 2} concentration and initial pH. Under optimum conditions, Ce–ZnO (2%) achieved 100% BPA degradation and 61% BPA mineralization after 24 h of UV irradiation. BPA degradation reaction followed pseudo first-order kinetics according to the Langmuir–Hinshelwood model. Based on the identified intermediate products, the possible mechanism for BPA photodegradation is proposed. Toxicity under the optimum condition was also evaluated. - Graphical abstract: Proposed photocatalytic degradation pathway of BPA in the presence of Ce– ZnO (2%)/UV/H{sub 2}O{sub 2} system. - Highlights: • Influence of different parameters on the degradation and mineralization of BPA. • Identification of possible degradation products. • Toxicity tests conducted with Vibrio fischeri. • Simple and direct photodegradation mechanism of BPA is proposed.

  6. Kinetics and mechanism for the sonochemical degradation of a nonionic surfactant.

    Science.gov (United States)

    Singla, Ritu; Grieser, Franz; Ashokkumar, Muthupandian

    2009-03-26

    The sonolytic degradation of the nonionic surfactant, octaethylene glycol monododecyl ether (C(12)E(8)), has been studied at various initial concentrations below and above its critical micelle concentration (CMC). It has been observed that the degradation rate increases with an increase in the initial concentration of the surfactant until the CMC is reached. Above the CMC an almost constant degradation rate is observed, suggesting that the surfactant in its monomer form is involved in the degradation process. The degradation process of C(12)E(8) involves two distinct primary processes occurring at the bubble/solution interface: (a) hydroxylation/oxidation of the surfactant and (b) pyrolytic fragmentation of the surfactant. The oxidative cleavage of ethylene oxide units provides evidence for OH radical attack. Hydroxylation of the ethoxy chain gives rise to various short-chain carboxyalkyl-polyethylene glycol intermediates. The polyethylene glycol chain formed, due to the scission of the C(12)E(8) molecule, undergoes rapid hydroxylation/oxidation to yield simple compounds that have the potential to undergo further degradation. The detection of multiple intermediates indicates that several processes affect the complete degradation pathways of the surfactant molecule. TOC analysis, however, indicates that the sonolytic mineralization of the surfactant is difficult to achieve at reasonable rates due to the relatively low surface activity of the degradation products formed during sonolysis.

  7. Analysis on the capacity degradation mechanism of a series lithium-ion power battery pack based on inconsistency of capacity

    International Nuclear Information System (INIS)

    Wang Zhen-Po; Liu Peng; Wang Li-Fang

    2013-01-01

    The lithium-ion battery has been widely used as an energy source. Charge rate, discharge rate, and operating temperature are very important factors for the capacity degradations of power batteries and battery packs. Firstly, in this paper we make use of an accelerated life test and a statistical analysis method to establish the capacity accelerated degradation model under three constant stress parameters according to the degradation data, which are charge rate, discharge rate, and operating temperature, and then we propose a capacity degradation model according to the current residual capacity of a Li-ion cell under dynamic stress parameters. Secondly, we analyze the charge and discharge process of a series power battery pack and interpret the correlation between the capacity degradations of the battery pack and its charge/discharge rate. According to this cycling condition, we establish a capacity degradation model of a series power battery pack under inconsistent capacity of cells, and analyze the degradation mechanism with capacity variance and operating temperature difference. The comparative analysis of test results shows that the inconsistent operating temperatures of cells in the series power battery pack are the main cause of its degradation; when the difference between inconsistent temperatures is narrowed by 5 °C, the cycle life can be improved by more than 50%. Therefore, it effectively improves the cycle life of the series battery pack to reasonably assemble the batteries according to their capacities and to narrow the differences in operating temperature among cells. (interdisciplinary physics and related areas of science and technology)

  8. A novel photocatalytic material for removing microcystin-LR under visible light irradiation: degradation characteristics and mechanisms.

    Directory of Open Access Journals (Sweden)

    Xin Sui

    Full Text Available Microcystin-LR (MC-LR, a common toxic species in contaminated aquatic systems, persists for long periods because of its cyclic structure. Ag3PO4 is an environment-friendly photocatalyst with relatively good degradation capacity for hazardous organic pollutants. This study aimed to investigate the degradation capacity of Ag3PO4 for MC-LR under visible light.An Ag3PO4 photocatalyst was synthesized by the ion-exchange method and characterized by X-ray diffraction, field-emission scanning electron microscope, and UV-Vis spectrophotometer. MC-LR was quantified in each sample through high-performance liquid chromatograph. The degradation efficiency of MC-LR was affected by initial pH, initial Ag3PO4 concentration, initial MC-LR concentration, and recycle experiments. The degradation intermediates of MC-LR were examined by liquid chromatography-mass spectrometry (LC/MS.The degradation process can be well fitted with the pseudo-first-order kinetic model. The maximum MC-LR degradation rate of 99.98% can be obtained within 5 h under the following optimum conditions: pH of 5.01, Ag3PO4 concentration of 26.67 g/L, and MC-LR concentration of 9.06 mg/L. Nine intermediates were detected and analyzed by LC/MS. Three main degradation pathways were proposed based on the molecular weight of the intermediates and the reaction mechanism: (1 hydroxylation on the aromatic ring of Adda, (2 hydroxylation on the diene bonds of Adda, and (3 internal interactions on the cyclic structure of MC-LR.Ag3PO4 is a highly efficient catalyst for MC-LR degradation in aqueous solutions.

  9. Environmental fate of roxarsone in poultry litter. I. Degradation of roxarsone during composting

    Science.gov (United States)

    Garbarino, J.R.; Bednar, A.J.; Rutherford, D.W.; Beyer, R.S.; Wershaw, R. L.

    2003-01-01

    Roxarsone, 3-nitro-4-hydroxyphenylarsonic acid, is an organoarsenic compound that is used extensively in the feed of broiler poultryto control coccidial intestinal parasites, improve feed efficiency, and promote rapid growth. Nearly all the roxarsone in the feed is excreted unchanged in the manure. Poultry litter composed of the manure and bedding material has a high nutrient content and is used routinely as a fertilizer on cropland and pasture. Investigations were conducted to determine the fate of poultrylitter roxarsone in the environment. Experiments indicated that roxarsone was stable in fresh dried litter; the primary arsenic species extracted with water from dried litter was roxarsone. However, when water was added to litter at about 50 wt % and the mixture was allowed to compost at 40oC, the speciation of arsenic shifted from roxarsone to primarily arsenate in about 30 days. Increasing the amount of water increased the rate of degradation. Experiments also suggested that the degradation process most likely was biotic in nature. The rate of degradation was directly proportional to the incubation temperature; heat sterilization eliminated the degradation. Biotic degradation also was supported by results from enterobacteriaceae growth media that were inoculated with litter slurry to enhance the biotic processes and to reduce the concomitant abiotic effects from the complex litter solution. Samples collected from a variety of litter windrows in Arkansas, Oklahoma, and Maryland also showed that roxarsone originally present had been converted to arsenate.

  10. Taking the 'U' out of Kuznets. A comprehensive analysis of the EKC and environmental degradation

    Energy Technology Data Exchange (ETDEWEB)

    Caviglia-Harris, Jill L.; Chambers, Dustin [Salisbury University, 1101 Camden Ave., Salisbury, MD 21804 (United States); Kahn, James R. [Washington and Lee University, Science AG-15, Lexington, VA 24450 (United States)

    2009-02-15

    Unlike most Environmental Kuznets Curve (EKC) studies which focus on narrow measures of pollution as proxies for environmental quality, we test the validity of the EKC using the Ecological Footprint (EF), a more comprehensive measure of environmental degradation. We find no empirical evidence of an EKC relationship between the EF and economic development, and only limited support for such a relationship among the components of the EF. In addition, we discover that energy is largely responsible for the lack of an EKC relationship, and that energy consumption levels would have to be cut by over 50% in order for a statistically significant EKC relationship to emerge from the data. Overall, these results suggest that growth alone will not lead to sustainable development. (author)

  11. The mechanism study of efficient degradation of hydrophobic nonylphenol in solution by a chemical-free technology of sonophotolysis

    Energy Technology Data Exchange (ETDEWEB)

    Xu, L.J.; Chu, W., E-mail: cewchu@polyu.edu.hk; Lee, Po-Heng; Wang, Jian

    2016-05-05

    Highlights: • pH influenced NP sonophotolysis by changing its existing form and light absorption. • NO{sub 3}{sup −} accelerated NP sonophotolysis while HCO{sub 3}{sup −} showed insignificant influence. • Both ortho- and meta-hydroxy-NP species can exist together thermodynamically. • Only the ortho-4-nonyl-benzoquinone is dominant thermodynamically. • The mechanism of ortho-hydroxy-NP formation was the addition of HO· and H· - Abstract: Nonylphenol is a hydrophobic endocrine disrupting compound, which can inhibit the growth of sewage bacteria in biological processes. This study investigated the degradation of 4-n-nonylphenol (NP) in water by a chemical-free technology of sonophotolysis with emphasis on the impacts of several important parameters, including light intensity, solution pH, two commonly seen inorganic ions (i.e. NO{sub 3}{sup −} and HCO{sub 3}{sup −}), and principally on the examination of degradation mechanisms. It was found that, solution pH could significantly influence both NP degradation efficiency and the synergistic effect of sonophotolytic process, where higher synergistic effect was obtained at more acidic condition. In addition, the presence of NO{sub 3}{sup −} accelerated NP degradation by both acting as a photosensitizer and providing NO{sub 2}· radicals, while HCO{sub 3}{sup −} had little effect on NP degradation. Identification of intermediates of NP degradation indicated that NP sonophotolysis was mainly initiated by the formation of hydroxy-NP, and a new intermediate di-hydroxy-NP was identified for the first time ever in this study. Through thermodynamic analysis, results indicated that both ortho- and meta-hydroxy-NP species can coexist in the solution but the ortho-4-NBZQ (4-nonyl-benzoquinone) is dominant. In addition, the mechanism of ortho-hydroxy-NP formation was suggested by the addition of HO· and H· radicals.

  12. Efficient heterogeneous and environmentally friendly degradation of nerve agents on a tungsten-based POM

    Energy Technology Data Exchange (ETDEWEB)

    Mizrahi, Dana M., E-mail: danami@iibr.gov.il [Department of Organic Chemistry, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 74100 (Israel); Saphier, Sigal; Columbus, Ishay [Department of Organic Chemistry, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 74100 (Israel)

    2010-07-15

    Common (chemical warfare agent) CWA decontaminants exhibit harsh and corrosive characteristics, and are harmful to the environment. In the course of our quest for active sorbents as efficient decontaminants, Keggin-type polyoxometalate (POM) (NH{sub 4}){sub 3}PW{sub 12}O{sub 40} was tested for oxidative degradation of CWAs. Although oxidation did not take place, sarin (GB) and VX were smoothly decontaminated to non-toxic products within 1 and 10 days, respectively. Degradation was carried out directly on the powder, eliminating the need for solvents. Mustard gas (HD), whose degradation is highly dependent on oxidation, was not decontaminated by this POM. Solid state MAS NMR ({sup 31}P and {sup 13}C) was utilized both for POM characterization and for decontamination studies monitoring.

  13. Efficient heterogeneous and environmentally friendly degradation of nerve agents on a tungsten-based POM

    International Nuclear Information System (INIS)

    Mizrahi, Dana M.; Saphier, Sigal; Columbus, Ishay

    2010-01-01

    Common (chemical warfare agent) CWA decontaminants exhibit harsh and corrosive characteristics, and are harmful to the environment. In the course of our quest for active sorbents as efficient decontaminants, Keggin-type polyoxometalate (POM) (NH 4 ) 3 PW 12 O 40 was tested for oxidative degradation of CWAs. Although oxidation did not take place, sarin (GB) and VX were smoothly decontaminated to non-toxic products within 1 and 10 days, respectively. Degradation was carried out directly on the powder, eliminating the need for solvents. Mustard gas (HD), whose degradation is highly dependent on oxidation, was not decontaminated by this POM. Solid state MAS NMR ( 31 P and 13 C) was utilized both for POM characterization and for decontamination studies monitoring.

  14. Measurement of Pyrethroids and Their Environmental Degradates in Fruits and Vegetables using a Modification of the Quick Easy Cheap Effective Rugged Safe (QuEChERS) Method

    Science.gov (United States)

    Pyrethroid insecticides are used extensively in agriculture and they, as well as their environmental degradates, may remain as residues on food products such as fruits and vegetables. Since pyrethroid degradates can be identical to the urinary markers used in human biomonitoring ...

  15. Plastic Degradation and Its Environmental Implications with Special Reference to Poly(ethylene terephthalate

    Directory of Open Access Journals (Sweden)

    Elena P. Ivanova

    2012-12-01

    Full Text Available With increasing global consumption and their natural resistance to degradation, plastic materials and their accumulation in the environment is of increasing concern. This review aims to present a general overview of the current state of knowledge in areas that relate to biodegradation of polymers, especially poly(ethylene terephthalate (PET. This includes an outline of the problems associated with plastic pollution in the marine environment, a description of the properties, commercial manufacturing and degradability of PET, an overview of the potential for biodegradation of conventional polymers and biodegradable polymers already in production.

  16. Degradation kinetics of a potent antifouling agent, butenolide, under various environmental conditions

    KAUST Repository

    Chen, Lianguo; Xu, Ying; Wang, Wenxiong; Qian, Pei-Yuan

    2015-01-01

    -lives were recorded for DCOIT: >64. d at 4. °C, 27.9. d at 25. °C and 4.5. d at 40. °C. Exposure to sunlight accelerated the degradation of both butenolide and DCOIT. The photolysis half-lives of butenolide and DCOIT were 5.7. d and 6.8. d, respectively

  17. Thermal degradation and plasticizing mechanism of poly(vinyl chloride) plasticized with a novel cardanol derived plasticizer

    Science.gov (United States)

    Chen, J.; Nie, X. A.; Jiang, J. C.; Zhou, Y. H.

    2018-01-01

    A natural plasticizer cardanol derivatives glycidyl ether (CGE) was synthesized and employed as a plasticizer for the poly(vinyl chloride). The effect of CGE on thermal degradation of PVC films and its plasticizing mechanism were firstly reported. The molecular structure of CGE was characterized with Fourier transform infrared spectroscopy (FTIR). Thermal properties, degradation properties and compatibility of the PVC films were investigated by Differential scanning calorimeter analysis (DSC), Thermogravimetric analysis (TGA) and FTIR, respectively. Compared with the commercial plasticizers dioctylphthalate (DOP), CGE can endow PVC film with a decrease of 4.31 °C in glass transition temperature (Tg), an increase of 24.01 °C and 25.53 °C in 10% weight loss (T 10) and 50% weight loss (T 50) respectively, and a higher activetion energy of thermal degradation (Ea ).

  18. Complementary Mechanisms for Degradation of Inulin-Type Fructans and Arabinoxylan Oligosaccharides among Bifidobacterial Strains Suggest Bacterial Cooperation.

    Science.gov (United States)

    Rivière, Audrey; Selak, Marija; Geirnaert, Annelies; Van den Abbeele, Pieter; De Vuyst, Luc

    2018-05-01

    Inulin-type fructans (ITF) and arabinoxylan oligosaccharides (AXOS) are broken down to different extents by various bifidobacterial strains present in the human colon. To date, phenotypic heterogeneity in the consumption of these complex oligosaccharides at the strain level remains poorly studied. To examine mechanistic variations in ITF and AXOS constituent preferences present in one individual, ITF and AXOS consumption by bifidobacterial strains isolated from the simulator of the human intestinal microbial ecosystem (SHIME) after inoculation with feces from one healthy individual was investigated. Among the 18 strains identified, four species-independent clusters displaying different ITF and AXOS degradation mechanisms and preferences were found. Bifidobacterium bifidum B46 showed limited growth on all substrates, whereas B. longum B24 and B. longum B18 could grow better on short-chain-length fractions of fructooligosaccharides (FOS) than on fructose. B. longum B24 could cleave arabinose substituents of AXOS extracellularly, without using the AXOS-derived xylose backbones, whereas B. longum B18 was able to consume oligosaccharides (up to xylotetraose) preferentially and consumed AXOS to a limited extent. B. adolescentis B72 degraded all fractions of FOS simultaneously, partially degraded inulin, and could use xylose backbones longer than xylotetraose extracellularly. The strain-specific degradation mechanisms were suggested to be complementary and indicated resource partitioning. Specialization in the degradation of complex carbohydrates by bifidobacteria present on the individual level could have in vivo implications for the successful implementation of ITF and AXOS, aiming at bifidogenic and/or butyrogenic effects. Finally, this work shows the importance of taking microbial strain-level differences into account in gut microbiota research. IMPORTANCE It is well known that bifidobacteria degrade undigestible complex polysaccharides, such as ITF and AXOS, in the

  19. Photocatalytic degradation kinetics, mechanism and ecotoxicity assessment of tramadol metabolites in aqueous TiO{sub 2} suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Antonopoulou, U. [Department of Environmental and Natural Resources Management, University of Patras, 30100 Agrinio (Greece); Department of Chemistry, University of Ioannina, 45110 Ioannina (Greece); Hela, D. [Department of Business Administration of Food and Agricultural Products, University of Patras, Agrinio 30100 (Greece); Konstantinou, I., E-mail: iokonst@cc.uoi.gr [Department of Environmental and Natural Resources Management, University of Patras, 30100 Agrinio (Greece); Department of Chemistry, University of Ioannina, 45110 Ioannina (Greece)

    2016-03-01

    This study investigated for the first time the photocatalytic degradation of three well-known transformation products (TPs) of pharmaceutical Tramadol, N-desmethyl-(N-DES), N,N-bidesmethyl (N,N-Bi-DES) and N-oxide-tramadol (N-OX-TRA) in two different aquatic matrices, ultrapure water and secondary treated wastewater, with high (10 mg L{sup −1}) and low (50 μg L{sup −1}) initial concentrations, respectively. Total disappearance of the parent compounds was attained in all experiments. For initial concentration of 10 mg L{sup −1}, the target compounds were degraded within 30–40 min and a mineralization degree of more than 80% was achieved after 240 min of irradiation, while the contained organic nitrogen was released mainly as NH{sub 4}{sup +} for N-DES, N,N-Bi-DES and NO{sub 3}{sup −} for N-OX-TRA. The degradation rates of all the studied compounds were considerably decreased in the wastewater due to the presence of inorganic and organic constituents typically found in effluents and environmental matrices which may act as scavengers of the HO{sup •}. The effect of pH (4, 6.7, 10) in the degradation rates was studied and for N-DES-TRA and N,N-Bi-DES-TRA, the optimum pH value was 6.7. In contrast, N-OX-TRA showed an increasing trend in the photocatalytic degradation kinetic in alkaline solutions (pH 10). The major transformation products were identified by high resolution accurate mass spectrometry coupled with liquid chromatography (HR-LC–MS). Scavenging experiments indicated for all studied compounds the important role of HO{sup •} in the photocatalytic degradation pathways that included mainly hydroxylation and further oxidation of the parent compounds. In addition, Microtox bioassay (Vibrio fischeri) was employed for evaluating the ecotoxicity of photocatalytically treated solutions. Results clearly demonstrate the progressive decrease of the toxicity and the efficiency of the photocatalytic process in the detoxification of the irradiated solutions

