WorldWideScience

Sample records for environmental chemical contaminants

  1. Agricultural chemical application practices to reduce environmental contamination.

    Science.gov (United States)

    Bode, L E

    1990-01-01

    Current practices of applying agricultural chemicals play a major role in the environmental health concerns of agriculture. Those who mix, load, and handle the concentrated formulations run the greatest risk of exposure but field hands and others can encounter significant levels of pesticides. Drift can be a major source of contamination to residents, wildlife, and water sources. Improved methods of application and ways of reducing the total amount of pesticide applied can help reduce environmental contamination. Chemigation, direct injection, closed system handling, and fertilizer impregnation are examples of technology that affect the efficiency of applying agricultural chemicals. An area of beneficial research is related to leak and spill technology. Current surveys indicate that point sources such as spills, mixing and loading areas, back-siphoning, and direct routes for surface water movement into the ground are often a major cause of pesticides reaching groundwater. The commercial dealer/applicator provides storage, handling, mixing, and loading for large amounts of chemicals and has received limited guidance regarding the products. Education remains an important element of any rural environmental health strategy. With appropriate information about pesticide risks and groundwater, people will be better equipped to address environmental concerns. By design, agricultural chemicals are biologically active and, in most cases, toxic. Thus, they pose potential risks to humans, wildlife, water, and the environment in general. The magnitude of the risks depends to some degree on the methods and techniques used to apply the chemicals. Pesticides are applied by persons possessing a variety of skills, using equipment ranging from hand-operated systems to aircraft.

  2. [The environmental monitoring of the exposure to chemical contamination in operating rooms].

    Science.gov (United States)

    Desogus, G F

    2007-01-01

    The medical staff which works in an operating room is exposed to danger due to the chemical contamination found in the air. The results of this research depend to hormonal and haematochemical variations. The chemical contamination can be the cause of pathologies of the respiratory organs, the skin, the mucosa and the immune system. After a preventive evaluation of the production processes and the working procedures, some researchers have estimated the environmental risk caused by low concentrations of chemical products. In order to control the levels of the chemical agents, they have used an integrated system set up by a gaschromatography-mass spectrometer that has found some levels of chemical agents peculiar to a low pollution, characterized by the low concentration under the levels of the so-called ACGIH (2006) of hesane, toluene, ethylbenzene, o-xylene and naphthalene. According to the latest studies is very important to develop working methods and scientific knowledges direct to environmental, medical and toxicological problems. They are necessary to guarantee a greater protection of the human health and the safety at work.

  3. Biomonitoring of Environmental Status and Trends (BEST) Program: Selected Methods for Monitoring Chemical Contaminants and their Effects in Aquatic Ecosystems

    National Research Council Canada - National Science Library

    Schmitt, Christopher

    2000-01-01

    This document describes the suite of biological methods of the U.S. Geological Survey Biomonitoring of Environmental Status and Trends program for monitoring chemical contaminants and their effects on fish...

  4. Endocrine-Disrupting Chemicals and Oil and Natural Gas Operations: Potential Environmental Contamination and Recommendations to Assess Complex Environmental Mixtures.

    Science.gov (United States)

    Kassotis, Christopher D; Tillitt, Donald E; Lin, Chung-Ho; McElroy, Jane A; Nagel, Susan C

    2016-03-01

    Hydraulic fracturing technologies, developed over the last 65 years, have only recently been combined with horizontal drilling to unlock oil and gas reserves previously deemed inaccessible. Although these technologies have dramatically increased domestic oil and natural gas production, they have also raised concerns for the potential contamination of local water supplies with the approximately 1,000 chemicals that are used throughout the process, including many known or suspected endocrine-disrupting chemicals. We discuss the need for an endocrine component to health assessments for drilling-dense regions in the context of hormonal and antihormonal activities for chemicals used. We discuss the literature on a) surface and groundwater contamination by oil and gas extraction operations, and b) potential human exposure, particularly in the context of the total hormonal and antihormonal activities present in surface and groundwater from natural and anthropogenic sources; we also discuss initial analytical results and critical knowledge gaps. In light of the potential for environmental release of oil and gas chemicals that can disrupt hormone receptor systems, we recommend methods for assessing complex hormonally active environmental mixtures. We describe a need for an endocrine-centric component for overall health assessments and provide information supporting the idea that using such a component will help explain reported adverse health trends as well as help develop recommendations for environmental impact assessments and monitoring programs.

  5. Endocrine-disrupting chemicals and oil and natural gas operations: Potential environmental contamination and recommendations to assess complex environmental mixtures

    Science.gov (United States)

    Kassotis, Christopher D.; Tillitt, Donald E.; Lin, Chung-Ho; McElroy, Jane A.; Nagel, Susan C.

    2016-01-01

    Background: Hydraulic fracturing technologies, developed over the last 65 years, have only recently been combined with horizontal drilling to unlock oil and gas reserves previously deemed inaccessible. While these technologies have dramatically increased domestic oil and natural gas production, they have also raised concerns for the potential contamination of local water supplies with the approximately 1,000 chemicals used throughout the process, including many known or suspected endocrine-disrupting chemicals.Objectives: We discuss the need for an endocrine component to health assessments for drilling-dense regions in the context of hormonal and anti-hormonal activities for chemicals used.Methods: We discuss the literature on 1) surface and ground water contamination by oil and gas extraction operations, and 2) potential human exposure, particularly in context of the total hormonal and anti-hormonal activities present in surface and ground water from natural and anthropogenic sources, with initial analytical results and critical knowledge gaps discussed.Discussion: In light of the potential for environmental release of oil and gas chemicals that can disrupt hormone receptor systems, we recommend methods for assessing complex hormonally active environmental mixtures.Conclusions: We describe a need for an endocrine-centric component for overall health assessments and provide supporting information that using this may help explain reported adverse health trends as well as help develop recommendations for environmental impact assessments and monitoring programs.

  6. Epidemiologic evidence of relationships between reproductive and child health outcomes and environmental chemical contaminants.

    Science.gov (United States)

    Wigle, Donald T; Arbuckle, Tye E; Turner, Michelle C; Bérubé, Annie; Yang, Qiuying; Liu, Shiliang; Krewski, Daniel

    2008-05-01

    This review summarizes the level of epidemiologic evidence for relationships between prenatal and/or early life exposure to environmental chemical contaminants and fetal, child, and adult health. Discussion focuses on fetal loss, intrauterine growth restriction, preterm birth, birth defects, respiratory and other childhood diseases, neuropsychological deficits, premature or delayed sexual maturation, and certain adult cancers linked to fetal or childhood exposures. Environmental exposures considered here include chemical toxicants in air, water, soil/house dust and foods (including human breast milk), and consumer products. Reports reviewed here included original epidemiologic studies (with at least basic descriptions of methods and results), literature reviews, expert group reports, meta-analyses, and pooled analyses. Levels of evidence for causal relationships were categorized as sufficient, limited, or inadequate according to predefined criteria. There was sufficient epidemiological evidence for causal relationships between several adverse pregnancy or child health outcomes and prenatal or childhood exposure to environmental chemical contaminants. These included prenatal high-level methylmercury (CH(3)Hg) exposure (delayed developmental milestones and cognitive, motor, auditory, and visual deficits), high-level prenatal exposure to polychlorinated biphenyls (PCBs), polychlorinated dibenzofurans (PCDFs), and related toxicants (neonatal tooth abnormalities, cognitive and motor deficits), maternal active smoking (delayed conception, preterm birth, fetal growth deficit [FGD] and sudden infant death syndrome [SIDS]) and prenatal environmental tobacco smoke (ETS) exposure (preterm birth), low-level childhood lead exposure (cognitive deficits and renal tubular damage), high-level childhood CH(3)Hg exposure (visual deficits), high-level childhood exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (chloracne), childhood ETS exposure (SIDS, new-onset asthma, increased

  7. Global contamination trends of persistent organic chemicals

    National Research Council Canada - National Science Library

    Loganathan, Bommanna G; Lam, Paul K. S

    2012-01-01

    "Composed by a diverse group of experts, this reference covers the history, present status, and projected future trends of environmental contamination from highly toxic synthetic chemical pollutants...

  8. Differential effects of environmental chemicals and food contaminants on adipogenesis, biomarker release and PPARγ activation

    DEFF Research Database (Denmark)

    Taxvig, Camilla; Sørensen, Karin Dreisig; Boberg, Julie

    2012-01-01

    Eleven environmental relevant chemicals were investigated for their ability to affect adipogenesis in vitro, biomarker release from adipocytes and PPARα and γ activation. We found that butylparaben stimulated adipogenesis in 3T3-L1 adipocytes and increased release of leptin, adiponectin and resis...

  9. Chemical food contaminants; Chemische Lebensmittelkontaminanten

    Energy Technology Data Exchange (ETDEWEB)

    Schrenk, D. [Technische Univ. Kaiserslautern (Germany)

    2004-09-15

    Chemical food contaminants are substances which are neither present naturally in the usual raw material used for food production nor are added during the regular production process. Examples are environmental pollutants or contaminants derived from agricultural production of crops or livestock or from inadequate manufacturing of the food product itself. More difficult is the classification of those compounds formed during regular manufacturing such as products of thermal processes including flavoring substances. In these cases, it is common practice to call those compounds contaminants which are known for their adverse effects such as acrylamide, whereas constituents which add to the food-specific flavor such as Maillard products formed during roasting, baking etc. are not termed contaminants. From a toxicological viewpoint this distinction is not always clear-cut. Important groups of chemical contaminants are metals such as mercury or lead, persistent organic pollutants such as polychlorinated biphenyls and related pollutants, which are regularly found in certain types of food originating from background levels of these compounds in our environment. Furthermore, natural toxins form microorganisms or plants, and compounds formed during thermal treatment of food are of major interest. In general, a scientific risk assessment has to be carried out for any known contaminant. This comprises an exposure analysis and a toxicological and epidemiological assessment. On these grounds, regulatory and/or technological measures can often improve the situation. Major conditions for a scientific risk assessment and a successful implementation of regulations are highly developed food quality control, food toxicology and nutritional epidemiology. (orig.)

  10. Chemical contamination in aquatic ecosystems.

    Science.gov (United States)

    Iwata, Hisato; Kim, Eun-Young; Yamauchi, Masanobu; Inoue, Suguru; Agusa, Tetsuro; Tanabe, Shinsuke

    2007-03-01

    The 21st Century's Center of Excellence (COE) Program "Coastal Marine Environmental Research" in Ehime University, funded by the Ministry of Education, Culture, Sports, Science and Technology, Government of Japan, started its activities in October 2002. One of the core projects of the COE Program in Ehime University is "studies on environmental behavior of hazardous chemicals and their toxic effects on wildlife". This core project deals with studies of the local and global distribution of environmental contaminants in aquatic ecosystems, retrospective analysis of such chemicals, their toxicokinetics in humans and wildlife, molecular mechanisms to determine species-specific reactions, and sensitivity of chemically induced effects, and with the development of methodology for risk assessment for the conservation of ecological and species diversity. This presentation describes our recent achievements of this project, including research on contamination by arsenic and organohalogen pollutants in the Mekong River basin and molecular mechanisms of morphologic deformities in dioxin-exposed red seabream (Pagrus major) embryos. We established the Environmental Specimen Bank (es-BANK) in Ehime University in 2004, archiving approximately 100000 cryogenic samples containing tissues of wildlife and humans that have been collected for the past 40 years. The CMES homepage offers details of samples through online database retrieval. The es-BANK facility was in operation by the end of 2005.

  11. {sup 15}N metabolic test for the determination of phytotoxic effects of chemicals and contaminated environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Jung, K.; Segner, H.; Schueuermann, G. [UFZ - Umweltforschungszentrum Leipzig-Halle GmbH, Leipzig (Germany). Sektion Chemische Oekotoxikologie; Kaletta, K. [Halle-Wittenberg Univ., Halle (Germany). Inst. fuer Biochemie

    1999-07-01

    A stable isotope {sup 15}N-nitrogen test (ESIMA=Ecotoxicological Stable Isotope Metabolic Assay) was developed to assess biological effects and the potential toxicological hazard of chemicals and contaminated environmental samples on plant metabolism. The assay measures the effect of toxicants on the incorporation of a {sup 15}N labelled tracer into the total nitrogen fraction (both the nonprotein and protein fraction) of plants. Segments of Pisum arvense epicotyls are used as test substrates because of their high metabolic activity. The plant material is incubated under standardised conditions for two hours; subsequently {sup 15}N incorporation is analysed by determining the {sup 15}N abundance ({sup 15}N atom-%) in the epicotyl segments. The effects of toxicants are evaluated by comparing the {sup 15}N incorporation rates of control tissue and epicotyl segments exposed to individual chemicals or complex environmental samples. The specificity and sensitivity of effects as indicated by ESIMA were compared with effect as measured by two establish ecotoxicological bioassays, the pollen tube growth test using pollen of Nicotiana sylvestris and the bacterial luminescence inhibition test using pollen of Photobacterium phosphoreum. The results of the study clearly indicate the suitability of ESIMA for assessing toxic impacts on plant nitrogen metabolism. (orig.)

  12. Environmental contaminants in breast milk.

    Science.gov (United States)

    Nickerson, Krista

    2006-01-01

    Toxic environmental contaminants can be transferred from mother to infant via breastfeeding. Persistent organic pollutants (POPs) are a family of lipophilic stable chemicals that bioaccumulate in adipose tissue and create a lasting toxic body burden. Breastfeeding provides a significant source of exposure to POPs early in human life, the effects of which are unknown, and is the subject of a growing body of research. Despite the possibility of harm from environmental contaminants in breast milk, breastfeeding is still recommended as the best infant feeding method. This article reviews what is known about POPs in breast milk and their effect on infant development to inform clinicians about the issue, provide recommendations for practice, and promote environmental and public health policies that reduce human exposure to harmful pollutants.

  13. Chemical Mixtures Health Risk Assessment of Environmental Contaminants: Concepts, Methods, Applications: Handbook

    Science.gov (United States)

    This problems-based, half-day, introductory workshop focuses on methods to assess health risks posed by exposures to chemical mixtures in the environment. Chemical mixtures health risk assessment methods continue to be developed and evolve to address concerns over health risks f...

  14. Environmental Application of Reporter-Genes Based Biosensors for Chemical Contamination Screening

    Directory of Open Access Journals (Sweden)

    Matejczyk Marzena

    2014-12-01

    Full Text Available The paper presents results of research concerning possibilities of applications of reporter-genes based microorganisms, including the selective presentation of defects and advantages of different new scientific achievements of methodical solutions in genetic system constructions of biosensing elements for environmental research. The most robust and popular genetic fusion and new trends in reporter genes technology – such as LacZ (β-galactosidase, xylE (catechol 2,3-dioxygenase, gfp (green fluorescent proteins and its mutated forms, lux (prokaryotic luciferase, luc (eukaryotic luciferase, phoA (alkaline phosphatase, gusA and gurA (β-glucuronidase, antibiotics and heavy metals resistance are described. Reporter-genes based biosensors with use of genetically modified bacteria and yeast successfully work for genotoxicity, bioavailability and oxidative stress assessment for detection and monitoring of toxic compounds in drinking water and different environmental samples, surface water, soil, sediments.

  15. Phytotechnologies: remediation of environmental contaminants

    National Research Council Canada - National Science Library

    Anjum, Naser A

    2013-01-01

    .... The book offers an evaluation of the known plant species for their different roles in phytotechnological applications in relation to remediation of varied environmental contaminants and also explores...

  16. Chemical and biological methods for the analysis and remediation of environmental contaminants frequently identified at superfund sites

    Energy Technology Data Exchange (ETDEWEB)

    Melinda Christine Wiles [Texas A& amp; M University, College Station, TX (United States). Department of Veterinary Anatomy & Public Health

    2004-08-15

    Substantial environmental contamination has occurred from coal tar creosote and pentachlorophenol (C5P) in wood preserving solutions. The present studies focused on the characterization and remediation of these contaminants. The first objective was to delineate a sequence of biological changes caused by chlorinated phenol (CP) exposure. The second study was to develop multi-functional sorbents to remediate CPs and other components of wood preserving waste from groundwater. Following water remediation, the final aim of this work was to explore the safety of the parent clay minerals as potential enterosorbents for contaminants ingested in water and food. Based on evaluations of toxicity and neutron activation analysis of tissues, no significant differences were observed between animals receiving clay supplements and control animals, with the exception of slightly decreased brain Rb in animals ingesting clay. Overall, the results suggest that neither clay mineral, at relatively high dietary concentrations, influences mineral uptake or utilization in the pregnant rat. 420 refs., 28 figs, 15 tabs.

  17. Chemical contamination of material cycles

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Astrup, Thomas Fruergaard

    2015-01-01

    ) chemicals in paper and plastic materials, and furthermore discuss the likely impacts of chemical contamination on material recycling. The work is part of the new Danish initiative focusing on Integrated Resource Management and Recovery (IRMAR, grant no. 11‐116775). The outcomes of the work will provide......Material recycling represents a backbone of sustainable society in the context of circular economy. Ideally, materials are converted into products, used by the consumers, and discarded, just to be recycled and converted into newly manufactured products. Furthermore, materials may also contain...... chemicals, which would be re‐introduced into the loop once a product is recycled. Such chemicals may not be removed in the recycling process, persist, and contaminate the newly manufactured products. Chemical contamination could potentially put product consumers at unnecessary risk and jeopardize public...

  18. Environmental analysis of contaminated sites

    National Research Council Canada - National Science Library

    Sunahara, G.I; Renoux, A; Thellen, C; Gaudet, C.L; Pilon, A

    2002-01-01

    .... Topics addressed include: the integration of terrestrial ecotoxicity testing with respect to a chemical's behaviour in soil, developments in contaminated soil risk assessment, and the use of advanced scientific data...

  19. Environmental contamination with Toxocara eggs

    NARCIS (Netherlands)

    Nijsse, Rolf; Mughini-Gras, Lapo; Wagenaar, J.A.; Franssen, Frits; Ploeger, Harm W.

    2015-01-01

    Background: Environmental contamination with Toxocara eggs is considered the main source of human toxocariasis. The contribution of different groups of hosts to this contamination is largely unknown. Current deworming advices focus mainly on dogs. However, controversy exists about blind deworming

  20. Environmental Contaminants Issues in Wyoming

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The environmental contaminants program at the U.S. Fish and Wildlife Service Ecological Services Office in Cheyenne, Wyoming was initiated in May 1988. The goal of...

  1. Minimally invasive transcriptome profiling in salmon: Detection of biological response in rainbow trout caudal fin following exposure to environmental chemical contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Veldhoen, Nik; Stevenson, Mitchel R. [Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055, STN CSC, Victoria, BC V8W 3P6 (Canada); Skirrow, Rachel C. [Pacific and Yukon Laboratory for Environmental Testing, Pacific Environmental Science Centre, Environment Canada, 2645 Dollarton Highway, North Vancouver, BC V7H 1B1 (Canada); Rieberger, Kevin J. [Environmental Sustainability and Strategic Policy Division, Water Protection and Sustainability Branch, British Columbia Ministry of Environment, P.O. Box 9362 Stn Prov Govt, Victoria, BC V8W 9M2 (Canada); Aggelen, Graham van [Pacific and Yukon Laboratory for Environmental Testing, Pacific Environmental Science Centre, Environment Canada, 2645 Dollarton Highway, North Vancouver, BC V7H 1B1 (Canada); Meays, Cynthia L. [Environmental Sustainability and Strategic Policy Division, Water Protection and Sustainability Branch, British Columbia Ministry of Environment, P.O. Box 9362 Stn Prov Govt, Victoria, BC V8W 9M2 (Canada); Helbing, Caren C., E-mail: chelbing@uvic.ca [Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055, STN CSC, Victoria, BC V8W 3P6 (Canada)

    2013-10-15

    Highlights: •A minimally-invasive tail fin biopsy assay was developed for use in fish. •Quantitative real time polymerase reaction provided gene expression readout. •Results were comparable to classical liver tissue responses. •The approach was used on two salmonid species and can be coupled with genomic sex determination using an additional biopsy for maximal information. -- Abstract: An increasing number of anthropogenic chemicals have demonstrated potential for disruption of biological processes critical to normal growth and development of wildlife species. Both anadromous and freshwater salmon species are at risk of exposure to environmental chemical contaminants that may affect migratory behavior, environmental fitness, and reproductive success. A sensitive metric in determination of the presence and impact of such environmental chemical contaminants is through detection of changes in the status of gene transcript levels using a targeted quantitative real-time polymerase chain reaction assay. Ideally, the wildlife assessment strategy would incorporate conservation-centered non-lethal practices. Herein, we describe the development of such an assay for rainbow trout, Oncorhynchus mykiss, following an acute 96 h exposure to increasing concentrations of either 17α-ethinyl estradiol or cadmium. The estrogenic screen included measurement of mRNA encoding estrogen receptor α and β isoforms, vitellogenin, vitelline envelope protein γ, cytochrome p450 family 19 subfamily A, aryl hydrocarbon receptor, and the stress indicator, catalase. The metal exposure screen included evaluation of the latter two mRNA transcripts along with those encoding the metallothionein A and B isoforms. Exposure-dependent transcript abundance profiles were detected in both liver and caudal fin supporting the use of the caudal fin as a non-lethally obtained tissue source. The potential for both transcriptome profiling and genotypic sex determination from fin biopsy was extended, in

  2. Adsorption and chemical precipitation of lead and zinc from contaminated solutions in porous rocks: Possible application in environmental protection

    Science.gov (United States)

    Németh, Gabriella; Mlinárik, Lilla; Török, Ákos

    2016-10-01

    Natural porous rocks, like limestone and rhyolite tuff are able to reduce heavy metal pollution by adsorbing or precipitating them from heavy metal containing solutions due to the favourable physical and chemical properties of these rocks. In our experiment, two porous rocks, a porous limestone and rhyolite tuff were used. Petrophysical parameters namely apparent density, real density, capillary water absorption, ultrasonic pulse velocity, total porosity and open porosity of the two porous rocks were determined in water-saturated and dried conditions. Powdered rock samples and cylindrical specimens were placed in lead-nitrate and zinc-sulphate solutions (initial concentration: 1000 ppm) and the amount of lead (II) and zinc (II) ions were identified by titration (chelatometry) of the residual solution. According to the experiments, powdered rocks and rock specimens of limestone and rhyolite tuff reduced the lead (II) and zinc (II) ion concentrations in aqueous solution. The results were cross-checked by ICP-MS. Heavy metal removal capacity was relatively high, 92-99% in each case. The treated powdered rocks and rock specimens were also studied by scanning electron microscope (SEM-EDS) and new heavy metal precipitates were identified. According to the tests result, it could be confirmed that these types of lithologies are capable of removing heavy metals and can be used in environmental protection technologies in a form of permeable reactive barrier.

  3. Environmental/chemical thesaurus

    Energy Technology Data Exchange (ETDEWEB)

    Shriner, C.R.; Dailey, N.S.; Jordan, A.C.; Miller, K.C.; Owens, E.T.; Rickert, L.W.

    1978-06-01

    The Environmental/Chemical Thesaurus approaches scientific language control problems from a multidisciplinary view. The Environmental/Biomedical Terminology Index (EBTI) was used as a base for the present thesaurus. The Environmental/Chemical Thesaurus, funded by the Environmental Protection Agency, used as its source of new terms those major terms found in 13 Environmental Protection Agency data bases. The scope of this thesaurus includes not only environmental and biomedical sciences, but also the physical sciences with emphasis placed on chemistry. Specific chemical compounds are not included; only classes of chemicals are given. To adhere to this level of classification, drugs and pesticides are identified by class rather than by specific chemical name. An attempt was also made to expand the areas of sociology and economics. Terminology dealing with law, demography, and geography was expanded. Proper names of languages and races were excluded. Geographic terms were expanded to include proper names for oceans, continents, major lakes, rivers, and islands. Political divisions were added to allow for proper names of countries and states. With such a broad scope, terminology for specific sciences does not provide for indexing to the lowest levels in plant, animal, or chemical classifications.

  4. Eels:Contaminant cocktails pinpointing environmental contamination

    OpenAIRE

    Belpaire, Claude; Goemans, Geert

    2008-01-01

    There is growing concern that insufficient somatic and health conditions of silver European eels (Anguilla anguilla) emigrating from European waters to oceanic spawning areas might be a key causative factor in the decline of the stock. One factor that could contribute to deterioration in the status of eels is high contaminant accumulation in their body. Contaminants may affect lipid metabolism and result in lower energy stores. A high body burden of contaminants and low energy stores might be...

  5. Field and laboratory studies of chemical contamination and environmentally related diseases in fish and molluscs of New England

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, G.R.

    1993-01-01

    The concentration of PCBs, PAHs, insecticides and metals in some aquatic ecosystems have reached high levels placing identified populations at risk to chemical, physical, and biological agents in estuarine and open coastal areas of the United States. In the last three decades scientific studies bolstered evidence for a causal relationship between spontaneous and chemically induced pathological effects on marine organisms and exposure to industrial and agricultural pollutants discharged into aquatic ecosystems. In subsequent years research, both in the laboratory and at polluted estuarine or marine sites, has elucidated causal relationships between processes of pathogenesis of lesions (including carcinogenesis) and exposure to specific toxic agents. Today, research investigating mechanisms of chemical- and pollutant-induced lesions is demonstrating that chemicals can exert toxic, mutagenic, carcinogenic, and immunogenic effects on marine organisms.

  6. Epigenetics and environmental chemicals.

    Science.gov (United States)

    Baccarelli, Andrea; Bollati, Valentina

    2009-04-01

    Epigenetics investigates heritable changes in gene expression occurring without changes in DNA sequence. Several epigenetic mechanisms, including DNA methylation, histone modifications, and microRNA expression, can change genome function under exogenous influence. Here, we review current evidence indicating that epigenetic alterations mediate toxicity from environmental chemicals. In-vitro, animal, and human investigations have identified several classes of environmental chemicals that modify epigenetic marks, including metals (cadmium, arsenic, nickel, chromium, and methylmercury), peroxisome proliferators (trichloroethylene, dichloroacetic acid, and TCA), air pollutants (particulate matter, black carbon, and benzene), and endocrine-disrupting/reproductive toxicants (diethylstilbestrol, bisphenol A, persistent organic pollutants, and dioxin). Most studies conducted so far have been centered on DNA methylation, whereas only a few investigations have studied environmental chemicals in relation to histone modifications and microRNA. For several exposures, it has been proved that chemicals can alter epigenetic marks, and that the same or similar epigenetic alterations can be found in patients with the disease of concern or in diseased tissues. Future prospective investigations are needed to determine whether exposed individuals develop epigenetic alterations over time and, in turn, which such alterations increase the risk of disease. Also, further research is needed to determine whether environmental epigenetic changes are transmitted transgenerationally.

  7. Agricultural Chemical Sourcebook for Wildlife Contaminants Specialists

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this handbook is to provide information to contaminant specialists involved in evaluating agricultural chemical impacts on wetlands. The handbook...

  8. Chemical-gene interaction networks and causal reasoning for biological effects prediction and prioritization of contaminants for environmental monitoring and surveillance

    Science.gov (United States)

    Evaluating the potential human health and ecological risks associated with exposures to complex chemical mixtures in the environment is one of the main challenges of chemical safety assessment and environmental protection. There is a need for approaches that can help to integrat...

  9. 40 CFR 141.11 - Maximum contaminant levels for inorganic chemicals.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Maximum contaminant levels for inorganic chemicals. 141.11 Section 141.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 141.11 Maximum contaminant levels for inorganic chemicals. (a) The maximum contaminant level for...

  10. ENVIRONMENTAL CONTAMINATION FROM WEAPON TESTS

    Energy Technology Data Exchange (ETDEWEB)

    none

    1958-10-01

    The program of the Atomic Energy Commission on environmental contamination from weapons tests is designed for the overall evaluation of the hazard to humans from test operations. It is limited to studies of the deposition of activity at long range rather than the problems associated with immediate, close-in fallout. The program has largely been a study of Sr{sup 90}, since considerations based on experience and measurement indicate that it is the isotope of greatest potential hazard. Data are presented pertinent to the monitoring of long-range fallout, particularly Sr{sup 90} and Cs{sup 137}. Values are tabulated for the fallout deposition, air concentrations, water concentrations, and the amounts in foods and human bone. In addition, results are given for some experimental investigations. The report of these results is not interpretative although certain papers that do attempt to interpret the present situation with respect to Sr{sup 90} in particular are reprinted. Bibliographies are presented covering the period since the 1957 hearings before the Joint Committee on Atomic Energy concerning the nature of radioactive fallout and its effects on man. A document list of submissions to the United Nations Scientific Committee on the Effects of Atomic Radiation is given to illustrate the work done in other countries. Several papers on the subject, which have not been generally available, are reprinted.

  11. Environmental contaminants: assessment and control

    National Research Council Canada - National Science Library

    Vallero, Daniel A

    2004-01-01

    ... Understanding Policy by Understanding Science Connections and Interrelationships of Environmental Science Environmental Assessment and Intervention Engineering Technical Note: Cleaning up a Hazardous Waste Site Social Aspects of Environmental Science Introduction to Environmental Policy The National Environmental Policy Act Issues in Environmental Science: Co...

  12. Retrospective biomonitoring of chemical contamination in the marine coastal environment of Terra Nova Bay (Ross Sea, Antarctica) by environmental specimen banking.

    Science.gov (United States)

    Grotti, Marco; Pizzini, Sarah; Abelmoschi, Maria Luisa; Cozzi, Giulio; Piazza, Rossano; Soggia, Francesco

    2016-12-01

    Antarctica offers a good opportunity to investigate planetary-scale pollution and climate change, and provides baseline values for contaminants such as Trace Elements (TEs) and Persistent Organic Pollutants (POPs). Literature data on contaminant levels in the Antarctic environment indicate that long-range atmospheric transport is the primary pathway by which pollutants from surrounding continents are carried to this pristine environment. However, local contamination sources represented by the scientific stations are also not negligible. Climate change and global warming are altering the global budget of anthropogenic contaminants and their monitoring in Antarctica ecosystems is very important to protect the global environment. In this work, eighty specimens of Adamussium colbecki (Smith, 1902), a benthic Antarctic scallop, collected from 1996 to 2009 and stored in the Antarctic Environmental Specimen Bank, were analyzed to quantify TEs and POPs, including polychlorinated biphenyls (PCBs), polychlorinated naphthalenes (PCNs) and polycyclic aromatic hydrocarbons (PAHs). Metals concentrations were not affected by anthropogenic contributions, highlighting a natural accumulation with the age of the organism. Similarly, no temporal trend was found for PCNs, PCBs and PAHs. However, specimens collected during the summer 1997-98 showed enhanced concentration levels of PCBs and PAHs that could refer to a local anthropogenic source of contamination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Environmental contamination due to shale gas development.

    Science.gov (United States)

    Annevelink, M P J A; Meesters, J A J; Hendriks, A J

    2016-04-15

    Shale gas development potentially contaminates both air and water compartments. To assist in governmental decision-making on future explorations, we reviewed scattered information on activities, emissions and concentrations related to shale gas development. We compared concentrations from monitoring programmes to quality standards as a first indication of environmental risks. Emissions could not be estimated accurately because of incomparable and insufficient data. Air and water concentrations range widely. Poor wastewater treatment posed the highest risk with concentrations exceeding both Natural Background Values (NBVs) by a factor 1000-10,000 and Lowest Quality Standards (LQSs) by a factor 10-100. Concentrations of salts, metals, volatile organic compounds (VOCs) and hydrocarbons exceeded aquatic ecotoxicological water standards. Future research must focus on measuring aerial and aquatic emissions of toxic chemicals, generalisation of experimental setups and measurement technics and further human and ecological risk assessment. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Environmental Chemicals in Breast Milk

    Science.gov (United States)

    Most of the information available on environmental chemicals in breast milk is focused on persistent, lipophilic chemicals; the database on levels of these chemicals has expanded substantially since the 1950s. Currently, various types of chemicals are measured in breast milk and ...

  15. Environmental forensic research for emerging contaminants in complex environmental matrices

    Science.gov (United States)

    The United States Environmental Protection Agency has established criteria to address many of the significant traditional pollutants demonstrated to have adverse affects on environmental quality. However, new chemicals are being created almost daily, and these new chemicals, as ...

  16. Phytotechnologies: remediation of environmental contaminants

    National Research Council Canada - National Science Library

    Anjum, Naser A

    2013-01-01

    "This book highlights the use of the natural-inherent traits of plants and associated bacteria and microbes to exclude, accumulate or metabolize toxic contaminants where they contribute significantly...

  17. Owls as biomonitors of environmental contamination

    Science.gov (United States)

    Steven R. Sheffield

    1997-01-01

    Much like the caged canary used by miners, a plethora of wildlife species have been promoted as biomonitors of environmental contamination. These species provide an "early warning system" for toxic contaminants in the environment. Species promoted as useful biomonitors share many common life history characters, such as wide distribution, territorial, non-...

  18. Environmental Contaminants Monitoring Plan for Stillwater National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This environmental contaminants monitoring program is designed to assess concentrations, distribution, and biological availability of environmental contaminants on...

  19. Food Safety and Chemical Contaminants: An Overview a

    Directory of Open Access Journals (Sweden)

    A. Ali

    2004-06-01

    Full Text Available Food safety is a major consumer’s concern worldwide. Although several incidences of food poisoning have placed microbial contamination on the forefront during recent years, health risks due to chemical contamination still remain high. The most often cited chemical contaminants are derived from a variety of sources such as pesticides, environmental chemicals (PCBs. dioxin, heavy metals including lead, mercury, chemical contaminants as a result of food processing (acrylamide, nitrosamines etc., naturally occurring toxicants (glycoalkaloids, mycotoxins, antinutritives etc, chemicals migrating from packaging materials, veterinary drugs and other chemical residues. In addition to the presence of unintentional contaminants, the quality and safety of foods could also be compromised by the addition of certain food additives, phytonutrients, exposure to irradiation and other substances. Food processors and the regulatory and enforcement agencies are facing an ever-increasing challenge to meet the consumer’s demands for safe foods that do not pose health risks or alter their lifestyle. As the food trade expands throughout the world, food safety has become a shared concern among both the developed and developing countries. Although food control systems do exist in the countries of Gulf region, in most of the cases they are not in line with national and international needs and are not able to cope with the new challenges of the modern era. The most appropriate methods to ensure the safety of food supplies are the strengthening of regular surveillance systems, developing methods for the systematic application of risk analysis, risk assessment and risk management strategies, and timely communication of information to develop and enforce the appropriate food safety laws globally as well as the development of international and national cooperation. This paper reviews issues, challenges and solutions to achieve food safety with respect to chemical

  20. Chemical fingerprinting of hydrocarbon-contamination in soil

    DEFF Research Database (Denmark)

    Boll, Esther Sørensen; Nejrup, Jens; Jensen, Julie K.

    2015-01-01

    Chemical fingerprinting analyses of 29 hydrocarbon-contaminated soils were performed to assess the soil quality and determine the main contaminant sources. The results were compared to an assessment based on concentrations of the 16 priority polycyclic aromatic hydrocarbons pointed out by the U.......S. Environmental Protection Agency (EPAPAH16) and total petroleum hydrocarbon (TPH). The chemical fingerprinting strategy proposed in this study included four tiers: (i) qualitative analysis of GC-FID chromatograms, (ii) comparison of the chemical composition of both un-substituted and alkyl-substituted polycyclic......, pyrene, and chrysene; and 13 oxygenated polycyclic aromatic compounds (O-PACs). The chemical composition of un-substituted and alkyl-substituted PACs and visual interpretation of GC-FID chromatograms were in combination successful in differentiating pyrogenic and petrogenic hydrocarbon sources...

  1. Contaminant mixtures and repoductive health: Developmental toxicity effects in rats after mixed exposure to environmentally relevant endocrine disrupting chemicals, with focus on effects in females

    DEFF Research Database (Denmark)

    Jacobsen, Pernille Rosenskjold; Christiansen, Sofie; Hass, Ulla

    disorders or later onset adult diseases. However, experimental evidence on the effects of developmental exposure to environmentally relevant endocrine disrupting chemicals in females has been missing attention. Since chemical exposure can affect female reproductive development it is important to investigate...... offspring including anogenital distance (AGD), number of nipples, onset of puberty, measurements of Anti-Müllerian hormone (AMH) and estrous cyclicity at several time point during the animals life span. Results and discussion: Prolonged gestational length was observed in the Pestimix studies at mixture...

  2. Intentional and inadvertent chemical contamination of food, water, and medication.

    Science.gov (United States)

    MCKay, Charles; Scharman, Elizabeth J

    2015-02-01

    Numerous examples of chemical contamination of food, water, or medication have led to steps by regulatory agencies to maintain the safety of this critical social infrastructure and supply chain. Identification of contaminant site is important. Environmental testing and biomonitoring can define the nature and extent of the event and are useful for providing objective information, but may be unavailable in time for clinical care. Clinical diagnosis should be based on toxidrome recognition and assessment of public health implications. There are several resources available to assist and these can be accessed through regional poison control centers or local/state public health departments. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. The toxicity data landscape for environmental chemicals.

    Science.gov (United States)

    Judson, Richard; Richard, Ann; Dix, David J; Houck, Keith; Martin, Matthew; Kavlock, Robert; Dellarco, Vicki; Henry, Tala; Holderman, Todd; Sayre, Philip; Tan, Shirlee; Carpenter, Thomas; Smith, Edwin

    2009-05-01

    Thousands of chemicals are in common use, but only a portion of them have undergone significant toxicologic evaluation, leading to the need to prioritize the remainder for targeted testing. To address this issue, the U.S. Environmental Protection Agency (EPA) and other organizations are developing chemical screening and prioritization programs. As part of these efforts, it is important to catalog, from widely dispersed sources, the toxicology information that is available. The main objective of this analysis is to define a list of environmental chemicals that are candidates for the U.S. EPA screening and prioritization process, and to catalog the available toxicology information. We are developing ACToR (Aggregated Computational Toxicology Resource), which combines information for hundreds of thousands of chemicals from > 200 public sources, including the U.S. EPA, National Institutes of Health, Food and Drug Administration, corresponding agencies in Canada, Europe, and Japan, and academic sources. ACToR contains chemical structure information; physical-chemical properties; in vitro assay data; tabular in vivo data; summary toxicology calls (e.g., a statement that a chemical is considered to be a human carcinogen); and links to online toxicology summaries. Here, we use data from ACToR to assess the toxicity data landscape for environmental chemicals. We show results for a set of 9,912 environmental chemicals being considered for analysis as part of the U.S. EPA ToxCast screening and prioritization program. These include high-and medium-production-volume chemicals, pesticide active and inert ingredients, and drinking water contaminants. Approximately two-thirds of these chemicals have at least limited toxicity summaries available. About one-quarter have been assessed in at least one highly curated toxicology evaluation database such as the U.S. EPA Toxicology Reference Database, U.S. EPA Integrated Risk Information System, and the National Toxicology Program.

  4. addressing environmental contamination through market regulations

    African Journals Online (AJOL)

    RAYAN_

    Substances Control Act (TSCA), is the 'gold standard' for chemical regulation, the central premise of this article is that the Frank R. Lautenberg Chemical. Safety Act for the 21st Century provides unique opportunities for preventing environmental releases from new and existing chemical substances, which amounts to, if not ...

  5. Environmental chemicals and thyroid function

    DEFF Research Database (Denmark)

    Boas, Malene; Feldt-Rasmussen, Ulla; Skakkebaek, Niels E

    2006-01-01

    There is growing evidence that environmental chemicals can disrupt endocrine systems. Most evidence originates from studies on reproductive organs. However, there is also suspicion that thyroid homeostasis may be disrupted. Several groups of chemicals have potential for thyroid disruption....... There is substantial evidence that polychlorinated biphenyls, dioxins and furans cause hypothyroidism in exposed animals and that environmentally occurring doses affect human thyroid homeostasis. Similarly, flame retardants reduce peripheral thyroid hormone (TH) levels in rodents, but human studies are scarce. Studies...

  6. Metal contamination in environmental media in residential ...

    Science.gov (United States)

    Hard-rock mining for metals, such as gold, silver, copper, zinc, iron and others, is recognized to have a significant impact on the environmental media, soil and water, in particular. Toxic contaminants released from mine waste to surface water and groundwater is the primary concern, but human exposure to soil contaminants either directly, via inhalation of airborne dust particles, or indirectly, via food chain (ingestion of animal products and/or vegetables grown in contaminated areas), is also, significant. In this research, we analyzed data collected in 2007, as part of a larger environmental study performed in the Rosia Montana area in Transylvania, to provide the Romanian governmental authorities with data on the levels of metal contamination in environmental media from this historical mining area. The data were also considered in policy decision to address mining-related environmental concerns in the area. We examined soil and water data collected from residential areas near the mining sites to determine relationships among metals analyzed in these different environmental media, using the correlation procedure in SAS statistical software. Results for residential soil and water analysis indicate that the average values for arsenic (As) (85 mg/kg), cadmium (Cd) (3.2 mg/kg), mercury (Hg) (2.3 mg/kg) and lead (Pb) (92 mg/kg) exceeded the Romanian regulatory exposure levels [the intervention thresholds for residential soil in case of As (25 mg/kg) and Hg

  7. Levels of chemical contaminants in nonoccupationally exposed U. S. residents

    Energy Technology Data Exchange (ETDEWEB)

    Holleman, J.W.; Hammons, A.S.

    1978-08-01

    Data are presented on the levels of all chemical contaminants resulting from environmental pollution which have been found in human tissues including blood, urine, breast milk, and tissue samples obtained at autopsy. Most data results from specific surveys to determine health hazards. The roles of trace elements and recognition of the need to determine baseline levels of chemicals introduced into the environment are factors which have motivated surveys by individual investigators. Thus, most data on chemicals in human tissues record levels of pesticides (e.g., DDT and metabolites), levels of trace metals such as lead, cadmium, and mercury, or levels of nutritionally essential elements such as zinc, copper, manganese, and fluoride. Data available on iron and calcium are not presented as their presence in the environment is generally not considered hazardous. Data on several uncommon chemicals, such as indium and ytterbium, are included basically as items of interest and to further document their presence in healthy individuals. Baseline data were presented where available to provide perspective as to chemical levels which might be expected under conditions where exposure could be considered normal or not directly related to a pollutant source. Nearly 600 cited surveys or investigations, most of which were reported within the past decade, are listed. Ninety-four different chemical contaminants, primarily trace metals and organochlorine pesticides, are reported. It is estimated that over 75% of the data published during the past 30 years on chemical contaminants derived from environmental pollution and found in human tissue in the United States are represented in this report.

  8. Chemical contaminants in feedlot wastes: concentrations, effects and attenuation.

    Science.gov (United States)

    Khan, S J; Roser, D J; Davies, C M; Peters, G M; Stuetz, R M; Tucker, R; Ashbolt, N J

    2008-08-01

    Commercial feedlots for beef cattle finishing are potential sources of a range of trace chemicals which have human health or environmental significance. To ensure adequate protection of human and environmental health from exposure to these chemicals, the application of effective manure and effluent management practices is warranted. The Australian meat and livestock industry has adopted a proactive approach to the identification of best management practices. Accordingly, this review was undertaken to identify key chemical species that may require consideration in the development of guidelines for feedlot manure and effluent management practices in Australia. Important classes of trace chemicals identified include steroidal hormones, antibiotics, ectoparasiticides, mycotoxins, heavy metals and dioxins. These are described in terms of their likely sources, expected concentrations and public health or environmental significance based on international data and research. Androgenic hormones such as testosterone and trenbolone are significantly active in feedlot wastes, but they are poorly understood in terms of fate and environmental implications. The careful management of residues of antibiotics including virginiamycin, tylosin and oxytetracycline appears prudent in terms of minimising the risk of potential public health impacts from resistant strains of bacteria. Good management of ectoparasiticides including synthetic pyrethroids, macrocyclic lactones, fluazuron, and amitraz is important for the prevention of potential ecological implications, particularly towards dung beetles. Very few of these individual chemical contaminants have been thoroughly investigated in terms of concentrations, effects and attenuation in Australian feedlot wastes.

  9. Chemical Alterations of Pb using Flue Gas Desulfurization Gypsum (FGDG) in two contaminated soils

    Data.gov (United States)

    U.S. Environmental Protection Agency — The data include chemical composition of Pb contaminated soils by adding FGDG as an amendment. The data shows the changes in Pb speciation to sulfur based minerals....

  10. Environmental chemicals and thyroid function

    DEFF Research Database (Denmark)

    Boas, Malene; Main, Katharina M; Feldt-Rasmussen, Ulla

    2009-01-01

    PURPOSE OF REVIEW: To overview the effects of endocrine disrupters on thyroid function. RECENT FINDINGS: Studies in recent years have revealed thyroid-disrupting properties of many environmentally abundant chemicals. Of special concern is the exposure of pregnant women and infants, as thyroid...

  11. Banking of environmental samples for short-term biochemical and chemical monitoring of organic contamination in coastal marine environments: the GICBEM experience (1986-1990). Groupe Interface Chimie Biologie des Ecosystèmes, Marins.

    Science.gov (United States)

    Garrigues, P; Narbonne, J F; Lafaurie, M; Ribera, D; Lemaire, P; Raoux, C; Michel, X; Salaun, J P; Monod, J L; Romeo, M

    1993-11-01

    The GICBEM (Groupe Interface Chimie Biologie des Ecosystèmes Marins) program consists of an evaluation of the ecosystem health status in the Mediterranean Sea mainly based on chemical and biochemical approaches. Specific chemical contaminants (polycyclic aromatic hydrocarbons (PAH), polychlorobiphenyls (PCB), heavy metals) in waters, sediments, and related biotransformation indicators in target organisms (mussels, fish) have been selected for a complete survey of the coastal waters. In order to provide an appropriate sampling program for standardization for each sampling cruise, various aspects have been studied: (a) parameters for the choice of the sample sites; (b) ways of collection the samples (waters, sediments, marine organisms); and (c) preparation of the samples for a short term storage on board ship and for further analyses in the ground laboratory. Methods of preparation and storage of the samples are described and could be used to initiate an environmental banking program including both possible retrospective analyses of chemical pollutants and biochemical indicators. Moreover, the correlation between chemicals (PAH) and biochemical (mixed function oxygenase activities) parameters has been studied and this demonstrates the capability of the enzyme activities as reliable pollution biomarkers.

  12. Malignant mammary tumor in female dogs: environmental contaminants

    Directory of Open Access Journals (Sweden)

    Bissacot Denise Z

    2010-06-01

    Full Text Available Abstract Mammary tumors of female dogs have greatly increased in recent years, thus demanding rapid diagnosis and effective treatment in order to determine the animal survival. There is considerable scientific interest in the possible role of environmental contaminants in the etiology of mammary tumors, specifically in relation to synthetic chemical substances released into the environment to which living beings are either directly or indirectly exposed. In this study, the presence of pyrethroid insecticide was observed in adjacent adipose tissue of canine mammary tumor. High Precision Liquid Chromatography - HPLC was adapted to detect and identify environmental contaminants in adipose tissue adjacent to malignant mammary tumor in nine female dogs, without predilection for breed or age. After surgery, masses were carefully examined for malignant neoplastic lesions. Five grams of adipose tissue adjacent to the tumor were collected to detect of environmental contaminants. The identified pyrethroids were allethrin, cyhalothrin, cypermethrin, deltamethrin and tetramethrin, with a contamination level of 33.3%. Histopathology demonstrated six female dogs (66.7% as having complex carcinoma and three (33.3% with simple carcinoma. From these tumors, seven (77.8% presented aggressiveness degree III and two (22.2% degree I. Five tumors were positive for estrogen receptors in immunohistochemical analysis. The contamination level was observed in more aggressive tumors. This was the first report in which the level of environmental contaminants could be detected in adipose tissue of female dogs with malignant mammary tumor, by HPLC. Results suggest the possible involvement of pyrethroid in the canine mammary tumor carcinogenesis. Hence, the dog may be used as a sentinel animal for human breast cancer, since human beings share the same environment and basically have the same eating habits.

  13. Environmental contaminants as origins of disordered behavior

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, B.

    1978-01-01

    Behavioral toxicology studies the behavioral effects of contaminants, such as heavy metals, in environmental and occupational settings. A classic example of metal poisoning with behavioral effects is Pink Disease, or acrodynia, due to mercurous chloride intoxication in children. Thalidomide is a more prominent example. Behavioral changes, unlike tangible consequences of pollution, are difficult to perceive as dangers and to correct. Other examples of environmental pollutants causing behavioral symptoms upon intoxication are polybrominated biphenyls, lead, mercury, methylmercury, and a variety of food additives. Sensitivity to food colors and flavors is suspected to be the cause of behavioral abnormalities in children now labeled as hyperactive or hyperkinetic. (ERB)

  14. [Environmental Behaviors and Ecotoxicology of the Emerging Contaminants Polyhalogenated Carbazoles].

    Science.gov (United States)

    Lin, Kun-de; Chen, Yan-qiu; Yuan, Dong-xing

    2016-04-15

    Polyhalogenated carbazoles (PHCs), with a complex chemical structure similar to polychlorinated dibenzofurans, are a class of emerging environmental organic contaminants. There are 135 congeners for PHCs with a pure halogenation. Most of PHCs are not man-made products. Although PHCs in the environment were firstly discovered in the 1980s, these emerging halogenated compounds were not seriously considered until recent years. Recently, more than 20 PHCs have been detected in sediment and soil samples. In addition, studies have shown that PHCs exhibited dioxin-like toxicity and were persistent and bioaccumulative. Therefore, it is very important to understand the distribution, origins and ecotoxicology of PHCs for a better assessment of their environmental risks. To date, research on the environmental behaviors of PHCs is relatively limited and warrants further investigations. In this review, the environmental distribution, source, analytical methods and toxicity of PHCs were summarized and future research needs were outlined.

  15. Chemical fingerprinting of hydrocarbon-contamination in soil.

    Science.gov (United States)

    Boll, Esther S; Nejrup, Jens; Jensen, Julie K; Christensen, Jan H

    2015-03-01

    Chemical fingerprinting analyses of 29 hydrocarbon-contaminated soils were performed to assess the soil quality and determine the main contaminant sources. The results were compared to an assessment based on concentrations of the 16 priority polycyclic aromatic hydrocarbons pointed out by the U.S. Environmental Protection Agency (EPAPAH16) and total petroleum hydrocarbon (TPH). The chemical fingerprinting strategy proposed in this study included four tiers: (i) qualitative analysis of GC-FID chromatograms, (ii) comparison of the chemical composition of both un-substituted and alkyl-substituted polycyclic aromatic compounds (PACs), (iii) diagnostic ratios of selected PACs, and (iv) multivariate data analysis of sum-normalized PAC concentrations. The assessment criteria included quantitative analysis of 19 PACs and C1-C4 alkyl-substituted homologues of naphthalene, fluorene, dibenzothiophene, phenanthrene, pyrene, and chrysene; and 13 oxygenated polycyclic aromatic compounds (O-PACs). The chemical composition of un-substituted and alkyl-substituted PACs and visual interpretation of GC-FID chromatograms were in combination successful in differentiating pyrogenic and petrogenic hydrocarbon sources and in assessing weathering trends of hydrocarbon contamination in the soils. Multivariate data analysis of sum-normalized concentrations could as a stand-alone tool distinguish between hydrocarbon sources of petrogenic and pyrogenic origin, differentiate within petrogenic sources, and detect weathering trends. Diagnostic ratios of PACs were not successful for source identification of the heavily weathered hydrocarbon sources in the soils. The fingerprinting of contaminated soils revealed an underestimation of PACs in petrogenic contaminated soils when the assessment was based solely on EPAPAH16. As alkyl-substituted PACs are dominant in petrogenic sources, the evaluation of the total load of PACs based on EPAPAH16 was not representative. Likewise, the O-PACs are not

  16. Chemical-gene interaction networks and causal reasoning for biological effects prediction and prioritization of contaminants for environmental monitoring and surveillance (poster)

    Science.gov (United States)

    Product Description:Evaluation of the potential effects of complex mixtures of chemicals in the environment is challenged by the lack of extensive toxicity data for many chemicals. However, there are growing sources of online information that curate and compile literature reports...

  17. Chemical oxidation of cable insulating oil contaminated soil

    NARCIS (Netherlands)

    Jinlan Xu,; Pancras, T.; Grotenhuis, J.T.C.

    2011-01-01

    Leaking cable insulating oil is a common source of soil contamination of high-voltage underground electricity cables in many European countries. In situ remediation of these contaminations is very difficult, due to the nature of the contamination and the high concentrations present. Chemical

  18. Reviews of environmental contamination and toxicology

    Energy Technology Data Exchange (ETDEWEB)

    Ware, G.W. (ed.)

    1987-01-01

    These are the first and second volumes under the new Editor of the series that is a continuation of Residue Reviews. The nine reviews in them are as follows: Attenuation of polychlorinated biphenyls in soils; Maleic hydrazide residues in tobacco and their toxicological implications; Fate and persistence of aquatic herbicides; Organophosphorus pesticide residues in fruits and vegetables; Biological half-lives of chemicals in fishes; Propylene chlorohydrins; toxicology, metabolism and environmental fate; The pyrolysis of cannabinoids; Pesticide fate from vine to wine; Transport and transformation of organic chemicals in the soil-air-water ecosystem.

  19. Occurrence and methods of control of chemical contaminants in foods.

    Science.gov (United States)

    Jelinek, C

    1981-06-01

    Contamination of food by chemicals can result from their use on agricultural commodities; accidents or misuse during food handling and processing; nucler weapon testing and operation of nuclear power plants; and disposal of industrial chemicals or by-products with subsequent dispersal into the environment. The Food and Drug Administration (FDA), as the Federal agency mainly responsible for evaluating the hazards of chemical contaminants and enforcing any established tolerance levels for them in foods, has been monitoring pesticides, industrial chemicals, metals, and radionuclides in foods in its nationwide programs for many years. In addition, FDA searches for potential contaminants among the approximately 50,000 industrial chemicals manufactured in the United States and coordinates its efforts with those of other Federal and state agencies in these investigations. The overall results of the FDA surveillance and compliance programs for chemical contaminants in foods, as well as specific examples illustrating the wide range of incidents and types of occurrences, are presented.

  20. Mitochondria and mitochondrial DNA as relevant targets for environmental contaminants.

    Science.gov (United States)

    Roubicek, Deborah A; Souza-Pinto, Nadja C de

    2017-11-01

    The mitochondrial DNA (mtDNA) is a closed circular molecule that encodes, in humans, 13 polypeptides components of the oxidative phosphorylation complexes. Integrity of the mitochondrial genome is essential for mitochondrial function and cellular homeostasis, and mutations and deletions in the mtDNA lead to oxidative stress, mitochondrial dysfunction and cell death. In vitro and in situ studies suggest that when exposed to certain genotoxins, mtDNA accumulates more damage than nuclear DNA, likely owing to its organization and localization in the mitochondrial matrix, which tends to accumulate lipophilic, positively charged molecules. In that regard, several relevant environmental and occupational contaminants have physical-chemical characteristics that indicate that they might accumulate in mitochondria and target mtDNA. Nonetheless, very little is known so far about mtDNA damage and mitochondrial dysfunction due to environmental exposure, either in model organisms or in humans. In this article, we discuss some of the characteristics of mtDNA which render it a potentially relevant target for damage by environmental contaminants, as well as possible functional consequences of damage/mutation accumulation. In addition, we review the data available in the literature focusing on mitochondrial effects of the most common classes of environmental pollutants. From that, we conclude that several lines of experimental evidence support the idea that mitochondria and mtDNA are susceptible and biologically relevant targets for pollutants, and more studies, including mechanistic ones, are needed to shed more light into the contribution of mitochondrial dysfunction to the environmental and human health effects of chemical exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Contamination of nebulizers with environmental allergens.

    Science.gov (United States)

    Bollinger, Mary E; Butz, Arlene; Mudd, Kim; Hamilton, Robert G

    2005-11-01

    A previous article described cockroach allergen in the nebulizer reservoir of an asthmatic patient who experienced a life-threatening exacerbation after nebulizer use. To determine whether indoor allergens can be measured in home nebulizers. As part of a large study examining nebulizer use in underserved asthmatic children, visiting nurses replaced nebulizer sets in patients' homes. Twenty used sets were randomly selected for analysis, without linkage to clinical or home environmental data. Nebulizer reservoirs and negative controls (buffer and albuterol) were extracted overnight with 2 mL of buffer. For positive controls, nebulizer sets were placed in homes with cats and dogs, and other reservoirs were intentionally contaminated with cat (Fel d 1), dog (Can f 1), cockroach (Bla g 1 and Bla g 2), and mouse (Mus m 1) skin test solutions. Extracts were tested for allergens in a masked manner using enzyme-linked immunosorbent assay. Of 17 reservoirs with adequate specimens for allergen detection, 5 (29%) had measurable levels for at least 1 of 5 allergens tested. One reservoir had measurable Can f 1, 2 had Bla g, 3 had Mus m 1, and none had Fel d 1 allergen. Two of 3 homes with cats where nebulizer setups were placed had measurable Fel d 1 in the reservoir, and 1 of 2 homes with dogs had measurable Can f 1. Reservoirs kept in sealed plastic bags had no detectable allergen. Indoor allergens can be found in the nebulizer equipment of children with asthma, with the potential for adverse consequences. Storing nebulizer sets in sealed plastic bags may prevent contamination.

  2. Characterization of chemical waste site contamination and its extent using bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J.M.; Callahan, C.A.; Cline, J.F.; Greene, J.C.; McShane, M.C.; Miller, W.E.; Peterson, S.A.; Simpson, J.C.; Skalski, J.R.

    1984-12-01

    Bioassays were used in a three-phase research project to assess the comparative sensitivity of test organisms to known chemicals, determine if the chemical components in field soil and water samples containing unknown contaminants could be inferred from our laboratory studies using known chemicals, and to investigate kriging (a relatively new statistical mapping technique) and bioassays as methods to define the areal extent of chemical contamination. The algal assay generally was most sensitive to samples of pure chemicals, soil elutriates and water from eight sites with known chemical contamination. Bioassays of nine samples of unknown chemical composition from the Rocky Mountain Arsenal (RMA) site showed that a lettuce seed soil contact phytoassay was most sensitive. In general, our bioassays can be used to broadly identify toxic components of contaminated soil. Nearly pure compounds of insecticides and herbicides were less toxic in the sensitive bioassays than were the counterpart commercial formulations. This finding indicates that chemical analysis alone may fail to correctly rate the severity of environmental toxicity. Finally, we used the lettuce seed phytoassay and kriging techniques in a field study at RMA to demonstrate the feasibility of mapping contamination to aid in cleanup decisions. 25 references, 9 figures, 9 tables.

  3. Prioritization of Contaminants of Emerging Concern in Wastewater Treatment Plant Discharges using Chemical:Gene Interactions in Caged Fish.

    Data.gov (United States)

    U.S. Environmental Protection Agency — We examined whether contaminants present in surface waters could be prioritized for further assessment by linking the presence of specific chemicals to gene...

  4. Toxicology profiles of chemical and radiological contaminants at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Harper, B.L.; Strenge, D.L.; Stenner, R.D.; Maughan, A.D.; Jarvis, M.K.

    1995-07-01

    This document summarizes toxicology information required under Section 3.3 (Toxicity Assessment) of HSRAM, and can also be used to develop the short toxicology profiles required in site assessments (described in HSRAM, Section 3.3.5). Toxicology information is used in the dose-response step of the risk assessment process. The dose-response assessment describes the quantitative relationship between the amount of exposure to a substance and the extent of toxic injury or disease. Data are derived from animal studies or, less frequently, from studies in exposed human populations. The risks of a substance cannot be ascertained with any degree of confidence unless dose-response relations are quantified. This document summarizes dose-response information available from the US Environmental Protection Agency (EPA). The contaminants selected for inclusion in this document represent most of the contaminants found at Hanford (both radiological and chemical), based on sampling and analysis performed during site investigations, and historical information on waste disposal practices at the Hanford Site.

  5. The Influence of Soil Chemical Factors on In Situ Bioremediation of Soil Contamination

    Energy Technology Data Exchange (ETDEWEB)

    Breedveld, Gijs D.

    1997-12-31

    Mineral oil is the major energy source in Western society. Production, transport and distribution of oil and oil products cause serious contamination problems of water, air and soil. The present thesis studies the natural biodegradation processes in the soil environment which can remove contamination by oil products and creosote. The main physical/chemical processes determining the distribution of organic contaminants between the soil solid, aqueous and vapour phase are discussed. Then a short introduction to soil microbiology and environmental factors important for biodegradation is given. There is a discussion of engineered and natural bioremediation methods and the problems related to scaling up laboratory experiments to field scale remediation. Bioremediation will seldom remove the contaminants completely; a residue remains. Factors affecting the level of residual contamination and the consequences for contaminant availability are discussed. Finally, the main findings of the work are summarized and recommendations for further research are given. 111 refs., 41 figs., 19 tabs.

  6. Chemical contaminants in the Wadden Sea: Sources, transport, fate and effects

    Science.gov (United States)

    Laane, R. W. P. M.; Vethaak, A. D.; Gandrass, J.; Vorkamp, K.; Köhler, A.; Larsen, M. M.; Strand, J.

    2013-09-01

    The Wadden Sea receives contaminants from various sources and via various transport routes. The contaminants described in this overview are various metals (Cd, Cu, Hg, Pb and Zn) and various organic contaminants (polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and lindane (hexachlorocyclohexane, γ-HCH)). In addition, information is presented about other and emerging contaminants such as antifouling biocides (e.g. TBT and Irgarol), brominated flame retardants (BFRs), poly- and perfluorinated compounds (PFCs) and pharmaceutical and personal care products (PPCPs). Special attention is given to biogeochemical processes that contribute to the mobilization of contaminants in the surface sediments of the Wadden Sea. Finally, the effects on organisms of contaminants are reviewed and discussed. The main source of contaminants in the Wadden Sea are the rivers Rhine (via de Dutch coastal zone), Elbe and Weser. The Wadden Sea is not a sink for contaminants and adsorbed contaminants are transported from east to west. The surface sediments of the Wadden Sea are an important source for contaminants to the water above. The input and concentration of most contaminants have significantly decreased in water, sediments, organisms (e.g., mussel, flounder and bird eggs) in various parts of the Wadden Sea in the last three decades. Remarkably, the Cd concentration in mussels is increasing the last decades. In recent decades, the effects of contaminants on organisms (e.g., flounder, seal) have fallen markedly. Most of the affected populations have recovered, except for TBT induced effects in snails. Little is known about the concentration and effects of most emerging contaminants and the complex environmental mixtures of contaminants. It is recommended to install an international coordinated monitoring programme for contaminants and their effects in the whole Wadden Sea and to identify the chemical contaminants that really cause the effect.

  7. A baseline study on inorganic chemicals and microbial contaminants

    African Journals Online (AJOL)

    Purpose: Inorganic chemicals and microorganisms are common in human environments and at high levels poisoning from the chronic effects have occasionally occurred. The purpose of this study was therefore to investigate whether the levels of inorganic chemicals and microbial contaminants in boreholes and open wells ...

  8. Microbial contamination and chemical toxicity of the Rio Grande

    Directory of Open Access Journals (Sweden)

    Valles Adrian

    2004-04-01

    Full Text Available Abstract Background The Rio Grande River is the natural boundary between U.S. and Mexico from El Paso, TX to Brownsville, TX. and is one of the major water resources of the area. Agriculture, farming, maquiladora industry, domestic activities, as well as differences in disposal regulations and enforcement increase the contamination potential of water supplies along the border region. Therefore, continuous and accurate assessment of the quality of water supplies is of paramount importance. The objectives of this study were to monitor water quality of the Rio Grande and to determine if any correlations exist between fecal coliforms, E. coli, chemical toxicity as determined by Botsford's assay, H. pylori presence, and environmental parameters. Seven sites along a 112-Km segment of the Rio Grande from Sunland Park, NM to Fort Hancock, TX were sampled on a monthly basis between January 2000 and December 2002. Results The results showed great variability in the number of fecal coliforms, and E. coli on a month-to-month basis. Fecal coliforms ranged between 0–106 CFU/100 ml while E. coli ranged between 6 to > 2419 MPN. H. pylori showed positive detection for all the sites at different times. Toxicity ranged between 0 to 94% of inhibition capacity (IC. Since values above 50% are considered to be toxic, most of the sites displayed significant chemical toxicity at different times of the year. No significant correlations were observed between microbial indicators and chemical toxicity. Conclusion The results of the present study indicate that the 112-Km segment of the Rio Grande river from Sunland Park, NM to Fort Hancock, TX exceeds the standards for contact recreation water on a continuous basis. In addition, the presence of chemical toxicity in most sites along the 112-Km segment indicates that water quality is an area of concern for the bi-national region. The presence of H. pylori adds to the potential health hazards of the Rio Grande. Since no

  9. Natural and modified nanomaterials as sorbents of environmental contaminants.

    Science.gov (United States)

    Yuan, Guodong

    2004-01-01

    Nanotechnology is a revolutionary scientific and engineering concept that will have a large impact on our life. A core piece of this technology is the production of nanomaterials for electronic, chemical, medical, pharmaceutical, and environmental applications. In the last case, natural and modified natural nanomaterials would be good reference points for comparison of the functionality, cost, and potential ecological implications of synthetic nanomaterials. Here we investigated the performance of natural and modified nanomaterials (an allophane and a surface-modified smectite) in adsorbing copper (a common heavy metal contaminant), naphthalene (a representative polycyclic aromatic hydrocarbon), or 17beta-estradiol (an endocrine-disrupting chemical). Allophane is an effective sorbent of copper (Cu): at pH 5.5 it can take up 4448 mg Cu/kg at the equilibrium concentration of 10mg Cu/L. On the other hand, the surface-modified smectite is an excellent sorbent for naphthalene and 17beta-estradiol. It can sorb 1180mg naphthalene/kg at the equilibrium concentration of 1 mg/L or remove 98% of 17beta-estradiol from a solution after 4h of reaction. While the environmental impact and health effects of synthetic nanomaterials are essentially unknown and their use is of concern, natural nanomaterials (e.g., allophane and smectites) have been part of human existence since antiquity. As such, they do not pose much risk either to the physical environment or to human health.

  10. Environmental contamination, product contamination and workers exposure using a robotic system for antineoplastic drug preparation.

    Science.gov (United States)

    Sessink, Paul J M; Leclercq, Gisèle M; Wouters, Dominique-Marie; Halbardier, Loïc; Hammad, Chaïma; Kassoul, Nassima

    2015-04-01

    Environmental contamination, product contamination and technicians exposure were measured following preparation of iv bags with cyclophosphamide using the robotic system CytoCare. Wipe samples were taken inside CytoCare, in the clean room environment, from vials, and prepared iv bags including ports and analysed for contamination with cyclophosphamide. Contamination with cyclophosphamide was also measured in environmental air and on the technicians hands and gloves used for handling the drugs. Exposure of the technicians to cyclophosphamide was measured by analysis of cyclophosphamide in urine. Contamination with cyclophosphamide was mainly observed inside CytoCare, before preparation, after preparation and after daily routine cleaning. Contamination outside CytoCare was incidentally found. All vials with reconstituted cyclophosphamide entering CytoCare were contaminated on the outside but vials with powdered cyclophosphamide were not contaminated on the outside. Contaminated bags entering CytoCare were also contaminated after preparation but non-contaminated bags were not contaminated after preparation. Cyclophosphamide was detected on the ports of all prepared bags. Almost all outer pairs of gloves used for preparation and daily routine cleaning were contaminated with cyclophosphamide. Cyclophosphamide was not found on the inner pairs of gloves and on the hands of the technicians. Cyclophosphamide was not detected in the stationary and personal air samples and in the urine samples of the technicians. CytoCare enables the preparation of cyclophosphamide with low levels of environmental contamination and product contamination and no measurable exposure of the technicians. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  11. The stingless bee species, Scaptotrigona aff. depilis, as a potential indicator of environmental pesticide contamination.

    Science.gov (United States)

    de Souza Rosa, Annelise; I'Anson Price, Robbie; Ferreira Caliman, Maria Juliana; Pereira Queiroz, Elisa; Blochtein, Betina; Sílvia Soares Pires, Carmen; Imperatriz-Fonseca, Vera Lucia

    2015-08-01

    Neonicotinoids have the potential to enter the diet of pollinators that collect resources from contaminated plants. The species Scaptotrigona aff. depilis (Moure, 1942) can be a useful indicator of the prevalence of these chemicals in the environment. Using high-performance liquid chromatography-mass spectrometry, the authors devised a protocol for neonicotinoid residue extraction and detected the presence of neonicotinoids in the bee bodies. Thus, the authors consider this species to be a potential indicator of environmental contamination. © 2015 SETAC.

