WorldWideScience

Sample records for environmental cluster analysis

  1. Clustering analysis

    International Nuclear Information System (INIS)

    Romli

    1997-01-01

    Cluster analysis is the name of group of multivariate techniques whose principal purpose is to distinguish similar entities from the characteristics they process.To study this analysis, there are several algorithms that can be used. Therefore, this topic focuses to discuss the algorithms, such as, similarity measures, and hierarchical clustering which includes single linkage, complete linkage and average linkage method. also, non-hierarchical clustering method, which is popular name K -mean method ' will be discussed. Finally, this paper will be described the advantages and disadvantages of every methods

  2. Cluster analysis

    CERN Document Server

    Everitt, Brian S; Leese, Morven; Stahl, Daniel

    2011-01-01

    Cluster analysis comprises a range of methods for classifying multivariate data into subgroups. By organizing multivariate data into such subgroups, clustering can help reveal the characteristics of any structure or patterns present. These techniques have proven useful in a wide range of areas such as medicine, psychology, market research and bioinformatics.This fifth edition of the highly successful Cluster Analysis includes coverage of the latest developments in the field and a new chapter dealing with finite mixture models for structured data.Real life examples are used throughout to demons

  3. Cluster analysis

    OpenAIRE

    Mucha, Hans-Joachim; Sofyan, Hizir

    2000-01-01

    As an explorative technique, duster analysis provides a description or a reduction in the dimension of the data. It classifies a set of observations into two or more mutually exclusive unknown groups based on combinations of many variables. Its aim is to construct groups in such a way that the profiles of objects in the same groups are relatively homogenous whereas the profiles of objects in different groups are relatively heterogeneous. Clustering is distinct from classification techniques, ...

  4. EXOTIC PLANTS IN THE CIBODAS BOTANIC GARDENS REMNANT FOREST: INVENTORY AND CLUSTER ANALYSIS OF SEVERAL ENVIRONMENTAL FACTORS

    Directory of Open Access Journals (Sweden)

    Decky Indrawan Junaedi

    2014-01-01

    Full Text Available Due to potential impact of invasive alien (exotic species to the natural ecosystems, inventory of exotic species in the Cibodas Botanic Gardens (CBG remnant forest area is an urgent need for CBG. Inventory of exotic species can assist gardens manager to set priorities and plan better responses for possible or existed invasive plants in the CBG remnants forest. The objectives of this study are to do inventory of the exotic species in the CBG remnant forest and to determine whether several environmental variables play role to the existence of exotic species in the CBG remnant forests. There are 26 exotic plant species (23 genera, 14 families found and recorded from all four remnant forests in CBG. Cluster analysis of four environmental variables shows that clustering of environmental factors of exotic species correlates with the abundances of those exotic species. The relation between environmental factor clusters and the abundance of those exotics signify the role of environmental variables on the existence of exotic plant species. The information of exotic plant species in the remnants forest is the base information for gardens manager to manage exotic species in CBG remnants forest. The relation of several environmental factors with exotic species abundance could assist gardens manager to understand better the supportive and or suppressor factors of exotics in the CBG remnants forest. Further study on these species is needed to set priorities to decide which species should be treated first in order to minimize the impact of exotic plant species to native ecosystem of CBG.

  5. EXOTIC PLANTS IN THE CIBODAS BOTANIC GARDENS REMNANT FOREST: INVENTORY AND CLUSTER ANALYSIS OF SEVERAL ENVIRONMENTAL FACTORS

    Directory of Open Access Journals (Sweden)

    Decky Indrawan Junaedi

    2014-01-01

    Full Text Available Due to potential impact of invasive alien (exotic species to the natural ecosystems, inventory of exotic species in the Cibodas Botanic Gardens (CBG remnant forest area is an urgent need for CBG. Inventory of exotic species can assist gardens manager to set priorities and plan better responses for possible or existed invasive plants in the CBG remnants forest. The objectives of this study are to do inventory of the exotic species in the CBG remnant forest and to determine whether several environmental variables play role to the existence of exotic species in the CBG remnant forests. There are 26 exotic plant species  (23 genera, 14 families found and recorded from all four remnant forests in CBG. Cluster analysis of four environmental variables shows that clustering of environmental factors of exotic species correlates with the abundances of those exotic species. The relation between environmental factor clusters and the abundance of those exotics signify the role of environmental variables on the existence of exotic plant species. The information of exotic plant species in the remnants forest is the base information for gardens manager to manage exotic species in CBG remnants forest. The relation of several environmental factors with exotic species abundance could assist gardens manager to understand better the supportive and or suppressor factors of exotics in the CBG remnants forest. Further study on these species is needed to set priorities to decide which species should be treated first in order to minimize the impact of exotic plant species to native ecosystem of CBG.

  6. Environmental technology strongholds. A business analysis of cluster creation; Miljoeteknologiske styrkepositioner. En erhvervsanalyse af klyngedannelse

    Energy Technology Data Exchange (ETDEWEB)

    Rosted, J.; Andersen, Torsten; Degn Bertelsen, M. [FORA (Denmark)

    2006-08-31

    Global focus on environmental responsibility has increased interest in new environmental technology solutions, and environmental technologies will see impressive global growth rates in the coming decades. Environmental technologies make important contributions to solving global environmental challenges. But they are only part of the solution. The development of ground-braking environmental technology solutions should go hand in hand with political decisions on binding environmental goals, public environmental regulation and economic incentives that promote an appropriate behaviour among companies and consumers. The environmental technology market is a highly competitive market that focuses on utilising new and emerging technologies. A large number of Danish companies are active participants in the global competition. There are several examples of government institutions taking an active part in the competition. More and more, new environmental technologies are developed in a binding and strategic collaboration involving companies, universities, research laboratories and government authorities. The level of Danish government authority participation is a critical element. However, this is not the focus of this analysis. The purpose of the analysis is to identify environmental technology areas where Denmark potentially could create new strongholds, if strategic and binding collaboration involving companies, knowledge institutions and government authorities is carried out. The actual level of co-operation should be decided among the relevant stake holders. (au)

  7. Detection of major climatic and environmental predictors of liver fluke exposure risk in Ireland using spatial cluster analysis.

    Science.gov (United States)

    Selemetas, Nikolaos; de Waal, Theo

    2015-04-30

    Fasciolosis caused by Fasciola hepatica (liver fluke) can cause significant economic and production losses in dairy cow farms. The aim of the current study was to identify important weather and environmental predictors of the exposure risk to liver fluke by detecting clusters of fasciolosis in Ireland. During autumn 2012, bulk-tank milk samples from 4365 dairy farms were collected throughout Ireland. Using an in-house antibody-detection ELISA, the analysis of BTM samples showed that 83% (n=3602) of dairy farms had been exposed to liver fluke. The Getis-Ord Gi* statistic identified 74 high-risk and 130 low-risk significant (Pclimatic variables (monthly and seasonal mean rainfall and temperatures, total wet days and rain days) and environmental datasets (soil types, enhanced vegetation index and normalised difference vegetation index) were used to investigate dissimilarities in the exposure to liver fluke between clusters. Rainfall, total wet days and rain days, and soil type were the significant classes of climatic and environmental variables explaining the differences between significant clusters. A discriminant function analysis was used to predict the exposure risk to liver fluke using 80% of data for modelling and the remaining subset of 20% for post hoc model validation. The most significant predictors of the model risk function were total rainfall in August and September and total wet days. The risk model presented 100% sensitivity and 91% specificity and an accuracy of 95% correctly classified cases. A risk map of exposure to liver fluke was constructed with higher probability of exposure in western and north-western regions. The results of this study identified differences between clusters of fasciolosis in Ireland regarding climatic and environmental variables and detected significant predictors of the exposure risk to liver fluke. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Cluster analysis for applications

    CERN Document Server

    Anderberg, Michael R

    1973-01-01

    Cluster Analysis for Applications deals with methods and various applications of cluster analysis. Topics covered range from variables and scales to measures of association among variables and among data units. Conceptual problems in cluster analysis are discussed, along with hierarchical and non-hierarchical clustering methods. The necessary elements of data analysis, statistics, cluster analysis, and computer implementation are integrated vertically to cover the complete path from raw data to a finished analysis.Comprised of 10 chapters, this book begins with an introduction to the subject o

  9. Marketing research cluster analysis

    Directory of Open Access Journals (Sweden)

    Marić Nebojša

    2002-01-01

    Full Text Available One area of applications of cluster analysis in marketing is identification of groups of cities and towns with similar demographic profiles. This paper considers main aspects of cluster analysis by an example of clustering 12 cities with the use of Minitab software.

  10. Marketing research cluster analysis

    OpenAIRE

    Marić Nebojša

    2002-01-01

    One area of applications of cluster analysis in marketing is identification of groups of cities and towns with similar demographic profiles. This paper considers main aspects of cluster analysis by an example of clustering 12 cities with the use of Minitab software.

  11. A novel exploratory chemometric approach to environmental monitorring by combining block clustering with Partial Least Square (PLS) analysis

    Science.gov (United States)

    2013-01-01

    Background Given the serious threats posed to terrestrial ecosystems by industrial contamination, environmental monitoring is a standard procedure used for assessing the current status of an environment or trends in environmental parameters. Measurement of metal concentrations at different trophic levels followed by their statistical analysis using exploratory multivariate methods can provide meaningful information on the status of environmental quality. In this context, the present paper proposes a novel chemometric approach to standard statistical methods by combining the Block clustering with Partial least square (PLS) analysis to investigate the accumulation patterns of metals in anthropized terrestrial ecosystems. The present study focused on copper, zinc, manganese, iron, cobalt, cadmium, nickel, and lead transfer along a soil-plant-snai food chain, and the hepatopancreas of the Roman snail (Helix pomatia) was used as a biological end-point of metal accumulation. Results Block clustering deliniates between the areas exposed to industrial and vehicular contamination. The toxic metals have similar distributions in the nettle leaves and snail hepatopancreas. PLS analysis showed that (1) zinc and copper concentrations at the lower trophic levels are the most important latent factors that contribute to metal accumulation in land snails; (2) cadmium and lead are the main determinants of pollution pattern in areas exposed to industrial contamination; (3) at the sites located near roads lead is the most threatfull metal for terrestrial ecosystems. Conclusion There were three major benefits by applying block clustering with PLS for processing the obtained data: firstly, it helped in grouping sites depending on the type of contamination. Secondly, it was valuable for identifying the latent factors that contribute the most to metal accumulation in land snails. Finally, it optimized the number and type of data that are best for monitoring the status of metallic

  12. A novel exploratory chemometric approach to environmental monitorring by combining block clustering with Partial Least Square (PLS) analysis.

    Science.gov (United States)

    Nica, Dragos V; Bordean, Despina Maria; Pet, Ioan; Pet, Elena; Alda, Simion; Gergen, Iosif

    2013-08-30

    Given the serious threats posed to terrestrial ecosystems by industrial contamination, environmental monitoring is a standard procedure used for assessing the current status of an environment or trends in environmental parameters. Measurement of metal concentrations at different trophic levels followed by their statistical analysis using exploratory multivariate methods can provide meaningful information on the status of environmental quality. In this context, the present paper proposes a novel chemometric approach to standard statistical methods by combining the Block clustering with Partial least square (PLS) analysis to investigate the accumulation patterns of metals in anthropized terrestrial ecosystems. The present study focused on copper, zinc, manganese, iron, cobalt, cadmium, nickel, and lead transfer along a soil-plant-snai food chain, and the hepatopancreas of the Roman snail (Helix pomatia) was used as a biological end-point of metal accumulation. Block clustering deliniates between the areas exposed to industrial and vehicular contamination. The toxic metals have similar distributions in the nettle leaves and snail hepatopancreas. PLS analysis showed that (1) zinc and copper concentrations at the lower trophic levels are the most important latent factors that contribute to metal accumulation in land snails; (2) cadmium and lead are the main determinants of pollution pattern in areas exposed to industrial contamination; (3) at the sites located near roads lead is the most threatfull metal for terrestrial ecosystems. There were three major benefits by applying block clustering with PLS for processing the obtained data: firstly, it helped in grouping sites depending on the type of contamination. Secondly, it was valuable for identifying the latent factors that contribute the most to metal accumulation in land snails. Finally, it optimized the number and type of data that are best for monitoring the status of metallic contamination in terrestrial ecosystems

  13. Cluster analysis of fasciolosis in dairy cow herds in Munster province of Ireland and detection of major climatic and environmental predictors of the exposure risk.

    Science.gov (United States)

    Selemetas, Nikolaos; Phelan, Paul; O'Kiely, Padraig; de Waal, Theo

    2015-03-19

    Fasciolosis caused by Fasciola hepatica is a widespread parasitic disease in cattle farms. The aim of this study was to detect clusters of fasciolosis in dairy cow herds in Munster Province, Ireland and to identify significant climatic and environmental predictors of the exposure risk. In total, 1,292 dairy herds across Munster was sampled in September 2012 providing a single bulk tank milk (BTM) sample. The analysis of samples by an in-house antibody-detection enzyme-linked immunosorbent assay (ELISA), showed that 65% of the dairy herds (n = 842) had been exposed to F. hepatica. Using the Getis-Ord Gi* statistic, 16 high-risk and 24 low-risk (P <0.01) clusters of fasciolosis were identified. The spatial distribution of high-risk clusters was more dispersed and mainly located in the northern and western regions of Munster compared to the low-risk clusters that were mostly concentrated in the southern and eastern regions. The most significant classes of variables that could reflect the difference between high-risk and low-risk clusters were the total number of wet-days and rain-days, rainfall, the normalized difference vegetation index (NDVI), temperature and soil type. There was a bigger proportion of well-drained soils among the low-risk clusters, whereas poorly drained soils were more common among the high-risk clusters. These results stress the role of precipitation, grazing, temperature and drainage on the life cycle of F. hepatica in the temperate Irish climate. The findings of this study highlight the importance of cluster analysis for identifying significant differences in climatic and environmental variables between high-risk and low-risk clusters of fasciolosis in Irish dairy herds.

  14. Cluster analysis of fasciolosis in dairy cow herds in Munster province of Ireland and detection of major climatic and environmental predictors of the exposure risk

    Directory of Open Access Journals (Sweden)

    Nikolaos Selemetas

    2015-03-01

    Full Text Available Fasciolosis caused by Fasciola hepatica is a widespread parasitic disease in cattle farms. The aim of this study was to detect clusters of fasciolosis in dairy cow herds in Munster Province, Ireland and to identify significant climatic and environmental predictors of the exposure risk. In total, 1,292 dairy herds across Munster was sampled in September 2012 providing a single bulk tank milk (BTM sample. The analysis of samples by an in-house antibody-detection enzyme-linked immunosorbent assay (ELISA, showed that 65% of the dairy herds (n = 842 had been exposed to F. hepatica. Using the Getis-Ord Gi* statistic, 16 high-risk and 24 low-risk (P <0.01 clusters of fasciolosis were identified. The spatial distribution of high-risk clusters was more dispersed and mainly located in the northern and western regions of Munster compared to the low-risk clusters that were mostly concentrated in the southern and eastern regions. The most significant classes of variables that could reflect the difference between high-risk and low-risk clusters were the total number of wet-days and rain-days, rainfall, the normalized difference vegetation index (NDVI, temperature and soil type. There was a bigger proportion of well-drained soils among the low-risk clusters, whereas poorly drained soils were more common among the high-risk clusters. These results stress the role of precipitation, grazing, temperature and drainage on the life cycle of F. hepatica in the temperate Irish climate. The findings of this study highlight the importance of cluster analysis for identifying significant differences in climatic and environmental variables between high-risk and low-risk clusters of fasciolosis in Irish dairy herds.

  15. Comprehensive cluster analysis with Transitivity Clustering.

    Science.gov (United States)

    Wittkop, Tobias; Emig, Dorothea; Truss, Anke; Albrecht, Mario; Böcker, Sebastian; Baumbach, Jan

    2011-03-01

    Transitivity Clustering is a method for the partitioning of biological data into groups of similar objects, such as genes, for instance. It provides integrated access to various functions addressing each step of a typical cluster analysis. To facilitate this, Transitivity Clustering is accessible online and offers three user-friendly interfaces: a powerful stand-alone version, a web interface, and a collection of Cytoscape plug-ins. In this paper, we describe three major workflows: (i) protein (super)family detection with Cytoscape, (ii) protein homology detection with incomplete gold standards and (iii) clustering of gene expression data. This protocol guides the user through the most important features of Transitivity Clustering and takes ∼1 h to complete.

  16. Hydrologic classification of rivers based on cluster analysis of dimensionless hydrologic signatures: Applications for environmental instream flows

    Science.gov (United States)

    Praskievicz, S. J.; Luo, C.

    2017-12-01

    Classification of rivers is useful for a variety of purposes, such as generating and testing hypotheses about watershed controls on hydrology, predicting hydrologic variables for ungaged rivers, and setting goals for river management. In this research, we present a bottom-up (based on machine learning) river classification designed to investigate the underlying physical processes governing rivers' hydrologic regimes. The classification was developed for the entire state of Alabama, based on 248 United States Geological Survey (USGS) stream gages that met criteria for length and completeness of records. Five dimensionless hydrologic signatures were derived for each gage: slope of the flow duration curve (indicator of flow variability), baseflow index (ratio of baseflow to average streamflow), rising limb density (number of rising limbs per unit time), runoff ratio (ratio of long-term average streamflow to long-term average precipitation), and streamflow elasticity (sensitivity of streamflow to precipitation). We used a Bayesian clustering algorithm to classify the gages, based on the five hydrologic signatures, into distinct hydrologic regimes. We then used classification and regression trees (CART) to predict each gaged river's membership in different hydrologic regimes based on climatic and watershed variables. Using existing geospatial data, we applied the CART analysis to classify ungaged streams in Alabama, with the National Hydrography Dataset Plus (NHDPlus) catchment (average area 3 km2) as the unit of classification. The results of the classification can be used for meeting management and conservation objectives in Alabama, such as developing statewide standards for environmental instream flows. Such hydrologic classification approaches are promising for contributing to process-based understanding of river systems.

  17. Environmental conflict analysis using an integrated grey clustering and entropy-weight method: A case study of a mining project in Peru.

    OpenAIRE

    Delgado-Villanueva, Kiko Alexi; Romero Gil, Inmaculada

    2016-01-01

    [EN] Environmental conflict analysis (henceforth ECA) has become a key factor for the viability of projects and welfare of affected populations. In this study, we propose an approach for ECA using an integrated grey clustering and entropy-weight method (The IGCEW method). The case study considered a mining project in northern Peru. Three stakeholder groups and seven criteria were identified. The data were gathered by conducting field interviews. The results revealed that for the groups urban ...

  18. [Cluster analysis in biomedical researches].

    Science.gov (United States)

    Akopov, A S; Moskovtsev, A A; Dolenko, S A; Savina, G D

    2013-01-01

    Cluster analysis is one of the most popular methods for the analysis of multi-parameter data. The cluster analysis reveals the internal structure of the data, group the separate observations on the degree of their similarity. The review provides a definition of the basic concepts of cluster analysis, and discusses the most popular clustering algorithms: k-means, hierarchical algorithms, Kohonen networks algorithms. Examples are the use of these algorithms in biomedical research.

  19. Integrative cluster analysis in bioinformatics

    CERN Document Server

    Abu-Jamous, Basel; Nandi, Asoke K

    2015-01-01

    Clustering techniques are increasingly being put to use in the analysis of high-throughput biological datasets. Novel computational techniques to analyse high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. This book details the complete pathway of cluster analysis, from the basics of molecular biology to the generation of biological knowledge. The book also presents the latest clustering methods and clustering validation, thereby offering the reader a comprehensive review o

  20. Environmental Analysis

    Science.gov (United States)

    1980-01-01

    Burns & McDonnell Engineering's environmental control study is assisted by NASA's Computer Software Management and Information Center's programs in environmental analyses. Company is engaged primarily in design of such facilities as electrical utilities, industrial plants, wastewater treatment systems, dams and reservoirs and aviation installations. Company also conducts environmental engineering analyses and advises clients as to the environmental considerations of a particular construction project. Company makes use of many COSMIC computer programs which have allowed substantial savings.

  1. Cluster analysis of track structure

    International Nuclear Information System (INIS)

    Michalik, V.

    1991-01-01

    One of the possibilities of classifying track structures is application of conventional partition techniques of analysis of multidimensional data to the track structure. Using these cluster algorithms this paper attempts to find characteristics of radiation reflecting the spatial distribution of ionizations in the primary particle track. An absolute frequency distribution of clusters of ionizations giving the mean number of clusters produced by radiation per unit of deposited energy can serve as this characteristic. General computation techniques used as well as methods of calculations of distributions of clusters for different radiations are discussed. 8 refs.; 5 figs

  2. A facility for using cluster research to study environmental problems

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    This report begins by describing the general application of cluster based research to environmental chemistry and the development of a Cluster Structure and Dynamics Research Facility (CSDRF). Next, four important areas of cluster research are described in more detail, including how they can impact environmental problems. These are: surface-supported clusters, water and contaminant interactions, time-resolved dynamic studies in clusters, and cluster structures and reactions. These facilities and equipment required for each area of research are then presented. The appendices contain workshop agenda and a listing of the researchers who participated in the workshop discussions that led to this report.

  3. A facility for using cluster research to study environmental problems

    International Nuclear Information System (INIS)

    1991-11-01

    This report begins by describing the general application of cluster based research to environmental chemistry and the development of a Cluster Structure and Dynamics Research Facility (CSDRF). Next, four important areas of cluster research are described in more detail, including how they can impact environmental problems. These are: surface-supported clusters, water and contaminant interactions, time-resolved dynamic studies in clusters, and cluster structures and reactions. These facilities and equipment required for each area of research are then presented. The appendices contain workshop agenda and a listing of the researchers who participated in the workshop discussions that led to this report

  4. DISENTANGLING THE ROLE OF ENVIRONMENTAL PROCESSES IN GALAXY CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Fernandez, Jonathan D.; Vilchez, J. M.; Iglesias-Paramo, J., E-mail: jonatan@iaa.es [Instituto de Astrofisica de Andalucia, Glorieta de la Astronomia s/n, 18008 Granada (Spain)

    2012-05-20

    In this work, we present the results of a novel approach devoted to disentangling the role of the environmental processes affecting galaxies in clusters. This is based on the analysis of the near-UV (NUV) - r' distributions of a large sample of star-forming galaxies in clusters spanning more than four absolute magnitudes. The galaxies inhabit three distinct environmental regions: virial regions, cluster infall regions, and field environment. We have applied rigorous statistical tests to analyze both the complete NUV - r' distributions and their averages for three different bins of the r'-band galaxy luminosity down to M{sub r{sup '}}{approx}-18, throughout the three environmental regions considered. We have identified the environmental processes that significantly affect the star-forming galaxies in a given luminosity bin by using criteria based on the characteristics of these processes: their typical timescales, the regions where they operate, and the galaxy luminosity range for which their effects are more intense. We have found that the high-luminosity (M{sub r{sup '}}{<=}-20) star-forming galaxies do not show significant signs in their star formation activity of being affected by: (1) the environment in the last {approx}10{sup 8} yr, or (2) a sudden quenching in the last 1.5 Gyr. The intermediate-luminosity (-20< M{sub r{sup '}}{<=}-19) star-forming galaxies appear to be affected by starvation in the virial regions and by the harassment in the virial and infall regions. Low-luminosity (-19environmental processes as intermediate-luminosity star-forming galaxies in a stronger way, which would be expected for their lower luminosities.

  5. Toward understanding environmental effects in SDSS clusters

    Energy Technology Data Exchange (ETDEWEB)

    Einasto, Jaan; Tago, E.; Einasto, M.; Saar, E.; Suhhonenko, I.; /Tartu Observ.; Heinamaki, P.; /Tartu Observ. /Tuorla Observ.; Hutsi, G.; /Tartu Observ. /Garching, Max; Tucker, D.L.; /Fermilab

    2004-11-01

    We find clusters and superclusters of galaxies using the Data Release 1 of the Sloan Digital Sky Survey. We determine the luminosity function of clusters and find that clusters in a high-density environment have a luminosity a factor of {approx}5 higher than in a low-density environment. We also study clusters and superclusters in numerical simulations. Simulated clusters in a high-density environment are also more massive than those in a low-density environment. Comparison of the density distribution at various epochs in simulations shows that in large low-density regions (voids) dynamical evolution is very slow and stops at an early epoch. In contrast, in large regions of higher density (superclusters) dynamical evolution starts early and continues until the present; here particles cluster early, and by merging of smaller groups very rich systems of galaxies form.

  6. Cluster analysis for portfolio optimization

    OpenAIRE

    Vincenzo Tola; Fabrizio Lillo; Mauro Gallegati; Rosario N. Mantegna

    2005-01-01

    We consider the problem of the statistical uncertainty of the correlation matrix in the optimization of a financial portfolio. We show that the use of clustering algorithms can improve the reliability of the portfolio in terms of the ratio between predicted and realized risk. Bootstrap analysis indicates that this improvement is obtained in a wide range of the parameters N (number of assets) and T (investment horizon). The predicted and realized risk level and the relative portfolio compositi...

  7. Cluster analysis in phenotyping a Portuguese population.

    Science.gov (United States)

    Loureiro, C C; Sa-Couto, P; Todo-Bom, A; Bousquet, J

    2015-09-03

    Unbiased cluster analysis using clinical parameters has identified asthma phenotypes. Adding inflammatory biomarkers to this analysis provided a better insight into the disease mechanisms. This approach has not yet been applied to asthmatic Portuguese patients. To identify phenotypes of asthma using cluster analysis in a Portuguese asthmatic population treated in secondary medical care. Consecutive patients with asthma were recruited from the outpatient clinic. Patients were optimally treated according to GINA guidelines and enrolled in the study. Procedures were performed according to a standard evaluation of asthma. Phenotypes were identified by cluster analysis using Ward's clustering method. Of the 72 patients enrolled, 57 had full data and were included for cluster analysis. Distribution was set in 5 clusters described as follows: cluster (C) 1, early onset mild allergic asthma; C2, moderate allergic asthma, with long evolution, female prevalence and mixed inflammation; C3, allergic brittle asthma in young females with early disease onset and no evidence of inflammation; C4, severe asthma in obese females with late disease onset, highly symptomatic despite low Th2 inflammation; C5, severe asthma with chronic airflow obstruction, late disease onset and eosinophilic inflammation. In our study population, the identified clusters were mainly coincident with other larger-scale cluster analysis. Variables such as age at disease onset, obesity, lung function, FeNO (Th2 biomarker) and disease severity were important for cluster distinction. Copyright © 2015. Published by Elsevier España, S.L.U.

  8. Evolution of phenotypic clusters through competition and local adaptation along an environmental gradient.

    Science.gov (United States)

    Leimar, Olof; Doebeli, Michael; Dieckmann, Ulf

    2008-04-01

    We have analyzed the evolution of a quantitative trait in populations that are spatially extended along an environmental gradient, with gene flow between nearby locations. In the absence of competition, there is stabilizing selection toward a locally best-adapted trait that changes gradually along the gradient. According to traditional ideas, gradual spatial variation in environmental conditions is expected to lead to gradual variation in the evolved trait. A contrasting possibility is that the trait distribution instead breaks up into discrete clusters. Doebeli and Dieckmann (2003) argued that competition acting locally in trait space and geographical space can promote such clustering. We have investigated this possibility using deterministic population dynamics for asexual populations, analyzing our model numerically and through an analytical approximation. We examined how the evolution of clusters is affected by the shape of competition kernels, by the presence of Allee effects, and by the strength of gene flow along the gradient. For certain parameter ranges clustering was a robust outcome, and for other ranges there was no clustering. Our analysis shows that the shape of competition kernels is important for clustering: the sign structure of the Fourier transform of a competition kernel determines whether the kernel promotes clustering. Also, we found that Allee effects promote clustering, whereas gene flow can have a counteracting influence. In line with earlier findings, we could demonstrate that phenotypic clustering was favored by gradients of intermediate slope.

  9. Hierarchical Aligned Cluster Analysis for Temporal Clustering of Human Motion.

    Science.gov (United States)

    Zhou, Feng; De la Torre, Fernando; Hodgins, Jessica K

    2013-03-01

    Temporal segmentation of human motion into plausible motion primitives is central to understanding and building computational models of human motion. Several issues contribute to the challenge of discovering motion primitives: the exponential nature of all possible movement combinations, the variability in the temporal scale of human actions, and the complexity of representing articulated motion. We pose the problem of learning motion primitives as one of temporal clustering, and derive an unsupervised hierarchical bottom-up framework called hierarchical aligned cluster analysis (HACA). HACA finds a partition of a given multidimensional time series into m disjoint segments such that each segment belongs to one of k clusters. HACA combines kernel k-means with the generalized dynamic time alignment kernel to cluster time series data. Moreover, it provides a natural framework to find a low-dimensional embedding for time series. HACA is efficiently optimized with a coordinate descent strategy and dynamic programming. Experimental results on motion capture and video data demonstrate the effectiveness of HACA for segmenting complex motions and as a visualization tool. We also compare the performance of HACA to state-of-the-art algorithms for temporal clustering on data of a honey bee dance. The HACA code is available online.

  10. Robust cluster analysis and variable selection

    CERN Document Server

    Ritter, Gunter

    2014-01-01

    Clustering remains a vibrant area of research in statistics. Although there are many books on this topic, there are relatively few that are well founded in the theoretical aspects. In Robust Cluster Analysis and Variable Selection, Gunter Ritter presents an overview of the theory and applications of probabilistic clustering and variable selection, synthesizing the key research results of the last 50 years. The author focuses on the robust clustering methods he found to be the most useful on simulated data and real-time applications. The book provides clear guidance for the varying needs of bot

  11. Exact WKB analysis and cluster algebras

    International Nuclear Information System (INIS)

    Iwaki, Kohei; Nakanishi, Tomoki

    2014-01-01

    We develop the mutation theory in the exact WKB analysis using the framework of cluster algebras. Under a continuous deformation of the potential of the Schrödinger equation on a compact Riemann surface, the Stokes graph may change the topology. We call this phenomenon the mutation of Stokes graphs. Along the mutation of Stokes graphs, the Voros symbols, which are monodromy data of the equation, also mutate due to the Stokes phenomenon. We show that the Voros symbols mutate as variables of a cluster algebra with surface realization. As an application, we obtain the identities of Stokes automorphisms associated with periods of cluster algebras. The paper also includes an extensive introduction of the exact WKB analysis and the surface realization of cluster algebras for nonexperts. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Cluster algebras in mathematical physics’. (paper)

  12. Environmental policy analysis

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The Environmental Policy Analysis Program was established to improve the formation of energy development and environmental policies with due mutual regard for national environmental and energy development needs. As a separate office under the Assistant Secretary for Environment, the program is implemented by the Director and by Offices of Environmental Policy Analysis in the eight DOE multiprogram laboratories. The program provides the Assistant Secretary with information on alternatives for decision making and early warning of environmental problems and considerations that may affect energy policy decisions. The program is intended to be a continuing activity, with its scope determined progressively as issues are defined. During FY-1977 the program focused on information compilation on levels of Pu and other transuranic elements in soils that would render the area unsafe for unlimited use; the impact of water pollution control laws on energy technologies; an analysis of the comparative health risks associated with various energy technologies; and the cost and related impacts on the nuclear industry arising from changes in radiation standards during the past 15 years

  13. Cluster analysis of obesity and asthma phenotypes.

    Directory of Open Access Journals (Sweden)

    E Rand Sutherland

    Full Text Available Asthma is a heterogeneous disease with variability among patients in characteristics such as lung function, symptoms and control, body weight, markers of inflammation, and responsiveness to glucocorticoids (GC. Cluster analysis of well-characterized cohorts can advance understanding of disease subgroups in asthma and point to unsuspected disease mechanisms. We utilized an hypothesis-free cluster analytical approach to define the contribution of obesity and related variables to asthma phenotype.In a cohort of clinical trial participants (n = 250, minimum-variance hierarchical clustering was used to identify clinical and inflammatory biomarkers important in determining disease cluster membership in mild and moderate persistent asthmatics. In a subset of participants, GC sensitivity was assessed via expression of GC receptor alpha (GCRα and induction of MAP kinase phosphatase-1 (MKP-1 expression by dexamethasone. Four asthma clusters were identified, with body mass index (BMI, kg/m(2 and severity of asthma symptoms (AEQ score the most significant determinants of cluster membership (F = 57.1, p<0.0001 and F = 44.8, p<0.0001, respectively. Two clusters were composed of predominantly obese individuals; these two obese asthma clusters differed from one another with regard to age of asthma onset, measures of asthma symptoms (AEQ and control (ACQ, exhaled nitric oxide concentration (F(ENO and airway hyperresponsiveness (methacholine PC(20 but were similar with regard to measures of lung function (FEV(1 (% and FEV(1/FVC, airway eosinophilia, IgE, leptin, adiponectin and C-reactive protein (hsCRP. Members of obese clusters demonstrated evidence of reduced expression of GCRα, a finding which was correlated with a reduced induction of MKP-1 expression by dexamethasoneObesity is an important determinant of asthma phenotype in adults. There is heterogeneity in expression of clinical and inflammatory biomarkers of asthma across obese individuals

  14. Are clusters of dietary patterns and cluster membership stable over time? Results of a longitudinal cluster analysis study.

    Science.gov (United States)

    Walthouwer, Michel Jean Louis; Oenema, Anke; Soetens, Katja; Lechner, Lilian; de Vries, Hein

    2014-11-01

    Developing nutrition education interventions based on clusters of dietary patterns can only be done adequately when it is clear if distinctive clusters of dietary patterns can be derived and reproduced over time, if cluster membership is stable, and if it is predictable which type of people belong to a certain cluster. Hence, this study aimed to: (1) identify clusters of dietary patterns among Dutch adults, (2) test the reproducibility of these clusters and stability of cluster membership over time, and (3) identify sociodemographic predictors of cluster membership and cluster transition. This study had a longitudinal design with online measurements at baseline (N=483) and 6 months follow-up (N=379). Dietary intake was assessed with a validated food frequency questionnaire. A hierarchical cluster analysis was performed, followed by a K-means cluster analysis. Multinomial logistic regression analyses were conducted to identify the sociodemographic predictors of cluster membership and cluster transition. At baseline and follow-up, a comparable three-cluster solution was derived, distinguishing a healthy, moderately healthy, and unhealthy dietary pattern. Male and lower educated participants were significantly more likely to have a less healthy dietary pattern. Further, 251 (66.2%) participants remained in the same cluster, 45 (11.9%) participants changed to an unhealthier cluster, and 83 (21.9%) participants shifted to a healthier cluster. Men and people living alone were significantly more likely to shift toward a less healthy dietary pattern. Distinctive clusters of dietary patterns can be derived. Yet, cluster membership is unstable and only few sociodemographic factors were associated with cluster membership and cluster transition. These findings imply that clusters based on dietary intake may not be suitable as a basis for nutrition education interventions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Environmental risk analysis

    International Nuclear Information System (INIS)

    Lima-e-Silva, Pedro Paulo de

    1996-01-01

    The conventional Risk Analysis (RA) relates usually a certain undesired event frequency with its consequences. Such technique is used nowadays in Brazil to analyze accidents and their consequences strictly under the human approach, valuing loss of human equipment, human structures and human lives, without considering the damage caused to natural resources that keep life possible on Earth. This paradigm was developed primarily because of the Homo sapiens' lack of perception upon the natural web needed to sustain his own life. In reality, the Brazilian professionals responsible today for licensing, auditing and inspecting environmental aspects of human activities face huge difficulties in making technical specifications and procedures leading to acceptable levels of impact, furthermore considering the intrinsic difficulties to define those levels. Therefore, in Brazil the RA technique is a weak tool for licensing for many reasons, and of them are its short scope (only accident considerations) and wrong a paradigm (only human direct damages). A paper from the author about the former was already proposed to the 7th International Conference on Environmetrics, past July'96, USP-SP. This one discusses the extension of the risk analysis concept to take into account environmental consequences, transforming the conventional analysis into a broader methodology named here as Environmental Risk Analysis. (author)

  16. Factor Analysis for Clustered Observations.

    Science.gov (United States)

    Longford, N. T.; Muthen, B. O.

    1992-01-01

    A two-level model for factor analysis is defined, and formulas for a scoring algorithm for this model are derived. A simple noniterative method based on decomposition of total sums of the squares and cross-products is discussed and illustrated with simulated data and data from the Second International Mathematics Study. (SLD)

  17. Environmental analysis support

    International Nuclear Information System (INIS)

    Miller, R.L.

    1994-01-01

    Activities in environmental analysis support included assistance to the Morgantown and Pittsburgh Energy Technology Centers (METC and PETC) in reviewing and preparing documents required by the National Environmental Policy Act (NEPA) for several projects selected for the Clean Coal Technology (CCT) Program. A key milestone was the completion for PETC of the final Environmental Impact Statement (EIS) for the Healy Clean Coal Project (HCCP) in Healy, Alaska. This work is notable because it is the first site-specific EIS completed for the CCT Program. Another important activity was the preparation for METC of a draft Environmental Assessment (EA) for the Externally Fired Combined Cycle (EFCC) Project in Warren, Pennsylvania. Also, the final EA was completed for the Gasification Product Improvement Facility (GPIF), a proposed project near Morgantown, West Virginia, which is part of METC's R ampersand D Program. In addition, ORNL staff members published a Technical Memorandum entitled open-quotes Potential Effects of Clean Coal Technologies on Acid Precipitation, Greenhouse Gases, and Solid Waste Disposalclose quotes which documents the findings of three open-quotes white papersclose quotes prepared for DOE/FE

  18. Cluster analysis for determining distribution center location

    Science.gov (United States)

    Lestari Widaningrum, Dyah; Andika, Aditya; Murphiyanto, Richard Dimas Julian

    2017-12-01

    Determination of distribution facilities is highly important to survive in the high level of competition in today’s business world. Companies can operate multiple distribution centers to mitigate supply chain risk. Thus, new problems arise, namely how many and where the facilities should be provided. This study examines a fast-food restaurant brand, which located in the Greater Jakarta. This brand is included in the category of top 5 fast food restaurant chain based on retail sales. There were three stages in this study, compiling spatial data, cluster analysis, and network analysis. Cluster analysis results are used to consider the location of the additional distribution center. Network analysis results show a more efficient process referring to a shorter distance to the distribution process.

  19. clusters

    Indian Academy of Sciences (India)

    environmental as well as technical problems during fuel gas utilization. ... adsorption on some alloys of Pd, namely PdAu, PdAg ... ried out on small neutral and charged Au24,26,27, Cu,28 ... study of Zanti et al.29 on Pdn (n = 1–9) clusters.

  20. Analysis of environmental sounds

    Science.gov (United States)

    Lee, Keansub

    Environmental sound archives - casual recordings of people's daily life - are easily collected by MPS players or camcorders with low cost and high reliability, and shared in the web-sites. There are two kinds of user generated recordings we would like to be able to handle in this thesis: Continuous long-duration personal audio and Soundtracks of short consumer video clips. These environmental recordings contain a lot of useful information (semantic concepts) related with activity, location, occasion and content. As a consequence, the environment archives present many new opportunities for the automatic extraction of information that can be used in intelligent browsing systems. This thesis proposes systems for detecting these interesting concepts on a collection of these real-world recordings. The first system is to segment and label personal audio archives - continuous recordings of an individual's everyday experiences - into 'episodes' (relatively consistent acoustic situations lasting a few minutes or more) using the Bayesian Information Criterion and spectral clustering. The second system is for identifying regions of speech or music in the kinds of energetic and highly-variable noise present in this real-world sound. Motivated by psychoacoustic evidence that pitch is crucial in the perception and organization of sound, we develop a noise-robust pitch detection algorithm to locate speech or music-like regions. To avoid false alarms resulting from background noise with strong periodic components (such as air-conditioning), a new scheme is added in order to suppress these noises in the domain of autocorrelogram. In addition, the third system is to automatically detect a large set of interesting semantic concepts; which we chose for being both informative and useful to users, as well as being technically feasible. These 25 concepts are associated with people's activities, locations, occasions, objects, scenes and sounds, and are based on a large collection of

  1. Changing cluster composition in cluster randomised controlled trials: design and analysis considerations

    Science.gov (United States)

    2014-01-01

    Background There are many methodological challenges in the conduct and analysis of cluster randomised controlled trials, but one that has received little attention is that of post-randomisation changes to cluster composition. To illustrate this, we focus on the issue of cluster merging, considering the impact on the design, analysis and interpretation of trial outcomes. Methods We explored the effects of merging clusters on study power using standard methods of power calculation. We assessed the potential impacts on study findings of both homogeneous cluster merges (involving clusters randomised to the same arm of a trial) and heterogeneous merges (involving clusters randomised to different arms of a trial) by simulation. To determine the impact on bias and precision of treatment effect estimates, we applied standard methods of analysis to different populations under analysis. Results Cluster merging produced a systematic reduction in study power. This effect depended on the number of merges and was most pronounced when variability in cluster size was at its greatest. Simulations demonstrate that the impact on analysis was minimal when cluster merges were homogeneous, with impact on study power being balanced by a change in observed intracluster correlation coefficient (ICC). We found a decrease in study power when cluster merges were heterogeneous, and the estimate of treatment effect was attenuated. Conclusions Examples of cluster merges found in previously published reports of cluster randomised trials were typically homogeneous rather than heterogeneous. Simulations demonstrated that trial findings in such cases would be unbiased. However, simulations also showed that any heterogeneous cluster merges would introduce bias that would be hard to quantify, as well as having negative impacts on the precision of estimates obtained. Further methodological development is warranted to better determine how to analyse such trials appropriately. Interim recommendations

  2. Semi-supervised consensus clustering for gene expression data analysis

    OpenAIRE

    Wang, Yunli; Pan, Youlian

    2014-01-01

    Background Simple clustering methods such as hierarchical clustering and k-means are widely used for gene expression data analysis; but they are unable to deal with noise and high dimensionality associated with the microarray gene expression data. Consensus clustering appears to improve the robustness and quality of clustering results. Incorporating prior knowledge in clustering process (semi-supervised clustering) has been shown to improve the consistency between the data partitioning and do...

  3. A facility for using cluster research to study environmental problems. Workshop proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    This report begins by describing the general application of cluster based research to environmental chemistry and the development of a Cluster Structure and Dynamics Research Facility (CSDRF). Next, four important areas of cluster research are described in more detail, including how they can impact environmental problems. These are: surface-supported clusters, water and contaminant interactions, time-resolved dynamic studies in clusters, and cluster structures and reactions. These facilities and equipment required for each area of research are then presented. The appendices contain workshop agenda and a listing of the researchers who participated in the workshop discussions that led to this report.

  4. The use of a cluster analysis in across herd genetic evaluation for ...

    African Journals Online (AJOL)

    To investigate the possibility of a genotype x environment interaction in Bonsmara cattle, a cluster analysis was performed on weaning weight records of 72 811 Bonsmara calves, the progeny of 1 434 sires and 24 186 dams in 35 herds. The following environmental factors were used to classify herds into clusters: solution ...

  5. MANNER OF STOCKS SORTING USING CLUSTER ANALYSIS METHODS

    Directory of Open Access Journals (Sweden)

    Jana Halčinová

    2014-06-01

    Full Text Available The aim of the present article is to show the possibility of using the methods of cluster analysis in classification of stocks of finished products. Cluster analysis creates groups (clusters of finished products according to similarity in demand i.e. customer requirements for each product. Manner stocks sorting of finished products by clusters is described a practical example. The resultants clusters are incorporated into the draft layout of the distribution warehouse.

  6. Advanced analysis of forest fire clustering

    Science.gov (United States)

    Kanevski, Mikhail; Pereira, Mario; Golay, Jean

    2017-04-01

    Analysis of point pattern clustering is an important topic in spatial statistics and for many applications: biodiversity, epidemiology, natural hazards, geomarketing, etc. There are several fundamental approaches used to quantify spatial data clustering using topological, statistical and fractal measures. In the present research, the recently introduced multi-point Morisita index (mMI) is applied to study the spatial clustering of forest fires in Portugal. The data set consists of more than 30000 fire events covering the time period from 1975 to 2013. The distribution of forest fires is very complex and highly variable in space. mMI is a multi-point extension of the classical two-point Morisita index. In essence, mMI is estimated by covering the region under study by a grid and by computing how many times more likely it is that m points selected at random will be from the same grid cell than it would be in the case of a complete random Poisson process. By changing the number of grid cells (size of the grid cells), mMI characterizes the scaling properties of spatial clustering. From mMI, the data intrinsic dimension (fractal dimension) of the point distribution can be estimated as well. In this study, the mMI of forest fires is compared with the mMI of random patterns (RPs) generated within the validity domain defined as the forest area of Portugal. It turns out that the forest fires are highly clustered inside the validity domain in comparison with the RPs. Moreover, they demonstrate different scaling properties at different spatial scales. The results obtained from the mMI analysis are also compared with those of fractal measures of clustering - box counting and sand box counting approaches. REFERENCES Golay J., Kanevski M., Vega Orozco C., Leuenberger M., 2014: The multipoint Morisita index for the analysis of spatial patterns. Physica A, 406, 191-202. Golay J., Kanevski M. 2015: A new estimator of intrinsic dimension based on the multipoint Morisita index

  7. Cluster Analysis in Rapeseed (Brassica Napus L.)

    International Nuclear Information System (INIS)

    Mahasi, J.M

    2002-01-01

    With widening edible deficit, Kenya has become increasingly dependent on imported edible oils. Many oilseed crops (e.g. sunflower, soya beans, rapeseed/mustard, sesame, groundnuts etc) can be grown in Kenya. But oilseed rape is preferred because it very high yielding (1.5 tons-4.0 tons/ha) with oil content of 42-46%. Other uses include fitting in various cropping systems as; relay/inter crops, rotational crops, trap crops and fodder. It is soft seeded hence oil extraction is relatively easy. The meal is high in protein and very useful in livestock supplementation. Rapeseed can be straight combined using adjusted wheat combines. The priority is to expand domestic oilseed production, hence the need to introduce improved rapeseed germplasm from other countries. The success of any crop improvement programme depends on the extent of genetic diversity in the material. Hence, it is essential to understand the adaptation of introduced genotypes and the similarities if any among them. Evaluation trials were carried out on 17 rapeseed genotypes (nine Canadian origin and eight of European origin) grown at 4 locations namely Endebess, Njoro, Timau and Mau Narok in three years (1992, 1993 and 1994). Results for 1993 were discarded due to severe drought. An analysis of variance was carried out only on seed yields and the treatments were found to be significantly different. Cluster analysis was then carried out on mean seed yields and based on this analysis; only one major group exists within the material. In 1992, varieties 2,3,8 and 9 didn't fall in the same cluster as the rest. Variety 8 was the only one not classified with the rest of the Canadian varieties. Three European varieties (2,3 and 9) were however not classified with the others. In 1994, varieties 10 and 6 didn't fall in the major cluster. Of these two, variety 10 is of Canadian origin. Varieties were more similar in 1994 than 1992 due to favorable weather. It is evident that, genotypes from different geographical

  8. Tweets clustering using latent semantic analysis

    Science.gov (United States)

    Rasidi, Norsuhaili Mahamed; Bakar, Sakhinah Abu; Razak, Fatimah Abdul

    2017-04-01

    Social media are becoming overloaded with information due to the increasing number of information feeds. Unlike other social media, Twitter users are allowed to broadcast a short message called as `tweet". In this study, we extract tweets related to MH370 for certain of time. In this paper, we present overview of our approach for tweets clustering to analyze the users' responses toward tragedy of MH370. The tweets were clustered based on the frequency of terms obtained from the classification process. The method we used for the text classification is Latent Semantic Analysis. As a result, there are two types of tweets that response to MH370 tragedy which is emotional and non-emotional. We show some of our initial results to demonstrate the effectiveness of our approach.

  9. Documentation to the workshop 'Cluster in the environmental protection economy'; Dokumentation zum Workshop ''Cluster in der Umweltschutzwirtschaft''

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-12-11

    Within the workshop 'Cluster in the environmental protection economy' at the Umweltbundesamt (Dessau-Rosslau, Federal Republic of Germany) at 27th November, 2008, the following lectures were held: (a) Which contribution can cluster and cluster politics contribute to the promotion of the environmental protection economy? (Harald Legler); (b) Cluster in the environmental protection economy: Targets and expectations (Dieter Rehfeld); (c) Demands at the management of clusters (Karin Hoerhan); (d) Demands at the cluster politics in the environmental protection economy (Bernhard Hausberg); (e) Photovoltaics in Eastern Germany (Johann Wackenbauer); (f) Automotive industry in Bergisches Land (Thomas Lemken); (g) Competence centre environment Augsburg-Schwaben (Egon Beckord).

  10. CytoCluster: A Cytoscape Plugin for Cluster Analysis and Visualization of Biological Networks.

    Science.gov (United States)

    Li, Min; Li, Dongyan; Tang, Yu; Wu, Fangxiang; Wang, Jianxin

    2017-08-31

    Nowadays, cluster analysis of biological networks has become one of the most important approaches to identifying functional modules as well as predicting protein complexes and network biomarkers. Furthermore, the visualization of clustering results is crucial to display the structure of biological networks. Here we present CytoCluster, a cytoscape plugin integrating six clustering algorithms, HC-PIN (Hierarchical Clustering algorithm in Protein Interaction Networks), OH-PIN (identifying Overlapping and Hierarchical modules in Protein Interaction Networks), IPCA (Identifying Protein Complex Algorithm), ClusterONE (Clustering with Overlapping Neighborhood Expansion), DCU (Detecting Complexes based on Uncertain graph model), IPC-MCE (Identifying Protein Complexes based on Maximal Complex Extension), and BinGO (the Biological networks Gene Ontology) function. Users can select different clustering algorithms according to their requirements. The main function of these six clustering algorithms is to detect protein complexes or functional modules. In addition, BinGO is used to determine which Gene Ontology (GO) categories are statistically overrepresented in a set of genes or a subgraph of a biological network. CytoCluster can be easily expanded, so that more clustering algorithms and functions can be added to this plugin. Since it was created in July 2013, CytoCluster has been downloaded more than 9700 times in the Cytoscape App store and has already been applied to the analysis of different biological networks. CytoCluster is available from http://apps.cytoscape.org/apps/cytocluster.

  11. Multisource Images Analysis Using Collaborative Clustering

    Directory of Open Access Journals (Sweden)

    Pierre Gançarski

    2008-04-01

    Full Text Available The development of very high-resolution (VHR satellite imagery has produced a huge amount of data. The multiplication of satellites which embed different types of sensors provides a lot of heterogeneous images. Consequently, the image analyst has often many different images available, representing the same area of the Earth surface. These images can be from different dates, produced by different sensors, or even at different resolutions. The lack of machine learning tools using all these representations in an overall process constraints to a sequential analysis of these various images. In order to use all the information available simultaneously, we propose a framework where different algorithms can use different views of the scene. Each one works on a different remotely sensed image and, thus, produces different and useful information. These algorithms work together in a collaborative way through an automatic and mutual refinement of their results, so that all the results have almost the same number of clusters, which are statistically similar. Finally, a unique result is produced, representing a consensus among the information obtained by each clustering method on its own image. The unified result and the complementarity of the single results (i.e., the agreement between the clustering methods as well as the disagreement lead to a better understanding of the scene. The experiments carried out on multispectral remote sensing images have shown that this method is efficient to extract relevant information and to improve the scene understanding.

  12. Constructing storyboards based on hierarchical clustering analysis

    Science.gov (United States)

    Hasebe, Satoshi; Sami, Mustafa M.; Muramatsu, Shogo; Kikuchi, Hisakazu

    2005-07-01

    There are growing needs for quick preview of video contents for the purpose of improving accessibility of video archives as well as reducing network traffics. In this paper, a storyboard that contains a user-specified number of keyframes is produced from a given video sequence. It is based on hierarchical cluster analysis of feature vectors that are derived from wavelet coefficients of video frames. Consistent use of extracted feature vectors is the key to avoid a repetition of computationally-intensive parsing of the same video sequence. Experimental results suggest that a significant reduction in computational time is gained by this strategy.

  13. Environmental Management as a Strategic Capability: a Study on the Furniture Manufacturing Cluster of Southern Brazil

    Directory of Open Access Journals (Sweden)

    Janielen Pissolatto Deliberal

    2016-01-01

    Full Text Available The incorporation of company programs aimed at sustainability strategies contributes to a balance between economic growth and the use of natural resources. This issue is not exclusive for companies from developed markets. Companies from emerging markets also need to find a way to achieve sustainable practices and organizational performance at the same time. In this context, the aim of this study was to analyze whether environmental management can be considered as a strategic capability, contributing positively to the performance of the manufacturing companies belonging to the Furniture Manufacturing Cluster of Southern Brazil (FMCSB. In order to achieve our objective, we performed a quantitative study through a survey. The sample collected data from 162 companies. Based on univariate and multivariate analysis the results suggest that environmental management can be considered as a strategic capability for the FMCSB since environmental practices are significantly related to organizational performance.

  14. Cluster Analysis of Maize Inbred Lines

    Directory of Open Access Journals (Sweden)

    Jiban Shrestha

    2016-12-01

    Full Text Available The determination of diversity among inbred lines is important for heterosis breeding. Sixty maize inbred lines were evaluated for their eight agro morphological traits during winter season of 2011 to analyze their genetic diversity. Clustering was done by average linkage method. The inbred lines were grouped into six clusters. Inbred lines grouped into Clusters II had taller plants with maximum number of leaves. The cluster III was characterized with shorter plants with minimum number of leaves. The inbred lines categorized into cluster V had early flowering whereas the group into cluster VI had late flowering time. The inbred lines grouped into the cluster III were characterized by higher value of anthesis silking interval (ASI and those of cluster VI had lower value of ASI. These results showed that the inbred lines having widely divergent clusters can be utilized in hybrid breeding programme.

  15. Cluster analysis of word frequency dynamics

    Science.gov (United States)

    Maslennikova, Yu S.; Bochkarev, V. V.; Belashova, I. A.

    2015-01-01

    This paper describes the analysis and modelling of word usage frequency time series. During one of previous studies, an assumption was put forward that all word usage frequencies have uniform dynamics approaching the shape of a Gaussian function. This assumption can be checked using the frequency dictionaries of the Google Books Ngram database. This database includes 5.2 million books published between 1500 and 2008. The corpus contains over 500 billion words in American English, British English, French, German, Spanish, Russian, Hebrew, and Chinese. We clustered time series of word usage frequencies using a Kohonen neural network. The similarity between input vectors was estimated using several algorithms. As a result of the neural network training procedure, more than ten different forms of time series were found. They describe the dynamics of word usage frequencies from birth to death of individual words. Different groups of word forms were found to have different dynamics of word usage frequency variations.

  16. Cluster analysis of word frequency dynamics

    International Nuclear Information System (INIS)

    Maslennikova, Yu S; Bochkarev, V V; Belashova, I A

    2015-01-01

    This paper describes the analysis and modelling of word usage frequency time series. During one of previous studies, an assumption was put forward that all word usage frequencies have uniform dynamics approaching the shape of a Gaussian function. This assumption can be checked using the frequency dictionaries of the Google Books Ngram database. This database includes 5.2 million books published between 1500 and 2008. The corpus contains over 500 billion words in American English, British English, French, German, Spanish, Russian, Hebrew, and Chinese. We clustered time series of word usage frequencies using a Kohonen neural network. The similarity between input vectors was estimated using several algorithms. As a result of the neural network training procedure, more than ten different forms of time series were found. They describe the dynamics of word usage frequencies from birth to death of individual words. Different groups of word forms were found to have different dynamics of word usage frequency variations

  17. Segmentation of Residential Gas Consumers Using Clustering Analysis

    Directory of Open Access Journals (Sweden)

    Marta P. Fernandes

    2017-12-01

    Full Text Available The growing environmental concerns and liberalization of energy markets have resulted in an increased competition between utilities and a strong focus on efficiency. To develop new energy efficiency measures and optimize operations, utilities seek new market-related insights and customer engagement strategies. This paper proposes a clustering-based methodology to define the segmentation of residential gas consumers. The segments of gas consumers are obtained through a detailed clustering analysis using smart metering data. Insights are derived from the segmentation, where the segments result from the clustering process and are characterized based on the consumption profiles, as well as according to information regarding consumers’ socio-economic and household key features. The study is based on a sample of approximately one thousand households over one year. The representative load profiles of consumers are essentially characterized by two evident consumption peaks, one in the morning and the other in the evening, and an off-peak consumption. Significant insights can be derived from this methodology regarding typical consumption curves of the different segments of consumers in the population. This knowledge can assist energy utilities and policy makers in the development of consumer engagement strategies, demand forecasting tools and in the design of more sophisticated tariff systems.

  18. Environmental clustering of lakes to evaluate performance of a macrophyte index of biotic integrity

    Science.gov (United States)

    Vondracek, Bruce C.; Vondracek, Bruce; Hatch, Lorin K.

    2013-01-01

    Proper classification of sites is critical for the use of biological indices that can distinguish between natural and human-induced variation in biological response. The macrophyte-based index of biotic integrity was developed to assess the condition of Minnesota lakes in relation to anthropogenic stressors, but macrophyte community composition varies naturally across the state. The goal of the study was to identify environmental characteristics that naturally influence macrophyte index response and establish a preliminary lake classification scheme for biological assessment (bioassessment). Using a comprehensive set of environmental variables, we identified similar groups of lakes by clustering using flexible beta classification. Variance partitioning analysis of IBI response indicated that evaluating similar lake clusters could improve the ability of the macrophyte index to identify community change to anthropogenic stressors, although lake groups did not fully account for the natural variation in macrophyte composition. Diagnostic capabilities of the index could be improved when evaluating lakes with similar environmental characteristics, suggesting the index has potential for accurate bioassessment provided comparable groups of lakes are evaluated.

  19. From virtual clustering analysis to self-consistent clustering analysis: a mathematical study

    Science.gov (United States)

    Tang, Shaoqiang; Zhang, Lei; Liu, Wing Kam

    2018-03-01

    In this paper, we propose a new homogenization algorithm, virtual clustering analysis (VCA), as well as provide a mathematical framework for the recently proposed self-consistent clustering analysis (SCA) (Liu et al. in Comput Methods Appl Mech Eng 306:319-341, 2016). In the mathematical theory, we clarify the key assumptions and ideas of VCA and SCA, and derive the continuous and discrete Lippmann-Schwinger equations. Based on a key postulation of "once response similarly, always response similarly", clustering is performed in an offline stage by machine learning techniques (k-means and SOM), and facilitates substantial reduction of computational complexity in an online predictive stage. The clear mathematical setup allows for the first time a convergence study of clustering refinement in one space dimension. Convergence is proved rigorously, and found to be of second order from numerical investigations. Furthermore, we propose to suitably enlarge the domain in VCA, such that the boundary terms may be neglected in the Lippmann-Schwinger equation, by virtue of the Saint-Venant's principle. In contrast, they were not obtained in the original SCA paper, and we discover these terms may well be responsible for the numerical dependency on the choice of reference material property. Since VCA enhances the accuracy by overcoming the modeling error, and reduce the numerical cost by avoiding an outer loop iteration for attaining the material property consistency in SCA, its efficiency is expected even higher than the recently proposed SCA algorithm.

  20. Global, regional, and national comparative risk assessment of 79 behavioral, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015

    DEFF Research Database (Denmark)

    Moesgaard Iburg, Kim

    2016-01-01

    inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group......, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk...... pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood...

  1. Environmental conditions analysis program

    International Nuclear Information System (INIS)

    Holten, J.

    1991-01-01

    The PC-based program discussed in this paper has the capability of determining the steady state temperatures of environmental zones (rooms). A program overview will be provided along with examples of formula use. Required input and output from the program will also be discussed. Specific application of plant monitored temperatures and utilization of this program will be offered. The presentation will show how the program can project individual room temperature profiles without continual temperature monitoring of equipment. A discussion will also be provided for the application of the program generated data. Evaluations of anticipated or planned plant modifications and the use of the subject program will also be covered

  2. An analysis of hospital brand mark clusters.

    Science.gov (United States)

    Vollmers, Stacy M; Miller, Darryl W; Kilic, Ozcan

    2010-07-01

    This study analyzed brand mark clusters (i.e., various types of brand marks displayed in combination) used by hospitals in the United States. The brand marks were assessed against several normative criteria for creating brand marks that are memorable and that elicit positive affect. Overall, results show a reasonably high level of adherence to many of these normative criteria. Many of the clusters exhibited pictorial elements that reflected benefits and that were conceptually consistent with the verbal content of the cluster. Also, many clusters featured icons that were balanced and moderately complex. However, only a few contained interactive imagery or taglines communicating benefits.

  3. Smartness and Italian Cities. A Cluster Analysis

    Directory of Open Access Journals (Sweden)

    Flavio Boscacci

    2014-05-01

    Full Text Available Smart cities have been recently recognized as the most pleasing and attractive places to live in; due to this, both scholars and policy-makers pay close attention to this topic. Specifically, urban “smartness” has been identified by plenty of characteristics that can be grouped into six dimensions (Giffinger et al. 2007: smart Economy (competitiveness, smart People (social and human capital, smart Governance (participation, smart Mobility (both ICTs and transport, smart Environment (natural resources, and smart Living (quality of life. According to this analytical framework, in the present paper the relation between urban attractiveness and the “smart” characteristics has been investigated in the 103 Italian NUTS3 province capitals in the year 2011. To this aim, a descriptive statistics has been followed by a regression analysis (OLS, where the dependent variable measuring the urban attractiveness has been proxied by housing market prices. Besides, a Cluster Analysis (CA has been developed in order to find differences and commonalities among the province capitals.The OLS results indicate that living, people and economy are the key drivers for achieving a better urban attractiveness. Environment, instead, keeps on playing a minor role. Besides, the CA groups the province capitals a

  4. UV TO FAR-IR CATALOG OF A GALAXY SAMPLE IN NEARBY CLUSTERS: SPECTRAL ENERGY DISTRIBUTIONS AND ENVIRONMENTAL TRENDS

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Fernandez, Jonathan D.; Iglesias-Paramo, J.; Vilchez, J. M., E-mail: jonatan@iaa.es [Instituto de Astrofisica de Andalucia, Glorieta de la Astronomia s/n, 18008 Granada (Spain)

    2012-03-01

    In this paper, we present a sample of cluster galaxies devoted to study the environmental influence on the star formation activity. This sample of galaxies inhabits in clusters showing a rich variety in their characteristics and have been observed by the SDSS-DR6 down to M{sub B} {approx} -18, and by the Galaxy Evolution Explorer AIS throughout sky regions corresponding to several megaparsecs. We assign the broadband and emission-line fluxes from ultraviolet to far-infrared to each galaxy performing an accurate spectral energy distribution for spectral fitting analysis. The clusters follow the general X-ray luminosity versus velocity dispersion trend of L{sub X} {proportional_to} {sigma}{sup 4.4}{sub c}. The analysis of the distributions of galaxy density counting up to the 5th nearest neighbor {Sigma}{sub 5} shows: (1) the virial regions and the cluster outskirts share a common range in the high density part of the distribution. This can be attributed to the presence of massive galaxy structures in the surroundings of virial regions. (2) The virial regions of massive clusters ({sigma}{sub c} > 550 km s{sup -1}) present a {Sigma}{sub 5} distribution statistically distinguishable ({approx}96%) from the corresponding distribution of low-mass clusters ({sigma}{sub c} < 550 km s{sup -1}). Both massive and low-mass clusters follow a similar density-radius trend, but the low-mass clusters avoid the high density extreme. We illustrate, with ABELL 1185, the environmental trends of galaxy populations. Maps of sky projected galaxy density show how low-luminosity star-forming galaxies appear distributed along more spread structures than their giant counterparts, whereas low-luminosity passive galaxies avoid the low-density environment. Giant passive and star-forming galaxies share rather similar sky regions with passive galaxies exhibiting more concentrated distributions.

  5. Taxonomical analysis of the Cancer cluster of galaxies

    International Nuclear Information System (INIS)

    Perea, J.; Olmo, A. del; Moles, M.

    1986-01-01

    A description is presented of the Cancer cluster of galaxies, based on a taxonomical analysis in (α,delta, Vsub(r)) space. Earlier results by previous authors on the lack of dynamical entity of the cluster are confirmed. The present analysis points out the existence of a binary structure in the most populated region of the complex. (author)

  6. Using Cluster Analysis for Data Mining in Educational Technology Research

    Science.gov (United States)

    Antonenko, Pavlo D.; Toy, Serkan; Niederhauser, Dale S.

    2012-01-01

    Cluster analysis is a group of statistical methods that has great potential for analyzing the vast amounts of web server-log data to understand student learning from hyperlinked information resources. In this methodological paper we provide an introduction to cluster analysis for educational technology researchers and illustrate its use through…

  7. Simultaneous Two-Way Clustering of Multiple Correspondence Analysis

    Science.gov (United States)

    Hwang, Heungsun; Dillon, William R.

    2010-01-01

    A 2-way clustering approach to multiple correspondence analysis is proposed to account for cluster-level heterogeneity of both respondents and variable categories in multivariate categorical data. Specifically, in the proposed method, multiple correspondence analysis is combined with k-means in a unified framework in which "k"-means is…

  8. Cluster analysis of activity-time series in motor learning

    DEFF Research Database (Denmark)

    Balslev, Daniela; Nielsen, Finn Å; Futiger, Sally A

    2002-01-01

    Neuroimaging studies of learning focus on brain areas where the activity changes as a function of time. To circumvent the difficult problem of model selection, we used a data-driven analytic tool, cluster analysis, which extracts representative temporal and spatial patterns from the voxel......-time series. The optimal number of clusters was chosen using a cross-validated likelihood method, which highlights the clustering pattern that generalizes best over the subjects. Data were acquired with PET at different time points during practice of a visuomotor task. The results from cluster analysis show...

  9. Two-Way Regularized Fuzzy Clustering of Multiple Correspondence Analysis.

    Science.gov (United States)

    Kim, Sunmee; Choi, Ji Yeh; Hwang, Heungsun

    2017-01-01

    Multiple correspondence analysis (MCA) is a useful tool for investigating the interrelationships among dummy-coded categorical variables. MCA has been combined with clustering methods to examine whether there exist heterogeneous subclusters of a population, which exhibit cluster-level heterogeneity. These combined approaches aim to classify either observations only (one-way clustering of MCA) or both observations and variable categories (two-way clustering of MCA). The latter approach is favored because its solutions are easier to interpret by providing explicitly which subgroup of observations is associated with which subset of variable categories. Nonetheless, the two-way approach has been built on hard classification that assumes observations and/or variable categories to belong to only one cluster. To relax this assumption, we propose two-way fuzzy clustering of MCA. Specifically, we combine MCA with fuzzy k-means simultaneously to classify a subgroup of observations and a subset of variable categories into a common cluster, while allowing both observations and variable categories to belong partially to multiple clusters. Importantly, we adopt regularized fuzzy k-means, thereby enabling us to decide the degree of fuzziness in cluster memberships automatically. We evaluate the performance of the proposed approach through the analysis of simulated and real data, in comparison with existing two-way clustering approaches.