  20. Theoretical investigation of the degradation mechanisms in host and guest molecules used in OLED active layers

    KAUST Repository

    Winget, Paul; Hong, Minki; Bredas, Jean-Luc

    2014-01-01

    systems. We identify degradation pathways and define new strategies to guide the synthesis of stable materials for OLED applications for both phosphorescent emitters and organic host materials. The chemical reactivity of these molecules in the active

  1. Simulation of the PHEBUS FPT-1 experiment using MELCOR and exploration of the primary core degradation mechanism

    International Nuclear Information System (INIS)

    Wang, Jun; Corradini, Michael L.; Fu, Wen; Haskin, Troy; Zhang, Yapei; Tian, Wenxi; Su, Guanghui; Qiu, Suizheng

    2015-01-01

    Highlights: • Core degradation evaluation is an important process in risk analysis. • PHEBUS experiment was simulated using MELCOR. • The results confirm the validity of MELCOR’s simulation of the PHEBUS experiment. • These results are used to analyze the mode and behavior of core degradation. - Abstract: Core degradation evaluation of probability, progression and consequences of a core degradation accident is critical for evaluation of risk as well as its mitigation. However, research and modeling of severe accidents to date are limited, and their accuracy in predicting severe accident consequences is still insufficient. It is therefore important to explore the mechanisms of core degradation and to develop mitigation measures for severe accidents. PHEBUS FPT1 is a typical and classic core degradation experiment. MELCOR is a world famous severe accident analysis code developed by Sandia National Lab that has seen wide application, a broad user base, and a number of supporting experiments. The PHEBUS experiment was simulated using MELCOR in this paper. Experimental data on, thermal power and steam mass flow rates are used to determine average pressure, energy distribution, molten mass, temperature of the fuel, and hydrogen generation. Data from the PHEBUS experiment and Cho’s calculations are used to compare the average pressure, several fuel temperatures and the hydrogen generation rate. The results confirm the validity of MELCOR’s simulation of the PHEBUS experiment. The temperature distribution of the core is provided. These results are used to determine the mode and behavior of core degradation with the intent of building a foundation for further research

  2. Study of the degradation mechanisms of amines used for the capture of CO2 in industrial fumes

    International Nuclear Information System (INIS)

    Lepaumier, H.

    2008-10-01

    Global warming leads to reduce greenhouse gas emissions. Post combustion CO 2 capture with solvent is the most advanced technology to reduce CO 2 emissions in industrial fumes. A major problem associated with chemical absorption of CO 2 using the benchmark ethanolamine (MEA) is solvent degradation through irreversible side reactions with CO 2 and O 2 which leads to numerous harmful impacts to the process: corrosion, solvent loss, foaming, fouling, and viscosity increase. So, developing new amines with higher chemical stability is essential. This work is based on the chemical stability study of 17 different molecules. Their structures have been chosen in order to establish structure-property relationships: alkanolamines, known for gas treatment application (MEA, DEA, MDEA, AMP...), di-amines, and tri-amines without alcohol function. Impact of temperature, CO 2 , and O 2 on degradation has been studied. Strong experimental conditions have been used to observe significant degradation after a 15 days experiment. Separation, identification and quantification of degradation products have been performed by using different testing instructions such as gas chromatography, mass spectrometry, ionic chromatography and NMR. Different mechanisms are proposed to explain most of degradation compounds. Radical reactions (dealkylation, alkylation, ring-closure reactions and piperazinones formation) are involved under O 2 pressure whereas CO 2 induces ionic reactions (dealkylation, alkylation, addition, ring-closure reactions and oxazolidinones or imidazolidinones formation). Large discrepancies of stability are noticed among the different amines. Knowledge of degradation products and reaction mechanisms has thus permitted to establish some relationships between structure and chemical stability: for example, role of the amine function (primary, secondary, tertiary), impact of alkyl chain length between the two amino groups and steric hindrance. (author)

  3. A STUDY ON THE DEGRADATION MECHANISM OF PHOTOCROSSLINKING PRODUCTS FORMED BY CYCLIZED POLYISOPRENE-DIAZIDE SYSTEM UNDER THE INFLUENCE OF ALKYL BENZENE SULFONIC ACIDS

    Institute of Scientific and Technical Information of China (English)

    HUANG Junlian; SUN Meng

    1989-01-01

    The degradation mechanism of photocrosslinking products formed by cyclized polyisoprene-diazide system under the influence of the different alkyl benzene sulfonic acids was studied. The effects ofalkyl chain length and the concentration of alkyl benzene sulfonic acids on the rate of degradation reaction were discussed. It was found that in the initial stage of degradation, the cyclicity ratio and the average fused ring number did not change considerably, but the percentage of uncyclized parts content varied significantly. The suitable mechanism was supposed.

  4. Mechanisms of c-myc degradation by nickel compounds and hypoxia.

    Directory of Open Access Journals (Sweden)

    Qin Li

    2009-12-01

    Full Text Available Nickel (Ni compounds have been found to cause cancer in humans and animal models and to transform cells in culture. At least part of this effect is mediated by stabilization of hypoxia inducible factor (HIF1a and activating its downstream signaling. Recent studies reported that hypoxia signaling might either antagonize or enhance c-myc activity depending on cell context. We investigated the effect of nickel on c-myc levels, and demonstrated that nickel, hypoxia, and other hypoxia mimetics degraded c-myc protein in a number of cancer cells (A549, MCF-7, MDA-453, and BT-474. The degradation of the c-Myc protein was mediated by the 26S proteosome. Interestingly, knockdown of both HIF-1alpha and HIF-2alpha attenuated c-Myc degradation induced by Nickel and hypoxia, suggesting the functional HIF-1alpha and HIF-2alpha was required for c-myc degradation. Further studies revealed two potential pathways mediated nickel and hypoxia induced c-myc degradation. Phosphorylation of c-myc at T58 was significantly increased in cells exposed to nickel or hypoxia, leading to increased ubiquitination through Fbw7 ubiquitin ligase. In addition, nickel and hypoxia exposure decreased USP28, a c-myc de-ubiquitinating enzyme, contributing to a higher steady state level of c-myc ubiquitination and promoting c-myc degradation. Furthermore, the reduction of USP28 protein by hypoxia signaling is due to both protein degradation and transcriptional repression. Nickel and hypoxia exposure significantly increased the levels of dimethylated H3 lysine 9 at the USP28 promoter and repressed its expression. Our study demonstrated that Nickel and hypoxia exposure increased c-myc T58 phosphorylation and decreased USP28 protein levels in cancer cells, which both lead to enhanced c-myc ubiquitination and proteasomal degradation.

  5. The Paleozoic origin of enzymatic mechanisms for lignin degradation reconstructed using 31 fungal genomes

    OpenAIRE

    Floudas, Dimitrios; Binder, Manfred; Riley, Robert; Barry, Kerrie; Blanchette, Robert A; Henrissat, Bernard; Martinez, Angel T.; Otillar, Robert; Spatafora, Joseph W.; Yadav, Jagit S.; Aerts, Andrea; Benoit, Isabelle; Boyd, Alex; Carlson, Alexis; Copeland, Alex

    2012-01-01

    Wood is a major pool of organic carbon that is highly resistant to decay, owing largely to the presence of lignin. The only organisms capable of substantial lignin decay are white rot fungi in the Agaricomycetes, which also contains non?lignin-degrading brown rot and ectomycorrhizal species. Comparative analyses of 31 fungal genomes (12 generated for this study) suggest that lignin-degrading peroxidases expanded in the lineage leading to the ancestor of the Agaricomycetes, which is reconstruc...

  6. NASA's Advanced Environmental Barrier Coatings Development for SiC/SiC Ceramic Matrix Composites: Understanding Calcium Magnesium Alumino-Silicate (CMAS) Degradations and Resistance

    Science.gov (United States)

    Zhu, Dongming

    2014-01-01

    Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is essential to the viability and reliability of the envisioned CMC engine component applications, ensuring integrated EBC-CMC system durability and designs are achievable for successful applications of the game-changing component technologies and lifing methodologies.This paper will emphasize recent NASA environmental barrier coating developments for SiCSiC turbine airfoil components, utilizing advanced coating compositions, state-of-the-art processing methods, and combined mechanical and environment testing and durability evaluations. The coating-CMC degradations in the engine fatigue-creep and operating environments are particularly complex; one of the important coating development aspects is to better understand engine environmental interactions and coating life debits, and we have particularly addressed the effect of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the durability of the environmental barrier coating systems, and how the temperature capability, stability and cyclic life of the candidate rare earth oxide and silicate coating systems will be impacted in the presence of the CMAS at high temperatures and under simulated heat flux conditions. Advanced environmental barrier coating systems, including HfO2-Si with rare earth dopant based bond coat systems, will be discussed for the performance improvements to achieve better temperature capability and CMAS resistance for future engine operating conditions.

  7. Photocatalytic degradation kinetics and mechanism of phenobarbital in TiO(2) aqueous solution.

    Science.gov (United States)

    Cao, Hua; Lin, Xiulian; Zhan, Haiying; Zhang, Hong; Lin, Jingxin

    2013-01-01

    5-Ethyl-5-phenylpyrimidine-2,4,6(1H, 3H, 5H)-trione is an anti-convulsant used to treat disorders of movement, e.g. tremors. This work deals with the transformation of phenobarbital by UV/TiO(2) heterogeneous photocatalysis, to assess the decomposition of the pharmaceutical compound, to identify intermediates, as well as to elucidate some mechanistic details of the degradation. The photocatalytic removal efficiency of 100 μm phenobarbital is about 80% within 60 min, while the degradation efficiency of phenobarbital was better in alkaline solution. The study on contribution of reactive oxidative species (ROSs) has shown that ()OH is responsible for the major degradation of phenobarbital, while the photohole, photoelectrons and the other ROSs have the minor contribution to the degradation. Finally, based on the identification of degradation intermediates, two main photocatalytic degradation pathways have been tentatively proposed, including the hydroxylation and cleavage of pyrimidine ring in the phenobarbital molecule respectively. Certainly, the phenobarbital can be mineralized when the photocatalytic reaction time prolongs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Theory favors a stepwise mechanism of porphyrin degradation by a ferric hydroperoxide model of the active species of heme oxygenase.

    Science.gov (United States)

    Kumar, Devesh; de Visser, Samuël P; Shaik, Sason

    2005-06-08

    The report uses density functional theory to address the mechanism of heme degradation by the enzyme heme oxygenase (HO) using a model ferric hydroperoxide complex. HO is known to trap heme molecules and degrade them to maintain iron homeostasis in the biosystem. The degradation is initiated by complexation of the heme, then formation of the iron-hydroperoxo species, which subsequently oxidizes the meso position of the porphyrin by hydroxylation, thereby enabling eventually the cleavage of the porphyrin ring. Kinetic isotope effect studies indicate that the mechanism is assisted by general acid catalysis, via a chain of water molecules, and that all the events occur in concert. However, previous theoretical treatments indicated that the concerted mechanism has a high barrier, much higher than an alternative mechanism that is initiated by O-O bond homolysis of iron-hydroperoxide. The present contribution studies the stepwise and concerted acid-catalyzed mechanisms using H(3)O(+)(H(2)O)(n)(), n = 0-2. The effect of the acid strength is tested using the H(4)N(+)(H(2)O)(2) cluster and a fully protonated ferric hydroperoxide. All the calculations show that a stepwise mechanism that involves proton relay and O-O homolysis, in the rate-determining step, has a much lower barrier (>10 kcal/mol) than the corresponding fully concerted mechanism. The best fit of the calculated solvent kinetic isotope effect, to the experimental data, is obtained for the H(3)O(+)(H(2)O)(2) cluster. The calculated alpha-deuterium secondary kinetic isotope effect is inverse (0.95-0.98), but much less so than the experimental value (0.7). Possible reasons for this quantitative difference are discussed. Some probes are suggested that may enable experiment to distinguish the stepwise from the concerted mechanism.

  9. A study of long-term static load on degradation and mechanical integrity of Mg alloys-based biodegradable metals

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Youngmi; Jang, Yongseok; Yun, Yeoheung, E-mail: yyun@ncat.edu

    2017-05-15

    Highlights: • Long-term stress corrosion cracking (SCC) test of Mg alloys was performed. • AZ31B-H24 shows transgranular stress corrosion cracking (TGSCC) and ZE41A-T5 intergranular stress corrosion cracking (IGSCC). • Long-term static loading accelerated crack propagation, leading to the loss of mechanical strength. - Abstract: Predicting degradation behavior of biodegradable metals in vivo is crucial for the clinical success of medical devices. This paper reports on the effect of long-term static stress on degradation of magnesium alloys and further changes in mechanical integrity. AZ31B (H24) and ZE41A (T5) alloys were tested to evaluate stress corrosion cracking (SCC) in a physiological solution for 30 days and 90 days (ASTM G39 testing standard). Scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) and micro-computed tomography (micro-CT) were used to characterize surface morphology and micro-structure of degraded alloys. The results show the different mechanisms of stress corrosion cracking for AZ31B (transgranular stress corrosion cracking, TGSCC) and ZE41A (intergranular stress corrosion cracking, IGSCC). AZ31B was more susceptible to stress corrosion cracking under a long term static load than ZE41A. In conclusion, we observed that long-term static loading accelerated crack propagation, leading to the loss of mechanical integrity.

  10. A study of long-term static load on degradation and mechanical integrity of Mg alloys-based biodegradable metals

    International Nuclear Information System (INIS)

    Koo, Youngmi; Jang, Yongseok; Yun, Yeoheung

    2017-01-01

    Highlights: • Long-term stress corrosion cracking (SCC) test of Mg alloys was performed. • AZ31B-H24 shows transgranular stress corrosion cracking (TGSCC) and ZE41A-T5 intergranular stress corrosion cracking (IGSCC). • Long-term static loading accelerated crack propagation, leading to the loss of mechanical strength. - Abstract: Predicting degradation behavior of biodegradable metals in vivo is crucial for the clinical success of medical devices. This paper reports on the effect of long-term static stress on degradation of magnesium alloys and further changes in mechanical integrity. AZ31B (H24) and ZE41A (T5) alloys were tested to evaluate stress corrosion cracking (SCC) in a physiological solution for 30 days and 90 days (ASTM G39 testing standard). Scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) and micro-computed tomography (micro-CT) were used to characterize surface morphology and micro-structure of degraded alloys. The results show the different mechanisms of stress corrosion cracking for AZ31B (transgranular stress corrosion cracking, TGSCC) and ZE41A (intergranular stress corrosion cracking, IGSCC). AZ31B was more susceptible to stress corrosion cracking under a long term static load than ZE41A. In conclusion, we observed that long-term static loading accelerated crack propagation, leading to the loss of mechanical integrity.

  11. Mechanism of azo dye degradation in Advanced Oxidation Processes: Degradation of Sulfanilic Acid Azochromotrop and its parent compounds in aqueous solution by ionizing radiation

    International Nuclear Information System (INIS)

    Palfi, Tamas; Wojnarovits, Laszlo; Takacs, Erzsebet

    2011-01-01

    Mechanistic studies were made on hydroxyl radical and hydrated electron reaction with Sulfanilic Acid Azochromotrop (SPADNS) as model azo dye in dilute aqueous solution. SPADNS contains 4,5-dihydroxynaphthalene-2,7-disulfonic acid part and 4-sulfophenylazo group. To establish the details of the reaction mechanism the reactions of two simpler molecules without 4-sulfophenylazo part were also studied: one of them contained one (in position 4, II), the other two (in positions 4 and 5, III) -OH groups. Hydroxyl radicals react with these molecules with radical addition to the naphthalene-2,7-disulfonic acid part. The adduct hydroxycyclohexadienyl type radical decays in radical-radical reactions, or undergoes a (pH dependent) water elimination to yield naphthoxy radical. The radical decay takes place on the ms timescale. Degradation efficiencies are 0.6-0.8. Hydrated electron in the case of the two simpler molecules reacts with the rings, while in the case of dye with the azo bond. Electron scavenging is followed by protonation, this reaction in the case of II and III yields cyclohexadienyl, while with the dye hydrazo radical. The efficiency of degradation with II and III is 0.2-0.6, while for SPADNS it is close to 1.

  12. In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid.

    Science.gov (United States)

    Kannan, M Bobby; Raman, R K Singh

    2008-05-01

    The successful applications of magnesium-based alloys as degradable orthopaedic implants are mainly inhibited due to their high degradation rates in physiological environment and consequent loss in the mechanical integrity. This study examines the degradation behaviour and the mechanical integrity of calcium-containing magnesium alloys using electrochemical techniques and slow strain rate test (SSRT) method, respectively, in modified-simulated body fluid (m-SBF). Potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) results showed that calcium addition enhances the general and pitting corrosion resistances of magnesium alloys significantly. The corrosion current was significantly lower in AZ91Ca alloy than that in AZ91 alloy. Furthermore, AZ91Ca alloy exhibited a five-fold increase in the surface film resistance than AZ91 alloy. The SSRT results showed that the ultimate tensile strength and elongation to fracture of AZ91Ca alloy in m-SBF decreased only marginally (approximately 15% and 20%, respectively) in comparison with these properties in air. The fracture morphologies of the failed samples are discussed in the paper. The in vitro study suggests that calcium-containing magnesium alloys to be a promising candidate for their applications in degradable orthopaedic implants, and it is worthwhile to further investigate the in vivo corrosion behaviour of these alloys.