  12. Environmental Contaminants Evaluation of St. Andrew Bay, Florida: Volume 1

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Between 1985 and 1997, a general survey of St. Andrew Bay, Florida, was conducted to measure chemical contaminant concentrations in the sediments and selected biota....

  13. Discourses on the Toxic Effects of Internal Chemical Contamination in Catalonia, Spain.

    Science.gov (United States)

    Larrea-Killinger, Cristina; Muñoz, Araceli; Mascaró, Jaume; Zafra, Eva; Porta, Miquel

    2017-01-01

    Human exposure to and contamination by environmental toxic compounds generates discourses and practices that merit greater attention. In this article, we assess internal chemical contamination and the risk of toxic effects as an experience related to the production of meaning in everyday life. Drawing on the analysis of semantic networks of narratives from semi-structured interviews conducted with 43 informants in Catalonia, Spain, we consider participants' perceptions of the health risks of toxic compounds, including social discourses on exposure, toxicity, and internal chemical contamination, and on responsibilities, consequences, and proposed strategies for controlling toxic compounds. Informants' narratives on the relationships between nature and nurture suggest that they no longer perceive rigid boundaries separating the human body from the external environment and its chemical pollutants.

  14. Environmental Exposure Assessment of Chemicals

    DEFF Research Database (Denmark)

    Chen Fredenslund, F.; Rasmussen, D.; Mikkelsen, J.

    Miljøprojekt, 306; Hertil hører 5 tekniske bilagsrapporter udgivet som miljøprojekter (Environmental projects) nr. 307-311.......Miljøprojekt, 306; Hertil hører 5 tekniske bilagsrapporter udgivet som miljøprojekter (Environmental projects) nr. 307-311....

  15. Chemical tailoring of steam to remediate underground mixed waste contaminents

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D. (Livermore, CA); Udell, Kent S. (Berkeley, CA); Bruton, Carol J. (Livermore, CA); Carrigan, Charles R. (Tracy, CA)

    1999-01-01

    A method to simultaneously remediate mixed-waste underground contamination, such as organic liquids, metals, and radionuclides involves chemical tailoring of steam for underground injection. Gases or chemicals are injected into a high pressure steam flow being injected via one or more injection wells to contaminated soil located beyond a depth where excavation is possible. The injection of the steam with gases or chemicals mobilizes contaminants, such as metals and organics, as the steam pushes the waste through the ground toward an extraction well having subatmospheric pressure (vacuum). The steam and mobilized contaminants are drawn in a substantially horizontal direction to the extraction well and withdrawn to a treatment point above ground. The heat and boiling action of the front of the steam flow enhance the mobilizing effects of the chemical or gas additives. The method may also be utilized for immobilization of metals by using an additive in the steam which causes precipitation of the metals into clusters large enough to limit their future migration, while removing any organic contaminants.

  16. Environmental contaminant surveys in three National Wildlife Refuges in Wyoming

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Environmental contaminants surveys were conducted at National Elk, Seedskadee, and Hutton Lake National Wildlife Refuges (NWR) to provide information on existing...

  17. Establishing the environmental risk of metal contaminated river bank sediments

    Science.gov (United States)

    Lynch, Sarah; Batty, Lesley; Byrne, Patrick

    2016-04-01

    Climate change predictions indicate an increase in the frequency and duration of flood events along with longer dry antecedent conditions, which could alter patterns of trace metal release from contaminated river bank sediments. This study took a laboratory mesocosm approach. Chemical analysis of water and sediment samples allowed the patterns of Pb and Zn release and key mechanisms controlling Pb and Zn mobility to be determined. Trace metal contaminants Pb and Zn were released throughout flooded periods. The highest concentrations of dissolved Pb were observed at the end of the longest flood period and high concentrations of dissolved Zn were released at the start of a flood. These concentrations were found to exceed environmental quality standards. Key mechanisms controlling mobility were (i) evaporation, precipitation and dissolution of Zn sulphate salts, (ii) anglesite solubility control of dissolved Pb, (iii) oxidation of galena and sphalerite, (iv) reductive dissolution of Mn/Fe hydroxides and co-precipitation/adsorption with Zn. In light of climate change predictions these results indicate future scenarios may include larger or more frequent transient 'pulses' of dissolved Pb and Zn released to river systems. These short lived pollution episodes could act as a significant barrier to achieving the EU Water Framework Directive objectives.

  18. Tactical approach to maneuvering within the chemical contamination labyrinth

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, T.W. [Department of Energy, Oak Ridge, TN (United States)

    1990-12-31

    The Department of Energy (DOE) recognized the need and accepts the responsibility for understanding the reality and mitigating the consequence of the complex chemical contamination legacy it inherited as well as controlling, reducing, and eliminating extant emissions and effluents. The key to maneuvering through this complicated and multifaceted labyrinth of concerns, from which a meaningful, high quality, and cost-effective restoration/mitigation machine is then set in motions, is the ability to perform accurate, factual, and explicit health and environmental/ecological risk assessments. Likewise, the common denominator for carrying out this essential task is to have access to comprehensive and reliable data of known quality with which to perform those analyses. DOE is committed to identifying the data universe; to technically scrutinize and ensure the quality of that data; to develop efficient and cost-effective means to maximize the handling, utilization, and sharing of that universe; and to undertake those assessments. DOE views this as an effort that can only be accomplished through a merging of the technical excellence that exists within federal and state agencies, academia, and industry. The task at hand is so large that only by integrating that intelligence base can we hope to accomplish the goals of establishing meaningful standards, developing functional and effective solutions, and providing quality guidance at a national scale.

  19. Archaeological recording and chemical stratigraphy applied to contaminated land studies.

    Science.gov (United States)

    Photos-Jones, Effie; Hall, Allan J

    2011-11-15

    The method used by archaeologists for excavation and recording of the stratigraphic evidence, within trenches with or without archaeological remains, can potentially be useful to contaminated land consultants (CLCs). The implementation of archaeological practice in contaminated land assessments (CLAs) is not meant to be an exercise in data overkill; neither should it increase costs. Rather, we suggest, that if the excavation and recording, by a trained archaeologist, of the stratigraphy is followed by in-situ chemical characterisation then it is possible that much uncertainty associated with current field sampling practices, may be removed. This is because built into the chemical stratigraphy is the temporal and spatial relationship between different parts of the site reflecting the logic behind the distribution of contamination. An archaeological recording with chemical stratigraphy approach to sampling may possibly provide 'one method fits all' for potentially contaminated land sites (CLSs), just as archaeological characterisation of the stratigraphic record provides 'one method fits all' for all archaeological sites irrespective of period (prehistoric to modern) or type (rural, urban or industrial). We also suggest that there may be practical and financial benefits to be gained by pulling together expertise and resources stemming from different disciplines, not simply at the assessment phase, but also subsequent phases, in contaminated land improvement. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Toxicity assessment of chemical contaminants;transition from in vitromethods to novel in vitro methods

    Directory of Open Access Journals (Sweden)

    A.A. Farshad

    2007-04-01

    Full Text Available Exposure to occupational and environmental contaminants is a major contributor to human health problems. Despite significant achievements in the risk assessment of chemicals, the toxicological database, particularly for industrial chemicals, remains limited. Considering there areapproximately 80, 000 chemicals in commerce, and an extremely large number of chemical mixtures, in vivo testing of this large number is unachievable from ethical, economical and scientific perspectives. Therefore, increasing the number of available industrial chemicals andnew products has created a demand for alternatives to animal methods for better safety evaluation. Recent toxicity studies have demonstrated that in vitro methods are capable of rapidly providing toxicity information. In this review, current toxicity test methods for risk evaluation of industrial chemical contaminants are presented. To evaluate the potential applications of  more recent test methods developed for toxicity testing of chemical contaminants are discussed. Although  to be considered more broadly for risk assessment of human chemical exposures. In vitro methods,in vitro toxicology methods cannot exactly mimic the biodynamics of the whole body, in vitro  relationships (QSARs and physiologically based toxicokinetic (PBTK models have a potentialtest systems in combination with the knowledge of quantitative structure activity.

  1. Toxicokinetic Triage for Environmental Chemicals

    Science.gov (United States)

    Toxicokinetic (TK) models are essential for linking administered doses to blood and tissue concentrations. In vitro-to-in vivo extrapolation (IVIVE) methods have been developed to determine TK from limited in vitro measurements and chemical structure-based property predictions, p...

  2. Toxicokinetic triage for environmental chemicals

    NARCIS (Netherlands)

    Wambaugh, J.F.; Wetmore, B.A.; Pearce, R.; Strope, C.; Goldsmith, R.; Sluka, J.P.; Sedykh, A.; Tropsha, A.; Bosgra, S.; Shah, I.; Judson, R.; Thomas, R.S.; Setzer, R.W.

    2015-01-01

    Toxicokinetic (TK) models link administered doses to plasma, blood, and tissue concentrations. High-throughput TK (HTTK) performs in vitro to in vivo extrapolation to predict TK from rapid in vitro measurements and chemical structure-based properties. A significant toxicological application of HTTK

  3. Chemical speciation and behaviour of cyanide in contaminated soils

    NARCIS (Netherlands)

    Meeussen, J.C.L.

    1992-01-01

    Cyanide is present as a contaminant of the soil on several hundred (former) industrial sites in the Netherlands. The risk for the occurrence of adverse effects on human health and the environment strongly depends on the chemical form in which cyanide is present and on the behaviour of this

  4. A comparative assessment of chemical contaminant removal by ...

    African Journals Online (AJOL)

    This study was aimed at modifying the design of, constructing, evaluating and comparing chemical contaminant removal efficiency by, 3 household water treatment filters. The filters were: 1) biosand filter (BSF); 2) the ceramic candle filter (CCF); 3) bucket filter (BF). The filters were evaluated for their efficiency in removal of ...

  5. E-SMART system for in-situ detection of environmental contaminants. Quarterly progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    Environmental Systems Management, Analysis and Reporting neTwork (E-SMART) is a comprehensive, fully-integrated approach to in-situ, real-time detection and monitoring of environmental contaminants. E-SMART will provide new class of smart, highly sensitive, chemically-specific, in-situ, multichannel microsensors utilizing integrated optical interferometry technology, large, commercially viable set of E-SMART-compatible sensors, samplers, and network management components, and user-friendly graphical user interface for data evaluation and visualization.

  6. USE OF APATITE FOR CHEMICAL STABILIZATION OF SUBSURFACE CONTAMINANTS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. William D. Bostick

    2003-05-01

    Groundwater at many Federal and civilian industrial sites is often contaminated with toxic metals at levels that present a potential concern to regulatory agencies. The U.S. Department of Energy (DOE) has some unique problems associated with radionuclides (primarily uranium), but metal contaminants most likely drive risk-based cleanup decisions, from the perspective of human health, in groundwater at DOE and U.S. Environmental Protection Agency (EPA) Superfund Sites include lead (Pb), arsenic (As), cadmium (Cd), chromium (Cr), mercury (Hg), zinc (Zn), selenium (Se), antimony (Sb), copper (Cu) and nickel (Ni). Thus, the regulatory ''drivers'' for toxic metals in contaminated soils/groundwaters are very comparable for Federal and civilian industrial sites, and most sites have more than one metal above regulatory action limits. Thus improving the performance of remedial technologies for metal-contaminated groundwater will have ''dual use'' (Federal and civilian) benefit.

  7. Environmental chemical exposures and human epigenetics

    Science.gov (United States)

    Hou, Lifang; Zhang, Xiao; Wang, Dong; Baccarelli, Andrea

    2012-01-01

    Every year more than 13 million deaths worldwide are due to environmental pollutants, and approximately 24% of diseases are caused by environmental exposures that might be averted through preventive measures. Rapidly growing evidence has linked environmental pollutants with epigenetic variations, including changes in DNA methylation, histone modifications and microRNAs. Environ mental chemicals and epigenetic changes All of these mechanisms are likely to play important roles in disease aetiology, and their modifications due to environmental pollutants might provide further understanding of disease aetiology, as well as biomarkers reflecting exposures to environmental pollutants and/or predicting the risk of future disease. We summarize the findings on epigenetic alterations related to environmental chemical exposures, and propose mechanisms of action by means of which the exposures may cause such epigenetic changes. We discuss opportunities, challenges and future directions for future epidemiology research in environmental epigenomics. Future investigations are needed to solve methodological and practical challenges, including uncertainties about stability over time of epigenomic changes induced by the environment, tissue specificity of epigenetic alterations, validation of laboratory methods, and adaptation of bioinformatic and biostatistical methods to high-throughput epigenomics. In addition, there are numerous reports of epigenetic modifications arising following exposure to environmental toxicants, but most have not been directly linked to disease endpoints. To complete our discussion, we also briefly summarize the diseases that have been linked to environmental chemicals-related epigenetic changes. PMID:22253299

  8. Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface science research

    Energy Technology Data Exchange (ETDEWEB)

    Riley, R.G.; Zachara, J.M. (Pacific Northwest Lab., Richland, WA (United States))

    1992-04-01

    This report identifies individual contaminants and contaminant mixtures that have been measured in the ground at 91 waste sites at 18 US Department of Energy (DOE) facilities within the weapons complex. The inventory of chemicals and mixtures was used to identify generic chemical mixtures to be used by DOE's Subsurface Science Program in basic research on the subsurface geochemical and microbiological behavior of mixed contaminants (DOE 1990a and b). The generic mixtures contain specific radionuclides, metals, organic ligands, organic solvents, fuel hydrocarbons, and polychlorinated biphenyls (PCBs) in various binary and ternary combinations. The mixtures are representative of in-ground contaminant associations at DOE facilities that are likely to exhibit complex geochemical behavior as a result of intercontaminant reactions and/or microbiologic activity stimulated by organic substances. Use of the generic mixtures will focus research on important mixed contaminants that are likely to be long-term problems at DOE sites and that will require cleanup or remediation. The report provides information on the frequency of associations among different chemicals and compound classes at DOE waste sites that require remediation.

  9. Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface science research

    Energy Technology Data Exchange (ETDEWEB)

    Riley, R.G.; Zachara, J.M. [Pacific Northwest Lab., Richland, WA (United States)

    1992-04-01

    This report identifies individual contaminants and contaminant mixtures that have been measured in the ground at 91 waste sites at 18 US Department of Energy (DOE) facilities within the weapons complex. The inventory of chemicals and mixtures was used to identify generic chemical mixtures to be used by DOE`s Subsurface Science Program in basic research on the subsurface geochemical and microbiological behavior of mixed contaminants (DOE 1990a and b). The generic mixtures contain specific radionuclides, metals, organic ligands, organic solvents, fuel hydrocarbons, and polychlorinated biphenyls (PCBs) in various binary and ternary combinations. The mixtures are representative of in-ground contaminant associations at DOE facilities that are likely to exhibit complex geochemical behavior as a result of intercontaminant reactions and/or microbiologic activity stimulated by organic substances. Use of the generic mixtures will focus research on important mixed contaminants that are likely to be long-term problems at DOE sites and that will require cleanup or remediation. The report provides information on the frequency of associations among different chemicals and compound classes at DOE waste sites that require remediation.

  10. Environmental chemicals and thyroid function: an update

    DEFF Research Database (Denmark)

    Boas, M.; Main, K.M.; Feldt-Rasmussen, U.

    2009-01-01

    PURPOSE OF REVIEW: To overview the effects of endocrine disrupters on thyroid function. RECENT FINDINGS: Studies in recent years have revealed thyroid-disrupting properties of many environmentally abundant chemicals. Of special concern is the exposure of pregnant women and infants, as thyroid...... thyroid effects through a variety of mechanisms of action, and some publications have focused on elucidating the mechanisms of specific (groups of) chemicals. SUMMARY: A large variety of ubiquitous chemicals have been shown to have thyroid-disrupting properties, and the combination of mechanistic......, epidemiological and exposure studies indicates that the ubiquitous human and environmental exposure to industrial chemicals may impose a serious threat to human and wildlife thyroid homeostasis. Currently, available evidence suggests that authorities need to regulate exposure to thyroid-disrupting chemicals...

  11. Mussel as biomonitor of environmental contamination

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Vivianne L.B.; Nascimento, Rizia Keila do, E-mail: vlsouza@cnen.gov.br, E-mail: riziakelia@hotmail.com [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Melo, Jessica V. de, E-mail: jessica_clorofila@hotmail [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2013-07-01

    The presence of agricultural input, domestic and industrial discharges, can result in a contaminant impact in aquatic ecosystems and in elevated concentrations of trace metals that may exert direct toxic effects and maybe accumulated in organisms consumed by man. The objective of the present study was to investigate some metal concentrations in Mytilidae falcate collected from Channel of Santa Cruz, Brazil. There are some industries located along the Channel of Santa Cruz that manufacture aluminum, paper and cellulose, pesticides, and caustic soda. Mussels collected at this area were carefully opened, dried and 0.5g of samples were heating with a mixture of acids; the final solution was filtered and made up to 50 mL. Metals concentrations were measured at aICP-MS (FINNIGAN) and AAS (VARIAN). The results demonstrated that there is more Fe and Mn in the mussels than any other studied metals (Fe >Mn >Cd >Pb >Cu >Th >U).The results for Fe and Mn concentrations are similar to those reported in the literature for invertebrates and fishes collected in regions contaminated by domestic and industrial sewage. Lead and Cd values, on the other hand, are beyond the limiting values for human consumption. Only the levels of copper are within to the Brazilian legislation. Uranium concentration was lower than results showed in literature. (author)

  12. Metamorphosis alters contaminants and chemical tracers in insects: implications for food webs.

    Science.gov (United States)

    Kraus, Johanna M; Walters, David M; Wesner, Jeff S; Stricker, Craig A; Schmidt, Travis S; Zuellig, Robert E

    2014-09-16

    Insects are integral to most freshwater and terrestrial food webs, but due to their accumulation of environmental pollutants they are also contaminant vectors that threaten reproduction, development, and survival of consumers. Metamorphosis from larvae to adult can cause large chemical changes in insects, altering contaminant concentrations and fractionation of chemical tracers used to establish contaminant biomagnification in food webs, but no framework exists for predicting and managing these effects. We analyzed data from 39 studies of 68 analytes (stable isotopes and contaminants), and found that metamorphosis effects varied greatly. δ(15)N, widely used to estimate relative trophic position in biomagnification studies, was enriched by ∼ 1‰ during metamorphosis, while δ(13)C used to estimate diet, was similar in larvae and adults. Metals and polycyclic aromatic hydrocarbons (PAHs) were predominantly lost during metamorphosis leading to ∼ 2 to 125-fold higher larval concentrations and higher exposure risks for predators of larvae compared to predators of adults. In contrast, manufactured organic contaminants (such as polychlorinated biphenyls) were retained and concentrated in adults, causing up to ∼ 3-fold higher adult concentrations and higher exposure risks to predators of adult insects. Both food web studies and contaminant management and mitigation strategies need to consider how metamorphosis affects the movement of materials between habitats and ecosystems, with special regard for aquatic-terrestrial linkages.

  13. Metamorphosis alters contaminants and chemical tracers in insects: implications for food webs

    Science.gov (United States)

    Kraus, Johanna M.; Walters, David M.; Wesner, Jeff S.; Stricker, Craig A.; Schmidt, Travis S.; Zuellig, Robert E.

    2014-01-01

    Insects are integral to most freshwater and terrestrial food webs, but due to their accumulation of environmental pollutants they are also contaminant vectors that threaten reproduction, development, and survival of consumers. Metamorphosis from larvae to adult can cause large chemical changes in insects, altering contaminant concentrations and fractionation of chemical tracers used to establish contaminant biomagnification in food webs, but no framework exists for predicting and managing these effects. We analyzed data from 39 studies of 68 analytes (stable isotopes and contaminants), and found that metamorphosis effects varied greatly. δ15N, widely used to estimate relative trophic position in biomagnification studies, was enriched by 1‰ during metamorphosis, while δ13C used to estimate diet, was similar in larvae and adults. Metals and polycyclic aromatic hydrocarbons (PAHs) were predominantly lost during metamorphosis leading to 2 to 125-fold higher larval concentrations and higher exposure risks for predators of larvae compared to predators of adults. In contrast, manufactured organic contaminants (such as polychlorinated biphenyls) were retained and concentrated in adults, causing up to 3-fold higher adult concentrations and higher exposure risks to predators of adult insects. Both food web studies and contaminant management and mitigation strategies need to consider how metamorphosis affects the movement of materials between habitats and ecosystems, with special regard for aquatic-terrestrial linkages.

  14. Environmental Systems Microbiology of Contaminated Environments

    Energy Technology Data Exchange (ETDEWEB)

    Sayler, Gary [University of Tennessee, Knoxville (UTK); Hazen, Terry C. [ORNL

    2016-01-01

    Environmental Systems Microbiology is well positioned to move forward in dynamic complex system analysis probing new questions and developing new insight into the function, robustness and resilience in response to anthropogenic perturbations. Recent studies have demonstrated that natural bacterial communities can be used as quantitative biosensors in both groundwater and deep ocean water, predicting oil concentration from the Gulf of Mexico Deep Water Horizon spill and from groundwater at nuclear production waste sites (16, 17, 25). Since the first demonstration of catabolic gene expression in soil remediation (34) it has been clear that extension beyond organismal abundance to process and function of microbial communities as a whole using the whole suite of omic tools available to the post genomic era. Metatranscriptomics have been highlighted as a prime vehicle for understanding responses to environmental drivers (35) in complex systems and with rapidly developing metabolomics, full functional understanding of complex community biogeochemical cycling is an achievable goal. Perhaps more exciting is the dynamic nature of these systems and their complex adaptive strategies that may lead to new control paradigms and emergence of new states and function in the course of a changing environment.

  15. ENVIRONMENTAL CONTAMINANTS IN WILD BOARS FROM CALABRIA

    Directory of Open Access Journals (Sweden)

    F. Naccari

    2011-01-01

    Full Text Available The aim of this study was to determine heavy metals (Cd, Cu, Pb and Zn organochlorine pesticides (POCs and polychlorinated biphenyl (PCBs in some samples (heart, kidney, liver, lung, muscle tissue and spleen of wild boars (utilized as “bioindicator” from various areas from Calabria. Quantitative determination of POCs and PCBs were carried out using GC-ECD and confirmed with GC-MS. The concentrations of heavy metals were determined by a Varian Atomic Absorption Spectroscopy instrument. Our data have shown low residual levels of OCs, heavy metals and the absence of PCBs in all samples analyzed and therefore the boar meat products are not dangerous for the consumer. Moreover, results obtained deserve particular attention not only for their significance but especially because they were recorded in Calabria, a region a low risk of environmental pollution due to the shortage of industries and the traditional agricultural activity.

  16. Aquatic Environmental Contamination: The fate of Asejire Lake in ...

    African Journals Online (AJOL)

    Fish stocks are at the upper end of the food chains and are vital food supplies to local populations and thus they present a major source of contaminants to local communities. Therefore this project highlights the need for environmental regulation and policy intervention in other to prevent the risk attached to accumulation of ...

  17. FINGERPRINT ANALYSIS OF CONTAMINANT DATA: A FORENSIC TOOL FOR EVALUATING ENVIRONMENTAL CONTAMINATION

    Science.gov (United States)

    Several studies have been conducted on behalf of the U .S. Environmental Protection Agency (EPA) to identify detection monitoring parameters for specific industries.1,2,3,4,5 One outcome of these studies was the evolution of an empirical multi-variant contaminant fingerprinting p...

  18. Chemical contamination of free-range eggs from Belgium.

    Science.gov (United States)

    Van Overmeire, I; Pussemier, L; Hanot, V; De Temmerman, L; Hoenig, M; Goeyens, L

    2006-11-01

    The elements manganese, cobalt, nickel, copper, zinc, arsenic, selenium, molybdenum, cadmium, antimony, thallium, lead and mercury, and selected persistent organochlorine compounds (dioxins, marker and dioxin-like polychlorinated biphenyls, dichlorodiphenyltricholroethane (DDT) and metabolites as well as other chlorinated pesticides) were analysed in Belgian free-range eggs obtained from hens of private owners and of commercial farms. It was found that eggs from private owners were more contaminated than eggs from commercial farms. The ratios of levels in eggs from private owners to the levels in eggs from commercial farms ranged from 2 to 8 for the toxic contaminants lead, mercury, thallium, dioxins, polychlorinated biphenyls and the group of DDT. DDT contamination was marked by the substantial presence of p,p'-DDT in eggs from private owners in addition to dichlorodiphenyldichloroethylene (p,p-DDE) and dichlorodiphenyl-dichloroethane (p,p'-DDD). It is postulated that environmental pollution is at the origin of the higher contamination of eggs from private owners. Extensive consumption of eggs from private owners is likely to result in toxic equivalent quantity intake levels exceeding the tolerable weekly intake.

  19. Multimedia environmental chemical partitioning from molecular information.

    Science.gov (United States)

    Martínez, Izacar; Grifoll, Jordi; Giralt, Francesc; Rallo, Robert

    2010-12-15

    The prospect of assessing the environmental distribution of chemicals directly from their molecular information was analyzed. Multimedia chemical partitioning of 455 chemicals, expressed in dimensionless compartmental mass ratios, was predicted by SimpleBox 3, a Level III Fugacity model, together with the propagation of reported uncertainty for key physicochemical and transport properties, and degradation rates. Chemicals, some registered in priority lists, were selected according to the availability of experimental property data to minimize the influence of predicted information in model development. Chemicals were emitted in air or water in a fixed geographical scenario representing the Netherlands and characterized by five compartments (air, water, sediments, soil and vegetation). Quantitative structure-fate relationship (QSFR) models to predict mass ratios in different compartments were developed with support vector regression algorithms. A set of molecular descriptors, including the molecular weight and 38 counts of molecular constituents were adopted to characterize the chemical space. Out of the 455 chemicals, 375 were used for training and testing the QSFR models, while 80 were excluded from model development and were used as an external validation set. Training and test chemicals were selected and the domain of applicability (DOA) of the QSFRs established by means of self-organizing maps according to structural similarity. Best results were obtained with QSFR models developed for chemicals belonging to either the class [C] and [C; O], or the class with at least one heteroatom different than oxygen in the structure. These two class-specific models, with respectively 146 and 229 chemicals, showed a predictive squared coefficient of q(2) ≥ 0.90 both for air and water, which respectively dropped to q(2)≈ 0.70 and 0.40 for outlying chemicals. Prediction errors were of the same order of magnitude as the deviations associated to the uncertainty of the

  20. Microarray Technology for Major Chemical Contaminants Analysis in Food: Current Status and Prospects

    Directory of Open Access Journals (Sweden)

    Xiaoxia Ding

    2012-07-01

    Full Text Available Chemical contaminants in food have caused serious health issues in both humans and animals. Microarray technology is an advanced technique suitable for the analysis of chemical contaminates. In particular, immuno-microarray approach is one of the most promising methods for chemical contaminants analysis. The use of microarrays for the analysis of chemical contaminants is the subject of this review. Fabrication strategies and detection methods for chemical contaminants are discussed in detail. Application to the analysis of mycotoxins, biotoxins, pesticide residues, and pharmaceutical residues is also described. Finally, future challenges and opportunities are discussed.

  1. Analysis of Food Contaminants, Residues, and Chemical Constituents of Concern

    Science.gov (United States)

    Ismail, Baraem; Reuhs, Bradley L.; Nielsen, S. Suzanne

    The food chain that starts with farmers and ends with consumers can be complex, involving multiple stages of production and distribution (planting, harvesting, breeding, transporting, storing, importing, processing, packaging, distributing to retail markets, and shelf storing) (Fig. 18.1). Various practices can be employed at each stage in the food chain, which may include pesticide treatment, agricultural bioengineering, veterinary drug administration, environmental and storage conditions, processing applications, economic gain practices, use of food additives, choice of packaging material, etc. Each of these practices can play a major role in food quality and safety, due to the possibility of contamination with or introduction (intentionally and nonintentionally) of hazardous substances or constituents. Legislation and regulation to ensure food quality and safety are in place and continue to develop to protect the stakeholders, namely farmers, consumers, and industry. [Refer to reference (1) for information on regulations of food contaminants and residues.

  2. Sea-dumped chemical weapons: environmental risk, occupational hazard.

    Science.gov (United States)

    Greenberg, M I; Sexton, K J; Vearrier, D

    2016-01-01

    Chemical weapons dumped into the ocean for disposal in the twentieth century pose a continuing environmental and human health risk. In this review we discuss locations, quantity, and types of sea-dumped chemical weapons, related environmental concerns, and human encounters with sea-dumped chemical weapons. We utilized the Ovid (http://ovidsp.tx.ovid.com) and PubMed (http://www.pubmed.org) search engines to perform MEDLINE searches for the terms 'sea-dumped chemical weapons', 'chemical warfare agents', and 'chemical munitions'. The searches returned 5863 articles. Irrelevant and non-English articles were excluded. A review of the references for these articles yielded additional relevant sources, with a total of 64 peer-reviewed articles cited in this paper. History and geography of chemical weapons dumping at sea: Hundreds of thousands of tons of chemical munitions were disposed off at sea following World War II. European, Russian, Japanese, and United States coasts are the areas most affected worldwide. Several areas in the Baltic and North Seas suffered concentrated large levels of dumping, and these appear to be the world's most studied chemical warfare agent marine dumping areas. Chemical warfare agents: Sulfur mustard, Lewisite, and the nerve agents appear to be the chemical warfare agents most frequently disposed off at sea. Multiple other type of agents including organoarsenicals, blood agents, choking agents, and lacrimators were dumped at sea, although in lesser volumes. Environmental concerns: Numerous geohydrologic variables contribute to the rate of release of chemical agents from their original casings, leading to difficult and inexact modeling of risk of release into seawater. Sulfur mustard and the organoarsenicals are the most environmentally persistent dumped chemical agents. Sulfur mustard in particular has a propensity to form a solid or semi-solid lump with a polymer coating of breakdown products, and can persist in this state on the ocean floor

  3. Antarctic environmental specimen bank. A tool for chemical monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Soggia, F.; Dalla Riva, S.; Abelmoschi, M.L.; Frache, R. [Genoa Univ., Genoa (Italy). Dipt. di Chimica e Chimica Industriale

    2000-02-01

    The work illustrates the project on Antarctic Environmental Specimen Bank (BCAA), which is an integral part of the Italian project on the micropollutants chemistry (sector on chemical contamination of the Italian Antarctic Research program, PNRA), begun in 1994 when the BCAA was installed in the department of chemistry and industrial chemistry (Genoa University, Italy). Its objective underlines an emphasis on environmental chemistry and the establishment of baselines similar to the approaches followed by the other environmental specimen banks, begun at the end of Sixties with the aim of long-term storage of representative environmental specimens in order to study the presence and the evolution of dangerous substances, but focus on the chemical characterization of samples. [Italian] Il lavoro illustra le finalita' del Progetto su una Banca Campioni Ambientali Antartici (BCAA), che e' parte integrante del progetto Chmica dei microinquinannti del Settore Contaminazione chimica del Programma Nazionale di ricerche in Antartide (ONRA), nata nel 1994 presso il dipartimento di chimicia e chimica industriale dell'universita' di Genova. A differenza di altri progetti internazionali che enfatizzano gli aspetti biologici, ecologici e medici, il progetto BCAA enfatizza la chimica ambientale.

  4. Human Environmental Disease Network: A computational model to assess toxicology of contaminants.

    Science.gov (United States)

    Taboureau, Olivier; Audouze, Karine

    2017-01-01

    During the past decades, many epidemiological, toxicological and biological studies have been performed to assess the role of environmental chemicals as potential toxicants associated with diverse human disorders. However, the relationships between diseases based on chemical exposure rarely have been studied by computational biology. We developed a human environmental disease network (EDN) to explore and suggest novel disease-disease and chemical-disease relationships. The presented scored EDN model is built upon the integration of systems biology and chemical toxicology using information on chemical contaminants and their disease relationships reported in the TDDB database. The resulting human EDN takes into consideration the level of evidence of the toxicant-disease relationships, allowing inclusion of some degrees of significance in the disease-disease associations. Such a network can be used to identify uncharacterized connections between diseases. Examples are discussed for type 2 diabetes (T2D). Additionally, this computational model allows confirmation of already known links between chemicals and diseases (e.g., between bisphenol A and behavioral disorders) and also reveals unexpected associations between chemicals and diseases (e.g., between chlordane and olfactory alteration), thus predicting which chemicals may be risk factors to human health. The proposed human EDN model allows exploration of common biological mechanisms of diseases associated with chemical exposure, helping us to gain insight into disease etiology and comorbidity. This computational approach is an alternative to animal testing supporting the 3R concept.

  5. Environmental contaminants of emerging concern in seafood - European database on contaminant levels

    DEFF Research Database (Denmark)

    Vandermeersch, Griet; Lourenço, Helena Maria; Alvarez-Muñoz, Diana

    2015-01-01

    to scientists and regulatory authorities, was developed.The present paper reviews a selection of contaminants of emerging concern in seafood including toxic elements, endocrine disruptors, brominated flame retardants, pharmaceuticals and personal care products, polycyclic aromatic hydrocarbons and derivatives......Marine pollution gives rise to concern not only about the environment itself but also about the impact on food safety and consequently on public health. European authorities and consumers have therefore become increasingly worried about the transfer of contaminants from the marine environment...... to seafood.So-called "contaminants of emerging concern" are chemical substances for which no maximum levels have been laid down in EU legislation, or substances for which maximum levels have been provided but which require revision. Adequate information on their presence in seafood is often lacking and thus...

  6. Potential for portal detection of human chemical and biological contamination

    Science.gov (United States)

    Settles, Gary S.; McGann, William J.

    2001-08-01

    The walk-through metal-detection portal is a paradigm of non-intrusive passenger screening in aviation security. Modern explosive detection portals based on this paradigm will soon appear in airports. This paper suggests that the airborne trace detection technology developed for that purpose can also be adapted to human chemical and biological contamination. The waste heat of the human body produces a rising warm-air sheath of 50-80 liters/sec known as the human thermal plume. Contained within this plume are hundreds of bioeffluents from perspiration and breath, and millions of skin flakes. Since early medicine, the airborne human scent was used in the diagnosis of disease. Recent examples also include toxicity and substance abuse, but this approach has never been quantified. The appearance of new bioeffluents or subtle changes in the steady-state may signal the onset of a chemical/biological attack. Portal sampling of the human thermal plume is suggested, followed by a pre-concentration step and the detection of the attacking agent or the early human response. The ability to detect nanogram levels of explosive trace contamination this way was already demonstrated. Key advantages of the portal approach are its rapidity and non-intrusiveness, and the advantage that it does not require the traditional bodily fluid or tissue sampling.

  7. Plant sentinels and molecular probes that monitor environmental munitions contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, P.J.; DeWitt, J.G.; Hill, K.K.; Kuske, C.R.; Kim, D.Y. [Los Alamos National Lab., NM (United States). Genomics and Structural Biology Group

    1994-08-01

    Plants accumulate TNT and similar compounds from soil. Their sessile nature requires that plants adapt to environmental changes by biochemical and molecular means. In principle, it is possible to develop a monitoring capability based on expression of any gene that is activated by specific environmental conditions. The authors have identified plant genes activated upon exposure to TNT. Partial gene sequences allow design of DNA probes that measure TNT-induced gene activity. These will be used to develop sensitive assays that monitor gene expression in plants growing in environments possibly contaminated with explosives.

  8. A Novel Open Tubular Capillary Electrochromatographic Method for Differentiating the DNA Interaction Affinity of Environmental Contaminants.

    Directory of Open Access Journals (Sweden)

    Lucia D'Ulivo

    Full Text Available The interaction of chemicals with DNA may lead to genotoxicity, mutation or carcinogenicity. A simple open tubular capillary electrochromatographic method is proposed to rapidly assess the interaction affinity of three environmental contaminants (1,4-phenylenediamine, pyridine and 2,4-diaminotoluene to DNA by measuring their retention in the capillaries coated with DNA probes. DNA oligonucleotide probes were immobilized on the inner wall of a fused silica capillary that was first derivatized with 3-(aminopropyl-triethoxysilane (APTES. The difference in retention times and factors was considered as the difference in interaction affinity of the contaminants to the DNA probes. The interaction of the contaminants with both double-stranded (dsDNA and single-stranded DNA (ssDNA coatings was compared. Retention factors of 1,4-phenylenediamine, pyridine and 2,4-diaminotoluene in the capillary coated with ssDNA probe were 0.29, 0.42, and 0.44, respectively. A similar trend was observed in the capillary coated with dsDNA, indicating that 2,4-diaminotoluene has the highest affinity among the three contaminants. The relative standard deviation (RSD for the retention factors was in the range of 0.05-0.69% (n = 3. The results demonstrated that the developed technique could be applied for preliminary screening purpose to provide DNA interaction affinity information of various environmental contaminants.

  9. A Novel Open Tubular Capillary Electrochromatographic Method for Differentiating the DNA Interaction Affinity of Environmental Contaminants.

    Science.gov (United States)

    D'Ulivo, Lucia; Feng, Yong-Lai

    2016-01-01

    The interaction of chemicals with DNA may lead to genotoxicity, mutation or carcinogenicity. A simple open tubular capillary electrochromatographic method is proposed to rapidly assess the interaction affinity of three environmental contaminants (1,4-phenylenediamine, pyridine and 2,4-diaminotoluene) to DNA by measuring their retention in the capillaries coated with DNA probes. DNA oligonucleotide probes were immobilized on the inner wall of a fused silica capillary that was first derivatized with 3-(aminopropyl)-triethoxysilane (APTES). The difference in retention times and factors was considered as the difference in interaction affinity of the contaminants to the DNA probes. The interaction of the contaminants with both double-stranded (dsDNA) and single-stranded DNA (ssDNA) coatings was compared. Retention factors of 1,4-phenylenediamine, pyridine and 2,4-diaminotoluene in the capillary coated with ssDNA probe were 0.29, 0.42, and 0.44, respectively. A similar trend was observed in the capillary coated with dsDNA, indicating that 2,4-diaminotoluene has the highest affinity among the three contaminants. The relative standard deviation (RSD) for the retention factors was in the range of 0.05-0.69% (n = 3). The results demonstrated that the developed technique could be applied for preliminary screening purpose to provide DNA interaction affinity information of various environmental contaminants.

  10. Environmental contaminants in the food chain, NWS Seal Beach and Seal Beach NWR

    Energy Technology Data Exchange (ETDEWEB)

    Ohlendorf, H.M.; Byron, E.R. [CH2M Hill, Sacramento, CA (United States); Freas, K.E. [CH2M Hill, San Jose, CA (United States); Casados, E.M.; Kidwell, J.J. [Naval Facilities Engineering Command, San Diego, CA (United States). SW Division

    1994-12-31

    The authors conducted a study to determine whether environmental contaminants occurred in fish and invertebrates at concentrations that could be harmful to birds feeding in the estuarine salt marsh at Seal Beach National Wildlife Refuge (NWR), which is part of Naval Weapons Station (NWS) Seal Beach. Management of the refuge is focused primarily on endangered species, especially the light-footed clapper rail and the California least tern. Important food-chain organisms taken by rails (e.g., crabs and snails) and least terns (small fish) were sampled and analyzed for inorganic and organic contaminants that might be related to Navy activities at the Station. Results indicated that those contaminants are not likely to have lethal effects on rails or terns, although some chemicals (including cadmium, chromium, copper, lead, zinc and DDE) occurred at elevated concentrations in portions of the marsh. Possible sublethal effects also were evaluated and will be discussed.

  11. Illustrating sensitivity in environmental fate models using partitioning maps - application to selected contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, T.; Wania, F. [Univ. of Toronto at Scarborough - DPES, Toronto (Canada)

    2004-09-15

    Generic environmental multimedia fate models are important tools in the assessment of the impact of organic pollutants. Because of limited possibilities to evaluate generic models by comparison with measured data and the increasing regulatory use of such models, uncertainties of model input and output are of considerable concern. This led to a demand for sensitivity and uncertainty analyses for the outputs of environmental fate models. Usually, variations of model predictions of the environmental fate of organic contaminants are analyzed for only one or at most a few selected chemicals, even though parameter sensitivity and contribution to uncertainty are widely different for different chemicals. We recently presented a graphical method that allows for the comprehensive investigation of model sensitivity and uncertainty for all neutral organic chemicals simultaneously. This is achieved by defining a two-dimensional hypothetical ''chemical space'' as a function of the equilibrium partition coefficients between air, water, and octanol (K{sub OW}, K{sub AW}, K{sub OA}), and plotting sensitivity and/or uncertainty of a specific model result to each input parameter as function of this chemical space. Here we show how such sensitivity maps can be used to quickly identify the variables with the highest influence on the environmental fate of selected, chlorobenzenes, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), hexachlorocyclohexanes (HCHs) and brominated flame retardents (BFRs).

  12. Chemical contamination of groundwater at gas processing plants - the past, the present and the future

    Energy Technology Data Exchange (ETDEWEB)

    Wrubleski, R.M.; Drury, C.R. [Shell Canada Ltd., Calgary, AB (Canada). Calgary Research Centre; Sevigny, J.H. [Komex Consultants Ltd., Calgary, AB (Canada)

    1997-12-31

    The chemicals used to remove the sour gas components (primarily H{sub 2}S) from raw gas in the sour gas sweetening processes were discussed. The chemicals, mainly amines and physical absorbents, have been found as contaminants in soil and groundwater at several sites. Studies have been conducted to evaluate the behaviour of some of these chemicals. In particular, the contamination by sulfolane and diisopropanolamine (DIPA) which originate from the Sulfinol{sup R} sweetening process, was discussed. Prior to the mid 1970s wastes from these processes were disposed of on site in landfills that were not engineered for groundwater protection. By the mid 1970s the landfills were closed by capping. Many of the gas plant sites were located on elevated terrain where hydraulic gradient was available for downward movement of groundwater and any chemicals contained within. Contaminant movement in fractured bedrock has also affected drinking water. Ground water monitoring began in the mid 1980s to address environmental concerns, focusing on monitoring for potability, metals and organics. It was discovered that most of the plants using the Sulfinol process had groundwater contaminated with sulfolane levels ranging from 1 ppm to over 800 ppm. A research project was developed to determine the soil interaction parameters and biodegradation behaviour of pure sulfolane and DIPA to provide data in order to predict plume migration. Ecotoxicity tests were also performed to verify toxicity effects of sulfolane, DIPA, reclaimer bottoms and observed biodegradation metabolites to bio-organisms and aquatic life in aquatic receptors. 3 refs., 1 tab., 1 fig.

  13. Environmental geophysics and geochemistry for contamination mapping and monitoring 1

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tai Sup; Lee, Sang Kyu; Hong, Young Kook [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)] [and others

    1995-12-01

    This study aims to provide the technologies which can be practically used for contamination mapping and monitoring. To accomplish this goal, the geophysical and geochemical expertise and techniques commonly used in the mineral resources exploration are employed. In the first year of the three-year-long project, the purpose of the study is to introduce the optimum methodologies among the geophysical and geochemical techniques to tackle the various cases of environmental contamination. To achieve the purpose, case studies of the developed countries were surveyed and analyzed through the various kinds of literatures. The followings are categorized to be solved by geophysical methods: 1) delineation of water system pollution by acid mine drainage and distributions of waste rocks in the closed mine area, 2) defining boundaries of subsurface contamination due to oil seepage, 3) zoning of sea water intrusion in the seashore or subsurface geology highly containing salt, 4) locating of buried metallic wastes such as pipes and drums which can cause the secondary pollution by corrosion, and 5) outlining of the subsurface area polluted by leachate from the landfill. To experiment the above items, various geophysical methods were applied to the corresponding test sites. From these experiments, the applicabilities of the respective geophysical method were analyzed, and the optimum methods were derived for the various pollution types. Furthermore, electric and electromagnetic surveys data processing software were developed to quantitatively interpret and highly resolve the geology. The environmental assignments which can be solved by geochemical methods include: 1) drainage pollution by coal mine effluents, 2)subsurface contamination of oil-spill, 3) sea water intrusion, 4) dispersion of toxic heavy metallic elements in the metal mines, and 5) radon environmental geochemistry. The appropriate test sites for applying the geochemical methods were selected. (Abstract Truncated)

  14. Cosmetics as a potential source of environmental contamination in the UK.

    Science.gov (United States)

    Dhanirama, Danelle; Gronow, Jan; Voulvoulis, Nikolaos

    2012-01-01

    Chemicals of emerging concern (CECs) are frequently used in cosmetic formulations and can potentially reach the environment at concentrations that may cause harm. A methodology was developed to assess over 120 chemicals assembled from product ingredient listings to identify and validate potential CECs in cosmetics, based on Annex XIII of REACH legislation. Ten potential CECs were identified: polydimethylsiloxane, butylated hydroxylanisole (BHA), butylated hydroxytoluene, triclosan, nano titanium dioxide, nano zinc oxide, butylparaben, diethyl phthalate, octinoxate methoxycinnamate and benzophenone. These chemicals were quantified based on their consumption and concentrations in cosmetics and percentage market penetration. The initial predicted environmental concentrations (PEC initial) were estimated to determine their exposure to the environment. With the exception of BHA, the PEC initial highlighted levels of exposure to the environment that triggered the need for further investigation of the chemicals. These chemicals were linked to cosmetics to highlight products with the potential to cause environmental harm. Skin care products had the highest quantities of CECs, with titanium dioxide and zinc oxide nanomaterials being dominant potential contaminants. Further research is required to assess the exposure pathways and fate of these chemicals to determine environmental risks associated with their use and disposal.

  15. Global warming and environmental contaminants in aquatic organisms: the need of the etho-toxicology approach.

    Science.gov (United States)

    Manciocco, Arianna; Calamandrei, Gemma; Alleva, Enrico

    2014-04-01

    Environmental contaminants are associated with a wide spectrum of pathological effects. Temperature increase affects ambient distribution and toxicity of these chemicals in the water environment, representing a potentially emerging problem for aquatic species with short-, medium- and long-term repercussions on human health through the food chain. We assessed peer-reviewed literature, including primary studies, review articles and organizational reports available. We focused on studies concerning toxicity of environmental pollutants within a global warming scenario. Existing knowledge on the effects that the increase of water temperature in a contaminated situation has on physiological mechanisms of aquatic organisms is presented. Altogether we consider the potential consequences for the human beings due to fish and shellfish consumption. Finally, we propose an etho-toxicological approach to study the effects of toxicants in conditions of thermal increase, using aquatic organisms as experimental models under laboratory controlled conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Meta-analysis of environmental contamination by phthalates.

    Science.gov (United States)

    Bergé, Alexandre; Cladière, Mathieu; Gasperi, Johnny; Coursimault, Annie; Tassin, Bruno; Moilleron, Régis

    2013-11-01

    Phthalate acid esters (PAE), commonly named phthalates, are toxics classified as endocrine-disrupting compounds; they are primarily used as additives to improve the flexibility in polyvinyl chloride. Many studies have reported the occurrence of phthalates in different environmental matrices; however, none of these studies has yet established a complete overview for those compounds in the water cycle within an urban environment. This review summarizes PAE concentrations for all environmental media throughout the water cycle, from atmosphere to receiving waters. Once the occurrences of compounds have been evaluated for each environmental compartment (urban wastewater, wastewater treatment plants, atmosphere, and the natural environment), we reviewed data in order to identify the fate of PAE in the environment and establish whether geographical and historical trends exist. Indeed, geographical and historical trends appear between Europe and other countries such as USA/Canada and China, however they remain location dependent. This study aimed at identifying both the correlations existing between environmental compartments and the processes influencing the fate and transport of these contaminants into the environment. In Europe, the concentrations measured in waterways today represent the background level of contamination, which provides evidence of a past diffuse pollution. In contrast, an increasing trend has actually been observed for developing countries, especially for China.

  17. Meta-analysis of environmental contamination by alkylphenols.

    Science.gov (United States)

    Bergé, Alexandre; Cladière, Mathieu; Gasperi, Johnny; Coursimault, Annie; Tassin, Bruno; Moilleron, Régis

    2012-11-01

    Alkylphenols and alkylphenol ethoxylates (APE) are toxics classified as endocrine-disrupting compounds; they are used in detergents, paints, herbicides, pesticides, emulsifiers, wetting and dispersing agents, antistatic agents, demulsifiers, and solubilizers. Many studies have reported the occurrence of alkylphenols in different environmental matrices, though none of these studies have yet to establish a comprehensive overview of such compounds in the water cycle within an urban environment. This review summarizes APE concentrations for all environmental media throughout the water cycle, from the atmosphere to receiving waters. Once the occurrence of compounds has been assessed for each environmental compartment (urban wastewater, wastewater treatment plants [WWTP], atmosphere, and the natural environment), data are examined in order to understand the fate of APE in the environment and establish their geographical and historical trends. From this database, it is clear that the environment in Europe is much more contaminated by APE compared to North America and developing countries, although these APE levels have been decreasing in the last decade. APE concentrations in the WWTP effluent of developed countries have decreased by a factor of 100 over the past 30 years. This study is aimed at identifying both the correlations existing between environmental compartments and the processes that influence the fate and transport of these contaminants in the environment. In industrial countries, the concentrations observed in waterways now represent the background level of contamination, which provides evidence of a past diffuse pollution in these countries, whereas sediment analyses conducted in developing countries show an increase in APE content over the last several years. Finally, similar trends have been observed in samples drawn from Europe and North America.

  18. Investigation of impacts to federally endangered freshwater mussels of the Lower Ohio River: Chemical and biological survey for environmental contaminants adjacent to the Republic Creosoting Hazardous Waste Site near Joppa, Illinois

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A survey for contaminants in bed sediments and freshwater mussels was conducted in the region of the Lower Ohio River adjacent to the Republic Creosoting hazardous...

  19. Investigation of the Use of "Cucumis Sativus" for Remediation of Chromium from Contaminated Environmental Matrices: An Interdisciplinary Instrumental Analysis Project

    Science.gov (United States)

    Butler, Lynsey R.; Edwards, Michael R.; Farmer, Russell; Greenly, Kathryn J.; Hensler, Sherri; Jenkins, Scott E.; Joyce, J. Michael; Mann, Jason A.; Prentice, Boone M.; Puckette, Andrew E.; Shuford, Christopher M.; Porter, Sarah E. G.; Rhoten, Melissa C.

    2009-01-01

    An interdisciplinary, semester-long project is presented in which students grow Cucumis sativus (cucumber) plants from seeds and study the ability of the plants to remediate a heavy metal from contaminated soil or water or both. Phytoremediation strategies for environmental cleanup are presented as possible alternatives to chemical based clean-up…

  20. Chemical fractionation of radium-226 in NORM contaminated soil from oilfields.

    Science.gov (United States)

    Al Abdullah, Jamal; Al-Masri, Mohammad Said; Amin, Yusr; Awad, Ibrahim; Sheaib, Zuhair

    2016-12-01

    Contamination of soil with (226)Ra is a common problem in the oilfields, leading to costly remediation and disposal programmes. The present study focuses on the chemical fractionation and mobility of (226)Ra in contaminated soils collected from an oilfield using a three-step sequential extraction procedure (BCR). The total activity concentrations of (226)Ra in contaminated soils were measured and found to be in the range from 1030 ± 90 to 7780 ± 530 Bq kg(-1), with a mean activity concentration of 2840 ± 1840 Bq kg(-1). The correlation between the total concentration of (226)Ra and soil properties, mainly pH, LOI, Corg, clay and Ca, was investigated using the principal component analysis method (PCA). The chemical fractionation of (226)Ra was studied using the sequential extraction method (BCR). The highest fraction of (226)Ra (27-65%) was found to be in the acid-reducible fraction, which suggests that (226)Ra is mainly bound to FeMn oxides. The BCR method showed that high percentages of (226)Ra were found to be in mobile soil phases (between 45 and 99%). Consequently, groundwater contamination could occur due to the remobilization of (226)Ra from soils under normal environmental conditions. However, the obtained results could be useful to reduce the volume of NORM wastes generated from the oilfields and decision-making process for final treatment and disposal of NORM-contaminated soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Developing methods to assess and predict the population level effects of environmental contaminants.

    Science.gov (United States)

    Emlen, J.M.; Springman, K.R.

    2007-01-01

    The field of ecological toxicity seems largely to have drifted away from what its title implies--assessing and predicting the ecological consequences of environmental contaminants--moving instead toward an emphasis on individual effects and physiologic case studies. This paper elucidates how a relatively new ecological methodology, interaction assessment (INTASS), could be useful in addressing the field's initial goals. Specifically, INTASS is a model platform and methodology, applicable across a broad array of taxa and habitat types, that can be used to construct population dynamics models from field data. Information on environmental contaminants and multiple stressors can be incorporated into these models in a form that bypasses the problems inherent in assessing uptake, chemical interactions in the environment, and synergistic effects in the organism. INTASS can, therefore, be used to evaluate the effects of contaminants and other stressors at the population level and to predict how changes in stressor levels or composition of contaminant mixtures, as well as various mitigation measures, might affect population dynamics.

  2. Environmental review of options for managing radioactively contaminated carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The U.S. Department of Energy (DOE) is proposing to develop a strategy for the management of radioactively contaminated carbon steel (RCCS). Currently, most of this material either is placed in special containers and disposed of by shallow land burial in facilities designed for low-level radioactive waste (LLW) or is stored indefinitely pending sufficient funding to support alternative disposition. The growing amount of RCCS with which DOE will have to deal in the foreseeable future, coupled with the continued need to protect the human and natural environment, has led the Department to evaluate other approaches for managing this material. This environmental review (ER) describes the options that could be used for RCCS management and examines the potential environmental consequences of implementing each. Because much of the analysis underlying this document is available from previous studies, wherever possible the ER relies on incorporating the conclusions of those studies as summaries or by reference.

  3. Assessing the chemical contamination dynamics in a mixed land use stream system

    DEFF Research Database (Denmark)

    Sonne, Anne Thobo; McKnight, Ursula S.; Rønde, Vinni

    2017-01-01

    Traditionally, the monitoring of streams for chemical and ecological status has been limited to surface water concentrations, where the dominant focus has been on general water quality and the risk for eutrophication. Mixed land use stream systems, comprising urban areas and agricultural production...... of all three stream compartments – stream water, hyporheic zone, streambed sediment – made it possible to link chemical stressors to their respective sources and obtain new knowledge about source composition and origin. Moreover, toxic unit estimation and comparison to environmental standards revealed...... the stream water quality was substantially impaired by both geogenic and diffuse anthropogenic sources of metals along the entire corridor, while the streambed was less impacted. Quantification of the contaminant mass discharge originating from a former pharmaceutical factory revealed that several 100 kgs...

  4. Chemical Contamination of the Lower Rio Grande near Laredo, TX

    Science.gov (United States)

    Flores, B.; Ren, J.; Krishnamurthy, S.; Belzer, W.

    2006-12-01

    The Rio Grande River stretches over 2000 miles from the southern Rocky Mountains in Colorado to the tip of Texas where the Rio Grande meets the Gulf of Mexico. It is the natural boundary between U.S. and Mexico from El Paso, TX, to Brownsville, TX. The communities along the border heavily rely upon the Rio Grande as a primary source of water for consumption, agricultural uses, supporting wildlife and recreation. For many years the Rio Grande has been polluted with municipal, industrial, agricultural and farming contaminants from both sides of the border. This pollution has led to the extinction or reduction of certain wildlife species as well as affecting the health of the residences along the border. Even though great strides have been made in monitoring the Rio Grande, there has been a lack of intense monitoring data collection for pollutants such as pesticides. Three sampling sites including Manadas Creek, the Rio Grande River at International Bridge I, and USGS monitoring site 08459200 off of Highway 83 were chosen. The water quality parameters focused include temperature, pH, conductivity, dissolve oxygen (DO), salinity, total dissolved solids, nutrients, metals and pesticides. Preliminary results have shown elevated concentration of total phosphorus and ortho-phosphorus in the Manadas Creek site. Organochlorinated pesticides such as heptachlor and 4, 4 DDE were detected at various concentrations at all sites and endrin aldehyde was found at Manadas Creek site. This research has provided more information on the current chemical contamination level of the Rio Grande in the Laredo area.

  5. [Environmental characterization of the National Contaminated Sites in SENTIERI project].

    Science.gov (United States)

    Musmeci, L; Bellino, M; Falleni, F; Piccardi, A

    2011-01-01

    The concept of "polluted site" was firstly introduced in Italy with the definition of "environmental high risk areas" (Rule 349/86). Later, the decree 471/99 stated that a site is considered polluted if the concentration of even just one index pollutant in anyone of the matrices (soil or subsoil, surface or ground waters) exceeds the allowable threshold limit concentration. The boundaries of Italian polluted sites (IPS) were defined (Decree 152/06) on the basis of health, environmental and social criteria. SENTIERI Project includes 44 out of the 57 sites comprised in the "National environmental remediation program"; they correspond to the largest national industrial agglomerates. For each site, characterization data were collected, classified and arranged in tables. A great part of collected data came also from the environmental remediation programmes planned for the sites. These plans show that characterization and risk assessment activities were mainly undertaken for private industrial areas, as they were considered source of pollution. On the other hand, municipal and/or green and agricultural areas included in IPSs were poorly studied. Therefore, it is difficult to assess the exposure of the populations living inside and/or near the IPSs. The most probable population exposure come from the contamination of ground waters utilized for irrigation, or industrial emissions. For a description of SENTIERI, refer to the 2010 Supplement of Epidemiology & Prevention devoted to SENTIERI Project.

  6. Impact of Physico-Chemical Factors of Contaminated Foci on the ...

    African Journals Online (AJOL)

    Physio-chemical analysis of 200 soil samples collected from contaminated foci was investigated in six communities of Abua, Niger Delta Nigeria. The Jackson's method was used in the chemical analysis of contaminated soils while Cobb's decanting and sieving method was used in the extraction of geohelminths. The data ...

  7. Environmental chemical exposures and breast cancer

    Directory of Open Access Journals (Sweden)

    E. Stanley

    2016-02-01

    Full Text Available As a hormone-sensitive condition with no single identifiable cause, breast cancer is a major health problem. It is characterized by a wide range of contributing factors and exposures occurring in different combinations and strengths across a lifetime that may be amplified during periods of enhanced developmental susceptibility and impacted by reproductive patterns and behaviours. The vast majority of cases are oestrogen-receptor positive and occur in women with no family history of the disease suggesting that modifiable risk factors are involved. A substantial body of evidence now links oestrogen-positive breast cancer with environmental exposures. Synthetic chemicals capable of oestrogen mimicry are characteristic of industrial development and have been individually and extensively assessed as risk factors for oestrogen-sensitive cancers. Existing breast cancer risk assessment tools do not take such factors into account. In the absence of consensus on causation and in order to better understand the problem of escalating incidence globally, an expanded, integrated approach broadening the inquiry into individual susceptibility breast cancer is proposed. Applying systems thinking to existing data on oestrogen-modulating environmental exposures and other oestrogenic factors characteristic of Westernisation and their interactions in the exposure, encompassing social, behavioural, environmental, hormonal and genetic factors, can assist in understanding cancer risks and the pursuit of prevention strategies. A new conceptual framework based on a broader understanding of the “system” that underlies the development of breast cancer over a period of many years, incorporating the factors known to contribute to breast cancer risk, could provide a new platform from which government and regulators can promulgate enhanced and more effective prevention strategies.

  8. The toxicology of climate change: environmental contaminants in a warming world.

    Science.gov (United States)

    Noyes, Pamela D; McElwee, Matthew K; Miller, Hilary D; Clark, Bryan W; Van Tiem, Lindsey A; Walcott, Kia C; Erwin, Kyle N; Levin, Edward D

    2009-08-01

    Climate change induced by anthropogenic warming of the earth's atmosphere is a daunting problem. This review examines one of the consequences of climate change that has only recently attracted attention: namely, the effects of climate change on the environmental distribution and toxicity of chemical pollutants. A review was undertaken of the scientific literature (original research articles, reviews, government and intergovernmental reports) focusing on the interactions of toxicants with the environmental parameters, temperature, precipitation, and salinity, as altered by climate change. Three broad classes of chemical toxicants of global significance were the focus: air pollutants, persistent organic pollutants (POPs), including some organochlorine pesticides, and other classes of pesticides. Generally, increases in temperature will enhance the toxicity of contaminants and increase concentrations of tropospheric ozone regionally, but will also likely increase rates of chemical degradation. While further research is needed, climate change coupled with air pollutant exposures may have potentially serious adverse consequences for human health in urban and polluted regions. Climate change producing alterations in: food webs, lipid dynamics, ice and snow melt, and organic carbon cycling could result in increased POP levels in water, soil, and biota. There is also compelling evidence that increasing temperatures could be deleterious to pollutant-exposed wildlife. For example, elevated water temperatures may alter the biotransformation of contaminants to more bioactive metabolites and impair homeostasis. The complex interactions between climate change and pollutants may be particularly problematic for species living at the edge of their physiological tolerance range where acclimation capacity may be limited. In addition to temperature increases, regional precipitation patterns are projected to be altered with climate change. Regions subject to decreases in precipitation

  9. The Sources of Chemical Contaminants in Food and Their Health Implications

    Science.gov (United States)

    Rather, Irfan A.; Koh, Wee Yin; Paek, Woon K.; Lim, Jeongheui

    2017-01-01

    Food contamination is a matter of serious concern, as the high concentration of chemicals present in the edibles poses serious health risks. Protecting the public from the degrees of the harmfulness of contaminated foods has become a daunting task. This article highlights the causes, types, and health implications of chemical contamination in food. The food contamination could be due to naturally occurring contaminants in the environment or artificially introduced by the human. The phases of food processing, packaging, transportation, and storage are also significant contributors to food contamination. The implications of these chemical contaminants on human health are grave, ranging from mild gastroenteritis to fatal cases of hepatic, renal, and neurological syndromes. Although, the government regulates such chemicals in the eatables by prescribing minimum limits that are safe for human consumption yet measures still need to be taken to curb food contamination entirely. Therefore, a variety of food needs to be inspected and measured for the presence of chemical contaminants. The preventative measures pertaining about the food contaminants problems are pointed out and discussed. PMID:29204118

  10. The Sources of Chemical Contaminants in Food and Their Health Implications.

    Science.gov (United States)

    Rather, Irfan A; Koh, Wee Yin; Paek, Woon K; Lim, Jeongheui

    2017-01-01

    Food contamination is a matter of serious concern, as the high concentration of chemicals present in the edibles poses serious health risks. Protecting the public from the degrees of the harmfulness of contaminated foods has become a daunting task. This article highlights the causes, types, and health implications of chemical contamination in food. The food contamination could be due to naturally occurring contaminants in the environment or artificially introduced by the human. The phases of food processing, packaging, transportation, and storage are also significant contributors to food contamination. The implications of these chemical contaminants on human health are grave, ranging from mild gastroenteritis to fatal cases of hepatic, renal, and neurological syndromes. Although, the government regulates such chemicals in the eatables by prescribing minimum limits that are safe for human consumption yet measures still need to be taken to curb food contamination entirely. Therefore, a variety of food needs to be inspected and measured for the presence of chemical contaminants. The preventative measures pertaining about the food contaminants problems are pointed out and discussed.

  11. The Sources of Chemical Contaminants in Food and Their Health Implications

    Directory of Open Access Journals (Sweden)

    Irfan A. Rather

    2017-11-01

    Full Text Available Food contamination is a matter of serious concern, as the high concentration of chemicals present in the edibles poses serious health risks. Protecting the public from the degrees of the harmfulness of contaminated foods has become a daunting task. This article highlights the causes, types, and health implications of chemical contamination in food. The food contamination could be due to naturally occurring contaminants in the environment or artificially introduced by the human. The phases of food processing, packaging, transportation, and storage are also significant contributors to food contamination. The implications of these chemical contaminants on human health are grave, ranging from mild gastroenteritis to fatal cases of hepatic, renal, and neurological syndromes. Although, the government regulates such chemicals in the eatables by prescribing minimum limits that are safe for human consumption yet measures still need to be taken to curb food contamination entirely. Therefore, a variety of food needs to be inspected and measured for the presence of chemical contaminants. The preventative measures pertaining about the food contaminants problems are pointed out and discussed.

  12. Treatment of hydrocarbon contamination under flow through conditions by using magnetite catalyzed chemical oxidation.

    Science.gov (United States)

    Usman, M; Faure, P; Lorgeoux, C; Ruby, C; Hanna, K

    2013-01-01

    Soil pollution by hydrocarbons (aromatic and aliphatic hydrocarbons) is a major environmental issue. Various treatments have been used to remove them from contaminated soils. In our previous studies, the ability of magnetite has been successfully explored to catalyze chemical oxidation for hydrocarbon remediation in batch slurry system. In the present laboratory study, column experiments were performed to evaluate the efficiency of magnetite catalyzed Fenton-like (FL) and activated persulfate (AP) oxidation for hydrocarbon degradation. Flow-through column experiments are intended to provide a better representation of field conditions. Organic extracts isolated from three different soils (an oil-contaminated soil from petrochemical industrial site and two soils polluted by polycyclic aromatic hydrocarbon (PAH) originating from coking plant sites) were spiked on sand. After solvent evaporation, spiked sand was packed in column and was subjected to oxidation using magnetite as catalyst. Oxidant solution was injected at a flow rate of 0.1 mL min(-1) under water-saturated conditions. Organic analyses were performed by GC-mass spectrometry, GC-flame ionization detector, and micro-Fourier transform infrared spectroscopy. Significant abatement of both types of hydrocarbons (60-70 %) was achieved after chemical oxidation (FL and AP) of organic extracts. No significant by-products were formed during oxidation experiment, underscoring the complete degradation of hydrocarbons. No selective degradation was observed for FL with almost similar efficiency towards all hydrocarbons. However, AP showed less reactivity towards higher molecular weight PAHs and aromatic oxygenated compounds. Results of this study demonstrated that magnetite-catalyzed chemical oxidation can effectively degrade both aromatic and aliphatic hydrocarbons (enhanced available contaminants) under flow-through conditions.

  13. An insight of environmental contamination of arsenic on animal health

    Directory of Open Access Journals (Sweden)

    Paramita Mandal

    2017-03-01

    Full Text Available The main threats to human health from heavy metals are associated with exposure to lead, cadmium, mercury and arsenic. Exposure to arsenic is mainly via intake of food and drinking water, food being the most important source in most populations. Although adverse health effects of heavy metals have been known for a long time, exposure to heavy metals continues and is even increasing in some areas. Long-term exposure to arsenic in drinking-water is mainly related to increased risks of skin cancer, but also some other cancers, as well as other skin lesions such as hyperkeratosis and pigmentation changes. Therefore, measures should be taken to reduce arsenic exposure in the general population in order to minimize the risk of adverse health effects. Animal are being exposed to arsenic through contaminated drinking water, feedstuff, grasses, vegetables and different leaves. Arsenic has been the most common causes of inorganic chemical poisoning in farm animals. Although, sub-chronic and chronic exposure of arsenic do not generally reveal external signs or symptoms in farm animals but arsenic (or metabolites concentrations in blood, hair, hoofs and urine are remained high in animals of arsenic contaminated zones. So it is assumed that concentration of arsenic in blood, urine, hair or milk have been used as biomarkers of arsenic exposure in field animals.

  14. Concentration levels of endocrine disrupting chemicals in environmental media of Korea

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Junheon; Choi, Kyunghee; Kim, Sangdon; Kim, Eunji; Kim, Eunkyoung; Jeon, Sung-Hwan; Na, Jin-Gyun [National Institute of Environmental Research, Incheon (Korea)

    2004-09-15

    Introduction As the public is more concerned about endocrine disrupting chemicals (EDCs), the Ministry of Environment in Korea has designed and established a mid- and long-term research plan on EDCs. Since 1999, the National Institute of Environmental Research has investigated the impact of EDCs on the natural ecosystem and carried out the field test for environmental monitoring. The goal of this study was to measure the contamination level of EDCs in a variety of environmental media, such as water, sediment, soil and air and to provide a basis for the sound management of EDCs and policy-making for the control of EDCs in Korea. Environmental monitoring sites were selected at representative sites through the nation. In 2002, 310 samples were collected from 122 sites of water, sediment, soil and air. The target EDCs examined were 93 chemicals in 45 chemical groups including Dioxin, coplanar PCBs, PCBs. Results show that 46 chemicals (31 chemical groups) including dioxins were detected in at least one environmental medium, while 47 chemicals including aldrin were not detected in any environmental media. In this study, the results of the fourth year of environmental monitoring are reported.