  10. The smart cluster method. Adaptive earthquake cluster identification and analysis in strong seismic regions

    Science.gov (United States)

    Schaefer, Andreas M.; Daniell, James E.; Wenzel, Friedemann

    2017-07-01

    Earthquake clustering is an essential part of almost any statistical analysis of spatial and temporal properties of seismic activity. The nature of earthquake clusters and subsequent declustering of earthquake catalogues plays a crucial role in determining the magnitude-dependent earthquake return period and its respective spatial variation for probabilistic seismic hazard assessment. This study introduces the Smart Cluster Method (SCM), a new methodology to identify earthquake clusters, which uses an adaptive point process for spatio-temporal cluster identification. It utilises the magnitude-dependent spatio-temporal earthquake density to adjust the search properties, subsequently analyses the identified clusters to determine directional variation and adjusts its search space with respect to directional properties. In the case of rapid subsequent ruptures like the 1992 Landers sequence or the 2010-2011 Darfield-Christchurch sequence, a reclassification procedure is applied to disassemble subsequent ruptures using near-field searches, nearest neighbour classification and temporal splitting. The method is capable of identifying and classifying earthquake clusters in space and time. It has been tested and validated using earthquake data from California and New Zealand. A total of more than 1500 clusters have been found in both regions since 1980 with M m i n = 2.0. Utilising the knowledge of cluster classification, the method has been adjusted to provide an earthquake declustering algorithm, which has been compared to existing methods. Its performance is comparable to established methodologies. The analysis of earthquake clustering statistics lead to various new and updated correlation functions, e.g. for ratios between mainshock and strongest aftershock and general aftershock activity metrics.

  11. Allergen Sensitization Pattern by Sex: A Cluster Analysis in Korea.

    Science.gov (United States)

    Ohn, Jungyoon; Paik, Seung Hwan; Doh, Eun Jin; Park, Hyun-Sun; Yoon, Hyun-Sun; Cho, Soyun

    2017-12-01

    Allergens tend to sensitize simultaneously. Etiology of this phenomenon has been suggested to be allergen cross-reactivity or concurrent exposure. However, little is known about specific allergen sensitization patterns. To investigate the allergen sensitization characteristics according to gender. Multiple allergen simultaneous test (MAST) is widely used as a screening tool for detecting allergen sensitization in dermatologic clinics. We retrospectively reviewed the medical records of patients with MAST results between 2008 and 2014 in our Department of Dermatology. A cluster analysis was performed to elucidate the allergen-specific immunoglobulin (Ig)E cluster pattern. The results of MAST (39 allergen-specific IgEs) from 4,360 cases were analyzed. By cluster analysis, 39items were grouped into 8 clusters. Each cluster had characteristic features. When compared with female, the male group tended to be sensitized more frequently to all tested allergens, except for fungus allergens cluster. The cluster and comparative analysis results demonstrate that the allergen sensitization is clustered, manifesting allergen similarity or co-exposure. Only the fungus cluster allergens tend to sensitize female group more frequently than male group.

  12. A critical cluster analysis of 44 indicators of author-level performance

    DEFF Research Database (Denmark)

    Wildgaard, Lorna Elizabeth

    2015-01-01

    . Publication and citation data for 741 researchers across Astronomy, Environmental Science, Philosophy and Public Health was collected in Web of Science (WoS). Forty-four indicators of individual performance were computed using the data. A two-step cluster analysis using IBM SPSS version 22 was performed...

  13. Clustering of users of digital libraries through log file analysis

    Directory of Open Access Journals (Sweden)

    Juan Antonio Martínez-Comeche

    2017-09-01

    Full Text Available This study analyzes how users perform information retrieval tasks when introducing queries to the Hispanic Digital Library. Clusters of users are differentiated based on their distinct information behavior. The study used the log files collected by the server over a year and different possible clustering algorithms are compared. The k-means algorithm is found to be a suitable clustering method for the analysis of large log files from digital libraries. In the case of the Hispanic Digital Library the results show three clusters of users and the characteristic information behavior of each group is described.

  14. Analysis of Network Clustering Algorithms and Cluster Quality Metrics at Scale.

    Science.gov (United States)

    Emmons, Scott; Kobourov, Stephen; Gallant, Mike; Börner, Katy

    2016-01-01

    Notions of community quality underlie the clustering of networks. While studies surrounding network clustering are increasingly common, a precise understanding of the realtionship between different cluster quality metrics is unknown. In this paper, we examine the relationship between stand-alone cluster quality metrics and information recovery metrics through a rigorous analysis of four widely-used network clustering algorithms-Louvain, Infomap, label propagation, and smart local moving. We consider the stand-alone quality metrics of modularity, conductance, and coverage, and we consider the information recovery metrics of adjusted Rand score, normalized mutual information, and a variant of normalized mutual information used in previous work. Our study includes both synthetic graphs and empirical data sets of sizes varying from 1,000 to 1,000,000 nodes. We find significant differences among the results of the different cluster quality metrics. For example, clustering algorithms can return a value of 0.4 out of 1 on modularity but score 0 out of 1 on information recovery. We find conductance, though imperfect, to be the stand-alone quality metric that best indicates performance on the information recovery metrics. Additionally, our study shows that the variant of normalized mutual information used in previous work cannot be assumed to differ only slightly from traditional normalized mutual information. Smart local moving is the overall best performing algorithm in our study, but discrepancies between cluster evaluation metrics prevent us from declaring it an absolutely superior algorithm. Interestingly, Louvain performed better than Infomap in nearly all the tests in our study, contradicting the results of previous work in which Infomap was superior to Louvain. We find that although label propagation performs poorly when clusters are less clearly defined, it scales efficiently and accurately to large graphs with well-defined clusters.

  15. A SURVEY ON DOCUMENT CLUSTERING APPROACH FOR COMPUTER FORENSIC ANALYSIS

    OpenAIRE

    Monika Raghuvanshi*, Rahul Patel

    2016-01-01

    In a forensic analysis, large numbers of files are examined. Much of the information comprises of in unstructured format, so it’s quite difficult task for computer forensic to perform such analysis. That’s why to do the forensic analysis of document within a limited period of time require a special approach such as document clustering. This paper review different document clustering algorithms methodologies for example K-mean, K-medoid, single link, complete link, average link in accorandance...

  16. Uncertainty analysis of environmental models

    International Nuclear Information System (INIS)

    Monte, L.

    1990-01-01

    In the present paper an evaluation of the output uncertainty of an environmental model for assessing the transfer of 137 Cs and 131 I in the human food chain are carried out on the basis of a statistical analysis of data reported by the literature. The uncertainty analysis offers the oppotunity of obtaining some remarkable information about the uncertainty of models predicting the migration of non radioactive substances in the environment mainly in relation to the dry and wet deposition

  17. Merging Galaxy Clusters: Analysis of Simulated Analogs

    Science.gov (United States)

    Nguyen, Jayke; Wittman, David; Cornell, Hunter

    2018-01-01

    The nature of dark matter can be better constrained by observing merging galaxy clusters. However, uncertainty in the viewing angle leads to uncertainty in dynamical quantities such as 3-d velocities, 3-d separations, and time since pericenter. The classic timing argument links these quantities via equations of motion, but neglects effects of nonzero impact parameter (i.e. it assumes velocities are parallel to the separation vector), dynamical friction, substructure, and larger-scale environment. We present a new approach using n-body cosmological simulations that naturally incorporate these effects. By uniformly sampling viewing angles about simulated cluster analogs, we see projected merger parameters in the many possible configurations of a given cluster. We select comparable simulated analogs and evaluate the likelihood of particular merger parameters as a function of viewing angle. We present viewing angle constraints for a sample of observed mergers including the Bullet cluster and El Gordo, and show that the separation vectors are closer to the plane of the sky than previously reported.

  18. Timor-Leste : Country Environmental Analysis

    OpenAIRE

    World Bank

    2009-01-01

    The Country Environmental Analysis (CEA) for Timor-Leste identifies environmental priorities through a systematic review of environmental issues in natural resources management and environmental health in the context of the country's economic development and environmental institutions. Lack of data has been the main limitation in presenting a more rigorous analysis. Nevertheless, the repor...

  19. Analysis of Aspects of Innovation in a Brazilian Cluster

    Directory of Open Access Journals (Sweden)

    Adriana Valélia Saraceni

    2012-09-01

    Full Text Available Innovation through clustering has become very important on the increased significance that interaction represents on innovation and learning process concept. This study aims to identify whereas a case analysis on innovation process in a cluster represents on the learning process. Therefore, this study is developed in two stages. First, we used a preliminary case study verifying a cluster innovation analysis and it Innovation Index, for further, exploring a combined body of theory and practice. Further, the second stage is developed by exploring the learning process concept. Both stages allowed us building a theory model for the learning process development in clusters. The main results of the model development come up with a mechanism of improvement implementation on clusters when case studies are applied.

  20. Environmental sampling for trace analysis

    International Nuclear Information System (INIS)

    Markert, B.

    1994-01-01

    Often too little attention is given to the sampling before and after actual instrumental measurement. This leads to errors, despite increasingly sensitive analytical systems. This is one of the first books to pay proper attention to representative sampling. It offers an overview of the most common techniques used today for taking environmental samples. The techniques are clearly presented, yield accurate and reproducible results and can be used to sample -air - water - soil and sediments - plants and animals. A comprehensive handbook, this volume provides an excellent starting point for researchers in the rapidly expanding field of environmental analysis. (orig.)

  1. A Flocking Based algorithm for Document Clustering Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xiaohui [ORNL; Gao, Jinzhu [ORNL; Potok, Thomas E [ORNL

    2006-01-01

    Social animals or insects in nature often exhibit a form of emergent collective behavior known as flocking. In this paper, we present a novel Flocking based approach for document clustering analysis. Our Flocking clustering algorithm uses stochastic and heuristic principles discovered from observing bird flocks or fish schools. Unlike other partition clustering algorithm such as K-means, the Flocking based algorithm does not require initial partitional seeds. The algorithm generates a clustering of a given set of data through the embedding of the high-dimensional data items on a two-dimensional grid for easy clustering result retrieval and visualization. Inspired by the self-organized behavior of bird flocks, we represent each document object with a flock boid. The simple local rules followed by each flock boid result in the entire document flock generating complex global behaviors, which eventually result in a clustering of the documents. We evaluate the efficiency of our algorithm with both a synthetic dataset and a real document collection that includes 100 news articles collected from the Internet. Our results show that the Flocking clustering algorithm achieves better performance compared to the K- means and the Ant clustering algorithm for real document clustering.

  2. Reproducibility of Cognitive Profiles in Psychosis Using Cluster Analysis.

    Science.gov (United States)

    Lewandowski, Kathryn E; Baker, Justin T; McCarthy, Julie M; Norris, Lesley A; Öngür, Dost

    2018-04-01

    Cognitive dysfunction is a core symptom dimension that cuts across the psychoses. Recent findings support classification of patients along the cognitive dimension using cluster analysis; however, data-derived groupings may be highly determined by sampling characteristics and the measures used to derive the clusters, and so their interpretability must be established. We examined cognitive clusters in a cross-diagnostic sample of patients with psychosis and associations with clinical and functional outcomes. We then compared our findings to a previous report of cognitive clusters in a separate sample using a different cognitive battery. Participants with affective or non-affective psychosis (n=120) and healthy controls (n=31) were administered the MATRICS Consensus Cognitive Battery, and clinical and community functioning assessments. Cluster analyses were performed on cognitive variables, and clusters were compared on demographic, cognitive, and clinical measures. Results were compared to findings from our previous report. A four-cluster solution provided a good fit to the data; profiles included a neuropsychologically normal cluster, a globally impaired cluster, and two clusters of mixed profiles. Cognitive burden was associated with symptom severity and poorer community functioning. The patterns of cognitive performance by cluster were highly consistent with our previous findings. We found evidence of four cognitive subgroups of patients with psychosis, with cognitive profiles that map closely to those produced in our previous work. Clusters were associated with clinical and community variables and a measure of premorbid functioning, suggesting that they reflect meaningful groupings: replicable, and related to clinical presentation and functional outcomes. (JINS, 2018, 24, 382-390).

  3. Network Analysis Tools: from biological networks to clusters and pathways.

    Science.gov (United States)

    Brohée, Sylvain; Faust, Karoline; Lima-Mendez, Gipsi; Vanderstocken, Gilles; van Helden, Jacques

    2008-01-01

    Network Analysis Tools (NeAT) is a suite of computer tools that integrate various algorithms for the analysis of biological networks: comparison between graphs, between clusters, or between graphs and clusters; network randomization; analysis of degree distribution; network-based clustering and path finding. The tools are interconnected to enable a stepwise analysis of the network through a complete analytical workflow. In this protocol, we present a typical case of utilization, where the tasks above are combined to decipher a protein-protein interaction network retrieved from the STRING database. The results returned by NeAT are typically subnetworks, networks enriched with additional information (i.e., clusters or paths) or tables displaying statistics. Typical networks comprising several thousands of nodes and arcs can be analyzed within a few minutes. The complete protocol can be read and executed in approximately 1 h.

  4. Cluster analysis of typhoid cases in Kota Bharu, Kelantan, Malaysia

    Directory of Open Access Journals (Sweden)

    Nazarudin Safian

    2008-09-01

    Full Text Available Typhoid fever is still a major public health problem globally as well as in Malaysia. This study was done to identify the spatial epidemiology of typhoid fever in the Kota Bharu District of Malaysia as a first step to developing more advanced analysis of the whole country. The main characteristic of the epidemiological pattern that interested us was whether typhoid cases occurred in clusters or whether they were evenly distributed throughout the area. We also wanted to know at what spatial distances they were clustered. All confirmed typhoid cases that were reported to the Kota Bharu District Health Department from the year 2001 to June of 2005 were taken as the samples. From the home address of the cases, the location of the house was traced and a coordinate was taken using handheld GPS devices. Spatial statistical analysis was done to determine the distribution of typhoid cases, whether clustered, random or dispersed. The spatial statistical analysis was done using CrimeStat III software to determine whether typhoid cases occur in clusters, and later on to determine at what distances it clustered. From 736 cases involved in the study there was significant clustering for cases occurring in the years 2001, 2002, 2003 and 2005. There was no significant clustering in year 2004. Typhoid clustering also occurred strongly for distances up to 6 km. This study shows that typhoid cases occur in clusters, and this method could be applicable to describe spatial epidemiology for a specific area. (Med J Indones 2008; 17: 175-82Keywords: typhoid, clustering, spatial epidemiology, GIS

  5. Effects of Group Size and Lack of Sphericity on the Recovery of Clusters in K-Means Cluster Analysis

    Science.gov (United States)

    de Craen, Saskia; Commandeur, Jacques J. F.; Frank, Laurence E.; Heiser, Willem J.

    2006-01-01

    K-means cluster analysis is known for its tendency to produce spherical and equally sized clusters. To assess the magnitude of these effects, a simulation study was conducted, in which populations were created with varying departures from sphericity and group sizes. An analysis of the recovery of clusters in the samples taken from these…

  6. Statistical analysis of environmental data

    International Nuclear Information System (INIS)

    Beauchamp, J.J.; Bowman, K.O.; Miller, F.L. Jr.

    1975-10-01

    This report summarizes the analyses of data obtained by the Radiological Hygiene Branch of the Tennessee Valley Authority from samples taken around the Browns Ferry Nuclear Plant located in Northern Alabama. The data collection was begun in 1968 and a wide variety of types of samples have been gathered on a regular basis. The statistical analysis of environmental data involving very low-levels of radioactivity is discussed. Applications of computer calculations for data processing are described

  7. Using cluster analysis to organize and explore regional GPS velocities

    Science.gov (United States)

    Simpson, Robert W.; Thatcher, Wayne; Savage, James C.

    2012-01-01

    Cluster analysis offers a simple visual exploratory tool for the initial investigation of regional Global Positioning System (GPS) velocity observations, which are providing increasingly precise mappings of actively deforming continental lithosphere. The deformation fields from dense regional GPS networks can often be concisely described in terms of relatively coherent blocks bounded by active faults, although the choice of blocks, their number and size, can be subjective and is often guided by the distribution of known faults. To illustrate our method, we apply cluster analysis to GPS velocities from the San Francisco Bay Region, California, to search for spatially coherent patterns of deformation, including evidence of block-like behavior. The clustering process identifies four robust groupings of velocities that we identify with four crustal blocks. Although the analysis uses no prior geologic information other than the GPS velocities, the cluster/block boundaries track three major faults, both locked and creeping.

  8. A Novel Divisive Hierarchical Clustering Algorithm for Geospatial Analysis

    Directory of Open Access Journals (Sweden)

    Shaoning Li

    2017-01-01

    Full Text Available In the fields of geographic information systems (GIS and remote sensing (RS, the clustering algorithm has been widely used for image segmentation, pattern recognition, and cartographic generalization. Although clustering analysis plays a key role in geospatial modelling, traditional clustering methods are limited due to computational complexity, noise resistant ability and robustness. Furthermore, traditional methods are more focused on the adjacent spatial context, which makes it hard for the clustering methods to be applied to multi-density discrete objects. In this paper, a new method, cell-dividing hierarchical clustering (CDHC, is proposed based on convex hull retraction. The main steps are as follows. First, a convex hull structure is constructed to describe the global spatial context of geospatial objects. Then, the retracting structure of each borderline is established in sequence by setting the initial parameter. The objects are split into two clusters (i.e., “sub-clusters” if the retracting structure intersects with the borderlines. Finally, clusters are repeatedly split and the initial parameter is updated until the terminate condition is satisfied. The experimental results show that CDHC separates the multi-density objects from noise sufficiently and also reduces complexity compared to the traditional agglomerative hierarchical clustering algorithm.

  9. A Distributed Flocking Approach for Information Stream Clustering Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xiaohui [ORNL; Potok, Thomas E [ORNL

    2006-01-01

    Intelligence analysts are currently overwhelmed with the amount of information streams generated everyday. There is a lack of comprehensive tool that can real-time analyze the information streams. Document clustering analysis plays an important role in improving the accuracy of information retrieval. However, most clustering technologies can only be applied for analyzing the static document collection because they normally require a large amount of computation resource and long time to get accurate result. It is very difficult to cluster a dynamic changed text information streams on an individual computer. Our early research has resulted in a dynamic reactive flock clustering algorithm which can continually refine the clustering result and quickly react to the change of document contents. This character makes the algorithm suitable for cluster analyzing dynamic changed document information, such as text information stream. Because of the decentralized character of this algorithm, a distributed approach is a very natural way to increase the clustering speed of the algorithm. In this paper, we present a distributed multi-agent flocking approach for the text information stream clustering and discuss the decentralized architectures and communication schemes for load balance and status information synchronization in this approach.

  10. Clustering the Consumers According to Their Environmental Concern: A Study In the Turkish Market

    OpenAIRE

    Ahu Ergen; Filiz Bozkurt; Caner Giray

    2014-01-01

    The consumption of natural resources and environmental pollution is still one of our planets most serious problems. Accordingly, the number of consumers who are worried about diminishing natural resources is increasing rapidly. Knowing more about these consumers will give companies the opportunity to define their strategies appropriately. The objective of this study is to profile consumers regarding environmental concern and green buying behavior. Three distinct clusters are identified and th...

  11. Cluster analysis of clinical data identifies fibromyalgia subgroups.

    Directory of Open Access Journals (Sweden)

    Elisa Docampo

    Full Text Available INTRODUCTION: Fibromyalgia (FM is mainly characterized by widespread pain and multiple accompanying symptoms, which hinder FM assessment and management. In order to reduce FM heterogeneity we classified clinical data into simplified dimensions that were used to define FM subgroups. MATERIAL AND METHODS: 48 variables were evaluated in 1,446 Spanish FM cases fulfilling 1990 ACR FM criteria. A partitioning analysis was performed to find groups of variables similar to each other. Similarities between variables were identified and the variables were grouped into dimensions. This was performed in a subset of 559 patients, and cross-validated in the remaining 887 patients. For each sample and dimension, a composite index was obtained based on the weights of the variables included in the dimension. Finally, a clustering procedure was applied to the indexes, resulting in FM subgroups. RESULTS: VARIABLES CLUSTERED INTO THREE INDEPENDENT DIMENSIONS: "symptomatology", "comorbidities" and "clinical scales". Only the two first dimensions were considered for the construction of FM subgroups. Resulting scores classified FM samples into three subgroups: low symptomatology and comorbidities (Cluster 1, high symptomatology and comorbidities (Cluster 2, and high symptomatology but low comorbidities (Cluster 3, showing differences in measures of disease severity. CONCLUSIONS: We have identified three subgroups of FM samples in a large cohort of FM by clustering clinical data. Our analysis stresses the importance of family and personal history of FM comorbidities. Also, the resulting patient clusters could indicate different forms of the disease, relevant to future research, and might have an impact on clinical assessment.

  12. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013.

    Science.gov (United States)

    Forouzanfar, Mohammad H; Alexander, Lily; Anderson, H Ross; Bachman, Victoria F; Biryukov, Stan; Brauer, Michael; Burnett, Richard; Casey, Daniel; Coates, Matthew M; Cohen, Aaron; Delwiche, Kristen; Estep, Kara; Frostad, Joseph J; Astha, K C; Kyu, Hmwe H; Moradi-Lakeh, Maziar; Ng, Marie; Slepak, Erica Leigh; Thomas, Bernadette A; Wagner, Joseph; Aasvang, Gunn Marit; Abbafati, Cristiana; Abbasoglu Ozgoren, Ayse; Abd-Allah, Foad; Abera, Semaw F; Aboyans, Victor; Abraham, Biju; Abraham, Jerry Puthenpurakal; Abubakar, Ibrahim; Abu-Rmeileh, Niveen M E; Aburto, Tania C; Achoki, Tom; Adelekan, Ademola; Adofo, Koranteng; Adou, Arsène K; Adsuar, José C; Afshin, Ashkan; Agardh, Emilie E; Al Khabouri, Mazin J; Al Lami, Faris H; Alam, Sayed Saidul; Alasfoor, Deena; Albittar, Mohammed I; Alegretti, Miguel A; Aleman, Alicia V; Alemu, Zewdie A; Alfonso-Cristancho, Rafael; Alhabib, Samia; Ali, Raghib; Ali, Mohammed K; Alla, François; Allebeck, Peter; Allen, Peter J; Alsharif, Ubai; Alvarez, Elena; Alvis-Guzman, Nelson; Amankwaa, Adansi A; Amare, Azmeraw T; Ameh, Emmanuel A; Ameli, Omid; Amini, Heresh; Ammar, Walid; Anderson, Benjamin O; Antonio, Carl Abelardo T; Anwari, Palwasha; Argeseanu Cunningham, Solveig; Arnlöv, Johan; Arsenijevic, Valentina S Arsic; Artaman, Al; Asghar, Rana J; Assadi, Reza; Atkins, Lydia S; Atkinson, Charles; Avila, Marco A; Awuah, Baffour; Badawi, Alaa; Bahit, Maria C; Bakfalouni, Talal; Balakrishnan, Kalpana; Balalla, Shivanthi; Balu, Ravi Kumar; Banerjee, Amitava; Barber, Ryan M; Barker-Collo, Suzanne L; Barquera, Simon; Barregard, Lars; Barrero, Lope H; Barrientos-Gutierrez, Tonatiuh; Basto-Abreu, Ana C; Basu, Arindam; Basu, Sanjay; Basulaiman, Mohammed O; Batis Ruvalcaba, Carolina; Beardsley, Justin; Bedi, Neeraj; Bekele, Tolesa; Bell, Michelle L; Benjet, Corina; Bennett, Derrick A; Benzian, Habib; Bernabé, Eduardo; Beyene, Tariku J; Bhala, Neeraj; Bhalla, Ashish; Bhutta, Zulfiqar A; Bikbov, Boris; Bin Abdulhak, Aref A; Blore, Jed D; Blyth, Fiona M; Bohensky, Megan A; Bora Başara, Berrak; Borges, Guilherme; Bornstein, Natan M; Bose, Dipan; Boufous, Soufiane; Bourne, Rupert R; Brainin, Michael; Brazinova, Alexandra; Breitborde, Nicholas J; Brenner, Hermann; Briggs, Adam D M; Broday, David M; Brooks, Peter M; Bruce, Nigel G; Brugha, Traolach S; Brunekreef, Bert; Buchbinder, Rachelle; Bui, Linh N; Bukhman, Gene; Bulloch, Andrew G; Burch, Michael; Burney, Peter G J; Campos-Nonato, Ismael R; Campuzano, Julio C; Cantoral, Alejandra J; Caravanos, Jack; Cárdenas, Rosario; Cardis, Elisabeth; Carpenter, David O; Caso, Valeria; Castañeda-Orjuela, Carlos A; Castro, Ruben E; Catalá-López, Ferrán; Cavalleri, Fiorella; Çavlin, Alanur; Chadha, Vineet K; Chang, Jung-Chen; Charlson, Fiona J; Chen, Honglei; Chen, Wanqing; Chen, Zhengming; Chiang, Peggy P; Chimed-Ochir, Odgerel; Chowdhury, Rajiv; Christophi, Costas A; Chuang, Ting-Wu; Chugh, Sumeet S; Cirillo, Massimo; Claßen, Thomas K D; Colistro, Valentina; Colomar, Mercedes; Colquhoun, Samantha M; Contreras, Alejandra G; Cooper, Cyrus; Cooperrider, Kimberly; Cooper, Leslie T; Coresh, Josef; Courville, Karen J; Criqui, Michael H; Cuevas-Nasu, Lucia; Damsere-Derry, James; Danawi, Hadi; Dandona, Lalit; Dandona, Rakhi; Dargan, Paul I; Davis, Adrian; Davitoiu, Dragos V; Dayama, Anand; de Castro, E Filipa; De la Cruz-Góngora, Vanessa; De Leo, Diego; de Lima, Graça; Degenhardt, Louisa; del Pozo-Cruz, Borja; Dellavalle, Robert P; Deribe, Kebede; Derrett, Sarah; Des Jarlais, Don C; Dessalegn, Muluken; deVeber, Gabrielle A; Devries, Karen M; Dharmaratne, Samath D; Dherani, Mukesh K; Dicker, Daniel; Ding, Eric L; Dokova, Klara; Dorsey, E Ray; Driscoll, Tim R; Duan, Leilei; Durrani, Adnan M; Ebel, Beth E; Ellenbogen, Richard G; Elshrek, Yousef M; Endres, Matthias; Ermakov, Sergey P; Erskine, Holly E; Eshrati, Babak; Esteghamati, Alireza; Fahimi, Saman; Faraon, Emerito Jose A; Farzadfar, Farshad; Fay, Derek F J; Feigin, Valery L; Feigl, Andrea B; Fereshtehnejad, Seyed-Mohammad; Ferrari, Alize J; Ferri, Cleusa P; Flaxman, Abraham D; Fleming, Thomas D; Foigt, Nataliya; Foreman, Kyle J; Paleo, Urbano Fra; Franklin, Richard C; Gabbe, Belinda; Gaffikin, Lynne; Gakidou, Emmanuela; Gamkrelidze, Amiran; Gankpé, Fortuné G; Gansevoort, Ron T; García-Guerra, Francisco A; Gasana, Evariste; Geleijnse, Johanna M; Gessner, Bradford D; Gething, Pete; Gibney, Katherine B; Gillum, Richard F; Ginawi, Ibrahim A M; Giroud, Maurice; Giussani, Giorgia; Goenka, Shifalika; Goginashvili, Ketevan; Gomez Dantes, Hector; Gona, Philimon; Gonzalez de Cosio, Teresita; González-Castell, Dinorah; Gotay, Carolyn C; Goto, Atsushi; Gouda, Hebe N; Guerrant, Richard L; Gugnani, Harish C; Guillemin, Francis; Gunnell, David; Gupta, Rahul; Gupta, Rajeev; Gutiérrez, Reyna A; Hafezi-Nejad, Nima; Hagan, Holly; Hagstromer, Maria; Halasa, Yara A; Hamadeh, Randah R; Hammami, Mouhanad; Hankey, Graeme J; Hao, Yuantao; Harb, Hilda L; Haregu, Tilahun Nigatu; Haro, Josep Maria; Havmoeller, Rasmus; Hay, Simon I; Hedayati, Mohammad T; Heredia-Pi, Ileana B; Hernandez, Lucia; Heuton, Kyle R; Heydarpour, Pouria; Hijar, Martha; Hoek, Hans W; Hoffman, Howard J; Hornberger, John C; Hosgood, H Dean; Hoy, Damian G; Hsairi, Mohamed; Hu, Guoqing; Hu, Howard; Huang, Cheng; Huang, John J; Hubbell, Bryan J; Huiart, Laetitia; Husseini, Abdullatif; Iannarone, Marissa L; Iburg, Kim M; Idrisov, Bulat T; Ikeda, Nayu; Innos, Kaire; Inoue, Manami; Islami, Farhad; Ismayilova, Samaya; Jacobsen, Kathryn H; Jansen, Henrica A; Jarvis, Deborah L; Jassal, Simerjot K; Jauregui, Alejandra; Jayaraman, Sudha; Jeemon, Panniyammakal; Jensen, Paul N; Jha, Vivekanand; Jiang, Fan; Jiang, Guohong; Jiang, Ying; Jonas, Jost B; Juel, Knud; Kan, Haidong; Kany Roseline, Sidibe S; Karam, Nadim E; Karch, André; Karema, Corine K; Karthikeyan, Ganesan; Kaul, Anil; Kawakami, Norito; Kazi, Dhruv S; Kemp, Andrew H; Kengne, Andre P; Keren, Andre; Khader, Yousef S; Khalifa, Shams Eldin Ali Hassan; Khan, Ejaz A; Khang, Young-Ho; Khatibzadeh, Shahab; Khonelidze, Irma; Kieling, Christian; Kim, Daniel; Kim, Sungroul; Kim, Yunjin; Kimokoti, Ruth W; Kinfu, Yohannes; Kinge, Jonas M; Kissela, Brett M; Kivipelto, Miia; Knibbs, Luke D; Knudsen, Ann Kristin; Kokubo, Yoshihiro; Kose, M Rifat; Kosen, Soewarta; Kraemer, Alexander; Kravchenko, Michael; Krishnaswami, Sanjay; Kromhout, Hans; Ku, Tiffany; Kuate Defo, Barthelemy; Kucuk Bicer, Burcu; Kuipers, Ernst J; Kulkarni, Chanda; Kulkarni, Veena S; Kumar, G Anil; Kwan, Gene F; Lai, Taavi; Lakshmana Balaji, Arjun; Lalloo, Ratilal; Lallukka, Tea; Lam, Hilton; Lan, Qing; Lansingh, Van C; Larson, Heidi J; Larsson, Anders; Laryea, Dennis O; Lavados, Pablo M; Lawrynowicz, Alicia E; Leasher, Janet L; Lee, Jong-Tae; Leigh, James; Leung, Ricky; Levi, Miriam; Li, Yichong; Li, Yongmei; Liang, Juan; Liang, Xiaofeng; Lim, Stephen S; Lindsay, M Patrice; Lipshultz, Steven E; Liu, Shiwei; Liu, Yang; Lloyd, Belinda K; Logroscino, Giancarlo; London, Stephanie J; Lopez, Nancy; Lortet-Tieulent, Joannie; Lotufo, Paulo A; Lozano, Rafael; Lunevicius, Raimundas; Ma, Jixiang; Ma, Stefan; Machado, Vasco M P; MacIntyre, Michael F; Magis-Rodriguez, Carlos; Mahdi, Abbas A; Majdan, Marek; Malekzadeh, Reza; Mangalam, Srikanth; Mapoma, Christopher C; Marape, Marape; Marcenes, Wagner; Margolis, David J; Margono, Christopher; Marks, Guy B; Martin, Randall V; Marzan, Melvin B; Mashal, Mohammad T; Masiye, Felix; Mason-Jones, Amanda J; Matsushita, Kunihiro; Matzopoulos, Richard; Mayosi, Bongani M; Mazorodze, Tasara T; McKay, Abigail C; McKee, Martin; McLain, Abigail; Meaney, Peter A; Medina, Catalina; Mehndiratta, Man Mohan; Mejia-Rodriguez, Fabiola; Mekonnen, Wubegzier; Melaku, Yohannes A; Meltzer, Michele; Memish, Ziad A; Mendoza, Walter; Mensah, George A; Meretoja, Atte; Mhimbira, Francis Apolinary; Micha, Renata; Miller, Ted R; Mills, Edward J; Misganaw, Awoke; Mishra, Santosh; Mohamed Ibrahim, Norlinah; Mohammad, Karzan A; Mokdad, Ali H; Mola, Glen L; Monasta, Lorenzo; Montañez Hernandez, Julio C; Montico, Marcella; Moore, Ami R; Morawska, Lidia; Mori, Rintaro; Moschandreas, Joanna; Moturi, Wilkister N; Mozaffarian, Dariush; Mueller, Ulrich O; Mukaigawara, Mitsuru; Mullany, Erin C; Murthy, Kinnari S; Naghavi, Mohsen; Nahas, Ziad; Naheed, Aliya; Naidoo, Kovin S; Naldi, Luigi; Nand, Devina; Nangia, Vinay; Narayan, K M Venkat; Nash, Denis; Neal, Bruce; Nejjari, Chakib; Neupane, Sudan P; Newton, Charles R; Ngalesoni, Frida N; Ngirabega, Jean de Dieu; Nguyen, Grant; Nguyen, Nhung T; Nieuwenhuijsen, Mark J; Nisar, Muhammad I; Nogueira, José R; Nolla, Joan M; Nolte, Sandra; Norheim, Ole F; Norman, Rosana E; Norrving, Bo; Nyakarahuka, Luke; Oh, In-Hwan; Ohkubo, Takayoshi; Olusanya, Bolajoko O; Omer, Saad B; Opio, John Nelson; Orozco, Ricardo; Pagcatipunan, Rodolfo S; Pain, Amanda W; Pandian, Jeyaraj D; Panelo, Carlo Irwin A; Papachristou, Christina; Park, Eun-Kee; Parry, Charles D; Paternina Caicedo, Angel J; Patten, Scott B; Paul, Vinod K; Pavlin, Boris I; Pearce, Neil; Pedraza, Lilia S; Pedroza, Andrea; Pejin Stokic, Ljiljana; Pekericli, Ayfer; Pereira, David M; Perez-Padilla, Rogelio; Perez-Ruiz, Fernando; Perico, Norberto; Perry, Samuel A L; Pervaiz, Aslam; Pesudovs, Konrad; Peterson, Carrie B; Petzold, Max; Phillips, Michael R; Phua, Hwee Pin; Plass, Dietrich; Poenaru, Dan; Polanczyk, Guilherme V; Polinder, Suzanne; Pond, Constance D; Pope, C Arden; Pope, Daniel; Popova, Svetlana; Pourmalek, Farshad; Powles, John; Prabhakaran, Dorairaj; Prasad, Noela M; Qato, Dima M; Quezada, Amado D; Quistberg, D Alex A; Racapé, Lionel; Rafay, Anwar; Rahimi, Kazem; Rahimi-Movaghar, Vafa; Rahman, Sajjad Ur; Raju, Murugesan; Rakovac, Ivo; Rana, Saleem M; Rao, Mayuree; Razavi, Homie; Reddy, K Srinath; Refaat, Amany H; Rehm, Jürgen; Remuzzi, Giuseppe; Ribeiro, Antonio L; Riccio, Patricia M; Richardson, Lee; Riederer, Anne; Robinson, Margaret; Roca, Anna; Rodriguez, Alina; Rojas-Rueda, David; Romieu, Isabelle; Ronfani, Luca; Room, Robin; Roy, Nobhojit; Ruhago, George M; Rushton, Lesley; Sabin, Nsanzimana; Sacco, Ralph L; Saha, Sukanta; Sahathevan, Ramesh; Sahraian, Mohammad Ali; Salomon, Joshua A; Salvo, Deborah; Sampson, Uchechukwu K; Sanabria, Juan R; Sanchez, Luz Maria; Sánchez-Pimienta, Tania G; Sanchez-Riera, Lidia; Sandar, Logan; Santos, Itamar S; Sapkota, Amir; Satpathy, Maheswar; Saunders, James E; Sawhney, Monika; Saylan, Mete I; Scarborough, Peter; Schmidt, Jürgen C; Schneider, Ione J C; Schöttker, Ben; Schwebel, David C; Scott, James G; Seedat, Soraya; Sepanlou, Sadaf G; Serdar, Berrin; Servan-Mori, Edson E; Shaddick, Gavin; Shahraz, Saeid; Levy, Teresa Shamah; Shangguan, Siyi; She, Jun; Sheikhbahaei, Sara; Shibuya, Kenji; Shin, Hwashin H; Shinohara, Yukito; Shiri, Rahman; Shishani, Kawkab; Shiue, Ivy; Sigfusdottir, Inga D; Silberberg, Donald H; Simard, Edgar P; Sindi, Shireen; Singh, Abhishek; Singh, Gitanjali M; Singh, Jasvinder A; Skirbekk, Vegard; Sliwa, Karen; Soljak, Michael; Soneji, Samir; Søreide, Kjetil; Soshnikov, Sergey; Sposato, Luciano A; Sreeramareddy, Chandrashekhar T; Stapelberg, Nicolas J C; Stathopoulou, Vasiliki; Steckling, Nadine; Stein, Dan J; Stein, Murray B; Stephens, Natalie; Stöckl, Heidi; Straif, Kurt; Stroumpoulis, Konstantinos; Sturua, Lela; Sunguya, Bruno F; Swaminathan, Soumya; Swaroop, Mamta; Sykes, Bryan L; Tabb, Karen M; Takahashi, Ken; Talongwa, Roberto T; Tandon, Nikhil; Tanne, David; Tanner, Marcel; Tavakkoli, Mohammad; Te Ao, Braden J; Teixeira, Carolina M; Téllez Rojo, Martha M; Terkawi, Abdullah S; Texcalac-Sangrador, José Luis; Thackway, Sarah V; Thomson, Blake; Thorne-Lyman, Andrew L; Thrift, Amanda G; Thurston, George D; Tillmann, Taavi; Tobollik, Myriam; Tonelli, Marcello; Topouzis, Fotis; Towbin, Jeffrey A; Toyoshima, Hideaki; Traebert, Jefferson; Tran, Bach X; Trasande, Leonardo; Trillini, Matias; Trujillo, Ulises; Dimbuene, Zacharie Tsala; Tsilimbaris, Miltiadis; Tuzcu, Emin Murat; Uchendu, Uche S; Ukwaja, Kingsley N; Uzun, Selen B; van de Vijver, Steven; Van Dingenen, Rita; van Gool, Coen H; van Os, Jim; Varakin, Yuri Y; Vasankari, Tommi J; Vasconcelos, Ana Maria N; Vavilala, Monica S; Veerman, Lennert J; Velasquez-Melendez, Gustavo; Venketasubramanian, N; Vijayakumar, Lakshmi; Villalpando, Salvador; Violante, Francesco S; Vlassov, Vasiliy Victorovich; Vollset, Stein Emil; Wagner, Gregory R; Waller, Stephen G; Wallin, Mitchell T; Wan, Xia; Wang, Haidong; Wang, JianLi; Wang, Linhong; Wang, Wenzhi; Wang, Yanping; Warouw, Tati S; Watts, Charlotte H; Weichenthal, Scott; Weiderpass, Elisabete; Weintraub, Robert G; Werdecker, Andrea; Wessells, K Ryan; Westerman, Ronny; Whiteford, Harvey A; Wilkinson, James D; Williams, Hywel C; Williams, Thomas N; Woldeyohannes, Solomon M; Wolfe, Charles D A; Wong, John Q; Woolf, Anthony D; Wright, Jonathan L; Wurtz, Brittany; Xu, Gelin; Yan, Lijing L; Yang, Gonghuan; Yano, Yuichiro; Ye, Pengpeng; Yenesew, Muluken; Yentür, Gökalp K; Yip, Paul; Yonemoto, Naohiro; Yoon, Seok-Jun; Younis, Mustafa Z; Younoussi, Zourkaleini; Yu, Chuanhua; Zaki, Maysaa E; Zhao, Yong; Zheng, Yingfeng; Zhou, Maigeng; Zhu, Jun; Zhu, Shankuan; Zou, Xiaonong; Zunt, Joseph R; Lopez, Alan D; Vos, Theo; Murray, Christopher J

    2015-12-05

    The Global Burden of Disease, Injuries, and Risk Factor study 2013 (GBD 2013) is the first of a series of annual updates of the GBD. Risk factor quantification, particularly of modifiable risk factors, can help to identify emerging threats to population health and opportunities for prevention. The GBD 2013 provides a timely opportunity to update the comparative risk assessment with new data for exposure, relative risks, and evidence on the appropriate counterfactual risk distribution. Attributable deaths, years of life lost, years lived with disability, and disability-adjusted life-years (DALYs) have been estimated for 79 risks or clusters of risks using the GBD 2010 methods. Risk-outcome pairs meeting explicit evidence criteria were assessed for 188 countries for the period 1990-2013 by age and sex using three inputs: risk exposure, relative risks, and the theoretical minimum risk exposure level (TMREL). Risks are organised into a hierarchy with blocks of behavioural, environmental and occupational, and metabolic risks at the first level of the hierarchy. The next level in the hierarchy includes nine clusters of related risks and two individual risks, with more detail provided at levels 3 and 4 of the hierarchy. Compared with GBD 2010, six new risk factors have been added: handwashing practices, occupational exposure to trichloroethylene, childhood wasting, childhood stunting, unsafe sex, and low glomerular filtration rate. For most risks, data for exposure were synthesised with a Bayesian meta-regression method, DisMod-MR 2.0, or spatial-temporal Gaussian process regression. Relative risks were based on meta-regressions of published cohort and intervention studies. Attributable burden for clusters of risks and all risks combined took into account evidence on the mediation of some risks such as high body-mass index (BMI) through other risks such as high systolic blood pressure and high cholesterol. All risks combined account for 57·2% (95% uncertainty interval

  13. Clustering Trajectories by Relevant Parts for Air Traffic Analysis.

    Science.gov (United States)

    Andrienko, Gennady; Andrienko, Natalia; Fuchs, Georg; Garcia, Jose Manuel Cordero

    2018-01-01

    Clustering of trajectories of moving objects by similarity is an important technique in movement analysis. Existing distance functions assess the similarity between trajectories based on properties of the trajectory points or segments. The properties may include the spatial positions, times, and thematic attributes. There may be a need to focus the analysis on certain parts of trajectories, i.e., points and segments that have particular properties. According to the analysis focus, the analyst may need to cluster trajectories by similarity of their relevant parts only. Throughout the analysis process, the focus may change, and different parts of trajectories may become relevant. We propose an analytical workflow in which interactive filtering tools are used to attach relevance flags to elements of trajectories, clustering is done using a distance function that ignores irrelevant elements, and the resulting clusters are summarized for further analysis. We demonstrate how this workflow can be useful for different analysis tasks in three case studies with real data from the domain of air traffic. We propose a suite of generic techniques and visualization guidelines to support movement data analysis by means of relevance-aware trajectory clustering.

  14. Cluster analysis of Southeastern U.S. climate stations

    Science.gov (United States)

    Stooksbury, D. E.; Michaels, P. J.

    1991-09-01

    A two-step cluster analysis of 449 Southeastern climate stations is used to objectively determine general climate clusters (groups of climate stations) for eight southeastern states. The purpose is objectively to define regions of climatic homogeneity that should perform more robustly in subsequent climatic impact models. This type of analysis has been successfully used in many related climate research problems including the determination of corn/climate districts in Iowa (Ortiz-Valdez, 1985) and the classification of synoptic climate types (Davis, 1988). These general climate clusters may be more appropriate for climate research than the standard climate divisions (CD) groupings of climate stations, which are modifications of the agro-economic United States Department of Agriculture crop reporting districts. Unlike the CD's, these objectively determined climate clusters are not restricted by state borders and thus have reduced multicollinearity which makes them more appropriate for the study of the impact of climate and climatic change.

  15. Emergy-based comparative analysis on industrial clusters: economic and technological development zone of Shenyang area, China.

    Science.gov (United States)

    Liu, Zhe; Geng, Yong; Zhang, Pan; Dong, Huijuan; Liu, Zuoxi

    2014-09-01

    In China, local governments of many areas prefer to give priority to the development of heavy industrial clusters in pursuit of high value of gross domestic production (GDP) growth to get political achievements, which usually results in higher costs from ecological degradation and environmental pollution. Therefore, effective methods and reasonable evaluation system are urgently needed to evaluate the overall efficiency of industrial clusters. Emergy methods links economic and ecological systems together, which can evaluate the contribution of ecological products and services as well as the load placed on environmental systems. This method has been successfully applied in many case studies of ecosystem but seldom in industrial clusters. This study applied the methodology of emergy analysis to perform the efficiency of industrial clusters through a series of emergy-based indices as well as the proposed indicators. A case study of Shenyang Economic Technological Development Area (SETDA) was investigated to show the emergy method's practical potential to evaluate industrial clusters to inform environmental policy making. The results of our study showed that the industrial cluster of electric equipment and electronic manufacturing produced the most economic value and had the highest efficiency of energy utilization among the four industrial clusters. However, the sustainability index of the industrial cluster of food and beverage processing was better than the other industrial clusters.

  16. Integrated environmental management of wastewater discharged from a cluster of five textile factories

    International Nuclear Information System (INIS)

    El-Gohary, F. A.; Nasr, F. A.; Abdel Baset, N.; Shoush, M.; Ali, H. I.

    2009-01-01

    The study focuses on the cleaner production opportunities for a cluster of five factories discharging their wastewater into agricultural drain prior to wastewater treatment the financial and environmental benefits accrued upon the implementation of the proposed cleaner production schemes have been estimated. This was followed by a laboratory study to propose the appropriate treatment system. (Author)

  17. Development of small scale cluster computer for numerical analysis

    Science.gov (United States)

    Zulkifli, N. H. N.; Sapit, A.; Mohammed, A. N.

    2017-09-01

    In this study, two units of personal computer were successfully networked together to form a small scale cluster. Each of the processor involved are multicore processor which has four cores in it, thus made this cluster to have eight processors. Here, the cluster incorporate Ubuntu 14.04 LINUX environment with MPI implementation (MPICH2). Two main tests were conducted in order to test the cluster, which is communication test and performance test. The communication test was done to make sure that the computers are able to pass the required information without any problem and were done by using simple MPI Hello Program where the program written in C language. Additional, performance test was also done to prove that this cluster calculation performance is much better than single CPU computer. In this performance test, four tests were done by running the same code by using single node, 2 processors, 4 processors, and 8 processors. The result shows that with additional processors, the time required to solve the problem decrease. Time required for the calculation shorten to half when we double the processors. To conclude, we successfully develop a small scale cluster computer using common hardware which capable of higher computing power when compare to single CPU processor, and this can be beneficial for research that require high computing power especially numerical analysis such as finite element analysis, computational fluid dynamics, and computational physics analysis.

  18. Predicting healthcare outcomes in prematurely born infants using cluster analysis.

    Science.gov (United States)

    MacBean, Victoria; Lunt, Alan; Drysdale, Simon B; Yarzi, Muska N; Rafferty, Gerrard F; Greenough, Anne

    2018-05-23

    Prematurely born infants are at high risk of respiratory morbidity following neonatal unit discharge, though prediction of outcomes is challenging. We have tested the hypothesis that cluster analysis would identify discrete groups of prematurely born infants with differing respiratory outcomes during infancy. A total of 168 infants (median (IQR) gestational age 33 (31-34) weeks) were recruited in the neonatal period from consecutive births in a tertiary neonatal unit. The baseline characteristics of the infants were used to classify them into hierarchical agglomerative clusters. Rates of viral lower respiratory tract infections (LRTIs) were recorded for 151 infants in the first year after birth. Infants could be classified according to birth weight and duration of neonatal invasive mechanical ventilation (MV) into three clusters. Cluster one (MV ≤5 days) had few LRTIs. Clusters two and three (both MV ≥6 days, but BW ≥or <882 g respectively), had significantly higher LRTI rates. Cluster two had a higher proportion of infants experiencing respiratory syncytial virus LRTIs (P = 0.01) and cluster three a higher proportion of rhinovirus LRTIs (P < 0.001) CONCLUSIONS: Readily available clinical data allowed classification of prematurely born infants into one of three distinct groups with differing subsequent respiratory morbidity in infancy. © 2018 Wiley Periodicals, Inc.

  19. Cluster analysis of radionuclide concentrations in beach sand

    NARCIS (Netherlands)

    de Meijer, R.J.; James, I.; Jennings, P.J.; Keoyers, J.E.

    This paper presents a method in which natural radionuclide concentrations of beach sand minerals are traced along a stretch of coast by cluster analysis. This analysis yields two groups of mineral deposit with different origins. The method deviates from standard methods of following dispersal of

  20. Principal Component Clustering Approach to Teaching Quality Discriminant Analysis

    Science.gov (United States)

    Xian, Sidong; Xia, Haibo; Yin, Yubo; Zhai, Zhansheng; Shang, Yan

    2016-01-01

    Teaching quality is the lifeline of the higher education. Many universities have made some effective achievement about evaluating the teaching quality. In this paper, we establish the Students' evaluation of teaching (SET) discriminant analysis model and algorithm based on principal component clustering analysis. Additionally, we classify the SET…

  1. Characterizing Suicide in Toronto: An Observational Study and Cluster Analysis

    Science.gov (United States)

    Sinyor, Mark; Schaffer, Ayal; Streiner, David L

    2014-01-01

    Objective: To determine whether people who have died from suicide in a large epidemiologic sample form clusters based on demographic, clinical, and psychosocial factors. Method: We conducted a coroner’s chart review for 2886 people who died in Toronto, Ontario, from 1998 to 2010, and whose death was ruled as suicide by the Office of the Chief Coroner of Ontario. A cluster analysis using known suicide risk factors was performed to determine whether suicide deaths separate into distinct groups. Clusters were compared according to person- and suicide-specific factors. Results: Five clusters emerged. Cluster 1 had the highest proportion of females and nonviolent methods, and all had depression and a past suicide attempt. Cluster 2 had the highest proportion of people with a recent stressor and violent suicide methods, and all were married. Cluster 3 had mostly males between the ages of 20 and 64, and all had either experienced recent stressors, suffered from mental illness, or had a history of substance abuse. Cluster 4 had the youngest people and the highest proportion of deaths by jumping from height, few were married, and nearly one-half had bipolar disorder or schizophrenia. Cluster 5 had all unmarried people with no prior suicide attempts, and were the least likely to have an identified mental illness and most likely to leave a suicide note. Conclusions: People who die from suicide assort into different patterns of demographic, clinical, and death-specific characteristics. Identifying and studying subgroups of suicides may advance our understanding of the heterogeneous nature of suicide and help to inform development of more targeted suicide prevention strategies. PMID:24444321

  2. Pattern recognition in menstrual bleeding diaries by statistical cluster analysis

    Directory of Open Access Journals (Sweden)

    Wessel Jens

    2009-07-01

    Full Text Available Abstract Background The aim of this paper is to empirically identify a treatment-independent statistical method to describe clinically relevant bleeding patterns by using bleeding diaries of clinical studies on various sex hormone containing drugs. Methods We used the four cluster analysis methods single, average and complete linkage as well as the method of Ward for the pattern recognition in menstrual bleeding diaries. The optimal number of clusters was determined using the semi-partial R2, the cubic cluster criterion, the pseudo-F- and the pseudo-t2-statistic. Finally, the interpretability of the results from a gynecological point of view was assessed. Results The method of Ward yielded distinct clusters of the bleeding diaries. The other methods successively chained the observations into one cluster. The optimal number of distinctive bleeding patterns was six. We found two desirable and four undesirable bleeding patterns. Cyclic and non cyclic bleeding patterns were well separated. Conclusion Using this cluster analysis with the method of Ward medications and devices having an impact on bleeding can be easily compared and categorized.

  3. Technology Clusters Exploration for Patent Portfolio through Patent Abstract Analysis

    Directory of Open Access Journals (Sweden)

    Gabjo Kim

    2016-12-01

    Full Text Available This study explores technology clusters through patent analysis. The aim of exploring technology clusters is to grasp competitors’ levels of sustainable research and development (R&D and establish a sustainable strategy for entering an industry. To achieve this, we first grouped the patent documents with similar technologies by applying affinity propagation (AP clustering, which is effective while grouping large amounts of data. Next, in order to define the technology clusters, we adopted the term frequency-inverse document frequency (TF-IDF weight, which lists the terms in order of importance. We collected the patent data of Korean electric car companies from the United States Patent and Trademark Office (USPTO to verify our proposed methodology. As a result, our proposed methodology presents more detailed information on the Korean electric car industry than previous studies.

  4. Cluster analysis of tropical cyclone tracks in the Southern Hemisphere

    Energy Technology Data Exchange (ETDEWEB)

    Ramsay, Hamish A. [Monash University, Monash Weather and Climate, School of Mathematical Sciences, Clayton, VIC (Australia); Camargo, Suzana J.; Kim, Daehyun [Columbia University, Lamont-Doherty Earth Observatory, Palisades, NY (United States)

    2012-08-15

    A probabilistic clustering method is used to describe various aspects of tropical cyclone (TC) tracks in the Southern Hemisphere, for the period 1969-2008. A total of 7 clusters are examined: three in the South Indian Ocean, three in the Australian Region, and one in the South Pacific Ocean. Large-scale environmental variables related to TC genesis in each cluster are explored, including sea surface temperature, low-level relative vorticity, deep-layer vertical wind shear, outgoing longwave radiation, El Nino-Southern Oscillation (ENSO) and the Madden-Julian Oscillation (MJO). Composite maps, constructed 2 days prior to genesis, show some of these to be significant precursors to TC formation - most prominently, westerly wind anomalies equatorward of the main development regions. Clusters are also evaluated with respect to their genesis location, seasonality, mean peak intensity, track duration, landfall location, and intensity at landfall. ENSO is found to play a significant role in modulating annual frequency and mean genesis location in three of the seven clusters (two in the South Indian Ocean and one in the Pacific). The ENSO-modulating effect on genesis frequency is caused primarily by changes in low-level zonal flow between the equator and 10 S, and associated relative vorticity changes in the main development regions. ENSO also has a significant effect on mean genesis location in three clusters, with TCs forming further equatorward (poleward) during El Nino (La Nina) in addition to large shifts in mean longitude. The MJO has a strong influence on TC genesis in all clusters, though the amount modulation is found to be sensitive to the definition of the MJO. (orig.)

  5. CLUSTER ANALYSIS UKRAINIAN REGIONAL DISTRIBUTION BY LEVEL OF INNOVATION

    Directory of Open Access Journals (Sweden)

    Roman Shchur

    2016-07-01

    Full Text Available   SWOT-analysis of the threats and benefits of innovation development strategy of Ivano-Frankivsk region in the context of financial support was сonducted. Methodical approach to determine of public-private partnerships potential that is tool of innovative economic development financing was identified. Cluster analysis of possibilities of forming public-private partnership in a particular region was carried out. Optimal set of problem areas that require urgent solutions and financial security is defined on the basis of cluster approach. It will help to form practical recommendations for the formation of an effective financial mechanism in the regions of Ukraine. Key words: the mechanism of innovation development financial provision, innovation development, public-private partnerships, cluster analysis, innovative development strategy.

  6. Ecosystem health pattern analysis of urban clusters based on emergy synthesis: Results and implication for management

    International Nuclear Information System (INIS)

    Su, Meirong; Fath, Brian D.; Yang, Zhifeng; Chen, Bin; Liu, Gengyuan

    2013-01-01

    The evaluation of ecosystem health in urban clusters will help establish effective management that promotes sustainable regional development. To standardize the application of emergy synthesis and set pair analysis (EM–SPA) in ecosystem health assessment, a procedure for using EM–SPA models was established in this paper by combining the ability of emergy synthesis to reflect health status from a biophysical perspective with the ability of set pair analysis to describe extensive relationships among different variables. Based on the EM–SPA model, the relative health levels of selected urban clusters and their related ecosystem health patterns were characterized. The health states of three typical Chinese urban clusters – Jing-Jin-Tang, Yangtze River Delta, and Pearl River Delta – were investigated using the model. The results showed that the health status of the Pearl River Delta was relatively good; the health for the Yangtze River Delta was poor. As for the specific health characteristics, the Pearl River Delta and Yangtze River Delta urban clusters were relatively strong in Vigor, Resilience, and Urban ecosystem service function maintenance, while the Jing-Jin-Tang was relatively strong in organizational structure and environmental impact. Guidelines for managing these different urban clusters were put forward based on the analysis of the results of this study. - Highlights: • The use of integrated emergy synthesis and set pair analysis model was standardized. • The integrated model was applied on the scale of an urban cluster. • Health patterns of different urban clusters were compared. • Policy suggestions were provided based on the health pattern analysis

  7. Cluster-based analysis of multi-model climate ensembles

    Science.gov (United States)

    Hyde, Richard; Hossaini, Ryan; Leeson, Amber A.

    2018-06-01

    Clustering - the automated grouping of similar data - can provide powerful and unique insight into large and complex data sets, in a fast and computationally efficient manner. While clustering has been used in a variety of fields (from medical image processing to economics), its application within atmospheric science has been fairly limited to date, and the potential benefits of the application of advanced clustering techniques to climate data (both model output and observations) has yet to be fully realised. In this paper, we explore the specific application of clustering to a multi-model climate ensemble. We hypothesise that clustering techniques can provide (a) a flexible, data-driven method of testing model-observation agreement and (b) a mechanism with which to identify model development priorities. We focus our analysis on chemistry-climate model (CCM) output of tropospheric ozone - an important greenhouse gas - from the recent Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Tropospheric column ozone from the ACCMIP ensemble was clustered using the Data Density based Clustering (DDC) algorithm. We find that a multi-model mean (MMM) calculated using members of the most-populous cluster identified at each location offers a reduction of up to ˜ 20 % in the global absolute mean bias between the MMM and an observed satellite-based tropospheric ozone climatology, with respect to a simple, all-model MMM. On a spatial basis, the bias is reduced at ˜ 62 % of all locations, with the largest bias reductions occurring in the Northern Hemisphere - where ozone concentrations are relatively large. However, the bias is unchanged at 9 % of all locations and increases at 29 %, particularly in the Southern Hemisphere. The latter demonstrates that although cluster-based subsampling acts to remove outlier model data, such data may in fact be closer to observed values in some locations. We further demonstrate that clustering can provide a viable and

  8. Application of microarray analysis on computer cluster and cloud platforms.

    Science.gov (United States)

    Bernau, C; Boulesteix, A-L; Knaus, J

    2013-01-01

    Analysis of recent high-dimensional biological data tends to be computationally intensive as many common approaches such as resampling or permutation tests require the basic statistical analysis to be repeated many times. A crucial advantage of these methods is that they can be easily parallelized due to the computational independence of the resampling or permutation iterations, which has induced many statistics departments to establish their own computer clusters. An alternative is to rent computing resources in the cloud, e.g. at Amazon Web Services. In this article we analyze whether a selection of statistical projects, recently implemented at our department, can be efficiently realized on these cloud resources. Moreover, we illustrate an opportunity to combine computer cluster and cloud resources. In order to compare the efficiency of computer cluster and cloud implementations and their respective parallelizations we use microarray analysis procedures and compare their runtimes on the different platforms. Amazon Web Services provide various instance types which meet the particular needs of the different statistical projects we analyzed in this paper. Moreover, the network capacity is sufficient and the parallelization is comparable in efficiency to standard computer cluster implementations. Our results suggest that many statistical projects can be efficiently realized on cloud resources. It is important to mention, however, that workflows can change substantially as a result of a shift from computer cluster to cloud computing.

  9. Cluster Analysis as an Analytical Tool of Population Policy

    Directory of Open Access Journals (Sweden)

    Oksana Mikhaylovna Shubat

    2017-12-01

    Full Text Available The predicted negative trends in Russian demography (falling birth rates, population decline actualize the need to strengthen measures of family and population policy. Our research purpose is to identify groups of Russian regions with similar characteristics in the family sphere using cluster analysis. The findings should make an important contribution to the field of family policy. We used hierarchical cluster analysis based on the Ward method and the Euclidean distance for segmentation of Russian regions. Clustering is based on four variables, which allowed assessing the family institution in the region. The authors used the data of Federal State Statistics Service from 2010 to 2015. Clustering and profiling of each segment has allowed forming a model of Russian regions depending on the features of the family institution in these regions. The authors revealed four clusters grouping regions with similar problems in the family sphere. This segmentation makes it possible to develop the most relevant family policy measures in each group of regions. Thus, the analysis has shown a high degree of differentiation of the family institution in the regions. This suggests that a unified approach to population problems’ solving is far from being effective. To achieve greater results in the implementation of family policy, a differentiated approach is needed. Methods of multidimensional data classification can be successfully applied as a relevant analytical toolkit. Further research could develop the adaptation of multidimensional classification methods to the analysis of the population problems in Russian regions. In particular, the algorithms of nonparametric cluster analysis may be of relevance in future studies.

  10. Visualizing data for environmental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Benson, J.

    1997-04-01

    The Environmental Restoration Project at Los Alamos National Laboratory (LANL) has over 11,000 sampling locations in a 44 square mile area. The sample analyses contain raw analytical chemistry values for over 2,300 analytes and compounds used to define and remediate contaminated areas at LANL. The data consist of 2.5 million records in an oracle database. Maps are often used to visualize the data. Problems arise when a client specifies a particular kind of map without fully understanding the limitations of the data or the map. The ability of maps to convey information is dependent on many factors, though all maps are data dependent. The quantity, spatial distribution, and numerical range of the data can limit use with certain kinds of maps. To address these issues and educate the clients, several types of statistical maps (e.g., choropleth, isarithm, and graduated symbol such as bubble and spike) used for environmental analysis were chosen to show the advantages, disadvantages, and data limitations of each. By examining both the complexity of the analytical data and the limitations of the map type, it is possible to consider how reality has been transformed through the map, and if that transformation accurately conveys the information present.

  11. Visualizing data for environmental analysis

    International Nuclear Information System (INIS)

    Benson, J.

    1997-01-01

    The Environmental Restoration Project at Los Alamos National Laboratory (LANL) has over 11,000 sampling locations in a 44 square mile area. The sample analyses contain raw analytical chemistry values for over 2,300 analytes and compounds used to define and remediate contaminated areas at LANL. The data consist of 2.5 million records in an oracle database. Maps are often used to visualize the data. Problems arise when a client specifies a particular kind of map without fully understanding the limitations of the data or the map. The ability of maps to convey information is dependent on many factors, though all maps are data dependent. The quantity, spatial distribution, and numerical range of the data can limit use with certain kinds of maps. To address these issues and educate the clients, several types of statistical maps (e.g., choropleth, isarithm, and graduated symbol such as bubble and spike) used for environmental analysis were chosen to show the advantages, disadvantages, and data limitations of each. By examining both the complexity of the analytical data and the limitations of the map type, it is possible to consider how reality has been transformed through the map, and if that transformation accurately conveys the information present

  12. Automated analysis of organic particles using cluster SIMS

    Energy Technology Data Exchange (ETDEWEB)

    Gillen, Greg; Zeissler, Cindy; Mahoney, Christine; Lindstrom, Abigail; Fletcher, Robert; Chi, Peter; Verkouteren, Jennifer; Bright, David; Lareau, Richard T.; Boldman, Mike

    2004-06-15

    Cluster primary ion bombardment combined with secondary ion imaging is used on an ion microscope secondary ion mass spectrometer for the spatially resolved analysis of organic particles on various surfaces. Compared to the use of monoatomic primary ion beam bombardment, the use of a cluster primary ion beam (SF{sub 5}{sup +} or C{sub 8}{sup -}) provides significant improvement in molecular ion yields and a reduction in beam-induced degradation of the analyte molecules. These characteristics of cluster bombardment, along with automated sample stage control and custom image analysis software are utilized to rapidly characterize the spatial distribution of trace explosive particles, narcotics and inkjet-printed microarrays on a variety of surfaces.

  13. Assessment of surface water quality using hierarchical cluster analysis

    Directory of Open Access Journals (Sweden)

    Dheeraj Kumar Dabgerwal

    2016-02-01

    Full Text Available This study was carried out to assess the physicochemical quality river Varuna inVaranasi,India. Water samples were collected from 10 sites during January-June 2015. Pearson correlation analysis was used to assess the direction and strength of relationship between physicochemical parameters. Hierarchical Cluster analysis was also performed to determine the sources of pollution in the river Varuna. The result showed quite high value of DO, Nitrate, BOD, COD and Total Alkalinity, above the BIS permissible limit. The results of correlation analysis identified key water parameters as pH, electrical conductivity, total alkalinity and nitrate, which influence the concentration of other water parameters. Cluster analysis identified three major clusters of sampling sites out of total 10 sites, according to the similarity in water quality. This study illustrated the usefulness of correlation and cluster analysis for getting better information about the river water quality.International Journal of Environment Vol. 5 (1 2016,  pp: 32-44

  14. application of single-linkage clustering method in the analysis of ...

    African Journals Online (AJOL)

    Admin

    ANALYSIS OF GROWTH RATE OF GROSS DOMESTIC PRODUCT. (GDP) AT ... The end result of the algorithm is a tree of clusters called a dendrogram, which shows how the clusters are ..... Number of cluster sum from from observations of ...

  15. Cluster Analysis of Clinical Data Identifies Fibromyalgia Subgroups

    Science.gov (United States)

    Docampo, Elisa; Collado, Antonio; Escaramís, Geòrgia; Carbonell, Jordi; Rivera, Javier; Vidal, Javier; Alegre, José

    2013-01-01

    Introduction Fibromyalgia (FM) is mainly characterized by widespread pain and multiple accompanying symptoms, which hinder FM assessment and management. In order to reduce FM heterogeneity we classified clinical data into simplified dimensions that were used to define FM subgroups. Material and Methods 48 variables were evaluated in 1,446 Spanish FM cases fulfilling 1990 ACR FM criteria. A partitioning analysis was performed to find groups of variables similar to each other. Similarities between variables were identified and the variables were grouped into dimensions. This was performed in a subset of 559 patients, and cross-validated in the remaining 887 patients. For each sample and dimension, a composite index was obtained based on the weights of the variables included in the dimension. Finally, a clustering procedure was applied to the indexes, resulting in FM subgroups. Results Variables clustered into three independent dimensions: “symptomatology”, “comorbidities” and “clinical scales”. Only the two first dimensions were considered for the construction of FM subgroups. Resulting scores classified FM samples into three subgroups: low symptomatology and comorbidities (Cluster 1), high symptomatology and comorbidities (Cluster 2), and high symptomatology but low comorbidities (Cluster 3), showing differences in measures of disease severity. Conclusions We have identified three subgroups of FM samples in a large cohort of FM by clustering clinical data. Our analysis stresses the importance of family and personal history of FM comorbidities. Also, the resulting patient clusters could indicate different forms of the disease, relevant to future research, and might have an impact on clinical assessment. PMID:24098674

  16. Transcriptional analysis of ESAT-6 cluster 3 in Mycobacterium smegmatis

    Directory of Open Access Journals (Sweden)

    Riccardi Giovanna

    2009-03-01

    Full Text Available Abstract Background The ESAT-6 (early secreted antigenic target, 6 kDa family collects small mycobacterial proteins secreted by Mycobacterium tuberculosis, particularly in the early phase of growth. There are 23 ESAT-6 family members in M. tuberculosis H37Rv. In a previous work, we identified the Zur- dependent regulation of five proteins of the ESAT-6/CFP-10 family (esxG, esxH, esxQ, esxR, and esxS. esxG and esxH are part of ESAT-6 cluster 3, whose expression was already known to be induced by iron starvation. Results In this research, we performed EMSA experiments and transcriptional analysis of ESAT-6 cluster 3 in Mycobacterium smegmatis (msmeg0615-msmeg0625 and M. tuberculosis. In contrast to what we had observed in M. tuberculosis, we found that in M. smegmatis ESAT-6 cluster 3 responds only to iron and not to zinc. In both organisms we identified an internal promoter, a finding which suggests the presence of two transcriptional units and, by consequence, a differential expression of cluster 3 genes. We compared the expression of msmeg0615 and msmeg0620 in different growth and stress conditions by means of relative quantitative PCR. The expression of msmeg0615 and msmeg0620 genes was essentially similar; they appeared to be repressed in most of the tested conditions, with the exception of acid stress (pH 4.2 where msmeg0615 was about 4-fold induced, while msmeg0620 was repressed. Analysis revealed that in acid stress conditions M. tuberculosis rv0282 gene was 3-fold induced too, while rv0287 induction was almost insignificant. Conclusion In contrast with what has been reported for M. tuberculosis, our results suggest that in M. smegmatis only IdeR-dependent regulation is retained, while zinc has no effect on gene expression. The role of cluster 3 in M. tuberculosis virulence is still to be defined; however, iron- and zinc-dependent expression strongly suggests that cluster 3 is highly expressed in the infective process, and that the cluster

  17. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015.