  13. Influence of PAHs among other coastal environmental variables on total and PAH-degrading bacterial communities.

    Science.gov (United States)

    Sauret, Caroline; Tedetti, Marc; Guigue, Catherine; Dumas, Chloé; Lami, Raphaël; Pujo-Pay, Mireille; Conan, Pascal; Goutx, Madeleine; Ghiglione, Jean-François

    2016-03-01

    We evaluated the relative impact of anthropogenic polycyclic aromatic hydrocarbons (PAHs) among biogeochemical variables on total, metabolically active, and PAH bacterial communities in summer and winter in surface microlayer (SML) and subsurface seawaters (SSW) across short transects along the NW Mediterranean coast from three harbors, one wastewater effluent, and one nearshore observatory reference site. At both seasons, significant correlations were found between dissolved total PAH concentrations and PAH-degrading bacteria that formed a gradient from the shore to nearshore waters. Accumulation of PAH degraders was particularly high in the SML, where PAHs accumulated. Harbors and wastewater outfalls influenced drastically and in a different way the total and active bacterial community structure, but they only impacted the communities from the nearshore zone (PAH concentrations on the spatial and temporal dynamic of total and active communities in this area, but this effect was putted in perspective by the importance of other biogeochemical variables.

  14. Roles and responsibilities of health care professionals in combating environmental degradation and social injustice: education and activism.

    Science.gov (United States)

    Donohoe, Martin

    2008-01-01

    This article describes the causes and health consequences of environmental degradation and social injustice. These issues, which impact primarily on the poor and underserved (both in the United States and internationally) are rarely or inadequately covered in the curriculums of traditional health care professions. The discussion offers ways for health care professionals to promote equality and justice and uses the example of Rudolph Virchow's social activism to illustrate how one physician can lead society toward major public health gains. There is also an examination of the roles of institutions and organisations in enhancing environmental preservation and promoting social justice. Specific curricular suggestions from history and the humanities are offered for those teaching and mentoring new health professionals.

  15. Effects of mechanical and chemical processes on the degradation of plastic beach debris on the island of Kauai, Hawaii

    International Nuclear Information System (INIS)

    Cooper, David A; Corcoran, Patricia L

    2010-01-01

    Plastic debris is accumulating on the beaches of Kauai at an alarming rate, averaging 484 pieces/day in one locality. Particles sampled were analyzed to determine the effects of mechanical and chemical processes on the breakdown of polymers in a subtropical setting. Scanning electron microscopy (SEM) indicates that plastic surfaces contain fractures, horizontal notches, flakes, pits, grooves, and vermiculate textures. The mechanically produced textures provide ideal loci for chemical weathering to occur which further weakens the polymer surface leading to embrittlement. Fourier transform infrared spectroscopy (FTIR) results show that some particles have highly oxidized surfaces as indicated by intense peaks in the lower wavenumber region of the spectra. Our textural analyses suggest that polyethylene has the potential to degrade more readily than polypropylene. Further evaluation of plastic degradation in the natural environment may lead to a shift away from the production and use of plastic materials with longer residence times.

  16. Degradation mechanism of Direct Pink 12B treated by iron-carbon micro-electrolysis and Fenton reaction.

    Science.gov (United States)

    Wang, Xiquan; Gong, Xiaokang; Zhang, Qiuxia; Du, Haijuan

    2013-12-01

    The Direct Pink 12B dye was treated by iron-carbon micro-electrolysis (ICME) and Fenton oxidation. The degradation pathway of Direct Pink 12B dye was inferred by ultraviolet visible (UV-Vis), infrared absorption spectrum (IR) and high performance liquid chromatography-mass spectrometry (HPLC-MS). The major reason of decolorization was that the conjugate structure was disrupted in the iron-carbon micro-electrolysis (ICME) process. However, the dye was not degraded completely because benzene rings and naphthalene rings were not broken. In the Fenton oxidation process, the azo bond groups surrounded by higher electron cloud density were first attacked by hydroxyl radicals to decolorize the dye molecule. Finally benzene rings and naphthalene rings were mineralized to H2O and CO2 under the oxidation of hydroxyl radicals. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  17. The Paleozoic origin of enzymatic mechanisms for lignin degradation reconstructed using 31 fungal genomes

    Energy Technology Data Exchange (ETDEWEB)

    Floudas, Dimitrios; Binder, Manfred; Riley, Robert; Barry, Kerrie; Blanchette, Robert A; Henrissat, Bernard; Martinez, Angel T.; Otillar, Robert; Spatafora, Joseph W.; Yadav, Jagit S.; Aerts, Andrea; Benoit, Isabelle; Boyd, Alex; Carlson, Alexis; Copeland, Alex; Coutinho, Pedro M.; de Vries, Ronald P.; Ferreira, Patricia; Findley, Keisha; Foster, Brian; Gaskell, Jill; Glotzer, Dylan; Gorecki, Pawel; Heitman, Joseph; Hesse, Cedar; Hori, Chiaki; Igarashi, Kiyohiko; Jurgens, Joel A.; Kallen, Nathan; Kersten, Phil; Kohler, Annegret; Kues, Ursula; Kumar, T. K. Arun; Kuo, Alan; LaButti, Kurt; Larrondo, Luis F.; Lindquist, Erika; Ling, Albee; Lombard, Vincent; Lucas, Susan; Lundell, Taina; Martin, Rachael; McLaughlin, David J.; Morgenstern, Ingo; Morin, Emanuelle; Murat, Claude; Nagy, Laszlo G.; Nolan, Matt; Ohm, Robin A.; Patyshakuliyeva, Aleksandrina; Rokas, Antonis; Ruiz-Duenas, Francisco J.; Sabat, Grzegorz; Salamov, Asaf; Samejima, Masahiro; Schmutz, Jeremy; Slot, Jason C.; John, Franz; Stenlid, Jan; Sun, Hui; Sun, Sheng; Syed, Khajamohiddin; Tsang, Adrian; Wiebenga, Ad; Young, Darcy; Pisabarro, Antonio; Eastwood, Daniel C.; Martin, Francis; Cullen, Dan; Grigoriev, Igor V.; Hibbett, David S.

    2012-03-12

    Wood is a major pool of organic carbon that is highly resistant to decay, owing largely to the presence of lignin. The only organisms capable of substantial lignin decay are white rot fungi in the Agaricomycetes, which also contains non?lignin-degrading brown rot and ectomycorrhizal species. Comparative analyses of 31 fungal genomes (12 generated for this study) suggest that lignin-degrading peroxidases expanded in the lineage leading to the ancestor of the Agaricomycetes, which is reconstructed as a white rot species, and then contracted in parallel lineages leading to brown rot and mycorrhizal species. Molecular clock analyses suggest that the origin of lignin degradation might have coincided with the sharp decrease in the rate of organic carbon burial around the end of the Carboniferous period.

  18. Diclofenac degradation in water by FeCeOx catalyzed H2O2: Influencing factors, mechanism and pathways.

    Science.gov (United States)

    Chong, Shan; Zhang, Guangming; Zhang, Nan; Liu, Yucan; Huang, Ting; Chang, Huazhen

    2017-07-15

    The degradation of diclofenac in a like Fenton system, FeCeO x -H 2 O 2 , was studied in details. The influencing factors, reaction kinetics, reaction mechanism and degradation pathways of diclofenac were investigated. The optimum conditions were at a solution pH of 5.0, H 2 O 2 concentration of 3.0mmol/L, diclofenac initial concentration of 0.07mmol/L, FeCeO x dosage of 0.5g/L, and 84% degradation of diclofenac was achieved within 40min. The kinetics of FeCeO x catalyzed H 2 O 2 process involved adsorption-dominating and degradation-dominating stages and fitted pseudo-second order model and pseudo-first order model, respectively. Singlet oxygen 1 O 2 was the primary intermediate oxidative species in the degradation process; superoxide radical anion O 2 - also participated in the reaction. The surface cerium and iron sites and the oxygen vacancies in the FeCeO x catalyst were proposed to play an important role in H 2 O 2 decomposition and active species generation. The detected intermediates were identified as hydroxylated derivatives (m/z of 310, 326 and 298), quinone imine compounds (m/z of 308, 278 and 264) and hydroxyl phenylamine (m/z of 178). The majority intermediates were hydroxylated derivatives and the minority was hydroxyl phenylamine. The degradation pathways were proposed to involve hydroxylation, decarboxylation, dehydrogenation and CN bond cleavage. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Evaluation of environmental degradation effects in morphology of ultra-high molecular weight polyethylene (UHMWPE) fibers

    International Nuclear Information System (INIS)

    Vivas, Viviane; Zylberberg, Marcel P.; Cardoso, Andre Luis V.; Pereira, Iaci M.; Weber, Ricardo P.; Suarez, Joao C. Miguez

    2015-01-01

    This study aims to evaluate changes in the morphology of ultra-high molecular weight polyethylene fiber (UHMWPE), before and after exposure to environmental agents. Fibers produced by two different manufacturers were analyzed. To characterize the morphology, we used the technique of small angle x-ray scattering (SAXS). The results demonstrate that the original morphology of the fibers was UHMWPE affected by the defects caused by exposure to environmental agents. (author)

  20. Impact of humic acid on the degradation of levofloxacin by aqueous permanganate: Kinetics and mechanism.

    Science.gov (United States)

    Xu, Ke; Ben, Weiwei; Ling, Wencui; Zhang, Yu; Qu, Jiuhui; Qiang, Zhimin

    2017-10-15

    Levofloxacin (LF) is a frequently detected fluoroquinolone in surface water, and permanganate (MnO 4 - ) is a commonly used oxidant in drinking water treatment. This study investigated the impact of humic acid (HA) on LF degradation by aqueous MnO 4 - from both kinetic and mechanistic aspects. In the absence of HA, the second-order rate constant (k) of LF degradation by MnO 4 - was determined to be 3.9 M -1  s -1 at pH 7.5, which increased with decreasing pH. In the presence of HA, the pseudo-first-order rate constant (k obs ) of LF degradation at pH 7.5 was significantly increased by 3.8- and 2.8-fold at [HA] o :[KMnO 4 ] o (mass ratio) = 0.5 and 1, respectively. Secondary oxidant scavenging and electron paramagnetic resonance tests indicated that HA could form a complex with Mn(III), a strongly oxidative intermediate produced in the reaction of MnO 4 - with HA, to induce the successive formation of superoxide radicals (O 2 - ) and hydroxyl radicals (OH). The resulting OH primarily contributed to the accelerated LF degradation, and the complex [HA-Mn(III)] could account for the rest of acceleration. The degradation of LF and its byproducts during MnO 4 - oxidation was mainly through hydroxylation, dehydrogenation and carboxylation, and the presence of HA led to a stronger destruction of LF. This study helps better understand the degradation of organic micropollutants by MnO 4 - in drinking water treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Nanoscale investigation of moisture-induced degradation mechanisms of tris(8-hydroxyquinoline) aluminium-based organic light-emitting diodes

    International Nuclear Information System (INIS)

    Xu, M S; Xu, J B; Chen, H Z; Wang, M

    2004-01-01

    By exploiting tapping mode atomic force microscopy, the moisture-induced degradation mechanisms of ITO (indium tin oxide)-coated glass/CuPc (copper phthalocyanine)/NPB (N, N'-di(naphthalene-1-yl)-N, N'-diphthalbenzidine)/Alq 3 (tris(8-hydroxyquinoline) aluminium)-based organic light-emitting diodes without cathode were investigated. It is found that three types of degradation mechanisms are associated with moisture-exposed Alq 3 films, when the device is exposed to moisture, namely, hydration of Alq 3 , crystallization of Alq 3 and reaction of the Alq 3 complex with H 2 O. Crystallization of the NPB layer of ITO/CuPc/NPB was observed on exposure to moisture, and de-wetting simultaneously takes place at the interface of CuPc/NPB. Indium and/or oxygen may diffuse from ITO into the organic layers. These observations provide a clear picture of the moisture-induced degradation mechanisms of the ITO/CuPc/NPB/Alq 3 -based OLEDs

  2. STUDY OF DEGRADATION MECHANISM AND PACKAGING OF ORGANIC LIGHT EMITTING DEVICES

    Institute of Scientific and Technical Information of China (English)

    Gu Xu

    2003-01-01

    Organic Light Emitting Devices (OLED) have attracted much attention recently, for their applications in future Flat Panel Displays and lighting products. However, their fast degradation remained a major obstacle to their commercialization. Here we present a brief summary of our studies on both extrinsic and intrinsic causes for the fast degradation of OLEDs. In particular, we focus on the origin of the dark spots by "rebuilding" cathodes, which confirms that the growth of dark spots occurs primarily due to cathode delamination. In the meantime, we recapture the findings from the search for suitable OLED packaging materials, in particular polymer composites, which provide both heat dissipation and moisture resistance, in addition to electrical insulation.

  3. State-of-the-art review of OPG steam generator tubing degradation mechanisms

    International Nuclear Information System (INIS)

    Brennenstuhl, A.M.; Ramamurthy, S.; Good, G.M.

    2009-01-01

    Steam generator (SG) degradation has been a major cause of pressurized water reactor (PWR) incapability world-wide and has limited the useful life of SGs at some utilities. The vast majority of the degradation has been the result of SCC of the thin walled nickel alloy SG tubes and has been most prevalent in mill annealed (MA) Alloy 600. Fortunately, Ontario Power Generation (OPG) SG tubes are manufactured from alloys that have much better resistance to this form of localized corrosion than Alloy 600MA and as a consequence have not encountered SCC to date. Other forms of degradation nevertheless have been experienced; some units at Pickering - B in particular have had many Alloy 400 SG tubes removed from service due to severe underdeposit corrosion (UDC) and costly modifications have been made to Darlington SGs to prevent leaks as a result of SG tube fretting-wear at tube supports. Degradation other than UDC and fretting-wear which could pose a threat to the future reliable operation of OPG's nuclear fleet has also been observed. Important activities in effectively managing SG degradation include determining the mode of degradation and arriving at an understanding of the contributing factors. This is done by a combination of non-destructive examination (NDE) of SG tubing in-situ, SG tube removals for metallurgical examination and research and development. SG tube metallurgical examinations provide information that can be used in the timely development of a strategy dealing with the degradation in the short to intermediate timeframe. Determining the main causative factors at a mechanistic level helps to improve the predictive capability and increases the probability of dealing with the problem in the most cost-effective way. OPG has used this approach together with in-situ NDE inspections during planned outages of its nuclear reactors to minimize the possibility of unscheduled outages and provide the best possible fitness-for-service assessments. Many metallurgical

  4. Computational consideration on advanced oxidation degradation of phenolic preservative, methylparaben, in water: mechanisms, kinetics, and toxicity assessments

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yanpeng [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); An, Taicheng, E-mail: antc99@gig.ac.cn [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Fang, Hansun [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Ji, Yuemeng; Li, Guiying [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2014-08-15

    Graphical abstract: - Highlights: • Computational approach is effective to reveal the transformation mechanism of MPB. • MPB degradation was more dependent on the [{sup •} OH] than temperature during AOPs. • O{sub 2} could enhance MPB degradation, but more harmful products were formed. • The risks of MPB products in natural waters should be considered seriously. • The risks of MPB products can be overlooked in AOPs due to short half-time. - Abstract: Hydroxyl radicals ({sup •} OH) are strong oxidants that can degrade organic pollutants in advanced oxidation processes (AOPs). The mechanisms, kinetics, and toxicity assessment of the {sup •} OH-initiated oxidative degradation of the phenolic preservative, methylparaben (MPB), were systematically investigated using a computational approach, as the supplementary information for experimental data. Results showed that MPB can be initially attacked by {sup •} OH via OH-addition and H-abstraction routes. Among these routes, the {sup •} OH addition to the C atom at the ortho-position of phenolic hydroxyl group was the most significant route. However, the methyl-H-abstraction route also cannot be neglected. Further, the formed transient intermediates, OH-adduct ({sup •} MPB-OH{sub 1}) and dehydrogenated radical ({sup •} MPB(-H)α), could be easily transformed to several stable degradation products in the presence of O{sub 2} and {sup •} OH. To better understand the potential toxicity of MPB and its products to aquatic organisms, both acute and chronic toxicities were assessed computationally at three trophic levels. Both MPB and its products, particularly the OH-addition products, are harmful to aquatic organisms. Therefore, the application of AOPs to remove MPB should be carefully performed for safe water treatment.

  5. Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat.

    Science.gov (United States)

    Pankratov, Timofey A; Ivanova, Anastasia O; Dedysh, Svetlana N; Liesack, Werner

    2011-07-01

    Northern peatlands represent a major global carbon store harbouring approximately one-third of the global reserves of soil organic carbon. A large proportion of these peatlands consists of acidic Sphagnum-dominated ombrotrophic bogs, which are characterized by extremely low rates of plant debris decomposition. The degradation of cellulose, the major component of Sphagnum-derived litter, was monitored in long-term incubation experiments with acidic (pH 4.0) peat extracts. This process was almost undetectable at 10°C and occurred at low rates at 20°C, while it was significantly accelerated at both temperature regimes by the addition of available nitrogen. Cellulose breakdown was only partially inhibited in the presence of cycloheximide, suggesting that bacteria participated in this process. We aimed to identify these bacteria by a combination of molecular and cultivation approaches and to determine the factors that limit their activity in situ. The indigenous bacterial community in peat was dominated by Alphaproteobacteria and Acidobacteria. The addition of cellulose induced a clear shift in the community structure towards an increase in the relative abundance of the Bacteroidetes. Increasing temperature and nitrogen availability resulted in a selective development of bacteria phylogenetically related to Cytophaga hutchinsonii (94-95% 16S rRNA gene sequence similarity), which densely colonized microfibrils of cellulose. Among isolates obtained from this community only some subdivision 1 Acidobacteria were capable of degrading cellulose, albeit at a very slow rate. These Acidobacteria represent indigenous cellulolytic members of the microbial community in acidic peat and are easily out-competed by Cytophaga-like bacteria under conditions of increased nitrogen availability. Members of the phylum Firmicutes, known to be key players in cellulose degradation in neutral habitats, were not detected in the cellulolytic community enriched at low pH. © 2011 Society for

  6. Fatigue and quasi‐static mechanical behavior of bio‐degradable porous biomaterials based on magnesium alloys

    Science.gov (United States)

    Ahmadi, S. M.; Lietaert, K.; Tümer, N.; Li, Y.; Amin Yavari, S.; Zadpoor, A. A.

