WorldWideScience

Sample records for environment research program

  1. Environment Health & Safety Research Program. Organization and 1979-1980 Publications

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-01-01

    This document was prepared to assist readers in understanding the organization of Pacific Northwest Laboratory, and the organization and functions of the Environment, Health and Safety Research Program Office. Telephone numbers of the principal management staff are provided. Also included is a list of 1979 and 1980 publications reporting on work performed in the Environment, Health and Safety Research Program, as well as a list of papers submitted for publication.

  2. Potential research money available from the Acid Deposition Program and Alberta Environment

    International Nuclear Information System (INIS)

    Primus, C.L.

    1992-01-01

    It is exceedingly difficult to demonstrate definitive long-term changes in animal health as a result of acid-forming emissions from sour gas wells. A summary is presented of current research in Alberta, followed by the potential for research funding by the Alberta Government/Industry Acid Deposition Program (ADRP). The Alberta Environment research budget consists of four programs in addition to the ADRP: acid deposition effects research in the Athabasca oil sands; western and northern Canada long-range transport of air pollutants; departmental monitoring; and inhalation toxicology and animal health. Animal health research, although a component of the acid deposition issue, is beyond the mandate of Alberta Environment, and the ADRP members committee does not forsee becoming involved in the long-term and complex research required to address the effects of acid-forming emissions on livestock. Funds for additional animal health research must come from other government departments and agencies whose mandate covers this area

  3. Notification: Preliminary Research on EPA's Design for the Environment Product Labeling Program OIG

    Science.gov (United States)

    Project #OPE-FY14-4012, November 06, 2013. The Office of Inspector General (OIG) is starting preliminary research on the U.S. Environmental Protection Agency’s (EPA’s) Design for the Environment (DfE) Product Labeling Program.

  4. Ecological Research Division, Marine Research Program

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    This report presents program summaries of the various projects sponsored during 1979 by the Marine Research Program of the Ecological Research Division. Program areas include the effects of petroleum hydrocarbons on the marine environment; a study of the baseline ecology of a proposed OTEC site near Puerto Rico; the environmental impact of offshore geothermal energy development; the movement of radionuclides through the marine environment; the environmental aspects of power plant cooling systems; and studies of the physical and biological oceangraphy of the continental shelves bordering the United States.

  5. Ecological Research Division, Marine Research Program

    International Nuclear Information System (INIS)

    1980-05-01

    This report presents program summaries of the various projects sponsored during 1979 by the Marine Research Program of the Ecological Research Division. Program areas include the effects of petroleum hydrocarbons on the marine environment; a study of the baseline ecology of a proposed OTEC site near Puerto Rico; the environmental impact of offshore geothermal energy development; the movement of radionuclides through the marine environment; the environmental aspects of power plant cooling systems; and studies of the physical and biological oceangraphy of the continental shelves bordering the United States

  6. Multiprocessor programming environment

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.B.; Fornaro, R.

    1988-12-01

    Programming tools and techniques have been well developed for traditional uniprocessor computer systems. The focus of this research project is on the development of a programming environment for a high speed real time heterogeneous multiprocessor system, with special emphasis on languages and compilers. The new tools and techniques will allow a smooth transition for programmers with experience only on single processor systems.

  7. A review of research programs related to the behavior of plutonium in the environment

    International Nuclear Information System (INIS)

    Bartram, B.W.; Wilkinson, M.J.

    1983-01-01

    Plutonium-fueled radioisotopic heat sources find application in a spectrum of space, terrestrial, and underseas applications to generate electrical power by thermoelectric or dynamic-cycle conversion. Such systems under postulated accident conditions could release radioactivity into the environment resulting in risks to the general population. The released radioactivity could be dispersed into various environmental media, such as air, soil, and water and interact with people through various exposure pathways leading to inhalation, ingestion, and external radiological doses and associated health effects. The authors developed short-term exposure (RISK II) and long-term exposure (RISK III) models for use in safety risk assessments of space missions utilizing plutonium-fueled electric power systems. To effectively use these models in risk assessments, representative input values must be selected for a spectrum of environmental transfer parameters that characterize the behavior of plutonium in the environment. The selection of appropriate transfer parameters to be used in a given analysis will depend on the accident scenarios to be modeled and the terrestrial and aquatic environments to be encountered. The authors reviewed the availability of plutonium environmental data for use in risk assessments and the status of research programs being conducted by various organizations related to the behavior of plutonium in the environment. This report summarizes the research programs presently being conducted at six Department of Energy Laboratories and makes recommendations on areas where further research is needed to fill gaps in the data necessary for risk assessments. 19 refs., 2 figs., 1 tab

  8. Marine biosurfaces research program

    Science.gov (United States)

    The Office of Naval Research (ONR) of the U.S. Navy is starting a basic research program to address the initial events that control colonization of surfaces by organisms in marine environments. The program “arises from the Navy's need to understand and ultimately control biofouling and biocorrosion in marine environments,” according to a Navy announcement.The program, “Biological Processes Controlling Surface Modification in the Marine Environment,” will emphasize the application of in situ techniques and modern molecular biological, biochemical, and biophysical approaches; it will also encourage the development of interdisciplinary projects. Specific areas of interest include sensing and response to environmental surface (physiology/physical chemistry), factors controlling movement to and retention at surfaces (behavior/hydrodynamics), genetic regulation of attachment (molecular genetics), and mechanisms of attachment (biochemistry/surface chemistry).

  9. Factors Influencing Learning Environments in an Integrated Experiential Program

    Science.gov (United States)

    Koci, Peter

    The research conducted for this dissertation examined the learning environment of a specific high school program that delivered the explicit curriculum through an integrated experiential manner, which utilized field and outdoor experiences. The program ran over one semester (five months) and it integrated the grade 10 British Columbian curriculum in five subjects. A mixed methods approach was employed to identify the students' perceptions and provide richer descriptions of their experiences related to their unique learning environment. Quantitative instruments were used to assess changes in students' perspectives of their learning environment, as well as other supporting factors including students' mindfulness, and behaviours towards the environment. Qualitative data collection included observations, open-ended questions, and impromptu interviews with the teacher. The qualitative data describe the factors and processes that influenced the learning environment and give a richer, deeper interpretation which complements the quantitative findings. The research results showed positive scores on all the quantitative measures conducted, and the qualitative data provided further insight into descriptions of learning environment constructs that the students perceived as most important. A major finding was that the group cohesion measure was perceived by students as the most important attribute of their preferred learning environment. A flow chart was developed to help the researcher conceptualize how the learning environment, learning process, and outcomes relate to one another in the studied program. This research attempts to explain through the consideration of this case study: how learning environments can influence behavioural change and how an interconnectedness among several factors in the learning process is influenced by the type of learning environment facilitated. Considerably more research is needed in this area to understand fully the complexity learning

  10. Orchestration in work environment policy programs

    DEFF Research Database (Denmark)

    Hasle, Peter; Limborg, Hans Jørgen; Grøn, Sisse

    2017-01-01

    In spite of many years’ efforts, it is difficult to prove substantial improvements of the work environment and policymakers are continuously searching for new efficient strategies. This paper examines the concept of orchestration of work environment programs, based on an empirical analysis...... of recent Danish policy. Orchestration is a strategy where different stakeholders and activities are integrated into a unified program aimed at a specific target group. The analysis includes three policy cases, supplemented with two company case studies. The research shows a move toward a more governance...... type of regulation, which is not only emerging in network but also includes more explicitly orchestrated policy programs. The stakeholders participate in the network with different interests and the orchestration of work environment policies is therefore built on a platform of regulation...

  11. Energy and environment annual report 1974. [Environmental Research programs

    Energy Technology Data Exchange (ETDEWEB)

    Blumstein, C. (ed.)

    1974-01-01

    Research in the Division's environmental science program includes air pollution, water pollution, and the effects of pollutants on man and natural ecosystems. Work has focused on the chemistry and physics of particle surfaces. Using the technique of electron spectroscopy for chemical analysis (ESCA), surface reactions of sulfur and nitrogen compounds have been studied, and results include the identification of new chemical forms of nitrogen on particle surfaces and evidence for the importance of particle surfaces in the catalysis of sulfur dioxide to sulfuric acid. The Division's work in water pollution has been devoted to the study of trace metals in the estuarine environment, especially in San Francisco Bay. Studies on the effect of dredging operations on trace metals in the Mare Island ship channel and on the distribution of cadmium in Bay sediments have been performed. Research has also been conducted on the distribution of trace elements between bound states on suspended particles and in solution in Bay waters. Research is being conducted on a variety of problems relating to effects of pollutants. Biological studies seeking to discover effects of specific environmental insults such as oxidants at the cellular level have been done, and epidemiological studies have been initiated on the impacts of trace metals on human health. Theoretical studies in an attempt to develop a basis for assessing the stability of ecological systems are also being undertaken.

  12. RIPE [robot independent programming environment]: A robot independent programming environment

    International Nuclear Information System (INIS)

    Miller, D.J.; Lennox, R.C.

    1990-01-01

    Remote manual operations in radiation environments are typically performed very slowly. Sensor-based computer-controlled robots hold great promise for increasing the speed and safety of remote operations; however, the programming of robotic systems has proven to be expensive and difficult. Generalized approaches to robot programming that reuse available software modules and employ programming languages which are independent of the specific robotic and sensory devices being used are needed to speed software development and increase overall system reliability. This paper discusses the robot independent programming environment (RIPE) developed at Sandia National Laboratories (SNL). The RIPE is an object-oriented approach to robot system architectures; it is a software environment that facilitates rapid design and implementation of complex robot systems for diverse applications. An architecture based on hierarchies of distributed multiprocessors provides the computing platform for a layered programming structure that models applications using software objects. These objects are designed to support model-based automated programming of robotic and machining devices, real-time sensor-based control, error handling, and robust communication

  13. A review of research programs related to the behavior of plutonium in the environment

    International Nuclear Information System (INIS)

    Bartram, Bart W.; Wilkinson, Martha J.

    1983-01-01

    Plutonium-fueled radioisotopic heat sources find application in a spectrum of space, terrestrial, and underseas applications to generate electrical power by thermoelectric or dynamic-cycle conversion. Such systems under postulated accident conditions could release radioactivity into the environment resulting in risks to the general population. The released radioactivity could be dispersed into various environmental media, such as air, soil, and water and interact with people through various exposure pathways leading to inhalation, ingestion, and external radiological doses and associated health effects. The authors developed short-term exposure (RISK II) and long-term exposure (RISK III) models for use in safety risk assessments of space missions utilizing plutonium-fueled electric power systems. To effectively use these models in risk assessments, representative input values must be selected for a spectrum of environmental transfer parameters that characterize the behavior of plutonium in the environment. The selection of appropriate transfer parameters to be used in a given analysis will depend on the accident scenarios to be modeled and the terrestrial and aquatic environments to be encountered. The authors reviewed the availability of plutonium in the environment. This report summarizes the research programs presently being conducted at six Department of Energy Laboratories and makes recommendations on areas where further research is needed to fill gaps in the data necessary for risk assessments

  14. 77 FR 38709 - Surface Transportation Environment and Planning Cooperative Research Program (STEP)

    Science.gov (United States)

    2012-06-28

    ... Planning Cooperative Research Program (STEP) AGENCY: Federal Highway Administration (FHWA), DOT. ACTION... Research Program (STEP). The FHWA anticipates that the STEP or a similar program to provide resources for... stakeholders that can leverage limited research funding in the STEP with other stakeholders and partners in...

  15. 75 FR 38605 - Surface Transportation Environment and Planning Cooperative Research Program (STEP)

    Science.gov (United States)

    2010-07-02

    ... Planning Cooperative Research Program (STEP) AGENCY: Federal Highway Administration (FHWA), DOT. ACTION... Research Program (STEP). The FHWA anticipates that the STEP or a similar program to provide resources for... limited research funding in the STEP with other stakeholders and partners in order to increase the total...

  16. 76 FR 50312 - Surface Transportation Environment and Planning Cooperative Research Program (STEP)

    Science.gov (United States)

    2011-08-12

    ... Planning Cooperative Research Program (STEP) AGENCY: Federal Highway Administration (FHWA), DOT. ACTION... Research Program (STEP). The FHWA anticipates that the STEP or a similar program to provide resources for... limited research funding in the STEP with other stakeholders and partners in order to increase the total...

  17. Environmental research program. 1992 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    The objective of the Environmental Research Program is to contribute to the understanding of the formation, mitigation, transport, transformation, and ecological effects of energy-related pollutants on the environment. The program is multidisciplinary and includes fundamental and applied research in chemistry, physics, biology, engineering, and ecology. The program undertakes research and development in efficient and environmentally benign combustion, pollution abatement and destruction, and novel methods of detection and analysis of criteria and non-criteria pollutants. This diverse group investigates combustion, atmospheric processes, flue-gas chemistry, and ecological systems.

  18. Economics for the Environment: Research Capacity Building in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Economics for the Environment: Research Capacity Building in South Asia. This project will enhance environmental economics research capacity in South Asia through a program of research grants, training, and networking. It provides funds to the South Asian Network for Development and Environmental Economics ...

  19. Report of the 2014 Programming Models and Environments Summit

    Energy Technology Data Exchange (ETDEWEB)

    Heroux, Michael [US Dept. of Energy, Washington, DC (United States); Lethin, Richard [US Dept. of Energy, Washington, DC (United States)

    2016-09-19

    Programming models and environments play the essential roles in high performance computing of enabling the conception, design, implementation and execution of science and engineering application codes. Programmer productivity is strongly influenced by the effectiveness of our programming models and environments, as is software sustainability since our codes have lifespans measured in decades, so the advent of new computing architectures, increased concurrency, concerns for resilience, and the increasing demands for high-fidelity, multi-physics, multi-scale and data-intensive computations mean that we have new challenges to address as part of our fundamental R&D requirements. Fortunately, we also have new tools and environments that make design, prototyping and delivery of new programming models easier than ever. The combination of new and challenging requirements and new, powerful toolsets enables significant synergies for the next generation of programming models and environments R&D. This report presents the topics discussed and results from the 2014 DOE Office of Science Advanced Scientific Computing Research (ASCR) Programming Models & Environments Summit, and subsequent discussions among the summit participants and contributors to topics in this report.

  20. Environmental Biotechnology Research and Development Program 1989-1992

    OpenAIRE

    Brinkman J; Rulkens WH; Visscher K

    1989-01-01

    This report is an English translation of the Dutch Research and Development Program on environmental biotechnology 1989-1992. In this program an overview is given of the recent developments in environmental biotechnology. Based on this overview, the possibilities of biotechnology for management of the environment are evaluated. In this program two kinds of research are distinguished. Applied research directly focusses on specific environmental problems. Fundamental research aims at developing...

  1. Overview of Gas Research Institute environmental research programs

    International Nuclear Information System (INIS)

    Evans, J.M.

    1991-01-01

    The Gas Research Institute (GRI) is a private not-for-profit membership organization of natural gas pipelines, distribution companies and natural gas producers. GRI's purpose is to plan, to manage and to develop financing for a gas-related research and development (R and D) program on behalf of its members and their customers. GRI does not do any research itself. GRI's R and D program is designed to provide advanced technologies for natural gas supply, transport, storage, distribution and end-use applications in all markets. In addition, basic research is conducted for GRI in these areas to build a foundation for future technology breakthroughs. Work in the Environment and Safety Research Department includes sections interested in: supply related research, air quality research, end use equipment safety research, gas operations safety research, and gas operations environmental research. The Natural Gas Supply Program has research ongoing in such areas as: restoration of pipeline right-of-ways; cleaning up town gas manufacturing sites; the development of methanogenic bacteria for soil and groundwater cleanup; development of biological fluidized carbon units for rapid destruction of carbonaceous compounds; research on liquid redox sulfur recovery for sulfur removal from natural gas; research on produced water and production wastes generated by the natural gas industry; environmental effects of coalbed methane production; and subsurface effects of natural gas operations. The western coalbed methane and ground water programs are described

  2. Virtual environments simulation in research reactor

    Science.gov (United States)

    Muhamad, Shalina Bt. Sheik; Bahrin, Muhammad Hannan Bin

    2017-01-01

    Virtual reality based simulations are interactive and engaging. It has the useful potential in improving safety training. Virtual reality technology can be used to train workers who are unfamiliar with the physical layout of an area. In this study, a simulation program based on the virtual environment at research reactor was developed. The platform used for virtual simulation is 3DVia software for which it's rendering capabilities, physics for movement and collision and interactive navigation features have been taken advantage of. A real research reactor was virtually modelled and simulated with the model of avatars adopted to simulate walking. Collision detection algorithms were developed for various parts of the 3D building and avatars to restrain the avatars to certain regions of the virtual environment. A user can control the avatar to move around inside the virtual environment. Thus, this work can assist in the training of personnel, as in evaluating the radiological safety of the research reactor facility.

  3. Environment and safety research status report: 1993

    International Nuclear Information System (INIS)

    1993-03-01

    The 1993 status report discusses ongoing and planned research activities in the GRI Environment and Safety Program. The objectives and goals, accomplishments, and strategy along with the basis for each project area are presented for the supply, end use, and gas operations subprograms. Within the context of these subprograms, contract status summaries under their conceptual titles are given for the following project areas: Gas Supply Environmental and Safety Research, Air Quality Research, End Use Equipment Safety Research, Gas Operations Safety Research, Liquefied Natural Gas, Safety Research, and Gas Operations Environmental Research

  4. Bibliography of the Interagency Energy/Environment R and D Program

    Energy Technology Data Exchange (ETDEWEB)

    Jacoff, F.S. (ed.)

    1979-08-01

    The Interagency Energy/Environment Research and Development Program, which is comprised of more than a dozen federal agencies and departments, is coordinated by the Office of Energy, Minerals and Industry within EPA's Office of Research and Development. The Interagency Program integrates research efforts in two main categories: health and environmental effects of energy systems and development of environmental control technologies. This bibliography lists publications resulting from research and development (R and D) performed under the auspices of the Interagency Program. The publications contained herein range from the Program's most current R and D and date back to the Program's inception in 1975. It has been designed to be used with three companion documents, each of which explores different facets of the Program.

  5. Retail food environments research in Canada: A scoping review.

    Science.gov (United States)

    Minaker, Leia M; Shuh, Alanna; Olstad, Dana L; Engler-Stringer, Rachel; Black, Jennifer L; Mah, Catherine L

    2016-06-09

    The field of retail food environments research is relatively new in Canada. The objective of this scoping review is to provide an overview of retail food environments research conducted before July 2015 in Canada. Specifically, this review describes research foci and key findings, identifies knowledge gaps and suggests future directions for research. A search of published literature concerning Canadian investigations of retail food environment settings (food stores, restaurants) was conducted in July 2015 using PubMed, Web of Science, Scopus, PsychInfo and ERIC. Studies published in English that reported qualitative or quantitative data on any aspect of the retail food environment were included, as were conceptual papers and commentaries. Eighty-eight studies were included in this review and suggest that the field of retail food environments research is rapidly expanding in Canada. While only 1 paper was published before 2005, 66 papers were published between 2010 and 2015. Canadian food environments research typically assessed either the socio-economic patterning of food environments (n = 28) or associations between retail food environments and diet, anthropometric or health outcomes (n = 33). Other papers profiled methodological research, qualitative studies, intervention research and critical commentaries (n = 27). Key gaps in the current literature include measurement inconsistency among studies and a lack of longitudinal and intervention studies. Retail food environments are a growing topic of research, policy and program development in Canada. Consistent methods (where appropriate), longitudinal and intervention research, and close partnerships between researchers and key stakeholders would greatly advance the field of retail food environments research in Canada.

  6. A new DoD initiative: the Computational Research and Engineering Acquisition Tools and Environments (CREATE) program

    International Nuclear Information System (INIS)

    Arevalo, S; Atwood, C; Bell, P; Blacker, T D; Dey, S; Fisher, D; Fisher, D A; Genalis, P; Gorski, J; Harris, A; Hill, K; Hurwitz, M; Kendall, R P; Meakin, R L; Morton, S; Moyer, E T; Post, D E; Strawn, R; Veldhuizen, D v; Votta, L G

    2008-01-01

    In FY2008, the U.S. Department of Defense (DoD) initiated the Computational Research and Engineering Acquisition Tools and Environments (CREATE) program, a $360M program with a two-year planning phase and a ten-year execution phase. CREATE will develop and deploy three computational engineering tool sets for DoD acquisition programs to use to design aircraft, ships and radio-frequency antennas. The planning and execution of CREATE are based on the 'lessons learned' from case studies of large-scale computational science and engineering projects. The case studies stress the importance of a stable, close-knit development team; a focus on customer needs and requirements; verification and validation; flexible and agile planning, management, and development processes; risk management; realistic schedules and resource levels; balanced short- and long-term goals and deliverables; and stable, long-term support by the program sponsor. Since it began in FY2008, the CREATE program has built a team and project structure, developed requirements and begun validating them, identified candidate products, established initial connections with the acquisition programs, begun detailed project planning and development, and generated the initial collaboration infrastructure necessary for success by its multi-institutional, multidisciplinary teams

  7. Teaching Global Change in Local Places: The HERO Research Experiences for Undergraduates Program

    Science.gov (United States)

    Yarnal, Brent; Neff, Rob

    2007-01-01

    The Human-Environment Research Observatory (HERO) Research Experience for Undergraduates (REU) program aimed to develop the next generation of researchers working on place-based human-environment problems. The program followed a cooperative learning model to foster an integrated approach to geographic research and to build collaborative research…

  8. CESAR robotics and intelligent systems research for nuclear environments

    International Nuclear Information System (INIS)

    Mann, R.C.

    1992-01-01

    The Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) encompasses expertise and facilities to perform basic and applied research in robotics and intelligent systems in order to address a broad spectrum of problems related to nuclear and other environments. For nuclear environments, research focus is derived from applications in advanced nuclear power stations, and in environmental restoration and waste management. Several programs at CESAR emphasize the cross-cutting technology issues, and are executed in appropriate cooperation with projects that address specific problem areas. Although the main thrust of the CESAR long-term research is on developing highly automated systems that can cooperate and function reliably in complex environments, the development of advanced human-machine interfaces represents a significant part of our research. 11 refs

  9. Health, safety and environmental research program

    International Nuclear Information System (INIS)

    Dinner, P.J.

    1983-01-01

    This report outlines the Health, Safety and Environmental Research Program being undertaken by the CFFTP. The Program objectives, relationship to other CFFTP programs, implementation plans and expected outputs are stated. Opportunities to build upon the knowledge and experience gained in safely managing tritium in the CANDU program, by addressing generic questions pertinent to tritium safety for fusion facilities, are identified. These opportunities exist across a broad spectrum of issues covering the anticipated behaviour of tritium in fusion facilities, the surrounding environment and in man

  10. Human Research Program Integrated Research Plan. Revision A January 2009

    Science.gov (United States)

    2009-01-01

    The Integrated Research Plan (IRP) describes the portfolio of Human Research Program (HRP) research and technology tasks. The IRP is the HRP strategic and tactical plan for research necessary to meet HRP requirements. The need to produce an IRP is established in HRP-47052, Human Research Program - Program Plan, and is under configuration management control of the Human Research Program Control Board (HRPCB). Crew health and performance is critical to successful human exploration beyond low Earth orbit. The Human Research Program (HRP) is essential to enabling extended periods of space exploration because it provides knowledge and tools to mitigate risks to human health and performance. Risks include physiological and behavioral effects from radiation and hypogravity environments, as well as unique challenges in medical support, human factors, and behavioral or psychological factors. The Human Research Program (HRP) delivers human health and performance countermeasures, knowledge, technologies and tools to enable safe, reliable, and productive human space exploration. Without HRP results, NASA will face unknown and unacceptable risks for mission success and post-mission crew health. This Integrated Research Plan (IRP) describes HRP s approach and research activities that are intended to address the needs of human space exploration and serve HRP customers and how they are integrated to provide a risk mitigation tool. The scope of the IRP is limited to the activities that can be conducted with the resources available to the HRP; it does not contain activities that would be performed if additional resources were available. The timescale of human space exploration is envisioned to take many decades. The IRP illustrates the program s research plan through the timescale of early lunar missions of extended duration.

  11. The USERDA transport R and D program for environment and safety

    International Nuclear Information System (INIS)

    Sisler, J.A.

    1976-01-01

    This paper describes the U.S. Energy Research and Development Administration's (ERDA) transportation environment and safety research and development program for energy fuels and wastes, including background, current activities, and future plans. It will serve as an overview and integrating factor for the several related technical papers to be presented at this meeting which will enlarge on the detail of specific projects. The transportation R and D program provides for the environmental and safety review of transport systems and procedures; standards development; and package, vehicle, and systems testing for nuclear materials transport. A primary output of the program is the collection, processing, and dissemination of transport environment and safety data, shipment statistics, and technical information. Special transport projects which do not easily fit elsewhere in ERDA are usually done as a part of this program. (author)

  12. Indoor environment program. 1994 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Daisey, J.M.

    1995-04-01

    Buildings use approximately one-third of the energy consumed in the United States. The potential energy savings derived from reduced infiltration and ventilation in buildings are substantial, since energy use associated with conditioning and distributing ventilation air is about 5.5 EJ per year. However, since ventilation is the dominant mechanism for removing pollutants from indoor sources, reduction of ventilation can have adverse effects on indoor air quality, and on the health, comfort, and productivity of building occupants. The Indoor Environment Program in LBL`s Energy and Environment Division was established in 1977 to conduct integrated research on ventilation, indoor air quality, and energy use and efficiency in buildings for the purpose of reducing energy liabilities associated with airflows into, within, and out of buildings while maintaining or improving occupant health and comfort. The Program is part of LBL`s Center for Building Science. Research is conducted on building energy use and efficiency, ventilation and infiltration, and thermal distribution systems; on the nature, sources, transport, transformation, and deposition of indoor air pollutants; and on exposure and health risks associated with indoor air pollutants. Pollutants of particular interest include radon; volatile, semivolatile, and particulate organic compounds; and combustion emissions, including environmental tobacco smoke, CO, and NO{sub x}.

  13. Indoor environment program - 1995 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Daisey, J.M.

    1996-06-01

    Buildings use approximately one-third of the energy consumed in the United States. The potential energy savings derived from reduced infiltration and ventilation in buildings are substantial, since energy use associated with conditioning and distributing ventilation air is about 5.5 EJ per year. However, since ventilation is the dominant mechanism for removing pollutants from indoor sources, reduction of ventilation can have adverse effects on indoor air quality, and on the health, comfort, and productivity of building occupants. The Indoor Environment Program in LBL`s Energy and Environment Division was established in 1977 to conduct integrated research on ventilation, indoor air quality, and energy use and efficiency in buildings for the purpose of reducing energy liabilities associated with airflows into, within, and out of buildings while maintaining or improving occupant health and comfort. The Program is part of LBL`s Center for Building Science. Research is conducted on building energy use and efficiency, ventilation and infiltration, and thermal distribution systems; on the nature, sources, transport, transformation, and deposition of indoor air pollutants; and on exposure and health risks associated with indoor air pollutants. Pollutants of particular interest include radon; volatile, semivolatile, and particulate organic compounds; and combustion emissions, including environmental tobacco smoke, CO, and NO{sub x}.

  14. Ignalina Nuclear Power Plant and the Environment. Scientific research program: 1993-1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The aim of the research program is not only to asses the impact of the Ignalina NPP to the ecosystems. There was a need to study the region of Ignalina NPP as a comprehensive nature complex, not limited by the interests or potential of one institution. The implementation of such program could provide scientific conclusions vital for formulating the strategies of nature and health protection under the conditions of normal and emergency operational regimes of Ignalina NPP. The program will be carried out by 250 members of 13 research and academic institutions and will continue from 1993 till 1997. (author). 13 refs., 13 figs.