    Science.gov (United States)

    2016-10-08

    The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors-the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56

  18. Ocean Thermal Energy Conversion (OTEC) Programmatic Environmental Analysis--Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Authors, Various

    1980-01-01

    The programmatic environmental analysis is an initial assessment of Ocean Thermal Energy Conversion (OTEC) technology considering development, demonstration and commercialization. It is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distances necessary to minimize adverse environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties. This volume contains these appendices: Appendix A -- Deployment Scenario; Appendix B -- OTEC Regional Characterization; and Appendix C -- Impact and Related Calculations.

  19. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Sands, M. D.

    1980-01-01

    This programmatic environmental analysis is an initial assessment of OTEC technology considering development, demonstration and commercialization; it is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distances necessary to minimize adverse environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties.

  20. Graph analysis of cell clusters forming vascular networks

    Science.gov (United States)

    Alves, A. P.; Mesquita, O. N.; Gómez-Gardeñes, J.; Agero, U.

    2018-03-01

    This manuscript describes the experimental observation of vasculogenesis in chick embryos by means of network analysis. The formation of the vascular network was observed in the area opaca of embryos from 40 to 55 h of development. In the area opaca endothelial cell clusters self-organize as a primitive and approximately regular network of capillaries. The process was observed by bright-field microscopy in control embryos and in embryos treated with Bevacizumab (Avastin), an antibody that inhibits the signalling of the vascular endothelial growth factor (VEGF). The sequence of images of the vascular growth were thresholded, and used to quantify the forming network in control and Avastin-treated embryos. This characterization is made by measuring vessels density, number of cell clusters and the largest cluster density. From the original images, the topology of the vascular network was extracted and characterized by means of the usual network metrics such as: the degree distribution, average clustering coefficient, average short path length and assortativity, among others. This analysis allows to monitor how the largest connected cluster of the vascular network evolves in time and provides with quantitative evidence of the disruptive effects that Avastin has on the tree structure of vascular networks.

  1. clusters

    Indian Academy of Sciences (India)

    2017-09-27

    Sep 27, 2017 ... Author for correspondence (zh4403701@126.com). MS received 15 ... lic clusters using density functional theory (DFT)-GGA of the DMOL3 package. ... In the process of geometric optimization, con- vergence thresholds ..... and Postgraduate Research & Practice Innovation Program of. Jiangsu Province ...

  2. Cluster Analysis of International Information and Social Development.

    Science.gov (United States)

    Lau, Jesus

    1990-01-01

    Analyzes information activities in relation to socioeconomic characteristics in low, middle, and highly developed economies for the years 1960 and 1977 through the use of cluster analysis. Results of data from 31 countries suggest that information development is achieved mainly by countries that have also achieved social development. (26…

  3. Making Sense of Cluster Analysis: Revelations from Pakistani Science Classes

    Science.gov (United States)

    Pell, Tony; Hargreaves, Linda

    2011-01-01

    Cluster analysis has been applied to quantitative data in educational research over several decades and has been a feature of the Maurice Galton's research in primary and secondary classrooms. It has offered potentially useful insights for teaching yet its implications for practice are rarely implemented. It has been subject also to negative…

  4. Cluster analysis for validated climatology stations using precipitation in Mexico

    NARCIS (Netherlands)

    Bravo Cabrera, J. L.; Azpra-Romero, E.; Zarraluqui-Such, V.; Gay-García, C.; Estrada Porrúa, F.

    2012-01-01

    Annual average of daily precipitation was used to group climatological stations into clusters using the k-means procedure and principal component analysis with varimax rotation. After a careful selection of the stations deployed in Mexico since 1950, we selected 349 characterized by having 35 to 40

  5. A Cluster Analysis of Personality Style in Adults with ADHD

    Science.gov (United States)

    Robin, Arthur L.; Tzelepis, Angela; Bedway, Marquita

    2008-01-01

    Objective: The purpose of this study was to use hierarchical linear cluster analysis to examine the normative personality styles of adults with ADHD. Method: A total of 311 adults with ADHD completed the Millon Index of Personality Styles, which consists of 24 scales assessing motivating aims, cognitive modes, and interpersonal behaviors. Results:…

  6. Characterization of population exposure to organochlorines: A cluster analysis application

    NARCIS (Netherlands)

    R.M. Guimarães (Raphael Mendonça); S. Asmus (Sven); A. Burdorf (Alex)

    2013-01-01

    textabstractThis study aimed to show the results from a cluster analysis application in the characterization of population exposure to organochlorines through variables related to time and exposure dose. Characteristics of 354 subjects in a population exposed to organochlorine pesticides residues

  7. Robustness in cluster analysis in the presence of anomalous observations

    NARCIS (Netherlands)

    Zhuk, EE

    Cluster analysis of multivariate observations in the presence of "outliers" (anomalous observations) in a sample is studied. The expected (mean) fraction of erroneous decisions for the decision rule is computed analytically by minimizing the intraclass scatter. A robust decision rule (stable to

  8. Language Learner Motivational Types: A Cluster Analysis Study

    Science.gov (United States)

    Papi, Mostafa; Teimouri, Yasser

    2014-01-01

    The study aimed to identify different second language (L2) learner motivational types drawing on the framework of the L2 motivational self system. A total of 1,278 secondary school students learning English in Iran completed a questionnaire survey. Cluster analysis yielded five different groups based on the strength of different variables within…

  9. Cluster analysis as a prediction tool for pregnancy outcomes.

    Science.gov (United States)

    Banjari, Ines; Kenjerić, Daniela; Šolić, Krešimir; Mandić, Milena L

    2015-03-01

    Considering specific physiology changes during gestation and thinking of pregnancy as a "critical window", classification of pregnant women at early pregnancy can be considered as crucial. The paper demonstrates the use of a method based on an approach from intelligent data mining, cluster analysis. Cluster analysis method is a statistical method which makes possible to group individuals based on sets of identifying variables. The method was chosen in order to determine possibility for classification of pregnant women at early pregnancy to analyze unknown correlations between different variables so that the certain outcomes could be predicted. 222 pregnant women from two general obstetric offices' were recruited. The main orient was set on characteristics of these pregnant women: their age, pre-pregnancy body mass index (BMI) and haemoglobin value. Cluster analysis gained a 94.1% classification accuracy rate with three branch- es or groups of pregnant women showing statistically significant correlations with pregnancy outcomes. The results are showing that pregnant women both of older age and higher pre-pregnancy BMI have a significantly higher incidence of delivering baby of higher birth weight but they gain significantly less weight during pregnancy. Their babies are also longer, and these women have significantly higher probability for complications during pregnancy (gestosis) and higher probability of induced or caesarean delivery. We can conclude that the cluster analysis method can appropriately classify pregnant women at early pregnancy to predict certain outcomes.

  10. ENVIRONMENTAL EFFECTS ON THE METAL ENRICHMENT OF LOW-MASS GALAXIES IN NEARBY CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Petropoulou, V.; Vilchez, J.; Iglesias-Paramo, J. [Instituto de Astrofisica de Andalucia-C.S.I.C., Glorieta de la Astronomia, 18008 Granada (Spain)

    2012-04-20

    In this paper, we study the chemical history of low-mass star-forming (SF) galaxies in the local universe clusters Coma, A1367, A779, and A634. The aim of this work is to search for the imprint of the environment on the chemical evolution of these galaxies. Galaxy chemical evolution is linked to the star formation history, as well as to the gas interchange with the environment, and low-mass galaxies are well known to be vulnerable systems to environmental processes affecting both these parameters. For our study we have used spectra from the SDSS-III DR8. We have examined the spectroscopic properties of SF galaxies of stellar masses 10{sup 8}-10{sup 10} M{sub Sun }, located from the core to the cluster's outskirts. The gas-phase O/H and N/O chemical abundances have been derived using the latest empirical calibrations. We have examined the mass-metallicity relation of cluster galaxies, finding well-defined sequences. The slope of these sequences, for galaxies in low-mass clusters and galaxies at large cluster-centric distances, follows the predictions of recent hydrodynamic models. A flattening of this slope has been observed for galaxies located in the core of the two more massive clusters of the sample, principally in Coma, suggesting that the imprint of the cluster environment on the chemical evolution of SF galaxies should be sensitive to both the galaxy mass and the host cluster mass. The H I gas content of Coma and A1367 galaxies indicates that low-mass SF galaxies, located at the core of these clusters, have been severely affected by ram-pressure stripping (RPS). The observed mass-dependent enhancement of the metal content of low-mass galaxies in dense environments seems plausible, according to hydrodynamic simulations. This enhanced metal enrichment could be produced by the combination of effects such as wind reaccretion, due to pressure confinement by the intracluster medium (ICM), and the truncation of gas infall, as a result of the RPS. Thus, the

  11. ENVIRONMENTAL EFFECTS ON THE METAL ENRICHMENT OF LOW-MASS GALAXIES IN NEARBY CLUSTERS

    International Nuclear Information System (INIS)

    Petropoulou, V.; Vílchez, J.; Iglesias-Páramo, J.

    2012-01-01

    In this paper, we study the chemical history of low-mass star-forming (SF) galaxies in the local universe clusters Coma, A1367, A779, and A634. The aim of this work is to search for the imprint of the environment on the chemical evolution of these galaxies. Galaxy chemical evolution is linked to the star formation history, as well as to the gas interchange with the environment, and low-mass galaxies are well known to be vulnerable systems to environmental processes affecting both these parameters. For our study we have used spectra from the SDSS-III DR8. We have examined the spectroscopic properties of SF galaxies of stellar masses 10 8 -10 10 M ☉ , located from the core to the cluster's outskirts. The gas-phase O/H and N/O chemical abundances have been derived using the latest empirical calibrations. We have examined the mass-metallicity relation of cluster galaxies, finding well-defined sequences. The slope of these sequences, for galaxies in low-mass clusters and galaxies at large cluster-centric distances, follows the predictions of recent hydrodynamic models. A flattening of this slope has been observed for galaxies located in the core of the two more massive clusters of the sample, principally in Coma, suggesting that the imprint of the cluster environment on the chemical evolution of SF galaxies should be sensitive to both the galaxy mass and the host cluster mass. The H I gas content of Coma and A1367 galaxies indicates that low-mass SF galaxies, located at the core of these clusters, have been severely affected by ram-pressure stripping (RPS). The observed mass-dependent enhancement of the metal content of low-mass galaxies in dense environments seems plausible, according to hydrodynamic simulations. This enhanced metal enrichment could be produced by the combination of effects such as wind reaccretion, due to pressure confinement by the intracluster medium (ICM), and the truncation of gas infall, as a result of the RPS. Thus, the properties of the ICM

  12. Performance Analysis of Unsupervised Clustering Methods for Brain Tumor Segmentation

    Directory of Open Access Journals (Sweden)

    Tushar H Jaware

    2013-10-01

    Full Text Available Medical image processing is the most challenging and emerging field of neuroscience. The ultimate goal of medical image analysis in brain MRI is to extract important clinical features that would improve methods of diagnosis & treatment of disease. This paper focuses on methods to detect & extract brain tumour from brain MR images. MATLAB is used to design, software tool for locating brain tumor, based on unsupervised clustering methods. K-Means clustering algorithm is implemented & tested on data base of 30 images. Performance evolution of unsupervised clusteringmethods is presented.

  13. Identifying clinical course patterns in SMS data using cluster analysis

    DEFF Research Database (Denmark)

    Kent, Peter; Kongsted, Alice

    2012-01-01

    ABSTRACT: BACKGROUND: Recently, there has been interest in using the short message service (SMS or text messaging), to gather frequent information on the clinical course of individual patients. One possible role for identifying clinical course patterns is to assist in exploring clinically important...... showed that clinical course patterns can be identified by cluster analysis using all SMS time points as cluster variables. This method is simple, intuitive and does not require a high level of statistical skill. However, there are alternative ways of managing SMS data and many different methods...

  14. Outcome-Driven Cluster Analysis with Application to Microarray Data.

    Directory of Open Access Journals (Sweden)

    Jessie J Hsu

    Full Text Available One goal of cluster analysis is to sort characteristics into groups (clusters so that those in the same group are more highly correlated to each other than they are to those in other groups. An example is the search for groups of genes whose expression of RNA is correlated in a population of patients. These genes would be of greater interest if their common level of RNA expression were additionally predictive of the clinical outcome. This issue arose in the context of a study of trauma patients on whom RNA samples were available. The question of interest was whether there were groups of genes that were behaving similarly, and whether each gene in the cluster would have a similar effect on who would recover. For this, we develop an algorithm to simultaneously assign characteristics (genes into groups of highly correlated genes that have the same effect on the outcome (recovery. We propose a random effects model where the genes within each group (cluster equal the sum of a random effect, specific to the observation and cluster, and an independent error term. The outcome variable is a linear combination of the random effects of each cluster. To fit the model, we implement a Markov chain Monte Carlo algorithm based on the likelihood of the observed data. We evaluate the effect of including outcome in the model through simulation studies and describe a strategy for prediction. These methods are applied to trauma data from the Inflammation and Host Response to Injury research program, revealing a clustering of the genes that are informed by the recovery outcome.

  15. High-dimensional cluster analysis with the Masked EM Algorithm

    Science.gov (United States)

    Kadir, Shabnam N.; Goodman, Dan F. M.; Harris, Kenneth D.

    2014-01-01

    Cluster analysis faces two problems in high dimensions: first, the “curse of dimensionality” that can lead to overfitting and poor generalization performance; and second, the sheer time taken for conventional algorithms to process large amounts of high-dimensional data. We describe a solution to these problems, designed for the application of “spike sorting” for next-generation high channel-count neural probes. In this problem, only a small subset of features provide information about the cluster member-ship of any one data vector, but this informative feature subset is not the same for all data points, rendering classical feature selection ineffective. We introduce a “Masked EM” algorithm that allows accurate and time-efficient clustering of up to millions of points in thousands of dimensions. We demonstrate its applicability to synthetic data, and to real-world high-channel-count spike sorting data. PMID:25149694

  16. A cluster analysis investigation of workaholism as a syndrome.

    Science.gov (United States)

    Aziz, Shahnaz; Zickar, Michael J

    2006-01-01

    Workaholism has been conceptualized as a syndrome although there have been few tests that explicitly consider its syndrome status. The authors analyzed a three-dimensional scale of workaholism developed by Spence and Robbins (1992) using cluster analysis. The authors identified three clusters of individuals, one of which corresponded to Spence and Robbins's profile of the workaholic (high work involvement, high drive to work, low work enjoyment). Consistent with previously conjectured relations with workaholism, individuals in the workaholic cluster were more likely to label themselves as workaholics, more likely to have acquaintances label them as workaholics, and more likely to have lower life satisfaction and higher work-life imbalance. The importance of considering workaholism as a syndrome and the implications for effective interventions are discussed. Copyright 2006 APA.

  17. Cosmological analysis of galaxy clusters surveys in X-rays

    International Nuclear Information System (INIS)

    Clerc, N.

    2012-01-01

    Clusters of galaxies are the most massive objects in equilibrium in our Universe. Their study allows to test cosmological scenarios of structure formation with precision, bringing constraints complementary to those stemming from the cosmological background radiation, supernovae or galaxies. They are identified through the X-ray emission of their heated gas, thus facilitating their mapping at different epochs of the Universe. This report presents two surveys of galaxy clusters detected in X-rays and puts forward a method for their cosmological interpretation. Thanks to its multi-wavelength coverage extending over 10 sq. deg. and after one decade of expertise, the XMM-LSS allows a systematic census of clusters in a large volume of the Universe. In the framework of this survey, the first part of this report describes the techniques developed to the purpose of characterizing the detected objects. A particular emphasis is placed on the most distant ones (z ≥ 1) through the complementarity of observations in X-ray, optical and infrared bands. Then the X-CLASS survey is fully described. Based on XMM archival data, it provides a new catalogue of 800 clusters detected in X-rays. A cosmological analysis of this survey is performed thanks to 'CR-HR' diagrams. This new method self-consistently includes selection effects and scaling relations and provides a means to bypass the computation of individual cluster masses. Propositions are made for applying this method to future surveys as XMM-XXL and eRosita. (author) [fr

  18. Cluster analysis by optimal decomposition of induced fuzzy sets

    Energy Technology Data Exchange (ETDEWEB)

    Backer, E

    1978-01-01

    Nonsupervised pattern recognition is addressed and the concept of fuzzy sets is explored in order to provide the investigator (data analyst) additional information supplied by the pattern class membership values apart from the classical pattern class assignments. The basic ideas behind the pattern recognition problem, the clustering problem, and the concept of fuzzy sets in cluster analysis are discussed, and a brief review of the literature of the fuzzy cluster analysis is given. Some mathematical aspects of fuzzy set theory are briefly discussed; in particular, a measure of fuzziness is suggested. The optimization-clustering problem is characterized. Then the fundamental idea behind affinity decomposition is considered. Next, further analysis takes place with respect to the partitioning-characterization functions. The iterative optimization procedure is then addressed. The reclassification function is investigated and convergence properties are examined. Finally, several experiments in support of the method suggested are described. Four object data sets serve as appropriate test cases. 120 references, 70 figures, 11 tables. (RWR)

  19. DGA Clustering and Analysis: Mastering Modern, Evolving Threats, DGALab

    Directory of Open Access Journals (Sweden)

    Alexander Chailytko

    2016-05-01

    Full Text Available Domain Generation Algorithms (DGA is a basic building block used in almost all modern malware. Malware researchers have attempted to tackle the DGA problem with various tools and techniques, with varying degrees of success. We present a complex solution to populate DGA feed using reversed DGAs, third-party feeds, and a smart DGA extraction and clustering based on emulation of a large number of samples. Smart DGA extraction requires no reverse engineering and works regardless of the DGA type or initialization vector, while enabling a cluster-based analysis. Our method also automatically allows analysis of the whole malware family, specific campaign, etc. We present our system and demonstrate its abilities on more than 20 malware families. This includes showing connections between different campaigns, as well as comparing results. Most importantly, we discuss how to utilize the outcome of the analysis to create smarter protections against similar malware.

  20. Analysis of RXTE data on Clusters of Galaxies

    Science.gov (United States)

    Petrosian, Vahe

    2004-01-01

    This grant provided support for the reduction, analysis and interpretation of of hard X-ray (HXR, for short) observations of the cluster of galaxies RXJO658--5557 scheduled for the week of August 23, 2002 under the RXTE Cycle 7 program (PI Vahe Petrosian, Obs. ID 70165). The goal of the observation was to search for and characterize the shape of the HXR component beyond the well established thermal soft X-ray (SXR) component. Such hard components have been detected in several nearby clusters. distant cluster would provide information on the characteristics of this radiation at a different epoch in the evolution of the imiverse and shed light on its origin. We (Petrosian, 2001) have argued that thermal bremsstrahlung, as proposed earlier, cannot be the mechanism for the production of the HXRs and that the most likely mechanism is Compton upscattering of the cosmic microwave radiation by relativistic electrons which are known to be present in the clusters and be responsible for the observed radio emission. Based on this picture we estimated that this cluster, in spite of its relatively large distance, will have HXR signal comparable to the other nearby ones. The planned observation of a relatively The proposed RXTE observations were carried out and the data have been analyzed. We detect a hard X-ray tail in the spectrum of this cluster with a flux very nearly equal to our predicted value. This has strengthen the case for the Compton scattering model. We intend the data obtained via this observation to be a part of a larger data set. We have identified other clusters of galaxies (in archival RXTE and other instrument data sets) with sufficiently high quality data where we can search for and measure (or at least put meaningful limits) on the strength of the hard component. With these studies we expect to clarify the mechanism for acceleration of particles in the intercluster medium and provide guidance for future observations of this intriguing phenomenon by instrument

  1. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016.

    Science.gov (United States)

    2017-09-16

    The Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) provides a comprehensive assessment of risk factor exposure and attributable burden of disease. By providing estimates over a long time series, this study can monitor risk exposure trends critical to health surveillance and inform policy debates on the importance of addressing risks in context. We used the comparative risk assessment framework developed for previous iterations of GBD to estimate levels and trends in exposure, attributable deaths, and attributable disability-adjusted life-years (DALYs), by age group, sex, year, and location for 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2016. This study included 481 risk-outcome pairs that met the GBD study criteria for convincing or probable evidence of causation. We extracted relative risk (RR) and exposure estimates from 22 717 randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources, according to the GBD 2016 source counting methods. Using the counterfactual scenario of theoretical minimum risk exposure level (TMREL), we estimated the portion of deaths and DALYs that could be attributed to a given risk. Finally, we explored four drivers of trends in attributable burden: population growth, population ageing, trends in risk exposure, and all other factors combined. Since 1990, exposure increased significantly for 30 risks, did not change significantly for four risks, and decreased significantly for 31 risks. Among risks that are leading causes of burden of disease, child growth failure and household air pollution showed the most significant declines, while metabolic risks, such as body-mass index and high fasting plasma glucose, showed significant increases. In 2016, at Level 3 of the hierarchy, the three leading risk factors in terms of attributable DALYs at the global level for men were smoking (124·1 million

  2. Mobility in Europe: Recent Trends from a Cluster Analysis

    Directory of Open Access Journals (Sweden)

    Ioana Manafi

    2017-08-01

    Full Text Available During the past decade, Europe was confronted with major changes and events offering large opportunities for mobility. The EU enlargement process, the EU policies regarding youth, the economic crisis affecting national economies on different levels, political instabilities in some European countries, high rates of unemployment or the increasing number of refugees are only a few of the factors influencing net migration in Europe. Based on a set of socio-economic indicators for EU/EFTA countries and cluster analysis, the paper provides an overview of regional differences across European countries, related to migration magnitude in the identified clusters. The obtained clusters are in accordance with previous studies in migration, and appear stable during the period of 2005-2013, with only some exceptions. The analysis revealed three country clusters: EU/EFTA center-receiving countries, EU/EFTA periphery-sending countries and EU/EFTA outlier countries, the names suggesting not only the geographical position within Europe, but the trends in net migration flows during the years. Therewith, the results provide evidence for the persistence of a movement from periphery to center countries, which is correlated with recent flows of mobility in Europe.

  3. Full text clustering and relationship network analysis of biomedical publications.

    Directory of Open Access Journals (Sweden)

    Renchu Guan

    Full Text Available Rapid developments in the biomedical sciences have increased the demand for automatic clustering of biomedical publications. In contrast to current approaches to text clustering, which focus exclusively on the contents of abstracts, a novel method is proposed for clustering and analysis of complete biomedical article texts. To reduce dimensionality, Cosine Coefficient is used on a sub-space of only two vectors, instead of computing the Euclidean distance within the space of all vectors. Then a strategy and algorithm is introduced for Semi-supervised Affinity Propagation (SSAP to improve analysis efficiency, using biomedical journal names as an evaluation background. Experimental results show that by avoiding high-dimensional sparse matrix computations, SSAP outperforms conventional k-means methods and improves upon the standard Affinity Propagation algorithm. In constructing a directed relationship network and distribution matrix for the clustering results, it can be noted that overlaps in scope and interests among BioMed publications can be easily identified, providing a valuable analytical tool for editors, authors and readers.

  4. The Productivity Analysis of Chennai Automotive Industry Cluster

    Science.gov (United States)

    Bhaskaran, E.

    2014-07-01

    Chennai, also called the Detroit of India, is India's second fastest growing auto market and exports auto components and vehicles to US, Germany, Japan and Brazil. For inclusive growth and sustainable development, 250 auto component industries in Ambattur, Thirumalisai and Thirumudivakkam Industrial Estates located in Chennai have adopted the Cluster Development Approach called Automotive Component Cluster. The objective is to study the Value Chain, Correlation and Data Envelopment Analysis by determining technical efficiency, peer weights, input and output slacks of 100 auto component industries in three estates. The methodology adopted is using Data Envelopment Analysis of Output Oriented Banker Charnes Cooper model by taking net worth, fixed assets, employment as inputs and gross output as outputs. The non-zero represents the weights for efficient clusters. The higher slack obtained reveals the excess net worth, fixed assets, employment and shortage in gross output. To conclude, the variables are highly correlated and the inefficient industries should increase their gross output or decrease the fixed assets or employment. Moreover for sustainable development, the cluster should strengthen infrastructure, technology, procurement, production and marketing interrelationships to decrease costs and to increase productivity and efficiency to compete in the indigenous and export market.

  5. Sirenomelia in Argentina: Prevalence, geographic clusters and temporal trends analysis.

    Science.gov (United States)

    Groisman, Boris; Liascovich, Rosa; Gili, Juan Antonio; Barbero, Pablo; Bidondo, María Paz

    2016-07-01

    Sirenomelia is a severe malformation of the lower body characterized by a single medial lower limb and a variable combination of visceral abnormalities. Given that Sirenomelia is a very rare birth defect, epidemiological studies are scarce. The aim of this study is to evaluate prevalence, geographic clusters and time trends of sirenomelia in Argentina, using data from the National Network of Congenital Anomalies of Argentina (RENAC) from November 2009 until December 2014. This is a descriptive study using data from the RENAC, a hospital-based surveillance system for newborns affected with major morphological congenital anomalies. We calculated sirenomelia prevalence throughout the period, searched for geographical clusters, and evaluated time trends. The prevalence of confirmed cases of sirenomelia throughout the period was 2.35 per 100,000 births. Cluster analysis showed no statistically significant geographical aggregates. Time-trends analysis showed that the prevalence was higher in years 2009 to 2010. The observed prevalence was higher than the observed in previous epidemiological studies in other geographic regions. We observed a likely real increase in the initial period of our study. We used strict diagnostic criteria, excluding cases that only had clinical diagnosis of sirenomelia. Therefore, real prevalence could be even higher. This study did not show any geographic clusters. Because etiology of sirenomelia has not yet been established, studies of epidemiological features of this defect may contribute to define its causes. Birth Defects Research (Part A) 106:604-611, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Transcriptional analysis of exopolysaccharides biosynthesis gene clusters in Lactobacillus plantarum.

    Science.gov (United States)

    Vastano, Valeria; Perrone, Filomena; Marasco, Rosangela; Sacco, Margherita; Muscariello, Lidia

    2016-04-01

    Exopolysaccharides (EPS) from lactic acid bacteria contribute to specific rheology and texture of fermented milk products and find applications also in non-dairy foods and in therapeutics. Recently, four clusters of genes (cps) associated with surface polysaccharide production have been identified in Lactobacillus plantarum WCFS1, a probiotic and food-associated lactobacillus. These clusters are involved in cell surface architecture and probably in release and/or exposure of immunomodulating bacterial molecules. Here we show a transcriptional analysis of these clusters. Indeed, RT-PCR experiments revealed that the cps loci are organized in five operons. Moreover, by reverse transcription-qPCR analysis performed on L. plantarum WCFS1 (wild type) and WCFS1-2 (ΔccpA), we demonstrated that expression of three cps clusters is under the control of the global regulator CcpA. These results, together with the identification of putative CcpA target sequences (catabolite responsive element CRE) in the regulatory region of four out of five transcriptional units, strongly suggest for the first time a role of the master regulator CcpA in EPS gene transcription among lactobacilli.

  7. Full text clustering and relationship network analysis of biomedical publications.

    Science.gov (United States)

    Guan, Renchu; Yang, Chen; Marchese, Maurizio; Liang, Yanchun; Shi, Xiaohu

    2014-01-01

    Rapid developments in the biomedical sciences have increased the demand for automatic clustering of biomedical publications. In contrast to current approaches to text clustering, which focus exclusively on the contents of abstracts, a novel method is proposed for clustering and analysis of complete biomedical article texts. To reduce dimensionality, Cosine Coefficient is used on a sub-space of only two vectors, instead of computing the Euclidean distance within the space of all vectors. Then a strategy and algorithm is introduced for Semi-supervised Affinity Propagation (SSAP) to improve analysis efficiency, using biomedical journal names as an evaluation background. Experimental results show that by avoiding high-dimensional sparse matrix computations, SSAP outperforms conventional k-means methods and improves upon the standard Affinity Propagation algorithm. In constructing a directed relationship network and distribution matrix for the clustering results, it can be noted that overlaps in scope and interests among BioMed publications can be easily identified, providing a valuable analytical tool for editors, authors and readers.

  8. Latent cluster analysis of ALS phenotypes identifies prognostically differing groups.

    Directory of Open Access Journals (Sweden)

    Jeban Ganesalingam

    2009-09-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a degenerative disease predominantly affecting motor neurons and manifesting as several different phenotypes. Whether these phenotypes correspond to different underlying disease processes is unknown. We used latent cluster analysis to identify groupings of clinical variables in an objective and unbiased way to improve phenotyping for clinical and research purposes.Latent class cluster analysis was applied to a large database consisting of 1467 records of people with ALS, using discrete variables which can be readily determined at the first clinic appointment. The model was tested for clinical relevance by survival analysis of the phenotypic groupings using the Kaplan-Meier method.The best model generated five distinct phenotypic classes that strongly predicted survival (p<0.0001. Eight variables were used for the latent class analysis, but a good estimate of the classification could be obtained using just two variables: site of first symptoms (bulbar or limb and time from symptom onset to diagnosis (p<0.00001.The five phenotypic classes identified using latent cluster analysis can predict prognosis. They could be used to stratify patients recruited into clinical trials and generating more homogeneous disease groups for genetic, proteomic and risk factor research.

  9. The Quantitative Analysis of Chennai Automotive Industry Cluster

    Science.gov (United States)

    Bhaskaran, Ethirajan

    2016-07-01

    Chennai, also called as Detroit of India due to presence of Automotive Industry producing over 40 % of the India's vehicle and components. During 2001-2002, the Automotive Component Industries (ACI) in Ambattur, Thirumalizai and Thirumudivakkam Industrial Estate, Chennai has faced problems on infrastructure, technology, procurement, production and marketing. The objective is to study the Quantitative Performance of Chennai Automotive Industry Cluster before (2001-2002) and after the CDA (2008-2009). The methodology adopted is collection of primary data from 100 ACI using quantitative questionnaire and analyzing using Correlation Analysis (CA), Regression Analysis (RA), Friedman Test (FMT), and Kruskall Wallis Test (KWT).The CA computed for the different set of variables reveals that there is high degree of relationship between the variables studied. The RA models constructed establish the strong relationship between the dependent variable and a host of independent variables. The models proposed here reveal the approximate relationship in a closer form. KWT proves, there is no significant difference between three locations clusters with respect to: Net Profit, Production Cost, Marketing Costs, Procurement Costs and Gross Output. This supports that each location has contributed for development of automobile component cluster uniformly. The FMT proves, there is no significant difference between industrial units in respect of cost like Production, Infrastructure, Technology, Marketing and Net Profit. To conclude, the Automotive Industries have fully utilized the Physical Infrastructure and Centralised Facilities by adopting CDA and now exporting their products to North America, South America, Europe, Australia, Africa and Asia. The value chain analysis models have been implemented in all the cluster units. This Cluster Development Approach (CDA) model can be implemented in industries of under developed and developing countries for cost reduction and productivity

  10. Applications of Cluster Analysis to the Creation of Perfectionism Profiles: A Comparison of two Clustering Approaches

    Directory of Open Access Journals (Sweden)

    Jocelyn H Bolin

    2014-04-01

    Full Text Available Although traditional clustering methods (e.g., K-means have been shown to be useful in the social sciences it is often difficult for such methods to handle situations where clusters in the population overlap or are ambiguous. Fuzzy clustering, a method already recognized in many disciplines, provides a more flexible alternative to these traditional clustering methods. Fuzzy clustering differs from other traditional clustering methods in that it allows for a case to belong to multiple clusters simultaneously. Unfortunately, fuzzy clustering techniques remain relatively unused in the social and behavioral sciences. The purpose of this paper is to introduce fuzzy clustering to these audiences who are currently relatively unfamiliar with the technique. In order to demonstrate the advantages associated with this method, cluster solutions of a common perfectionism measure were created using both fuzzy clustering and K-means clustering, and the results compared. Results of these analyses reveal that different cluster solutions are found by the two methods, and the similarity between the different clustering solutions depends on the amount of cluster overlap allowed for in fuzzy clustering.

  11. Applications of cluster analysis to the creation of perfectionism profiles: a comparison of two clustering approaches.

    Science.gov (United States)

    Bolin, Jocelyn H; Edwards, Julianne M; Finch, W Holmes; Cassady, Jerrell C

    2014-01-01

    Although traditional clustering methods (e.g., K-means) have been shown to be useful in the social sciences it is often difficult for such methods to handle situations where clusters in the population overlap or are ambiguous. Fuzzy clustering, a method already recognized in many disciplines, provides a more flexible alternative to these traditional clustering methods. Fuzzy clustering differs from other traditional clustering methods in that it allows for a case to belong to multiple clusters simultaneously. Unfortunately, fuzzy clustering techniques remain relatively unused in the social and behavioral sciences. The purpose of this paper is to introduce fuzzy clustering to these audiences who are currently relatively unfamiliar with the technique. In order to demonstrate the advantages associated with this method, cluster solutions of a common perfectionism measure were created using both fuzzy clustering and K-means clustering, and the results compared. Results of these analyses reveal that different cluster solutions are found by the two methods, and the similarity between the different clustering solutions depends on the amount of cluster overlap allowed for in fuzzy clustering.

  12. A clustering algorithm for sample data based on environmental pollution characteristics

    Science.gov (United States)

    Chen, Mei; Wang, Pengfei; Chen, Qiang; Wu, Jiadong; Chen, Xiaoyun

    2015-04-01

    Environmental pollution has become an issue of serious international concern in recent years. Among the receptor-oriented pollution models, CMB, PMF, UNMIX, and PCA are widely used as source apportionment models. To improve the accuracy of source apportionment and classify the sample data for these models, this study proposes an easy-to-use, high-dimensional EPC algorithm that not only organizes all of the sample data into different groups according to the similarities in pollution characteristics such as pollution sources and concentrations but also simultaneously detects outliers. The main clustering process consists of selecting the first unlabelled point as the cluster centre, then assigning each data point in the sample dataset to its most similar cluster centre according to both the user-defined threshold and the value of similarity function in each iteration, and finally modifying the clusters using a method similar to k-Means. The validity and accuracy of the algorithm are tested using both real and synthetic datasets, which makes the EPC algorithm practical and effective for appropriately classifying sample data for source apportionment models and helpful for better understanding and interpreting the sources of pollution.

  13. Statistical analysis of the spatial distribution of galaxies and clusters

    International Nuclear Information System (INIS)

    Cappi, Alberto

    1993-01-01

    This thesis deals with the analysis of the distribution of galaxies and clusters, describing some observational problems and statistical results. First chapter gives a theoretical introduction, aiming to describe the framework of the formation of structures, tracing the history of the Universe from the Planck time, t_p = 10"-"4"3 sec and temperature corresponding to 10"1"9 GeV, to the present epoch. The most usual statistical tools and models of the galaxy distribution, with their advantages and limitations, are described in chapter two. A study of the main observed properties of galaxy clustering, together with a detailed statistical analysis of the effects of selecting galaxies according to apparent magnitude or diameter, is reported in chapter three. Chapter four delineates some properties of groups of galaxies, explaining the reasons of discrepant results on group distributions. Chapter five is a study of the distribution of galaxy clusters, with different statistical tools, like correlations, percolation, void probability function and counts in cells; it is found the same scaling-invariant behaviour of galaxies. Chapter six describes our finding that rich galaxy clusters too belong to the fundamental plane of elliptical galaxies, and gives a discussion of its possible implications. Finally chapter seven reviews the possibilities offered by multi-slit and multi-fibre spectrographs, and I present some observational work on nearby and distant galaxy clusters. In particular, I show the opportunities offered by ongoing surveys of galaxies coupled with multi-object fibre spectrographs, focusing on the ESO Key Programme A galaxy redshift survey in the south galactic pole region to which I collaborate and on MEFOS, a multi-fibre instrument with automatic positioning. Published papers related to the work described in this thesis are reported in the last appendix. (author) [fr

  14. Sensory over responsivity and obsessive compulsive symptoms: A cluster analysis.

    Science.gov (United States)

    Ben-Sasson, Ayelet; Podoly, Tamar Yonit

    2017-02-01

    Several studies have examined the sensory component in Obsesseive Compulsive Disorder (OCD) and described an OCD subtype which has a unique profile, and that Sensory Phenomena (SP) is a significant component of this subtype. SP has some commonalities with Sensory Over Responsivity (SOR) and might be in part a characteristic of this subtype. Although there are some studies that have examined SOR and its relation to Obsessive Compulsive Symptoms (OCS), literature lacks sufficient data on this interplay. First to further examine the correlations between OCS and SOR, and to explore the correlations between SOR modalities (i.e. smell, touch, etc.) and OCS subscales (i.e. washing, ordering, etc.). Second, to investigate the cluster analysis of SOR and OCS dimensions in adults, that is, to classify the sample using the sensory scores to find whether a sensory OCD subtype can be specified. Our third goal was to explore the psychometric features of a new sensory questionnaire: the Sensory Perception Quotient (SPQ). A sample of non clinical adults (n=350) was recruited via e-mail, social media and social networks. Participants completed questionnaires for measuring SOR, OCS, and anxiety. SOR and OCI-F scores were moderately significantly correlated (n=274), significant correlations between all SOR modalities and OCS subscales were found with no specific higher correlation between one modality to one OCS subscale. Cluster analysis revealed four distinct clusters: (1) No OC and SOR symptoms (NONE; n=100), (2) High OC and SOR symptoms (BOTH; n=28), (3) Moderate OC symptoms (OCS; n=63), (4) Moderate SOR symptoms (SOR; n=83). The BOTH cluster had significantly higher anxiety levels than the other clusters, and shared OC subscales scores with the OCS cluster. The BOTH cluster also reported higher SOR scores across tactile, vision, taste and olfactory modalities. The SPQ was found reliable and suitable to detect SOR, the sample SPQ scores was normally distributed (n=350). SOR is a

  15. Analysis of plasmaspheric plumes: CLUSTER and IMAGE observations

    Directory of Open Access Journals (Sweden)

    F. Darrouzet

    2006-07-01

    Full Text Available Plasmaspheric plumes have been routinely observed by CLUSTER and IMAGE. The CLUSTER mission provides high time resolution four-point measurements of the plasmasphere near perigee. Total electron density profiles have been derived from the electron plasma frequency identified by the WHISPER sounder supplemented, in-between soundings, by relative variations of the spacecraft potential measured by the electric field instrument EFW; ion velocity is also measured onboard these satellites. The EUV imager onboard the IMAGE spacecraft provides global images of the plasmasphere with a spatial resolution of 0.1 RE every 10 min; such images acquired near apogee from high above the pole show the geometry of plasmaspheric plumes, their evolution and motion. We present coordinated observations of three plume events and compare CLUSTER in-situ data with global images of the plasmasphere obtained by IMAGE. In particular, we study the geometry and the orientation of plasmaspheric plumes by using four-point analysis methods. We compare several aspects of plume motion as determined by different methods: (i inner and outer plume boundary velocity calculated from time delays of this boundary as observed by the wave experiment WHISPER on the four spacecraft, (ii drift velocity measured by the electron drift instrument EDI onboard CLUSTER and (iii global velocity determined from successive EUV images. These different techniques consistently indicate that plasmaspheric plumes rotate around the Earth, with their foot fully co-rotating, but with their tip rotating slower and moving farther out.

  16. HORIZONTAL BRANCH MORPHOLOGY OF GLOBULAR CLUSTERS: A MULTIVARIATE STATISTICAL ANALYSIS

    International Nuclear Information System (INIS)

    Jogesh Babu, G.; Chattopadhyay, Tanuka; Chattopadhyay, Asis Kumar; Mondal, Saptarshi

    2009-01-01

    The proper interpretation of horizontal branch (HB) morphology is crucial to the understanding of the formation history of stellar populations. In the present study a multivariate analysis is used (principal component analysis) for the selection of appropriate HB morphology parameter, which, in our case, is the logarithm of effective temperature extent of the HB (log T effHB ). Then this parameter is expressed in terms of the most significant observed independent parameters of Galactic globular clusters (GGCs) separately for coherent groups, obtained in a previous work, through a stepwise multiple regression technique. It is found that, metallicity ([Fe/H]), central surface brightness (μ v ), and core radius (r c ) are the significant parameters to explain most of the variations in HB morphology (multiple R 2 ∼ 0.86) for GGC elonging to the bulge/disk while metallicity ([Fe/H]) and absolute magnitude (M v ) are responsible for GGC belonging to the inner halo (multiple R 2 ∼ 0.52). The robustness is tested by taking 1000 bootstrap samples. A cluster analysis is performed for the red giant branch (RGB) stars of the GGC belonging to Galactic inner halo (Cluster 2). A multi-episodic star formation is preferred for RGB stars of GGC belonging to this group. It supports the asymptotic giant branch (AGB) model in three episodes instead of two as suggested by Carretta et al. for halo GGC while AGB model is suggested to be revisited for bulge/disk GGC.

  17. Poisson cluster analysis of cardiac arrest incidence in Columbus, Ohio.

    Science.gov (United States)

    Warden, Craig; Cudnik, Michael T; Sasson, Comilla; Schwartz, Greg; Semple, Hugh

    2012-01-01

    Scarce resources in disease prevention and emergency medical services (EMS) need to be focused on high-risk areas of out-of-hospital cardiac arrest (OHCA). Cluster analysis using geographic information systems (GISs) was used to find these high-risk areas and test potential predictive variables. This was a retrospective cohort analysis of EMS-treated adults with OHCAs occurring in Columbus, Ohio, from April 1, 2004, through March 31, 2009. The OHCAs were aggregated to census tracts and incidence rates were calculated based on their adult populations. Poisson cluster analysis determined significant clusters of high-risk census tracts. Both census tract-level and case-level characteristics were tested for association with high-risk areas by multivariate logistic regression. A total of 2,037 eligible OHCAs occurred within the city limits during the study period. The mean incidence rate was 0.85 OHCAs/1,000 population/year. There were five significant geographic clusters with 76 high-risk census tracts out of the total of 245 census tracts. In the case-level analysis, being in a high-risk cluster was associated with a slightly younger age (-3 years, adjusted odds ratio [OR] 0.99, 95% confidence interval [CI] 0.99-1.00), not being white, non-Hispanic (OR 0.54, 95% CI 0.45-0.64), cardiac arrest occurring at home (OR 1.53, 95% CI 1.23-1.71), and not receiving bystander cardiopulmonary resuscitation (CPR) (OR 0.77, 95% CI 0.62-0.96), but with higher survival to hospital discharge (OR 1.78, 95% CI 1.30-2.46). In the census tract-level analysis, high-risk census tracts were also associated with a slightly lower average age (-0.1 years, OR 1.14, 95% CI 1.06-1.22) and a lower proportion of white, non-Hispanic patients (-0.298, OR 0.04, 95% CI 0.01-0.19), but also a lower proportion of high-school graduates (-0.184, OR 0.00, 95% CI 0.00-0.00). This analysis identified high-risk census tracts and associated census tract-level and case-level characteristics that can be used to

  18. Performance Based Clustering for Benchmarking of Container Ports: an Application of Dea and Cluster Analysis Technique

    Directory of Open Access Journals (Sweden)

    Jie Wu

    2010-12-01

    Full Text Available The operational performance of container ports has received more and more attentions in both academic and practitioner circles, the performance evaluation and process improvement of container ports have also been the focus of several studies. In this paper, Data Envelopment Analysis (DEA, an effective tool for relative efficiency assessment, is utilized for measuring the performances and benchmarking of the 77 world container ports in 2007. The used approaches in the current study consider four inputs (Capacity of Cargo Handling Machines, Number of Berths, Terminal Area and Storage Capacity and a single output (Container Throughput. The results for the efficiency scores are analyzed, and a unique ordering of the ports based on average cross efficiency is provided, also cluster analysis technique is used to select the more appropriate targets for poorly performing ports to use as benchmarks.

  19. Functional Principal Component Analysis and Randomized Sparse Clustering Algorithm for Medical Image Analysis

    Science.gov (United States)

    Lin, Nan; Jiang, Junhai; Guo, Shicheng; Xiong, Momiao

    2015-01-01

    Due to the advancement in sensor technology, the growing large medical image data have the ability to visualize the anatomical changes in biological tissues. As a consequence, the medical images have the potential to enhance the diagnosis of disease, the prediction of clinical outcomes and the characterization of disease progression. But in the meantime, the growing data dimensions pose great methodological and computational challenges for the representation and selection of features in image cluster analysis. To address these challenges, we first extend the functional principal component analysis (FPCA) from one dimension to two dimensions to fully capture the space variation of image the signals. The image signals contain a large number of redundant features which provide no additional information for clustering analysis. The widely used methods for removing the irrelevant features are sparse clustering algorithms using a lasso-type penalty to select the features. However, the accuracy of clustering using a lasso-type penalty depends on the selection of the penalty parameters and the threshold value. In practice, they are difficult to determine. Recently, randomized algorithms have received a great deal of attentions in big data analysis. This paper presents a randomized algorithm for accurate feature selection in image clustering analysis. The proposed method is applied to both the liver and kidney cancer histology image data from the TCGA database. The results demonstrate that the randomized feature selection method coupled with functional principal component analysis substantially outperforms the current sparse clustering algorithms in image cluster analysis. PMID:26196383

  20. Environmental analysis in small and medium enterprises

    International Nuclear Information System (INIS)

    Luciani, R.; Andriola, L.; Di Franco, N.

    2001-01-01

    An environmental analysis is considered to be one of the primary goals for an enterprise environmental management. Nevertheless the complexity of the environmental problems and of its regulations prevents the small enterprises the possibility to perform an environmental policy (EMAS, ISO 14001). One of the most correct evaluation instrument for creating a datum-point standard could be the filling up a questionnaire, built up in according to the industrial enterprises need. It has the function of creating a primary step for a subsequent environmental management [it

  1. Diagnostics of subtropical plants functional state by cluster analysis

    Directory of Open Access Journals (Sweden)

    Oksana Belous

    2016-05-01

    Full Text Available The article presents an application example of statistical methods for data analysis on diagnosis of the adaptive capacity of subtropical plants varieties. We depicted selection indicators and basic physiological parameters that were defined as diagnostic. We used evaluation on a set of parameters of water regime, there are: determination of water deficit of the leaves, determining the fractional composition of water and detection parameters of the concentration of cell sap (CCS (for tea culture flushes. These settings are characterized by high liability and high responsiveness to the effects of many abiotic factors that determined the particular care in the selection of plant material for analysis and consideration of the impact on sustainability. On the basis of the experimental data calculated the coefficients of pair correlation between climatic factors and used physiological indicators. The result was a selection of physiological and biochemical indicators proposed to assess the adaptability and included in the basis of methodical recommendations on diagnostics of the functional state of the studied cultures. Analysis of complex studies involving a large number of indicators is quite difficult, especially does not allow to quickly identify the similarity of new varieties for their adaptive responses to adverse factors, and, therefore, to set general requirements to conditions of cultivation. Use of cluster analysis suggests that in the analysis of only quantitative data; define a set of variables used to assess varieties (and the more sampling, the more accurate the clustering will happen, be sure to ascertain the measure of similarity (or difference between objects. It is shown that the identification of diagnostic features, which are subjected to statistical processing, impact the accuracy of the varieties classification. Selection in result of the mono-clusters analysis (variety tea Kolhida; hazelnut Lombardsky red; variety kiwi Monty

  2. Cluster analysis for DNA methylation profiles having a detection threshold

    Directory of Open Access Journals (Sweden)

    Siegmund Kimberly D

    2006-07-01

    Full Text Available Abstract Background DNA methylation, a molecular feature used to investigate tumor heterogeneity, can be measured on many genomic regions using the MethyLight technology. Due to the combination of the underlying biology of DNA methylation and the MethyLight technology, the measurements, while being generated on a continuous scale, have a large number of 0 values. This suggests that conventional clustering methodology may not perform well on this data. Results We compare performance of existing methodology (such as k-means with two novel methods that explicitly allow for the preponderance of values at 0. We also consider how the ability to successfully cluster such data depends upon the number of informative genes for which methylation is measured and the correlation structure of the methylation values for those genes. We show that when data is collected for a sufficient number of genes, our models do improve clustering performance compared to methods, such as k-means, that do not explicitly respect the supposed biological realities of the situation. Conclusion The performance of analysis methods depends upon how well the assumptions of those methods reflect the properties of the data being analyzed. Differing technologies will lead to data with differing properties, and should therefore be analyzed differently. Consequently, it is prudent to give thought to what the properties of the data are likely to be, and which analysis method might therefore be likely to best capture those properties.

  3. Cluster Analysis of the International Stellarator Confinement Database

    International Nuclear Information System (INIS)

    Kus, A.; Dinklage, A.; Preuss, R.; Ascasibar, E.; Harris, J. H.; Okamura, S.; Yamada, H.; Sano, F.; Stroth, U.; Talmadge, J.

    2008-01-01

    Heterogeneous structure of collected data is one of the problems that occur during derivation of scalings for energy confinement time, and whose analysis tourns out to be wide and complicated matter. The International Stellarator Confinement Database [1], shortly ISCDB, comprises in its latest version 21 a total of 3647 observations from 8 experimental devices, 2067 therefrom beeing so far completed for upcoming analyses. For confinement scaling studies 1933 observation were chosen as the standard dataset. Here we describe a statistical method of cluster analysis for identification of possible cohesive substructures in ISDCB and present some preliminary results

  4. Accommodating error analysis in comparison and clustering of molecular fingerprints.

    Science.gov (United States)

    Salamon, H; Segal, M R; Ponce de Leon, A; Small, P M

    1998-01-01

    Molecular epidemiologic studies of infectious diseases rely on pathogen genotype comparisons, which usually yield patterns comprising sets of DNA fragments (DNA fingerprints). We use a highly developed genotyping system, IS6110-based restriction fragment length polymorphism analysis of Mycobacterium tuberculosis, to develop a computational method that automates comparison of large numbers of fingerprints. Because error in fragment length measurements is proportional to fragment length and is positively correlated for fragments within a lane, an align-and-count method that compensates for relative scaling of lanes reliably counts matching fragments between lanes. Results of a two-step method we developed to cluster identical fingerprints agree closely with 5 years of computer-assisted visual matching among 1,335 M. tuberculosis fingerprints. Fully documented and validated methods of automated comparison and clustering will greatly expand the scope of molecular epidemiology.

  5. Accident patterns for construction-related workers: a cluster analysis

    Science.gov (United States)

    Liao, Chia-Wen; Tyan, Yaw-Yauan

    2012-01-01

    The construction industry has been identified as one of the most hazardous industries. The risk of constructionrelated workers is far greater than that in a manufacturing based industry. However, some steps can be taken to reduce worker risk through effective injury prevention strategies. In this article, k-means clustering methodology is employed in specifying the factors related to different worker types and in identifying the patterns of industrial occupational accidents. Accident reports during the period 1998 to 2008 are extracted from case reports of the Northern Region Inspection Office of the Council of Labor Affairs of Taiwan. The results show that the cluster analysis can indicate some patterns of occupational injuries in the construction industry. Inspection plans should be proposed according to the type of construction-related workers. The findings provide a direction for more effective inspection strategies and injury prevention programs.

  6. Cluster analysis in systems of magnetic spheres and cubes

    Energy Technology Data Exchange (ETDEWEB)

    Pyanzina, E.S., E-mail: elena.pyanzina@urfu.ru [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); Gudkova, A.V. [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); Donaldson, J.G. [University of Vienna, Sensengasse 8, Vienna (Austria); Kantorovich, S.S. [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); University of Vienna, Sensengasse 8, Vienna (Austria)

    2017-06-01

    In the present work we use molecular dynamics simulations and graph-theory based cluster analysis to compare self-assembly in systems of magnetic spheres, and cubes where the dipole moment is oriented along the side of the cube in the [001] crystallographic direction. We show that under the same conditions cubes aggregate far less than their spherical counterparts. This difference can be explained in terms of the volume of phase space in which the formation of the bond is thermodynamically advantageous. It follows that this volume is much larger for a dipolar sphere than for a dipolar cube. - Highlights: • A comparison of the degree of self-assembly in systems of magnetic spheres and cubes. • Spheres are more likely to form larger clusters than cubes. • Differences in microstructure will manifest in the magnetic response of each system.

  7. Image Registration Algorithm Based on Parallax Constraint and Clustering Analysis

    Science.gov (United States)

    Wang, Zhe; Dong, Min; Mu, Xiaomin; Wang, Song

    2018-01-01

    To resolve the problem of slow computation speed and low matching accuracy in image registration, a new image registration algorithm based on parallax constraint and clustering analysis is proposed. Firstly, Harris corner detection algorithm is used to extract the feature points of two images. Secondly, use Normalized Cross Correlation (NCC) function to perform the approximate matching of feature points, and the initial feature pair is obtained. Then, according to the parallax constraint condition, the initial feature pair is preprocessed by K-means clustering algorithm, which is used to remove the feature point pairs with obvious errors in the approximate matching process. Finally, adopt Random Sample Consensus (RANSAC) algorithm to optimize the feature points to obtain the final feature point matching result, and the fast and accurate image registration is realized. The experimental results show that the image registration algorithm proposed in this paper can improve the accuracy of the image matching while ensuring the real-time performance of the algorithm.

  8. Network clustering coefficient approach to DNA sequence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gerhardt, Guenther J.L. [Universidade Federal do Rio Grande do Sul-Hospital de Clinicas de Porto Alegre, Rua Ramiro Barcelos 2350/sala 2040/90035-003 Porto Alegre (Brazil); Departamento de Fisica e Quimica da Universidade de Caxias do Sul, Rua Francisco Getulio Vargas 1130, 95001-970 Caxias do Sul (Brazil); Lemke, Ney [Programa Interdisciplinar em Computacao Aplicada, Unisinos, Av. Unisinos, 950, 93022-000 Sao Leopoldo, RS (Brazil); Corso, Gilberto [Departamento de Biofisica e Farmacologia, Centro de Biociencias, Universidade Federal do Rio Grande do Norte, Campus Universitario, 59072 970 Natal, RN (Brazil)]. E-mail: corso@dfte.ufrn.br

    2006-05-15

    In this work we propose an alternative DNA sequence analysis tool based on graph theoretical concepts. The methodology investigates the path topology of an organism genome through a triplet network. In this network, triplets in DNA sequence are vertices and two vertices are connected if they occur juxtaposed on the genome. We characterize this network topology by measuring the clustering coefficient. We test our methodology against two main bias: the guanine-cytosine (GC) content and 3-bp (base pairs) periodicity of DNA sequence. We perform the test constructing random networks with variable GC content and imposed 3-bp periodicity. A test group of some organisms is constructed and we investigate the methodology in the light of the constructed random networks. We conclude that the clustering coefficient is a valuable tool since it gives information that is not trivially contained in 3-bp periodicity neither in the variable GC content.

  9. Multiscale visual quality assessment for cluster analysis with self-organizing maps

    Science.gov (United States)

    Bernard, Jürgen; von Landesberger, Tatiana; Bremm, Sebastian; Schreck, Tobias

    2011-01-01

    Cluster analysis is an important data mining technique for analyzing large amounts of data, reducing many objects to a limited number of clusters. Cluster visualization techniques aim at supporting the user in better understanding the characteristics and relationships among the found clusters. While promising approaches to visual cluster analysis already exist, these usually fall short of incorporating the quality of the obtained clustering results. However, due to the nature of the clustering process, quality plays an important aspect, as for most practical data sets, typically many different clusterings are possible. Being aware of clustering quality is important to judge the expressiveness of a given cluster visualization, or to adjust the clustering process with refined parameters, among others. In this work, we present an encompassing suite of visual tools for quality assessment of an important visual cluster algorithm, namely, the Self-Organizing Map (SOM) technique. We define, measure, and visualize the notion of SOM cluster quality along a hierarchy of cluster abstractions. The quality abstractions range from simple scalar-valued quality scores up to the structural comparison of a given SOM clustering with output of additional supportive clustering methods. The suite of methods allows the user to assess the SOM quality on the appropriate abstraction level, and arrive at improved clustering results. We implement our tools in an integrated system, apply it on experimental data sets, and show its applicability.

  10. Nuclear analysis techniques and environmental sciences

    International Nuclear Information System (INIS)

    1997-10-01

    31 theses are collected in this book. It introduced molecular activation analysis micro-PIXE and micro-probe analysis, x-ray fluorescence analysis and accelerator mass spectrometry. The applications about these nuclear analysis techniques are presented and reviewed for environmental sciences

  11. Steady state subchannel analysis of AHWR fuel cluster

    International Nuclear Information System (INIS)

    Dasgupta, A.; Chandraker, D.K.; Vijayan, P.K.; Saha, D.

    2006-09-01

    Subchannel analysis is a technique used to predict the thermal hydraulic behavior of reactor fuel assemblies. The rod cluster is subdivided into a number of parallel interacting flow subchannels. The conservation equations are solved for each of these subchannels, taking into account subchannel interactions. Subchannel analysis of AHWR D-5 fuel cluster has been carried out to determine the variations in thermal hydraulic conditions of coolant and fuel temperatures along the length of the fuel bundle. The hottest regions within the AHWR fuel bundle have been identified. The effect of creep on the fuel performance has also been studied. MCHFR has been calculated using Jansen-Levy correlation. The calculations have been backed by sensitivity analysis for parameters whose values are not known accurately. The sensitivity analysis showed the calculations to have a very low sensitivity to these parameters. Apart from the analysis, the report also includes a brief introduction of a few subchannel codes. A brief description of the equations and solution methodology used in COBRA-IIIC and COBRA-IV-I is also given. (author)

  12. Environmental filtering of eudicot lineages underlies phylogenetic clustering in tropical South American flooded forests.

    Science.gov (United States)

    Aldana, Ana M; Carlucci, Marcos B; Fine, Paul V A; Stevenson, Pablo R

    2017-02-01

    The phylogenetic community assembly approach has been used to elucidate the role of ecological and historical processes in shaping tropical tree communities. Recent studies have shown that stressful environments, such as seasonally dry, white-sand and flooded forests tend to be phylogenetically clustered, arguing for niche conservatism as the main driver for this pattern. Very few studies have attempted to identify the lineages that contribute to such assembly patterns. We aimed to improve our understanding of the assembly of flooded forest tree communities in Northern South America by asking the following questions: are seasonally flooded forests phylogenetically clustered? If so, which angiosperm lineages are over-represented in seasonally flooded forests? To assess our hypotheses, we investigated seasonally flooded and terra firme forests from the Magdalena, Orinoco and Amazon Basins, in Colombia. Our results show that, regardless of the river basin in which they are located, seasonally flooded forests of Northern South America tend to be phylogenetically clustered, which means that the more abundant taxa in these forests are more closely related to each other than expected by chance. Based on our alpha and beta phylodiversity analyses we interpret that eudicots are more likely to adapt to extreme environments such as seasonally flooded forests, which indicates the importance of environmental filtering in the assembly of the Neotropical flora.

  13. Environmental Management Strategy: Four Forces Analysis

    Science.gov (United States)

    Doyle, Martin W.; Von Windheim, Jesko

    2015-01-01

    We develop an analytical approach for more systematically analyzing environmental management problems in order to develop strategic plans. This approach can be deployed by agencies, non-profit organizations, corporations, or other organizations and institutions tasked with improving environmental quality. The analysis relies on assessing the underlying natural processes followed by articulation of the relevant societal forces causing environmental change: (1) science and technology, (2) governance, (3) markets and the economy, and (4) public behavior. The four forces analysis is then used to strategize which types of actions might be most effective at influencing environmental quality. Such strategy has been under-used and under-valued in environmental management outside of the corporate sector, and we suggest that this four forces analysis is a useful analytic to begin developing such strategy.

  14. Environmental management strategy: four forces analysis.

    Science.gov (United States)

    Doyle, Martin W; Von Windheim, Jesko

    2015-01-01

    We develop an analytical approach for more systematically analyzing environmental management problems in order to develop strategic plans. This approach can be deployed by agencies, non-profit organizations, corporations, or other organizations and institutions tasked with improving environmental quality. The analysis relies on assessing the underlying natural processes followed by articulation of the relevant societal forces causing environmental change: (1) science and technology, (2) governance, (3) markets and the economy, and (4) public behavior. The four forces analysis is then used to strategize which types of actions might be most effective at influencing environmental quality. Such strategy has been under-used and under-valued in environmental management outside of the corporate sector, and we suggest that this four forces analysis is a useful analytic to begin developing such strategy.

  15. Environmental data processing by clustering methods for energy forecast and planning

    Energy Technology Data Exchange (ETDEWEB)

    Di Piazza, Annalisa [Dipartimento di Ingegneria Idraulica e Applicazioni Ambientali (DIIAA), viale delle Scienze, Universita degli Studi di Palermo, 90128 Palermo (Italy); Di Piazza, Maria Carmela; Ragusa, Antonella; Vitale, Gianpaolo [Consiglio Nazionale delle Ricerche Istituto di Studi sui Sistemi Intelligenti per l' Automazione (ISSIA - CNR), sezione di Palermo, Via Dante, 12, 90141 Palermo (Italy)

    2011-03-15

    This paper presents a statistical approach based on the k-means clustering technique to manage environmental sampled data to evaluate and to forecast of the energy deliverable by different renewable sources in a given site. In particular, wind speed and solar irradiance sampled data are studied in association to the energy capability of a wind generator and a photovoltaic (PV) plant, respectively. The proposed method allows the sub-sets of useful data, describing the energy capability of a site, to be extracted from a set of experimental observations belonging the considered site. The data collection is performed in Sicily, in the south of Italy, as case study. As far as the wind generation is concerned, a suitable generator, matching the wind profile of the studied sites, has been selected for the evaluation of the producible energy. With respect to the photovoltaic generation, the irradiance data have been taken from the acquisition system of an actual installation. It is demonstrated, in both cases, that the use of the k-means clustering method allows data that do not contribute to the produced energy to be grouped into a cluster, moreover it simplifies the problem of the energy assessment since it permits to obtain the desired information on energy capability by managing a reduced amount of experimental samples. In the studied cases, the proposed method permitted a reduction of the 50% of the data with a maximum discrepancy of 10% in energy estimation compared to the classical statistical approach. Therefore, the adopted k-means clustering technique represents an useful tool for an appropriate and less demanding energy forecast and planning in distributed generation systems. (author)

  16. Analysis of Learning Development With Sugeno Fuzzy Logic And Clustering

    Directory of Open Access Journals (Sweden)

    Maulana Erwin Saputra

    2017-06-01

    Full Text Available In the first journal, I made this attempt to analyze things that affect the achievement of students in each school of course vary. Because students are one of the goals of achieving the goals of successful educational organizations. The mental influence of students’ emotions and behaviors themselves in relation to learning performance. Fuzzy logic can be used in various fields as well as Clustering for grouping, as in Learning Development analyzes. The process will be performed on students based on the symptoms that exist. In this research will use fuzzy logic and clustering. Fuzzy is an uncertain logic but its excess is capable in the process of language reasoning so that in its design is not required complicated mathematical equations. However Clustering method is K-Means method is method where data analysis is broken down by group k (k = 1,2,3, .. k. To know the optimal number of Performance group. The results of the research is with a questionnaire entered into matlab will produce a value that means in generating the graph. And simplify the school in seeing Student performance in the learning process by using certain criteria. So from the system that obtained the results for a decision-making required by the school.

  17. IGSA: Individual Gene Sets Analysis, including Enrichment and Clustering.

    Science.gov (United States)

    Wu, Lingxiang; Chen, Xiujie; Zhang, Denan; Zhang, Wubing; Liu, Lei; Ma, Hongzhe; Yang, Jingbo; Xie, Hongbo; Liu, Bo; Jin, Qing

    2016-01-01

    Analysis of gene sets has been widely applied in various high-throughput biological studies. One weakness in the traditional methods is that they neglect the heterogeneity of genes expressions in samples which may lead to the omission of some specific and important gene sets. It is also difficult for them to reflect the severities of disease and provide expression profiles of gene sets for individuals. We developed an application software called IGSA that leverages a powerful analytical capacity in gene sets enrichment and samples clustering. IGSA calculates gene sets expression scores for each sample and takes an accumulating clustering strategy to let the samples gather into the set according to the progress of disease from mild to severe. We focus on gastric, pancreatic and ovarian cancer data sets for the performance of IGSA. We also compared the results of IGSA in KEGG pathways enrichment with David, GSEA, SPIA, ssGSEA and analyzed the results of IGSA clustering and different similarity measurement methods. Notably, IGSA is proved to be more sensitive and specific in finding significant pathways, and can indicate related changes in pathways with the severity of disease. In addition, IGSA provides with significant gene sets profile for each sample.

  18. 23 CFR 710.305 - Environmental analysis.

    Science.gov (United States)

    2010-04-01

    ... FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RIGHT-OF-WAY AND ENVIRONMENT RIGHT-OF-WAY AND REAL ESTATE Project Development § 710.305 Environmental analysis. The National Environmental Policy Act... agreement for acquisition of right-of-way. Where applicable, a State also must complete Clean Air Act (42 U...

  19. Feasibility Study of Parallel Finite Element Analysis on Cluster-of-Clusters

    Science.gov (United States)

    Muraoka, Masae; Okuda, Hiroshi

    With the rapid growth of WAN infrastructure and development of Grid middleware, it's become a realistic and attractive methodology to connect cluster machines on wide-area network for the execution of computation-demanding applications. Many existing parallel finite element (FE) applications have been, however, designed and developed with a single computing resource in mind, since such applications require frequent synchronization and communication among processes. There have been few FE applications that can exploit the distributed environment so far. In this study, we explore the feasibility of FE applications on the cluster-of-clusters. First, we classify FE applications into two types, tightly coupled applications (TCA) and loosely coupled applications (LCA) based on their communication pattern. A prototype of each application is implemented on the cluster-of-clusters. We perform numerical experiments executing TCA and LCA on both the cluster-of-clusters and a single cluster. Thorough these experiments, by comparing the performances and communication cost in each case, we evaluate the feasibility of FEA on the cluster-of-clusters.

  20. Cluster analysis in systems of magnetic spheres and cubes

    Science.gov (United States)

    Pyanzina, E. S.; Gudkova, A. V.; Donaldson, J. G.; Kantorovich, S. S.

    2017-06-01

    In the present work we use molecular dynamics simulations and graph-theory based cluster analysis to compare self-assembly in systems of magnetic spheres, and cubes where the dipole moment is oriented along the side of the cube in the [001] crystallographic direction. We show that under the same conditions cubes aggregate far less than their spherical counterparts. This difference can be explained in terms of the volume of phase space in which the formation of the bond is thermodynamically advantageous. It follows that this volume is much larger for a dipolar sphere than for a dipolar cube.