  15. Survey on Physical, Chemical and Microbiological Characteristics of PAH-Contaminated Soils in Iran

    Directory of Open Access Journals (Sweden)

    M Arbabi, S Nasseri, A Mesdaghinia, S Rezaie, K Naddafi, Gh Omrani, M Yunesian

    2004-07-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are one of the important groups of organic micro pollutants (Xenobiotics due to their widespread distribution and low degradability in the environment (atmosphere, water and soil. Some PAHs exhibit carcinogenic and/or mutagenic properties and are listed by the United States Environmental Protection Agency (USEPA and European Commission (EC as priority pollutants. In this research three petroleum contaminated sites in Iran were selected in order to separate and classify PAH-degrading microorganisms. Samples were analysed for: soil physico-chemical properties, soil particle size distribution, Ultrasonic extraction of PAH (phenanthrene and microbial analysis. Ultrasonic extraction method was shown to be a reliable procedure to extract a wide range of PAH concentrations from different soils, e.g. clay, silt, and clay-silt mixtures. Results showed that the extraction rate of phenanthreen in mentioned different soils was in the range of 85 – 100 percent. Results showed that two of three selected sites were contaminated with phenanthrene in the range of 10 – 100 mg/kg of soil, and had a reasonable population of PAH-degrading bacteria, which were enable to adaptate and degradate a concentration range of phenanthrene between 10 and 1000 mg/kg of soil. According to results, it can conclude that, the bioremediation of contaminated soils in Iran may be considered as a feasible practice.

  16. Environmental mercury contamination in China: Sources and impacts

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L.; Wong, M.H. [Hong Kong Baptist University, Hong Kong (China)

    2007-01-15

    This review article focused on the current status of mercury (Hg) contamination in different ecological compartments in China, and their possible environmental and health impacts, focusing on some major cities. Mercury emission from non-ferrous metals smelting (especially zinc smelting), coal combustion and miscellaneous activities (of which battery and fluorescent lamp production and cement production are the largest), contributed about 45%, 38% and 17%, respectively, to the total Hg emission based on the data of 1999. Mercury contamination is widespread in different ecological compartments such as atmosphere, soil and water. There is evidence showing bioaccumulation and biomagnification of Hg in aquatic food chains, with higher concentrations detected in carnivorous fish. In terms of human exposure to Hg, fish consumption is the major exposure pathway for residents living in coastal cities such as Hong Kong, but inhalation may be another major source, affecting human health in areas with severe atmospheric Hg, such as Guiyang City (Guizhou Province). There is also increasing evidence showing that skin disorders and autism in Hong Kong children are related to their high Hg body loadings (hair, blood and urine), through prenatal methyl Hg exposure. There seems to be an urgent need to identify the sources of Hg, speciation and concentrations in different ecological compartments, which may lead to high body loadings in human beings.

  17. Developing methods to assess and predict the population and community level effects of environmental contaminants

    Science.gov (United States)

    Emlen, John M.; Springman, Kathrine R.

    2007-01-01

    The field of ecological toxicity seems largely to have drifted away from what its title implies—assessing and predicting the ecological consequences of environmental contaminants—moving instead toward an emphasis on individual effects and physiologic case studies. This paper elucidates how a relatively new ecological methodology, interaction assessment (INTASS), could be useful in addressing the field's initial goals. Specifically, INTASS is a model platform and methodology, applicable across a broad array of taxa and habitat types, that can be used to construct population dynamics models from field data. Information on environmental contaminants and multiple stressors can be incorporated into these models in a form that bypasses the problems inherent in assessing uptake, chemical interactions in the environment, and synergistic effects in the organism. INTASS can, therefore, be used to evaluate the effects of contaminants and other stressors at the population level and to predict how changes in stressor levels or composition of contaminant mixtures, as well as various mitigation measures, might affect population dynamics.

  18. Environmental contaminants: Is male reproductive health at risk?

    Science.gov (United States)

    Mruk, Dolores D; Cheng, C Yan

    2011-10-01

    Contaminants such as cadmium, bisphenol A and lead pollute our environment and affect male reproductive function. There is evidence that toxicant exposure adversely affects fertility. Cadmium and bisphenol A exert their effects in the testis by perturbing blood-testis barrier function, which in turn affects germ cell adhesion in the seminiferous epithelium because of a disruption of the functional axis between these sites. In essence, cadmium mediates its adverse effects at the blood-testis barrier by disrupting cell adhesion protein complexes, illustrating that toxicants can dismantle cell junctions in the testis. Herein, we will discuss how environmental toxicants may affect reproductive function. We will also examine how these adverse effects on fertility may be mediated in part by adipose tissue and bone. Lastly, we will briefly discuss how toxicant-induced damage may be effectively managed so that fertility can be maintained. It is hoped that this information will offer a new paradigm for future studies.

  19. In situ chemical fixation of arsenic-contaminated soils: Anexperimental study

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Li; Donahoe, Rona J.; Redwine, James C.

    2007-03-27

    This paper reports the results of an experimentalstudytesting a low-cost in situ chemical fixation method designed to reclaimarsenic-contaminated subsurface soils. Subsurface soils from severalindustrial sites in southeastern U.S. were contaminated with arsenicthrough heavy application of herbicide containing arsenic trioxide. Themean concentrations of environmentally available arsenic in soilscollected from the two study sites, FW and BH, are 325 mg/kg and 900mg/kg, respectively. The soils are sandy loams with varying mineralogicaland organic contents. The previous study [Yang L, Donahoe RJ. The form,distribution and mobility of arsenic in soils contaminated by arsenictrioxide, at sites in Southeast USA. Appl Geochem 2007;22:320 341]indicated that a large portion of the arsenic in both soils is associatedwith amorphous aluminum and iron oxyhydroxides and shows very slowrelease against leaching by synthetic precipitation. The soil's amorphousaluminum and iron oxyhydroxides content was found to have the mostsignificant effect on its ability to retain arsenic.Based on thisobservation, contaminated soils were reacted with different treatmentsolutions in an effort to promote the formation of insolublearsenic-bearing phases and thereby decrease the leachability of arsenic.Ferrous sulfate, potassium permanganate and calcium carbonate were usedas the reagents for the chemical fixation solutions evaluated in threesets of batch experiments: (1) FeSO4; (2) FeSO4 and KMnO4; (3) FeSO4,KMnO4 and CaCO3. The optimum treatment solutions for each soil wereidentified based on the mobility of arsenic during sequential leaching oftreated and untreated soils using the fluids described in EPA Method 1311[USEPA. Method 1311: toxicity characteristic leaching procedure. Testmethods for evaluating solid waste, physical/chemical methods. 3rd ed.Washington, DC: U.S. Environmental Protection Agency, Office of SolidWaste. U.S. Government Printing Office; 1992]toxic characteristicsleaching

  20. Spills of Hydraulic Fracturing Chemicals on Agricultural Topsoil: Biodegradation, Sorption, and Co-contaminant Interactions.

    Science.gov (United States)

    McLaughlin, Molly C; Borch, Thomas; Blotevogel, Jens

    2016-06-07

    Hydraulic fracturing frequently occurs on agricultural land. Yet the extent of sorption, transformation, and interactions among the numerous organic frac fluid and oil and gas wastewater constituents upon environmental release is hardly known. Thus, this study aims to advance our current understanding of processes that control the environmental fate and toxicity of commonly used hydraulic fracturing chemicals. Poly(ethylene glycol) surfactants were completely biodegraded in agricultural topsoil within 42-71 days, but their transformation was impeded in the presence of the biocide glutaraldehyde and was completely inhibited by salt at concentrations typical for oil and gas wastewater. At the same time, aqueous glutaraldehyde concentrations decreased due to sorption to soil and were completely biodegraded within 33-57 days. While no aqueous removal of polyacrylamide friction reducer was observed over a period of 6 months, it cross-linked with glutaraldehyde, further lowering the biocide's aqueous concentration. These findings highlight the necessity to consider co-contaminant effects when we evaluate the risk of frac fluid additives and oil and gas wastewater constituents in agricultural soils in order to fully understand their human health impacts, likelihood for crop uptake, and potential for groundwater contamination.

  1. Environmental Contamination with Hazardous Drugs in Quebec Hospitals

    Science.gov (United States)

    Bussières, Jean-François; Tanguay, Cynthia; Touzin, Karine; Langlois, Éric; Lefebvre, Michel

    2012-01-01

    Background Since publication of the US National Institute for Occupational Safety and Health alert on hazardous drugs in 2004, many health care organizations have reviewed their procedures for handling hazardous drugs. Occupational exposure may occur when handling, compounding, or administering a drug considered to be hazardous, at any stage from storage to waste management. Objectives: To describe environmental contamination with cyclophosphamide, ifosfamide, and methotrexate in pharmacy and patient care areas of Quebec hospitals. Methods: Sixty-eight hospitals were invited to participate. At each hospital, 12 prespecified measurement sites (6 each within pharmacy and patient care areas) were sampled once (midweek, end of day). The samples were analyzed by ultra-performance liquid chromatography tandem mass spectrometry to determine the presence of the 3 drugs. The limits of detection (LODs) were 0.0015 ng/cm2 for cyclophosphamide, 0.0012 ng/cm2 for ifosfamide, and 0.0060 ng/cm2 for methotrexate. Results: Twenty-five (37%) of the hospitals agreed to participate. Samples from sites other than the 12 prespecified sites were excluded. Overall, 259 valid samples were collected between April 2008 and January 2010 (147 samples from pharmacy areas in 25 hospitals and 112 samples from patient care areas in 24 hospitals). No hospital was using a closed-system drug transfer device at the time of the study. The median (minimum, maximum) number of sites per hospital with at least 1 positive sample for at least 1 of the 3 hazardous drugs was 6 (1, 12). A total of 135 (52%) samples were positive for cyclophosphamide, 53 (20%) for ifosfamide, and 7 (3%) for methotrexate. The median (minimum, maximum) concentration in positive samples was 0.0035 ng/cm2 (below LOD, 28 ng/cm2) for cyclophosphamide, below LOD (below LOD, 8.6 ng/cm2) for ifosfamide, and below LOD (below LOD, 0.58 ng/cm2) for methotrexate. Conclusions: The levels of environmental contamination with 3 hazardous drugs

  2. A Preliminary Study for Chemical Ranking System in Terms of Soil and Groundwater Contamination by Chemical Accidents

    Science.gov (United States)

    Park, J.; Jeong, Y. C.; Kim, K. E.; Lee, D.; Yoo, K.; Kim, J.; Hwang, S.

    2015-12-01

    A variety of chemicals could affect human health and ecosystems by chemical accidents such as fire, explosion, and/or spill. Chemical accidents make chemicals spread to the environment via various routes such as dispersion into ambient air, soil, and surface/ground water media. Especially, soil and groundwater contamination by chemical accidents become a secondary source to have a long term effect on human health and environment. Strength of long term effect by soil and groundwater contamination depends largely on inherent characteristics of a chemical and its fate in soil and groundwater. Therefore, in this study, we developed a framework on how to determine what kind of chemicals is more important in management scheme in terms of soil and groundwater contamination during chemical accidents. We ranked approximately fifty chemicals using this framework which takes into account an exposure into soil and groundwater, toxicity, persistence, and bioaccumulation of a chemical. This framework helps to prepare systematically the management plan for chemical related facilities. Furthermore, results from our study can make a policy maker have interests in highly ranked chemicals and facilities.

  3. Rapid Electrochemical Detection and Identification of Microbiological and Chemical Contaminants for Manned Spaceflight Project

    Science.gov (United States)

    Pierson, Duane; Botkin, Douglas; Gazda, Daniel

    2014-01-01

    Microbial control in the spacecraft environment is a daunting task, especially in the presence of human crew members. Currently, assessing the potential crew health risk associated with a microbial contamination event requires return of representative environmental samples that are analyzed in a ground-based laboratory. It is therefore not currently possible to quickly identify microbes during spaceflight. This project addresses the unmet need for spaceflight-compatible microbial identification technology. The electrochemical detection and identification platform is expected to provide a sensitive, specific, and rapid sample-to-answer capability for in-flight microbial monitoring that can distinguish between related microorganisms (pathogens and non-pathogens) as well as chemical contaminants. This will dramatically enhance our ability to monitor the spacecraft environment and the health risk to the crew. Further, the project is expected to eliminate the need for sample return while significantly reducing crew time required for detection of multiple targets. Initial work will focus on the optimization of bacterial detection and identification. The platform is designed to release nucleic acids (DNA and RNA) from microorganisms without the use of harmful chemicals. Bacterial DNA or RNA is captured by bacteria-specific probe molecules that are bound to a microelectrode, and that capture event can generate a small change in the electrical current (Lam, et al. 2012. Anal. Chem. 84(1): 21-5.). This current is measured, and a determination is made whether a given microbe is present in the sample analyzed. Chemical detection can be accomplished by directly applying a sample to the microelectrode and measuring the resulting current change. This rapid microbial and chemical detection device is designed to be a low-cost, low-power platform anticipated to be operated independently of an external power source, characteristics optimal for manned spaceflight and areas where power

  4. Biosupported Bimetallic Pd Au Nanocatalysts for Dechlorination of Environmental Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    De Corte, S.; Fitts, J.; Hennebel, T.; Sabbe, T.; Bliznuk, V.; Verschuere, S.; van der Lelie, D.; Verstraete, W.; Boon, N.

    2011-08-30

    Biologically produced monometallic palladium nanoparticles (bio-Pd) have been shown to catalyze the dehalogenation of environmental contaminants, but fail to efficiently catalyze the degradation of other important recalcitrant halogenated compounds. This study represents the first report of biologically produced bimetallic Pd/Au nanoparticle catalysts. The obtained catalysts were tested for the dechlorination of diclofenac and trichloroethylene. When aqueous bivalent Pd(II) and trivalent Au(III) ions were both added to concentrations of 50 mg L{sup -1} and reduced simultaneously by Shewanella oneidensis in the presence of H{sub 2}, the resulting cell-associated bimetallic nanoparticles (bio-Pd/Au) were able to dehalogenate 78% of the initially added diclofenac after 24 h; in comparison, no dehalogenation was observed using monometallic bio-Pd or bio-Au. Other catalyst-synthesis strategies did not show improved dehalogenation of TCE and diclofenac compared with bio-Pd. Synchrotron-based X-ray diffraction, (scanning) transmission electron microscopy and energy dispersive X-ray spectroscopy indicated that the simultaneous reduction of Pd and Au supported on cells of S. oneidensis resulted in the formation of a unique bimetallic crystalline structure. This study demonstrates that the catalytic activity and functionality of possibly environmentally more benign biosupported Pd-catalysts can be improved by coprecipitation with Au.

  5. Water contamination and environmental ecosystem in the Harlem River

    Science.gov (United States)

    Wang, J.

    2013-12-01

    Nutrients, bacteria, polychlorinated biphenyls (PCBs) and other contaminates have degraded water quality of the Harlem River. The Harlem River is a natural straight connected to the Hudson River and the East River, and it has been used for navigation and boating. Water samples have been collected and analyzed from 2011 to 2013. Phosphorus, ammonia, turbidity, fecal coliform, E.Coli., and enterococcus all exceed regulated levels for New York City waters. There is only one wastewater treatment plant (Wards Island WWTP) that serves this river. Combined sewer overflows (CSOs) discharge raw sewage into the river during storms in spring and summer. Commercial fishing is banned, .however, individuals still fish. While some fishermen catch and release, it is likely some fish are consumed, creating concern for the environmental health of the community along the river. Storm water runoff, CSOs, and wastewater effluents are major pollutant sources of PCB 11 (3,3' dichlorobiphenyl), nutrient and bacteria. Nutrients, bacteria levels and their spatial/temporal variations were analyzed, and PCB analysis is underway. This data is a critical first step towards improving the water quality and environmental ecosystem in the Harlem River.

  6. Biomonitoring and assessment of environmental contaminants in fish-eating birds of the upper Niagara River: A contribution to the Niagara River Environmental Contaminants Study

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Niagara River Environmental Contaminants Study is an ongoing effort by the U.S. Fish and Wildlife Service (Service) emphasizing the use of biological indicators...

  7. The importance of evaluating the physicochemical and toxicological properties of a contaminant for remediating environments affected by chemical incidents.

    Science.gov (United States)

    Wyke, S; Peña-Fernández, A; Brooke, N; Duarte-Davidson, R

    2014-11-01

    In the event of a major chemical incident or accident, appropriate tools and technical guidance need to be available to ensure that a robust approach can be adopted for developing a remediation strategy. Remediation and restoration strategies implemented in the aftermath of a chemical incident are a particular concern for public health. As a result an innovative methodology has been developed to help design an effective recovery strategy in the aftermath of a chemical incident that has been developed; the UK Recovery Handbook for Chemical Incidents (UKRHCI). The handbook consists of a six-step decision framework and the use of decision trees specifically designed for three different environments: food production systems, inhabited areas and water environments. It also provides a compendium of evidence-based recovery options (techniques or methods for remediation) that should be selected in relation to their efficacy for removing contaminants from the environment. Selection of effective recovery options in this decision framework involves evaluating the physicochemical and toxicological properties of the chemical(s) involved. Thus, the chemical handbook includes a series of tables with relevant physicochemical and toxicological properties that should be assessed in function of the environment affected. It is essential that the physicochemical properties of a chemical are evaluated and interpreted correctly during the development of a remedial plan in the aftermath of a chemical incident to ensure an effective remedial response. This paper presents a general overview of the key physicochemical and toxicological properties of chemicals that should be evaluated when developing a recovery strategy. Information on how physicochemical properties have impacted on previous remedial responses reported in the literature is also discussed and a number of challenges for remediation are highlighted to include the need to develop novel approaches to remediate sites contaminated

  8. Drinking water incidents due to chemical contamination in England and Wales, 2006-2008.

    Science.gov (United States)

    Paranthaman, Karthikeyan; Harrison, Henrietta

    2010-12-01

    Contamination of drinking water by microbiological and chemical agents can lead to adverse health effects. In England and Wales, the Chemicals Hazards and Poisons Division (CHaPD) of the Health Protection Agency provides expert advice on the consequences to public health of chemical contamination incidents affecting drinking water. In this study, we extracted data from the National Database on the type and nature of drinking water contamination events reported to the CHaPD between 2006 and 2008. Eighty-two incidents with confirmed chemical contamination were identified. Among the 70 incidents where data was available, 40% (28/70) of incidents related to contamination of drinking water provided by private suppliers, 31% (22/70) were due to contamination occurring close to the point of consumption (i.e. near consumer) and 29% (20/70) related to incidents where public water supplies were identified as the contaminated source. For the majority of incidents, little or no information was available on the critical exposure variables such as duration of contamination and actual or estimates of the population affected. Reassuringly, the levels of exposure in most incidents were considered unlikely to cause serious immediate or long term ill health effects. Recording of exposure data for reported contamination incidents needs to be improved.

  9. Remediation of soils contaminated with particulate depleted uranium by multi stage chemical extraction

    Energy Technology Data Exchange (ETDEWEB)

    Crean, Daniel E. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield (United Kingdom); Centre for Radiochemistry Research, School of Chemistry, The University of Manchester (United Kingdom); Livens, Francis R.; Sajih, Mustafa [Centre for Radiochemistry Research, School of Chemistry, The University of Manchester (United Kingdom); Stennett, Martin C. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield (United Kingdom); Grolimund, Daniel; Borca, Camelia N. [Swiss Light Source, Paul Scherrer Institute, Villigen (Switzerland); Hyatt, Neil C., E-mail: n.c.hyatt@sheffield.ac.uk [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield (United Kingdom)

    2013-12-15

    Highlights: • Batch leaching was examined to remediate soils contaminated with munitions depleted uranium. • Site specific maximum extraction was 42–50% total U in single batch with NH{sub 4}HCO{sub 3}. • Analysis of residues revealed partial leaching and secondary carbonate phases. • Sequential batch leaching alternating between NH{sub 4}HCO{sub 3} and citric acid was designed. • Site specific extraction was increased to 68–87% total U in three batch steps. -- Abstract: Contamination of soils with depleted uranium (DU) from munitions firing occurs in conflict zones and at test firing sites. This study reports the development of a chemical extraction methodology for remediation of soils contaminated with particulate DU. Uranium phases in soils from two sites at a UK firing range, MOD Eskmeals, were characterised by electron microscopy and sequential extraction. Uranium rich particles with characteristic spherical morphologies were observed in soils, consistent with other instances of DU munitions contamination. Batch extraction efficiencies for aqueous ammonium bicarbonate (42–50% total DU extracted), citric acid (30–42% total DU) and sulphuric acid (13–19% total DU) were evaluated. Characterisation of residues from bicarbonate-treated soils by synchrotron microfocus X-ray diffraction and X-ray absorption spectroscopy revealed partially leached U(IV)-oxide particles and some secondary uranyl-carbonate phases. Based on these data, a multi-stage extraction scheme was developed utilising leaching in ammonium bicarbonate followed by citric acid to dissolve secondary carbonate species. Site specific U extraction was improved to 68–87% total U by the application of this methodology, potentially providing a route to efficient DU decontamination using low cost, environmentally compatible reagents.

  10. Chemical Agents: Personal Cleaning and Disposal of Contaminated Clothing

    Science.gov (United States)

    ... Facts About Personal Cleaning and Disposal of Contaminated Clothing Format: Select one PDF [105 KB] Recommend on ... need to wash yourself and dispose of your clothing In most cases, emergency coordinators will let you ...

  11. Chemical, Biological, and Radiological Contamination Survivability: Material Effects Testing

    Science.gov (United States)

    2012-06-22

    the background contamination level and residual substances (decontaminant) that could interfere with sample assay. c. The air inside the chamber...brushing, vacuum cleaning, or washing with soapy water and a sponge . Surface condition, surface cleanliness, corrosion, materials of construction

  12. Sources and contamination rate of port sediments: evidences from dimensional, mineralogical, and chemical investigations

    Science.gov (United States)

    Lucchetti, Gabriella; Cutroneo, Laura; Carbone, Cristina; Consani, Sirio; Vagge, Greta; Canepa, Giuseppe; Capello, Marco

    2017-04-01

    Ports are complex environments due to their complicated geometry (quays, channels, and piers), the presence of human activities (vessel traffic, yards, industries, and discharges), and natural factors (stream and torrent inputs, sea action, and currents). Due to the many activities that take place in a port, sediments and waters are often contaminated by different kinds of chemicals, such as hydrocarbons, dioxins, pesticides, nutrients, and metals. The contamination rate of a port basin is site specific and depends on the sources of contamination in the nearby urban system as well as the port system itself, such as city discharges and sewers, river intake, vessel traffic, factories (Taylor and Owens, 2009). Moreover, two important sources and vehicles of contaminants are: a) anthropogenic road deposited sediments derived from the runoff of the port and city area, and natural road deposited sediments derived from rivers and torrents, and b) airborne particulate matter and sediments (Taylor and Owens, 2009). The Port of Genoa is situated at the apex of the Ligurian Sea in the north western Mediterranean Sea and is characterised by the presence of several commercial activities that have contributed, over the years, and still contribute today, to the contaminant accumulation in both the water column and the bottom sediments. This port basin includes the mouth of several streams and the mouth of the Bisagno and the Polcevera Torrents, along the banks of which can be found several small towns, quarries, factories, and the suburbs of the city of Genoa, a ferry terminal, different container terminals, marinas, dry docks, the coal power plant of Genoa, and different wastewater treatment plant discharges. Starting from these considerations, we have examined the marine environment of a port from the point of view of the water mass circulation, hydrological characteristics, distribution of the sediment grain size, mineralogical characteristics, and metal concentrations of the

  13. Environmental analysis of endocrine disrupting effects from hydrocarbon contaminants in the ecosystem. 1998 annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    McLachlan, J.

    1998-06-01

    'The objective of this project is to determine how environmental contaminants, namely hydrocarbons, can act as hormones or anti-hormones (i.e., environmental hormones) in different species present in aquatic ecosystems. Species of particular focus are those which can serve as sentinel species (e.g., amphibians) and, thus, provide early warning signals for more widespread impacts on an ecosystem and its wildlife and human inhabitants. This reports the progress of 1.5 years of a three-year grant awarded to the Tulane/Xavier Center for Bioenvironmental Research (CBR). A growing body of evidence suggests that chemicals in the environment can disrupt the endocrine system of animals (i.e., wildlife and humans) and adversely impact the development of these species. Because of the multitude of known endocrine-disrupting chemicals and the numerous industrial and government sectors producing these chemicals, almost every federal agency has initiated research on the endocrine effects of chemicals relevant to their operations. This study represents the Department of Energy (DOE) Basic Energy Sciences'' only research on the impacts of endocrine-disrupting chemicals. The activities employed by this project to determine these impacts include development of biotechnology screens (in vitro), animal screens (in vivo), and other analyses of aquatic ecosystem biomarkers of exposure. The results from this study can elucidate how chemicals in the environment, including those from DOE activities, can signal (and alter) the development of a number of species in aquatic ecosystems. These signals can have detrimental impacts not only on an organismal level, but also on community, population, and entire ecosystem levels, including humans.'

  14. Assessing contaminant sensitivity of endangered and threatened aquatic species: Part I. Acute toxicity of five chemicals

    Science.gov (United States)

    Dwyer, F.J.; Mayer, F.L.; Sappington, L.C.; Buckler, D.R.; Bridges, C.M.; Greer, I.E.; Hardesty, D.K.; Henke, C.E.; Ingersoll, C.G.; Kunz, J.L.; Whites, D.W.; Augspurger, T.; Mount, D.R.; Hattala, K.; Neuderfer, G.N.

    2005-01-01

    Assessment of contaminant impacts to federally identified endangered, threatened and candidate, and state-identified endangered species (collectively referred to as "listed" species) requires understanding of a species' sensitivities to particular chemicals. The most direct approach would be to determine the sensitivity of a listed species to a particular contaminant or perturbation. An indirect approach for aquatic species would be application of toxicity data obtained from standard test procedures and species commonly used in laboratory toxicity tests. Common test species (fathead minnow, Pimephales promelas; sheepshead minnow, Cyprinodon variegatus; and rainbow trout, Oncorhynchus mykiss) and 17 listed or closely related species were tested in acute 96-hour water exposures with five chemicals (carbaryl, copper, 4-nonylphenol, pentachlorophenol, and permethrin) representing a broad range of toxic modes of action. No single species was the most sensitive to all chemicals. For the three standard test species evaluated, the rainbow trout was more sensitive than either the fathead minnow or sheepshead minnow and was equal to or more sensitive than listed and related species 81% of the time. To estimate an LC50 for a listed species, a factor of 0.63 can be applied to the geometric mean LC50 of rainbow trout toxicity data, and more conservative factors can be determined using variance estimates (0.46 based on 1 SD of the mean and 0.33 based on 2 SD of the mean). Additionally, a low- or no-acute effect concentration can be estimated by multiplying the respective LC50 by a factor of approximately 0.56, which supports the United States Environmental Protection Agency approach of multiplying the final acute value by 0.5 (division by 2). When captive or locally abundant populations of listed fish are available, consideration should be given to direct testing. When direct toxicity testing cannot be performed, approaches for developing protective measures using common test

  15. Microbial and chemical contamination during and after flooding in the Ohio River—Kentucky, 2011

    OpenAIRE

    Yard, Ellen E.; Murphy, Matthew W.; Schneeberger, Chandra; Narayanan, Jothikumar; Hoo, Elizabeth; Freiman, Alexander; Lewis, Lauren S.; Hill, Vincent R.

    2014-01-01

    Surface water contaminants in Kentucky during and after 2011 flooding were characterized. Surface water samples were collected during flood stage (May 2–4, 2011; n = 15) and after (July 25–26, 2011; n = 8) from four different cities along the Ohio River and were analyzed for the presence of microbial indicators, pathogens, metals, and chemical contaminants. Contaminant concentrations during and after flooding were compared using linear and logistic regression. Surface water samples collected ...

  16. Nuclear Abnormalities in Erythrocytes of Frogs From Wetlands and Croplands of Western Ghats Indicate Environmental Contaminations

    OpenAIRE

    Raghunath, Shreyas; Veerabhadrappa, Chethankumar Masaruru; Krishnamurthy, Sannanegunda Venkatarama Bhatta

    2017-01-01

    Anuran amphibians are the biological models to assess the influence of environmental contamination. We conducted nuclear abnormality assessment and micronuclei test in erythrocytes of frogs to identify an early influence of environmental contaminations. In Western Ghats of India, farmers use different agrochemicals and obviously, the amphibian habitat is contaminated with combinations of many residues. Many frog species use these agro-ecosystem for breeding and to complete early life stage. I...

  17. National Status and Trends: Bioeffects Program - Southwest Puerto Rico Chemical Contaminant Assessment Summary

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The purpose of the project was to characterize the extent and magnitude of chemical contamination in southwest Puerto Rico, as part of a larger effort to link coral...

  18. Chemical Contamination at National Wildlife Refuges in the Lower Mississippi River Ecosystem

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — An investigation was made into chemical contamination at 26 National Wildlife Refuges in the Lower Mississippi River Ecosystem. Samples of water, sediment, and fish...

  19. Vitellogenin as a potential biomarker for environmental contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Denslow, N.D. [Univ. of Florida, Gainesville, FL (United States). Dept. of Biochemical Molecular Biology; Folmar, L.C. [Environmental Protection Agency, Gulf Breeze, FL (United States); Sullivan, C.V. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Zoology

    1994-12-31

    The authors have recently obtained N-terminal amino acid sequences for the egg protein vitellogenin (Vtg) from phylogenetically diverse teleost fish ranging from rainbow trout to the striped bass. Using the striped bass sequence as a template, the other teleost fish showed at least an 87% identity through the region of amino acids 7--20. The amino acid sequence was not as well conserved for other fishes; white sturgeon (60%) and brook lamprey (47%), the clawed frog Xenopus (47--60%) or the domestic chicken (40%). The authors synthesized a consensus peptide to this highly conserved region and have raised a polygonal antibody from rabbit. This antibody shows wide cross-reactivity to Vtg from many species of teleost fish. The authors have found that serum Vtg levels are elevated in both male and female brown bullheads with liver tumors from an area contaminated with polycyclic aromatic hydrocarbons. Serum levels of Vtg were also elevated in rainbow trout with liver tumors induced with aflatoxin B-1. The authors also describe an in-vitro system of plated hepatocytes to screen for estrogenic and antiestrogenic xenobiotic chemicals in the environment and using Vtg as a screening tool to establish structure-activity relationships for reproductive failure in female fish.

  20. Uncertainties in human health risk assessment of environmental contaminants: A review and perspective.

    Science.gov (United States)

    Dong, Zhaomin; Liu, Yanju; Duan, Luchun; Bekele, Dawit; Naidu, Ravi

    2015-12-01

    Addressing uncertainties in human health risk assessment is a critical issue when evaluating the effects of contaminants on public health. A range of uncertainties exist through the source-to-outcome continuum, including exposure assessment, hazard and risk characterisation. While various strategies have been applied to characterising uncertainty, classical approaches largely rely on how to maximise the available resources. Expert judgement, defaults and tools for characterising quantitative uncertainty attempt to fill the gap between data and regulation requirements. The experiences of researching 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) illustrated uncertainty sources and how to maximise available information to determine uncertainties, and thereby provide an 'adequate' protection to contaminant exposure. As regulatory requirements and recurring issues increase, the assessment of complex scenarios involving a large number of chemicals requires more sophisticated tools. Recent advances in exposure and toxicology science provide a large data set for environmental contaminants and public health. In particular, biomonitoring information, in vitro data streams and computational toxicology are the crucial factors in the NexGen risk assessment, as well as uncertainties minimisation. Although in this review we cannot yet predict how the exposure science and modern toxicology will develop in the long-term, current techniques from emerging science can be integrated to improve decision-making. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. A perspective on the potential risks of emerging contaminants to human and environmental health.

    Science.gov (United States)

    Pereira, Lílian Cristina; de Souza, Alecsandra Oliveira; Franco Bernardes, Mariana Furio; Pazin, Murilo; Tasso, Maria Júlia; Pereira, Paulo Henrique; Dorta, Daniel Junqueira

    2015-09-01

    Technological, agricultural, and medical advances have improved the lifestyle of humankind. However, these advances have caused new problems that affect the environment and future generations. Emerging contaminants display properties such as low degradation potential and environmental persistence. In addition, most contaminants are lipophilic, which culminates in high bioaccumulation. The disposal of pharmaceuticals and personal care products into the environment underlies microbial and bacterial resistance. Plasticizers change several characteristics of industrialized materials, such as flexibility, but they are potentially carcinogenic and disrupt the endocrine system. Pesticides prevent the propagation of numerous kinds of pests; nevertheless, they exert neurotoxic and mutagenic effects, and they impact the environment negatively. Addition of flame retardants to a number of materials prevents flame propagation; however, after their release into the environment, these chemicals may bioaccumulate in organisms and disrupt the endocrine system, too. Surfactants can change the surface and interfacial properties of liquids, but their presence in the environment can interfere with countless enzymes and can even impair the endocrine system of various organisms and induce the feminization of species. Hence, gaining knowledge about emerging contaminants is increasingly important to minimize future damage and enable proper monitoring of each class of compounds in the environment which will help to improve legislation on this matter.

  2. Embryotoxicity and teratogenicity of environmental contaminants to bird eggs

    Science.gov (United States)

    Hoffman, D.J.

    1990-01-01

    First awareness that direct topical application of xenobiotics to bird eggs could be harmful to avian development dates back to the turn of the century. The most widely documented evidence of embryotoxicity following direct exposure comes from petroleum contaminant studies, conducted with at least 10 different avian species. Many petroleum crude oils, refined oils, and waste oils are embryotoxic and moderately teratogenic to different species; LD50s are often less than 5 iL of oil per egg. Toxicity is generally dependent upon the PAH concentration and composition (presence of higher weight PAHs). Five of seven industrial effluents caused significant reduction of embryonic growth in mallards following brief immersion of the eggs. Of the insecticides, organophosphates have been the most widely studied with respect to potential for direct embryotoxicity and teratogenicity following spraying or immersion of eggs. Phenoxy herbicides including 2,4-D and 2,4,5-T have been the most widely studied class of herbicides with respect to potential embryotoxicity of spray application. However, more recent evaluations have indicated that this is not the most toxic class of herbicides. Paraquat was found to be highly toxic in at least three species. Herbicides with LC50s that occurred at ten times the field level of application or less for mallard embryos included bromoxynil with MCPA, methyldiclofop, paraquat, prometon, propanil, and trifluralin. Of different gaseous and particulate air pollutants, ozone and particulates rich in PAH content appeared to be potentially embryotoxic, based on laboratory studies. Environmental contaminants in all classes reviewed have been shown to cause physiological and biochemical disturbances in embryos or hatchlings indicative of contaminant exposure, organ damage, or delayed development. Residue studies have shown the presence of DDT, 2,4-D, 2,4,5-T, decamethrin, petroleum hydrocarbons, and methylmercury after direct exposure of eggs. Ability of

  3. Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination

    Energy Technology Data Exchange (ETDEWEB)

    Zarei, Mehdi [Department of Soil Science, College of Agriculture, University of Shiraz, Shiraz (Iran, Islamic Republic of); Hempel, Stefan, E-mail: hempel.stefan@googlemail.co [UFZ Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Soil Ecology, Theodor-Lieser-Strasse 4, 06120 Halle (Germany); Freie Universitaet Berlin, Institut fuer Biologie, Okologie der Pflanzen, Altensteinstrasse 6, 14195 Berlin (Germany); Wubet, Tesfaye; Schaefer, Tina [UFZ Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Soil Ecology, Theodor-Lieser-Strasse 4, 06120 Halle (Germany); Savaghebi, Gholamreza [Department of Soil Science Engineering, University College of Agriculture and Natural Resources, University of Tehran, Karaj (Iran, Islamic Republic of); Jouzani, Gholamreza Salehi; Nekouei, Mojtaba Khayam [Agricultural Biotechnology Research Institute of Iran (ABRII), P.O. Box 31535-1897, Karaj (Iran, Islamic Republic of); Buscot, Francois [UFZ Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Soil Ecology, Theodor-Lieser-Strasse 4, 06120 Halle (Germany)

    2010-08-15

    Abundance and diversity of arbuscular mycorrhizal fungi (AMF) associated with dominant plant species were studied along a transect from highly lead (Pb) and zinc (Zn) polluted to non-polluted soil at the Anguran open pit mine in Iran. Using an established primer set for AMF in the internal transcribed spacer (ITS) region of rDNA, nine different AMF sequence types were distinguished after phylogenetic analyses, showing remarkable differences in their distribution patterns along the transect. With decreasing Pb and Zn concentration, the number of AMF sequence types increased, however one sequence type was only found in the highly contaminated area. Multivariate statistical analysis revealed that further factors than HM soil concentration affect the AMF community at contaminated sites. Specifically, the soils' calcium carbonate equivalent and available P proved to be of importance, which illustrates that field studies on AMF distribution should also consider important environmental factors and their possible interactions. - The molecular diversity of AMF was found to be influenced by a combination of soil heavy metal and other soil chemical parameters.

  4. Global styrene oligomers monitoring as new chemical contamination from polystyrene plastic marine pollution.

    Science.gov (United States)

    Kwon, Bum Gun; Koizumi, Koshiro; Chung, Seon-Yong; Kodera, Yoichi; Kim, Jong-Oh; Saido, Katsuhiko

    2015-12-30

    Polystyrene (PS) plastic marine pollution is an environmental concern. However, a reliable and objective assessment of the scope of this problem, which can lead to persistent organic contaminants, has yet to be performed. Here, we show that anthropogenic styrene oligomers (SOs), a possible indicator of PS pollution in the ocean, are found globally at concentrations that are higher than those expected based on the stability of PS. SOs appear to persist to varying degrees in the seawater and sand samples collected from beaches around the world. The most persistent forms are styrene monomer, styrene dimer, and styrene trimer. Sand samples from beaches, which are commonly recreation sites, are particularly polluted with these high SOs concentrations. This finding is of interest from both scientific and public perspectives because SOs may pose potential long-term risks to the environment in combination with other endocrine disrupting chemicals. From SOs monitoring results, this study proposes a flow diagram for SOs leaching from PS cycle. Using this flow diagram, we conclude that SOs are global contaminants in sandy beaches around the world due to their broad spatial distribution. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Food and feed chemical contaminants in the European Union: Regulatory, scientific, and technical issues concerning chemical contaminants occurrence, risk assessment, and risk management in the European Union.

    Science.gov (United States)

    Silano, Marco; Silano, Vittorio

    2017-07-03

    A priority of the European Union is the control of risks possibly associated with chemical contaminants in food and undesirable substances in feed. Following an initial chapter describing the main contaminants detected in food and undesirable substances in feed in the EU, their main sources and the factors which affect their occurrence, the present review focuses on the "continous call for data" procedure that is a very effective system in place at EFSA to make possible the exposure assessment of specific contaminants and undesirable substances. Risk assessment of contaminants in food atances in feed is carried currently in the European Union by the CONTAM Panel of EFSA according to well defined methodologies and in collaboration with competent international organizations and with Member States.

  6. Impacts of Environmental Nanoparticles on Chemical, Biological and Hydrological Processes in Terrestrial Ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla

    2012-01-01

    This chapter provides insights on nanoparticle (NP) influence or control on the extent and timescales of single or coupled physical, chemical, biological and hydrological reactions and processes that occur in terrestrial ecosystems. Examples taken from the literature that show how terrestrial NPs may determine the fate of the aqueous and sorbed (adsorbed or precipitated) chemical species of nutrients and contaminants, are also included in this chapter. Specifically, in the first section, chapter objectives, term definitions and discussions on size-dependent properties, the origin and occurrence of NP in terrestrial ecosystems and NP toxicity, are included. In the second section, the topic of the binary interactions of NPs of different sizes, shapes, concentrations and ages with the soil solution chemical species is covered, focusing on NP formation, stability, aggregation, ability to serve as sorbents, or surface-mediated precipitation catalysts, or electron donors and acceptors. In the third section, aspects of the interactions in the ternary systems composed of environmental NP, nutrient/contaminant chemical species, and the soil/sediment matrix are discussed, focusing on the inhibitory and catalytic effects of environmental NP on nutrient/contaminant advective mobility and mass transfer, adsorption and desorption, dissolution and precipitation and redox reactions that occur in terrestrial ecosystems. These three review sections are followed by a short summary of future research needs and directions, the acknowledgements, the list of the references, and the figures.

  7. Material Cycles and Chemicals: Dynamic Material Flow Analysis of Contaminants in Paper Recycling

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Laner, David; Astrup, Thomas Fruergaard

    2016-01-01

    This study provides a systematic approach for assessment of contaminants in materials for recycling. Paper recycling is used as an illustrative example. Three selected chemicals, bisphenol A (BPA), diethylhexyl phthalate (DEHP) and mineral oil hydrocarbons (MOHs), are evaluated within the paper...... material source-segregation and collection was the least effective strategy for reducing chemical contamination, if the overall recycling rates should be maintained at the current level (approximately 70% for Europe). The study provides a consistent approach for evaluating contaminant levels in material...... cycles. The results clearly indicate that mass-based recycling targets are not sufficient to ensure high quality material recycling....

  8. Calculation of the disease burden associated with environmental chemical exposures

    DEFF Research Database (Denmark)

    Grandjean, Philippe; Bellanger, Martine

    2017-01-01

    , and is hampered by gaps in environmental exposure data, especially from industrializing countries. For these reasons, a recently calculated environmental BoD of 5.18% of the total DALYs is likely underestimated. We combined and extended cost calculations for exposures to environmental chemicals, including...... neurotoxicants, air pollution, and endocrine disrupting chemicals, where sufficient data were available to determine dose-dependent adverse effects. Environmental exposure information allowed cost estimates for the U.S. and the EU, for OECD countries, though less comprehensive for industrializing countries...... is that they are available for few environmental chemicals and primarily based on mortality and impact and duration of clinical morbidity, while less serious conditions are mostly disregarded. Our economic estimates based on available exposure information and dose-response data on environmental risk factors need to be seen...

  9. Calculation of the disease burden associated with environmental chemical exposures

    DEFF Research Database (Denmark)

    Grandjean, Philippe; Bellanger, Martine

    2017-01-01

    is that they are available for few environmental chemicals and primarily based on mortality and impact and duration of clinical morbidity, while less serious conditions are mostly disregarded. Our economic estimates based on available exposure information and dose-response data on environmental risk factors need to be seen......, and is hampered by gaps in environmental exposure data, especially from industrializing countries. For these reasons, a recently calculated environmental BoD of 5.18% of the total DALYs is likely underestimated. We combined and extended cost calculations for exposures to environmental chemicals, including...... neurotoxicants, air pollution, and endocrine disrupting chemicals, where sufficient data were available to determine dose-dependent adverse effects. Environmental exposure information allowed cost estimates for the U.S. and the EU, for OECD countries, though less comprehensive for industrializing countries...

  10. Chemical, Biological, and Radiological (CBR) Contamination Survivability, Large Item Interiors

    Science.gov (United States)

    2016-08-03

    determine the residual contamination remaining after decontamination. b. For porous materials such as upholstery, ceiling tiles , etc., a coupon of the...X X X 30 Crazing, stress, corrosion, cracking X X X X X X X X 31 Acoustic dampening X X X 32 Glass transition temperature X X X X X X X 33 Rubber

  11. In situ chemical degradation of DNAPLS in contaminated soils and sediments

    Energy Technology Data Exchange (ETDEWEB)

    Gates, D.D.; Korte, N.E.; Siegrist, R.L. [Oak Ridge National Lab., TN (United States)

    1996-08-01

    An emerging approach to in situ treatment of organic contaminants is chemical degradation. The specific processes discussed in this chapter are in situ chemical oxidation using either hydrogen peroxide (H{sub 2}O{sub 2}) or potassium permanganate (KMnO{sub 4}) and in situ dechlorination of halogenated hydrocarbons using zero-valence base metals such as iron. These technologies are primarily chemical treatment processes, where the treatment goal is to manipulate the chemistry of the subsurface environment in such a manner that the contaminants of interest are destroyed and/or rendered non-toxic. Chemical properties that can be altered include pH, ionic strength, oxidation and reduction potential, and chemical equilibria. In situ contaminant destruction processes alter or destroy contaminants in place and are typically applied to compounds that can be either converted to innocuous species such as CO{sub 2} and water, or can be degraded to species that are non-toxic or amenable to other in situ processes (i.e., bioremediation). With in situ chemical oxidation, the delivery and distribution of chemical reagents are critical to process effectiveness. In contrast, published approaches for the use of zero valence base metals suggest passive approaches in which the metals are used in a permeable reaction wall installed in situ in the saturated zone. Both types of processes are receiving increasing attention and are being applied both in technology demonstration and as final solutions to subsurface contaminant problems. 43 refs., 9 figs., 1 tab.

  12. Assessment of Environmental Contamination and Environmental Decontamination Practices within an Ebola Holding Unit, Freetown, Sierra Leone: e0145167

    National Research Council Canada - National Science Library

    Daniel Youkee; Colin S Brown; Paul Lilburn; Nandini Shetty; Tim Brooks; Andrew Simpson; Neil Bentley; Marta Lado; Thaim B Kamara; Naomi F Walker; Oliver Johnson

    2015-01-01

    .... We conducted an audit of decontamination procedures inside Connaught Hospital EHU in Freetown, Sierra Leone, by assessing environmental swab specimens for evidence of contamination with Ebola virus by RT-PCR...

  13. Microbial and chemical contamination during and after flooding in the Ohio River—Kentucky, 2011

    Science.gov (United States)

    Yard, Ellen E.; Murphy, Matthew W.; Schneeberger, Chandra; Narayanan, Jothikumar; Hoo, Elizabeth; Freiman, Alexander; Lewis, Lauren S.; Hill, Vincent R.

    2017-01-01

    Surface water contaminants in Kentucky during and after 2011 flooding were characterized. Surface water samples were collected during flood stage (May 2–4, 2011; n = 15) and after (July 25–26, 2011; n = 8) from four different cities along the Ohio River and were analyzed for the presence of microbial indicators, pathogens, metals, and chemical contaminants. Contaminant concentrations during and after flooding were compared using linear and logistic regression. Surface water samples collected during flooding had higher levels of E. coli, enterococci, Salmonella, Campylobacter, E. coli O157:H7, adenovirus, arsenic, copper, iron, lead, and zinc compared to surface water samples collected 3-months post-flood (P < 0.05). These results suggest that flooding increases microbial and chemical loads in surface water. These findings reinforce commonly recommended guidelines to limit exposure to flood water and to appropriately sanitize contaminated surfaces and drinking wells after contamination by flood water. PMID:24967556

  14. Microbial and chemical contamination during and after flooding in the Ohio River-Kentucky, 2011.

    Science.gov (United States)

    Yard, Ellen E; Murphy, Matthew W; Schneeberger, Chandra; Narayanan, Jothikumar; Hoo, Elizabeth; Freiman, Alexander; Lewis, Lauren S; Hill, Vincent R

    2014-09-19

    Surface water contaminants in Kentucky during and after 2011 flooding were characterized. Surface water samples were collected during flood stage (May 2-4, 2011; n = 15) and after (July 25-26, 2011; n = 8) from four different cities along the Ohio River and were analyzed for the presence of microbial indicators, pathogens, metals, and chemical contaminants. Contaminant concentrations during and after flooding were compared using linear and logistic regression. Surface water samples collected during flooding had higher levels of E. coli, enterococci, Salmonella, Campylobacter, E. coli O157:H7, adenovirus, arsenic, copper, iron, lead, and zinc compared to surface water samples collected 3-months post-flood (P < 0.05). These results suggest that flooding increases microbial and chemical loads in surface water. These findings reinforce commonly recommended guidelines to limit exposure to flood water and to appropriately sanitize contaminated surfaces and drinking wells after contamination by flood water.

  15. Environmental impact evaluation of chemical substances. Possibilities of bioindicator processes

    Energy Technology Data Exchange (ETDEWEB)

    Heublein, D.

    1986-02-01

    The chemicals law obliges manufacturers or importers of novel chemical substances to perform comprehensive tests in order to assess these substances for their impacts on health and environment prior to their marketing. However, the testing procedure is of a limited use for evaluating the effects of chemicals on ecological systems; this may be supplemented to by bioindicator processes. The first step of a comprehensive concept for detecting the environmental impacts of chemicals continuously in time and across territory was completed by the institution of the environmental samples bank which is to be supplemented to by a comprehensive monitoring programme and, correspondingly, by massive expansion of pertinent ecosystem research. (orig.).

  16. Biomonitoring human exposure to environmental carcinogenic chemicals

    NARCIS (Netherlands)

    Farmer, P.B.; Sepai, O.; Lawrence, R.; Autrup, H.; Nielsen, P.S.; Baan, R.A.; Delft, J.H.M. van; Steenwinkel, M.J.S.T.; et al.

    1996-01-01

    A coordinated study was carried out on the development, evaluation and application of biomonitoring procedures for populations exposed to environmental genotoxic pollutants. The procedures used involved both direct measurement of DNA or protein damage (adducts) and assessment of secondary biological

  17. Short-Term and Long-Term Biological Effects of Chronic Chemical Contamination on Natural Populations of a Marine Bivalve.

    Science.gov (United States)

    Breitwieser, Marine; Viricel, Amélia; Graber, Marianne; Murillo, Laurence; Becquet, Vanessa; Churlaud, Carine; Fruitier-Arnaudin, Ingrid; Huet, Valérie; Lacroix, Camille; Pante, Eric; Le Floch, Stéphane; Thomas-Guyon, Hélène

    2016-01-01

    Understanding the effects of chronic chemical contamination on natural populations of marine organisms is complex due to the combined effects of different types of pollutants and environmental parameters that can modulate the physiological responses to stress. Here, we present the effects of a chronic contamination in a marine bivalve by combining multiple approaches that provide information on individual and population health. We sampled variegated scallops (Mimachlamys varia) at sites characterized by different contaminants and contamination levels to study the short and long-term (intergenerational) responses of this species to physiological stress. We used biomarkers (SOD, MDA, GST, laccase, citrate synthase and phosphatases) as indicators of oxidative stress, immune system alteration, mitochondrial respiration and general metabolism, and measured population genetic diversity at each site. In parallel, concentration of 14 trace metals and 45 organic contaminants (PAHs, PCBs, pesticides) in tissues were measured. Scallops were collected outside and during their reproductive season to investigate temporal variability in contaminant and biomarker levels. Our analyses revealed that the levels of two biomarkers (Laccase-type phenoloxidase and malondialdehyde) were significantly correlated with Cd concentration. Additionally, we observed significant seasonal differences for four of the five biomarkers, which is likely due to the scallop reproductive status at time of sampling. As a source of concern, a location that was identified as a reference site on the basis of inorganic contaminant levels presented the same level of some persistent organic pollutants (DDT and its metabolites) than more impacted sites. Finally, potential long-term effects of heavy metal contamination were observed for variegated scallops as genetic diversity was depressed in the most polluted sites.

  18. Short-Term and Long-Term Biological Effects of Chronic Chemical Contamination on Natural Populations of a Marine Bivalve.

    Directory of Open Access Journals (Sweden)

    Marine Breitwieser

    Full Text Available Understanding the effects of chronic chemical contamination on natural populations of marine organisms is complex due to the combined effects of different types of pollutants and environmental parameters that can modulate the physiological responses to stress. Here, we present the effects of a chronic contamination in a marine bivalve by combining multiple approaches that provide information on individual and population health. We sampled variegated scallops (Mimachlamys varia at sites characterized by different contaminants and contamination levels to study the short and long-term (intergenerational responses of this species to physiological stress. We used biomarkers (SOD, MDA, GST, laccase, citrate synthase and phosphatases as indicators of oxidative stress, immune system alteration, mitochondrial respiration and general metabolism, and measured population genetic diversity at each site. In parallel, concentration of 14 trace metals and 45 organic contaminants (PAHs, PCBs, pesticides in tissues were measured. Scallops were collected outside and during their reproductive season to investigate temporal variability in contaminant and biomarker levels. Our analyses revealed that the levels of two biomarkers (Laccase-type phenoloxidase and malondialdehyde were significantly correlated with Cd concentration. Additionally, we observed significant seasonal differences for four of the five biomarkers, which is likely due to the scallop reproductive status at time of sampling. As a source of concern, a location that was identified as a reference site on the basis of inorganic contaminant levels presented the same level of some persistent organic pollutants (DDT and its metabolites than more impacted sites. Finally, potential long-term effects of heavy metal contamination were observed for variegated scallops as genetic diversity was depressed in the most polluted sites.

  19. Evaluating legacy contaminants and emerging chemicals in marine environments using adverse outcome pathways and biological effects-directed analysis.

    Science.gov (United States)

    Hutchinson, Thomas H; Lyons, Brett P; Thain, John E; Law, Robin J

    2013-09-30

    Natural and synthetic chemicals are essential to our daily lives, food supplies, health care, industries and safe sanitation. At the same time protecting marine ecosystems and seafood resources from the adverse effects of chemical contaminants remains an important issue. Since the 1970s, monitoring of persistent, bioaccumulative and toxic (PBT) chemicals using analytical chemistry has provided important spatial and temporal trend data in three important contexts; relating to human health protection from seafood contamination, addressing threats to marine top predators and finally providing essential evidence to better protect the biodiversity of commercial and non-commercial marine species. A number of regional conventions have led to controls on certain PBT chemicals over several years (termed 'legacy contaminants'; e.g. cadmium, lindane, polycyclic aromatic hydrocarbons [PAHs] and polychlorinated biphenyls [PCBs]). Analytical chemistry plays a key role in evaluating to what extent such regulatory steps have been effective in leading to reduced emissions of these legacy contaminants into marine environments. In parallel, the application of biomarkers (e.g. DNA adducts, CYP1A-EROD, vitellogenin) and bioassays integrated with analytical chemistry has strengthened the evidence base to support an ecosystem approach to manage marine pollution problems. In recent years, however,the increased sensitivity of analytical chemistry, toxicity alerts and wider environmental awareness has led to a focus on emerging chemical contaminants (defined as chemicals that have been detected in the environment, but which are currently not included in regulatory monitoring programmes and whose fate and biological impacts are poorly understood). It is also known that natural chemicals (e.g. algal biotoxins) may also pose a threat to marine species and seafood quality. Hence complex mixtures of legacy contaminants, emerging chemicals and natural biotoxins in marine ecosystems represent

  20. The effect of environmental parameters on contaminant uptake by a ...

    African Journals Online (AJOL)

    Turbulence was found to disrupt the boundary layer formed around the device as a result of concentration polarization causing irregular fluctuations in the concentration of contaminants in equilibrium with the membrane. There was no discernable correlation between the concentration of contaminants accumulated by the ...

  1. Chemical contaminants in surficial sediment in Coral and Fish Bays, St. John, U.S. Virgin Islands.

    Science.gov (United States)

    Whitall, David; Pait, Anthony; Hartwell, S Ian

    2015-12-01

    Land based sources of pollution have the potential to negatively impact coral reef ecosystems. Many coral systems, including environmentally sensitive marine protected areas, do not have assessments of their chemical contaminant status (magnitude and extent). Without a status assessment, it is impossible to measure change in a system. This study presents surficial sediment data from Coral and Fish Bays (St. John, US Virgin Islands (USVI)). Portions of these bays are included in Virgin Islands National Park, and Virgin Islands Coral Reef National Monument. A suite of analytes (PCBs, PAHs, pesticides, heavy metals, butyltins) was quantified and compared against other regional data and against previously published sediment quality guidelines (SQG). Contamination from toxic contaminants in the system was generally low when compared to other similar studies and potential toxicity thresholds (SQG). Exceptions to this were copper and total chlordane which exceeded the Effects Range Low (ERL) sediment quality guideline, indicating possible sediment toxicity. This assessment will be useful to coastal managers for tracking environmental change, and ensuring that this marine protected area remains relatively free from toxic contamination. Published by Elsevier Ltd.

  2. Decision support methods for the environmental assessment of contamination at mining sites.

    Science.gov (United States)

    Jordan, Gyozo; Abdaal, Ahmed

    2013-09-01

    Polluting mine accidents and widespread environmental contamination associated with historic mining in Europe and elsewhere has triggered the improvement of related environmental legislation and of the environmental assessment and management methods for the mining industry. Mining has some unique features such as natural background pollution associated with natural mineral deposits, industrial activities and contamination located in the three-dimensional sub-surface space, the problem of long-term remediation after mine closure, problem of secondary contaminated areas around mine sites and abandoned mines in historic regions like Europe. These mining-specific problems require special tools to address the complexity of the environmental problems of mining-related contamination. The objective of this paper is to review and evaluate some of the decision support methods that have been developed and applied to mining contamination. In this paper, only those methods that are both efficient decision support tools and provide a 'holistic' approach to the complex problem as well are considered. These tools are (1) landscape ecology, (2) industrial ecology, (3) landscape geochemistry, (4) geo-environmental models, (5) environmental impact assessment, (6) environmental risk assessment, (7) material flow analysis and (8) life cycle assessment. This unique inter-disciplinary study should enable both the researcher and the practitioner to obtain broad view on the state-of-the-art of decision support methods for the environmental assessment of contamination at mine sites. Documented examples and abundant references are also provided.

  3. A review of the role of emerging environmental contaminants in the development of breast cancer in women

    Directory of Open Access Journals (Sweden)

    Shabana Siddique

    2016-12-01

    Full Text Available The incidence of breast cancer is on a rise worldwide; it is a disease having a complex etiology. Besides genetics, environmental and other lifestyle factors play a role in the development of the disease. There has been a keen interest in studying associations between breast cancer and exposures to emerging environmental chemicals, which mimic estrogens or influence estrogen levels and signaling in the human body. The common consequence of an endocrine disrupting chemical exposure is that it may have an impact on breast cancer etiology by stimulating formation as well as progression of breast cancer. Exposures to selected emerging environmental contaminants such as alkylphenols (APs, bisphenol A (BPA, parabens, perfluoroalkyl substances (PFASs, phthalates, polybrominated diphenyl ethers (PBDEs, synthetic musks and triclosan, and their probable role in breast cancer development are reviewed. Studies evaluated include the experimental in vitro and in vivo studies as well as human population based studies. In vitro and in vivo evidences indicate that a number of emerging environmental contaminants may play a role in the initiation and/or progression of breast cancer. Although exposures have been assessed in some human populations, breast and other cancer risks associated with these exposures are largely unknown. Efforts should be focussed on the evaluation of these environmental exposures in human populations and their interactions with each other and other genetic and lifestyle risk factors.

  4. Thyroid hormone metabolism and environmental chemical exposure

    NARCIS (Netherlands)

    Leijs, M.M.; ten Tusscher, G.W.; Olie, K.; van Teunenbroek, T.; van Aalderen, W.M.C.; de Voogt, P.; Vulsma, T.; Bartonova, A.; Krayer von Krauss, M.; Mosoiu, C.; Riojas-Rodriguez, H.; Calamandrei, G.; Koppe, J.G.

    2012-01-01

    Background Polychlorinated dioxins and -furans (PCDD/Fs) and polychlorinated-biphenyls (PCBs) are environmental toxicants that have been proven to influence thyroid metabolism both in animal studies and in human beings. In recent years polybrominated diphenyl ethers (PBDEs) also have been found to

  5. Thyroid hormone metabolism and environmental chemical exposure

    NARCIS (Netherlands)

    Leijs, Marike M.; ten Tusscher, Gavin W.; Olie, Kees; van Teunenbroek, Tom; van Aalderen, Wim M. C.; de Voogt, Pim; Vulsma, Tom; Bartonova, Alena; Krayer von Krauss, Martin; Mosoiu, Claudia; Riojas-Rodriguez, Horacio; Calamandrei, Gemma; Koppe, Janna G.

    2012-01-01

    Background: Polychlorinated dioxins and -furans (PCDD/Fs) and polychlorinated biphenyls (PCBs) are environmental toxicants that have been proven to influence thyroid metabolism both in animal studies and in human beings. In recent years polybrominated diphenyl ethers (PBDEs) also have been found to

  6. Environmental contaminants evaluation report : Proposed headquarters site : St. Vincent National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The following report presents the findings of a chemical contaminants evaluation on property proposed for acquisition as headquarters for the St. Vincent National...

  7. Linking chemical contamination to biological effects in coastal pollution monitoring.

    Science.gov (United States)

    Beiras, Ricardo; Durán, Iria; Parra, Santiago; Urrutia, Miren B; Besada, Victoria; Bellas, Juan; Viñas, Lucía; Sánchez-Marín, Paula; González-Quijano, Amelia; Franco, María A; Nieto, Óscar; González, Juan J

    2012-01-01

    To establish the connection between pollutant levels and their harmful effects on living resources, coastal monitoring programmes have incorporated biological tools, such as the scope for growth (SFG) in marine mussels and benthic macrofauna community indices. Although the relation between oxygen-depleting anthropogenic inputs and the alteration of benthic communities is well described, the effects of chemical pollutants are unknown because they are not expected to favour any particular taxa. In this study, the combined efforts of five research teams involved in the investigative monitoring of marine pollution allowed the generation of a multiyear data set for Ría de Vigo (NW Iberian Peninsula). Multivariate analysis of these data allowed the identification of the chemical-matrix combinations responsible for most of the variability among sites and the construction of a chemical pollution index (CPI) that significantly (P chemical pollution increases. The energy balance was more sensitive to pollution than individual physiological rates, but the reduction in the SFG was primarily due to significantly decreased clearance rates. We also found a decrease in benthic macrofauna diversity as chemical pollution increases. This diversity reduction resulted not from altered evenness, as the classic paradigm might suggest, but from a loss of species richness.

  8. Concentrations of environmental organic contaminants in meat and meat products and human dietary exposure: A review.

    Science.gov (United States)

    Domingo, José L

    2017-09-01

    Meat and meat products is one of the most relevant food groups in an important number of human diets. Recently, the IARC, based on results of a number of epidemiological studies, classified the consumptions of red meat and processed meat as "probably carcinogenic to humans" and as "carcinogenic to humans", respectively. It was suggested that the substances responsible of the potential carcinogenicity would be mainly generated during meat processing, such as curing and smoking, or when meat is heated at high temperatures. However, the exposure to environmental pollutants through meat consumption was not discussed. The purpose of the present paper was to review recent studies reporting the concentrations of PCDD/Fs, DL-PCBs and PAHs in meat and meat products, as well as the human exposure to these pollutants through the diet. It is concluded that the health risks derived from exposure to carcinogenic environmental contaminants must be considered in the context of each specific diet, which besides meat and meat products, includes other foodstuffs containing also chemical pollutants, some of them with carcinogenic potential. Anyhow, meat and meat products are not the main food group responsible of the dietary exposure to carcinogenic (or probably carcinogenic) environmental organic pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Application of hazard analysis critical control points (HACCP) to organic chemical contaminants in food.

    Science.gov (United States)

    Ropkins, K; Beck, A J

    2002-03-01

    Hazard Analysis Critical Control Points (HACCP) is a systematic approach to the identification, assessment, and control of hazards that was developed as an effective alternative to conventional end-point analysis to control food safety. It has been described as the most effective means of controlling foodborne diseases, and its application to the control of microbiological hazards has been accepted internationally. By contrast, relatively little has been reported relating to the potential use of HACCP, or HACCP-like procedures, to control chemical contaminants of food. This article presents an overview of the implementation of HACCP and discusses its application to the control of organic chemical contaminants in the food chain. Although this is likely to result in many of the advantages previously identified for microbiological HACCP, that is, more effective, efficient, and economical hazard management, a number of areas are identified that require further research and development. These include: (1) a need to refine the methods of chemical contaminant identification and risk assessment employed, (2) develop more cost-effective monitoring and control methods for routine chemical contaminant surveillance of food, and (3) improve the effectiveness of process optimization for the control of chemical contaminants in food.

  10. Survey of chemical contaminants in the Hanalei River, Kaua'i, Hawai'i, 2001

    Science.gov (United States)

    Orazio, Carl E.; May, Thomas W.; Gale, Robert W.; Meadows, John C.; Brumbaugh, William G.; Echols, Kathy R.; Steiner, William W.M.; Berg, Carl J.

    2007-01-01

    The Hanalei River on the island of Kaua'i in Hawai'i was designated an American Heritage River in 1998, providing special attention to natural resource protection, economic revitalization, and historic and cultural preservation. Agricultural, urban, and tourism-related activities are potential sources of contamination within the Hanalei River watershed. The objective of this study was to measure certain persistent organic chemicals and elements in the Hanalei River.During a relatively low-flow period in December of 2001, samples of native Akupa sleeper fish (Eleotris sandwicensis), freshwater Asian clam (Corbicula fluminea), giant mud crab (Scylla serrata), surface water, and stream bed sediment were collected from a lower estuarine reach of the river near its mouth at Hanalei Bay and from an upper reach at the Hanalei National Wildlife Refuge. Samples were analyzed for residues of urban and agricultural chemicals including organochlorine pesticides, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, and elements (including mercury, lead, cadmium, arsenic, and selenium). Organic contaminants were extracted from the samples with solvent, enriched, and then analyzed by gas chromatographic analysis with electron capture or mass spectrometric detection. Samples were acid-digested for semi-quantitative analysis for elements by inductively-coupled plasma-mass spectrometry and for quantitative analysis by atomic absorption spectrophotometry.Concentrations of organochlorine pesticides, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls in biota, surface water, and bed sediment sampled from the Hanalei River ranged from nondetectable to very low levels. Polychlorinated biphenyls were below detection in all samples. Dieldrin, the only compound detected in the water samples, was present at very low concentrations of 1-2 nanograms per liter. Akupa sleeper fish and giant mud crabs from the lower reach ranged from 1 to 5 nanograms per gram (wet weight

  11. In silico environmental chemical science: properties and processes from statistical and computational modelling.

    Science.gov (United States)

    Tratnyek, Paul G; Bylaska, Eric J; Weber, Eric J

    2017-03-22

    Quantitative structure-activity relationships (QSARs) have long been used in the environmental sciences. More recently, molecular modeling and chemoinformatic methods have become widespread. These methods have the potential to expand and accelerate advances in environmental chemistry because they complement observational and experimental data with "in silico" results and analysis. The opportunities and challenges that arise at the intersection between statistical and theoretical in silico methods are most apparent in the context of properties that determine the environmental fate and effects of chemical contaminants (degradation rate constants, partition coefficients, toxicities, etc.). The main example of this is the calibration of QSARs using descriptor variable data calculated from molecular modeling, which can make QSARs more useful for predicting property data that are unavailable, but also can make them more powerful tools for diagnosis of fate determining pathways and mechanisms. Emerging opportunities for "in silico environmental chemical science" are to move beyond the calculation of specific chemical properties using statistical models and toward more fully in silico models, prediction of transformation pathways and products, incorporation of environmental factors into model predictions, integration of databases and predictive models into more comprehensive and efficient tools for exposure assessment, and extending the applicability of all the above from chemicals to biologicals and materials.

  12. Evaluation of black-billed magpies as monitors of environmental contamination : Work plan 1995

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Preliminary proposal and work plan for the project "Evaluation of Black-billed Magpies as Indicators of Environmental Contamination at the Rocky Mountain Arsenal"....

  13. Assessment of Environmental Contaminants in Muddy River Fishes, Clark County, Nevada

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — In 2002 the U.S. Fish and Wildlife Service (Service) Southern Nevada Field Office initiated a study to identify environmental contaminant impacts to native fish of...

  14. Epidemiology of Chronic Wasting Disease: PrP(res) Detection, Shedding, and Environmental Contamination

    National Research Council Canada - National Science Library

    Williams, Elizabeth S; Miller, Michael W; Lewis, Randolf V; Raisbeck, Merl F; Cook, Walter W

    2004-01-01

    ...) from orally infected mule and white-tailed deer and elk. Finally these techniques will be applied to investigating the nature of environmental contamination that may be associated with CWD transmission...

  15. Epidemiology of Chronic Wasting Disease: PrPres Detection, Shedding and Environmental Contamination

    National Research Council Canada - National Science Library

    Lewis, Randolph V

    2005-01-01

    ...) from orally infected mule and white-tailed deer and elk. Finally these techniques will be applied to investigating the nature of environmental contamination that may be associated with CND transmission...

  16. Epidemiology of Chronic Wasting Disease: PrP(res) Detection, Shedding, and Environmental Contamination

    National Research Council Canada - National Science Library

    Lewis, Randolph V

    2006-01-01

    ... from orally infected mule and white-tailed deer and elk. Finally these techniques will be applied to investigating the nature of environmental contamination that may be associated with CWD transmission...