  15. Ignalina Nuclear Power Plant and the Environment. Scientific research program: 1993-1997

    International Nuclear Information System (INIS)

    1993-01-01

    The aim of the research program is not only to asses the impact of the Ignalina NPP to the ecosystems. There was a need to study the region of Ignalina NPP as a comprehensive nature complex, not limited by the interests or potential of one institution. The implementation of such program could provide scientific conclusions vital for formulating the strategies of nature and health protection under the conditions of normal and emergency operational regimes of Ignalina NPP. The program will be carried out by 250 members of 13 research and academic institutions and will continue from 1993 till 1997. (author). 13 refs., 13 figs

  16. Water reactor safety research program. A description of current and planned research

    International Nuclear Information System (INIS)

    1978-07-01

    The U.S. Nuclear Regulatory Commission (NRC) sponsors confirmatory safety research on lightwater reactors in support of the NRC regulatory program. The principal responsibility of the NRC, as implemented through its regulatory program is to ensure that public health, public safety, and the environment are adequately protected. The NRC performs this function by defining conditions for the use of nuclear power and by ensuring through technical review, audit, and follow-up that these conditions are met. The NRC research program provides technical information, independent of the nuclear industry, to aid in discharging these regulatory responsibilities. The objectives of NRC's research program are the following: (1) to maintain a confirmatory research program that supports assurance of public health and safety, and public confidence in the regulatory program, (2) to provide objectively evaluated safety data and analytical methods that meet the needs of regulatory activities, (3) to provide better quantified estimates of the margins of safety for reactor systems, fuel cycle facilities, and transportation systems, (4) to establish a broad and coherent exchange of safety research information with other Federal agencies, industry, and foreign organization. Current and planned research toward these goals is described

  17. Animal Models and Bone Histomorphometry: Translational Research for the Human Research Program

    Science.gov (United States)

    Sibonga, Jean D.

    2010-01-01

    This slide presentation reviews the use of animal models to research and inform bone morphology, in particular relating to human research in bone loss as a result of low gravity environments. Reasons for use of animal models as tools for human research programs include: time-efficient, cost-effective, invasive measures, and predictability as some model are predictive for drug effects.

  18. Survey on present status and trend of parallel programming environments

    International Nuclear Information System (INIS)

    Takemiya, Hiroshi; Higuchi, Kenji; Honma, Ichiro; Ohta, Hirofumi; Kawasaki, Takuji; Imamura, Toshiyuki; Koide, Hiroshi; Akimoto, Masayuki.

    1997-03-01

    This report intends to provide useful information on software tools for parallel programming through the survey on parallel programming environments of the following six parallel computers, Fujitsu VPP300/500, NEC SX-4, Hitachi SR2201, Cray T94, IBM SP, and Intel Paragon, all of which are installed at Japan Atomic Energy Research Institute (JAERI), moreover, the present status of R and D's on parallel softwares of parallel languages, compilers, debuggers, performance evaluation tools, and integrated tools is reported. This survey has been made as a part of our project of developing a basic software for parallel programming environment, which is designed on the concept of STA (Seamless Thinking Aid to programmers). (author)

  19. The modern research environment

    DEFF Research Database (Denmark)

    Topsøe, Flemming

    1993-01-01

    Information Technology, research environment, structured documents, networked information retrieval......Information Technology, research environment, structured documents, networked information retrieval...

  20. Laboratory Directed Research and Development Program

    International Nuclear Information System (INIS)

    1994-02-01

    This report is compiled from annual reports submitted by principal investigators following the close of fiscal year 1993. This report describes the projects supported and summarizes their accomplishments. The program advances the Laboratory's core competencies, foundations, scientific capability, and permits exploration of exciting new opportunities. Reports are given from the following divisions: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment -- Health and Safety, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics, and Structural Biology

  1. Programming in an object-oriented environment

    CERN Document Server

    Ege, Raimund K

    1992-01-01

    Programming in an Object-Oriented Environment provides an in-depth look at the concepts behind the technology of object-oriented programming.This book explains why object-oriented programming has the potential to vastly improve the productivity of programmers and how to apply this technology in a practical environment. Many programming examples are included, focusing on how different programming languages support the core of object-oriented concepts. C++ is used as the main sample language throughout this text.This monograph consists of two major parts. Part I provides an introduction to objec

  2. The Greenfoot Programming Environment

    Science.gov (United States)

    Kolling, Michael

    2010-01-01

    Greenfoot is an educational integrated development environment aimed at learning and teaching programming. It is aimed at a target audience of students from about 14 years old upwards, and is also suitable for college- and university-level education. Greenfoot combines graphical, interactive output with programming in Java, a standard, text-based…

  3. Forschungszentrum Karlsruhe Technik und Umwelt. Research and development program 2002

    International Nuclear Information System (INIS)

    2001-01-01

    The five main fields of research and the activities under the R and D program 2002 are explained in great detail in five chapters with the following captions: 1. ENVIRONMENT. Programs: - Sustainable development, energy and environmental engineering (UMWELT). - Earth atmosphere and climate research (ATMO). 2. PUBLIC HEALTH. Programs: - Biomedical research (BIOMED). - Medical engineering (MEDTECH). 3. ENERGY. Programs: - Thermonuclear fusion (FUSION). - Nuclear safety (NUKLEAR). 4. KEY TECHNOLOGIES. Programs: - Microsystems engineering (MIKRO). - Nanotechnology (NANO). - Materials science (MATERIAL). - Chemical process engineering (CHEMIE). - Superconductivity (SUPRA). 5. MATTER and STRUCTURE. Program: The structure of matter (STRUKTUR). The sixth chapter presents cross-cutting activities under the program: Technology transfer and marketing (TTM). The concluding chapter lists and briefly presents the activities of the scientific and technical institutes of the Karlsruhe Research Center. (CB) [de

  4. Fifteen Challenges in Establishing a Multidisciplinary Research Program on eHealth Research in a University Setting: A Case Study.

    Science.gov (United States)

    Grönqvist, Helena; Olsson, Erik Martin Gustaf; Johansson, Birgitta; Held, Claes; Sjöström, Jonas; Lindahl Norberg, Annika; Hovén, Emma; Sanderman, Robbert; van Achterberg, Theo; von Essen, Louise

    2017-05-23

    U-CARE is a multidisciplinary eHealth research program that involves the disciplines of caring science, clinical psychology, health economics, information systems, and medical science. It was set up from scratch in a university setting in 2010, funded by a governmental initiative. While establishing the research program, many challenges were faced. Systematic documentation of experiences from establishing new research environments is scarce. The aim of this paper was to describe the challenges of establishing a publicly funded multidisciplinary eHealth research environment. Researchers involved in developing the research program U-CARE identified challenges in the formal documentation and by reflecting on their experience of developing the program. The authors discussed the content and organization of challenges into themes until consensus was reached. The authors identified 15 major challenges, some general to establishing a new research environment and some specific for multidisciplinary eHealth programs. The challenges were organized into 6 themes: Organization, Communication, Implementation, Legislation, Software development, and Multidisciplinarity. Several challenges were faced during the development of the program and several accomplishments were made. By sharing our experience, we hope to help other research groups embarking on a similar journey to be prepared for some of the challenges they are likely to face on their way. ©Helena Grönqvist, Erik Martin Gustaf Olsson, Birgitta Johansson, Claes Held, Jonas Sjöström, Annika Lindahl Norberg, Emma Hovén, Robbert Sanderman, Theo van Achterberg, Louise von Essen. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 23.05.2017.

  5. Applying the National Industrial Security Program (NISP) in the laboratory environment

    International Nuclear Information System (INIS)

    Bruckner, D.G.

    1995-01-01

    With continuing changes in the world safeguards and security environment the effectiveness of many laboratory operations depends on correctly assessing the risk to its programs and developing protection technologies, research and concepts of operations being employed by the scientific community. This paper explores the opportunities afforded by the National Industrial Security Program (NISP) to uniformly and simply protect Laboratory security assets, sensitive and classified information and matter, during all aspects of a laboratory program. The developments in information systems, program security, physical security and access controls suggest an industrial security approach. This paper's overall objective is to indicate that the Laboratory environment is particularly well suited to take advantage being pursued by NISP and the performance objectives of the new DOE orders

  6. Indoor Environment Program

    International Nuclear Information System (INIS)

    Daisey, J.M.

    1993-06-01

    This paper reports progress during the year 1992 in the Indoor Environment Program in the Energy and Environment Division of Lawrence Berkeley Laboratory. Studies in the following areas are reported: energy performance and ventilation in buildings; physical and chemical characterization of indoor air pollutants; indoor radon; indoor air quality; exposure to indoor air pollutants and risk analysis. Pollutants of particular interest include: radon; volatile, semi-volatile and particulate organic compounds; and combustion emissions including environmental tobacco smoke, carbon monoxide, and nitrogen oxides

  7. Food, Environment, Engineering and Life Sciences Program (Invited)

    Science.gov (United States)

    Mohtar, R. H.; Whittaker, A.; Amar, N.; Burgess, W.

    2009-12-01

    Food, Environment, Engineering and Life Sciences Program Nadia Amar, Wiella Burgess, Rabi H. Mohtar, and Dale Whitaker Purdue University Correspondence: mohtar@purdue.edu FEELS, the Food, Environment, Engineering and Life Sciences Program is a grant of the National Science Foundation for the College of Agriculture at Purdue University. FEELS’ mission is to recruit, retain, and prepare high-achieving students with financial difficulties to pursue STEM (Science, Technology, Engineering, and Mathematics) careers. FEELS achieves its goals offering a scholarship of up to 10,000 per student each year, academic, research and industrial mentors, seminars, study tables, social and cultural activities, study abroad and community service projects. In year one, nine low-income, first generation and/or ethnic minority students joined the FEELS program. All 9 FEELS fellows were retained in Purdue’s College of Agriculture (100%) with 7 of 9 (77.7%) continuing to pursue STEM majors. FEELS fellows achieved an average GPA in their first year of 3.05, compared to the average GPA of 2.54 for low-income non- FEELS students in the College of Agriculture. A new cohort of 10 students joined the program in August 2009. FEELS fellows received total scholarships of nearly 50,000 for the 2008-2009 academic year. These scholarships were combined with a holistic program that included the following key elements: FEELS Freshman Seminars I and II, 2 study tables per week, integration activities and frequent meetings with FEELS academic mentors and directors. Formative assessments of all FEELS activities were used to enhance the first year curriculum for the second cohort. Cohort 1 will continue into their second year where the focus will be on undergraduate research. More on FEELS programs and activities: www.purdue.edu/feels.

  8. Mall Walking Program Environments, Features, and Participants: A Scoping Review.

    Science.gov (United States)

    Farren, Laura; Belza, Basia; Allen, Peg; Brolliar, Sarah; Brown, David R; Cormier, Marc L; Janicek, Sarah; Jones, Dina L; King, Diane K; Marquez, David X; Rosenberg, Dori E

    2015-08-13

    Walking is a preferred and recommended physical activity for middle-aged and older adults, but many barriers exist, including concerns about safety (ie, personal security), falling, and inclement weather. Mall walking programs may overcome these barriers. The purpose of this study was to summarize the evidence on the health-related value of mall walking and mall walking programs. We conducted a scoping review of the literature to determine the features, environments, and benefits of mall walking programs using the RE-AIM framework (reach, effectiveness, adoption, implementation, and maintenance). The inclusion criteria were articles that involved adults aged 45 years or older who walked in indoor or outdoor shopping malls. Exclusion criteria were articles that used malls as laboratory settings or focused on the mechanics of walking. We included published research studies, dissertations, theses, conference abstracts, syntheses, nonresearch articles, theoretical papers, editorials, reports, policy briefs, standards and guidelines, and nonresearch conference abstracts and proposals. Websites and articles written in a language other than English were excluded. We located 254 articles on mall walking; 32 articles met our inclusion criteria. We found that malls provided safe, accessible, and affordable exercise environments for middle-aged and older adults. Programmatic features such as program leaders, blood pressure checks, and warm-up exercises facilitated participation. Individual benefits of mall walking programs included improvements in physical, social, and emotional well-being. Limited transportation to the mall was a barrier to participation. We found the potential for mall walking programs to be implemented in various communities as a health promotion measure. However, the research on mall walking programs is limited and has weak study designs. More rigorous research is needed to define best practices for mall walking programs' reach, effectiveness, adoption

  9. Research Program Overview

    Science.gov (United States)

    PEER logo Pacific Earthquake Engineering Research Center home about peer news events research products laboratories publications nisee b.i.p. members education FAQs links research Research Program Overview Tall Buildings Initiative Transportation Research Program Lifelines Program Concrete Grand

  10. CERR: A computational environment for radiotherapy research

    International Nuclear Information System (INIS)

    Deasy, Joseph O.; Blanco, Angel I.; Clark, Vanessa H.

    2003-01-01

    A software environment is described, called the computational environment for radiotherapy research (CERR, pronounced 'sir'). CERR partially addresses four broad needs in treatment planning research: (a) it provides a convenient and powerful software environment to develop and prototype treatment planning concepts, (b) it serves as a software integration environment to combine treatment planning software written in multiple languages (MATLAB, FORTRAN, C/C++, JAVA, etc.), together with treatment plan information (computed tomography scans, outlined structures, dose distributions, digital films, etc.), (c) it provides the ability to extract treatment plans from disparate planning systems using the widely available AAPM/RTOG archiving mechanism, and (d) it provides a convenient and powerful tool for sharing and reproducing treatment planning research results. The functional components currently being distributed, including source code, include: (1) an import program which converts the widely available AAPM/RTOG treatment planning format into a MATLAB cell-array data object, facilitating manipulation; (2) viewers which display axial, coronal, and sagittal computed tomography images, structure contours, digital films, and isodose lines or dose colorwash, (3) a suite of contouring tools to edit and/or create anatomical structures, (4) dose-volume and dose-surface histogram calculation and display tools, and (5) various predefined commands. CERR allows the user to retrieve any AAPM/RTOG key word information about the treatment plan archive. The code is relatively self-describing, because it relies on MATLAB structure field name definitions based on the AAPM/RTOG standard. New structure field names can be added dynamically or permanently. New components of arbitrary data type can be stored and accessed without disturbing system operation. CERR has been applied to aid research in dose-volume-outcome modeling, Monte Carlo dose calculation, and treatment planning optimization

  11. Protecting Human Health in a Changing Environment: 2018 Summer Enrichment Program

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) in Research Triangle Park, NC is offering a free 1-week Summer Enrichment Program to educate students about how the Agency protects human health and the environment.

  12. Laboratory Directed Research and Development Program, FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    This report is compiled from annual reports submitted by principal investigators following the close of the 1992 fiscal year. It describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Divisions that report include: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment and Safety and Health, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics and Structural Biology.

  13. Laboratory Directed Research and Development Program, FY 1992

    International Nuclear Information System (INIS)

    1993-01-01

    This report is compiled from annual reports submitted by principal investigators following the close of the 1992 fiscal year. It describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Divisions that report include: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment and Safety and Health, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics and Structural Biology

  14. Laser programs facility management plan for environment, safety, and health

    International Nuclear Information System (INIS)

    Cruz, G.E.

    1996-01-01

    The Lawrence Livermore National Laboratory's (LLNL) Laser Programs ES ampersand H policy is established by the Associate Director for Laser Programs. This FMP is one component of that policy. Laser Programs personnel design, construct and operate research and development equipment located in various Livermore and Site 300 buildings. The Programs include a variety of activities, primarily laser research and development, inertial confinement fusion, isotope separation, and an increasing emphasis on materials processing, imaging systems, and signal analysis. This FMP is a formal statement of responsibilities and controls to assure operational activities are conducted without harm to employees, the general public, or the environment. This plan identifies the hazards associated with operating a large research and development facility and is a vehicle to control and mitigate those hazards. Hazards include, but are not limited to: laser beams, hazardous and radioactive materials, criticality, ionizing radiation or x rays, high-voltage electrical equipment, chemicals, and powered machinery

  15. Conducting Simulation Studies in the R Programming Environment.

    Science.gov (United States)

    Hallgren, Kevin A

    2013-10-12

    Simulation studies allow researchers to answer specific questions about data analysis, statistical power, and best-practices for obtaining accurate results in empirical research. Despite the benefits that simulation research can provide, many researchers are unfamiliar with available tools for conducting their own simulation studies. The use of simulation studies need not be restricted to researchers with advanced skills in statistics and computer programming, and such methods can be implemented by researchers with a variety of abilities and interests. The present paper provides an introduction to methods used for running simulation studies using the R statistical programming environment and is written for individuals with minimal experience running simulation studies or using R. The paper describes the rationale and benefits of using simulations and introduces R functions relevant for many simulation studies. Three examples illustrate different applications for simulation studies, including (a) the use of simulations to answer a novel question about statistical analysis, (b) the use of simulations to estimate statistical power, and (c) the use of simulations to obtain confidence intervals of parameter estimates through bootstrapping. Results and fully annotated syntax from these examples are provided.

  16. The U.S. Nuclear Regulatory Commission Thermal-Hydraulic Research Program: Maintaining expertise in a changing environment

    International Nuclear Information System (INIS)

    Sheron, B.W.; Shotkin, L.M.; Baratta, A.J.

    1993-01-01

    Throughout the 1970s and early 1980s, the U.S. Nuclear Regulatory Commission's (NRC's) thermal-hydraulic research program enjoyed ample funding, sponsored extensive experimental and analytical development programs, and attracted worldwide expertise. With the completion of the major experimental programs and with the promulgation of the revised emergency core-cooling system rule, both the funding and prominence of thermal-hydraulic research at the NRC have declined in recent years. This has led justifiably to the concern by some that the program may no longer have the minimal elements needed to maintain both expertise and world-class status. The purpose of this article is to describe the NRC's current thermal-hydraulic research program and to show how this program ensures maintenance of a viable, robust research effort and retention of needed expertise and international leadership

  17. Radioactive Waste Management Research Program Plan for high-level waste: 1987

    International Nuclear Information System (INIS)

    1987-05-01

    This plan will identify and resolve technical and scientific issues involved in the NRC's licensing and regulation of disposal systems intended to isolate high level hazardous radioactive wastes (HLW) from the human environment. The plan describes the program goals, discusses the research approach to be used, lays out peer review procedures, discusses the history and development of the high level radioactive waste problem and the research effort to date and describes study objectives and research programs in the areas of materials and engineering, hydrology and geochemistry, and compliance assessment and modeling. The plan also details the cooperative interactions with international waste management research programs. Proposed Earth Science Seismotectonic Research Program plan for radioactive waste facilities is appended

  18. An overview of environment Canada's National Incinerator Testing and Evaluation Program (NITEP)

    International Nuclear Information System (INIS)

    Finkelstein, A.

    1991-01-01

    In response to the many concerns associated with incineration, Environment Canada established the National Incineration Testing and evaluation Program (NITEP) in 1984. It's mission was to assess the incineration process as a means for disposal of MSW in Canada. The program primarily focused on the environment and health impacts of MSW incinerators by determining how design and operating conditions can be modified to reduce emissions of concern. In addition to developing better measuring and monitoring methods, supporting ash residue management research programs, NITEP established four major field projects to develop the data base necessary for national guidelines. This paper presents a brief overview of the most significant field program findings over the past six years and the rationale for the Canadian Council of Ministers of the Environment (CCME) Operating and Emissions Guidelines for MSW Incinerators published in June of 1989. In addition an overview of the ash work completed to date, and work still underway, will be presented

  19. Improving delivery of a health-promoting-environments program: experiences from Queensland Health.

    Science.gov (United States)

    Dwyer, S

    1997-01-01

    The purpose of this paper is to outline the key components of a statewide multisite health-promoting-environments program. Contemporary health-promotion programs in settings such as schools, workplaces and hospitals use organisational development theory to address the health issues of the setting, including the physical environment, the organisational environment, and the specific health needs of the employees and consumers of the service. Program principles include management of each project by the participant organisation or site (for example, a school or workplace), using resources available within the organisation and the local community, voluntary participation, social justice and participant-based priority setting, and evaluation and monitoring. Adoption of these principles implies a shift in the role of the health worker from implementer to facilitator. Based on the experience of Queensland Health, it is proposed that the essential building blocks of the health-promoting-environments program are an intersectoral policy base, a model for action, training and resources, local facilitators, support from local organisations, a supportive network of sites, marketing of the program, and a state-based evaluation and monitoring system. The program in Queensland was able to develop a significant number of these components over the 1990-1996 period. In regard to evaluation, process measures can be built around the program components; however, further research is required for development of impact indicators and benchmarks on quality.

  20. Environment of symbolic and graphic programming for the SYMPATI-2 line processor

    International Nuclear Information System (INIS)

    Fernandez, Pascal

    1991-01-01

    This research thesis reports the development of a programming environment which can be easily used at all levels of development of an application in the field of image processing. The author first presents different programming environments by distinguishing, on the one hand, languages or environments which are not specific to a machine, and, on the other hand, languages or environments which are dedicated to a specialised parallel architecture. Then, after a recall of the structure of the line processor from an operational point of view, the author proposes a detailed presentation of the 4LP language, i.e. the layer 0 of the environment. The three other layers are then presented. They respectively comprise a high level symbolic language, a user-friendly and interactive graphic tool, and an interactive graphic tool for the development of applications from programme icons

  1. Conducting Simulation Studies in the R Programming Environment

    Directory of Open Access Journals (Sweden)

    Kevin A. Hallgren

    2013-10-01

    Full Text Available Simulation studies allow researchers to answer specific questions about data analysis, statistical power, and best-practices for obtainingaccurate results in empirical research. Despite the benefits that simulation research can provide, many researchers are unfamiliar with available tools for conducting their own simulation studies. The use of simulation studies need not be restricted toresearchers with advanced skills in statistics and computer programming, and such methods can be implemented by researchers with a variety of abilities and interests. The present paper provides an introduction to methods used for running simulationstudies using the R statistical programming environment and is written for individuals with minimal experience running simulation studies or using R. The paper describes the rationale and benefits of using simulations and introduces R functions relevant for many simulation studies. Three examples illustrate different applications for simulation studies, including (a the use of simulations to answer a novel question about statistical analysis, (b the use of simulations to estimate statistical power, and (c the use of simulations to obtain confidence intervals of parameter estimates throughbootstrapping. Results and fully annotated syntax from these examples are provided.

  2. Laboratory directed research and development program FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2000-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.

  3. Laboratory Directed Research and Development Program FY 2001

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2002-03-15

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY01.

  4. GLOBAL CHANGE RESEARCH NEWS #37: PUBLICATION OF "OUR CHANGING PLANET: THE FY 2002 U.S. GLOBAL CHANGE RESEARCH PROGRAM"

    Science.gov (United States)

    The EPA Global Change Research Program is pleased to inform you of the publication of the new Our Changing Planet: The FY 2002 U.S. Global Change Research Program. This annual report to the Congress was prepared under the auspices of the Committee on Environment and Natural Reso...

  5. Research Into the Role of Students’ Affective Domain While Learning Geology in Field Environments

    Science.gov (United States)

    Elkins, J.

    2009-12-01

    Existing research programs in field-based geocognition include assessment of cognitive, psychomotor, and affective domains. Assessment of the affective domain often involves the use of instruments and techniques uncommon to the geosciences. Research regarding the affective domain also commonly results in the collection and production of qualitative data that is difficult for geoscientists to analyze due to their lack of familiarity with these data sets. However, important information about students’ affective responses to learning in field environments can be obtained by using these methods. My research program focuses on data produced by students’ affective responses to field-based learning environments, primarily among students at the introductory level. For this research I developed a Likert-scale Novelty Space Survey, which presents student ‘novelty space’ (Orion and Hofstien, 1993) as a polygon; the larger the polygons, the more novelty students are experiencing. The axises for these polygons correspond to novelty domains involving geographic, social, cognitive, and psychological factors. In addition to the Novelty Space Survey, data which I have collected/generated includes focus group interviews on the role of recreational experiences in geology field programs. I have also collected data concerning the motivating factors that cause students to take photographs on field trips. The results of these studies give insight to the emotional responses students have to learning in the field and are important considerations for practitioners of teaching in these environments. Collaborative investigations among research programs that cross university departments and include multiple institutions is critical at this point in development of geocognition as a field due to unfamiliarity with cognitive science methodology by practitioners teaching geosciences and the dynamic nature of field work by cognitive scientists. However, combining the efforts of cognitive

  6. NASA's aviation safety research and technology program

    Science.gov (United States)

    Fichtl, G. H.

    1977-01-01

    Aviation safety is challenged by the practical necessity of compromising inherent factors of design, environment, and operation. If accidents are to be avoided these factors must be controlled to a degree not often required by other transport modes. The operational problems which challenge safety seem to occur most often in the interfaces within and between the design, the environment, and operations where mismatches occur due to ignorance or lack of sufficient understanding of these interactions. Under this report the following topics are summarized: (1) The nature of operating problems, (2) NASA aviation safety research, (3) clear air turbulence characterization and prediction, (4) CAT detection, (5) Measurement of Atmospheric Turbulence (MAT) Program, (6) Lightning, (7) Thunderstorm gust fronts, (8) Aircraft ground operating problems, (9) Aircraft fire technology, (10) Crashworthiness research, (11) Aircraft wake vortex hazard research, and (12) Aviation safety reporting system.

  7. Factors Affecting Research Environment at Syrian Business Faculties: A Student-Perceived Model

    Directory of Open Access Journals (Sweden)

    Bayan Khalifa

    2016-12-01

    Full Text Available This study aims at investigating the factors that affect the research environment of business postgraduate students, particularly master students, from the perspective of these students. From the same perspective, it also aims at assessing these factors together with the quality of research environment. A questionnaire survey method was employed. The questionnaire was developed by academics from five business faculties based on relevant studies and was distributed to graduate students enrolled in all of the research business programs at the Faculty of Economics, Damascus University, ending up with 88 valid responses. To explore the factors that may affect research environment, exploratory factor analysis was employed. In addition, multiple regression analysis and t-test were applied to respond to the study purposes. Facilities and industry linkage come to be significant factors in the research environment. However, the results show insignificant impact for each of the research courses, networking, and research skills in the overall research environment. Variations in regard to the availability of these factors were identified with low level of availability for the facilities and industry linkage. The study is one of a kind that investigates factors affecting research environment of postgraduate students and particularly master students. Further and to the best of our knowledge, it is the first study that examines such factors in war conditions, which enables us to understand what students perceive as critical factors influencing their research performance in these conditions. Recommendations to policy makers are presented to develop strategies that respond to students’ concerns for a better research environment.

  8. Clean Coal Program Research Activities

    Energy Technology Data Exchange (ETDEWEB)

    Larry Baxter; Eric Eddings; Thomas Fletcher; Kerry Kelly; JoAnn Lighty; Ronald Pugmire; Adel Sarofim; Geoffrey Silcox; Phillip Smith; Jeremy Thornock; Jost Wendt; Kevin Whitty

    2009-03-31

    Although remarkable progress has been made in developing technologies for the clean and efficient utilization of coal, the biggest challenge in the utilization of coal is still the protection of the environment. Specifically, electric utilities face increasingly stringent restriction on the emissions of NO{sub x} and SO{sub x}, new mercury emission standards, and mounting pressure for the mitigation of CO{sub 2} emissions, an environmental challenge that is greater than any they have previously faced. The Utah Clean Coal Program addressed issues related to innovations for existing power plants including retrofit technologies for carbon capture and sequestration (CCS) or green field plants with CCS. The Program focused on the following areas: simulation, mercury control, oxycoal combustion, gasification, sequestration, chemical looping combustion, materials investigations and student research experiences. The goal of this program was to begin to integrate the experimental and simulation activities and to partner with NETL researchers to integrate the Program's results with those at NETL, using simulation as the vehicle for integration and innovation. The investigators also committed to training students in coal utilization technology tuned to the environmental constraints that we face in the future; to this end the Program supported approximately 12 graduate students toward the completion of their graduate degree in addition to numerous undergraduate students. With the increased importance of coal for energy independence, training of graduate and undergraduate students in the development of new technologies is critical.

  9. The Living With a Star Program Space Environment Testbed

    Science.gov (United States)

    Barth, Janet; Day, John H. (Technical Monitor)

    2001-01-01

    This viewgraph presentation describes the objective, approach, and scope of the Living With a Star (LWS) program at the Marshall Space Flight Center. Scientists involved in the project seek to refine the understanding of space weather and the role of solar variability in terrestrial climate change. Research and the development of improved analytic methods have led to increased predictive capabilities and the improvement of environment specification models. Specifically, the Space Environment Testbed (SET) project of LWS is responsible for the implementation of improved engineering approaches to observing solar effects on climate change. This responsibility includes technology development, ground test protocol development, and the development of a technology application model/engineering tool.