    2018-01-01

    Abstract Magnesium and its alloys have the intrinsic capability of degrading over time in vivo without leaving toxic degradation products. They are therefore suitable for use as biodegradable scaffolds that are replaced by the regenerated tissues. One of the main concerns for such applications, particularly in load‐bearing areas, is the sufficient mechanical integrity of the scaffold before sufficient volumes of de novo tissue is generated. In the majority of the previous studies on the effects of biodegradation on the mechanical properties of porous biomaterials, the change in the elastic modulus has been studied. In this study, variations in the static and fatigue mechanical behavior of porous structures made of two different Mg alloys (AZ63 and M2) over different dissolution times ( 6, 12, and 24 h) have been investigated. The results showed an increase in the mechanical properties obtained from stress–strain curve (elastic modulus, yield stress, plateau stress, and energy absorption) after 6–12 h and a sharp decrease after 24 h. The initial increase in the mechanical properties may be attributed to the accumulation of corrosion products in the pores of the porous structure before degradation has considerably proceeded. The effects of mineral deposition was more pronounced for the elastic modulus as compared to other mechanical properties. That may be due to insufficient integration of the deposited particles in the structure of the magnesium alloys. While the bonding of the parts being combined in a composite‐like material is of great importance in determining its yield stress, the effects of bonding strength of both parts is much lower in determining the elastic modulus. The results of the current study also showed that the dissolution rates of the studied Mg alloys were too high for direct use in human body. © 2018 Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1798

  7. Dynamic environmental control mechanisms for pneumatic foil constructions

    Science.gov (United States)

    Flor, Jan-Frederik; Wu, Yupeng; Beccarelli, Paolo; Chilton, John

    2017-11-01

    Membrane and foil structures have become over the last decades an attractive alternative to conventional materials and building systems with increasing implementation in different typologies and scale. The development of transparent, light, flexible and resistant materials like Ethylene Tetrafluoroethylene (ETFE) has triggered a rethinking of the building envelope in the building industry towards lightweight systems. ETFE foil cushions have proven to fulfil the design requirements in terms of structural efficiency and aesthetic values. But the strategies to satisfy increasing demands of energy efficiency and comfort conditions are still under development. The prediction and manipulation of the thermo-optical behaviour of ETFE foil cushion structures currently remain as one of the main challenges for designers and manufacturers. This paper reviews ongoing research regarding the control of the thermo-optical performance of ETFE cushion structures and highlights challenges and possible improvements. An overview of different dynamic and responsive environmental control mechanisms for multilayer foil constructions is provided and the state of the art in building application outlined by the discussion of case studies.

  8. On the mechanisms of the radiation-induced degradation of cellulosic substances

    Science.gov (United States)

    Tissot, Chanel; Grdanovska, Slavica; Barkatt, Aaron; Silverman, Joseph; Al-Sheikhly, Mohamad

    2013-03-01

    Much interest has been generated in utilizing ionizing radiation for the production of bio-fuels from cellulosic plant materials. It is well known that exposure of cellulose to ionizing radiation causes significant breakdown of the polysaccharide. Radiation-induced degradation of cellulose may reduce or replace ecologically hazardous chemical steps in addition to reducing the number of processing stages and decreasing energy consumption.

  9. EU COST Action MP1307 - Unravelling the degradation mechanisms of emerging solar cell technologies

    NARCIS (Netherlands)

    Aernouts, Tom; Brunetti, Francesca; De La Fuente, Jesus; Espinosa, Nieves; Urbina, Antonio; Fonrodona, Marta; Lira-Cantu, Monica; Galagan, Yulia; Hoppe, Harald; Katz, Eugene; Ramos, Marta; Riede, Moritz; Vandewal, Koen; Veenstra, Sjoerd; Von Hauff, Elizabeth

    2016-01-01

    Organic and hybrid perovskite based solar cells have a huge potential to significantly contribute to a clean electricity supply of the future. However, so far they exhibit complex and hierarchical degradation paths and their understanding can only be acquired through the application of complementary

  10. Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: Methodology, insights and novel approaches

    International Nuclear Information System (INIS)

    Hausbrand, R.; Cherkashinin, G.; Ehrenberg, H.; Gröting, M.; Albe, K.; Hess, C.; Jaegermann, W.

    2015-01-01

    Graphical abstract: - Highlights: • Description of recent in operando and in situ analysis methodology. • Surface science approach using photoemission for analysis of cathode surfaces and interfaces. • Ageing and fatigue of layered oxide Li-ion battery cathode materials from the atomistic point of view. • Defect formation and electronic structure evolution as causes for cathode degradation. • Significance of interfacial energy alignment and contact potential for side reactions. - Abstract: This overview addresses the atomistic aspects of degradation of layered LiMO 2 (M = Ni, Co, Mn) oxide Li-ion battery cathode materials, aiming to shed light on the fundamental degradation mechanisms especially inside active cathode materials and at their interfaces. It includes recent results obtained by novel in situ/in operando diffraction methods, modelling, and quasi in situ surface science analysis. Degradation of the active cathode material occurs upon overcharge, resulting from a positive potential shift of the anode. Oxygen loss and eventual phase transformation resulting in dead regions are ascribed to changes in electronic structure and defect formation. The anode potential shift results from loss of free lithium due to side reactions occurring at electrode/electrolyte interfaces. Such side reactions are caused by electron transfer, and depend on the electron energy level alignment at the interface. Side reactions at electrode/electrolyte interfaces and capacity fade may be overcome by the use of suitable solid-state electrolytes and Li-containing anodes

  11. Flame-Retardant and Thermal Degradation Mechanism of Caged Phosphate Charring Agent with Melamine Pyrophosphate for Polypropylene

    Directory of Open Access Journals (Sweden)

    Xuejun Lai

    2015-01-01

    Full Text Available An efficient caged phosphate charring agent named PEPA was synthesized and combined with melamine pyrophosphate (MPP to flame-retard polypropylene (PP. The effects of MPP/PEPA on the flame retardancy and thermal degradation of PP were investigated by limiting oxygen index (LOI, vertical burning test (UL-94, cone calorimetric test (CCT, and thermogravimetric analysis (TGA. It was found that PEPA showed an outstanding synergistic effect with MPP in flame retardant PP. When the content of PEPA was 13.3 wt% and MPP was 6.7 wt%, the LOI value of the flame retardant PP was 33.0% and the UL-94 test was classed as a V-0 rating. Meanwhile, the peak heat release rate (PHRR, average heat release rate (AV-HRR, and average mass loss rate (AV-MLR of the mixture were significantly reduced. The flame-retardant and thermal degradation mechanism of MPP/PEPA was investigated by TGA, Fourier transform infrared spectroscopy (FTIR, TG-FTIR, and scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDXS. It revealed that MPP/PEPA could generate the triazine oligomer and phosphorus-containing compound radicals which changed the thermal degradation behavior of PP. Meanwhile, a compact and thermostable intumescent char was formed and covered on the matrix surface to prevent PP from degrading and burning.

  12. Degradation of chloramphenicol by UV/chlorine treatment: Kinetics, mechanism and enhanced formation of halonitromethanes.

    Science.gov (United States)

    Dong, Huiyu; Qiang, Zhimin; Hu, Jun; Qu, Jiuhui

    2017-09-15

    Ultraviolet (UV)/chlorine process is considered as an emerging advanced oxidation process for the degradation of micropollutants. This study investigated the degradation of chloramphenicol (CAP) and formation of disinfection by-products (DBPs) during the UV/chlorine treatment. It was found that CAP degradation was enhanced by combined UV/chlorine treatment compared to that of UV and chlorination treatment alone. The pseudo-first-order rate constant of the UV/chlorine process at pH 7.0 reached 0.016 s -1 , which was 10.0 and 2.0 folds that observed from UV and chlorination alone, respectively. The enhancement can be attributed to the formation of diverse radicals (HO and reactive chlorine species (RCSs)), and the contribution of RCSs maintained more stable than that of HO at pH 5.5-8.5. Meanwhile, enhanced DBPs formation during the UV/chlorine treatment was observed. Both the simultaneous formation and 24-h halonitromethanes formation potential (HNMsFP) were positively correlated with the UV/chlorine treatment time. Although the simultaneous trichloronitromethane (TCNM) formation decreased with the prolonged UV irradiation, TCNM dominated the formation of HNMs after 24 h (>97.0%). According to structural analysis of transformation by-products, both the accelerated CAP degradation and enhanced HNMs formation steps were proposed. Overall, the formation of diverse radicals during the UV/chlorine treatment accelerated the degradation of CAP, while also enhanced the formation of DBPs simultaneously, indicating the need for DBPs evaluation before the application of combined UV/chlorine process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Workshop: Market Mechanisms and Incentives: Applications to Environmental Policy (2006-part 2)

    Science.gov (United States)

    Two-day workshop co-sponsored by EPA's National Center for Environmental Economics and National Center for Environmental Research - research presented on EPA programs and discussed pending legislation related to market mechanisms and incentives.

  14. Workshop: Market Mechanisms and Incentives: Applications to Environmental Policy (2003-part 1)

    Science.gov (United States)

    Two-day workshop co-sponsored by EPA's National Center for Environmental Economics and National Center for Environmental Research - research presented on EPA programs and discussed pending legislation related to market mechanisms and incentives.

  15. Adaptation mechanisms of bacteria during the degradation of polychlorinated biphenyls in the presence of natural and synthetic terpenes as potential degradation inducers

    Energy Technology Data Exchange (ETDEWEB)

    Zoradova-Murinova, Slavomira; Dudasova, Hana; Lukacova, Lucia; Certik, Milan; Dercova, Katarina [Slovak Univ. of Technology, Bratislava (Slovakia). Inst. of Biotechnology and Food Science; Silharova, Katarina; Vrana, Branislav [Water Research Institute, Bratislava (Slovakia)

    2012-06-15

    In this study, we examined the effect of polychlorinated biphenyls (PCBs) in the presence of natural and synthetic terpenes and biphenyl on biomass production, lipid accumulation, and membrane adaptation mechanisms of two PCB-degrading bacterial strains Pseudomonas stutzeri and Burkholderia xenovorans LB400. According to the results obtained, it could be concluded that natural terpenes, mainly those contained in ivy leaves and pine needles, decreased adaptation responses induced by PCBs in these strains. The adaptation processes under investigation included growth inhibition, lipid accumulation, composition of fatty acids, cis/trans isomerization, and membrane saturation. Growth inhibition effect decreased upon addition of these natural compounds to the medium. The amount of unsaturated fatty acids that can lead to elevated membrane fluidity increased in both strains after the addition of the two natural terpene sources. The cells adaptation changes were more prominent in the presence of carvone, limonene, and biphenyl than in the presence of natural terpenes, as indicated by growth inhibition, lipid accumulation, and cis/trans isomerization. Addition of biphenyl and carvone simultaneously with PCBs increased the trans/cis ratio of fatty acids in membrane fractions probably as a result of fluidizing effects of PCBs. This stimulation is more pronounced in the presence of PCBs as a sole carbon source. This suggests that PCBs alone have a stronger effect on bacterial membrane adaptation mechanisms than when added together with biphenyl or natural or synthetic terpenes. (orig.)

  16. Effect of in vitro enzymatic degradation on 3D printed poly(ε-caprolactone) scaffolds: morphological, chemical and mechanical properties.

    Science.gov (United States)

    Ferreira, Joana; Gloria, Antonio; Cometa, Stefania; Coelho, Jorge F J; Domingos, Marco

    2017-07-27

    In recent years, the tissue engineering (TE) field has significantly benefited from advanced techniques such as additive manufacturing (AM), for the design of customized 3D scaffolds with the aim of guided tissue repair. Among the wide range of materials available to biomanufacture 3D scaffolds, poly(ε-caprolactone) (PCL) clearly arises as the synthetic polymer with the greatest potential, due to its unique properties - namely, biocompatibility, biodegradability, thermal and chemical stability and processability. This study aimed for the first time to investigate the effect of pore geometry on the in vitro enzymatic chain cleavage mechanism of PCL scaffolds manufactured by the AM extrusion process. Methods: Morphological properties of 3D printed PCL scaffolds before and after degradation were evaluated using Scanning Electron Microscopy (SEM) and micro-computed tomography (μ-CT). Differential Scanning Calorimetry (DSC) was employed to determine possible variations in the crystallinity of the scaffolds during the degradation period. The molecular weight was assessed using Size Exclusion Chromatography (SEC) while the mechanical properties were investigated under static compression conditions. Morphological results suggested a uniform reduction of filament diameter, while increasing the scaffolds' porosity. DSC analysis revealed and increment in the crystallinity degree while the molecular weight, evaluated through SEC, remained almost constant during the incubation period (25 days). Mechanical analysis highlighted a decrease in the compressive modulus and maximum stress over time, probably related to the significant weight loss of the scaffolds. All of these results suggest that PCL scaffolds undergo enzymatic degradation through a surface erosion mechanism, which leads to significant variations in mechanical, physical and chemical properties, but which has little influence on pore geometry.

  17. Enzymatic Mechanism for Arabinan Degradation and Transport in the Thermophilic Bacterium Caldanaerobius polysaccharolyticus.

    Science.gov (United States)

    Wefers, Daniel; Dong, Jia; Abdel-Hamid, Ahmed M; Paul, Hans Müller; Pereira, Gabriel V; Han, Yejun; Dodd, Dylan; Baskaran, Ramiya; Mayer, Beth; Mackie, Roderick I; Cann, Isaac

    2017-09-15

    The plant cell wall polysaccharide arabinan provides an important supply of arabinose, and unraveling arabinan-degrading strategies by microbes is important for understanding its use as a source of energy. Here, we explored the arabinan-degrading enzymes in the thermophilic bacterium Caldanaerobius polysaccharolyticus and identified a gene cluster encoding two glycoside hydrolase (GH) family 51 α-l-arabinofuranosidases (CpAbf51A, CpAbf51B), a GH43 endoarabinanase (CpAbn43A), a GH27 β-l-arabinopyranosidase (CpAbp27A), and two GH127 β-l-arabinofuranosidases (CpAbf127A, CpAbf127B). The genes were expressed as recombinant proteins, and the functions of the purified proteins were determined with para -nitrophenyl ( p NP)-linked sugars and naturally occurring pectin structural elements as the substrates. The results demonstrated that CpAbn43A is an endoarabinanase while CpAbf51A and CpAbf51B are α-l-arabinofuranosidases that exhibit diverse substrate specificities, cleaving α-1,2, α-1,3, and α-1,5 linkages of purified arabinan-oligosaccharides. Furthermore, both CpAbf127A and CpAbf127B cleaved β-arabinofuranose residues in complex arabinan side chains, thus providing evidence of the function of this family of enzymes on such polysaccharides. The optimal temperatures of the enzymes ranged between 60°C and 75°C, and CpAbf43A and CpAbf51A worked synergistically to release arabinose from branched and debranched arabinan. Furthermore, the hydrolytic activity on branched arabinan oligosaccharides and degradation of pectic substrates by the endoarabinanase and l-arabinofuranosidases suggested a microbe equipped with diverse activities to degrade complex arabinan in the environment. Based on our functional analyses of the genes in the arabinan degradation cluster and the substrate-binding studies on a component of the cognate transporter system, we propose a model for arabinan degradation and transport by C. polysaccharolyticus IMPORTANCE Genomic DNA sequencing and

  18. Development of root-carving industry leads to ecological and environmental degradation in China

    NARCIS (Netherlands)

    Wang, X.; Xi, W.; Anten, N.P.R.; Bi, H.

    2013-01-01

    Root-carving artwork is among the most highly appreciated traditional forms of art in China because of its ornamental and collection value. However, this ancient and highly appreciated art form is in fact currently a major cause of environmental damage. We argue that the state and local forestry

  19. Degradation of Environmental Contaminants with Water-Soluble Cobalt Catalysts: An Integrative Inorganic Chemistry Investigation

    Science.gov (United States)

    Evans, Alexandra L.; Messersmith, Reid E.; Green, David B.; Fritsch, Joseph M.

    2011-01-01

    We present an integrative laboratory investigation incorporating skills from inorganic chemistry, analytical instrumentation, and physical chemistry applied to a laboratory-scale model of the environmental problem of chlorinated ethylenes in groundwater. Perchloroethylene (C[subscript 2]Cl[subscript 4], PCE) a common dry cleaning solvent,…

  20. Specific Mechanical Energy and Thermal Degradation of Poly(lactic acid and Poly(caprolactone/Date Pits Composites

    Directory of Open Access Journals (Sweden)

    A. A. Mohamed

    2018-01-01

    Full Text Available The compatibility of date pits (DP with polylactic acid (PLA or polycaprolactone (PCL is investigated. Composites were prepared by compounding PLA or PCL with date pits at 10, 20, 30, and 40% wt/wt and extruded. Wheat vital gluten (VG was also used as a filler and in combination with DP. The specific mechanical energy (SME was calculated and the composites thermal properties were tested using DSC (peak temperature, enthalpic relaxation, and glass transition and TGA (degradation temperature and mechanism and degradation kinetics. Because DP is hard filler, the SME of PCL-DP composites increased as the amount of filler increased. At 40% fill, the SME decreased due to the lubricating effect of oil found naturally in DP. As illustrated by lower SME, PLA composites exhibited softer texture because PLA is harder than DP. The DSC melting peak temperature of both polymers has increased at higher DP; however, PLA exhibited enthalpic relation between 66 and 68°C. The TGA profile of the composites displayed two distinct peaks versus one peak for the pure polymer. The degradation kinetics showed multistep process for the composites and one-step process for the pure polymer. The utilization of date pits as a hard filler in developing biodegradable plastics is good for the environment and a value added for the date industry.

  1. Nanocomposite scaffolds with tunable mechanical and degradation capabilities: co-delivery of bioactive agents for bone tissue engineering.

    Science.gov (United States)

    Cattalini, Juan P; Roether, Judith; Hoppe, Alexander; Pishbin, Fatemeh; Haro Durand, Luis; Gorustovich, Alejandro; Boccaccini, Aldo R; Lucangioli, Silvia; Mouriño, Viviana

    2016-10-21

    Novel multifunctional nanocomposite scaffolds made of nanobioactive glass and alginate crosslinked with therapeutic ions such as calcium and copper were developed for delivering therapeutic agents, in a highly controlled and sustainable manner, for bone tissue engineering. Alendronate, a well-known antiresorptive agent, was formulated into microspheres under optimized conditions and effectively loaded within the novel multifunctional scaffolds with a high encapsulation percentage. The size of the cation used for the alginate crosslinking impacted directly on porosity and viscoelastic properties, and thus, on the degradation rate and the release profile of copper, calcium and alendronate. According to this, even though highly porous structures were created with suitable pore sizes for cell ingrowth and vascularization in both cases, copper-crosslinked scaffolds showed higher values of porosity, elastic modulus, degradation rate and the amount of copper and alendronate released, when compared with calcium-crosslinked scaffolds. In addition, in all cases, the scaffolds showed bioactivity and mechanical properties close to the endogenous trabecular bone tissue in terms of viscoelasticity. Furthermore, the scaffolds showed osteogenic and angiogenic properties on bone and endothelial cells, respectively, and the extracts of the biomaterials used promoted the formation of blood vessels in an ex vivo model. These new bioactive nanocomposite scaffolds represent an exciting new class of therapeutic cell delivery carrier with tunable mechanical and degradation properties; potentially useful in the controlled and sustainable delivery of therapeutic agents with active roles in bone formation and angiogenesis, as well as in the support of cell proliferation and osteogenesis for bone tissue engineering.