  17. Evaluating Environmental Contaminants at Tijuana Slough National Wildlife Refuge and Sweetwater Marsh National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — It appears that in comparison, Sweetwater Marsh National Wildlife Refuge had higher levels of environmental contaminants than did Tijuana Slough National Wildlife...

  18. Food safety. [chemical contaminants and human toxic diseases

    Science.gov (United States)

    Pier, S. M.; Valentine, J. L.

    1975-01-01

    Illness induced by unsafe food is a problem of great public health significance. This study relates exclusively to the occurrence of chemical agents which will result in food unsafe for human consumption since the matter of food safety is of paramount importance in the mission and operation of the manned spacecraft program of the National Aeronautics and Space Administration.

  19. Texas Tech Awarded EPA Grant to Research Chemical Contaminants

    Science.gov (United States)

    DALLAS - (Aug. 11, 2015) The U.S. Environmental Protection Agency (EPA) is awarding $374,510 to Texas Tech University through EPA's Science to Achieve Results (STAR) program. The university will develop a better approach to understand and predict in

  20. Material Cycles and Chemicals: Dynamic Material Flow Analysis of Contaminants in Paper Recycling.

    Science.gov (United States)

    Pivnenko, Kostyantyn; Laner, David; Astrup, Thomas F

    2016-11-15

    This study provides a systematic approach for assessment of contaminants in materials for recycling. Paper recycling is used as an illustrative example. Three selected chemicals, bisphenol A (BPA), diethylhexyl phthalate (DEHP) and mineral oil hydrocarbons (MOHs), are evaluated within the paper cycle. The approach combines static material flow analysis (MFA) with dynamic material and substance flow modeling. The results indicate that phasing out of chemicals is the most effective measure for reducing chemical contamination. However, this scenario was also associated with a considerable lag phase (between approximately one and three decades) before the presence of chemicals in paper products could be considered insignificant. While improved decontamination may appear to be an effective way of minimizing chemicals in products, this may also result in lower production yields. Optimized waste material source-segregation and collection was the least effective strategy for reducing chemical contamination, if the overall recycling rates should be maintained at the current level (approximately 70% for Europe). The study provides a consistent approach for evaluating contaminant levels in material cycles. The results clearly indicate that mass-based recycling targets are not sufficient to ensure high quality material recycling.

  1. Effect of Particle-size Distribution on Chemical Washing Experiment of Uranium Contaminated Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Wan Suk; Kim, Gye Nam; Shon, Dong Bin; Park, Hye Min; Kim, Ki Hong; Lee, Kun Woo; Lee, Ki Won; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    Taken down of nuclear institution was radioactive contaminated concrete over 70% of whole waste. Advanced countries have realized the importance of waste processing. Nuclear institutions keep a lot of radioactive contaminated concrete in internal waste storage. Therefore radioactive contaminated concrete disport to whole waste and reduce for self-processing standard concentration may be disposed of inexpensive more than radioactive waste storage. This study uses mechanical and thermal technology for a uranium contaminated concrete process in Korea Atomic Energy Research Institute's radioactive waste storage. Mechanical and thermal technologies are divided based on particle size. Each particles-sized concrete analyzed for uranium contamination using an MCA instrument. A chemical washing experiment was carried out

  2. High sensitivity detection and characterization of the chemical state of trace element contamination on silicon wafers

    CERN Document Server

    Pianetta, Piero A; Baur, K; Brennan, S; Homma, T; Kubo, N

    2003-01-01

    Increasing the speed and complexity of semiconductor integrated circuits requires advanced processes that put extreme constraints on the level of metal contamination allowed on the surfaces of silicon wafers. Such contamination degrades the performance of the ultrathin SiO sub 2 gate dielectrics that form the heart of the individual transistors. Ultimately, reliability and yield are reduced to levels that must be improved before new processes can be put into production. It should be noted that much of this metal contamination occurs during the wet chemical etching and rinsing steps required for the manufacture of integrated circuits and industry is actively developing new processes that have already brought the metal contamination to levels beyond the measurement capabilities of conventional analytical techniques. The measurement of these extremely low contamination levels has required the use of synchrotron radiation total reflection X-ray fluorescence (SR-TXRF) where sensitivities 100 times better than conv...

  3. Listeriosis Outbreaks in British Columbia, Canada, Caused by Soft Ripened Cheese Contaminated from Environmental Sources

    OpenAIRE

    Lorraine McIntyre; Lynn Wilcott; Monika Naus

    2015-01-01

    Soft ripened cheese (SRC) caused over 130 foodborne illnesses in British Columbia (BC), Canada, during two separate listeriosis outbreaks. Multiple agencies investigated the events that lead to cheese contamination with Listeria monocytogenes (L.m.), an environmentally ubiquitous foodborne pathogen. In both outbreaks pasteurized milk and the pasteurization process were ruled out as sources of contamination. In outbreak A, environmental transmission of L.m. likely occurred from farm animals to...

  4. Environmental Management Plan for the Chemical Engineering Laboratory (LIQ of the National University of Colombia, Bogotá

    Directory of Open Access Journals (Sweden)

    Javier Gama Chávez

    2010-04-01

    Full Text Available An Enviromental Management Plan was formulated with the objective of improving the environmental performance of the Chemical Engineering Laboratory (LIQ. The plan was supported on the principles established by the ISO 140001 standard. In a first step, an environmental politic was proposed. Next, by means of an initial review of the laboratory, the most significant impacts related to the activities developed in the Laboratory were identified: dangerous chemical wastes accumulation, water contamination by effusions generation and air contamination. These impacts were the base for formulating following and control programs, furthermire, a training an communication program was done. All the programs, including the requiered documents and procedures, were published in the Environmental Management Plan and the Environmental Procedures Manual.

  5. Frost susceptibility of granular subbase materials contaminated by deicing chemicals

    DEFF Research Database (Denmark)

    Jørgensen, Anders Stuhr; Orlander, Tobias; Doré, Guy

    2013-01-01

    in order to determine the frost susceptibility of the material when it is contaminated by a deicing agent. Two series of three freezing tests with isothermal cooling has been conducted using identical saline gradient added through brine. Two types of cooling ramp, an automatic cooling and a manual cooling......, were used in order to determine any influence from the cooling ramp. The tests included settings that allowed the samples additional brine during freezing. Hence, the water and salinity were measured before and after the tests in order to determine the redistribution of water and salinity. The test...... results do not support the theory that a saline gradient effectively can replace a thermal gradient and create favorable conditions for frost heave. There was no evidence of ice segregation during the tests. During freezing, heave of maximum 0.02 % was observed which, however, is not considered...

  6. Unit environmental transport assessment of contaminants from Hanford`s past-practice waste sites. Hanford Remedial Action Environmental Impact Statement

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, G.; Buck, J.W.; Castleton, K.J. [and others

    1995-06-01

    The US Department of Energy, Richland Operations Office (DOE-RL) contracted Pacific Northwest Laboratory (PNL) to provide support to Advanced Sciences, Incorporated (ASI) in implementing tile regional no-action risk assessment in the Hanford Remedial Action Environmental Impact Statement. Researchers at PNL were charged with developing unit concentrations for soil, groundwater, surface water, and air at multiple locations within an 80-km radius from the center of tile Hanford installation. Using the Multimedia Environmental Pollutant Assessment System (MEPAS), PNL simulated (1) a unit release of one ci for each radionuclide and one kg for each chemical from contaminated soils and ponded sites, (2) transport of the contaminants in and through various environmental media and (3) exposure/risk of four exposure scenarios, outlined by the Hanford Site Baseline Remedial Action Methodology. These four scenarios include residential, recreational, industrial, and agricultural exposures. Spacially and temporally distributed environmental concentrations based on unit releases of radionuclides and chemicals were supported to ASI in support of the HRA-EIS. Risk for the four exposure scenarios, based on unit environment concentrations in air, water, and soil. were also supplied to ASI. This report outlines the procedure that was used to implement the unit transport portion of the HRA-EIS baseline risk assessment. Deliverables include unit groundwater, surface water, air, and soil concentrations at multiple locations within an 80-km radius from the center of the Hanford installation.

  7. [Health risk analysis of VOC/SVOC contaminated soil in an abandoned chemical plant].

    Science.gov (United States)

    Guo, Guan-lin; Wang, Shi-jie; Shi, Lie-yan; Li, Hui-ying; Han, Chun-mei; Gu, Qing-bao; Cao, Yun-zhe; Li, Fa-sheng

    2010-02-01

    Environmental health risk of contaminated soil in a typical abandoned industry was analyzed based on the full field investigation according to the site assessment procedure of American Society for Testing and Material (ASTM). Parameters were modified with the combination of Chinese crowd character and site specifics. Results indicated that the site was mainly contaminated with volatile and semi-volatile organic compounds in soil profiles. And the contents of carbon tetrachloride, tetrachloroethylene, pentachloroethane, hexachlorobutadiene, hexachloroethane and hexachlorobenzene in soil samples were exceeded the national environmental standard. These contaminants ranked the carcinogenic risks and hazard quotients more than 10(-2) and 1 in some locations with the exposure by oral ingestion, dermal contact and inhalation. Contaminants in this site had resulted in the high health risks to the residents and surrounding communities. The risk should be reduced to the health acceptable level by the treatment and remediation before further development for residential and commercial utilization.

  8. Assessing bioavailability of complex chemical mixtures in contaminated soils: Progress made and research needs.

    Science.gov (United States)

    Cipullo, S; Prpich, G; Campo, P; Coulon, F

    2018-02-15

    Understanding the distribution, behaviour and interactions of complex chemical mixtures is key for providing the evidence necessary to make informed decisions and implement robust remediation strategies. Much of the current risk assessment frameworks applied to manage land contamination are based on total contaminant concentrations and the exposure assessments embedded within them do not explicitly address the partitioning and bioavailability of chemical mixtures. These oversights may contribute to an overestimation of both the eco-toxicological effects of the fractions and the mobility of contaminants. In turn, this may limit the efficacy of risk frameworks to inform targeted and proportionate remediation strategies. In this review we analyse the science surrounding bioavailability, its regulatory inclusion and the challenges of incorporating bioavailability in decision making process. While a number of physical and chemical techniques have proven to be valuable tools for estimating bioavailability of organic and inorganic contaminants in soils, doubts have been cast on its implementation into risk management soil frameworks mainly due to a general disagreement on the interchangeable use of bioavailability and bioaccessibility, and the associated methods which are still not standardised. This review focuses on the role of biotic and abiotic factors affecting bioavailability along with soil physicochemical properties and contaminant composition. We also included advantages and disadvantages of different extraction techniques and their implications for bioavailability quantitative estimation. In order to move forward the integration of bioavailability into site-specific risk assessments we should (1) account for soil and contaminant physicochemical characteristics and their effect on bioavailability; (2) evaluate receptor's potential exposure and uptake based on mild-extraction; (3) adopt a combined approach where chemical-techniques are used along with biological

  9. Recent advances in chemical imaging technology for the detection of contaminants for food safety and security

    Science.gov (United States)

    Priore, Ryan J.; Olkhovyk, Oksana; Drauch, Amy; Treado, Patrick; Kim, Moon; Chao, Kaunglin

    2009-05-01

    The need for routine, non-destructive chemical screening of agricultural products is increasing due to the health hazards to animals and humans associated with intentional and unintentional contamination of foods. Melamine, an industrial additive used to increase flame retardation in the resin industry, has recently been used to increase the apparent protein content of animal feed, of infant formula, as well as powdered and liquid milk in the dairy industry. Such contaminants, even at regulated levels, pose serious health risks. Chemical imaging technology provides the ability to evaluate large volumes of agricultural products before reaching the consumer. In this presentation, recent advances in chemical imaging technology that exploit Raman, fluorescence and near-infrared (NIR) are presented for the detection of contaminants in agricultural products.

  10. Interactions Between Industrial Yeasts and Chemical Contaminants in Grape Juice Affect Wine Composition Profile

    Directory of Open Access Journals (Sweden)

    Etjen Bizaj

    2014-01-01

    Full Text Available The interaction between four industrial wine yeast strains and grape juice chemical contaminants during alcoholic fermentation was studied. Industrial strains of Saccharomyces cerevisiae (AWRI 0838, S. cerevisiae mutant with low H2S production phenotype (AWRI 1640, interspecies hybrid of S. cerevisiae and S. kudriavzevii (AWRI 1539 and a hybrid of AWRI 1640 and AWRI 1539 (AWRI 1810 were exposed separately to fungicides pyrimethanil (Pyr, 10 mg/L and fenhexamid (Fhx, 10 mg/L, as well as to the most common toxin produced by moulds on grapes, ochratoxin A (OTA, 5 μg/L, during alcoholic fermentation of Vitis vinifera L. cv. Sauvignon blanc juice. Contaminants were found to strongly impair fermentation performance and metabolic activity of all yeast strains studied. The chemical profile of wine was analyzed by HPLC (volatile acidity, concentrations of ethanol, fructose, glucose, glycerol and organic acids and the aromatic profile was analyzed using a stable isotope dilution technique using GC/MS (ethyl esters, acetates and aromatic alcohols and Kitagawa tubes (H2S. The chemical composition of wine with added contaminants was in all cases significantly different from the control. Of particular note is that the quantity of aromatic compounds produced by yeast was significantly lower. Yeast’s capacity to remove contaminants from wine at the end of the alcoholic fermentation, and after extended contact (7 days was determined. All the strains were able to remove contaminants from the media, moreover, after extended contact, the concentration of contaminants was in most cases lower.

  11. MEETING IN NEW ZEALAND: EMERGING ENVIRONMENTAL CONTAMINANTS AND CURRENT ISSUES

    Science.gov (United States)

    Much has been achieved in the way of environmental protection over the last 30 years. However, as we learn more, new concerns arise (including potential adverse health effects, bioaccumulation, and widespread distribution). This presentation will discuss emerging environmental c...

  12. Environmentally-Induced Malignancies: An In Vivo Model to Evaluate the Health Impact of Chemicals in Mixed Waste

    Energy Technology Data Exchange (ETDEWEB)

    Maria Pallavicini

    2001-05-04

    Occupational and environmental exposure to organic ligands, solvents, fuel hydrocarbons, and polychlorinated biphenyls are linked with increased risk of hematologic malignancies. DOE facilities and waste sites in the U.S. are contaminated with mixtures of potentially hazardous chemicals such as metals, organic ligands, solvents, fuel hydrocarbons, polychlorinated biphenyls and radioactive isotopes. A major goal of this project was to establish linkage between chemical/radiation exposure and induction of genomic damage in target populations with the capability to undergo transformation.

  13. The problem of living in a world contaminated with chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Metcalf, R.L. [Univ. of Illinois, Urbana (United States)

    1990-12-31

    The proliferation of xenobiotic chemicals in the global environment poses living problems for each of us aboard {open_quotes}spaceship earth.{close_quotes} Seven case studies are presented that illustrate the magnitude of the problem that can result from waiting to identify toxic hazards until there have been decades of {open_quotes}human guinea pig{close_quotes} exposure. 25 refs., 5 tabs.

  14. Chemical, Biological, and Radiological (CBR) Contamination Survivability: Large Item Interiors

    Science.gov (United States)

    2012-06-22

    uncontaminated surface. (3) Diluent control. (4) Plate control. (5) A maximum of 18 hours between sample collection and analysis. 4.2.4...Airflow through the interior in m/s. b. Agent or Simulant. (1) Name, control number, and spore manufacturer. (2) Diluent used. (3...61, Safety; Toxic Chemical Agent Safety Standards, 17 December 2008. 16. DA PAM 385-69, Safety Standards for Microbiological and Biomedical

  15. Robust decision analysis for environmental management of groundwater contamination sites

    CERN Document Server

    Vesselinov, Velimir V; Katzman, Danny

    2013-01-01

    In contrast to many other engineering fields, the uncertainties in subsurface processes (e.g., fluid flow and contaminant transport in aquifers) and their parameters are notoriously difficult to observe, measure, and characterize. This causes severe uncertainties that need to be addressed in any decision analysis related to optimal management and remediation of groundwater contamination sites. Furthermore, decision analyses typically rely heavily on complex data analyses and/or model predictions, which are often poorly constrained as well. Recently, we have developed a model-driven decision-support framework (called MADS; http://mads.lanl.gov) for the management and remediation of subsurface contamination sites in which severe uncertainties and complex physics-based models are coupled to perform scientifically defensible decision analyses. The decision analyses are based on Information Gap Decision Theory (IGDT). We demonstrate the MADS capabilities by solving a decision problem related to optimal monitoring ...

  16. Environmental contaminants in bald eagle eggs from the Aleutian archipelago

    Science.gov (United States)

    Anthony, R.G.; Miles, A.K.; Ricca, M.A.; Estes, J.A.

    2007-01-01

    We collected 136 fresh and unhatched eggs from bald eagle (Haliaeetus leucocephalus) nests and assessed productivity on eight islands in the Aleutian archipelago, 2000 to 2002. Egg contents were analyzed for a broad spectrum of organochlorine (OC) contaminants, mercury (Hg), and stable isotopes of carbon (??13C) and nitrogen (??15N). Concentrations of polychlorinated biphenyls (??PCBs), p,p???- dichlorodiphenyldichloroethylene (DDE), and Hg in bald eagle eggs were elevated throughout the archipelago, but the patterns of distribution differed among the various contaminants. Total PCBs were highest in areas of past military activities on Adak and Amchitka Islands, indicating local point sources of these compounds. Concentrations of DDE and Hg were higher on Amchitka Island, which was subjected to much military activity during World War II and the middle of the 20th century. Concentrations of ??PCBs also were elevated on islands with little history of military activity (e.g., Amlia, Tanaga, Buldir), suggesting non-point sources of PCBs in addition to point sources. Concentrations of DDE and Hg were highest in eagle eggs from the most western Aleutian Islands (e.g., Buldir, Kiska) and decreased eastward along the Aleutian chain. This east-to-west increase suggested a Eurasian source of contamination, possibly through global transport and atmospheric distillation and/or from migratory seabirds. Eggshell thickness and productivity of bald eagles were normal and indicative of healthy populations because concentrations of most contaminants were below threshold levels for effects on reproduction. Contrary to our predictions, contaminant concentrations were not correlated with stable isotopes of carbon (??13C) or nitrogen (??15N) in eggs. These latter findings indicate that contaminant concentrations were influenced more by point sources and geographic location than trophic status of eagles among the different islands. ?? 2007 SETAC.

  17. Biomonitoring human exposure to environmental carcinogenic chemicals

    DEFF Research Database (Denmark)

    Farmer, P.B.; Sepai, O.; Lawrence, R.

    1996-01-01

    effects (mutation and cytogenetic damage). Adduct detection at the level of DNA or protein (haemoglobin) was carried out by 32P-postlabelling, immunochemical, HPLC or mass spectrometric methods. Urinary excretion products resulting from DNA damage were also estimated (immunochemical assay, mass......A coordinated study was carried out on the development, evaluation and application of biomonitoring procedures for populations exposed to environmental genotoxic pollutants. The procedures used involved both direct measurement of DNA or protein damage (adducts) and assessment of second biological...... aberrations and sister chromatid exchanges) and mutation frequency was estimated at a number of loci including the hprt gene and genes involving in cancer development. Blood and urine samples from individuals exposed to urban pollution were collected. Populations exposed through occupational or medical...

  18. Human health risk assessment for radiological and chemical contaminants at site with historical contamination

    Energy Technology Data Exchange (ETDEWEB)

    Garisto, N.C.; Cooper, F. [SENES Consultants Limited, Richmond Hill, Ontario (Canada); Peters, R. [Cameco Corp., Port Hope, Ontario (Canada)

    2010-07-01

    A Human Health Risk Assessment was carried out for a uranium conversion facility in Ontario, located on a site with a history of contamination. The HHRA assessed risk to workers and the public from exposure to radionuclides and non-radionuclides in soil and groundwater associated with the site. The results indicated that there is no undue risk from exposure to radionuclides. Small potential long-term risks were identified with exposure of hypothetical receptors to arsenic, but this exposure was below Canadian background levels. Recommendations are provided to address residual uncertainty. (author)

  19. [Urban industrial contaminated sites: a new issue in the field of environmental remediation in China].

    Science.gov (United States)

    Liao, Xiao-Yong; Chong, Zhong-Yi; Yan, Xiu-Lan; Zhao, Dan

    2011-03-01

    Contamination of urban industrial lands is a new environmental problem in China during the process of upgrade of industrial structure and adjustment of urban layout. It restricts the safe re-use of urban land resources, and threatens the health of surrounding inhabitants. In the paper, the market potential of contaminated-site remediation was known through analysis of spatial distribution of urban industrial sites in China. Remediation technologies in the Occident which were suitable for urban industrial contaminated sites were discussed and compared to evaluate their superiority and inferiority. And then, some advices of remediation technologies for urban industrial contaminated sites in China were proposed.

  20. Environmental Analysis of Endocrine Disrupting Effects from Hydrocarbon Contaminants in the Ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    McLachlan, John A.

    2000-06-01

    This annual report summarizes the progress of three years of a three-year grant awarded to the Center for Bioenvironmental Research (CBR) at Tulane and Xavier Universities. The objective of this project is to determine how environmental contaminants, namely hydrocarbons, can act as hormones or anti-hormones in different species present in aquatic ecosystems. The three major areas of research include (1) a biotechnology based screening system to identify potential hormone mimics and antagonists; (2) an animal screening system to identify biomarkers of endocrine effects; and (3) a literature review to identify compounds at various DOE sites that are potential endocrine disruptors. Species of particular focus in this study are those which can serve as sentinel species (e.g., amphibians) and, thus, provide early warning signals for more widespread impacts on an ecosystem and its wildlife and human inhabitants. The focus of the literature research was to provide an analysis of the contaminants located on or around various Department of Energy (DOE) sites that are or have the potential to function as endocrine disruptors and to correlate the need for studying endocrine disruptors to DOE's programmatic needs. Previous research within the Center for Bioenvironmental Research at Tulane and Xavier Universities has focused on understanding the effects of environmental agents on the human and wildlife health and disease. In particular this research has focused on how exogenous agents can function to mimic or disrupt normal endocrine signaling, i.e. estrogen, thyroid within various systems from whole animal studies with fish, amphibians and insects to human cancer cell lines. Significant work has focused on the estrogenic and anti-estrogenic action of both synthetic organochlorine chemicals and naturally produced phytochemicals. Recent projects have extended these research objectives to examination of these environmental agents on the symbiotic relationship between

  1. Environmental Law in the Context of Risk Society : An Analysis About Contaminated Sites

    Directory of Open Access Journals (Sweden)

    José Fernando Vidal de Souza

    2016-06-01

    Full Text Available The article aims to analyze the protection of soil quality, measures against harmful contamination of change and the management of contaminated areas, before the Brazilian reality in a risk society context. Therefore, examines the right to an ecologically balanced environment under Brazilian law and environmental ethics. Then the concept of risk society. After the contaminated soil problems in Brazil and in the end present techniques for remediation of contaminated soils. In this way, are analyzed also the processes that generated the environmental liability, initiatives to minimize the risks of these impacts and the tools available today for its confrontation: considered as essential elements for subsidizing policies aimed at urban regeneration of contaminated areas.

  2. Environmental lead pollution and contamination in food around ...

    African Journals Online (AJOL)

    AGHOGHO A

    including Kenya, have generally been slow in adopting policies and regulatory structures concerning lead pollution. The main objective of this study was to determine lead contamination levels in the environment around Kisumu (Kenya). Lead content in samples of tap water and other surface water ranged from 140 to 260, ...

  3. Environmental lead pollution and contamination in food around ...

    African Journals Online (AJOL)

    Exposure to lead (Pb) through food, water, or contaminated air has adverse health impacts that are particularly severe in children. Many countries have outlawed the use of leaded petrol, and enacted policies and regulations limiting lead pollution, and lead levels in foods. However, African countries, including Kenya, have ...

  4. Molecular contamination mitigation in EUVL by environmental control

    NARCIS (Netherlands)

    Koster, N.; Mertens, B.; Jansen, R.; van de Runstraat, A.; Stietz, F.; Wedowski, M.; Meiling, H.; Klein, R.; Gottwald, A.; Scholze, F.; Visser, M.; Kurt, R.; Zalm, P.; E. Louis,; Yakshin, A.

    2002-01-01

    EUVL tools operate under vacuum conditions to avoid absorption losses. Under these conditions, the MoSi multilayer mirrors are contaminated, resulting in reduced reflection and thus throughput. We report on experiments on MoSi mirrors exposed to EUV radiation from a synchrotron. To mimic the effects

  5. Incurred environmental risks and potential contamination sources in ...

    African Journals Online (AJOL)

    hp4710s

    Key words: Heavy metals, mine tailings, abandoned mining-district, plant contamination. INTRODUCTION ... phytoremediation: biological method using green plants .... (L)) on the right bank of the wadi. The fresh material was washed with distilled water and treated with ultrasound to remove all dust and soil. The upper parts.

  6. TSCA Work Plan Chemical Technical Supplement – Physicochemical Properties and Environmental Fate of the Brominated Phthalates Cluster (BPC) Chemicals

    Science.gov (United States)

    TSCA Work Plan Chemical Technical Supplement – Physicochemical Properties and Environmental Fate of the Brominated Phthalates Cluster (BPC) Chemicals -- Brominated Phthalates Cluster Flame Retardants.

  7. Environmental influences on reproductive health: the importance of chemical exposures.

    Science.gov (United States)

    Wang, Aolin; Padula, Amy; Sirota, Marina; Woodruff, Tracey J

    2016-09-15

    Chemical exposures during pregnancy can have a profound and life-long impact on human health. Because of the omnipresence of chemicals in our daily life, there is continuous contact with chemicals in food, water, air, and consumer products. Consequently, human biomonitoring studies show that pregnant women around the globe are exposed to a variety of chemicals. In this review we provide a summary of current data on maternal and fetal exposure, as well as health consequences from these exposures. We review several chemical classes, including polychlorinated biphenyls, perfluoroalkyl substances, polybrominated diphenyl ethers, phenols, phthalates, pesticides, and metals. Additionally, we discuss environmental disparities and vulnerable populations, and future research directions. We conclude by providing some recommendations for prevention of chemical exposure and its adverse reproductive health consequences. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  8. CONTAMINATION OF INDIVIDUAL SOURCES OF DRINKING WATER LOCATED IN ENVIRONMENTALLY POLLUTED CENTRAL SPIŠ REGION (SLOVAKIA

    Directory of Open Access Journals (Sweden)

    Naďa Sasáková

    2013-12-01

    Full Text Available The aim of the present paper was to evaluate individual sources of drinking water in a village located in environmentally polluted Central Spiš region (Slovakia which has been affected negatively by mining activities and subsequent processing of complex Fe and Cu ores. Altogether 20 wells were examined chemically (pH, NH3, NO2, NO3, Cl-, Cl2, CODMn and 71 elements including heavy metals and microbiologically focusing on selected indicators of contamination (KM22, KM36, KB and E. coli. The results obtained were evaluated on the basis of a Statutory order of SR 354/2006 of the Civil Code (of May 10, 2006 on requirements on water intended for human consumption. Limits for heavy metals were exceeded in 3 wells (Ni, Sb and Sb and As. The acceptable concentration of NH3 was exceeded in one well, of NO2 in 3, NO3 in 3 and Cl- in 10 wells. Higher concentrations of Cl2 were determined in 1 well and of COD in 5 wells. In the majority of cases only 1 or 2 parameters were exceeded with the exception of 3 wells (3 parameters in two and 5 in one well. Some of the wells could present risk from the chemical point of view. None of the wells could be considered completely safe from the bacteriological point of view.

  9. Chemicals of emerging concern in the Great Lakes Basin: an analysis of environmental exposures.

    Science.gov (United States)

    Klecka, Gary; Persoon, Carolyn; Currie, Rebecca

    2010-01-01

    This review and statistical analysis was conducted to better understand the nature and significance of environmental exposures in the Great Lakes Basin and watershed to a variety of environmental contaminants. These contaminants of interest included current-use pesticides, pharmaceuticals, organic wastewater contaminants, alkylphenol ethoxylates, perfluorinated surfactants, flame retardants, and chlorinated paraffins. The available literature was critically reviewed and used to develop a database containing 19,611 residue values for 326 substances. In many papers, sampling locations were characterized as being downstream from municipal wastewater discharges, receiving waters for industrial facilities, areas susceptible to agricultural or urban contamination, or harbors and ports. To develop an initial assessment of their potential ecological significance, the contamination levels found were compared with currently available regulatory standards, guidelines, or criteria. This review was prepared for the IJC multi-board work group, and served as background material for an expert consultation, held in March, 2009, in which the significance of the contaminants found was discussed. Moreover, the consultation attempted to identify and assess opportunities for strengthening future actions that will protect the Great Lakes. Based on the findings and conclusions of the expert consultation, it is apparent that a wide variety of chemicals of emerging concern have been detected in environmental media (air, water, sediment, biota) from the Great Lakes Basin, although many are present at only trace levels. Although the presence of these contaminants raises concerns in the public and among the scientific community, the findings must be placed in context. Significant scientific interpretation is required to understand the extent to which these chemicals may pose a threat to the ecosystem and to human health. The ability to detect chemicals in environmental media greatly surpasses

  10. Anchoring novel molecular biomarker responses to traditional responses in fish exposed to environmental contamination

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Patricia [CESAM and Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Department of Biology and Environmental Science, University of Sussex, Falmer, Brighton BN1 9QJ (United Kingdom); Pacheco, Mario [CESAM and Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Lourdes Pereira, M. [CICECO and Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Mendo, Sonia [CESAM and Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Rotchell, Jeanette M., E-mail: J.Rotchell@sussex.ac.u [Department of Biology and Environmental Science, University of Sussex, Falmer, Brighton BN1 9QJ (United Kingdom)

    2010-05-15

    The responses of Dicentrarchus labrax and Liza aurata to aquatic pollution were assessed in a contaminated coastal lagoon, using both traditional and novel biomarkers combined. DNA damage, assessed by comet assay, was higher in both fish species from the contaminated sites, whereas levels of cytochrome P450 1A1 gene expression were not significantly altered. The liver histopathological analysis also revealed significant lesions in fish from contaminated sites. Alterations in ras and xpf genes were analysed and additional pollutant-responsive genes were identified. While no alterations were found in ras gene, a downregulation of xpf gene was observed in D. labrax from a contaminated site. Suppression subtractive hybridization applied to D. labrax collected at a contaminated site, revealed altered expression in genes involved in energy metabolism, immune system activity and antioxidant response. The approach and results reported herein demonstrate the utility of anchoring traditional biomarker responses alongside novel biomarker responses. - Novel molecular biomarkers of aquatic environmental contamination in fish.

  11. Geochemistry Of Lead In Contaminated Soils: Effects Of Soil Physico-Chemical Properties

    Science.gov (United States)

    Saminathan, S.; Sarkar, D.; Datta, R.; Andra, S. P.

    2006-05-01

    Lead (Pb) is an environmental contaminant with proven human health effects. When assessing human health risks associated with Pb, one of the most common exposure pathways typically evaluated is soil ingestion by children. However, bioaccessibility of Pb primarily depends on the solubility and hence, the geochemical form of Pb, which in turn is a function of site specific soil chemistry. Certain fractions of ingested soil-Pb may not dissociate during digestion in the gastro-intestinal tract, and hence, may not be available for transport across the intestinal membrane. Therefore, this study is being currently performed to assess the geochemical forms and bioaccessibility of Pb in soils with varying physico-chemical properties. In order to elucidate the level of Pb that can be ingested and assimilated by humans, an in-vitro model that simulates the physiological conditions of the human digestive system has been developed and is being used in this study. Four different types of soils from the Immokalee (an acid sandy soil with minimal Pb retention potential), Millhopper (a sandy loam with high Fe/Al content), Pahokee (a muck soil with more than 80% soil organic matter), and Tobosa series (an alkaline soil with high clay content) were artificially contaminated with Pb as lead nitrate at the rate equivalent to 0, 400, 800, and 1200 mg/kg dry soil. Analysis of soils by a sequential extraction method at time zero (immediately after spiking) showed that Immokalee and Millhopper soils had the highest amount of Pb in exchangeable form, whereas Pahokee and Tobosa soils had higher percentages of carbonate-bound and Fe/Al-bound Pb. The results of in-vitro experiment at time zero showed that majority of Pb was dissolved in the acidic stomach environment in Immokalee, Millhopper, and Tobosa, whereas it was in the intestinal phase in Pahokee soils. Because the soil system is not in equilibrium at time zero, the effect of soil properties on Pb geochemistry is not clear as yet. The

  12. Chemical contamination assessment of Gulf of Mexico oysters in response to hurricanes Katrina and Rita.

    Science.gov (United States)

    Johnson, W E; Kimbrough, K L; Lauenstein, G G; Christensen, J

    2009-03-01

    Hurricane Katrina made landfall on August 29, 2005 and caused widespread devastation along the central Gulf Coast states. Less than a month later Hurricane Rita followed a similar track slightly west of Katrina's. A coordinated multi-agency response followed to collect water, sediment and tissue samples for a variety of chemical, biological and toxicological indicators. The National Oceanic and Atmospheric Administration's National Status and Trends Program (NS&T) participated in this effort by measuring chemical contamination in sediment and oyster tissue as part of the Mussel Watch Program, a long-term monitoring program to assess spatial and temporal trends in a wide range of coastal pollutants. This paper describes results for contaminants measured in oyster tissue collected between September 29 and October 10, 2005 and discusses the results in the context of Mussel Watch and its 20-year record of chemical contamination in the region and the nation. In general, levels of metals in oyster tissue were higher then pre- hurricane levels while organic contaminants were at or near record lows. No contaminant reported here exceeded the FDA action level for food safety.

  13. Environmental contaminants of emerging concern in seafood - European database on contaminant levels

    NARCIS (Netherlands)

    Vandermeersch, Griet; Lourenço, Helena Maria; Alvarez-Muñoz, Diana; Cunha, Sara; Diogène, Jorge; Cano-Sancho, German; Sloth, Jens J.; Kwadijk, Christiaan; Barcelo, Damia; Allegaert, Wim; Bekaert, Karen; Fernandes, José Oliveira; Marques, Antonio; Robbens, Johan

    2015-01-01

    Marine pollution gives rise to concern not only about the environment itself but also about the impact on food safety and consequently on public health. European authorities and consumers have therefore become increasingly worried about the transfer of contaminants from the marine environment to

  14. Toxicological benchmarks for screening potential contaminants of concern for effects on terrestrial plants. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Suter, G.W. II; Will, M.E.; Evans, C.

    1993-09-01

    One of the initial stages in ecological risk assessment for hazardous waste sites is the screening of contaminants to determine which of them are worthy of further consideration as ``contaminants of potential concern.`` This process is termed ``contaminant screening.`` It is performed by comparing measured ambient concentrations of chemicals to benchmark concentrations. Currently, no standard benchmark concentrations exist for assessing contaminants in soil with respect to their toxicity to plants. This report presents a standard method for deriving benchmarks for this purpose (phytotoxicity benchmarks), a set of data concerning effects of chemicals in soil or soil solution on plants, and a set of phytotoxicity benchmarks for 34 chemicals potentially associated with US Department of Energy (DOE) sites. Chemicals that are found in soil at concentrations exceeding both the phytotoxicity benchmark and the background concentration for the soil type should be considered contaminants of potential concern. The purpose of this report is to present plant toxicity data and discuss their utility as benchmarks for determining the hazard to terrestrial plants caused by contaminants in soil. Benchmarks are provided for soils and solutions.

  15. Reducing drinking water supply chemical contamination: risks from underground storage tanks.

    Science.gov (United States)

    Enander, Richard T; Hanumara, R Choudary; Kobayashi, Hisanori; Gagnon, Ronald N; Park, Eugene; Vallot, Christopher; Genovesi, Richard

    2012-12-01

    Drinking water supplies are at risk of contamination from a variety of physical, chemical, and biological sources. Ranked among these threats are hazardous material releases from leaking or improperly managed underground storage tanks located at municipal, commercial, and industrial facilities. To reduce human health and environmental risks associated with the subsurface storage of hazardous materials, government agencies have taken a variety of legislative and regulatory actions--which date back more than 25 years and include the establishment of rigorous equipment/technology/operational requirements and facility-by-facility inspection and enforcement programs. Given a history of more than 470,000 underground storage tank releases nationwide, the U.S. Environmental Protection Agency continues to report that 7,300 new leaks were found in federal fiscal year 2008, while nearly 103,000 old leaks remain to be cleaned up. In this article, we report on an alternate evidence-based intervention approach for reducing potential releases from the storage of petroleum products (gasoline, diesel, kerosene, heating/fuel oil, and waste oil) in underground tanks at commercial facilities located in Rhode Island. The objective of this study was to evaluate whether a new regulatory model can be used as a cost-effective alternative to traditional facility-by-facility inspection and enforcement programs for underground storage tanks. We conclude that the alternative model, using an emphasis on technical assistance tools, can produce measurable improvements in compliance performance, is a cost-effective adjunct to traditional facility-by-facility inspection and enforcement programs, and has the potential to allow regulatory agencies to decrease their frequency of inspections among low risk facilities without sacrificing compliance performance or increasing public health risks. © 2012 Society for Risk Analysis.

  16. Environmental contaminants: Is male reproductive health at risk?

    OpenAIRE

    Mruk, Dolores D.; Cheng, C Yan

    2011-01-01

    Contaminants such as cadmium, bisphenol A and lead pollute our environment and affect male reproductive function. There is evidence that toxicant exposure adversely affects fertility. Cadmium and bisphenol A exert their effects in the testis by perturbing blood-testis barrier function, which in turn affects germ cell adhesion in the seminiferous epithelium because of a disruption of the functional axis between these sites. In essence, cadmium mediates its adverse effects at the blood-testis b...

  17. Technical Guidelines for Environmental Dredging of Contaminated Sediments

    Science.gov (United States)

    2008-09-01

    objectives, bo accuracy and precision of the positioning systems are not generally sufficient for meeting them. Contaminated sediment cannot be remo with...2006. Control of Resuspended sediments in dredging projects. Proceedings of WEDA XXVI Annual Meeting and 38th TAMU Dredging Seminar, June 25-28, San ...Annual Meeting and 38th TAMU Dredging Seminar, June 25-28: 461-467. San Diego, CA. Fuglevand, P. F., and R. S. Webb. 2007. Head of Hylebos – Adaptive

  18. Consumer perceptions of risks of chemical and microbiological contaminants associated with food chains: A cross-national study

    NARCIS (Netherlands)

    Kher, S.V.; Jonge, de J.; Wentholt, M.T.A.; Deliza, R.; Cunha de Andrade, J.; Cnossen, H.J.; Lucas Luijckx, N.B.; Frewer, L.J.

    2013-01-01

    The development and implementation of effective systems to identify vulnerabilities in food chains to chemical and microbiological contaminants must take account of consumer priorities and preferences. The present investigation attempted to understand consumer perceptions associated with chemical

  19. Children's Exposure to Environmental Contaminants: An Editorial Reflection of Articles in the IJERPH Special Issue Entitled, "Children's Exposure to Environmental Contaminants".

    Science.gov (United States)

    Ferguson, Alesia; Solo-Gabriele, Helena

    2016-11-09

    Children are at increased vulnerability to many environmental contaminants compared to adults due to their unique behavior patterns, increased contaminant intake per body weight, and developing biological systems. Depending upon their age, young children may crawl on the floor and may practice increased hand to mouth activity that may increase their dose-intake of specific contaminants that accumulate in dust and other matrices. Children are also smaller in size than adults, resulting in a greater body burden for a given contaminant dose. Because children undergo rapid transitions through particular developmental stages they are also especially vulnerable during certain growth-related time windows. A Special Issue was organized focused on the latest findings in the field of children's environmental exposure for these reasons. This editorial introduces articles in this Special Issue and emphasizes their main findings in advancing the field. From the many articles submitted to this Special Issue from around the world, 23 were accepted and published. They focus on a variety of research areas such as children's activity patterns, improved risk assessment methods to estimate exposures, and exposures in various contexts and to various contaminants. The future health of a nation relies on protecting the children from adverse exposures and understanding the etiology of childhood diseases. The field of children's environmental exposures must consider improved and comprehensive research methods aimed at introducing mitigation strategies locally, nationally, and globally. We are happy to introduce a Special Issue focused on children's environmental exposure and children's health and hope that it contributes towards improved health of children.

  20. Environmental contamination of ready meals by polychlorinated biphenyls (PCBs).

    Science.gov (United States)

    Adenugba, Adeola A; McMartin, Dena W; Beck, Angus

    2012-01-01

    The level of polychlorinated biphenyls (PCBs) contamination in ready meals was investigated to determine exposure compared to other foodstuffs. Chilled ready meals from nine categories (ambient, Chinese, Indian, Traditional UK, Italian, American Tex-Mex, Vegetarian and Organic), and three samples within each category were Soxhlet extracted in triplicate with hexane for 24 h, followed by a clean-up on deactivated silica gel. The cleaned extracts were concentrated to 1 ml under N(2) gas and analyzed on gas chromatography mass spectrometry (GC-MS) for 7 target PCBs (congeners 28, 52, 101, 118, 153, 138, and 180). Individual congener concentrations ranged from non-detectable to 0.40 ng g(-1) (wet weight). The cumulative concentration of all congeners (ΣPCBs) ranged between 0.20 and 1.00 ng g(-1) (wet weight). These values translate into exposure levels of less than 1 μg kg(-1)day(-1) for reference men and women of 70 and 57 kg, respectively. This preliminary study demonstrates that ready meals, like many other foods, are contaminated by PCBs and may represent an important route of human exposure given contemporary changes in consumer food choice. Even though low levels of contamination were observed, long-term exposure for population groups consuming a high volume of ready meals may have cause for concern regarding chronic health risks.

  1. Integrated chemical and biological assessment of contaminant impacts in selected European coastal and offshore marine areas.

    Science.gov (United States)

    Hylland, Ketil; Robinson, Craig D; Burgeot, Thierry; Martínez-Gómez, Concepción; Lang, Thomas; Svavarsson, Jörundur; Thain, John E; Vethaak, A Dick; Gubbins, Mattew J

    2017-03-01

    This paper reports a full assessment of results from ICON, an international workshop on marine integrated contaminant monitoring, encompassing different matrices (sediment, fish, mussels, gastropods), areas (Iceland, North Sea, Baltic, Wadden Sea, Seine estuary and the western Mediterranean) and endpoints (chemical analyses, biological effects). ICON has demonstrated the use of a framework for integrated contaminant assessment on European coastal and offshore areas. The assessment showed that chemical contamination did not always correspond with biological effects, indicating that both are required. The framework can be used to develop assessments for EU directives. If a 95% target were to be used as a regional indicator of MSFD GES, Iceland and offshore North Sea would achieve the target using the ICON dataset, but inshore North Sea, Baltic and Spanish Mediterranean regions would fail. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Chemical properties and toxicity of soils contaminated by mining activity.

    Science.gov (United States)

    Agnieszka, Baran; Tomasz, Czech; Jerzy, Wieczorek

    2014-09-01

    This research is aimed at assessing the total content and soluble forms of metals (zinc, lead and cadmium) and toxicity of soils subjected to strong human pressure associated with mining of zinc and lead ores. The research area lay in the neighbourhood of the Bolesław Mine and Metallurgical Plant in Bukowno (Poland). The study obtained total cadmium concentration between 0.29 and 51.91 mg, zinc between 7.90 and 3,614 mg, and that of lead between 28.4 and 6844 mg kg(-1) of soil d.m. The solubility of the heavy metals in 1 mol dm(-3) NH4NO3 was 1-49% for zinc, 5-45% for cadmium, and S. alba = V. fischeri > L. sativum. Significant positive correlations (p ≤ 0.05) of the total and soluble contents of the metals with luminescence inhibition in V. fischeri and root growth inhibition in S. saccharatum were found. The general trend observed was an increase in metal toxicity measured by the biotest with increasing available metal contents in soils. All the soil samples were classified into toxicity class III, which means that they are toxic and present severe danger. Biotest are a good complement to chemical analyses in the assessment of quality of soils as well as in properly managing them.

  3. Hazard Assessment of Chemical Air Contaminants Measured in Residences

    Energy Technology Data Exchange (ETDEWEB)

    Logue, J.M.; McKone, T.E.; Sherman, M. H.; Singer, B.C.

    2010-05-10

    Identifying air pollutants that pose a potential hazard indoors can facilitate exposure mitigation. In this study, we compiled summary results from 77 published studies reporting measurements of chemical pollutants in residences in the United States and in countries with similar lifestyles. These data were used to calculate representative mid-range and upper bound concentrations relevant to chronic exposures for 267 pollutants and representative peak concentrations relevant to acute exposures for 5 activity-associated pollutants. Representative concentrations are compared to available chronic and acute health standards for 97 pollutants. Fifteen pollutants appear to exceed chronic health standards in a large fraction of homes. Nine other pollutants are identified as potential chronic health hazards in a substantial minority of homes and an additional nine are identified as potential hazards in a very small percentage of homes. Nine pollutants are identified as priority hazards based on the robustness of measured concentration data and the fraction of residences that appear to be impacted: acetaldehyde; acrolein; benzene; 1,3-butadiene; 1,4-dichlorobenzene; formaldehyde; naphthalene; nitrogen dioxide; and PM{sub 2.5}. Activity-based emissions are shown to pose potential acute health hazards for PM{sub 2.5}, formaldehyde, CO, chloroform, and NO{sub 2}.

  4. Methods for the Determination of Chemical Contaminants in Drinking Water. Instructors Handbook.

    Science.gov (United States)

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    This instructor's manual presents information for a training course in analytical methods for inorganic and organic chemical contaminants listed in the interim primary drinking water regulations. Topics focus on: (1) pre-course activities, including course logistics, equipment, and facilities; (2) sample agendas; (3) lesson plans for specific…

  5. Chemical and microbial properties in contaminated soils around a magnesite mine in northeast China

    Science.gov (United States)

    D Yang; D-H Zeng; J Zhang; L-J Li; R. Mao

    2012-01-01

    We measured soil chemical and microbial properties at a depth of 0–20 cm among mine tailings, abandoned mined land, contaminated cropland, and uncontaminated cropland around a magnesite mine near Haicheng City, Liaoning Province, China. The objective was to clarify the impact of Mg on the soils. We found that soluble Mg2+ concentration and pH...

  6. [Sanitizing contaminated soil and groundwater pipes by microbiological and physico-chemical methods].

    Science.gov (United States)

    Werner, P; Brauch, H J

    1989-01-01

    The contribution reports on two contamination cases, i.e., a waterwork "Durlacher Wald" and an industrial plant "Oberrheingraben" which were remedied using biological and physico-chemical methods. Furthermore, it deals with the laboratory investigations of the degradation of hydrocarbons, and also discusses briefly the advantages and problems of the microbiological remediation techniques.

  7. Glutathione-S-transferase activity of Fucus spp. as a biomarker of environmental contamination.

    Science.gov (United States)

    Cairrão, E; Couderchet, M; Soares, A M V M; Guilhermino, L

    2004-12-20

    Coastal zones are important areas from both ecological and economical points of view. However, in the last decades, in several regions of the globe, they have been increasingly impacted by complex discharges of contaminants and by marine traffic accidents. The Portuguese Atlantic coast is particularly exposed to these contaminants due to the proximity of important navigation routes. Several rocky shore organisms have been tested and used as bioindicators of environmental contamination. However, to the best of our knowledge Fucus spp., which are key species in rocky shore communities, have not been used as bioindicators in monitoring studies based on biomarkers. The objective of this study was to investigate the potential of glutathione-S-transferase (GST) activity of several Fucus species (Fucus ceranoides, Fucus spiralis var. platycarpus, Fucus spiralis var. spiralis and Fucus vesiculosus var. vesiculosus) to discriminate sites with different contamination levels along the Portuguese Northwestern coast, between the Minho river estuary and the Aveiro's Lagoon, as an environmental biomarker. With the exception of F. spiralis var. spiralis, for which a confusing pattern of activity was found requiring further analysis, all the other species and varieties showed higher GST levels in more contaminated sites than in less contaminated ones, indicating that Fucus spp. are suitable for use as bioindicators and their GSTs as biomarkers of environmental contamination in coastal zones and estuaries.

  8. Environmental and body contamination from cleaning vomitus in a health care setting: A simulation study.

    Science.gov (United States)

    Phan, Linh; Su, Yu-Min; Weber, Rachel; Fritzen-Pedicini, Charissa; Edomwande, Osayuwamen; Jones, Rachael M

    2017-11-21

    Environmental service workers may be exposed to pathogens during the cleaning of pathogen-containing bodily fluids. Participants with experience cleaning hospital environments were asked to clean simulated, fluorescein-containing vomitus using normal practices in a simulated patient room. Fluorescein was visualized in the environment and on participants under black lights. Fluorescein was quantitatively measured on the floor, in the air, and on gloves and shoe covers. In all 21 trials involving 7 participants, fluorescein was found on the floor after cleaning and on participants' gloves. Lower levels of floor contamination were associated with the use of towels to remove bulk fluid (ρ = -0.56, P = .01). Glove contamination was not associated with the number or frequency of contacts with environmental surfaces, suggesting contamination occurs with specific events, such as picking up contaminated towels. Fluorescein contamination on shoe covers was measured in 19 trials. Fluorescein was not observed on participants' facial personal protective equipment, if worn, or faces. Contamination on other body parts, primarily the legs, was observed in 8 trials. Fluorescein was infrequently quantified in the air. Using towels to remove bulk fluid prior to mopping is part of the recommended cleaning protocol and should be used to minimize residual contamination. Contamination on shoes and the floor may serve as reservoirs for pathogens. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  9. Potential of zerovalent iron nanoparticles for remediation of environmental organic contaminants in water: a review.

    Science.gov (United States)

    Raychoudhury, Trishikhi; Scheytt, Traugott

    2013-01-01

    Zerovalent iron (ZVI) has the potential to degrade different organic contaminants. Nanoscale zerovalent iron (NZVI) can reduce the contaminants even more rapidly due to its small size and large specific surface area (SSA), compared to granular ZVI. The main objective of this paper is to assess and compare the potential of NZVI for degradation of different contaminants in water under specific environmental conditions. As a first step, the potential reactive functional groups/bonds associated with different contaminants are identified and possible reaction mechanisms are discussed. Thereafter, the reaction efficiencies of different organic contaminants with NZVI are compared. Mass of ZVI and reaction time required to transform a certain amount of contaminated water are calculated based on literature data. Sources of contaminants in the environment and their environmental occurrences are discussed to understand the potential locations where NZVI could be applied for removal of different contaminants. Overall it is observed that azo-compounds are readily transformed in the presence of NZVI particles. Reaction efficiencies of ZVI for reduction of nitro-organic compounds are also reasonably high. However, halogenated compounds with high molecular weights or complex structures (i.e., iodinated contrast media, DDT, polychlorinated biphenyls, etc.) show lower reaction rates with NZVI compared to the widely studied chlorinated hydrocarbons (i.e., trichloroethylene).

  10. Prenatal exposure to environmental contaminants and behavioural problems at age 7-8years.

    Science.gov (United States)

    Sioen, Isabelle; Den Hond, Elly; Nelen, Vera; Van de Mieroop, Els; Croes, Kim; Van Larebeke, Nik; Nawrot, Tim S; Schoeters, Greet

    2013-09-01

    Animal studies showed that the developing brain is particularly sensitive to chemical exposure. Human studies carried out in areas with high exposures have proven neurodevelopmental disorders in relation to e.g. lead and PCBs. Whether these chemicals are associated with behavioural problems in childhood at current environmental levels is not well known. Therefore, we assessed the association between prenatal exposure to lead, cadmium, PCBs, dioxin-like compounds, HCB and p,p'-DDE and behavioural problems in 7-8year old children. Prenatal exposure data were obtained from the Flemish mother-new-born cohort. Lead, cadmium, PCBs, dioxin-like compounds, HCB and p,p'-DDE were analysed in cord blood. When the child reached 7-8years, 270 mothers completed the Strengths and Difficulties Questionnaire assessing their children's behavioural health. We found that doubling the prenatal lead exposure (cord blood lead levels) was associated with a 3.43 times higher risk for hyperactivity in both boys and girls. In addition, total difficulties were 5.08 times more likely in the highest tertile for prenatal lead exposure compared to the lowest tertile. In girls, total difficulties were 4.92 more likely when doubling cord blood p,p'-DDE, whereas no significant association was found in boys. Further, we noted in boys a 1.53 times higher risk for emotional problems when doubling cord blood cadmium, whereas no significant association was found in girls. These results indicate that the presence of environmental contaminants influences the mental health of the next generation. © 2013.

  11. Environmental management: integrating ecological evaluation, remediation, restoration, natural resource damage assessment and long-term stewardship on contaminated lands.

    Science.gov (United States)

    Burger, Joanna

    2008-08-01

    Ecological evaluation is essential for remediation, restoration, and Natural Resource Damage Assessment (NRDA), and forms the basis for many management practices. These include determining status and trends of biological, physical, or chemical/radiological conditions, conducting environmental impact assessments, performing remedial actions should remediation fail, managing ecosystems and wildlife, and assessing the efficacy of remediation, restoration, and long-term stewardship. The objective of this paper is to explore the meanings of these assessments, examine the relationships among them, and suggest methods of integration that will move environmental management forward. While remediation, restoration, and NRDA, among others, are often conducted separately, it is important to integrate them for contaminated land where the risks to ecoreceptors (including humans) can be high, and the potential damage to functioning ecosystems great. Ecological evaluations can range from inventories of local plants and animals, determinations of reproductive success of particular species, levels of contaminants in organisms, kinds and levels of effects, and environmental impact assessments, to very formal ecological risk assessments for a chemical or other stressor. Such evaluations can range from the individual species to populations, communities, ecosystems or the landscape scale. Ecological evaluations serve as the basis for making decisions about the levels and kinds of remediation, the levels and kinds of restoration possible, and the degree and kinds of natural resource injuries that have occurred because of contamination. Many different disciplines are involved in ecological evaluation, including biologists, conservationists, foresters, restoration ecologists, ecological engineers, economists, hydrologist, and geologists. Since ecological evaluation forms the basis for so many different types of environmental management, it seems reasonable to integrate management options

  12. Time-dependent influence on assessment of contaminated environmental surfaces in operating rooms.

    Science.gov (United States)

    Saito, Yuhei; Yasuhara, Hiroshi; Murakoshi, Satoshi; Komatsu, Takami; Fukatsu, Kazuhiko; Uetera, Yushi

    2015-09-01

    There is no established method to assess the contamination of environmental surfaces because the results change with time. We evaluated current methods for assessment of contamination of environmental surfaces in the operating room (OR). Contamination of environmental surfaces in the OR was assessed using an adenosine triphosphate (ATP) test and bacterial culture. We collected 480 ATP test samples from 17 surfaces in 6 ORs to determine the influence of surface features, including frequency of touching and surface orientation on contamination, after completion of daily scheduled operations. Another 54 pairs of ATP and microbial samples were taken from 3 surfaces in each of the same OR except 1 to determine the time course of the results of ATP and microbial tests when ORs were not used. Multivariate analysis demonstrated that the ATP results were strongly influenced by frequency of touching and orientation of environmental surfaces. The microbial counts declined over time, whereas the ATP results remained at a high level. The ATP test result could be used as a relatively stable trace of contamination of environmental surfaces; however, it is not a surrogate indicator of the number of viable microbes which declines over time. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  13. Metal resistant plants and phytoremediation of environmental contamination

    Science.gov (United States)

    Meagher, Richard B.; Li, Yujing; Dhankher, Om P.

    2010-04-20

    The present disclosure provides a method of producing transgenic plants which are resistant to at least one metal ion by transforming the plant with a recombinant DNA comprising a nucleic acid encoding a bacterial arsenic reductase under the control of a plant expressible promoter, and a nucleic acid encoding a nucleotide sequence encoding a phytochelatin biosynthetic enzyme under the control of a plant expressible promoter. The invention also relates a method of phytoremediation of a contaminated site by growing in the site a transgenic plant expressing a nucleic acid encoding a bacterial arsenate reductase and a nucleic acid encoding a phytochelatin biosynthetic enzyme.

  14. Environmental laws regulating chemicals: Uses of information in decision making under environmental statutes

    Energy Technology Data Exchange (ETDEWEB)

    Gaba, J.M. [Southern Methodist Univ., Dallas, TX (United States)

    1990-12-31

    Three areas are addressed in this paper: generic issues that arise simply in the process of decision-making under environmental statutes; different decision-making standards under various environmental statutes; and efforts to legislate a {open_quotes}safe{close_quotes} or {open_quotes}acceptable{close_quotes} risk from exposure to carcinogenic chemicals.

  15. Chemical Fingerprinting of Materials Developed Due To Environmental Issues

    Science.gov (United States)

    Smith, Doris A.; McCool, A. (Technical Monitor)

    2000-01-01

    This paper presents viewgraphs on chemical fingerprinting of materials developed due to environmental issues. Some of the topics include: 1) Aerospace Materials; 2) Building Blocks of Capabilities; 3) Spectroscopic Techniques; 4) Chromatographic Techniques; 5) Factors that Determine Fingerprinting Approach; and 6) Fingerprinting: Combination of instrumental analysis methods that diagnostically characterize a material.

  16. ENVIRONMENTAL ANDROGENS AND ANTIANDROGENS: AN EXPANDING CHEMICAL UNIVERSE

    Science.gov (United States)

    Within the last ten years, awareness has grown about environmental chemicals that display antiandrogenic or androgenic activity. While studies in the early 1990s focused on pesticides that acted as androgen receptor (AR) antagonists, it soon became evident that this was not the ...

  17. Decreasing operating room environmental pathogen contamination through improved cleaning practice.

    Science.gov (United States)

    Munoz-Price, L Silvia; Birnbach, David J; Lubarsky, David A; Arheart, Kristopher L; Fajardo-Aquino, Yovanit; Rosalsky, Mara; Cleary, Timothy; Depascale, Dennise; Coro, Gabriel; Namias, Nicholas; Carling, Philip

    2012-09-01

    Potential transmission of organisms from the environment to patients is a concern, especially in enclosed settings, such as operating rooms, in which there are multiple and frequent contacts between patients, provider's hands, and environmental surfaces. Therefore, adequate disinfection of operating rooms is essential. We aimed to determine the change in both the thoroughness of environmental cleaning and the proportion of environmental surfaces within operating rooms from which pathogenic organisms were recovered. Prospective environmental study using feedback with UV markers and environmental cultures. A 1,500-bed county teaching hospital. Environmental service personnel, hospital administration, and medical and nursing leadership. The proportion of UV markers removed (cleaned) increased from 0.47 (284 of 600 markers; 95% confidence interval [CI], 0.42-0.53) at baseline to 0.82 (634 of 777 markers; 95% CI, 0.77-0.85) during the last month of observations ([Formula: see text]). Nevertheless, the percentage of samples from which pathogenic organisms (gram-negative bacilli, Staphylococcus aureus, and Enterococcus species) were recovered did not change throughout our study. Pathogens were identified on 16.6% of surfaces at baseline and 12.5% of surfaces during the follow-up period ([Formula: see text]). However, the percentage of surfaces from which gram-negative bacilli were recovered decreased from 10.7% at baseline to 2.3% during the follow-up period ([Formula: see text]). Feedback using Gram staining of environmental cultures and UV markers was successful at improving the degree of cleaning in our operating rooms.

  18. Environmental impact of industrial sludge stabilization/solidification products: chemical or ecotoxicological hazard evaluation?

    Science.gov (United States)

    Silva, Marcos A R; Testolin, Renan C; Godinho-Castro, Alcione P; Corrêa, Albertina X R; Radetski, Claudemir M

    2011-09-15

    Nowadays, the classification of industrial solid wastes is not based on risk analysis, thus the aim of this study was to compare the toxicity classifications based on the chemical and ecotoxicological characterization of four industrial sludges submitted to a two-step stabilization/solidification (S/S) processes. To classify S/S products as hazardous or non-hazardous, values cited in Brazilian chemical waste regulations were adopted and compared to the results obtained with a battery of biotests (bacteria, alga and daphnids) which were carried out with soluble and leaching fractions. In some cases the hazardous potential of industrial sludge was underestimated, since the S/S products obtained from the metal-mechanics and automotive sludges were chemically classified as non-hazardous (but non-inert) when the ecotoxicity tests showed toxicity values for leaching and soluble fractions. In other cases, the environmental impact was overestimated, since the S/S products of the textile sludges were chemically classified as non-inert (but non-hazardous) while ecotoxicity tests did not reveal any effects on bacteria, daphnids and algae. From the results of the chemical and ecotoxicological analyses we concluded that: (i) current regulations related to solid waste classification based on leachability and solubility tests do not ensure reliable results with respect to environmental protection; (ii) the two-step process was very effective in terms of metal immobilization, even at higher metal-concentrations. Considering that S/S products will be subject to environmental conditions, it is of great interest to test the ecotoxicity potential of the contaminants release from these products with a view to avoiding environmental impact given the unreliability of ecotoxicological estimations originating from chemical analysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Environmental assessment of contaminated site remediation in a life cycle perspective

    DEFF Research Database (Denmark)

    Lemming, Gitte

    Many contaminated sites worldwide constitute a hazard to their surroundings and must undergo remediation. Chloroethenes such as trichloroethene (TCE) and perchloroethene (PCE) are among the most frequently encountered contaminants in the subsurface due to their widespread use as solvents in dry...... of chloroethene source zones, conventional pump-andtreat technologies are inefficient and may require operation for centuries. Excavation of the contaminated soil and subsequent treatment and disposal of the soil is another ex situ option, however most suitable for contaminant source zones located close...... to the surface. As an alternative to these ex situ remediation methods, in situ remediation methods for chloroethenes have been developed to target the contaminants in their subsurface location. These technologies cover chemical, biological and physical methods of which the latter can be enhanced by heating...

  20. Hospital ventilation standards and energy conservation: chemical contamination of hospital air. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rainer, D.; Michaelsen, G.S.

    1980-03-01

    In an era of increasing energy conservation consciousness, a critical reassessment of the validity of hospital ventilation and thermal standards is made. If current standards are found to be excessively conservative, major energy conservation measures could be undertaken by rebalancing and/or modification of current HVAC systems. To establish whether or not reducing ventilation rates would increase airborne chemical contamination to unacceptable levels, a field survey was conducted to develop an inventory and dosage estimates of hospital generated airborne chemical contaminants to which patients, staff, and visitors are exposed. The results of the study are presented. Emphasis is on patient exposure, but an examination of occupational exposure was also made. An in-depth assessment of the laboratory air environment is documented. Housekeeping products used in survey hospitals, hazardous properties of housekeeping chemicals and probable product composition are discussed in the appendices.

  1. Environmental legislation and contamination: the gap between theory and reality in South Africa.

    Science.gov (United States)

    Papu-Zamxaka, Vathiswa; Harpham, Trudy; Mathee, Angela

    2010-11-01

    Like many areas of its constitution, South Africa has progressive legislation to both prevent and clean up environmental contamination. However, recent research has highlighted a large gap between legislation and practice. This paper presents the context of the intent of environmental waste legislation in South Africa and highlights a case of mercury contamination in a rural area which illustrates the gap between the theory of legislation and the reality on the ground. Mercury contamination in humans poses well known health threats, yet despite attention from the media, non-governmental organisations and academic researchers, a major pollutant remains and contamination levels remain high, two decades after the original polluting incident took place. Copyright 2010. Published by Elsevier Ltd.

  2. Association between environmental contaminants and health outcomes in indigenous populations of the Circumpolar North

    DEFF Research Database (Denmark)

    Singh, Kavita; Bjerregaard, Peter; Chan, Hing Man

    2014-01-01

    BACKGROUND: Since the 1990s, research has been carried out to monitor environmental contaminants and their effects on human health in the Arctic. Although evidence shows that Arctic indigenous peoples are exposed to higher levels of contaminants and do worse on several dimensions of health compared...... with other populations, the contribution of such exposures on adverse outcomes is unclear. OBJECTIVE: The purpose of this review is to provide a synopsis of the published epidemiological literature that has examined association between environmental contaminants and health outcomes in Arctic indigenous...... populations. DESIGN: A literature search was conducted in OVID Medline (1946-January 2014) using search terms that combined concepts of contaminant and indigenous populations in the Arctic. No language or date restrictions were applied. The reference lists of review articles were hand-searched. RESULTS...

  3. Nonradiological chemical pathway analysis and identification of chemicals of concern for environmental monitoring at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Blanton, M.L.; Cooper, A.T.; Castleton, K.J.

    1995-11-01

    Pacific Northwest`s Surface Environmental Surveillance Project (SESP) is an ongoing effort tot design, review, and conducted monitoring on and off the Hanford site. Chemicals of concern that were selected are listed. Using modeled exposure pathways, the offsite cancer incidence and hazard quotient were calculated and a retrospective pathway analysis performed to estimate what onsite concentrations would be required in the soil for each chemical of concern and other detected chemicals that would be required to obtain an estimated offsite human-health risk of 1.0E-06 cancer incidence or 1.0 hazard quotient. This analysis indicates that current nonradiological chemical contamination occurring on the site does not pose a significant offsite human-health risk; the highest cancer incidence to the offsite maximally exposed individual was from arsenic (1.76E-10); the highest hazard quotient was chromium(VI) (1.48E-04). The most sensitive pathways of exposure were surfacewater and aquatic food consumption. Combined total offsite excess cancer incidence was 2.09E-10 and estimated hazard quotient was 2.40E-04. Of the 17 identified chemicals of concern, the SESP does not currently (routinely) monitor arsenic, benzo(a)pyrene, bis(2- ethylhexyl)phthalate (BEHP), and chrysene. Only 3 of the chemicals of concern (arsenic, BEHP, chloroform) could actually occur in onsite soil at concern high enough to cause a 1.0E-06 excess cancer incidence or a 1.0 hazard index for a given offsite exposure pathway. During the retrospective analysis, 20 other chemicals were also evaluated; only vinyl chloride and thallium could reach targeted offsite risk values.

  4. Emerging Environmental Justice Issues in Nuclear Power and Radioactive Contamination

    Directory of Open Access Journals (Sweden)

    Dean Kyne

    2016-07-01

    Full Text Available Nuclear hazards, linked to both U.S. weapons programs and civilian nuclear power, pose substantial environment justice issues. Nuclear power plant (NPP reactors produce low-level ionizing radiation, high level nuclear waste, and are subject to catastrophic contamination events. Justice concerns include plant locations and the large potentially exposed populations, as well as issues in siting, nuclear safety, and barriers to public participation. Other justice issues relate to extensive contamination in the U.S. nuclear weapons complex, and the mining and processing industries that have supported it. To approach the topic, first we discuss distributional justice issues of NPP sites in the U.S. and related procedural injustices in siting, operation, and emergency preparedness. Then we discuss justice concerns involving the U.S. nuclear weapons complex and the ways that uranium mining, processing, and weapons development have affected those living downwind, including a substantial American Indian population. Next we examine the problem of high-level nuclear waste and the risk implications of the lack of secure long-term storage. The handling and deposition of toxic nuclear wastes pose new transgenerational justice issues of unprecedented duration, in comparison to any other industry. Finally, we discuss the persistent risks of nuclear technologies and renewable energy alternatives.

  5. Health and environmental effects of complex chemical mixtures: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    The Office of Health and Environmental Research (OHER) of the Department of Energy supports a broad long-term research program on human health and environmental effects from potential exposure to energy-related complex chemical mixtures. The program seeks basic mechanistic data on the effects of complex mixtures at the cellular, molecular, and whole animal levels to aid in predicting human health effects and seeks ecological data on biological and physical transformations in the mixtures, concentrations of the mixtures in various compartments of the environment, and potential routes for human exposure to these mixtures (e.g., food chain). On June 17-18, 1985, OHER held its First Annual Technical Meeting on the Complex Chemical Mixtures Program in Chicago, IL. The primary purpose of the meeting was to enable principal investigators to report the research status and accomplishments of ongoing complex chemical mixture studies supported by OHER. To help focus future research directions round table discussions were conducted.