  1. Cluster analysis of activity-time series in motor learning

    DEFF Research Database (Denmark)

    Balslev, Daniela; Nielsen, Finn Årup; Frutiger, Sally A.

    2002-01-01

    Neuroimaging studies of learning focus on brain areas where the activity changes as a function of time. To circumvent the difficult problem of model selection, we used a data-driven analytic tool, cluster analysis, which extracts representative temporal and spatial patterns from the voxel...... practice-related activity in a fronto-parieto-cerebellar network, in agreement with previous studies of motor learning. These voxels were separated from a group of voxels showing an unspecific time-effect and another group of voxels, whose activation was an artifact from smoothing. Hum. Brain Mapping 15...

  2. A cluster analysis on road traffic accidents using genetic algorithms

    Science.gov (United States)

    Saharan, Sabariah; Baragona, Roberto

    2017-04-01

    The analysis of traffic road accidents is increasingly important because of the accidents cost and public road safety. The availability or large data sets makes the study of factors that affect the frequency and severity accidents are viable. However, the data are often highly unbalanced and overlapped. We deal with the data set of the road traffic accidents recorded in Christchurch, New Zealand, from 2000-2009 with a total of 26440 accidents. The data is in a binary set and there are 50 factors road traffic accidents with four level of severity. We used genetic algorithm for the analysis because we are in the presence of a large unbalanced data set and standard clustering like k-means algorithm may not be suitable for the task. The genetic algorithm based on clustering for unknown K, (GCUK) has been used to identify the factors associated with accidents of different levels of severity. The results provided us with an interesting insight into the relationship between factors and accidents severity level and suggest that the two main factors that contributes to fatal accidents are "Speed greater than 60 km h" and "Did not see other people until it was too late". A comparison with the k-means algorithm and the independent component analysis is performed to validate the results.

  3. Comparing Distributions of Environmental Outcomes for Regulatory Environmental Justice Analysis

    Directory of Open Access Journals (Sweden)

    Glenn Sheriff

    2011-05-01

    Full Text Available Economists have long been interested in measuring distributional impacts of policy interventions. As environmental justice (EJ emerged as an ethical issue in the 1970s, the academic literature has provided statistical analyses of the incidence and causes of various environmental outcomes as they relate to race, income, and other demographic variables. In the context of regulatory impacts, however, there is a lack of consensus regarding what information is relevant for EJ analysis, and how best to present it. This paper helps frame the discussion by suggesting a set of questions fundamental to regulatory EJ analysis, reviewing past approaches to quantifying distributional equity, and discussing the potential for adapting existing tools to the regulatory context.

  4. Physicochemical properties of different corn varieties by principal components analysis and cluster analysis

    International Nuclear Information System (INIS)

    Zeng, J.; Li, G.; Sun, J.

    2013-01-01

    Principal components analysis and cluster analysis were used to investigate the properties of different corn varieties. The chemical compositions and some properties of corn flour which processed by drying milling were determined. The results showed that the chemical compositions and physicochemical properties were significantly different among twenty six corn varieties. The quality of corn flour was concerned with five principal components from principal component analysis and the contribution rate of starch pasting properties was important, which could account for 48.90%. Twenty six corn varieties could be classified into four groups by cluster analysis. The consistency between principal components analysis and cluster analysis indicated that multivariate analyses were feasible in the study of corn variety properties. (author)

  5. Cluster analysis of autoantibodies in 852 patients with systemic lupus erythematosus from a single center.

    Science.gov (United States)

    Artim-Esen, Bahar; Çene, Erhan; Şahinkaya, Yasemin; Ertan, Semra; Pehlivan, Özlem; Kamali, Sevil; Gül, Ahmet; Öcal, Lale; Aral, Orhan; Inanç, Murat

    2014-07-01

    Associations between autoantibodies and clinical features have been described in systemic lupus erythematosus (SLE). Herein, we aimed to define autoantibody clusters and their clinical correlations in a large cohort of patients with SLE. We analyzed 852 patients with SLE who attended our clinic. Seven autoantibodies were selected for cluster analysis: anti-DNA, anti-Sm, anti-RNP, anticardiolipin (aCL) immunoglobulin (Ig)G or IgM, lupus anticoagulant (LAC), anti-Ro, and anti-La. Two-step clustering and Kaplan-Meier survival analyses were used. Five clusters were identified. A cluster consisted of patients with only anti-dsDNA antibodies, a cluster of anti-Sm and anti-RNP, a cluster of aCL IgG/M and LAC, and a cluster of anti-Ro and anti-La antibodies. Analysis revealed 1 more cluster that consisted of patients who did not belong to any of the clusters formed by antibodies chosen for cluster analysis. Sm/RNP cluster had significantly higher incidence of pulmonary hypertension and Raynaud phenomenon. DsDNA cluster had the highest incidence of renal involvement. In the aCL/LAC cluster, there were significantly more patients with neuropsychiatric involvement, antiphospholipid syndrome, autoimmune hemolytic anemia, and thrombocytopenia. According to the Systemic Lupus International Collaborating Clinics damage index, the highest frequency of damage was in the aCL/LAC cluster. Comparison of 10 and 20 years survival showed reduced survival in the aCL/LAC cluster. This study supports the existence of autoantibody clusters with distinct clinical features in SLE and shows that forming clinical subsets according to autoantibody clusters may be useful in predicting the outcome of the disease. Autoantibody clusters in SLE may exhibit differences according to the clinical setting or population.

  6. [Typologies of Madrid's citizens (Spain) at the end-of-life: cluster analysis].

    Science.gov (United States)

    Ortiz-Gonçalves, Belén; Perea-Pérez, Bernardo; Labajo González, Elena; Albarrán Juan, Elena; Santiago-Sáez, Andrés

    2018-03-06

    To establish typologies within Madrid's citizens (Spain) with regard to end-of-life by cluster analysis. The SPAD 8 programme was implemented in a sample from a health care centre in the autonomous region of Madrid (Spain). A multiple correspondence analysis technique was used, followed by a cluster analysis to create a dendrogram. A cross-sectional study was made beforehand with the results of the questionnaire. Five clusters stand out. Cluster 1: a group who preferred not to answer numerous questions (5%). Cluster 2: in favour of receiving palliative care and euthanasia (40%). Cluster 3: would oppose assisted suicide and would not ask for spiritual assistance (15%). Cluster 4: would like to receive palliative care and assisted suicide (16%). Cluster 5: would oppose assisted suicide and would ask for spiritual assistance (24%). The following four clusters stood out. Clusters 2 and 4 would like to receive palliative care, euthanasia (2) and assisted suicide (4). Clusters 4 and 5 regularly practiced their faith and their family members did not receive palliative care. Clusters 3 and 5 would be opposed to euthanasia and assisted suicide in particular. Clusters 2, 4 and 5 had not completed an advance directive document (2, 4 and 5). Clusters 2 and 3 seldom practiced their faith. This study could be taken into consideration to improve the quality of end-of-life care choices. Copyright © 2017 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Reliability analysis of cluster-based ad-hoc networks

    International Nuclear Information System (INIS)

    Cook, Jason L.; Ramirez-Marquez, Jose Emmanuel

    2008-01-01

    The mobile ad-hoc wireless network (MAWN) is a new and emerging network scheme that is being employed in a variety of applications. The MAWN varies from traditional networks because it is a self-forming and dynamic network. The MAWN is free of infrastructure and, as such, only the mobile nodes comprise the network. Pairs of nodes communicate either directly or through other nodes. To do so, each node acts, in turn, as a source, destination, and relay of messages. The virtue of a MAWN is the flexibility this provides; however, the challenge for reliability analyses is also brought about by this unique feature. The variability and volatility of the MAWN configuration makes typical reliability methods (e.g. reliability block diagram) inappropriate because no single structure or configuration represents all manifestations of a MAWN. For this reason, new methods are being developed to analyze the reliability of this new networking technology. New published methods adapt to this feature by treating the configuration probabilistically or by inclusion of embedded mobility models. This paper joins both methods together and expands upon these works by modifying the problem formulation to address the reliability analysis of a cluster-based MAWN. The cluster-based MAWN is deployed in applications with constraints on networking resources such as bandwidth and energy. This paper presents the problem's formulation, a discussion of applicable reliability metrics for the MAWN, and illustration of a Monte Carlo simulation method through the analysis of several example networks

  8. Shape Analysis of HII Regions - I. Statistical Clustering

    Science.gov (United States)

    Campbell-White, Justyn; Froebrich, Dirk; Kume, Alfred

    2018-04-01

    We present here our shape analysis method for a sample of 76 Galactic HII regions from MAGPIS 1.4 GHz data. The main goal is to determine whether physical properties and initial conditions of massive star cluster formation is linked to the shape of the regions. We outline a systematic procedure for extracting region shapes and perform hierarchical clustering on the shape data. We identified six groups that categorise HII regions by common morphologies. We confirmed the validity of these groupings by bootstrap re-sampling and the ordinance technique multidimensional scaling. We then investigated associations between physical parameters and the assigned groups. Location is mostly independent of group, with a small preference for regions of similar longitudes to share common morphologies. The shapes are homogeneously distributed across Galactocentric distance and latitude. One group contains regions that are all younger than 0.5 Myr and ionised by low- to intermediate-mass sources. Those in another group are all driven by intermediate- to high-mass sources. One group was distinctly separated from the other five and contained regions at the surface brightness detection limit for the survey. We find that our hierarchical procedure is most sensitive to the spatial sampling resolution used, which is determined for each region from its distance. We discuss how these errors can be further quantified and reduced in future work by utilising synthetic observations from numerical simulations of HII regions. We also outline how this shape analysis has further applications to other diffuse astronomical objects.

  9. Time series clustering analysis of health-promoting behavior

    Science.gov (United States)

    Yang, Chi-Ta; Hung, Yu-Shiang; Deng, Guang-Feng

    2013-10-01

    Health promotion must be emphasized to achieve the World Health Organization goal of health for all. Since the global population is aging rapidly, ComCare elder health-promoting service was developed by the Taiwan Institute for Information Industry in 2011. Based on the Pender health promotion model, ComCare service offers five categories of health-promoting functions to address the everyday needs of seniors: nutrition management, social support, exercise management, health responsibility, stress management. To assess the overall ComCare service and to improve understanding of the health-promoting behavior of elders, this study analyzed health-promoting behavioral data automatically collected by the ComCare monitoring system. In the 30638 session records collected for 249 elders from January, 2012 to March, 2013, behavior patterns were identified by fuzzy c-mean time series clustering algorithm combined with autocorrelation-based representation schemes. The analysis showed that time series data for elder health-promoting behavior can be classified into four different clusters. Each type reveals different health-promoting needs, frequencies, function numbers and behaviors. The data analysis result can assist policymakers, health-care providers, and experts in medicine, public health, nursing and psychology and has been provided to Taiwan National Health Insurance Administration to assess the elder health-promoting behavior.

  10. Full spectrum analysis in environmental monitoring

    International Nuclear Information System (INIS)

    Reinhardt, Sascha; Hartmann, Soeren; Pimpl, Richard

    2015-01-01

    In the environmental monitoring spectroscopic gamma detectors are frequently used. The motivation to use spectroscopic gamma detectors is the higher sensitivity and specific spectral information. For the analysis often the photo peaks of the gamma spectrum are used to identify the nuclide. These methods are very reliable, robust and well developed but using only the photo peak means also to use only a fraction of the available information. Doing a full spectrum analysis based on principle components obtained from NASVD for description of the radiation background and adjustment calculations are a possible analysis method which may provide advantages compared to a peak based analysis when used for a continuous environmental monitoring. An analysis example is shown and discussed with a measured time series of gamma spectra obtained from a spectroscopic gamma detector SARA IGS710 with a NaI(Tl) scintillator as it is used in the environmental monitoring.

  11. Full spectrum analysis in environmental monitoring

    International Nuclear Information System (INIS)

    Reinahrdt, S.; Hartmann, S.; Pimpl, R.

    2014-01-01

    In the environmental monitoring spectroscopic gamma detectors are frequently used. The motivation to use spectroscopic gamma detectors is the higher sensitivity and specific spectral information. For the analysis often the photo peaks of the gamma spectrum are used to identify the nuclide. These methods are very reliable, robust and well developed but using only the photo peak means also to use only a fraction of the available information. Doing a full spectrum analysis based on principal components obtained from NASVD for description of the radiation background and adjustment calculations are a possible analysis method, which may provide advantages compared to a peak based analysis when used for a continuous environmental monitoring. An analysis example is shown and discussed with a measured time series of gamma spectra obtained from a spectroscopic gamma detector SARA IGS710 with a NaI(Tl) scintillator as it is used in the environmental monitoring. (authors)

  12. Coxiella burnetii transcriptional analysis reveals serendipity clusters of regulation in intracellular bacteria.

    Directory of Open Access Journals (Sweden)

    Quentin Leroy

    Full Text Available Coxiella burnetii, the causative agent of the zoonotic disease Q fever, is mainly transmitted to humans through an aerosol route. A spore-like form allows C. burnetii to resist different environmental conditions. Because of this, analysis of the survival strategies used by this bacterium to adapt to new environmental conditions is critical for our understanding of C. burnetii pathogenicity. Here, we report the early transcriptional response of C. burnetii under temperature stresses. Our data show that C. burnetii exhibited minor changes in gene regulation under short exposure to heat or cold shock. While small differences were observed, C. burnetii seemed to respond similarly to cold and heat shock. The expression profiles obtained using microarrays produced in-house were confirmed by quantitative RT-PCR. Under temperature stresses, 190 genes were differentially expressed in at least one condition, with a fold change of up to 4. Globally, the differentially expressed genes in C. burnetii were associated with bacterial division, (pppGpp synthesis, wall and membrane biogenesis and, especially, lipopolysaccharide and peptidoglycan synthesis. These findings could be associated with growth arrest and witnessed transformation of the bacteria to a spore-like form. Unexpectedly, clusters of neighboring genes were differentially expressed. These clusters do not belong to operons or genetic networks; they have no evident associated functions and are not under the control of the same promoters. We also found undescribed but comparable clusters of regulation in previously reported transcriptomic analyses of intracellular bacteria, including Rickettsia sp. and Listeria monocytogenes. The transcriptomic patterns of C. burnetii observed under temperature stresses permits the recognition of unpredicted clusters of regulation for which the trigger mechanism remains unidentified but which may be the result of a new mechanism of epigenetic regulation.

  13. Cluster, adaptation and extroversion : a cognitive and entrepreneurial analysis of the Marche music cluster

    NARCIS (Netherlands)

    Tappi, D.

    2005-01-01

    Over recent decades, clusters like industrial districts have increasingly attracted attention in economic debate. The study of clusters, particularly in the Italian literature, highlights the inadequacy of the mainstream body of explanation to provide a theory of the emergence and transformation

  14. Data analysis and interpretation for environmental surveillance

    International Nuclear Information System (INIS)

    1992-06-01

    The Data Analysis and Interpretation for Environmental Surveillance Conference was held in Lexington, Kentucky, February 5--7, 1990. The conference was sponsored by what is now the Office of Environmental Compliance and Documentation, Oak Ridge National Laboratory. Participants included technical professionals from all Martin Marietta Energy Systems facilities, Westinghouse Materials Company of Ohio, Pacific Northwest Laboratory, and several technical support contractors. Presentations at the conference ranged the full spectrum of issues that effect the analysis and interpretation of environmental data. Topics included tracking systems for samples and schedules associated with ongoing programs; coalescing data from a variety of sources and pedigrees into integrated data bases; methods for evaluating the quality of environmental data through empirical estimates of parameters such as charge balance, pH, and specific conductance; statistical applications to the interpretation of environmental information; and uses of environmental information in risk and dose assessments. Hearing about and discussing this wide variety of topics provided an opportunity to capture the subtlety of each discipline and to appreciate the continuity that is required among the disciplines in order to perform high-quality environmental information analysis

  15. Phenotypes Determined by Cluster Analysis in Moderate to Severe Bronchial Asthma.

    Science.gov (United States)

    Youroukova, Vania M; Dimitrova, Denitsa G; Valerieva, Anna D; Lesichkova, Spaska S; Velikova, Tsvetelina V; Ivanova-Todorova, Ekaterina I; Tumangelova-Yuzeir, Kalina D

    2017-06-01

    Bronchial asthma is a heterogeneous disease that includes various subtypes. They may share similar clinical characteristics, but probably have different pathological mechanisms. To identify phenotypes using cluster analysis in moderate to severe bronchial asthma and to compare differences in clinical, physiological, immunological and inflammatory data between the clusters. Forty adult patients with moderate to severe bronchial asthma out of exacerbation were included. All underwent clinical assessment, anthropometric measurements, skin prick testing, standard spirometry and measurement fraction of exhaled nitric oxide. Blood eosinophilic count, serum total IgE and periostin levels were determined. Two-step cluster approach, hierarchical clustering method and k-mean analysis were used for identification of the clusters. We have identified four clusters. Cluster 1 (n=14) - late-onset, non-atopic asthma with impaired lung function, Cluster 2 (n=13) - late-onset, atopic asthma, Cluster 3 (n=6) - late-onset, aspirin sensitivity, eosinophilic asthma, and Cluster 4 (n=7) - early-onset, atopic asthma. Our study is the first in Bulgaria in which cluster analysis is applied to asthmatic patients. We identified four clusters. The variables with greatest force for differentiation in our study were: age of asthma onset, duration of diseases, atopy, smoking, blood eosinophils, nonsteroidal anti-inflammatory drugs hypersensitivity, baseline FEV1/FVC and symptoms severity. Our results support the concept of heterogeneity of bronchial asthma and demonstrate that cluster analysis can be an useful tool for phenotyping of disease and personalized approach to the treatment of patients.

  16. Assessment of genetic divergence in tomato through agglomerative hierarchical clustering and principal component analysis

    International Nuclear Information System (INIS)

    Iqbal, Q.; Saleem, M.Y.; Hameed, A.; Asghar, M.

    2014-01-01

    For the improvement of qualitative and quantitative traits, existence of variability has prime importance in plant breeding. Data on different morphological and reproductive traits of 47 tomato genotypes were analyzed for correlation,agglomerative hierarchical clustering and principal component analysis (PCA) to select genotypes and traits for future breeding program. Correlation analysis revealed significant positive association between yield and yield components like fruit diameter, single fruit weight and number of fruits plant-1. Principal component (PC) analysis depicted first three PCs with Eigen-value higher than 1 contributing 81.72% of total variability for different traits. The PC-I showed positive factor loadings for all the traits except number of fruits plant-1. The contribution of single fruit weight and fruit diameter was highest in PC-1. Cluster analysis grouped all genotypes into five divergent clusters. The genotypes in cluster-II and cluster-V exhibited uniform maturity and higher yield. The D2 statistics confirmed highest distance between cluster- III and cluster-V while maximum similarity was observed in cluster-II and cluster-III. It is therefore suggested that crosses between genotypes of cluster-II and cluster-V with those of cluster-I and cluster-III may exhibit heterosis in F1 for hybrid breeding and for selection of superior genotypes in succeeding generations for cross breeding programme. (author)

  17. Sensitization trajectories in childhood revealed by using a cluster analysis

    DEFF Research Database (Denmark)

    Schoos, Ann-Marie M.; Chawes, Bo L.; Melen, Erik

    2017-01-01

    Prospective Studies on Asthma in Childhood 2000 (COPSAC2000) birth cohort with specific IgE against 13 common food and inhalant allergens at the ages of ½, 1½, 4, and 6 years. An unsupervised cluster analysis for 3-dimensional data (nonnegative sparse parallel factor analysis) was used to extract latent......BACKGROUND: Assessment of sensitization at a single time point during childhood provides limited clinical information. We hypothesized that sensitization develops as specific patterns with respect to age at debut, development over time, and involved allergens and that such patterns might be more...... biologically and clinically relevant. OBJECTIVE: We sought to explore latent patterns of sensitization during the first 6 years of life and investigate whether such patterns associate with the development of asthma, rhinitis, and eczema. METHODS: We investigated 398 children from the at-risk Copenhagen...

  18. Integrating PROOF Analysis in Cloud and Batch Clusters

    International Nuclear Information System (INIS)

    Rodríguez-Marrero, Ana Y; Fernández-del-Castillo, Enol; López García, Álvaro; Marco de Lucas, Jesús; Matorras Weinig, Francisco; González Caballero, Isidro; Cuesta Noriega, Alberto

    2012-01-01

    High Energy Physics (HEP) analysis are becoming more complex and demanding due to the large amount of data collected by the current experiments. The Parallel ROOT Facility (PROOF) provides researchers with an interactive tool to speed up the analysis of huge volumes of data by exploiting parallel processing on both multicore machines and computing clusters. The typical PROOF deployment scenario is a permanent set of cores configured to run the PROOF daemons. However, this approach is incapable of adapting to the dynamic nature of interactive usage. Several initiatives seek to improve the use of computing resources by integrating PROOF with a batch system, such as Proof on Demand (PoD) or PROOF Cluster. These solutions are currently in production at Universidad de Oviedo and IFCA and are positively evaluated by users. Although they are able to adapt to the computing needs of users, they must comply with the specific configuration, OS and software installed at the batch nodes. Furthermore, they share the machines with other workloads, which may cause disruptions in the interactive service for users. These limitations make PROOF a typical use-case for cloud computing. In this work we take profit from Cloud Infrastructure at IFCA in order to provide a dynamic PROOF environment where users can control the software configuration of the machines. The Proof Analysis Framework (PAF) facilitates the development of new analysis and offers a transparent access to PROOF resources. Several performance measurements are presented for the different scenarios (PoD, SGE and Cloud), showing a speed improvement closely correlated with the number of cores used.

  19. Determining wood chip size: image analysis and clustering methods

    Directory of Open Access Journals (Sweden)

    Paolo Febbi

    2013-09-01

    Full Text Available One of the standard methods for the determination of the size distribution of wood chips is the oscillating screen method (EN 15149- 1:2010. Recent literature demonstrated how image analysis could return highly accurate measure of the dimensions defined for each individual particle, and could promote a new method depending on the geometrical shape to determine the chip size in a more accurate way. A sample of wood chips (8 litres was sieved through horizontally oscillating sieves, using five different screen hole diameters (3.15, 8, 16, 45, 63 mm; the wood chips were sorted in decreasing size classes and the mass of all fractions was used to determine the size distribution of the particles. Since the chip shape and size influence the sieving results, Wang’s theory, which concerns the geometric forms, was considered. A cluster analysis on the shape descriptors (Fourier descriptors and size descriptors (area, perimeter, Feret diameters, eccentricity was applied to observe the chips distribution. The UPGMA algorithm was applied on Euclidean distance. The obtained dendrogram shows a group separation according with the original three sieving fractions. A comparison has been made between the traditional sieve and clustering results. This preliminary result shows how the image analysis-based method has a high potential for the characterization of wood chip size distribution and could be further investigated. Moreover, this method could be implemented in an online detection machine for chips size characterization. An improvement of the results is expected by using supervised multivariate methods that utilize known class memberships. The main objective of the future activities will be to shift the analysis from a 2-dimensional method to a 3- dimensional acquisition process.

  20. Eating or meeting? Cluster analysis reveals intricacies of white shark (Carcharodon carcharias migration and offshore behavior.

    Directory of Open Access Journals (Sweden)

    Salvador J Jorgensen

    Full Text Available Elucidating how mobile ocean predators utilize the pelagic environment is vital to understanding the dynamics of oceanic species and ecosystems. Pop-up archival transmitting (PAT tags have emerged as an important tool to describe animal migrations in oceanic environments where direct observation is not feasible. Available PAT tag data, however, are for the most part limited to geographic position, swimming depth and environmental temperature, making effective behavioral observation challenging. However, novel analysis approaches have the potential to extend the interpretive power of these limited observations. Here we developed an approach based on clustering analysis of PAT daily time-at-depth histogram records to distinguish behavioral modes in white sharks (Carcharodon carcharias. We found four dominant and distinctive behavioral clusters matching previously described behavioral patterns, including two distinctive offshore diving modes. Once validated, we mapped behavior mode occurrence in space and time. Our results demonstrate spatial, temporal and sex-based structure in the diving behavior of white sharks in the northeastern Pacific previously unrecognized including behavioral and migratory patterns resembling those of species with lek mating systems. We discuss our findings, in combination with available life history and environmental data, and propose specific testable hypotheses to distinguish between mating and foraging in northeastern Pacific white sharks that can provide a framework for future work. Our methodology can be applied to similar datasets from other species to further define behaviors during unobservable phases.

  1. Analysis procedure for americium in environmental samples

    International Nuclear Information System (INIS)

    Holloway, R.W.; Hayes, D.W.

    1982-01-01

    Several methods for the analysis of 241 Am in environmental samples were evaluated and a preferred method was selected. This method was modified and used to determine the 241 Am content in sediments, biota, and water. The advantages and limitations of the method are discussed. The method is also suitable for 244 Cm analysis

  2. Cluster analysis of received constellations for optical performance monitoring

    NARCIS (Netherlands)

    van Weerdenburg, J.J.A.; van Uden, R.; Sillekens, E.; de Waardt, H.; Koonen, A.M.J.; Okonkwo, C.

    2016-01-01

    Performance monitoring based on centroid clustering to investigate constellation generation offsets. The tool allows flexibility in constellation generation tolerances by forwarding centroids to the demapper. The relation of fibre nonlinearities and singular value decomposition of intra-cluster

  3. The composite sequential clustering technique for analysis of multispectral scanner data

    Science.gov (United States)

    Su, M. Y.

    1972-01-01

    The clustering technique consists of two parts: (1) a sequential statistical clustering which is essentially a sequential variance analysis, and (2) a generalized K-means clustering. In this composite clustering technique, the output of (1) is a set of initial clusters which are input to (2) for further improvement by an iterative scheme. This unsupervised composite technique was employed for automatic classification of two sets of remote multispectral earth resource observations. The classification accuracy by the unsupervised technique is found to be comparable to that by traditional supervised maximum likelihood classification techniques. The mathematical algorithms for the composite sequential clustering program and a detailed computer program description with job setup are given.

  4. Genetic Diversity and Relationships of Neolamarckia cadamba (Roxb. Bosser progenies through cluster analysis

    Directory of Open Access Journals (Sweden)

    M. Preethi Shree

    2018-04-01

    Full Text Available Genetic diversity analysis was conducted for biometric attributes in 20 progenies of Neolamarckia cadamba. The application of D2 clustering technique in Neolamarckia cadamba genetic resources resolved the 20 progenies into five clusters. The maximum intra cluster distance was shown by the cluster II. The maximum inter cluster distance was recorded between cluster III and V which indicated the presence of wider genetic distance between Neolamarckia cadamba progenies. Among the growth attributes, volume (36.84 % contributed maximum towards genetic divergence followed by bole height, basal diameter, tree height, number of branches in Neolamarckia cadamba progenies.

  5. QTL global meta-analysis: are trait determining genes clustered?

    Directory of Open Access Journals (Sweden)

    Adelson David L

    2009-04-01

    Full Text Available Abstract Background A key open question in biology is if genes are physically clustered with respect to their known functions or phenotypic effects. This is of particular interest for Quantitative Trait Loci (QTL where a QTL region could contain a number of genes that contribute to the trait being measured. Results We observed a significant increase in gene density within QTL regions compared to non-QTL regions and/or the entire bovine genome. By grouping QTL from the Bovine QTL Viewer database into 8 categories of non-redundant regions, we have been able to analyze gene density and gene function distribution, based on Gene Ontology (GO with relation to their location within QTL regions, outside of QTL regions and across the entire bovine genome. We identified a number of GO terms that were significantly over represented within particular QTL categories. Furthermore, select GO terms expected to be associated with the QTL category based on common biological knowledge have also proved to be significantly over represented in QTL regions. Conclusion Our analysis provides evidence of over represented GO terms in QTL regions. This increased GO term density indicates possible clustering of gene functions within QTL regions of the bovine genome. Genes with similar functions may be grouped in specific locales and could be contributing to QTL traits. Moreover, we have identified over-represented GO terminology that from a biological standpoint, makes sense with respect to QTL category type.

  6. Isotope dilution analysis of environmental samples

    International Nuclear Information System (INIS)

    Tolgyessy, J.; Lesny, J.; Korenova, Z.; Klas, J.; Klehr, E.H.

    1986-01-01

    Isotope dilution analysis has been used for the determination of several trace elements - especially metals - in a variety of environmental samples, including aerosols, water, soils, biological materials and geological materials. Variations of the basic concept include classical IDA, substoichiometric IDA, and more recently, sub-superequivalence IDA. Each variation has its advantages and limitations. A periodic chart has been used to identify those elements which have been measured in environmental samples using one or more of these methods. (author)

  7. Cluster decay analysis and related structure effects of fissionable ...

    Indian Academy of Sciences (India)

    2015-08-01

    Aug 1, 2015 ... Collective clusterization approach of dynamical cluster decay model (DCM) has been ... fusion–fission process resulting in the emission of symmetric and/or ... represents the relative separation distance between two fragments or clusters ... decay constant λ or decay half-life T1/2 is defined as λ = (ln 2/T1/2) ...

  8. Maximum-entropy clustering algorithm and its global convergence analysis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Constructing a batch of differentiable entropy functions touniformly approximate an objective function by means of the maximum-entropy principle, a new clustering algorithm, called maximum-entropy clustering algorithm, is proposed based on optimization theory. This algorithm is a soft generalization of the hard C-means algorithm and possesses global convergence. Its relations with other clustering algorithms are discussed.

  9. Hybrid Tracking Algorithm Improvements and Cluster Analysis Methods.

    Science.gov (United States)

    1982-02-26

    UPGMA ), and Ward’s method. Ling’s papers describe a (k,r) clustering method. Each of these methods have individual characteristics which make them...Reference 7), UPGMA is probably the most frequently used clustering strategy. UPGMA tries to group new points into an existing cluster by using an

  10. CHOOSING A HEALTH INSTITUTION WITH MULTIPLE CORRESPONDENCE ANALYSIS AND CLUSTER ANALYSIS IN A POPULATION BASED STUDY

    Directory of Open Access Journals (Sweden)

    ASLI SUNER

    2013-06-01

    Full Text Available Multiple correspondence analysis is a method making easy to interpret the categorical variables given in contingency tables, showing the similarities, associations as well as divergences among these variables via graphics on a lower dimensional space. Clustering methods are helped to classify the grouped data according to their similarities and to get useful summarized data from them. In this study, interpretations of multiple correspondence analysis are supported by cluster analysis; factors affecting referred health institute such as age, disease group and health insurance are examined and it is aimed to compare results of the methods.

  11. Environmental Gradient Analysis, Ordination, and Classification in Environmental Impact Assessments.

    Science.gov (United States)

    1987-09-01

    agglomerative clustering algorithms for mainframe computers: (1) the unweighted pair-group method that V uses arithmetic averages ( UPGMA ), (2) the...hierarchical agglomerative unweighted pair-group method using arithmetic averages ( UPGMA ), which is also called average linkage clustering. This method was...dendrograms produced by weighted clustering (93). Sneath and Sokal (94), Romesburg (84), and Seber• (90) also strongly recommend the UPGMA . A dendrogram

  12. MMPI profiles of males accused of severe crimes: a cluster analysis

    NARCIS (Netherlands)

    Spaans, M.; Barendregt, M.; Muller, E.; Beurs, E. de; Nijman, H.L.I.; Rinne, T.

    2009-01-01

    In studies attempting to classify criminal offenders by cluster analysis of Minnesota Multiphasic Personality Inventory-2 (MMPI-2) data, the number of clusters found varied between 10 (the Megargee System) and two (one cluster indicating no psychopathology and one exhibiting serious

  13. Cluster analysis of rural, urban, and curbside atmospheric particle size data.

    Science.gov (United States)

    Beddows, David C S; Dall'Osto, Manuel; Harrison, Roy M

    2009-07-01

    Particle size is a key determinant of the hazard posed by airborne particles. Continuous multivariate particle size data have been collected using aerosol particle size spectrometers sited at four locations within the UK: Harwell (Oxfordshire); Regents Park (London); British Telecom Tower (London); and Marylebone Road (London). These data have been analyzed using k-means cluster analysis, deduced to be the preferred cluster analysis technique, selected from an option of four partitional cluster packages, namelythe following: Fuzzy; k-means; k-median; and Model-Based clustering. Using cluster validation indices k-means clustering was shown to produce clusters with the smallest size, furthest separation, and importantly the highest degree of similarity between the elements within each partition. Using k-means clustering, the complexity of the data set is reduced allowing characterization of the data according to the temporal and spatial trends of the clusters. At Harwell, the rural background measurement site, the cluster analysis showed that the spectra may be differentiated by their modal-diameters and average temporal trends showing either high counts during the day-time or night-time hours. Likewise for the urban sites, the cluster analysis differentiated the spectra into a small number of size distributions according their modal-diameter, the location of the measurement site, and time of day. The responsible aerosol emission, formation, and dynamic processes can be inferred according to the cluster characteristics and correlation to concurrently measured meteorological, gas phase, and particle phase measurements.

  14. Cluster analysis of spontaneous preterm birth phenotypes identifies potential associations among preterm birth mechanisms.

    Science.gov (United States)

    Esplin, M Sean; Manuck, Tracy A; Varner, Michael W; Christensen, Bryce; Biggio, Joseph; Bukowski, Radek; Parry, Samuel; Zhang, Heping; Huang, Hao; Andrews, William; Saade, George; Sadovsky, Yoel; Reddy, Uma M; Ilekis, John

    2015-09-01

    We sought to use an innovative tool that is based on common biologic pathways to identify specific phenotypes among women with spontaneous preterm birth (SPTB) to enhance investigators' ability to identify and to highlight common mechanisms and underlying genetic factors that are responsible for SPTB. We performed a secondary analysis of a prospective case-control multicenter study of SPTB. All cases delivered a preterm singleton at SPTB ≤34.0 weeks' gestation. Each woman was assessed for the presence of underlying SPTB causes. A hierarchic cluster analysis was used to identify groups of women with homogeneous phenotypic profiles. One of the phenotypic clusters was selected for candidate gene association analysis with the use of VEGAS software. One thousand twenty-eight women with SPTB were assigned phenotypes. Hierarchic clustering of the phenotypes revealed 5 major clusters. Cluster 1 (n = 445) was characterized by maternal stress; cluster 2 (n = 294) was characterized by premature membrane rupture; cluster 3 (n = 120) was characterized by familial factors, and cluster 4 (n = 63) was characterized by maternal comorbidities. Cluster 5 (n = 106) was multifactorial and characterized by infection (INF), decidual hemorrhage (DH), and placental dysfunction (PD). These 3 phenotypes were correlated highly by χ(2) analysis (PD and DH, P cluster 3 of SPTB. We identified 5 major clusters of SPTB based on a phenotype tool and hierarch clustering. There was significant correlation between several of the phenotypes. The INS gene was associated with familial factors that were underlying SPTB. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. The relationship between supplier networks and industrial clusters: an analysis based on the cluster mapping method

    Directory of Open Access Journals (Sweden)

    Ichiro IWASAKI

    2010-06-01

    Full Text Available Michael Porter’s concept of competitive advantages emphasizes the importance of regional cooperation of various actors in order to gain competitiveness on globalized markets. Foreign investors may play an important role in forming such cooperation networks. Their local suppliers tend to concentrate regionally. They can form, together with local institutions of education, research, financial and other services, development agencies, the nucleus of cooperative clusters. This paper deals with the relationship between supplier networks and clusters. Two main issues are discussed in more detail: the interest of multinational companies in entering regional clusters and the spillover effects that may stem from their participation. After the discussion on the theoretical background, the paper introduces a relatively new analytical method: “cluster mapping” - a method that can spot regional hot spots of specific economic activities with cluster building potential. Experience with the method was gathered in the US and in the European Union. After the discussion on the existing empirical evidence, the authors introduce their own cluster mapping results, which they obtained by using a refined version of the original methodology.

  16. Higgs Pair Production: Choosing Benchmarks With Cluster Analysis

    CERN Document Server

    Carvalho, Alexandra; Dorigo, Tommaso; Goertz, Florian; Gottardo, Carlo A.; Tosi, Mia

    2016-01-01

    New physics theories often depend on a large number of free parameters. The precise values of those parameters in some cases drastically affect the resulting phenomenology of fundamental physics processes, while in others finite variations can leave it basically invariant at the level of detail experimentally accessible. When designing a strategy for the analysis of experimental data in the search for a signal predicted by a new physics model, it appears advantageous to categorize the parameter space describing the model according to the corresponding kinematical features of the final state. A multi-dimensional test statistic can be used to gauge the degree of similarity in the kinematics of different models; a clustering algorithm using that metric may then allow the division of the space into homogeneous regions, each of which can be successfully represented by a benchmark point. Searches targeting those benchmark points are then guaranteed to be sensitive to a large area of the parameter space. In this doc...

  17. Environmentally based Cost-Benefit Analysis

    International Nuclear Information System (INIS)

    Magnell, M.

    1993-11-01

    The fundamentals of the basic elements of a new comprehensive economic assessment, MILA, developed in Sweden with inspiration from the Total Cost Assessment-model are presented. The core of the MILA approach is an expanded cost and benefit inventory. But MILA also includes a complementary addition of an internal waste stream analysis, a tool for evaluation of environmental conflicts in monetary terms, an extended time horizon and direct allocation of costs and revenues to products and processes. However, MILA does not ensure profitability for environmentally sound projects. Essentially, MILA is an approach of refining investment and profitability analysis of a project, investment or product. 109 refs., 38 figs

  18. Performance analysis of clustering techniques over microarray data: A case study

    Science.gov (United States)

    Dash, Rasmita; Misra, Bijan Bihari

    2018-03-01

    Handling big data is one of the major issues in the field of statistical data analysis. In such investigation cluster analysis plays a vital role to deal with the large scale data. There are many clustering techniques with different cluster analysis approach. But which approach suits a particular dataset is difficult to predict. To deal with this problem a grading approach is introduced over many clustering techniques to identify a stable technique. But the grading approach depends on the characteristic of dataset as well as on the validity indices. So a two stage grading approach is implemented. In this study the grading approach is implemented over five clustering techniques like hybrid swarm based clustering (HSC), k-means, partitioning around medoids (PAM), vector quantization (VQ) and agglomerative nesting (AGNES). The experimentation is conducted over five microarray datasets with seven validity indices. The finding of grading approach that a cluster technique is significant is also established by Nemenyi post-hoc hypothetical test.

  19. Assessment of Heavy Metal Pollution in Macrophytes, Water and Sediment of a Tropical Wetland System Using Hierarchical Cluster Analysis Technique

    OpenAIRE

    , N. Kumar J.I.; , M. Das; , R. Mukherji; , R.N. Kumar

    2011-01-01

    Heavy metal pollution in aquatic ecosystems is becoming a global phenomenon because these metals are indestructible and most of them have toxic effects on living organisms. Most of the fresh water bodies all over the world are getting contaminated thus declining their suitability. Therefore, monitoring and assessment of such freshwater systems has become an environmental concern. This study aims to elucidate the useful role of the cluster analysis to assess the relationship and interdependenc...

  20. Depth data research of GIS based on clustering analysis algorithm

    Science.gov (United States)

    Xiong, Yan; Xu, Wenli

    2018-03-01

    The data of GIS have spatial distribution. Geographic data has both spatial characteristics and attribute characteristics, and also changes with time. Therefore, the amount of data is very large. Nowadays, many industries and departments in the society are using GIS. However, without proper data analysis and mining scheme, GIS will not exert its maximum effectiveness and will waste a lot of data. In this paper, we use the geographic information demand of a national security department as the experimental object, combining the characteristics of GIS data, taking into account the characteristics of time, space, attributes and so on, and using cluster analysis algorithm. We further study the mining scheme for depth data, and get the algorithm model. This algorithm can automatically classify sample data, and then carry out exploratory analysis. The research shows that the algorithm model and the information mining scheme can quickly find hidden depth information from the surface data of GIS, thus improving the efficiency of the security department. This algorithm can also be extended to other fields.

  1. Conditional Probability Analysis: A Statistical Tool for Environmental Analysis.

    Science.gov (United States)

    The use and application of environmental conditional probability analysis (CPA) is relatively recent. The first presentation using CPA was made in 2002 at the New England Association of Environmental Biologists Annual Meeting in Newport. Rhode Island. CPA has been used since the...

  2. Cluster analysis in soft X-ray spectromicroscopy: Finding the patterns in complex specimens

    Energy Technology Data Exchange (ETDEWEB)

    Lerotic, M. [Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY 11794-3800 (United States)]. E-mail: lerotic@xray1.physics.sunysb.edu; Jacobsen, C. [Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY 11794-3800 (United States); Gillow, J.B. [Environmental Sciences Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Francis, A.J. [Environmental Sciences Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Wirick, S. [Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY 11794-3800 (United States); Vogt, S. [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Maser, J. [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2005-06-15

    Soft X-ray spectromicroscopy provides spectral data on the chemical speciation of light elements at sub-100 nanometer spatial resolution. If all chemical species in a specimen are known and separately characterized, existing approaches can be used to measure the concentration of each component at each pixel. In other situations such as in biology or environmental science, this approach may not be possible. We have previously described [M. Lerotic, C. Jacobsen, T. Schaefer, S. Vogt, Ultramicroscopy 100 (1-2) (2004) 35] the use of principle component analysis (PCA) to orthogonalize and noise-filter spectromicroscopy data, and cluster analysis (Canada) to classify the analyzed data and obtain thickness maps of representative spectra. We describe here an extension of that work employing an angle distance measure; this measure provides better classification based on spectral signatures alone in specimens with significant thickness variations. The method is illustrated using simulated data, and also to examine sporulation in the bacterium Clostridium sp.

  3. Characterizing Heterogeneity within Head and Neck Lesions Using Cluster Analysis of Multi-Parametric MRI Data.

    Directory of Open Access Journals (Sweden)

    Marco Borri

    Full Text Available To describe a methodology, based on cluster analysis, to partition multi-parametric functional imaging data into groups (or clusters of similar functional characteristics, with the aim of characterizing functional heterogeneity within head and neck tumour volumes. To evaluate the performance of the proposed approach on a set of longitudinal MRI data, analysing the evolution of the obtained sub-sets with treatment.The cluster analysis workflow was applied to a combination of dynamic contrast-enhanced and diffusion-weighted imaging MRI data from a cohort of squamous cell carcinoma of the head and neck patients. Cumulative distributions of voxels, containing pre and post-treatment data and including both primary tumours and lymph nodes, were partitioned into k clusters (k = 2, 3 or 4. Principal component analysis and cluster validation were employed to investigate data composition and to independently determine the optimal number of clusters. The evolution of the resulting sub-regions with induction chemotherapy treatment was assessed relative to the number of clusters.The clustering algorithm was able to separate clusters which significantly reduced in voxel number following induction chemotherapy from clusters with a non-significant reduction. Partitioning with the optimal number of clusters (k = 4, determined with cluster validation, produced the best separation between reducing and non-reducing clusters.The proposed methodology was able to identify tumour sub-regions with distinct functional properties, independently separating clusters which were affected differently by treatment. This work demonstrates that unsupervised cluster analysis, with no prior knowledge of the data, can be employed to provide a multi-parametric characterization of functional heterogeneity within tumour volumes.

  4. Analysis of the dynamical cluster approximation for the Hubbard model

    OpenAIRE

    Aryanpour, K.; Hettler, M. H.; Jarrell, M.

    2002-01-01

    We examine a central approximation of the recently introduced Dynamical Cluster Approximation (DCA) by example of the Hubbard model. By both analytical and numerical means we study non-compact and compact contributions to the thermodynamic potential. We show that approximating non-compact diagrams by their cluster analogs results in a larger systematic error as compared to the compact diagrams. Consequently, only the compact contributions should be taken from the cluster, whereas non-compact ...

  5. X-Ray Morphological Analysis of the Planck ESZ Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Lovisari, Lorenzo; Forman, William R.; Jones, Christine; Andrade-Santos, Felipe; Randall, Scott; Kraft, Ralph [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Ettori, Stefano [INAF, Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Arnaud, Monique; Démoclès, Jessica; Pratt, Gabriel W. [Laboratoire AIM, IRFU/Service d’Astrophysique—CEA/DRF—CNRS—Université Paris Diderot, Bât. 709, CEA-Saclay, F-91191 Gif-sur-Yvette Cedex (France)

    2017-09-01

    X-ray observations show that galaxy clusters have a very large range of morphologies. The most disturbed systems, which are good to study how clusters form and grow and to test physical models, may potentially complicate cosmological studies because the cluster mass determination becomes more challenging. Thus, we need to understand the cluster properties of our samples to reduce possible biases. This is complicated by the fact that different experiments may detect different cluster populations. For example, Sunyaev–Zeldovich (SZ) selected cluster samples have been found to include a greater fraction of disturbed systems than X-ray selected samples. In this paper we determine eight morphological parameters for the Planck Early Sunyaev–Zeldovich (ESZ) objects observed with XMM-Newton . We found that two parameters, concentration and centroid shift, are the best to distinguish between relaxed and disturbed systems. For each parameter we provide the values that allow selecting the most relaxed or most disturbed objects from a sample. We found that there is no mass dependence on the cluster dynamical state. By comparing our results with what was obtained with REXCESS clusters, we also confirm that the ESZ clusters indeed tend to be more disturbed, as found by previous studies.

  6. Space-Time Analysis of Testicular Cancer Clusters Using Residential Histories: A Case-Control Study in Denmark

    Science.gov (United States)

    Sloan, Chantel D.; Nordsborg, Rikke B.; Jacquez, Geoffrey M.; Raaschou-Nielsen, Ole; Meliker, Jaymie R.

    2015-01-01

    Though the etiology is largely unknown, testicular cancer incidence has seen recent significant increases in northern Europe and throughout many Western regions. The most common cancer in males under age 40, age period cohort models have posited exposures in the in utero environment or in early childhood as possible causes of increased risk of testicular cancer. Some of these factors may be tied to geography through being associated with behavioral, cultural, sociodemographic or built environment characteristics. If so, this could result in detectable geographic clusters of cases that could lead to hypotheses regarding environmental targets for intervention. Given a latency period between exposure to an environmental carcinogen and testicular cancer diagnosis, mobility histories are beneficial for spatial cluster analyses. Nearest-neighbor based Q-statistics allow for the incorporation of changes in residency in spatial disease cluster detection. Using these methods, a space-time cluster analysis was conducted on a population-wide case-control population selected from the Danish Cancer Registry with mobility histories since 1971 extracted from the Danish Civil Registration System. Cases (N=3297) were diagnosed between 1991 and 2003, and two sets of controls (N=3297 for each set) matched on sex and date of birth were included in the study. We also examined spatial patterns in maternal residential history for those cases and controls born in 1971 or later (N= 589 case-control pairs). Several small clusters were detected when aligning individuals by year prior to diagnosis, age at diagnosis and calendar year of diagnosis. However, the largest of these clusters contained only 2 statistically significant individuals at their center, and were not replicated in SaTScan spatial-only analyses which are less susceptible to multiple testing bias. We found little evidence of local clusters in residential histories of testicular cancer cases in this Danish population. PMID

  7. Space-time analysis of testicular cancer clusters using residential histories: a case-control study in Denmark.

    Directory of Open Access Journals (Sweden)

    Chantel D Sloan

    Full Text Available Though the etiology is largely unknown, testicular cancer incidence has seen recent significant increases in northern Europe and throughout many Western regions. The most common cancer in males under age 40, age period cohort models have posited exposures in the in utero environment or in early childhood as possible causes of increased risk of testicular cancer. Some of these factors may be tied to geography through being associated with behavioral, cultural, sociodemographic or built environment characteristics. If so, this could result in detectable geographic clusters of cases that could lead to hypotheses regarding environmental targets for intervention. Given a latency period between exposure to an environmental carcinogen and testicular cancer diagnosis, mobility histories are beneficial for spatial cluster analyses. Nearest-neighbor based Q-statistics allow for the incorporation of changes in residency in spatial disease cluster detection. Using these methods, a space-time cluster analysis was conducted on a population-wide case-control population selected from the Danish Cancer Registry with mobility histories since 1971 extracted from the Danish Civil Registration System. Cases (N=3297 were diagnosed between 1991 and 2003, and two sets of controls (N=3297 for each set matched on sex and date of birth were included in the study. We also examined spatial patterns in maternal residential history for those cases and controls born in 1971 or later (N= 589 case-control pairs. Several small clusters were detected when aligning individuals by year prior to diagnosis, age at diagnosis and calendar year of diagnosis. However, the largest of these clusters contained only 2 statistically significant individuals at their center, and were not replicated in SaTScan spatial-only analyses which are less susceptible to multiple testing bias. We found little evidence of local clusters in residential histories of testicular cancer cases in this Danish

  8. Space-time analysis of testicular cancer clusters using residential histories: a case-control study in Denmark.

    Science.gov (United States)

    Sloan, Chantel D; Nordsborg, Rikke B; Jacquez, Geoffrey M; Raaschou-Nielsen, Ole; Meliker, Jaymie R

    2015-01-01

    Though the etiology is largely unknown, testicular cancer incidence has seen recent significant increases in northern Europe and throughout many Western regions. The most common cancer in males under age 40, age period cohort models have posited exposures in the in utero environment or in early childhood as possible causes of increased risk of testicular cancer. Some of these factors may be tied to geography through being associated with behavioral, cultural, sociodemographic or built environment characteristics. If so, this could result in detectable geographic clusters of cases that could lead to hypotheses regarding environmental targets for intervention. Given a latency period between exposure to an environmental carcinogen and testicular cancer diagnosis, mobility histories are beneficial for spatial cluster analyses. Nearest-neighbor based Q-statistics allow for the incorporation of changes in residency in spatial disease cluster detection. Using these methods, a space-time cluster analysis was conducted on a population-wide case-control population selected from the Danish Cancer Registry with mobility histories since 1971 extracted from the Danish Civil Registration System. Cases (N=3297) were diagnosed between 1991 and 2003, and two sets of controls (N=3297 for each set) matched on sex and date of birth were included in the study. We also examined spatial patterns in maternal residential history for those cases and controls born in 1971 or later (N= 589 case-control pairs). Several small clusters were detected when aligning individuals by year prior to diagnosis, age at diagnosis and calendar year of diagnosis. However, the largest of these clusters contained only 2 statistically significant individuals at their center, and were not replicated in SaTScan spatial-only analyses which are less susceptible to multiple testing bias. We found little evidence of local clusters in residential histories of testicular cancer cases in this Danish population.

  9. Identification and validation of asthma phenotypes in Chinese population using cluster analysis.

    Science.gov (United States)

    Wang, Lei; Liang, Rui; Zhou, Ting; Zheng, Jing; Liang, Bing Miao; Zhang, Hong Ping; Luo, Feng Ming; Gibson, Peter G; Wang, Gang

    2017-10-01

    Asthma is a heterogeneous airway disease, so it is crucial to clearly identify clinical phenotypes to achieve better asthma management. To identify and prospectively validate asthma clusters in a Chinese population. Two hundred eighty-four patients were consecutively recruited and 18 sociodemographic and clinical variables were collected. Hierarchical cluster analysis was performed by the Ward method followed by k-means cluster analysis. Then, a prospective 12-month cohort study was used to validate the identified clusters. Five clusters were successfully identified. Clusters 1 (n = 71) and 3 (n = 81) were mild asthma phenotypes with slight airway obstruction and low exacerbation risk, but with a sex differential. Cluster 2 (n = 65) described an "allergic" phenotype, cluster 4 (n = 33) featured a "fixed airflow limitation" phenotype with smoking, and cluster 5 (n = 34) was a "low socioeconomic status" phenotype. Patients in clusters 2, 4, and 5 had distinctly lower socioeconomic status and more psychological symptoms. Cluster 2 had a significantly increased risk of exacerbations (risk ratio [RR] 1.13, 95% confidence interval [CI] 1.03-1.25), unplanned visits for asthma (RR 1.98, 95% CI 1.07-3.66), and emergency visits for asthma (RR 7.17, 95% CI 1.26-40.80). Cluster 4 had an increased risk of unplanned visits (RR 2.22, 95% CI 1.02-4.81), and cluster 5 had increased emergency visits (RR 12.72, 95% CI 1.95-69.78). Kaplan-Meier analysis confirmed that cluster grouping was predictive of time to the first asthma exacerbation, unplanned visit, emergency visit, and hospital admission (P clusters as "allergic asthma," "fixed airflow limitation," and "low socioeconomic status" phenotypes that are at high risk of severe asthma exacerbations and that have management implications for clinical practice in developing countries. Copyright © 2017 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  10. Genome-scale analysis of positional clustering of mouse testis-specific genes

    Directory of Open Access Journals (Sweden)

    Lee Bernett TK

    2005-01-01

    Full Text Available Abstract Background Genes are not randomly distributed on a chromosome as they were thought even after removal of tandem repeats. The positional clustering of co-expressed genes is known in prokaryotes and recently reported in several eukaryotic organisms such as Caenorhabditis elegans, Drosophila melanogaster, and Homo sapiens. In order to further investigate the mode of tissue-specific gene clustering in higher eukaryotes, we have performed a genome-scale analysis of positional clustering of the mouse testis-specific genes. Results Our computational analysis shows that a large proportion of testis-specific genes are clustered in groups of 2 to 5 genes in the mouse genome. The number of clusters is much higher than expected by chance even after removal of tandem repeats. Conclusion Our result suggests that testis-specific genes tend to cluster on the mouse chromosomes. This provides another piece of evidence for the hypothesis that clusters of tissue-specific genes do exist.

  11. ANALYSIS OF DEVELOPING BATIK INDUSTRY CLUSTER IN BAKARAN VILLAGE CENTRAL JAVA PROVINCE

    Directory of Open Access Journals (Sweden)

    Hermanto Hermanto

    2017-06-01

    Full Text Available SMEs grow in a cluster in a certain geographical area. The entrepreneurs grow and thrive through the business cluster. Central Java Province has a lot of business clusters in improving the regional economy, one of which is batik industry cluster. Pati Regency is one of regencies / city in Central Java that has the lowest turnover. Batik industy cluster in Pati develops quite well, which can be seen from the increasing number of batik industry incorporated in the cluster. This research examines the strategy of developing the batik industry cluster in Pati Regency. The purpose of this research is to determine the proper strategy for developing the batik industry clusters in Pati. The method of research is quantitative. The analysis tool of this research is the Strengths, Weakness, Opportunity, Threats (SWOT analysis. The result of SWOT analysis in this research shows that the proper strategy for developing the batik industry cluster in Pati is optimizing the management of batik business cluster in Bakaran Village; the local government provides information of the facility of business capital loans; the utilization of labors from Bakaran Village while improving the quality of labors by training, and marketing the Bakaran batik to the broader markets while maintaining the quality of batik. Advice that can be given from this research is that the parties who have a role in batik industry cluster development in Bakaran Village, Pati Regency, such as the Local Government.

  12. Analysis of genetic association using hierarchical clustering and cluster validation indices.

    Science.gov (United States)

    Pagnuco, Inti A; Pastore, Juan I; Abras, Guillermo; Brun, Marcel; Ballarin, Virginia L

    2017-10-01

    It is usually assumed that co-expressed genes suggest co-regulation in the underlying regulatory network. Determining sets of co-expressed genes is an important task, based on some criteria of similarity. This task is usually performed by clustering algorithms, where the genes are clustered into meaningful groups based on their expression values in a set of experiment. In this work, we propose a method to find sets of co-expressed genes, based on cluster validation indices as a measure of similarity for individual gene groups, and a combination of variants of hierarchical clustering to generate the candidate groups. We evaluated its ability to retrieve significant sets on simulated correlated and real genomics data, where the performance is measured based on its detection ability of co-regulated sets against a full search. Additionally, we analyzed the quality of the best ranked groups using an online bioinformatics tool that provides network information for the selected genes. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. WebGimm: An integrated web-based platform for cluster analysis, functional analysis, and interactive visualization of results.

    Science.gov (United States)

    Joshi, Vineet K; Freudenberg, Johannes M; Hu, Zhen; Medvedovic, Mario

    2011-01-17

    Cluster analysis methods have been extensively researched, but the adoption of new methods is often hindered by technical barriers in their implementation and use. WebGimm is a free cluster analysis web-service, and an open source general purpose clustering web-server infrastructure designed to facilitate easy deployment of integrated cluster analysis servers based on clustering and functional annotation algorithms implemented in R. Integrated functional analyses and interactive browsing of both, clustering structure and functional annotations provides a complete analytical environment for cluster analysis and interpretation of results. The Java Web Start client-based interface is modeled after the familiar cluster/treeview packages making its use intuitive to a wide array of biomedical researchers. For biomedical researchers, WebGimm provides an avenue to access state of the art clustering procedures. For Bioinformatics methods developers, WebGimm offers a convenient avenue to deploy their newly developed clustering methods. WebGimm server, software and manuals can be freely accessed at http://ClusterAnalysis.org/.

  14. Cluster analysis of HZE particle tracks as applied to space radiobiology problems

    International Nuclear Information System (INIS)

    Batmunkh, M.; Bayarchimeg, L.; Lkhagva, O.; Belov, O.

    2013-01-01

    A cluster analysis is performed of ionizations in tracks produced by the most abundant nuclei in the charge and energy spectra of the galactic cosmic rays. The frequency distribution of clusters is estimated for cluster sizes comparable to the DNA molecule at different packaging levels. For this purpose, an improved K-mean-based algorithm is suggested. This technique allows processing particle tracks containing a large number of ionization events without setting the number of clusters as an input parameter. Using this method, the ionization distribution pattern is analyzed depending on the cluster size and particle's linear energy transfer

  15. Application of cluster analysis and unsupervised learning to multivariate tissue characterization

    International Nuclear Information System (INIS)

    Momenan, R.; Insana, M.F.; Wagner, R.F.; Garra, B.S.; Loew, M.H.

    1987-01-01

    This paper describes a procedure for classifying tissue types from unlabeled acoustic measurements (data type unknown) using unsupervised cluster analysis. These techniques are being applied to unsupervised ultrasonic image segmentation and tissue characterization. The performance of a new clustering technique is measured and compared with supervised methods, such as a linear Bayes classifier. In these comparisons two objectives are sought: a) How well does the clustering method group the data?; b) Do the clusters correspond to known tissue classes? The first question is investigated by a measure of cluster similarity and dispersion. The second question involves a comparison with a supervised technique using labeled data

  16. Participant intimacy: A cluster analysis of the intranuclear cascade

    International Nuclear Information System (INIS)

    Cugnon, J.; Knoll, J.; Randrup, J.

    1981-01-01

    The intranuclear cascade for relativistic nuclear collisions is analyzed in terms of clusters consisting of groups of nucleons which are dynamically linked to each other by violent interactions. The formation cross sections for the different cluster types as well as their intrinsic dynamics are studied and compared with the predictions of the linear cascade model ( rows-on-rows ). (orig.)

  17. An evaluation of centrality measures used in cluster analysis

    Science.gov (United States)

    Engström, Christopher; Silvestrov, Sergei

    2014-12-01

    Clustering of data into groups of similar objects plays an important part when analysing many types of data, especially when the datasets are large as they often are in for example bioinformatics, social networks and computational linguistics. Many clustering algorithms such as K-means and some types of hierarchical clustering need a number of centroids representing the 'center' of the clusters. The choice of centroids for the initial clusters often plays an important role in the quality of the clusters. Since a data point with a high centrality supposedly lies close to the 'center' of some cluster, this can be used to assign centroids rather than through some other method such as picking them at random. Some work have been done to evaluate the use of centrality measures such as degree, betweenness and eigenvector centrality in clustering algorithms. The aim of this article is to compare and evaluate the usefulness of a number of common centrality measures such as the above mentioned and others such as PageRank and related measures.

  18. A comparison of heuristic and model-based clustering methods for dietary pattern analysis.

    Science.gov (United States)

    Greve, Benjamin; Pigeot, Iris; Huybrechts, Inge; Pala, Valeria; Börnhorst, Claudia

    2016-02-01

    Cluster analysis is widely applied to identify dietary patterns. A new method based on Gaussian mixture models (GMM) seems to be more flexible compared with the commonly applied k-means and Ward's method. In the present paper, these clustering approaches are compared to find the most appropriate one for clustering dietary data. The clustering methods were applied to simulated data sets with different cluster structures to compare their performance knowing the true cluster membership of observations. Furthermore, the three methods were applied to FFQ data assessed in 1791 children participating in the IDEFICS (Identification and Prevention of Dietary- and Lifestyle-Induced Health Effects in Children and Infants) Study to explore their performance in practice. The GMM outperformed the other methods in the simulation study in 72 % up to 100 % of cases, depending on the simulated cluster structure. Comparing the computationally less complex k-means and Ward's methods, the performance of k-means was better in 64-100 % of cases. Applied to real data, all methods identified three similar dietary patterns which may be roughly characterized as a 'non-processed' cluster with a high consumption of fruits, vegetables and wholemeal bread, a 'balanced' cluster with only slight preferences of single foods and a 'junk food' cluster. The simulation study suggests that clustering via GMM should be preferred due to its higher flexibility regarding cluster volume, shape and orientation. The k-means seems to be a good alternative, being easier to use while giving similar results when applied to real data.

  19. Integrating health and environmental impact analysis

    DEFF Research Database (Denmark)

    Reis, S; Morris, G.; Fleming, L. E.

    2015-01-01

    which addresses human activity in all its social, economic and cultural complexity. The new approach must be integral to, and interactive, with the natural environment. We see the continuing failure to truly integrate human health and environmental impact analysis as deeply damaging, and we propose...... while equally emphasizing the health of the environment, and the growing calls for 'ecological public health' as a response to global environmental concerns now suffusing the discourse in public health. More revolution than evolution, ecological public health will demand new perspectives regarding...... the interconnections among society, the economy, the environment and our health and well-being. Success must be built on collaborations between the disparate scientific communities of the environmental sciences and public health as well as interactions with social scientists, economists and the legal profession...

  20. Cluster analysis in soft X-ray spectromicroscopy: finding the patterns in complex specimens

    International Nuclear Information System (INIS)

    Lerotic, M.; Jacobsen, C.

    2004-01-01

    Full text: Soft x-ray spectromicroscopy provides spectral data on the chemical speciation of light elements at sub-100 nanometer spatial resolution. When all chemical species in a specimen are known and separately characterized, existing approaches can be used to measure the concentration of each component at each pixel. In other situations such as in biology or environmental science, this approach may not be possible. A method to find natural groupings of data without prior knowledge of the spectra of all components will be presented. Principal component analysis is used to orthogonalize spectromicroscopy data, and discard much of the noise present in data set. Then cluster analysis is used to find a hierarchical classification of pixels with similar spectra, to extract representative, cluster-averaged spectra with good signal-to-noise ratio, and to obtain gradations of concentration of these representative spectra at each pixel. The method is illustrated with a simulated data set of organic compounds, and a mixture of lutetium in hematite used to understand colloidal transport properties of radionuclides. We gratefully acknowledge funding from the National Institutes for Health under contract R01 EB00479-01A1, and from the National Science Foundation under contracts OCE-0221029 and CHE-0221934

  1. Common Factor Analysis Versus Principal Component Analysis: Choice for Symptom Cluster Research

    Directory of Open Access Journals (Sweden)

    Hee-Ju Kim, PhD, RN

    2008-03-01

    Conclusion: If the study purpose is to explain correlations among variables and to examine the structure of the data (this is usual for most cases in symptom cluster research, CFA provides a more accurate result. If the purpose of a study is to summarize data with a smaller number of variables, PCA is the choice. PCA can also be used as an initial step in CFA because it provides information regarding the maximum number and nature of factors. In using factor analysis for symptom cluster research, several issues need to be considered, including subjectivity of solution, sample size, symptom selection, and level of measure.

  2. Identifying novel phenotypes of acute heart failure using cluster analysis of clinical variables.

    Science.gov (United States)

    Horiuchi, Yu; Tanimoto, Shuzou; Latif, A H M Mahbub; Urayama, Kevin Y; Aoki, Jiro; Yahagi, Kazuyuki; Okuno, Taishi; Sato, Yu; Tanaka, Tetsu; Koseki, Keita; Komiyama, Kota; Nakajima, Hiroyoshi; Hara, Kazuhiro; Tanabe, Kengo

    2018-07-01

    Acute heart failure (AHF) is a heterogeneous disease caused by various cardiovascular (CV) pathophysiology and multiple non-CV comorbidities. We aimed to identify clinically important subgroups to improve our understanding of the pathophysiology of AHF and inform clinical decision-making. We evaluated detailed clinical data of 345 consecutive AHF patients using non-hierarchical cluster analysis of 77 variables, including age, sex, HF etiology, comorbidities, physical findings, laboratory data, electrocardiogram, echocardiogram and treatment during hospitalization. Cox proportional hazards regression analysis was performed to estimate the association between the clusters and clinical outcomes. Three clusters were identified. Cluster 1 (n=108) represented "vascular failure". This cluster had the highest average systolic blood pressure at admission and lung congestion with type 2 respiratory failure. Cluster 2 (n=89) represented "cardiac and renal failure". They had the lowest ejection fraction (EF) and worst renal function. Cluster 3 (n=148) comprised mostly older patients and had the highest prevalence of atrial fibrillation and preserved EF. Death or HF hospitalization within 12-month occurred in 23% of Cluster 1, 36% of Cluster 2 and 36% of Cluster 3 (p=0.034). Compared with Cluster 1, risk of death or HF hospitalization was 1.74 (95% CI, 1.03-2.95, p=0.037) for Cluster 2 and 1.82 (95% CI, 1.13-2.93, p=0.014) for Cluster 3. Cluster analysis may be effective in producing clinically relevant categories of AHF, and may suggest underlying pathophysiology and potential utility in predicting clinical outcomes. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. The Flemish frozen-vegetable industry as an example of cluster analysis : Flanders Vegetable Valley

    NARCIS (Netherlands)

    Vanhaverbeke, W.P.M.; Larosse, J.; Winnen, W.; Hulsink, W.; Dons, J.J.M.

    2008-01-01

    In this contribution we present a strategic analysis of the cluster dynamics in the frozen-vegetable industry in Flanders (Belgium)1. The main purpose of this case is twofold. First, we determine the added value of using data about customer and supplier relationships in cluster analysis. Second, we

  4. Tracking Undergraduate Student Achievement in a First-Year Physiology Course Using a Cluster Analysis Approach

    Science.gov (United States)

    Brown, S. J.; White, S.; Power, N.

    2015-01-01

    A cluster analysis data classification technique was used on assessment scores from 157 undergraduate nursing students who passed 2 successive compulsory courses in human anatomy and physiology. Student scores in five summative assessment tasks, taken in each of the courses, were used as inputs for a cluster analysis procedure. We aimed to group…

  5. Performance Analysis of Cluster Formation in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Edgar Romo Montiel

    2017-12-01

    Full Text Available Clustered-based wireless sensor networks have been extensively used in the literature in order to achieve considerable energy consumption reductions. However, two aspects of such systems have been largely overlooked. Namely, the transmission probability used during the cluster formation phase and the way in which cluster heads are selected. Both of these issues have an important impact on the performance of the system. For the former, it is common to consider that sensor nodes in a clustered-based Wireless Sensor Network (WSN use a fixed transmission probability to send control data in order to build the clusters. However, due to the highly variable conditions experienced by these networks, a fixed transmission probability may lead to extra energy consumption. In view of this, three different transmission probability strategies are studied: optimal, fixed and adaptive. In this context, we also investigate cluster head selection schemes, specifically, we consider two intelligent schemes based on the fuzzy C-means and k-medoids algorithms and a random selection with no intelligence. We show that the use of intelligent schemes greatly improves the performance of the system, but their use entails higher complexity and selection delay. The main performance metrics considered in this work are energy consumption, successful transmission probability and cluster formation latency. As an additional feature of this work, we study the effect of errors in the wireless channel and the impact on the performance of the system under the different transmission probability schemes.