  2. Degradation kinetics and mechanism of penicillin G in aqueous matrices by ionizing radiation

    Science.gov (United States)

    Chu, Libing; Zhuang, Shuting; Wang, Jianlong

    2018-04-01

    The gamma radiation induced-degradation of a β-lactam antibiotic, penicillin G was investigated in aqueous solution. Special attention was paid to the effects of the organic substances such as peptone and glucose on penicillin G degradation, which can be found in the wastewater of the factories producing antibiotics. Results showed that gamma radiation was effective to degrade and deactivate penicillin G in pure water. With the initial concentrations of 0.27 mM, 1.34 mM and 2.68 mM, a complete removal of penicillin G could be achieved at the adsorbed doses of 2.5 kGy, 10 kGy and 20 kGy, respectively. Penicilloic acid from the β-lactam ring cleavage and a series of fragment compounds such as thiazolidine and penicillic acid were identified during gamma irradiation-induced degradation of penicillin G. Addition of Fe2+ was efficient to enhance the mineralization. The TOC removal efficiency of penicillin G was 21.7% using gamma irradiation alone at 10 kGy, which increased to 56.4% with 1.0 mM Fe2+ addition. The gamma radiation-induced degradation of penicillin G was inhibited in the presence of peptone and glucose and the inhibitive effect increased with increasing their concentrations. The rate constant, k of the pseudo first-order kinetics decreased by 74% and 64% in the presence of 1.0 g/L of peptone and glucose, respectively, and by 96% and 89% in the presence of 10 g/L of peptone and glucose, respectively. The ratio of k/k0 was increased by 1.3 times with H2O2 addition and by 3 times with Fe2+ addition, in the presence of 10 g/L of glucose. Adding Fe2+ was effective to improve the ionizing radiation induced degradation of penicillin G antibiotic in the glucose-containing wastewater.

  3. Mechanical fatigue degradation of ceramics versus resin composites for dental restorations.

    Science.gov (United States)

    Belli, Renan; Geinzer, Eva; Muschweck, Anna; Petschelt, Anselm; Lohbauer, Ulrich

    2014-04-01

    . From all materials, e.max Press and Clearfil Majesty Posterior showed the lowest strength loss (29.6% and 32%, respectively), whereas the other materials lost between 41% and 62% of their flexural strength after cyclic loading. Dental ceramics and resin composite materials show equivalent fatigue strength degradation at loads around 0.5σin values. Apart from the zirconium oxide and the lithium disilicate ceramics, resin composites generally showed better σff after 10,000 cycles than the fluorapatite glass-ceramic and the feldspathic porcelain. Resin composite restorations may be used as an equivalent alternative to glass-rich-ceramic inlays regarding mechanical performance. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Environmental Impact of Ionic Liquids: Recent Advances in (Eco)toxicology and (Bio)degradability.

    Science.gov (United States)

    Costa, Susana P F; Azevedo, Ana M O; Pinto, Paula C A G; Saraiva, M Lúcia M F S

    2017-06-09

    This Review aims to integrate the most recent and pertinent data available on the (bio)degradability and toxicity of ionic liquids for global and critical analysis and on the conscious use of these compounds on a large scale thereafter. The integrated data will enable focus on the recognition of toxicophores and on the way the community has been dealing with them, with the aim to obtain greener and safer ionic liquids. Also, an update of the most recent biotic and abiotic methods developed to overcome some of these challenging issues will be presented. The review structure aims to present a potential sequence of events that can occur upon discharging ionic liquids into the environment and the potential long-term consequences. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Enhanced photocatalytic degradation of Safranin-O by heterogeneous nanoparticles for environmental applications

    International Nuclear Information System (INIS)

    El-Kemary, Maged; Abdel-Moneam, Yasser; Madkour, Metwally; El-Mehasseb, Ibrahim

    2011-01-01

    Nanostructure titanium dioxide (TiO 2 ) has been synthesized by hydrolysis of titanium tetrachloride in aqueous solution and Ag-TiO 2 nanoparticles were synthesized by photoreduction method. The resulting materials were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier-transform infrared (FT-IR) and UV-vis absorption spectroscopy. The experimental results showed that the sizes of the synthesized TiO 2 and Ag-TiO 2 particles are in the range of 1.9-3.2 nm and 2-10 nm, respectively. Moreover, Ag-TiO 2 nanoparticles exhibit enhanced photocatalytic activity on photodegradation of Safranin-O (SO) dye as compared to pure TiO 2 . The positive effect of silver on the photocatalytic activity of TiO 2 may be explained by its ability to trap electrons. This process reduces the recombination of light generated electron-hole pairs at TiO 2 surface and therefore enhances the photocatalytic activity of the synthesized TiO 2 nanoparticles. The effects of initial dye and nanoparticle concentrations on the photocatalytic activity have been studied and the results demonstrate that the dye photodegradation follows pseudo-first-order kinetics. The observed maximum degradation efficiency of SO is about 60% for TiO 2 and 96% for Ag-TiO 2 . - Research highlights: → Ag-TiO 2 nanoparticles exhibit enhanced photocatalytic activity on photodegradation of Safranin-O (SO) dye as compared to pure TiO 2 . → Dye photodegradation follows pseudo-first-order kinetics. → Observed maximum degradation efficiency of SO is about 60% for TiO 2 and 96% for Ag-TiO 2 .

  6. Reparations for environmental degradation and species extinction: a moral and ethical imperative for human society

    Directory of Open Access Journals (Sweden)

    John Cairns Jr.

    2003-05-01

    Full Text Available While the history of reparations within Homo sapiens is lengthy, only recently has the concept been applied to events that have caused degradation or damage to natural systems. Some effects have been unmistakable, even to the untrained eye, and reparations have been made in a short temporal span. However, what should be done about ecological damage that has occurred incrementally over large temporal or spatial spans? If all parties involved are no longer living (e.g. slavery, colonialism, should the descendants of one group, who had nothing to do with the situation and are individually innocent, pay descendants of the other, who did not suffer directly? Degradation of the planet's ecological life support system will cause all humans to suffer, directly or indirectly, regardless of the degree to which they contributed to the damage. Repair of ecological damage is an act of enlightened self-interest, as well as an ethical imperative. Although current events may make restoring the planet's ecological life support system seem futile, even irrational, the forces of destruction cannot exceed those of restoration for a substantial period of time without resulting in severe disequilibrium, whether societal or ecological. The only long-term hope for the human species - sustainability - is a constructive, compassionate approach. Regardless of what happens to humankind, it is probably that some species will survive until the sun fails. Even if the human species does not, it seems ethical to make an exit that is notable for acts of compassion rather than acts of rage and revenge.

  7. Enantioseparation and determination of the chiral phenylpyrazole insecticide ethiprole in agricultural and environmental samples and its enantioselective degradation in soil

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qing; Shi, Haiyan; Gao, Beibei; Tian, Mingming; Hua, Xiude; Wang, Minghua, E-mail: wangmha@njau.edu.cn

    2016-01-15

    An effective method for the enantioselective determination of ethiprole enantiomers in agricultural and environmental samples was developed. The effects of solvent extraction, mobile phase and thermodynamic parameters for chiral recognition were fully investigated. Complete enantioseparation of the ethiprole enantiomers was achieved on a Lux Cellulose-2 column. The stereochemical structures of ethiprole enantiomers were also determined, and (R)-(+)-ethiprole was first eluted. The average recoveries were 82.7–104.9% with intra-day RSD of 1.7–8.2% in soil, cucumber, spinach, tomato, apple and peach under optimal conditions. Good linearity (R{sup 2} ≥ 0.9991) was obtained for all the matrix calibration curves within a range of 0.1 to 10 mg L{sup −1}. The limits of detection for both enantiomers were estimated to be 0.008 mg kg{sup −1} in soil, cucumber, spinach and tomato and 0.012 mg kg{sup −1} in apple and peach, which were lower than the maximum residue levels established in Japan. The results indicate that the proposed method is convenient and reliable for the enantioselective detection of ethiprole in agricultural and environmental samples. The behavior of ethiprole in soil was studied under field conditions and the enantioselective degradation was observed with enantiomer fraction values varying from 0.494 to 0.884 during the experiment. The (R)-(+)-ethiprole (t{sub 1/2} = 11.6 d) degraded faster than (S)-(−)-ethiprole (t{sub 1/2} = 34.7 d). This report is the first describe a chiral analytical method and enantioselective behavior of ethiprole, and these results should be extremely useful for the risk evaluation of ethiprole in food and environmental safety. - Highlights: • The ethiprole enantiomers were completely separated. • A novel method for enantioselective determination of ethiprole was developed. • The absolute configurations of ethiprole enantiomers were firstly determined. • The (R)-(+)-ethiprole was preferentially degraded in

  8. Investigating the Mechanical Properties and Degradability of Bioplastics Made from Wheat Straw Cellulose and Date Palm Fiber

    Directory of Open Access Journals (Sweden)

    H Omrani Fard

    2014-04-01

    Full Text Available During the past two decades, the use of bioplastics as an alternative to regular plastics has received much attention in many different industries. The mechanical and degradable properties of bioplastic are important for their utilization. In this research cellulose of wheat straw and glycerol were mixed by different weight ratios and then reinforced by using date palm fibers. To prepare the bioplastic plates, the materials were poured in molds and pressed by means of a hydraulic press and simultaneously heating of the molds. The experiments were performed based on a 3×3 factorial design with three levels: 50%, 60% and 70% of wheat cellulose and three types of reinforcement methods, namely: no-reinforcement, network reinforcement and parallel string reinforcement. The effect of the two factors on tensile strength, tensile strain, bending strength, modulus of elasticity and modulus of bending were investigated. The results indicated that the two factors and their interactions had significant effects on the mentioned properties of bioplastics (at α=0.05 level . The comparison of the means of the tests showed that the network reinforcement type with 50% cellulose had the highest tensile and bending strengths with 1992.02 and 28.71 MPa, respectively. The maximum modulus of elasticity and modulus bending were 40.4 and 2.3 MPa, respectively for parallel string arrangement and 70% of cellulose. The degradability tests of bioplastic using a fistulated sheep indicated that with increasing the percentage of cellulose, the degradability rate deceased. The maximum degradability rate, after 48 h holding in the sheep rumen, was 74% that belonged to bioplastics with 50% cellulose. The degradability data were well fitted to a mathematical model (R2=0.97.

  9. Elucidation of the Mechanisms and Environmental Relevance of cis-Dichloroethene and Vinyl Chloride Biodegradation

    Science.gov (United States)

    2012-11-01

    thus appears that Polaromonas sp. JS666 is a safe candidate for use in bioremediation , bioaugmentation or monitored natural attenuation. 3.1.6...of multiple chlorinated ethene sources in an industrialized area. A forensic field study using compound-specific isotope analysis." Environmental ...Degrading Bacterium, and Features of Relevance to Biotechnology .” Applied and Environmental Microbiology 74(20): 6405-6416. Maymó-Gatell, X., Y.-t

  10. The Degradation of Mechanical Properties in Halloysite Nano clay-Polyester Nano composites Exposed in Seawater Environment

    International Nuclear Information System (INIS)

    Saharudin, M.S.; Saharudin, M. Sh.; Wei, J.; Shyha, I.; Inam, F.

    2016-01-01

    Polyester based polymers are extensively used in aggressive marine environments; however, inadequate data is available on the effects of the seawater on the polyester based nano composites mechanical properties. This paper reports the effect of seawater absorption on the mechanical properties degradation of halloysite nano clay-polyester nano composites. Results confirmed that the addition of halloysite nano clay into polyester matrix was found to increase seawater uptake and reduce mechanical properties compared to monolithic polyester. The maximum decreases in microhardness, tensile and flexural properties, and impact toughness were observed in case of 1 wt% nano clay. The microhardness decreased from 107 HV to 41.7 HV (61% decrease). Young s modulus decreased from 0.6 GPa to 0.4 GPa (33% decrease). The flexural modulus decreased from 0.6 GPa to 0.34 GPa (43% decrease). The impact toughness dropped from 0.71 kJ/m"2 to 0.48 kJ/m"2 (32% decrease). Interestingly, the fracture toughnessκ_1C increased with the addition of halloysite nano clay due to the plasticization effect of the resin matrix. SEM images revealed the significant reduction in mechanical properties in case of 1 wt% reinforcement which is attributed to the degradation of the nano clay-matrix interface influenced by seawater absorption and agglomeration of halloysite nano clay.

  11. The evolution of agricultural intensification and environmental degradation in the UK: a data-driven systems dynamics approach

    Science.gov (United States)

    Armstrong McKay, David I.; Dearing, John A.; Dyke, James G.; Poppy, Guy; Firbank, Les

    2016-04-01

    The world's population continues to grow rapidly, yet the current demand for food is already resulting in environmental degradation in many regions. As a result, an emerging challenge of the 21st century is how agriculture can simultaneously undergo sustainable intensification and be made more resilient to accelerating climate change. Key to this challenge is: a) finding the "safe and just operating space" for the global agri-environment system that both provides sufficient food for humanity and avoids crossing dangerous planetary boundaries, and b) downscaling this framework from a planetary to a regional scale in order to better inform decision making and incorporate regional dynamics within the planetary boundaries framework. Regional safe operating spaces can be defined and explored using a combination of metrics that indicate the changing status of ecosystem services (both provisioning and regulating), statistical techniques that reveal early warning signals and breakpoints, and dynamical system models of the regional agri-environment system. Initial attempts to apply this methodology have been made in developing countries (e.g. China [Dearing et al., 2012, 2014; Zhang et al., 2015]), but have not yet been attempted in more developed countries, for example the UK. In this study we assess the changes in ecosystem services in two contrasting agricultural regions in the UK, arable-dominated East England and pastoral-dominated South-West England, since the middle of the 20th Century. We identify and establish proxies and indices of various provisioning and regulating services in these two regions and analyse how these have changed over this time. We find that significant degradation of regulating services occurred in Eastern England in the early 1980s, reflecting a period of rapid intensification and escalating fertiliser usage, but that regulating services have begun to recover since 2000 mainly as a result of fertiliser usage decoupling from increasing wheat

  12. Treatment pf pig slurry in Spain to minimize soil degradation and environmental impact

    International Nuclear Information System (INIS)

    Espejo Marin, C.; Garcia Marin, R.

    2009-01-01

    The pig farms in Spain have experimented on the last years a great development, giving place to a new productive, sanitary, economic and environmental reality. His intensification has generated the presence of farms of great capacity, which generate high quantities of excrements and residues. Due to the dynamism of the sector, the legislative existing frame until ends of the nineties of the past 20th century remains obsolete. For such motive, the Government of Spain established basic standards of management of pig farms (RD 324/2000); regulatory rules for awarding grants to projects that seek to improve environmental management of pig farms (RD 987/2008); and, in December 2008, is approved, in Ministers council, a plan of bio-digestion of excrements, which has as aim decrease the greenhouse gases and reduce the risk of pollution of soils, fluvial riverbeds and underground aquifers. (Author) 9 refs.

  13. Carbon dioxide fluxes from a degraded woodland in West Africa and their responses to main environmental factors.

    Science.gov (United States)

    Ago, Expedit Evariste; Serça, Dominique; Agbossou, Euloge Kossi; Galle, Sylvie; Aubinet, Marc

    2015-12-01

    In West Africa, natural ecosystems such as woodlands are the main source for energy, building poles and livestock fodder. They probably behave like net carbon sinks, but there are only few studies focusing on their carbon exchange with the atmosphere. Here, we have analyzed CO 2 fluxes measured for 17 months by an eddy-covariance system over a degraded woodland in northern Benin. Specially, temporal evolution of the fluxes and their relationships with the main environmental factors were investigated between the seasons. This study shows a clear response of CO 2 absorption to photosynthetic photon flux density (Q p ), but it varies according to the seasons. After a significant and long dry period, the ecosystem respiration (R) has increased immediately to the first significant rains. No clear dependency of ecosystem respiration on temperature has been observed. The degraded woodlands are probably the "carbon neutral" at the annual scale. The net ecosystem exchange (NEE) was negative during wet season and positive during dry season, and its annual accumulation was equal to +29 ± 16 g C m -2 . The ecosystem appears to be more efficient in the morning and during the wet season than in the afternoon and during the dry season. This study shows diurnal and seasonal contrasted variations in the CO 2 fluxes in relation to the alternation between dry and wet seasons. The Nangatchori site is close to the equilibrium state according to its carbon exchanges with the atmosphere. The length of the observation period was too short to justify the hypothesis about the "carbon neutrality" of the degraded woodlands at the annual scale in West Africa. Besides, the annual net ecosystem exchange depends on the intensity of disturbances due to the site management system. Further research works are needed to define a woodland management policy that might keep these ecosystems as carbon sinks.

  14. Enhancement of Environmental Hazard Degradation in the Presence of Lignin: a Proteomics Study

    OpenAIRE

    Sun, Su; Xie, Shangxian; Cheng, Yanbing; Yu, Hongbo; Zhao, Honglu; Li, Muzi; Li, Xiaotong; Zhang, Xiaoyu; Yuan, Joshua S.; Dai, Susie Y.

    2017-01-01

    Proteomics studies of fungal systems have progressed dramatically based on the availability of more fungal genome sequences in recent years. Different proteomics strategies have been applied toward characterization of fungal proteome and revealed important gene functions and proteome dynamics. Presented here is the application of shot-gun proteomic technology to study the bio-remediation of environmental hazards by white-rot fungus. Lignin, a naturally abundant component of the plant biomass,...

  15. The environmental degradation caused by the inadequate dispose of plastic packs: a case study

    OpenAIRE

    Silva, Claudionor Oliveira; Santos, Gilbertânia Mendonça; Silva, Lucicleide Neves

    2013-01-01

    Modern society is accustomed to living with the ease and versatility that high consumption forms offer. Given a high level of consumption, globalization, technological innovations that seek every day to ensure your space in the market, and thereby contribute to the socioeconomic balance. The modernization making life easier for the general public and the other side may generate environmental disorders is the case of plastic packaging has on the environment long term. With their disuse and dis...

  16. Does financial development reduce environmental degradation? Evidence from a panel study of 129 countries.

    Science.gov (United States)

    Al-Mulali, Usama; Tang, Chor Foon; Ozturk, Ilhan

    2015-10-01

    The purpose of this study is to explore the effect of financial development on CO2 emission in 129 countries classified by the income level. A panel CO2 emission model using urbanisation, GDP growth, trade openness, petroleum consumption and financial development variables that are major determinants of CO2 emission was constructed for the 1980-2011 period. The results revealed that the variables are cointegrated based on the Pedroni cointegration test. The dynamic ordinary least squares (OLS) and the Granger causality test results also show that financial development can improve environmental quality in the short run and long run due to its negative effect on CO2 emission. The rest of the determinants, especially petroleum consumption, are determined to be the major source of environmental damage in most of the income group countries. Based on the results obtained, the investigated countries should provide banking loans to projects and investments that can promote energy savings, energy efficiency and renewable energy to help these countries reduce environmental damage in both the short and long run.