  10. Laboratory Directed Research and Development Program FY 2006

    Energy Technology Data Exchange (ETDEWEB)

    Hansen (Ed.), Todd

    2007-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.

  11. Challenges for Multilevel Health Disparities Research in a Transdisciplinary Environment

    Science.gov (United States)

    Holmes, John H.; Lehman, Amy; Hade, Erinn; Ferketich, Amy K.; Sarah, Gehlert; Rauscher, Garth H.; Abrams, Judith; Bird, Chloe E.

    2008-01-01

    Numerous factors play a part in health disparities. Although health disparities are manifested at the level of the individual, other contexts should be considered when investigating the associations of disparities with clinical outcomes. These contexts include families, neighborhoods, social organizations, and healthcare facilities. This paper reports on health disparities research as a multilevel research domain from the perspective of a large national initiative. The Centers for Population Health and Health Disparities (CPHHD) program was established by the NIH to examine the highly dimensional, complex nature of disparities and their effects on health. Because of its inherently transdisciplinary nature, the CPHHD program provides a unique environment in which to perform multilevel health disparities research. During the course of the program, the CPHHD centers have experienced challenges specific to this type of research. The challenges were categorized along three axes: sources of subjects and data, data characteristics, and multilevel analysis and interpretation. The CPHHDs collectively offer a unique example of how these challenges are met; just as importantly, they reveal a broad range of issues that health disparities researchers should consider as they pursue transdisciplinary investigations in this domain, particularly in the context of a large team science initiative. PMID:18619398

  12. Survey on research environment for young researchers in the U.S.. What attractive environment is for young researchers; Beikoku ni okeru wakate kenkyusha no kenkyu kankyo ni kansuru chosa. Wakate kenkyusha ni totte miryokutekina kankyo towa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-28

    A survey was conducted on 'what attractive research environment is for young researchers' as a theme. The young researchers are referred to as those who are registered on a master's or doctor's degree courses and what is called postdoctoral scholars who received a doctor's degree. In the survey, a few common comments were seen in over interviews on the U.S. research environment. The comments were such that, needless to say, subsidies are indispensable for researches but economic aspects of treatment are not necessarily satisfactory, that the research environment is generally good, allowing freedom in research, and that results tend to be achieved by providing a subsidy for experienced knowledgeable researchers rather than directly subsidizing young researchers with a large sum, while programs with individuality such as a fellowship are desired more. It is apparent that the interests of postdoctoral scholars are economic stability; in fact, uneasiness and dissatisfaction in the status and the treatment are pointed out in a survey by the U.S. Science Academy. (NEDO)

  13. Project Stakeholder Management in the clinical research environment: how to do it right.

    Directory of Open Access Journals (Sweden)

    Seithikurippu R. Pandi-Perumal

    2015-05-01

    Full Text Available This review introduces a conceptual framework for understanding stakeholder management in the clinical and community-based research environment. In recent years, an evolution in practice has occurred in which many applicants for public and non-governmental funding of public health research in hospital settings. Community health research projects are inherently complex, have sought to involve patients and other stakeholders in the center of the research process. Substantial evidence has now been provided that stakeholder involvement is essential for management effectiveness in clinical research. Feedback from stakeholders has critical value for research managers inasmuch as it alerts them to the social, environmental and ethical implications of research activities. Additionally those who are directly affected by program development and clinical research, the patients, their families, and others, almost universally have a strong motivation to be involved in the planning and execution of new program changes. The current overview introduces a conceptual framework for stakeholder management in the clinical research environment and offers practical suggestions for fostering meaningful stakeholder engagement. The fifth edition of PMBOK® of the Project Management Institute (PMI, has served as basis for many of the suggested guidelines that are put forward in this article.

  14. Project Stakeholder Management in the Clinical Research Environment: How to Do it Right

    Science.gov (United States)

    Pandi-Perumal, Seithikurippu R.; Akhter, Sohel; Zizi, Ferdinard; Jean-Louis, Girardin; Ramasubramanian, Chellamuthu; Edward Freeman, R.; Narasimhan, Meera

    2015-01-01

    This review introduces a conceptual framework for understanding stakeholder management (ShM) in the clinical and community-based research environment. In recent years, an evolution in practice has occurred in many applicants for public and non-governmental funding of public health research in hospital settings. Community health research projects are inherently complex, have sought to involve patients and other stakeholders in the center of the research process. Substantial evidence has now been provided that stakeholder involvement is essential for management effectiveness in clinical research. Feedback from stakeholders has critical value for research managers inasmuch as it alerts them to the social, environmental, and ethical implications of research activities. Additionally, those who are directly affected by program development and clinical research, the patients, their families, and others, almost universally have a strong motivation to be involved in the planning and execution of new program changes. The current overview introduces a conceptual framework for ShM in the clinical research environment and offers practical suggestions for fostering meaningful stakeholder engagement. The fifth edition of PMBOK® of the Project Management Institute, has served as basis for many of the suggested guidelines that are put forward in this article. PMID:26042053

  15. Project Stakeholder Management in the Clinical Research Environment: How to Do it Right.

    Science.gov (United States)

    Pandi-Perumal, Seithikurippu R; Akhter, Sohel; Zizi, Ferdinard; Jean-Louis, Girardin; Ramasubramanian, Chellamuthu; Edward Freeman, R; Narasimhan, Meera

    2015-01-01

    This review introduces a conceptual framework for understanding stakeholder management (ShM) in the clinical and community-based research environment. In recent years, an evolution in practice has occurred in many applicants for public and non-governmental funding of public health research in hospital settings. Community health research projects are inherently complex, have sought to involve patients and other stakeholders in the center of the research process. Substantial evidence has now been provided that stakeholder involvement is essential for management effectiveness in clinical research. Feedback from stakeholders has critical value for research managers inasmuch as it alerts them to the social, environmental, and ethical implications of research activities. Additionally, those who are directly affected by program development and clinical research, the patients, their families, and others, almost universally have a strong motivation to be involved in the planning and execution of new program changes. The current overview introduces a conceptual framework for ShM in the clinical research environment and offers practical suggestions for fostering meaningful stakeholder engagement. The fifth edition of PMBOK(®) of the Project Management Institute, has served as basis for many of the suggested guidelines that are put forward in this article.

  16. State of the research environment - 2013

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Julia Mae; Simmons, Jerry Alvon; Weaver, Karla

    2014-02-01

    This report describes the condition of the research environment at Sandia National Laboratories and outlines key environment improvement activities undertaken by the Office of the Chief Technology Officer and the Sandia Research Leadership Team during fiscal year 2013. The report also outlines Lab-level objectives related to the research environment for fiscal year 2014.

  17. Mentoring for Responsible Research: The Creation of a Curriculum for Faculty to Teach RCR in the Research Environment.

    Science.gov (United States)

    Plemmons, Dena K; Kalichman, Michael W

    2018-02-01

    Despite more than 25 years of a requirement for training in the responsible conduct of research (RCR), there is still little consensus about what such training should include, how it should be delivered, nor what constitutes "effectiveness" of such training. This lack of consensus on content, approaches and outcomes is evident in recent data showing high variability in the development and implementation of RCR instruction across universities and programs. If we accept that one of the primary aims of instruction in RCR/research ethics is "to foster a community of social responsibility" (Antes et al. 2009: 398), then it makes sense to consider the research environment itself-where learning one's science happens where one also engages in social interaction around that science. In order to take the best advantage of that already existing/naturally occurring research environment, the authors, through a deliberative, collaborative, and integrative process, crafted a workshop curriculum meant to arm research faculty with concrete and specific tools to effectively introduce research ethics in the context of the research environment.

  18. Laboratory Directed Research and Development Program. FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report is compiled from annual reports submitted by principal investigators following the close of fiscal year 1993. This report describes the projects supported and summarizes their accomplishments. The program advances the Laboratory`s core competencies, foundations, scientific capability, and permits exploration of exciting new opportunities. Reports are given from the following divisions: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment -- Health and Safety, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics, and Structural Biology. (GHH)

  19. Addiction Studies: Exploring Students' Attitudes toward Research in a Graduate Program

    Science.gov (United States)

    James, Raven; Simons, Lori

    2011-01-01

    An exploratory study was conducted to compare addiction studies and community counseling students' attitudes toward research. A survey of 66 addiction studies and 17 community counseling students in graduate programs was used to explore interest and self-efficacy in research and the research training environment. A pre/post test design was used to…

  20. SimpleITK Image-Analysis Notebooks: a Collaborative Environment for Education and Reproducible Research.

    Science.gov (United States)

    Yaniv, Ziv; Lowekamp, Bradley C; Johnson, Hans J; Beare, Richard

    2018-06-01

    Modern scientific endeavors increasingly require team collaborations to construct and interpret complex computational workflows. This work describes an image-analysis environment that supports the use of computational tools that facilitate reproducible research and support scientists with varying levels of software development skills. The Jupyter notebook web application is the basis of an environment that enables flexible, well-documented, and reproducible workflows via literate programming. Image-analysis software development is made accessible to scientists with varying levels of programming experience via the use of the SimpleITK toolkit, a simplified interface to the Insight Segmentation and Registration Toolkit. Additional features of the development environment include user friendly data sharing using online data repositories and a testing framework that facilitates code maintenance. SimpleITK provides a large number of examples illustrating educational and research-oriented image analysis workflows for free download from GitHub under an Apache 2.0 license: github.com/InsightSoftwareConsortium/SimpleITK-Notebooks .

  1. Sample triage : an overview of Environment Canada's program

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, P.; Goldthorp, M.; Fingas, M. [Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Division, Environmental Technology Centre, Science and Technology Branch

    2006-07-01

    The Chemical, biological and radiological/nuclear Research and Technology Initiative (CRTI) is a program led by Canada's Department of National Defence in an effort to improve the capability of providing technical and analytical support in the event of a terrorist-related event. This paper summarized the findings from the CRTI Sample Triage Working Group and reviewed information on Environment Canada's triage program and its' mobile sample inspection facility that was designed to help examine samples of hazardous materials in a controlled environment to minimize the risk of exposure. A sample triage program is designed to deal with administrative, health and safety issues by facilitating the safe transfer of samples to an analytical laboratory. It refers to the collation of all results including field screening information, intelligence and observations for the purpose of prioritizing and directing the sample to the appropriate laboratory for analysis. A central component of Environment Canada's Emergency Response Program has been its capacity to respond on site during an oil or chemical spill. As such, the Emergencies Science and Technology Division has acquired a new mobile sample inspection facility in 2004. It is constructed to work with a custom designed decontamination unit and Ford F450 tow vehicle. The criteria and general design of the trailer facility was described. This paper also outlined the steps taken following a spill of hazardous materials into the environment so that potentially dangerous samples could be safety assessed. Several field trials will be carried out in order to develop standard operating procedures for the mobile sample inspection facility. 6 refs., 6 figs., 4 appendices.

  2. An adaptive staircase procedure for the E-Prime programming environment.

    Science.gov (United States)

    Hairston, W David; Maldjian, Joseph A

    2009-01-01

    Many studies need to determine a subject's threshold for a given task. This can be achieved efficiently using an adaptive staircase procedure. While the logic and algorithms for staircases have been well established, the few pre-programmed routines currently available to researchers require at least moderate programming experience to integrate into new paradigms and experimental settings. Here, we describe a freely distributed routine developed for the E-Prime programming environment that can be easily integrated into any experimental protocol with only a basic understanding of E-Prime. An example experiment (visual temporal-order-judgment task) where subjects report the order of occurrence of two circles illustrates the behavior and consistency of the routine.

  3. Oil spill research program, U. S. Minerals Management Service

    International Nuclear Information System (INIS)

    LaBelle, R. P.; Mullin, J. V.; White, A. C.

    1997-01-01

    The oil spill prevention and response research program of the U.S. Minerals Management Service was described including its goals and objectives, some recently funded projects, and future research directions. As it is now the trend in most research organizations, a large part of the program is carried out in cooperation with other major research centers to leverage funds and to maximize study results. For example, joint research with Environment Canada focuses on the physical and chemical properties of dispersants, remote sensing and mapping oil slicks and shoreline cleanup strategies. Similarly, cooperative projects are underway with the National Institute of Standards and Technology in assessing the capabilities of in-situ burning as an oil spill response tool. Research capabilities of OHMSETT - The National Oil Spill Response Test Facility were also reviewed. A series of tables listed titles of research projects completed during 1995-1996. 5 tabs.,

  4. Research and examinations at the Tono Mines. Fiscal year's programs (Heisei 12 fiscal year). Technical report

    International Nuclear Information System (INIS)

    2000-04-01

    This program showed details on the research and examination program of the Japan Nuclear Cycle Development Institute to be carried out at the Tono Mines in the Heisei 12 fiscal year, according to the 'Fundamental program on research and examinations at the Tono Mines' established on October, 1998. And, this program is carried out under an aim at understanding of transfer and delay performance of materials in deposit rocks with uranium and geological features such as fault, and at development of technology and apparatus for general investigation and evaluation of geological environment, as a stratum science research. Here were described on research and examination of mechanical stability on the rock board, research and examination of geological environment around a tunnel, research and examination of material transfer in the rock board, and research and examination of the Tsukiyoshi stratum abstractly before 1999 and in details at 2000 fiscal years. (G.K.)

  5. Applied Science Division annual report, Environmental Research Program FY 1983

    International Nuclear Information System (INIS)

    Cairns, E.J.; Novakov, T.

    1984-05-01

    The primary concern of the Environmental Research Program is the understanding of pollutant formation, transport, and transformation and the impacts of pollutants on the environment. These impacts include global, regional, and local effects on the atmosphere and hydrosphere, and on certain aspects of human health. This multidisciplinary research program includes fundamental and applied research in physics, chemistry, engineering, and biology, as well as research on the development of advanced methods of measurement and analysis. During FY 1983, research concentrated on atmospheric physics and chemistry, applied physics and laser spectroscopy, combustion theory and phenomena, environmental effects of oil shale processing, freshwater ecology and acid precipitation, trace element analysis for the investigation of present and historical environmental impacts, and a continuing survey of instrumentation for environmental monitoring

  6. Program for transfer research and impact studies

    Science.gov (United States)

    Rusnak, J. J.; Freeman, J. E.; Hartley, J. M.; Kottenstette, J. P.; Staskin, E. R.

    1973-01-01

    Research activities conducted under the Program for Transfer Research and Impact Studies (TRIS) during 1972 included: (1) preparation of 10,196 TSP requests for TRIS application analysis; (2) interviews with over 500 individuals concerning the technical, economic, and social impacts of NASA-generated technology; (3) preparation of 38 new technology transfer example files and 101 new transfer cases; and (4) maintenance of a technology transfer library containing more than 2,900 titles. Six different modes of technology utilization are used to illustrate the pervasiveness of the transfer and diffusion of aerospace innovations. These modes also provide a basis for distinguishing the unique characteristics of the NASA Technology Utilization Program. An examination is reported of the ways in which NASA-generated technology is contributing to beneficial social change in five major areas of human concern: health, environment, safety, transportation, and communication.

  7. Increasing chronic disease research capacity in Guatemala through a mentoring program.

    Science.gov (United States)

    Barnoya, Joaquin; Monzon, Jose C; Colditz, Graham A

    2013-09-12

    The Chronic Disease Research Fellowship Program (RFP) aims to build the research capacity of recent medical graduates to support the development of chronic disease control strategies. Guatemala is undergoing an epidemiologic transition. However, given the way universities and the health care system are structured, it lacks an environment that fosters research careers and generates the required knowledge to implement sound public health policies and clinical strategies. The RFP was implemented at the Cardiovascular Unit of Guatemala. This 4-year Program recruited two one-year fellows and provided funding to define a research topic, write a protocol and implement the research. Strong emphasis is placed on developing skills in knowledge translation and exchange to bridge the "know-do" gap. Close mentoring relationships between the Principal Investigator and former and current fellows are fostered through the Program. The mentoring Program has generated strategic data to support the implementation of sound chronic disease control strategies, mainly related to tobacco control. Results have been presented nationally and internationally. Research training has included principles of biostatistics and epidemiology, and a journal club. The Program is increasingly generating interest among medical graduates to pursue further research training abroad and is building local research capacity. Fellows and research assistants have created a research network in Guatemala and abroad. The main obstacle the Program faces is ensuring long-term sustainability. A mentoring program can lead to an increase in research interest and capacity in a low-income country with little research infrastructure.

  8. Nuclear Explosion Monitoring Research and Engineering Program - Strategic Plan

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Leslie A. [DOE/NNSA

    2004-09-01

    The Department of Energy (DOE)/National Nuclear Security Administration (NNSA) Nuclear Explosion Monitoring Research and Engineering (NEM R&E) Program is dedicated to providing knowledge, technical expertise, and products to US agencies responsible for monitoring nuclear explosions in all environments and is successful in turning scientific breakthroughs into tools for use by operational monitoring agencies. To effectively address the rapidly evolving state of affairs, the NNSA NEM R&E program is structured around three program elements described within this strategic plan: Integration of New Monitoring Assets, Advanced Event Characterization, and Next-Generation Monitoring Systems. How the Program fits into the National effort and historical accomplishments are also addressed.

  9. Indoor Environment Program - 1996 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Indoor Environment Program

    1996-11-01

    The forty-five chemists, physicists, biologists, architects, engineers, staff, and students of the Indoor Environment Program are all working to solve the problems of indoor air quality, health, comfort, and energy use associated with the indoor environment. A common thread throughout this work is the importance of ventilation--both for its role in supporting human health and comfort as well as for its liability in requiring large amounts of energy to heat and cool it. The importance of understanding these interactions can be illustrated by two examples: the health and productivity of workers (Fisk and Rosenfeld, 1996) and the performance of sensitive equipment in clean room environments (Faulkner, et d., 1996). During the past year, we estimated the magnitudes of health and productivity gains that may be obtained by providing better indoor environments. The ratio of the potential financial benefits of improving indoor environments to the costs of the improvements ranges between 20 and 50. A second example is from our Clean Room Energy Efficiency Study: Clean rooms utilize large amounts of electricity to operate fans that recirculate air at very high flow rates through particle filters. Usually, the fans operate continuously at full speed, even when the clean room is unused. To reduce the energy use in a research clean room, the rate of air recirculation was controlled in response to real-time measurements of particle concentration. With this new control system, fan energy use decreased by 65% to 85% while maintaining particle concentrations below the allowable limits except during occasional one-minute periods. The estimated payback period for this technology is one to four years.

  10. Piping research program plan

    International Nuclear Information System (INIS)

    1988-09-01

    This document presents the piping research program plan for the Structural and Seismic Engineering Branch and the Materials Engineering Branch of the Division of Engineering, Office of Nuclear Regulatory Research. The plan describes the research to be performed in the areas of piping design criteria, environmentally assisted cracking, pipe fracture, and leak detection and leak rate estimation. The piping research program addresses the regulatory issues regarding piping design and piping integrity facing the NRC today and in the foreseeable future. The plan discusses the regulatory issues and needs for the research, the objectives, key aspects, and schedule for each research project, or group of projects focussing of a specific topic, and, finally, the integration of the research areas into the regulatory process is described. The plan presents a snap-shot of the piping research program as it exists today. However, the program plan will change as the regulatory issues and needs change. Consequently, this document will be revised on a bi-annual basis to reflect the changes in the piping research program. (author)

  11. Energy from Biomass Research and Technology Transfer Program

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Dorin

    2015-12-31

    The purpose of CPBR is to foster and facilitate research that will lead to commercial applications. The goals of CPBR’s Energy from Biomass Research and Technology Transfer Program are to bring together industry, academe, and federal resources to conduct research in plant biotechnology and other bio-based technologies and to facilitate the commercialization of the research results to: (1) improve the utilization of plants as energy sources; (2) reduce the cost of renewable energy production; (3) facilitate the replacement of petroleum by plant-based materials; (4) create an energy supply that is safer in its effect on the environment, and (5) contribute to U.S. energy independence.

  12. NASA's Upper Atmosphere Research Program (UARP) and Atmospheric Chemistry Modeling and Analysis Program (ACMAP): Research Summaries 1997-1999

    Science.gov (United States)

    Kurylo, M. J.; DeCola, P. L.; Kaye, J. A.

    2000-01-01

    Under the mandate contained in the FY 1976 NASA Authorization Act, the National Aeronautics and Space Administration (NASA) has developed and is implementing a comprehensive program of research, technology development, and monitoring of the Earth's upper atmosphere, with emphasis on the upper troposphere and stratosphere. This program aims at expanding our chemical and physical understanding to permit both the quantitative analysis of current perturbations as well as the assessment of possible future changes in this important region of our environment. It is carried out jointly by the Upper Atmosphere Research Program (UARP) and the Atmospheric Chemistry Modeling and Analysis Program (ACMAP), both managed within the Research Division in the Office of Earth Science at NASA. Significant contributions to this effort have also been provided by the Atmospheric Effects of Aviation Project (AEAP) of NASA's Office of Aero-Space Technology. The long-term objectives of the present program are to perform research to: understand the physics, chemistry, and transport processes of the upper troposphere and the stratosphere and their control on the distribution of atmospheric chemical species such as ozone; assess possible perturbations to the composition of the atmosphere caused by human activities and natural phenomena (with a specific emphasis on trace gas geographical distributions, sources, and sinks and the role of trace gases in defining the chemical composition of the upper atmosphere); understand the processes affecting the distributions of radiatively active species in the atmosphere, and the importance of chemical-radiative-dynamical feedbacks on the meteorology and climatology of the stratosphere and troposphere; and understand ozone production, loss, and recovery in an atmosphere with increasing abundances of greenhouse gases. The current report is composed of two parts. Part 1 summarizes the objectives, status, and accomplishments of the research tasks supported

  13. The Scratch Programming Language and Environment

    Science.gov (United States)

    Maloney, John; Resnick, Mitchel; Rusk, Natalie; Silverman, Brian; Eastmond, Evelyn

    2010-01-01

    Scratch is a visual programming environment that allows users (primarily ages 8 to 16) to learn computer programming while working on personally meaningful projects such as animated stories and games. A key design goal of Scratch is to support self-directed learning through tinkering and collaboration with peers. This article explores how the…

  14. Sandia Laboratories environment and safety programs

    International Nuclear Information System (INIS)

    Zak, B.D.; McGrath, P.E.; Trauth, C.A. Jr.

    1975-01-01

    Sandia, one of ERDA's largest laboratories, is primarily known for its extensive work in the nuclear weapons field. In recent years, however, Sandia's role has expanded to embrace sizeable programs in the energy, resource recovery, and the environment and safety fields. In this latter area, Sandia has programs which address nuclear, fossil fuel, and general environment and safety issues. Here we survey ongoing activities and describe in more detail aa few projects of particular interest. These range from a study of the impact of sealed disposal of radioactive wastes, through reactor safety and fossil fuel plume chemistry, to investigations of the composition and dynamics of the stratosphere

  15. Integrating Aspects of Working Environment into a National Research and Development Programme on Food Technology

    DEFF Research Database (Denmark)

    Broberg, Ole; Hansen, Iben Posniak

    2001-01-01

    In a Danish national research and development program on food technology, it was made a condition that funded projects consider potential working environment impacts. The present study evaluated these projects and concluded that this condition failed to have any significant effect on outcomes...... of working environment and food science and technology........ The reasons for this failure are explained by the social construction of the program and the fact that it neglected to consider the sociocultural dynamics within scientific and technological work. The program neither constructed useful boundary objects nor included actors that could link the social worlds...

  16. Energy research program 82

    International Nuclear Information System (INIS)

    1982-01-01

    The energy research program 82 (EFP-82) is prepared by the Danish ministry of energy in order to continue the extension of the Danish energy research and development started through the former trade ministry's programs EM-1 (1976) and EM-2 (1978), and the energy ministry's programs EFP-80 and EFP-81. The new program is a continuation of the activities in the period 1982-84 with a total budget of 100 mio.Dkr. The program gives a brief description of background, principles, organization and financing, and a detailed description of each research area. (BP)

  17. DMA Modern Programming Environment Study.

    Science.gov (United States)

    1980-01-01

    capabilities. The centers are becoming increasingly dependent upon the computer and digital data in the fulfillment of MC&G goals. Successful application...ftticrcsrccessors C140 by Herbert AlteroDigital Citmmuncaticns C141 0 Structuredl Design ’-:orkshocr by Ned Chapin KC 156o Digital Systems En17lrceriirg CC 139 o3...on a programming environment. The study, which resulted in production of a paper entitled An EXEC 8 Programming Support Libary , contends that most of

  18. Rehabilitation Program Integrating Virtual Environment to Improve Orientation and Mobility Skills for People Who Are Blind.

    Science.gov (United States)

    Lahav, Orly; Schloerb, David W; Srinivasan, Mandayam A

    2015-01-01

    This paper presents the integration of a virtual environment (BlindAid) in an orientation and mobility rehabilitation program as a training aid for people who are blind. BlindAid allows the users to interact with different virtual structures and objects through auditory and haptic feedback. This research explores if and how use of the BlindAid in conjunction with a rehabilitation program can help people who are blind train themselves in familiar and unfamiliar spaces. The study, focused on nine participants who were congenitally, adventitiously, and newly blind, during their orientation and mobility rehabilitation program at the Carroll Center for the Blind (Newton, Massachusetts, USA). The research was implemented using virtual environment (VE) exploration tasks and orientation tasks in virtual environments and real spaces. The methodology encompassed both qualitative and quantitative methods, including interviews, a questionnaire, videotape recording, and user computer logs. The results demonstrated that the BlindAid training gave participants additional time to explore the virtual environment systematically. Secondly, it helped elucidate several issues concerning the potential strengths of the BlindAid system as a training aid for orientation and mobility for both adults and teenagers who are congenitally, adventitiously, and newly blind.

  19. Technology Roadmap Research Program for the Steel Industry

    Energy Technology Data Exchange (ETDEWEB)

    Joseph R. Vehec

    2010-12-30

    The steel industry's Technology Roadmap Program (TRP) is a collaborative R&D effort jointly sponsored by the steel industry and the United States Department of Energy. The TRP program was designed to develop new technologies to save energy , increase competitiveness, and improve the environment. TRP ran from July, 1997 to December, 2008, with a total program budget of $38 million dollars. During that period 47 R&D projects were performed by 28 unique research organizations; co-funding was provided by DOE and 60 industry partners. The projects benefited all areas of steelmaking and much know-how was developed and transferred to industry. The American Iron and Steel Institute is the owner of all intellectual property developed under TRP and licenses it at commercial rates to all steelmakers. TRP technologies are in widespread use in the steel industry as participants received royalty-free use of intellectual property in return for taking the risk of funding this research.

  20. Laboratory Directed Research and Development Program FY2004

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd C.

    2005-03-22

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Goals that are codified in DOE's September 2003 Strategic Plan, with a primary focus on Advancing Scientific Understanding. For that goal, the Fiscal Year (FY) 2004 LDRD projects support every one of the eight strategies described in the plan. In addition, LDRD efforts support the goals of Investing in America's Energy Future (six of the fourteen strategies), Resolving the Environmental Legacy (four of the eight strategies), and Meeting National Security Challenges (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD supports Office of Science strategic plans, including the 20 year Scientific Facilities Plan and the draft Office of Science Strategic Plan. The research also

  1. United States Geological Survey uranium and thorium resource assessment and exploration research program, fiscal year 1980

    International Nuclear Information System (INIS)

    Offield, T.W.