  6. Performance Analysis of Cluster Formation in Wireless Sensor Networks.

    Science.gov (United States)

    Montiel, Edgar Romo; Rivero-Angeles, Mario E; Rubino, Gerardo; Molina-Lozano, Heron; Menchaca-Mendez, Rolando; Menchaca-Mendez, Ricardo

    2017-12-13

    Clustered-based wireless sensor networks have been extensively used in the literature in order to achieve considerable energy consumption reductions. However, two aspects of such systems have been largely overlooked. Namely, the transmission probability used during the cluster formation phase and the way in which cluster heads are selected. Both of these issues have an important impact on the performance of the system. For the former, it is common to consider that sensor nodes in a clustered-based Wireless Sensor Network (WSN) use a fixed transmission probability to send control data in order to build the clusters. However, due to the highly variable conditions experienced by these networks, a fixed transmission probability may lead to extra energy consumption. In view of this, three different transmission probability strategies are studied: optimal, fixed and adaptive. In this context, we also investigate cluster head selection schemes, specifically, we consider two intelligent schemes based on the fuzzy C-means and k-medoids algorithms and a random selection with no intelligence. We show that the use of intelligent schemes greatly improves the performance of the system, but their use entails higher complexity and selection delay. The main performance metrics considered in this work are energy consumption, successful transmission probability and cluster formation latency. As an additional feature of this work, we study the effect of errors in the wireless channel and the impact on the performance of the system under the different transmission probability schemes.

  7. Higgs pair production: choosing benchmarks with cluster analysis

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Alexandra; Dall’Osso, Martino; Dorigo, Tommaso [Dipartimento di Fisica e Astronomia and INFN, Sezione di Padova,Via Marzolo 8, I-35131 Padova (Italy); Goertz, Florian [CERN,1211 Geneva 23 (Switzerland); Gottardo, Carlo A. [Physikalisches Institut, Universität Bonn,Nussallee 12, 53115 Bonn (Germany); Tosi, Mia [CERN,1211 Geneva 23 (Switzerland)

    2016-04-20

    New physics theories often depend on a large number of free parameters. The phenomenology they predict for fundamental physics processes is in some cases drastically affected by the precise value of those free parameters, while in other cases is left basically invariant at the level of detail experimentally accessible. When designing a strategy for the analysis of experimental data in the search for a signal predicted by a new physics model, it appears advantageous to categorize the parameter space describing the model according to the corresponding kinematical features of the final state. A multi-dimensional test statistic can be used to gauge the degree of similarity in the kinematics predicted by different models; a clustering algorithm using that metric may allow the division of the space into homogeneous regions, each of which can be successfully represented by a benchmark point. Searches targeting those benchmarks are then guaranteed to be sensitive to a large area of the parameter space. In this document we show a practical implementation of the above strategy for the study of non-resonant production of Higgs boson pairs in the context of extensions of the standard model with anomalous couplings of the Higgs bosons. A non-standard value of those couplings may significantly enhance the Higgs boson pair-production cross section, such that the process could be detectable with the data that the LHC will collect in Run 2.

  8. A MULTI-WAVELENGTH STUDY OF LOW-REDSHIFT CLUSTERS OF GALAXIES. II. ENVIRONMENTAL IMPACT ON GALAXY GROWTH

    Energy Technology Data Exchange (ETDEWEB)

    Atlee, David W.; Martini, Paul, E-mail: atlee@noao.edu [Department of Astronomy, Ohio State University, 4055 McPherson Laboratory, 140 W. 18th Ave., Columbus, OH 43210 (United States)

    2012-12-20

    Galaxy clusters provide powerful laboratories for the study of galaxy evolution, particularly the origin of correlations of morphology and star formation rate (SFR) with density. We construct visible to MIR spectral energy distributions of galaxies in eight low-redshift (z < 0.3) clusters and use them to measure stellar masses and SFRs as a function of environment. A partial correlation analysis indicates that the SFRs of star-forming galaxies (SFGs) depend strongly on M{sub *} (>99% confidence) with no dependence on R/R{sub 200} or projected local density at fixed mass. A merged sample of galaxies from the five best measured clusters shows (SFR){proportional_to}(R/R{sub 200}){sup 1.1{+-}0.3} for galaxies with R/R{sub 200} {<=} 0.4. A decline in the fraction of SFGs toward the cluster center contributes most of this effect, but it is accompanied by a reduction in (SFR) for SFGs with R {<=} 0.1 R{sub 200}. The increase in the fraction of SFGs toward larger R/R{sub 200} and the isolation of SFGs with reduced SFRs near the cluster center are consistent with the truncation of star formation by ram-pressure stripping, as is the tendency for more massive SFGs to have higher SFRs. We conclude that stripping is more likely than slower processes to drive the properties of SFGs with R < 0.4 R{sub 200} in clusters. We also find that galaxies near the cluster center are more massive than galaxies farther out in the cluster at {approx}3.5{sigma}, which suggests that dynamical relaxation significantly impacts the distribution of cluster galaxies as the clusters evolve.

  9. Clusters of galaxies as tools in observational cosmology : results from x-ray analysis

    International Nuclear Information System (INIS)

    Weratschnig, J.M.

    2009-01-01

    Clusters of galaxies are the largest gravitationally bound structures in the universe. They can be used as ideal tools to study large scale structure formation (e.g. when studying merger clusters) and provide highly interesting environments to analyse several characteristic interaction processes (like ram pressure stripping of galaxies, magnetic fields). In this dissertation thesis, we have studied several clusters of galaxies using X-ray observations. To obtain scientific results, we have applied different data reduction and analysis methods. With a combination of morphological and spectral analysis, the merger cluster Abell 514 was studied in much detail. It has a highly interesting morphology and shows signs for an ongoing merger as well as a shock. using a new method to detect substructure, we have analysed several clusters to determine whether any substructure is present in the X-ray image. This hints towards a real structure in the distribution of the intra-cluster medium (ICM) and is evidence for ongoing mergers. The results from this analysis are extensively used with the cluster of galaxies Abell S1136. Here, we study the ICM distribution and compare its structure with the spatial distribution of star forming galaxies. Cluster magnetic fields are another important topic of my thesis. They can be studied in Radio observations, which can be put into relation with results from X-ray observations. using observational data from several clusters, we could support the theory that cluster magnetic fields are frozen into the ICM. (author)

  10. Interactive K-Means Clustering Method Based on User Behavior for Different Analysis Target in Medicine.

    Science.gov (United States)

    Lei, Yang; Yu, Dai; Bin, Zhang; Yang, Yang

    2017-01-01

    Clustering algorithm as a basis of data analysis is widely used in analysis systems. However, as for the high dimensions of the data, the clustering algorithm may overlook the business relation between these dimensions especially in the medical fields. As a result, usually the clustering result may not meet the business goals of the users. Then, in the clustering process, if it can combine the knowledge of the users, that is, the doctor's knowledge or the analysis intent, the clustering result can be more satisfied. In this paper, we propose an interactive K -means clustering method to improve the user's satisfactions towards the result. The core of this method is to get the user's feedback of the clustering result, to optimize the clustering result. Then, a particle swarm optimization algorithm is used in the method to optimize the parameters, especially the weight settings in the clustering algorithm to make it reflect the user's business preference as possible. After that, based on the parameter optimization and adjustment, the clustering result can be closer to the user's requirement. Finally, we take an example in the breast cancer, to testify our method. The experiments show the better performance of our algorithm.

  11. Phenotypic clustering: a novel method for microglial morphology analysis.

    Science.gov (United States)

    Verdonk, Franck; Roux, Pascal; Flamant, Patricia; Fiette, Laurence; Bozza, Fernando A; Simard, Sébastien; Lemaire, Marc; Plaud, Benoit; Shorte, Spencer L; Sharshar, Tarek; Chrétien, Fabrice; Danckaert, Anne

    2016-06-17

    Microglial cells are tissue-resident macrophages of the central nervous system. They are extremely dynamic, sensitive to their microenvironment and present a characteristic complex and heterogeneous morphology and distribution within the brain tissue. Many experimental clues highlight a strong link between their morphology and their function in response to aggression. However, due to their complex "dendritic-like" aspect that constitutes the major pool of murine microglial cells and their dense network, precise and powerful morphological studies are not easy to realize and complicate correlation with molecular or clinical parameters. Using the knock-in mouse model CX3CR1(GFP/+), we developed a 3D automated confocal tissue imaging system coupled with morphological modelling of many thousands of microglial cells revealing precise and quantitative assessment of major cell features: cell density, cell body area, cytoplasm area and number of primary, secondary and tertiary processes. We determined two morphological criteria that are the complexity index (CI) and the covered environment area (CEA) allowing an innovative approach lying in (i) an accurate and objective study of morphological changes in healthy or pathological condition, (ii) an in situ mapping of the microglial distribution in different neuroanatomical regions and (iii) a study of the clustering of numerous cells, allowing us to discriminate different sub-populations. Our results on more than 20,000 cells by condition confirm at baseline a regional heterogeneity of the microglial distribution and phenotype that persists after induction of neuroinflammation by systemic injection of lipopolysaccharide (LPS). Using clustering analysis, we highlight that, at resting state, microglial cells are distributed in four microglial sub-populations defined by their CI and CEA with a regional pattern and a specific behaviour after challenge. Our results counteract the classical view of a homogenous regional resting

  12. Cluster Computing For Real Time Seismic Array Analysis.

    Science.gov (United States)

    Martini, M.; Giudicepietro, F.

    A seismic array is an instrument composed by a dense distribution of seismic sen- sors that allow to measure the directional properties of the wavefield (slowness or wavenumber vector) radiated by a seismic source. Over the last years arrays have been widely used in different fields of seismological researches. In particular they are applied in the investigation of seismic sources on volcanoes where they can be suc- cessfully used for studying the volcanic microtremor and long period events which are critical for getting information on the volcanic systems evolution. For this reason arrays could be usefully employed for the volcanoes monitoring, however the huge amount of data produced by this type of instruments and the processing techniques which are quite time consuming limited their potentiality for this application. In order to favor a direct application of arrays techniques to continuous volcano monitoring we designed and built a small PC cluster able to near real time computing the kinematics properties of the wavefield (slowness or wavenumber vector) produced by local seis- mic source. The cluster is composed of 8 Intel Pentium-III bi-processors PC working at 550 MHz, and has 4 Gigabytes of RAM memory. It runs under Linux operating system. The developed analysis software package is based on the Multiple SIgnal Classification (MUSIC) algorithm and is written in Fortran. The message-passing part is based upon the LAM programming environment package, an open-source imple- mentation of the Message Passing Interface (MPI). The developed software system includes modules devote to receiving date by internet and graphical applications for the continuous displaying of the processing results. The system has been tested with a data set collected during a seismic experiment conducted on Etna in 1999 when two dense seismic arrays have been deployed on the northeast and the southeast flanks of this volcano. A real time continuous acquisition system has been simulated by

  13. Global classification of human facial healthy skin using PLS discriminant analysis and clustering analysis.

    Science.gov (United States)

    Guinot, C; Latreille, J; Tenenhaus, M; Malvy, D J

    2001-04-01

    Today's classifications of healthy skin are predominantly based on a very limited number of skin characteristics, such as skin oiliness or susceptibility to sun exposure. The aim of the present analysis was to set up a global classification of healthy facial skin, using mathematical models. This classification is based on clinical, biophysical skin characteristics and self-reported information related to the skin, as well as the results of a theoretical skin classification assessed separately for the frontal and the malar zones of the face. In order to maximize the predictive power of the models with a minimum of variables, the Partial Least Square (PLS) discriminant analysis method was used. The resulting PLS components were subjected to clustering analyses to identify the plausible number of clusters and to group the individuals according to their proximities. Using this approach, four PLS components could be constructed and six clusters were found relevant. So, from the 36 hypothetical combinations of the theoretical skin types classification, we tended to a strengthened six classes proposal. Our data suggest that the association of the PLS discriminant analysis and the clustering methods leads to a valid and simple way to classify healthy human skin and represents a potentially useful tool for cosmetic and dermatological research.

  14. Analysing the spatial patterns of livestock anthrax in Kazakhstan in relation to environmental factors: a comparison of local (Gi* and morphology cluster statistics

    Directory of Open Access Journals (Sweden)

    Ian T. Kracalik

    2012-11-01

    Full Text Available We compared a local clustering and a cluster morphology statistic using anthrax outbreaks in large (cattle and small (sheep and goats domestic ruminants across Kazakhstan. The Getis-Ord (Gi* statistic and a multidirectional optimal ecotope algorithm (AMOEBA were compared using 1st, 2nd and 3rd order Rook contiguity matrices. Multivariate statistical tests were used to evaluate the environmental signatures between clusters and non-clusters from the AMOEBA and Gi* tests. A logistic regression was used to define a risk surface for anthrax outbreaks and to compare agreement between clustering methodologies. Tests revealed differences in the spatial distribution of clusters as well as the total number of clusters in large ruminants for AMOEBA (n = 149 and for small ruminants (n = 9. In contrast, Gi* revealed fewer large ruminant clusters (n = 122 and more small ruminant clusters (n = 61. Significant environmental differences were found between groups using the Kruskall-Wallis and Mann- Whitney U tests. Logistic regression was used to model the presence/absence of anthrax outbreaks and define a risk surface for large ruminants to compare with cluster analyses. The model predicted 32.2% of the landscape as high risk. Approximately 75% of AMOEBA clusters corresponded to predicted high risk, compared with ~64% of Gi* clusters. In general, AMOEBA predicted more irregularly shaped clusters of outbreaks in both livestock groups, while Gi* tended to predict larger, circular clusters. Here we provide an evaluation of both tests and a discussion of the use of each to detect environmental conditions associated with anthrax outbreak clusters in domestic livestock. These findings illustrate important differences in spatial statistical methods for defining local clusters and highlight the importance of selecting appropriate levels of data aggregation.

  15. Comparative analysis of clustering methods for gene expression time course data

    Directory of Open Access Journals (Sweden)

    Ivan G. Costa

    2004-01-01

    Full Text Available This work performs a data driven comparative study of clustering methods used in the analysis of gene expression time courses (or time series. Five clustering methods found in the literature of gene expression analysis are compared: agglomerative hierarchical clustering, CLICK, dynamical clustering, k-means and self-organizing maps. In order to evaluate the methods, a k-fold cross-validation procedure adapted to unsupervised methods is applied. The accuracy of the results is assessed by the comparison of the partitions obtained in these experiments with gene annotation, such as protein function and series classification.

  16. Nuclear techniques for analysis of environmental samples

    International Nuclear Information System (INIS)

    1986-12-01

    The main purposes of this meeting were to establish the state-of-the-art in the field, to identify new research and development that is required to provide an adequate framework for analysis of environmental samples and to assess needs and possibilities for international cooperation in problem areas. This technical report was prepared on the subject based on the contributions made by the participants. A separate abstract was prepared for each of the 9 papers

  17. Trace-element analysis in environmental sciences

    International Nuclear Information System (INIS)

    Valkovic, V.; Moschini, G.

    1988-01-01

    The use of charged-particle accelerators in trace-element analysis in the field of environmental sciences is described in this article. Nuclear reactions, charged-particle-induced X-ray emission as well as other nuclear and atomic processes can be used individually, or combined, in developing adequate analytical systems. In addition to concentration levels, concentration levels, concentration profiles can be measured, resulting in unique information. Some examples of experiments performed are described together with the suggestions for future measurements [pt

  18. Hierarchical cluster analysis of progression patterns in open-angle glaucoma patients with medical treatment.

    Science.gov (United States)

    Bae, Hyoung Won; Rho, Seungsoo; Lee, Hye Sun; Lee, Naeun; Hong, Samin; Seong, Gong Je; Sung, Kyung Rim; Kim, Chan Yun

    2014-04-29

    To classify medically treated open-angle glaucoma (OAG) by the pattern of progression using hierarchical cluster analysis, and to determine OAG progression characteristics by comparing clusters. Ninety-five eyes of 95 OAG patients who received medical treatment, and who had undergone visual field (VF) testing at least once per year for 5 or more years. OAG was classified into subgroups using hierarchical cluster analysis based on the following five variables: baseline mean deviation (MD), baseline visual field index (VFI), MD slope, VFI slope, and Glaucoma Progression Analysis (GPA) printout. After that, other parameters were compared between clusters. Two clusters were made after a hierarchical cluster analysis. Cluster 1 showed -4.06 ± 2.43 dB baseline MD, 92.58% ± 6.27% baseline VFI, -0.28 ± 0.38 dB per year MD slope, -0.52% ± 0.81% per year VFI slope, and all "no progression" cases in GPA printout, whereas cluster 2 showed -8.68 ± 3.81 baseline MD, 77.54 ± 12.98 baseline VFI, -0.72 ± 0.55 MD slope, -2.22 ± 1.89 VFI slope, and seven "possible" and four "likely" progression cases in GPA printout. There were no significant differences in age, sex, mean IOP, central corneal thickness, and axial length between clusters. However, cluster 2 included more high-tension glaucoma patients and used a greater number of antiglaucoma eye drops significantly compared with cluster 1. Hierarchical cluster analysis of progression patterns divided OAG into slow and fast progression groups, evidenced by assessing the parameters of glaucomatous progression in VF testing. In the fast progression group, the prevalence of high-tension glaucoma was greater and the number of antiglaucoma medications administered was increased versus the slow progression group. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  19. OMERACT-based fibromyalgia symptom subgroups: an exploratory cluster analysis.

    Science.gov (United States)

    Vincent, Ann; Hoskin, Tanya L; Whipple, Mary O; Clauw, Daniel J; Barton, Debra L; Benzo, Roberto P; Williams, David A

    2014-10-16

    The aim of this study was to identify subsets of patients with fibromyalgia with similar symptom profiles using the Outcome Measures in Rheumatology (OMERACT) core symptom domains. Female patients with a diagnosis of fibromyalgia and currently meeting fibromyalgia research survey criteria completed the Brief Pain Inventory, the 30-item Profile of Mood States, the Medical Outcomes Sleep Scale, the Multidimensional Fatigue Inventory, the Multiple Ability Self-Report Questionnaire, the Fibromyalgia Impact Questionnaire-Revised (FIQ-R) and the Short Form-36 between 1 June 2011 and 31 October 2011. Hierarchical agglomerative clustering was used to identify subgroups of patients with similar symptom profiles. To validate the results from this sample, hierarchical agglomerative clustering was repeated in an external sample of female patients with fibromyalgia with similar inclusion criteria. A total of 581 females with a mean age of 55.1 (range, 20.1 to 90.2) years were included. A four-cluster solution best fit the data, and each clustering variable differed significantly (P FIQ-R total scores (P = 0.0004)). In our study, we incorporated core OMERACT symptom domains, which allowed for clustering based on a comprehensive symptom profile. Although our exploratory cluster solution needs confirmation in a longitudinal study, this approach could provide a rationale to support the study of individualized clinical evaluation and intervention.

  20. Comparison of Outputs for Variable Combinations Used in Cluster Analysis on Polarmetric Imagery

    National Research Council Canada - National Science Library

    Petre, Melinda

    2008-01-01

    .... More specifically, two techniques, Cluster Analysis (CA) and Principle Component Analysis (PCA) can be combined to process Stoke s imagery by distinguishing between pixels, and producing groups of pixels with similar characteristics...

  1. Present structure of the Finnish environmental cluster and improvement of its functioning particularly from the business perspective; SYKLI - Suomen ympaeristoeklusterin nykyrakenne ja sen toimivuuden parantaminen erityisesti liiketoimintaosan naekoekulmasta

    Energy Technology Data Exchange (ETDEWEB)

    Silvennoinen, A.; Apilo, S.; Vaara, M.

    2002-07-01

    There is an emerging environmental cluster in Finland, but its definition has proved problematic and given rise to lively discussion. It is characteristic of this environmental cluster that it overlaps with other cluster structures. The objective of the SYKLI project was to map out the existing environmental clusters and networks. This identification process was carried out in terns of both the overall activity of the Finnish environmental cluster and the regional parts. In practice, the study was conducted on regional level as business-based corporate interviews. The term cluster here refers, in application of M. Porter, to an operationally well-organised branch, which has been formed inside a nation and which succeeds in international competition. The study was based on a review Finland's Natural Resources and the Environment published by Statistics Finland. According to this review, the total turnover of the core regions in the environmental sector in 1998 was estimated at c. FIM 20.7 billion and the employment effect at 24 000 person/years. It was discovered about the environmental business in Finland that it is an entity related to neighbouring regions and assisted areas, which is divided into several branches. The products of enterprises are usually based on know-how and technology. The enterprise size is rather small on average and the enterprises are young. On the regional scale, environmental business is dispersed, although the public actors have mainly concentrated in Helsinki. The low standard of marketing know-how is felt to be a national deficiency, and there is a distinct need for knowledge and know-how regarding internationalisation at all levels. Weak cluster structures and operational networks developing especially with sub-contractors can be discerned in the activities of enterprises. Networking takes place between the environmental sector and the neighbouring regions and assisted areas, and not so much inside the environmental sector itself

  2. Symptom Clusters in People Living with HIV Attending Five Palliative Care Facilities in Two Sub-Saharan African Countries: A Hierarchical Cluster Analysis.

    Science.gov (United States)

    Moens, Katrien; Siegert, Richard J; Taylor, Steve; Namisango, Eve; Harding, Richard

    2015-01-01

    Symptom research across conditions has historically focused on single symptoms, and the burden of multiple symptoms and their interactions has been relatively neglected especially in people living with HIV. Symptom cluster studies are required to set priorities in treatment planning, and to lessen the total symptom burden. This study aimed to identify and compare symptom clusters among people living with HIV attending five palliative care facilities in two sub-Saharan African countries. Data from cross-sectional self-report of seven-day symptom prevalence on the 32-item Memorial Symptom Assessment Scale-Short Form were used. A hierarchical cluster analysis was conducted using Ward's method applying squared Euclidean Distance as the similarity measure to determine the clusters. Contingency tables, X2 tests and ANOVA were used to compare the clusters by patient specific characteristics and distress scores. Among the sample (N=217) the mean age was 36.5 (SD 9.0), 73.2% were female, and 49.1% were on antiretroviral therapy (ART). The cluster analysis produced five symptom clusters identified as: 1) dermatological; 2) generalised anxiety and elimination; 3) social and image; 4) persistently present; and 5) a gastrointestinal-related symptom cluster. The patients in the first three symptom clusters reported the highest physical and psychological distress scores. Patient characteristics varied significantly across the five clusters by functional status (worst functional physical status in cluster one, ppeople living with HIV with longitudinally collected symptom data to test cluster stability and identify common symptom trajectories is recommended.

  3. The quantitative analysis of silicon carbide surface smoothing by Ar and Xe cluster ions

    Science.gov (United States)

    Ieshkin, A. E.; Kireev, D. S.; Ermakov, Yu. A.; Trifonov, A. S.; Presnov, D. E.; Garshev, A. V.; Anufriev, Yu. V.; Prokhorova, I. G.; Krupenin, V. A.; Chernysh, V. S.

    2018-04-01

    The gas cluster ion beam technique was used for the silicon carbide crystal surface smoothing. The effect of processing by two inert cluster ions, argon and xenon, was quantitatively compared. While argon is a standard element for GCIB, results for xenon clusters were not reported yet. Scanning probe microscopy and high resolution transmission electron microscopy techniques were used for the analysis of the surface roughness and surface crystal layer quality. The gas cluster ion beam processing results in surface relief smoothing down to average roughness about 1 nm for both elements. It was shown that xenon as the working gas is more effective: sputtering rate for xenon clusters is 2.5 times higher than for argon at the same beam energy. High resolution transmission electron microscopy analysis of the surface defect layer gives values of 7 ± 2 nm and 8 ± 2 nm for treatment with argon and xenon clusters.

  4. [Principal component analysis and cluster analysis of inorganic elements in sea cucumber Apostichopus japonicus].

    Science.gov (United States)

    Liu, Xiao-Fang; Xue, Chang-Hu; Wang, Yu-Ming; Li, Zhao-Jie; Xue, Yong; Xu, Jie

    2011-11-01

    The present study is to investigate the feasibility of multi-elements analysis in determination of the geographical origin of sea cucumber Apostichopus japonicus, and to make choice of the effective tracers in sea cucumber Apostichopus japonicus geographical origin assessment. The content of the elements such as Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Hg and Pb in sea cucumber Apostichopus japonicus samples from seven places of geographical origin were determined by means of ICP-MS. The results were used for the development of elements database. Cluster analysis(CA) and principal component analysis (PCA) were applied to differentiate the sea cucumber Apostichopus japonicus geographical origin. Three principal components which accounted for over 89% of the total variance were extracted from the standardized data. The results of Q-type cluster analysis showed that the 26 samples could be clustered reasonably into five groups, the classification results were significantly associated with the marine distribution of the sea cucumber Apostichopus japonicus samples. The CA and PCA were the effective methods for elements analysis of sea cucumber Apostichopus japonicus samples. The content of the mineral elements in sea cucumber Apostichopus japonicus samples was good chemical descriptors for differentiating their geographical origins.

  5. Global myeloma research clusters, output, and citations: a bibliometric mapping and clustering analysis.

    Directory of Open Access Journals (Sweden)

    Jens Peter Andersen

    Full Text Available International collaborative research is a mechanism for improving the development of disease-specific therapies and for improving health at the population level. However, limited data are available to assess the trends in research output related to orphan diseases.We used bibliometric mapping and clustering methods to illustrate the level of fragmentation in myeloma research and the development of collaborative efforts. Publication data from Thomson Reuters Web of Science were retrieved for 2005-2009 and followed until 2013. We created a database of multiple myeloma publications, and we analysed impact and co-authorship density to identify scientific collaborations, developments, and international key players over time. The global annual publication volume for studies on multiple myeloma increased from 1,144 in 2005 to 1,628 in 2009, which represents a 43% increase. This increase is high compared to the 24% and 14% increases observed for lymphoma and leukaemia. The major proportion (>90% of publications was from the US and EU over the study period. The output and impact in terms of citations, identified several successful groups with a large number of intra-cluster collaborations in the US and EU. The US-based myeloma clusters clearly stand out as the most productive and highly cited, and the European Myeloma Network members exhibited a doubling of collaborative publications from 2005 to 2009, still increasing up to 2013.Multiple myeloma research output has increased substantially in the past decade. The fragmented European myeloma research activities based on national or regional groups are progressing, but they require a broad range of targeted research investments to improve multiple myeloma health care.

  6. Topic modeling for cluster analysis of large biological and medical datasets.

    Science.gov (United States)

    Zhao, Weizhong; Zou, Wen; Chen, James J

    2014-01-01

    The big data moniker is nowhere better deserved than to describe the ever-increasing prodigiousness and complexity of biological and medical datasets. New methods are needed to generate and test hypotheses, foster biological interpretation, and build validated predictors. Although multivariate techniques such as cluster analysis may allow researchers to identify groups, or clusters, of related variables, the accuracies and effectiveness of traditional clustering methods diminish for large and hyper dimensional datasets. Topic modeling is an active research field in machine learning and has been mainly used as an analytical tool to structure large textual corpora for data mining. Its ability to reduce high dimensionality to a small number of latent variables makes it suitable as a means for clustering or overcoming clustering difficulties in large biological and medical datasets. In this study, three topic model-derived clustering methods, highest probable topic assignment, feature selection and feature extraction, are proposed and tested on the cluster analysis of three large datasets: Salmonella pulsed-field gel electrophoresis (PFGE) dataset, lung cancer dataset, and breast cancer dataset, which represent various types of large biological or medical datasets. All three various methods are shown to improve the efficacy/effectiveness of clustering results on the three datasets in comparison to traditional methods. A preferable cluster analysis method emerged for each of the three datasets on the basis of replicating known biological truths. Topic modeling could be advantageously applied to the large datasets of biological or medical research. The three proposed topic model-derived clustering methods, highest probable topic assignment, feature selection and feature extraction, yield clustering improvements for the three different data types. Clusters more efficaciously represent truthful groupings and subgroupings in the data than traditional methods, suggesting

  7. Clinical Characteristics of Exacerbation-Prone Adult Asthmatics Identified by Cluster Analysis.

    Science.gov (United States)

    Kim, Mi Ae; Shin, Seung Woo; Park, Jong Sook; Uh, Soo Taek; Chang, Hun Soo; Bae, Da Jeong; Cho, You Sook; Park, Hae Sim; Yoon, Ho Joo; Choi, Byoung Whui; Kim, Yong Hoon; Park, Choon Sik

    2017-11-01

    Asthma is a heterogeneous disease characterized by various types of airway inflammation and obstruction. Therefore, it is classified into several subphenotypes, such as early-onset atopic, obese non-eosinophilic, benign, and eosinophilic asthma, using cluster analysis. A number of asthmatics frequently experience exacerbation over a long-term follow-up period, but the exacerbation-prone subphenotype has rarely been evaluated by cluster analysis. This prompted us to identify clusters reflecting asthma exacerbation. A uniform cluster analysis method was applied to 259 adult asthmatics who were regularly followed-up for over 1 year using 12 variables, selected on the basis of their contribution to asthma phenotypes. After clustering, clinical profiles and exacerbation rates during follow-up were compared among the clusters. Four subphenotypes were identified: cluster 1 was comprised of patients with early-onset atopic asthma with preserved lung function, cluster 2 late-onset non-atopic asthma with impaired lung function, cluster 3 early-onset atopic asthma with severely impaired lung function, and cluster 4 late-onset non-atopic asthma with well-preserved lung function. The patients in clusters 2 and 3 were identified as exacerbation-prone asthmatics, showing a higher risk of asthma exacerbation. Two different phenotypes of exacerbation-prone asthma were identified among Korean asthmatics using cluster analysis; both were characterized by impaired lung function, but the age at asthma onset and atopic status were different between the two. Copyright © 2017 The Korean Academy of Asthma, Allergy and Clinical Immunology · The Korean Academy of Pediatric Allergy and Respiratory Disease

  8. XMM-Newton view of X-ray overdensities from nearby galaxy clusters : the environmental dependencies

    NARCIS (Netherlands)

    Caglar,; T.; Hudaverdi,; M.,

    2017-01-01

    In this work, we studied ten nearby (z≤0.038) galaxy clusters to understand possible interactions between hot plasma and member galaxies. A multi-band source detection was applied to detect point-like structures within the intra-cluster medium. We examined spectral properties of a total of 391 X-ray

  9. The young star cluster population of M51 with LEGUS - II. Testing environmental dependences

    Science.gov (United States)

    Messa, Matteo; Adamo, A.; Calzetti, D.; Reina-Campos, M.; Colombo, D.; Schinnerer, E.; Chandar, R.; Dale, D. A.; Gouliermis, D. A.; Grasha, K.; Grebel, E. K.; Elmegreen, B. G.; Fumagalli, M.; Johnson, K. E.; Kruijssen, J. M. D.; Östlin, G.; Shabani, F.; Smith, L. J.; Whitmore, B. C.

    2018-06-01

    It has recently been established that the properties of young star clusters (YSCs) can vary as a function of the galactic environment in which they are found. We use the cluster catalogue produced by the Legacy Extragalactic UV Survey (LEGUS) collaboration to investigate cluster properties in the spiral galaxy M51. We analyse the cluster population as a function of galactocentric distance and in arm and inter-arm regions. The cluster mass function exhibits a similar shape at all radial bins, described by a power law with a slope close to -2 and an exponential truncation around 105 M⊙. While the mass functions of the YSCs in the spiral arm and inter-arm regions have similar truncation masses, the inter-arm region mass function has a significantly steeper slope than the one in the arm region, a trend that is also observed in the giant molecular cloud mass function and predicted by simulations. The age distribution of clusters is dependent on the region considered, and is consistent with rapid disruption only in dense regions, while little disruption is observed at large galactocentric distances and in the inter-arm region. The fraction of stars forming in clusters does not show radial variations, despite the drop in the H2 surface density measured as a function of galactocentric distance. We suggest that the higher disruption rate observed in the inner part of the galaxy is likely at the origin of the observed flat cluster formation efficiency radial profile.

  10. A clustering analysis of lipoprotein diameters in the metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Frazier-Wood Alexis C

    2011-12-01

    Full Text Available Abstract Background The presence of smaller low-density lipoproteins (LDL has been associated with atherosclerosis risk, and the insulin resistance (IR underlying the metabolic syndrome (MetS. In addition, some research has supported the association of very low-, low- and high-density lipoprotein (VLDL HDL particle diameters with components of the metabolic syndrome (MetS, although this has been the focus of less research. We aimed to explore the relationship of VLDL, LDL and HDL diameters to MetS and its features, and by clustering individuals by their diameters of VLDL, LDL and HDL particles, to capture information across all three fractions of lipoprotein into a unified phenotype. Methods We used nuclear magnetic resonance spectroscopy measurements on fasting plasma samples from a general population sample of 1,036 adults (mean ± SD, 48.8 ± 16.2 y of age. Using latent class analysis, the sample was grouped by the diameter of their fasting lipoproteins, and mixed effects models tested whether the distribution of MetS components varied across the groups. Results Eight discrete groups were identified. Two groups (N = 251 were enriched with individuals meeting criteria for the MetS, and were characterized by the smallest LDL/HDL diameters. One of those two groups, one was additionally distinguished by large VLDL, and had significantly higher blood pressure, fasting glucose, triglycerides, and waist circumference (WC; P Conclusions While small LDL diameters remain associated with IR and the MetS, the occurrence of these in conjunction with a shift to overall larger VLDL diameter may identify those with the highest fasting glucose, TG and WC within the MetS. If replicated, the association of this phenotype with more severe IR-features indicated that it may contribute to identifying of those most at risk for incident type II diabetes and cardiometabolic disease.

  11. Methodology сomparative statistical analysis of Russian industry based on cluster analysis

    Directory of Open Access Journals (Sweden)

    Sergey S. Shishulin

    2017-01-01

    Full Text Available The article is devoted to researching of the possibilities of applying multidimensional statistical analysis in the study of industrial production on the basis of comparing its growth rates and structure with other developed and developing countries of the world. The purpose of this article is to determine the optimal set of statistical methods and the results of their application to industrial production data, which would give the best access to the analysis of the result.Data includes such indicators as output, output, gross value added, the number of employed and other indicators of the system of national accounts and operational business statistics. The objects of observation are the industry of the countrys of the Customs Union, the United States, Japan and Erope in 2005-2015. As the research tool used as the simplest methods of transformation, graphical and tabular visualization of data, and methods of statistical analysis. In particular, based on a specialized software package (SPSS, the main components method, discriminant analysis, hierarchical methods of cluster analysis, Ward’s method and k-means were applied.The application of the method of principal components to the initial data makes it possible to substantially and effectively reduce the initial space of industrial production data. Thus, for example, in analyzing the structure of industrial production, the reduction was from fifteen industries to three basic, well-interpreted factors: the relatively extractive industries (with a low degree of processing, high-tech industries and consumer goods (medium-technology sectors. At the same time, as a result of comparison of the results of application of cluster analysis to the initial data and data obtained on the basis of the principal components method, it was established that clustering industrial production data on the basis of new factors significantly improves the results of clustering.As a result of analyzing the parameters of

  12. Cluster-cluster clustering

    International Nuclear Information System (INIS)

    Barnes, J.; Dekel, A.; Efstathiou, G.; Frenk, C.S.; Yale Univ., New Haven, CT; California Univ., Santa Barbara; Cambridge Univ., England; Sussex Univ., Brighton, England)

    1985-01-01

    The cluster correlation function xi sub c(r) is compared with the particle correlation function, xi(r) in cosmological N-body simulations with a wide range of initial conditions. The experiments include scale-free initial conditions, pancake models with a coherence length in the initial density field, and hybrid models. Three N-body techniques and two cluster-finding algorithms are used. In scale-free models with white noise initial conditions, xi sub c and xi are essentially identical. In scale-free models with more power on large scales, it is found that the amplitude of xi sub c increases with cluster richness; in this case the clusters give a biased estimate of the particle correlations. In the pancake and hybrid models (with n = 0 or 1), xi sub c is steeper than xi, but the cluster correlation length exceeds that of the points by less than a factor of 2, independent of cluster richness. Thus the high amplitude of xi sub c found in studies of rich clusters of galaxies is inconsistent with white noise and pancake models and may indicate a primordial fluctuation spectrum with substantial power on large scales. 30 references

  13. Cluster Analysis of Acute Care Use Yields Insights for Tailored Pediatric Asthma Interventions.

    Science.gov (United States)

    Abir, Mahshid; Truchil, Aaron; Wiest, Dawn; Nelson, Daniel B; Goldstick, Jason E; Koegel, Paul; Lozon, Marie M; Choi, Hwajung; Brenner, Jeffrey

    2017-09-01

    We undertake this study to understand patterns of pediatric asthma-related acute care use to inform interventions aimed at reducing potentially avoidable hospitalizations. Hospital claims data from 3 Camden city facilities for 2010 to 2014 were used to perform cluster analysis classifying patients aged 0 to 17 years according to their asthma-related hospital use. Clusters were based on 2 variables: asthma-related ED visits and hospitalizations. Demographics and a number of sociobehavioral and use characteristics were compared across clusters. Children who met the criteria (3,170) were included in the analysis. An examination of a scree plot showing the decline in within-cluster heterogeneity as the number of clusters increased confirmed that clusters of pediatric asthma patients according to hospital use exist in the data. Five clusters of patients with distinct asthma-related acute care use patterns were observed. Cluster 1 (62% of patients) showed the lowest rates of acute care use. These patients were least likely to have a mental health-related diagnosis, were less likely to have visited multiple facilities, and had no hospitalizations for asthma. Cluster 2 (19% of patients) had a low number of asthma ED visits and onetime hospitalization. Cluster 3 (11% of patients) had a high number of ED visits and low hospitalization rates, and the highest rates of multiple facility use. Cluster 4 (7% of patients) had moderate ED use for both asthma and other illnesses, and high rates of asthma hospitalizations; nearly one quarter received care at all facilities, and 1 in 10 had a mental health diagnosis. Cluster 5 (1% of patients) had extreme rates of acute care use. Differences observed between groups across multiple sociobehavioral factors suggest these clusters may represent children who differ along multiple dimensions, in addition to patterns of service use, with implications for tailored interventions. Copyright © 2017 American College of Emergency Physicians

  14. Assessment of Random Assignment in Training and Test Sets using Generalized Cluster Analysis Technique

    Directory of Open Access Journals (Sweden)

    Sorana D. BOLBOACĂ

    2011-06-01

    Full Text Available Aim: The properness of random assignment of compounds in training and validation sets was assessed using the generalized cluster technique. Material and Method: A quantitative Structure-Activity Relationship model using Molecular Descriptors Family on Vertices was evaluated in terms of assignment of carboquinone derivatives in training and test sets during the leave-many-out analysis. Assignment of compounds was investigated using five variables: observed anticancer activity and four structure descriptors. Generalized cluster analysis with K-means algorithm was applied in order to investigate if the assignment of compounds was or not proper. The Euclidian distance and maximization of the initial distance using a cross-validation with a v-fold of 10 was applied. Results: All five variables included in analysis proved to have statistically significant contribution in identification of clusters. Three clusters were identified, each of them containing both carboquinone derivatives belonging to training as well as to test sets. The observed activity of carboquinone derivatives proved to be normal distributed on every. The presence of training and test sets in all clusters identified using generalized cluster analysis with K-means algorithm and the distribution of observed activity within clusters sustain a proper assignment of compounds in training and test set. Conclusion: Generalized cluster analysis using the K-means algorithm proved to be a valid method in assessment of random assignment of carboquinone derivatives in training and test sets.

  15. Cluster analysis in severe emphysema subjects using phenotype and genotype data: an exploratory investigation

    Directory of Open Access Journals (Sweden)

    Martinez Fernando J

    2010-03-01

    Full Text Available Abstract Background Numerous studies have demonstrated associations between genetic markers and COPD, but results have been inconsistent. One reason may be heterogeneity in disease definition. Unsupervised learning approaches may assist in understanding disease heterogeneity. Methods We selected 31 phenotypic variables and 12 SNPs from five candidate genes in 308 subjects in the National Emphysema Treatment Trial (NETT Genetics Ancillary Study cohort. We used factor analysis to select a subset of phenotypic variables, and then used cluster analysis to identify subtypes of severe emphysema. We examined the phenotypic and genotypic characteristics of each cluster. Results We identified six factors accounting for 75% of the shared variability among our initial phenotypic variables. We selected four phenotypic variables from these factors for cluster analysis: 1 post-bronchodilator FEV1 percent predicted, 2 percent bronchodilator responsiveness, and quantitative CT measurements of 3 apical emphysema and 4 airway wall thickness. K-means cluster analysis revealed four clusters, though separation between clusters was modest: 1 emphysema predominant, 2 bronchodilator responsive, with higher FEV1; 3 discordant, with a lower FEV1 despite less severe emphysema and lower airway wall thickness, and 4 airway predominant. Of the genotypes examined, membership in cluster 1 (emphysema-predominant was associated with TGFB1 SNP rs1800470. Conclusions Cluster analysis may identify meaningful disease subtypes and/or groups of related phenotypic variables even in a highly selected group of severe emphysema subjects, and may be useful for genetic association studies.

  16. Environmental systems analysis of wastewater management

    International Nuclear Information System (INIS)

    Kaerrman, Erik

    2000-01-01

    The history of wastewater management tells us that efforts have been made at solving only one problem at the time; sanitation during the first half of the 20th Century followed by eutrophication of lakes and sea and, for the past ten years, recycling of nutrients. After the 'Brundtland Report', 1987, a reversal of the debate occurred where water management was discussed in a more holistic manner than before. The concept sustainable development became widely accepted and was put into practice. This thesis suggests a framework for evaluating the sustainability of wastewater systems, which contains the use of criteria and system analytical evaluation methods matching each criterion. The main categories of criteria are identified as: Health and Hygiene, Social and Cultural, Environmental, Economic and Functional and Technical. The usability of different concepts of Environmental Systems Analysis for evaluating environmental criteria of wastewater systems is also investigated. These studies show that a substance-flow model combined with evaluation methods from Life Cycle Assessment (LCA), sometimes complemented with Exergy Analysis or Analysis of Primary Energy, is a beneficial approach for evaluating environmental impacts and the usage of resources. The substance-flow model ORWARE (ORganic WAste REsearch) combined with LCA was used to compare four systems structures for the management of household wastewater and solid organic waste, namely Conventional System, Irrigation of Energy Forests, Liquid Composting and Urine Separation. This study shows a potential for further development of the three alternative systems. The comparative study also included some development of system analytical methods. This thesis shows how the contribution from oxidation of ammonia should be included in the eutrophication impact category. Furthermore, a method is given for prioritization of the most relevant impacts from wastewater management by using normalisation of these impacts in

  17. Development and optimization of SPECT gated blood pool cluster analysis for the prediction of CRT outcome

    Energy Technology Data Exchange (ETDEWEB)

    Lalonde, Michel, E-mail: mlalonde15@rogers.com; Wassenaar, Richard [Department of Physics, Carleton University, Ottawa, Ontario K1S 5B6 (Canada); Wells, R. Glenn; Birnie, David; Ruddy, Terrence D. [Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7 (Canada)

    2014-07-15

    Purpose: Phase analysis of single photon emission computed tomography (SPECT) radionuclide angiography (RNA) has been investigated for its potential to predict the outcome of cardiac resynchronization therapy (CRT). However, phase analysis may be limited in its potential at predicting CRT outcome as valuable information may be lost by assuming that time-activity curves (TAC) follow a simple sinusoidal shape. A new method, cluster analysis, is proposed which directly evaluates the TACs and may lead to a better understanding of dyssynchrony patterns and CRT outcome. Cluster analysis algorithms were developed and optimized to maximize their ability to predict CRT response. Methods: About 49 patients (N = 27 ischemic etiology) received a SPECT RNA scan as well as positron emission tomography (PET) perfusion and viability scans prior to undergoing CRT. A semiautomated algorithm sampled the left ventricle wall to produce 568 TACs from SPECT RNA data. The TACs were then subjected to two different cluster analysis techniques, K-means, and normal average, where several input metrics were also varied to determine the optimal settings for the prediction of CRT outcome. Each TAC was assigned to a cluster group based on the comparison criteria and global and segmental cluster size and scores were used as measures of dyssynchrony and used to predict response to CRT. A repeated random twofold cross-validation technique was used to train and validate the cluster algorithm. Receiver operating characteristic (ROC) analysis was used to calculate the area under the curve (AUC) and compare results to those obtained for SPECT RNA phase analysis and PET scar size analysis methods. Results: Using the normal average cluster analysis approach, the septal wall produced statistically significant results for predicting CRT results in the ischemic population (ROC AUC = 0.73;p < 0.05 vs. equal chance ROC AUC = 0.50) with an optimal operating point of 71% sensitivity and 60% specificity. Cluster

  18. Development and optimization of SPECT gated blood pool cluster analysis for the prediction of CRT outcome

    International Nuclear Information System (INIS)

    Lalonde, Michel; Wassenaar, Richard; Wells, R. Glenn; Birnie, David; Ruddy, Terrence D.

    2014-01-01

    Purpose: Phase analysis of single photon emission computed tomography (SPECT) radionuclide angiography (RNA) has been investigated for its potential to predict the outcome of cardiac resynchronization therapy (CRT). However, phase analysis may be limited in its potential at predicting CRT outcome as valuable information may be lost by assuming that time-activity curves (TAC) follow a simple sinusoidal shape. A new method, cluster analysis, is proposed which directly evaluates the TACs and may lead to a better understanding of dyssynchrony patterns and CRT outcome. Cluster analysis algorithms were developed and optimized to maximize their ability to predict CRT response. Methods: About 49 patients (N = 27 ischemic etiology) received a SPECT RNA scan as well as positron emission tomography (PET) perfusion and viability scans prior to undergoing CRT. A semiautomated algorithm sampled the left ventricle wall to produce 568 TACs from SPECT RNA data. The TACs were then subjected to two different cluster analysis techniques, K-means, and normal average, where several input metrics were also varied to determine the optimal settings for the prediction of CRT outcome. Each TAC was assigned to a cluster group based on the comparison criteria and global and segmental cluster size and scores were used as measures of dyssynchrony and used to predict response to CRT. A repeated random twofold cross-validation technique was used to train and validate the cluster algorithm. Receiver operating characteristic (ROC) analysis was used to calculate the area under the curve (AUC) and compare results to those obtained for SPECT RNA phase analysis and PET scar size analysis methods. Results: Using the normal average cluster analysis approach, the septal wall produced statistically significant results for predicting CRT results in the ischemic population (ROC AUC = 0.73;p < 0.05 vs. equal chance ROC AUC = 0.50) with an optimal operating point of 71% sensitivity and 60% specificity. Cluster

  19. Nurses' beliefs about nursing diagnosis: A study with cluster analysis.

    Science.gov (United States)

    D'Agostino, Fabio; Pancani, Luca; Romero-Sánchez, José Manuel; Lumillo-Gutierrez, Iris; Paloma-Castro, Olga; Vellone, Ercole; Alvaro, Rosaria

    2018-06-01

    To identify clusters of nurses in relation to their beliefs about nursing diagnosis among two populations (Italian and Spanish); to investigate differences among clusters of nurses in each population considering the nurses' socio-demographic data, attitudes towards nursing diagnosis, intentions to make nursing diagnosis and actual behaviours in making nursing diagnosis. Nurses' beliefs concerning nursing diagnosis can influence its use in practice but this is still unclear. A cross-sectional design. A convenience sample of nurses in Italy and Spain was enrolled. Data were collected between 2014-2015 using tools, that is, a socio-demographic questionnaire and behavioural, normative and control beliefs, attitudes, intentions and behaviours scales. The sample included 499 nurses (272 Italians & 227 Spanish). Of these, 66.5% of the Italian and 90.7% of the Spanish sample were female. The mean age was 36.5 and 45.2 years old in the Italian and Spanish sample respectively. Six clusters of nurses were identified in Spain and four in Italy. Three clusters were similar among the two populations. Similar significant associations between age, years of work, attitudes towards nursing diagnosis, intentions to make nursing diagnosis and behaviours in making nursing diagnosis and cluster membership in each population were identified. Belief profiles identified unique subsets of nurses that have distinct characteristics. Categorizing nurses by belief patterns may help administrators and educators to tailor interventions aimed at improving nursing diagnosis use in practice. © 2018 John Wiley & Sons Ltd.

  20. Cluster Analysis of Customer Reviews Extracted from Web Pages

    Directory of Open Access Journals (Sweden)

    S. Shivashankar

    2010-01-01

    Full Text Available As e-commerce is gaining popularity day by day, the web has become an excellent source for gathering customer reviews / opinions by the market researchers. The number of customer reviews that a product receives is growing at very fast rate (It could be in hundreds or thousands. Customer reviews posted on the websites vary greatly in quality. The potential customer has to read necessarily all the reviews irrespective of their quality to make a decision on whether to purchase the product or not. In this paper, we make an attempt to assess are view based on its quality, to help the customer make a proper buying decision. The quality of customer review is assessed as most significant, more significant, significant and insignificant.A novel and effective web mining technique is proposed for assessing a customer review of a particular product based on the feature clustering techniques, namely, k-means method and fuzzy c-means method. This is performed in three steps : (1Identify review regions and extract reviews from it, (2 Extract and cluster the features of reviews by a clustering technique and then assign weights to the features belonging to each of the clusters (groups and (3 Assess the review by considering the feature weights and group belongingness. The k-means and fuzzy c-means clustering techniques are implemented and tested on customer reviews extracted from web pages. Performance of these techniques are analyzed.

  1. Analysis of DOE international environmental management activities

    Energy Technology Data Exchange (ETDEWEB)

    Ragaini, R.C.

    1995-09-01

    The Department of Energy`s (DOE) Strategic Plan (April 1994) states that DOE`s long-term vision includes world leadership in environmental restoration and waste management activities. The activities of the DOE Office of Environmental Management (EM) can play a key role in DOE`s goals of maintaining U.S. global competitiveness and ensuring the continuation of a world class science and technology community. DOE`s interest in attaining these goals stems partly from its participation in organizations like the Trade Policy Coordinating Committee (TPCC), with its National Environmental Export Promotion Strategy, which seeks to strengthen U.S. competitiveness and the building of public-private partnerships as part of U.S. industrial policy. The International Interactions Field Office task will build a communication network which will facilitate the efficient and effective communication between DOE Headquarters, Field Offices, and contractors. Under this network, Headquarters will provide the Field Offices with information on the Administration`s policies and activities (such as the DOE Strategic Plan), interagency activities, as well as relevant information from other field offices. Lawrence Livermore National Laboratory (LLNL) will, in turn, provide Headquarters with information on various international activities which, when appropriate, will be included in reports to groups like the TPCC and the EM Focus Areas. This task provides for the collection, review, and analysis of information on the more significant international environmental restoration and waste management initiatives and activities which have been used or are being considered at LLNL. Information gathering will focus on efforts and accomplishments in meeting the challenges of providing timely and cost effective cleanup of its environmentally damaged sites and facilities, especially through international technical exchanges and/or the implementation of foreign-development technologies.

  2. Identification and comparative analysis of the protocadherin cluster in a reptile, the green anole lizard.

    Directory of Open Access Journals (Sweden)

    Xiao-Juan Jiang

    Full Text Available BACKGROUND: The vertebrate protocadherins are a subfamily of cell adhesion molecules that are predominantly expressed in the nervous system and are believed to play an important role in establishing the complex neural network during animal development. Genes encoding these molecules are organized into a cluster in the genome. Comparative analysis of the protocadherin subcluster organization and gene arrangements in different vertebrates has provided interesting insights into the history of vertebrate genome evolution. Among tetrapods, protocadherin clusters have been fully characterized only in mammals. In this study, we report the identification and comparative analysis of the protocadherin cluster in a reptile, the green anole lizard (Anolis carolinensis. METHODOLOGY/PRINCIPAL FINDINGS: We show that the anole protocadherin cluster spans over a megabase and encodes a total of 71 genes. The number of genes in the anole protocadherin cluster is significantly higher than that in the coelacanth (49 genes and mammalian (54-59 genes clusters. The anole protocadherin genes are organized into four subclusters: the delta, alpha, beta and gamma. This subcluster organization is identical to that of the coelacanth protocadherin cluster, but differs from the mammalian clusters which lack the delta subcluster. The gene number expansion in the anole protocadherin cluster is largely due to the extensive gene duplication in the gammab subgroup. Similar to coelacanth and elephant shark protocadherin genes, the anole protocadherin genes have experienced a low frequency of gene conversion. CONCLUSIONS/SIGNIFICANCE: Our results suggest that similar to the protocadherin clusters in other vertebrates, the evolution of anole protocadherin cluster is driven mainly by lineage-specific gene duplications and degeneration. Our analysis also shows that loss of the protocadherin delta subcluster in the mammalian lineage occurred after the divergence of mammals and reptiles

  3. Clustering analysis of malware behavior using Self Organizing Map

    DEFF Research Database (Denmark)

    Pirscoveanu, Radu-Stefan; Stevanovic, Matija; Pedersen, Jens Myrup

    2016-01-01

    For the time being, malware behavioral classification is performed by means of Anti-Virus (AV) generated labels. The paper investigates the inconsistencies associated with current practices by evaluating the identified differences between current vendors. In this paper we rely on Self Organizing...... Map, an unsupervised machine learning algorithm, for generating clusters that capture the similarities between malware behavior. A data set of approximately 270,000 samples was used to generate the behavioral profile of malicious types in order to compare the outcome of the proposed clustering...... approach with the labels collected from 57 Antivirus vendors using VirusTotal. Upon evaluating the results, the paper concludes on shortcomings of relying on AV vendors for labeling malware samples. In order to solve the problem, a cluster-based classification is proposed, which should provide more...

  4. Marketing Mix Formulation for Higher Education: An Integrated Analysis Employing Analytic Hierarchy Process, Cluster Analysis and Correspondence Analysis

    Science.gov (United States)

    Ho, Hsuan-Fu; Hung, Chia-Chi

    2008-01-01

    Purpose: The purpose of this paper is to examine how a graduate institute at National Chiayi University (NCYU), by using a model that integrates analytic hierarchy process, cluster analysis and correspondence analysis, can develop effective marketing strategies. Design/methodology/approach: This is primarily a quantitative study aimed at…

  5. Influence of birth cohort on age of onset cluster analysis in bipolar I disorder

    DEFF Research Database (Denmark)

    Bauer, M; Glenn, T; Alda, M

    2015-01-01

    Purpose: Two common approaches to identify subgroups of patients with bipolar disorder are clustering methodology (mixture analysis) based on the age of onset, and a birth cohort analysis. This study investigates if a birth cohort effect will influence the results of clustering on the age of onset...... cohort. Model-based clustering (mixture analysis) was then performed on the age of onset data using the residuals. Clinical variables in subgroups were compared. Results: There was a strong birth cohort effect. Without adjusting for the birth cohort, three subgroups were found by clustering. After...... on the age of onset, and that there is a birth cohort effect. Including the birth cohort adjustment altered the number and characteristics of subgroups detected when clustering by age of onset. Further investigation is needed to determine if combining both approaches will identify subgroups that are more...

  6. Parkinson's Disease Subtypes Identified from Cluster Analysis of Motor and Non-motor Symptoms.

    Science.gov (United States)

    Mu, Jesse; Chaudhuri, Kallol R; Bielza, Concha; de Pedro-Cuesta, Jesus; Larrañaga, Pedro; Martinez-Martin, Pablo

    2017-01-01

    Parkinson's disease is now considered a complex, multi-peptide, central, and peripheral nervous system disorder with considerable clinical heterogeneity. Non-motor symptoms play a key role in the trajectory of Parkinson's disease, from prodromal premotor to end stages. To understand the clinical heterogeneity of Parkinson's disease, this study used cluster analysis to search for subtypes from a large, multi-center, international, and well-characterized cohort of Parkinson's disease patients across all motor stages, using a combination of cardinal motor features (bradykinesia, rigidity, tremor, axial signs) and, for the first time, specific validated rater-based non-motor symptom scales. Two independent international cohort studies were used: (a) the validation study of the Non-Motor Symptoms Scale ( n = 411) and (b) baseline data from the global Non-Motor International Longitudinal Study ( n = 540). k -means cluster analyses were performed on the non-motor and motor domains (domains clustering) and the 30 individual non-motor symptoms alone (symptoms clustering), and hierarchical agglomerative clustering was performed to group symptoms together. Four clusters are identified from the domains clustering supporting previous studies: mild, non-motor dominant, motor-dominant, and severe. In addition, six new smaller clusters are identified from the symptoms clustering, each characterized by clinically-relevant non-motor symptoms. The clusters identified in this study present statistical confirmation of the increasingly important role of non-motor symptoms (NMS) in Parkinson's disease heterogeneity and take steps toward subtype-specific treatment packages.

  7. iterClust: a statistical framework for iterative clustering analysis.

    Science.gov (United States)

    Ding, Hongxu; Wang, Wanxin; Califano, Andrea

    2018-03-22

    In a scenario where populations A, B1 and B2 (subpopulations of B) exist, pronounced differences between A and B may mask subtle differences between B1 and B2. Here we present iterClust, an iterative clustering framework, which can separate more pronounced differences (e.g. A and B) in starting iterations, followed by relatively subtle differences (e.g. B1 and B2), providing a comprehensive clustering trajectory. iterClust is implemented as a Bioconductor R package. andrea.califano@columbia.edu, hd2326@columbia.edu. Supplementary information is available at Bioinformatics online.

  8. Dynamic analysis of clustered building structures using substructures methods

    International Nuclear Information System (INIS)

    Leimbach, K.R.; Krutzik, N.J.

    1989-01-01

    The dynamic substructure approach to the building cluster on a common base mat starts with the generation of Ritz-vectors for each building on a rigid foundation. The base mat plus the foundation soil is subjected to kinematic constraint modes, for example constant, linear, quadratic or cubic constraints. These constraint modes are also imposed on the buildings. By enforcing kinematic compatibility of the complete structural system on the basis of the constraint modes a reduced Ritz model of the complete cluster is obtained. This reduced model can now be analyzed by modal time history or response spectrum methods

  9. Applying Clustering to Statistical Analysis of Student Reasoning about Two-Dimensional Kinematics

    Science.gov (United States)

    Springuel, R. Padraic; Wittman, Michael C.; Thompson, John R.

    2007-01-01

    We use clustering, an analysis method not presently common to the physics education research community, to group and characterize student responses to written questions about two-dimensional kinematics. Previously, clustering has been used to analyze multiple-choice data; we analyze free-response data that includes both sketches of vectors and…

  10. Differences Between Ward's and UPGMA Methods of Cluster Analysis: Implications for School Psychology.

    Science.gov (United States)

    Hale, Robert L.; Dougherty, Donna

    1988-01-01

    Compared the efficacy of two methods of cluster analysis, the unweighted pair-groups method using arithmetic averages (UPGMA) and Ward's method, for students grouped on intelligence, achievement, and social adjustment by both clustering methods. Found UPGMA more efficacious based on output, on cophenetic correlation coefficients generated by each…

  11. The reflection of hierarchical cluster analysis of co-occurrence matrices in SPSS

    NARCIS (Netherlands)

    Zhou, Q.; Leng, F.; Leydesdorff, L.

    2015-01-01

    Purpose: To discuss the problems arising from hierarchical cluster analysis of co-occurrence matrices in SPSS, and the corresponding solutions. Design/methodology/approach: We design different methods of using the SPSS hierarchical clustering module for co-occurrence matrices in order to compare

  12. Identifying At-Risk Students in General Chemistry via Cluster Analysis of Affective Characteristics

    Science.gov (United States)

    Chan, Julia Y. K.; Bauer, Christopher F.

    2014-01-01

    The purpose of this study is to identify academically at-risk students in first-semester general chemistry using affective characteristics via cluster analysis. Through the clustering of six preselected affective variables, three distinct affective groups were identified: low (at-risk), medium, and high. Students in the low affective group…

  13. Social Learning Network Analysis Model to Identify Learning Patterns Using Ontology Clustering Techniques and Meaningful Learning

    Science.gov (United States)

    Firdausiah Mansur, Andi Besse; Yusof, Norazah

    2013-01-01

    Clustering on Social Learning Network still not explored widely, especially when the network focuses on e-learning system. Any conventional methods are not really suitable for the e-learning data. SNA requires content analysis, which involves human intervention and need to be carried out manually. Some of the previous clustering techniques need…

  14. Symptom Cluster Research With Biomarkers and Genetics Using Latent Class Analysis.

    Science.gov (United States)

    Conley, Samantha

    2017-12-01

    The purpose of this article is to provide an overview of latent class analysis (LCA) and examples from symptom cluster research that includes biomarkers and genetics. A review of LCA with genetics and biomarkers was conducted using Medline, Embase, PubMed, and Google Scholar. LCA is a robust latent variable model used to cluster categorical data and allows for the determination of empirically determined symptom clusters. Researchers should consider using LCA to link empirically determined symptom clusters to biomarkers and genetics to better understand the underlying etiology of symptom clusters. The full potential of LCA in symptom cluster research has not yet been realized because it has been used in limited populations, and researchers have explored limited biologic pathways.

  15. Clusters of Insomnia Disorder: An Exploratory Cluster Analysis of Objective Sleep Parameters Reveals Differences in Neurocognitive Functioning, Quantitative EEG, and Heart Rate Variability.

    Science.gov (United States)

    Miller, Christopher B; Bartlett, Delwyn J; Mullins, Anna E; Dodds, Kirsty L; Gordon, Christopher J; Kyle, Simon D; Kim, Jong Won; D'Rozario, Angela L; Lee, Rico S C; Comas, Maria; Marshall, Nathaniel S; Yee, Brendon J; Espie, Colin A; Grunstein, Ronald R

    2016-11-01

    To empirically derive and evaluate potential clusters of Insomnia Disorder through cluster analysis from polysomnography (PSG). We hypothesized that clusters would differ on neurocognitive performance, sleep-onset measures of quantitative ( q )-EEG and heart rate variability (HRV). Research volunteers with Insomnia Disorder (DSM-5) completed a neurocognitive assessment and overnight PSG measures of total sleep time (TST), wake time after sleep onset (WASO), and sleep onset latency (SOL) were used to determine clusters. From 96 volunteers with Insomnia Disorder, cluster analysis derived at least two clusters from objective sleep parameters: Insomnia with normal objective sleep duration (I-NSD: n = 53) and Insomnia with short sleep duration (I-SSD: n = 43). At sleep onset, differences in HRV between I-NSD and I-SSD clusters suggest attenuated parasympathetic activity in I-SSD (P insomnia clusters derived from cluster analysis differ in sleep onset HRV. Preliminary data suggest evidence for three clusters in insomnia with differences for sustained attention and sleep-onset q -EEG. Insomnia 100 sleep study: Australia New Zealand Clinical Trials Registry (ANZCTR) identification number 12612000049875. URL: https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=347742. © 2016 Associated Professional Sleep Societies, LLC.

  16. The identification of credit card encoders by hierarchical cluster analysis of the jitters of magnetic stripes.

    Science.gov (United States)

    Leung, S C; Fung, W K; Wong, K H

    1999-01-01

    The relative bit density variation graphs of 207 specimen credit cards processed by 12 encoding machines were examined first visually, and then classified by means of hierarchical cluster analysis. Twenty-nine credit cards being treated as 'questioned' samples were tested by way of cluster analysis against 'controls' derived from known encoders. It was found that hierarchical cluster analysis provided a high accuracy of identification with all 29 'questioned' samples classified correctly. On the other hand, although visual comparison of jitter graphs was less discriminating, it was nevertheless capable of giving a reasonably accurate result.

  17. Clustering Analysis for Credit Default Probabilities in a Retail Bank Portfolio

    Directory of Open Access Journals (Sweden)

    Elena ANDREI (DRAGOMIR

    2012-08-01

    Full Text Available Methods underlying cluster analysis are very useful in data analysis, especially when the processed volume of data is very large, so that it becomes impossible to extract essential information, unless specific instruments are used to summarize and structure the gross information. In this context, cluster analysis techniques are used particularly, for systematic information analysis. The aim of this article is to build an useful model for banking field, based on data mining techniques, by dividing the groups of borrowers into clusters, in order to obtain a profile of the customers (debtors and good payers. We assume that a class is appropriate if it contains members that have a high degree of similarity and the standard method for measuring the similarity within a group shows the lowest variance. After clustering, data mining techniques are implemented on the cluster with bad debtors, reaching a very high accuracy after implementation. The paper is structured as follows: Section 2 describes the model for data analysis based on a specific scoring model that we proposed. In section 3, we present a cluster analysis using K-means algorithm and the DM models are applied on a specific cluster. Section 4 shows the conclusions.

  18. Learning from environmental data: Methods for analysis of forest nutrition time series

    Energy Technology Data Exchange (ETDEWEB)

    Sulkava, M. (Helsinki Univ. of Technology, Espoo (Finland). Computer and Information Science)

    2008-07-01

    Data analysis methods play an important role in increasing our knowledge of the environment as the amount of data measured from the environment increases. This thesis fits under the scope of environmental informatics and environmental statistics. They are fields, in which data analysis methods are developed and applied for the analysis of environmental data. The environmental data studied in this thesis are time series of nutrient concentration measurements of pine and spruce needles. In addition, there are data of laboratory quality and related environmental factors, such as the weather and atmospheric depositions. The most important methods used for the analysis of the data are based on the self-organizing map and linear regression models. First, a new clustering algorithm of the self-organizing map is proposed. It is found to provide better results than two other methods for clustering of the self-organizing map. The algorithm is used to divide the nutrient concentration data into clusters, and the result is evaluated by environmental scientists. Based on the clustering, the temporal development of the forest nutrition is modeled and the effect of nitrogen and sulfur deposition on the foliar mineral composition is assessed. Second, regression models are used for studying how much environmental factors and properties of the needles affect the changes in the nutrient concentrations of the needles between their first and second year of existence. The aim is to build understandable models with good prediction capabilities. Sparse regression models are found to outperform more traditional regression models in this task. Third, fusion of laboratory quality data from different sources is performed to estimate the precisions of the analytical methods. Weighted regression models are used to quantify how much the precision of observations can affect the time needed to detect a trend in environmental time series. The results of power analysis show that improving the

  19. Stripping voltammetry in environmental and food analysis.

    Science.gov (United States)

    Brainina, K Z; Malakhova, N A; Stojko, N Y

    2000-10-01

    The review covers over 230 papers published mostly in the last 5 years. The goal of the review is to attract the attention of researchers and users to stripping voltammetry in particular, its application in environmental monitoring and analysis of foodstuffs. The sensors employed are impregnated graphite, carbon paste, thick film carbon/graphite and thin film metallic electrodes modified in-situ or beforehand. Hanging mercury drop electrodes and mercury coated glassy carbon electrodes are also mentioned. Strip and long-lived sensors for portable instruments and flow through systems are discussed as devices for future development and application of stripping voltammetry.