  17. High Piezo-photocatalytic Efficiency of CuS/ZnO Nanowires Using Both Solar and Mechanical Energy for Degrading Organic Dye.

    Science.gov (United States)

    Hong, Deyi; Zang, Weili; Guo, Xiao; Fu, Yongming; He, Haoxuan; Sun, Jing; Xing, Lili; Liu, Baodan; Xue, Xinyu

    2016-08-24

    High piezo-photocatalytic efficiency of degrading organic pollutants has been realized from CuS/ZnO nanowires using both solar and mechanical energy. CuS/ZnO heterostructured nanowire arrays are compactly/vertically aligned on stainless steel mesh by a simple two-step wet-chemical method. The mesh-supported nanocomposites can facilitate an efficient light harvesting due to the large surface area and can also be easily removed from the treated solution. Under both solar and ultrasonic irradiation, CuS/ZnO nanowires can rapidly degrade methylene blue (MB) in aqueous solution, and the recyclability is investigated. In this process, the ultrasonic assistance can greatly enhance the photocatalytic activity. Such a performance can be attributed to the coupling of the built-in electric field of heterostructures and the piezoelectric field of ZnO nanowires. The built-in electric field of the heterostructure can effectively separate the photogenerated electrons/holes and facilitate the carrier transportation. The CuS component can improve the visible light utilization. The piezoelectric field created by ZnO nanowires can further separate the photogenerated electrons/holes through driving them to migrate along opposite directions. The present results demonstrate a new water-pollution solution in green technologies for the environmental remediation at the industrial level.

  18. Environmental aging in polycrystalline-Si photovoltaic modules: comparison of chamber-based accelerated degradation studies with field-test data

    Science.gov (United States)

    Lai, T.; Biggie, R.; Brooks, A.; Potter, B. G.; Simmons-Potter, K.

    2015-09-01

    Lifecycle degradation testing of photovoltaic (PV) modules in accelerated-degradation chambers can enable the prediction both of PV performance lifetimes and of return-on-investment for installations of PV systems. With degradation results strongly dependent on chamber test parameters, the validity of such studies relative to fielded, installed PV systems must be determined. In the present work, accelerated aging of a 250 W polycrystalline silicon module is compared to real-time performance degradation in a similar polycrystalline-silicon, fielded, PV technology that has been operating since October 2013. Investigation of environmental aging effects are performed in a full-scale, industrial-standard environmental chamber equipped with single-sun irradiance capability providing illumination uniformity of 98% over a 2 x 1.6 m area. Time-dependent, photovoltaic performance (J-V) is evaluated over a recurring, compressed night-day cycle providing representative local daily solar insolation for the southwestern United States, followed by dark (night) cycling. This cycle is synchronized with thermal and humidity environmental variations that are designed to mimic, as closely as possible, test-yard conditions specific to a 12 month weather profile for a fielded system in Tucson, AZ. Results confirm the impact of environmental conditions on the module long-term performance. While the effects of temperature de-rating can be clearly seen in the data, removal of these effects enables the clear interpretation of module efficiency degradation with time and environmental exposure. With the temperature-dependent effect removed, the normalized efficiency is computed and compared to performance results from another panel of similar technology that has previously experienced identical climate changes in the test yard. Analysis of relative PV module efficiency degradation for the chamber-tested system shows good comparison to the field-tested system with ~2.5% degradation following

  19. Timely activation of budding yeast APCCdh1 involves degradation of its inhibitor, Acm1, by an unconventional proteolytic mechanism.

    Directory of Open Access Journals (Sweden)

    Michael Melesse

    Full Text Available Regulated proteolysis mediated by the ubiquitin proteasome system is a fundamental and essential feature of the eukaryotic cell division cycle. Most proteins with cell cycle-regulated stability are targeted for degradation by one of two related ubiquitin ligases, the Skp1-cullin-F box protein (SCF complex or the anaphase-promoting complex (APC. Here we describe an unconventional cell cycle-regulated proteolytic mechanism that acts on the Acm1 protein, an inhibitor of the APC activator Cdh1 in budding yeast. Although Acm1 can be recognized as a substrate by the Cdc20-activated APC (APCCdc20 in anaphase, APCCdc20 is neither necessary nor sufficient for complete Acm1 degradation at the end of mitosis. An APC-independent, but 26S proteasome-dependent, mechanism is sufficient for complete Acm1 clearance from late mitotic and G1 cells. Surprisingly, this mechanism appears distinct from the canonical ubiquitin targeting pathway, exhibiting several features of ubiquitin-independent proteasomal degradation. For example, Acm1 degradation in G1 requires neither lysine residues in Acm1 nor assembly of polyubiquitin chains. Acm1 was stabilized though by conditional inactivation of the ubiquitin activating enzyme Uba1, implying some requirement for the ubiquitin pathway, either direct or indirect. We identified an amino terminal predicted disordered region in Acm1 that contributes to its proteolysis in G1. Although ubiquitin-independent proteasome substrates have been described, Acm1 appears unique in that its sensitivity to this mechanism is strictly cell cycle-regulated via cyclin-dependent kinase (Cdk phosphorylation. As a result, Acm1 expression is limited to the cell cycle window in which Cdk is active. We provide evidence that failure to eliminate Acm1 impairs activation of APCCdh1 at mitotic exit, justifying its strict regulation by cell cycle-dependent transcription and proteolytic mechanisms. Importantly, our results reveal that strict cell

  20. Timely Activation of Budding Yeast APCCdh1 Involves Degradation of Its Inhibitor, Acm1, by an Unconventional Proteolytic Mechanism

    Science.gov (United States)

    Melesse, Michael; Choi, Eunyoung; Hall, Hana; Walsh, Michael J.; Geer, M. Ariel; Hall, Mark C.

    2014-01-01

    Regulated proteolysis mediated by the ubiquitin proteasome system is a fundamental and essential feature of the eukaryotic cell division cycle. Most proteins with cell cycle-regulated stability are targeted for degradation by one of two related ubiquitin ligases, the Skp1-cullin-F box protein (SCF) complex or the anaphase-promoting complex (APC). Here we describe an unconventional cell cycle-regulated proteolytic mechanism that acts on the Acm1 protein, an inhibitor of the APC activator Cdh1 in budding yeast. Although Acm1 can be recognized as a substrate by the Cdc20-activated APC (APCCdc20) in anaphase, APCCdc20 is neither necessary nor sufficient for complete Acm1 degradation at the end of mitosis. An APC-independent, but 26S proteasome-dependent, mechanism is sufficient for complete Acm1 clearance from late mitotic and G1 cells. Surprisingly, this mechanism appears distinct from the canonical ubiquitin targeting pathway, exhibiting several features of ubiquitin-independent proteasomal degradation. For example, Acm1 degradation in G1 requires neither lysine residues in Acm1 nor assembly of polyubiquitin chains. Acm1 was stabilized though by conditional inactivation of the ubiquitin activating enzyme Uba1, implying some requirement for the ubiquitin pathway, either direct or indirect. We identified an amino terminal predicted disordered region in Acm1 that contributes to its proteolysis in G1. Although ubiquitin-independent proteasome substrates have been described, Acm1 appears unique in that its sensitivity to this mechanism is strictly cell cycle-regulated via cyclin-dependent kinase (Cdk) phosphorylation. As a result, Acm1 expression is limited to the cell cycle window in which Cdk is active. We provide evidence that failure to eliminate Acm1 impairs activation of APCCdh1 at mitotic exit, justifying its strict regulation by cell cycle-dependent transcription and proteolytic mechanisms. Importantly, our results reveal that strict cell-cycle expression profiles

  1. Prevention of Tibetan eco-environmental degradation caused by traditional use of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qiang [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China)

    2009-12-15

    Tibet is short in fossil energy, but rich in renewable energy sources, such as biomass, hydro, solar, geothermal, and wind power. This potential energy supply in Tibet can be juxtaposed to what drives Tibetan energy consumption its economic motivation and its cultural traditions. Currently, biomass heavily dominates Tibet's energy consumption. In 2003, total energy consumption was about 2 million tce (ton coal equivalent), traditional biomass accounting for nearly 70%. The rarified atmosphere and use of outdated stoves, make for a very low combustion efficiency, utilizing 10-15% of the potential energy of biomass. With population and economic growth, traditional use of biomass has become the principal factor responsible for deforestation, grassland degradation, desertification, and soil erosion. To eradicate the negative impact of the traditional use of biomass on the eco-environment in Tibet, a series of effective countermeasures are investigated. Among these are improved efficiency of stoves, widespread use of solar energy, hydroelectricity as a substitute for traditional biomass, and the development of biogas. (author)

  2. Arresting Environmental Degradation Through Accelerated On-site Soil Sedimentation and Revegetation Using Microcatchments and Reseeding

    International Nuclear Information System (INIS)

    Mnene, W.N.; Wandera, F.P.; Lebbie, S.H.

    1999-01-01

    Degradation of arid and semi arid lands (ASALs) through denudation has been found to result in lowered capacity to support livestock, particularly under extensive production systems. After a Participatory Rural Appraisal (PRA) in Kajiado District, an opportunity was identified in the pastoral reserves grazing areas involving the combined use of monochromators (specifically pitting) and re seeding with adapted forage species. Treatments were imposed before the 1996 short rainy seasons. Data were collected on soil sedimentation as well as herbaceous cover and standing crop. Much of the soil deposit comprised of fine silt-clay in the pits and sand on the up-slope. No soil deposit was observed on the down-slope of the pits. This increased in subsequent rainy seasons. Although seeding was done by broadcasting to cover whole plots, establishment was only evident where it is pitted. Volunteer herbaceous vegetation expressed themselves and plant cover tended to also increase in freshly deposited soil from one wet season to another. Herbage was particularly dense on the crescents of the pits

  3. The Relationship between Growth-Inequality-Poverty Triangle and Environmental Degradation: Unveiling the Reality

    Directory of Open Access Journals (Sweden)

    Syeda Anam Hassan

    2015-06-01

    Full Text Available It is important to recognize that increase in well-being is no longer dependent on further economic growth, but on economic and social well-being, which means that the decline in carbon dioxide emission without reducing real wellbeing and growth. The aim of this study is to investigate the main driving forces affecting short and long-run carbon emissions pattern due to changes in growth, inequality and poverty triangle in Pakistan over the period 1980 – 2011 by using multivariate cointegration approach. This study uses five different models i.e., each model have an important policy implication in the context of Pakistan. The results indicate that, on the short run, there is a significant negative relationship between economic growth & carbon emissions and economic growth & poverty while there is a positive relationship between i economic growth & income inequality; and ii poverty & income inequality. On the long-run, there is a significant positive relationship between GDP & income inequality, carbon dioxide emissions & income inequality, and poverty & income inequality in Pakistan. On the other side, there is a negative relationship between carbon emissions & economic growth, carbon emissions & income inequality, and economic growth & income inequality. The results of environmental Kuznets curve (EKC hypothesis show an inverted U-shaped trajectory in relation to economic growth in Pakistan. This study contributes to the debate on the existence and policy relevance of the EKC for Pakistan. The conclusion ensures the sustainability of an urgent need to look beyond the EKC by adopting courageous policy measures of environmental preservation in Pakistan irrespective of the country's level of income. For reduction of CO2 emission, environmental progressive management policies, economic transport system regulations, and low emit fuel consumption by industries are the need of the world.

  4. Testing the role of external debt in environmental degradation: empirical evidence from Turkey.

    Science.gov (United States)

    Katircioglu, Salih; Celebi, Aysem

    2018-03-01

    This study investigates the role of external debt stock in Turkey, which has suffered from heavy (external and domestic) debt stock for many years. Annual data from 1960 to 2013 was analyzed using time series analysis in order to study this. The results confirm the validity of the conventional environmental Kuznets curve (EKC) in the case of Turkey. However, this study also found that Turkey's external debt stock did not influence the Turkish economy's long-term EKC behavior. Fortunately, the results suggest that there are important interactions among external debt stock, CO 2 emissions, energy consumption, and real income; that is, changes in external debt volume precede changes in these aggregates' volumes.

  5. Mechanism of triphenylmethane Cresol Red degradation by Trichoderma harzianum M06.

    Science.gov (United States)

    Nor, Nurafifah Mohd; Hadibarata, Tony; Zubir, Meor Mohd Fikri Ahmad; Lazim, Zainab Mat; Adnan, Liyana Amalina; Fulazzaky, Mohamad Ali

    2015-11-01

    Cresol Red belongs to the triphenylmethane (TPM) class of dyes which are potentially carcinogenic or mutagenic. However, very few studies on biodegradation of Cresol Red were investigated as compared to other type dyes such as azo and anthraquinone dye. The aim of this work is to evaluate triphenylmethane dye Cresol Red degradation by fungal strain isolated from the decayed wood in Johor Bahru, Malaysia. Detailed taxonomic studies identified the organisms as Trichoderma species and designated as strain Trichoderma harzianum M06. In this study, Cresol Red was decolorized up to 88% within 30 days under agitation condition by Trichoderma harzianum M06. Data analysis revealed that a pH value of 3 yielded a highest degradation rate among pH concentrations (73%), salinity concentrations of 100 g/L (73%), and a volume of 0.1 mL of Tween 80 (79%). Induction in the enzyme activities of manganese peroxidase, lignin peroxidase, laccase, 1,2- and 2,3-dioxygenase indicates their involvement in Cresol Red removal. Various analytical studies such as Thin-Layer Chromatography (TLC), UV-Vis spectrophotometer, and Gas chromatography mass spectrometry (GC-MS) confirmed the biotransformation of Cresol Red by the fungus. Two metabolites were identified in the treated medium: 2,4-dihydroxybenzoic acid (t R 7.3 min and m/z 355) and 2-hydroxybenzoic acid (t R 8.6 min and m/z 267). Based on these products, a probable pathway has been proposed for the degradation of Cresol Red by Trichoderma harzianum M06.

  6. Mechanism of Reactive Orange 16 degradation with the white rot fungus Irpex lacteus

    Czech Academy of Sciences Publication Activity Database

    Svobodová, Kateřina; Senholdt, M.; Novotný, Čeněk; Rehorek, A.

    2007-01-01

    Roč. 42, - (2007), s. 1279-1284 ISSN 1359-5113 R&D Project s: GA ČR GP526/06/P102; GA MŠk LC06066; GA AV ČR IAA6020411 Grant - others:XE(XE) European STREP project ULTRATEC No. NMP2-CT-2003-505892 Institutional research plan: CEZ:AV0Z50200510 Source of funding: R - rámcový projekt EK Keywords : irpex lacteus * reactive orange 16 * degradation Subject RIV: EE - Microbiology, Virology Impact factor: 2.336, year: 2007

  7. Fatigue degradation and failure of rotating composite structures - Materials characterisation and underlying mechanisms

    DEFF Research Database (Denmark)

    Gamstedt, Kristofer; Andersen, Svend Ib Smidt

    2001-01-01

    The present review concerns rotating composite structures, in which fatigue degradation is of key concern for in-service failure. Such applications are for instance rotor blades in wind turbines, helicopter rotor blades, flywheels for energy storage,marine and aeronautical propellers, and rolls...... for paper machines. The purpose is to identify areas where impending efforts should be made to make better use of composite materials in these applications. In order to obtain better design methodologies,which would allow more reliable and slender structures, improved test methods are necessary. Furthermore...

  8. Mechanical and degradation properties of biodegradable Mg strengthened poly-lactic acid composite through plastic injection molding.

    Science.gov (United States)

    Butt, Muhammad Shoaib; Bai, Jing; Wan, Xiaofeng; Chu, Chenglin; Xue, Feng; Ding, Hongyan; Zhou, Guanghong

    2017-01-01

    Full biodegradable magnesium alloy (AZ31) strengthened poly-lactic acid (PLA) composite rods for potential application for bone fracture fixation were prepared by plastic injection process in this work. Their surface/interfacial morphologies, mechanical properties and vitro degradation were studied. In comparison with untreated Mg rod, porous MgO ceramic coating on Mg surface formed by Anodizing (AO) and micro-arc-oxidation (MAO)treatment can significantly improve the interfacial binding between outer PLA cladding and inner Mg rod due to the micro-anchoring action, leading to better mechanical properties and degradation performance of the composite rods.With prolonging immersion time in simulated body fluid (SBF) solution until 8weeks, the MgO porous coating were corroded gradually, along with the disappearance of original pores and the formation of a relatively smooth surface. This resulted in a rapidly reduction in mechanical properties for corresponding composite rods owing to the weakening of interfacial binding capacity. The present results indicated that this new PLA-clad Mg composite rods show good potential biomedical applications for implants and instruments of orthopedic inner fixation. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Adaptive coupling between damage mechanics and peridynamics: a route for objective simulation of material degradation up to complete failure

    KAUST Repository

    Han, Fei

    2016-05-17

    The objective (mesh-independent) simulation of evolving discontinuities, such as cracks, remains a challenge. Current techniques are highly complex or involve intractable computational costs, making simulations up to complete failure difficult. We propose a framework as a new route toward solving this problem that adaptively couples local-continuum damage mechanics with peridynamics to objectively simulate all the steps that lead to material failure: damage nucleation, crack formation and propagation. Local-continuum damage mechanics successfully describes the degradation related to dispersed microdefects before the formation of a macrocrack. However, when damage localizes, it suffers spurious mesh dependency, making the simulation of macrocracks challenging. On the other hand, the peridynamic theory is promising for the simulation of fractures, as it naturally allows discontinuities in the displacement field. Here, we present a hybrid local-continuum damage/peridynamic model. Local-continuum damage mechanics is used to describe “volume” damage before localization. Once localization is detected at a point, the remaining part of the energy is dissipated through an adaptive peridynamic model capable of the transition to a “surface” degradation, typically a crack. We believe that this framework, which actually mimics the real physical process of crack formation, is the first bridge between continuum damage theories and peridynamics. Two-dimensional numerical examples are used to illustrate that an objective simulation of material failure can be achieved by this method.