  6. Association between environmental contaminants and health outcomes in indigenous populations of the Circumpolar North

    Directory of Open Access Journals (Sweden)

    Kavita Singh

    2014-12-01

    Full Text Available Background: Since the 1990s, research has been carried out to monitor environmental contaminants and their effects on human health in the Arctic. Although evidence shows that Arctic indigenous peoples are exposed to higher levels of contaminants and do worse on several dimensions of health compared with other populations, the contribution of such exposures on adverse outcomes is unclear. Objective: The purpose of this review is to provide a synopsis of the published epidemiological literature that has examined association between environmental contaminants and health outcomes in Arctic indigenous populations. Design: A literature search was conducted in OVID Medline (1946-January 2014 using search terms that combined concepts of contaminant and indigenous populations in the Arctic. No language or date restrictions were applied. The reference lists of review articles were hand-searched. Results: Of 559 citations, 60 studies were relevant. The studies fell under the following categories: paediatric (n=18, reproductive health (n=18, obstetrics and gynaecology (n=9, cardiology (n=7, bone health (n=2, oncology (n=2, endocrinology (n=2 and other (n=2. All studies, except one from Arctic Finland, were either from Nunavik or Greenland. Most studies assessed polychlorinated biphenyls (n=43 and organochlorine pesticides (n=29. Fewer studies examined heavy metals, perfluorinated compounds, or polybrominated diphenyl ethers. Details of study results for each health category are provided. Conclusions: It is difficult to make conclusive statements about the effects of environmental contaminants on health due to mixed results, small number of studies and studies being restricted to a small number of regions. Meta-analytical synthesis of the evidence should be considered for priority contaminants and health outcomes. The following research gaps should be addressed in future studies: association of contaminants and health in other Arctic regions (i.e. Inuvialuit

  7. Gut Dysbiosis in Animals Due to Environmental Chemical Exposures

    Directory of Open Access Journals (Sweden)

    Cheryl S. Rosenfeld

    2017-09-01

    Full Text Available The gut microbiome consists of over 103–104 microorganism inhabitants that together possess 150 times more genes that the human genome and thus should be considered an “organ” in of itself. Such communities of bacteria are in dynamic flux and susceptible to changes in host environment and body condition. In turn, gut microbiome disturbances can affect health status of the host. Gut dysbiosis might result in obesity, diabetes, gastrointestinal, immunological, and neurobehavioral disorders. Such host diseases can originate due to shifts in microbiota favoring more pathogenic species that produce various virulence factors, such as lipopolysaccharide. Bacterial virulence factors and metabolites may be transmitted to distal target sites, including the brain. Other potential mechanisms by which gut dysbiosis can affect the host include bacterial-produced metabolites, production of hormones and factors that mimic those produced by the host, and epimutations. All animals, including humans, are exposed daily to various environmental chemicals that can influence the gut microbiome. Exposure to such chemicals might lead to downstream systemic effects that occur secondary to gut microbiome disturbances. Increasing reports have shown that environmental chemical exposures can target both host and the resident gut microbiome. In this review, we will first consider the current knowledge of how endocrine disrupting chemicals (EDCs, heavy metals, air pollution, and nanoparticles can influence the gut microbiome. The second part of the review will consider how potential environmental chemical-induced gut microbiome changes might subsequently induce pathophysiological responses in the host, although definitive evidence for such effects is still lacking. By understanding how these chemicals result in gut dysbiosis, it may open up new remediation strategies in animals, including humans, exposed to such chemicals.

  8. Evaluation of chemical enhancement on phytoremediation effect of Cd-contaminated soils with Calendula officinalis L.

    Science.gov (United States)

    Liu, Jianv; Zhou, Qixing; Wang, Song

    2010-07-01

    The popular ornamental plant Calendula officinalis L was studied for its potential application in the phytoremediation of cadmium (Cd)-contaminated soils. Enhancements to the Cd accumulation by the application of sodium dodecyl sulfate (SDS), ethylenediaminetriacetic acid (EDTA) and ethylenegluatarotriacetic acid (EGTA) to the soil were investigated. Under these chemically enhanced treatments, EDTA was observed to be toxic to the plants leading to retarded growth. However, the application of SDS and/or EGTA was shown to result in significantly increased plant biomass (p Calendula officinalis L. for applications of phytoremediation of Cd-contaminated sites.

  9. Study on Microbial Deposition and Contamination onto Six Surfaces Commonly Used in Chemical and Microbiological Laboratories

    Directory of Open Access Journals (Sweden)

    Elena Tamburini

    2015-07-01

    Full Text Available The worktops in both chemical and microbiological laboratories are the surfaces most vulnerable to damage and exposure to contamination by indoor pollutants. The rate at which particles are deposited on indoor surfaces is an important parameter to determine human exposure to airborne biological particles. In contrast to what has been established for inorganic pollutants, no limit has been set by law for microbial contamination in indoor air. To our knowledge, a comparative study on the effect of surfaces on the deposition of microbes has not been carried out. An evaluation of the microbial contamination of worktop materials could be of crucial importance, both for safety reasons and for the reliability of tests and experiments that need to be carried out in non-contaminated environments. The aim of this study was to evaluate the overall microbial contamination (fungi, mesophilic and psychrophilic bacteria, staphylococci on six widely used worktop materials in laboratories (glass, stainless steel, fine porcelain stoneware, post-forming laminate, high-performing laminate and enamel steel and to correlate it with the characteristics of the surfaces. After cleaning, the kinetics of microbial re-contamination were also evaluated for all surfaces.

  10. The effect of environmental parameters on contaminant uptake By a ...

    African Journals Online (AJOL)

    DR. MIKE HORSFALL

    application as a long-term integrated sampler (Black et al., 1982). Analysis of the contents of the bags was simpler and the devices could be used where conventional biomonitors could not. Thus, passive water sampling devices display great potential as environmental monitors. This study is a series of experiments that was ...

  11. Mangrove leaves (Rhizophora mangle) as environmental contamination biomonitors

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Vivianne L.B. de; Santos, Suzana O.; Fonseca, Cassia K.L.; Paiva, Ana Claudia de; Silva, Waldecy A. da, E-mail: vlsouza@cnen.gov.br, E-mail: suzirecifeusa@hotmail.com, E-mail: cassia.kellen@hotmail.com, E-mail: acpaiva@cnen.gov.br, E-mail: waldecy@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2015-07-01

    Sometimes, plants growing in contaminated sediments by trace metals can not avoid absorption of these metals, but only to limit its translocation, so that the accumulated metals in their tissues will have different levels of concentrations. Some trace metals (copper, zinc, manganese, among others) are essential for plants, although they are toxic at high concentrations, damaging its growth, production or quality. The aim of this work from is to verify the presence of metals such as copper, manganese and iron in mangrove leaves (Rhizophora mangle) collected in some beaches of the Northeast of Brazil (such as: Maceio, Sao Jose da Coroa Grande, Japaratinga, Croa do Gore, Ponta das Pedras). Leaves' metals content (extracted by adding acids) were determined by a fast sequential atomic absorption spectrometer (SpectrAA-220FS/VARIAN). The results showed that there are more Fe and Mn in mangrove leaves than in other metals comparing with all study areas (Fe > Mn > Co > Zn > Cu). (author)

  12. Environmental viral contamination in a pediatric hospital outpatient waiting area: implications for infection control.

    Science.gov (United States)

    D'Arcy, Nikki; Cloutman-Green, Elaine; Klein, Nigel; Spratt, David A

    2014-08-01

    Nosocomial outbreaks of viral etiology are costly and can have a major impact on patient care. Many viruses are known to persist in the inanimate environment and may pose a risk to patients and health care workers. We investigate the frequency of environmental contamination with common health care-associated viruses and explore the use of torque-teno virus as a marker of environmental contamination. Environmental screening for a variety of clinically relevant viruses was carried out over 3 months in a UK pediatric hospital using air sampling and surface swabbing. Swabs were tested for the presence of virus nucleic acid by quantitative polymerase chain reactions. Viral nucleic acid was found on surfaces and in the air throughout the screening period, with adenovirus DNA being the most frequent. Door handles were frequently contaminated. Torque-teno virus was also found at numerous sites. Evidence of environmental contamination with viral pathogens is present in health care environments and may be indicative of an infectious virus being present. Screening for viruses should be included in infection control strategies. Torque-teno virus may provide a better marker of contamination and reduce time and cost of screening for individual viruses. Copyright © 2014 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  13. Are chemicals in articles an obstacle for reaching environmental goals? - Missing links in EU chemical management.

    Science.gov (United States)

    Molander, Linda; Breitholtz, Magnus; Andersson, Patrik L; Rybacka, Aleksandra; Rudén, Christina

    2012-10-01

    It is widely acknowledged that the management of risks associated with chemicals in articles needs to be improved. The EU environmental policy states that environmental damage should be rectified at source. It is therefore motivated that the risk management of substances in articles also takes particular consideration to those substances identified as posing a risk in different environmental compartments. The primary aim of the present study was to empirically analyze to what extent the regulation of chemicals in articles under REACH is coherent with the rules concerning chemicals in the Sewage Sludge Directive (SSD) and the Water Framework Directive (WFD). We also analyzed the chemical variation of the organic substances regulated under these legislations in relation to the most heavily used chemicals. The results show that 16 of 24 substances used in or potentially present in articles and regulated by the SSD or the WFD are also identified under REACH either as a substance of very high concern (SVHC) or subject to some restrictions. However, for these substances we conclude that there is limited coherence between the legislations, since the identification as an SVHC does not in itself encompass any use restrictions, and the restrictions in REACH are in many cases limited to a particular use, and thus all other uses are allowed. Only a minor part of chemicals in commerce is regulated and these show a chemical variation that deviates from classical legacy pollutants. This warrants new tools to identify potentially hazardous chemicals in articles. We also noted that chemicals monitored in the environment under the WFD deviate in their chemistry from the ones regulated by REACH. In summary, we argue that to obtain improved resource efficiency and a sustainable development it is necessary to minimize the input of chemicals identified as hazardous to health or the environment into articles. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Incurred environmental risks and potential contamination sources in ...

    African Journals Online (AJOL)

    Chemical analysis of cultivated and wild plants species inside the district contain high grades in heavy metals: 708.56 mg Zn. kg-1; 16.24 mg Pb.kg-1(Thymus vulgaris (L)); 500.44 mg Zn. kg-1, 12.44 mg Pb. kg-1(Laurus nobilis (L)); 128.33 mg Zn. kg-1 and 22.53 mg Pb.kg-1 (Ficus (L)) and 106.73 mgZn.kg-1 (pimento).

  15. Chemical elements in invertebrate orders for environmental quality studies

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes, Marcelo R.L.; Franca, Elvis J.; Paiva, Jose D.S.; Hazin, Clovis A., E-mail: marcelo_rlm@hotmail.com, E-mail: ejfranca@cnen.gov.br, E-mail: dan-paiva@hotmail.com, E-mail: chazin@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Fonseca, Felipe Y.; Fernandes, Elisabete A. de Nadai; Bacchi, Marcio A., E-mail: felipe-yamada@hotmail.com, E-mail: lis@cena.usp.br, E-mail: mabacchi@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil)

    2013-07-01

    Among the biomonitors of environmental quality, there is a lack of studies on using invertebrates to evaluate quantitatively chemical elements in ecosystems. This group of animals is quite numerous, widely distributed and adaptable to the most diverse environmental conditions. These features are very useful for the environmental quality assessment, as well as the several occurring insect-plant interactions performing essential functions in ecosystems. The objective of this work is to study the variability of chemical composition of invertebrate orders for using in environmental quality monitoring studies. Instrumental neutron activation analysis - INAA was applied to determine some nutrients and trace elements in invertebrate samples. Sampling by pitfall traps was carried out in riverine ecosystems from the urban area from the Piracicaba Municipality, State of Sao Paulo, Brazil. Invertebrate and reference material samples were irradiated in the nuclear research reactor IEA-R1, Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN. Fragments of a Ni-Cr alloy were irradiated for monitoring the thermal neutron flux. Hymenoptera order was considered the most representative according to the total number of sampled species (about 60%). Significant amounts of Ba, Br, Fe and Sc were found in invertebrates of the order Opiliones. Potassium, rubidium and zinc were highly accumulated in species from Blattodea order, indicating a consistent pattern of accumulation for this invertebrate order. Taking into account the abundance of Hymenoptera order, the chemical composition of its species was significant different at the 95% confidence level for Br and Na in the sampled locals. (author)

  16. Food Adulteration and Bio-magnification of Environmental Contaminants: A Comprehensive Risk Framework for Bangladesh

    Directory of Open Access Journals (Sweden)

    Nehreen eMajed

    2016-05-01

    Full Text Available This article thoroughly investigates the severity of the prevailing environmental conditions and evaluates the resulting threats to food intake and public health in Bangladesh by establishing relationship among different contaminant transfer mechanisms to human. It describes the potential of certain contaminants to get bio-magnified through the food chain. A database was prepared on a number of contaminants in the study area that are responsible for rendering different foods vulnerable to produce long term or short-term health effects. Contaminants that have been identified in the food sources were categorized in a continuum based on their allowable daily intake. A protocol has been developed which will enable the assessment of the potential of a contaminant to bio-magnify through food chain to understand the contribution of a contaminant on different levels of food chain. The study also provides a detailed assessment of the public health risks associated with direct ingestion of adulterated foods and intake of contaminants through food chain or water intake. Their intake to human body was quantified, which provides an indication of the toxicity level of the contaminants and possible impact on human health. The traditional four steps of risk assessment technique have been employed for some model contaminants (including metals, organic contaminants and food adulterants. Additionally, existing rules and regulations of Bangladesh were identified with possible limitations that can play significant role in controlling the food adulteration practices and concentration of contaminants in the environment and human body. Finally, a holistic approach to necessary interventions has been prescribed at policy, treatment and evaluation level to prevent the water pollution and food adulteration. Thus, a much-needed comprehensive framework is prescribed in this study to promote safety in food handling, preserve environment and improve health-based strategies in

  17. Chemical contamination assessment in mangrove-lined Caribbean coastal systems using the oyster Crassostrea rhizophorae as biomonitor species.

    Science.gov (United States)

    Aguirre-Rubí, Javier R; Luna-Acosta, Andrea; Etxebarría, Nestor; Soto, Manu; Espinoza, Félix; Ahrens, Michael J; Marigómez, Ionan

    2017-05-24

    This paper aims to contribute to the use of mangrove cupped oyster, Crassostrea rhizophorae, as a biomonitor species for chemical contamination assessment in mangrove-lined Caribbean coastal systems. Sampling was carried out in eight localities (three in Nicaragua and five in Colombia) with different types and levels of contamination. Oysters were collected during the rainy and dry seasons of 2012-2013 and the tissue concentrations of metals, polycyclic aromatic hydrocarbons (PAHs), and persistent organic pollutants (POPs) were determined. Low tissue concentrations of metals (except Hg) and PAHs; moderate-to-high tissue concentrations of Hg, hexachlorocyclohexanes (HCHs), and dichlorodiphenyl-trichloroethanes (DDTs); detectable levels of chlorpyrifos, polychlorinated biphenyls (PCBs) (mainly CB28, CB118, CB138 and CB 153) and brominated diphenyl ethers 85 (BDE85); and negligible levels of musks were recorded in Nicaraguan oysters. A distinct profile of POPs was identified in Colombia, where the tissue concentrations of PCBs and synthetic musk fragrances were low to moderate, and Ag, As, Cd, Pb, and PAHs ranged from moderate to extremely high. Overall, the values recorded for HCHs, DDTs and PCBs in Nicaraguan mangrove cupped oysters greatly exceeded the reference values in tissues of C. rhizophorae from the Wider Caribbean Region, whereas only the levels of PCBs were occasionally surpassed in Colombia. Different contaminant profiles were distinguished between oysters from Nicaragua and Colombia in radar plots constructed using the main groups of contaminants (metals, PAHs, musks, PCBs, and organochlorine pesticides (OCPs)). Likewise, integrated pollution indices revealed differences in the levels of contaminants. Moreover, the profiles and levels in oyster tissues also varied with season. Thus, principal component analysis clearly discriminated Nicaraguan and Colombian localities and, especially in Colombia, seasonal trends in chemical contamination and differences

  18. Potential application of superparamagnetic nanoparticles for extraction of bacterial genomic DNA from contaminated food and environmental samples.

    Science.gov (United States)

    Basu, Semanti; Chatterjee, Saptarshi; Bandyopadhyay, Arghya; Sarkar, Keka

    2013-03-15

    Isolation of high-molecular-weight DNA is essential for many molecular biology applications. Owing to the presence of polymerase chain reaction (PCR) inhibitors, there is a scarcity of suitable protocols for PCR-ready DNA extraction from food and natural environments. The conventional chemical methods of DNA extraction are time consuming and laborious and the yield is very low. Thus the aim of this research was to develop a simple, rapid, cost-effective method of genomic DNA extraction from food (milk and fruit juice) and environmental (pond water) samples and to detect bacterial contaminants present in those samples. This approach is efficient for both Gram-positive and Gram-negative bacteria from all the studied samples. Herein super paramagnetic bare iron oxide nanoparticles were implemented for bacterial genomic DNA isolation. The method was also compared to the conventional phenol-chloroform method in the context of quality, quantity and timing process. This method took only half an hour or less to obtain high-molecular-weight purified DNA from minimum bacterial contamination. Additionally, the method was directly compatible to PCR amplification. The problem of availability of suitable generalized methods for DNA isolation from various samples including food and environmental has been solved by a nanobiotechnological approach that may prove to be extremely useful in biotechnological applications. © 2012 Society of Chemical Industry.

  19. Use of life cycle assessments to evaluate the environmental footprint of contaminated sediment remediation.

    Science.gov (United States)

    Sparrevik, Magnus; Saloranta, Tuomo; Cornelissen, Gerard; Eek, Espen; Fet, Annik Magerholm; Breedveld, Gijs D; Linkov, Igor

    2011-05-15

    Ecological and human risks often drive the selection of remedial alternatives for contaminated sediments. Traditional human and ecological risk assessment (HERA) includes assessing risk for benthic organisms and aquatic fauna associated with exposure to contaminated sediments before and after remediation as well as risk for human exposure but does not consider the environmental footprint associated with implementing remedial alternatives. Assessment of environmental effects over the whole life cycle (i.e., Life Cycle Assessment, LCA) could complement HERA and help in selecting the most appropriate sediment management alternative. Even though LCA has been developed and applied in multiple environmental management cases, applications to contaminated sediments and marine ecosystems are in general less frequent. This paper implements LCA methodology for the case of the polychlorinated dibenzo-p-dioxins and -furans (PCDD/F)-contaminated Grenland fjord in Norway. LCA was applied to investigate the environmental footprint of different active and passive thin-layer capping alternatives as compared to natural recovery. The results showed that capping was preferable to natural recovery when analysis is limited to effects related to the site contamination. Incorporation of impacts related to the use of resources and energy during the implementation of a thin layer cap increase the environmental footprint by over 1 order of magnitude, making capping inferior to the natural recovery alternative. Use of biomass-derived activated carbon, where carbon dioxide is sequestered during the production process, reduces the overall environmental impact to that of natural recovery. The results from this study show that LCA may be a valuable tool for assessing the environmental footprint of sediment remediation projects and for sustainable sediment management.

  20. Levels and risk assessment of chemical contaminants in byproducts for animal feed in Denmark

    DEFF Research Database (Denmark)

    Mortensen, Alicja; Granby, Kit; Eriksen, Folmer Damsted

    2014-01-01

    designed assuming total absorption and accumulation of the ingested contaminant in meat and milk and high exposure (a byproduct formed 15-20% of the feed ration depending on the species). The risk assessment was refined based on literature data on metabolism in relevant animal species. Risk assessment......With aim to provide information on chemical contaminants in byproducts in animal feed, the data from an official control by the Danish Plant Directorate during 1998-2009, were reviewed and several samples of citrus pulp and dried distillers grains with solubles (DDGS) were additionally collected...... and animal fat, hydrogen cyanide in linseed, and cadmium in sunflowers. The levels of pesticides and mycotoxins in the additionally collected samples were below maximum limits. Enniatin B (ENN B) was present in all DDGS samples. The hypothetical cases of carry-over of contamination from these byproducts were...

  1. Legacy of a Chemical Factory Site: Contaminated Groundwater Impacts Stream Macroinvertebrates

    DEFF Research Database (Denmark)

    Rasmussen, Jes J.; McKnight, Ursula S.; Sonne, Anne Thobo

    2016-01-01

    Legislative and managing entities of EU member states face a comprehensive task because the chemical and ecological impacts of contaminated sites on surface waters must be assessed. The ecological assessment is further complicated by the low availability or, in some cases, absence of ecotoxicity...... data for many of the compounds occurring at contaminated sites. We studied the potential impact of a contaminated site, characterised by chlorinated solvents, sulfonamides, and barbiturates, on benthic macroinvertebrates in a receiving stream. Most of these compounds are characterised by low or unknown...... ecotoxicity, but they are continuously discharged into the stream by way of a long-lasting source generating longterm chronic exposure of the stream biota. Our results show that taxonomical density and diversity of especially sediment dwelling taxa were reduced by [50 % at the sampling sites situated...

  2. Overall multi-media persistence as an indicator of potential for population-level intake of environmental contaminants

    Energy Technology Data Exchange (ETDEWEB)

    MacLeod, Matthew; McKone, Thomas E.

    2003-06-01

    Although it is intuitively apparent that population-level exposure to contaminants dispersed in the environment must related to the persistence of the contaminant, there has been little effort to formally quantify this link. In this paper we investigate the relationship between overall persistence in a multimedia environment and the population-level exposure as expressed by intake fraction (iF), which is the cumulative fraction of chemical emitted to the environment that is taken up by members of the population. We first confirm that for any given chemical contaminant and emission scenario the definition of iF implies that it is directly proportional to the overall multi-media persistence, P{sub OV}. We show that the proportionality constant has dimensions of time and represents the characteristic time for population intake (CTI) of the chemical from the environment. We then apply the CalTOX fate and exposure model to explore how P{sub OV} and CTI combine to determine the magnitude of iF. We find that CTI has a narrow range of possible values relative to P{sub OV} across multiple chemicals and emissions scenarios. We use data from the Canadian Environmental Protection Act Priority Substance List (PSL1) Assessments to show that exposure assessments based on empirical observation are consistent with interpretations from the model. The characteristic time for intake along different dominant exposure pathways is discussed. Results indicate that P{sub OV} derived from screening-level assessments of persistence, bioaccumulation potential, and toxicity (PBT) is a useful indicator of the potential for population-level exposure.

  3. Microbiological and chemical contamination in different types of food of non-European origin

    Directory of Open Access Journals (Sweden)

    Francesco Casalinuovo

    2013-10-01

    Full Text Available In the markets of the European Union (EU the presence of food imported from non-European countries such as Asia, Africa and America is increasingly more widespread. Non-European countries, indeed, are much more competitive in terms of prices compared to European countries. For these reasons, EU has issued important laws. The purpose of this study was to assess the effectiveness of these regulations, estimating the levels of microbiological and chemical contamination of food samples of 91 different matrices imported from third countries. The microbiological methods used are those required by the UNI EN ISO, while for the determination of chemical parameters validated methods according to the Standard UNI EN ISO 16140:2003 were used. Our investigation revealed qualitative or quantitative microbial contamination in 23 out of 91 samples analysed (25.2%. We found high total microbial loads in alimentary conserves, multiple bacterial contamination (Salmonella thiphymurium, Escherichia coli and Vibrio alginolyticus and viral contamination (Norovirus in shellfish of the species Cassostrea gigas, and the presence of other pathogens in various products such as hamburgers (Yersinia enterocolitica, frozen fish (Listeria monocytogenes and honey (Bacillus cereus. With regard to chemical contamination, 24 samples of different food products were analysed. In 9 samples (37.5%, the levels of the following substances exceeded the permitted limits: histamine (fish conserves, mercury (crab meat, cadmium (crab meat and fish conserves, lead (cheese and honey and polyphosphates (chicken meat. Despite the limited number of samples analysed, these data prompt reflection on the need to implement a more detailed and rigorous activity of monitoring and control in order to guarantee adequate levels of safety with regard to the consumption of foodstuffs imported into the EU from non-European countries.

  4. Geographically distributed classification of surface water chemical parameters influencing fate and behavior of nanoparticles and colloid facilitated contaminant transport.

    Science.gov (United States)

    Hammes, Julia; Gallego-Urrea, Julián A; Hassellöv, Martin

    2013-09-15

    The current production and use of nanomaterials in consumer products have increased the concern about the possibility that these enter the rivers during their entire life cycle. Further, many aquatic contaminants undergo partitioning to the ubiquitous aquatic colloids. Here is presented the development of a set of European water types for environmental risk assessment of chemicals transported as nanovectors as is the case of environmental fate of manufactured nanoparticles and colloid-bound contaminants. A compilation of river quality geochemical data with information about multi-element composition for near 800 rivers in Europe was used to perform a principal component analysis (PCA) and define 6 contrasting water classes. With the aid of geographical information system algorithms, it was possible to analyse how the different sampling locations were predominantly represented within each European water framework directive drainage basin. These water classes and their associated Debye-Hückel parameter are determining factors to evaluate the large scale fate and behaviour of nanomaterials and other colloid-transported pollutants in the European aquatic environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Efficiency of modified chemical remediation techniques for soil contaminated by organochlorine pesticides

    Science.gov (United States)

    Correa-Torres, S. N.; Kopytko, M.; Avila, S.

    2016-07-01

    This study reports the optimization of innovation chemical techniques in order to improve the remediation of soils contaminated with organochloride pesticides. The techniques used for remediation were dehalogenation and chemical oxidation in soil contaminated by pesticides. These techniques were applied sequentially and combined to evaluate the design optimize the concentration and contact time variables. The soil of this study was collect in cotton crop zone in Agustin Codazzi municipality, Colombia, and its physical properties was measure. The modified dehalogenation technique of EPA was applied on the contaminated soil by adding Sodium Bicarbonate solution at different concentrations and rates during 4, 7 and 14 days, subsequently oxidation technique was implemented by applying a solution of KMnO4 at different concentration and reaction times. Organochlorine were detected by Gas Chromatography analysis coupled Mass Spectrometry and its removals were between 85.4- 90.0% of compounds such as 4, 4’-DDT, 4,4’-DDD, 4,4-DDE, trans-Clordane y Endrin. These results demonstrate that the technique of dehalogenation with oxidation chemistry can be used for remediation soils contaminated by organochloride pesticides.

  6. Organic Contaminant Content and Physico-Chemical Characteristics of Waste Materials Recycled in Agriculture

    Directory of Open Access Journals (Sweden)

    Hannah Rigby

    2015-12-01

    Full Text Available A range of wastes representative of materials currently applied, or with future potential to be applied, to agricultural land in the UK as fertilisers and soil improvers or used as animal bedding in livestock production, were investigated. In addition to full physico-chemical characterization, the materials were analysed for a suite of priority organic contaminants. In general, contaminants were present at relatively low concentrations. For example, for biosolids and compost-like-output (CLO, concentrations of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs and polychlorinated biphenyls (PCBs were approximately 1−10 and 5–50 times lower, respectively, than various proposed or implemented European limit values for these contaminants in biosolids or composts applied to agricultural land. However, the technical basis for these limits may require re-evaluation in some cases. Polybrominated, and mixed halogenated, dibenzo-p-dioxins/dibenzofurans are not currently considered in risk assessments of dioxins and dioxin-like chemicals, but were detected at relatively high concentrations compared with PCDD/Fs in the biosolids and CLOs and their potential contribution to the overall toxic equivalency is assessed. Other ‘emerging’ contaminants, such as organophosphate flame retardants, were detected in several of the waste materials, and their potential significance is discussed. The study is part of a wider research programme that will provide evidence that is expected to improve confidence in the use of waste-derived materials in agriculture and to establish guidelines to protect the food chain where necessary.

  7. NSF-RANN trace contaminants abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Copenhaver, E.D.; Harnden, D.S. (eds.)

    1976-10-01

    Specific areas of interest of the Environmental Aspects of Trace Contaminants Program are organic chemicals of commerce, metals and organometallic compounds, air-borne contaminants, and environmental assay methodology. Fifty-three abstracts of literature on trace contaminants are presented. Author, keyword, and permuted title indexes are included. (HLW)

  8. Focus on toxicological aspects of pesticide chemical interaction in drinking water contamination.

    Science.gov (United States)

    Cova, D; Molinari, G P; Rossini, L

    1990-12-01

    Toxicological aspects related to chemical and microbial degradation of pesticides in water and to products deriving from the interaction with xenobiotics found in water are reviewed. Other aspects considered are those related to compounds formed in potabilization processes and to water contamination by pesticide synthesis by-products or intermediates. These problems refer to scarcely investigated issues which are nevertheless very interesting because of their impact on human health.

  9. Chemical fractionation of Cu and Zn and their impacts on microbial properties in slightly contaminated soils

    OpenAIRE

    Liu Aiju

    2013-01-01

    Chemical fractionation of Cu and Zn in bulk soil and its effects on soil microbial properties were determined in Cu and Zn contaminated soils (Cu: 35.57~46.37 mg•kg-1, Zn: 74.33~127.20 mg•kg-1) sampled from an agricultural field in outskirts of Zibo, China during the month of September, 2011. A sequential extraction technique (SET) was used for metals chemical fractionation analysis in soils and a correlation analysis was applied to determinate the effects of metal on soil microbial propertie...

  10. Tracking Environmental Norovirus Contamination in a Pediatric Primary Immunodeficiency Unit ▿

    OpenAIRE

    Xerry, Jacqueline; Gallimore, Chris I.; Cubitt, David; Gray, Jim J.

    2010-01-01

    Norovirus strains were detected in two patients and in environmental swabs from a pediatric primary immunodeficiency unit in London, United Kingdom, during an infection control incident in November and December 2007. Detailed analyses of the gene encoding the P2 domain demonstrated that the majority of the strains were not related to the patients and that the environmental contamination was most likely due to secondary transfer by the hands of staff or visitors.

  11. Levels and risk assessment of chemical contaminants in byproducts for animal feed in Denmark.

    Science.gov (United States)

    Mortensen, Alicja; Granby, Kit; Eriksen, Folmer D; Cederberg, Tommy Licht; Friis-Wandall, Søren; Simonsen, Yvonne; Broesbøl-Jensen, Birgitte; Bonnichsen, Rikke

    2014-01-01

    With aim to provide information on chemical contaminants in byproducts in animal feed, the data from an official control by the Danish Plant Directorate during 1998-2009, were reviewed and several samples of citrus pulp and dried distillers grains with solubles (DDGS) were additionally collected for analysis and risk assessment. The levels of contaminants in the samples from the official control were below maximum limits from EU regulations with only a few exceptions in the following groups; dioxins and dioxin-like polychlorobiphenyls (PCBs) in fish-containing byproducts and dioxins in vegetable and animal fat, hydrogen cyanide in linseed, and cadmium in sunflowers. The levels of pesticides and mycotoxins in the additionally collected samples were below maximum limits. Enniatin B (ENN B) was present in all DDGS samples. The hypothetical cases of carry-over of contamination from these byproducts were designed assuming total absorption and accumulation of the ingested contaminant in meat and milk and high exposure (a byproduct formed 15-20% of the feed ration depending on the species). The risk assessment was refined based on literature data on metabolism in relevant animal species. Risk assessment of contaminants in byproducts is generally based on a worst-case approach, as data on carry-over of a contaminant are sparse. This may lead to erroneous estimation of health hazards. The presence of ENN B in all samples of DDGS indicates that potential impact of this emerging mycotoxin on feed and food safety deserves attention. A challenge for the future is to fill up gaps in toxicological databases and improve models for carry-over of contaminants.

  12. REMOVAL OF MERCURY FROM CONTAMINATED SOILS AT THE PAVLODAR CHEMICAL PLANT.

    Energy Technology Data Exchange (ETDEWEB)

    KHRAPUNOV, V. YE.; ISAKOVA, R.A.; LEVINTOV, B.L.; KALB, P.D.; KAMBEROV, I.M.; TREBUKHOV, A.

    2004-09-25

    Soils beneath and adjacent to the Pavlodar Chemical Plant in Kazakhstan have been contaminated with elemental mercury as a result of chlor alkali processing using mercury cathode cell technology. The work described in this paper was conducted in preparation for a demonstration of a technology to remove the mercury from the contaminated soils using a vacuum assisted thermal distillation process. The process can operate at temperatures from 250-500 C and pressures of 0.13kPa-1.33kPa. Following vaporization, the mercury vapor is cooled, condensed and concentrated back to liquid elemental mercury. It will then be treated using the Sulfur Polymer Stabilization/Solidification process developed at Brookhaven National Laboratory as described in a companion paper at this conference. The overall project objectives include chemical and physical characterization of the contaminated soils, study of the influence of the soil's physical-chemical and hydro dynamical characteristics on process parameters, and laboratory testing to optimize the mercury sublimation rate when heating in vacuum. Based on these laboratory and pilot-scale data, a full-scale production process will be designed for testing. This paper describes the soil characterization. This work is being sponsored by the International Science and Technology Center.

  13. Experimental study on trace chemical contaminant generation rates of human metabolism in spacecraft crew module

    Science.gov (United States)

    Lihua, Guo; Xinxing, He; Guoxin, Xu; Xin, Qi

    2012-12-01

    Trace chemical contaminants generated by human metabolism is a major source of contamination in spacecraft crew module. In this research, types and generation rates of pollutants from human metabolism were determined in the Chinese diets. Expired air, skin gas, and sweat of 20 subjects were analyzed at different exercise states in a simulated module. The exercise states were designed according to the basic activities in the orbit of astronauts. Qualitative and quantitative analyses of contaminants generated by human metabolic were performed with gas chromatography/mass spectrometry, gas chromatography and UV spectrophotometer. Sixteen chemical compounds from metabolic sources were found. With the increase in physical load, the concentrations of chemical compounds from human skin and expired air correspondingly increased. The species and the offgassing rates of pollutants from human metabolism are different among the Chinese, Americans and the Russians due to differences in ethnicity and dietary customs. This research provides data to aid in the design, development and operation of China's long duration space mission.

  14. Organic carbon and chemical contaminant relationships in river and lake sediments

    Energy Technology Data Exchange (ETDEWEB)

    Call, D.J.; Markee, T.P. [Univ. of Wisconsin, Superior, WI (United States). Lake Superior Research Inst.; Lodge, K. [Univ. of Minnesota, Duluth, MN (United States). Natural Resources Research Inst.; Cook, P.D.; Ankley, G.T. [Environmental Protection Agency, Duluth, MN (United States). Mid-Continent Ecology Div.

    1995-12-31

    Sediment collected from 11 sites within the Fox and East Rivers of Brown County, Wisconsin, and two near-shore sites in Green Bay (Lake Michigan) were analyzed for organic carbon content and various pesticides, polychlorinated biphenyls (PCBs), chlorodibenzodioxins, chlorodibenzofurans, polycyclic aromatic hydrocarbons (PAHs), sulfur and heavy metals. Representative chemicals from the organic and inorganic groups were examined for their concentrations at the various sites relative to organic carbon content. Correlations between organic carbon and contaminant concentrations resulted in simple linear regression models with high degrees of predictive capability for most chemicals. For example, chemical concentration relationships with organic carbon (r{sup 2}) were p,p{prime}-DDE (0.85), total PCBs (0.69), 2,3,7,8-tetrachlorodibenzodioxin (0.76), 1,2,3,6,7,8-hexachlorodibenzodioxin (0.87), 2,3,7,8-tetrachlorodibenzofuran (0.71), fluoranthene (0.46), pyrene (0.51), total sulfur (0.75), cadmium (0.76), copper (0.84), lead (0.85), zinc (0.80), chromium (0.04), and nickel (0.39). All correlations were positive with the exception of nickel. This suggests that contaminants within the lower Fox River/Green Bay system are at steady-state with respect to organic carbon. Knowledge of relationships such as this within aquatic systems may be useful in planning and budgeting contaminant mass balance studies within the systems.

  15. Comprehensive environmental review following the pork PCB/dioxin contamination incident in Ireland.

    Science.gov (United States)

    Marnane, Ian

    2012-10-26

    In December 2008 the Irish Government made a decision to recall all Irish pork and bacon products from pigs slaughtered in Ireland since September 1 2008 as a result of polychlorinated biphenyl contamination identified during routine monitoring of Irish pork products. 30000 tonnes of returned product were subsequently destroyed, as well as 170000 pigs and 5700 cattle, with a cost to date to the Irish exchequer in excess of €120 million, as well as reputational damage to the Irish agriculture and food industries. The source of the contamination was traced to an animal feed production facility which was using the hot gases from the combustion of contaminated fuel oil to dry animal feed. This review examines the events which led to the contamination of the feed, the associated environmental monitoring investigations that followed, and also the lessons learned from this incident.

  16. Environmental Pathway Models-Ground-Water Modeling in Support of Remedial Decision Making at Sites Contaminated with Radioactive Material

    Science.gov (United States)

    The Joint Interagency Environmental Pathway Modeling Working Group wrote this report to promote appropriate and consistent use of mathematical environmental models in the remediation and restoration of sites contaminated by radioactive substances.

  17. An Integrated Approach for the Environmental Characterization of a Wide Potentially Contaminated Area in Southern Italy.

    Science.gov (United States)

    Ducci, Daniela; Albanese, Stefano; Boccia, Lorenzo; Celentano, Egidio; Cervelli, Elena; Corniello, Alfonso; Crispo, Anna; De Vivo, Benedetto; Iodice, Paolo; Langella, Carmela; Lima, Annamaria; Manno, Maurizio; Palladino, Mario; Pindozzi, Stefania; Rigillo, Marina; Romano, Nunzio; Sellerino, Mariangela; Senatore, Adolfo; Speranza, Giuseppe; Fiorentino, Nunzio; Fagnano, Massimo

    2017-06-27

    This paper deals with the environmental characterization of a large and densely populated area, with a poor reputation for contamination, considering the contribution of environmental features (air, soil, soil hydraulic and groundwater) and the potential effects on human health. The use of Geographic Information System (GIS) has made possible a georeferenced inventory and, by overlaying environmental information, an operational synthesis of comprehensive environmental conditions. The cumulative effects on environmental features were evaluated, taking into account superposition effects, by means of the Spatial MultiCriteria Decision Analysis (S-MCDA). The application of the S-MCDA for converging the combination of heterogeneous factors, related to soil, land and water, deeply studied by heterogeneous groups of experts, constitutes the novelty of the paper. The results confirmed an overall higher potential of exposure to contaminants in the environment and higher mortality rates in the study area for some tumours, but hospital admissions for tumours were generally similar to the regional trend. Besides, mortality data may be strictly dependent on the poor socioeconomic conditions, quality of therapy and a lack of welfare in the area relative to the rest of Italy. Finally, as regards the possible relationship between presence of contaminants in the environment and health conditions of the population no definite conclusions can be drawn, although the present study encourages the use of the new proposed methods, that increase the possibilities for studying the combined effect of more environmental factors.

  18. Environmental Contaminant Program On-refuge Investigations Sub-activity : NV - Contaminant exposure of white pelicans nesting at Anaho Island National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The first scientific objective of this study was to determine if various environmental contaminants are having an adverse effect on the reproductive success of white...

  19. Assessment of Environmental Contamination with Pathogenic Bacteria at a Hospital Laundry Facility.

    Science.gov (United States)

    Michael, Karen E; No, David; Daniell, William E; Seixas, Noah S; Roberts, Marilyn C

    2017-11-10

    Little is known about exposure to pathogenic bacteria among industrial laundry workers who work with soiled clinical linen. To study worker exposures, an assessment of surface contamination was performed at an industrial laundry facility serving hospitals in Seattle, WA, USA. Surface swab samples (n = 240) from the environment were collected during four site visits at 3-month intervals. These samples were cultured for Clostridium difficile, methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant enterococci (VRE). Voluntary participation of 23 employees consisted of nasal swabs for detection of MRSA, observations during work, and questionnaires. Contamination with all three pathogens was observed in both dirty (laundry handling prior to washing) and clean areas (subsequent to washing). The dirty area had higher odds of overall contamination (≥1 pathogen) than the clean area (odds ratio, OR = 18.0, 95% confidence interval 8.9-36.5, P contamination were high for each individual pathogen: C. difficile, OR = 15.5; MRSA, OR = 14.8; and VRE, OR = 12.6 (each, P contamination occurred in the primary and secondary sort areas where soiled linens were manually sorted by employees (OR = 63.0, P contaminated by soiled linens. Workers who handle soiled linen may have a higher risk of exposure to C. difficile, MRSA, and VRE than those who handle clean linens. Improved protocols for prevention and reduction of environmental contamination were implemented because of this study. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  20. Chemical, Biological, and Radiological (CBR) Contamination Survivability, Small Items of Equipment

    Science.gov (United States)

    2012-06-22

    June 2012 31 b. Sample and Analysis Controls. (1) Swab control (unused swab). (2) Swab of a non-contaminated surface. (3) Diluent ...1) Name, control number, and spore manufacturer. (2) Diluent used. (3) Percent solids. (4) Date prepared and/or reconstituted...DA PAM 385-69, Safety Standards for Microbiological and Biomedical Laboratories, 6 May 2009. 18. PL 91-190, National Environmental Policy Act

  1. Grand challenge problems in environmental modeling and remediation: groundwater contaminant transport

    Energy Technology Data Exchange (ETDEWEB)

    Todd Arbogast; Steve Bryant; Clint N. Dawson; Mary F. Wheeler

    1998-08-31

    This report describes briefly the work of the Center for Subsurface Modeling (CSM) of the University of Texas at Austin (and Rice University prior to September 1995) on the Partnership in Computational Sciences Consortium (PICS) project entitled Grand Challenge Problems in Environmental Modeling and Remediation: Groundwater Contaminant Transport.

  2. Evolution to environmental contamination ablates the circadian clock of an aquatic sentinel species.

    Science.gov (United States)

    Coldsnow, Kayla D; Relyea, Rick A; Hurley, Jennifer M

    2017-12-01

    Environmental contamination is a common cause of rapid evolution. Recent work has shown that Daphnia pulex, an important freshwater species, can rapidly evolve increased tolerance to a common contaminant, sodium chloride (NaCl) road salt. While such rapid evolution can benefit organisms, allowing them to adapt to new environmental conditions, it can also be associated with unforeseen tradeoffs. Given that exposure to environmental contaminants can cause circadian disruption, we investigated whether the circadian clock was affected by evolving a tolerance to high levels of road salt. By tracking the oscillations of a putative clock gene, period, we demonstrated that D. pulex express per mRNA with approximately 20-hr oscillations under control conditions. This putative circadian rhythm was ablated in response to high levels of salinity; populations adapted to high NaCl concentrations exhibited an ablation of period oscillation. Moreover, we showed that while gene expression is increased in several other genes, including clock, actin, and Na+/K+-ATPase, upon the adaptation to high levels of salinity, per expression is unique among the genes we tracked in that it is the only gene repressed in response to salt adaptation. These results suggest that rapid evolution of salt tolerance occurs with the tradeoff of suppressed circadian function. The resultant circadian disruption may have profound consequences to individuals, populations, and aquatic food webs by affecting species interactions. In addition, our research suggests that circadian clocks may also be disrupted by the adaptation to other environmental contaminants.

  3. A General Chemistry Assignment Analyzing Environmental Contamination for the Depue, IL, National Superfund Site

    Science.gov (United States)

    Saslow Gomez, Sarah A.; Faurie-Wisniewski, Danielle; Parsa, Arlen; Spitz, Jeff; Spitz, Jennifer Amdur; Loeb, Nancy C.; Geiger, Franz M.

    2015-01-01

    The classroom exercise outlined here is a self-directed assignment that connects students to the environmental contamination problem surrounding the DePue Superfund site. By connecting chemistry knowledge gained in the classroom with a real-world problem, students are encouraged to personally connect with the problem while simultaneously…

  4. Metal contamination in environmental media in residential areas around Romanian mining sites

    Science.gov (United States)

    Hard-rock mining for metals, such as gold, silver, copper, zinc, iron and others, is recognized to have a significant impact on the environmental media, soil and water, in particular. Toxic contaminants released from mine waste to surface water and groundwater is the primary co...

  5. Odor annoyance of environmental chemicals: sensory and cognitive influences.

    Science.gov (United States)

    van Thriel, Christoph; Kiesswetter, Ernst; Schäper, Michael; Juran, Stephanie A; Blaszkewicz, Meinolf; Kleinbeck, Stefan

    2008-01-01

    In low concentrations, environment pollutants like volatile organic compounds (VOCs) may be perceived via olfaction. Modulators of odor-mediated health effects include age, gender, or personality traits related to chemical sensitivity. Severe multi-organ symptoms in response to odors also characterize a syndrome referred to as idiopathic environmental intolerance (IEI). One prominent feature of IEI is self-reported odor hypersensitivity that is usually not accompanied by enhanced olfactory functioning. The impact of interindividual differences in olfactory functioning on chemosensory perceptions is sparsely investigated, and therefore this study addressed the influences of different types of modulators, including olfactory functioning. In a psychophysical scaling experiment, an age-stratified sample of 44 males and females was examined. After controlled application of nine concentrations of six chemicals by flow-olfactometry, the participants rated four olfactory and nine trigeminal perceptions. Weak effects were found for gender and age, as well as some modulating effects of self-reported chemical sensitivity and odor discrimination ability. For chemical sensitivity, the results were as expected: Subjects with higher sensitivity reported stronger perceptions. The individual odor threshold (n-butanol) exerted no influence on the subjects' ratings of olfactory and trigeminal perceptions. Surprisingly, above-average odor discrimination ability was associated with lower ratings of odor intensity and nausea. This particular aspect of olfactory functioning might be a reflection of a more objective odor evaluation model buffering emotional responses to environmental odors.

  6. Nanomaterial based detection and degradation of biological and chemical contaminants in a microfluidic system

    Science.gov (United States)

    Jayamohan, Harikrishnan

    Monitoring and remediation of environmental contaminants (biological and chemical) form the crux of global water resource management. There is an extant need to develop point-of-use, low-power, low-cost tools that can address this problem effectively with minimal environmental impact. Nanotechnology and microfluidics have made enormous advances during the past decade in the area of biosensing and environmental remediation. The "marriage" of these two technologies can effectively address some of the above-mentioned needs. In this dissertation, nanomaterials were used in conjunction with microfluidic techniques to detect and degrade biological and chemical pollutants. In the first project, a point-of-use sensor was developed for detection of trichloroethylene (TCE) from water. A self-organizing nanotubular titanium dioxide (TNA) synthesized by electrochemical anodization and functionalized with photocatalytically deposited platinum (Pt/TNA) was applied to the detection. The morphology and crystallinity of the Pt/TNA sensor was characterized using field emission scanning electron microscope, energy dis- persive x-ray spectroscopy, and X-ray diffraction. The sensor could detect TCE in the concentrations ranging from 10 to 1000 ppm. The room-temperature operation capability of the sensor makes it less power intensive and can potentially be incorporated into a field-based sensor. In the second part, TNA synthesized on a foil was incorporated into a flow-based microfluidic format and applied to degradation of a model pollutant, methylene blue. The system was demonstrated to have enhanced photocatalytic performance at higher flow rates (50-200 muL/min) over the same microfluidic format with TiO2 nanoparticulate (commercial P25) catalyst. The microfluidic format with TNA catalyst was able to achieve 82% fractional conversion of 18 mM methylene blue in comparison to 55% in the case of the TiO2 nanoparticulate layer at a flow rate of 200 L/min. The microfluidic device was

  7. A Review of the Field on Children's Exposure to Environmental Contaminants: A Risk Assessment Approach.

    Science.gov (United States)

    Ferguson, Alesia; Penney, Rosalind; Solo-Gabriele, Helena

    2017-03-04

    Background: Children must be recognized as a sensitive population based on having biological systems and organs in various stages of development. The processes of absorption, distribution, metabolism and elimination of environmental contaminants within a child's body are considered less advanced than those of adults, making them more susceptible to disease outcomes following even small doses. Children's unique activities of crawling and practicing increased hand-to-mouth ingestion also make them vulnerable to greater exposures by certain contaminants within specific environments. Approach: There is a need to review the field of children's environmental exposures in order to understand trends and identify gaps in research, which may lead to better protection of this vulnerable and sensitive population. Therefore, explored here are previously published contemporary works in the broad area of children's environmental exposures and potential impact on health from around the world. A discussion of children's exposure to environmental contaminants is best organized under the last four steps of a risk assessment approach: hazard identification, dose-response assessment, exposure assessment (including children's activity patterns) and risk characterization. We first consider the many exposure hazards that exist in the indoor and outdoor environments, and emerging contaminants of concern that may help guide the risk assessment process in identifying focus areas for children. A section on special diseases of concern is also included. Conclusions: The field of children's exposures to environmental contaminants is broad. Although there are some well-studied areas offering much insight into children exposures, research is still needed to further our understanding of exposures to newer compounds, growing disease trends and the role of gene-environment interactions that modify adverse health outcomes. It is clear that behaviors of adults and children play a role in reducing or

  8. Ranking terrestrial vertebrate species for utility in biomonitoring and vulnerability to environmental contaminants

    Science.gov (United States)

    Golden, N.H.; Rattner, B.A.

    2003-01-01

    The measurement of contaminant tissue concentrations or exposure-related effects in biota has been used extensively to monitor pollution and environmental health. Terrestrial vertebrates have historically been an important group of species in such evaluations, not only because many are excellent sentinels of environmental contamination, but also because they are valued natural resources in their own right that may be adversely affected by toxicant exposure. Selection of appropriate vertebrates for biomonitoring studies frequently relies on expert opinion, although a few rigorous schemes are in use for predicting vulnerability of birds to the adverse effects of petroleum crude oil. A Utility Index that ranks terrestrial vertebrate species as potential sentinels of contaminants in a region, and a Vulnerability Index that assesses the threat of specific groups of contaminants to these species, have been developed to assist decision makers in risk assessments of persistent organic pollutants, cholinesterase-inhibiting pesticides, petroleum crude oil, mercury, and lead shot. Twenty-five terrestrial vertebrate species commonly found in Atlantic Coast estuarine habitat were ranked for their utility as biomonitors of contamination and their vulnerability to pollutants in this region. No single species, taxa or class of vertebrates was found to be an ideal sentinel for all groups of contaminants. Although birds have overwhelmingly been used to monitor contaminants compared to other terrestrial vertebrate classes, the non-migratory nature and dietary habits of the snapping turtle and mink consistently resulted in ranking these species excellent sentinels as well. Vulnerability of Atlantic Coast populations of these species varied considerably among groups of contaminants. Usually a particular species was found to be at high risk to only one or two groups of contaminants, although a noteworthy exception is the bald eagle that is highly vulnerable to all five of the

  9. Assessing the effects of seawater temperature and pH on the bioaccumulation of emerging chemical contaminants in marine bivalves.

    Science.gov (United States)

    Maulvault, Ana Luísa; Camacho, Carolina; Barbosa, Vera; Alves, Ricardo; Anacleto, Patrícia; Fogaça, Fabiola; Kwadijk, Christiaan; Kotterman, Michiel; Cunha, Sara C; Fernandes, José O; Rasmussen, Rie R; Sloth, Jens J; Aznar-Alemany, Òscar; Eljarrat, Ethel; Barceló, Damià; Marques, António

    2018-02-01

    Emerging chemical contaminants [e.g. toxic metals speciation, flame retardants (FRs) and perfluorinated compounds (PFCs), among others], that have not been historically recognized as pollutants nor their toxicological hazards, are increasingly more present in the marine environment. Furthermore, the effects of environmental conditions (e.g. temperature and pH) on bioaccumulation and elimination mechanisms of these emerging contaminants in marine biota have been poorly studied until now. In this context, the aim of this study was to assess, for the first time, the effect of warmer seawater temperatures (Δ = + 4°C) and lower pH levels (Δ = - 0.4 pH units), acting alone or combined, on the bioaccumulation and elimination of emerging FRs (dechloranes 602, 603 and 604, and TBBPA), inorganic arsenic (iAs), and PFCs (PFOA and PFOS) in two estuarine bivalve species (Mytilus galloprovincialis and Ruditapes philippinarum). Overall, results showed that warming alone or combined with acidification promoted the bioaccumulation of some compounds (i.e. dechloranes 602, 604, TBBPA), but also facilitated the elimination of others (i.e. iAs, TBBPA). Similarly, lower pH also resulted in higher levels of dechloranes, as well as enhanced iAs, PFOA and PFOS elimination. Data also suggests that, when both abiotic stressors are combined, bivalves' capacity to accumulate contaminants may be time-dependent, considering significantly drastic increase observed with Dec 602 and TBBPA, during the last 10 days of exposure, when compared to reference conditions. Such changes in contaminants' bioaccumulation/elimination patterns also suggest a potential increase of human health risks of some compounds, if the climate continues changing as forecasted. Therefore, this first study pointed out the urgent need for further research on the effects of abiotic conditions on emerging contaminants kinetics, to adequately estimate the potential toxicological hazards associated to these compounds and

  10. Listeriosis outbreaks in British Columbia, Canada, caused by soft ripened cheese contaminated from environmental sources.

    Science.gov (United States)

    McIntyre, Lorraine; Wilcott, Lynn; Naus, Monika

    2015-01-01

    Soft ripened cheese (SRC) caused over 130 foodborne illnesses in British Columbia (BC), Canada, during two separate listeriosis outbreaks. Multiple agencies investigated the events that lead to cheese contamination with Listeria monocytogenes (L.m.), an environmentally ubiquitous foodborne pathogen. In both outbreaks pasteurized milk and the pasteurization process were ruled out as sources of contamination. In outbreak A, environmental transmission of L.m. likely occurred from farm animals to personnel to culture solutions used during cheese production. In outbreak B, birds were identified as likely contaminating the dairy plant's water supply and cheese during the curd-washing step. Issues noted during outbreak A included the risks of operating a dairy plant in a farm environment, potential for transfer of L.m. from the farm environment to the plant via shared toilet facilities, failure to clean and sanitize culture spray bottles, and cross-contamination during cheese aging. L.m. contamination in outbreak B was traced to wild swallows defecating in the plant's open cistern water reservoir and a multibarrier failure in the water disinfection system. These outbreaks led to enhanced inspection and surveillance of cheese plants, test and release programs for all SRC manufactured in BC, improvements in plant design and prevention programs, and reduced listeriosis incidence.

  11. Listeriosis Outbreaks in British Columbia, Canada, Caused by Soft Ripened Cheese Contaminated from Environmental Sources

    Science.gov (United States)

    Wilcott, Lynn; Naus, Monika

    2015-01-01

    Soft ripened cheese (SRC) caused over 130 foodborne illnesses in British Columbia (BC), Canada, during two separate listeriosis outbreaks. Multiple agencies investigated the events that lead to cheese contamination with Listeria monocytogenes (L.m.), an environmentally ubiquitous foodborne pathogen. In both outbreaks pasteurized milk and the pasteurization process were ruled out as sources of contamination. In outbreak A, environmental transmission of L.m. likely occurred from farm animals to personnel to culture solutions used during cheese production. In outbreak B, birds were identified as likely contaminating the dairy plant's water supply and cheese during the curd-washing step. Issues noted during outbreak A included the risks of operating a dairy plant in a farm environment, potential for transfer of L.m. from the farm environment to the plant via shared toilet facilities, failure to clean and sanitize culture spray bottles, and cross-contamination during cheese aging. L.m. contamination in outbreak B was traced to wild swallows defecating in the plant's open cistern water reservoir and a multibarrier failure in the water disinfection system. These outbreaks led to enhanced inspection and surveillance of cheese plants, test and release programs for all SRC manufactured in BC, improvements in plant design and prevention programs, and reduced listeriosis incidence. PMID:25918702

  12. Listeriosis Outbreaks in British Columbia, Canada, Caused by Soft Ripened Cheese Contaminated from Environmental Sources

    Directory of Open Access Journals (Sweden)

    Lorraine McIntyre

    2015-01-01

    Full Text Available Soft ripened cheese (SRC caused over 130 foodborne illnesses in British Columbia (BC, Canada, during two separate listeriosis outbreaks. Multiple agencies investigated the events that lead to cheese contamination with Listeria monocytogenes (L.m., an environmentally ubiquitous foodborne pathogen. In both outbreaks pasteurized milk and the pasteurization process were ruled out as sources of contamination. In outbreak A, environmental transmission of L.m. likely occurred from farm animals to personnel to culture solutions used during cheese production. In outbreak B, birds were identified as likely contaminating the dairy plant’s water supply and cheese during the curd-washing step. Issues noted during outbreak A included the risks of operating a dairy plant in a farm environment, potential for transfer of L.m. from the farm environment to the plant via shared toilet facilities, failure to clean and sanitize culture spray bottles, and cross-contamination during cheese aging. L.m. contamination in outbreak B was traced to wild swallows defecating in the plant’s open cistern water reservoir and a multibarrier failure in the water disinfection system. These outbreaks led to enhanced inspection and surveillance of cheese plants, test and release programs for all SRC manufactured in BC, improvements in plant design and prevention programs, and reduced listeriosis incidence.

  13. What environmental fate processes have the strongest influence on a completely persistent organic chemical's accumulation in the Arctic?

    Science.gov (United States)

    Meyer, Torsten; Wania, Frank

    Fate and transport models can be used to identify and classify chemicals that have the potential to undergo long-range transport and to accumulate in remote environments. For example, the Arctic contamination potential (ACP), calculated with the help of the zonally averaged global transport model Globo-POP, is a numerical indicator of an organic chemical's potential to be transported to polar latitudes and to accumulate in the Arctic ecosystem. It is important to evaluate how robust such model predictions are and in particular to appreciate to what extent they may depend on a specific choice of environmental model input parameters. Here, we employ a recently developed graphical method based on partitioning maps to comprehensively explore the sensitivity of ACP estimates to variations in environmental parameters. Specifically, the changes in the ACP of persistent organic contaminants to changes in each environmental input parameter are plotted as a function of the two-dimensional hypothetical "chemical space" defined by two of the three equilibrium partition coefficients between air, water and octanol. Based on the patterns obtained, this chemical space is then segmented into areas of similar parameter sensitivities and superimposed with areas of high default ACP and elevated environmental bioaccumulation potential within the Arctic. Sea ice cover, latitudinal temperature gradient, and macro-diffusive atmospheric transport coefficients, and to a lesser extent precipitation rate, display the largest influence on ACP-values for persistent organic contaminants, including those that may bioaccumulate within the polar marine ecosystems. These environmental characteristics are expected to be significantly impacted by global climate change processes, highlighting the need to explore more explicitly how climate change may affect the long-range transport and accumulation behavior of persistent organic pollutants.

  14. Glyphosate: environmental contamination, toxicity and potential risks to human health via food contamination.

    Science.gov (United States)

    Bai, Shahla Hosseini; Ogbourne, Steven M

    2016-10-01

    Glyphosate has been the most widely used herbicide during the past three decades. The US Environmental Protection Agency (EPA) classifies glyphosate as 'practically non-toxic and not an irritant' under the acute toxicity classification system. This classification is based primarily on toxicity data and due to its unique mode of action via a biochemical pathway that only exists in a small number of organisms that utilise the shikimic acid pathway to produce amino acids, most of which are green plants. This classification is supported by the majority of scientific literature on the toxic effects of glyphosate. However, in 2005, the Food and Agriculture Organisation (FAO) reported that glyphosate and its major metabolite, aminomethylphosphonic acid (AMPA), are of potential toxicological concern, mainly as a result of accumulation of residues in the food chain. The FAO further states that the dietary risk of glyphosate and AMPA is unlikely if the maximum daily intake of 1 mg kg(-1) body weight (bw) is not exceeded. Research has now established that glyphosate can persist in the environment, and therefore, assessments of the health risks associated with glyphosate are more complicated than suggested by acute toxicity data that relate primarily to accidental high-rate exposure. We have used recent literature to assess the possible risks associated with the presence of glyphosate residues in food and the environment.

  15. Traditional food consumption behaviour and concern with environmental contaminants among Cree schoolchildren of the Mushkegowuk territory

    Science.gov (United States)

    Hlimi, Tina; Skinner, Kelly; Hanning, Rhona M; Martin, Ian D.; Tsuji, Leonard J.S.

    2012-01-01

    Objectives To investigate factors influencing consumption of traditional foods (e.g. wild game, fish) and concerns about environmental contaminants among schoolchildren of the Mushkegowuk Territory First Nations (Moose Factory, Fort Albany, Kashechewan, Attawapiskat, and Peawanuck). Study design Cross-sectional data collection from a Web-based Eating Behaviour Questionnaire (WEB-Q). Methods Schoolchildren in grades 6–12 (n =262) responded to 4 of the WEB-Q questions: (a) Do you eat game? (b) How often do you eat game? (c) How concerned are you about the environmental contaminants in the wild game and fish that you eat? (d) I would eat more game if… [6 response options]. Data were collected in 2004 (Fort Albany), 2005 (Peawanuck), 2006 (Attawapiskat), 2007 (Moose Factory) and 2009 (Kashechewan). Hierarchical log-linear modelling (LLM) was used for analyses of multi-way frequency data. Results Of the schoolchildren answering the specific questions: 174 consumed game; 95 reported concerns about contaminants in game; and 84 would increase their game consumption if it were more available in their homes. LLM revealed significant differences between communities; schoolchildren in Moose Factory consumed game “rarely or never” at greater than expected frequency, and fewer than expected consumed game “at least once a day”. Schoolchildren in Kashechewan had greater frequency of daily game consumption and few were concerned about contaminants in game. Using LLM, we found that sex was an insignificant variable and did not affect game consumption frequency or environmental contaminant concern. Conclusion The consumption of traditional foods differed between communities and appears to be related to contamination concerns. In addition, latitudinal variation appears to influence the frequency of traditional food consumption in children; children in the most southerly location consumed traditional food less frequently. PMID:22456047

  16. Traditional food consumption behaviour and concern with environmental contaminants among Cree schoolchildren of the Mushkegowuk territory

    Directory of Open Access Journals (Sweden)

    Tina Hlimi

    2012-03-01

    Full Text Available Objectives: To investigate factors influencing consumption of traditional foods (e.g. wild game, fish and concerns about environmental contaminants among schoolchildren of the Mushkegowuk Territory First Nations (Moose Factory, Fort Albany, Kashechewan, Attawapiskat, and Peawanuck. Study design: Cross-sectional data collection from a Web-based Eating Behaviour Questionnaire (WEB-Q. Methods: Schoolchildren in grades 6–12 (n = 262 responded to 4 of the WEB-Q questions: (a Do you eat game? (b How often do you eat game? (c How concerned are you about the environmental contaminants in the wild game and fish that you eat? (d I would eat more game if… [6 response options]. Data were collected in 2004 (Fort Albany, 2005 (Peawanuck, 2006 (Attawapiskat, 2007 (Moose Factory and 2009 (Kashechewan. Hierarchical log-linear modelling (LLM was used for analyses of multi-way frequency data. Results: Of the schoolchildren answering the specific questions: 174 consumed game; 95 reported concerns about contaminants in game; and 84 would increase their game consumption if it were more available in their homes. LLM revealed significant differences between communities; schoolchildren in Moose Factory consumed game “rarely or never” at greater than expected frequency, and fewer than expected consumed game “at least once a day”. Schoolchildren in Kashechewan had greater frequency of daily game consumption and few were concerned about contaminants in game. Using LLM, we found that sex was an insignificant variable and did not affect game consumption frequency or environmental contaminant concern. Conclusion: The consumption of traditional foods differed between communities and appears to be related to contamination concerns. In addition, latitudinal variation appears to influence the frequency of traditional food consumption in children; children in the most southerly location consumed traditional food less frequently.

  17. Methods used to characterize the chemical composition and biological activity of environmental waters throughout the United States, 2012-14

    Science.gov (United States)

    Romanok, Kristin M.; Reilly, Timothy J.; Barber, Larry B.; Boone, J. Scott; Buxton, Herbert T.; Foreman, William T.; Furlong, Edward T.; Hladik, Michelle; Iwanowicz, Luke R.; Journey, Celeste; Kolpin, Dana W.; Kuivila, Kathryn; Loftin, Keith A.; Mills, Marc A.; Meyer, Michael T.; Orlando, James L.; Smalling, Kelly L.; Villeneuve, Daniel L.; Bradley, Paul M.

    2017-03-22

    A vast array of chemical compounds are in wide commercial use in the United States, and the potential ecological and human-health effect of exposure to chemical mixtures has been identified as a high priority in environment health science. Awareness of the potential effects of low-level chemical exposures is rising. The U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, conducted a study in which samples were collected from 38 streams in 25 States to provide an overview of contaminants found in stream water across the Nation. Additionally, biological screening assays were used to help determine any potential ecological and human-health effects of these chemical mixtures and to prioritize target chemicals for future toxicological studies. This report describes the site locations and the sampling and analytical methods and quality-assurance procedures used in the study.

  18. Marine environmental contamination: public awareness, concern and perceived effectiveness in five European countries.

    Science.gov (United States)

    Jacobs, Silke; Sioen, Isabelle; De Henauw, Stefaan; Rosseel, Yves; Calis, Tanja; Tediosi, Alice; Nadal, Martí; Marques, António; Verbeke, Wim

    2015-11-01

    Given the potential of Perceived Consumer Effectiveness (PCE) in shaping pro-environmental behavior, the relationships between PCE, awareness of causes of contaminants in the marine environment, and concern about marine environmental contamination were investigated using Structural Equation Modeling (SEM). PCE is the belief that an individual has in being able to make a difference when acting alone. A web-based survey was performed in one western European country (Belgium), one northern European country (Ireland) and three southern European countries (Italy, Portugal and Spain), resulting in a total sample size of 2824 participants. The analyses confirm that European citizens are concerned about marine environmental problems. Participants from the southern countries reported the highest concern. In addition, the study participants did not have a strong belief in themselves in being capable of making a difference in tackling marine environmental problems. However, a higher awareness, which was associated with a higher degree of concern, enhanced the belief that an individual can make a difference in tackling marine environmental problems, though only when a concrete action was proposed. Consequently, information campaigns focusing on pro-environmental behavior are recommended to raise public awareness about marine environmental problems and at the same time explicitly refer to concrete possible actions. The findings indicate that when only awareness and concern are raised without mentioning a concrete action, PCE might even decrease and render the communication effort ineffective. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Assessment of the application of bioanalytical tools as surrogate measure of chemical contaminants in recycled water.

    Science.gov (United States)

    Leusch, Frederic D L; Khan, Stuart J; Laingam, Somprasong; Prochazka, Erik; Froscio, Suzanne; Trinh, Trang; Chapman, Heather F; Humpage, Andrew

    2014-02-01

    The growing use of recycled water in large urban centres requires comprehensive public health risk assessment and management, an important aspect of which is the assessment and management of residual trace chemical substances. Bioanalytical methods such as in vitro bioassays may be ideal screening tools that can detect a wide range of contaminants based on their biological effect. In this study, we applied thirteen in vitro assays selected explicitly for their ability to detect molecular and cellular effects relevant to potential chemical exposure via drinking water as a means of screening for chemical contaminants from recycled water at 9 Australian water reclamation plants, in parallel to more targeted direct chemical analysis of 39 priority compounds. The selected assays provided measures of primary non-specific (cytotoxicity to various cell types), specific (inhibition of acetylcholinesterase and endocrine receptor-mediated effects) and reactive toxicity (mutagenicity and genotoxicity), as well as markers of adaptive stress response (modulation of cytokine production) and xenobiotic metabolism (liver enzyme induction). Chemical and bioassay analyses were in agreement and complementary to each other: the results show that source water (treated wastewater) contained high levels of biologically active compounds, with positive results in almost all bioassays. The quality of the product water (reclaimed water) was only marginally better after ultrafiltration or dissolved air floatation/filtration, but greatly improved after reverse osmosis often reducing biological activity to below detection limit. The bioassays were able to detect activity at concentrations below current chemical method detection limits and provided a sum measure of all biologically active compounds for that bioassay, thus providing an additional degree of confidence in water quality. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Effective solidification/stabilisation of mercury-contaminated wastes using zeolites and chemically bonded phosphate ceramics.

    Science.gov (United States)

    Zhang, Shaoqing; Zhang, Xinyan; Xiong, Ya; Wang, Guoping; Zheng, Na

    2015-02-01

    In this study, two kinds of zeolites materials (natural zeolite and thiol-functionalised zeolite) were added to the chemically bonded phosphate ceramic processes to treat mercury-contaminated wastes. Strong promotion effects of zeolites (natural zeolite and thiol-functionalised zeolite) on the stability of mercury in the wastes were obtained and these technologies showed promising advantages toward the traditional Portland cement process, i.e. using Portland cement as a solidification agent and natural or thiol-functionalised zeolite as a stabilisation agent. Not only is a high stabilisation efficiency (lowered the Toxicity Characteristic Leaching Procedure Hg by above 10%) obtained, but also a lower dosage of solidification (for thiol-functionalised zeolite as stabilisation agent, 0.5 g g(-1) and 0.7 g g(-1) for chemically bonded phosphate ceramic and Portland cement, respectively) and stabilisation agents (for natural zeolite as stabilisation agent, 0.35 g g(-1) and 0.4 g g(-1) for chemically bonded phosphate ceramic and Portland cement, respectively) were used compared with the Portland cement process. Treated by thiol-functionalised zeolite and chemically bonded phosphate ceramic under optimum parameters, the waste containing 1500 mg Hg kg(-1) passed the Toxicity Characteristic Leaching Procedure test. Moreover, stabilisation/solidification technology using natural zeolite and chemically bonded phosphate ceramic also passed the Toxicity Characteristic Leaching Procedure test (the mercury waste containing 625 mg Hg kg(-1)). Moreover, the presence of chloride and phosphate did not have a negative effect on the chemically bonded phosphate ceramic/thiol-functionalised zeolite treatment process; thus, showing potential for future application in treatment of 'difficult-to-manage' mercury-contaminated wastes or landfill disposal with high phosphate and chloride content. © The Author(s) 2015.