  20. Profiling physical activity motivation based on self-determination theory: a cluster analysis approach.

    Science.gov (United States)

    Friederichs, Stijn Ah; Bolman, Catherine; Oenema, Anke; Lechner, Lilian

    2015-01-01

    In order to promote physical activity uptake and maintenance in individuals who do not comply with physical activity guidelines, it is important to increase our understanding of physical activity motivation among this group. The present study aimed to examine motivational profiles in a large sample of adults who do not comply with physical activity guidelines. The sample for this study consisted of 2473 individuals (31.4% male; age 44.6 ± 12.9). In order to generate motivational profiles based on motivational regulation, a cluster analysis was conducted. One-way analyses of variance were then used to compare the clusters in terms of demographics, physical activity level, motivation to be active and subjective experience while being active. Three motivational clusters were derived based on motivational regulation scores: a low motivation cluster, a controlled motivation cluster and an autonomous motivation cluster. These clusters differed significantly from each other with respect to physical activity behavior, motivation to be active and subjective experience while being active. Overall, the autonomous motivation cluster displayed more favorable characteristics compared to the other two clusters. The results of this study provide additional support for the importance of autonomous motivation in the context of physical activity behavior. The three derived clusters may be relevant in the context of physical activity interventions as individuals within the different clusters might benefit most from different intervention approaches. In addition, this study shows that cluster analysis is a useful method for differentiating between motivational profiles in large groups of individuals who do not comply with physical activity guidelines.

  1. A Dimensionality Reduction-Based Multi-Step Clustering Method for Robust Vessel Trajectory Analysis

    Directory of Open Access Journals (Sweden)

    Huanhuan Li

    2017-08-01

    Full Text Available The Shipboard Automatic Identification System (AIS is crucial for navigation safety and maritime surveillance, data mining and pattern analysis of AIS information have attracted considerable attention in terms of both basic research and practical applications. Clustering of spatio-temporal AIS trajectories can be used to identify abnormal patterns and mine customary route data for transportation safety. Thus, the capacities of navigation safety and maritime traffic monitoring could be enhanced correspondingly. However, trajectory clustering is often sensitive to undesirable outliers and is essentially more complex compared with traditional point clustering. To overcome this limitation, a multi-step trajectory clustering method is proposed in this paper for robust AIS trajectory clustering. In particular, the Dynamic Time Warping (DTW, a similarity measurement method, is introduced in the first step to measure the distances between different trajectories. The calculated distances, inversely proportional to the similarities, constitute a distance matrix in the second step. Furthermore, as a widely-used dimensional reduction method, Principal Component Analysis (PCA is exploited to decompose the obtained distance matrix. In particular, the top k principal components with above 95% accumulative contribution rate are extracted by PCA, and the number of the centers k is chosen. The k centers are found by the improved center automatically selection algorithm. In the last step, the improved center clustering algorithm with k clusters is implemented on the distance matrix to achieve the final AIS trajectory clustering results. In order to improve the accuracy of the proposed multi-step clustering algorithm, an automatic algorithm for choosing the k clusters is developed according to the similarity distance. Numerous experiments on realistic AIS trajectory datasets in the bridge area waterway and Mississippi River have been implemented to compare our

  2. Deconstructing Bipolar Disorder and Schizophrenia: A cross-diagnostic cluster analysis of cognitive phenotypes.

    Science.gov (United States)

    Lee, Junghee; Rizzo, Shemra; Altshuler, Lori; Glahn, David C; Miklowitz, David J; Sugar, Catherine A; Wynn, Jonathan K; Green, Michael F

    2017-02-01

    Bipolar disorder (BD) and schizophrenia (SZ) show substantial overlap. It has been suggested that a subgroup of patients might contribute to these overlapping features. This study employed a cross-diagnostic cluster analysis to identify subgroups of individuals with shared cognitive phenotypes. 143 participants (68 BD patients, 39 SZ patients and 36 healthy controls) completed a battery of EEG and performance assessments on perception, nonsocial cognition and social cognition. A K-means cluster analysis was conducted with all participants across diagnostic groups. Clinical symptoms, functional capacity, and functional outcome were assessed in patients. A two-cluster solution across 3 groups was the most stable. One cluster including 44 BD patients, 31 controls and 5 SZ patients showed better cognition (High cluster) than the other cluster with 24 BD patients, 35 SZ patients and 5 controls (Low cluster). BD patients in the High cluster performed better than BD patients in the Low cluster across cognitive domains. Within each cluster, participants with different clinical diagnoses showed different profiles across cognitive domains. All patients are in the chronic phase and out of mood episode at the time of assessment and most of the assessment were behavioral measures. This study identified two clusters with shared cognitive phenotype profiles that were not proxies for clinical diagnoses. The finding of better social cognitive performance of BD patients than SZ patients in the Lowe cluster suggest that relatively preserved social cognition may be important to identify disease process distinct to each disorder. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. A Dimensionality Reduction-Based Multi-Step Clustering Method for Robust Vessel Trajectory Analysis.

    Science.gov (United States)

    Li, Huanhuan; Liu, Jingxian; Liu, Ryan Wen; Xiong, Naixue; Wu, Kefeng; Kim, Tai-Hoon

    2017-08-04

    The Shipboard Automatic Identification System (AIS) is crucial for navigation safety and maritime surveillance, data mining and pattern analysis of AIS information have attracted considerable attention in terms of both basic research and practical applications. Clustering of spatio-temporal AIS trajectories can be used to identify abnormal patterns and mine customary route data for transportation safety. Thus, the capacities of navigation safety and maritime traffic monitoring could be enhanced correspondingly. However, trajectory clustering is often sensitive to undesirable outliers and is essentially more complex compared with traditional point clustering. To overcome this limitation, a multi-step trajectory clustering method is proposed in this paper for robust AIS trajectory clustering. In particular, the Dynamic Time Warping (DTW), a similarity measurement method, is introduced in the first step to measure the distances between different trajectories. The calculated distances, inversely proportional to the similarities, constitute a distance matrix in the second step. Furthermore, as a widely-used dimensional reduction method, Principal Component Analysis (PCA) is exploited to decompose the obtained distance matrix. In particular, the top k principal components with above 95% accumulative contribution rate are extracted by PCA, and the number of the centers k is chosen. The k centers are found by the improved center automatically selection algorithm. In the last step, the improved center clustering algorithm with k clusters is implemented on the distance matrix to achieve the final AIS trajectory clustering results. In order to improve the accuracy of the proposed multi-step clustering algorithm, an automatic algorithm for choosing the k clusters is developed according to the similarity distance. Numerous experiments on realistic AIS trajectory datasets in the bridge area waterway and Mississippi River have been implemented to compare our proposed method with

  4. Molecular-dynamics analysis of mobile helium cluster reactions near surfaces of plasma-exposed tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Lin; Maroudas, Dimitrios, E-mail: maroudas@ecs.umass.edu [Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003-9303 (United States); Hammond, Karl D. [Department of Chemical Engineering, University of Missouri, Columbia, Missouri 65211 (United States); Wirth, Brian D. [Department of Nuclear Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States)

    2015-10-28

    We report the results of a systematic atomic-scale analysis of the reactions of small mobile helium clusters (He{sub n}, 4 ≤ n ≤ 7) near low-Miller-index tungsten (W) surfaces, aiming at a fundamental understanding of the near-surface dynamics of helium-carrying species in plasma-exposed tungsten. These small mobile helium clusters are attracted to the surface and migrate to the surface by Fickian diffusion and drift due to the thermodynamic driving force for surface segregation. As the clusters migrate toward the surface, trap mutation (TM) and cluster dissociation reactions are activated at rates higher than in the bulk. TM produces W adatoms and immobile complexes of helium clusters surrounding W vacancies located within the lattice planes at a short distance from the surface. These reactions are identified and characterized in detail based on the analysis of a large number of molecular-dynamics trajectories for each such mobile cluster near W(100), W(110), and W(111) surfaces. TM is found to be the dominant cluster reaction for all cluster and surface combinations, except for the He{sub 4} and He{sub 5} clusters near W(100) where cluster partial dissociation following TM dominates. We find that there exists a critical cluster size, n = 4 near W(100) and W(111) and n = 5 near W(110), beyond which the formation of multiple W adatoms and vacancies in the TM reactions is observed. The identified cluster reactions are responsible for important structural, morphological, and compositional features in the plasma-exposed tungsten, including surface adatom populations, near-surface immobile helium-vacancy complexes, and retained helium content, which are expected to influence the amount of hydrogen re-cycling and tritium retention in fusion tokamaks.

  5. Crowd Analysis by Using Optical Flow and Density Based Clustering

    DEFF Research Database (Denmark)

    Santoro, Francesco; Pedro, Sergio; Tan, Zheng-Hua

    2010-01-01

    In this paper, we present a system to detect and track crowds in a video sequence captured by a camera. In a first step, we compute optical flows by means of pyramidal Lucas-Kanade feature tracking. Afterwards, a density based clustering is used to group similar vectors. In the last step...

  6. Weighted Clustering

    DEFF Research Database (Denmark)

    Ackerman, Margareta; Ben-David, Shai; Branzei, Simina

    2012-01-01

    We investigate a natural generalization of the classical clustering problem, considering clustering tasks in which different instances may have different weights.We conduct the first extensive theoretical analysis on the influence of weighted data on standard clustering algorithms in both...... the partitional and hierarchical settings, characterizing the conditions under which algorithms react to weights. Extending a recent framework for clustering algorithm selection, we propose intuitive properties that would allow users to choose between clustering algorithms in the weighted setting and classify...

  7. Spatio-Temporal Analysis to Predict Environmental Influence on Malaria

    Science.gov (United States)

    Baig, S.; Sarfraz, M. S.

    2018-05-01

    Malaria is a vector borne disease which is a major cause of morbidity and mortality. It is one of the major diseases in the category of infectious diseases. The survival and bionomics of malaria is affected by environmental factors such as climatic, demographic and land-use/land-cover etc. Currently, a very few under developing countries are using Geo-informatics approaches to control this disease. Gujrat a district of Pakistan, is still under threat of malaria disease. Current research is carried on malaria incidents obtained from District Executive Officer of Health Gujrat. The objective of this study was to explore the spatio-temporal patterns of malaria in district Gujrat and to identify the areas being affected by Malaria. Furthermore, it has been also analyzed the relationship between malaria incident and environmental factors in highly favorable zones. Data is analyzed based on spatial and temporal patterns using (Moran's I). Moreover cluster and hot spots analysis were performed on the incident data. This study shows positive correlation with rainfall, vegetation index, population density and water bodies; while it shows positive and negative correlation with temperature in different seasons. However, variation between amount of vegetation and water bodies were observed. Finding of this research can help the decision makers to take preventive measures and reduce the morbidity and mortality related with malaria in Gujrat, Pakistan.

  8. Performance comparison analysis library communication cluster system using merge sort

    Science.gov (United States)

    Wulandari, D. A. R.; Ramadhan, M. E.

    2018-04-01

    Begins by using a single processor, to increase the speed of computing time, the use of multi-processor was introduced. The second paradigm is known as parallel computing, example cluster. The cluster must have the communication potocol for processing, one of it is message passing Interface (MPI). MPI have many library, both of them OPENMPI and MPICH2. Performance of the cluster machine depend on suitable between performance characters of library communication and characters of the problem so this study aims to analyze the comparative performances libraries in handling parallel computing process. The case study in this research are MPICH2 and OpenMPI. This case research execute sorting’s problem to know the performance of cluster system. The sorting problem use mergesort method. The research method is by implementing OpenMPI and MPICH2 on a Linux-based cluster by using five computer virtual then analyze the performance of the system by different scenario tests and three parameters for to know the performance of MPICH2 and OpenMPI. These performances are execution time, speedup and efficiency. The results of this study showed that the addition of each data size makes OpenMPI and MPICH2 have an average speed-up and efficiency tend to increase but at a large data size decreases. increased data size doesn’t necessarily increased speed up and efficiency but only execution time example in 100000 data size. OpenMPI has a execution time greater than MPICH2 example in 1000 data size average execution time with MPICH2 is 0,009721 and OpenMPI is 0,003895 OpenMPI can customize communication needs.

  9. Phenotypes of asthma in low-income children and adolescents: cluster analysis

    Directory of Open Access Journals (Sweden)

    Anna Lucia Barros Cabral

    Full Text Available ABSTRACT Objective: Studies characterizing asthma phenotypes have predominantly included adults or have involved children and adolescents in developed countries. Therefore, their applicability in other populations, such as those of developing countries, remains indeterminate. Our objective was to determine how low-income children and adolescents with asthma in Brazil are distributed across a cluster analysis. Methods: We included 306 children and adolescents (6-18 years of age with a clinical diagnosis of asthma and under medical treatment for at least one year of follow-up. At enrollment, all the patients were clinically stable. For the cluster analysis, we selected 20 variables commonly measured in clinical practice and considered important in defining asthma phenotypes. Variables with high multicollinearity were excluded. A cluster analysis was applied using a twostep agglomerative test and log-likelihood distance measure. Results: Three clusters were defined for our population. Cluster 1 (n = 94 included subjects with normal pulmonary function, mild eosinophil inflammation, few exacerbations, later age at asthma onset, and mild atopy. Cluster 2 (n = 87 included those with normal pulmonary function, a moderate number of exacerbations, early age at asthma onset, more severe eosinophil inflammation, and moderate atopy. Cluster 3 (n = 108 included those with poor pulmonary function, frequent exacerbations, severe eosinophil inflammation, and severe atopy. Conclusions: Asthma was characterized by the presence of atopy, number of exacerbations, and lung function in low-income children and adolescents in Brazil. The many similarities with previous cluster analyses of phenotypes indicate that this approach shows good generalizability.

  10. Genome cluster database. A sequence family analysis platform for Arabidopsis and rice.

    Science.gov (United States)

    Horan, Kevin; Lauricha, Josh; Bailey-Serres, Julia; Raikhel, Natasha; Girke, Thomas

    2005-05-01

    The genome-wide protein sequences from Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) spp. japonica were clustered into families using sequence similarity and domain-based clustering. The two fundamentally different methods resulted in separate cluster sets with complementary properties to compensate the limitations for accurate family analysis. Functional names for the identified families were assigned with an efficient computational approach that uses the description of the most common molecular function gene ontology node within each cluster. Subsequently, multiple alignments and phylogenetic trees were calculated for the assembled families. All clustering results and their underlying sequences were organized in the Web-accessible Genome Cluster Database (http://bioinfo.ucr.edu/projects/GCD) with rich interactive and user-friendly sequence family mining tools to facilitate the analysis of any given family of interest for the plant science community. An automated clustering pipeline ensures current information for future updates in the annotations of the two genomes and clustering improvements. The analysis allowed the first systematic identification of family and singlet proteins present in both organisms as well as those restricted to one of them. In addition, the established Web resources for mining these data provide a road map for future studies of the composition and structure of protein families between the two species.

  11. Environmental analysis for pipeline gas demonstration plants

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, L.H.

    1978-09-01

    The Department of Energy (DOE) has implemented programs for encouraging the development and commercialization of coal-related technologies, which include coal gasification demonstration-scale activities. In support of commercialization activities the Environmental Analysis for Pipeline Gas Demonstration Plants has been prepared as a reference document to be used in evaluating potential environmental and socioeconomic effects from construction and operation of site- and process-specific projects. Effluents and associated impacts are identified for six coal gasification processes at three contrasting settings. In general, impacts from construction of a high-Btu gas demonstration plant are similar to those caused by the construction of any chemical plant of similar size. The operation of a high-Btu gas demonstration plant, however, has several unique aspects that differentiate it from other chemical plants. Offsite development (surface mining) and disposal of large quantities of waste solids constitute important sources of potential impact. In addition, air emissions require monitoring for trace metals, polycyclic aromatic hydrocarbons, phenols, and other emissions. Potential biological impacts from long-term exposure to these emissions are unknown, and additional research and data analysis may be necessary to determine such effects. Possible effects of pollutants on vegetation and human populations are discussed. The occurrence of chemical contaminants in liquid effluents and the bioaccumulation of these contaminants in aquatic organisms may lead to adverse ecological impact. Socioeconomic impacts are similar to those from a chemical plant of equivalent size and are summarized and contrasted for the three surrogate sites.

  12. Patterns of Brucellosis Infection Symptoms in Azerbaijan: A Latent Class Cluster Analysis

    Directory of Open Access Journals (Sweden)

    Rita Ismayilova

    2014-01-01

    Full Text Available Brucellosis infection is a multisystem disease, with a broad spectrum of symptoms. We investigated the existence of clusters of infected patients according to their clinical presentation. Using national surveillance data from the Electronic-Integrated Disease Surveillance System, we applied a latent class cluster (LCC analysis on symptoms to determine clusters of brucellosis cases. A total of 454 cases reported between July 2011 and July 2013 were analyzed. LCC identified a two-cluster model and the Vuong-Lo-Mendell-Rubin likelihood ratio supported the cluster model. Brucellosis cases in the second cluster (19% reported higher percentages of poly-lymphadenopathy, hepatomegaly, arthritis, myositis, and neuritis and changes in liver function tests compared to cases of the first cluster. Patients in the second cluster had a severe brucellosis disease course and were associated with longer delay in seeking medical attention. Moreover, most of them were from Beylagan, a region focused on sheep and goat livestock production in south-central Azerbaijan. Patients in cluster 2 accounted for one-quarter of brucellosis cases and had a more severe clinical presentation. Delay in seeking medical care may explain severe illness. Future work needs to determine the factors that influence brucellosis case seeking and identify brucellosis species, particularly among cases from Beylagan.

  13. Clusters of Insomnia Disorder: An Exploratory Cluster Analysis of Objective Sleep Parameters Reveals Differences in Neurocognitive Functioning, Quantitative EEG, and Heart Rate Variability

    Science.gov (United States)

    Miller, Christopher B.; Bartlett, Delwyn J.; Mullins, Anna E.; Dodds, Kirsty L.; Gordon, Christopher J.; Kyle, Simon D.; Kim, Jong Won; D'Rozario, Angela L.; Lee, Rico S.C.; Comas, Maria; Marshall, Nathaniel S.; Yee, Brendon J.; Espie, Colin A.; Grunstein, Ronald R.

    2016-01-01

    Study Objectives: To empirically derive and evaluate potential clusters of Insomnia Disorder through cluster analysis from polysomnography (PSG). We hypothesized that clusters would differ on neurocognitive performance, sleep-onset measures of quantitative (q)-EEG and heart rate variability (HRV). Methods: Research volunteers with Insomnia Disorder (DSM-5) completed a neurocognitive assessment and overnight PSG measures of total sleep time (TST), wake time after sleep onset (WASO), and sleep onset latency (SOL) were used to determine clusters. Results: From 96 volunteers with Insomnia Disorder, cluster analysis derived at least two clusters from objective sleep parameters: Insomnia with normal objective sleep duration (I-NSD: n = 53) and Insomnia with short sleep duration (I-SSD: n = 43). At sleep onset, differences in HRV between I-NSD and I-SSD clusters suggest attenuated parasympathetic activity in I-SSD (P insomnia clusters derived from cluster analysis differ in sleep onset HRV. Preliminary data suggest evidence for three clusters in insomnia with differences for sustained attention and sleep-onset q-EEG. Clinical Trial Registration: Insomnia 100 sleep study: Australia New Zealand Clinical Trials Registry (ANZCTR) identification number 12612000049875. URL: https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=347742. Citation: Miller CB, Bartlett DJ, Mullins AE, Dodds KL, Gordon CJ, Kyle SD, Kim JW, D'Rozario AL, Lee RS, Comas M, Marshall NS, Yee BJ, Espie CA, Grunstein RR. Clusters of Insomnia Disorder: an exploratory cluster analysis of objective sleep parameters reveals differences in neurocognitive functioning, quantitative EEG, and heart rate variability. SLEEP 2016;39(11):1993–2004. PMID:27568796

  14. Hierarchical clustering analysis of blood plasma lipidomics profiles from mono- and dizygotic twin families

    NARCIS (Netherlands)

    Draisma, H.H.; Reijmers, T.H.; Meulman, J.J.; Greef, J. van der; Hankemeier, T.; Boomsma, D.I.

    2013-01-01

    Twin and family studies are typically used to elucidate the relative contribution of genetic and environmental variation to phenotypic variation. Here, we apply a quantitative genetic method based on hierarchical clustering, to blood plasma lipidomics data obtained in a healthy cohort consisting of

  15. Cluster analysis and ecology of living benthonic foraminiferids from inner shelf off Ratnagiri, West Coast, India

    Digital Repository Service at National Institute of Oceanography (India)

    Nigam, R.; Sarupria, J.S.

    Q-mode cluster analysis explains the spatial distribution data of living benthonic foraminiferids from the inner shelf off Ratnagiri. Two main biotopes and two sub-biotopes are revognised within the study area; biotope A, characterised by @i...

  16. Statistical Techniques Applied to Aerial Radiometric Surveys (STAARS): cluster analysis. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Pirkle, F.L.; Stablein, N.K.; Howell, J.A.; Wecksung, G.W.; Duran, B.S.

    1982-11-01

    One objective of the aerial radiometric surveys flown as part of the US Department of Energy's National Uranium Resource Evaluation (NURE) program was to ascertain the regional distribution of near-surface radioelement abundances. Some method for identifying groups of observations with similar radioelement values was therefore required. It is shown in this report that cluster analysis can identify such groups even when no a priori knowledge of the geology of an area exists. A method of convergent k-means cluster analysis coupled with a hierarchical cluster analysis is used to classify 6991 observations (three radiometric variables at each observation location) from the Precambrian rocks of the Copper Mountain, Wyoming, area. Another method, one that combines a principal components analysis with a convergent k-means analysis, is applied to the same data. These two methods are compared with a convergent k-means analysis that utilizes available geologic knowledge. All three methods identify four clusters. Three of the clusters represent background values for the Precambrian rocks of the area, and one represents outliers (anomalously high 214 Bi). A segmentation of the data corresponding to geologic reality as discovered by other methods has been achieved based solely on analysis of aerial radiometric data. The techniques employed are composites of classical clustering methods designed to handle the special problems presented by large data sets. 20 figures, 7 tables

  17. Analysis of candidates for interacting galaxy clusters. I. A1204 and A2029/A2033

    Science.gov (United States)

    Gonzalez, Elizabeth Johana; de los Rios, Martín; Oio, Gabriel A.; Lang, Daniel Hernández; Tagliaferro, Tania Aguirre; Domínguez R., Mariano J.; Castellón, José Luis Nilo; Cuevas L., Héctor; Valotto, Carlos A.

    2018-04-01

    Context. Merging galaxy clusters allow for the study of different mass components, dark and baryonic, separately. Also, their occurrence enables to test the ΛCDM scenario, which can be used to put constraints on the self-interacting cross-section of the dark-matter particle. Aim. It is necessary to perform a homogeneous analysis of these systems. Hence, based on a recently presented sample of candidates for interacting galaxy clusters, we present the analysis of two of these cataloged systems. Methods: In this work, the first of a series devoted to characterizing galaxy clusters in merger processes, we perform a weak lensing analysis of clusters A1204 and A2029/A2033 to derive the total masses of each identified interacting structure together with a dynamical study based on a two-body model. We also describe the gas and the mass distributions in the field through a lensing and an X-ray analysis. This is the first of a series of works which will analyze these type of system in order to characterize them. Results: Neither merging cluster candidate shows evidence of having had a recent merger event. Nevertheless, there is dynamical evidence that these systems could be interacting or could interact in the future. Conclusions: It is necessary to include more constraints in order to improve the methodology of classifying merging galaxy clusters. Characterization of these clusters is important in order to properly understand the nature of these systems and their connection with dynamical studies.

  18. Subtypes of autism by cluster analysis based on structural MRI data.

    Science.gov (United States)

    Hrdlicka, Michal; Dudova, Iva; Beranova, Irena; Lisy, Jiri; Belsan, Tomas; Neuwirth, Jiri; Komarek, Vladimir; Faladova, Ludvika; Havlovicova, Marketa; Sedlacek, Zdenek; Blatny, Marek; Urbanek, Tomas

    2005-05-01

    The aim of our study was to subcategorize Autistic Spectrum Disorders (ASD) using a multidisciplinary approach. Sixty four autistic patients (mean age 9.4+/-5.6 years) were entered into a cluster analysis. The clustering analysis was based on MRI data. The clusters obtained did not differ significantly in the overall severity of autistic symptomatology as measured by the total score on the Childhood Autism Rating Scale (CARS). The clusters could be characterized as showing significant differences: Cluster 1: showed the largest sizes of the genu and splenium of the corpus callosum (CC), the lowest pregnancy order and the lowest frequency of facial dysmorphic features. Cluster 2: showed the largest sizes of the amygdala and hippocampus (HPC), the least abnormal visual response on the CARS, the lowest frequency of epilepsy and the least frequent abnormal psychomotor development during the first year of life. Cluster 3: showed the largest sizes of the caput of the nucleus caudatus (NC), the smallest sizes of the HPC and facial dysmorphic features were always present. Cluster 4: showed the smallest sizes of the genu and splenium of the CC, as well as the amygdala, and caput of the NC, the most abnormal visual response on the CARS, the highest frequency of epilepsy, the highest pregnancy order, abnormal psychomotor development during the first year of life was always present and facial dysmorphic features were always present. This multidisciplinary approach seems to be a promising method for subtyping autism.

  19. Schedulability Analysis and Optimization for the Synthesis of Multi-Cluster Distributed Embedded Systems

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    2003-01-01

    We present an approach to schedulability analysis for the synthesis of multi-cluster distributed embedded systems consisting of time-triggered and event-triggered clusters, interconnected via gateways. We have also proposed a buffer size and worst case queuing delay analysis for the gateways......, responsible for routing inter-cluster traffic. Optimization heuristics for the priority assignment and synthesis of bus access parameters aimed at producing a schedulable system with minimal buffer needs have been proposed. Extensive experiments and a real-life example show the efficiency of our approaches....

  20. Schedulability Analysis and Optimization for the Synthesis of Multi-Cluster Distributed Embedded Systems

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    2003-01-01

    An approach to schedulability analysis for the synthesis of multi-cluster distributed embedded systems consisting of time-triggered and event-triggered clusters, interconnected via gateways, is presented. A buffer size and worst case queuing delay analysis for the gateways, responsible for routing...... inter-cluster traffic, is also proposed. Optimisation heuristics for the priority assignment and synthesis of bus access parameters aimed at producing a schedulable system with minimal buffer needs have been proposed. Extensive experiments and a real-life example show the efficiency of the approaches....

  1. Clustering applications in financial and economic analysis of the crop production in the Russian regions

    Directory of Open Access Journals (Sweden)

    Gromov Vladislav Vladimirovich

    2013-08-01

    Full Text Available We used the complex mathematical modeling, multivariate statistical-analysis, fuzzy sets to analyze the financial and economic state of the crop production in Russian regions. We developed a system of indicators, detecting the state agricultural sector in the region, based on the results of correlation, factor, cluster analysis and statistics of the Federal State Statistics Service. We performed clustering analyses to divide regions of Russia on selected factors into five groups. A qualitative and quantitative characteristics of each cluster was received.

  2. Instrumental neutron activation analysis in environmental research

    International Nuclear Information System (INIS)

    Bruin, M. de.

    1985-01-01

    The main characteristics of instrumental neutron activation analysis (INAA),relevant for environmental research and monitoring, was reviewed and discussed-sensitivity, suitable for detection of many toxic elements, the low risks of contamination of element loss, lack of matrix effects, lack of light element interference except for 24 Na, capability for multi-element determination, comparatively low costs. A detailed description of the IRI analysis system for routine INAA is given. The system is based on the single comparator method of standartization to take full advantage of multi-element without preparation and use the trace element standards. Zinc was used as mono element standard, the element concentrations are calculated on the basis of 65 Zn and 69m Zn-activities. The irradiations were carried out in a thermal neutron flux of 1.10 13 n/cm 2 .s. The gamma spectra is converted into element concentrations using a set of dedicated software, performing the following functions: spectrum analysis and interpretation, comparison and combination of the intermediate results from different decay times, generation of the final report, bookkeeping of the results obtained. The main applications of the INAA system mentioned are: identification of sources of heavy metal air pollution using air filters or biological indicators such as mosses, lichens, toe-nails, bird feathers, molusks and waterplants; and study of the uptake and translocation of heavy element in plants. Special attention was paid to mathematical techniques for a reliable interpretation of the element concentration patterns observed in sets of lichen samples. Future developments in INAA in environmental science are briefly mentioned

  3. Undergraduate ALFALFA Team: Analysis of Spatially-Resolved Star-Formation in Nearby Galaxy Groups and Clusters

    Science.gov (United States)

    Finn, Rose; Collova, Natasha; Spicer, Sandy; Whalen, Kelly; Koopmann, Rebecca A.; Durbala, Adriana; Haynes, Martha P.; Undergraduate ALFALFA Team

    2017-01-01

    As part of the Undergraduate ALFALFA Team, we are conducting a survey of the gas and star-formation properties of galaxies in 36 groups and clusters in the local universe. The galaxies in our sample span a large range of galactic environments, from the centers of galaxy groups and clusters to the surrounding infall regions. One goal of the project is to map the spatial distribution of star-formation; the relative extent of the star-forming and stellar disks provides important information about the internal and external processes that deplete gas and thus drive galaxy evolution. We obtained wide-field H-alpha observations with the WIYN 0.9m telescope at Kitt Peak National Observatory for galaxies in the vicinity of the MKW11 and NRGb004 galaxy groups and the Abell 1367 cluster. We present a preliminary analysis of the relative size of the star-forming and stellar disks as a function of galaxy morphology and local galaxy density, and we calculate gas depletion times using star-formation rates and HI gas mass. We will combine these results with those from other UAT members to determine if and how environmentally-driven gas depletion varies with the mass and X-ray properties of the host group or cluster. This work has supported by NSF grants AST-0847430, AST-1211005 and AST-1637339.

  4. FLOCK cluster analysis of mast cell event clustering by high-sensitivity flow cytometry predicts systemic mastocytosis.

    Science.gov (United States)

    Dorfman, David M; LaPlante, Charlotte D; Pozdnyakova, Olga; Li, Betty

    2015-11-01

    In our high-sensitivity flow cytometric approach for systemic mastocytosis (SM), we identified mast cell event clustering as a new diagnostic criterion for the disease. To objectively characterize mast cell gated event distributions, we performed cluster analysis using FLOCK, a computational approach to identify cell subsets in multidimensional flow cytometry data in an unbiased, automated fashion. FLOCK identified discrete mast cell populations in most cases of SM (56/75 [75%]) but only a minority of non-SM cases (17/124 [14%]). FLOCK-identified mast cell populations accounted for 2.46% of total cells on average in SM cases and 0.09% of total cells on average in non-SM cases (P < .0001) and were predictive of SM, with a sensitivity of 75%, a specificity of 86%, a positive predictive value of 76%, and a negative predictive value of 85%. FLOCK analysis provides useful diagnostic information for evaluating patients with suspected SM, and may be useful for the analysis of other hematopoietic neoplasms. Copyright© by the American Society for Clinical Pathology.

  5. Environmental effects on stellar populations of star clusters and dwarf galaxies

    Science.gov (United States)

    Pasetto, Stefano; Cropper, Mark; Fujita, Yutaka; Chiosi, Cesare; Grebel, Eva K.

    2017-03-01

    We investigate the competitive role of the different dissipative phenomena acting on the onset of star formation of gravitationally bound systems in an external environment. Ram pressure, Kelvin-Helmholtz and Rayleigh-Taylor instabilities, and tidal forces are accounted for separately in an analytical framework and compared in their role in influencing the star forming regions. We present an analytical criterion to elucidate the dependence of star formation in a spherical stellar system on its surrounding environment. We consider the different signatures of these phenomena in synthetically realized colour-magnitude diagrams (CMDs) of the orbiting system thus investigating the detectability limits of these different effects for future observational projects and their relevance. The developed theoretical framework has direct applications to the cases of massive star clusters, dwarf galaxies in galaxy clusters and dwarf galaxies orbiting our Milky Way system, as well as any primordial gas-rich cluster of stars orbiting within its host galaxy.

  6. SU-E-J-98: Radiogenomics: Correspondence Between Imaging and Genetic Features Based On Clustering Analysis

    International Nuclear Information System (INIS)

    Harmon, S; Wendelberger, B; Jeraj, R

    2014-01-01

    Purpose: Radiogenomics aims to establish relationships between patient genotypes and imaging phenotypes. An open question remains on how best to integrate information from these distinct datasets. This work investigates if similarities in genetic features across patients correspond to similarities in PET-imaging features, assessed with various clustering algorithms. Methods: [ 18 F]FDG PET data was obtained for 26 NSCLC patients from a public database (TCIA). Tumors were contoured using an in-house segmentation algorithm combining gradient and region-growing techniques; resulting ROIs were used to extract 54 PET-based features. Corresponding genetic microarray data containing 48,778 elements were also obtained for each tumor. Given mismatch in feature sizes, two dimension reduction techniques were also applied to the genetic data: principle component analysis (PCA) and selective filtering of 25 NSCLC-associated genes-ofinterest (GOI). Gene datasets (full, PCA, and GOI) and PET feature datasets were independently clustered using K-means and hierarchical clustering using variable number of clusters (K). Jaccard Index (JI) was used to score similarity of cluster assignments across different datasets. Results: Patient clusters from imaging data showed poor similarity to clusters from gene datasets, regardless of clustering algorithms or number of clusters (JI mean = 0.3429±0.1623). Notably, we found clustering algorithms had different sensitivities to data reduction techniques. Using hierarchical clustering, the PCA dataset showed perfect cluster agreement to the full-gene set (JI =1) for all values of K, and the agreement between the GOI set and the full-gene set decreased as number of clusters increased (JI=0.9231 and 0.5769 for K=2 and 5, respectively). K-means clustering assignments were highly sensitive to data reduction and showed poor stability for different values of K (JI range : 0.2301–1). Conclusion: Using commonly-used clustering algorithms, we found

  7. SU-E-J-98: Radiogenomics: Correspondence Between Imaging and Genetic Features Based On Clustering Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, S; Wendelberger, B [University of Wisconsin-Madison, Madison, WI (United States); Jeraj, R [University of Wisconsin-Madison, Madison, WI (United States); University of Ljubljana (Slovenia)

    2014-06-01

    Purpose: Radiogenomics aims to establish relationships between patient genotypes and imaging phenotypes. An open question remains on how best to integrate information from these distinct datasets. This work investigates if similarities in genetic features across patients correspond to similarities in PET-imaging features, assessed with various clustering algorithms. Methods: [{sup 18}F]FDG PET data was obtained for 26 NSCLC patients from a public database (TCIA). Tumors were contoured using an in-house segmentation algorithm combining gradient and region-growing techniques; resulting ROIs were used to extract 54 PET-based features. Corresponding genetic microarray data containing 48,778 elements were also obtained for each tumor. Given mismatch in feature sizes, two dimension reduction techniques were also applied to the genetic data: principle component analysis (PCA) and selective filtering of 25 NSCLC-associated genes-ofinterest (GOI). Gene datasets (full, PCA, and GOI) and PET feature datasets were independently clustered using K-means and hierarchical clustering using variable number of clusters (K). Jaccard Index (JI) was used to score similarity of cluster assignments across different datasets. Results: Patient clusters from imaging data showed poor similarity to clusters from gene datasets, regardless of clustering algorithms or number of clusters (JI{sub mean}= 0.3429±0.1623). Notably, we found clustering algorithms had different sensitivities to data reduction techniques. Using hierarchical clustering, the PCA dataset showed perfect cluster agreement to the full-gene set (JI =1) for all values of K, and the agreement between the GOI set and the full-gene set decreased as number of clusters increased (JI=0.9231 and 0.5769 for K=2 and 5, respectively). K-means clustering assignments were highly sensitive to data reduction and showed poor stability for different values of K (JI{sub range}: 0.2301–1). Conclusion: Using commonly-used clustering algorithms

  8. Identifying models of HIV care and treatment service delivery in Tanzania, Uganda, and Zambia using cluster analysis and Delphi survey.

    Science.gov (United States)

    Tsui, Sharon; Denison, Julie A; Kennedy, Caitlin E; Chang, Larry W; Koole, Olivier; Torpey, Kwasi; Van Praag, Eric; Farley, Jason; Ford, Nathan; Stuart, Leine; Wabwire-Mangen, Fred

    2017-12-06

    Organization of HIV care and treatment services, including clinic staffing and services, may shape clinical and financial outcomes, yet there has been little attempt to describe different models of HIV care in sub-Saharan Africa (SSA). Information about the relative benefits and drawbacks of different models could inform the scale-up of antiretroviral therapy (ART) and associated services in resource-limited settings (RLS), especially in light of expanded client populations with country adoption of WHO's test and treat recommendation. We characterized task-shifting/task-sharing practices in 19 diverse ART clinics in Tanzania, Uganda, and Zambia and used cluster analysis to identify unique models of service provision. We ran descriptive statistics to explore how the clusters varied by environmental factors and programmatic characteristics. Finally, we employed the Delphi Method to make systematic use of expert opinions to ensure that the cluster variables were meaningful in the context of actual task-shifting of ART services in SSA. The cluster analysis identified three task-shifting/task-sharing models. The main differences across models were the availability of medical doctors, the scope of clinical responsibility assigned to nurses, and the use of lay health care workers. Patterns of healthcare staffing in HIV service delivery were associated with different environmental factors (e.g., health facility levels, urban vs. rural settings) and programme characteristics (e.g., community ART distribution or integrated tuberculosis treatment on-site). Understanding the relative advantages and disadvantages of different models of care can help national programmes adapt to increased client load, select optimal adherence strategies within decentralized models of care, and identify differentiated models of care for clients to meet the growing needs of long-term ART patients who require more complicated treatment management.

  9. Reporter gene bioassays in environmental analysis.

    Science.gov (United States)

    Köhler, S; Belkin, S; Schmid, R D

    2000-01-01

    In parallel to the continuous development of increasingly more sophisticated physical and chemical analytical technologies for the detection of environmental pollutants, there is a progressively more urgent need also for bioassays which report not only on the presence of a chemical but also on its bioavailability and its biological effects. As a partial fulfillment of that need, there has been a rapid development of biosensors based on genetically engineered bacteria. Such microorganisms typically combine a promoter-operator, which acts as the sensing element, with reporter gene(s) coding for easily detectable proteins. These sensors have the ability to detect global parameters such as stress conditions, toxicity or DNA-damaging agents as well as specific organic and inorganic compounds. The systems described in this review, designed to detect different groups of target chemicals, vary greatly in their detection limits, specificity, response times and more. These variations reflect on their potential applicability which, for most of the constructs described, is presently rather limited. Nevertheless, present trends promise that additional improvements will make microbial biosensors an important tool for future environmental analysis.

  10. 10 CFR 503.13 - Environmental impact analysis.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Environmental impact analysis. 503.13 Section 503.13... Exemptions § 503.13 Environmental impact analysis. In order to enable OFE to comply with NEPA, a petitioner..., and land resources; (3) Direct and indirect environmental impacts of the proposed action including...

  11. Integrating Data Clustering and Visualization for the Analysis of 3D Gene Expression Data

    Energy Technology Data Exchange (ETDEWEB)

    Data Analysis and Visualization (IDAV) and the Department of Computer Science, University of California, Davis, One Shields Avenue, Davis CA 95616, USA,; nternational Research Training Group ``Visualization of Large and Unstructured Data Sets,' ' University of Kaiserslautern, Germany; Computational Research Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA; Genomics Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley CA 94720, USA; Life Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley CA 94720, USA,; Computer Science Division,University of California, Berkeley, CA, USA,; Computer Science Department, University of California, Irvine, CA, USA,; All authors are with the Berkeley Drosophila Transcription Network Project, Lawrence Berkeley National Laboratory,; Rubel, Oliver; Weber, Gunther H.; Huang, Min-Yu; Bethel, E. Wes; Biggin, Mark D.; Fowlkes, Charless C.; Hendriks, Cris L. Luengo; Keranen, Soile V. E.; Eisen, Michael B.; Knowles, David W.; Malik, Jitendra; Hagen, Hans; Hamann, Bernd

    2008-05-12

    The recent development of methods for extracting precise measurements of spatial gene expression patterns from three-dimensional (3D) image data opens the way for new analyses of the complex gene regulatory networks controlling animal development. We present an integrated visualization and analysis framework that supports user-guided data clustering to aid exploration of these new complex datasets. The interplay of data visualization and clustering-based data classification leads to improved visualization and enables a more detailed analysis than previously possible. We discuss (i) integration of data clustering and visualization into one framework; (ii) application of data clustering to 3D gene expression data; (iii) evaluation of the number of clusters k in the context of 3D gene expression clustering; and (iv) improvement of overall analysis quality via dedicated post-processing of clustering results based on visualization. We discuss the use of this framework to objectively define spatial pattern boundaries and temporal profiles of genes and to analyze how mRNA patterns are controlled by their regulatory transcription factors.

  12. Integrating health and environmental impact analysis.

    Science.gov (United States)

    Reis, S; Morris, G; Fleming, L E; Beck, S; Taylor, T; White, M; Depledge, M H; Steinle, S; Sabel, C E; Cowie, H; Hurley, F; Dick, J McP; Smith, R I; Austen, M

    2015-10-01

    Scientific investigations have progressively refined our understanding of the influence of the environment on human health, and the many adverse impacts that human activities exert on the environment, from the local to the planetary level. Nonetheless, throughout the modern public health era, health has been pursued as though our lives and lifestyles are disconnected from ecosystems and their component organisms. The inadequacy of the societal and public health response to obesity, health inequities, and especially global environmental and climate change now calls for an ecological approach which addresses human activity in all its social, economic and cultural complexity. The new approach must be integral to, and interactive, with the natural environment. We see the continuing failure to truly integrate human health and environmental impact analysis as deeply damaging, and we propose a new conceptual model, the ecosystems-enriched Drivers, Pressures, State, Exposure, Effects, Actions or 'eDPSEEA' model, to address this shortcoming. The model recognizes convergence between the concept of ecosystems services which provides a human health and well-being slant to the value of ecosystems while equally emphasizing the health of the environment, and the growing calls for 'ecological public health' as a response to global environmental concerns now suffusing the discourse in public health. More revolution than evolution, ecological public health will demand new perspectives regarding the interconnections among society, the economy, the environment and our health and well-being. Success must be built on collaborations between the disparate scientific communities of the environmental sciences and public health as well as interactions with social scientists, economists and the legal profession. It will require outreach to political and other stakeholders including a currently largely disengaged general public. The need for an effective and robust science-policy interface has

  13. The dynamics of cyclone clustering in re-analysis and a high-resolution climate model

    Science.gov (United States)

    Priestley, Matthew; Pinto, Joaquim; Dacre, Helen; Shaffrey, Len

    2017-04-01

    Extratropical cyclones have a tendency to occur in groups (clusters) in the exit of the North Atlantic storm track during wintertime, potentially leading to widespread socioeconomic impacts. The Winter of 2013/14 was the stormiest on record for the UK and was characterised by the recurrent clustering of intense extratropical cyclones. This clustering was associated with a strong, straight and persistent North Atlantic 250 hPa jet with Rossby wave-breaking (RWB) on both flanks, pinning the jet in place. Here, we provide for the first time an analysis of all clustered events in 36 years of the ERA-Interim Re-analysis at three latitudes (45˚ N, 55˚ N, 65˚ N) encompassing various regions of Western Europe. The relationship between the occurrence of RWB and cyclone clustering is studied in detail. Clustering at 55˚ N is associated with an extended and anomalously strong jet flanked on both sides by RWB. However, clustering at 65(45)˚ N is associated with RWB to the south (north) of the jet, deflecting the jet northwards (southwards). A positive correlation was found between the intensity of the clustering and RWB occurrence to the north and south of the jet. However, there is considerable spread in these relationships. Finally, analysis has shown that the relationships identified in the re-analysis are also present in a high-resolution coupled global climate model (HiGEM). In particular, clustering is associated with the same dynamical conditions at each of our three latitudes in spite of the identified biases in frequency and intensity of RWB.

  14. Coherent Energy and Environmental System Analysis

    DEFF Research Database (Denmark)

    Hvelplund, Frede; Mathiesen, Brian Vad; Østergaard, Poul Alberg

    energy and environmental analysis tools as well as analyses of the design and implementation of future renewable energy systems. For practical reasons, the work has been carried out as an interaction between five work packages, and a number of reports, papers and tools have been reported separately from...... each part of the project. A list of the separate work package reports is given at the end of this foreword while a complete list of all papers and reports can be found at the end of the report as well as at the following website: www.ceesa.dk. This report provides a summary of the results...... as indirectly via the work of the different work packages. By nature this means that each individual author cannot be responsible for every detail of the different reports and papers of work packages conducted by others. Such responsibility relies on the specific authors of the sub-reports and papers. Moreover...

  15. SIMS depth profile analysis of environmental microparticles

    International Nuclear Information System (INIS)

    Konarski, P.

    2000-01-01

    Environmental and technological research demands chemical characterization of aerosol particles so minute in size, that conventional methods for bulk analyses are simply not applicable. In this work novel application of secondary ion mass spectrometry (SIMS) for characterization of microparticles suspended in atmosphere of the working environment of glass plant Thomson Polkolor, Piaseczno and steelworks Huta Sendzimira, Cracow is presented. The new technique based on sample rotation in depth profile analysis of sub-micrometer particulate material was performed on SAJW-02 analyser equipped with Balzers 16 mm quadrupole spectrometer and sample rotation manipulator using 5 keV Ar + and O 2 + ion beams. The results were compared with the standard method used on ims-3f Cameca analyser 12 keV O 2 + ion beam. Grain size distributions of aerosol microparticles were estimated using eight-stage cascade impactor with particle size range of 0.2 μm to 15 μm. Elemental concentration and crystalline structure of the collected dust particles were performed using spark source mass spectrometry and X-ray diffraction methods. SIMS depth profile analysis shows that sub-micrometer particles do not have uniform morphology, The core-shell structure has been observed for particles collected in both factories. Presented models show that the steelworks particles consists mainly of iron and manganese cores. At the shells of these microparticles :lead, chlorine and fluorine are found. The cores of glass plant submicrometer particles consists mainly of lead-zirconium glass covered by a shell containing carbon and copper. Sample rotation technique applied SIMS appears to be an effective tool for environmental microparticle morphology studies. (author)

  16. Socioeconomic Drivers of Environmental Pollution in China: A Spatial Econometric Analysis

    Directory of Open Access Journals (Sweden)

    Jianmin Liu

    2017-01-01

    Full Text Available This paper studies the environmental pollution and its impacts in China using prefecture-level cities and municipalities data. Moran’s I, the widely used spatial autocorrelation index, provides a fairly strong pattern of spatial clustering of environmental pollution and suggests a fairly high stability of the positive spatial correlation. To investigate the driving forces of environmental pollution and explore the relationship between fiscal decentralization, economic growth, and environmental pollution, spatial Durbin model is used for this analysis. The result shows that fiscal decentralization of local unit plays a significant role in promoting the environmental pollution and the feedback effect of fiscal decentralization on environmental pollution is also positive, though it is not significant. The relationship of GDP per capita and environmental pollution shows inverted U-shaped curve. Due to the scale effect of secondary industry, the higher the level of secondary industry development in a unit is, the easier it is to attract the secondary industry in adjacent units, which mitigates the environmental pollution in adjacent units. Densely populated areas tend to deteriorate local environment, but environmental regulation in densely populated areas is often tighter than other areas, which reduces environmental pollution to a certain extent.

  17. Positron Emission Tomography Particle tracking using cluster analysis

    International Nuclear Information System (INIS)

    Gundogdu, O.

    2004-01-01

    Positron Emission Particle Tracking was successfully used in a wide range of industrial applications. This technique primarily uses a single positron emitting tracer particle. However, using multiple particles would provide more comparative information about the physical processes taking place in a system such as mixing or fluidised beds. In this paper, a unique method that enables us to track more than one particle is presented. This method is based on the midpoint of the closest distance between two trajectories or coincidence vectors. The technique presented in this paper employs a clustering method

  18. Positron Emission Tomography Particle tracking using cluster analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gundogdu, O. [University of Birmingham, School of Physics and Astronomy, Birmingham, B15 2TT (United Kingdom)]. E-mail: o.gundogdu@surrey.ac.uk

    2004-12-01

    Positron Emission Particle Tracking was successfully used in a wide range of industrial applications. This technique primarily uses a single positron emitting tracer particle. However, using multiple particles would provide more comparative information about the physical processes taking place in a system such as mixing or fluidised beds. In this paper, a unique method that enables us to track more than one particle is presented. This method is based on the midpoint of the closest distance between two trajectories or coincidence vectors. The technique presented in this paper employs a clustering method.

  19. Communication Base Station Log Analysis Based on Hierarchical Clustering

    Directory of Open Access Journals (Sweden)

    Zhang Shao-Hua

    2017-01-01

    Full Text Available Communication base stations generate massive data every day, these base station logs play an important value in mining of the business circles. This paper use data mining technology and hierarchical clustering algorithm to group the scope of business circle for the base station by recording the data of these base stations.Through analyzing the data of different business circle based on feature extraction and comparing different business circle category characteristics, which can choose a suitable area for operators of commercial marketing.

  20. Application of cluster analysis to geochemical compositional data for identifying ore-related geochemical anomalies

    Science.gov (United States)

    Zhou, Shuguang; Zhou, Kefa; Wang, Jinlin; Yang, Genfang; Wang, Shanshan

    2017-12-01

    Cluster analysis is a well-known technique that is used to analyze various types of data. In this study, cluster analysis is applied to geochemical data that describe 1444 stream sediment samples collected in northwestern Xinjiang with a sample spacing of approximately 2 km. Three algorithms (the hierarchical, k-means, and fuzzy c-means algorithms) and six data transformation methods (the z-score standardization, ZST; the logarithmic transformation, LT; the additive log-ratio transformation, ALT; the centered log-ratio transformation, CLT; the isometric log-ratio transformation, ILT; and no transformation, NT) are compared in terms of their effects on the cluster analysis of the geochemical compositional data. The study shows that, on the one hand, the ZST does not affect the results of column- or variable-based (R-type) cluster analysis, whereas the other methods, including the LT, the ALT, and the CLT, have substantial effects on the results. On the other hand, the results of the row- or observation-based (Q-type) cluster analysis obtained from the geochemical data after applying NT and the ZST are relatively poor. However, we derive some improved results from the geochemical data after applying the CLT, the ILT, the LT, and the ALT. Moreover, the k-means and fuzzy c-means clustering algorithms are more reliable than the hierarchical algorithm when they are used to cluster the geochemical data. We apply cluster analysis to the geochemical data to explore for Au deposits within the study area, and we obtain a good correlation between the results retrieved by combining the CLT or the ILT with the k-means or fuzzy c-means algorithms and the potential zones of Au mineralization. Therefore, we suggest that the combination of the CLT or the ILT with the k-means or fuzzy c-means algorithms is an effective tool to identify potential zones of mineralization from geochemical data.

  1. Cluster Cooperation in Wireless-Powered Sensor Networks: Modeling and Performance Analysis

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2017-09-01

    Full Text Available A wireless-powered sensor network (WPSN consisting of one hybrid access point (HAP, a near cluster and the corresponding far cluster is investigated in this paper. These sensors are wireless-powered and they transmit information by consuming the harvested energy from signal ejected by the HAP. Sensors are able to harvest energy as well as store the harvested energy. We propose that if sensors in near cluster do not have their own information to transmit, acting as relays, they can help the sensors in a far cluster to forward information to the HAP in an amplify-and-forward (AF manner. We use a finite Markov chain to model the dynamic variation process of the relay battery, and give a general analyzing model for WPSN with cluster cooperation. Though the model, we deduce the closed-form expression for the outage probability as the metric of this network. Finally, simulation results validate the start point of designing this paper and correctness of theoretical analysis and show how parameters have an effect on system performance. Moreover, it is also known that the outage probability of sensors in far cluster can be drastically reduced without sacrificing the performance of sensors in near cluster if the transmit power of HAP is fairly high. Furthermore, in the aspect of outage performance of far cluster, the proposed scheme significantly outperforms the direct transmission scheme without cooperation.

  2. Cluster Cooperation in Wireless-Powered Sensor Networks: Modeling and Performance Analysis.

    Science.gov (United States)

    Zhang, Chao; Zhang, Pengcheng; Zhang, Weizhan

    2017-09-27

    A wireless-powered sensor network (WPSN) consisting of one hybrid access point (HAP), a near cluster and the corresponding far cluster is investigated in this paper. These sensors are wireless-powered and they transmit information by consuming the harvested energy from signal ejected by the HAP. Sensors are able to harvest energy as well as store the harvested energy. We propose that if sensors in near cluster do not have their own information to transmit, acting as relays, they can help the sensors in a far cluster to forward information to the HAP in an amplify-and-forward (AF) manner. We use a finite Markov chain to model the dynamic variation process of the relay battery, and give a general analyzing model for WPSN with cluster cooperation. Though the model, we deduce the closed-form expression for the outage probability as the metric of this network. Finally, simulation results validate the start point of designing this paper and correctness of theoretical analysis and show how parameters have an effect on system performance. Moreover, it is also known that the outage probability of sensors in far cluster can be drastically reduced without sacrificing the performance of sensors in near cluster if the transmit power of HAP is fairly high. Furthermore, in the aspect of outage performance of far cluster, the proposed scheme significantly outperforms the direct transmission scheme without cooperation.

  3. Point Cluster Analysis Using a 3D Voronoi Diagram with Applications in Point Cloud Segmentation

    Directory of Open Access Journals (Sweden)

    Shen Ying

    2015-08-01

    Full Text Available Three-dimensional (3D point analysis and visualization is one of the most effective methods of point cluster detection and segmentation in geospatial datasets. However, serious scattering and clotting characteristics interfere with the visual detection of 3D point clusters. To overcome this problem, this study proposes the use of 3D Voronoi diagrams to analyze and visualize 3D points instead of the original data item. The proposed algorithm computes the cluster of 3D points by applying a set of 3D Voronoi cells to describe and quantify 3D points. The decompositions of point cloud of 3D models are guided by the 3D Voronoi cell parameters. The parameter values are mapped from the Voronoi cells to 3D points to show the spatial pattern and relationships; thus, a 3D point cluster pattern can be highlighted and easily recognized. To capture different cluster patterns, continuous progressive clusters and segmentations are tested. The 3D spatial relationship is shown to facilitate cluster detection. Furthermore, the generated segmentations of real 3D data cases are exploited to demonstrate the feasibility of our approach in detecting different spatial clusters for continuous point cloud segmentation.

  4. Detection of secondary structure elements in proteins by hydrophobic cluster analysis.

    Science.gov (United States)

    Woodcock, S; Mornon, J P; Henrissat, B

    1992-10-01

    Hydrophobic cluster analysis (HCA) is a protein sequence comparison method based on alpha-helical representations of the sequences where the size, shape and orientation of the clusters of hydrophobic residues are primarily compared. The effectiveness of HCA has been suggested to originate from its potential ability to focus on the residues forming the hydrophobic core of globular proteins. We have addressed the robustness of the bidimensional representation used for HCA in its ability to detect the regular secondary structure elements of proteins. Various parameters have been studied such as those governing cluster size and limits, the hydrophobic residues constituting the clusters as well as the potential shift of the cluster positions with respect to the position of the regular secondary structure elements. The following results have been found to support the alpha-helical bidimensional representation used in HCA: (i) there is a positive correlation (clearly above background noise) between the hydrophobic clusters and the regular secondary structure elements in proteins; (ii) the hydrophobic clusters are centred on the regular secondary structure elements; (iii) the pitch of the helical representation which gives the best correspondence is that of an alpha-helix. The correspondence between hydrophobic clusters and regular secondary structure elements suggests a way to implement variable gap penalties during the automatic alignment of protein sequences.

  5. Cluster and principal component analysis based on SSR markers of Amomum tsao-ko in Jinping County of Yunnan Province

    Science.gov (United States)

    Ma, Mengli; Lei, En; Meng, Hengling; Wang, Tiantao; Xie, Linyan; Shen, Dong; Xianwang, Zhou; Lu, Bingyue

    2017-08-01

    Amomum tsao-ko is a commercial plant that used for various purposes in medicinal and food industries. For the present investigation, 44 germplasm samples were collected from Jinping County of Yunnan Province. Clusters analysis and 2-dimensional principal component analysis (PCA) was used to represent the genetic relations among Amomum tsao-ko by using simple sequence repeat (SSR) markers. Clustering analysis clearly distinguished the samples groups. Two major clusters were formed; first (Cluster I) consisted of 34 individuals, the second (Cluster II) consisted of 10 individuals, Cluster I as the main group contained multiple sub-clusters. PCA also showed 2 groups: PCA Group 1 included 29 individuals, PCA Group 2 included 12 individuals, consistent with the results of cluster analysis. The purpose of the present investigation was to provide information on genetic relationship of Amomum tsao-ko germplasm resources in main producing areas, also provide a theoretical basis for the protection and utilization of Amomum tsao-ko resources.

  6. Using the Cluster Analysis and the Principal Component Analysis in Evaluating the Quality of a Destination

    Directory of Open Access Journals (Sweden)

    Ida Vajčnerová

    2016-01-01

    Full Text Available The objective of the paper is to explore possibilities of evaluating the quality of a tourist destination by means of the principal components analysis (PCA and the cluster analysis. In the paper both types of analysis are compared on the basis of the results they provide. The aim is to identify advantage and limits of both methods and provide methodological suggestion for their further use in the tourism research. The analyses is based on the primary data from the customers’ satisfaction survey with the key quality factors of a destination. As output of the two statistical methods is creation of groups or cluster of quality factors that are similar in terms of respondents’ evaluations, in order to facilitate the evaluation of the quality of tourist destinations. Results shows the possibility to use both tested methods. The paper is elaborated in the frame of wider research project aimed to develop a methodology for the quality evaluation of tourist destinations, especially in the context of customer satisfaction and loyalty.

  7. The CERN analysis facility-a PROOF cluster for day-one physics analysis

    International Nuclear Information System (INIS)

    Grosse-Oetringhaus, J F

    2008-01-01

    ALICE (A Large Ion Collider Experiment) at the LHC plans to use a PROOF cluster at CERN (CAF - CERN Analysis Facility) for analysis. The system is especially aimed at the prototyping phase of analyses that need a high number of development iterations and thus require a short response time. Typical examples are the tuning of cuts during the development of an analysis as well as calibration and alignment. Furthermore, the use of an interactive system with very fast response will allow ALICE to extract physics observables out of first data quickly. An additional use case is fast event simulation and reconstruction. A test setup consisting of 40 machines is used for evaluation since May 2006. The PROOF system enables the parallel processing and xrootd the access to files distributed on the test cluster. An automatic staging system for files either catalogued in the ALICE file catalog or stored in the CASTOR mass storage system has been developed. The current setup and ongoing development towards disk quotas and CPU fairshare are described. Furthermore, the integration of PROOF into ALICE's software framework (AliRoot) is discussed

  8. Clustering-based analysis for residential district heating data

    DEFF Research Database (Denmark)

    Gianniou, Panagiota; Liu, Xiufeng; Heller, Alfred

    2018-01-01

    The wide use of smart meters enables collection of a large amount of fine-granular time series, which can be used to improve the understanding of consumption behavior and used for consumption optimization. This paper presents a clustering-based knowledge discovery in databases method to analyze r....... These findings will be valuable for district heating utilities and energy planners to optimize their operations, design demand-side management strategies, and develop targeting energy-efficiency programs or policies.......The wide use of smart meters enables collection of a large amount of fine-granular time series, which can be used to improve the understanding of consumption behavior and used for consumption optimization. This paper presents a clustering-based knowledge discovery in databases method to analyze...... residential heating consumption data and evaluate information included in national building databases. The proposed method uses the K-means algorithm to segment consumption groups based on consumption intensity and representative patterns and ranks the groups according to daily consumption. This paper also...

  9. Cluster cosmological analysis with X ray instrumental observables: introduction and testing of AsPIX method

    International Nuclear Information System (INIS)

    Valotti, Andrea

    2016-01-01

    Cosmology is one of the fundamental pillars of astrophysics, as such it contains many unsolved puzzles. To investigate some of those puzzles, we analyze X-ray surveys of galaxy clusters. These surveys are possible thanks to the bremsstrahlung emission of the intra-cluster medium. The simultaneous fit of cluster counts as a function of mass and distance provides an independent measure of cosmological parameters such as Ω m , σ s , and the dark energy equation of state w0. A novel approach to cosmological analysis using galaxy cluster data, called top-down, was developed in N. Clerc et al. (2012). This top-down approach is based purely on instrumental observables that are considered in a two-dimensional X-ray color-magnitude diagram. The method self-consistently includes selection effects and scaling relationships. It also provides a means of bypassing the computation of individual cluster masses. My work presents an extension of the top-down method by introducing the apparent size of the cluster, creating a three-dimensional X-ray cluster diagram. The size of a cluster is sensitive to both the cluster mass and its angular diameter, so it must also be included in the assessment of selection effects. The performance of this new method is investigated using a Fisher analysis. In parallel, I have studied the effects of the intrinsic scatter in the cluster size scaling relation on the sample selection as well as on the obtained cosmological parameters. To validate the method, I estimate uncertainties of cosmological parameters with MCMC method Amoeba minimization routine and using two simulated XMM surveys that have an increasing level of complexity. The first simulated survey is a set of toy catalogues of 100 and 10000 deg 2 , whereas the second is a 1000 deg 2 catalogue that was generated using an Aardvark semi-analytical N-body simulation. This comparison corroborates the conclusions of the Fisher analysis. In conclusion, I find that a cluster diagram that accounts

  10. Behavioral Health Risk Profiles of Undergraduate University Students in England, Wales, and Northern Ireland: A Cluster Analysis.

    Science.gov (United States)

    El Ansari, Walid; Ssewanyana, Derrick; Stock, Christiane

    2018-01-01

    Limited research has explored clustering of lifestyle behavioral risk factors (BRFs) among university students. This study aimed to explore clustering of BRFs, composition of clusters, and the association of the clusters with self-rated health and perceived academic performance. We assessed (BRFs), namely tobacco smoking, physical inactivity, alcohol consumption, illicit drug use, unhealthy nutrition, and inadequate sleep, using a self-administered general Student Health Survey among 3,706 undergraduates at seven UK universities. A two-step cluster analysis generated: Cluster 1 (the high physically active and health conscious) with very high health awareness/consciousness, good nutrition, and physical activity (PA), and relatively low alcohol, tobacco, and other drug (ATOD) use. Cluster 2 (the abstinent) had very low ATOD use, high health awareness, good nutrition, and medium high PA. Cluster 3 (the moderately health conscious) included the highest regard for healthy eating, second highest fruit/vegetable consumption, and moderately high ATOD use. Cluster 4 (the risk taking) showed the highest ATOD use, were the least health conscious, least fruit consuming, and attached the least importance on eating healthy. Compared to the healthy cluster (Cluster 1), students in other clusters had lower self-rated health, and particularly, students in the risk taking cluster (Cluster 4) reported lower academic performance. These associations were stronger for men than for women. Of the four clusters, Cluster 4 had the youngest students. Our results suggested that prevention among university students should address multiple BRFs simultaneously, with particular focus on the younger students.

  11. Application of Cluster Analysis in Assessment of Dietary Habits of Secondary School Students

    Directory of Open Access Journals (Sweden)

    Zalewska Magdalena

    2014-12-01

    Full Text Available Maintenance of proper health and prevention of diseases of civilization are now significant public health problems. Nutrition is an important factor in the development of youth, as well as the current and future state of health. The aim of the study was to show the benefits of the application of cluster analysis to assess the dietary habits of high school students. The survey was carried out on 1,631 eighteen-year-old students in seven randomly selected secondary schools in Bialystok using a self-prepared anonymous questionnaire. An evaluation of the time of day meals were eaten and the number of meals consumed was made for the surveyed students. The cluster analysis allowed distinguishing characteristic structures of dietary habits in the observed population. Four clusters were identified, which were characterized by relative internal homogeneity and substantial variation in terms of the number of meals during the day and the time of their consumption. The most important characteristics of cluster 1 were cumulated food ration in 2 or 3 meals and long intervals between meals. Cluster 2 was characterized by eating the recommended number of 4 or 5 meals a day. In the 3rd cluster, students ate 3 meals a day with large intervals between them, and in the 4th they had four meals a day while maintaining proper intervals between them. In all clusters dietary mistakes occurred, but most of them were related to clusters 1 and 3. Cluster analysis allowed for the identification of major flaws in nutrition, which may include irregular eating and skipping meals, and indicated possible connections between eating patterns and disturbances of body weight in the examined population.

  12. Genome-scale cluster analysis of replicated microarrays using shrinkage correlation coefficient.

    Science.gov (United States)

    Yao, Jianchao; Chang, Chunqi; Salmi, Mari L; Hung, Yeung Sam; Loraine, Ann; Roux, Stanley J

    2008-06-18

    Currently, clustering with some form of correlation coefficient as the gene similarity metric has become a popular method for profiling genomic data. The Pearson correlation coefficient and the standard deviation (SD)-weighted correlation coefficient are the two most widely-used correlations as the similarity metrics in clustering microarray data. However, these two correlations are not optimal for analyzing replicated microarray data generated by most laboratories. An effective correlation coefficient is needed to provide statistically sufficient analysis of replicated microarray data. In this study, we describe a novel correlation coefficient, shrinkage correlation coefficient (SCC), that fully exploits the similarity between the replicated microarray experimental samples. The methodology considers both the number of replicates and the variance within each experimental group in clustering expression data, and provides a robust statistical estimation of the error of replicated microarray data. The value of SCC is revealed by its comparison with two other correlation coefficients that are currently the most widely-used (Pearson correlation coefficient and SD-weighted correlation coefficient) using statistical measures on both synthetic expression data as well as real gene expression data from Saccharomyces cerevisiae. Two leading clustering methods, hierarchical and k-means clustering were applied for the comparison. The comparison indicated that using SCC achieves better clustering performance. Applying SCC-based hierarchical clustering to the replicated microarray data obtained from germinating spores of the fern Ceratopteris richardii, we discovered two clusters of genes with shared expression patterns during spore germination. Functional analysis suggested that some of the genetic mechanisms that control germination in such diverse plant lineages as mosses and angiosperms are also conserved among ferns. This study shows that SCC is an alternative to the Pearson

  13. Comparative Genomic Analysis of Clinical and Environmental Vibrio Vulnificus Isolates Revealed Biotype 3 Evolutionary Relationships

    Directory of Open Access Journals (Sweden)

    Yael eKotton

    2015-01-01

    Full Text Available In 1996 a common-source outbreak of severe soft tissue and bloodstream infections erupted among Israeli fish farmers and fish consumers due to changes in fish marketing policies. The causative pathogen was a new strain of Vibrio vulnificus, named biotype 3, which displayed a unique biochemical and genotypic profile. Initial observations suggested that the pathogen erupted as a result of genetic recombination between two distinct populations. We applied a whole genome shotgun sequencing approach using several V. vulnificus strains from Israel in order to study the pan genome of V. vulnificus and determine the phylogenetic relationship of biotype 3 with existing populations. The core genome of V. vulnificus based on 16 draft and complete genomes consisted of 3068 genes, representing between 59% and 78% of the whole genome of 16 strains. The accessory genome varied in size from 781 kbp to 2044 kbp. Phylogenetic analysis based on whole, core, and accessory genomes displayed similar clustering patterns with two main clusters, clinical (C and environmental (E, all biotype 3 strains formed a distinct group within the E cluster. Annotation of accessory genomic regions found in biotype 3 strains and absent from the core genome yielded 1732 genes, of which the vast majority encoded hypothetical proteins, phage-related proteins, and mobile element proteins. A total of 1916 proteins (including 713 hypothetical proteins were present in all human pathogenic strains (both biotype 3 and non-biotype 3 and absent from the environmental strains. Clustering analysis of the non-hypothetical proteins revealed 148 protein clusters shared by all human pathogenic strains; these included transcriptional regulators, arylsulfatases, methyl-accepting chemotaxis proteins, acetyltransferases, GGDEF family proteins, transposases, type IV secretory system (T4SS proteins, and integrases. Our study showed that V. vulnificus biotype 3 evolved from environmental populations and

  14. MMPI-2: Cluster Analysis of Personality Profiles in Perinatal Depression—Preliminary Evidence

    Directory of Open Access Journals (Sweden)

    Valentina Meuti

    2014-01-01

    Full Text Available Background. To assess personality characteristics of women who develop perinatal depression. Methods. The study started with a screening of a sample of 453 women in their third trimester of pregnancy, to which was administered a survey data form, the Edinburgh Postnatal Depression Scale (EPDS and the Minnesota Multiphasic Personality Inventory 2 (MMPI-2. A clinical group of subjects with perinatal depression (PND, 55 subjects was selected; clinical and validity scales of MMPI-2 were used as predictors in hierarchical cluster analysis carried out. Results. The analysis identified three clusters of personality profile: two “clinical” clusters (1 and 3 and an “apparently common” one (cluster 2. The first cluster (39.5% collects structures of personality with prevalent obsessive or dependent functioning tending to develop a “psychasthenic” depression; the third cluster (13.95% includes women with prevalent borderline functioning tending to develop “dysphoric” depression; the second cluster (46.5% shows a normal profile with a “defensive” attitude, probably due to the presence of defense mechanisms or to the fear of stigma. Conclusion. Characteristics of personality have a key role in clinical manifestations of perinatal depression; it is important to detect them to identify mothers at risk and to plan targeted therapeutic interventions.