    1979-01-01

    Research is being conducted by the USGS for the NURE program in six fields: geochemistry and mineralogy, sedimentary environments, igneous and metamorphic environments, geophysical exploration techniques, U resource assessment, and Th resource assessment. Some FY 1979 research results are reported and discussed

  2. Energy research program 84

    International Nuclear Information System (INIS)

    1984-01-01

    The energy research program 84 (EFP-84) is prepared by the Danish Ministry of Energy in order to continue the extension of the Danish energy research and development started through the former Trade Ministry's programs EM-1 (1976) and EM-2 (1978), and the Ministry of Energy's programs EFP-80, EFP-81, EFP-82 and EFP-83. The new program is a continuation of the activities in the period 1984-86 with a total budget of 112 mio. DKK. The program gives a brief description of background, principles, organization and financing, and a detailed description of each research area. (ln)

  3. Energy research program 83

    International Nuclear Information System (INIS)

    1983-01-01

    The energy research program 83 (EFP-83) is prepared by the Danish Ministry of Energy in order to continue the extension of the Danish energy research and development started through the former Trade Ministry's programs EM-1 (1976) and EM-2 (1978), and the Ministry of Energy's programs EFP-80, EFP-81 and EFP-82. The new program is a continuation of the activities in the period 1983-85 with a total budget of 111 mio. DKK. The program gives a brief description of background, principles, organization and financing, and a detailed description of each research area. (ln)

  4. Energy research program 85

    International Nuclear Information System (INIS)

    1985-01-01

    The energy research program 85 (EFP-85) is prepared by the Danish Ministry of Energy in order to continue the extension of the Danish energy research and development started through the former Trade Ministry's programs EM-1 (1976) and EM-2 (1978), and Ministry of Energy's programs EFP-80, EFP-81, EFP-82, EFP-83, and EFP-84. The new program is a continuation of the activities in the period 1985-87 with a total budget of 110 mio. DKK. The program gives a brief description of background, principles, organization and financing, and a detailed description of each research area. (ln)

  5. Optimization of dairy cattle breeding programs for different environment with genotype by environment interaction

    NARCIS (Netherlands)

    Mulder, H.A.; Veerkamp, R.F.; Ducro, B.J.; Arendonk, van J.A.M.; Bijma, P.

    2006-01-01

    Dairy cattle breeding organizations tend to sell semen to breeders operating in different environments and genotype × environment interaction may play a role. The objective of this study was to investigate optimization of dairy cattle breeding programs for 2 environments with genotype × environment

  6. From LDEF to a national Space Environment and Effects (SEE) program: A natural progression

    Science.gov (United States)

    Bowles, David E.; Calloway, Robert L.; Funk, Joan G.; Kinard, William H.; Levine, Arlene S.

    1995-02-01

    As the LDEF program draws to a close, it leaves in place the fundamental building blocks for a Space Environment and Effects (SEE) program. Results from LDEF data analyses and investigations now form a substantial core of knowledge on the long term effects of the space environment on materials, system and structures. In addition, these investigations form the basic structure of a critically-needed SEE archive and database system. An agency-wide effort is required to capture all elements of a SEE program to provide a more comprehensive and focused approach to understanding the space environment, determining the best techniques for both flight and ground-based experimentation, updating the models which predict both the environments and those effects on subsystems and spacecraft, and, finally, ensuring that this multitudinous information is properly maintained, and inserted into spacecraft design programs. Many parts and pieces of a SEE program already exist at various locations to fulfill specific needs. The primary purpose of this program, under the direction of the Office of Advanced Concepts and Technology (OACT) in NASA Headquarters, is to take advantage of these parts; apply synergisms where possible; identify and when possible fill-in gaps; coordinate and advocate a comprehensive SEE program. The SEE program must coordinate and support the efforts of well-established technical communities wherein the bulk of the work will continue to be done. The SEE program will consist of a NASA-led SEE Steering Committee, consisting of government and industry users, with the responsibility for coordination between technology developers and NASA customers; and Technical Working Groups with primary responsibility for program technical content in response to user needs. The Technical Working Groups are as follows: Materials and Processes; Plasma and Fields; Ionizing Radiation; Meteoroids and Orbital Debris; Neutral External Contamination; Thermosphere, Thermal, and Solar

  7. Research fellowship programs as a pathway for training independent clinical pharmacy scientists.

    Science.gov (United States)

    Mueller, Eric W; Bishop, Jeffrey R; Kanaan, Abir O; Kiser, Tyree H; Phan, Hanna; Yang, Katherine Y

    2015-03-01

    The American College of Clinical Pharmacy (ACCP) Research Affairs Committee published a commentary in 2013 on training clinical pharmacy scientists in the context of changes in economic, professional, political, and research environments. The commentary centered on the opportunities for pharmacists in clinical/translational research including strategies for ACCP, colleges of pharmacy, and the profession to increase the number and impact of clinical pharmacy scientists. A postdoctoral fellowship is cited as a current training pathway, capable of producing independent and productive pharmacy researchers. However, a decline in the number of programs, decreased funding availability, and variability in fellowship program activities and research focus have brought into question the relevance of this research training pathway to meet demand and opportunities. In response to these points, this commentary examines the state of research fellowship training including the current ACCP research fellowship review process, the need for standardization of research fellowship programs, and strategies to strengthen and promote research fellowships as relevant researcher training pathways. © 2015 Pharmacotherapy Publications, Inc.

  8. Human Research Program: 2012 Fiscal Year Annual Report

    Science.gov (United States)

    Effenhauser, Laura

    2012-01-01

    Crew health and performance are critical to successful human exploration beyond low Earth orbit. Risks to health and performance include physiologic effects from radiation, hypogravity, and planetary environments, as well as unique challenges in medical treatment, human factors, and support of behavioral health. The scientists and engineers of the Human Research Program (HRP) investigate and reduce the greatest risks to human health and performance, and provide essential countermeasures and technologies for human space exploration. In its seventh year of operation, the HRP continued to refine its management architecture of evidence, risks, gaps, tasks, and deliverables. Experiments continued on the International Space Station (ISS), on the ground in analog environments that have features similar to those of spaceflight, and in laboratory environments. Data from these experiments furthered the understanding of how the space environment affects the human system. These research results contributed to scientific knowledge and technology developments that address the human health and performance risks. As shown in this report, HRP has made significant progress toward developing medical care and countermeasure systems for space exploration missions which will ultimately reduce risks to crew health and performance.

  9. The Effects of a Robot Game Environment on Computer Programming Education for Elementary School Students

    Science.gov (United States)

    Shim, Jaekwoun; Kwon, Daiyoung; Lee, Wongyu

    2017-01-01

    In the past, computer programming was perceived as a task only carried out by computer scientists; in the 21st century, however, computer programming is viewed as a critical and necessary skill that everyone should learn. In order to improve teaching of problem-solving abilities in a computing environment, extensive research is being done on…

  10. Energy research program 86

    International Nuclear Information System (INIS)

    1986-01-01

    The energy research program 86 (EFP-86) is prepared by the Danish Ministry of Energy in order to continue the extension of the Danish energy research and development started through the former Trade Ministry's programs EM-1 (1976) and EM-2 (1978), and the Ministry of Energy's programs EFP-80, EFP-81, EFP-82, EFP-83, EFP-84, and EFP-85. The new program is a continuation of the activities in the period 1986-88 with a total budget of 116 mio. DKK. The program gives a brief description of background, principles, organization and financing, and a detailed description of each research area. (ln)

  11. Fourth annual workshop on management in basic and applied research environments

    Energy Technology Data Exchange (ETDEWEB)

    Bodnarczuk, M.W. [ed.

    1993-11-01

    The struggle to develop quality management concepts that ``map`` onto the cultural and work practices found in basic and applied research environments has been (for better or for worse) an attempt to differentiate basic and applied research from the nuclear industry. In the first (1990) edition of this ``Music Book`` proceedings, almost every laboratory that participated had a quality program that was traceable to, based on, influenced by, or in reaction to the nuclear quality standard ASME-NQA-1. This 1993 edition of the ``Music Book`` is very different in that almost every laboratory has developed a quality program that is based on, traceable to, or heavily influenced by DOE 5700.6C (Quality Assurance) and the DOE Standard; Implementation Guide for Quality Assurance Programs for Basic and Applied Research (DOE-ER-STD-6001-92). In order to construct a context for what follows and properly introduce the contents of this book, we want to briefly recount some of the highlights of the events that brought about this change, from the perspective of one who participated in the process.

  12. Energy research program 80

    International Nuclear Information System (INIS)

    1980-01-01

    The energy research program 80 contains an extension of the activities for the period 1980-82 within a budget of 100 mio.kr., that are a part of the goverment's employment plan for 1980. The research program is based on a number of project proposals, that have been collected, analysed, and supplemented in October-November 1979. This report consists of two parts. Part 1: a survey of the program, with a brief description of the background, principles, organization and financing. Part 2: Detailed description of the different research programs. (LN)

  13. The NASA/National Space Science Data Center trapped radiation environment model program, 1964 - 1991

    International Nuclear Information System (INIS)

    Vette, J.I.

    1991-11-01

    The major effort that NASA, initially with the help of the United States Air Force (USAF), carried out for 27 years to synthesize the experimental and theoretical results of space research related to energetic charged particles into a quantitative description of the terrestrial trapped radiation environment in the form of model environments is detailed. The effort is called the Trapped Radiation Environment Modeling Program (TREMP). In chapter 2 the historical background leading to the establishment of this program is given. Also, the purpose of this modeling program as established by the founders of the program is discussed. This is followed in chapter 3 by the philosophy and approach that was applied in this program throughout its lifetime. As will be seen, this philosophy led to the continuation of the program long after it would have expired. The highlights of the accomplishments are presented in chapter 4. A view to future possible efforts in this arena is given in chapter 5, mainly to pass on to future workers the differences that are perceived from these many years of experience. Chapter 6 is an appendix that details the chronology of the development of TREMP. Finally, the references, which document the work accomplished over these years, are presented in chapter 7

  14. Equipment qualification research program: program plan

    International Nuclear Information System (INIS)

    Dong, R.G.; Smith, P.D.

    1982-01-01

    The Lawrence Livermore National Laboratory (LLNL) under the sponsorship of the US Nuclear Regulatory Commission (NRC) has developed this program plan for research in equipment qualification (EQA). In this report the research program which will be executed in accordance with this plan will be referred to as the Equipment Qualification Research Program (EQRP). Covered are electrical and mechanical equipment under the conditions described in the OBJECTIVE section of this report. The EQRP has two phases; Phase I is primarily to produce early results and to develop information for Phase II. Phase I will last 18 months and consists of six projects. The first project is program management. The second project is responsible for in-depth evaluation and review of EQ issues and EQ processes. The third project is responsible for detailed planning to initiate Phase II. The remaining three projects address specific equipment; i.e., valves, electrical equipment, and a pump

  15. Student Perceptions of Instructional Tools in Programming Logic: A Comparison of Traditional versus Alice Teaching Environments

    Science.gov (United States)

    Schultz, Leah

    2011-01-01

    This research investigates the implementation of the programming language Alice to teach computer programming logic to computer information systems students. Alice has been implemented in other university settings and has been reported to have many benefits including object-oriented concepts and an engaging and fun learning environment. In this…

  16. Medical Research Volunteer Program (MRVP): innovative program promoting undergraduate research in the medical field.

    Science.gov (United States)

    Dagher, Michael M; Atieh, Jessica A; Soubra, Marwa K; Khoury, Samia J; Tamim, Hani; Kaafarani, Bilal R

    2016-06-06

    Most educational institutions lack a structured system that provides undergraduate students with research exposure in the medical field. The objective of this paper is to describe the structure of the Medical Research Volunteer Program (MRVP) which was established at the American University of Beirut, Lebanon, as well as to assess the success of the program. The MRVP is a program that targets undergraduate students interested in becoming involved in the medical research field early on in their academic career. It provides students with an active experience and the opportunity to learn from and support physicians, clinical researchers, basic science researchers and other health professionals. Through this program, students are assigned to researchers and become part of a research team where they observe and aid on a volunteer basis. This paper presents the MRVP's four major pillars: the students, the faculty members, the MRVP committee, and the online portal. Moreover, details of the MRVP process are provided. The success of the program was assessed by carrying out analyses using information gathered from the MRVP participants (both students and faculty). Satisfaction with the program was assessed using a set of questions rated on a Likert scale, ranging from 1 (lowest satisfaction) to 5 (highest satisfaction). A total of 211 students applied to the program with a total of 164 matches being completed. Since the beginning of the program, three students have each co-authored a publication in peer-reviewed journals with their respective faculty members. The majority of the students rated the program positively. Of the total number of students who completed the program period, 35.1 % rated the effectiveness of the program with a 5, 54.8 % rated 4, and 8.6 % rated 3. A small number of students gave lower ratings of 2 and 1 (1.1 % and 0.4 %, respectively). The MRVP is a program that provides undergraduate students with the opportunity to learn about research firsthand

  17. Authentic Astronomy Research Experiences for Teachers: The NASA/IPAC Teacher Archive Research Program (NITARP)

    Science.gov (United States)

    Rebull, L. M.; Gorjian, V.; Squires, G.; Nitarp Team

    2012-08-01

    How many times have you gotten a question from the general public, or read a news story, and concluded that "they just don't understand how real science works?" One really good way to get the word out about how science works is to have more people experience the process of scientific research. Since 2004, the way we have chosen to do this is to provide authentic research experiences for teachers using real data (the program used to be called the Spitzer Teacher Program for Teachers and Students, which in 2009 was rechristened the NASA/IPAC Teacher Archive Research Program, or NITARP). We partner small groups of teachers with a mentor astronomer, they do research as a team, write up a poster, and present it at an American Astronomical Society (AAS) meeting. The teachers incorporate this experience into their classroom, and their experiences color their teaching for years to come, influencing hundreds of students per teacher. This program differs from other similar programs in several important ways. First, each team works on an original, unique project. There are no canned labs here! Second, each team presents their results in posters at the AAS, in science sessions (not outreach sessions). The posters are distributed throughout the meeting, in amongst other researchers' work; the participants are not "given a free pass" because they are teachers. Finally, the "product" of this project is the scientific result, not any sort of curriculum packet. The teachers adapt their project to their classroom environment, and we change the way they think about science and scientists.

  18. Retail food environments in Canada: Maximizing the impact of research, policy and practice.

    Science.gov (United States)

    Minaker, Leia M

    2016-06-09

    Retail food environments are gaining national and international attention as important determinants of population dietary intake. Communities across Canada are beginning to discuss and implement programs and policies to create supportive retail food environments. Three considerations should drive the selection of food environment assessment methods: relevance (What is the problem, and how is it related to dietary outcomes?); resources (What human, time and financial resources are required to undertake an assessment?); and response (How will policy-makers find meaning out of and act on the information gained through the food environment assessment?). Ultimately, food environment assessments should be conducted in the context of stakeholder buy-in and multi-sectoral partnerships, since food environment solutions require multi-sectoral action. Partnerships between public health actors and the food and beverage industry can be challenging, especially when mandates are not aligned. Clarifying the motivations, expectations and roles of all stakeholders takes time but is important if the impact of food environment research, policy and practice is to be maximized. The articles contained in this special supplementary issue describe ongoing food environments research across Canada and fill some of the important gaps in the current body of Canadian food environments literature.

  19. Immersion in a Hudson Valley Tidal Marsh and Climate Research Community - Lamont-Doherty's Secondary School Field Research Program

    Science.gov (United States)

    Peteet, D. M.; Newton, R.; Vincent, S.; Sambrotto, R.; Bostick, B. C.; Schlosser, P.; Corbett, J. E.

    2015-12-01

    A primary advantage of place-based research is the multidisciplinary and interdisciplinary research that can be applied to a single locale, with a depth of continued study through time. Through the last decade, Lamont-Doherty's Secondary School Field Research Program (SSFRP) has promoted scientific inquiry, mostly among groups under-represented in STEM fields, in Piermont Marsh, a federally protected marsh in the Hudson estuary. At the same time, Lamont Doherty Earth Observatory (LDEO) scientists have become more involved, through mentoring by researchers, postdocs and graduate students, often paired with high school teachers. The sustained engagement of high school students in a natural environment, experiencing the Hudson River and its tidal cycles, protection of coastline, water quality improvement, native and invasive plant communities, is fundamental to their understanding of the importance of wetlands with their many ecosystem services. In addition, the Program has come to see "place" as inclusive of the Observatory itself. The students' work at Lamont expands their understanding of educational opportunities and career possibilities. Immersing students in a research atmosphere brings a level of serious inquiry and study to their lives and provides them with concrete contributions that they make to team efforts. Students select existing projects ranging from water quality to Phragmites removal, read papers weekly, take field measurements, produce lab results, and present their research at the end of six weeks. Ongoing results build from year to year in studies of fish populations, nutrients, and carbon sequestration, and the students have presented at professional scientific meetings. Through the Program students gain a sense of ownership over both their natural and the academic environments. Challenges include sustained funding of the program; segmenting the research for reproducible, robust results; fitting the projects to PIs' research goals, time

  20. Rhone-Poulenc claims progress for environment program

    International Nuclear Information System (INIS)

    Back, R.

    1993-01-01

    Rhone-Poulenc (RP; Paris) made further progress last year in its pollution-reducing efforts, under the group's worldwide three-year Environment Plan (1992--1994). The company's water index improved by 15% from 1991 and by 22% from 1990 -- slightly ahead of target. The air index improved 9% from 1991 and 15% from 1990. open-quotes Progress regarding atmospheric emissions is significant, but we wish to go further in order to reach our medium-term objectives,close quotes says RP vice-chairman Jean-Marc Bruel. About 47% of the company's capital spending in 1992 was devoted to these emissions. The solid waste index remained static, with an improvement of 1% compared with an 18% advance in 1991. The startup of incineration units in 1993 will help correct this situation. Bruel reiterates the group's established goal of a 50% reduction in all effluent and solid waste by 1995, and 65% by 2000, using 1990 as the base year for its environment index. He says the indices have been adopted by the French chemical industry association -- Union des Industries Chimiques -- and the U.K.'s Chemical Industries Association. RP's environment-related expenditures in 1992 amounted to F1.8 billion ($330 million), of which F1.2 billion was for operating expenses and the remainder for new investments. Expenditures in France were F594 million and F479 million, respectively; the US, F381 million and F122 million; and Brazil F64 million and F14 million. Spending is forecast to be at a similar level in 1993. Environmental research, with spending of F5.8 billion in 1992, is integrated into all the group's research programs

  1. Radon Research Program, FY 1991

    International Nuclear Information System (INIS)

    1992-03-01

    The scientific information being sought in this program encompasses research designed to determine radon availability and transport outdoors, modeling transport into and within buildings, physics and chemistry of radon and radon progeny, dose response relationships, lung cancer risk, and mechanisms of radon carcinogenesis. The main goal of the DOE/OHER Radon Research Program is to develop information to reduce these uncertainties and thereby provide an improved health risk estimate of exposure to radon and its progeny as well as to provide information useful in radon control strategies. Results generated under the Program were highlighted in a National Research Council report on radon dosimetry. The study concluded that the risk of radon exposure is 30% less in homes than in mines. This program summary of book describes the OHER FY-1991 Radon Research Program. It is the fifth in an annual series of program books designed to provide scientific and research information to the public and to other government agencies on the DOE Radon Research Program

  2. Leadership Program for Promoting Policies Linking the Environment ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Leadership Program for Promoting Policies Linking the Environment and Health in Africa. It is obvious that in many African countries, no linkages are being made between health policy and environment policy. In 2005, the global network Environment and Development Action in the Third World (ENDA-TM) francophone ...

  3. The Living With a Star Space Environment Testbed Program

    Science.gov (United States)

    Barth, Janet; LaBel, Kenneth; Day, John H. (Technical Monitor)

    2001-01-01

    NASA has initiated the Living with a Star (LWS) Program to develop the scientific understanding to address the aspects of the Connected Sun-Earth system that affects life and society. The Program Architecture includes science missions, theory and modeling and Space Environment Testbeds (SET). This current paper discusses the Space Environment Testbeds. The goal of the SET program is to improve the engineering approach to accomodate and/or mitigate the effects of solar variability on spacecraft design and operations. The SET Program will infuse new technologies into the space programs through collection of data in space and subsequent design and validation of technologies. Examples of these technologies are cited and discussed.

  4. Development of Teachers as Scientists in Research Experiences for Teachers Programs

    Science.gov (United States)

    Faber, Courtney; Hardin, Emily; Klein-Gardner, Stacy; Benson, Lisa

    2014-11-01

    This study examined the teachers' development as scientists for participants in three National Science Foundation Research Experiences for Teachers. Participants included secondary science and math teachers with varying levels of education and experience who were immersed in research environments related to engineering and science topics. Teachers' functionality as scientists was assessed in terms of independence, focus, relationships with mentors, structure, and ability to create new concepts. Hierarchies developed within these constructs allowed tracking of changes in functionality throughout the 6-week programs. Themes were further identified in teachers' weekly journal entries and exit interviews through inductive coding. Increases in functionality as scientists were observed for all teachers who completed both the program and exit interview ( n = 27). Seven of the 27 teachers reached high science functionality; however, three of the teachers did not reach high functionality in any of the constructs during the program. No differences were observed in demographics or teaching experience between those who did and did not reach high functionality levels. Inductive coding revealed themes such as teachers' interactions with mentors and connections made between research and teaching, which allowed for descriptions of experiences for teachers at high and low levels of functionality. Teachers at high functionality levels adjusted to open-ended environments, transitioned from a guided experience to freedom, felt useful in the laboratory, and were self-motivated. In contrast, teachers at low functionality levels did not have a true research project, primarily focused on teaching aspects of the program, and did not display a transition of responsibilities.

  5. The role of physicality in rich programming environments

    Science.gov (United States)

    Liu, Allison S.; Schunn, Christian D.; Flot, Jesse; Shoop, Robin

    2013-12-01

    Computer science proficiency continues to grow in importance, while the number of students entering computer science-related fields declines. Many rich programming environments have been created to motivate student interest and expertise in computer science. In the current study, we investigated whether a recently created environment, Robot Virtual Worlds (RVWs), can be used to teach computer science principles within a robotics context by examining its use in high-school classrooms. We also investigated whether the lack of physicality in these environments impacts student learning by comparing classrooms that used either virtual or physical robots for the RVW curriculum. Results suggest that the RVW environment leads to significant gains in computer science knowledge, that virtual robots lead to faster learning, and that physical robots may have some influence on algorithmic thinking. We discuss the implications of physicality in these programming environments for learning computer science.

  6. Cryogenic instrumentation needs in the controlled thermonuclear research program

    International Nuclear Information System (INIS)

    Walstrom, P.L.

    1976-01-01

    The magnet development effort for the controlled thermonuclear research program will require extensive testing of superconducting coils at various sizes from small-scale models to full-size prototypes. Extensive use of diagnostic instrumentation will be required and to make detailed comparisons of predicted and actual performance in magnet tests and to monitor the test facility for incipient failure modes. At later stages of the program, cryogenic instrumentation will be required to monitor magnet system performance in fusion power reactors. Measured quantities may include temperature, strain, deflection, coil resistance, helium coolant pressure and flow, current, voltages, etc. The test environment, which includes high magnetic fields (up to 8-10 T) and low temperature, makes many commercial measuring devices inoperative or at least inaccurate. In order to ensure reliable measurements, careful screening of commercial devices for performance in the test environment will be required. A survey of potentially applicable instrumentation is presented along with available information on operation in the test environment based on experimental data or on analysis of the physical characteristics of the device. Areas where further development work is needed are delineated

  7. NASA's Upper Atmosphere Research Program UARP and Atmospheric Chemistry Modeling and Analysis Program (ACMAP): Research Summaries 1994 - 1996. Report to Congress and the Environmental Protection Agency

    Science.gov (United States)

    Kendall, Rose (Compiler); Wolfe, Kathy (Compiler)

    1997-01-01

    Under the mandate contained in the FY 1976 NASA Authorization Act, the National Aeronautics and Space Administration (NASA) has developed and is implementing a comprehensive program of research, technology, and monitoring of the Earth's upper atmosphere, with emphasis on the stratosphere. This program aims at expanding our understanding to permit both the quantitative analysis of current perturbations as well as the assessment of possible future changes in this important region of our environment. It is carried out jointly by the Upper Atmosphere Research Program (UARP) and the Atmospheric Chemistry Modeling and Analysis Program (ACMAP), both managed within the Science Division in the Office of Mission to Planet Earth at NASA. Significant contributions to this effort are also provided by the Atmospheric Effects of Aviation Project (AEAP) of NASA's Office of Aeronautics. The long-term objectives of the present program are to perform research to: understand the physics, chemistry, and transport processes of the upper atmosphere and their effect on the distribution of chemical species in the stratosphere, such as ozone; understand the relationship of the trace constituent composition of the lower stratosphere and the lower troposphere to the radiative balance and temperature distribution of the Earth's atmosphere; and accurately assess possible perturbations of the upper atmosphere caused by human activities as well as by natural phenomena. In compliance with the Clean Air Act Amendments of 1990, Public Law 101-549, NASA has prepared a report on the state of our knowledge of the Earth's upper atmosphere, particularly the stratosphere, and on the progress of UARP and ACMAP. The report for the year 1996 is composed of two parts. Part 1 summarizes the objectives, status, and accomplishments of the research tasks supported under NASA UARP and ACMAP in a document entitled, Research Summary 1994-1996. Part 2 is entitled Present State of Knowledge of the Upper Atmosphere

  8. Achieving behavioral control with millisecond resolution in a high-level programming environment.

    Science.gov (United States)

    Asaad, Wael F; Eskandar, Emad N

    2008-08-30

    The creation of psychophysical tasks for the behavioral neurosciences has generally relied upon low-level software running on a limited range of hardware. Despite the availability of software that allows the coding of behavioral tasks in high-level programming environments, many researchers are still reluctant to trust the temporal accuracy and resolution of programs running in such environments, especially when they run atop non-real-time operating systems. Thus, the creation of behavioral paradigms has been slowed by the intricacy of the coding required and their dissemination across labs has been hampered by the various types of hardware needed. However, we demonstrate here that, when proper measures are taken to handle the various sources of temporal error, accuracy can be achieved at the 1 ms time-scale that is relevant for the alignment of behavioral and neural events.

  9. U.S. Radioecology Research Programs Initiated in the 1950s

    International Nuclear Information System (INIS)

    Auerbach, S.I.; Reichle, D.E.

    1999-01-01

    In the early postwar years, beginning in 1949 and extending to the mid-1960s, U.S. Atomic Energy Commission (AEC) research on the fate and effects of radionuclides in the environment was driven by distinct environmental concerns-- the releases of radioactive materials around production sites, fallout from nuclear weapons tests, and radiation effects from both external and internal exposures. These problem areas spawned development of the scientific field of radioecology. To understand the perspectives in the 1950s of the United States on the issues of nuclear energy and the environment, we have reviewed the early research programs. Keeping to the theme of the papers in this environmental session, we will focus on the first area of concern -- the scientific studies to understand the environmental consequences of nuclear production and fuel reprocessing at the three primary production sites: the Hanford Works in the state of Washington, Clinton Laboratories in Oak Ridge, Tennessee, and the Savannah River Plant in South Carolina. The driving environmental issue was the fate and effects of waste products from nuclear fuel production and reprocessing -- concern about entry into environmental pathways. Early operational monitoring and evaluation by health physicists led to realization that additional emphasis needed to be placed on understanding environmental fate of radionuclides. What followed was forward-thinking R and D planning and development of interdisciplinary research teams for experimentation on complex environmental systems. What follows is a review of the major U.S. AEC radioecology research programs initiated during the 1950s, the issues leading to the establishment of these programs, early results, and their legacies for environmental protection and ecological research in the following decades

  10. U.S. Radioecology Research Programs Initiated in the 1950s

    Energy Technology Data Exchange (ETDEWEB)

    Auerbach, S.I.; Reichle, D.E.

    1999-10-01

    In the early postwar years, beginning in 1949 and extending to the mid-1960s, U.S. Atomic Energy Commission (AEC) research on the fate and effects of radionuclides in the environment was driven by distinct environmental concerns-- the releases of radioactive materials around production sites, fallout from nuclear weapons tests, and radiation effects from both external and internal exposures. These problem areas spawned development of the scientific field of radioecology. To understand the perspectives in the 1950s of the United States on the issues of nuclear energy and the environment, we have reviewed the early research programs. Keeping to the theme of the papers in this environmental session, we will focus on the first area of concern -- the scientific studies to understand the environmental consequences of nuclear production and fuel reprocessing at the three primary production sites: the Hanford Works in the state of Washington, Clinton Laboratories in Oak Ridge, Tennessee, and the Savannah River Plant in South Carolina. The driving environmental issue was the fate and effects of waste products from nuclear fuel production and reprocessing -- concern about entry into environmental pathways. Early operational monitoring and evaluation by health physicists led to realization that additional emphasis needed to be placed on understanding environmental fate of radionuclides. What followed was forward-thinking R and D planning and development of interdisciplinary research teams for experimentation on complex environmental systems. What follows is a review of the major U.S. AEC radioecology research programs initiated during the 1950s, the issues leading to the establishment of these programs, early results, and their legacies for environmental protection and ecological research in the following decades.