  1. Assessing the effects of seawater temperature and pH on the bioaccumulation of emerging chemical contaminants in marine bivalves

    NARCIS (Netherlands)

    Maulvault, Ana Luísa; Camacho, Carolina; Barbosa, Vera; Alves, Ricardo; Anacleto, Patrícia; Fogaça, Fabiola; Kwadijk, Christiaan; Kotterman, Michiel; Cunha, Sara C.; Fernandes, José O.; Rasmussen, Rie R.; Sloth, Jens J.; Aznar-Alemany, Òscar; Eljarrat, Ethel; Barceló, Damià; Marques, António

    2018-01-01

    Emerging chemical contaminants [e.g. toxic metals speciation, flame retardants (FRs) and perfluorinated compounds (PFCs), among others], that have not been historically recognized as pollutants nor their toxicological hazards, are increasingly more present in the marine environment. Furthermore, the

  2. Influence of heredity on human sensitivity to environmental chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Weber, W.W. [Univ. of Michigan, Ann Arbor, MI (United States)

    1995-12-31

    Hereditary peculiarities in individual responses to environmental chemicals are a common occurrence in human populations. Genetic variation in glutathione S-transferase, CYP1A2, N-acetyltransferase, and paraoxonase exemplify the relationship of metabolic variation to individual susceptibility to cancer and other toxicants of environmental origin. Heritable receptor protein variants, a subset of proteins of enormous pharmacogenetic, potential that have not thus far been extensively explored form the pharmacogenetic standpoint, and also considered. Examples of interest that are considered include receptor variants associated with retinoic acid resistance in acute promyelocytic leukemia, with paradoxical responses to antiandrogens in prostate cancer, and with retinitis pigmentosa. Additional heritable protein variants of pharmacogenetic interest that result in antibiotic-induced deafness, glucocorticoid-remediable aldosteronism and hypertension, the long-QT syndrome, and beryllium-induced lung disease are also discussed. These traits demonstrate how knowledge of the molecular basis and mechanism of the variant response may contribute to its prevention in sensitive persons as well as to improved therapy for genetically conditioned disorders that arise form environmental chemicals. 99 refs.

  3. Effective Strategies for Monitoring and Regulating Chemical Mixtures and Contaminants Sharing Pathways of Toxicity

    Directory of Open Access Journals (Sweden)

    Arjun K. Venkatesan

    2015-08-01

    Full Text Available Traditionally, hazardous chemicals have been regulated in the U.S. on a one-by-one basis, an approach that is slow, expensive and can be inefficient, as illustrated by a decades-long succession of replacing one type of organohalogen flame retardants (OHFRs with another one, without addressing the root cause of toxicity and associated public health threats posed. The present article expounds on the need for efficient monitoring strategies and pragmatic steps in reducing environmental pollution and adverse human health impacts. A promising approach is to combine specific bioassays with state-of-the-art chemical screening to identify chemicals and chemical mixtures sharing specific modes of action (MOAs and pathways of toxicity (PoTs. This approach could be used to identify and regulate hazardous chemicals as classes or compound families, featuring similar biological end-points, such as endocrine disruption and mutagenicity. Opportunities and potential obstacles of implementing this approach are discussed.

  4. Mass Casualty Decontamination in a Chemical or Radiological/Nuclear Incident with External Contamination: Guiding Principles and Research Needs.

    Science.gov (United States)

    Cibulsky, Susan M; Sokolowski, Danny; Lafontaine, Marc; Gagnon, Christine; Blain, Peter G; Russell, David; Kreppel, Helmut; Biederbick, Walter; Shimazu, Takeshi; Kondo, Hisayoshi; Saito, Tomoya; Jourdain, Jean-René; Paquet, Francois; Li, Chunsheng; Akashi, Makoto; Tatsuzaki, Hideo; Prosser, Lesley

    2015-11-02

    Hazardous chemical, radiological, and nuclear materials threaten public health in scenarios of accidental or intentional release which can lead to external contamination of people.  Without intervention, the contamination could cause severe adverse health effects, through systemic absorption by the contaminated casualties as well as spread of contamination to other people, medical equipment, and facilities.  Timely decontamination can prevent or interrupt absorption into the body and minimize opportunities for spread of the contamination, thereby mitigating the health impact of the incident.  Although the specific physicochemical characteristics of the hazardous material(s) will determine the nature of an incident and its risks, some decontamination and medical challenges and recommended response strategies are common among chemical and radioactive material incidents.  Furthermore, the identity of the hazardous material released may not be known early in an incident.  Therefore, it may be beneficial to compare the evidence and harmonize approaches between chemical and radioactive contamination incidents.  Experts from the Global Health Security Initiative's Chemical and Radiological/Nuclear Working Groups present here a succinct summary of guiding principles for planning and response based on current best practices, as well as research needs, to address the challenges of managing contaminated casualties in a chemical or radiological/nuclear incident.

  5. Surface Runoff Contamination by Soil Chemicals: Simulations for Equilibrium and First-Order Kinetics

    Science.gov (United States)

    Wallach, Rony; Shabtai, Rina

    1992-01-01

    A model was developed to predict the potential contamination of overland flow by chemicals removed from soil water by rainfall on sloping soil. The model accounts for transient water infiltration and convective-dispersive solute transport in the soil and also considers rate-limited mass transfer through a laminar boundary layer at the soil surface/runoff water interface. Sorption-desorption interactions between soil and chemicals are assumed to be subject to linear and nonlinear isotherms or to first-order kinetics. The dissolved-chemical concentrations at the soil surface and in the surface runoff were determined for different antecedent soil moistures and rainfall intensities. These concentrations are lower when the antecedent moisture is low because the time of ponding for drier soil is longer and because during that period soil solutes are displaced by greater volumes of infiltrating water. For a specified initial soil water content, higher rainfall rates cause higher dissolved-chemical concentrations at the soil surface. The degree of nonlinearity of the equilibrium isotherm greatly affects the transient dissolved-chemical concentrations and the linear isotherm cannot always be used as an alternative. These concentrations are also greatly affected by the value of the kinetics rate coefficient. In the first-order kinetics model there is a recovery of the dissolved-chemical concentration at the soil surface during the period between rainstorms. As a result, the initial concentration at the soil surface for the subsequent rainstorm is higher than that expected when equilibrium is assumed.

  6. Recent trends in common chemical feed and food contaminants in Israel.

    Science.gov (United States)

    Shimshoni, J A; Barel, S

    2017-10-02

    In February 2014 a new law was approved by the Israeli parliament, namely the Control of Animal Feed Law. The law intends to regulate the production and marketing of animal feed. In preparation for the law's implementation in 2017, we have assessed the current feed and food safety challenges in Israel in recent years in association with the presence of common undesirable contaminants in various common feed and food commodities. Tight collaboration between regulatory authorities and feed/food industry, enhanced feed and food quality monitoring, transparency of survey results and readily accessible and reliable information for the public about health hazards of chemical contaminants, will guarantee the safety and quality of food and feed.

  7. Assessing environmental quality status by integrating chemical and biological effect data: The Cartagena coastal zone as a case.

    Science.gov (United States)

    Martínez-Gómez, Concepción; Fernández, Beatriz; Robinson, Craig D; Campillo, J Antonio; León, Víctor M; Benedicto, José; Hylland, Ketil; Vethaak, A Dick

    2017-03-01

    Cartagena coastal zone (W Mediterranean) was chosen for a practical case study to investigate the suitability of an integrated indicator framework for marine monitoring and assessment of chemicals and their effects, which was developed by ICES and OSPAR. Red mullet (Mullus barbatus) and the Mediterranean mussel (Mytilus galloprovincialis) were selected as target species. Concentrations of contaminants in sediment and biota, and contaminant-related biomarkers were analysed. To assess environmental quality in the Cartagena coastal zone with respect to chemical pollution, data were assessed using available assessment criteria, and then integrated for different environmental matrices. A qualitative scoring method was used to rank the overall assessments into selected categories and to evaluate the confidence level of the final integrated assessment. The ICES/OSPAR integrated assessment framework, originally designed for the North Atlantic, was found to be applicable for Mediterranean species and environmental matrices. Further development of assessment criteria of chemical and biological parameters in sediments and target species from the Mediterranean will, however, be required before this framework can be fully applied for determining Good Environmental Status (GES) of the Marine Strategy Framework Directive in these regions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Practical measures for reducing the risk of environmental contamination in shale energy production.

    Science.gov (United States)

    Ziemkiewicz, Paul; Quaranta, John D; McCawley, Michael

    2014-07-01

    Gas recovery from shale formations has been made possible by advances in horizontal drilling and hydraulic fracturing technology. Rapid adoption of these methods has created a surge in natural gas production in the United States and increased public concern about its environmental and human health effects. We surveyed the environmental literature relevant to shale gas development and studied over fifteen well sites and impoundments in West Virginia to evaluate pollution caused by air emissions, light and noise during drilling. Our study also characterized liquid and solid waste streams generated by drilling and hydraulic fracturing and evaluated the integrity of impoundments used to store fluids produced by hydraulic fracturing. While most shale gas wells are completed with little or no environmental contamination, we found that many of the problems associated with shale gas development resulted from inattention to accepted engineering practices such as impoundment construction, improper liner installation and a lack of institutional controls. Recommendations are provided based on the literature and our field studies. They will address not all but a great many of the deficiencies that result in environmental release of contaminants from shale gas development. We also identified areas where new technologies are needed to fully address contaminant releases to air and water.

  9. Characterization of the Environmentally Induced Chemical Transformations of Uranium Tetrafluoride

    Energy Technology Data Exchange (ETDEWEB)

    Wellons, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-29

    A key challenge with nuclear safeguards environmental sampling is identification of the materials post release due to subsequent chemical reactions with ambient water and oxygen. Uranium Tetrafluoride (UF4) is of interest as an intermediate in both the upstream and downstream portions of uranium feedstock and metal production processes used in nuclear fuel production; however minimal published research exists relating to UF4 hydrolysis. FY16 efforts were dedicated to in-situ Raman spectroscopy and X-ray diffraction characterization of UF4 during exposure to various relative humidity conditions. This effort mapped several hydrolysis reaction pathways and identified both intermediate, and terminal progeny species.

  10. Integration of electrokinetics and chemical oxidation for the remediation of creosote-contaminated clay.

    Science.gov (United States)

    Isosaari, P; Piskonen, R; Ojala, P; Voipio, S; Eilola, K; Lehmus, E; Itävaara, M

    2007-06-01

    Remediation of clayey soils that are contaminated with polycyclic aromatic hydrocarbons (PAHs) is a challenging task that may require integration of several technologies. The benefits of integrating in situ electrokinetic remediation with chemical oxidation were evaluated in laboratory-scale experiments lasting for 8 weeks. A voltage gradient of 48 V/m of direct current and 4.7 V/m of alternating current and periodic additions of chemical oxidants were applied to creosote-contaminated soil. Electrokinetically enhanced oxidation with sodium persulphate resulted in better PAH removal (35%) than either electrokinetics (24%) or persulphate oxidation (12%) alone. However, the improvement was shown only within 1/3 (5 cm) of the soil compartment. Electrokinetics did not improve the performance of Fenton oxidation. Both chemical oxidants created more positive oxidation-reduction potential than electrokinetic treatment alone. On the other hand, persulphate treatment impaired the electroosmotic flow rate. Elemental analyses showed reduction in the natural Al and Ca concentrations, increase in Zn, Cu, P and S concentrations and transfer of several metal cations towards the cathode. In conclusion, the results encourage to further optimisation of an integrated remediation technology that combines the beneficial effects of electrokinetics, persulphate oxidation and Fenton oxidation.

  11. Chemical fractionation of Cu and Zn and their impacts on microbial properties in slightly contaminated soils

    Directory of Open Access Journals (Sweden)

    Liu Aiju

    2013-06-01

    Full Text Available Chemical fractionation of Cu and Zn in bulk soil and its effects on soil microbial properties were determined in Cu and Zn contaminated soils (Cu: 35.57~46.37 mg•kg-1, Zn: 74.33~127.20 mg•kg-1 sampled from an agricultural field in outskirts of Zibo, China during the month of September, 2011. A sequential extraction technique (SET was used for metals chemical fractionation analysis in soils and a correlation analysis was applied to determinate the effects of metal on soil microbial properties. Chemical speciation showed that Cu and Zn were mostly present in the residual fraction and their concentrations in the most labile fraction (acid soluble fraction were the lowest in the investigated soils. However, the correlation analysis indicated that the labile forms of Cu/Zn, such as its acid soluble, reducible or oxidizable fractions, were usually significantly negatively correlated with the tested microbial activities at 0.05 or 0.01 probability levels. These results indicate that the metal labile fractions could exert an inhibitory effect on the soil microbial parameters even in the minor contaminated soils.

  12. The extent of environmental and body contamination through aerosols by hydro-surgical debridement in the lumbar spine.

    Science.gov (United States)

    Putzer, David; Lechner, Ricarda; Coraca-Huber, Debora; Mayr, Astrid; Nogler, Michael; Thaler, Martin

    2017-06-01

    Surgical site infections occur in 1-6% of spinal surgeries. Effective treatment includes early diagnosis, parenteral antibiotics and early surgical debridement of the wound surface. On a human cadaver, we executed a complete hydro-surgery debridement including a full surgical setup such as draping. The irrigation fluid was artificially contaminated with Staphylococcus aureus (ATCC 6538). Surveillance cultures were used to detect environmental and body contamination of the surgical team. For both test setups, environmental contamination was observed in an area of 6 × 8 m. Both test setups caused contamination of all personnel present during the procedure and of the whole operating theatre. However, the concentration of contamination for the surgical staff and the environment was lower when an additional disposable draping device was used. The study showed that during hydro-surgery debridement, contaminated aerosols spread over the whole surgical room and contaminate the theatre and all personnel.

  13. Removal of PCBs in contaminated soils by means of chemical reduction and advanced oxidation processes.

    Science.gov (United States)

    Rybnikova, V; Usman, M; Hanna, K

    2016-09-01

    Although the chemical reduction and advanced oxidation processes have been widely used individually, very few studies have assessed the combined reduction/oxidation approach for soil remediation. In the present study, experiments were performed in spiked sand and historically contaminated soil by using four synthetic nanoparticles (Fe(0), Fe/Ni, Fe3O4, Fe3 - x Ni x O4). These nanoparticles were tested firstly for reductive transformation of polychlorinated biphenyls (PCBs) and then employed as catalysts to promote chemical oxidation reactions (H2O2 or persulfate). Obtained results indicated that bimetallic nanoparticles Fe/Ni showed the highest efficiency in reduction of PCB28 and PCB118 in spiked sand (97 and 79 %, respectively), whereas magnetite (Fe3O4) exhibited a high catalytic stability during the combined reduction/oxidation approach. In chemical oxidation, persulfate showed higher PCB degradation extent than hydrogen peroxide. As expected, the degradation efficiency was found to be limited in historically contaminated soil, where only Fe(0) and Fe/Ni particles exhibited reductive capability towards PCBs (13 and 18 %). In oxidation step, the highest degradation extents were obtained in presence of Fe(0) and Fe/Ni (18-19 %). The increase in particle and oxidant doses improved the efficiency of treatment, but overall degradation extents did not exceed 30 %, suggesting that only a small part of PCBs in soil was available for reaction with catalyst and/or oxidant. The use of organic solvent or cyclodextrin to improve the PCB availability in soil did not enhance degradation efficiency, underscoring the strong impact of soil matrix. Moreover, a better PCB degradation was observed in sand spiked with extractable organic matter separated from contaminated soil. In contrast to fractions with higher particle size (250-500 and oxidation reactions in soils and understand the impact of soil properties on remediation performance.

  14. Whether Farmers are Willing to Financial Participation for Reducing the Adverse Environmental Effects of Contaminated Water? (A case study of Kashaf- Rood Basin in Mashhad

    Directory of Open Access Journals (Sweden)

    hannane aghasafari

    2016-05-01

    Full Text Available The purpose of this study is to evaluate financial participation of farmers to reduce the adverse environmental effects of contaminated water by using Contingent Valuation approach and Tobit model by Heckman's two stage. To achieve the desired goal, 100 questionnaires collected by a random sampling from farmers of Kashaf- rood basin in Mashhad city in 2014. Results showed that variables of age, index 3 (farmers agree with rural and urban sewage inflow into Kashaf-rood river, total amount annual consumption of chemical pesticides and variables of sex, total area under cultivation, index1 (farmers agree with benefits of preventing soil washing, index 4 (farmers agree with well being of available soil and water and index 5 (farmers agree with investments to protect the soil and water, experience in the use of soil and water conservation practices have a significant and positive and negative impact on farmers' decisions to participate in financial for reducing the adverse environment a effects of contaminated water, respectively. also, variables of age, type of agricultural activity, under cultivation crops,total amount annual consumption of fertilizer per year, total amount annual consumption of chemical pesticides, index 3 (farmers agree with rural and urban sewage inflow into Kashaf-rood river and variables of net savings of agriculture, land ownership status, experience in the use of soil and water conservation practices, total area under cultivation, index 4 (farmers agree with well being of available soil and water, sex have a significant and positive and negative impact on the amount of farmers financial participation for reducing the adverse environmental effects of contaminated water, respectively. Also study results showed that average of maximum amount farmers financial participation for reducing the adverse environmental effects of contaminated water per hectare in the five scenarios to be 134500, 179500, 225500, 271000and354500 rials

  15. Federal environmental legislation in the U.S. for protection of wildlife and regulation of environmental contaminants.

    Science.gov (United States)

    Fairbrother, Anne

    2009-10-01

    The U.S. has a long history of legislation to protect wildlife, beginning with the Lacey Act of 1900. There are now over 170 Federal laws that regulate environmental activities which may affect wildlife. Two important laws are the Pittman-Robertson Act enacted in 1937 that authorizes a tax for wildlife management and the Fish and Wildlife Coordination Act passed in 1958 whose primary purpose is conservation of fish and wildlife, both of which continue to provide significant funding for wildlife management. Modern environmental regulations began by passage of the National Environmental Policy Act in 1969, followed by the Clean Water Act, Superfund, and other laws to regulate pesticides and toxics and clean up contaminated sites. International conventions regulate sale, use and disposal of toxics and ocean dumping. These laws and conventions should protect wildlife from unintended consequences of global industrialization.

  16. Mechanics of the Removal of Thickened Chemical Agents from Contaminated Surfaces by Wiping

    Science.gov (United States)

    1985-01-20

    TyPE O" REPORT & PERIOD COVERED "MECHANICS OF THE REMOVAL OF THICKENED CHEMICAL Final Report AGENTS FROM CONTAMINATED SURFACES BY WIPING 6. PERFORMING...of 8lade Claplocamant (X2) R-2.75 inX.-O5I L-0.5 in 0 dog angle X2--0. 25 in x 30 x X2-0 in ’A’.x X2-0.25 in 10 Data for Gly#cerine aufl 1/2 20. blod

  17. Results for the Third Quarter 2014 Tank 50 WAC slurry sample: Chemical and radionuclide contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Charles L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-01-08

    This report details the chemical and radionuclide contaminant results for the characterization of the 2014 Third Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC) in effect at that time.1 Information from this characterization will be used by DWPF & Saltstone Facility Engineering (DSFE) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System.

  18. Results For The Fourth Quarter 2014 Tank 50 WAC Slurry Sample: Chemical And Radionuclide Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-30

    This report details the chemical and radionuclide contaminant results for the characterization of the Calendar Year (CY) 2014 Fourth Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC) in effect at that time. Information from this characterization will be used by DWPF & Saltstone Facility Engineering (DSFE) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System.

  19. Results for the second quarter 2014 tank 50 WAC slurry sample chemical and radionuclide contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C. [Savannah River National Laboratory, Aiken, SC (United States)

    2014-09-04

    This report details the chemical and radionuclide contaminant results for the characterization of the 2014 Second Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC) in effect at that time. Information from this characterization will be used by DWPF & Saltstone Facility Engineering (DSFE) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System.

  20. Spatial screening methods for evaluating environmental contaminant hazards and exposure vulnerability

    Science.gov (United States)

    Jones, D. K.

    2016-12-01

    Human and biotic communities are becoming increasingly vulnerable to sea-level rise and severe storms due to climate change. These events enhance the dispersion and concentration of natural and anthropogenic chemicals and pathogenic microorganisms, which could adversely impact the health and resilience of coastal communities and ecosystems in coming years. The U.S. Geological Survey (USGS) has developed spatial screening methods to identify and map contaminant sources and potential exposure pathways for human and ecological receptors. These methods have been applied within the northeastern U.S. to document contaminants of emerging concern, highlight vulnerable communities, and prioritize locations for future sampling campaigns. Integration of this information provides a means to better assess the baseline status of a complex system and the significance of changes in contaminant hazards due to storm-induced (episodic) and sea-level rise (incremental) disturbances. This presentation will provide an overview of a decision support tool developed by the USGS to document contaminants in the environment relative to key receptor populations and historic storm vulnerabilities. The support tool is designed to accommodate a broad array of geologic, land-use, and climatic variables and utilizes public, nationally available data sources to define contaminant sources and storm vulnerabilities. By employing a flexible and adaptable strategy built upon publicly available data, the method can readily be applied to other site selection or landscape evaluation efforts. Examples will be presented including the Sediment-bound Contaminant Resiliency and Response pilot study (see http://toxics.usgs.gov/scorr/), and investigations of endocrine disruption in the Chesapeake Bay. Key limitations and future applications will be discussed in addition to ongoing method developments to accommodate non-coastal disaster scenarios and more refined contaminant definitions.

  1. Environmental impact of ongoing sources of metal contamination on remediated sediments

    Energy Technology Data Exchange (ETDEWEB)

    Knox, Anna Sophia, E-mail: anna.knox@srn.doe.gov [Savannah River National Laboratory, Aiken, SC 29808 (United States); Paller, Michael H., E-mail: michael.paller@srnl.doe.gov [Savannah River National Laboratory, Aiken, SC 29808 (United States); Milliken, Charles E., E-mail: charles.milliken@srnl.doe.gov [Savannah River National Laboratory, Aiken, SC 29808 (United States); Redder, Todd M., E-mail: tredder@limno.com [LimnoTech, Ann Arbor, Minnesota 48108 (United States); Wolfe, John R., E-mail: jwolfe@limno.com [LimnoTech, Ann Arbor, Minnesota 48108 (United States); Seaman, John, E-mail: seaman@srel.uga.edu [Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802 (United States)

    2016-09-01

    A challenge to all remedial approaches for contaminated sediments is the continued influx of contaminants from uncontrolled sources following remediation. We investigated the effects of ongoing contamination in mesocosms employing sediments remediated by different types of active and passive caps and in-situ treatment. Our hypothesis was that the sequestering agents used in active caps and in situ treatment will bind elements (arsenic, chromium, cadmium, cobalt, copper, nickel, lead, selenium, and zinc) from ongoing sources thereby reducing their bioavailability and protecting underlying remediated sediments from recontamination. Most element concentrations in surface water remained significantly lower in mesocosms with apatite and mixed amendment caps than in mesocosms with passive caps (sand), uncapped sediment, and spike solution throughout the 2520 h experiment. Element concentrations were significantly higher in Lumbriculus variegatus from untreated sediment than in Lumbriculus from most active caps. Pearson correlations between element concentrations in Lumbriculus and metal concentrations in the top 2.5 cm of sediment or cap measured by diffusive gradient in thin films (DGT) sediment probes were generally strong (as high as 0.98) and significant (p < 0.05) for almost all tested elements. Metal concentrations in both Lumbriculus and sediment/cap were lowest in apatite, mixed amendment, and activated carbon treatments. These findings show that some active caps can protect remediated sediments by reducing the bioavailable pool of metals/metalloids in ongoing sources of contamination. - Graphical abstract: Conventional methods of remediating contaminated sediments may be inadequate for the protection of benthic organisms when ongoing sources of contamination are present. However, sediment caps with chemically active sequestering agents have the ability to reduce the bioavailable pool of metals in ongoing sources of contamination (red dots), reduce toxicity to

  2. Effects of environmental contaminants on snapping turtles of a tidal wetland

    Science.gov (United States)

    Albers, P.H.; Sileo, L.; Mulhern, B.M.

    1986-01-01

    Snapping turtles (Chelydra serpentina) were collected from a brackish-water and a nearly freshwater area in the contaminated Hackensack Meadowlands of New Jersey and an uncontaminated freshwater area in Maryland to determine the effects of environmental contaminants on a resident wetland species. No turtles were observed or caught in the Meadowlands at two trapping sites that were the most heavily contaminated by metals. Snapping turtles from the brackish-water area had an unusually low lipid content of body fat and reduced growth compared to turtles from the fresh-water areas in New Jersey and Maryland. Despite the serious metal contamination of the Hackensack Meadowlands, the metal content of kidneys and livers from New Jersey turtles was low and not greatly different from that of the Maryland turtles. Organochlorine pesticide concentrations in body fat were generally low at all three study areas. Polychlorinated biphenyls (PCBs) concentrations in fat were highest in male turtles from the New Jersey brackish-water area. Analysis of blood for amino-levulinic acid dehydratase, albumin, glucose, hemoglobin, osmolality, packed cell volume, total protein, triglycerides, and uric acid failed to reveal any differences among groups that would indicate physiological impairment related to contaminants.

  3. Fowl play? Forensic environmental assessment of alleged discharge of highly contaminated effluent from a chicken slaughterhouse

    Science.gov (United States)

    Harvey, P.; Taylor, M. P.; Handley, H. K.

    2016-12-01

    Multiple lines of geochemical and biological evidence are applied to identify and fingerprint the nature and source of alleged contamination emanating from a chicken slaughterhouse on the urban fringe of Sydney, Australia. The slaughterhouse has a long history of alleged environmental misconduct. The impact of the facility on catchment source waters by the slaughterhouse has been the subject of controversy. The facility owner has persistently denied breach of their licence condition and maintains it is `a very environmentally conscious operation'. The disputed nature of the possible sources of discharges and its contaminants required a detailed forensic environmental assessment. Water samples collected from off-site discharge points associated with the facility show highly elevated concentrations of faecal coliforms (max 68,000 cfu), ammonia-N (51,000 µg/L), total nitrogen (98,000 µg/L) and phosphorous (32,000 µg/L). Upstream and adjacent watercourses were markedly less contaminated. Water discharge points associated with the slaughterhouse and natural catchment runoff were sampled for arsenic speciation, including assessment for the organoarsenic compound Roxarsone. Roxarsone is used as a chicken growth promoter. Water draining the slaughterhouse facility contained concentrations around 10 times local background levels. The Roxarsone compound was not detected in any waters, but inorganic arsenic, As(V), was present in all waters with the greatest concentrations in waters draining from the slaughterhouse. The environmental evidence was compiled over a series of discharges events and presented to the NSW EPA. Subsequent to receipt of the data supported by their own investigations, the NSW EPA mandated that the slaughterhouse be subject to a pollution reduction program. The efficacy of the pollution reduction program to stem the release of highly contaminated effluent is currently subject to ongoing investigation using a suite of water chemistry measures including

  4. Biochar physico-chemical properties as affected by environmental exposure

    Energy Technology Data Exchange (ETDEWEB)

    Sorrenti, Giovambattista, E-mail: g.sorrenti@unibo.it [Department of Agricultural Sciences, University of Bologna, viale G. Fanin 44, 40127 Bologna (Italy); Masiello, Caroline A., E-mail: masiello@rice.edu [Departments of Earth Science, BioSciences, and Chemistry, Rice University, Houston, TX 77005 (United States); Dugan, Brandon, E-mail: dugan@rice.edu [Department of Earth Science, Rice University, Houston, TX 77005 (United States); Toselli, Moreno, E-mail: moreno.toselli@unibo.it [Department of Agricultural Sciences, University of Bologna, viale G. Fanin 44, 40127 Bologna (Italy)

    2016-09-01

    To best use biochar as a sustainable soil management and carbon (C) sequestration technique, we must understand the effect of environmental exposure on its physical and chemical properties because they likely vary with time. These properties play an important role in biochar's environmental behavior and delivery of ecosystem services. We measured biochar before amendment and four years after amendment to a commercial nectarine orchard at rates of 5, 15 and 30 t ha{sup −1}. We combined two pycnometry techniques to measure skeletal (ρ{sub s}) and envelope (ρ{sub e}) density and to estimate the total pore volume of biochar particles. We also examined imbibition, which can provide information about soil hydraulic conductivity. Finally, we investigated the chemical properties, surface, inner layers atomic composition and C1s bonding state of biochar fragments through X-ray photoelectron spectroscopy (XPS). Ageing increased biochar skeletal density and reduced the water imbibition rate within fragments as a consequence of partial pore clogging. However, porosity and the volume of water stored in particles remained unchanged. Exposure reduced biochar pH, EC, and total C, but enhanced total N, nitrate-N, and ammonium-N. X-ray photoelectron spectroscopy analyses showed an increase of O, Si, N, Na, Al, Ca, Mn, and Fe surface (0–5 nm) atomic composition (at%) and a reduction of C and K in aged particles, confirming the interactions of biochar with soil inorganic and organic phases. Oxidation of aged biochar fragments occurred mainly in the particle surface, and progressively decreased down to 75 nm. Biochar surface chemistry changes included the development of carbonyl and carboxylate functional groups, again mainly on the particle surface. However, changes were noticeable down to 75 nm, while no significant changes were measured in the deepest layer, up to 110 nm. Results show unequivocal shifts in biochar physical and chemical properties/characteristics over

  5. Temporal Change of Environmental Contamination Conditions in Five Years after the Fukushima Accident

    Science.gov (United States)

    Saito, Kimiaki

    2017-09-01

    The temporal change of environmental contamination conditions after the Fukushima accident have been clarified based on large-scale environmental monitoring data repeatedly obtained in the 80 km zone. The decreasing tendency of air dose rates was confirmed to obviously depend on land uses. In human-related diverse environments the air dose rates have decreased much faster than the physical decay of radiocesium. The horizontal movement of radiocesium in undisturbed fields were found to be generally quite small, though it has gradually penetrated into the deeper parts of the ground.

  6. Temporal Change of Environmental Contamination Conditions in Five Years after the Fukushima Accident

    Directory of Open Access Journals (Sweden)

    Saito Kimiaki

    2017-01-01

    Full Text Available The temporal change of environmental contamination conditions after the Fukushima accident have been clarified based on large-scale environmental monitoring data repeatedly obtained in the 80 km zone. The decreasing tendency of air dose rates was confirmed to obviously depend on land uses. In human-related diverse environments the air dose rates have decreased much faster than the physical decay of radiocesium. The horizontal movement of radiocesium in undisturbed fields were found to be generally quite small, though it has gradually penetrated into the deeper parts of the ground.

  7. An evaluation of the ability of chemical measurements to predict polycyclic aromatic hydrocarbon-contaminated sediment toxicity to Hyalella azteca.

    Science.gov (United States)

    McDonough, Kathleen M; Azzolina, Nicholas A; Hawthorne, Steven B; Nakles, David V; Neuhauser, Edward F

    2010-07-01

    The present study examined the ability of three chemical estimation methods to predict toxicity and nontoxicity of polycyclic aromatic hydrocarbon (PAH) -contaminated sediment to the freshwater benthic amphipod Hyalella azteca for 192 sediment samples from 12 field sites. The first method used bulk sediment concentrations of 34 PAH compounds (PAH34), and fraction of total organic carbon, coupled with equilibrium partitioning theory to predict pore-water concentrations (KOC method). The second method used bulk sediment PAH34 concentrations and the fraction of anthropogenic (black carbon) and natural organic carbon coupled with literature-based black carbon-water and organic carbon-water partition coefficients to estimate pore-water concentrations (KOCKBC method). The final method directly measured pore-water concentrations (pore-water method). The U.S. Environmental Protection Agency's hydrocarbon narcosis model was used to predict sediment toxicity for all three methods using the modeled or measured pore-water concentration as input. The KOC method was unable to predict nontoxicity (83% of nontoxic samples were predicted to be toxic). The KOCKBC method was not able to predict toxicity (57% of toxic samples were predicted to be nontoxic) and, therefore, was not protective of the environment. The pore-water method was able to predict toxicity (correctly predicted 100% of the toxic samples were toxic) and nontoxicity (correctly predicted 71% of the nontoxic samples were nontoxic). This analysis clearly shows that direct pore-water measurement is the most accurate chemical method currently available to estimate PAH-contaminated sediment toxicity to H. azteca. Copyright (c) 2010 SETAC.

  8. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Bill

    1991-10-01

    In April 1990, Wright-Patterson Air Force Base (WPAFB), initiated an investigation to evaluate a potential Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) removal action to prevent, to the extent practicable, the offsite migration of contaminated ground water from WPAFB. WPAFB retained the services of the Environmental Management Operations (EMO) and its principle subcontractor, International Technology Corporation (IT) to complete Phase 1 of the environmental investigation of ground-water contamination at WPAFB. Phase 1 of the investigation involves the short-term evaluation and potential design for a program to remove ground-water contamination that appears to be migrating across the western boundary of Area C, and across the northern boundary of Area B along Springfield Pike. Primarily, Task 4 of Phase 1 focuses on collection of information at the Area C and Springfield Pike boundaries of WPAFB. This Sampling and Analysis Plan (SAP) has been prepared to assist in completion of the Task 4 field investigation and is comprised of the Quality Assurance Project Plan (QAPP) and the Field Sampling Plan (FSP).

  9. Eight-year surveillance of environmental fungal contamination in hospital operating rooms and haematological units.

    Science.gov (United States)

    Faure, O; Fricker-Hidalgo, H; Lebeau, B; Mallaret, M R; Ambroise-Thomas, P; Grillot, R

    2002-02-01

    An eight-year fungal environmental surveillance was carried out in 15 operating theatres and two haematological units. Sampling was performed twice a year in each room, using contact plates for plane surfaces and sterile swabs for grids. From 1992 to 1999, individual rooms in the 17 units were sampled on 1094 occasions and 3822 samples were collected. The percentage of rooms without fungus increased regularly between 1992 and 1999 (41.1% and 74.8%, respectively). The units were classified according to the fungal contamination during the eight years: the operating theatres which required the highest protection (cardiological, thoracic, vascular, hand, orthopaedic and neurosurgery) and the adult haematological unit showed least contamination (71.8% rooms were negative). The most frequent species isolated were Penicillium spp. (28.4%), Cladosporium spp. (15.6%) and Aspergillus spp. (7.6%). Aspergillus fumigatus was rarely isolated (3.7%), and was mainly isolated at the beginning of the study. This study demonstrates that environmental control programmes are effective in reducing environmental mould contamination and could be useful in establishing exposure guidelines, especially by defining an acceptable level of biocontamination in zones at risk. Copyright 2002 The Hospital Infection Society.

  10. Science linking environmental contaminant exposures with fertility and reproductive health impacts in the adult female.

    Science.gov (United States)

    Mendola, Pauline; Messer, Lynne C; Rappazzo, Kristen

    2008-02-01

    To broadly review the recent literature linking environmental factors and adult female reproductive health for the UCSF-CHE Summit on Environmental Challenges to Reproductive Health and Fertility. Reviewed articles indexed in PubMed from 1999-2007 addressing environment and puberty, menstrual and ovarian function, fertility, and menopause. The strongest evidence of environmental contaminant exposures interfering with healthy reproductive function in adult females is for heavy metals, particularly lead. Compounds that can influence hormone function, including pesticides and persistent pollutants, are also associated with risk. The pattern of effects for these endocrine-active compounds is often complex, with no clear dose response, but alterations in function and poor reproductive health outcomes are observed. From a clinical perspective, most modifiable risk appears to be associated with exposures in unique populations (contaminated fish consumers) or occupational groups (farmworkers). Many compounds have demonstrated increased risks for reproductive health impairment in women, but the literature is largely cross-sectional in nature and too sparse or inconclusive to support causal inference. Reproductive function in adult females is impaired by lead exposure. Pesticides and persistent pollutants can alter hormone function resulting in adverse reproductive health effects. Coordinated research is needed to address contaminant effects across the life span.

  11. Sampling and chemical analysis in environmental samples around Nuclear Power Plants and some environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong Woo; Han, Man Jung; Cho, Seong Won; Cho, Hong Jun; Oh, Hyeon Kyun; Lee, Jeong Min; Chang, Jae Sook [KORTIC, Taejon (Korea, Republic of)

    2002-12-15

    Twelve kinds of environmental samples such as soil, seawater, underground water, etc. around Nuclear Power Plants(NPPs) were collected. Tritium chemical analysis was tried for the samples of rain water, pine-needle, air, seawater, underground water, chinese cabbage, a grain of rice and milk sampled around NPPs, and surface seawater and rain water sampled over the country. Strontium in the soil that sere sampled at 60 point of district in Korea were analyzed. Tritium were sampled at 60 point of district in Korea were analyzed. Tritium were analyzed in 21 samples of surface seawater around the Korea peninsular that were supplied from KFRDI(National Fisheries Research and Development Institute). Sampling and chemical analysis environmental samples around Kori, Woolsung, Youngkwang, Wooljin Npps and Taeduk science town for tritium and strontium analysis was managed according to plans. Succeed to KINS after all samples were tried.

  12. Ways of adaptation of the plant populations to chemical and radioactive contamination

    Energy Technology Data Exchange (ETDEWEB)

    Pozolotina, V.; Bezel' , V.; Zhuykova, T.; Severu' Khina, O.; Ulyanova, E. [Institute of Plant and Animal Ecology, Ural Division of Russian Academy of Sciences, Ekaterinburg (Russian Federation)

    2004-07-01

    Chemical agents (heavy metals, acids, etc.) and radiation render their influence upon biota being clearly distinct in primary mechanisms of action. However, lively organisms demonstrate one and the same set [arsenal] of response reactions, and thus it is important to reveal the ways of their realization caused by different types of techno-genic impacts. Our work was intended to examine the seed progeny of the dandelion, Taraxacum officinale, from radionuclides-contaminated coeno-populations (grown at the territories influenced by Eastern-Ural radioactive trace, in the Techa-river flood plain) and those situated in the nearest impact zone affected by a large metallurgical plant in the Urals. Plots, differently distanced from the enterprise, showed heavy metal contamination loads 8-33 times higher than the control site did. Radionuclides concentrations ({sup 90}Sr and {sup 137}Cs) within the contaminated zone exceeded the background values 4-40 times. The study allowed estimation of the seed progeny vitality level for different coeno-populations, comparison of their adaptive potential in regard to heavy metals tolerance and gamma radiation resistance, estimation of abnormal seedlings [sprouts] frequency values. It was shown [found] that under techno-genic pollution the dandelion coeno-populations usually demonstrate wider variations of different characteristics (vitality, mutability, root and leaf growth rates) as compared to those in the background zone. As a general regularity one can regard the phenomenon, that negative effects were not marked to be increased by heavier pollution loads, irrespectively of the agents nature. (author)

  13. Assessing granular media filtration for the removal of chemical contaminants from wastewater.

    Science.gov (United States)

    Ho, Lionel; Grasset, Charlotte; Hoefel, Daniel; Dixon, Mike B; Leusch, Frederic D L; Newcombe, Gayle; Saint, Christopher P; Brookes, Justin D

    2011-05-01

    Granular media filtration was evaluated for the removal of a suite of chemical contaminants that can be found in wastewater. Laboratory- and pilot-scale sand and granular activated carbon (GAC) filters were trialled for their ability to remove atrazine, estrone (E1), 17α-ethynylestradiol (EE2), N-nitrosodimethylamine (NDMA), N-nitrosomorpholine (NMOR) and N-nitrosodiethylamine (NDEA). In general, sand filtration was ineffective in removing the contaminants from a tertiary treated wastewater, with the exception of E1 and EE2, where efficient removals were observed after approximately 150 d. Batch degradation experiments confirmed that the removal of E1 was through biological activity, with a pseudo-first-order degradation rate constant of 7.4 × 10(-3) h(-1). GAC filtration was initially able to effectively remove all contaminants; although removals decreased over time due to competition with other organics present in the water. The only exception was atrazine where removal remained consistently high throughout the experiment. Previously unreported differences were observed in the adsorption of the three nitrosamines, with the ease of removal following the trend, NDEA > NMOR > NDMA, consistent with their hydrophobic character. In most instances the removals from the pilot-scale filters were generally in agreement with the laboratory-scale filter, suggesting that there is potential in using laboratory-scale filters as monitoring tools to evaluate the performance of pilot- and possibly full-scale sand and GAC filters at wastewater treatment plants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Emerging Environmental Contaminants and Soled Phase Microextraction: Janusz Pawliszyn's Legacy in the Environmental Arena

    Science.gov (United States)

    Solid phase microextraction (SPME) has revolutionized the way samples are extracted, enabling rapid, automated, and solventless extraction of many different sample types, including air, water, soil, and biological samples. As such, SPME is widely used for environmental, food, fo...

  15. THE EFFECT OF SAMPLE PRETREATMENT ON THE RESULT OF CHEMICAL FRACTIONATION OF CHROMIUM IN RIVER SEDIMENTS CONTAMINATED WITH TANNERY SEWAGE

    Directory of Open Access Journals (Sweden)

    Marzena Anna Trojanowska

    2017-02-01

    Full Text Available Chemical fractionation is generally used to assess the mobility and bioavailability of heavy metals present in solid environmental samples. Although fractionation results are determined by sample pretreatment methods, authors of publications usually disregard this issue and study exclusively the distribution of metals among biogeochemical phases. The aim of this work was to assess the effect of preparation of samples on results of chemical fractionation of chromium deposited in river sediments contaminated with tannery wastes. Attention was focused on the evaluation of the effect of drying and grinding of sediments. Fractionation was carried out according to the procedure of Tessier which makes it possible to divide total chromium content into five fractions of different mobility and bioavailability (ion-exchange, carbonate, oxide, organic and residual fractions. It has been found that sediment grinding is not an appropriate method of sample pretreatment, because it significantly changes fractionation results and thus it can lead to an incorrect assessment of mobility and bioavailability of chromium deposited in river sediments. Drying of the sediments at a range of 20–105 °C does not change the original distribution of chromium among biogeochemical phases.

  16. Residential tap water contamination following the Freedom Industries chemical spill: perceptions, water quality, and health impacts.

    Science.gov (United States)

    Whelton, Andrew J; McMillan, LaKia; Connell, Matt; Kelley, Keven M; Gill, Jeff P; White, Kevin D; Gupta, Rahul; Dey, Rajarshi; Novy, Caroline

    2015-01-20

    During January 2014, an industrial solvent contaminated West Virginia’s Elk River and 15% of the state population’s tap water. A rapid in-home survey and water testing was conducted 2 weeks following the spill to understand resident perceptions, tap water chemical levels, and premise plumbing flushing effectiveness. Water odors were detected in all 10 homes sampled before and after premise plumbing flushing. Survey and medical data indicated flushing caused adverse health impacts. Bench-scale experiments and physiochemical property predictions showed flushing promoted chemical volatilization, and contaminants did not appreciably sorb into cross-linked polyethylene (PEX) pipe. Flushing reduced tap water 4-methylcyclohexanemethanol (4-MCHM) concentrations within some but not all homes. 4-MCHM was detected at unflushed (<10 to 420 μg/L) and flushed plumbing systems (<10 to 96 μg/L) and sometimes concentrations differed among faucets within each home. All waters contained less 4-MCHM than the 1000 μg/L Centers for Disease Control drinking water limit, but one home exceeded the 120 μg/L drinking water limit established by independent toxicologists. Nearly all households refused to resume water use activities after flushing because of water safety concerns. Science based flushing protocols should be developed to expedite recovery, minimize health impacts, and reduce concentrations in homes when future events occur.

  17. Results for the Third Quarter 2013 Tank 50 WAC Slurry Sample: Chemical and Radionuclide Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, Christopher J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-09-30

    This report details the chemical and radionuclide contaminant results for the characterization of the 2013 Third Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC) in effect at that time.1 Information from this characterization will be used by DWPF & Saltstone Facility Engineering (DSFE) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System. The following conclusions are drawn from the analytical results provided in this report: SRR WAC targets or limits were met for all analyzed chemical and radioactive contaminates unless noted in this section. 59Ni, 94Nb, 247Cm, 249Cf, and 251Cf are above the requested SRR target concentrations.2 However, they are below the detection limits established by SRNL.3 Norpar 13 and Isopar L have higher detection limits4 compared with the Saltstone WAC.1 The data provided in this report is based upon the concentrations in the sub-sample, and due to the limited solubility in aqueous solution, may not represent the concentrations of the analytes in Tank 50. Finally, the low insoluble solids content increases the measurement uncertainty for insoluble species.

  18. Results for the Fourth Quarter 2012 Tank 50 WAC Slurry Sample: Chemical and Radionuclide Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, Christopher J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-09-30

    This report details the chemical and radionuclide contaminant results for the characterization of the 2012 Fourth Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC).1 Information from this characterization will be used by Waste Solidification Engineering (WSE) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System. The following conclusions are drawn from the analytical results provided in this report: The concentration of the reported chemical and radioactive contaminants were less than their respective WAC Limits and Targets, unless noted in this section. Norpar 13 and Isopar L have higher detection limits5 compared with the Saltstone WAC1. The data provided in this report is based upon the concentrations in the sub-sample, and due to the limited solubility in aqueous solution, may not represent the concentrations of the analytes in Tank 50. Diisooctyl adipate (or diisooctyl hexanedioate) was measured at 1.30E+00 mg/L in one of two replicate measurements conducted on an at-depth sample.a The organic analysis of the at-depth sample was conducted at the request of SRR.4 This analyte was below the detection limit in the surface sample. The low insoluble solids content increases the measurement uncertainty for insoluble species.

  19. Playing Chemical Plant Environmental Protection Games with Historical Monitoring Data.

    Science.gov (United States)

    Zhu, Zhengqiu; Chen, Bin; Reniers, Genserik; Zhang, Laobing; Qiu, Sihang; Qiu, Xiaogang

    2017-09-29

    The chemical industry is very important for the world economy and this industrial sector represents a substantial income source for developing countries. However, existing regulations on controlling atmospheric pollutants, and the enforcement of these regulations, often are insufficient in such countries. As a result, the deterioration of surrounding ecosystems and a quality decrease of the atmospheric environment can be observed. Previous works in this domain fail to generate executable and pragmatic solutions for inspection agencies due to practical challenges. In addressing these challenges, we introduce a so-called Chemical Plant Environment Protection Game (CPEP) to generate reasonable schedules of high-accuracy air quality monitoring stations (i.e., daily management plans) for inspection agencies. First, so-called Stackelberg Security Games (SSGs) in conjunction with source estimation methods are applied into this research. Second, high-accuracy air quality monitoring stations as well as gas sensor modules are modeled in the CPEP game. Third, simplified data analysis on the regularly discharging of chemical plants is utilized to construct the CPEP game. Finally, an illustrative case study is used to investigate the effectiveness of the CPEP game, and a realistic case study is conducted to illustrate how the models and algorithms being proposed in this paper, work in daily practice. Results show that playing a CPEP game can reduce operational costs of high-accuracy air quality monitoring stations. Moreover, evidence suggests that playing the game leads to more compliance from the chemical plants towards the inspection agencies. Therefore, the CPEP game is able to assist the environmental protection authorities in daily management work and reduce the potential risks of gaseous pollutants dispersion incidents.

  20. Changes in contaminant loading and hydro-chemical storm behavior after the Station Fire

    Science.gov (United States)

    Burke, M. P.; Hogue, T. S.; Barco, J.; Wessel, C. J.

    2010-12-01

    The 2009 Station Fire, currently noted as the largest fire in Los Angeles County history, consumed over 650 square kilometers of National Forest land in the San Gabriel Mountain Range. These mountains, located on the east side (leeward) of the Los Angeles basin, are known to have some of the highest deposition rates of atmospheric pollutants in the nation. Even pre-fire, urban-fringe basins in this mountain range serve as an upstream source of contaminants to downstream urban streams. Burned watersheds undergo significant physical and chemical changes that dramatically alter hydrologic flowpaths, erosion potential, surface soil chemistry, and pollutant delivery. Much of the degradation in water quality is attributed to the extensive soil erosion during post-fire runoff events which carry large sediment loads, mobilizing and transporting contaminants to and within downstream waters. High resolution storm samples collected from a small front range watershed provide a unique opportunity to investigate the impacts of wildfire contaminant loading in a watershed that is significantly impacted by high atmospheric deposition of urban contaminates. Data includes four events from WY 2009 (pre-fire) and WY 2010 (post-fire), along with inter-storm grab samples from each storm season. Samples were analyzed for basic anions, nutrients, trace metals, and total suspended solids. Following the fire, storms with similar precipitation patterns yielded loads up to three orders of magnitude greater than pre-fire for some toxic metals, including lead and cadmium. Dramatic increases were also observed in trace metal concentrations typically associated with particulates, while weathering solute concentrations decreased. Post fire intra-storm dynamics exhibited a shift back toward pre-fire behavior by the end of the first rainy season for most of the measured constituents. Additionally, some unexpected behaviors were observed; specifically mercury loads continued to increase throughout the

  1. Estimation of the environmental risk posed by landfills using chemical, microbiological and ecotoxicological testing of leachates.

    Science.gov (United States)

    Matejczyk, Marek; Płaza, Grażyna A; Nałęcz-Jawecki, Grzegorz; Ulfig, Krzysztof; Markowska-Szczupak, Agata

    2011-02-01

    The leachates from 22 municipal solid waste (MSW) landfill sites in Southern Poland were characterized by evaluation of chemical, microbiological and ecotoxicological parameters. Chemical analyses were mainly focused on the identification of the priority hazardous substances according to Directive on Priority Substances, 2008/105/EC (a daughter directive of the WFD) in leachates. As showed, only five substances (Cd, Hg, hexachlorobutadiene, pentachlorobenzene and PAHs) were detected in the leachates. The compounds tested were absent or present at very low concentrations. Among them, only PAHs were found in all samples in the range from 0.057 to 77.2 μg L⁻¹. The leachates were contaminated with bacteria, including aerobic, psychrophilic and mesophilic bacteria, coliform and fecal coliforms, and spore-forming-bacteria, including Clostridium perfringens, and with filamentous fungi. From the analysis of specific microorganism groups (indicators of environmental pollution by pathogenic or opportunistic pathogenic organisms) it can be concluded that the landfill leachates showed sanitary and epidemiological hazard. In the ecotoxicological study, a battery of tests comprised of 5 bioassays, i.e. Microtox(®), Spirotox, Rotoxkit F™, Thamnotoxkit F™ and Daphtoxkit F™ magna was applied. The leachate samples were classified as toxic in 13.6%, highly toxic in 54.6% and very highly toxic in 31.8%. The Spirotox test was the most sensitive bioassay used. The percentage of class weight score was very high - above 60%; these samples could definitely be considered seriously hazardous and acutely toxic to the fauna and microflora. No correlations were found between the toxicity values and chemical parameters. The toxicity of leachate samples cannot be explained by low levels of the priority pollutants. It seems that other kinds of xenobiotics present in the samples at subacute levels gave the high aggregate toxic effect. The chemical, ecotoxicological and microbiological

  2. Contamination, bioaccumulation and toxic effects of perfluorinated chemicals (PFCs) in the water environment: a review paper.

    Science.gov (United States)

    Suja, Fatihah; Pramanik, Biplob Kumar; Zain, Shahrom Md

    2009-01-01

    Perfluorinated compounds such as perfluorooctane sulfonate (PFOS) and perfluorooctane acid (PFOA) have been recognized as emerging environmental pollutants because of their ubiquitous occurrence in the environment, biota and humans. The paper focuses on the distribution, bioaccumulation and toxic effects of PFOS and PFOA in the water. From the available literature, tap and surface water samples in several countries were found to be contaminated with PFOS and PFOA. These compounds were detected globally in the tissues of fish, bird and marine mammals. Their concentrations from relatively more industrialized areas were greater than those from the less populated and remote locations. Blood samples of occupationally exposed people and the general population in various countries were found to contain PFOS and PFOA which suggested a possibility of atmospheric transport of these compounds. There is still a death of information about the environmental pathways of PFOS and PFOA. The presence of these compounds in the tap water, surface water and animal and human tissues indicates their global contamination and bioaccumulative phenomena in the ecosystems.

  3. Mapping chemicals in air using an environmental CAT scanning system: evaluation of algorithms

    Science.gov (United States)

    Samanta, A.; Todd, L. A.

    A new technique is being developed which creates near real-time maps of chemical concentrations in air for environmental and occupational environmental applications. This technique, we call Environmental CAT Scanning, combines the real-time measuring technique of open-path Fourier transform infrared spectroscopy with the mapping capabilitites of computed tomography to produce two-dimensional concentration maps. With this system, a network of open-path measurements is obtained over an area; measurements are then processed using a tomographic algorithm to reconstruct the concentrations. This research focussed on the process of evaluating and selecting appropriate reconstruction algorithms, for use in the field, by using test concentration data from both computer simultation and laboratory chamber studies. Four algorithms were tested using three types of data: (1) experimental open-path data from studies that used a prototype opne-path Fourier transform/computed tomography system in an exposure chamber; (2) synthetic open-path data generated from maps created by kriging point samples taken in the chamber studies (in 1), and; (3) synthetic open-path data generated using a chemical dispersion model to create time seires maps. The iterative algorithms used to reconstruct the concentration data were: Algebraic Reconstruction Technique without Weights (ART1), Algebraic Reconstruction Technique with Weights (ARTW), Maximum Likelihood with Expectation Maximization (MLEM) and Multiplicative Algebraic Reconstruction Technique (MART). Maps were evaluated quantitatively and qualitatively. In general, MART and MLEM performed best, followed by ARTW and ART1. However, algorithm performance varied under different contaminant scenarios. This study showed the importance of using a variety of maps, particulary those generated using dispersion models. The time series maps provided a more rigorous test of the algorithms and allowed distinctions to be made among the algorithms. A

  4. Chemical immobilization of Pb, Cu, and Cd by phosphate materials and calcium carbonate in contaminated soils.

    Science.gov (United States)

    Huang, Guoyong; Su, Xiaojuan; Rizwan, Muhammad Shahid; Zhu, Yifei; Hu, Hongqing

    2016-08-01

    Soil contamination with toxic metals has increasingly become a global concern over the past few decades. Phosphate and carbonate compounds are good passivation materials for Pb immobilization, while the effect of phosphate and carbonate on the immobilization of multiple heavy metals (Pb, Cu, and Cd) in contaminated soils was seldom investigated. In this study, bone meal (BM), phosphate rock (PR), oxalic acid-activated phosphate rock (APR), super phosphate (SP), and calcium carbonate (CC) were added to the contaminated soils to evaluate the effect of phosphate materials and calcium carbonate on the immobilization of Pb, Cu, and Cd. The results showed that the pH of the treated soils increased 1.3-2.7, except SP which decreased 0.5 at most. Compared to the control treatment, all phosphates and calcium carbonate added to the polluted soils increased the fraction of residual metals, and the application of APR, PR, BM, and CC significantly reduced exchangeable and carbonate-bound fraction metals. PR and APR were the most effective for the immobilization of Pb, Cu, and Cd in the soils among these materials. Moreover, the concentrations of all metals in the toxicity characteristic leaching procedure (TCLP) leachate decreased with increasing amounts of amendments, and the concentrations of Pb in the TCLP leachate for soils treated with PR and APR were below the nonhazardous regulatory limit of 5 mg L(-1) (US Environmental Protection Agency). Based on our results, phosphate rock and oxalic acid-activated phosphate rock are effective in the immobilization of multiple metals by reducing their mobility in the co-contaminated soils.

  5. Environmental contamination and human exposure to manganese--contribution of methylcyclopentadienyl manganese tricarbonyl in unleaded gasoline.

    Science.gov (United States)

    Zayed, J; Vyskocil, A; Kennedy, G

    1999-01-01

    The organomanganese compound MMT (methylcyclopentadienyl manganese tricarbonyl), an antiknock additive in unleaded gasoline, has been used in Canada since 1976. Indeed, Canada is the only country where MMT is almost exclusively used. In October 1995, by court decision the Environmental protection Agency (EPA) granted Ethyl's waiver for the use of MMT in the United States. Paradoxically, in 1997 the federal government of Canada adopted a law (C-29) that banned both the interprovincial trade and the importation for commercial purposes of manganese-based substances, including MMT. However, MMT is currently widely used in Canada because of substantial stockpiling, and six Canadian provinces are challenging the law in the courts. Moreover, MMT has been approved for use in Argentina, Australia, Bulgaria, Russia, and conditionally, in New Zealand. It has been suggested by some scientists that combustion of MMT may be a significant source of exposure to inorganic Mn in urban areas. The crucial question is whether Mn contamination from industrial sources combined with the additional contamination that would result from the widespread use of MMT would lead to toxic effects. Our research efforts have attempted to assess the environmental/ecosystem Mn contamination arising from the combustion of MMT in abiotic and biotic systems as well as human exposure. The experimental evidence acquired so far provides useful information on certain environmental consequences of the use of MMT as well as raising a number of questions. Our results gave evidence indicating that roadside air, soils, plants, and animals may be contaminated by Mn. As well, some specific groups of the population could have a higher level of exposure to Mn. Nevertheless, the levels of exposure remain below international guide values. Further studies and further characterization of dose-response relationships are thus needed to provide successful implementation of evidence-based risk-assessment approaches.

  6. Relationships of environmental contaminants to reproductive success in red-breasted mergansers (Mergus serrator) from Lake Michigan

    Science.gov (United States)

    Heinz, G.H.; Haseltine, S.D.; Reichel, W.L.; Hensler, G.L.

    1983-01-01

    In 1977 and 1978, we studied red-breasted mergansers Mergus serrator nesting on islands in northwestern Lake Michigan to determine whether environmental contaminants were having effects on reproduction. Seventeen contaminants were measured in randomly chosen eggs from 206 nests under study. Using a variety of statistical approaches, we looked for effects of individual contaminants and combinations of contaminants on reproductive measurements such as nest desertion, failure of eggs to hatch, death of newly hatched ducklings, percentage hatching success, number of ducklings leaving the nest and eggshell thickness. We also looked for relationships between the levels of some contaminants in blood samples of 39 incubating females and reproductive success. A small degree of eggshell thinning was attributed to DDE and a few other statistical tests were significant, but no contaminant or combination of contaminants we measured seemed to have a pronounced effect on the aspects of reproduction we followed.

  7. Correlation between environmental relative moldiness index (ERMI) values in French dwellings and other measures of fungal contamination

    Science.gov (United States)

    The Environmental Relative Moldiness Index (ERMI) is a DNA-based metric developed to describe the fungal contamination in US dwellings. Our goal was to determine if the ERMI values in dwellings in north western France were correlated with other measures of fungal contamination. D...

  8. Mercury Contamination in Fish in Midcontinent Great Rivers of the United States: Importance of Species Traits and Environmental Factors

    Science.gov (United States)

    We measured mercury (Hg) concentrations in whole fish from the Upper Mississippi, Missouri, and Ohio Rivers to characterize the extent and magnitude of Hg contamination and to identify environmental factors influencing Hg accumulation. Concentrations were generally lower (80% of ...

  9. Biomonitoring and assessment of environmental contaminants in breeding common terns (Sterna hirundo) of the St. Lawrence River

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The goals of this study were to determine the nature and extent of environmental contaminant burdens in the Common Tern (Sterna hirundo) population of the St....

  10. Preliminary assessment of the Long Island National Wildlife Refuge Complex environmental contaminants background study: Fourth year results

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report represents the results of the fourth year of the multi-year study, the Long Island National Wildlife Refuge Complex (Complex) Environmental Contaminants...

  11. Summary of existing information pertinent to environmental contaminants and oil spills on breeding Atlantic Coast piping plovers

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Information regarding environmental contaminants and oil spills on breeding Atlantic Coast piping plovers (Charadrius melodus) was solicited from state and federal...

  12. Pharmaceuticals and personal care products (PPCPs): a review on environmental contamination in China.

    Science.gov (United States)

    Liu, Jin-Lin; Wong, Ming-Hung

    2013-09-01

    Pharmaceuticals and personal care products (PPCPs) which contain diverse organic groups, such as antibiotics, hormones, antimicrobial agents, synthetic musks, etc., have raised significant concerns in recently years for their persistent input and potential threat to ecological environment and human health. China is a large country with high production and consumption of PPCPs for its economic development and population growth in recent years. This may result in PPCP contamination in different environmental media of China. This review summarizes the current contamination status of different environment media, including sewage, surface water, sludge, sediments, soil, and wild animals, in China by PPCPs. The human body burden and adverse effects derived from PPCPs are also evaluated. Based on this review, it has been concluded that more contamination information of aquatic environment and wildlife as well as human body burden of PPCPs in different areas of China is urgent. Studies about their environmental behavior and control technologies need to be conducted, and acute and chronic toxicities of different PPCP groups should be investigated for assessing their potential ecological and health risks. © 2013.

  13. Minimum detection limit determination for the static SIMS analysis of environmental samples contaminated with tributyl phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Ingram, J.C.; Groenewold, G.S.; Appelhans, A.D.; Delmore, J.E.; Dahl, D.A. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1994-12-31

    Static secondary ion mass spectrometry (SIMS) has been demonstrated in this laboratory to be effective in the direct surface analysis of organic contaminants such as organophosphates adsorbed on mineral surfaces, vegetation, filters, and other environmental samples. Static SIMS is attractive for these applications due to the rapidness of the analysis which includes no sample preparation. Although static SIMS is a qualitative technique, minimum detection limit (MDL) information is critical to its application for screening environmental samples for contamination. Difficulties associated with determining MDL`s for static SIMS are similar to most other surface analysis methods which include unavailability of standards for quantification for most {open_quotes}real world{close_quotes} samples, ill-defined surface areas. The focus of this paper centers on determination of MDL`s for the detection of tributyl phosphate (TBP) on soils. Two different types of soils were investigated in order to compare the effect of soil type on the MDL for TBP. In surface analysis, the MDL is expressed in terms of the mass of the analyte divided by the surface area of the sample. The detection of TBP on soils is of considerable interest to DOE in its clean-up efforts at various sites as it was widely used in the DOE complex to extract U, Pu, Th, Np, and Am. Although TBP has limited toxicity, it may be useful as an indicator for the presence of Pu, U, and other contaminants at DOE burial sites.

  14. Listeria monocytogenes contamination in dairy plants: evaluation of Listeria monocytogenes environmental contamination in two cheese-making plants using sheeps milk

    Directory of Open Access Journals (Sweden)

    Michela Ibba

    2013-09-01

    Full Text Available Listeria monocytogenes harbouring niches established in the processing plant support post-process contamination of dairy products made from pasteurised or thermised milk. The present study investigated L. monocytogenes environmental contamination in two sheep’s milk cheese-making plants. Persistence of contamination in the area at higher risk was also investigated. During a one-year survey 7 samplings were carried out in each dairy plant, along the production lines of Pecorino Romano and ricotta salata cheese. A total of 613 environmental samples collected from food contact and non-food contact surfaces were analysed according to ISO 11290-1:2005 standard method. Identification of the isolated strains was carried out by polymerase chain reaction. L. monocytogenes prevalence was 23.2% in dairy A and 13.1% in dairy B, respectively. The higher prevalence rate was found in the following areas: salting, products washing, packaging, ricotta salata storage and Pecorino Romano ripening rooms. L. monocytogenes was never found in the cheese-making area. The probability of observing samples positive for the presence of L. monocytogenes was asso- ciated with dairy plant, sampling area and the period of cheese-making (P<0.001. The greater persistence of contamination over time was observed in the washing, salting, and Pecorino Romano ripening areas. The control of persistent environmental contamination relies on the identification of L. monocytogenes niches within the processing environment and the prevention of harborage sites formation. The importance of strict cleaning and sanitising procedure in controlling L. monocytogenes environmental contamination is confirmed by the lower level of contamination observed after these procedures were correctly implemented.

  15. Estimating areas threatened by contamination from leaking chemical warfare agents dumped into the Baltic Sea

    Science.gov (United States)

    Jakacki, Jaromir; Przyborska, Anna; Andrzejewski, Jan

    2017-04-01

    Approximately 60,000 tons of chemical munitions were dumped into the Baltic Sea after World War II (the exact amount is unknown and some sources estimate it as more than 200,000 tons). Dumped munitions still pose a risk of leakage caused by erosion and corrosion, and it is important to know the danger areas. Because of wide dispersion of the dumped munitions, modelling is only one tool that could provide wide image of physical state of the sea at all locations and which could also be used for analysing contamination during a potential leakage. Obviously, it is possible to take samples at each dumpsite, but modelling also allows to develop possible scenarios of leakages under specific physical conditions. For the purpose of analysis of potential leakage a high-resolution model (HRM) of the contamination will be embedded in the hydrodynamic model (HM) of the Baltic Sea. The HRM will use data from general circulation model results of estimated resolution of nearly 2 km. The Parallel Ocean Program will be implemented as the HM for the whole Baltic Sea. Atmospheric data from regional implementation of the Weather Research and Forecasting System (WRF) have been used as the top boundary conditions of the HM, and sea level data from Gothenburg had been included into model barotropic equation as lateral boundary conditions. Passive tracer will represent the contamination in the HRM and horizontal resolution of the HRM will be close to 50 meters. Passive tracers will also be implemented in the HM - for comparison of the results. For proper representation of potential leakage of chemical warfare agents the HRM will have included diffusion and advection processes. The results from the HM are going to be interpolated into the HRM domain and then integration will be performed. Based on the implemented simulations, estimated contaminated area and its comparison from the HRM as well as from the HM will be presented. The research work was fund by the European Union (European

  16. Environmental Factors Related to Fungal Wound Contamination after Combat Trauma in Afghanistan, 2009-2011.

    Science.gov (United States)

    Tribble, David R; Rodriguez, Carlos J; Weintrob, Amy C; Shaikh, Faraz; Aggarwal, Deepak; Carson, M Leigh; Murray, Clinton K; Masuoka, Penny

    2015-10-01

    During the recent war in Afghanistan (2001-2014), invasive fungal wound infections (IFIs) among US combat casualties were associated with risk factors related to the mechanism and pattern of injury. Although previous studies recognized that IFI patients primarily sustained injuries in southern Afghanistan, environmental data were not examined. We compared environmental conditions of this region with those of an area in eastern Afghanistan that was not associated with observed IFIs after injury. A larger proportion of personnel injured in the south (61%) grew mold from wound cultures than those injured in the east (20%). In a multivariable analysis, the southern location, characterized by lower elevation, warmer temperatures, and greater isothermality, was independently associated with mold contamination of wounds. These environmental characteristics, along with known risk factors related to injury characteristics, may be useful in modeling the risk for IFIs after traumatic injury in other regions.

  17. Innovative Capping Technology To Prevent The Migration of Toxic Chemicals From Contaminated Sediments

    Science.gov (United States)

    Capping is a common strategy for decreasing the risk associated with contaminated sediments in lakes and streams. Historically, caps have been designed to physically isolate contaminated sediments and prevent the transport of contaminants from sediments into the water above them...