  15. MMPI-2: Cluster Analysis of Personality Profiles in Perinatal Depression—Preliminary Evidence

    Science.gov (United States)

    Grillo, Alessandra; Lauriola, Marco; Giacchetti, Nicoletta

    2014-01-01

    Background. To assess personality characteristics of women who develop perinatal depression. Methods. The study started with a screening of a sample of 453 women in their third trimester of pregnancy, to which was administered a survey data form, the Edinburgh Postnatal Depression Scale (EPDS) and the Minnesota Multiphasic Personality Inventory 2 (MMPI-2). A clinical group of subjects with perinatal depression (PND, 55 subjects) was selected; clinical and validity scales of MMPI-2 were used as predictors in hierarchical cluster analysis carried out. Results. The analysis identified three clusters of personality profile: two “clinical” clusters (1 and 3) and an “apparently common” one (cluster 2). The first cluster (39.5%) collects structures of personality with prevalent obsessive or dependent functioning tending to develop a “psychasthenic” depression; the third cluster (13.95%) includes women with prevalent borderline functioning tending to develop “dysphoric” depression; the second cluster (46.5%) shows a normal profile with a “defensive” attitude, probably due to the presence of defense mechanisms or to the fear of stigma. Conclusion. Characteristics of personality have a key role in clinical manifestations of perinatal depression; it is important to detect them to identify mothers at risk and to plan targeted therapeutic interventions. PMID:25574499

  16. Somatosensory nociceptive characteristics differentiate subgroups in people with chronic low back pain: a cluster analysis.

    Science.gov (United States)

    Rabey, Martin; Slater, Helen; OʼSullivan, Peter; Beales, Darren; Smith, Anne

    2015-10-01

    The objectives of this study were to explore the existence of subgroups in a cohort with chronic low back pain (n = 294) based on the results of multimodal sensory testing and profile subgroups on demographic, psychological, lifestyle, and general health factors. Bedside (2-point discrimination, brush, vibration and pinprick perception, temporal summation on repeated monofilament stimulation) and laboratory (mechanical detection threshold, pressure, heat and cold pain thresholds, conditioned pain modulation) sensory testing were examined at wrist and lumbar sites. Data were entered into principal component analysis, and 5 component scores were entered into latent class analysis. Three clusters, with different sensory characteristics, were derived. Cluster 1 (31.9%) was characterised by average to high temperature and pressure pain sensitivity. Cluster 2 (52.0%) was characterised by average to high pressure pain sensitivity. Cluster 3 (16.0%) was characterised by low temperature and pressure pain sensitivity. Temporal summation occurred significantly more frequently in cluster 1. Subgroups were profiled on pain intensity, disability, depression, anxiety, stress, life events, fear avoidance, catastrophizing, perception of the low back region, comorbidities, body mass index, multiple pain sites, sleep, and activity levels. Clusters 1 and 2 had a significantly greater proportion of female participants and higher depression and sleep disturbance scores than cluster 3. The proportion of participants undertaking Low back pain, therefore, does not appear to be homogeneous. Pain mechanisms relating to presentations of each subgroup were postulated. Future research may investigate prognoses and interventions tailored towards these subgroups.

  17. Age and Environmental Concern: A Multivariate Analysis.

    Science.gov (United States)

    Buttel, Frederick H.

    1979-01-01

    This paper provides detailed evidence on the relationships among age, education, and environmental values. The relative strengths of association of age and education in predicting environmental attitudes are evaluated. Present and future generational politics of environmentalism are discussed. (Author/EB)

  18. Cluster: A New Application for Spatial Analysis of Pixelated Data for Epiphytotics.

    Science.gov (United States)

    Nelson, Scot C; Corcoja, Iulian; Pethybridge, Sarah J

    2017-12-01

    Spatial analysis of epiphytotics is essential to develop and test hypotheses about pathogen ecology, disease dynamics, and to optimize plant disease management strategies. Data collection for spatial analysis requires substantial investment in time to depict patterns in various frames and hierarchies. We developed a new approach for spatial analysis of pixelated data in digital imagery and incorporated the method in a stand-alone desktop application called Cluster. The user isolates target entities (clusters) by designating up to 24 pixel colors as nontargets and moves a threshold slider to visualize the targets. The app calculates the percent area occupied by targeted pixels, identifies the centroids of targeted clusters, and computes the relative compass angle of orientation for each cluster. Users can deselect anomalous clusters manually and/or automatically by specifying a size threshold value to exclude smaller targets from the analysis. Up to 1,000 stochastic simulations randomly place the centroids of each cluster in ranked order of size (largest to smallest) within each matrix while preserving their calculated angles of orientation for the long axes. A two-tailed probability t test compares the mean inter-cluster distances for the observed versus the values derived from randomly simulated maps. This is the basis for statistical testing of the null hypothesis that the clusters are randomly distributed within the frame of interest. These frames can assume any shape, from natural (e.g., leaf) to arbitrary (e.g., a rectangular or polygonal field). Cluster summarizes normalized attributes of clusters, including pixel number, axis length, axis width, compass orientation, and the length/width ratio, available to the user as a downloadable spreadsheet. Each simulated map may be saved as an image and inspected. Provided examples demonstrate the utility of Cluster to analyze patterns at various spatial scales in plant pathology and ecology and highlight the

  19. Semiparametric Bayesian analysis of accelerated failure time models with cluster structures.

    Science.gov (United States)

    Li, Zhaonan; Xu, Xinyi; Shen, Junshan

    2017-11-10

    In this paper, we develop a Bayesian semiparametric accelerated failure time model for survival data with cluster structures. Our model allows distributional heterogeneity across clusters and accommodates their relationships through a density ratio approach. Moreover, a nonparametric mixture of Dirichlet processes prior is placed on the baseline distribution to yield full distributional flexibility. We illustrate through simulations that our model can greatly improve estimation accuracy by effectively pooling information from multiple clusters, while taking into account the heterogeneity in their random error distributions. We also demonstrate the implementation of our method using analysis of Mayo Clinic Trial in Primary Biliary Cirrhosis. Copyright © 2017 John Wiley & Sons, Ltd.

  20. A formal concept analysis approach to consensus clustering of multi-experiment expression data

    Science.gov (United States)

    2014-01-01

    Background Presently, with the increasing number and complexity of available gene expression datasets, the combination of data from multiple microarray studies addressing a similar biological question is gaining importance. The analysis and integration of multiple datasets are expected to yield more reliable and robust results since they are based on a larger number of samples and the effects of the individual study-specific biases are diminished. This is supported by recent studies suggesting that important biological signals are often preserved or enhanced by multiple experiments. An approach to combining data from different experiments is the aggregation of their clusterings into a consensus or representative clustering solution which increases the confidence in the common features of all the datasets and reveals the important differences among them. Results We propose a novel generic consensus clustering technique that applies Formal Concept Analysis (FCA) approach for the consolidation and analysis of clustering solutions derived from several microarray datasets. These datasets are initially divided into groups of related experiments with respect to a predefined criterion. Subsequently, a consensus clustering algorithm is applied to each group resulting in a clustering solution per group. These solutions are pooled together and further analysed by employing FCA which allows extracting valuable insights from the data and generating a gene partition over all the experiments. In order to validate the FCA-enhanced approach two consensus clustering algorithms are adapted to incorporate the FCA analysis. Their performance is evaluated on gene expression data from multi-experiment study examining the global cell-cycle control of fission yeast. The FCA results derived from both methods demonstrate that, although both algorithms optimize different clustering characteristics, FCA is able to overcome and diminish these differences and preserve some relevant biological

  1. A critical cluster analysis of 44 indicators of author-level performance

    DEFF Research Database (Denmark)

    Wildgaard, Lorna Elizabeth

    2016-01-01

    -four indicators of individual researcher performance were computed using the data. The clustering solution was supported by continued reference to the researcher’s curriculum vitae, an effect analysis and a risk analysis. Disciplinary appropriate indicators were identified and used to divide the researchers......This paper explores a 7-stage cluster methodology as a process to identify appropriate indicators for evaluation of individual researchers at a disciplinary and seniority level. Publication and citation data for 741 researchers from 4 disciplines was collected in Web of Science. Forty...... of statistics in research evaluation. The strength of the 7-stage cluster methodology is that it makes clear that in the evaluation of individual researchers, statistics cannot stand alone. The methodology is reliant on contextual information to verify the bibliometric values and cluster solution...

  2. Nuclear spectrometry for environmental analysis and mapping

    International Nuclear Information System (INIS)

    Simon, Aliz

    2013-01-01

    visits, and provision of equipment. This talk gives an overview of the lAEA Physics Section activities with a special emphasis on the following activities: 1)Improving the analytical performance of PIXE and other IBA techniques; 2)Networking for environmental analysis; 3)Radioisotope environmental mapping; 4)Future perspectives for new IBA methods, especially Heavy lon PIXE combined with MeVSIMS. (author)

  3. Nuclear spectrometry for environmental analysis and mapping

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Aliz, E-mail: Aliz.Simon@iaea.org [International Atomic Energy Agency (IAEA), Division of Physical and Chemical Sciences, Vienna (Austria)

    2013-07-01

    visits, and provision of equipment. This talk gives an overview of the lAEA Physics Section activities with a special emphasis on the following activities: 1)Improving the analytical performance of PIXE and other IBA techniques; 2)Networking for environmental analysis; 3)Radioisotope environmental mapping; 4)Future perspectives for new IBA methods, especially Heavy lon PIXE combined with MeVSIMS. (author)

  4. Nepal - Country Environmental Analysis : Strengthening Institutions and Management Systems for Enhanced Environmental Governance

    OpenAIRE

    World Bank

    2007-01-01

    The main objective of the Country Environmental Analysis (CEA) in Nepal is to identify opportunities for enhancing the overall performance of select environmental management systems through improvements in the effectiveness of institutions, policies, and processes. CEA has been built upon the following three primary study components: (a) an examination of the environmental issues associate...

  5. Applying clustering to statistical analysis of student reasoning about two-dimensional kinematics

    Directory of Open Access Journals (Sweden)

    R. Padraic Springuel

    2007-12-01

    Full Text Available We use clustering, an analysis method not presently common to the physics education research community, to group and characterize student responses to written questions about two-dimensional kinematics. Previously, clustering has been used to analyze multiple-choice data; we analyze free-response data that includes both sketches of vectors and written elements. The primary goal of this paper is to describe the methodology itself; we include a brief overview of relevant results.

  6. A Deep Learning Prediction Model Based on Extreme-Point Symmetric Mode Decomposition and Cluster Analysis

    OpenAIRE

    Li, Guohui; Zhang, Songling; Yang, Hong

    2017-01-01

    Aiming at the irregularity of nonlinear signal and its predicting difficulty, a deep learning prediction model based on extreme-point symmetric mode decomposition (ESMD) and clustering analysis is proposed. Firstly, the original data is decomposed by ESMD to obtain the finite number of intrinsic mode functions (IMFs) and residuals. Secondly, the fuzzy c-means is used to cluster the decomposed components, and then the deep belief network (DBN) is used to predict it. Finally, the reconstructed ...

  7. Statistical analysis of activation and reaction energies with quasi-variational coupled-cluster theory

    Science.gov (United States)

    Black, Joshua A.; Knowles, Peter J.

    2018-06-01

    The performance of quasi-variational coupled-cluster (QV) theory applied to the calculation of activation and reaction energies has been investigated. A statistical analysis of results obtained for six different sets of reactions has been carried out, and the results have been compared to those from standard single-reference methods. In general, the QV methods lead to increased activation energies and larger absolute reaction energies compared to those obtained with traditional coupled-cluster theory.

  8. Mining environmental high-throughput sequence data sets to identify divergent amplicon clusters for phylogenetic reconstruction and morphotype visualization.

    Science.gov (United States)

    Gimmler, Anna; Stoeck, Thorsten

    2015-08-01

    Environmental high-throughput sequencing (envHTS) is a very powerful tool, which in protistan ecology is predominantly used for the exploration of diversity and its geographic and local patterns. We here used a pyrosequenced V4-SSU rDNA data set from a solar saltern pond as test case to exploit such massive protistan amplicon data sets beyond this descriptive purpose. Therefore, we combined a Swarm-based blastn network including 11 579 ciliate V4 amplicons to identify divergent amplicon clusters with targeted polymerase chain reaction (PCR) primer design for full-length small subunit of the ribosomal DNA retrieval and probe design for fluorescence in situ hybridization (FISH). This powerful strategy allows to benefit from envHTS data sets to (i) reveal the phylogenetic position of the taxon behind divergent amplicons; (ii) improve phylogenetic resolution and evolutionary history of specific taxon groups; (iii) solidly assess an amplicons (species') degree of similarity to its closest described relative; (iv) visualize the morphotype behind a divergent amplicons cluster; (v) rapidly FISH screen many environmental samples for geographic/habitat distribution and abundances of the respective organism and (vi) to monitor the success of enrichment strategies in live samples for cultivation and isolation of the respective organisms. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. SOMFlow: Guided Exploratory Cluster Analysis with Self-Organizing Maps and Analytic Provenance.

    Science.gov (United States)

    Sacha, Dominik; Kraus, Matthias; Bernard, Jurgen; Behrisch, Michael; Schreck, Tobias; Asano, Yuki; Keim, Daniel A

    2018-01-01

    Clustering is a core building block for data analysis, aiming to extract otherwise hidden structures and relations from raw datasets, such as particular groups that can be effectively related, compared, and interpreted. A plethora of visual-interactive cluster analysis techniques has been proposed to date, however, arriving at useful clusterings often requires several rounds of user interactions to fine-tune the data preprocessing and algorithms. We present a multi-stage Visual Analytics (VA) approach for iterative cluster refinement together with an implementation (SOMFlow) that uses Self-Organizing Maps (SOM) to analyze time series data. It supports exploration by offering the analyst a visual platform to analyze intermediate results, adapt the underlying computations, iteratively partition the data, and to reflect previous analytical activities. The history of previous decisions is explicitly visualized within a flow graph, allowing to compare earlier cluster refinements and to explore relations. We further leverage quality and interestingness measures to guide the analyst in the discovery of useful patterns, relations, and data partitions. We conducted two pair analytics experiments together with a subject matter expert in speech intonation research to demonstrate that the approach is effective for interactive data analysis, supporting enhanced understanding of clustering results as well as the interactive process itself.

  10. Analysis and comparison of very large metagenomes with fast clustering and functional annotation

    Directory of Open Access Journals (Sweden)

    Li Weizhong

    2009-10-01

    Full Text Available Abstract Background The remarkable advance of metagenomics presents significant new challenges in data analysis. Metagenomic datasets (metagenomes are large collections of sequencing reads from anonymous species within particular environments. Computational analyses for very large metagenomes are extremely time-consuming, and there are often many novel sequences in these metagenomes that are not fully utilized. The number of available metagenomes is rapidly increasing, so fast and efficient metagenome comparison methods are in great demand. Results The new metagenomic data analysis method Rapid Analysis of Multiple Metagenomes with a Clustering and Annotation Pipeline (RAMMCAP was developed using an ultra-fast sequence clustering algorithm, fast protein family annotation tools, and a novel statistical metagenome comparison method that employs a unique graphic interface. RAMMCAP processes extremely large datasets with only moderate computational effort. It identifies raw read clusters and protein clusters that may include novel gene families, and compares metagenomes using clusters or functional annotations calculated by RAMMCAP. In this study, RAMMCAP was applied to the two largest available metagenomic collections, the "Global Ocean Sampling" and the "Metagenomic Profiling of Nine Biomes". Conclusion RAMMCAP is a very fast method that can cluster and annotate one million metagenomic reads in only hundreds of CPU hours. It is available from http://tools.camera.calit2.net/camera/rammcap/.

  11. Water quality assessment with hierarchical cluster analysis based on Mahalanobis distance.

    Science.gov (United States)

    Du, Xiangjun; Shao, Fengjing; Wu, Shunyao; Zhang, Hanlin; Xu, Si

    2017-07-01

    Water quality assessment is crucial for assessment of marine eutrophication, prediction of harmful algal blooms, and environment protection. Previous studies have developed many numeric modeling methods and data driven approaches for water quality assessment. The cluster analysis, an approach widely used for grouping data, has also been employed. However, there are complex correlations between water quality variables, which play important roles in water quality assessment but have always been overlooked. In this paper, we analyze correlations between water quality variables and propose an alternative method for water quality assessment with hierarchical cluster analysis based on Mahalanobis distance. Further, we cluster water quality data collected form coastal water of Bohai Sea and North Yellow Sea of China, and apply clustering results to evaluate its water quality. To evaluate the validity, we also cluster the water quality data with cluster analysis based on Euclidean distance, which are widely adopted by previous studies. The results show that our method is more suitable for water quality assessment with many correlated water quality variables. To our knowledge, it is the first attempt to apply Mahalanobis distance for coastal water quality assessment.

  12. Bioclim Deliverable D1: environmental change analysis

    International Nuclear Information System (INIS)

    2001-01-01

    The BIOCLIM project on modelling sequential Biosphere systems under Climate change for radioactive waste disposal is part of the EURATOM fifth European framework programme. The project was launched in October 2000 for a three-year period. The project aims at providing a scientific basis and practical methodology for assessing the possible long term impacts on the safety of radioactive waste repositories in deep formations due to climate and environmental change. The project brings together a number of representatives from both European radioactive waste management organisations which have national responsibilities for the safe disposal of radioactive waste, either as disposers or regulators, and several highly experienced climate research teams. In particular, BIOCLIM aims to address the important objective of how to represent the development of future biosphere systems by addressing both how to model long-term climate change, the relevant environmental consequences of such changes and the implementation of a sequential approach to such changes. The results from the development of this sophisticated approach will be of great benefit for improving long term radiological impact calculations and the information presented in a safety case. Simulations will be conducted to represent the time series of long-term climate in three European areas within which disposal sites may be established (i.e. Central/Southern Spain, Northeast of France and Central Britain). Two complementary strategies will provide representations of future climate predictions together with associated vegetation patterns using either an analysis of distinct climate states or a continuous climate simulation over at least one glacial-interglacial cycle and possibly for other selected periods over the next 1,000,000 years. These results will be used to derive the characteristics of possible future human environments (i.e. biosphere systems) through which radionuclides, emerging from the repository, may

  13. Clustering analysis for muon tomography data elaboration in the Muon Portal project

    Science.gov (United States)

    Bandieramonte, M.; Antonuccio-Delogu, V.; Becciani, U.; Costa, A.; La Rocca, P.; Massimino, P.; Petta, C.; Pistagna, C.; Riggi, F.; Riggi, S.; Sciacca, E.; Vitello, F.

    2015-05-01

    Clustering analysis is one of multivariate data analysis techniques which allows to gather statistical data units into groups, in order to minimize the logical distance within each group and to maximize the one between different groups. In these proceedings, the authors present a novel approach to the muontomography data analysis based on clustering algorithms. As a case study we present the Muon Portal project that aims to build and operate a dedicated particle detector for the inspection of harbor containers to hinder the smuggling of nuclear materials. Clustering techniques, working directly on scattering points, help to detect the presence of suspicious items inside the container, acting, as it will be shown, as a filter for a preliminary analysis of the data.

  14. Profiling nurses' job satisfaction, acculturation, work environment, stress, cultural values and coping abilities: A cluster analysis.

    Science.gov (United States)

    Goh, Yong-Shian; Lee, Alice; Chan, Sally Wai-Chi; Chan, Moon Fai

    2015-08-01

    This study aimed to determine whether definable profiles existed in a cohort of nursing staff with regard to demographic characteristics, job satisfaction, acculturation, work environment, stress, cultural values and coping abilities. A survey was conducted in one hospital in Singapore from June to July 2012, and 814 full-time staff nurses completed a self-report questionnaire (89% response rate). Demographic characteristics, job satisfaction, acculturation, work environment, perceived stress, cultural values, ways of coping and intention to leave current workplace were assessed as outcomes. The two-step cluster analysis revealed three clusters. Nurses in cluster 1 (n = 222) had lower acculturation scores than nurses in cluster 3. Cluster 2 (n = 362) was a group of younger nurses who reported higher intention to leave (22.4%), stress level and job dissatisfaction than the other two clusters. Nurses in cluster 3 (n = 230) were mostly Singaporean and reported the lowest intention to leave (13.0%). Resources should be allocated to specifically address the needs of younger nurses and hopefully retain them in the profession. Management should focus their retention strategies on junior nurses and provide a work environment that helps to strengthen their intention to remain in nursing by increasing their job satisfaction. © 2014 Wiley Publishing Asia Pty Ltd.

  15. Fatigue Feature Extraction Analysis based on a K-Means Clustering Approach

    Directory of Open Access Journals (Sweden)

    M.F.M. Yunoh

    2015-06-01

    Full Text Available This paper focuses on clustering analysis using a K-means approach for fatigue feature dataset extraction. The aim of this study is to group the dataset as closely as possible (homogeneity for the scattered dataset. Kurtosis, the wavelet-based energy coefficient and fatigue damage are calculated for all segments after the extraction process using wavelet transform. Kurtosis, the wavelet-based energy coefficient and fatigue damage are used as input data for the K-means clustering approach. K-means clustering calculates the average distance of each group from the centroid and gives the objective function values. Based on the results, maximum values of the objective function can be seen in the two centroid clusters, with a value of 11.58. The minimum objective function value is found at 8.06 for five centroid clusters. It can be seen that the objective function with the lowest value for the number of clusters is equal to five; which is therefore the best cluster for the dataset.

  16. Cluster analysis for the probability of DSB site induced by electron tracks

    Energy Technology Data Exchange (ETDEWEB)

    Yoshii, Y. [Biological Research, Education and Instrumentation Center, Sapporo Medical University, Sapporo 060-8556 (Japan); Graduate School of Health Sciences, Hokkaido University, Sapporo 060-0812 (Japan); Sasaki, K. [Faculty of Health Sciences, Hokkaido University of Science, Sapporo 006-8585 (Japan); Matsuya, Y. [Graduate School of Health Sciences, Hokkaido University, Sapporo 060-0812 (Japan); Date, H., E-mail: date@hs.hokudai.ac.jp [Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812 (Japan)

    2015-05-01

    To clarify the influence of bio-cells exposed to ionizing radiations, the densely populated pattern of the ionization in the cell nucleus is of importance because it governs the extent of DNA damage which may lead to cell lethality. In this study, we have conducted a cluster analysis of ionization and excitation events to estimate the number of double-strand breaks (DSBs) induced by electron tracks. A Monte Carlo simulation for electrons in liquid water was performed to determine the spatial location of the ionization and excitation events. The events were divided into clusters by using the density-based spatial clustering of applications with noise (DBSCAN) algorithm. The algorithm enables us to sort out the events into the groups (clusters) in which a minimum number of neighboring events are contained within a given radius. For evaluating the number of DSBs in the extracted clusters, we have introduced an aggregation index (AI). The computational results show that a sub-keV electron produces DSBs in a dense formation more effectively than higher energy electrons. The root-mean square radius (RMSR) of the cluster size is below 5 nm, which is smaller than the chromatin fiber thickness. It was found that this size of clustering events has a high possibility to cause lesions in DNA within the chromatin fiber site.

  17. ENTREPRENEURIAL ACTIVITY IN ROMANIA – A TIME SERIES CLUSTERING ANALYSIS AT THE NUTS3 LEVEL

    Directory of Open Access Journals (Sweden)

    Sipos-Gug Sebastian

    2013-07-01

    Full Text Available Entrepreneurship is an active field of research, having known a major increase in interest and publication levels in the last years (Landström et al., 2012. Within this field recently there has been an increasing interest in understanding why some regions seem to have a significantly higher entrepreneurship activity compared to others. In line with this research field, we would like to investigate the differences in entrepreneurial activity among the Romanian counties (NUTS 3 regions. While the classical research paradigm in this field is to conduct a temporally stationary analysis, we choose to use a time series clustering analysis to better understanding the dynamics of entrepreneurial activity between counties. Our analysis showed that if we use the total number of new privately owned companies that are founded each year in the last decade (2002-2012 we can distinguish between 5 clusters, one with high total entrepreneurial activity (18 counties, one with above average activity (8 counties, two clusters with average and slightly below average activity (total of 18 counties and one cluster with low and declining activity (2 counties. If we are interested in the entrepreneurial activity rate, that is the number of new privately owned companies founded each year adjusted by the population of the respective county, we obtain 4 clusters, one with a very high entrepreneurial rate (1 county, one with average rate (10 counties, and two clusters with below average entrepreneurial rate (total of 31 counties. In conclusion, our research shows that Romania is far from being a homogeneous geographical area in respect to entrepreneurial activity. Depending on what we are interested in, it can be divided in 5 or 4 clusters of counties, which behave differently as a function of time. Further research should be focused on explaining these regional differences, on studying the high performance clusters and trying to improve the low performing ones.

  18. Selected industrial and environmental applications of neutron activation analysis

    International Nuclear Information System (INIS)

    Kucera, J.

    1999-01-01

    A review of the applications of Instrumental Neutron Activation Analysis (INAA) in the industrial and environmental fields is given. Detection limits for different applications are also given. (author)

  19. An analysis of environmental data transmission

    Science.gov (United States)

    Yuan, Lina; Chen, Huajun; Gong, Jing

    2017-05-01

    To comprehensively construct environmental automatic monitoring has become the urgent need of environmental management, is a major measure to implement the scientific outlook on development and build a harmonious socialist society, and is an inevitable choice of “building a resource-conserving and environment-friendly society”, which is of great importance and profound significance to adjust the economic structure and transform growth pattern. This article first introduces the importance of environmental data transmission, then expounds the characteristics, key technologies, transmitting mode, and design ideas of environmental data transmission process, and finally, summarizes the full text.

  20. Small-area spatiotemporal analysis of heatwave impacts on elderly mortality in Paris: A cluster analysis approach.

    Science.gov (United States)

    Benmarhnia, Tarik; Kihal-Talantikite, Wahida; Ragettli, Martina S; Deguen, Séverine

    2017-08-15

    Heat-waves have a substantial public health burden. Understanding spatial heterogeneity at a fine spatial scale in relation to heat and related mortality is central to target interventions towards vulnerable communities. To determine the spatial variability of heat-wave-related mortality risk among elderly in Paris, France at the census block level. We also aimed to assess area-level social and environmental determinants of high mortality risk within Paris. We used daily mortality data from 2004 to 2009 among people aged >65 at the French census block level within Paris. We used two heat wave days' definitions that were compared to non-heat wave days. A Bernoulli cluster analysis method was applied to identify high risk clusters of mortality during heat waves. We performed random effects meta-regression analyses to investigate factors associated with the magnitude of the mortality risk. The spatial approach revealed a spatial aggregation of death cases during heat wave days. We found that small scale chronic PM 10 exposure was associated with a 0.02 (95% CI: 0.001; 0.045) increase of the risk of dying during a heat wave episode. We also found a positive association with the percentage of foreigners and the percentage of labor force, while the proportion of elderly people living in the neighborhood was negatively associated. We also found that green space density had a protective effect and inversely that the density of constructed feature increased the risk of dying during a heat wave episode. We showed that a spatial variation in terms of heat-related vulnerability exists within Paris and that it can be explained by some contextual factors. This study can be useful for designing interventions targeting more vulnerable areas and reduce the burden of heat waves. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. An Analysis of Environmental Advertising Frames from 1990 to 2010

    OpenAIRE

    VanDyke, Matthew Steven

    2012-01-01

    Recent calls in environmental communication literature suggest researchers should understand the relationships between media message content, message construction, and audience effects. This thesis analyzed environmental advertising frames over time to inform strategic environmental communication research and practice. The study was a media content analysis guided by framing theory. Framing theory asserts the construction of media messages involves the selection and salience of particular mes...

  2. Differentiating Procrastinators from Each Other: A Cluster Analysis.

    Science.gov (United States)

    Rozental, Alexander; Forsell, Erik; Svensson, Andreas; Forsström, David; Andersson, Gerhard; Carlbring, Per

    2015-01-01

    Procrastination refers to the tendency to postpone the initiation and completion of a given course of action. Approximately one-fifth of the adult population and half of the student population perceive themselves as being severe and chronic procrastinators. Albeit not a psychiatric diagnosis, procrastination has been shown to be associated with increased stress and anxiety, exacerbation of illness, and poorer performance in school and work. However, despite being severely debilitating, little is known about the population of procrastinators in terms of possible subgroups, and previous research has mainly investigated procrastination among university students. The current study examined data from a screening process recruiting participants to a randomized controlled trial of Internet-based cognitive behavior therapy for procrastination (Rozental et al., in press). In total, 710 treatment-seeking individuals completed self-report measures of procrastination, depression, anxiety, and quality of life. The results suggest that there might exist five separate subgroups, or clusters, of procrastinators: "Mild procrastinators" (24.93%), "Average procrastinators" (27.89%), "Well-adjusted procrastinators" (13.94%), "Severe procrastinators" (21.69%), and "Primarily depressed" (11.55%). Hence, there seems to be marked differences among procrastinators in terms of levels of severity, as well as a possible subgroup for which procrastinatory problems are primarily related to depression. Tailoring the treatment interventions to the specific procrastination profile of the individual could thus become important, as well as screening for comorbid psychiatric diagnoses in order to target difficulties associated with, for instance, depression.

  3. On the blind use of statistical tools in the analysis of globular cluster stars

    Science.gov (United States)

    D'Antona, Francesca; Caloi, Vittoria; Tailo, Marco

    2018-04-01

    As with most data analysis methods, the Bayesian method must be handled with care. We show that its application to determine stellar evolution parameters within globular clusters can lead to paradoxical results if used without the necessary precautions. This is a cautionary tale on the use of statistical tools for big data analysis.

  4. Standardized Effect Size Measures for Mediation Analysis in Cluster-Randomized Trials

    Science.gov (United States)

    Stapleton, Laura M.; Pituch, Keenan A.; Dion, Eric

    2015-01-01

    This article presents 3 standardized effect size measures to use when sharing results of an analysis of mediation of treatment effects for cluster-randomized trials. The authors discuss 3 examples of mediation analysis (upper-level mediation, cross-level mediation, and cross-level mediation with a contextual effect) with demonstration of the…

  5. Cluster Analysis of Flow Cytometric List Mode Data on a Personal Computer

    NARCIS (Netherlands)

    Bakker Schut, Tom C.; Bakker schut, T.C.; de Grooth, B.G.; Greve, Jan

    1993-01-01

    A cluster analysis algorithm, dedicated to analysis of flow cytometric data is described. The algorithm is written in Pascal and implemented on an MS-DOS personal computer. It uses k-means, initialized with a large number of seed points, followed by a modified nearest neighbor technique to reduce

  6. Identification of Counterfeit Alcoholic Beverages Using Cluster Analysis in Principal-Component Space

    Science.gov (United States)

    Khodasevich, M. A.; Sinitsyn, G. V.; Gres'ko, M. A.; Dolya, V. M.; Rogovaya, M. V.; Kazberuk, A. V.

    2017-07-01

    A study of 153 brands of commercial vodka products showed that counterfeit samples could be identified by introducing a unified additive at the minimum concentration acceptable for instrumental detection and multivariate analysis of UV-Vis transmission spectra. Counterfeit products were detected with 100% probability by using hierarchical cluster analysis or the C-means method in two-dimensional principal-component space.

  7. Method for environmental risk analysis (MIRA) revision 2007

    International Nuclear Information System (INIS)

    2007-04-01

    OLF's instruction manual for carrying out environmental risk analyses provides a united approach and a common framework for environmental risk assessments. This is based on the best information available. The manual implies standardizations of a series of parameters, input data and partial analyses that are included in the environmental risk analysis. Environmental risk analyses carried out according to the MIRA method will thus be comparable between fields and between companies. In this revision an update of the text in accordance with today's practice for environmental risk analyses and prevailing regulations is emphasized. Moreover, method adjustments for especially protected beach habitats have been introduced, as well as a general method for estimating environmental risk concerning fish. Emphasis has also been put on improving environmental risk analysis' possibilities to contribute to a better management of environmental risk in the companies (ml)

  8. Functional Interference Clusters in Cancer Patients With Bone Metastases: A Secondary Analysis of RTOG 9714

    International Nuclear Information System (INIS)

    Chow, Edward; James, Jennifer; Barsevick, Andrea; Hartsell, William; Ratcliffe, Sarah; Scarantino, Charles; Ivker, Robert; Roach, Mack; Suh, John; Petersen, Ivy; Konski, Andre; Demas, William; Bruner, Deborah

    2010-01-01

    Purpose: To explore the relationships (clusters) among the functional interference items in the Brief Pain Inventory (BPI) in patients with bone metastases. Methods: Patients enrolled in the Radiation Therapy Oncology Group (RTOG) 9714 bone metastases study were eligible. Patients were assessed at baseline and 4, 8, and 12 weeks after randomization for the palliative radiotherapy with the BPI, which consists of seven functional items: general activity, mood, walking ability, normal work, relations with others, sleep, and enjoyment of life. Principal component analysis with varimax rotation was used to determine the clusters between the functional items at baseline and the follow-up. Cronbach's alpha was used to determine the consistency and reliability of each cluster at baseline and follow-up. Results: There were 448 male and 461 female patients, with a median age of 67 years. There were two functional interference clusters at baseline, which accounted for 71% of the total variance. The first cluster (physical interference) included normal work and walking ability, which accounted for 58% of the total variance. The second cluster (psychosocial interference) included relations with others and sleep, which accounted for 13% of the total variance. The Cronbach's alpha statistics were 0.83 and 0.80, respectively. The functional clusters changed at week 12 in responders but persisted through week 12 in nonresponders. Conclusion: Palliative radiotherapy is effective in reducing bone pain. Functional interference component clusters exist in patients treated for bone metastases. These clusters changed over time in this study, possibly attributable to treatment. Further research is needed to examine these effects.

  9. Analysis of precipitation data in Bangladesh through hierarchical clustering and multidimensional scaling

    Science.gov (United States)

    Rahman, Md. Habibur; Matin, M. A.; Salma, Umma

    2017-12-01

    The precipitation patterns of seventeen locations in Bangladesh from 1961 to 2014 were studied using a cluster analysis and metric multidimensional scaling. In doing so, the current research applies four major hierarchical clustering methods to precipitation in conjunction with different dissimilarity measures and metric multidimensional scaling. A variety of clustering algorithms were used to provide multiple clustering dendrograms for a mixture of distance measures. The dendrogram of pre-monsoon rainfall for the seventeen locations formed five clusters. The pre-monsoon precipitation data for the areas of Srimangal and Sylhet were located in two clusters across the combination of five dissimilarity measures and four hierarchical clustering algorithms. The single linkage algorithm with Euclidian and Manhattan distances, the average linkage algorithm with the Minkowski distance, and Ward's linkage algorithm provided similar results with regard to monsoon precipitation. The results of the post-monsoon and winter precipitation data are shown in different types of dendrograms with disparate combinations of sub-clusters. The schematic geometrical representations of the precipitation data using metric multidimensional scaling showed that the post-monsoon rainfall of Cox's Bazar was located far from those of the other locations. The results of a box-and-whisker plot, different clustering techniques, and metric multidimensional scaling indicated that the precipitation behaviour of Srimangal and Sylhet during the pre-monsoon season, Cox's Bazar and Sylhet during the monsoon season, Maijdi Court and Cox's Bazar during the post-monsoon season, and Cox's Bazar and Khulna during the winter differed from those at other locations in Bangladesh.

  10. Comparison of population-averaged and cluster-specific models for the analysis of cluster randomized trials with missing binary outcomes: a simulation study

    Directory of Open Access Journals (Sweden)

    Ma Jinhui

    2013-01-01

    Full Text Available Abstracts Background The objective of this simulation study is to compare the accuracy and efficiency of population-averaged (i.e. generalized estimating equations (GEE and cluster-specific (i.e. random-effects logistic regression (RELR models for analyzing data from cluster randomized trials (CRTs with missing binary responses. Methods In this simulation study, clustered responses were generated from a beta-binomial distribution. The number of clusters per trial arm, the number of subjects per cluster, intra-cluster correlation coefficient, and the percentage of missing data were allowed to vary. Under the assumption of covariate dependent missingness, missing outcomes were handled by complete case analysis, standard multiple imputation (MI and within-cluster MI strategies. Data were analyzed using GEE and RELR. Performance of the methods was assessed using standardized bias, empirical standard error, root mean squared error (RMSE, and coverage probability. Results GEE performs well on all four measures — provided the downward bias of the standard error (when the number of clusters per arm is small is adjusted appropriately — under the following scenarios: complete case analysis for CRTs with a small amount of missing data; standard MI for CRTs with variance inflation factor (VIF 50. RELR performs well only when a small amount of data was missing, and complete case analysis was applied. Conclusion GEE performs well as long as appropriate missing data strategies are adopted based on the design of CRTs and the percentage of missing data. In contrast, RELR does not perform well when either standard or within-cluster MI strategy is applied prior to the analysis.

  11. Sejong Open Cluster Survey (SOS). 0. Target Selection and Data Analysis

    Science.gov (United States)

    Sung, Hwankyung; Lim, Beomdu; Bessell, Michael S.; Kim, Jinyoung S.; Hur, Hyeonoh; Chun, Moo-Young; Park, Byeong-Gon

    2013-06-01

    Star clusters are superb astrophysical laboratories containing cospatial and coeval samples of stars with similar chemical composition. We initiate the Sejong Open cluster Survey (SOS) - a project dedicated to providing homogeneous photometry of a large number of open clusters in the SAAO Johnson-Cousins' UBVI system. To achieve our main goal, we pay much attention to the observation of standard stars in order to reproduce the SAAO standard system. Many of our targets are relatively small sparse clusters that escaped previous observations. As clusters are considered building blocks of the Galactic disk, their physical properties such as the initial mass function, the pattern of mass segregation, etc. give valuable information on the formation and evolution of the Galactic disk. The spatial distribution of young open clusters will be used to revise the local spiral arm structure of the Galaxy. In addition, the homogeneous data can also be used to test stellar evolutionary theory, especially concerning rare massive stars. In this paper we present the target selection criteria, the observational strategy for accurate photometry, and the adopted calibrations for data analysis such as color-color relations, zero-age main sequence relations, Sp - M_V relations, Sp - T_{eff} relations, Sp - color relations, and T_{eff} - BC relations. Finally we provide some data analysis such as the determination of the reddening law, the membership selection criteria, and distance determination.

  12. Approximate fuzzy C-means (AFCM) cluster analysis of medical magnetic resonance image (MRI) data

    International Nuclear Information System (INIS)

    DelaPaz, R.L.; Chang, P.J.; Bernstein, R.; Dave, J.V.

    1987-01-01

    The authors describe the application of an approximate fuzzy C-means (AFCM) clustering algorithm as a data dimension reduction approach to medical magnetic resonance images (MRI). Image data consisted of one T1-weighted, two T2-weighted, and one T2*-weighted (magnetic susceptibility) image for each cranial study and a matrix of 10 images generated from 10 combinations of TE and TR for each body lymphoma study. All images were obtained with a 1.5 Tesla imaging system (GE Signa). Analyses were performed on over 100 MR image sets with a variety of pathologies. The cluster analysis was operated in an unsupervised mode and computational overhead was minimized by utilizing a table look-up approach without adversely affecting accuracy. Image data were first segmented into 2 coarse clusters, each of which was then subdivided into 16 fine clusters. The final tissue classifications were presented as color-coded anatomically-mapped images and as two and three dimensional displays of cluster center data in selected feature space (minimum spanning tree). Fuzzy cluster analysis appears to be a clinically useful dimension reduction technique which results in improved diagnostic specificity of medical magnetic resonance images

  13. Fault detection of flywheel system based on clustering and principal component analysis

    Directory of Open Access Journals (Sweden)

    Wang Rixin

    2015-12-01

    Full Text Available Considering the nonlinear, multifunctional properties of double-flywheel with closed-loop control, a two-step method including clustering and principal component analysis is proposed to detect the two faults in the multifunctional flywheels. At the first step of the proposed algorithm, clustering is taken as feature recognition to check the instructions of “integrated power and attitude control” system, such as attitude control, energy storage or energy discharge. These commands will ask the flywheel system to work in different operation modes. Therefore, the relationship of parameters in different operations can define the cluster structure of training data. Ordering points to identify the clustering structure (OPTICS can automatically identify these clusters by the reachability-plot. K-means algorithm can divide the training data into the corresponding operations according to the reachability-plot. Finally, the last step of proposed model is used to define the relationship of parameters in each operation through the principal component analysis (PCA method. Compared with the PCA model, the proposed approach is capable of identifying the new clusters and learning the new behavior of incoming data. The simulation results show that it can effectively detect the faults in the multifunctional flywheels system.

  14. A Model-Based Cluster Analysis of Maternal Emotion Regulation and Relations to Parenting Behavior.

    Science.gov (United States)

    Shaffer, Anne; Whitehead, Monica; Davis, Molly; Morelen, Diana; Suveg, Cynthia

    2017-10-15

    In a diverse community sample of mothers (N = 108) and their preschool-aged children (M age  = 3.50 years), this study conducted person-oriented analyses of maternal emotion regulation (ER) based on a multimethod assessment incorporating physiological, observational, and self-report indicators. A model-based cluster analysis was applied to five indicators of maternal ER: maternal self-report, observed negative affect in a parent-child interaction, baseline respiratory sinus arrhythmia (RSA), and RSA suppression across two laboratory tasks. Model-based cluster analyses revealed four maternal ER profiles, including a group of mothers with average ER functioning, characterized by socioeconomic advantage and more positive parenting behavior. A dysregulated cluster demonstrated the greatest challenges with parenting and dyadic interactions. Two clusters of intermediate dysregulation were also identified. Implications for assessment and applications to parenting interventions are discussed. © 2017 Family Process Institute.

  15. Grey Wolf Optimizer Based on Powell Local Optimization Method for Clustering Analysis

    Directory of Open Access Journals (Sweden)

    Sen Zhang

    2015-01-01

    Full Text Available One heuristic evolutionary algorithm recently proposed is the grey wolf optimizer (GWO, inspired by the leadership hierarchy and hunting mechanism of grey wolves in nature. This paper presents an extended GWO algorithm based on Powell local optimization method, and we call it PGWO. PGWO algorithm significantly improves the original GWO in solving complex optimization problems. Clustering is a popular data analysis and data mining technique. Hence, the PGWO could be applied in solving clustering problems. In this study, first the PGWO algorithm is tested on seven benchmark functions. Second, the PGWO algorithm is used for data clustering on nine data sets. Compared to other state-of-the-art evolutionary algorithms, the results of benchmark and data clustering demonstrate the superior performance of PGWO algorithm.

  16. A Lexical Analysis of Environmental Sound Categories

    Science.gov (United States)

    Houix, Olivier; Lemaitre, Guillaume; Misdariis, Nicolas; Susini, Patrick; Urdapilleta, Isabel

    2012-01-01

    In this article we report on listener categorization of meaningful environmental sounds. A starting point for this study was the phenomenological taxonomy proposed by Gaver (1993b). In the first experimental study, 15 participants classified 60 environmental sounds and indicated the properties shared by the sounds in each class. In a second…

  17. GLOBULAR CLUSTER ABUNDANCES FROM HIGH-RESOLUTION, INTEGRATED-LIGHT SPECTROSCOPY. II. EXPANDING THE METALLICITY RANGE FOR OLD CLUSTERS AND UPDATED ANALYSIS TECHNIQUES

    Energy Technology Data Exchange (ETDEWEB)

    Colucci, Janet E.; Bernstein, Rebecca A.; McWilliam, Andrew [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101 (United States)

    2017-01-10

    We present abundances of globular clusters (GCs) in the Milky Way and Fornax from integrated-light (IL) spectra. Our goal is to evaluate the consistency of the IL analysis relative to standard abundance analysis for individual stars in those same clusters. This sample includes an updated analysis of seven clusters from our previous publications and results for five new clusters that expand the metallicity range over which our technique has been tested. We find that the [Fe/H] measured from IL spectra agrees to ∼0.1 dex for GCs with metallicities as high as [Fe/H] = −0.3, but the abundances measured for more metal-rich clusters may be underestimated. In addition we systematically evaluate the accuracy of abundance ratios, [X/Fe], for Na i, Mg i, Al i, Si i, Ca i, Ti i, Ti ii, Sc ii, V i, Cr i, Mn i, Co i, Ni i, Cu i, Y ii, Zr i, Ba ii, La ii, Nd ii, and Eu ii. The elements for which the IL analysis gives results that are most similar to analysis of individual stellar spectra are Fe i, Ca i, Si i, Ni i, and Ba ii. The elements that show the greatest differences include Mg i and Zr i. Some elements show good agreement only over a limited range in metallicity. More stellar abundance data in these clusters would enable more complete evaluation of the IL results for other important elements.

  18. Improving estimation of kinetic parameters in dynamic force spectroscopy using cluster analysis

    Science.gov (United States)

    Yen, Chi-Fu; Sivasankar, Sanjeevi

    2018-03-01

    Dynamic Force Spectroscopy (DFS) is a widely used technique to characterize the dissociation kinetics and interaction energy landscape of receptor-ligand complexes with single-molecule resolution. In an Atomic Force Microscope (AFM)-based DFS experiment, receptor-ligand complexes, sandwiched between an AFM tip and substrate, are ruptured at different stress rates by varying the speed at which the AFM-tip and substrate are pulled away from each other. The rupture events are grouped according to their pulling speeds, and the mean force and loading rate of each group are calculated. These data are subsequently fit to established models, and energy landscape parameters such as the intrinsic off-rate (koff) and the width of the potential energy barrier (xβ) are extracted. However, due to large uncertainties in determining mean forces and loading rates of the groups, errors in the estimated koff and xβ can be substantial. Here, we demonstrate that the accuracy of fitted parameters in a DFS experiment can be dramatically improved by sorting rupture events into groups using cluster analysis instead of sorting them according to their pulling speeds. We test different clustering algorithms including Gaussian mixture, logistic regression, and K-means clustering, under conditions that closely mimic DFS experiments. Using Monte Carlo simulations, we benchmark the performance of these clustering algorithms over a wide range of koff and xβ, under different levels of thermal noise, and as a function of both the number of unbinding events and the number of pulling speeds. Our results demonstrate that cluster analysis, particularly K-means clustering, is very effective in improving the accuracy of parameter estimation, particularly when the number of unbinding events are limited and not well separated into distinct groups. Cluster analysis is easy to implement, and our performance benchmarks serve as a guide in choosing an appropriate method for DFS data analysis.

  19. Environmental effects on stellar populations of dwarf galaxies and star clusters

    Science.gov (United States)

    Pasetto, Stefano; Cropper, Mark; fujita, Yutaka; Chiosi, Cesare; Grebel, Eva K.

    2015-08-01

    We investigate the competitive role of the different dissipative phenomena acting on the onset of star formation history of gravitationally bound system in an external environment. Ram pressure, Kelvin-Helmholtz instability, Rayleigh-Taylor, and tidal forces are accounted separately in an analytical framework and compared in their role in influencing the star forming regions. We present an analytical criterion to elucidate the dependence of star formation in a spherical stellar system on its surrounding environment useful in observational applications as well as theoretical interpretations of numerical results.We consider the different signatures of these phenomena in synthetically realized colour-magnitude diagrams (CMDs) of the orbiting system thus investigating the detectability limits of these different effects for future observational projects and their relevance.The theoretical framework developed has direct applications to the cases of dwarf galaxies in galaxy clusters and dwarf galaxies orbiting our Milky Way system, as well as any primordial gas-rich cluster of stars orbiting within its host galaxy.

  20. Environmental effects on star formation in dwarf galaxies and star clusters

    Science.gov (United States)

    Pasetto, Stefano; Cropper, Mark; fujita, Yutaka; Chiosi, Cesare; Grebel, Eva K.

    2015-08-01

    We investigate the competitive role of the different dissipative phenomena acting on the onset of star formation history of gravitationally bound system in an external environment.Ram pressure, Kelvin-Helmholtz instability, Rayleigh-Taylor, and tidal forces are accounted separately in an analytical framework and compared in their role in influencing the star forming regions. The two-fluids instability at the interface between a stellar system and its surrounding hotter and less dense environment is related to the star formation processes through a set of differential equations. We present an analytical criterion to elucidate the dependence of star formation in a spherical stellar system on its surrounding environment useful in theoretical interpretations of numerical results as well as observational applications. We show how spherical coordinates naturally enlighten the interpretation of the two-fluids instability in a geometry that directly applies to astrophysical case. Finally, we consider the different signatures of these phenomena in synthetically realized colour-magnitude diagrams of the orbiting system thus investigating the detectability limits of these different effects for future observational projects and their relevance.The theoretical framework developed has direct applications to the cases of dwarf galaxies in galaxy clusters and dwarf galaxies orbiting our Milky Way system, as well as any primordial gas-rich cluster of stars orbiting within its host galaxy.

  1. Importance of Viral Sequence Length and Number of Variable and Informative Sites in Analysis of HIV Clustering.

    Science.gov (United States)

    Novitsky, Vlad; Moyo, Sikhulile; Lei, Quanhong; DeGruttola, Victor; Essex, M

    2015-05-01

    To improve the methodology of HIV cluster analysis, we addressed how analysis of HIV clustering is associated with parameters that can affect the outcome of viral clustering. The extent of HIV clustering and tree certainty was compared between 401 HIV-1C near full-length genome sequences and subgenomic regions retrieved from the LANL HIV Database. Sliding window analysis was based on 99 windows of 1,000 bp and 45 windows of 2,000 bp. Potential associations between the extent of HIV clustering and sequence length and the number of variable and informative sites were evaluated. The near full-length genome HIV sequences showed the highest extent of HIV clustering and the highest tree certainty. At the bootstrap threshold of 0.80 in maximum likelihood (ML) analysis, 58.9% of near full-length HIV-1C sequences but only 15.5% of partial pol sequences (ViroSeq) were found in clusters. Among HIV-1 structural genes, pol showed the highest extent of clustering (38.9% at a bootstrap threshold of 0.80), although it was significantly lower than in the near full-length genome sequences. The extent of HIV clustering was significantly higher for sliding windows of 2,000 bp than 1,000 bp. We found a strong association between the sequence length and proportion of HIV sequences in clusters, and a moderate association between the number of variable and informative sites and the proportion of HIV sequences in clusters. In HIV cluster analysis, the extent of detectable HIV clustering is directly associated with the length of viral sequences used, as well as the number of variable and informative sites. Near full-length genome sequences could provide the most informative HIV cluster analysis. Selected subgenomic regions with a high extent of HIV clustering and high tree certainty could also be considered as a second choice.

  2. Application of clustering analysis in the prediction of photovoltaic power generation based on neural network

    Science.gov (United States)

    Cheng, K.; Guo, L. M.; Wang, Y. K.; Zafar, M. T.

    2017-11-01

    In order to select effective samples in the large number of data of PV power generation years and improve the accuracy of PV power generation forecasting model, this paper studies the application of clustering analysis in this field and establishes forecasting model based on neural network. Based on three different types of weather on sunny, cloudy and rainy days, this research screens samples of historical data by the clustering analysis method. After screening, it establishes BP neural network prediction models using screened data as training data. Then, compare the six types of photovoltaic power generation prediction models before and after the data screening. Results show that the prediction model combining with clustering analysis and BP neural networks is an effective method to improve the precision of photovoltaic power generation.

  3. Parallelization and scheduling of data intensive particle physics analysis jobs on clusters of PCs

    CERN Document Server

    Ponce, S

    2004-01-01

    Summary form only given. Scheduling policies are proposed for parallelizing data intensive particle physics analysis applications on computer clusters. Particle physics analysis jobs require the analysis of tens of thousands of particle collision events, each event requiring typically 200ms processing time and 600KB of data. Many jobs are launched concurrently by a large number of physicists. At a first view, particle physics jobs seem to be easy to parallelize, since particle collision events can be processed independently one from another. However, since large amounts of data need to be accessed, the real challenge resides in making an efficient use of the underlying computing resources. We propose several job parallelization and scheduling policies aiming at reducing job processing times and at increasing the sustainable load of a cluster server. Since particle collision events are usually reused by several jobs, cache based job splitting strategies considerably increase cluster utilization and reduce job ...

  4. CLUSTER ANALYSIS UNTUK MEMPREDIKSI TALENTA PEMAIN BASKET MENGGUNAKAN JARINGAN SARAF TIRUAN SELF ORGANIZING MAPS (SOM

    Directory of Open Access Journals (Sweden)

    Gregorius Satia Budhi

    2008-01-01

    Full Text Available Basketball World has grown rapidly as the time goes on. This is signed by many competition and game all over the world. With the result there are many basketball players with their different playing characteristics. Demand for a coach or scout to look for or search great players to make a solid team as a coach requirement. With this application, a coach or scout will be helped in analyzing in decision making. This application uses Self Organizing Maps algorithm (SOM for Cluster Analysis. The real NBA player data is used for competitive learning or training process and real player data from Indonesian or Petra Christian University Basketball Players is used for testing process. The NBA Player data is prepared through cleaning process and then is transformed into a form that can be processed by SOM Algorithm. After that, the data is clustered with the SOM algorithm. The result of that clusters is displayed into a form that is easy to view and analyze. This result can be saved into a text file. By using the output / result of this application, that are the clusters of NBA player, the user can see the statistics of each cluster. With these cluster statistics coach or scout can predict the statistic and the position of a testing player who is in the same cluster. This information can give a support for the coach or scout to make a decision. Abstract in Bahasa Indonesia : Dunia bola basket telah berkembang dengan pesat seiring dengan berjalannya waktu. Hal ini ditandai dengan munculnya berbagai macam dan jenis kompetisi dan pertandingan baik dunia maupun dalam negeri. Sehingga makin banyak dilahirkannya pemain berbakat dengan berbagai karakteristik permainan yang berbeda. Tuntutan bagi seorang pelatih/pemandu bakat, untuk dapat melihat secara jeli dalam memenuhi kebutuhan tim untuk membentuk tim yang solid. Dengan dibuatnya aplikasi ini, maka akan membantu proses analisis dan pengambilan keputusan bagi pelatih maupun pemandu bakat Aplikasi ini

  5. Exploratory Cluster Analysis to Identify Patterns of Chronic Kidney Disease in the 500 Cities Project.

    Science.gov (United States)

    Liu, Shelley H; Li, Yan; Liu, Bian

    2018-05-17

    Chronic kidney disease is a leading cause of death in the United States. We used cluster analysis to explore patterns of chronic kidney disease in 500 of the largest US cities. After adjusting for socio-demographic characteristics, we found that unhealthy behaviors, prevention measures, and health outcomes related to chronic kidney disease differ between cities in Utah and those in the rest of the United States. Cluster analysis can be useful for identifying geographic regions that may have important policy implications for preventing chronic kidney disease.

  6. Person mobility in the design and analysis of cluster-randomized cohort prevention trials.

    Science.gov (United States)

    Vuchinich, Sam; Flay, Brian R; Aber, Lawrence; Bickman, Leonard

    2012-06-01

    Person mobility is an inescapable fact of life for most cluster-randomized (e.g., schools, hospitals, clinic, cities, state) cohort prevention trials. Mobility rates are an important substantive consideration in estimating the effects of an intervention. In cluster-randomized trials, mobility rates are often correlated with ethnicity, poverty and other variables associated with disparity. This raises the possibility that estimated intervention effects may generalize to only the least mobile segments of a population and, thus, create a threat to external validity. Such mobility can also create threats to the internal validity of conclusions from randomized trials. Researchers must decide how to deal with persons who leave study clusters during a trial (dropouts), persons and clusters that do not comply with an assigned intervention, and persons who enter clusters during a trial (late entrants), in addition to the persons who remain for the duration of a trial (stayers). Statistical techniques alone cannot solve the key issues of internal and external validity raised by the phenomenon of person mobility. This commentary presents a systematic, Campbellian-type analysis of person mobility in cluster-randomized cohort prevention trials. It describes four approaches for dealing with dropouts, late entrants and stayers with respect to data collection, analysis and generalizability. The questions at issue are: 1) From whom should data be collected at each wave of data collection? 2) Which cases should be included in the analyses of an intervention effect? and 3) To what populations can trial results be generalized? The conclusions lead to recommendations for the design and analysis of future cluster-randomized cohort prevention trials.

  7. Study on Adaptive Parameter Determination of Cluster Analysis in Urban Management Cases

    Science.gov (United States)

    Fu, J. Y.; Jing, C. F.; Du, M. Y.; Fu, Y. L.; Dai, P. P.

    2017-09-01

    The fine management for cities is the important way to realize the smart city. The data mining which uses spatial clustering analysis for urban management cases can be used in the evaluation of urban public facilities deployment, and support the policy decisions, and also provides technical support for the fine management of the city. Aiming at the problem that DBSCAN algorithm which is based on the density-clustering can not realize parameter adaptive determination, this paper proposed the optimizing method of parameter adaptive determination based on the spatial analysis. Firstly, making analysis of the function Ripley's K for the data set to realize adaptive determination of global parameter MinPts, which means setting the maximum aggregation scale as the range of data clustering. Calculating every point object's highest frequency K value in the range of Eps which uses K-D tree and setting it as the value of clustering density to realize the adaptive determination of global parameter MinPts. Then, the R language was used to optimize the above process to accomplish the precise clustering of typical urban management cases. The experimental results based on the typical case of urban management in XiCheng district of Beijing shows that: The new DBSCAN clustering algorithm this paper presents takes full account of the data's spatial and statistical characteristic which has obvious clustering feature, and has a better applicability and high quality. The results of the study are not only helpful for the formulation of urban management policies and the allocation of urban management supervisors in XiCheng District of Beijing, but also to other cities and related fields.

  8. STUDY ON ADAPTIVE PARAMETER DETERMINATION OF CLUSTER ANALYSIS IN URBAN MANAGEMENT CASES

    Directory of Open Access Journals (Sweden)

    J. Y. Fu

    2017-09-01

    Full Text Available The fine management for cities is the important way to realize the smart city. The data mining which uses spatial clustering analysis for urban management cases can be used in the evaluation of urban public facilities deployment, and support the policy decisions, and also provides technical support for the fine management of the city. Aiming at the problem that DBSCAN algorithm which is based on the density-clustering can not realize parameter adaptive determination, this paper proposed the optimizing method of parameter adaptive determination based on the spatial analysis. Firstly, making analysis of the function Ripley's K for the data set to realize adaptive determination of global parameter MinPts, which means setting the maximum aggregation scale as the range of data clustering. Calculating every point object’s highest frequency K value in the range of Eps which uses K-D tree and setting it as the value of clustering density to realize the adaptive determination of global parameter MinPts. Then, the R language was used to optimize the above process to accomplish the precise clustering of typical urban management cases. The experimental results based on the typical case of urban management in XiCheng district of Beijing shows that: The new DBSCAN clustering algorithm this paper presents takes full account of the data’s spatial and statistical characteristic which has obvious clustering feature, and has a better applicability and high quality. The results of the study are not only helpful for the formulation of urban management policies and the allocation of urban management supervisors in XiCheng District of Beijing, but also to other cities and related fields.

  9. Crouch gait patterns defined using k-means cluster analysis are related to underlying clinical pathology.

    Science.gov (United States)

    Rozumalski, Adam; Schwartz, Michael H

    2009-08-01

    In this study a gait classification method was developed and applied to subjects with Cerebral palsy who walk with excessive knee flexion at initial contact. Sagittal plane gait data, simplified using the gait features method, is used as input into a k-means cluster analysis to determine homogeneous groups. Several clinical domains were explored to determine if the clusters are related to underlying pathology. These domains included age, joint range-of-motion, strength, selective motor control, and spasticity. Principal component analysis is used to determine one overall score for each of the multi-joint domains (strength, selective motor control, and spasticity). The current study shows that there are five clusters among children with excessive knee flexion at initial contact. These clusters were labeled, in order of increasing gait pathology: (1) mild crouch with mild equinus, (2) moderate crouch, (3) moderate crouch with anterior pelvic tilt, (4) moderate crouch with equinus, and (5) severe crouch. Further analysis showed that age, range-of-motion, strength, selective motor control, and spasticity were significantly different between the clusters (p<0.001). The general tendency was for the clinical domains to worsen as gait pathology increased. This new classification tool can be used to define homogeneous groups of subjects in crouch gait, which can help guide treatment decisions and outcomes assessment.

  10. Factor-cluster analysis and enrichment study of Mangrove sediments - An example from Mengkabong, Sabah

    International Nuclear Information System (INIS)

    Praveena, S.M.; Ahmed, A.; Radojevic, M.; Mohd Harun Abdullah; Aris, A.Z.

    2007-01-01

    This paper examines the tidal effects in the sediment of Mengkabong mangrove forest, Sabah. Generally, all the studied parameters showed high value at high tide compared to low tide. Factor-cluster analyses were adopted to allow the identification of controlling factors at high and low tides. Factor analysis extracted six controlling factors at high tide and seven controlling factors at low tide. Cluster analysis extracted two district clusters at high and low tides. The study showed that factor-cluster analysis application is a useful tool to single out the controlling factors at high and low tides. this will provide a basis for describing the tidal effects in the mangrove sediment. The salinity and electrical conductivity clusters as well as component loadings at high and low tide explained the tidal process where there is high contribution of seawater to mangrove sediments that controls the sediment chemistry. The geo accumulation index (T geo ) values suggest the mangrove sediments are having background concentrations for Al, Cu, Fe and Zn and unpolluted for Pb. (author)

  11. Applied research of environmental monitoring using instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Young Sam; Moon, Jong Hwa; Chung, Young Ju

    1997-08-01

    This technical report is written as a guide book for applied research of environmental monitoring using Instrumental Neutron Activation Analysis. The contents are as followings; sampling and sample preparation as a airborne particulate matter, analytical methodologies, data evaluation and interpretation, basic statistical methods of data analysis applied in environmental pollution studies. (author). 23 refs., 7 tabs., 9 figs.

  12. Analysis of Corporate Environmental Management: Methodological Aspects

    DEFF Research Database (Denmark)

    Madsen, Henning; Ulhøi, John Parm

    2001-01-01

    in business presents a challenge to management, however, since it implies a fundamental change in some of the ways of operating a company. This paper will briefly discuss how information on the actual extent of environmental management in Danish companies and the way it is applied has been collected based......Human activities cannot avoid influencing conditions in the natural environment one way or the other. This includes as well common activities in the business sector. But during the past few decades, environmental disasters in Seveso and Bhopal, and the Exxon Valdes oil spill in Alaska have...... contributed to an increasing awareness of the effect of business activities on the physical environment. To assist companies reduce, evaluate, monitor and control their environmental impact the concept of corporate environmental and resource management has been developed. Implementation of this concept...

  13. Proteomic properties reveal phyloecological clusters of Archaea.

    Directory of Open Access Journals (Sweden)

    Nela Nikolic

    Full Text Available In this study, we propose a novel way to describe the variety of environmental adaptations of Archaea. We have clustered 57 Archaea by using a non-redundant set of proteomic features, and verified that the clusters correspond to environmental adaptations to the archaeal habitats. The first cluster consists dominantly of hyperthermophiles and hyperthermoacidophilic aerobes. The second cluster joins together halophilic and extremely halophilic Archaea, while the third cluster contains mesophilic (mostly methanogenic Archaea together with thermoacidophiles. The non-redundant subset of proteomic features was found to consist of five features: the ratio of charged residues to uncharged, average protein size, normalized frequency of beta-sheet, normalized frequency of extended structure and number of hydrogen bond donors. We propose this clustering to be termed phyloecological clustering. This approach could give additional insights into relationships among archaeal species that may be hidden by sole phylogenetic analysis.

  14. Selected environmental applications of neutron activation analysis

    International Nuclear Information System (INIS)

    Kucera, J.

    2001-01-01

    NAA is very useful for the determination of trace and minor elements in many environmental applications. While instrumental NAA (INAA) has a number of valid applications in this field, radiochemical NAA (RNAA) prior to, or post irradiation provides some significant advantages. One of the major focus points for environmental applications of NAA is to assess the magnitude of various pollutants. This paper discusses doing this via two methods, namely air monitoring and biological monitoring. (author)

  15. Clustering analysis of water distribution systems: identifying critical components and community impacts.

    Science.gov (United States)

    Diao, K; Farmani, R; Fu, G; Astaraie-Imani, M; Ward, S; Butler, D

    2014-01-01

    Large water distribution systems (WDSs) are networks with both topological and behavioural complexity. Thereby, it is usually difficult to identify the key features of the properties of the system, and subsequently all the critical components within the system for a given purpose of design or control. One way is, however, to more explicitly visualize the network structure and interactions between components by dividing a WDS into a number of clusters (subsystems). Accordingly, this paper introduces a clustering strategy that decomposes WDSs into clusters with stronger internal connections than external connections. The detected cluster layout is very similar to the community structure of the served urban area. As WDSs may expand along with urban development in a community-by-community manner, the correspondingly formed distribution clusters may reveal some crucial configurations of WDSs. For verification, the method is applied to identify all the critical links during firefighting for the vulnerability analysis of a real-world WDS. Moreover, both the most critical pipes and clusters are addressed, given the consequences of pipe failure. Compared with the enumeration method, the method used in this study identifies the same group of the most critical components, and provides similar criticality prioritizations of them in a more computationally efficient time.

  16. Analysis of risk factors for cluster behavior of dental implant failures.

    Science.gov (United States)

    Chrcanovic, Bruno Ramos; Kisch, Jenö; Albrektsson, Tomas; Wennerberg, Ann

    2017-08-01

    Some studies indicated that implant failures are commonly concentrated in few patients. To identify and analyze cluster behavior of dental implant failures among subjects of a retrospective study. This retrospective study included patients receiving at least three implants only. Patients presenting at least three implant failures were classified as presenting a cluster behavior. Univariate and multivariate logistic regression models and generalized estimating equations analysis evaluated the effect of explanatory variables on the cluster behavior. There were 1406 patients with three or more implants (8337 implants, 592 failures). Sixty-seven (4.77%) patients presented cluster behavior, with 56.8% of all implant failures. The intake of antidepressants and bruxism were identified as potential negative factors exerting a statistically significant influence on a cluster behavior at the patient-level. The negative factors at the implant-level were turned implants, short implants, poor bone quality, age of the patient, the intake of medicaments to reduce the acid gastric production, smoking, and bruxism. A cluster pattern among patients with implant failure is highly probable. Factors of interest as predictors for implant failures could be a number of systemic and local factors, although a direct causal relationship cannot be ascertained. © 2017 Wiley Periodicals, Inc.