  11. Radon Research Program, FY-1990

    International Nuclear Information System (INIS)

    1991-03-01

    The Department of Energy (DOE) Office of Health and Environmental Research (OHER) has established a Radon Research Program with the primary objectives of acquiring knowledge necessary to improve estimates of health risks associated with radon exposure and also to improve radon control. Through the Radon Research Program, OHER supports and coordinates the research activities of investigators at facilities all across the nation. From this research, significant advances are being made in our understanding of the health effects of radon. OHER publishes this annual report to provide information to interested researchers and the public about its research activities. This edition of the report summarizes the activities of program researchers during FY90. Chapter 2 of this report describes how risks associated with radon exposure are estimated, what assumptions are made in estimating radon risks for the general public, and how the uncertainties in these assumptions affect the risk estimates. Chapter 3 examines how OHER, through the Radon Research Program, is working to gather information for reducing the uncertainties and improving the risk estimates. Chapter 4 highlights some of the major findings of investigators participating in the Radon Research Program in the past year. And, finally, Chapter 5 discusses the direction in which the program is headed in the future. 20 figs

  12. The Precision Medicine Initiative's All of Us Research Program: an agenda for research on its ethical, legal, and social issues.

    Science.gov (United States)

    Sankar, Pamela L; Parker, Lisa S

    2017-07-01

    The Precision Medicine Initiative (PMI) is an innovative approach to developing a new model of health care that takes into account individual differences in people's genes, environments, and lifestyles. A cornerstone of the initiative is the PMI All of Us Research Program (formerly known as PMI-Cohort Program) which will create a cohort of 1 million volunteers who will contribute their health data and biospecimens to a centralized national database to support precision medicine research. The PMI All of US Research Program is the largest longitudinal study in the history of the United States. The designers of the Program anticipated and addressed some of the ethical, legal, and social issues (ELSI) associated with the initiative. To date, however, there is no plan to call for research regarding ELSI associated with the Program-PMI All of Us program. Based on analysis of National Institutes of Health (NIH) funding announcements for the PMI All of Us program, we have identified three ELSI themes: cohort diversity and health disparities, participant engagement, and privacy and security. We review All of Us Research Program plans to address these issues and then identify additional ELSI within each domain that warrant ongoing investigation as the All of Us Research Program develops. We conclude that PMI's All of Us Research Program represents a significant opportunity and obligation to identify, analyze, and respond to ELSI, and we call on the PMI to initiate a research program capable of taking on these challenges.Genet Med advance online publication 01 December 2016.

  13. Physical Research Program: research contracts and statistical summary

    International Nuclear Information System (INIS)

    1975-01-01

    The physical research program consists of fundamental theoretical and experimental investigations designed to support the objectives of ERDA. The program is directed toward discovery of natural laws and new knowledge, and to improved understanding of the physical sciences as related to the development, use, and control of energy. The ultimate goal is to develop a scientific underlay for the overall ERDA effort and the fundamental principles of natural phenomena so that these phenomena may be understood and new principles, formulated. The physical research program is organized into four functional subprograms, high-energy physics, nuclear sciences, materials sciences, and molecular sciences. Approximately four-fifths of the total physical research program costs are associated with research conducted in ERDA-owned, contractor-operated federally funded research and development centers. A little less than one-fifth of the costs are associated with the support of research conducted in other laboratories

  14. Research results of the Optimiturve research program in 1991

    International Nuclear Information System (INIS)

    Alakangas, E.

    1992-01-01

    Optimiturve research program is one of the energy research programs funded by the Ministry of Trade and Industry of Finland. The main target of the program is double the annual hectare yield of peat dried by solar radiation to decrease the peat production costs, to speed up the circulation of capital invested to peat production with the aid of a new production method developed in this research, and hence improve the price competitivity of peat. The targets of the research program are expected to be completed by improving the drying of peat, the efficiency of the peat production machinery, and by developing peat production techniques. The program was started in 1988, and the targets are to be fulfilled up to year 1993. The research program is carried out in cooperation with universities, research organizations and peat producers. This publication consists of the results of the ongoing projects in the Optimiturve research program in 1991. The aim, the contents and the main results of the 18 projects are presented. At the end of this publication there is a list of the reports published in Reports series

  15. Exploratory research for the development of a computer aided software design environment with the software technology program

    Science.gov (United States)

    Hardwick, Charles

    1991-01-01

    Field studies were conducted by MCC to determine areas of research of mutual interest to MCC and JSC. NASA personnel from the Information Systems Directorate and research faculty from UHCL/RICIS visited MCC in Austin, Texas to examine tools and applications under development in the MCC Software Technology Program. MCC personnel presented workshops in hypermedia, design knowledge capture, and design recovery on site at JSC for ISD personnel. The following programs were installed on workstations in the Software Technology Lab, NASA/JSC: (1) GERM (Graphic Entity Relations Modeler); (2) gIBIS (Graphic Issues Based Information System); and (3) DESIRE (Design Recovery tool). These applications were made available to NASA for inspection and evaluation. Programs developed in the MCC Software Technology Program run on the SUN workstation. The programs do not require special configuration, but they will require larger than usual amounts of disk space and RAM to operate properly.

  16. Environmental monitoring program of a nuclear research institute

    International Nuclear Information System (INIS)

    Peixoto, Claudia Marques; Jacomino, Vanusa Maria Feliciano; Dias, Fabiana F.

    2009-01-01

    The main activities of the CDTN Research Institute are concentrated in the areas of reactors, materials, process engineering, the environment, health, radioprotection, radioactive waste, and applied physics. Its Environmental Monitoring Program (EMP) began in 1985 with the objective of evaluating and controlling its installations' operating conditions as well as the impact on the neighboring environment caused by release of stable and radioactive elements. EMP's adequate planning and management resulted in obtaining an unique database that has generated information which have contributed to improving the credibility of nuclear and non-nuclear activities developed by the Center with the local community. Besides this, the data collection, study and continuous and systematic follow-up processes of environmental variables allowed the Center to be one of the Nation's pioneering research institutions in obtaining an Environmental Operating License from the Brazilian Environment and Natural Resources Institute (IBAMA). The objective of the present work is to present the experience acquired during the years, including a discussion about methodologies employed as well as the importance of using statistical evaluation tools in evaluating, interpreting, and controlling the quality of the results. Liquid effluent control and surface water monitoring results are also presented. (author)

  17. Capitalizing on Community: the Small College Environment and the Development of Researchers

    Science.gov (United States)

    Stoneking, M. R.

    2014-03-01

    Liberal arts colleges constitute an important source of and training ground for future scientists. At Lawrence University, we take advantage of our small college environment to prepare physics students for research careers by complementing content acquisition with skill development and project experience distributed throughout the curriculum and with co-curricular elements that are tied to our close-knit supportive physics community. Small classes and frequent contact between physics majors and faculty members offer opportunities for regular and detailed feedback on the development of research relevant skills such as laboratory record-keeping, data analysis, electronic circuit design, computational programming, experimental design and modification, and scientific communication. Part of our approach is to balance collaborative group work on small projects (such as Arduino-based electronics projects and optical design challenges) with independent work (on, for example, advanced laboratory experimental extensions and senior capstone projects). Communal spaces and specialized facilities (experimental and computational) and active on-campus research programs attract eager students to the program, establish a community-based atmosphere, provide unique opportunities for the development of research aptitude, and offer opportunities for genuine contribution to a research program. Recently, we have also been encouraging innovativetendencies in physics majors through intentional efforts to develop personal characteristics, encouraging students to become more tolerant of ambiguity, risk-taking, initiative-seeking, and articulate. Indicators of the success of our approach include the roughly ten physics majors who graduate each year and our program's high ranking among institutions whose graduates go on to receive the Ph.D. in physics. Work supported in part by the National Science Foundation.

  18. The Use of Engineering Design Concept for Computer Programming Course: A Model of Blended Learning Environment

    Science.gov (United States)

    Tritrakan, Kasame; Kidrakarn, Pachoen; Asanok, Manit

    2016-01-01

    The aim of this research is to develop a learning model which blends factors from learning environment and engineering design concept for learning in computer programming course. The usage of the model was also analyzed. This study presents the design, implementation, and evaluation of the model. The research methodology is divided into three…

  19. Publications of the planetary biology program for 1975: A special bibliography. [on NASA programs and research projects on extraterrestrial life

    Science.gov (United States)

    Souza, K. A. (Compiler); Young, R. S. (Compiler)

    1976-01-01

    The Planetary Biology Program of the National Aeronautics and Space Administration is the first and only integrated program to methodically investigate the planetary events which may have been responsible for, or related to, the origin, evolution, and distribution of life in the universe. Research supported by this program is divided into the seven areas listed below: (1) chemical evolution, (2) organic geochemistry, (3) life detection, (4) biological adaptation, (5) bioinstrumentation, (6) planetary environments, and (7) origin of life. The arrangement of references in this bibliography follows the division of research described above. Articles are listed alphabetically by author under the research area with which they are most closely related. Only those publications which resulted from research supported by the Planetary Biology Program and which bear a 1975 publication date have been included. Abstracts and theses are not included because of the preliminary and abbreviated nature of the former and the frequent difficulty of obtaining the latter.

  20. Graphical programming interface: A development environment for MRI methods.

    Science.gov (United States)

    Zwart, Nicholas R; Pipe, James G

    2015-11-01

    To introduce a multiplatform, Python language-based, development environment called graphical programming interface for prototyping MRI techniques. The interface allows developers to interact with their scientific algorithm prototypes visually in an event-driven environment making tasks such as parameterization, algorithm testing, data manipulation, and visualization an integrated part of the work-flow. Algorithm developers extend the built-in functionality through simple code interfaces designed to facilitate rapid implementation. This article shows several examples of algorithms developed in graphical programming interface including the non-Cartesian MR reconstruction algorithms for PROPELLER and spiral as well as spin simulation and trajectory visualization of a FLORET example. The graphical programming interface framework is shown to be a versatile prototyping environment for developing numeric algorithms used in the latest MR techniques. © 2014 Wiley Periodicals, Inc.

  1. Horonobe Underground Research Laboratory project. Investigation program for the 2008 fiscal year

    International Nuclear Information System (INIS)

    Nakayama, Masashi; Sanada, Hiroyuki; Yamaguchi, Takehiro; Sugita, Yutaka

    2008-09-01

    As part of the research and development program on geological disposal of high-level radioactive waste (HLW), the Horonobe Underground Research Center, a division of the Japan Atomic Energy Agency (JAEA), is implementing the Horonobe Underground Research Laboratory Project (Horonobe URL Project) with the aim at investigating sedimentary rock formations. According to the research plan described in the Midterm Plan of JAEA, geological investigations are to be carried out during the drilling of a shaft down to intermediate depth, while research and development in the areas of engineering technology and safety assessment are to be promoted by collaboration with other research organizations. The results of the R and D activities will be systematized as a 'knowledge base' that supports a wide range of arguments related to the safety of geological disposal. The Horonobe URL Project is planned to extend over a period of 20 years. The investigations will be conducted in three phases, namely 'Phase 1: Surface-based investigations', 'Phase 2: Construction phase' (investigations during construction of the underground facilities) and 'Phase 3: Operation phase' (research in the underground facilities). This report summarizes the investigation program for the 2008 fiscal year (2008/2009), the 4th year of the Phase 2 investigations. In the 2008 fiscal year, investigations in geoscientific research', including 'development of techniques for investigating the geological environment', 'development of techniques for long-term monitoring of the geological environment', 'development of engineering techniques for use in the deep underground environment' and studies on the long-term stability of the geological environment', are continuously carried out. Investigations in 'research and development on geological disposal technology', including 'improving the reliability of disposal technologies' and 'enhancement of safety assessment methodologies', are also continuously carried out

  2. Building partnerships for healthy environments: research, leadership and education.

    Science.gov (United States)

    Thompson, Susan; Kent, Jennifer; Lyons, Claudine

    2014-12-01

    As populations across the globe face an increasing health burden from rising rates of obesity, diabetes and other lifestyle-related diseases, health professionals are collaborating with urban planners to influence city design that supports healthy ways of living. This paper details the establishment and operation of an innovative, interdisciplinary collaboration that brings together urban planning and health. Situated in a built environment faculty at one of Australia's most prestigious universities, the Healthy Built Environments Program (HBEP) partners planning academics, a health non-government organisation, local councils and private planning consultants in a state government health department funded consortium. The HBEP focuses on three strategic areas: research, workforce development and education, and leadership and advocacy. Interdisciplinary research includes a comprehensive literature review that establishes Australian-based evidence to support the development, prioritisation and implementation of healthy built environment policies and practices. Another ongoing study examines the design features, social interventions and locational qualities that positively benefit human health. Formal courses, workshops, public lectures and e-learning develop professional capacity, as well as skills in interdisciplinary practice to support productive collaborations between health professionals and planners. The third area involves working with government and non-government agencies, and the private sector and the community, to advocate closer links between health and the built environment. Our paper presents an overview of the HBEP's major achievements. We conclude with a critical review of the challenges, revealing lessons in bringing health and planning closer together to create health-supportive cities for the 21st century.

  3. The NASA/IPAC Teacher Archive Research Program (NITARP) at Pierce College

    Science.gov (United States)

    Mallory, Carolyn R.; Feig, M.; Mahmud, N.; Silic, T.; Rebull, L.; Hoette, V.; Johnson, C.; McCarron, K.

    2011-01-01

    Our team from Pierce Community College, Woodland Hills, CA, participated in the NASA/IPAC Teacher Archive Research Program (NITARP) this past year (2010). (NITARP is described in another poster, Rebull et al.) Our team worked with archival Spitzer, 2MASS, and optical data to look for young stars in CG4, part of the Gum Nebula; our scientific results are described in a companion poster, Johnson et al. In this poster, we describe more about what we learned and how we incorporated our NITARP experiences into the Pierce College environment. Students developed critical thinking skills and an ability to organize their data analysis and develop a mental "big picture" of what is going on in the CG4 region. The NITARP program is one of several "Active Learning" programs going on at Pierce, and the other programs are briefly summarized in this poster as well. This program was made possible through the NASA/IPAC Teacher Archive Research Project (NITARP) and was funded by NASA Astrophysics Data Program and Archive Outreach funds.

  4. eXascale PRogramming Environment and System Software (XPRESS)

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Barbara [Univ. of Houston, TX (United States); Gabriel, Edgar [Univ. of Houston, TX (United States)

    2015-11-30

    Exascale systems, with a thousand times the compute capacity of today’s leading edge petascale computers, are expected to emerge during the next decade. Their software systems will need to facilitate the exploitation of exceptional amounts of concurrency in applications, and ensure that jobs continue to run despite the occurrence of system failures and other kinds of hard and soft errors. Adapting computations at runtime to cope with changes in the execution environment, as well as to improve power and performance characteristics, is likely to become the norm. As a result, considerable innovation is required to develop system support to meet the needs of future computing platforms. The XPRESS project aims to develop and prototype a revolutionary software system for extreme-­scale computing for both exascale and strong­scaled problems. The XPRESS collaborative research project will advance the state-­of-­the-­art in high performance computing and enable exascale computing for current and future DOE mission-­critical applications and supporting systems. The goals of the XPRESS research project are to: A. enable exascale performance capability for DOE applications, both current and future, B. develop and deliver a practical computing system software X-­stack, OpenX, for future practical DOE exascale computing systems, and C. provide programming methods and environments for effective means of expressing application and system software for portable exascale system execution.

  5. Fossil Energy Advanced Research and Technology Development (AR&TD) Materials Program semiannual progress report for the period ending September 30, 1991. Fossil Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.; Cole, N.C. [comps.

    1992-04-01

    The objective of the Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The Program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Research is outlined in four areas: Ceramics, New Alloys, Corrosion and Erosion Research, and Technology Development and Transfer. (VC)

  6. Crystal Growth and Other Materials Physical Researches in Space Environment

    Science.gov (United States)

    Pan, Mingxiang

    Material science researches in space environment are based on reducing the effects of buoyancy driven transport, the effects of atomic oxygen, radiation, extremes of heat and cold and the ultrahigh vacuum, so as to unveil the underlying fundamental phenomena, lead maybe to new potential materials or new industrial processes and develop space techniques. Currently, research program on materials sciences in Chinese Manned Space Engineering (CMSE) is going on. More than ten projects related to crystal growth and materials processes are selected as candidates to be executed in Shenzhou spacecraft, Tiangong Space Laboratory and Chinese Space Station. In this talk, we will present some examples of the projects, which are being prepared and executed in the near future flight tasks. They are both basic and applied research, from discovery to technology.

  7. A survey of object oriented languages in programming environments

    OpenAIRE

    Haakonsen, Harald

    1987-01-01

    Approved for public release; distribution is unlimited This thesis addresses object oriented programming languages; and a restrictive definition of object oriented programming languages is presented and defended. Differences between programming languages are discussed and related to interactive integrated programming environments. Topics related to user friendly interface to the computer system and modem programming practice are discussed. The thesis especially addresses features in ...

  8. Pharmacoeconomics and outcomes research degree-granting PhD programs in the United States.

    Science.gov (United States)

    Slejko, Julia F; Libby, Anne M; Nair, Kavita V; Valuck, Robert J; Campbell, Jonathan D

    2013-01-01

    Evidence is missing on showcasing current practices of degree programs specific to the field of pharmaceutical outcomes research. To measure current practices of pharmacoeconomics and outcomes research PhD programs in the United States and synthesize recommendations for improving the success of programs and prospective students. A 23-question online survey instrument was created and distributed to 32 program directors identified in the International Society for Pharmacoeconomics and Outcomes Research educational directory. Descriptive statistics summarized both the program characteristics (including observed and desired number of faculty and students) and training recommendations (traits of program and student success). Of 30 eligible programs that conferred a PhD in pharmacoeconomics, pharmaceutical outcomes research, or a related field, 16 respondents (53%) completed the survey. Seventy-five percent of respondents were located in a school of pharmacy. The average observed number of faculty (7.5) and students (11.5) was lower than the average desired numbers (8.1) and (14.7), respectively. Reputation of faculty research and a collaborative environment with other disciplines were rated highest for a program's success. Faculty's mentoring experience and reputation and student funding opportunities were rated highest for prospective students' success. Existing and emerging programs as well as prospective students can use these findings to further their chances of success. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. AECL's research and development program in environmental science and technology

    International Nuclear Information System (INIS)

    Cornett, R.J.

    1998-07-01

    AECL's radiological research and development (R and D) program encompasses work on sources of radiation exposure, radionuclide transport through the environment and potential impacts on biota and on human health. The application of the radiation protection knowledge and technology developed in this program provides cradle-to-grave management for CANDU and related nuclear technologies. This document provides an overview of the Environmental Science and Technology (ES and T) program which is one of the technical areas of R and D within the radiological R and D program. The ES and T program uses science from three main areas: radiochemistry, mathematical modelling and environmental assessment. In addition to providing an overview of the program, this summary also gives specific examples of recent technical work in each of the three areas. These technical examples illustrate the applied nature of the ES and T program and the close coupling of the program to CANDU customer requirements. (author)

  10. The planning of future research program of underground laboratories in overseas

    International Nuclear Information System (INIS)

    Honma, Nobuyuki; Tanai, Kenji; Hasegawa, Hiroshi

    2002-02-01

    The objectives of this study is to identify the research issues, which are to be conducted in the future underground research laboratory, about operation and logistics systems for the planning of future research and development program. The research programs and experiments, etc. were investigated for the geological disposal projects in overseas sedimentary rocks and coastal geological environments aiming to reflect in the future underground research facility plan in Japan. In the investigation, information on the engineered-barrier performance, design and construction of underground facilities, tunnel support, transportation and emplacement, and backfilling technology, etc. were collected. Based on these informations, the purpose, the content, and the result of each investigations and tests were arranged. The strategy and the aim in the entire underground research facility, and the flow of investigations and tests, etc. were also arranged from the purpose, the relations and the sequence of each investigation and experiment, and the usage of results, etc. (author)

  11. Gas Research Institute research program summary: Goals and accomplishments

    International Nuclear Information System (INIS)

    1991-07-01

    Gas Research Institute's research and development programs pursue technologies that maximize the value of gas energy services while minimizing the cost of supplying and delivering gaseous fuels. Four program areas, Supply Options, End Use, Gas Operations, and Crosscutting Research, are described in the report, together with related project titles and numbers. Also included are summaries of 1990 research results, research collaboration and supported work, and patents and licensing agreements. Glossaries of budget and program terms and of acronyms and abbreviations often used in the GRI literature are added

  12. NASA Land Cover and Land Use Change (LCLUC): an interdisciplinary research program.

    Science.gov (United States)

    Justice, Chris; Gutman, Garik; Vadrevu, Krishna Prasad

    2015-01-15

    Understanding Land Cover/Land Use Change (LCLUC) in diverse regions of the world and at varied spatial scales is one of the important challenges in global change research. In this article, we provide a brief overview of the NASA LCLUC program, its focus areas, and the importance of satellite remote sensing observations in LCLUC research including future directions. The LCLUC Program was designed to be a cross-cutting theme within NASA's Earth Science program. The program aims to develop and use remote sensing technologies to improve understanding of human interactions with the environment. Since 1997, the NASA LCLUC program has supported nearly 280 research projects on diverse topics such as forest loss and carbon, urban expansion, land abandonment, wetland loss, agricultural land use change and land use change in mountain systems. The NASA LCLUC program emphasizes studies where land-use changes are rapid or where there are significant regional or global LCLUC implications. Over a period of years, the LCLUC program has contributed to large regional science programs such as Land Biosphere-Atmosphere (LBA), the Northern Eurasia Earth Science Partnership Initiative (NEESPI), and the Monsoon Area Integrated Regional Study (MAIRS). The primary emphasis of the program will remain on using remote sensing datasets for LCLUC research. The program will continue to emphasize integration of physical and social sciences to address regional to global scale issues of LCLUC for the benefit of society. Copyright © 2014. Published by Elsevier Ltd.

  13. The application of 10CFR830. 120 in a basic research environment

    Energy Technology Data Exchange (ETDEWEB)

    Bodnarczuk, M.

    1991-04-01

    In this paper, I describe the process of applying the 10 basic criteria of the proposed 10CFR830.120 to a basic research environment like Fermilab and discuss some of the issues associated with the implementation of such a program. I will also discuss some of the differences and similarities between the 18 basic elements of NQA-1 and the 10 criteria of 10CFR830.120 along with the more philosophical'' issues associated with performance versus process- based approach to quality in basic research.

  14. Learning Programming with IPRO: The Effects of a Mobile, Social Programming Environment

    Science.gov (United States)

    Martin, Taylor; Berland, Matthew; Benton, Tom; Smith, Carmen Petrick

    2013-01-01

    In this paper, we present two studies examining how high school students learn to program in a mobile, social programming environment that we have developed and deployed ("IPRO"). IPRO is delivered, with an associated curriculum, as an iPod Touch app and is freely and publicly available. We find that the affordances of mobility and…

  15. Fusion research program in Korea

    International Nuclear Information System (INIS)

    Hwang, Y.S.

    1996-01-01

    Fusion research in Korea is still premature, but it is a fast growing program. Groups in several universities and research institutes were working either in small experiments or in theoretical areas. Recently, couple of institutes who have small fusion-related experiments, proposed medium-size tokamak programs to jump into fusion research at the level of international recognition. Last year, Korean government finally approved to construct 'Superconducting Tokamak' as a national fusion program, and industries such as Korea Electric Power Corp. (KEPCO) and Samsung joined to support this program. Korea Basic Science Institute (KBSI) has organized national project teams including universities, research institutes and companies. National project teams are performing design works since this March. (author)

  16. Lunar e-Library: A Research Tool Focused on the Lunar Environment

    Science.gov (United States)

    McMahan, Tracy A.; Shea, Charlotte A.; Finckenor, Miria; Ferguson, Dale

    2007-01-01

    As NASA plans and implements the Vision for Space Exploration, managers, engineers, and scientists need lunar environment information that is readily available and easily accessed. For this effort, lunar environment data was compiled from a variety of missions from Apollo to more recent remote sensing missions, such as Clementine. This valuable information comes not only in the form of measurements and images but also from the observations of astronauts who have visited the Moon and people who have designed spacecraft for lunar missions. To provide a research tool that makes the voluminous lunar data more accessible, the Space Environments and Effects (SEE) Program, managed at NASA's Marshall Space Flight Center (MSFC) in Huntsville, AL, organized the data into a DVD knowledgebase: the Lunar e-Library. This searchable collection of 1100 electronic (.PDF) documents and abstracts makes it easy to find critical technical data and lessons learned from past lunar missions and exploration studies. The SEE Program began distributing the Lunar e-Library DVD in 2006. This paper describes the Lunar e-Library development process (including a description of the databases and resources used to acquire the documents) and the contents of the DVD product, demonstrates its usefulness with focused searches, and provides information on how to obtain this free resource.

  17. Persistent Factors Facilitating Excellence in Research Environments

    Science.gov (United States)

    Kalpazidou Schmidt, Evanthia; Graversen, Ebbe Krogh

    2018-01-01

    The study presented here identifies robust and time-invariant features that characterise dynamic and innovative research environments. It takes as its point of departure the results of an empirical study conducted in 2002 which identified the common characteristics of 15 dynamic and innovative public research environments, and focusses on their…

  18. Research program on the biological effects of oil pollution

    International Nuclear Information System (INIS)

    Barrett, R.T.

    1991-12-01

    A national research program on the biological effects of oil pollution (FOBO) was initiated by the Norwegian Ministry of Environment in October 1983 in the light of the increasing oil exploration and production activity in the North Sea and northern Norwegian waters. Ambitions were high and five main fields of research were suggested: Seabirds, fish (incl. salmon), marine mammals, the littoral zone and plankton. However, due to the lack of interest on the part of other potential financers, e.g. the Ministry of Fisheries and the oil companies, to participate, the four-year programme had to be limited to the following three topics: Seabirds around bruding colonies and at sea; Higher plants along the shoreline; The littoral zone. The program ran from the autumn of 1985 to the end of 1989 and this report summarizes the main results and conclusions of each project. 95 refs., 52 figs., 9 tabs

  19. Horonobe underground research program. Research report of 2002 FY investigation

    International Nuclear Information System (INIS)

    2003-06-01

    Main results of investigation about Horonobe deep underground research center in 2002 FY were reported. It consists of six chapters: introduction, main results, selection of research center area, underground science research, R and D of geological disposal, and the environmental survey and research center on the ground. The research center area at about 3 km north of Horonobe (B1) was selected in the four areas: A, B1, B2 and C on the basis of data, researches in the sky, aboveground and underground and other conditions. The model of geological environment was constructed by physical, geological, surface water supply researches. Development of geological environment monitoring techniques, investigation of long stabilization of geological environment and design of underground facilities are reported. The basic design of preparation of research center was investigated. (S.Y.)