  18. Epigenetic Effects of Environmental Chemicals Bisphenol A and Phthalates

    Directory of Open Access Journals (Sweden)

    Steven Shoei-Lung Li

    2012-08-01

    Full Text Available The epigenetic effects on DNA methylation, histone modification, and expression of non-coding RNAs (including microRNAs of environmental chemicals such as bisphenol A (BPA and phthalates have expanded our understanding of the etiology of human complex diseases such as cancers and diabetes. Multiple lines of evidence from in vitro and in vivo models have established that epigenetic modifications caused by in utero exposure to environmental toxicants can induce alterations in gene expression that may persist throughout life. Epigenetics is an important mechanism in the ability of environmental chemicals to influence health and disease, and BPA and phthalates are epigenetically toxic. The epigenetic effect of BPA was clearly demonstrated in viable yellow mice by decreasing CpG methylation upstream of the Agouti gene, and the hypomethylating effect of BPA was prevented by maternal dietary supplementation with a methyl donor like folic acid or the phytoestrogen genistein. Histone H3 was found to be trimethylated at lysine 27 by BPA effect on EZH2 in a human breast cancer cell line and mice. BPA exposure of human placental cell lines has been shown to alter microRNA expression levels, and specifically, miR-146a was strongly induced by BPA treatment. In human breast cancer MCF7 cells, treatment with the phthalate BBP led to demethylation of estrogen receptor (ESR1 promoter-associated CpG islands, indicating that altered ESR1 mRNA expression by BBP is due to aberrant DNA methylation. Maternal exposure to phthalate DEHP was also shown to increase DNA methylation and expression levels of DNA methyltransferases in mouse testis. Further, some epigenetic effects of BPA and phthalates in female rats were found to be transgenerational. Finally, the available new technologies for global analysis of epigenetic alterations will provide insight into the extent and patterns of alterations between human normal and diseased tissues.

  19. PHYSICO-CHEMICAL PROPERTIES OF THE SOLID AND LIQUID WASTE PRODUCTS FROM THE HEAVY METAL CONTAMINATED ENERGY CROPS GASIFICATION PROCESS

    Directory of Open Access Journals (Sweden)

    Sebastian Werle

    2017-02-01

    Full Text Available The paper presents the results of basic physico-chemical properties of solid (ash and liquid (tar waste products of the gasification process of the heavy metal contaminated energy crops. The gasification process has carried out in a laboratory fixed bed reactor. Three types of energy crops: Miscanthus x giganteus, Sida hermaphrodita and Spartina Pectinata were used. The experimental plots were established on heavy metal contaminated arable land located in Bytom (southern part of Poland, Silesian Voivodship.

  20. Chemical characteristics of urban stormwater sediments and implications for environmental management, Maricopa County, Arizona

    Science.gov (United States)

    Parker, J.T.C.; Fossum, K.D.; Ingersoll, T.L.

    2000-01-01

    Investigations of the chemical characteristics of urban stormwater sediments in the rapidly growing Phoenix metropolitan area of Maricopa County, Arizona, showed that the inorganic component of these sediments generally reflects geologic background values. Some concentrations of metals were above background values, especially cadmium, copper, lead, and zinc, indicating an anthropogenic contribution of these elements to the sediment chemistry. Concentrations, however, were not at levels that would require soil remediation according to guidelines of the U.S. Environmental Protection Agency. Arsenic concentrations generally were above recommended values for remediation at a few sites, but these concentrations seem to reflect geologic rather than anthropogenic factors. Several organochlorine compounds no longer in use were ubiquitous in the Phoenix area, although concentrations generally were low. Chlordane, DDT and its decay products DDE and DDD, dieldrin, toxaphene, and PCBs were found at almost all sites sampled, although some of the pesticides in which these compounds are found have been banned for almost 30 years. A few sites showed exceptionally high concentrations of organochlorine compounds. On the basis of published guidelines, urban stormwater sediments do not appear to constitute a major regional environmental problem with respect to the chemical characteristics investigated here. At individual sites, high concentrations of organic compounds - chlordane, dieldrin, PCBs, and toxaphene - may require some attention. The possible environmental hazard presented by low-level organochlorine contamination is not addressed in this paper; however, high levels of toxicity in urban sediments are difficult to explain. Sediment toxicity varied significantly with time, which indicates that these tests should be evaluated carefully before they are used for management decisions.Investigations of the chemical characteristics of urban stormwater sediments in the rapidly

  1. Microbial sulfolane degradation by environmental organisms isolated from contaminated sour gas plant sediments

    Energy Technology Data Exchange (ETDEWEB)

    Greene, E.A.

    1999-08-01

    The removal of hydrogen sulfide from oil and natural gas is critical for the petroleum industry because it causes corrosion of oil recovery equipment, pipelines, and storage tanks. It can also lead to the corrosion of concrete and is highly toxic. Depending on the concentration of hydrogen sulfide, carbon dioxide and other gas souring compounds such as mercaptans, different sweetening processes are used for gas treatment, including chemical processes or physical solvents. Chemical processes involve a chemical interaction between the sour components in oil or natural gas and the sweetening compound. In physical gas sweetening processes, the sour components in a physical solvent are dissolved to separate them from the gas. The Sulfinol gas sweetening technique, which is used worldwide, involves a combination of both physical and chemical processes. The chemical solvent used in the Sulfinol gas sweetening process is diisopropanolamine (DIPA). The physical solvent used in the Sulfinol process in Sulfolane which makes it possible to absorb more carbon dioxide in an amine and water mixture. Sulfolane is stable at high temperatures and has entered groundwaters and aquifers through spills, landfills and unlined surface storage ponds. It poses a risk for off-site contamination because of its high water solubility. This thesis presented a laboratory study that examined the sulfolane degradation potential in contaminated aquifer sediments from three sites. Sulfolane-degrading populations were detected in microcosms inoculated with site materials and their nutrient requirements were assessed. The second part of the study focused on better understanding sulfolane biodegradation, particularly the extent of mineralization of the compound by microbial populations and the types of bacteria that can degrade sulfolane. All samples degraded sulfolane aerobically. Anaerobic sulfolane biodegradation occurred in some NO{sub 3} and Mn(IV)-reducing microcosms. Future work will focus on

  2. Unravelling a 'miner's myth' that environmental contamination in mining towns is naturally occurring.

    Science.gov (United States)

    Kristensen, Louise Jane; Taylor, Mark Patrick

    2016-08-01

    Australia has a long history of metal mining and smelting. Extraction and processing have resulted in elevated levels of toxic metals surrounding mining operations, which have adverse health effects, particularly to children. Resource companies, government agencies and employees often construct 'myths' to down play potential exposure risks and responsibility arising from operating emissions. Typical statements include: contaminants are naturally occurring, the wind blows emissions away from residential areas, contaminants are not bioavailable, or the problem is a legacy issue and not related to current operations. Evidence from mining and smelting towns shows that such 'myths' are exactly that. In mining towns, the default and primary defence against contamination is that elevated metals in adjacent urban environments are from the erosion and weathering of the ore bodies over millennia-hence 'naturally occurring'. Not only is this a difficult argument to unravel from an evidence-based perspective, but also it causes confusion and delays remediation work, hindering efforts to reduce harmful exposures to children. An example of this situation is from Broken Hill, New South Wales, home to one of the world's largest lead-zinc-silver ore body, which has been mined continuously for over 130 years. Environmental metal concentration and lead isotopic data from soil samples collected from across Broken Hill are used to establish the nature and timing of lead contamination. We use multiple lines of evidence to unravel a 'miner's myth' by evaluating current soil metal concentrations and lead isotopic compositions, geological data, historical environmental assessments and old photographic evidence to assess the impacts from early smelting along with mining to the surface soils in the city.

  3. Preliminary screening of alternative technologies to incineration for treatment of chemical-agent-contaminated soil, Rocky Mountain Arsenal

    Energy Technology Data Exchange (ETDEWEB)

    Shem, L.M.; Rosenblatt, D.H.; Smits, M.P.; Wilkey, P.L.; Ballou, S.W.

    1995-12-01

    In support of the U.S. Army`s efforts to determine the best technologies for remediation of soils, water, and structures contaminated with pesticides and chemical agents, Argonne National Laboratory has reviewed technologies for treating soils contaminated with mustard, lewisite, sarin, o-ethyl s-(2- (diisopropylamino)ethyl)methyl-phosphonothioate (VX), and their breakdown products. This report focuses on assessing alternatives to incineration for dealing with these contaminants. For each technology, a brief description is provided, its suitability and constraints on its use are identified, and its overall applicability for treating the agents of concern is summarized. Technologies that merit further investigation are identified.

  4. Analytical Applications of Nanomaterials in Monitoring Biological and Chemical Contaminants in Food.

    Science.gov (United States)

    Lim, Min-Cheol; Kim, Young-Rok

    2016-09-28

    The detection of food pathogens is an important aspect of food safety. A range of detection systems and new analytical materials have been developed to achieve fast, sensitive, and accurate monitoring of target pathogens. In this review, we summarize the characteristics of selected nanomaterials and their applications in food, and place focus on the monitoring of biological and chemical contaminants in food. The unique optical and electrical properties of nanomaterials, such as gold nanoparticles, nanorods, quantum dots, carbon nanotubes, graphenes, nanopores, and polydiacetylene nanovesicles, are closely associated with their dimensions, which are comparable in scale to those of targeted biomolecules. Furthermore, their optical and electrical properties are highly dependent on local environments, which make them promising materials for sensor development. The specificity and selectivity of analytical nanomaterials for target contaminants can be achieved by combining them with various biological entities, such as antibodies, oligonucleotides, aptamers, membrane proteins, and biological ligands. Examples of nanomaterial-based analytical systems are presented together with their limitations and associated developmental issues.

  5. The status of soil contamination by semivolatile organic chemicals (SVOCs) in China: A review

    Energy Technology Data Exchange (ETDEWEB)

    Cai Quanying [College of Resources and Environment, South China Agricultural University, Guangzhou 510642 (China)], E-mail: cai_quanying@yahoo.com; Mo Cehui [Department of Environmental Engineering, Jinan University, Guangzhou 510632 (China)], E-mail: tchmo@jnu.edu.cn; Wu Qitang [College of Resources and Environment, South China Agricultural University, Guangzhou 510642 (China); Katsoyiannis, Athanasios [European Commission, Joint Research Centre, Institute for Health and Consumer Protection (IHCP), Physical and Chemical Exposure Unit, Ispra (Vatican City State, Holy See,), TP-281, Via E. Fermi 1, I-21020 (Italy)], E-mail: athanasios.katsogiannis@jrc.it; Zeng Qiaoyun [College of Resources and Environment, South China Agricultural University, Guangzhou 510642 (China)

    2008-01-25

    This paper summarizes the published scientific data on the soil contamination by semivolatile organic chemicals (SVOCs) in China. Data has been found for more than 150 organic compounds which were grouped into six classes, namely, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs) and phthalic acid esters (PAEs). An overview of data collected from the literature is presented in this paper. The Chinese regulation and/or other maximum acceptable values for SVOCs were used for the characterization of soils. In general, the compounds that are mostly studied in Chinese soils are OCPs, PAHs and PCBs. According to the studies reviewed here, the most abundant compounds were PAEs and PAHs (up to 46 and 28 mg kg{sup -1} dry weight, respectively); PCBs and OCPs occurred generally at concentrations lower than 100 {mu}g kg{sup -1} dry weight. Nevertheless, quite high concentrations of PCDD/Fs, PCBs and PBDEs were observed in contaminated sites (e.g., the sites affected by electronic waste activities). The average concentrations of PAHs and OCPs in soils of North China were higher than those in South China. The principal component analysis demonstrated different distribution patterns for PAH, PCB and PCDD/F congeners and for the various sites/regions examined. The isomer ratios of DDTs and hexachlorocyclohexanes (HCHs) indicated different sources and residue levels in soils. Finally, this review has highlighted several areas where further research is considered necessary.

  6. The impact of semiconductor, electronics and optoelectronic industries on downstream perfluorinated chemical contamination in Taiwanese rivers

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Angela Yu-Chen [National Taiwan University, Graduate Institute of Environmental Engineering, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China)], E-mail: yuchenlin@ntu.edu.tw; Panchangam, Sri Chandana; Lo, Chao-Chun [National Taiwan University, Graduate Institute of Environmental Engineering, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China)

    2009-04-15

    This study provides the first evidence on the influence of the semiconductor and electronics industries on perfluorinated chemicals (PFCs) contamination in receiving rivers. We have quantified ten PFCs, including perfluoroalkyl sulfonates (PFASs: PFBS, PFHxS, PFOS) and perfluoroalkyl carboxylates (PFCAs: PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnA, PFDoA) in semiconductor, electronic, and optoelectronic industrial wastewaters and their receiving water bodies (Taiwan's Keya, Touchien, and Xiaoli rivers). PFOS was found to be the major constituent in semiconductor wastewaters (up to 0.13 mg/L). However, different PFC distributions were found in electronics plant wastewaters; PFOA was the most significant PFC, contributing on average 72% to the effluent water samples, followed by PFOS (16%) and PFDA (9%). The distribution of PFCs in the receiving rivers was greatly impacted by industrial sources. PFOS, PFOA and PFDA were predominant and prevalent in all the river samples, with PFOS detected at the highest concentrations (up to 5.4 {mu}g/L). - The semiconductor, electronics and optoelectronic industries are the primary source of PFC contamination in downstream aqueous environments.

  7. Occupational exposure assessment of airborne chemical contaminants among professional ski waxers.

    Science.gov (United States)

    Freberg, Baard Ingegerdsson; Olsen, Raymond; Daae, Hanne Line; Hersson, Merete; Thorud, Syvert; Ellingsen, Dag G; Molander, Paal

    2014-06-01

    Ski waxes are applied onto the skis to improve the performance. They contain different chemical substances, e.g. perfluoro-n-alkanes. Due to evaporation and sublimation processes as well as mechanically generated dust, vapours, fumes, and particulates can contaminate the workroom atmosphere. The number of professional ski waxers is increasing, but occupational exposure assessments among professional ski waxers are lacking. The aim was to assess exposure to airborne chemical contaminants among professional ski waxers. It was also a goal to construct a ventilation system designed for ski waxing work operations. Forty-five professional ski waxers were included. Personal measurements of the inhalable and the respirable aerosol mass fractions were executed in 36 different waxing cabins using Conical Inhalable Sampler cassettes equipped with 37-mm PVC filters (5 µm) and Casella respirable cyclones equipped with 37-mm PVC filters (0.8 µm), respectively. Volatile organic components were collected using Anasorb CSC charcoal tubes. To examine time trends in exposure patterns, stationary real-time measurements of the aerosol mass fractions were conducted using a direct-reading Respicon® sampler. Mean aerosol particle mass concentrations of 3.1 mg·m(-3) (range: 0.2-12.0) and 6.2 mg·m(-3) (range: 0.4-26.2) were measured in the respirable and inhalable aerosol mass fractions, respectively. Real-time aerosol sampling showed large variations in particle concentrations, with peak exposures of ~10 and 30 mg·m(-3) in the respirable and the inhalable aerosol particle mass fractions, respectively. The custom-made ventilation system reduced the concentration of all aerosol mass fractions by more than 90%. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  8. Artisanal alcohol production in Mayan Guatemala: Chemical safety evaluation with special regard to acetaldehyde contamination

    Energy Technology Data Exchange (ETDEWEB)

    Kanteres, Fotis [Centre for Addiction and Mental Health (CAMH), 33 Russell Street, ARF 2035, Toronto, ON, Canada, M5S 2 S1 (Canada); Rehm, Juergen [Centre for Addiction and Mental Health (CAMH), 33 Russell Street, ARF 2035, Toronto, ON, Canada, M5S 2 S1 (Canada); Dalla Lana School of Public Health, University of Toronto, 155 College Street, Toronto, ON, Canada, M5T 3 M7 (Canada); Institute for Clinical Psychology and Psychotherapy, TU Dresden, Chemnitzer Strasse 46, D-01187 Dresden (Germany); Lachenmeier, Dirk W., E-mail: Lachenmeier@web.de [Chemisches und Veterinaeruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, D-76187 Karlsruhe (Germany)

    2009-11-01

    There is a lack of knowledge regarding the composition, production, distribution, and consumption of artisanal alcohol, particularly in the developing world. In Nahuala, an indigenous Mayan municipality located in highland Guatemala, heavy alcohol consumption appears to have had a significant negative impact on health, a major role in cases of violence and domestic abuse, and a link to street habitation. Cuxa, an artisanally, as well as commercially produced sugarcane alcohol, is widely consumed by heavy drinkers in this community. Cuxa samples from all distribution points in the community were obtained and chemically analyzed for health-relevant constituents and contaminants including methanol, acetaldehyde, higher alcohols, and metals. From those, only acetaldehyde was confirmed to be present in unusually high levels (up to 126 g/hl of pure alcohol), particularly in samples that were produced clandestinely. Acetaldehyde has been evaluated as 'possibly carcinogenic' and has also been identified as having significant human exposure in a recent risk assessment. This study explores the reasons for the elevated levels of acetaldehyde, through both sampling and analyses of raw and intermediary products of cuxa production, as well as interviews from producers of the clandestine alcohol. For further insight, we experimentally produced this alcohol in our laboratory, based on the directions provided by the producers, as well as materials from the town itself. Based on these data, the origin of the acetaldehyde contamination appears to be due to chemical changes induced during processing, with the major causative factors consisting of poor hygiene, aerobic working conditions, and inadequate yeast strains, compounded by flawed distillation methodology that neglects separation of the first fractions of the distillate. These results indicate a preventable public health concern for consumers, which can be overcome through education about good manufacturing practices

  9. (Environmental investigation of ground water contamination at Wright- Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This Health and Safety Plan (HSP) was developed for the Environmental Investigation of Ground-water Contamination Investigation at Wright-Patterson Air Force Base near Dayton, Ohio, based on the projected scope of work for the Phase 1, Task 4 Field Investigation. The HSP describes hazards that may be encountered during the investigation, assesses the hazards, and indicates what type of personal protective equipment is to be used for each task performed. The HSP also addresses the medical monitoring program, decontamination procedures, air monitoring, training, site control, accident prevention, and emergency response.

  10. Lead: Aspects of its ecology and environmental toxicity. [physiological effects of lead compound contamination of environment

    Science.gov (United States)

    Siegel, S. M.

    1973-01-01

    An analysis of lead toxicity in the Hawaiian environment was conducted. It was determined that lead enters the environment as an industrial contaminant resulting from the combustion of leaded gasoline. The amount of lead absorbed by the plants in various parts of the Hawaiian Islands is reported. The disposition of lead in the sediments of canals and yacht basins was investigated. The methods for conducting the surveys of lead content are described. Possible consequences of continued environmental pollution by burning leaded gasoline are discussed.

  11. The Matthew effect in environmental science publication: a bibliometric analysis of chemical substances in journal articles

    National Research Council Canada - National Science Library

    Grandjean, Philippe; Eriksen, Mette L; Ellegaard, Ole; Wallin, Johan A

    2011-01-01

    .... In a bibliometric analysis, we used SciFinder to extract Chemical Abstract Service (CAS) numbers for chemicals addressed by publications in the 78 major environmental science journals during 2000-2009...

  12. Incorporating biomarkers in ecological risk assessment of chemical contaminants of soils

    Directory of Open Access Journals (Sweden)

    A. J. Reinecke

    2007-09-01

    Full Text Available Soil is an important but complex natural resource which is increasingly used as sink for chemicals. The monitoring of soil quality and the assessment of risks posed by contaminants have become crucial. This study deals with the potential use of biomarkers in the monitoring of soils and the assessment of risk resulting from contamination. Apart from an overview of the existing literature on biomarkers, the results of various of our field experiments in South African soils are discussed. Biomarkers may have potential in the assessment of risk because they can indicate at an early stage that exposure has taken place and that a toxic response has been initiated. It is therefore expected that early biomarkers will play an increasing role as diagnostic tools for determining exposure to chemicals and the resulting effects. They may have predictive value that can assist in the prevention or minimising of risks. The aim of this study was to investigate the possibilities of using our results on biomarker responses of soil dwelling organisms to predict changes at higher organisational levels (which may have ecological implications. Our recent experimental results on the evaluation of various biomarkers in both the laboratory and the field are interpreted and placed in perspective within the broader framework of response biology. The aim was further to contribute to the development and application of biomarkers in regulatory risk assessment schemes of soils. This critical review of our own and recent literature on biomarkers in ecotoxicology leads to the conclusion that biomarkers can, under certain conditions, be useful tools in risk assessment. Clear relationships between contamination loads in soil organisms and certain biomarker responses were determined in woodlice, earthworms and terrestrial snails. Clear correlations were also established in field experiments between biomarker responses and changes at the population level. This indicated that, in

  13. Environmental contaminants of honeybee products in Uganda detected using LC-MS/MS and GC-ECD.

    Directory of Open Access Journals (Sweden)

    Deborah Ruth Amulen

    Full Text Available Pollinator services and the development of beekeeping as a poverty alleviating tool have gained considerable focus in recent years in sub-Saharan Africa. An improved understanding of the pervasive environmental extent of agro-chemical contaminants is critical to the success of beekeeping development and the production of clean hive products. This study developed and validated a multi-residue method for screening 36 pesticides in honeybees, honey and beeswax using LC-MS/MS and GC-ECD. Of the 36 screened pesticides, 20 were detected. The highest frequencies occurred in beeswax and in samples from apiaries located in the proximity of citrus and tobacco farms. Fungicides were the most prevalent chemical class. Detected insecticides included neonicotinoids, organophosphates, carbamates, organophosphorus, tetrazines and diacylhydrazines. All detected pesticide levels were below maximum residue limits (according to EU regulations and the lethal doses known for honeybees. However, future risk assessment is needed to determine the health effects on the African genotype of honeybees by these pesticide classes and combinations of these. In conclusion, our data present a significant challenge to the burgeoning organic honey sector in Uganda, but to achieve this, there is an urgent need to regulate the contact routes of pesticides into the beehive products. Interestingly, the "zero" detection rate of pesticides in the Mid-Northern zone is a significant indicator of the large potential to promote Ugandan organic honey for the export market.

  14. Do interactions between gut ecology and environmental chemicals contribute to obesity and diabetes?

    Science.gov (United States)

    Snedeker, Suzanne M; Hay, Anthony G

    2012-03-01

    Gut microbiota are important factors in obesity and diabetes, yet little is known about their role in the toxicodynamics of environmental chemicals, including those recently found to be obesogenic and diabetogenic. We integrated evidence that independently links gut ecology and environmental chemicals to obesity and diabetes, providing a framework for suggesting how these environmental factors may interact with these diseases, and identified future research needs. We examined studies with germ-free or antibiotic-treated laboratory animals, and human studies that evaluated how dietary influences and microbial changes affected obesity and diabetes. Strengths and weaknesses of studies evaluating how environmental chemical exposures may affect obesity and diabetes were summarized, and research gaps on how gut ecology may affect the disposition of environmental chemicals were identified. Mounting evidence indicates that gut microbiota composition affects obesity and diabetes, as does exposure to environmental chemicals. The toxicology and pharmacology literature also suggests that interindividual variations in gut microbiota may affect chemical metabolism via direct activation of chemicals, depletion of metabolites needed for biotransformation, alteration of host biotransformation enzyme activities, changes in enterohepatic circulation, altered bioavailability of environmental chemicals and/or antioxidants from food, and alterations in gut motility and barrier function. Variations in gut microbiota are likely to affect human toxicodynamics and increase individual exposure to obesogenic and diabetogenic chemicals. Combating the global obesity and diabetes epidemics requires a multifaceted approach that should include greater emphasis on understanding and controlling the impact of interindividual gut microbe variability on the disposition of environmental chemicals in humans.

  15. Physico-chemical treatments for removal of recalcitrant contaminants from landfill leachate.

    Science.gov (United States)

    Kurniawan, Tonni Agustiono; Lo, Wai-Hung; Chan, Gilbert Y S

    2006-02-28

    In this paper, the technical applicability and treatment performance of physico-chemical techniques (individual and/or combined) for landfill leachate are reviewed. A particular focus is given to coagulation-flocculation, chemical precipitation, ammonium stripping, membrane filtration and adsorption. The advantages and limitations of various techniques are evaluated. Their operating conditions such as pH, dose required, characteristics of leachate in terms of chemical oxygen demand (COD) and NH3-N concentration and treatment efficiency are compared. It is evident from the survey of 118 papers (1983-2005) that none of the individual physico-chemical techniques is universally applicable or highly effective for the removal of recalcitrant compounds from stabilized leachate. Among the treatments reviewed in this article, adsorption, membrane filtration and chemical precipitation are the most frequently applied and studied worldwide. Both activated carbon adsorption and nanofiltration are effective for over 95% COD removal with COD concentrations ranging from 5690 to 17,000 mg/L. About 98% removal of NH3-N with an initial concentration ranging from 3260 to 5618 mg/L has been achieved using struvite precipitation. A combination of physico-chemical and biological treatments has demonstrated its effectiveness for the treatment of stabilized leachate. Almost complete removal of COD and NH3-N has been accomplished by a combination of reverse osmosis (RO) and an upflow anaerobic sludge blanket (UASB) with an initial COD concentration of 35,000 mg/L and NH3-N concentration of 1600 mg/L and/or RO and activated sludge with an initial COD concentration of 6440 mg/L and NH3-N concentration of 1153 mg/L. It is important to note that the selection of the most suitable treatment method for landfill leachate depends on the characteristics of landfill leachate, technical applicability and constraints, effluent discharge alternatives, cost-effectiveness, regulatory requirements and

  16. Biological markers in animals can provide information on exposure and bioavailability of environmental contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Shugart, L.R.; Adams, S.M.; Jimenez, B.D.; Talmage, S.S.; McCarthy, J.F.

    1987-01-01

    Epidemiologic studies of agents present in the environment seek to identify the extent to which they contribute to the causation of a specific toxic, clinical, or pathological endpoint. The multifactorial nature of disease etiology, long latency periods and the complexity of exposure, all contribute to the difficulty of establishing associations and casual relationships between a specific exposure and an adverse outcome. These barriers to studies of exposures and subsequent risk assessment cannot generally be changed. However, the appropriate use of biological markers in animal species living in a contaminated habitat can provide a measure of potential damage from that exposure and, in some instances, act as a surrogate for human environmental exposures. Quantitative predictivity of the effect of exposure to environmental pollutants is being approached by employing an appropriate array of biological end points. 34 refs., 1 fig., 6 tabs.

  17. Comparison of the effectiveness of soil heating prior or during in situ chemical oxidation (ISCO) of aged PAH-contaminated soils.

    Science.gov (United States)

    Ranc, Bérénice; Faure, Pierre; Croze, Véronique; Lorgeoux, Catherine; Simonnot, Marie-Odile

    2017-04-01

    Thermal treatments prior or during chemical oxidation of aged polycyclic aromatic hydrocarbon (PAH)-contaminated soils have already shown their ability to increase oxidation effectiveness. However, they were never compared on the same soil. Furthermore, oxygenated polycyclic aromatic hydrocarbons (O-PACs), by-products of PAH oxidation which may be more toxic and mobile than the parent PAHs, were very little monitored. In this study, two aged PAH-contaminated soils were heated prior (60 or 90 °C under Ar for 1 week) or during oxidation (60 °C for 1 week) with permanganate and persulfate, and 11 O-PACs were monitored in addition to the 16 US Environmental Protection Agency (US EPA) PAHs. Oxidant doses were based on the stoichiometric oxidant demand of the extractable organic fraction of soils by using organic solvents, which is more representative of the actual contamination than only the 16 US EPA PAHs. Higher temperatures actually resulted in more pollutant degradation. Two treatments were about three times more effective than the others: soil heating to 60 °C during persulfate oxidation and soil preheating to 90 °C followed by permanganate oxidation. The results of this study showed that persulfate effectiveness was largely due to its thermal activation, whereas permanganate was more sensitive to PAH availability than persulfate. The technical feasibility of these two treatments will soon be field-tested in the unsaturated zone of one of the studied aged PAH-contaminated soils.

  18. Occurrence and Assessment of Chemical Contaminants in Drinking Water in Tunceli, Turkey

    Directory of Open Access Journals (Sweden)

    Veysel Demir

    2013-01-01

    Full Text Available The objective of this study was to analyze drinking water samples from 21 sites in the city center and seven municipalities of Tunceli, Turkey, in order to determine the presence of nitrate, nitrite, fluoride, bromate, pesticides, polycyclic aromatic hydrocarbons (PAHs, trihalomethanes (THMs, and some other chemicals. In all locations, the concentrations of chemicals investigated were below the permissible limits set by local and international organizations for drinking water. Low levels of nitrate (4.79 ± 4.20 mg/L, fluoride (0.11 ± 0.08 mg/L, and THMs (6.63 ± 5.14 μg/L were detected in all locations. A low level of tetra, chloroethane, which is suspected to be a human carcinogen, was also detected in 8 locations in the range of 0.26–0.43 μg/L. These contaminants may pose adverse health effects or minimum hazard due to long-term exposure. In all locations, bromate, benzene, total PAH, 1-2 dichloroethane, vinyl chloride, acrylamide, and epichloridine levels in drinking water samples were under detection limits.

  19. Effects of prevalent freshwater chemical contaminants on in vitro growth of Escherichia coli and Klebsiella pneumoniae

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, James [USDA-ARS, Bldg 173, 10300 Baltimore Ave., Beltsville, MD 20705 (United States)], E-mail: tarbandu12@juno.com; Hohn, Christina [NCSU College of Veterinary Medicine, Raleigh, NC 27606 (United States)

    2008-03-15

    Many surface and ground waters in the continental US are contaminated with a variety of chemical pollutants, which are usually present in concentrations in the ppm and ppb range. The effects of these pollutants on coliform bacteria, which are prominent members of the aquatic flora, are poorly understood. Using a microtiter plate assay, isolates of Escherichia coli (from chicken intestine and fresh water), and an isolate of Klebsiella pneumoniae (from bovine milk) were exposed to varying concentrations of common pollutants over a 24 h period. The herbicides/pesticides simazine, atrazine, and diazinon; the VOCs trichloroethene and MTBE; the estrogens estradiol and estrone; and caffeine, all failed to inhibit bacterial growth at ppm levels. Only ethylene glycol, and the herbicide 2,4-D, significantly inhibited bacterial growth compared to controls. These results suggest that the replication of coliform bacteria in fresh waters is not adversely impacted by many common pollutants. - Using a microtiter plate assay, E. coli and Klebsiella bacteria were exposed to a panel of common chemical pollutants of fresh water; only ethylene glycol and 2,4-D inhibited bacterial replication.

  20. Comparative Studies on Methane Upgradation of Biogas by Removing of Contaminant Gases Using Combined Chemical Methods

    Directory of Open Access Journals (Sweden)

    Muhammad Rashed Al Mamun

    2015-07-01

    Full Text Available Biogas, which generated from renewable sources can be used as a sustainable energy to achieve resourceful targets of biofuel for internal combustion engines. This process can be achieved in combined absorption and adsorption chemical way. This method can be employed by aqueous solutions of calcium hydroxide, activated carbon, iron(II chloride, silica gel and sodium sulfate respectively. The presence of CO2, H2S and H2O in the biogas has lowering the calorific value and detrimental corrosion effects on the metal components. Removal of these contaminants from the biogas can therefore significantly improve the gas quality. A comparison study was investigated using combined chemical methods of improving the calorific value of biogas. Experiment results revealed that the aqueous solution used effectively in reacting with CO2 in biogas (over 85-90% removal efficiency, creating CH4 enriched biogas. The removal efficiency was the highest in method 1, where efficiency results were 91.5%, 97.1% and 91.8%, for CO2, H2S, and H2O, respectively. The corresponding CH4 enrichment was 97.5%. These results indicate that the method 1 is more suitable compare to method 2. However, both methane enrichment processes might be useful for cleaning and upgrading methane quality in biogas.

  1. Environmental Risk of Metal Mining Contaminated River Bank Sediment at Redox-Transitional Zones

    Directory of Open Access Journals (Sweden)

    Sarah F. L. Lynch

    2014-01-01

    Full Text Available Diffuse metal pollution from mining impacted sediment is widely recognised as a potential source of contamination to river systems and may significantly hinder the achievement of European Union Water Framework Directive objectives. Redox-transitional zones that form along metal contaminated river banks as a result of flood and drought cycles could cause biogeochemical changes that alter the behaviour of polyvalent metals iron and manganese and anions such as sulphur. Trace metals are often partitioned with iron, manganese and sulphur minerals in mining-contaminated sediment, therefore the dissolution and precipitation of these minerals may influence the mobility of potentially toxic trace metals. Research indicates that freshly precipitated metal oxides and sulphides may be more “reactive” (more adsorbent and prone to dissolution when conditions change than older crystalline forms. Fluctuations at the oxic-anoxic interface brought about through changes in the frequency and duration of flood and drought episodes may therefore influence the reactivity of secondary minerals that form in the sediment and the flux of dissolved trace metal release. UK climate change models predict longer dry periods for some regions, interspersed with higher magnitude flood events. If we are to fully comprehend the future environmental risk these climate change events pose to mining impacted river systems it is recommended that research efforts focus on identifying the primary controls on trace metal release at the oxic-anoxic interface for flood and drought cycles of different duration and frequency. This paper critically reviews the literature regarding biogeochemical processes that occur at different temporal scales during oxic, reducing and dry periods and focuses on how iron and sulphur based minerals may alter in form and reactivity and influence the mobility of trace metal contaminants. It is clear that changes in redox potential can alter the composition

  2. Environmental remediation through sequestration of airfall-derived metals contamination by selective revegetation strategies

    Science.gov (United States)

    Sahagian, D.; Peters, S.; Yasko, G.

    2006-12-01

    Industrial activities in the 20th century left a legacy of contaminated air, water, and soils. The relative environmental enlightenment of the 21st century has already led to reductions in pollution sources, and has improved air and surface water quality in many areas. However, the residence time of contaminants in soils can be lengthy, presenting a challenge to 21st century restoration of impacted ecosystems and communities. The present study is centered on the Borough of Palmerton, PA, and a broad region of adjacent communities that were affected by two zinc smelters that operated continuously for more than 80 years, emitting thousands of tons of heavy metals including zinc, cadmium, lead and arsenic. While the air quality has vastly improved since the closure of the zinc smelters, the community remains adversely affected by the ecological damage caused by the pollution. The north face of the Kittatiny ridge was completely denuded of vegetation from the high metals concentrations. The region suffers further due to the ongoing perception of contaminated soils and water, leaving the town and surrounding areas economically depressed. In this study, we are examining the impact of revegetation strategies, particularly those using warm season grasses to determine which species survive and indeed thrive in the metals-contaminated soils. Because of the large areal extent and locally steep slopes in the broad area of concern, removal of metals from the entire region is impractical. It is considered more effective to sequester the metals in the soil so that they do not leach into the rivers, or enter the food web. Vegetation that absorbs and transports the metals throughout its tissues would mobilize these pollutants into the food web as well as make the metals available to reach the river via leaves and other vegetative structures. In this study, we are monitoring the uptake of metals by test grasses and other plants that are colonizing the contaminated area, as well as

  3. Electrokinetic-enhanced bioremediation of organic contaminants: a review of processes and environmental applications.

    Science.gov (United States)

    Gill, R T; Harbottle, M J; Smith, J W N; Thornton, S F

    2014-07-01

    There is current interest in finding sustainable remediation technologies for the removal of contaminants from soil and groundwater. This review focuses on the combination of electrokinetics, the use of an electric potential to move organic and inorganic compounds, or charged particles/organisms in the subsurface independent of hydraulic conductivity; and bioremediation, the destruction of organic contaminants or attenuation of inorganic compounds by the activity of microorganisms in situ or ex situ. The objective of the review is to examine the state of knowledge on electrokinetic bioremediation and critically evaluate factors which affect the up-scaling of laboratory and bench-scale research to field-scale application. It discusses the mechanisms of electrokinetic bioremediation in the subsurface environment at different micro and macroscales, the influence of environmental processes on electrokinetic phenomena and the design options available for application to the field scale. The review also presents results from a modelling exercise to illustrate the effectiveness of electrokinetics on the supply electron acceptors to a plume scale scenario where these are limiting. Current research needs include analysis of electrokinetic bioremediation in more representative environmental settings, such as those in physically heterogeneous systems in order to gain a greater understanding of the controlling mechanisms on both electrokinetics and bioremediation in those scenarios. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Functional magnetic nanoshells integrated nanosensor for trace analysis of environmental uranium contamination

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Reshmi [Nanobioengineering/Bioelectronics Lab, Department of Biomedical Engineering, Florida International University, 10555 W. Flagler Street, Miami, FL 33174 (United States); Katsenovich, Yelena; Lagos, Leonel [Applied Research Center, Florida International University, 10555 W. Flagler Street, Miami, FL 33174 (United States); Senn, Mark [Department of Chemistry, University of Texas at El Paso, TX (United States); Naja, Melodie [Everglades Foundation, 18001 Old Cutler Road, Palmetto Bay, FL 33157 (United States); Balsamo, Vittoria [Dpto. Ciencias de los Materiales, Universidad Simon Bolivar, Valle de Sartenejas, Baruta 1080, Edo. Miranda, Caracas (Venezuela, Bolivarian Republic of); Pannell, Keith H. [Department of Chemistry, University of Texas at El Paso, TX (United States); Li Chenzhong, E-mail: licz@fiu.ed [Nanobioengineering/Bioelectronics Lab, Department of Biomedical Engineering, Florida International University, 10555 W. Flagler Street, Miami, FL 33174 (United States)

    2010-11-30

    Transuranic radionuclides such as uranium tend to be a pervasive environmental contaminant. It is absorbed through the intestine or a lung, deposited in the tissues, predominantly kidney and bone, and is carcinogenic. A novel nanosensor system has been developed for voltammetric tracing of environmental uranium contamination. The sensor consists of an organophosphorous ligand, (t-butylphenyl)-N,N-di-(isobutyl) carbamoylmethylphosphineoxide (CMPO) functionalized superparamagnetic core-shell magnetic nanoparticles and magnet based electrodes. It exploits the natural affinity of uranium for phosphate molecules to fabricate a highly specific and reproducible sensor. The small dimension along with a dramatically increased contact surface has lead to a faster response and higher sensitivity. The system uses an external magnetic field gradient for preconcentration and removal of the analyte from the surrounding aqueous media. The redox properties of the analyte are exploited for enumeration of variables by electrochemical techniques such as square wave voltammetry. The detection limit of the system is observed to be in parts-per-billion (ppb) of the uranyl concentration.

  5. Environmental contaminants and chromosomal damage associated with beak deformities in a resident North American passerine

    Science.gov (United States)

    Handel, Colleen M.; Van Hemert, Caroline R.

    2015-01-01

    A large cluster of beak abnormalities among black-capped chickadees (Poecile atricapillus) in Alaska raised concern about underlying environmental factors in this region. Metals and trace elements, organochlorine pesticides, polychlorinated biphenyls (PCBs), and polychlorinated dibenzo-dioxins and polychlorinated dibenzofurans (PCDD-Fs) were analyzed in adults, nestlings, and eggs of the affected population; local bird seed was also tested for organochlorine pesticides. The results offered no support for the hypothesis that selenium or any other inorganic element was responsible for beak deformities among chickadees, but some evidence that organochlorine compounds may be contributing factors. Adults with beak deformities had an elevated level of chromosomal damage, which was correlated with lipid level and concentrations of several organochlorine compounds. Multivariate analyses of pesticides and PCBs did not distinguish abnormal from normal adults, but subsequent univariate analysis demonstrated higher concentrations of heptachlor epoxide and PCB-123 in abnormal adults. Concentrations of all organochlorine compounds were low, and none is known to cause beak or keratin abnormalities. Patterns of PCB congener concentrations differed between nestlings with normal and abnormal parents. Eggs from clutches with low hatchability had higher concentrations of hexachlorobenzene and PCDD-Fs than those with high hatching success, and hexachlorobenzene was found in seeds. Additional testing for PCDD-Fs, polycyclic aromatic hydrocarbons, and other emerging contaminants, including brominated compounds, is needed to rule out environmental contaminants as a cause of beak deformities in chickadees in Alaska.

  6. Environmental contamination and external radiation dose rates from radionuclides released from the Fukushima Nuclear Power Plant.

    Science.gov (United States)

    Taira, Yasuyuki; Hayashida, Naomi; Yamashita, Shunichi; Kudo, Takashi; Matsuda, Naoki; Takahashi, Jumpei; Gutevitc, Alexander; Kazlovsky, Alexander; Takamura, Noboru

    2012-09-01

    To evaluate the environmental contamination and contributory external exposure after the accident at the Fukushima Nuclear Power Plant (FNPP), the concentrations of artificial radionuclides in soil samples from each area were analysed by gamma spectrometry. Six artificial radionuclides ((131)I, (134)Cs, (137)Cs, (129m)Te, (95)Nb and (136)Cs) were detected in soil samples around FNPP. Calculated external effective doses from artificial radionuclide contamination in soil samples around FNPP were 1.9-2.9 μSv h(-1) (8.7-17.8 mSv y(-1)) in Fukushima city on 22 March 2011. After several months, these calculated external effective doses were 0.25-0.88 μSv h(-1) (2.2-7.6 mSv y(-1)) in Fukushima city on 29 June 2011. The present study revealed that the detected artificial radionuclides around FNPP mainly shifted to long-lived radionuclides such as radioactive caesium ((134)Cs and (137)Cs) even though current levels are decreasing gradually due to the decay of short-lived radionuclides such as (131)I, (129m)Te, (95)Nb and (136)Cs. Thus, radiation exposure potency still exists even though the national efforts are ongoing for reducing the annual exposure dose closer to 1 mSv, the public dose limit. Long-term environmental monitoring around FNPP contributes to radiation safety, with a reduction in unnecessary exposure to the residents.

  7. Environmental Whole-Genome Amplification to Access Microbial Diversity in Contaminated Sediments

    Energy Technology Data Exchange (ETDEWEB)

    Abulencia, C.B.; Wyborski, D.L.; Garcia, J.; Podar, M.; Chen, W.; Chang, S.H.; Chang, H.W.; Watson, D.; Brodie,E.I.; Hazen, T.C.; Keller, M.

    2005-12-10

    Low-biomass samples from nitrate and heavy metal contaminated soils yield DNA amounts that have limited use for direct, native analysis and screening. Multiple displacement amplification (MDA) using ?29 DNA polymerase was used to amplify whole genomes from environmental, contaminated, subsurface sediments. By first amplifying the genomic DNA (gDNA), biodiversity analysis and gDNA library construction of microbes found in contaminated soils were made possible. The MDA method was validated by analyzing amplified genome coverage from approximately five Escherichia coli cells, resulting in 99.2 percent genome coverage. The method was further validated by confirming overall representative species coverage and also an amplification bias when amplifying from a mix of eight known bacterial strains. We extracted DNA from samples with extremely low cell densities from a U.S. Department of Energy contaminated site. After amplification, small subunit rRNA analysis revealed relatively even distribution of species across several major phyla. Clone libraries were constructed from the amplified gDNA, and a small subset of clones was used for shotgun sequencing. BLAST analysis of the library clone sequences showed that 64.9 percent of the sequences had significant similarities to known proteins, and ''clusters of orthologous groups'' (COG) analysis revealed that more than half of the sequences from each library contained sequence similarity to known proteins. The libraries can be readily screened for native genes or any target of interest. Whole-genome amplification of metagenomic DNA from very minute microbial sources, while introducing an amplification bias, will allow access to genomic information that was not previously accessible.

  8. Insights into a 20-ha multi-contaminated brownfield megasite: An environmental forensics approach

    Energy Technology Data Exchange (ETDEWEB)

    Gallego, J.R., E-mail: jgallego@uniovi.es; Rodríguez-Valdés, E.; Esquinas, N.; Fernández-Braña, A.; Afif, E.

    2016-09-01

    Here we addressed the contamination of soils in an abandoned brownfield located in an industrial area. Detailed soil and waste characterisation guided by historical information about the site revealed pyrite ashes (a residue derived from the roasting of pyrite ores) as the main environmental risk. In fact, the disposal of pyrite ashes and the mixing of these ashes with soils have affected a large area of the site, thereby causing heavy metal(loid) pollution (As and Pb levels reaching several thousands of ppm). A full characterisation of the pyrite ashes was thus performed. In this regard, we determined the bioavailable metal species present and their implications, grain-size distribution, mineralogy, and Pb isotopic signature in order to obtain an accurate conceptual model of the site. We also detected significant concentrations of pyrogenic benzo(a)pyrene and other PAHs, and studied the relation of these compounds with the pyrite ashes. In addition, we examined other waste and spills of minor importance within the study site. The information gathered offered an insight into pollution sources, unravelled evidence from the industrial processes that took place decades ago, and identified the co-occurrence of contaminants by means of multivariate statistics. The environmental forensics study carried out provided greater information than conventional analyses for risk assessment purposes and for the selection of clean-up strategies adapted to future land use. - Highlights: • Complex legacy of contamination afflicts 20-ha brownfield • As and Pb highest soil pollutants • Forensic study reveals main waste and spills. • Comprehensive study of pyrite ashes (multi-point source of pollution) • Co-occurrence of PAH also linked to pyrite ashes.

  9. Biomarker responses to environmental contamination in estuaries: A comparative multi-taxa approach.

    Science.gov (United States)

    Duarte, Irina A; Reis-Santos, Patrick; França, Susana; Cabral, Henrique; Fonseca, Vanessa F

    2017-08-01

    Estuaries are highly productive ecosystems subjected to numerous anthropogenic pressures with consequent environmental quality degradation. In this study, multiple biomarker responses [superoxide dismutase (SOD), catalase (CAT), ethoxyresorufin O-deethylase (EROD) and glutathione S-transferase (GST) activities, as well as lipid peroxidation (LPO) and DNA damage (DNAd)] were determined in two fish (Dicentrarchus labrax and Pomatoschistus microps) and four macroinvertebrate species (Carcinus maenas, Crangon crangon, Hediste diversicolor and Scrobicularia plana) from the Ria de Aveiro and Tejo estuaries over distinct months. Two sites per estuarine system were selected based on anthropogenic pressures and magnitude of environmental contamination. Antioxidant enzyme activities in fish species suggested a ubiquitous response to oxidative stress, while biotransformation and effect biomarkers exhibited higher spatial and temporal variation. In invertebrate species, biotransformation enzyme activity was clearly less variable than in fish evidencing lower xenobiotic transformation capability. Overall, largest biomarker responses were found in the most contaminated sites (Tejo), yet species-specific patterns were evident. These should be factored in multi-taxa approaches, considering that the differential functional traits of species, such as habitat use, life-stage, feeding or physiology can influence exposure routes and biomarker responses. The Integrated Biomarker Response index highlighted patterns in biomarker responses which were not immediately evident when analyzing biomarkers individually. Overall, results provided insights into the complexity of species responses to contamination in naturally varying estuarine environments. Ultimately, multi-taxa and multi-biomarker approaches provide a comprehensive and complementary view of ecosystem health, encompassing diverse forms of biological integration and exposure routes, and allow the validation of results among markers

  10. Groundwater contamination by microbiological and chemical substances released from hospital wastewater: health risk assessment for drinking water consumers.

    Science.gov (United States)

    Emmanuel, Evens; Pierre, Marie Gisèle; Perrodin, Yves

    2009-05-01

    Contamination of natural aquatic ecosystems by hospital wastewater is a major environmental and human health issue. Disinfectants, pharmaceuticals, radionuclides and solvents are widely used in hospitals for medical purposes and research. After application, some of these substances combine with hospital effluents and, in industrialised countries, reach the municipal sewer network. In certain developing countries, hospitals usually discharge their wastewater into septic tanks equipped with diffusion wells. The discharge of chemical compounds from hospital activities into the natural environment can lead to the pollution of water resources and risks for human health. The aim of this article is to present: (i) the steps of a procedure intended to evaluate risks to human health linked to hospital effluents discharged into a septic tank equipped with a diffusion well; and (ii) the results of its application on the effluents of a hospital in Port-au-Prince. The procedure is based on a scenario that describes the discharge of hospital effluents, via septic tanks, into a karstic formation where water resources are used for human consumption. COD, Chloroform, dichlomethane, dibromochloromethane, dichlorobromomethane and bromoform contents were measured. Furthermore, the presence of heavy metals (chrome, nickel and lead) and faecal coliforms were studied. Maximum concentrations were 700 NPP/100 ml for faecal coliforms and 112 mg/L for COD. A risk of infection of 10(-5) infection per year was calculated. Major chemical risks, particularly for children, relating to Pb(II), Cr(III), Cr(VI) and Ni(II) contained in the ground water were also characterised. Certain aspects of the scenario studied require improvement, especially those relating to the characterisation of drugs in groundwater and the detection of other microbiological indicators such as protozoa, enterococcus and viruses.

  11. Is there an environmental benefit from remediation of a contaminated site? Combined assessments of the risk reduction and life cycle impact of remediation

    DEFF Research Database (Denmark)

    Lemming, Gitte; Chambon, Julie Claire Claudia; Binning, Philip John

    2012-01-01

    ), (iii) in-situ chemical oxidation (ISCO) with permanganate and (iv) long-term monitoring combined with treatment by activated carbon at the nearby waterworks. The life cycle assessment included evaluation of both primary and secondary environmental impacts. The primary impacts are the local human toxic...... impacts due to contaminant leaching into groundwater that is used for drinking water, whereas the secondary environmental impacts are related to remediation activities such as monitoring, drilling and construction of wells and use of remedial amendments. The primary impacts for the compared scenarios were...... in higher environmental impacts than they remediate, in terms of person equivalents and assuming equal weighting of all impacts. The ERD and long-term monitoring were the scenarios with the lowest secondary life cycle impacts and are therefore the preferred alternatives. However, if activated carbon...

  12. [Investigation on contamination of Cryptosporidium and Giardia in drinking water and environmental water in Shanghai].

    Science.gov (United States)

    Zhang, Xiao-Ping; He, Yan-Yan; Zhu, Qian; Ma, Xiao-Jiang; Cai, Li

    2010-12-30

    To understand the contamination status of Cryptosporidium sp. and Giardia lamblia in drinking water, source water and environmental water in Shanghai. All water samples collected from drinking water, source water and environmental water were detected by a procedure of micromembrane filtration, immune magnetic separation (IMS), and immunofluorescent assay (IFA). Cryptosporidium oocysts and Giardia cysts were not found in 156 samples of the drinking water including finished water, tap water, or pipe water for directly drinking in communities. Among 70 samples either source water of water plants (15 samples), environmental water from Huangpu River(25), canal water around animal sheds(15), exit water from waste-water treatment plants(9), or waste water due to daily life(6), Cryptosporidium oocysts were detected in 1(6.7%), 2(8.0%), 7(46.7%), 1(11.1%), and 1(16.7%) samples, respectively; and Giardia cysts were detected in 1(6.7%), 3(12.0%), 6 (40.0%), 2(22.2%), and 2(33.3%), respectively. The positive rate of Cryptosporidium oocysts and Giardia cysts was 17.1% (12/70) and 20.0% (14/70), respectively. No Cryptosporidium oocysts and Giardia cysts have been detected in drinking water, but found in source water and environmental water samples in Shanghai.

  13. Linking chemical elements in forest floor humus (O{sub h}-horizon) in the Czech Republic to contamination sources

    Energy Technology Data Exchange (ETDEWEB)

    Sucharova, Julie; Suchara, Ivan; Hola, Marie [Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Kvetnove namesti 391, 252 43 Pruhonice (Czech Republic); Reimann, Clemens, E-mail: Clemens.Reimann@ngu.no [Geological Survey of Norway, P.O. Box 6315 Sluppen, 7491 Trondheim (Norway); Boyd, Rognvald [Geological Survey of Norway, P.O. Box 6315 Sluppen, 7491 Trondheim (Norway); Filzmoser, Peter [Institute for Statistics and Probability Theory, Vienna University of Technology, Wiedner Hauptstrasse 8-10, 1040 Wien (Austria); Englmaier, Peter [Faculty of Life Science, University of Vienna, Althanstr. 14, A-1090 Vienna (Austria)

    2011-05-15

    While terrestrial moss and other plants are frequently used for environmental mapping and monitoring projects, data on the regional geochemistry of humus are scarce. Humus, however, has a much larger life span than any plant material. It can be seen as the 'environmental memory' of an area for at least the last 60-100 years. Here concentrations of 39 elements determined by ICP-MS and ICP AES, pH and ash content are presented for 259 samples of forest floor humus collected at an average sample density of 1 site/300 km{sup 2} in the Czech Republic. The scale of anomalies linked to known contamination sources (e.g., lignite mining and burning, metallurgical industry, coal fired power plants, metal smelters) is documented and discussed versus natural processes influencing humus quality. Most maps indicate a local impact from individual contamination sources: often more detailed sampling than used here would be needed to differentiate between likely sources. - Highlights: > Concentrations of 39 elements in forest floor humus are provided. > The capabilities of humus sampling for bio-monitoring purposes are demonstrated. > Geochemical anomalies are linked to known contamination sources. > The study shows the importance of scale for geochemical mapping projects. > Humus provides a picture of the long term contamination history of a country. - Forest floor humus, the atmosphere-biosphere-pedosphere interface, archives an environmental contamination signal over long time periods.

  14. Relationships between organohalogen contaminants and blood plasma clinical–chemical parameters in chicks of three raptor species from Northern Norway

    DEFF Research Database (Denmark)

    Sonne, Christian; Bustnes, Jan Ove; Herzke, Dorte

    2010-01-01

    Organohalogen contaminants (OHCs) may affect various physiological parameters in birds including blood chemistry. We therefore examined blood plasma clinical-chemical parameters and OHCs in golden eagle, white-tailed eagle and goshawk chicks from Northern Norway. Correlation analyses on pooled data...

  15. Towards the review of the European Union Water Framework management of chemical contamination in European surface water resources

    Science.gov (United States)

    Water is a vital resource for natural ecosystems and human life, and assuring a high quality of water and protectingit from chemical contamination is a major societal goal in the European Union. The Water Framework Directive(WFD) and its daughter directives are the major body of ...

  16. Prioritization of contaminants of emerging concern in wastewater treatment plant discharges using chemical: Gene interactions in caged fish

    Science.gov (United States)

    We examined whether contaminants present in surface waters could be prioritized for further assessment by linking the presence of specific chemicals to gene expression changes in exposed fish. Fathead minnows were deployed in cages for 2, 4, or 8 days at three locations near two ...

  17. Completely automated short-term genotoxicity testing for the assessment of chemicals and characterisation of contaminated soils and waste waters.

    Science.gov (United States)

    Brinkmann, Corinna; Eisentraeger, Adolf

    2008-05-01

    The umu-test was developed for the detection of effects of chemical mutagens and carcinogens in environmental samples. It is performed according to ISO 13829 with Salmonella choleraesius subsp. chol. (strain TA1535/pSK1002). By automating the entire test, large numbers of toxicants and environmental samples as well as more treatments and parallels can be tested and, additionally, only low sample volumes are needed. In this work, an automated umu-test has been set up by installing a robotic XYZ-platform and a microplate reader inside a cabin. The use of established technical equipment for the automation in combination with a performance according to ISO standards was the essential aim of the approach. After initial preparation, the test is conducted software-controlled, follows the standard and fulfils the validity criteria of the standard procedure. For the optimization of the automated test umu-tests with one concentration of methyl methanesulfonate (MMS) of 166.7 mg/L were carried out. After optimization of incubation and pipetting conditions in the automated test, dose-response curves of various chemicals and environmental samples were assessed. The results of the automated umu-test have been compared with those of the standard manual test. The aim of the study was to show the applicability of an automated test system for the assessment of the genotoxic effects of various chemicals and environmental samples. During optimization, tests with 166.7 mg/L of MMS in every well of the microplate are carried out. Chemicals with different physical, chemical and toxicological properties are applied in both test systems. Water samples from different waste water treatment plants, and water extracts of contaminated and uncontaminated soils are assessed in the umu-test. The test is performed in parallel manually according to the standard and automatically using the robotic platform. Dose-response relationships and DLI-values are recorded and compared. The umu-test is applied

  18. Chemical structure influence on NAPL mixture nonideality evolution, rate-limited dissolution, and contaminant mass flux.

    Science.gov (United States)

    Padgett, Mark C; Tick, Geoffrey R; Carroll, Kenneth C; Burke, William R

    2017-03-01

    The influence of chemical structure on NAPL mixture nonideality evolution, rate-limited dissolution, and contaminant mass flux was examined. The variability of measured and UNIFAC modeled NAPL activity coefficients as a function of mole fraction was compared for two NAPL mixtures containing structurally-different contaminants of concern including toluene (TOL) or trichloroethene (TCE) within a hexadecane (HEXDEC) matrix. The results showed that dissolution from the NAPL mixtures transitioned from ideality for mole fractions >0.05 to nonideality as mole fractions decreased. In particular, the TCE generally exhibited more ideal dissolution behavior except at lower mole fractions, and may indicate greater structural/polarity similarity between the two compounds. Raoult's Law and UNIFAC generally under-predicted the batch experiment results for TOL:HEXDEC mixtures especially for mole fractions ≤0.05. The dissolution rate coefficients were similar for both TOL and TCE over all mole fractions tested. Mass flux reduction (MFR) analysis showed that more efficient removal behavior occurred for TOL and TCE with larger mole fractions compared to the lower initial mole fraction mixtures (i.e. dissolution modeling analyses for the dynamic flushing experiments. TOL elution concentrations were modeled (predicted) reasonable well using ideal and equilibrium assumptions, but the TCE elution concentrations could not be predicted using the ideal model. Rather, the dissolution modeling demonstrated that TCE elution was better described by the nonideal model whereby NAPL-phase activity coefficient varied as a function of COC mole fraction. For dynamic column flushing experiments, dissolution rate kinetics can vary significantly with changes in NAPL volume and surface area. However, under conditions whereby NAPL volume and area are not significantly altered during dissolution, mixture nonideality effects may have a greater relative control on dissolution (elution) and MFR behavior

  19. Ultrasound improves chemical reduction of natural contaminant microbiota and Salmonella enterica subsp. enterica on strawberries.

    Science.gov (United States)

    do Rosário, Denes Kaic Alves; da Silva Mutz, Yhan; Peixoto, Jaqueline Moreira Curtis; Oliveira, Syllas Borburema Silva; de Carvalho, Raquel Vieira; Carneiro, Joel Camilo Souza; de São José, Jackline Freitas Brilhante; Bernardes, Patrícia Campos

    2017-01-16

    New sanitization methods have been evaluated to improve food safety and food quality and to replace chlorine compounds. However, these new methods can lead to physicochemical and sensory changes in fruits and vegetables. The present study evaluated the effects of acetic acid, peracetic acid, and sodium dodecylbenzenesulfonate isolated or combined with 5min of ultrasound treatment (40kHz, 500W) on strawberry quality over 9days of storage at 8°C. The strawberry natural contaminant microbiota (molds and yeasts, mesophilic aerobic and lactic acid bacteria), physicochemical quality (pH, total titratable acidity, total soluble solids, vitamin C, and color), sensory quality (triangle test) and inactivation of Salmonella enterica subsp. enterica intentionally inoculated onto strawberries were analyzed. Ultrasound increased the effect of all chemical compounds in the reduction of aerobic mesophilic, molds and yeasts. The best treatment for those groups of microorganisms was ultrasound combined with peracetic acid (US+PA) that reduced 1.8 and 2.0logcfu/g during 9days of storage. Bactericidal effect of peracetic acid was also improved by ultrasound inactivation of S. enterica, reaching a decimal reduction of 2.1logcfu/g. Moreover, synergistic effects were observed in contaminant natural microbiota inactivation for all tested compounds during storage, without any major physicochemical or sensory alteration to the strawberries. Therefore, ultrasound treatment can improve the effect of sanitizers that are substitutes of chlorine compounds without altering the quality of strawberries during storage. Acetic acid (PubChem CID: 176); Peracetic acid (PubChem CID: 6585); Sodium dodecylbenzenesulfonate (PubChem CID: 18372154). Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Biological Remediation of Petroleum Contaminants

    Science.gov (United States)

    Kuhad, Ramesh Chander; Gupta, Rishi

    Large volumes of hazardous wastes are generated in the form of oily sludges and contaminated soils during crude oil transportation and processing. Although many physical, chemical and biological treatment technologies are available for petroleum contaminants petroleum contaminants in soil, biological methods have been considered the most cost-effective. Practical biological remediation methods typically involve direct use of the microbes naturally occurring in the contaminated environment and/or cultured indigenous or modified microorganisms. Environmental and nutritional factors, including the properties of the soil, the chemical structure of the hydrocarbon(s), oxygen, water, nutrient availability, pH, temperature, and contaminant bioavailability, can significantly affect the rate and the extent of hydrocarbon biodegradation hydrocarbon biodegradation by microorganisms in contaminated soils. This chapter concisely discusses the major aspects of bioremediation of petroleum contaminants.

  1. Organization A Comprehensive System Of Insurance Coverage In The Potential Chemical And Biological Contamination Zone In Regions

    Directory of Open Access Journals (Sweden)

    Nina Vladimirovna Zaytseva

    2014-12-01

    Full Text Available The article provides a scientific rationale for an integrated approach to the provision of insurance coverage in the potential chemical and biological contamination zone. The following modern forms of chemical safety in the Russian Federation were considered: state reserve’s system, target program financing, state social insurance. The separate issue tackles the obligatory civil liability insurance for owners of dangerous objects. For improvement of the existing insurance protection system against emergency situations, risks were analyzed (shared on exogenous and endogenous. Among the exogenous risks including natural and climatic conditions of a region, its geographical arrangement, economic specialization, the seismic and terrorist risks were chosen and approaches to its solution were suggested. In endogenous risks’ group, the special focus is on wear and tear and obsolescence of hazardous chemical and biological object’s fixed assets. In case of high risk of an incident, it is suggested to increase in extent of insurance protection through self-insurance, a mutual insurance in the form of the organization of societies of a mutual insurance or the self-regulating organizations, and also development of voluntary insurance of a civil liability, both the owner of hazardous object, and regions of the Russian Federation and municipalities. The model of insurance coverage in the potential chemical and biological contamination zone is based on a differentiated approach to the danger level of the area. A matrix of adequate forms and types of insurance (required for insurance coverage of the population in the potential chemical and biological contamination zone was constructed. Proposed health risk management toolkit in the potential chemical and biological contamination zone will allow to use financial resources for chemical and biological safety in the regions more efficiently.

  2. Contribution of environmental conditions in dental offices of Antioquia to the risk of mercury contamination

    Directory of Open Access Journals (Sweden)

    Jairo A. Ruiz C

    2008-06-01

    Full Text Available This article is a product from the project “Environmental Management of Dental Amalgam in the State of Antioquia” which was carried out by the following research groups belonging to the University of Antioquia: Science and Biomedical Technology, Precious Materials, and Pirometallurgical and Materials Researches, as well as the private company New Stetic S. A., between February 2005 and February 2007. Objective: to describe the environmental conditions in 30 big dental offices of the State of Antioquia, Colombia. Those dental offices having more than five dental chairs in the same work place were defined as “big” for the purpose of this project. Due to the fact that these dental offices represents 85% of the population of reference, the results described in this article can be consequently considered as is they were derived from a census. The description is made bearing in mind the people who are exposed to the risk of mercury contamination due to their occupation. Materials and method: an observation tool was designed in order to be applied in each dental office. It contained aspects as floor and wall characteristics, ventilation, room temperature, storing place for mercury, elements for handling amalgam scraps, and those activities which deviate from the regular dental service in the same site. Each dental office was visited by a research engineer and an advanced engineering student on a previously defined date. The researchers were trained in advance to collect the information. Results: it was found that some big dental offices have inadequate conditions in their premises for offering their services, and do not have a good handling of the environmental conditions. That’s why immediate actions are mandatory to minimize the risk of mercury contamination.

  3. Hazardous substances data bank (HSDB) as a source of environmental fate information on chemicals.

    Science.gov (United States)

    Fonger, G C

    1995-11-30

    The Hazardous Substances Data Bank (HSDB), a factual data bank on the National Library of Medicine's (NLM) TOXNET (Toxicology Data Network) online system, provides information in areas such as chemical substance identification, chemical and physical properties, safety and handling, toxicology, pharmacology, environmental fate and transformation, regulations, and analytical methodology. This article discusses how environmental fate data is handled in HSDB.

  4. Proceedings of the Symposium on Nuclear, Biological and Chemical Contamination Survivability (NBCCS). Developing Contamination-Survivable Defense Systems

    Science.gov (United States)

    1994-10-01

    it was cobootd by the U.S. Army Research LAboatory (ARL) and the U.S. Army Chemical and Biologica Defens Command (CBDCoM). The objective of the...AMSRL-SL-CM (301) 679-4476 x Aberdeen Proving Or MD 21010-5423 (410) 671-3960 x Mr. Edudrdo D. Soliven Mr. Jerry W. Steelman US ArmA Nuclear & Chemical

  5. Reevaluation of 1999 Health-Based Environmental Screening Levels (HBESLs) for Chemical Warfare Agents

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Annetta Paule [ORNL; Dolislager, Fredrick G [ORNL

    2007-05-01

    This report evaluates whether new information and updated scientific models require that changes be made to previously published health-based environmental soil screening levels (HBESLs) and associated environmental fate/breakdown information for chemical warfare agents (USACHPPM 1999). Specifically, the present evaluation describes and compares changes that have been made since 1999 to U.S. Environmental Protection Agency (EPA) risk assessment models, EPA exposure assumptions, as well as to specific chemical warfare agent parameters (e.g., toxicity values). Comparison was made between screening value estimates recalculated with current assumptions and earlier health-based environmental screening levels presented in 1999. The chemical warfare agents evaluated include the G-series and VX nerve agents and the vesicants sulfur mustard (agent HD) and Lewisite (agent L). In addition, key degradation products of these agents were also evaluated. Study findings indicate that the combined effect of updates and/or changes to EPA risk models, EPA default exposure parameters, and certain chemical warfare agent toxicity criteria does not result in significant alteration to the USACHPPM (1999) health-based environmental screening level estimates for the G-series and VX nerve agents or the vesicant agents HD and L. Given that EPA's final position on separate Tier 1 screening levels for indoor and outdoor worker screening assessments has not yet been released as of May 2007, the study authors find that the 1999 screening level estimates (see Table ES.1) are still appropriate and protective for screening residential as well as nonresidential sites. As such, risk management decisions made on the basis of USACHPPM (1999) recommendations do not require reconsideration. While the 1999 HBESL values are appropriate for continued use as general screening criteria, the updated '2007' estimates (presented below) that follow the new EPA protocols currently under development

  6. Environmental impact assessment of biofuel production on contaminated land - Swedish case studies

    Energy Technology Data Exchange (ETDEWEB)

    Andersson-Skoeld, Yvonne; Suer, Pascal (Swedish Geotechnical Institute, Linkoeping (Sweden)); Blom, Sonja (FB Engineering AB, Goeteborg (Sweden)); Bardos, Paul (r3 Environmental Technology Ltd, Reading (United Kingdom)); Track, Thomas; Polland, Marcel (DECHEMA e. V., Frankfurt am Main (Germany))

    2009-07-01

    This report studies the (possible) cultivation of short rotation wood (Salix Vinimalis) on two contaminated sites from an environmental perspective, through a life cycle analysis (LCA) and carbon footprint, with an outlook towards an overarching method for a qualitative or semi-quantitative analysis based on a life cycle framework. Two areas were selected as case studies: a small site where short rotation crop (Salix Vinimalis) cultivation is in progress and a large site where biofuel production is hypothetical. For the selection of suitable sites, the following aspects were considered: Site location and size, so that biofuel cultivation might be economically viable without a remediation bonus, Topography and soil conditions, so that machinery could be used for cultivation, Time, so that the site was not in urgent need of remediation due to environmental or human health risks, or acute exploitation requirements, Contamination degree, which should not be plant-toxic, Contamination depth, Assessment of optimum crop and its use. For doubtful areas, it is especially important to analyse what the most viable option for the contaminated site is, and what bio-product could be used. For a more comprehensive analysis, which also incorporates local economic and social aspects, the decision support matrix, inter alia, described in the main report of the project Rejuvenate, is recommended. The calculation of emissions for the LCA and the carbon footprint used a German software tool for LCA of soil remediation. The software includes equipment emission data published in 1995. The module 'landfarming' has been used in this study to calculate emissions from herbicide application, fertilisation, ploughing and deep-ploughing, Salix harvest, harrowing etc. Since production of herbicide and Salix Vinimalis shoots were not included in the software, they were not included in the study. The conclusions for the two sites were very similar, in spite of the large differences

  7. Chemical composition of drinking water as a possible environment-specific factor modifying the thyroid risk in the areas subjected to radioiodine contamination

    Science.gov (United States)

    Kolmykova, Lyudmila; Korobova, Elena; Ryzhenko, Boris

    2015-04-01

    Water is one of the main natural agents providing chemical elements' migration in the environment and food chains. In our opinion a study of spatial variation of the essential trace elements in local drinking water is worth considering as the factor that may contribute to variation of the health risk in areas contaminated by radionuclides and radioiodine in particular. Radioiodine was proved to increase the risk of thyroid cancer among children who lived in areas contaminated during the Chernobyl accident. It was also shown that low stable iodine status of the contaminated area and population also contributed to the risk of this disease in case of radionuclide contamination. The goal of the study was to investigate chemical composition of the drinking water in rural settlements of the Bryansk oblast' subjected to radioiodine contamination and to evaluate speciation of stable I and Se on the basis of their total concentration and chemical composition of the real water samples with the help of thermodynamic modelling. Water samples were collected from different aquifers discharging at different depths (dug wells, local private bore holes and water pipes) in rural settlements located in areas with contrasting soil iodine status. Thermodynamic modelling was performed using original software (HCh code of Y.Shvarov, Moscow State University, RUSSIA) incorporating the measured pH, Corg and elements' concentration values. Performed modelling showed possibility of formation of complex CaI+ ion in aqueous phase, I sorption by goethite and transfer of Se to solid phase as FeSe in the observed pH-Eh conditions. It helped to identify environmental conditions providing high I and Se mobility and their depletion from natural waters. Both the experimental data and modeling showed that I and Se migration and deficiency in natural water is closely connected to pH, Eh conditions and the concentration of typomorphic chemical elements (Ca, Mg, Fe) defining the class of water migration

  8. Environmental Fate of Organophosphorus Compounds Related to Chemical Weapons

    Energy Technology Data Exchange (ETDEWEB)

    Davisson, M L; Love, A H; Vance, A; Reynolds, J G

    2005-02-08

    Man-made organophosphorus compounds have been widely distributed throughout our environment as pesticides since their development during and after WWII. Many important studies have documented their relative persistence and toxicity. Development and use of some organophosphorus compounds as nerve agents gave rise to a separate but parallel effort to understand environmental persistence. In this latter case, the experiments have focused mainly on evaporation rates and first-order reaction kinetics. However, because organophosphorus compounds are easily polarized, the ionic content of a surrounding media directly factors into these reaction rates, but limited work in this regard has been done under environmentally relevant conditions. Furthermore, limited experiments investigating persistence of these agents on soil has resulted in widely varying degradation rates. Not surprisingly, no studies have investigated affinities of organophosphorus nerve agents to mineral or organic matter typically found in soil. As a result, we initiated laboratory experiments on dilute concentrations of nerve agent O-ethyl S-(2-diisopropylaminoethyl) methylphosphonothiolate (VX) to quantify persistence in simulated environmental aqueous conditions. A quantitative analytical method was developed for VX and its degradation products using High Performance Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (HPLC-ESI-MS). VX hydrolysis rate is known to have a pH-dependency, however, the type of buffer and the relative proportion of different nucleophiles in solution significantly affect the overall rate and mechanism of degradation. For example, dissolved carbonate, a weak nucleophile dominating natural water, yielded pseudo-first order rate constants of {approx} 8 x 10{sup -3}/hr at pH 5 and 2 x 10{sup -2}/hr at pH 11. This small pH-dependent variation departs significantly from widely accepted rates at this pH range (4 x 10{sup -4}/hr to 8 x 10{sup -2}/hr) that were based on

  9. Screening of contaminants in Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Blaylock, B.G.; Frank, M.L.; Hoffman, F.O.; Hook, L.A.; Suter, G.W.; Watts, J.A.