  17. A fully Bayesian latent variable model for integrative clustering analysis of multi-type omics data.

    Science.gov (United States)

    Mo, Qianxing; Shen, Ronglai; Guo, Cui; Vannucci, Marina; Chan, Keith S; Hilsenbeck, Susan G

    2018-01-01

    Identification of clinically relevant tumor subtypes and omics signatures is an important task in cancer translational research for precision medicine. Large-scale genomic profiling studies such as The Cancer Genome Atlas (TCGA) Research Network have generated vast amounts of genomic, transcriptomic, epigenomic, and proteomic data. While these studies have provided great resources for researchers to discover clinically relevant tumor subtypes and driver molecular alterations, there are few computationally efficient methods and tools for integrative clustering analysis of these multi-type omics data. Therefore, the aim of this article is to develop a fully Bayesian latent variable method (called iClusterBayes) that can jointly model omics data of continuous and discrete data types for identification of tumor subtypes and relevant omics features. Specifically, the proposed method uses a few latent variables to capture the inherent structure of multiple omics data sets to achieve joint dimension reduction. As a result, the tumor samples can be clustered in the latent variable space and relevant omics features that drive the sample clustering are identified through Bayesian variable selection. This method significantly improve on the existing integrative clustering method iClusterPlus in terms of statistical inference and computational speed. By analyzing TCGA and simulated data sets, we demonstrate the excellent performance of the proposed method in revealing clinically meaningful tumor subtypes and driver omics features. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Epidemiological analysis of Salmonella clusters identified by whole genome sequencing, England and Wales 2014.

    Science.gov (United States)

    Waldram, Alison; Dolan, Gayle; Ashton, Philip M; Jenkins, Claire; Dallman, Timothy J

    2018-05-01

    The unprecedented level of bacterial strain discrimination provided by whole genome sequencing (WGS) presents new challenges with respect to the utility and interpretation of the data. Whole genome sequences from 1445 isolates of Salmonella belonging to the most commonly identified serotypes in England and Wales isolated between April and August 2014 were analysed. Single linkage single nucleotide polymorphism thresholds at the 10, 5 and 0 level were explored for evidence of epidemiological links between clustered cases. Analysis of the WGS data organised 566 of the 1445 isolates into 32 clusters of five or more. A statistically significant epidemiological link was identified for 17 clusters. The clusters were associated with foreign travel (n = 8), consumption of Chinese takeaways (n = 4), chicken eaten at home (n = 2), and one each of the following; eating out, contact with another case in the home and contact with reptiles. In the same time frame, one cluster was detected using traditional outbreak detection methods. WGS can be used for the highly specific and highly sensitive detection of biologically related isolates when epidemiological links are obscured. Improvements in the collection of detailed, standardised exposure information would enhance cluster investigations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The Assessment of Hydrogen Energy Systems for Fuel Cell Vehicles Using Principal Componenet Analysis and Cluster Analysis

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Tan, Shiyu; Dong, Lichun

    2012-01-01

    and analysis of the hydrogen systems is meaningful for decision makers to select the best scenario. principal component analysis (PCA) has been used to evaluate the integrated performance of different hydrogen energy systems and select the best scenario, and hierarchical cluster analysis (CA) has been used...... for transportation of hydrogen, hydrogen gas tank for the storage of hydrogen at refueling stations, and gaseous hydrogen as power energy for fuel cell vehicles has been recognized as the best scenario. Also, the clustering results calculated by CA are consistent with those determined by PCA, denoting...

  20. Cluster Analysis on Longitudinal Data of Patients with Adult-Onset Asthma.

    Science.gov (United States)

    Ilmarinen, Pinja; Tuomisto, Leena E; Niemelä, Onni; Tommola, Minna; Haanpää, Jussi; Kankaanranta, Hannu

    Previous cluster analyses on asthma are based on cross-sectional data. To identify phenotypes of adult-onset asthma by using data from baseline (diagnostic) and 12-year follow-up visits. The Seinäjoki Adult Asthma Study is a 12-year follow-up study of patients with new-onset adult asthma. K-means cluster analysis was performed by using variables from baseline and follow-up visits on 171 patients to identify phenotypes. Five clusters were identified. Patients in cluster 1 (n = 38) were predominantly nonatopic males with moderate smoking history at baseline. At follow-up, 40% of these patients had developed persistent obstruction but the number of patients with uncontrolled asthma (5%) and rhinitis (10%) was the lowest. Cluster 2 (n = 19) was characterized by older men with heavy smoking history, poor lung function, and persistent obstruction at baseline. At follow-up, these patients were mostly uncontrolled (84%) despite daily use of inhaled corticosteroid (ICS) with add-on therapy. Cluster 3 (n = 50) consisted mostly of nonsmoking females with good lung function at diagnosis/follow-up and well-controlled/partially controlled asthma at follow-up. Cluster 4 (n = 25) had obese and symptomatic patients at baseline/follow-up. At follow-up, these patients had several comorbidities (40% psychiatric disease) and were treated daily with ICS and add-on therapy. Patients in cluster 5 (n = 39) were mostly atopic and had the earliest onset of asthma, the highest blood eosinophils, and FEV 1 reversibility at diagnosis. At follow-up, these patients used the lowest ICS dose but 56% were well controlled. Results can be used to predict outcomes of patients with adult-onset asthma and to aid in development of personalized therapy (NCT02733016 at ClinicalTrials.gov). Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Field of Study Choice: Using Conjoint Analysis and Clustering

    Science.gov (United States)

    Shtudiner, Ze'ev; Zwilling, Moti; Kantor, Jeffrey

    2017-01-01

    Purpose: The purpose of this paper is to measure student's preferences regarding various attributes that affect their decision process while choosing a higher education area of study. Design/ Methodology/Approach: The paper exhibits two different models which shed light on the perceived value of each examined area of study: conjoint analysis and…

  2. Analysis of brood sex ratios: implications of offspring clustering

    Czech Academy of Sciences Publication Activity Database

    Krackow, S.; Tkadlec, Emil

    Roc. 50, č. 4 (2001), s. 293-301 ISSN 0340-5443 R&D Projects: GA ČR GA524/01/1316 Institutional research plan: CEZ:AV0Z6093917 Keywords : generalized linear mixed models * random coefficients * multilevel analysis Subject RIV: EG - Zoology Impact factor: 2.353, year: 2001

  3. Vector Nonlinear Time-Series Analysis of Gamma-Ray Burst Datasets on Heterogeneous Clusters

    Directory of Open Access Journals (Sweden)

    Ioana Banicescu

    2005-01-01

    Full Text Available The simultaneous analysis of a number of related datasets using a single statistical model is an important problem in statistical computing. A parameterized statistical model is to be fitted on multiple datasets and tested for goodness of fit within a fixed analytical framework. Definitive conclusions are hopefully achieved by analyzing the datasets together. This paper proposes a strategy for the efficient execution of this type of analysis on heterogeneous clusters. Based on partitioning processors into groups for efficient communications and a dynamic loop scheduling approach for load balancing, the strategy addresses the variability of the computational loads of the datasets, as well as the unpredictable irregularities of the cluster environment. Results from preliminary tests of using this strategy to fit gamma-ray burst time profiles with vector functional coefficient autoregressive models on 64 processors of a general purpose Linux cluster demonstrate the effectiveness of the strategy.

  4. Mental State Talk Structure in Children’s Narratives: A Cluster Analysis

    Directory of Open Access Journals (Sweden)

    Giuliana Pinto

    2017-01-01

    Full Text Available This study analysed children’s Theory of Mind (ToM as assessed by mental state talk in oral narratives. We hypothesized that the children’s mental state talk in narratives has an underlying structure, with specific terms organized in clusters. Ninety-eight children attending the last year of kindergarten were asked to tell a story twice, at the beginning and at the end of the school year. Mental state talk was analysed by identifying terms and expressions referring to perceptual, physiological, emotional, willingness, cognitive, moral, and sociorelational states. The cluster analysis showed that children’s mental state talk is organized in two main clusters: perceptual states and affective states. Results from the study confirm the feasibility of narratives as an outlet to inquire mental state talk and offer a more fine-grained analysis of mental state talk structure.

  5. Evaluation of Portland cement from X-ray diffraction associated with cluster analysis

    International Nuclear Information System (INIS)

    Gobbo, Luciano de Andrade; Montanheiro, Tarcisio Jose; Montanheiro, Filipe; Sant'Agostino, Lilia Mascarenhas

    2013-01-01

    The Brazilian cement industry produced 64 million tons of cement in 2012, with noteworthy contribution of CP-II (slag), CP-III (blast furnace) and CP-IV (pozzolanic) cements. The industrial pole comprises about 80 factories that utilize raw materials of different origins and chemical compositions that require enhanced analytical technologies to optimize production in order to gain space in the growing consumer market in Brazil. This paper assesses the sensitivity of mineralogical analysis by X-ray diffraction associated with cluster analysis to distinguish different kinds of cements with different additions. This technique can be applied, for example, in the prospection of different types of limestone (calcitic, dolomitic and siliceous) as well as in the qualification of different clinkers. The cluster analysis does not require any specific knowledge of the mineralogical composition of the diffractograms to be clustered; rather, it is based on their similarity. The materials tested for addition have different origins: fly ashes from different power stations from South Brazil and slag from different steel plants in the Southeast. Cement with different additions of limestone and white Portland cement were also used. The Rietveld method of qualitative and quantitative analysis was used for measuring the results generated by the cluster analysis technique. (author)

  6. Identifying influential individuals on intensive care units: using cluster analysis to explore culture.

    Science.gov (United States)

    Fong, Allan; Clark, Lindsey; Cheng, Tianyi; Franklin, Ella; Fernandez, Nicole; Ratwani, Raj; Parker, Sarah Henrickson

    2017-07-01

    The objective of this paper is to identify attribute patterns of influential individuals in intensive care units using unsupervised cluster analysis. Despite the acknowledgement that culture of an organisation is critical to improving patient safety, specific methods to shift culture have not been explicitly identified. A social network analysis survey was conducted and an unsupervised cluster analysis was used. A total of 100 surveys were gathered. Unsupervised cluster analysis was used to group individuals with similar dimensions highlighting three general genres of influencers: well-rounded, knowledge and relational. Culture is created locally by individual influencers. Cluster analysis is an effective way to identify common characteristics among members of an intensive care unit team that are noted as highly influential by their peers. To change culture, identifying and then integrating the influencers in intervention development and dissemination may create more sustainable and effective culture change. Additional studies are ongoing to test the effectiveness of utilising these influencers to disseminate patient safety interventions. This study offers an approach that can be helpful in both identifying and understanding influential team members and may be an important aspect of developing methods to change organisational culture. © 2017 John Wiley & Sons Ltd.

  7. Extending the input–output energy balance methodology in agriculture through cluster analysis

    International Nuclear Information System (INIS)

    Bojacá, Carlos Ricardo; Casilimas, Héctor Albeiro; Gil, Rodrigo; Schrevens, Eddie

    2012-01-01

    The input–output balance methodology has been applied to characterize the energy balance of agricultural systems. This study proposes to extend this methodology with the inclusion of multivariate analysis to reveal particular patterns in the energy use of a system. The objective was to demonstrate the usefulness of multivariate exploratory techniques to analyze the variability found in a farming system and, establish efficiency categories that can be used to improve the energy balance of the system. To this purpose an input–output analysis was applied to the major greenhouse tomato production area in Colombia. Individual energy profiles were built and the k-means clustering method was applied to the production factors. On average, the production system in the study zone consumes 141.8 GJ ha −1 to produce 96.4 GJ ha −1 , resulting in an energy efficiency of 0.68. With the k-means clustering analysis, three clusters of farmers were identified with energy efficiencies of 0.54, 0.67 and 0.78. The most energy efficient cluster grouped 56.3% of the farmers. It is possible to optimize the production system by improving the management practices of those with the lowest energy use efficiencies. Multivariate analysis techniques demonstrated to be a complementary pathway to improve the energy efficiency of a system. -- Highlights: ► An input–output energy balance was estimated for greenhouse tomatoes in Colombia. ► We used the k-means clustering method to classify growers based on their energy use. ► Three clusters of growers were found with energy efficiencies of 0.54, 0.67 and 0.78. ► Overall system optimization is possible by improving the energy use of the less efficient.

  8. Accommodating error analysis in comparison and clustering of molecular fingerprints.

    OpenAIRE

    Salamon, H.; Segal, M. R.; Ponce de Leon, A.; Small, P. M.

    1998-01-01

    Molecular epidemiologic studies of infectious diseases rely on pathogen genotype comparisons, which usually yield patterns comprising sets of DNA fragments (DNA fingerprints). We use a highly developed genotyping system, IS6110-based restriction fragment length polymorphism analysis of Mycobacterium tuberculosis, to develop a computational method that automates comparison of large numbers of fingerprints. Because error in fragment length measurements is proportional to fragment length and is ...

  9. Performance Analysis of a Cluster-Based MAC Protocol for Wireless Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Jesús Alonso-Zárate

    2010-01-01

    Full Text Available An analytical model to evaluate the non-saturated performance of the Distributed Queuing Medium Access Control Protocol for Ad Hoc Networks (DQMANs in single-hop networks is presented in this paper. DQMAN is comprised of a spontaneous, temporary, and dynamic clustering mechanism integrated with a near-optimum distributed queuing Medium Access Control (MAC protocol. Clustering is executed in a distributed manner using a mechanism inspired by the Distributed Coordination Function (DCF of the IEEE 802.11. Once a station seizes the channel, it becomes the temporary clusterhead of a spontaneous cluster and it coordinates the peer-to-peer communications between the clustermembers. Within each cluster, a near-optimum distributed queuing MAC protocol is executed. The theoretical performance analysis of DQMAN in single-hop networks under non-saturation conditions is presented in this paper. The approach integrates the analysis of the clustering mechanism into the MAC layer model. Up to the knowledge of the authors, this approach is novel in the literature. In addition, the performance of an ad hoc network using DQMAN is compared to that obtained when using the DCF of the IEEE 802.11, as a benchmark reference.

  10. Profitability and efficiency of Italian utilities: cluster analysis of financial statement ratios

    International Nuclear Information System (INIS)

    Linares, E.

    2008-01-01

    The last ten years have witnessed conspicuous changes in European and Italian regulation of public utility services and in the strategies of the major players in these fields. In response to these changes Italian utilities have made a variety of choices regarding size, presence in more or less capital-intensive stages of different value chains, and diversification. These choices have been implemented both through internal growth and by means of mergers and acquisitions. In this context it is interesting to try to establish whether there is a nexus between these choices and the performance of Italian utilities in terms of profitability and efficiency. Therefore statistical multivariate analysis techniques (cluster analysis and factor analysis) have been applied to several ratios obtained from the 2005 financial statement of 34 utilities. First, a hierarchical cluster analysis method has been applied to financial statement data in order to identify homogeneous groups based on several indicators of the incidence of costs (external costs, personnel costs, depreciation and amortization), profitability (return on sales, return on assets, return on equity) and efficiency (in the utilization of personnel, of total assets, of property, plant and equipment). Five clusters have been found. Then the clusters have been characterized in terms of the aforementioned indicators, the presence in different stages of the energy value chains (electricity and gas) and other descriptive variables (such as turnover, number of employees, assets, percentage of property, plant and equipment on total assets, sales revenues from electricity, gas, water supply and sanitation, waste collection and treatment and other services). In a second round cluster analysis has been preceded by factor analysis, in order to find a smaller set of variables. This procedure has revealed three not directly observable factors that can be interpreted as follows: i) efficiency in ordinary and financial management

  11. Environmental Sustainability Analysis of Biodiesel Production

    DEFF Research Database (Denmark)

    Herrmann, Ivan Tengbjerg; Hauschild, Michael Michael Zwicky; Birkved, Morten

    Due to their generally positive carbon dioxide balance, biofuels are seen as one of the energy carriers in a more sustainable future transportation energy system, but how good is their environmental sustainability, and where lie the main potentials for improvement of their sustainability? Questions...... like these require a life cycle perspective on the biofuel - from the cradle (production of the agricultural feedstock) to the grave (use as fuel). An environmental life cycle assessment is performed on biodiesel to compare different production schemes including chemical and enzymatic esterification...... with the use of methanol or ethanol. The life cycle assessment includes all processes needed for the production, distribution and use of the biodiesel (the product system), and it includes all relevant environmental impacts from the product system, ranging from global impacts like climate change and loss...

  12. Research characteristics and status on Environmental Psychology: a bibliometric and knowledge mapping analysis

    Science.gov (United States)

    Xu, Jun Hua; Zhu, Lei Ye; Wang, Hai Bin

    2018-06-01

    Environmental psychology is an interdisciplinary field that focuses on the interplay between individuals and their built and natural environments. Great progress has been made in the areas of environmental psychology by researchers form many countries. However, a thorough quantitative analysis to the emergent research trends and topics has not been found. To reveal the research characteristics and status on Environmental Psychology, 853 related papers from Web of Science core collection were analysed by CiteSpace II. The results show that: (1) the domain of Environmental Psychology was started in 1960s and showed a low growth over the past half century, which reaches a historical peak in 2017. Gifford, USA and the Journal of Environmental Psychology top the list of contributing authors, country and publication respectively. (2) "Environmental Psychology" is the most frequently keywords and has the longest span of the bursts. "ambient scent", "recycling", "children as outsiders" and "ambient temperature" are the top four largest clusters, which are the popular research topics in the domain of environmental psychology.

  13. Evaluation of hierarchical agglomerative cluster analysis methods for discrimination of primary biological aerosol

    Directory of Open Access Journals (Sweden)

    I. Crawford

    2015-11-01

    Full Text Available In this paper we present improved methods for discriminating and quantifying primary biological aerosol particles (PBAPs by applying hierarchical agglomerative cluster analysis to multi-parameter ultraviolet-light-induced fluorescence (UV-LIF spectrometer data. The methods employed in this study can be applied to data sets in excess of 1 × 106 points on a desktop computer, allowing for each fluorescent particle in a data set to be explicitly clustered. This reduces the potential for misattribution found in subsampling and comparative attribution methods used in previous approaches, improving our capacity to discriminate and quantify PBAP meta-classes. We evaluate the performance of several hierarchical agglomerative cluster analysis linkages and data normalisation methods using laboratory samples of known particle types and an ambient data set. Fluorescent and non-fluorescent polystyrene latex spheres were sampled with a Wideband Integrated Bioaerosol Spectrometer (WIBS-4 where the optical size, asymmetry factor and fluorescent measurements were used as inputs to the analysis package. It was found that the Ward linkage with z-score or range normalisation performed best, correctly attributing 98 and 98.1 % of the data points respectively. The best-performing methods were applied to the BEACHON-RoMBAS (Bio–hydro–atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen–Rocky Mountain Biogenic Aerosol Study ambient data set, where it was found that the z-score and range normalisation methods yield similar results, with each method producing clusters representative of fungal spores and bacterial aerosol, consistent with previous results. The z-score result was compared to clusters generated with previous approaches (WIBS AnalysiS Program, WASP where we observe that the subsampling and comparative attribution method employed by WASP results in the overestimation of the fungal spore concentration by a factor of 1.5 and the

  14. Study on distinguishing of Chinese ancient porcelains by neutron activation and fuzzy cluster analysis

    International Nuclear Information System (INIS)

    Wang An

    1992-01-01

    By means of the method of neutron activation, the contents of trace elements in some samples of Chinese ancient porcelains from different places of production were determined. The data were analysed by fuzzy cluster analysis. On the basis of the above mentioned works, a method with regard to the distinguishing and determining of Chinese ancient porcelain was suggested

  15. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters

    NARCIS (Netherlands)

    Cimermancic, P.; Medema, Marnix; Claesen, J.; Kurika, K.; Wieland Brown, L.C.; Mavrommatis, K.; Pati, A.; Godfrey, P.A.; Koehrsen, M.; Clardy, J.; Birren, B. W.; Takano, Eriko; Sali, A.; Linington, R.G.; Fischbach, M.A.

    2014-01-01

    Although biosynthetic gene clusters (BGCs) have been discovered for hundreds of bacterial metabolites, our knowledge of their diversity remains limited. Here, we used a novel algorithm to systematically identify BGCs in the extensive extant microbial sequencing data. Network analysis of the

  16. Cardiovascular reactivity patterns and pathways to hypertension: a multivariate cluster analysis

    NARCIS (Netherlands)

    Brindle, R. C.; Ginty, A. T.; Jones, A.; Phillips, A. C.; Roseboom, T. J.; Carroll, D.; Painter, R. C.; de Rooij, S. R.

    2016-01-01

    Substantial evidence links exaggerated mental stress induced blood pressure reactivity to future hypertension, but the results for heart rate reactivity are less clear. For this reason multivariate cluster analysis was carried out to examine the relationship between heart rate and blood pressure

  17. Cluster Analysis of the Newcastle Electronic Corpus of Tyneside English: A Comparison of Methods

    NARCIS (Netherlands)

    Moisl, Hermann; Jones, Valerie M.

    2005-01-01

    This article examines the feasibility of an empirical approach to sociolinguistic analysis of the Newcastle Electronic Corpus of Tyneside English using exploratory multivariate methods. It addresses a known problem with one class of such methods, hierarchical cluster analysis—that different

  18. Cluster Analysis of the Newcastle Electronic Corpus of Tyneside English: In A Comparison of Methods

    NARCIS (Netherlands)

    Moisl, Hermann; Jones, Valerie M.

    2005-01-01

    This article examines the feasibility of an empirical approach to sociolinguistic analysis of the Newcastle Electronic Corpus of Tyneside English using exploratory multivariate methods. It addresses a known problem with one class of such methods, hierarchical cluster analysis—that different

  19. 2 x 2 Achievement Goals and Achievement Emotions: A Cluster Analysis of Students' Motivation

    Science.gov (United States)

    Jang, Leong Yeok; Liu, Woon Chia

    2012-01-01

    This study sought to better understand the adoption of multiple achievement goals at an intra-individual level, and its links to emotional well-being, learning, and academic achievement. Participants were 480 Secondary Two students (aged between 13 and 14 years) from two coeducational government schools. Hierarchical cluster analysis revealed the…

  20. A simple sample size formula for analysis of covariance in cluster randomized trials.

    NARCIS (Netherlands)

    Teerenstra, S.; Eldridge, S.; Graff, M.J.; Hoop, E. de; Borm, G.F.

    2012-01-01

    For cluster randomized trials with a continuous outcome, the sample size is often calculated as if an analysis of the outcomes at the end of the treatment period (follow-up scores) would be performed. However, often a baseline measurement of the outcome is available or feasible to obtain. An

  1. Student Motivation and Learning in Mathematics and Science: A Cluster Analysis

    Science.gov (United States)

    Ng, Betsy L. L.; Liu, W. C.; Wang, John C. K.

    2016-01-01

    The present study focused on an in-depth understanding of student motivation and self-regulated learning in mathematics and science through cluster analysis. It examined the different learning profiles of motivational beliefs and self-regulatory strategies in relation to perceived teacher autonomy support, basic psychological needs (i.e. autonomy,…

  2. The high performance cluster computing system for BES offline data analysis

    International Nuclear Information System (INIS)

    Sun Yongzhao; Xu Dong; Zhang Shaoqiang; Yang Ting

    2004-01-01

    A high performance cluster computing system (EPCfarm) is introduced, which used for BES offline data analysis. The setup and the characteristics of the hardware and software of EPCfarm are described. The PBS, a queue management package, and the performance of EPCfarm is presented also. (authors)

  3. Paternal age related schizophrenia (PARS): Latent subgroups detected by k-means clustering analysis.

    Science.gov (United States)

    Lee, Hyejoo; Malaspina, Dolores; Ahn, Hongshik; Perrin, Mary; Opler, Mark G; Kleinhaus, Karine; Harlap, Susan; Goetz, Raymond; Antonius, Daniel

    2011-05-01

    Paternal age related schizophrenia (PARS) has been proposed as a subgroup of schizophrenia with distinct etiology, pathophysiology and symptoms. This study uses a k-means clustering analysis approach to generate hypotheses about differences between PARS and other cases of schizophrenia. We studied PARS (operationally defined as not having any family history of schizophrenia among first and second-degree relatives and fathers' age at birth ≥ 35 years) in a series of schizophrenia cases recruited from a research unit. Data were available on demographic variables, symptoms (Positive and Negative Syndrome Scale; PANSS), cognitive tests (Wechsler Adult Intelligence Scale-Revised; WAIS-R) and olfaction (University of Pennsylvania Smell Identification Test; UPSIT). We conducted a series of k-means clustering analyses to identify clusters of cases containing high concentrations of PARS. Two analyses generated clusters with high concentrations of PARS cases. The first analysis (N=136; PARS=34) revealed a cluster containing 83% PARS cases, in which the patients showed a significant discrepancy between verbal and performance intelligence. The mean paternal and maternal ages were 41 and 33, respectively. The second analysis (N=123; PARS=30) revealed a cluster containing 71% PARS cases, of which 93% were females; the mean age of onset of psychosis, at 17.2, was significantly early. These results strengthen the evidence that PARS cases differ from other patients with schizophrenia. Hypothesis-generating findings suggest that features of PARS may include a discrepancy between verbal and performance intelligence, and in females, an early age of onset. These findings provide a rationale for separating these phenotypes from others in future clinical, genetic and pathophysiologic studies of schizophrenia and in considering responses to treatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Environmental impact statement analysis: dose methodology

    International Nuclear Information System (INIS)

    Mueller, M.A.; Strenge, D.L.; Napier, B.A.

    1981-01-01

    Standardized sections and methodologies are being developed for use in environmental impact statements (EIS) for activities to be conducted on the Hanford Reservation. Five areas for standardization have been identified: routine operations dose methodologies, accident dose methodology, Hanford Site description, health effects methodology, and socioeconomic environment for Hanford waste management activities

  5. PIXE - Analysis for environmental and biological samples

    International Nuclear Information System (INIS)

    Baptista, G.B.

    1980-04-01

    The usefulness and accuracy of PIXE as an analytical tool in the study of trace elements in environmental samples of the Brazilian Cerrado are discussed. The report lists actual and forthcoming publications resulting from the study. The mechanism of exchange of elements in solution in water to aerosols has been investigated. For details of the procedure the reader is referred to an earlier report

  6. Approaching messy problems: strategies for environmental analysis

    Science.gov (United States)

    L. M. Reid; R. R. Ziemer; T. E. Lisle

    1996-01-01

    Environmental problems are never neatly defined. Instead, each is a tangle of interacting processes whose manifestation and interpretation are warped by the vagaries of time, weather, expectation, and economics. Each problem involves livelihoods, values, and numerous specialized disciplines. Nevertheless, federal agencies in the Pacific Northwest have been given the...

  7. A cluster phase analysis for collective behavior in team sports.

    Science.gov (United States)

    López-Felip, Maurici A; Davis, Tehran J; Frank, Till D; Dixon, James A

    2018-06-01

    Collective behavior can be defined as the ability of humans to coordinate with others through a complex environment. Sports offer exquisite examples of this dynamic interplay, requiring decision making and other perceptual-cognitive skills to adjust individual decisions to the team self-organization and vice versa. Considering players of a team as periodic phase oscillators, synchrony analyses can be used to model the coordination of a team. Nonetheless, a main limitation of current models is that collective behavior is context independent. In other words, players on a team can be highly synchronized without this corresponding to a meaningful coordination dynamics relevant to the context of the game. Considering these issues, the aim of this study was to develop a method of analysis sensitive to the context for evidence-based measures of collective behavior. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Frailty phenotypes in the elderly based on cluster analysis

    DEFF Research Database (Denmark)

    Dato, Serena; Montesanto, Alberto; Lagani, Vincenzo

    2012-01-01

    groups of subjects homogeneous for their frailty status and characterized by different survival patterns. A subsequent survival analysis availing of Accelerated Failure Time models allowed us to formulate an operative index able to correlate classification variables with survival probability. From......Frailty is a physiological state characterized by the deregulation of multiple physiologic systems of an aging organism determining the loss of homeostatic capacity, which exposes the elderly to disability, diseases, and finally death. An operative definition of frailty, useful...... for the classification of the individual quality of aging, is needed. On the other hand, the documented heterogeneity in the quality of aging among different geographic areas suggests the necessity for a frailty classification approach providing population-specific results. Moreover, the contribution of the individual...

  9. Performance assessment of air quality monitoring networks using principal component analysis and cluster analysis

    International Nuclear Information System (INIS)

    Lu, Wei-Zhen; He, Hong-Di; Dong, Li-yun

    2011-01-01

    This study aims to evaluate the performance of two statistical methods, principal component analysis and cluster analysis, for the management of air quality monitoring network of Hong Kong and the reduction of associated expenses. The specific objectives include: (i) to identify city areas with similar air pollution behavior; and (ii) to locate emission sources. The statistical methods were applied to the mass concentrations of sulphur dioxide (SO 2 ), respirable suspended particulates (RSP) and nitrogen dioxide (NO 2 ), collected in monitoring network of Hong Kong from January 2001 to December 2007. The results demonstrate that, for each pollutant, the monitoring stations are grouped into different classes based on their air pollution behaviors. The monitoring stations located in nearby area are characterized by the same specific air pollution characteristics and suggested with an effective management of air quality monitoring system. The redundant equipments should be transferred to other monitoring stations for allowing further enlargement of the monitored area. Additionally, the existence of different air pollution behaviors in the monitoring network is explained by the variability of wind directions across the region. The results imply that the air quality problem in Hong Kong is not only a local problem mainly from street-level pollutions, but also a region problem from the Pearl River Delta region. (author)

  10. Assessment of Comprehensive Environmental Pollution Index of Kurichi Industrial Cluster, Coimbatore District, Tamil Nadu, India - a Case Study

    Directory of Open Access Journals (Sweden)

    Ramasamy Rajamanickam

    2018-01-01

    Full Text Available Comprehensive Environmental Pollution Index (CEPI is a rational number to characterize the quality of the environment at a given location following the algorithm of source, pathway, and receptor. As CEPI increases, there will be adverse effectson the receiving environment. Central Pollution Control Board (CPCB has brought out revised criteria for evaluation of CEPI by replacing the criteria issued in 2010. The revised criteria are issued to overcome the subjectivity factors of health impact studies on humans, floraand fauna. Kurichi Industrial Cluster in Coimbatore District is an engineering industrial estate housing foundries, forging units, metal finishingand fabrication units. In January 2010, the Ministry of Environment and Forests, Government of India declared Kurichi as critically polluted area and imposed moratorium on new projects and for expansion of the existing units. This declaration was made based on the CEPI score which was calculated as more than 70. Thereafter, the industries and the local stake holders have implemented various pollution control measures and hence the CEPI score has come down less than 70 and so the moratorium was lifted in October 2010. In this paper, the CEPI score is calculated based on the revised criteria and using the environmental quality monitoring data collected in April 2017. It is found that the CEPI score is below 70 which imply that the industrial units are operating and maintaining the pollution control measures consistently. However, taking a policy decision based on the CEPI score, one should be cautious on the adequacy of data and the parameters selected.

  11. Cluster analysis of residential heat load profiles and the role of technical and household characteristics

    DEFF Research Database (Denmark)

    Carmo, Carolina; Christensen, Toke Haunstrup

    2016-01-01

    of the temporality of the energy demand is needed. This paper contributes to this by focusing on the daily load profiles of energy demand for heating of Danish dwellings with heat pumps. Based on hourly recordings from 139 dwellings and employing cluster and regression analysis, the paper explores patterns...... (typologies) in daily heating load profiles and how these relate to socio-economic and technical characteristics of the included households. The study shows that the load profiles vary according to the external load conditions. Two main clusters were identified for both weekdays and weekends and across load...

  12. Service Quality in Tourist Destination Pipa/Brazil: A Study Based on a Cluster Analysis

    Directory of Open Access Journals (Sweden)

    Domingos Fernandes Campos

    2015-08-01

    Full Text Available This study aims to evaluate the Attractiveness and Quality factors at the tourism services provided by Pipa/RN destination. Based on 28 services attributes, the expectations of 760 tourists have been collected. The service has been evaluated by Gap Model, verifying the (disconfirmation of expectations and perceived service. Two questions have been used to evaluate: (a Have the expectations been varied with the social and demographic factors? (b Have the clusters identified by cluster analysis been guided by social and demographic factors? The groups identified were marked by different priorities in relation to the attributes and by different levels of demanding on expected service.

  13. Environmental analysis of higher brominated diphenyl ethers and decabromodiphenyl ethane.

    Science.gov (United States)

    Kierkegaard, Amelie; Sellström, Ulla; McLachlan, Michael S

    2009-01-16

    Methods for environmental analysis of higher brominated diphenyl ethers (PBDEs), in particular decabromodiphenyl ether (BDE209), and the recently discovered environmental contaminant decabromodiphenyl ethane (deBDethane) are reviewed. The extensive literature on analysis of BDE209 has identified several critical issues, including contamination of the sample, degradation of the analyte during sample preparation and GC analysis, and the selection of appropriate detection methods and surrogate standards. The limited experience with the analysis of deBDethane suggests that there are many commonalities with BDE209. The experience garnered from the analysis of BDE209 over the last 15 years will greatly facilitate progress in the analysis of deBDethane.

  14. Environmental analysis applied to schools. Methodologies for data acquisition

    International Nuclear Information System (INIS)

    Andriola, L.; Ceccacci, R.

    2001-01-01

    The environment analysis is the basis of environmental management for organizations and it is considered as the first step in EMAS. It allows to identify, deal with the issues and have a clear knowledge on environmental performances of organizations. Schools can be included in the organizations. Nevertheless, the complexity of environmental issues and applicable regulations makes very difficult for a school, that wants to implement an environmental management system (EMAS, ISO 14001, etc.), to face this first step. So, it has been defined an instrument, that is easy but complete and coherent with reference standard, to let schools choose their process for elaborating the initial environmental revue. This instrument consists, essentially, in cards that, if completed, facilitate the drafting of the environmental analysis report [it

  15. Residential patterns in older homeless adults: Results of a cluster analysis.

    Science.gov (United States)

    Lee, Christopher Thomas; Guzman, David; Ponath, Claudia; Tieu, Lina; Riley, Elise; Kushel, Margot

    2016-03-01

    Adults aged 50 and older make up half of individuals experiencing homelessness and have high rates of morbidity and mortality. They may have different life trajectories and reside in different environments than do younger homeless adults. Although the environmental risks associated with homelessness are substantial, the environments in which older homeless individuals live have not been well characterized. We classified living environments and identified associated factors in a sample of older homeless adults. From July 2013 to June 2014, we recruited a community-based sample of 350 homeless men and women aged fifty and older in Oakland, California. We administered structured interviews including assessments of health, history of homelessness, social support, and life course. Participants used a recall procedure to describe where they stayed in the prior six months. We performed cluster analysis to classify residential venues and used multinomial logistic regression to identify individual factors prior to the onset of homelessness as well as the duration of unstable housing associated with living in them. We generated four residential groups describing those who were unsheltered (n = 162), cohabited unstably with friends and family (n = 57), resided in multiple institutional settings (shelters, jails, transitional housing) (n = 88), or lived primarily in rental housing (recently homeless) (n = 43). Compared to those who were unsheltered, having social support when last stably housed was significantly associated with cohabiting and institution use. Cohabiters and renters were significantly more likely to be women and have experienced a shorter duration of homelessness. Cohabiters were significantly more likely than unsheltered participants to have experienced abuse prior to losing stable housing. Pre-homeless social support appears to protect against street homelessness while low levels of social support may increase the risk for becoming homeless immediately after

  16. Hyperspectral microscopy and cluster analysis for oral cancer diagnosis

    Science.gov (United States)

    Jarman, Anneliese; Manickavasagam, Arunthathi; Hosny, Neveen; Festy, Frederic

    2017-02-01

    Oral cancer incidences have been increasing in recent years and late detection often leads to poor prognosis. Raman spectroscopy has been identified has a valuable diagnostic tool for cancer but its time consuming nature has prevented its clinical use. For Raman to become a realistic aid to histopathology, a rapid pre-screening technique is required to find small regions of interest on tissue sections [1]. The aim of this work is to investigate the feasibility of hyperspectral imaging in the visible spectral range as a fast imaging technique before Raman is performed. We have built a hyperspectral microscope which captures 300 focused and intensity corrected images with wavelength ranging from 450- 750 nm in around 30 minutes with sub-micron spatial resolution and around 10 nm spectral resolution. Hyperstacks of known absorbing samples, including fluorescent dyes and dried blood droplets, show excellent results with spectrally accurate transmission spectra and concentration-dependent intensity variations. We successfully showed the presence of different components from a non-absorbent saliva droplet sample. Data analysis is the greatest hurdle to the interpretation of more complex data such as unstained tissue sections.

  17. Analysis of Health Behavior Theories for Clustering of Health Behaviors.

    Science.gov (United States)

    Choi, Seung Hee; Duffy, Sonia A

    The objective of this article was to review the utility of established behavior theories, including the Health Belief Model, Theory of Reasoned Action, Theory of Planned Behavior, Transtheoretical Model, and Health Promotion Model, for addressing multiple health behaviors among people who smoke. It is critical to design future interventions for multiple health behavior changes tailored to individuals who currently smoke, yet it has not been addressed. Five health behavior theories/models were analyzed and critically evaluated. A review of the literature included a search of PubMed and Google Scholar from 2010 to 2016. Two hundred sixty-seven articles (252 studies from the initial search and 15 studies from the references of initially identified studies) were included in the analysis. Most of the health behavior theories/models emphasize psychological and cognitive constructs that can be applied only to one specific behavior at a time, thus making them not suitable to address multiple health behaviors. However, the Health Promotion Model incorporates "related behavior factors" that can explain multiple health behaviors among persons who smoke. Future multiple behavior interventions guided by the Health Promotion Model are necessary to show the utility and applicability of the model to address multiple health behaviors.

  18. Cluster analysis of behavioural weight management strategies and associations with weight change in young women: a longitudinal analysis.

    Science.gov (United States)

    Madigan, C D; Daley, A J; Kabir, E; Aveyard, P; Brown, W

    2015-11-01

    Maintaining a healthy weight is important for the prevention of many chronic diseases. Little is known about the strategies used by young women to manage their weight, or the effectiveness of these in preventing weight gain. We aimed to identify clusters of weight control strategies used by women and to determine the average annual weight change among women in each cluster from 2000 to 2009. Latent cluster analysis of weight control strategies reported by 8125 participants in the Australian Longitudinal Study of Women's Health. Analyses were performed in March-November 2014. Weight control strategies were used by 79% of the women, and four unique clusters were found. The largest cluster group (39.7%) was named dieters as 90% had been on a diet in the past year, and half of these women had lost 5 kg on purpose. Women cut down on size of meals, fats and sugars and took part in vigorous physical activity. Additionally 20% had used a commercial programme. The next largest cluster (30.2%) was the healthy living group who followed the public health messages of 'eat less and move more'. The do nothing group (20%) did not actively control their weight whereas the perpetual dieters group (10.7%) used all strategies, including unhealthy behaviours. On average women gained 700 g per year (over 9 years); however, the perpetual dieters group gained significantly more weight (210 g) than the do nothing group (Phealth guidelines on health eating and physical activity.

  19. Spatio-temporal cluster analysis of the incidence of Campylobacter cases and patients with general diarrhea in a Danish county, 1995–2004

    Directory of Open Access Journals (Sweden)

    Simonsen Jacob

    2009-02-01

    Full Text Available Abstract Campylobacter infections are the main cause of bacterial gastroenteritis in Denmark. While primarily foodborne, Campylobacter infections are also to some degree acquired through other sources which may include contact with animals or the environment, locally contaminated drinking water and more. We analyzed Campylobacter cases for clustering in space and time for the large Danish island of Funen in the period 1995–2003, under the assumption that infections caused by 'environmental' factors may show persistent clustering while foodborne infections will occur randomly in space. Input data were geo-coded datasets of the addresses of laboratory-confirmed Campylobacter cases and of the background population of Funen County. The dataset had a spatial extent of 4.900 km2. Data were aggregated into units of analysis (so-called features of 5 km by 5 km times 1 year, and the Campylobacter incidence calculated. We used a modified form of local Moran's I to test if features with similar incidence rates occurred next to each other in space and time, and compared the observed clusters with simulated clusters. Because clusters may be caused by a high tendency among local GPs to submit stool samples, we also analyzed a dataset of all submitted stool samples for comparison. The results showed a significant persisting clustering of Campylobacter incidence rates in the Western part of Funen. Results were visualized using the Netlogo software. The underlying causes of the observed clustering are not known and will require further examination, but may be partially explained by an increased rate of stool samples submissions by physicians in the area. We hope, by this approach, to have developed a tool which will allow for analyses of geographical clusters which may in turn form a basis for further epidemiological examinations to cast light on the sources of infection.

  20. Envri Cluster - a Community-Driven Platform of European Environmental Researcher Infrastructures for Providing Common E-Solutions for Earth Science

    Science.gov (United States)

    Asmi, A.; Sorvari, S.; Kutsch, W. L.; Laj, P.

    2017-12-01

    European long-term environmental research infrastructures (often referred as ESFRI RIs) are the core facilities for providing services for scientists in their quest for understanding and predicting the complex Earth system and its functioning that requires long-term efforts to identify environmental changes (trends, thresholds and resilience, interactions and feedbacks). Many of the research infrastructures originally have been developed to respond to the needs of their specific research communities, however, it is clear that strong collaboration among research infrastructures is needed to serve the trans-boundary research requires exploring scientific questions at the intersection of different scientific fields, conducting joint research projects and developing concepts, devices, and methods that can be used to integrate knowledge. European Environmental research infrastructures have already been successfully worked together for many years and have established a cluster - ENVRI cluster - for their collaborative work. ENVRI cluster act as a collaborative platform where the RIs can jointly agree on the common solutions for their operations, draft strategies and policies and share best practices and knowledge. Supporting project for the ENVRI cluster, ENVRIplus project, brings together 21 European research infrastructures and infrastructure networks to work on joint technical solutions, data interoperability, access management, training, strategies and dissemination efforts. ENVRI cluster act as one stop shop for multidisciplinary RI users, other collaborative initiatives, projects and programmes and coordinates and implement jointly agreed RI strategies.

  1. Behavioral Health Risk Profiles of Undergraduate University Students in England, Wales, and Northern Ireland: A Cluster Analysis

    Directory of Open Access Journals (Sweden)

    Walid El Ansari

    2018-05-01

    Full Text Available BackgroundLimited research has explored clustering of lifestyle behavioral risk factors (BRFs among university students. This study aimed to explore clustering of BRFs, composition of clusters, and the association of the clusters with self-rated health and perceived academic performance.MethodWe assessed (BRFs, namely tobacco smoking, physical inactivity, alcohol consumption, illicit drug use, unhealthy nutrition, and inadequate sleep, using a self-administered general Student Health Survey among 3,706 undergraduates at seven UK universities.ResultsA two-step cluster analysis generated: Cluster 1 (the high physically active and health conscious with very high health awareness/consciousness, good nutrition, and physical activity (PA, and relatively low alcohol, tobacco, and other drug (ATOD use. Cluster 2 (the abstinent had very low ATOD use, high health awareness, good nutrition, and medium high PA. Cluster 3 (the moderately health conscious included the highest regard for healthy eating, second highest fruit/vegetable consumption, and moderately high ATOD use. Cluster 4 (the risk taking showed the highest ATOD use, were the least health conscious, least fruit consuming, and attached the least importance on eating healthy. Compared to the healthy cluster (Cluster 1, students in other clusters had lower self-rated health, and particularly, students in the risk taking cluster (Cluster 4 reported lower academic performance. These associations were stronger for men than for women. Of the four clusters, Cluster 4 had the youngest students.ConclusionOur results suggested that prevention among university students should address multiple BRFs simultaneously, with particular focus on the younger students.

  2. Degradation Assessment and Fault Diagnosis for Roller Bearing Based on AR Model and Fuzzy Cluster Analysis

    Directory of Open Access Journals (Sweden)

    Lingli Jiang

    2011-01-01

    Full Text Available This paper proposes a new approach combining autoregressive (AR model and fuzzy cluster analysis for bearing fault diagnosis and degradation assessment. AR model is an effective approach to extract the fault feature, and is generally applied to stationary signals. However, the fault vibration signals of a roller bearing are non-stationary and non-Gaussian. Aiming at this problem, the set of parameters of the AR model is estimated based on higher-order cumulants. Consequently, the AR parameters are taken as the feature vectors, and fuzzy cluster analysis is applied to perform classification and pattern recognition. Experiments analysis results show that the proposed method can be used to identify various types and severities of fault bearings. This study is significant for non-stationary and non-Gaussian signal analysis, fault diagnosis and degradation assessment.

  3. Analysis of a continuous-variable quadripartite cluster state from a single optical parametric oscillator

    International Nuclear Information System (INIS)

    Midgley, S. L. W.; Olsen, M. K.; Bradley, A. S.; Pfister, O.

    2010-01-01

    We examine the feasibility of generating continuous-variable multipartite entanglement in an intracavity concurrent downconversion scheme that has been proposed for the generation of cluster states by Menicucci et al. [Phys. Rev. Lett. 101, 130501 (2008)]. By calculating optimized versions of the van Loock-Furusawa correlations we demonstrate genuine quadripartite entanglement and investigate the degree of entanglement present. Above the oscillation threshold the basic cluster state geometry under consideration suffers from phase diffusion. We alleviate this problem by incorporating a small injected signal into our analysis. Finally, we investigate squeezed joint operators. While the squeezed joint operators approach zero in the undepleted regime, we find that this is not the case when we consider the full interaction Hamiltonian and the presence of a cavity. In fact, we find that the decay of these operators is minimal in a cavity, and even depletion alone inhibits cluster state formation.

  4. Analysis of cost data in a cluster-randomized, controlled trial: comparison of methods

    DEFF Research Database (Denmark)

    Sokolowski, Ineta; Ørnbøl, Eva; Rosendal, Marianne

    studies have used non-valid analysis of skewed data. We propose two different methods to compare mean cost in two groups. Firstly, we use a non-parametric bootstrap method where the re-sampling takes place on two levels in order to take into account the cluster effect. Secondly, we proceed with a log......-transformation of the cost data and apply the normal theory on these data. Again we try to account for the cluster effect. The performance of these two methods is investigated in a simulation study. The advantages and disadvantages of the different approaches are discussed.......  We consider health care data from a cluster-randomized intervention study in primary care to test whether the average health care costs among study patients differ between the two groups. The problems of analysing cost data are that most data are severely skewed. Median instead of mean...

  5. Cluster analysis of polymers using laser-induced breakdown spectroscopy with K-means

    Science.gov (United States)

    Yangmin, GUO; Yun, TANG; Yu, DU; Shisong, TANG; Lianbo, GUO; Xiangyou, LI; Yongfeng, LU; Xiaoyan, ZENG

    2018-06-01

    Laser-induced breakdown spectroscopy (LIBS) combined with K-means algorithm was employed to automatically differentiate industrial polymers under atmospheric conditions. The unsupervised learning algorithm K-means were utilized for the clustering of LIBS dataset measured from twenty kinds of industrial polymers. To prevent the interference from metallic elements, three atomic emission lines (C I 247.86 nm , H I 656.3 nm, and O I 777.3 nm) and one molecular line C–N (0, 0) 388.3 nm were used. The cluster analysis results were obtained through an iterative process. The Davies–Bouldin index was employed to determine the initial number of clusters. The average relative standard deviation values of characteristic spectral lines were used as the iterative criterion. With the proposed approach, the classification accuracy for twenty kinds of industrial polymers achieved 99.6%. The results demonstrated that this approach has great potential for industrial polymers recycling by LIBS.

  6. 3D Building Models Segmentation Based on K-Means++ Cluster Analysis

    Science.gov (United States)

    Zhang, C.; Mao, B.

    2016-10-01

    3D mesh model segmentation is drawing increasing attentions from digital geometry processing field in recent years. The original 3D mesh model need to be divided into separate meaningful parts or surface patches based on certain standards to support reconstruction, compressing, texture mapping, model retrieval and etc. Therefore, segmentation is a key problem for 3D mesh model segmentation. In this paper, we propose a method to segment Collada (a type of mesh model) 3D building models into meaningful parts using cluster analysis. Common clustering methods segment 3D mesh models by K-means, whose performance heavily depends on randomized initial seed points (i.e., centroid) and different randomized centroid can get quite different results. Therefore, we improved the existing method and used K-means++ clustering algorithm to solve this problem. Our experiments show that K-means++ improves both the speed and the accuracy of K-means, and achieve good and meaningful results.

  7. 3D BUILDING MODELS SEGMENTATION BASED ON K-MEANS++ CLUSTER ANALYSIS

    Directory of Open Access Journals (Sweden)

    C. Zhang

    2016-10-01

    Full Text Available 3D mesh model segmentation is drawing increasing attentions from digital geometry processing field in recent years. The original 3D mesh model need to be divided into separate meaningful parts or surface patches based on certain standards to support reconstruction, compressing, texture mapping, model retrieval and etc. Therefore, segmentation is a key problem for 3D mesh model segmentation. In this paper, we propose a method to segment Collada (a type of mesh model 3D building models into meaningful parts using cluster analysis. Common clustering methods segment 3D mesh models by K-means, whose performance heavily depends on randomized initial seed points (i.e., centroid and different randomized centroid can get quite different results. Therefore, we improved the existing method and used K-means++ clustering algorithm to solve this problem. Our experiments show that K-means++ improves both the speed and the accuracy of K-means, and achieve good and meaningful results.

  8. Global Analysis of miRNA Gene Clusters and Gene Families Reveals Dynamic and Coordinated Expression

    Directory of Open Access Journals (Sweden)

    Li Guo

    2014-01-01

    Full Text Available To further understand the potential expression relationships of miRNAs in miRNA gene clusters and gene families, a global analysis was performed in 4 paired tumor (breast cancer and adjacent normal tissue samples using deep sequencing datasets. The compositions of miRNA gene clusters and families are not random, and clustered and homologous miRNAs may have close relationships with overlapped miRNA species. Members in the miRNA group always had various expression levels, and even some showed larger expression divergence. Despite the dynamic expression as well as individual difference, these miRNAs always indicated consistent or similar deregulation patterns. The consistent deregulation expression may contribute to dynamic and coordinated interaction between different miRNAs in regulatory network. Further, we found that those clustered or homologous miRNAs that were also identified as sense and antisense miRNAs showed larger expression divergence. miRNA gene clusters and families indicated important biological roles, and the specific distribution and expression further enrich and ensure the flexible and robust regulatory network.

  9. HICOSMO - X-ray analysis of a complete sample of galaxy clusters

    Science.gov (United States)

    Schellenberger, G.; Reiprich, T.

    2017-10-01

    Galaxy clusters are known to be the largest virialized objects in the Universe. Based on the theory of structure formation one can use them as cosmological probes, since they originate from collapsed overdensities in the early Universe and witness its history. The X-ray regime provides the unique possibility to measure in detail the most massive visible component, the intra cluster medium. Using Chandra observations of a local sample of 64 bright clusters (HIFLUGCS) we provide total (hydrostatic) and gas mass estimates of each cluster individually. Making use of the completeness of the sample we quantify two interesting cosmological parameters by a Bayesian cosmological likelihood analysis. We find Ω_{M}=0.3±0.01 and σ_{8}=0.79±0.03 (statistical uncertainties) using our default analysis strategy combining both, a mass function analysis and the gas mass fraction results. The main sources of biases that we discuss and correct here are (1) the influence of galaxy groups (higher incompleteness in parent samples and a differing behavior of the L_{x} - M relation), (2) the hydrostatic mass bias (as determined by recent hydrodynamical simulations), (3) the extrapolation of the total mass (comparing various methods), (4) the theoretical halo mass function and (5) other cosmological (non-negligible neutrino mass), and instrumental (calibration) effects.

  10. Managing the environmental impacts of land transport: integrating environmental analysis with urban planning

    International Nuclear Information System (INIS)

    Irving, Paul; Moncrieff, Ian

    2004-01-01

    Ecological systems have limits or thresholds that vary by pollutant type, emissions sources and the sensitivity of a given location. Human health can also indicate sensitivity. Good environmental management requires any problem to be defined to obtain efficient and effective solutions. Cities are where transport activities, effects and resource management decisions are often most focussed. The New Zealand Ministry of Transport has developed two environmental management tools. The Vehicle Fleet Model (VFM) is a predictive database of the environmental performance of the New Zealand traffic fleet (and rail fleet). It calculates indices of local air quality, stormwater, and greenhouse gases emissions. The second is an analytical process based on Environmental Capacity Analysis (ECA). Information on local traffic is combined with environmental performance data from the Vehicle Fleet Model. This can be integrated within a live, geo-spatially defined analysis of the overall environmental effects within a defined local area. Variations in urban form and activity (traffic and other) that contribute to environmental effects can be tracked. This enables analysis of a range of mitigation strategies that may contribute, now or in the future, to maintaining environmental thresholds or meeting targets. A case study of the application of this approach was conducted within Waitakere City. The focus was on improving the understanding of the relative significance of stormwater contaminants derived from land transport

  11. Market segmentation for multiple option healthcare delivery systems--an application of cluster analysis.

    Science.gov (United States)

    Jarboe, G R; Gates, R H; McDaniel, C D

    1990-01-01

    Healthcare providers of multiple option plans may be confronted with special market segmentation problems. This study demonstrates how cluster analysis may be used for discovering distinct patterns of preference for multiple option plans. The availability of metric, as opposed to categorical or ordinal, data provides the ability to use sophisticated analysis techniques which may be superior to frequency distributions and cross-tabulations in revealing preference patterns.

  12. Clinical evaluation of nonsyndromic dental anomalies in Dravidian population: A cluster sample analysis

    OpenAIRE

    Yamunadevi, Andamuthu; Selvamani, M.; Vinitha, V.; Srivandhana, R.; Balakrithiga, M.; Prabhu, S.; Ganapathy, N.

    2015-01-01

    Aim: To record the prevalence rate of dental anomalies in Dravidian population and analyze the percentage of individual anomalies in the population. Methodology: A cluster sample analysis was done, where 244 subjects studying in a dental institution were all included and analyzed for occurrence of dental anomalies by clinical examination, excluding third molars from analysis. Results: 31.55% of the study subjects had dental anomalies and shape anomalies were more prevalent (22.1%), followed b...

  13. Environmental analysis of natural gas life cycle

    International Nuclear Information System (INIS)

    Riva, A.; D'Angelosante, S.; Trebeschi, C.

    2000-01-01

    Life Cycle Assessment is a method aimed at identifying the environmental effects connected with a given product, process or activity during its whole life cycle. The evaluation of published studies and the application of the method to electricity production with fossil fuels, by using data from published databases and data collected by the gas industry, demonstrate the importance and difficulties to have reliable and updated data required for a significant life cycle assessment. The results show that the environmental advantages of natural gas over the other fossil fuels in the final use stage increase still further if the whole life cycle of the fuels, from production to final consumption, is taken into account [it

  14. Gene expression data clustering and it’s application in differential analysis of leukemia

    Directory of Open Access Journals (Sweden)

    M. Vahedi

    2008-02-01

    Full Text Available Introduction: DNA microarray technique is one of the most important categories in bioinformatics,which allows the possibility of monitoring thousands of expressed genes has been resulted in creatinggiant data bases of gene expression data, recently. Statistical analysis of such databases includednormalization, clustering, classification and etc.Materials and Methods: Golub et al (1999 collected data bases of leukemia based on the method ofoligonucleotide. The data is on the internet. In this paper, we analyzed gene expression data. It wasclustered by several methods including multi-dimensional scaling, hierarchical and non-hierarchicalclustering. Data set included 20 Acute Lymphoblastic Leukemia (ALL patients and 14 Acute MyeloidLeukemia (AML patients. The results of tow methods of clustering were compared with regard to realgrouping (ALL & AML. R software was used for data analysis.Results: Specificity and sensitivity of divisive hierarchical clustering in diagnosing of ALL patientswere 75% and 92%, respectively. Specificity and sensitivity of partitioning around medoids indiagnosing of ALL patients were 90% and 93%, respectively. These results showed a wellaccomplishment of both methods of clustering. It is considerable that, due to clustering methodsresults, one of the samples was placed in ALL groups, which was in AML group in clinical test.Conclusion: With regard to concordance of the results with real grouping of data, therefore we canuse these methods in the cases where we don't have accurate information of real grouping of data.Moreover, Results of clustering might distinct subgroups of data in such a way that would be necessaryfor concordance with clinical outcomes, laboratory results and so on.

  15. Phenotype Clustering of Breast Epithelial Cells in Confocal Imagesbased on Nuclear Protein Distribution Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Long, Fuhui; Peng, Hanchuan; Sudar, Damir; Levievre, Sophie A.; Knowles, David W.

    2006-09-05

    Background: The distribution of the chromatin-associatedproteins plays a key role in directing nuclear function. Previously, wedeveloped an image-based method to quantify the nuclear distributions ofproteins and showed that these distributions depended on the phenotype ofhuman mammary epithelial cells. Here we describe a method that creates ahierarchical tree of the given cell phenotypes and calculates thestatistical significance between them, based on the clustering analysisof nuclear protein distributions. Results: Nuclear distributions ofnuclear mitotic apparatus protein were previously obtained fornon-neoplastic S1 and malignant T4-2 human mammary epithelial cellscultured for up to 12 days. Cell phenotype was defined as S1 or T4-2 andthe number of days in cultured. A probabilistic ensemble approach wasused to define a set of consensus clusters from the results of multipletraditional cluster analysis techniques applied to the nucleardistribution data. Cluster histograms were constructed to show how cellsin any one phenotype were distributed across the consensus clusters.Grouping various phenotypes allowed us to build phenotype trees andcalculate the statistical difference between each group. The resultsshowed that non-neoplastic S1 cells could be distinguished from malignantT4-2 cells with 94.19 percent accuracy; that proliferating S1 cells couldbe distinguished from differentiated S1 cells with 92.86 percentaccuracy; and showed no significant difference between the variousphenotypes of T4-2 cells corresponding to increasing tumor sizes.Conclusion: This work presents a cluster analysis method that canidentify significant cell phenotypes, based on the nuclear distributionof specific proteins, with high accuracy.

  16. Environmental Analysis of the Groningen City Center

    OpenAIRE

    GÓMEZ BUGEDA, RICARDO SANTIAGO

    2017-01-01

    This final thesis project is part of the research that is carrying out by the Gemeente Groningen in order to make the city center more sustainable and livable. The municipality of Groningen has recently published a conceptual development plan for improving the inner-city of Groningen, this report is called Bestemming Binnenstad 01/2016 . The main focus of this report is convert the city center to an environmental friendly downtown, reducing pollution, reroute public and private transpo...

  17. Analysis of high school students’ environmental literacy

    Science.gov (United States)

    Wardani, R. A. K.; Karyanto, P.; Ramli, M.

    2018-05-01

    The student’s environmental literacy (EL) is a vital component to improve the awareness of student on environmental issues. This research aims to measure and analyse the EL of high school students, and how the topic of environment has been taught in high school. The research was conducted in February to April 2017. The EL was measured on three aspects, i.e. knowledge, attitude and concern. The participants were sixty-five (21 boys, 44 girls) purposively selected from students of grade X, XI and XII of one Senior High School in Karanganyar Regency, Indonesia. The knowledge of students on concepts of environmental issues was tested by fourteen main questions followed by supported questions. The result showed that 80% of students were classified as inadequate category. The attitude of students was measured by New Ecological Paradigm (NEP) consisted of fifteen items, and students’ average score was 46.42 (medium). The concern was measured by fifteen statements about environment, and it was ranged from 2.58 to 4.18. EL of students may low due to students’ lack understanding of the environment concepts, the limited theories and concepts transferred to students, inappropriate lesson plan to meet the EL components.

  18. The Feasibility of Using Cluster Analysis to Examine Log Data from Educational Video Games. CRESST Report 790

    Science.gov (United States)

    Kerr, Deirdre; Chung, Gregory K. W. K.; Iseli, Markus R.

    2011-01-01

    Analyzing log data from educational video games has proven to be a challenging endeavor. In this paper, we examine the feasibility of using cluster analysis to extract information from the log files that is interpretable in both the context of the game and the context of the subject area. If cluster analysis can be used to identify patterns of…

  19. Exergetic and environmental analysis of a pulverized coal power plant

    International Nuclear Information System (INIS)

    Restrepo, Álvaro; Miyake, Raphael; Kleveston, Fábio; Bazzo, Edson

    2012-01-01

    This paper presents the results of exergetic and environmental analysis of a typical pulverized coal power plant located in Brazil. The goal was to quantify both the exergy destruction and the environmental impact associated with a thermal power plant. The problem boundary consists of the entire coal delivery route, including mining and beneficiation, transport, pre-burning processes and the power plant. The used data were obtained mainly from field measurements taken in all system processes, from mining to the power plant. The study focused only on the operation period. Previous works have shown that the construction and decommissioning periods contribute less than 1% of the environmental impact. The exergetic analysis was based on the second law of thermodynamics while the environmental analysis was based on life cycle assessment (LCA) using SimaPro 7.2, focussing on the climate change and acidification impact categories. The CO 2 -eq emission was 1300 kg per MWh. The highest degree of environmental impact occurred during the combustion process. The exergetic and environmental analysis provides a tool to evaluate irreversibilities and the environmental impact, identifying the most significant stages and equipment of the entire power generation process. -- Highlights: ► Exergetic and environmental analysis of a typical Brazilian PC power plant. ► Environmental impact associated with the mining, transport and thermal power plant. ► Life cycle assessment used for environmental analysis. ► Acidification impact category evaluated using Eco-indicator 99. ► Climate change impact evaluation using (Global Warming Potential) GWP 100a.

  20. [Optimization of cluster analysis based on drug resistance profiles of MRSA isolates].

    Science.gov (United States)

    Tani, Hiroya; Kishi, Takahiko; Gotoh, Minehiro; Yamagishi, Yuka; Mikamo, Hiroshige

    2015-12-01

    We examined 402 methicillin-resistant Staphylococcus aureus (MRSA) strains isolated from clinical specimens in our hospital between November 19, 2010 and December 27, 2011 to evaluate the similarity between cluster analysis of drug susceptibility tests and pulsed-field gel electrophoresis (PFGE). The results showed that the 402 strains tested were classified into 27 PFGE patterns (151 subtypes of patterns). Cluster analyses of drug susceptibility tests with the cut-off distance yielding a similar classification capability showed favorable results--when the MIC method was used, and minimum inhibitory concentration (MIC) values were used directly in the method, the level of agreement with PFGE was 74.2% when 15 drugs were tested. The Unweighted Pair Group Method with Arithmetic mean (UPGMA) method was effective when the cut-off distance was 16. Using the SIR method in which susceptible (S), intermediate (I), and resistant (R) were coded as 0, 2, and 3, respectively, according to the Clinical and Laboratory Standards Institute (CLSI) criteria, the level of agreement with PFGE was 75.9% when the number of drugs tested was 17, the method used for clustering was the UPGMA, and the cut-off distance was 3.6. In addition, to assess the reproducibility of the results, 10 strains were randomly sampled from the overall test and subjected to cluster analysis. This was repeated 100 times under the same conditions. The results indicated good reproducibility of the results, with the level of agreement with PFGE showing a mean of 82.0%, standard deviation of 12.1%, and mode of 90.0% for the MIC method and a mean of 80.0%, standard deviation of 13.4%, and mode of 90.0% for the SIR method. In summary, cluster analysis for drug susceptibility tests is useful for the epidemiological analysis of MRSA.

  1. Societal burden of cluster headache in the United States: a descriptive economic analysis.

    Science.gov (United States)

    Ford, Janet H; Nero, Damion; Kim, Gilwan; Chu, Bong Chul; Fowler, Robert; Ahl, Jonna; Martinez, James M

    2018-01-01

    To estimate direct and indirect costs in patients with a diagnosis of cluster headache in the US. Adult patients (18-64 years of age) enrolled in the Marketscan Commercial and Medicare Databases with ≥2 non-diagnostic outpatient (≥30 days apart between the two outpatient claims) or ≥1 inpatient diagnoses of cluster headache (ICD-9-CM code 339.00, 339.01, or 339.02) between January 1, 2009 and June 30, 2014, were included in the analyses. Patients had ≥6 months of continuous enrollment with medical and pharmacy coverage before and after the index date (first cluster headache diagnosis). Three outcomes were evaluated: (1) healthcare resource utilization, (2) direct healthcare costs, and (3) indirect costs associated with work days lost due to absenteeism and short-term disability. Direct costs included costs of all-cause and cluster headache-related outpatient, inpatient hospitalization, surgery, and pharmacy claims. Indirect costs were based on an average daily wage, which was estimated from the 2014 US Bureau of Labor Statistics and inflated to 2015 dollars. There were 9,328 patients with cluster headache claims included in the analysis. Cluster headache-related total direct costs (mean [standard deviation]) were $3,132 [$13,396] per patient per year (PPPY), accounting for 17.8% of the all-cause total direct cost. Cluster headache-related inpatient hospitalizations ($1,604) and pharmacy ($809) together ($2,413) contributed over 75% of the cluster headache-related direct healthcare cost. There were three sub-groups of patients with claims associated with indirect costs that included absenteeism, short-term disability, and absenteeism + short-term disability. Indirect costs PPPY were $4,928 [$4,860] for absenteeism, $803 [$2,621] for short-term disability, and $3,374 [$3,198] for absenteeism + disability. Patients with cluster headache have high healthcare costs that are associated with inpatient admissions and pharmacy fulfillments, and high

  2. Cluster analysis of midlatitude oceanic cloud regimes: mean properties and temperature sensitivity

    Directory of Open Access Journals (Sweden)

    N. D. Gordon

    2010-07-01

    Full Text Available Clouds play an important role in the climate system by reducing the amount of shortwave radiation reaching the surface and the amount of longwave radiation escaping to space. Accurate simulation of clouds in computer models remains elusive, however, pointing to a lack of understanding of the connection between large-scale dynamics and cloud properties. This study uses a k-means clustering algorithm to group 21 years of satellite cloud data over midlatitude oceans into seven clusters, and demonstrates that the cloud clusters are associated with distinct large-scale dynamical conditions. Three clusters correspond to low-level cloud regimes with different cloud fraction and cumuliform or stratiform characteristics, but all occur under large-scale descent and a relatively dry free troposphere. Three clusters correspond to vertically extensive cloud regimes with tops in the middle or upper troposphere, and they differ according to the strength of large-scale ascent and enhancement of tropospheric temperature and humidity. The final cluster is associated with a lower troposphere that is dry and an upper troposphere that is moist and experiencing weak ascent and horizontal moist advection.

    Since the present balance of reflection of shortwave and absorption of longwave radiation by clouds could change as the atmosphere warms from increasing anthropogenic greenhouse gases, we must also better understand how increasing temperature modifies cloud and radiative properties. We therefore undertake an observational analysis of how midlatitude oceanic clouds change with temperature when dynamical processes are held constant (i.e., partial derivative with respect to temperature. For each of the seven cloud regimes, we examine the difference in cloud and radiative properties between warm and cold subsets. To avoid misinterpreting a cloud response to large-scale dynamical forcing as a cloud response to temperature, we require horizontal and vertical

  3. Variations analysis of the Society's preference structure regarding environment