  20. Exploring Environment-Intervention Fit: A Study of a Work Environment Intervention Program for the Care Sector

    Science.gov (United States)

    Aust, Birgit; Flyvholm, Mari-Ann

    2015-01-01

    Targeting occupational health and safety interventions to different groups of employees and sectors is important. The aim of this study was to explore the environment-intervention fit of a Danish psychosocial work environment intervention program for the residential and home care sector. Focus group interviews with employees and interviews with mangers were conducted at 12 selected workplaces and a questionnaire survey was conducted with managers at all 115 workplaces. The interventions enhanced the probability of employees experiencing more “good” work days, where they could make a difference to the lives of clients. The interventions may therefore be characterized as culturally compelling and having a good fit with the immediate work environment of employees. The interventions furthermore seemed to fit well with the wider organizational environment and with recent changes in the societal and economic context of workplaces. However, some workplaces had difficulties with involving all employees and adapting the interventions to the organization of work. The findings suggest that flexibility and a variety of strategies to involve all employees are important aspects, if interventions are to fit well with the care sector. The focus on employees' conceptualization of a “good” work day may be useful for intervention research in other sectors. PMID:26380356

  1. Exploring Environment-Intervention Fit: A Study of a Work Environment Intervention Program for the Care Sector

    Directory of Open Access Journals (Sweden)

    Louise Hardman Smith

    2015-01-01

    Full Text Available Targeting occupational health and safety interventions to different groups of employees and sectors is important. The aim of this study was to explore the environment-intervention fit of a Danish psychosocial work environment intervention program for the residential and home care sector. Focus group interviews with employees and interviews with mangers were conducted at 12 selected workplaces and a questionnaire survey was conducted with managers at all 115 workplaces. The interventions enhanced the probability of employees experiencing more “good” work days, where they could make a difference to the lives of clients. The interventions may therefore be characterized as culturally compelling and having a good fit with the immediate work environment of employees. The interventions furthermore seemed to fit well with the wider organizational environment and with recent changes in the societal and economic context of workplaces. However, some workplaces had difficulties with involving all employees and adapting the interventions to the organization of work. The findings suggest that flexibility and a variety of strategies to involve all employees are important aspects, if interventions are to fit well with the care sector. The focus on employees’ conceptualization of a “good” work day may be useful for intervention research in other sectors.

  2. Anthropology and Geosciences: Training and Collaboration Advancing Interdisciplinary Research of Human-environment Interaction

    Science.gov (United States)

    Brondizio, E.; Moran, E.

    2005-05-01

    Over the past thirteen years the Anthropological Center for Training and Research on Global Environmental Change (ACT) at Indiana University has pioneered the use of anthropological and environmental research approaches to address issues of land use change, and population-environment interaction, particularly in the Amazon. Our research and training objectives focus on how particular local populations manage resources and how those activities may be studied by integrating time-tested ethnographic methods, survey instruments, ecological field studies, and the spatial and temporal perspectives of remote sensing and Geographical Information Systems. The globalization of the environment crisis bears the risk of the research and training at universities being purely global or large scale in nature. This would fail to take into account the highly variable local causes of human activities or to discover sustainable solutions to the use, conservation, and restoration of human ecosystems. Our approach combines institutional and international collaboration, formal and hands-on laboratory and field activities developed within an interdisciplinary environment, but based on the strength of disciplinary programs. Over the past years, we have particularly emphasized collaboration between American and Brazilian scholars and students and intense work with local farmers and communities both during data collection and field research, as well as in returning data and results using different formats. In this paper, we address our experience, the challenges and advantages of theoretical and methodological development for students approaching interdisciplinary problems, innovations in linking levels of analysis, and new opportunities for international and collaborative training and research on human-environment interaction.

  3. Engine Environment Research Facility (EERF)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: This facility supports research and development testing of the behavior of turbine engine lubricants, fuels and sensors in an actual engine environment....

  4. Laboratory Directed Research and Development Program FY 2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    editor, Todd C Hansen

    2009-02-23

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under

  5. Laboratory Directed Research and Development Program FY 2008 Annual Report

    International Nuclear Information System (INIS)

    Hansen, Todd C.

    2009-01-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the

  6. Research Ethics with Undergraduates in Summer Research Training Programs

    Science.gov (United States)

    Cheung, I.; Yalcin, K.

    2016-02-01

    Many undergraduate research training programs incorporate research ethics into their programs and some are required. Engaging students in conversations around challenging topics such as conflict of interest, cultural and gender biases, what is science and what is normative science can difficult in newly formed student cohorts. In addition, discussing topics with more distant impacts such as science and policy, intellectual property and authorship, can be difficult for students in their first research experience that have more immediate concerns about plagiarism, data manipulation, and the student/faculty relationship. Oregon State University's Research Experience for Undergraduates (REU) in Ocean Sciences: From Estuaries to the Deep Sea as one model for incorporating a research ethics component into summer undergraduate research training programs. Weaved into the 10-week REU program, undergraduate interns participate in a series of conversations and a faculty mentor panel focused on research ethics. Topics discussed are in a framework for sharing myths, knowledge and personal experiences on issues in research with ethical implications. The series follows guidelines and case studies outlined from the text, On Being A Scientist: Responsible Conduct In Research Committee on Science, Engineering, and Public Policy, National Academy of Sciences.

  7. An environment for parallel structuring of Fortran programs

    International Nuclear Information System (INIS)

    Sridharan, K.; McShea, M.; Denton, C.; Eventoff, B.; Browne, J.C.; Newton, P.; Ellis, M.; Grossbard, D.; Wise, T.; Clemmer, D.

    1990-01-01

    The paper describes and illustrates an environment for interactive support of the detection and implementation of macro-level parallelism in Fortran programs. The approach couples algorithms for dependence analysis with both innovative techniques for complexity management and capabilities for the measurement and analysis of the parallel computation structures generated through use of the environment. The resulting environment is complementary to the more common approach of seeking local parallelism by loop unrolling, either by an automatic compiler or manually. (orig.)

  8. The MSRC research and development program: An update on progress

    International Nuclear Information System (INIS)

    Engelhardt, F.R.

    1993-01-01

    The research and development program of the Marine Spill Response Corporation is solidly under way in a variety of project areas. These include remote sensing, in-situ burning, dispersants, oil water separation, countermeasures effectiveness, bioremediation, and evaluation of spill effects. More than thirty projects have been contracted. Among these are remote sensing studies, which started with in-depth market analyses, technical feasibility evaluations, and field studies. The remote sensing program is engaged in rapid development of a research test bed system, as well as longer-term studies on sensor development and use of satellite systems. In-situ burning studies included a detailed analysis of operational feasibility and information needs; preparations are being made for test burns at sea and improvements of fire-resistant barrier systems. Studies are underway on both aerial dispersant application system development and dispersant effects in selected environments. Studies have commenced on the development of oil water separators for vessels of opportunity used in oil spill response, as well as the related issue of demulsification. The effectiveness of spill countermeasures is being investigated from both engineering and ecological perspectives. Bioremediation projects are under way to promote the development of test systems and on shoreline test sites. Interest continues in test spills in the marine environment, including participation in experimental spills outside the United States and a search for possible scenarios where such field experiments can be carried out in United States waters. In all of these project areas, the research and development program stresses information transfer by way of meetings and publications, and is initiating publication of a peer reviewed international journal on oil spill science and technology

  9. Developing the leadership skills of new graduates to influence practice environments: a novice nurse leadership program.

    Science.gov (United States)

    Dyess, Susan; Sherman, Rose

    2011-01-01

    The authors of the recently published Institute of Medicine on the Future of Nursing report emphasized the importance of preparing nurses to lead change to advance health care in the United States. Other scholars linked practice environments to safe quality care. In order for nurses to fully actualize this role in practice environments, they need to possess leadership skills sets that identify and respond to challenges faced. New nurses are no exception. This article presents a program with a 5-year track record that is designed to support transition and enhance the skill sets of leadership for new nurses in their first year of practice. Qualitative and quantitative evaluation measurements at baseline and postprogram provided data for evaluation of the first 4 cohorts in the program. Evaluative outcomes presented indicate that new nurses gained leadership and translational research skills that contributed to their ability to influence practice environments. Nonetheless, practice environments continue to need improvement and ongoing leadership from all levels of nursing must be upheld.

  10. GRI's Devonian Shales Research Program

    International Nuclear Information System (INIS)

    Guidry, F.K.

    1991-01-01

    This paper presents a summary of the key observations and conclusions from the Gas Research Institute's (GRI's) Comprehensive Study Well (CSW) research program conducted in the Devonian Shales of the Appalachian Basin. Initiated in 1987, the CSW program was a series of highly instrumented study wells drilled in cooperation with industry partners. Seven wells were drilled as part of the program. Extensive data sets were collected and special experiments were run on the CSW's in addition to the operator's normal operations, with the objectives of identifying geologic production controls, refining formation evaluation tools, and improving reservoir description and stimulation practices in the Devonian Shales. This paper highlights the key results from the research conducted in the CSW program in the areas of geologic production controls, formation evaluation, stimulation and reservoir engineering, and field operations. The development of geologic, log analysis, and reservoir models for the Shales from the data gathered and analysis, and reservoir models for the Shales from the data gathered and analyzed during the research is discussed. In addition, on the basis of what was learned in the CSW program, GRI's plans for new research in the Devonian Shales are described

  11. Applied high-speed imaging for the icing research program at NASA Lewis Research Center

    Science.gov (United States)

    Slater, Howard; Owens, Jay; Shin, Jaiwon

    1992-01-01

    The Icing Research Tunnel at NASA Lewis Research Center provides scientists a scaled, controlled environment to simulate natural icing events. The closed-loop, low speed, refrigerated wind tunnel offers the experimental capability to test for icing certification requirements, analytical model validation and calibration techniques, cloud physics instrumentation refinement, advanced ice protection systems, and rotorcraft icing methodology development. The test procedures for these objectives all require a high degree of visual documentation, both in real-time data acquisition and post-test image processing. Information is provided to scientific, technical, and industrial imaging specialists as well as to research personnel about the high-speed and conventional imaging systems will be on the recent ice protection technology program. Various imaging examples for some of the tests are presented. Additional imaging examples are available from the NASA Lewis Research Center's Photographic and Printing Branch.

  12. Development of a visual programming environment for the solution of elliptic questions

    International Nuclear Information System (INIS)

    Rehman, M.U.

    1999-01-01

    Recent trend in programming is changing from text based programming to visual programming. In the text-based environment, major amount of time is spent on program development and debugging. Visual programming environment makes the process of modeling and simulation more intuitive and creative. In this case the user spends more time on actual model building and later on the analysis phase of the design. The aim of this project is to design and develop a visual programming environment for the solution of the elliptical partial differential equations. The main core of this software package is based on advanced data structures including graph theory representations and generic trees for fast data linking and processing. Various case studies have been performed. The results are compared with the exact results. (author)

  13. Seismic safety margins research program overview

    International Nuclear Information System (INIS)

    Tokarz, F.J.; Smith, P.D.

    1978-01-01

    A multiyear seismic research program has been initiated at the Lawrence Livermore Laboratory. This program, the Seismic Safety Margins Research Program (SSMRP) is funded by the U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research. The program is designed to develop a probabilistic systems methodology for determining the seismic safety margins of nuclear power plants. Phase I, extending some 22 months, began in July 1978 at a funding level of approximately $4.3 million. Here we present an overview of the SSMRP. Included are discussions on the program objective, the approach to meet the program goal and objectives, end products, the probabilistic systems methodology, and planned activities for Phase I

  14. Environmental programs of the Department of Energy and Environment annual highlights

    International Nuclear Information System (INIS)

    Manowitz, B.

    1978-12-01

    Environmental Sciences is one of the four areas comprising the Department of Energy and Environment at Brookhaven National Laboratory. It carries out a wide range of activities in atmospheric sciences, environmental chemistry, oceanographic sciences, and land and freshwater environmental sciences. In general, these programs are concerned with identification and measurement of pollutants introduced into the environment by energy-related activities and the evaluation and prediction of the effects or potential effects of these pollutants on the environment. This highlights report for Environmental Programs covers the year 1978 and describes the objectives and funding levels of each of the programs, major accomplishments during the year, planned future activities, and current publications

  15. Environmental programs of the Department of Energy and Environment annual highlights

    Energy Technology Data Exchange (ETDEWEB)

    Manowitz, B

    1978-12-01

    Environmental Sciences is one of the four areas comprising the Department of Energy and Environment at Brookhaven National Laboratory. It carries out a wide range of activities in atmospheric sciences, environmental chemistry, oceanographic sciences, and land and freshwater environmental sciences. In general, these programs are concerned with identification and measurement of pollutants introduced into the environment by energy-related activities and the evaluation and prediction of the effects or potential effects of these pollutants on the environment. This highlights report for Environmental Programs covers the year 1978 and describes the objectives and funding levels of each of the programs, major accomplishments during the year, planned future activities, and current publications.

  16. Twenty years of staffing, practice environment, and outcomes research in military nursing.

    Science.gov (United States)

    Patrician, Patricia A; Loan, Lori A; McCarthy, Mary S; Swiger, Pauline; Breckenridge-Sproat, Sara; Brosch, Laura Ruse; Jennings, Bonnie Mowinski

    Two decades ago, findings from an Institute of Medicine (IOM) report sparked the urgent need for evidence supporting relationships between nurse staffing and patient outcomes. This article provides an overview of nurse staffing, practice environment, and patient outcomes research, with an emphasis on findings from military studies. Lessons learned also are enumerated. This study is a review of the entire Military Nursing Outcomes Database (MilNOD) program of research. The MilNOD, in combination with evidence from other health care studies, provides nurses and leaders with information about the associations between staffing, patient outcomes, and the professional practice environment of nursing in the military. Leaders, therefore, have useful empirical evidence to make data-driven decisions. The MilNOD studies are the basis for the current Army nursing dashboard, and care delivery framework, called the Patent CaringTouch System. Future research is needed to identify ideal staffing based on workload demands, and provide leaders with factors to consider when operationalizing staffing recommendations. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Development and Study the Usage of Blended Learning Environment Model Using Engineering Design Concept Learning Activities to Computer Programming Courses for Undergraduate Students of Rajabhat Universities

    Directory of Open Access Journals (Sweden)

    Kasame Tritrakan

    2017-06-01

    Full Text Available The objectives of this research were to study and Synthesise the components, to develop, and to study the usage of blended learning environment model using engineering design concept learning activities to computer programming courses for undergraduate students of Rajabhat universities. The research methodology was divided into 3 phases. Phase I: surveying presents, needs and problems in teaching computer programming of 52 lecturers by using in-depth interview from 5 experienced lecturers. The model’s elements were evaluated by 5 experts. The tools were questionnaire, interview form, and model’s elements assessment form. Phase II: developing the model of blended learning environment and learning activities based on engineering design processes and confirming model by 8 experts. The tools were the draft of learning environment, courseware, and assessment forms. Phase III evaluating the effects of using the implemented environment. The samples were students which formed into 2 groups, 25 people in the experiment group and 27 people in the control group by cluster random sampling. The tools were learning environment, courseware, and assessment tools. The statistics used in this research were means, standard deviation, t-test dependent, and one-way MANOVA. The results found that: 1 Lecturers quite agreed with the physical, mental, social, and information learning environment, learning processes, and assessments. There were all needs in high level. However there were physical environment problems in high level yet quite low in other aspects. 2 The developed learning environment had 4 components which were a 4 types of environments b the inputs included blended learning environment, learning motivation factors, and computer programming content c the processes were analysis of state objectives, design learning environment and activities, developing learning environment and testing materials, implement, ation evaluation and evaluate, 4 the outputs

  18. NASA's computer science research program

    Science.gov (United States)

    Larsen, R. L.

    1983-01-01

    Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.

  19. Risk assessment - a research program aimed at health risks from air pollution in the general environment

    International Nuclear Information System (INIS)

    Lindahl-Kiessling, K.; Ahlborg, U.; Bylin, G.; Ehrenberg, L.; Hemminki, K.; Lindell, B.; Nilsson, Robert; Bostroem, C.E.; Swarn, U.

    1991-01-01

    The paper presents a new research program for assessment of health risks caused by air pollutants. It is important to develop general methods for quantitative risk assessments and to improve the scientific base materials. (KAE)

  20. Towards a mature measurement environment: Creating a software engineering research environment

    Science.gov (United States)

    Basili, Victor R.

    1990-01-01

    Software engineering researchers are building tools, defining methods, and models; however, there are problems with the nature and style of the research. The research is typically bottom-up, done in isolation so the pieces cannot be easily logically or physically integrated. A great deal of the research is essentially the packaging of a particular piece of technology with little indication of how the work would be integrated with other prices of research. The research is not aimed at solving the real problems of software engineering, i.e., the development and maintenance of quality systems in a productive manner. The research results are not evaluated or analyzed via experimentation or refined and tailored to the application environment. Thus, it cannot be easily transferred into practice. Because of these limitations we have not been able to understand the components of the discipline as a coherent whole and the relationships between various models of the process and product. What is needed is a top down experimental, evolutionary framework in which research can be focused, logically and physically integrated to produce quality software productively, and evaluated and tailored to the application environment. This implies the need for experimentation, which in turn implies the need for a laboratory that is associated with the artifact we are studying. This laboratory can only exist in an environment where software is being built, i.e., as part of a real software development and maintenance organization. Thus, we propose that Software Engineering Laboratory (SEL) type activities exist in all organizations to support software engineering research. We describe the SEL from a researcher's point of view, and discuss the corporate and government benefits of the SEL. The discussion focuses on the benefits to the research community.

  1. Research program on regulatory safety research

    International Nuclear Information System (INIS)

    Mailaender, R.

    2010-02-01

    This paper elaborated for the Swiss Federal Office of Energy (SFOE) presents the synthesis report for 2009 made by the SFOE's program leader on the research program concerning regulatory nuclear safety research, as co-ordinated by the Swiss Nuclear Safety Inspectorate ENSI. Work carried out in various areas is reviewed, including that done on reactor safety, radiation protection and waste disposal as well as human aspects, organisation and safety culture. Work done concerning materials, pressure vessel integrity, transient analysis, the analysis of serious accidents in light-water reactors, fuel and material behaviour, melt cooling and concrete interaction is presented. OECD data bank topics are discussed. Transport and waste disposal research at the Mont Terri rock laboratory is looked at. Requirements placed on the personnel employed in nuclear power stations are examined and national and international co-operation is reviewed

  2. 1974 review of the research program

    International Nuclear Information System (INIS)

    1975-01-01

    The role of the Research Program in Controlled Thermonuclear Research, the activities that are contained within the Research Program, and summaries of the reports prepared by the study groups that analyzed the six activity areas that make up the Research Program are described. The recommendations by an ''Overview Panel'' are given. The recommendations are based on an analysis of the individual study group reports, consultations with CTR staff and field scientists, and on independent review of CTR program plans and needs. In some cases the recommendations of the Overview Panel are identical with study group recommendations and in other cases they are not. Some recommendations by the Overview Panel take into account factors and information that go beyond that available to the study groups. The five-year budget needed to accomplish the recommended Research Program is discussed. The Overview Panel chose to normalize its budget recommendations to the actual FY 1975 Research Program budget, reflecting the fact that this is already determined. The budgets for subsequent years are then based on this starting point. The complete reports prepared by the six study groups are given. Each report is based on an analysis of the needs as dictated by the Magnetic Confinement Systems and Development and Technology Program Plans. (U.S.)

  3. Electromagnetic pulse research on electric power systems: Program summary and recommendations. Power Systems Technology Program

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, P.R.; McConnell, B.W.; Van Dyke, J.W. [Oak Ridge National Lab., TN (United States); Tesche, F.M. [Tesche (F.M.), Dallas, TX (United States); Vance, E.F. [Vance (E.F.), Fort Worth, TX (United States)

    1993-01-01

    A single nuclear detonation several hundred kilometers above the central United States will subject much of the nation to a high-altitude electromagnetic pulse (BENT). This pulse consists of an intense steep-front, short-duration transient electromagnetic field, followed by a geomagnetic disturbance with tens of seconds duration. This latter environment is referred to as the magnetohydrodynamic electromagnetic pulse (NMENT). Both the early-time transient and the geomagnetic disturbance could impact the operation of the nation`s power systems. Since 1983, the US Department of Energy has been actively pursuing a research program to assess the potential impacts of one or more BENT events on the nation`s electric energy supply. This report summarizes the results of that program and provides recommendations for enhancing power system reliability under HENT conditions. A nominal HENP environment suitable for assessing geographically large systems was developed during the program and is briefly described in this report. This environment was used to provide a realistic indication of BEMP impacts on electric power systems. It was found that a single high-altitude burst, which could significantly disturb the geomagnetic field, may cause the interconnected power network to break up into utility islands with massive power failures in some areas. However, permanent damage would be isolated, and restoration should be possible within a few hours. Multiple bursts would likely increase the blackout areas, component failures, and restoration time. However, a long-term blackout of many months is unlikely because major power system components, such as transformers, are not likely to be damaged by the nominal HEND environment. Moreover, power system reliability, under both HENT and normal operating conditions, can be enhanced by simple, and often low cost, modifications to current utility practices.

  4. NCI: DCTD: Biometric Research Program

    Science.gov (United States)

    The Biometric Research Program (BRP) is the statistical and biomathematical component of the Division of Cancer Treatment, Diagnosis and Centers (DCTDC). Its members provide statistical leadership for the national and international research programs of the division in developmental therapeutics, developmental diagnostics, diagnostic imaging and clinical trials.

  5. Research and development program, fiscal year 1966

    Energy Technology Data Exchange (ETDEWEB)

    1964-04-01

    The biomedical program of the Laboratory of Nuclear Medicine and Radiation Biology for FY 1966 is conducted within the scope of the following categories: Somatic Effects of Radiation; Combating Detrimental Effects of Radiation; Molecular and Cellular Level Studies; Environmental Radiation Studies; Radiological and Health Physics and Instrumentation; Chemical Toxicity; Cancer Research; and Selected Beneficial Applications. The overall objectives of the Laboratory within these areas of the Biology and Medicine program may be summarized as follows: (1) investigation of the effects of ionizing radiation on living organisms and systems of biological significance; (2) investigation of the dynamic aspects of physiological and biochemical processes in man, animals and plants and how these processes are modified by radiation and related pathological states; (3) the assessment and study of the immediate and long term consequences of the operation or detonation of nuclear devices on the fauna, and flora in man's environment and on man; (4) the development of methods of minimizing or preventing the detrimental effects of ionizing radiation; (5) research in, and development of, beneficial uses of ionizing radiation and radioactive substances in medicine and biology; (6) research in the development of new and more efficient radiation detection devices; (7) research, including field studies, as mutually agreed upon by the Commission and the University, in connection with the conduct of weapon tests and biomedical and civil effects experiments at such tests conducted at continental and overseas test sites; and (8) the conduct of training and educational activities in the biological and medical aspects of radiation and related fields.

  6. ENERGY EFFICIENT BUILDINGS PROGRAM. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979

    Energy Technology Data Exchange (ETDEWEB)

    Authors, Various

    1979-12-01

    The research reported in this volume was undertaken during FY 1979 within the Energy & Environment Division of the Lawrence Berkeley Laboratory. This volume will comprise a section of the Energy & Environment Division 1979 Annual Report, to be published in the summer of 1980. Work reported relate to: thermal performance of building envelopes; building ventilation and indoor air quality; a computer program for predicting energy use in buildings; study focused specifically on inherently energy intensive hospital buildings; energy efficient windows and lighting; potential for energy conservation and savings in the buildings sector; and evaluation of energy performance standards for residential buildings.

  7. NASA-Ames Summer High School Apprenticeship Research Program (SHARP)

    Science.gov (United States)

    Powell, P.

    1983-01-01

    The function of SHARP is to recognize high school juniors who have demonstrated unusually high promise for sucess in mathemtics and science. Twenty academically talented students who will be seniors in high school in September were chosen to participate in SHARP 83. Mentors were selected to provide students with first-hand experiences in a research and development environment in order that each student might try out his or her tentative professional career choice. Some special features of SHARP included field trips to private industries doing similar and related research, special lectures on topics of research here at ARC, individual and group counseling sessions, written research papers and oral reports, and primarily the opportunity to be exposed to the present frontiers in space exploration and research. The long-range goal of SHARP is to contribute to the future recruitment of needed scientists and engineers. This final report is summary of all the phases of the planning and implemenation of the 1983 Summer High School Apprenticeship Research Program (SHARP).

  8. Virtual research environments from portals to science gateways

    CERN Document Server

    Allan, Robert N

    2009-01-01

    Virtual Research Environments examines making Information and Communication Technologies (ICT) usable by researchers working to solve "grand challenge” problems in many disciplines from social science to particle physics. It is driven by research the authors have carried out to evaluate researchers' requirements in using information services via web portals and in adapting collaborative learning tools to meet their more diverse needs, particularly in a multidisciplinary study.This is the motivation for what the authors have helped develop into the UK Virtual Research Environments (VRE)

  9. Fusion Energy Postdoctoral Research Program, Professional Development Program: FY 1987 annual report

    International Nuclear Information System (INIS)

    1988-01-01

    In FY 1986, Oak Ridge Associated Universities (ORAU) initiated two programs for the US Department of Energy (DOE), Office of Fusion Energy (OFE): the Fusion Energy Postdoctoral Research Program and the Fusion Energy Professional Development Program. These programs provide opportunities to conduct collaborative research in magnetic fusion energy research and development programs at DOE laboratories and contractor sites. Participants become trained in advanced fusion energy research, interact with outstanding professionals, and become familiar with energy-related national issues while making personal contributions to the search for solutions to scientific problems. Both programs enhance the national fusion energy research and development effort by providing channels for the exchange of scientists and engineers, the diffusion of ideas and knowledge, and the transfer of relevant technologies. These programs, along with the Magnetic Fusion Energy Science and Technology Fellowship Programs, compose the fusion energy manpower development programs administered by ORAU for DOE/OFE

  10. Environment, Safety, Health, and Quality Plan for the Buried Waste Integrated Demonstration Program

    International Nuclear Information System (INIS)

    Walker, S.

    1994-05-01

    The Buried Waste Integrated Demonstration (BWID) is a program funded by the US Department of Energy Office of Technology Development. BWID supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. This document describes the Environment, Safety, Health, and Quality requirements for conducting BWID activities at the Idaho National Engineering Laboratory. Topics discussed in this report, as they apply to BWID operations, include Federal, State of Idaho, and Environmental Protection Agency regulations, Health and Safety Plans, Quality Program Plans, Data Quality Objectives, and training and job hazard analysis. Finally, a discussion is given on CERCLA criteria and System and Performance audits as they apply to the BWID Program

  11. Epidemiology & Genomics Research Program

    Science.gov (United States)

    The Epidemiology and Genomics Research Program, in the National Cancer Institute's Division of Cancer Control and Population Sciences, funds research in human populations to understand the determinants of cancer occurrence and outcomes.

  12. Indoor environment program: FY 1988 annual report

    International Nuclear Information System (INIS)

    1989-03-01

    The Indoor Environment Program examines the scientific issues associated with the design and operation of buildings to optimize energy performance and occupant comfort and health. Optimizing occupant health and comfort is addressed in various ways by groups within the Program. To examine energy flow through all elements of the building shell, the Energy Performance of Buildings Group measures air infiltration rates, studies thermal characteristics of structural elements, and develops simplified models of the behavior of complete buildings. Potential savings in the infiltration area are great

  13. Authentic Astronomy Research Experiences for Teachers: the NASA/IPAC Teacher Archive Research Program (NITARP)

    Science.gov (United States)

    Rebull, L.; NITARP Team

    2011-12-01

    Since 2004, we have provided authentic astronomy research experiences for teachers using professional astronomical data. (The program used to be called the Spitzer Teacher Program for Teachers and Students, and in 2009 was renamed NITARP--NASA/IPAC Teacher Archive Research Program.) We partner small groups of teachers with a mentor astronomer, the team does research, writes up a poster, and presents it at the major annual meeting for professional US astronomers, the American Astronomical Society (winter meeting). The teachers incorporate this research experience into their classroom, and their experiences color their teaching for years to come, influencing hundreds of students per teacher. This program, to the best of our knowledge, is completely unique in the following three ways: (1) Each team does original research using real astronomical data, not canned labs or reproductions of previously done research. (2) Each team writes up the results of their research and presents it at an AAS meeting. Each team also presents the educational results of their experience. (3) The 'products' of the program are primarily the scientific results, as opposed to curriculum packets. The teachers in the program involve students at their school and incorporate the experience into their teaching in a way that works for them, their environment, and their local/state standards. The educators in the program are selected from a nationwide annual application process, and they get three trips, all reasonable expenses paid. First, they attend a winter AAS meeting to get their bearings as attendees of the largest professional astronomy meetings in the world. We sponsor a kickoff workshop specifically for the NITARP educators on the day before the AAS meeting starts. After the meeting, they work remotely with their team to write a proposal, as well as read background literature. In the summer (at a time convenient to all team members), the educators plus up to two students per teacher come

  14. Laboratory directed research and development program FY 2003

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd

    2004-03-27

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. In FY03, Berkeley Lab was authorized by DOE to establish a funding ceiling for the LDRD program of $15.0 M, which equates to about 3.2% of Berkeley Lab's FY03 projected operating and capital equipment budgets. This funding level was provided to develop new scientific ideas and opportunities and allow the Berkeley Lab Director an opportunity to initiate new directions. Budget constraints limited available resources, however, so only $10.1 M was expended for operating and $0.6 M for capital equipment (2.4% of actual Berkeley Lab FY03 costs). In FY03, scientists submitted 168 proposals, requesting over $24.2 M in operating funding. Eighty-two projects were funded, with awards ranging from $45 K to $500 K. These projects are summarized in Table 1.