    1992-09-01

    The purpose of this report is to present the results of a health risk and ecological risk screening analysis for Waste Area Grouping 2 (WAG 2) using available data to identify contaminants and environmental pathways that will require either further investigation or immediate consideration for remediation based on the screening indices. The screening analysis will also identify contaminants that can be assigned a low priority for further investigation and those that require additional data.

  10. Interaction of environmental contaminants with zebrafish organic anion transporting polypeptide, Oatp1d1 (Slco1d1)

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, Marta; Zaja, Roko [Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, 10 000 Zagreb (Croatia); Fent, Karl [University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Swiss Federal Institute of Technology (ETH Zürich), Department of Environmental System Sciences, Institute of Biogeochemistry and Pollution Dynamics, CH-8092 Zürich (Switzerland); Smital, Tvrtko, E-mail: smital@irb.hr [Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, 10 000 Zagreb (Croatia)

    2014-10-01

    Polyspecific transporters from the organic anion transporting polypeptide (OATP/Oatp) superfamily mediate the uptake of a wide range of compounds. In zebrafish, Oatp1d1 transports conjugated steroid hormones and cortisol. It is predominantly expressed in the liver, brain and testes. In this study we have characterized the transport of xenobiotics by the zebrafish Oatp1d1 transporter. We developed a novel assay for assessing Oatp1d1 interactors using the fluorescent probe Lucifer yellow and transient transfection in HEK293 cells. Our data showed that numerous environmental contaminants interact with zebrafish Oatp1d1. Oatp1d1 mediated the transport of diclofenac with very high affinity, followed by high affinity towards perfluorooctanesulfonic acid (PFOS), nonylphenol, gemfibrozil and 17α-ethinylestradiol; moderate affinity towards carbaryl, diazinon and caffeine; and low affinity towards metolachlor. Importantly, many environmental chemicals acted as strong inhibitors of Oatp1d1. A strong inhibition of Oatp1d1 transport activity was found by perfluorooctanoic acid (PFOA), chlorpyrifos-methyl, estrone (E1) and 17β-estradiol (E2), followed by moderate to low inhibition by diethyl phthalate, bisphenol A, 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4 tetrahydronapthalene and clofibrate. In this study we identified Oatp1d1 as a first Solute Carrier (SLC) transporter involved in the transport of a wide range of xenobiotics in fish. Considering that Oatps in zebrafish have not been characterized before, our work on zebrafish Oatp1d1 offers important new insights on the understanding of uptake processes of environmental contaminants, and contributes to the better characterization of zebrafish as a model species. - Highlights: • We optimized a novel assay for determination of Oatp1d1 interactors • Oatp1d1 is the first SLC characterized fish xenobiotic transporter • PFOS, nonylphenol, diclofenac, EE2, caffeine are high affinity Oatp1d1substrates • PFOA, chlorpyrifos

  11. Meticillin-resistant Staphylococcus aureus (MRSA) environmental contamination in a radiology department

    Energy Technology Data Exchange (ETDEWEB)

    Shelly, M.J., E-mail: martinshelly@gmail.com [Department of Radiology, Mater Misericordiae University Hospital, Dublin (Ireland); Scanlon, T.G. [Department of Radiology, Mater Misericordiae University Hospital, Dublin (Ireland); Ruddy, R.; Hannan, M.M. [Department of Clinical Microbiology, Mater Misericordiae University Hospital, Dublin (Ireland); Murray, J.G. [Department of Radiology, Mater Misericordiae University Hospital, Dublin (Ireland)

    2011-09-15

    Aim: To explore the potential risk to patients and healthcare workers of acquiring meticillin-resistant Staphylococcus aureus (MRSA) in clinical and non-clinical areas within a radiology department. Materials and methods: High-risk sites in clinical and non-clinical areas within the Department of Radiology were identified and 125 environmental swabs were obtained by an infection control nurse specialist. Decontamination methods and protocols were reviewed and compared against international decontamination best practice. Results: One of 125 samples was culture positive for MRSA. The positive sample was isolated from the surface of the bore of the magnetic resonance imaging (MRI) unit. A hypochlorite cleaning agent was applied using a long-handled brush to clean the bore of the MRI unit. A repeat environmental screen found the MRI unit to be culture negative for MRSA. Conclusion: This study has demonstrated that standard decontamination measures are adequate to prevent environmental contamination with MRSA in a radiology department. However, the MRI unit requires special attention because of its long bore and difficult access.

  12. Tolerance and genetic relatedness of three meiobenthic copepod populations exposed to sediment-associated contaminant mixtures: Role of environmental history

    Energy Technology Data Exchange (ETDEWEB)

    Kovatch, C.E.; Schizas, N.V.; Chandler, G.T.; Coull, B.C.; Quattro, J.M.

    2000-04-01

    Meiobenthic copepod populations (Microarthridion littoral) were collected from three South Carolina, USA, estuaries having different pollution stress histories (i.e., pristine sediments, high polycyclic aromatic hydrocarbon [PAH] sediments, high metals/moderate PAH sediments) and then assayed for survival and reproductive output in 14-d exposures to pristine and heavily PAH/metals-contaminated sediment mixture exhibited differential survival and reproductive outputs as a function of previous environmental histories and whether genetic relatedness among populations measured as DNA sequences of the mitochondrial gene, cytochrome apoenzyme b, were linked to copepod contaminant tolerance. Overall, adult survival and reproductive success in contaminated sediments were significantly reduced relative to controls for all three populations irrespective of environmental histories. Differential resistance to sediment-contaminant mixtures by the two copepod populations inhabiting the contaminated sites was not found, despite their previous exposures to mixed contaminants at {Sigma}PAH and {Sigma}Metal concentrations of 7,287 to 2,467 ng/g dry wt and 461 to 3,497 {micro}g/g, respectively. Significant genetic differentiation, however, was found between copepod populations from the control and the two contaminated sites. Generally, cross-population survival and reproductive outputs were not significantly different and could not be linked to genetic differentiation at the population level.

  13. Endocrine-disrupting chemicals in coastal lagoons of the Po River delta: sediment contamination, bioaccumulation and effects on Manila clams.

    Science.gov (United States)

    Casatta, Nadia; Stefani, Fabrizio; Pozzoni, Fiorenzo; Guzzella, Licia; Marziali, Laura; Mascolo, Giuseppe; Viganò, Luigi

    2016-06-01

    The large estuary that the River Po forms at its confluence into the Adriatic Sea comprises a multitude of transitional environments, including coastal lagoons. This complex system receives the nutrients transported by the River Po but also its load of chemical contaminants, which may pose a substantial (eco)toxicological risk. Despite the high ecological and economic importance of these vulnerable environments, there is a substantial lack of information on this risk. In light of the recent amendments of the European Water Framework Directive (2013/39/EU), the present study investigated the sediment contamination of six coastal lagoons of the Po delta and its effects on Manila clams (Ruditapes philippinarum), exposed in situ for 3 months. Sediment contamination and clam bioaccumulation of a wide range of chemicals, i.e. trace metals (Cd, Cr, Ni, Hg, Pb, As), polybrominated diphenyl ethers (PBDEs), alkylphenols (APs), organochlorine compounds (PCBs, DDTs), polycyclic aromatic hydrocarbons (PAHs) and organotins (TPhT, TBT), suggested a southward increase related to the riverine transports. Where the River Po influence was more direct, the concentrations of contaminants were higher, with nonylphenol and BDE-209 exceeding sediment quality guidelines. Biometric indicators suggested the influence of contamination on organism health; an inverse relationship between PBDEs in sediments and clam condition index has been found, as well as different biota-sediment accumulation factors (BSAFs) in the lagoons.

  14. Draft Guidance: Response, Remediation, and Recovery Checklist for Chemically Contaminated Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Raber, E; Mancieri, S; Carlsen, T; Fish, C; Hirabayashi-Dethier, J; Intrepido, A; MacQueen, D; Michalik, R; Richards, J

    2007-09-04

    A key part of preparedness in the event of a chemical warfare agent (CWA) or toxic industrial chemical (TIC) release at a large facility, such as an airport or subway, is to develop a concept of operations that allows for an effective incident response and recovery. This document is intended as a component of the concept of operations and will be used in the Emergency Operations Center (EOC) as a decision tool for the Unified Command (UC). The Checklist for Facility Response, Remediation, and Recovery presented in this document is principally focused on the Consequence Management Phase (see Figure 1; LLNL 2007a and 2007b) of a chemical release. Information in this document conforms to the National Response Plan (NRP) (DHS 2004) and the National Incident Management System (NIMS 2004). Under these two guidance documents, personnel responsible for managing chemical response and recovery efforts--that is, the decision-makers--are members of an Incident Command (IC), which is likely to transition to a UC in the event of a CWA or TIC attack. A UC is created when more than one agency has incident jurisdiction or when incidents cross political jurisdictions. The location for primary, tactical-level command and management is referred to as the Incident Command Post (ICP), as described in the NRP. Thus, regardless of whether an IC or a UC is used, the responsible entities are located at an ICP. Agencies work together through designated members of the UC to establish their designated Incident Commanders at a single ICP and to establish a common set of objectives and strategies and a single Incident Action Plan. Initially during the Crisis Management Phase (see Figure 1), the Incident Commander is likely to be the Chief of the fire department that serves the affected facility. As life-safety issues are resolved and the Crisis Management Phase shifts to the Consequence Management Phase, the work of characterization, decontamination, and facility clearance begins. There will

  15. The Penobscot River and environmental contaminants: Assessment of tribal exposure through sustenance lifeways

    Science.gov (United States)

    Marshall, Valerie; Kusnierz, Daniel; Hillger, Robert; Ferrario, Joseph; Hughes, Thomas; Diliberto, Janet; Orazio, Carl E.; Dudley, Robert W.; Byrne, Christian; Sugatt, Richard; Warren, Sarah; DeMarini, David; Elskus, Adria; Stodola, Steve; Mierzykowski, Steve; Pugh, Katie; Culbertson, Charles W.

    2015-01-01

    EPA in collaboration with the Penobscot Indian Nation, U.S. Geological Survey (USGS), Agency for Toxic Substances and Disease Registry (ATSDR), and the U.S. Fish and Wildlife Service (USF&WS) collectively embarked on a four year research study to evaluate the environmental health of the riverine system by targeting specific cultural practices and using traditional science to conduct a preliminary contaminant screening of the flora and fauna of the Penobscot River ecosystem. This study was designed as a preliminary screening to determine if contaminant concentrations in fish, eel, snapping turtle, wood ducks, and plants in Regions of the Penobscot River relevant to where PIN tribal members hunt, fish and gather plants were high enough to be a health concern. This study was not designed to be a statistically validated assessment of contaminant differences among study sites or among species. The traditional methodology for health risk assessment used by the U. S. Environmental Protection Agency (EPA) is based on the use of exposure assumptions (e.g. exposure duration, food ingestion rate, body weight, etc.) that represent the entire American population, either as a central tendency exposure (e.g. average, median) or as a reasonable maximum exposure (e.g. 95% upper confidence limit). Unfortunately, EPA lacked exposure information for assessing health risks for New England regional tribes sustaining a tribal subsistence way of life. As a riverine tribe, the Penobscot culture and traditions are inextricably tied to the Penobscot River watershed. It is through hunting, fishing, trapping, gathering and making baskets, pottery, moccasins, birch-bark canoes and other traditional practices that the Penobscot culture and people are sustained. The Penobscot River receives a variety of pollutant discharges leaving the Penobscot Indian Nation (PIN) questioning the ecological health and water quality of the river and how this may affect the practices that sustain their way of life

  16. The impact of semiconductor, electronics and optoelectronic industries on downstream perfluorinated chemical contamination in Taiwanese rivers.

    Science.gov (United States)

    Lin, Angela Yu-Chen; Panchangam, Sri Chandana; Lo, Chao-Chun

    2009-04-01

    This study provides the first evidence on the influence of the semiconductor and electronics industries on perfluorinated chemicals (PFCs) contamination in receiving rivers. We have quantified ten PFCs, including perfluoroalkyl sulfonates (PFASs: PFBS, PFHxS, PFOS) and perfluoroalkyl carboxylates (PFCAs: PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnA, PFDoA) in semiconductor, electronic, and optoelectronic industrial wastewaters and their receiving water bodies (Taiwan's Keya, Touchien, and Xiaoli rivers). PFOS was found to be the major constituent in semiconductor wastewaters (up to 0.13 mg/L). However, different PFC distributions were found in electronics plant wastewaters; PFOA was the most significant PFC, contributing on average 72% to the effluent water samples, followed by PFOS (16%) and PFDA (9%). The distribution of PFCs in the receiving rivers was greatly impacted by industrial sources. PFOS, PFOA and PFDA were predominant and prevalent in all the river samples, with PFOS detected at the highest concentrations (up to 5.4 microg/L).

  17. Chemical Characterization and Identification of Organosilicon Contaminants in ISS Potable Water

    Science.gov (United States)

    Straub, John E., II; Plumlee, Debrah K.; Gazda, Daniel B.

    2016-01-01

    2015 marked the 15th anniversary of continuous human presence on board the International Space Station. During the past year crew members from Expeditions 42-46, including two participating in a one-year mission, continued to rely on reclaimed water as their primary source of potable water. This paper presents and discusses results from chemical analyses performed on ISS water samples returned in 2015. Since the U.S. water processor assembly (WPA) became operational in 2008, there have been 5 instances of organic contaminants breaking through the treatment process. On each occasion, the breakthrough was signaled by an increase in the total organic carbon (TOC) concentration in the product water measured by the onboard TOC analyzer (TOCA). Although the most recent TOC rise in 2015 was not unexpected, it was the first time where dimethylsilanediol (DMSD) was not the primary compound responsible for the increase. Results from ground analysis of a product water sample collected in June of 2015 and returned on Soyuz 41 showed that DMSD only accounted for 10% of the measured TOC. After considerable laboratory investigation, the compound responsible for the majority of the TOC was identified as monomethysilanetriol (MMST). MMST is a low-toxicity compound that is structurally similar to DMSD.

  18. Availability of heavy metals in contaminated soil evidenced by chemical extractants

    Directory of Open Access Journals (Sweden)

    Maria Ligia de Souza Silva

    2012-06-01

    Full Text Available Heavy metals have been accumulating in Brazilian soils, due to natural processes, such as atmospheric deposition, or human industrial activities. For certain heavy metals, when in high concentrations in the soil, there is no specific extractant to determine the availability of these elements in the soil. The objective of the present study was to evaluate the availability of Cd, Cu, Fe, Mn, Pb and Zn for rice and soybeans, using different chemical extractants. In this study we used seven soil samples with different levels of contamination, in completely randomized experimental design with four replications. We determined the available concentrations of Cd, Cu, Fe, Mn, Pb and Zn extracted by Mehlich-1, HCl 0.1 mol L-1, DTPA, and organic acid extractants and the contents in rice and soybeans, which extracts were analyzed by ICP-OES. It was observed that Mehlich-1, HCl 0.1 mol L-1 and DTPA extractants were effective to assess the availability of Cd, Cu, Pb and Zn for rice and soybeans. However, the same was not observed for the organic acid extractant.

  19. Do Interactions Between Gut Ecology and Environmental Chemicals Contribute to Obesity and Diabetes?

    OpenAIRE

    Snedeker, Suzanne M.; Hay, Anthony G.

    2011-01-01

    Background: Gut microbiota are important factors in obesity and diabetes, yet little is known about their role in the toxicodynamics of environmental chemicals, including those recently found to be obesogenic and diabetogenic. Objectives: We integrated evidence that independently links gut ecology and environmental chemicals to obesity and diabetes, providing a framework for suggesting how these environmental factors may interact with these diseases, and identified future research needs. Meth...

  20. The use of pelagic fish as proxies of environmental contamination: a case study with sardine populations

    Directory of Open Access Journals (Sweden)

    Bruno Silva Nunes

    2015-12-01

    Full Text Available The use of bioindicators to analyze marine ecosystems contamination is often made difficult due to the absence of appropriate species. Pelagic fish species, captured by commercial fishing fleets around the world, can be successfully used to assess contaminant levels, by determining their body burden in specific compounds. However the study of biological responses elicited by such compounds, through the analysis of biomarkers, is highly dependent on the physiological and reproductive status of the organisms. Such confounding factors elicit seasonal fluctuations that difficult the extrapolation of data. Sardine (Sardina pilchardus is a marine species common in the North Atlantic Ocean, being easily available through commercial fisheries. The present work intended to explore the potential of this species in biomonitoring studies, by simultaneously using enzymatic biomarkers and condition indices determined in fish landed in three commercial harbors along the west coast of Portugal. This strategy allowed devising spatial and temporal patterns in the sardine metapopulation. Results evidenced significant variability in both biochemical and physiological profiles of the fish, which were coherent among all sampling sites. Throughout the year, large seasonal differences for most markers were reported, which were strongly linked to the reproductive cycle and its physiological consequences (acquisition of energy, mobilization of energy reserves, etc.. It was possible to conclude that seasonality acts as a strong factor underlying chronological physiological adaptations, influencing biochemical markers that are usually employed as indicators of contamination. These effects can limit the usefulness of such a biomarker approach unless seasonality is not accounted for, and if no background values are known from previous studies. In this sense, studies such as this are pivotal to establish a baseline for biomonitoring studies. Also, despite the difficulty in

  1. The potential for a suite of isotope and chemical markers to differentiate sources of nitrate contamination: a review.

    Science.gov (United States)

    Fenech, C; Rock, L; Nolan, K; Tobin, J; Morrissey, A

    2012-05-01

    Nitrate is naturally found within the environment as part of the nitrogen cycle. However, anthropogenic inputs have greatly increased nitrate loads within ground and surface waters. This has had a severe impact on aquatic ecosystems and has given rise to health considerations in humans and livestock. Therefore, the identification of nitrate sources is important in preserving water quality and achieving sustainability of our water resources. Nitrate sources can be determined based on the nitrate nitrogen (N) and oxygen (O) isotopic compositions (δ(15)N, δ(18)O). However, sewage and manure have overlapping δ(15)N and δ(18)O values making their differentiation on this basis problematic. The specific differentiation between sources of faecal contamination is of particular importance, because the risk to humans is usually considered higher from human faecal contamination (sewage) than from animal faecal contamination. This review summarises the current state of knowledge in using isotope tracers to differentiate various nitrate sources and identifies potential chemical tracers for differentiating sewage and manure. In particular, an in depth review of the current state of knowledge regarding the necessary considerations in using chemical markers, such as pharmaceuticals and food additives, to differentiate sewage and manure sources of nitrate contamination will be given, through an understanding of their use, occurrence and fate, in order to identify the most suitable potential chemical markers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Bioaccumulation Potential Of Air Contaminants: Combining Biological Allometry, Chemical Equilibrium And Mass-Balances To Predict Accumulation Of Air Pollutants In Various Mammals

    Energy Technology Data Exchange (ETDEWEB)

    Veltman, Karin; McKone, Thomas E.; Huijbregts, Mark A.J.; Hendriks, A. Jan

    2009-03-01

    In the present study we develop and test a uniform model intended for single compartment analysis in the context of human and environmental risk assessment of airborne contaminants. The new aspects of the model are the integration of biological allometry with fugacity-based mass-balance theory to describe exchange of contaminants with air. The developed model is applicable to various mammalian species and a range of chemicals, while requiring few and typically well-known input parameters, such as the adult mass and composition of the species, and the octanol-water and air-water partition coefficient of the chemical. Accumulation of organic chemicals is typically considered to be a function of the chemical affinity forlipid components in tissues. Here, we use a generic description of chemical affinity for neutral and polar lipids and proteins to estimate blood-air partition coefficients (Kba) and tissue-air partition coefficients (Kta) for various mammals. This provides a more accurate prediction of blood-air partition coefficients, as proteins make up a large fraction of total blood components. The results show that 75percent of the modeled inhalation and exhalation rate constants are within a factor of 2 from independent empirical values for humans, rats and mice, and 87percent of the predicted blood-air partition coefficients are within a factor of 5 from empirical data. At steady-state, the bioaccumulation potential of air pollutants is shown to be mainly a function of the tissue-air partition coefficient and the biotransformation capacity of the species and depends weakly on the ventilation rate and the cardiac output of mammals.

  3. Analysis of chemical contamination within a canal in a Mexican border colonia

    Energy Technology Data Exchange (ETDEWEB)

    Owens, Janel E. [Department of Chemistry and Biochemistry, Southwestern University, Georgetown, TX 78626 (United States); Niemeyer, Emily D. [Department of Chemistry and Biochemistry, Southwestern University, Georgetown, TX 78626 (United States)]. E-mail: niemeyee@southwestern.edu

    2006-04-15

    This study examines urban pollution within Derechos Humanos, a colonia popular in Matamoros, Tamaulipas, Mexico. General water quality indicators (coliform bacteria, total dissolved solids, ecologically relevant cations and anions), heavy metals (copper, lead, nickel, zinc, iron and cadmium), and volatile organic compounds (benzene, toluene, ethylbenzene, styrene, and dichlorobenzene and xylene isomers) were quantified within a wastewater canal running adjacent to the community. Water samples were collected at multiple sites along the banks of the canal and evidence of anthropogenic emissions existed at each sampling location. Sample site 2, approximately 10 m upstream of the colonia, contained both the widest range of hazardous pollutants and the greatest number exceeding US Environmental Protection Agency surface water standards. At each sampling location, high concentrations of total coliform (>10{sup 4} colonies/100 mL sample), lead (ranging from 0.05 to 0.40 mg/L), nickel (levels from 0.21 to 1.45 mg/L), and benzene (up to 9.80 mg/L) were noted. - This study quantifies widespread industrial and urban contamination within a canal located in a colonia (unplanned community) in Matamoros, Tamaulipas on the US-Mexico border.

  4. Quantification of mold contamination in multi-level buildings using the Environmental Relative Moldiness Index.

    Science.gov (United States)

    Vesper, Stephen; Cox-Ganser, Jean M; Wymer, Larry; Park, Ju-Hyeong

    2017-10-20

    The goal of this study was to evaluate the possible use of the Environmental Relative Moldiness Index (ERMI) to quantify mold contamination in multi-level, office buildings. Settled-dust samples were collected in multi-level, office buildings and the ERMI value for each sample determined. In the first study, a comparison was made between two identical four-story buildings. There were health complaints in one building but none in the other building. In the second study, mold contamination was evaluated on levels 6 through 19 of an office building with a history of water problems and health complaints. In the first study, the average ERMI value in the building with health complaints was 5.33 which was significantly greater than the average ERMI value, 0.55, in the non-complaint building. In the second study, the average ERMI values ranged from a low of -0.58 on level 8 to a high of 5.66 on level 17, one of the top five ranked levels for medical symptoms or medication use. The mold populations of ten (six Group 1 and four Group 2) of the 36-ERMI molds were in significantly greater concentrations in the higher compared to lower ERMI environments. The ERMI metric may be useful in the quantification of water-damage and mold growth in multi-level buildings.

  5. Laboratory Rodent Diets Contain Toxic Levels of Environmental Contaminants: Implications for Regulatory Tests.

    Directory of Open Access Journals (Sweden)

    Robin Mesnage

    Full Text Available The quality of diets in rodent feeding trials is crucial. We describe the contamination with environmental pollutants of 13 laboratory rodent diets from 5 continents. Measurements were performed using accredited methodologies. All diets were contaminated with pesticides (1-6 out of 262 measured, heavy metals (2-3 out of 4, mostly lead and cadmium, PCDD/Fs (1-13 out of 17 and PCBs (5-15 out of 18. Out of 22 GMOs tested for, Roundup-tolerant GMOs were the most frequently detected, constituting up to 48% of the diet. The main pesticide detected was Roundup, with residues of glyphosate and AMPA in 9 of the 13 diets, up to 370 ppb. The levels correlated with the amount of Roundup-tolerant GMOs. Toxic effects of these pollutants on liver, neurodevelopment, and reproduction are documented. The sum of the hazard quotients of the pollutants in the diets (an estimator of risk with a threshold of 1 varied from 15.8 to 40.5. Thus the chronic consumption of these diets can be considered at risk. Efforts toward safer diets will improve the reliability of toxicity tests in biomedical research and regulatory toxicology.

  6. TREATMENT OF PLUTONIUM- AND URANIUM-CONTAMINATED OIL FROM ROCKY FLATS ENVIRONMENTAL TECHNOLOGY SITE

    Energy Technology Data Exchange (ETDEWEB)

    Klasson, KT

    2002-12-05

    A removal method for plutonium and uranium has been tested at the Rocky Flats Environmental Technology Site (RFETS). This alternative treatment technology is applicable to U.S. Department of Energy (DOE) organics (mainly used pump oil) contaminated with actinides. In our studies, greater than 70% removal of the actinides was achieved. The technology is based on contacting the oil with a sorbent powder consisting of a surface modified mesoporous material. The SAMMS (Self-Assembled Monolayers on Mesoporous Support) technology was developed by the Pacific Northwest National Laboratory for removal and stabilization of RCRA (i.e., lead, mercury, cadmium, silver, etc.) and actinides in water and for removal of mercury from organic solvents [1, 2]. The SAMMS material is based on self-assembly of functionalized monolayers on mesoporous oxide surfaces. The unique mesoporous oxide support provides a high surface area, thereby enhancing the metal-loading capacity. The testing described in this report was conducted on a small scale but larger-scale testing of the technology has been performed on mercury-contaminated oil without difficulty [3].

  7. White Oak Creek Embayment site characterization and contaminant screening analysis. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Blaylock, B.G.; Ford, C.J.; Frank, M.L.; Hoffman, F.O.; Hook, L.A.

    1993-01-01

    Analyses of sediment samples collected near the mouth of White Oak Creek during the summer of 1990 revealed {sup 137}Cs concentrations [> 10{sup 6} Bq/kg dry wt (> 10{sup 4} pCi/g dry wt)] near the sediment surface. Available evidence indicates that these relatively high concentrations of {sup 137}Cs now at the sediment surface were released from White Oak Dam in the mid-1950s and had accumulated at depositionalsites in the embayment. These accumulated sediments are being eroded and transported downstream primarily during winter low-water levels by flood events and by a combination of normal downstream flow and the water turbulence created by the release of water from Melton Hill Dam during hydropower generation cycles. This report provides a more thorough characterization of the extent of contamination in WOCE than was previously available. Environmental samples collected from WOCE were analyzed for organic, inorganic, and radiological contaminants in fish, water, and sediment. These results were used to conduct a human health effects screening analysis. Walkover radiation surveys conducted inside the fenced area surrounding the WOCE at summer-pool (741 ft MSL) and at winter-pool (733 ft MSL) level, indicated a maximum exposure rate of 3 mR h{sup 1} 1 m above the soil surface.

  8. Improved Radiation Dosimetry/Risk Estimates to Facilitate Environmental Management of Plutonium-Contaminated Sites

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Bobby R.; Tokarskaya, Zoya B.; Zhuntova, Galina V.; Osovets, Sergey V.; Syrchikov, Victor A., Belyaeva, Zinaida D.

    2007-12-14

    This report summarizes 4 years of research achievements in this Office of Science (BER), U.S. Department of Energy (DOE) project. The research described was conducted by scientists and supporting staff at Lovelace Respiratory Research Institute (LRRI)/Lovelace Biomedical and Environmental Research Institute (LBERI) and the Southern Urals Biophysics Institute (SUBI). All project objectives and goals were achieved. A major focus was on obtaining improved cancer risk estimates for exposure via inhalation to plutonium (Pu) isotopes in the workplace (DOE radiation workers) and environment (public exposures to Pu-contaminated soil). A major finding was that low doses and dose rates of gamma rays can significantly suppress cancer induction by alpha radiation from inhaled Pu isotopes. The suppression relates to stimulation of the body's natural defenses, including immunity against cancer cells and selective apoptosis which removes precancerous and other aberrant cells.

  9. Endotoxins and β-glucans as markers of microbiological contamination--characteristics, detection, and environmental exposure.

    Science.gov (United States)

    Ławniczek-Wałczyk, Anna; Górny, Rafał L

    2010-01-01

    Endotoxins and β-glucans are one of the major markers of microbiological contamination. As components of biological aerosols, they are ubiquitous in many environments. Numerous studies performed during the last three decades have proved that exposure to endotoxins and β-glucans could be associated with many diseases and/or adverse health outcomes. The aim of this review is to present the current stage of knowledge regarding endotoxins and β-glucans as biologically active components of aerosols and to characterize the quantitative methods for their detection in environmental samples. The problems of occupational exposure to both these components and their control procedures are also discussed. An overview of the available worldwide and Polish standards and threshold limit values is also given.

  10. Occurrence of chemical contaminants in peri-urban agricultural irrigation waters and assessment of their phytotoxicity and crop productivity.

    Science.gov (United States)

    Margenat, Anna; Matamoros, Víctor; Díez, Sergi; Cañameras, Núria; Comas, Jordi; Bayona, Josep M

    2017-12-01

    Water scarcity and water pollution have increased the pressure on water resources worldwide. This pressure is particularly important in highly populated areas where water demand exceeds the available natural resources. In this regard, water reuse has emerged as an excellent water source alternative for peri-urban agriculture. Nevertheless, it must cope with the occurrence of chemical contaminants, ranging from trace elements (TEs) to organic microcontaminants. In this study, chemical contaminants (i.e., 15 TEs, 34 contaminants of emerging concern (CECs)), bulk parameters, and nutrients from irrigation waters and crop productivity (Lycopersicon esculentum Mill. cv. Bodar and Lactuca sativa L. cv. Batavia) were seasonally surveyed in 4 farm plots in the peri-urban area of the city of Barcelona. A pristine site, where rain-groundwater is used for irrigation, was selected for background concentrations. The average concentration levels of TEs and CECs in the irrigation water impacted by treated wastewater (TWW) were 3 (35±75μgL-1) and 13 (553±1050ngL-1) times higher than at the pristine site respectively. Principal component analysis was used to classify the irrigation waters by chemical composition. To assess the impact of the occurrence of these contaminants on agriculture, a seed germination assay (Lactuca sativa L) and real field-scale study of crop productivity (i.e., lettuce and tomato) were used. Although irrigation waters from the peri-urban area exhibited a higher frequency of detection and concentration of the assessed chemical contaminants than those of the pristine site (P1), no significant differences were found in seed phytotoxicity or crop productivity. In fact, the crops impacted by TWW showed higher productivity than the other farm plots studied, which was associated with the higher nutrient availability for plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A rapidly deployable chemical sensing network for the real-time monitoring of toxic airborne contaminant releases in urban environments

    Science.gov (United States)

    Lepley, Jason J.; Lloyd, David R.

    2010-04-01

    We present findings of the DYCE project, which addresses the needs of military and blue light responders in providing a rapid, reliable on-scene analysis of the dispersion of toxic airborne contaminants following their malicious or accidental release into a rural, urban or industrial environment. We describe the development of a small network of ad-hoc deployable chemical and meteorological sensors capable of identifying and locating the source of the contaminant release, as well as monitoring and estimating the dispersion characteristics of the plume. We further present deployment planning methodologies to optimize the data gathering mission given a constrained asset base.

  12. Removal of Lead from Wastewater Contaminated with Chemical Synthetic Dye by Aspergillus terreus

    Directory of Open Access Journals (Sweden)

    Lamyai Neeratanaphan

    2015-07-01

    Full Text Available Novel isolated microorganisms have been demonstrated to efficiently remove lead from wastewater contaminated with chemical synthetic dye. In this study, the physical and chemical parameters of wastewater samples (including Pb concentrations were analyzed before and after treatment with microorganisms. The highest Pb concentration detected in wastewater was 0.788 mg/l. Investigations of the Pb tolerance and removal capacities of microorganism strains isolated from the wastewater sediment resulted in the selection of three fungal isolates (F102, F203 and F302. Interestingly, isolate F203 had a Pb tolerance of up to 100 mg/l. Using DNA barcoding and morphological characteristics, fungal isolate F203 was identified as Aspergillus terreus. Wastewater characteristics before treatment included a grayish black color with pH, TDS, BOD, COD and Pb concentrations higher than the Thailand standard values. Wastewater qualities after treatment with A. terreus showed definite improvement; however, the values of certain parameters were still higher than the allowed values based on the Thailand standard. The only improvement that fell within the allowed standard was the Pb concentration. Next, A. terreus was used for Pb adsorption in wastewater with an initial Pb concentration of 0.788 mg/l at time points corresponding to 0, 24, 48, 72, 96, 120, 144 and 168 h of incubation. The results showed that A. terreus could adsorb and remove higher amounts of Pb from wastewater than the other fungal isolates. Time course adsorption analysis showed the remaining Pb concentrations as 0.788, 0.213, 0.162, 0.117, 0.100, 0.066, 0.042 and 0.032 mg/l, respectively; the percentage of Pb removal could be estimated as 0, 72.97, 79.44, 85.15, 87.31, 91.62, 94.67 and 95.94%, respectively. In conclusion, A. terreus possessed the ability to adsorb up to 96% of Pb from chemical synthetic dye within 168 h. Thus, A. terreus might be suitable for adaptation and use in Pb treatment.

  13. Real time PCR to detect the environmental faecal contamination by Echinococcus multilocularis from red fox stools.

    Science.gov (United States)

    Knapp, Jenny; Millon, Laurence; Mouzon, Lorane; Umhang, Gérald; Raoul, Francis; Ali, Zeinaba Said; Combes, Benoît; Comte, Sébastien; Gbaguidi-Haore, Houssein; Grenouillet, Frédéric; Giraudoux, Patrick

    2014-03-17

    The oncosphere stage of Echinococcus multilocularis in red fox stools can lead, after ingestion, to the development of alveolar echinococcosis in the intermediate hosts, commonly small mammals and occasionally humans. Monitoring animal infection and environmental contamination is a key issue in public health surveillance. We developed a quantitative real-time PCR technique (qPCR) to detect and quantify E. multilocularis DNA released in fox faeces. A qPCR technique using a hydrolysis probe targeting part of the mitochondrial gene rrnL was assessed on (i) a reference collection of stools from 57 necropsied foxes simultaneously investigated using the segmental sedimentation and counting technique (SSCT) (29 positive for E. multilocularis worms and 28 negative animals for the parasite); (ii) a collection of 114 fox stools sampled in the field: two sets of 50 samples from contrasted endemic regions in France and 14 from an E. multilocularis-free area (Greenland). Of the negative SSCT controls, 26/28 were qPCR-negative and two were weakly positive. Of the positive SSCT foxes, 25/29 samples were found to be positive by qPCR. Of the field samples, qPCR was positive in 21/50 (42%) and 5/48 (10.4%) stools (2 samples inhibited), originating respectively from high and low endemic areas. In faeces, averages of 0.1 pg/μl of DNA in the Jura area and 0.7 pg/μl in the Saône-et-Loire area were detected. All qPCR-positive samples were confirmed by sequencing. The qPCR technique developed here allowed us to quantify environmental E. multilocularis contamination by fox faeces by studying the infectious agent directly. No previous study had performed this test in a one-step reaction. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Mercury contamination in fish in midcontinent great rivers of the united states: Importance of species traits and environmental factors

    Science.gov (United States)

    Walters, D.M.; Blocksom, K.A.; Lazorchak, J.M.; Jicha, T.; Angradi, T.R.; Bolgrien, D.W.

    2010-01-01

    We measured mercury (Hg) concentrations in whole fish from the Upper Mississippi, Missouri, and Ohio Rivers to characterize the extent and magnitude of Hg contamination and to identify environmental factors influencing Hg accumulation. Concentrations were generally lower (80% of values between 20?200 ng g1 wet weight) than those reported for other regions (e.g., upper Midwest and Northeast U.S.). Mercury exceeded the risk threshold for belted kingfisher (Ceryle alcyon, the most sensitive species considered) in 33?75% of river length and 1?7% of river length for humans. Concentrations were lower in the Missouri than in the Mississippi and Ohio Rivers, consistent with continental-scale patterns in atmospheric Hg deposition. Body size and trophic guild were the best predictors of Hg concentrations, which were highest in large-bodied top predators. Site geochemical and landscape properties were weakly related with fish Hg. Moreover, relationships often ran contrary to conventional wisdom, and the slopes of the relationships (positive or negative) were inconsistent among fish guilds and rivers. For example, sulfate is positively associated with fish Hg concentrations but was negatively correlated with Hg in five of six regression models of tissue concentrations. Variables such as pH, acid neutralizing capacity, and total phosphorus did not occur at levels associated with high fish Hg concentrations, partially explaining the relatively low Hg values we observed. ?? 2010 American Chemical Society.

  15. High Throughput Heuristics for Prioritizing Human Exposure to Environmental Chemicals

    Science.gov (United States)

    The risk posed to human health by any of the thousands of untested anthropogenic chemicals in our environment is a function of both the potential hazard presented by the chemical, and the possibility of being exposed. Without the capacity to make quantitative, albeit uncertain, f...

  16. Human urinary excretion of non-persistent environmental chemicals

    DEFF Research Database (Denmark)

    Frederiksen, Hanne; Jensen, Tina Kold; Jørgensen, Niels

    2014-01-01

    Several non-persistent industrial chemicals have shown endocrine disrupting effects in animal studies and are suspected to be involved in human reproductive disorders. Among the non-persistent chemicals that have been discussed intensively during the past years are phthalates, bisphenol A (BPA...

  17. CASCADE - Chemicals as contaminants in the food chain. A network of excellence for research, risk assessment, and education

    Energy Technology Data Exchange (ETDEWEB)

    Oeberg, M.; Haakansson, H. [Karolinska Institutet, Insitute of Environmental Medicine, Stockholm (Sweden); Pongratz, I.; Gustavsson, J.Aa. [Karolinska Institutet, Dept. of Biosciences, Huddinge (Sweden)

    2004-09-15

    Harmful effects of chemical contaminants in food are of major health concern in Europe today. Lack of integration between basic research, risk assessment, and education severely hampers the efforts to reach European excellence in this area. The research activities that are carried out are small in scale and are not well integrated into a coherent structure. To tackle the fragmentation problems and to achieve synergistic effects and full European research potential, the European Commission has initiated a Network of Excellence called CASCADE or ''Chemicals as contaminants in the food chain: a network of excellence for research, risk assessment, and education'' The contract is running for five years and is worth over 14 million with partners from eighteen research centres. The network has the potential and goal to be a world force in knowledge on health issues related to chemical contaminants in food. Focus is on chemical residues that act via and/or interfere with cell regulation at the level of nuclear receptors. The risk assessment integration parts of the network aim to increase the awareness among scientists and others of the need to bring multiple aspects of scientific information into use in risk assessment.

  18. Assessment Bioremediation of Contaminated Soils to Petroleum Compounds and Role of Chemical Fertilizers in the Decomposition Process

    Directory of Open Access Journals (Sweden)

    H. Parvizi Mosaed

    2013-06-01

    Full Text Available Today oil removal from contaminated soil by new methods such as bioremediation is necessary.  In this paper, the effect of chemical fertilizers and aeration on bioremediation of oil-contaminated soil has been investigated. Also the control group, (bioremediation of petroleum hydrocarbons in contaminated soil without treatment by chemical fertilizers and aeration treatment was examined. The condition of experiment is as following: those were treated 70 days in glass columns (30×30×30cm dimensions, ambient temperature (25-30 0C, relative humidity 70%, aeration operation with flow 0.7 lit/min.  The total number of heterotrophic bacteria of break down oil and the total of petroleum hydrocarbons were analyzed using gas chromatography analysis. all experiments were replicated three times. The microbial population results for control soil, treated soil by aeration and treated soil by aeration and chemical fertilizers columns are 2.3×105, 1.04×1010, and 1.14×1011 CFU/gr, respectively. The concentrations of total petroleum hydrocarbons of remaining are 46965, 38124, and 22187 mg kg-1respectively. The obtained results show that the aeration operation and chemical fertilizers have effective role on degradation of petroleum hydrocarbon by oil degrading bacteria from soil.

  19. The multigenerational effects of water contamination and endocrine disrupting chemicals on the fitness of Drosophila melanogaster.

    Science.gov (United States)

    Quesada-Calderón, Suany; Bacigalupe, Leonardo Daniel; Toro-Vélez, Andrés Fernando; Madera-Parra, Carlos Arturo; Peña-Varón, Miguel Ricardo; Cárdenas-Henao, Heiber

    2017-08-01

    Water pollution due to human activities produces sedimentation, excessive nutrients, and toxic chemicals, and this, in turn, has an effect on the normal endocrine functioning of living beings. Overall, water pollution may affect some components of the fitness of organisms (e.g., developmental time and fertility). Some toxic compounds found in polluted waters are known as endocrine disruptors (ED), and among these are nonhalogenated phenolic chemicals such as bisphenol A and nonylphenol. To evaluate the effect of nonhalogenated phenolic chemicals on the endocrine system, we subjected two generations (F0 and F1) of Drosophila melanogaster to different concentrations of ED. Specifically, treatments involved wastewater, which had the highest level of ED (bisphenol A and nonylphenol) and treated wastewater from a constructed Heliconia psittacorum wetland with horizontal subsurface water flow (He); the treated wastewater was the treatment with the lowest level of ED. We evaluated the development time from egg to pupa and from pupa to adult as well as fertility. The results show that for individuals exposed to treated wastewater, the developmental time from egg to pupae was shorter in individuals of the F1 generation than in the F0 generation. Additionally, the time from pupae to adult was longer for flies growing in the H. psittacorum treated wastewater. Furthermore, fertility was lower in the F1 generation than in the F0 generation. Although different concentrations of bisphenol A and nonylphenol had no significant effect on the components of fitness of D. melanogaster (developmental time and fertility), there was a trend across generations, likely as a result of selection imposed on the flies. It is possible that the flies developed different strategies to avoid the effects of the various environmental stressors.

  20. Chemical and Mineralogical Characterization of Arsenic, Lead, Chromium, and Cadmium in a Metal-contaminated Histosol

    Energy Technology Data Exchange (ETDEWEB)

    Gao, X.; Schulze, D

    2010-01-01

    The chemical and mineralogical forms of As, Pb, Cr, and Cd were studied in a metal-contaminated organic soil (Histosol) that received runoff and seepage water from a site that was once occupied by a lead smelter. Soil samples were collected from different depth intervals during both wet and dry seasons and analyzed using bulk powder X-ray diffraction (XRD), synchrotron-based micro X-ray diffraction ({mu}-XRD), and micro X-ray fluorescence ({mu}-SXRF) spectroscopy. There was a clear pattern of mineral distribution with depth that indicated the presence of an intense redox gradient. The oxidized reddish brown surface layer (0-10 cm) was dominated by goethite ({alpha}-FeOOH) and poorly crystalline akaganeite ({beta}-FeOOH). Lead and arsenic were highly associated with these Fe oxides, possibly by forming inner-sphere surface complexes. Gypsum (CaSO{sub 4} {center_dot} 2H{sub 2}O) was abundant in the layer as well, particularly for samples collected during dry periods. Fe(II)-containing minerals, such as magnetite (Fe{sub 3}O{sub 4}) and siderite (FeCO{sub 3}), were identified in the intermediate layers (10-30 cm) where the reductive dissolution of Fe(III) oxides occurred. A number of high-temperature minerals, such as mullite (3Al{sub 2}O{sub 3} {center_dot} 2Si{sub 2}O), corundum ({alpha}-Al{sub 2}O{sub 3}), hematite ({alpha}-Fe{sub 2}O{sub 3}), and wustite (FeO) were identified in the subsurface and they probably formed as a result of a burning event. Several sulfide minerals were identified in the most reduced layers at depths > 30 cm. They included realgar (AsS), alacranite (As{sub 4}S{sub 4}), galena (PbS), and sphalerite (Zn, Fe{sup 2+})S, and a series of Fe sulfides, including greigite (Fe{sup 2+}Fe{sub 2}{sup 3+} S{sub 4}), pyrrhotite (Fe{sub 1-x}S), mackinawite (FeS), marcasite (FeS{sub 2}), and pyrite (FeS{sub 2}). Most of these minerals occurred as almost pure phases in sub-millimeter aggregates and appeared to be secondary phases that had precipitated from

  1. Reduction of Cr(VI) to Cr(III) in Artificially-Contaminated Soil using Chemical Reagents

    Science.gov (United States)

    Kostarelos, Konstantinos; Rao, Ennio; Reale, Daniela

    2010-05-01

    The presence of hexavalent chromium (CrVI) in soil is an environmental concern due to its effect on human health. The concern arises from the leaching and the seepage of Cr(VI) from soil to groundwater. A remediation approach that has been studied in the literature is that of reducing the hexavalent chromium to its trivalent form using a chemical reagent, namely ferrous sulfate heptahydrate (FeSO4.7H20). In this study, we compared performance of ferrous sulfate heptahydrate to sodium thiosulfate (Na2S2O3), a less costly reductant. The means of measuring the performance of the reductants is the US EPA's Toxicity Characteristic Leaching Procedure (TCLP), which states that the total chromium release from the soil must be less than 5 ppm. Because this treatment approach is pH sensitive and thus, susceptible to acid rain effects, it was studied with the intention that it be coupled with a stabilization/fixation approach so as to provide a second level of treatment; i.e., it is not intended to be the stand-alone treatment approach. In this study, the reductants were initially used to treat a contaminated, artificial soil and allowed to cure for varying time periods to determine the minimum curing time. Contaminated artificial soil were then prepared using the same percentage of white sand, kaolinite clay and potassium chromate and varying amount of water as a function of the humidity of the specimens in order to illucidate the effect of moisture on the reductant performance. Finally, the reductant (either ferrous sulfate heptahydrate or sodium thiosulfate) was added in varying doses to determine the best ratio Cr/reagent dose. Chromium release from the soil was evaluated with a modified Toxicity Characteristic Leaching Procedure (TCLP) test after allowing the samples to cure. Results indicated that chromium(VI) released from the specimens was less than 5 ppm for the samples treated with either ferrous sulfate heptahydrate (99.9% of reduction) and sodium thiosulfate (98

  2. Why small and medium chemical companies continue to pose severe environmental risks in rural China.

    Science.gov (United States)

    He, Guizhen; Zhang, Lei; Mol, Arthur P J; Wang, Tieyu; Lu, Yonglong

    2014-02-01

    In China, rural chemical SMEs are often believed to still largely operate below the sustainability radar. This paper investigates to what extent and how chemical SMEs are already experiencing pressure to improve their environmental performance, using an in-depth case study in Jasmine County, Hebei province. The results show that local residents had rather low trust in the environmental improvement promises made by the enterprises and the local government, and disagreed with the proposed improvement plans. Although the power of local residents to influence decision making remained limited, the chemical SMEs started to feel increasing pressures to clean up their business, from governments, local communities and civil society, and international value chain stakeholders. Notwithstanding these mounting pressures chemical SME's environmental behavior and performance has not changed radically for the better. The strong economic ties between local county governments and chemical SMEs continue to be a major barrier for stringent environmental regulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Novel cell-based assay for detection of thyroid receptor beta-interacting environmental contaminants

    Science.gov (United States)

    Stavreva, Diana A.; Varticovski, Lyuba; Levkova, Ludmila; George, Anuja A.; Davis, Luke; Pegoraro, Gianluca; Blazer, Vicki; Iwanowicz, Luke R.; Hager, Gordon L.

    2016-01-01

    Even though the presence of endocrine disrupting chemicals (EDCs) with thyroid hormone (TH)-like activities in the environment is a major health concern, the methods for their efficient detection and monitoring are still limited. Here we describe a novel cell assay, based on the translocation of a green fluorescent protein (GFP)—tagged chimeric molecule of glucocorticoid receptor (GR) and the thyroid receptor beta (TRβ) from the cytoplasm to the nucleus in the presence of TR ligands. Unlike the constitutively nuclear TRβ, this GFP-GR-TRβ chimera is cytoplasmic in the absence of hormone while translocating to the nucleus in a time- and concentration-dependent manner upon stimulation with triiodothyronine (T3) and thyroid hormone analogue, TRIAC, while the reverse triiodothyronine (3,3′,5′-triiodothyronine, or rT3) was inactive. Moreover, GFP-GR-TRβ chimera does not show any cross-reactivity with the GR-activating hormones, thus providing a clean system for the screening of TR beta-interacting EDCs. Using this assay, we demonstrated that Bisphenol A (BPA) and 3,3′,5,5′-Tetrabromobisphenol (TBBPA) induced GFP-GR-TRβ translocation at micro molar concentrations. We screened over 100 concentrated water samples from different geographic locations in the United States and detected a low, but reproducible contamination in 53% of the samples. This system provides a novel high-throughput approach for screening for endocrine disrupting chemicals (EDCs) interacting with TR beta.

  4. Index analysis and human health risk model application for evaluating ambient air-heavy metal contamination in Chemical Valley Sarnia.

    Science.gov (United States)

    Olawoyin, Richard; Schweitzer, Linda; Zhang, Kuangyuan; Okareh, Oladapo; Slates, Kevin

    2017-10-11

    The impacts of air emissions as a consequence of industrial activities around communities of human habitation have been extensively reported. This study is the first to assess potential adverse human health effects in the Chemical Valley Sarnia (CVS) area, around the St. Clair River, using health risk models, ecological and pollution indices. Large quantities of particulate matters (PM) are generated from anthropogenic activities, which contain several heavy metals in trace quantities with potentially adverse effects to humans and environmental health. The distribution, and human health impact assessment of trace element concentrations in PM fractions were examined. Elemental concentrations of As, Cd, Cr (VI), Cu, Fe, Mn, Pb, Ni, Zn were determined in the PM size-segregated samples collected from the CVS area between 2014 and 2017. The results showed relatively high concentration of PMair quality guidelines. Pb concentration (143.03 ± 46.87ηg/m(3)) was 3.6 times higher than the air quality standards of NAAQS. Cr (VI) showed moderate to considerable contamination ( Cf=4) in the CVS while Cr (VI), Pb, and Ni had enrichment factor Ef health risk from the PM, especially for the children in the area. The deposition fluxes (DΦ) showed that PM-bound metals could potentially bypass the head airways and cause damages to the tracheobronchial tree, increasing the human health risks of nephroblastomasis development. The main route of entry for the heavy metal bound PM in humans were observed as through ingestion and inhalation. The highest total excess cancer risks observed for children (6.7×10(-4)) and adult (1.0×10(-4)) indicating potential cancer effects. The Incremental Lifetime Cancer Risk (ILCR) increased from Pb health effects from exposures to elemental concentrations of airborne PM in the study area. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Environmental dioxin contamination in Chapaevsk, Russia: an evaluation of potential human health risks

    Energy Technology Data Exchange (ETDEWEB)

    Revich, B. [Center for Demography and Human Ecology of Inst. for Forecasting, Russian Academy of Sciences, Moscow (Russian Federation); Sergeyev, O. [Chapaevsk Medical Association, Chapaevsk (Russian Federation); Zeilert, V. [Central Medical Hospital, Chapaevsk (Russian Federation); Hauser, R. [Dept. of Environmental Health, Harvard School of Public Health, Boston (United States)

    2004-09-15

    The town of Chapaevsk (population 80 thousand) is located in Middle Volga region. During 1967- 1987 a chemical plant there produced hexachlorcyclohexan (lindan) and its derivatives. Later it produced crop protection chemicals (liquid chlorine, acids, methyl chloroform, vinyl chloride, and some other chemicals). Previously it was considered that hexachlorane production was responsible for dioxin contamination in the city's environment. Tests seemed to confirm it. But after the production was stopped in 1987, a continued output of dioxin was still observed. At present the plant stands practically idle; the main contamination source is represented by the old technological equipment, the plant's territory and industrial wastes. In 1994 an average concentration of dioxins in the air was 0.116 pg/m{sup 3}. The calculations were made when the plant worked at 20% capacity, so one can extrapolate that dioxin air emissions had been higher previously. Moving away from the plant one can see the decrease in dioxin levels down to 36.8 ng/kg in downtown (2.7 km from the plant); down to 3.9 ng/kg in the southern part of the city; down to 0.9 ng/kg at 10 - 15 km from the plant. Private house owners (18,000 in Chapaevsk) grow essentially all their vegetables and fruits for their own use, thus receiving an additional dioxin load. The results received in Chapaevsk boys study show a high proportion of the boys consumed locally grown or raised foods during their lifetime: over 70% consumed locally produced dairy products, over 50% consumed locally raised chickens or eggs, and over 80% consumed locally caught fish during their lifetime. In 1994 we began studies of dioxins impact on human health with the following aims: (1) to estimate dioxin levels in human blood and milk; (2) to estimate incidence and mortality rates, and specifically describe reproductive health in the population according to official statistical data; (3) to estimate dioxin exposure as a risk factor for

  6. Environmental contamination of Gorganrood Water and Sediment in district of Gonbad-Kavoos City

    Directory of Open Access Journals (Sweden)

    Giti Forghani

    2014-11-01

    Full Text Available Introduction Rivers are the key resources for drinking and agricultural purposes and their quality assessment is very important. The chemical quality of surface waters is influenced by natural processes and anthropogenic activities (e.g. discharge of urban, agricultural and industrial wastewaters. Pollutants discharging into a river from both natural and anthropogenic sources are distributed between sediment and water. Thus, in evaluating the pollution condition of a water body, both sediment and water should be considered. Sediments are generally regarded as an important component of the total river systems, since they provide a bank of environmental information for both natural and anthropogenic pollution. Of the various pollutants, potentially toxic elements (PTEs are of environmental concern, because they are the most toxic, persistent and abundant pollutants that cab accumulate in aquatic habitats and their concentration increases through biomagnification. Regarding the importance of rivers in supply of water, the assessment of hydrochemical properties and PTEs concentration in water and sediment is very important. Gorganrood is an important river in Golestan province (NE of Iran, which plays an important role in providing water supply. This river recharges from Aladagh Mountains and discharges into Caspian Sea. The Gorganrood River is about 350 Km long and its drainage area is about 1025 Km2. This river trends E-W across the study area and is supplied by many tributaries. The average water discharge of Gorganrood in autumn and spring is 4.6 and 12.3 m3/sec, respectively. This river flows through the recent alluviums (silt, sand and clay. During the last years, various domestic, agricultural and industrial wastewaters in Gonbad-e-Kavoos district discharge into the Gorganrood. The wastewaters are constant polluting source for rivers. This study aimed to assess the quality of Gorganrood River water as well as the pollution of bed sediments at

  7. Feasibility study to combine the evaluation of radiological and chemical-toxicological effects of old contaminated sites; Machbarkeitsstudie zur Verknuepfung der Bewertung radiologischer und chemisch-toxischer Wirkungen von Altlasten

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, P.; Proehl, G. [Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Neuherberg (Germany). Inst. fuer Strahlenschutz; Schneider, K.; Voss, J.U. [FoBiG Forschungs- und Beratungsinstitut Gefahrstoffe GmbH, Freiburg im Breisgau (Germany)

    1997-08-01

    The uranium mining regions of the German Federal States Saxony, Thuringia and Saxony-Anhalt are contaminated by radionuclides and by chemical substances. For both, ionizing radiations and chemicals, concepts and models exists to assess possible health effects for the population living in such areas. However, these assessment models were developed independently for both kinds of contaminants. Therefore, the 9{sup th} Conference of the State Ministers for Environmental Protection have claimed that for the evaluation of contaminated sites the radiological and chemical contaminants should be integrated into a joint assessment. This feasibility study describes the state of the art of the concepts and models used for the evaluation of radiological and chemical contaminants. The similarities and differences of these evaluation methods are identified and discussed. Suggestions are made for an integrated assessment to standardize the evaluation of sites contaminated by radionuclides or chemicals. (orig.) [Deutsch] In den Gebieten des ehemaligen Uranbergbaus der Bundeslaender Sachsen, Thueringen und Sachsen-Anhalt treten neben den radioaktiven Kontaminationen auch andere Schadstoffe, insbesondere Schwermetalle, auf. Fuer ionisierende Strahlung und fuer chemische Noxen existieren unabhaengig voneinander entwickelte Bewertungssysteme zum Schutz vor Gesundheitsgefahren und Empfehlungen zum Umgang mit kontaminierten Standorten. Vor diesem Hintergrund forderte die 9. Umweltministerkonferenz - Ost am 17./18. Juni 1993 eine `Verknuepfung der radiologischen und konventionellen Altlastenbewertung`. Ob diese Verknuepfung moeglich ist und in welcher Weise diese vorgenommen werden kann, ist bisher nicht untersucht worden. Diese Machbarkeitsstudie unternimmt eine Bestandsaufnahme von Uebereinstimmungen und Unterschieden der beiden bestehenden Bewertungssysteme fuer Kontaminationen mit Radionukliden und mit chemisch-toxischen Stoffen und zeigt einen Weg auf zur Verinheitlichung der

  8. Biosupported bimetallic Pd-Au nanocatalysts for dechlorination of environmental contaminants.

    Science.gov (United States)

    De Corte, Simon; Hennebel, Tom; Fitts, Jeffrey P; Sabbe, Tom; Bliznuk, Vitaliy; Verschuere, Stephanie; van der Lelie, Daniel; Verstraete, Willy; Boon, Nico

    2011-10-01

    Biologically produced monometallic palladium nanoparticles (bio-Pd) have been shown to catalyze the dehalogenation of environmental contaminants, but fail to efficiently catalyze the degradation of other important recalcitrant halogenated compounds. This study represents the first report of biologically produced bimetallic Pd/Au nanoparticle catalysts. The obtained catalysts were tested for the dechlorination of diclofenac and trichlorethylene. When aqueous bivalent Pd(II) and trivalent Au(III) ions were both added to concentrations of 50 mg L(-1) and reduced simultaneously by Shewanella oneidensis in the presence of H(2), the resulting cell-associated bimetallic nanoparticles (bio-Pd/Au) were able to dehalogenate 78% of the initially added diclofenac after 24 h; in comparison, no dehalogenation was observed using monometallic bio-Pd or bio-Au. Other catalyst-synthesis strategies did not show improved dehalogenation of TCE and diclofenac compared with bio-Pd. Synchrotron-based X-ray diffraction, (scanning) transmission electron microscopy and energy dispersive X-ray spectroscopy indicated that the simultaneous reduction of Pd and Au supported on cells of S. oneidensis resulted in the formation of a unique bimetallic crystalline structure. This study demonstrates that the catalytic activity and functionality of possibly environmentally more benign biosupported Pd-catalysts can be improved by coprecipitation with Au.

  9. Metabolomics for in situ environmental monitoring of surface waters impacted by contaminants from both point and non-point sources

    Science.gov (United States)

    We investigated the efficacy of metabolomics for field-monitoring of fish exposed to waste water treatment plant (WWTP) effluents and non-point sources of chemical contamination. Lab-reared male fathead minnows (Pimephales promelas, FHM) were held in mobile monitoring units and e...

  10. A new chemical formulation for control of dental unit water line contamination: An 'in vitro' and clinical 'study'

    Directory of Open Access Journals (Sweden)

    Dolci Giovanni

    2002-02-01

    Full Text Available Abstract Background Water delivered by dental units during routine dental practice is highly contaminated. The aim of this study is to evaluate the efficacy of a new chemical solution flushed through Dental Unit Water Lines (DUWL for the control of contamination inside dental units. Materials and methods Six old dental units equipped with a device designed to automatically flush disinfecting solutions through the water system (Castellini Autosteril were selected. Water samples from DUWL effluents were collected in each dental unit for 10 randomly selected days, before and after a 5 minute DUWL disinfecting cycle with TetraAcetylEthileneDiamine (TAED and persalt (Ster4spray produced by Farmec spa, and distributed by Castellini spa. Water samples were plated in R2A Agar and cultured at room temperature for 7 days, and the total number of heterotrophic microorganisms counted and expressed in Log10 CFU/mL A general linear model was fitted and multiple regression ANOVA for repeated measures was used for the statistical analysis. Results The mean contamination in DUWL effluent at baseline was 5.45 ± 0.35 CFU/mL (range 4.79 to 5.93 CFU/mL. When water samples were tested "in vitro" against the chemical, no growth of heterotrophic bacteria was detected after a 5 minute contact in any of the water samples tested. After undergoing a 5 minute disinfecting cycle with the chemical, DUWL mean contamination in water effluents was 2.01 ± 0.32 CFU/mL (range 1.30 to 2.74 CFU/mL (significant difference with respect to baseline. Conclusions An inbetween patient disinfecting procedure consisting of flushing DUWL with TAED and persalt equivalent to 0.26% peracetic acid could be useful in routine dental practice for cross-contamination control.

  11. Temporal and spatial variation of polychlorinated biphenyls (PCBs) contamination in environmental compartments of highly polluted area in Central Russia.

    Science.gov (United States)

    Malina, Natalia; Mazlova, Elena A

    2017-10-01

    This study highlights the fact that serious contamination from polychlorinated biphenyls (PCBs) still exists in Serpukhov City (Russia). The research help to determine the temporal (16- and 24-year periods) and spatial PCBs distribution in the environmental compartments of the studied region. Samples of soil, sediments, water and plants were analysed in order to establish their contamination levels. The most recent data on the Serpukhov City's soil contamination showed that the PCBs concentrations varies from 0.0009 to 1169 mg/kg depending on the sampling point and the distance from the pollution source. The temporal trends of the contamination distribution with the soil depth showed contamination migration in the upper soil layers of the highly polluted site. The high level of water pollution (11.5 μg/L) in the proximity to the contamination source and the sediments contamination (0.098-119 mg/kg) were determined, as well as the water migration pathways of the PCBs that were prevalent in the studied region. The PCB congener group (by the level of chlorination) analysis showed that heptachlorinated biphenyls were only found in the soils in close proximity to the contamination place, while biphenyls with Cl ≤ 6 were found in the soil samples downstream of the condenser plant and with Cl ≤ 5 in the soil samples upstream of the plant. The plant uptake of PCBs, even on the extremely contaminated site, was shown. In turn, this research present new knowledge necessary for the development of a contaminated territory remediation strategy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Environmental issues and work: women with multiple chemical sensitivities.

    Science.gov (United States)

    Lipson, Juliene G; Doiron, Nathalie

    2006-08-01

    Multiple chemical sensitivities (MCS) is an acquired condition in which exposure to low levels of chemicals causes symptoms in multiple organ systems. Some 12%-16% of the U.S. population has some level of chemical sensitivity, 80% of whom are women. Attempts to reduce chemical exposures leads to enormous life difficulties at home, school, and workplace. We base our article on an ethnographic study of MCS in the United States and Canada. We describe here themes related to work issues in terms of a general trajectory of becoming sick from work exposures, coping with toxic physical environments and dealing with coworkers and, when unable to continue working, applying for workers' compensation, or disability status, or both.

  13. Identifying populations sensitive to environmental chemicals by simulating toxicokinetic variability.

    Science.gov (United States)

    Ring, Caroline L; Pearce, Robert G; Setzer, R Woodrow; Wetmore, Barbara A; Wambaugh, John F

    2017-09-01

    The thousands of chemicals present in the environment (USGAO, 2013) must be triaged to identify priority chemicals for human health risk research. Most chemicals have little of the toxicokinetic (TK) data that are necessary for relating exposures to tissue concentrations that are believed to be toxic. Ongoing efforts have collected limited, in vitro TK data for a few hundred chemicals. These data have been combined with biomonitoring data to estimate an approximate margin between potential hazard and exposure. The most "at risk" 95th percentile of adults have been identified from simulated populations that are generated either using standard "average" adult human parameters or very specific cohorts such as Northern Europeans. To better reflect the modern U.S. population, we developed a population simulation using physiologies based on distributions of demographic and anthropometric quantities from the most recent U.S. Centers for Disease Control and Prevention National Health and Nutrition Examination Survey (NHANES) data. This allowed incorporation of inter-individual variability, including variability across relevant demographic subgroups. Variability was analyzed with a Monte Carlo approach that accounted for the correlation structure in physiological parameters. To identify portions of the U.S. population that are more at risk for specific chemicals, physiologic variability was incorporated within an open-source high-throughput (HT) TK modeling framework. We prioritized 50 chemicals based on estimates of both potential hazard and exposure. Potential hazard was estimated from in vitro HT screening assays (i.e., the Tox21 and ToxCast programs). Bioactive in vitro concentrations were extrapolated to doses that produce equivalent concentrations in body tissues using a reverse dosimetry approach in which generic TK models are parameterized with: 1) chemical-specific parameters derived from in vitro measurements and predicted from chemical structure; and 2) with

  14. Integrated Environmental Risk Assessment and Whole-Process Management System in Chemical Industry Parks

    Directory of Open Access Journals (Sweden)

    Lei Huang

    2013-04-01

    Full Text Available Chemical industry parks in China are considered high-risk areas because they present numerous risks that can damage the environment, such as pollution incidents. In order to identify the environmental risks and the principal risk factors in these areas, we have developed a simple physical model of a regional environmental risk field (ERF using existing dispersal patterns and migration models. The regional ERF zoning was also conducted and a reference value for diagnostic methods was developed to determine risk-acceptable, risk-warning, and risk-mitigation zones, which can provide a risk source layout for chemical industry parks. In accordance with the environmental risk control requirements, this study focused on the three stages of control and management of environmental risk and established an environmental risk management system including risk source identification and assessment, environmental safety planning, early risk warning, emergency management, assessment of environmental effects, and environmental remediation of pollution accidents. By using this model, the environmental risks in Tianjin Binhai New Area, the largest chemical industry park in China, were assessed and the environmental risk zoning map was drawn, which suggested the existence of many unacceptable environmental risks in this area. Thus, relevant suggestions have been proposed from the perspective of the adjustment of risk source layout, intensified management of environmental risk control and so on.

  15. Radiological, physical, and chemical characterization of low-level alpha contaminated wastes stored at the Idaho National Engineering Laboratory