  10. Failure analysis of leakage on titanium tubes within heat exchangers in a nuclear power plant. Part II: Mechanical degradation

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Y.; Yang, Z.G. [Department of Materials Science, Fudan University, Shanghai (China); Yuan, J.Z. [Third Qinshan Nuclear Power Co. Ltd., Haiyan, Zhejiang Province (China)

    2012-01-15

    Serious failure incidents like clogging, quick thinning, and leakage frequently occurred on lots of titanium tubes of heat exchangers in a nuclear power plant in China. In the Part I of the whole failure analysis study with totally two parts, factors mainly involving three kinds of electrochemical corrosions were investigated, including galvanic corrosion, crevice corrosion, and hydrogen-assisted corrosion. In the current Part II, through microscopically analyzing the ruptures on the leaked tubes by scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS), another four causes dominantly lying in the aspect of mechanical degradation were determined - clogging, erosion, mechanical damaging, and fretting. Among them, the erosion effect was the primary one, thus the stresses it exerted on the tube wall were also supplementarily evaluated by finite element method (FEM). Based on the analysis results, the different degradation extents and morphologies by erosion on the tubes when they were clogged by different substances such as seashell, rubber debris, and sediments were compared, and relevant mechanisms were discussed. Finally, countermeasures were put forward as well. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Effect of ionizing radiation on mechanical and thermal properties of low-density polyethylene containing pro-degradant agents

    International Nuclear Information System (INIS)

    Bardi, Marcelo A.G.; Kodama, Yasko; Machado, Luci D.B.; Giovedi, Claudia; Rosa, Derval S.

    2009-01-01

    The wide use of plastics on packages of short-lifetime products has presented harmful consequences for the environment due to their low degradation rate. By this way, improved results to the bio-assimilation of polyolefins have been achieved by the incorporation of pro-oxidant components. The aim of this work is to evaluate the mechanical and thermal behavior of low-density polyethylene (LDPE) modified by those agents and submitted to ionizing radiation by gamma rays. LDPE was modified using a masterbatch containing calcium stearate (CaSt), or magnesium stearate (MgSt) or Clariant R commercial metallic complex. The final amount of stearate in modified LDPE was 0.2%. The films were obtained by compression molding. Samples were gamma irradiated at absorbed doses of 15 kGy and 100 kGy. Differential scanning calorimetry (DSC) and thermogravimetry (TG) were performed on samples, as well as mechanical analysis by universal testing machine. Thermal properties of samples presenting pro-degradant agents were affected by the ionizing radiation in the dose range studied, and some of the mechanical properties were clearly modified by reducing their values of tensile strength at break and elongation at break. (author)

  12. Effect of ionizing radiation on mechanical and thermal properties of low-density polyethylene containing pro-degradant agents

    Energy Technology Data Exchange (ETDEWEB)

    Bardi, Marcelo A.G.; Kodama, Yasko; Machado, Luci D.B., E-mail: magbardi@ipen.b, E-mail: ykodama@ipen.b, E-mail: lmachado@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Giovedi, Claudia, E-mail: giovedi@ctmsp.mar.mil.b [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil); Rosa, Derval S., E-mail: derval.rosa@ufabc.edu.b [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil)

    2009-07-01

    The wide use of plastics on packages of short-lifetime products has presented harmful consequences for the environment due to their low degradation rate. By this way, improved results to the bio-assimilation of polyolefins have been achieved by the incorporation of pro-oxidant components. The aim of this work is to evaluate the mechanical and thermal behavior of low-density polyethylene (LDPE) modified by those agents and submitted to ionizing radiation by gamma rays. LDPE was modified using a masterbatch containing calcium stearate (CaSt), or magnesium stearate (MgSt) or Clariant{sup R} commercial metallic complex. The final amount of stearate in modified LDPE was 0.2%. The films were obtained by compression molding. Samples were gamma irradiated at absorbed doses of 15 kGy and 100 kGy. Differential scanning calorimetry (DSC) and thermogravimetry (TG) were performed on samples, as well as mechanical analysis by universal testing machine. Thermal properties of samples presenting pro-degradant agents were affected by the ionizing radiation in the dose range studied, and some of the mechanical properties were clearly modified by reducing their values of tensile strength at break and elongation at break. (author)

  13. Adaptive coupling between damage mechanics and peridynamics: a route for objective simulation of material degradation up to complete failure

    KAUST Repository

    Han, Fei; Lubineau, Gilles; Azdoud, Yan

    2016-01-01

    The objective (mesh-independent) simulation of evolving discontinuities, such as cracks, remains a challenge. Current techniques are highly complex or involve intractable computational costs, making simulations up to complete failure difficult. We propose a framework as a new route toward solving this problem that adaptively couples local-continuum damage mechanics with peridynamics to objectively simulate all the steps that lead to material failure: damage nucleation, crack formation and propagation. Local-continuum damage mechanics successfully describes the degradation related to dispersed microdefects before the formation of a macrocrack. However, when damage localizes, it suffers spurious mesh dependency, making the simulation of macrocracks challenging. On the other hand, the peridynamic theory is promising for the simulation of fractures, as it naturally allows discontinuities in the displacement field. Here, we present a hybrid local-continuum damage/peridynamic model. Local-continuum damage mechanics is used to describe “volume” damage before localization. Once localization is detected at a point, the remaining part of the energy is dissipated through an adaptive peridynamic model capable of the transition to a “surface” degradation, typically a crack. We believe that this framework, which actually mimics the real physical process of crack formation, is the first bridge between continuum damage theories and peridynamics. Two-dimensional numerical examples are used to illustrate that an objective simulation of material failure can be achieved by this method.

  14. Testing the role of fiscal policy in the environmental degradation: the case of Turkey.

    Science.gov (United States)

    Katircioglu, Salih; Katircioglu, Setareh

    2018-02-01

    This study introduces a new research topic that investigates the relationship between fiscal development and carbon emissions in Turkey through testing Environmental Kuznets Curve (EKC) hypothesis. Annual data covering the period, 1960-2013, has been used and in addition to gross domestic product and energy consumption, fiscal policy variables have been regressed on the level of carbon emissions in Turkey. Results reveal that fiscal policies and carbon emissions are in long-term equilibrium relationship in Turkey; carbon dioxide emission level converges towards long-term paths as contributed by fiscal policy. The effects of fiscal aggregates on the level of carbon dioxide emissions are negatively significant revealing that growth in fiscal aggregates leads to declines on the levels of carbon emissions. This proves that as far as environmental effects are concerned, fiscal policies regarding energy sector is successful in Turkey. Thus, the major finding of this study confirmed the validity of the fiscal policy-induced EKC hypothesis in the case of Turkey.

  15. Evaluation and Control of Mechanical Degradation of Austenitic Stainless 310S Steel Substrate During Coated Superconductor Processing

    Science.gov (United States)

    Kim, Seung-Gyu; Kim, Najung; Shim, Hyung-Seok; Kwon, Oh Min; Kwon, Dongil

    2018-05-01

    The superconductor industry considers cold-rolled austenitic stainless 310S steel a less expensive substitute for Hastelloy X as a substrate for coated superconductor. However, the mechanical properties of cold-rolled 310S substrate degrade significantly in the superconductor deposition process. To overcome this, we applied hot rolling at 900 °C (or 1000 °C) to the 310S substrate. To check the property changes, a simulated annealing condition equivalent to that used in manufacturing was determined and applied. The effects of the hot rolling on the substrate were evaluated by analyzing its physical properties and texture.

  16. Mechanisms of LiCoO2 Cathode Degradation by Reaction with HF and Protection by Thin Oxide Coatings.

    Science.gov (United States)

    Tebbe, Jonathon L; Holder, Aaron M; Musgrave, Charles B

    2015-11-04

    Reactions of HF with uncoated and Al and Zn oxide-coated surfaces of LiCoO2 cathodes were studied using density functional theory. Cathode degradation caused by reaction of HF with the hydroxylated (101̅4) LiCoO2 surface is dominated by formation of H2O and a LiF precipitate via a barrierless reaction that is exothermic by 1.53 eV. We present a detailed mechanism where HF reacts at the alumina coating to create a partially fluorinated alumina surface rather than forming AlF3 and H2O and thus alumina films reduce cathode degradation by scavenging HF and avoiding H2O formation. In contrast, we find that HF etches monolayer zinc oxide coatings, which thus fail to prevent capacity fading. However, thicker zinc oxide films mitigate capacity loss by reacting with HF to form a partially fluorinated zinc oxide surface. Metal oxide coatings that react with HF to form hydroxyl groups over H2O, like the alumina monolayer, will significantly reduce cathode degradation.

  17. Thermo-Mechanical Properties of Semi-Degradable Poly(β-amino ester)-co-Methyl Methacrylate Networks under Simulated Physiological Conditions

    Science.gov (United States)

    Safranski, David L.; Crabtree, Jacob C.; Huq, Yameen R.; Gall, Ken

    2011-01-01

    Poly(β-amino ester) networks are being explored for biomedical applications, but they may lack the mechanical properties necessary for long term implantation. The objective of this study is to evaluate the effect of adding methyl methacrylate on networks' mechanical properties under simulated physiological conditions. The networks were synthesized in two parts: (1) a biodegradable crosslinker was formed from a diacrylate and amine, (2) and then varying concentrations of methyl methacrylate were added prior to photopolymerizing the network. Degradation rate, mechanical properties, and glass transition temperature were studied as a function of methyl methacrylate composition. The crosslinking density played a limited role on mechanical properties for these networks, but increasing methyl methacrylate concentration improved the toughness by several orders of magnitude. Under simulated physiological conditions, networks showed increasing toughness or sustained toughness as degradation occurred. This work establishes a method of creating degradable networks with tailorable toughness while undergoing partial degradation. PMID:21966028

  18. In vitro degradation and mechanical properties of PLA-PCL copolymer unit cell scaffolds generated by two-photon polymerization

    International Nuclear Information System (INIS)

    Felfel, R M; Gimeno-Fabra, Miquel; Ahmed, Ifty; Scotchford, Colin; Grant, David M; Poocza, Leander; Milde, Tobias; Hildebrand, Gerhard; Liefeith, Klaus; Sottile, Virginie

    2016-01-01

    The manufacture of 3D scaffolds with specific controlled porous architecture, defined microstructure and an adjustable degradation profile was achieved using two-photon polymerization (TPP) with a size of 2  ×  4  ×  2 mm 3 . Scaffolds made from poly(D,L-lactide-co-ε-caprolactone) copolymer with varying lactic acid (LA) and ε -caprolactone (CL) ratios (LC16:4, 18:2 and 9:1) were generated via ring-opening-polymerization and photoactivation. The reactivity was quantified using photo-DSC, yielding a double bond conversion ranging from 70% to 90%. The pore sizes for all LC scaffolds were see 300 μm and throat sizes varied from 152 to 177 μm. In vitro degradation was conducted at different temperatures; 37, 50 and 65 °C. Change in compressive properties immersed at 37 °C over time was also measured. Variations in thermal, degradation and mechanical properties of the LC scaffolds were related to the LA/CL ratio. Scaffold LC16:4 showed significantly lower glass transition temperature (T g ) (4.8 °C) in comparison with the LC 18:2 and 9:1 (see 32 °C). Rates of mass loss for the LC16:4 scaffolds at all temperatures were significantly lower than that for LC18:2 and 9:1. The degradation activation energies for scaffold materials ranged from 82.7 to 94.9 kJ mol −1 . A prediction for degradation time was applied through a correlation between long-term degradation studies at 37 °C and short-term studies at elevated temperatures (50 and 65 °C) using the half-life of mass loss (Time (M 1/2 )) parameter. However, the initial compressive moduli for LC18:2 and 9:1 scaffolds were 7 to 14 times higher than LC16:4 (see 0.27) which was suggested to be due to its higher CL content (20%). All scaffolds showed a gradual loss in their compressive strength and modulus over time as a result of progressive mass loss over time. The manufacturing process utilized and the scaffolds produced have potential for use in tissue engineering and regenerative medicine

  19. Ikaros is degraded by proteasome-dependent mechanism in the early phase of apoptosis induction

    International Nuclear Information System (INIS)

    He, Li-Cai; Xu, Han-Zhang; Gu, Zhi-Min; Liu, Chuan-Xu; Chen, Guo-Qiang; Wang, Yue-Fei; Wen, Dong-Hua; Wu, Ying-Li

    2011-01-01

    Research highlights: → Chemotherapeutic drugs or UV treatment reduces Ikaros prior to caspase-3 activation. → Etoposide treatment does not alter the mRNA but shortens the half-life of Ikaros. → MG132 or epoxomicin but not calpeptin inhibits etoposide-induced Ikaros degradation. → Overexpression of Ikaros accelerates etoposide-induced apoptosis in NB4 cells. -- Abstract: Ikaros is an important transcription factor involved in the development and differentiation of hematopoietic cells. In this work, we found that chemotherapeutic drugs or ultraviolet radiation (UV) treatment could reduce the expression of full-length Ikaros (IK1) protein in less than 3 h in leukemic NB4, Kasumi-1 and Jurkat cells, prior to the activation of caspase-3. Etoposide treatment could not alter the mRNA level of IK1 but it could shorten the half-life of IK1. Co-treatment with the proteasome inhibitor MG132 or epoxomicin but not calpain inhibitor calpeptin inhibited etoposide-induced Ikaros downregulation. Overexpression of IK1 could accelerate etoposide-induced apoptosis in NB4 cells, as evidenced by the increase of Annexin V positive cells and the more early activation of caspase 3. To our knowledge, this is the first report to show that upon chemotherapy drugs or UV treatment, IK1 could be degraded via the proteasome system in the early phase of apoptosis induction. These data might shed new insight on the role of IK1 in apoptosis and the post-translational regulation of IK1.

  20. Thermoelectric generator testing and RTG degradation mechanisms evaluation. Progress report No. 36

    International Nuclear Information System (INIS)

    Lockwood, A.; Shields, V.

    1980-07-01

    The n-type selenide legs after 15,000 hours continue to show reasonable agreement with the 3M Co. published thermal conductivity data. In the ingradient testing after 16,500 hours the 3 surviving n-legs (out of 5) show serious degradation in power to load. Weight loss and thermoelectricity property measurements on the first samples of material produced by G.E. continue to correspond to the results previously obtained on R.C.A. material from the MHW program. The remaining MHW generator on test, Q1-A, has accumulated 23,679 hours and performance remains stable. The 18 couple modules S/N-1 and -3 previously tested at RCA show no significant change in operation during the current JPL testing. A comparison of LES 8/9 RTG's with an improved version of DEGRA is shown. No changes in the trends of degradation of LES 8 and 9 and the Voyager RTGs have been observed

  1. Modeling and Evaluating the Environmental Degradation of UHTCs under Hypersonic Flow (Preprint)

    Science.gov (United States)

    2014-02-01

    catalytic recombination at the material’s surface. In addition, under realistic conditions, resistance to acoustic and mechanical vibrations and thermal...of the sample which is measured using an optical pyrometer . The key advantage of this method is that it provides a simulation of dissociation of...torch tip. The calibration is usually made based on the measured optical pyrometer reading on the hottest section of the exposed sample. The heat

  2. POLA ADAPTASI MASYARAKAT PESISIR GENUK KOTA SEMARANG (Patterns of Community Adaptation to Environmental Degradation in Genuk Coastal Area, Semarang

    Directory of Open Access Journals (Sweden)

    S Sariffuddin

    2014-11-01

    Full Text Available Globalization brings many consequences for Indonesian urban development and the communities. Industrialization is one of them. Globalization also brings policy transformation affecting the community’s welfare and lifestyle. One of the indicators is that local values have started to fade. The similar condition also occurs in fishermen’s and fish farmers’ settlements in Semarang, which have transformed into industrial settlements in 1980s during the industrialization period. Land conversion occurred in a short time from ponds and rice fields into factories, warehouses, and new labor’s settlements. It did not take a long time for the community’s local values to transform into the new ones influenced by the welfare level of the new community. Based on the phenomena, this study aims to understand the lifestyle of the community and its influence in managing the housing environment with Genuk coastal area of Semarang City as a case. This research has three objectives: to understand the motivation to urbanization, to comprehend the neighborhoods’ conditions, and to comprehend the influence of community’s lifestyle towards the settlement condition. In achieving the objectives, the qualitative approach supported by some quantitative data is used.  The results show that there are three classes of the community influencing the environmental management. It is found that the people’s migration reasons had a big influence for the environmental management. In this case, the middle-class community is a key stakeholder to overcome the environmental problems. It becomes good initiator. On the contrary, the lower class has a less role in dealing with the environmental problems. It has even a big contribution on environmental degradation. Meanwhile, the upper class pays less attention to the environment. Only a little part of it, especially the local one, is willing to take part in the environmental management. The middle-class people consider that

  3. In vitro assessment and mechanism of action of environmental pollutants

    International Nuclear Information System (INIS)

    Hart, R.W.; Hays, S.; Brash, D.; Daniel, F.B.; Davis, M.T.; Lewis, N.J.

    1977-01-01

    Some topics discussed are as follows: correlations between DNA damage and carcinogenesis; prereplication repair of chemically induced DNA damage; strand break repair in chemical carcinogenesis; postreplication repair in chemical carcinogenesis; and biologic assessment of environmental pollutants

  4. Dynamics of FDI, Technological Transformation and Environmental Degradation in Developing Countries: A Panel Analysis

    Directory of Open Access Journals (Sweden)

    Farwa Amjad

    2016-03-01

    Full Text Available This paper examines the relationship between FDI, technology and environment with an assessment of aggregated relationship, by technical composition and the mode of technology transferability through FDI. A panel data for 19 developing countries has been used to for 14 years of data. The empirical results have suggested that FDI is the significant variable in explaining the carbon emission in developing countries followed by energy consumption and technology transformation. Our findings suggest that to manage both energy consumption and FDI flows via investment in research and development (RDY or energy efficiency demand to reduce CO2 emissions is not possible without stringent environmental regulations and without retaining the developing countries’ competitiveness.