  15. Soil and groundwater remediation through the program of energy research and development at Environment Canada

    International Nuclear Information System (INIS)

    Bacchus, P.

    2005-01-01

    Research and development in groundwater and soil remediation within the federal Program of Energy Research and Development (PERD) are conducted in the context of activities related to the oil and gas industry. Contamination of groundwater and soil by the oil and gas sector affects the health of ecosystems and the economic viability of impacted lands. This paper presented an outline of remediation research and development activities associated with PERD, as well as an overview of PERD's development of improved generic remediation technologies and approaches for use by industries. In addition, issues concerning the development of key guidelines, methods and protocols for use by regulators were discussed. Science and technology efforts within PERD contribute to the development of national standards and guidelines concerning public safety and environmental needs

  16. CONSIDERATIONS ON OBJECT-ORIENTED PROGRAMMING ENVIRONMENT AUTOCAD DRAWINGS

    Directory of Open Access Journals (Sweden)

    PINTILIE Alexandru

    2015-06-01

    Full Text Available In recent years, Low Cost CAD systems are widespread in the technical world. Currently, the highest-rated CAD system is AutoCAD due to the fact that in association with AutoLISP programming language covered a broad range of production needs. As a high-level programming language, AutoLISP provides an easy and efficient programming technique that leads to automation and parameterization of AutoCAD commands and reduces the time spending for designing the drawings. This paper aims to highlight the advantages of using AutoLISP programming environment in the 2D drafting and 3D modeling using AutoCAD tools.

  17. Research on the Effects of Fatigue within the Corporate/Business Aircraft Environment

    Science.gov (United States)

    Neri, David F.; Rosekind, Mark R.; Co, Elizabeth L.; Gregory, Kevin B.; Miller, Donna L.

    1997-01-01

    In 1980, responding to a Congressional request, NASA Ames Research Center created a program to examine whether 'there is a safety problem of uncertain magnitude, due to transmeridian flying and a potential problem due to fatigue in association with various factors found in air transport operations.' The NASA Ames Fatigue/Jet Lag Program was created to collect systematic, scientific information on fatigue, sleep, circadian rhythms, and performance in flight operations. Three Program goals were established and continue to guide research efforts to: (1) determine the extent of fatigue, sleep loss, and circadian disruption in flight operations; (2) determine the impact of these factors on flight crew performance; (3) develop and evaluate countermeasures to mitigate the adverse effects of these factors and maximize flight crew performance and alertness. Since 1980, studies have been conducted in a variety of aviation environments, in controlled laboratory environments, as well as in a full-mission flight simulation. Early studies included investigations of short-haul, long-haul, and overnight cargo flight crews. In 1991, the name of the program was changed to the Fatigue Countermeasures Program to provide a greater emphasis on the development and evaluation of countermeasures. More recent work has examined the effects of planned cockpit rest as an operational countermeasure and provided analyses of the pertinent sleep/duty factors preceding an aviation accident at Guantanamo Bay, Cuba. The Short-Haul study examined the extent of sleep loss, circadian disruption, and fatigue engendered by flying commercial short-haul air transport operations (flight legs less than eight hours). This was one of the first field studies conducted by the NASA program and provided unique insight into the physiological and subjective effects of flying commercial short-haul operations. It demonstrated that a range of measures could be obtained in an operational environment without disturbing

  18. Synthetic environments

    Science.gov (United States)

    Lukes, George E.; Cain, Joel M.

    1996-02-01

    The Advanced Distributed Simulation (ADS) Synthetic Environments Program seeks to create robust virtual worlds from operational terrain and environmental data sources of sufficient fidelity and currency to interact with the real world. While some applications can be met by direct exploitation of standard digital terrain data, more demanding applications -- particularly those support operations 'close to the ground' -- are well-served by emerging capabilities for 'value-adding' by the user working with controlled imagery. For users to rigorously refine and exploit controlled imagery within functionally different workstations they must have a shared framework to allow interoperability within and between these environments in terms of passing image and object coordinates and other information using a variety of validated sensor models. The Synthetic Environments Program is now being expanded to address rapid construction of virtual worlds with research initiatives in digital mapping, softcopy workstations, and cartographic image understanding. The Synthetic Environments Program is also participating in a joint initiative for a sensor model applications programer's interface (API) to ensure that a common controlled imagery exploitation framework is available to all researchers, developers and users. This presentation provides an introduction to ADS and the associated requirements for synthetic environments to support synthetic theaters of war. It provides a technical rationale for exploring applications of image understanding technology to automated cartography in support of ADS and related programs benefitting from automated analysis of mapping, earth resources and reconnaissance imagery. And it provides an overview and status of the joint initiative for a sensor model API.

  19. [Effects of an infant/toddler health program on parenting knowledge, behavior, confidence, and home environment in low-income mothers].

    Science.gov (United States)

    Lee, Gyungjoo; Yang, Soo; Jang, Mi Heui; Yeom, Mijung

    2012-10-01

    This study was conducted to evaluate the effectiveness of a mother/infant-toddler health program developed to enhance parenting knowledge, behavior and confidence in low income mothers and home environment. A one-group pretest-posttest quasi-experimental design was used. Sixty-nine dyads of mothers and infant-toddlers (aged 0-36 months) were provided with weekly intervention for seven session. Each session consisted of three parts; first, educating to increase integrated knowledge related to the development of the infant/toddler including nutrition, first aid and home environment; second, counseling to share parenting experience among the mothers and to increase their nurturing confidence; third, playing with the infant/toddler to facilitate attachment-based parenting behavior for the mothers. Following the programs, there were significant increases in parenting knowledge on nutrition and first aid. A significant improvement was found in attachment-based parenting behavior, but not in home safety practice. Nurturing confidence was not significantly increased. The program led to more positive home environment for infant/toddler's health and development. The findings provide evidence for mother-infant/toddler health program to improve parenting knowledge, attachment-based parenting behavior and better home environment in low income mothers. Study of the long term effectiveness of this program is recommended for future research.

  20. Contribution of formative research to design an environmental program for obesity prevention in schools in Mexico City.

    Science.gov (United States)

    Bonvecchio, Anabelle; Théodore, Florence L; Safdie, Margarita; Duque, Tiffany; Villanueva, María Ángeles; Torres, Catalina; Rivera, Juan

    2014-01-01

    This paper describes the methods and key findings of formative research conducted to design a school-based program for obesity prevention. Formative research was based on the ecological model and the principles of social marketing. A mixed method approach was used. Qualitative (direct observation, indepth interviews, focus group discussions and photo-voice) and quantitative (closed ended surveys, checklists, anthropometry) methods were employed. Formative research key findings, including barriers by levels of the ecological model, were used for designing a program including environmental strategies to discourage the consumption of energy dense foods and sugar beverages. Formative research was fundamental to developing a context specific obesity prevention program in schools that seeks environment modification and behavior change.

  1. Research of nuclear energy on the 21st Century Center of Excellence (COE) Program

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi; Yamamoto, Ichiro

    2003-01-01

    COE is an abbreviation of 'Center of Excellence' and the '21st Century COE Program' is project begun by the Ministry of Education, Culture, Sports, Science, and Technology (MECSST) to make a trigger to grow some research strongholds with international competitive power by activating mutual competition of collages and universities. This program aims to form research and educational strongholds with the highest level in the world at every scholarship fields to a collage or a university in Japan, to intend to grow creative specialists capable of upgrading research level and leading research world, and to progress strong assistance to promote collages- and universities-making with international competitive power and individuality. In 2003 fiscal year, two research programs related to nuclear energy were selected by the Committee of 21st Century COE Program such as 'an innovative reactor supporting suitable development of the world' in the mechanical, engineering and other technology field and 'future to be cultivated by isotopes' in the interdisciplinary, composite and new region field. The first program aims to construct the concept of system of innovative reactor and separation nuclear transformation for zero release of radioactive waste and to research the necessary technologies. The second program is covered isotope science and it consists of two main researches such as 1) the fundamental researches: a) separation and creation of isotopes, b) measurement technologies with nano size and c) isotope materials, and 2) the harmonized development researches: a) environment and bioscience and b) culture information and creation of quantum computer. (S.Y.)

  2. Subsurface transport program: Research summary

    International Nuclear Information System (INIS)

    1987-01-01

    DOE's research program in subsurface transport is designed to provide a base of fundamental scientific information so that the geochemical, hydrological, and biological mechanisms that contribute to the transport and long term fate of energy related contaminants in subsurface ecosystems can be understood. Understanding the physical and chemical mechanisms that control the transport of single and co-contaminants is the underlying concern of the program. Particular attention is given to interdisciplinary research and to geosphere-biosphere interactions. The scientific results of the program will contribute to resolving Departmental questions related to the disposal of energy-producing and defense wastes. The background papers prepared in support of this document contain additional information on the relevance of the research in the long term to energy-producing technologies. Detailed scientific plans and other research documents are available for high priority research areas, for example, in subsurface transport of organic chemicals and mixtures and in the microbiology of deep aquifers. 5 figs., 1 tab

  3. Run-Time and Compiler Support for Programming in Adaptive Parallel Environments

    Directory of Open Access Journals (Sweden)

    Guy Edjlali

    1997-01-01

    Full Text Available For better utilization of computing resources, it is important to consider parallel programming environments in which the number of available processors varies at run-time. In this article, we discuss run-time support for data-parallel programming in such an adaptive environment. Executing programs in an adaptive environment requires redistributing data when the number of processors changes, and also requires determining new loop bounds and communication patterns for the new set of processors. We have developed a run-time library to provide this support. We discuss how the run-time library can be used by compilers of high-performance Fortran (HPF-like languages to generate code for an adaptive environment. We present performance results for a Navier-Stokes solver and a multigrid template run on a network of workstations and an IBM SP-2. Our experiments show that if the number of processors is not varied frequently, the cost of data redistribution is not significant compared to the time required for the actual computation. Overall, our work establishes the feasibility of compiling HPF for a network of nondedicated workstations, which are likely to be an important resource for parallel programming in the future.

  4. Environmental Systems Research Candidates Program--FY2000 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Piet, Steven James

    2001-01-01

    The Environmental Systems Research Candidates (ESRC) Program, which is scheduled to end September 2001, was established in April 2000 as part of the Environmental Systems Research and Analysis Program at the Idaho National Engineering and Environmental Laboratory (INEEL) to provide key science and technology to meet the clean-up mission of the U.S. Department of Energy Office of Environmental Management, and perform research and development that will help solve current legacy problems and enhance the INEEL’s scientific and technical capability for solving longer-term challenges. This report documents the progress and accomplishments of the ESRC Program from April through September 2000. The ESRC Program consists of 24 tasks subdivided within four research areas: A. Environmental Characterization Science and Technology. This research explores new data acquisition, processing, and interpretation methods that support cleanup and long-term stewardship decisions. B. Subsurface Understanding. This research expands understanding of the biology, chemistry, physics, hydrology, and geology needed to improve models of contamination problems in the earth’s subsurface. C. Environmental Computational Modeling. This research develops INEEL computing capability for modeling subsurface contaminants and contaminated facilities. D. Environmental Systems Science and Technology. This research explores novel processes to treat waste and decontaminate facilities. Our accomplishments during FY 2000 include the following: • We determined, through analysis of samples taken in and around the INEEL site, that mercury emissions from the INEEL calciner have not raised regional off-INEEL mercury contamination levels above normal background. • We have initially demonstrated the use of x-ray fluorescence to image uranium and heavy metal concentrations in soil samples. • We increased our understanding of the subsurface environment; applying mathematical complexity theory to the problem of

  5. Final Report, Research Program to Investigate the Fundamental Chemistry of Technetium

    International Nuclear Information System (INIS)

    Lukens, Wayne W. Jr.; Fickes, Michael J.; Bucher, Jerome J.; Burns, Carol J.; Edelstein, Norman M.; Shuh, David K.

    2000-01-01

    The purpose is to increase the basic scientific understanding of technetium chemistry to better understand the behavior of technetium in chemical environments relevant to DOE. Two important areas in need of study are the behavior of technetium in highly alkaline solutions similar to high-level nuclear waste, and its behavior in different waste forms. This research program addressed these two needs. Two separate approaches were used in this program. The first focus was to understand the basic solution chemistry of technetium, which underlies its behavior in the highly alkaline environment of the nuclear waste tanks located at the Savannah River and Hanford Sites. The specific problems at these sites are related to the anomalous oxidation state of technetium (Schroeder 1995). Although, at high pH, technetium should exist in its highest oxidation state as TcO 4 - , soluble, lower-valent technetium species have been observed in certain wastes. The specific unknowns that this program sought to answer are the nature of lower valent technetium species that can be formed in highly alkaline solution and whether pertechnetate undergoes radiolytic reduction in highly alkaline solution when nitrate is present in excess. The second focus area is the behavior of technetium immobilized in various waste forms. The behavior of technetium in cement wastes was examined to gain information about its long-term stability. Specifically, this research examined the oxidation of reduced technetium species by components present in high-level waste that are incorporated into cement waste along with technetium

  6. Ada Run Time Support Environments and a common APSE Interface Set. [Ada Programming Support Environment

    Science.gov (United States)

    Mckay, C. W.; Bown, R. L.

    1985-01-01

    The paper discusses the importance of linking Ada Run Time Support Environments to the Common Ada Programming Support Environment (APSE) Interface Set (CAIS). A non-stop network operating systems scenario is presented to serve as a forum for identifying the important issues. The network operating system exemplifies the issues involved in the NASA Space Station data management system.

  7. ANSTO - program of research 1991-1992

    International Nuclear Information System (INIS)

    1991-01-01

    The direction and priorities of the Australian Nuclear Science and Technology Organisation (ANSTO) research program are outlined. During the period under review. Many of the initiatives of previous years come to fruition, adding significant strength and dimension to the Organisation's research capabilities. The advent of Australian Supercomputing Technology, a joint venture between Fujitsu Australia and ANSTO, will enable the grand challenges of computational science to underpin Ansto research generally but specifically in environmental science. The development of the accelerator mass spectrometry facilities on the tandem accelerator supported new initiatives in environmental research and management. The National Medical Cyclotron opens a new era in radiopharmaceutical research and development. Finally, the recently commissioned hot isostatic press provides a unique national resource for the development of new ceramics and their applications. The direction and priorities of Ansto's research program are determined through a combination of external and internal review. The Program Advisory Committees provide external evaluation against national objectives. New Committees have been formed and membership reflects the national and international nature of the ANSTO research programs. ills

  8. Improving the care of people with traumatic brain injury through the Neurotrauma Evidence Translation (NET program: protocol for a program of research

    Directory of Open Access Journals (Sweden)

    Green Sally E

    2012-08-01

    Full Text Available Abstract The Neurotrauma Evidence Translation (NET program was funded in 2009 to increase the uptake of research evidence in the clinical care of patients who have sustained traumatic brain injury. This paper reports the rationale and plan for this five-year knowledge translation research program. The overarching aims of the program are threefold: to improve outcomes for people with traumatic brain injury; to create a network of neurotrauma clinicians and researchers with expertise in knowledge translation and evidence-based practice; and to contribute knowledge to the field of knowledge translation research. The program comprises a series of interlinked projects spanning varying clinical environments and disciplines relevant to neurotrauma, anchored within four themes representing core knowledge translation activities: reviewing research evidence; understanding practice; developing and testing interventions for practice change; and building capacity for knowledge translation in neurotrauma. The program uses a range of different methods and study designs, including: an evidence fellowship program; conduct of and training in systematic reviews; mixed method study designs to describe and understand factors that influence current practices (e.g., semi-structured interviews and surveys; theory-based methods to develop targeted interventions aiming to change practice; a cluster randomised trial to test the effectiveness of a targeted theory-informed intervention; stakeholder involvement activities; and knowledge translation events such as consensus conferences.

  9. Jointly Sponsored Research Program Energy Related Research

    Energy Technology Data Exchange (ETDEWEB)

    Western Research Institute

    2009-03-31

    Cooperative Agreement, DE-FC26-98FT40323, Jointly Sponsored Research (JSR) Program at Western Research Institute (WRI) began in 1998. Over the course of the Program, a total of seventy-seven tasks were proposed utilizing a total of $23,202,579 in USDOE funds. Against this funding, cosponsors committed $26,557,649 in private funds to produce a program valued at $49,760,228. The goal of the Jointly Sponsored Research Program was to develop or assist in the development of innovative technology solutions that will: (1) Increase the production of United States energy resources - coal, natural gas, oil, and renewable energy resources; (2) Enhance the competitiveness of United States energy technologies in international markets and assist in technology transfer; (3) Reduce the nation's dependence on foreign energy supplies and strengthen both the United States and regional economies; and (4) Minimize environmental impacts of energy production and utilization. Under the JSR Program, energy-related tasks emphasized enhanced oil recovery, heavy oil upgrading and characterization, coal beneficiation and upgrading, coal combustion systems development including oxy-combustion, emissions monitoring and abatement, coal gasification technologies including gas clean-up and conditioning, hydrogen and liquid fuels production, coal-bed methane recovery, and the development of technologies for the utilization of renewable energy resources. Environmental-related activities emphasized cleaning contaminated soils and waters, processing of oily wastes, mitigating acid mine drainage, and demonstrating uses for solid waste from clean coal technologies, and other advanced coal-based systems. Technology enhancement activities included resource characterization studies, development of improved methods, monitors and sensors. In general the goals of the tasks proposed were to enhance competitiveness of U.S. technology, increase production of domestic resources, and reduce environmental

  10. The Future of Nearshore Processes Research: U.S. Integrated Coastal Research Program

    Science.gov (United States)

    Elko, N.; Feddersen, F.; Foster, D. L.; Hapke, C. J.; Holman, R. A.; McNinch, J.; Mulligan, R. P.; Ozkan-Haller, H. T.; Plant, N. G.; Raubenheimer, B.

    2016-02-01

    The authors, representing the acting Nearshore Advisory Council, have developed an implementation plan for a U.S. Nearshore Research Program based on the 2015 Future of Nearshore Processes report that was authored by the nearshore community. The objectives of the plan are to link research programs across federal agencies, NGOs, industry, and academia into an integrated national program and to increase academic and NGO participation in federal agency nearshore processes research. A primary recommendation is interagency collaboration to build a research program that will coordinate and fund U.S. nearshore processes research across three broad research themes: 1) long-term coastal evolution due to natural and anthropogenic processes; 2) extreme events; and 3) physical, biological and chemical processes impacting human and ecosystem health. The plan calls for a new program to be developed by an executive committee of federal agency leaders, NGOs, and an academic representative, created similarly to the existing NOPP program. This leadership will be established prior to the 2016 Ocean Sciences meeting and will have agreed on responsibilities and a schedule for development of the research program. To begin to understand the scope of today's U.S. coastal research investment, a survey was distributed to ten federal agency R&D program heads. Six of the ten agencies indicated that they fund coastal research, with a combined annual coastal research budget of nearly 100 million (NSF has not responded). The priority of the three research themes were ranked nearly equally and potential research support ranged from 15-19 million for each theme, with approximately 12 million as direct contribution to academic research. Beyond addressing our fundamental science questions, it is critical that the nearshore community stay organized to represent academic interests on the new executive committee. The program goal is the integration of academic, NGO, and federal agencies.

  11. Contemporary state of spacecraft/environment interaction research

    CERN Document Server

    Novikov, L S

    1999-01-01

    Various space environment effects on spacecraft materials and equipment, and the reverse effects of spacecrafts and rockets on space environment are considered. The necessity of permanent updating and perfection of our knowledge on spacecraft/environment interaction processes is noted. Requirements imposed on models of space environment in theoretical and experimental researches of various aspects of the spacecraft/environment interaction problem are formulated. In this field, main problems which need to be solved today and in the nearest future are specified. The conclusion is made that the joint analysis of both aspects of spacecraft/environment interaction problem promotes the most effective solution of the problem.

  12. Development and verification of remote research environment based on 'Fusion research grid'

    International Nuclear Information System (INIS)

    Iba, Katsuyuki; Ozeki, Takahisa; Totsuka, Toshiyuki; Suzuki, Yoshio; Oshima, Takayuki; Sakata, Shinya; Sato, Minoru; Suzuki, Mitsuhiro; Hamamatsu, Kiyotaka; Kiyono, Kimihiro

    2008-01-01

    'Fusion research grid' is a concept that unites scientists and let them collaborate effectively against their difference in time zone and location in a nuclear fusion research. Fundamental technologies of 'Fusion research grid' have been developed at JAEA in the VizGrid project under the e-Japan project at the Ministry of Education, Culture, Sports, Science and Technology (MEXT). We are conscious of needs to create new systems that assist researchers with their research activities because remote collaborations have been increasing in international projects. Therefore we have developed prototype remote research environments for experiments, diagnostics, analyses and communications based on 'Fusion research grid'. All users can access these environments from anywhere because 'Fusion research grid' does not require a closed network like Super SINET to maintain security. The prototype systems were verified in experiments at JT-60U and their availability was confirmed

  13. Programs of the Office of Energy Research

    International Nuclear Information System (INIS)

    1985-07-01

    The purpose of this research has been to support the energy technology development programs by providing insight into fundamental science and associated phenomena and developing new or advanced concepts and techniques. Today, this responsibility rests with the Office of Energy Research (ER), DOE, whose present programs have their origins in pioneering energy-related research which was initiated nearly 40 years ago. The Director, Office of Energy Research, also acts as the chief scientist and scientific advisor to the Secretary of Energy for the entire spectrum of energy research and development (R and D) programs of the Department. ER programs include several thousand individual projects and hundreds of laboratories, universities, and other research facilities throughout the United States. The current organization of ER is shown. The budgets for the various ER programs for the last two fiscal years are shown. In the following pages, each of these programs and activities are described briefly for the information of the scientific community and the public at large

  14. Easy robot programming for beginners and kids using augmented reality environments

    Science.gov (United States)

    Sakamoto, Kunio; Nishiguchi, Masahiro

    2010-11-01

    The authors have developed the mobile robot which can be programmed by command and instruction cards. All you have to do is to arrange cards on a table and to shot the programming stage by a camera. Our card programming system recognizes instruction cards and translates icon commands into the motor driver program. This card programming environment also provides low-level structure programming.

  15. Contour tracking and corner detection in a logic programming environment

    DEFF Research Database (Denmark)

    Bell, Benjamin; Pau, L. F.

    1990-01-01

    The added functionality such as contour tracking and corner detection which logic programming lends to standard image operators is described. An environment for implementing low-level imaging operations with Prolog predicates is considered. Within this environment, higher-level image predicates (...

  16. Otolaryngology Residency Program Research Resources and Scholarly Productivity.

    Science.gov (United States)

    Villwock, Jennifer A; Hamill, Chelsea S; Nicholas, Brian D; Ryan, Jesse T

    2017-06-01

    Objective To delineate research resources available to otolaryngology residents and their impact on scholarly productivity. Study Design Survey of current otolaryngology program directors. Setting Otolaryngology residency programs. Subjects and Methods An anonymous web-based survey was sent to 98 allopathic otolaryngology training program directors. Fisher exact tests and nonparametric correlations were used to determine statistically significant differences among various strata of programs. Results Thirty-nine percent (n = 38) of queried programs responded. Fourteen (37%) programs had 11 to 15 full-time, academic faculty associated with the residency program. Twenty (53%) programs have a dedicated research coordinator. Basic science lab space and financial resources for statistical work were present at 22 programs (58%). Funding is uniformly provided for presentation of research at conferences; a minority of programs (13%) only funded podium presentations. Twenty-four (63%) have resident research requirements beyond the Accreditation Council for Graduate Medical Education (ACGME) mandate of preparing a "manuscript suitable for publication" prior to graduation. Twenty-five (67%) programs have residents with 2 to 3 active research projects at any given time. None of the investigated resources were significantly associated with increased scholarly output. There was no uniformity to research curricula. Conclusions Otolaryngology residency programs value research, evidenced by financial support provided and requirements beyond the ACGME minimum. Additional resources were not statistically related to an increase in resident research productivity, although they may contribute positively to the overall research experience during training. Potential future areas to examine include research curricula best practices, how to develop meaningful mentorship and resource allocation that inspires continued research interest, and intellectual stimulation.

  17. Applied Research of Enterprise Cost Control Based on Linear Programming

    Directory of Open Access Journals (Sweden)

    Yu Shuo

    2015-01-01

    This paper researches the enterprise cost control through the linear programming model, and analyzes the restriction factors of the labor of enterprise production, raw materials, processing equipment, sales price, and other factors affecting the enterprise income, so as to obtain an enterprise cost control model based on the linear programming. This model can calculate rational production mode in the case of limited resources, and acquire optimal enterprise income. The production guiding program and scheduling arrangement of the enterprise can be obtained through calculation results, so as to provide scientific and effective guidance for the enterprise production. This paper adds the sensitivity analysis in the linear programming model, so as to learn about the stability of the enterprise cost control model based on linear programming through the sensitivity analysis, and verify the rationality of the model, and indicate the direction for the enterprise cost control. The calculation results of the model can provide a certain reference for the enterprise planning in the market economy environment, which have strong reference and practical significance in terms of the enterprise cost control.

  18. Research by E.D.F. in the field of environment overview and prospects

    International Nuclear Information System (INIS)

    Lepetit, J.P.; Delcambre, J.

    1986-01-01

    The implementation of a major nuclear development program has needed numerous research efforts in the field of environment and greatly enhanced knowledge both of natural mechanisms and impacts of facilities. On an other hand, in spite of an important reduction of oil fired stations use, studies are still performed in relation with the national and european efforts to improve air quality. The following topics are reviewed: - studies relating to water: thermal impact, effect of heating in the aquatic environment, capture of fish in intake structures and impact of transit, biological fooling, radioactive discharges, hydraulic facilities. - Impact on the atmospheric: applied meteorology, impact of cooling towers, dispersion in the atmospheric and chemical contents of the air, SO2, NOx, particles and trace pollutants, acid rain, release reduction technology, radioactive discharges. - Acoustic environment: noise generation, radiated acoustic levels [fr

  19. National Geospatial-Intelligence Agency Academic Research Program

    Science.gov (United States)

    Loomer, S. A.

    2004-12-01

    "Know the Earth.Show the Way." In fulfillment of its vision, the National Geospatial-Intelligence Agency (NGA) provides geospatial intelligence in all its forms and from whatever source-imagery, imagery intelligence, and geospatial data and information-to ensure the knowledge foundation for planning, decision, and action. To achieve this, NGA conducts a multi-disciplinary program of basic research in geospatial intelligence topics through grants and fellowships to the leading investigators, research universities, and colleges of the nation. This research provides the fundamental science support to NGA's applied and advanced research programs. The major components of the NGA Academic Research Program (NARP) are: - NGA University Research Initiatives (NURI): Three-year basic research grants awarded competitively to the best investigators across the US academic community. Topics are selected to provide the scientific basis for advanced and applied research in NGA core disciplines. - Historically Black College and University - Minority Institution Research Initiatives (HBCU-MI): Two-year basic research grants awarded competitively to the best investigators at Historically Black Colleges and Universities, and Minority Institutions across the US academic community. - Director of Central Intelligence Post-Doctoral Research Fellowships: Fellowships providing access to advanced research in science and technology applicable to the intelligence community's mission. The program provides a pool of researchers to support future intelligence community needs and develops long-term relationships with researchers as they move into career positions. This paper provides information about the NGA Academic Research Program, the projects it supports and how other researchers and institutions can apply for grants under the program.