  5. Slow-mode degradation mechanism and its control in new bright and long-lived ZnSe white LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Masahiro [Venture Business Laboratory, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552 (Japan); Ando, Koshi; Abe, Tomoki; Inoue, Noboru; Urata, Akihiro; Tsutsumi, Sueyuki; Hashimoto, Yutaka; Kasada, Hirofumi [Electrical and Electronic Department, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552 (Japan); Katayama, Koji; Nakamura, Takao [Semiconductor Technologies R and D Laboratories, Sumitomo Electric Industries Ltd., 1-1-1 Koyakita, Itami, Hyogo, 665-0016 (Japan)

    2006-03-15

    This paper presents slow-mode degradation mechanism of ZnSe-based white LEDs. A systematic study has been made from a viewpoint of microscopic point defect reaction such as generation and migration in both device active layer (ZnCdSe/ZnSe MQW) and p-type ZnMgSSe cladding layer utilizing DLTS/ ICTS, SSRM (scanning spreading resistance microscope), and EL (electroluminescence)-imaging techniques, coupled with device aging experiments. We have found two different degradation stages (1st and 2nd stages) in the slow-mode degradation, which are caused by quite different microscopic point defect species. The 1st stage is induced by the long-diffusion of H0-center (nitrogen-complex deep hole trap in p-cladding layer), forming high-density dark-spots in the MQW active layer. This active center is generated only in the stress-stimulated condition such as thermal or device fabrication process. After controlling the initial concentration of the H0 center, we have observed no detectable new dark-spots during device operation, leading to fairly long device-lifetime ({proportional_to}1000 h). This 2nd stage has appeared as a carrier (hole) reduction in the p-type cladding layer. This final degradation stage is found to take place by an increase of shallow compensating donor-like centers in p-type cladding layer (ZnMgSSe). Based on these insights on the microscopic point defect reaction, we have developed (new) double cladding i-ZnMgBeSe/p-ZnMgSSe white-LEDs, which has exhibited long device lifetime of over 10000 h. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Fatigue and quasi-static mechanical behavior of bio-degradable porous biomaterials based on magnesium alloys.

    Science.gov (United States)

    Hedayati, R; Ahmadi, S M; Lietaert, K; Tümer, N; Li, Y; Amin Yavari, S; Zadpoor, A A

    2018-07-01

    Magnesium and its alloys have the intrinsic capability of degrading over time in vivo without leaving toxic degradation products. They are therefore suitable for use as biodegradable scaffolds that are replaced by the regenerated tissues. One of the main concerns for such applications, particularly in load-bearing areas, is the sufficient mechanical integrity of the scaffold before sufficient volumes of de novo tissue is generated. In the majority of the previous studies on the effects of biodegradation on the mechanical properties of porous biomaterials, the change in the elastic modulus has been studied. In this study, variations in the static and fatigue mechanical behavior of porous structures made of two different Mg alloys (AZ63 and M2) over different dissolution times ( 6, 12, and 24 h) have been investigated. The results showed an increase in the mechanical properties obtained from stress-strain curve (elastic modulus, yield stress, plateau stress, and energy absorption) after 6-12 h and a sharp decrease after 24 h. The initial increase in the mechanical properties may be attributed to the accumulation of corrosion products in the pores of the porous structure before degradation has considerably proceeded. The effects of mineral deposition was more pronounced for the elastic modulus as compared to other mechanical properties. That may be due to insufficient integration of the deposited particles in the structure of the magnesium alloys. While the bonding of the parts being combined in a composite-like material is of great importance in determining its yield stress, the effects of bonding strength of both parts is much lower in determining the elastic modulus. The results of the current study also showed that the dissolution rates of the studied Mg alloys were too high for direct use in human body. © 2018 Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1798-1811, 2018. © 2018

  7. I2 basal stacking fault as a degradation mechanism in reverse gate-biased AlGaN/GaN HEMTs

    Science.gov (United States)

    Lang, A. C.; Hart, J. L.; Wen, J. G.; Miller, D. J.; Meyer, D. J.; Taheri, M. L.

    2016-09-01

    Here, we present the observation of a bias-induced, degradation-enhancing defect process in plasma-assisted molecular beam epitaxy grown reverse gate-biased AlGaN/GaN high electron mobility transistors (HEMTs), which is compatible with the current theoretical framework of HEMT degradation. Specifically, we utilize both conventional transmission electron microscopy and aberration-corrected transmission electron microscopy to analyze microstructural changes in not only high strained regions in degraded AlGaN/GaN HEMTs but also the extended gate-drain access region. We find a complex defect structure containing an I2 basal stacking fault and offer a potential mechanism for device degradation based on this defect structure. This work supports the reality of multiple failure mechanisms during device operation and identifies a defect potentially involved with device degradation.

  8. Mechanisms of degradation of cotton and effects of mercerization-stretching upon the course of these mechanisms. Pt. 3

    Energy Technology Data Exchange (ETDEWEB)

    Hebeish, A; Abou-Zeid, N Y; Shalaby, S E; El-Aref, A T; Waly, A; Abdel-Thalouth, I; Tawfik, M

    1981-10-06

    Changes in the physical as well as chemical structure of scoured and slack mercerized restretched (90-103% of original length) cotton yarns brought about by heat treatments and the effects of these on the strenght properties of the cotton yarn were investigated. No striking changes in copper number, carboxyl content, iodine sorption, degree of polymerization (P) and strenght properties were observed when the scoured and the mercerized yarns were heated at 160, 180, 200, and 210/sup 0/C for up to 10 min. On the contrary, with the exception of carboxyl content, marked changes in these properties were determined when heat treatment was carried out for up to 96 h and 5 h at 160/sup 0/C and 210/sup 0/C, respectively. However, the mercerized yarns retained higher strenghts in spite of higher degradation as compared to scoured yarn. The interrelationship between strenght and P as well as strength and percentage of bonds broken together with measurements of frequency of successive regions of high lateral order indicated that mercerized cotton exhibited a more uniform structure which improved the distribution of stress along the fibre.

  9. [Ethnic conflicts and environmental degradation in Central Asia. The Ferghana valley and northern Kazakhstan].

    Science.gov (United States)

    De Cordier, B

    1996-01-01

    This work seeks to demonstrate that the combination of ecological degradation, demographic pressure, and ethnic heterogeneity in Central Asia constitute a serious threat to the future stability of the region. The predominantly rural Ferghana Valley and Northern Kazakhstan suffer from shortages of water and land and from unemployment that leads to extensive out-migration to cities suffering from decline in their Soviet-era industries. The problem in the Ferghana Valley began with Tsarist conquest of the valley in 1876 and the subsequent imposition of cotton cultivation, which was greatly expanded by the Soviet Union. The Ferghana Valley, despite being a natural unit, was divided between Uzbekistan, Tajikistan, and Kyrgyzstan in the 1920s and 1930s, and remains divided between the independent states. The current population of 11 million is ethnically diverse, with Uzbeks in the majority and increasing most rapidly. Immigration from the Caucasus since 1950 added to the tension. Future peace will depend on such factors as whether the neo-Communist political regime chooses to incite ethnic hostilities, the manner in which land is redistributed, and the outcome of struggles for control of the flourishing narcotics trade. The northern Kazakhstan region was designated a pioneer wheat-growing region by Soviet planners in 1954. Russian and Ukrainian migrants established between 1954 and 1956 are today the predominant population sector, but feel their privileged position threatened by nationalist policies making Kazakh the official language and giving preference in employment to Kazakhs. Resettlement of Kazakhs from Mongolia, China, and Afghanistan in the region and the high Kazakh birth rate increase tensions. Grain production initially grew rapidly, but the mediocre soil and erosion-inducing constant dry winds have caused production to stagnate or decline. Regional disputes within Kazakhstan complicate the situation. Northern Kazakhstan, with its industrial development, is

  10. Neurotoxic effects of perfluoroalkylated compounds: mechanisms of action and environmental relevance.

    Science.gov (United States)

    Mariussen, Espen

    2012-09-01

    Perfluoroalkylated compounds (PFCs) are used in fire-fighting foams, treatment of clothes, carpets and leather products, and as lubricants, pesticides, in paints and medicine. Recent developments in chemical analysis have revealed that fluorinated compounds have become ubiquitously spread and are regarded as a potential threats to the environment. Due to the carbon-fluorine bond, which has a very high bond strength, these chemicals are extremely persistent towards degradation and some PFCs have a potential for bioaccumulation in organisms. Of particular concern has been the developmental toxicity of PFOS and PFOA, which has been manifested in rodent studies as high mortality of prenatally exposed newborn rats and mice within 24 h after delivery. The nervous system appears to be one of the most sensitive targets of environmental contaminants. The serious developmental effects of PFCs have lead to the upcoming of studies that have investigated neurotoxic effects of these substances. In this review the major findings of the neurotoxicity of the main PFCs and their suggested mechanisms of action are presented. The neurotoxic effects are discussed in light of other toxic effects of PFCs to indicate the significance of PFCs as neurotoxicants. The main findings are that PFCs may induce neurobehavioral effects, particularly in developmentally exposed animals. The effects are, however, subtle and inconclusive and are often induced at concentrations where other toxic effects also are expected. Mechanistic studies have shown that PFCs may affect the thyroid system, influence the calcium homeostasis, protein kinase C, synaptic plasticity and cellular differentiation. Compared to other environmental toxicants the human blood levels of PFCs are high and of particular concern is that susceptible groups may be exposed to a cocktail of substances that in combination reach harmful concentrations.

  11. Influence of mechanical and chemical degradation on surface gloss of resin composite materials

    NARCIS (Netherlands)

    Ardu, S.; Braut, V.; Uhac, I.; Benbachir, N.; Feilzer, A.J.; Krejci, I.

    2009-01-01

    Purpose: To determine the changes in surface gloss of different composite materials after simulation of mechanical and chemical aging mechanisms. Methods: 36 specimens were fabricated for each material and polished with 120-, 220-, 500-, 1200-, 2400- and 4000- grit SiC abrasive paper, respectively.

  12. Degradation Mechanism of Poly(Ether-Urethane) Estane Induced by High Energy Radiation (III) : Radiolytic Gases and Water Soluble Products

    International Nuclear Information System (INIS)

    Dannoux, A.

    2006-01-01

    Within the framework of nuclear waste management, there is interest in the prediction of long-term behaviour of organic materials subjected to high energy radiation. Once organic waste has been stored, gases and low molecular products might be generated from materials irradiated by radionuclides. Long-term behaviour of organic material in nuclear waste has several common concerns with radiation ageing of polymers. But a more detailed description of the chemical evolution is needed for nuclear waste management. In a first approach, an extensive work on radiation ageing is used to identify the different processes encountered during the degradation of a polyurethane, including oxidation dose rate-effects and influence of dose on the oxidation mechanism. In a second approach, a study is performed to identify and quantify gases and possible production of water soluble chemical complexing agents which might enhance radionuclides migration away from the repository. In this work, we present results concerning the production of radiolytic gases and the formation of water soluble oligomers reached with leaching tests Films were made from a poly(ether-urethane) synthesized from methylene bis(p-phenyl isocyanate) (MDI) and poly(tetramethylene glycol) (PTMG) with 1,4 butanediol (BD) and were irradiated by high-energy electron beam to cover a wide doses range and by γ rays to determine the formation/consumption yields of gases. They were measured by mass spectrometry and gas-chromatography/mass spectrometry (GC/MS). The migration of water soluble oligomers in water was reached by measuring the weight loss versus leaching time. The identification of oligomers was performed by using a mass spectrometry with an electrospray ionisation interface (ESI-MS-MS). The analysis of radiolytic gases indicates the formation of H 2 , CO 2 and CO with respective radiolytic yields of 1, 0.5 and 0.3 molecule/100 eV. The consumption of O 2 is evaluated to 6 molecules/100 eV. For absorbed doses

  13. Degradation rates and mechanisms of acid-resistant coatings in copper-leaching tanks

    DEFF Research Database (Denmark)

    Møller, Victor Buhl

    coating where the lifetime was estimated to 1:6 ± 0:2 and 1:4 ± 0:1 years, respectively. Part IV A series of newly designed and constructed diffusion cells were used to measure sulfuric acid diffusion rates through the coatings. A mathematical model was developed to simulate the experimental data...... potential in the mineral industry has not yet been thoroughly investigated. This particular industry poses unique challenges, with high operational temperatures (around 75 °C) and combined acidicerosive environments. The use of organic coatings to protect tanks, pipes, and secondary exposure areas, may....... Part I An in-depth literature study was performed to uncover and review uses and limitations ofacid-resistant coatings in the chemical industry, with a comparison to alternative resistant materialsbased on metals and ceramics. In addition, coating degradation phenomena caused by acid exposure, were...

  14. Degradation of Highly Alloyed Metal Halide Perovskite Precursor Inks: Mechanism and Storage Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Dou, Benjia [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wheeler, Lance M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Christians, Jeffrey A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Moore, David [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Harvey, Steven P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Berry, Joseph J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Van Hest, Marinus F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Barnes, Frank S. [University of Colorado; Shaheen, Sean E. [University of Colorado

    2018-03-02

    Whereas the promise of metal halide perovskite (MHP) photovoltaics (PV) is that they can combine high efficiency with solution-processability, the chemistry occurring in precursor inks is largely unexplored. Herein, we investigate the degradation of MHP solutions based on the most widely used solvents, dimethylformamide (DMF) and dimethyl sulfoxide (DMSO). For the MHP inks studied, which contain formamidinium (FA+), methylammonium (MA+), cesium (Cs+), lead (Pb2+), bromide (Br-), and iodide (I-), dramatic compositional changes are observed following storage of the inks in nitrogen in the dark. We show that hydrolysis of DMF in the precursor solution forms dimethylammonium formate, which subsequently incorporates into the MHP film to compromise the ability of Cs+ and MA+ to stabilize FA+-based MHP. The changes in solution chemistry lead to a modification of the perovskite film stoichiometry, band gap, and structure. The solid precursor salts are stable when ball-milled into a powder, allowing for the storage of large quantities of stoichiometric precursor materials.

  15. Surface binding sites (SBSs), mechanism and regulation of enzymes degrading amylopectin and α-limit dextrins

    DEFF Research Database (Denmark)

    Møller, Marie Sofie; Cockburn, Darrell; Nielsen, Jonas W.

    2013-01-01

    into barley seed α-amylase 1 (AMY1) and limit dextrinase (LD) includes i. kinetics of bi-exponential amylopectin hydrolysis by AMY1, one reaction having low Km (8 μg/mL) and high kcat (57 s-1) and the other high Km (97 μg/mL) and low kcat (23 s-1). β-Cyclodextrin (β-CD) inhibits the first reaction by binding...... to an SBS (SBS2) on domain C with Kd = 70 μM, which for the SBS2 Y380A mutant increases to 1.4 mM. SBS2 thus has a role in the fast, high-affinity component of amylopectin degradation. ii. The N-terminal domain of LD, the debranching enzyme in germinating seeds, shows distant structural similarity...

  16. Theoretical investigation of the degradation mechanisms in host and guest molecules used in OLED active layers

    KAUST Repository

    Winget, Paul

    2014-10-08

    A feature of OLEDs that has to date received little attention is the prediction of the stability of the molecules involved in the electrical and optical processes. Here, we present computational results intended to aid in the development of stable systems. We identify degradation pathways and define new strategies to guide the synthesis of stable materials for OLED applications for both phosphorescent emitters and organic host materials. The chemical reactivity of these molecules in the active layers of the devices is further complicated by the fact that, during operation, they can be either oxidized or reduced (as they localize a hole or an electron) in addition to forming both singlet and triplet excitons. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  17. Degradation mechanism of CH3NH3PbI3 perovskite materials upon exposure to humid air

    International Nuclear Information System (INIS)

    Shirayama, Masaki; Kato, Masato; Fujiseki, Takemasa; Hara, Shota; Kadowaki, Hideyuki; Murata, Daisuke; Fujiwara, Hiroyuki; Miyadera, Tetsuhiko; Sugita, Takeshi; Chikamatsu, Masayuki

    2016-01-01

    Low stability of organic-inorganic perovskite (CH 3 NH 3 PbI 3 ) solar cells in humid air environments is a serious drawback which could limit practical application of this material severely. In this study, from real-time spectroscopic ellipsometry characterization, the degradation mechanism of ultra-smooth CH 3 NH 3 PbI 3 layers prepared by a laser evaporation technique is studied. We present evidence that the CH 3 NH 3 PbI 3 degradation in humid air proceeds by two competing reactions of (i) the PbI 2 formation by the desorption of CH 3 NH 3 I species and (ii) the generation of a CH 3 NH 3 PbI 3 hydrate phase by H 2 O incorporation. In particular, rapid phase change occurs in the near-surface region and the CH 3 NH 3 PbI 3 layer thickness reduces rapidly in the initial 1 h air exposure even at a low relative humidity of 40%. After the prolonged air exposure, the CH 3 NH 3 PbI 3 layer is converted completely to hexagonal platelet PbI 2 /hydrate crystals that have a distinct atomic-scale multilayer structure with a period of 0.65 ± 0.05 nm. We find that conventional x-ray diffraction and optical characterization in the visible region, used commonly in earlier works, are quite insensitive to the surface phase change. Based on results obtained in this work, we discuss the degradation mechanism of CH 3 NH 3 PbI 3 in humid air.

  18. Physical mechanisms contributing to enhanced bipolar gain degradation at low dose rates

    International Nuclear Information System (INIS)

    Fleetwood, D.M.; Reber, R.A. Jr.; Winokur, P.S.; Kosier, S.L.; Schrimpf, R.D.; Wei, A.; DeLaus, M.; Combs, W.E.; Pease, R.L.

    1994-01-01

    The authors have performed capacitance-voltage (C-V) and thermally-stimulated-current (TSC) measurements on non-radiation-hard MOS capacitors simulating screen oxides of modern bipolar technologies. For 0-V irradiation of ∼25 C, the net trapped-positive-charge density (N ox ) inferred from midgap C-V shifts is ∼25--40% greater for low-dose-rate ( 2 )/s) than for high-dose-rate (> 100 rad(SiO 2 )/s) exposure. Device modeling shows that such a difference in screen-oxide N ox is enough to account for the enhanced low-rate gain degradation often observed in bipolar devices, due to the ∼ exp(N ox 2 ) dependence of the excess base current. At the higher rates, TSC measurements reveal a ∼10% decrease in trapped-hole density over low rates. Also, at high rates, up to ∼2.5-times as many trapped holes are compensated by electrons in border traps than at low rates for these devices and irradiation conditions. Both the reduction in trapped-hole density and increased charge compensation reduce the high-rate midgap shift. A physical model is developed which suggests that both effects are caused by time-dependent space charge in the bulk of these soft oxides associated with slowly transporting and/or metastably trapped holes (e.g., in Eδ' centers). On the basis of this model, bipolar transistors and screen-oxide capacitors were irradiated at 60 C at 200 rad(SiO 2 )/s in a successful effort to match low-rate damage. these surprising results provide insight into enhanced low-rate bipolar gain degradation and suggest potentially promising new approaches to bipolar and BiCMOS hardness assurance for space applications

  19. Molecular mechanism of 17-allylamino-17-demethoxygeldanamycin (17-AAG)-induced AXL receptor tyrosine kinase degradation.

    Science.gov (United States)

    Krishnamoorthy, Gnana Prakasam; Guida, Teresa; Alfano, Luigi; Avilla, Elvira; Santoro, Massimo; Carlomagno, Francesca; Melillo, Rosa Marina

    2013-06-14

    The receptor tyrosine kinase AXL is