  20. An international basic science and clinical research summer program for medical students.

    Science.gov (United States)

    Ramjiawan, Bram; Pierce, Grant N; Anindo, Mohammad Iffat Kabir; Alkukhun, Abedalrazaq; Alshammari, Abdullah; Chamsi, Ahmad Talal; Abousaleh, Mohannad; Alkhani, Anas; Ganguly, Pallab K

    2012-03-01

    An important part of training the next generation of physicians is ensuring that they are exposed to the integral role that research plays in improving medical treatment. However, medical students often do not have sufficient time to be trained to carry out any projects in biomedical and clinical research. Many medical students also fail to understand and grasp translational research as an important concept today. In addition, since medical training is often an international affair whereby a medical student/resident/fellow will likely train in many different countries during his/her early training years, it is important to provide a learning environment whereby a young medical student experiences the unique challenges and value of an international educational experience. This article describes a program that bridges the gap between the basic and clinical research concepts in a unique international educational experience. After completing two semester curricula at Alfaisal University in Riyadh, Kingdom of Saudi Arabia, six medical students undertook a summer program at St. Boniface Hospital Research Centre, in Winnipeg, MB, Canada. The program lasted for 2 mo and addressed advanced training in basic science research topics in medicine such as cell isolation, functional assessment, and molecular techniques of analysis and manipulation as well as sessions on the conduct of clinical research trials, ethics, and intellectual property management. Programs such as these are essential to provide a base from which medical students can decide if research is an attractive career choice for them during their clinical practice in subsequent years. An innovative international summer research course for medical students is necessary to cater to the needs of the medical students in the 21st century.

  1. Advanced maintenance research programs

    International Nuclear Information System (INIS)

    Marston, T.U.; Gelhaus, F.; Burke, R.

    1985-01-01

    The purpose of this paper is to provide the reader with an idea of the advanced maintenance research program at the Electric Power Research Institute (EPRI). A brief description of the maintenance-related activities is provided as a foundation for the advanced maintenance research projects. The projects can be divided into maintenance planning, preventive maintenance program development and implementation, predictive (or conditional) maintenance, and innovative maintenance techniques. The projects include hardware and software development, human factors considerations, and technology promotion and implementation. The advanced concepts include: the incorporation of artificial intelligence into outage planning; turbine and pump maintenance; rotating equipment monitoring and diagnostics with the aid of expert systems; and the development of mobile robots for nuclear power plant maintenance

  2. Lewis' Educational and Research Collaborative Internship Program

    Science.gov (United States)

    Heyward, Ann; Gott, Susan (Technical Monitor)

    2004-01-01

    The Lewis Educational and Research Collaborative Internship Program (LERCIP) is a collaborative undertaking by the Office of Educational Programs at NASA Glenn Research Center at Lewis Field (formerly NASA Lewis Research Center) and the Ohio Aerospace Institute. This program provides 10-week internships in addition to summer and winter extensions if funding is available and/or is requested by mentor (no less than 1 week no more than 4 weeks) for undergraduate/graduate students and secondary school teachers. Students who meet the travel reimbursement criteria receive up to $500 for travel expenses. Approximately 178 interns are selected to participate in this program each year and begin arriving the fourth week in May. The internships provide students with introductory professional experiences to complement their academic programs. The interns are given assignments on research and development projects under the personal guidance of NASA professional staff members. Each intern is assigned a NASA mentor who facilitates a research assignment. In addition to the research assignment, the summer program includes a strong educational component that enhances the professional stature of the participants. The educational activities include a research symposium and a variety of workshops, and lectures. An important aspect of the program is that it includes students with diverse social, cultural and economic backgrounds. The purpose of this report is to document the program accomplishments for 2004.

  3. Porting linac application programs to a windowing environment

    International Nuclear Information System (INIS)

    Nonglaton, J.M.; Raich, U.

    1992-01-01

    We report our experience in porting Linac application programs written for Camac controlled hardware consoles to an X-Windows/Motif based workstation environment. Application programs acquire their parameter values from a front end computer (FEC), controlling the acceleration process, via a local area network. The timing for data acquisition and control is determined by the particle source timing. Two server programs on the FEC for repetitive acquisition and command-response mode will be described. The application programs on the workstations access a common parameter access server who establishes the necessary connection to the parameters on the FEC. It displays the parameter's current values and allows control through Motif widgets. An interactive synoptics editor and its corresponding driver program allow easy generation of synoptics displays and interaction through command panels. (author)

  4. Journal of Research in Forestry, Wildlife and Environment: Journal ...

    African Journals Online (AJOL)

    Journal of Research in Forestry, Wildlife and Environment: Journal Sponsorship. Journal Home > About the Journal > Journal of Research in Forestry, Wildlife and Environment: Journal Sponsorship. Log in or Register to get access to full text downloads.

  5. Archives: Journal of Research in Forestry, Wildlife and Environment

    African Journals Online (AJOL)

    Items 1 - 18 of 18 ... Archives: Journal of Research in Forestry, Wildlife and Environment. Journal Home > Archives: Journal of Research in Forestry, Wildlife and Environment. Log in or Register to get access to full text downloads.

  6. Human Research Program Science Management: Overview of Research and Development Activities

    Science.gov (United States)

    Charles, John B.

    2007-01-01

    An overview of research and development activities of NASA's Human Research Science Management Program is presented. The topics include: 1) Human Research Program Goals; 2) Elements and Projects within HRP; 3) Development and Maintenance of Priorities; 4) Acquisition and Evaluation of Research and Technology Proposals; and 5) Annual Reviews

  7. Small business innovation research program solicitation

    Science.gov (United States)

    1994-01-01

    The National Aeronautics and Space Administration invites eligible small business concerns to submit Phase 1 proposals for its 1994 Small Business Innovation Research (SBIR) Program, which is described in this twelfth annual NASA SBIR Program Solicitation. The 1994 solicitation period for Phase 1 proposals begins April 4, 1994 and ends June 15, 1994. Eligible firms with research or research and development capabilities (R/R&D) in any of the listed topic and subtopic areas are encouraged to participate. Through SBIR, NASA seeks innovative concepts addressing the program needs described in the SBIR solicitation subtopics and offering commercial application potential. This document contains program background information, outlines eligibility requirements for SBIR participants, describes the three SBIR program phases, and provides the information qualified offerors need to prepare and submit responsive proposals.

  8. A care improvement program acting as a powerful learning environment to support nursing students learning facilitation competencies.

    Science.gov (United States)

    Jukema, Jan S; Harps-Timmerman, Annelies; Stoopendaal, Annemiek; Smits, Carolien H M

    2015-11-01

    Change management is an important area of training in undergraduate nursing education. Successful change management in healthcare aimed at improving practices requires facilitation skills that support teams in attaining the desired change. Developing facilitation skills in nursing students requires formal educational support. A Dutch Regional Care Improvement Program based on a nationwide format of change management in healthcare was designed to act as a Powerful Learning Environment for nursing students developing competencies in facilitating change. This article has two aims: to provide comprehensive insight into the program components and to describe students' learning experiences in developing their facilitation skills. This Dutch Regional Care Improvement Program considers three aspects of a Powerful Learning Environment: self-regulated learning; problem-based learning; and complex, realistic and challenging learning tasks. These three aspects were operationalised in five distinct areas of facilitation: increasing awareness of the need for change; leadership and project management; relationship building and communication; importance of the local context; and ongoing monitoring and evaluation. Over a period of 18 months, 42 nursing students, supported by trained lecturer-coaches, took part in nine improvement teams in our Regional Care Improvement Program, executing activities in all five areas of facilitation. Based on the students' experiences, we propose refinements to various components of this program, aimed at strengthenin the learning environment. There is a need for further detailed empirical research to study the impact this kind of learning environment has on students developing facilitation competencies in healthcare improvement. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. ANSTO - Program of Research 1993-1994

    International Nuclear Information System (INIS)

    1993-01-01

    The 1993-1994 Program of Research outlines ANSTO's scientific activities in four key research areas, Advanced Materials, Application of Nuclear Physics, Biomedicine and Health and Environmental Science. The effort has been channeled into applied research and development in partnership with industry and appropriate national and international institutions and into interdisciplinary strategic research projects to enhance the scientific base of the key research activities. A list of scientific publications originated from these program areas is also included. ills

  10. Environment for Auditory Research Facility (EAR)

    Data.gov (United States)

    Federal Laboratory Consortium — EAR is an auditory perception and communication research center enabling state-of-the-art simulation of various indoor and outdoor acoustic environments. The heart...

  11. Care of preterm infants: programs of research and their relationship to developmental science.

    Science.gov (United States)

    Holditch-Davis, Diane; Black, Beth Perry

    2003-01-01

    The purpose of this review was to examine the topics covered in current programs of nursing research on the care of the preterm infant and to determine the extent to which this research is informed by developmental science. A researcher was considered to have a current program of research if he or she had at least five publications published since 1990 and was the first author on at least three of them. The infants in a study could be any age from birth throughout childhood; studies focusing on parenting, nursing, or other populations of infants were not included. Seventeen nurse researchers had current programs of research in this area. These programs had four themes. Those of Becker, Evans, Pridham, Shiao, and Zahr focused on infant responses to the neonatal intensive care unit (NICU) environment and treatments. Franck, Johnston, and Stevens focused on pain management. Harrison, Ludington-Hoe, and White-Traut's research focused on infant stimulation. Holditch-Davis, McCain, McGrath, Medoff-Cooper, Schraeder, and Youngblut studied infant behavior and development. These research programs had many strengths, including strong interdisciplinary focus and clinical relevance. However, additional emphasis is needed on the care of the critically ill infant. Also, despite the fact that the preterm infant's neurological system develops rapidly over the first year, only three of these researchers used a developmental science perspective. Only research on infant behavior and development focused on the developmental changes that the infants were experiencing. Most of the studies were longitudinal, but many did not use statistics appropriate for identifying stability and change over time. The response of individual infants and the broader ecological context as evidenced by factors such as gender, ethnic group, culture, and intergenerational effects were rarely examined. Thus research on the care of preterm infants could be expanded if the developmental science perspective

  12. National Research Council Research Associateships Program with Methane Hydrates Fellowships Program/National Energy Technology Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Basques, Eric O. [National Academy of Sciences, Washington, DC (United States)

    2014-03-20

    This report summarizes work carried out over the period from July 5, 2005-January 31, 2014. The work was carried out by the National Research Council Research Associateships Program of the National Academies, under the US Department of Energy's National Energy Technology Laboratory (NETL) program. This Technical Report consists of a description of activity from 2005 through 2014, broken out within yearly timeframes, for NRC/NETL Associateships researchers at NETL laboratories which includes individual tenure reports from Associates over this time period. The report also includes individual tenure reports from associates over this time period. The report also includes descriptions of program promotion efforts, a breakdown of the review competitions, awards offered, and Associate's activities during their tenure.

  13. Summary reports of activities under visiting research program, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    This report contains summary reports of activities under visiting research program, 1995 carried out in the Research Reactor Institute, Kyoto University in 1995. As cooperative activities of KUR, 9 projects and 91 ordinary researches are described in their summaries, with 10 ordinary researches in KUCA cooperative activities. Titles of the 9 projects are development of biological effect analysis of monochromatic neutron spectrum field, study on optimization of bottle condition in ultra cold neutron fission experiment, feature improvement of KUR-ISOL and nuclear spectroscopy and nuclear physics using it, fundamental study on development of new compound for thermal neutron trapping therapy and expansion of its adopting illness, study on properties of synthetic metal using nuclear procedure, neutron diffraction of magnetic substances under the extreme conditions (high pressure, high magnetic field), study on movement in environment of harmful substances, fundamental study on radiation protection against controllable radiation in KUR, and dynamic property study of metal materials using low speed neutron scattering method. (G.K.)

  14. Review of defense display research programs

    Science.gov (United States)

    Tulis, Robert W.; Hopper, Darrel G.; Morton, David C.; Shashidhar, Ranganathan

    2001-09-01

    Display research has comprised a substantial portion of the defense investment in new technology for national security for the past 13 years. These investments have been made by the separate service departments and, especially, via several Defense Research Projects Agency (DARPA) programs, known collectively as the High Definition Systems (HDS) Program (which ended in 2001) and via the Office of the Secretary of Defense (OSD) Defense Production Act (DPA) Title III Program (efforts ended in 2000). Using input from the Army, Navy, and Air Force to focus research and identify insertion opportunities, DARPA and the Title III Program Office have made investments to develop the national technology base and manufacturing infrastructure necessary to meet the twin challenge of providing affordable displays in current systems and enabling the DoD strategy of winning future conflicts by getting more information to all participants during the battle. These completed DARPA and DPA research and infrastructure programs are reviewed. Service investments have been and are being made to transition display technology; examples are described. Display science and technology (S&T) visions are documented for each service to assist the identification of areas meriting consideration for future defense research.

  15. The Australian synchrotron research program

    International Nuclear Information System (INIS)

    Garrett, R.F.

    1998-01-01

    Full text: The Australian Synchrotron Research Program (ASRP) was established in 1996 under a 5 year grant from the Australian Government, and is managed by ANSTO on behalf of a consortium of Australian universities and research organisations. It has taken over the operation of the Australian National Beamline Facility (ANBF) at the Photon Factory, and has joined two CATS at the Advanced Photon Source: the Synchrotron Radiation Instrumentation CAT (SRI-CAT) and the Consortium for Advanced Radiation Sources (CARS). The ASRP thus manages a comprehensive range of synchrotron radiation research facilities for Australian science. The ANBF is a general purpose hard X-ray beamline which has been in operation at the Photon Factory since 1993. It currently caters for about 35 Australian research teams per year. The facilities available at the ANBF will be presented and the research program will be summarised. The ASRP facilities at the APS comprise the 5 sectors operated by SRI-CAT, BioCARS and ChemMatCARS. A brief description will be given of the ASRP research programs at the APS, which will considerably broaden the scope of Australian synchrotron science

  16. An In-Depth Analysis of Teaching Themes and the Quality of Teaching in Higher Education: Evidence from the Programming Education Environments

    Science.gov (United States)

    Xia, Belle Selene

    2017-01-01

    Education research in computer science has emphasized the research of web-based learning environments as a result of the latest technological advancement in higher education. Our research aim is to offer new insights on the different teaching strategies in programming education both from a theoretical and empirical point of view as a response to…

  17. Improving Defense Health Program Medical Research Processes

    Science.gov (United States)

    2017-08-08

    research , including a Business Cell; 87 Research Development, 88 Research Oversight, 89 and Research Compliance offices;90 and the Center...needed for DHP medical research , such as the Army’s Clinical and Translational Research Program Office, 38 the Navy’s Research Methods Training Program... research stated, “key infrastructure for a learning health system will encompass three core elements: data networks, methods , and workforce.” 221

  18. USNRC HTGR safety research program overview

    International Nuclear Information System (INIS)

    Foulds, R.B.

    1982-01-01

    An overview is given of current activities and planned research efforts of the US Nuclear Regulatory Commission (NRC) HTGR Safety Program. On-going research at Brookhaven National Laboratory, Oak Ridge National Laboratory, Los Alamos National Laboratory, and Pacific Northwest Laboratory are outlined. Tables include: HTGR Safety Issues, Program Tasks, HTGR Computer Code Library, and Milestones for Long Range Research Plan

  19. Systems Engineering Design Via Experimental Operation Research: Complex Organizational Metric for Programmatic Risk Environments (COMPRE)

    Science.gov (United States)

    Mog, Robert A.

    1999-01-01

    Unique and innovative graph theory, neural network, organizational modeling, and genetic algorithms are applied to the design and evolution of programmatic and organizational architectures. Graph theory representations of programs and organizations increase modeling capabilities and flexibility, while illuminating preferable programmatic/organizational design features. Treating programs and organizations as neural networks results in better system synthesis, and more robust data modeling. Organizational modeling using covariance structures enhances the determination of organizational risk factors. Genetic algorithms improve programmatic evolution characteristics, while shedding light on rulebase requirements for achieving specified technological readiness levels, given budget and schedule resources. This program of research improves the robustness and verifiability of systems synthesis tools, including the Complex Organizational Metric for Programmatic Risk Environments (COMPRE).

  20. Collaborative Aerospace Research and Fellowship Program at NASA Glenn Research Center

    Science.gov (United States)

    Heyward, Ann O.; Kankam, Mark D.

    2004-01-01

    During the summer of 2004, a 10-week activity for university faculty entitled the NASA-OAI Collaborative Aerospace Research and Fellowship Program (CFP) was conducted at the NASA Glenn Research Center in collaboration with the Ohio Aerospace Institute (OAI). This is a companion program to the highly successful NASA Faculty Fellowship Program and its predecessor, the NASA-ASEE Summer Faculty Fellowship Program that operated for 38 years at Glenn. The objectives of CFP parallel those of its companion, viz., (1) to further the professional knowledge of qualified engineering and science faculty,(2) to stimulate an exchange of ideas between teaching participants and employees of NASA, (3) to enrich and refresh the research and teaching activities of participants institutions, and (4) to contribute to the research objectives of Glenn. However, CFP, unlike the NASA program, permits faculty to be in residence for more than two summers and does not limit participation to United States citizens. Selected fellows spend 10 weeks at Glenn working on research problems in collaboration with NASA colleagues and participating in related activities of the NASA-ASEE program. This year's program began officially on June 1, 2004 and continued through August 7, 2004. Several fellows had program dates that differed from the official dates because university schedules vary and because some of the summer research projects warranted a time extension beyond the 10 weeks for satisfactory completion of the work. The stipend paid to the fellows was $1200 per week and a relocation allowance of $1000 was paid to those living outside a 50-mile radius of the Center. In post-program surveys from this and previous years, the faculty cited numerous instances where participation in the program has led to new courses, new research projects, new laboratory experiments, and grants from NASA to continue the work initiated during the summer. Many of the fellows mentioned amplifying material, both in

  1. Regulatory research program for 1987/88

    International Nuclear Information System (INIS)

    1987-01-01

    The regulatory research program of Canada's Atomic Energy Control Board (AECB) is intended to augment the AECB's research program beyond the capability of in-house resources. The overall objective of the research program is to produce pertinent and independent information that will assist the Board and its staff in making correct, timely and credible decisions on regulating nuclear energy. The program covers the following areas: the safety of nuclear facilities, radioactive waste management, health physics, physical security, and the development of regulatory processes. Sixty-seven projects are planned for 1987/88; as well, there are some projects held in reserve in case funding becomes available. This information bulletin contains a list of the projects with a brief description of each

  2. Justifying Innovative Language Programs in an Environment of ...

    African Journals Online (AJOL)

    pkurgat

    Justifying Innovative Language Programs in an Environment of Change: The Case ... Key words: project management, change management, educational management, .... the sustainability of the course considering that there were and continue to be problems .... language teaching in general on a sound scientific base.

  3. Final Report, Research Program to Investigate the Fundamental Chemistry of Technetium

    Energy Technology Data Exchange (ETDEWEB)

    Lukens Jr., Wayne W.; Fickes, Michael J.; Bucher, Jerome J.; Burns, Carol J.; Edelstein, Norman M.; Shuh, David K.

    2000-12-23

    The purpose is to increase the basic scientific understanding of technetium chemistry to better understand the behavior of technetium in chemical environments relevant to DOE. Two important areas in need of study are the behavior of technetium in highly alkaline solutions similar to high-level nuclear waste, and its behavior in different waste forms. This research program addressed these two needs. Two separate approaches were used in this program. The first focus was to understand the basic solution chemistry of technetium, which underlies its behavior in the highly alkaline environment of the nuclear waste tanks located at the Savannah River and Hanford Sites. The specific problems at these sites are related to the anomalous oxidation state of technetium (Schroeder 1995). Although, at high pH, technetium should exist in its highest oxidation state as TcO{sub 4}{sup {minus}}, soluble, lower-valent technetium species have been observed in certain wastes. The specific unknowns that this program sought to answer are the nature of lower valent technetium species that can be formed in highly alkaline solution and whether pertechnetate undergoes radiolytic reduction in highly alkaline solution when nitrate is present in excess. The second focus area is the behavior of technetium immobilized in various waste forms. The behavior of technetium in cement wastes was examined to gain information about its long-term stability. Specifically, this research examined the oxidation of reduced technetium species by components present in high-level waste that are incorporated into cement waste along with technetium.

  4. A research on the excavation, support, and environment control of large scale underground space

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Pil Chong; Kwon, Kwang Soo; Jeong, So Keul [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    With the growing necessity of the underground space due to the deficiency of above-ground space, the size and shape of underground structures tend to be complex and diverse. This complexity and variety force the development of new techniques for rock mass classification, excavation and supporting of underground space, monitoring and control of underground environment. All these techniques should be applied together to make the underground space comfortable. To achieve this, efforts have been made on 5 different areas; research on the underground space design and stability analysis, research on the techniques for excavation of rock by controlled blasting, research on the development of monitoring system to forecast the rock behaviour of underground space, research on the environment inspection system in closed space, and research on dynamic analysis of the airflow and environmental control in the large geos-spaces. The 5 main achievements are improvement of the existing structure analysis program(EXCRACK) to consider the deformation and failure characteristics of rock joints, development of new blasting design (SK-cut), prediction of ground vibration through the newly proposed wave propagation equation, development and In-Situ application of rock mass deformation monitoring system and data acquisition software, and trial manufacture of the environment inspection system in closed space. Should these techniques be applied to the development of underground space, prevention of industrial disaster, cut down of construction cost, domestication of monitoring system, improvement of tunnel stability, curtailment of royalty, upgrade of domestic technologies will be brought forth. (Abstract Truncated)

  5. Marketing research model of competitive environment

    Directory of Open Access Journals (Sweden)

    Krasilya Dmitriy

    2015-11-01

    Full Text Available To support its competitive advantages in current market conditions, each company needs to choose better ways of guaranteeing its favorable competitive position. In this regard, considerable interest lies in the structuring and algorithmization of marketing research processes that provide the information background of such choice. The article is devoted to modeling the process of marketing research of competitive environment.

  6. Investigation of the tritium level in the environment of the Karlsruhe Nuclear Research Center

    International Nuclear Information System (INIS)

    Koenig, L.A.; Winter, M.; Schueler, H.; Tachlinski, W.

    1976-06-01

    Under an IAEA sponsored measurement program the tritium level is investigated in the immediate and more distant environment of the Karlsruhe Nuclear Research Center. The tritium concentration in precipitations, surface, ground and drinking water is measured within a long-term program. In addition, relationships existing between the tritium concentration of plants and the concentrations of ground water, precipitation, soil and air humidities are investigated at three points in special series of measurement. A summary report is presented on recent measured results. According to these results, the annual mean values for precipitations and surface water tend to rise. In 1975 the annual mean values amounted to 0.89 nCi/l of tritium concentration in precipitations in the more distant environment of the Nuclear Research Center and to 0.68 nCi/l in the Rhine river. In plants tritium concentrations were observed which correspond to that measured in the humidity of the air. The radiation exposure of people living in large towns is calculated to be about 50 μrem/a in the region monitored, due to the presence of tritium in the drinking water. A little group of the population takes up as much as 110 μrem/a. (orig.) [de

  7. The I.A.G./A.I.G. SEDIBUD (Sediment Budgets in Cold Environments) Program (2005 - 2017): Key activities and outcomes

    Science.gov (United States)

    Beylich, Achim A.

    2017-04-01

    Amplified climate change and ecological sensitivity of high-latitude and high-altitude cold climate environments has been highlighted as a key global environmental issue. Projected climate change in largely undisturbed cold regions is expected to alter melt-season duration and intensity, along with the number of extreme rainfall events, total annual precipitation and the balance between snowfall and rainfall. Similarly, changes to the thermal balance are expected to reduce the extent of permafrost and seasonal ground frost and increase active-layer depths. These combined effects will undoubtedly change Earth surface environments in cold regions and will alter the fluxes of sediments, solutes and nutrients. However, the absence of quantitative data and coordinated analysis to understand the sensitivity of the Earth surface environment are acute in cold regions. Contemporary cold climate environments generally provide the opportunity to identify solute and sedimentary systems where anthropogenic impacts are still less important than the effects of climate change. Accordingly, it is still possible to develop a library of baseline fluvial yields and sedimentary budgets before the natural environment is completely transformed. The SEDIBUD (Sediment Budgets in Cold Environments) Program, building on the European Science Foundation (ESF) Network SEDIFLUX (Sedimentary Source-to-Sink Fluxes in Cold Environments, since 2004) was formed in 2005 as a new Program (Working Group) of the International Association of Geomorphologists (I.A.G./A.I.G.) to address this still existing key knowledge gap. SEDIBUD (2005-2017) has currently about 400 members worldwide and the Steering Committee of this international program is composed of eleven scientists from ten different countries. The central research question of this global program is to: Assess and model the contemporary sedimentary fluxes in cold climates, with emphasis on both particulate and dissolved components. Research carried

  8. Base Program on Energy Related Research

    Energy Technology Data Exchange (ETDEWEB)

    Western Research Institute

    2008-06-30

    The main objective of the Base Research Program was to conduct both fundamental and applied research that will assist industry in developing, deploying, and commercializing efficient, nonpolluting fossil energy technologies that can compete effectively in meeting the energy requirements of the Nation. In that regard, tasks proposed under the WRI research areas were aligned with DOE objectives of secure and reliable energy; clean power generation; development of hydrogen resources; energy efficiency and development of innovative fuels from low and no-cost sources. The goal of the Base Research Program was to develop innovative technology solutions that will: (1) Increase the production of United States energy resources--coal, natural gas, oil, and renewable energy resources; (2) Enhance the competitiveness of United States energy technologies in international markets and assist in technology transfer; (3) Reduce the nation's dependence on foreign energy supplies and strengthen both the United States and regional economies; and (4) Minimize environmental impacts of energy production and utilization. This report summarizes the accomplishments of the overall Base Program. This document represents a stand-alone Final Report for the entire Program. It should be noted that an interim report describing the Program achievements was prepared in 2003 covering the progress made under various tasks completed during the first five years of this Program.

  9. What is Research

    Science.gov (United States)

    2016-10-27

    Service Nursing Research Program (TSNRP): Defense Medical Research & Development Program (DMROP): NIH: Congressionally Directed Medical Research Program...measuring outcomes. · setting/environment that aenerated It. Techniques Quantitative Research PICOT, ARCC, PARIHS, POCA, OMAIC, Six Sigma, and...SGVU SUBJECT: Professional Presentation Approval 3 NOV 2016 1. Your paper, entitled What is Research ? presented at/published to Resident Research

  10. Physics Research Integrated Development Environment (PRIDE)

    International Nuclear Information System (INIS)

    Burton, J.; Cormell, L.

    1993-12-01

    Past efforts to implement a Software Engineering approach to High Energy Physics computing have been met with significant resistance and have been, in many cases, only marginally successful. At least a portion of the problem has been the Lick of an integrated development environment, tailored to High Energy Physics and incorporating a suite of Computer Aided Software Engineering tools. The Superconducting Super Collider Physics Research Division Computing Department is implementing pilot projects to develop just such an environment

  11. Programming Not Required: Skills and Knowledge for the Digital Library Environment

    Science.gov (United States)

    Howard, Katherine

    2010-01-01

    Education for Library and Information professionals in managing the digital environment has been a key topic for discussion within the LIS environment for some time. However, before designing and implementing a program for digital library education, it is prudent to ensure that the skills and knowledge required to work in this environment are…

  12. Fusion program research materials inventory

    International Nuclear Information System (INIS)

    Roche, T.K.; Wiffen, F.W.; Davis, J.W.; Lechtenberg, T.A.

    1984-01-01

    Oak Ridge National Laboratory maintains a central inventory of research materials to provide a common supply of materials for the Fusion Reactor Materials Program. This will minimize unintended material variations and provide for economy in procurement and for centralized record keeping. Initially this inventory is to focus on materials related to first-wall and structural applications and related research, but various special purpose materials may be added in the future. The use of materials from this inventory for research that is coordinated with or otherwise related technically to the Fusion Reactor Materials Program of DOE is encouraged

  13. Program of Research in Aeronautics

    Science.gov (United States)

    1981-01-01

    A prospectus of the educational and research opportunities available at the Joint Institute for Advancement of Flight Sciences, operated at NASA Langley Research Center in conjunction with George Washington University's School of Engineering and Applied Sciences is presented. Requirements of admission to various degree programs are given as well as the course offerings in the areas of acoustics, aeronautics, environmental modelling, materials science, and structures and dynamics. Research facilities for each field of study are described. Presentations and publications (including dissertations and theses) generated by each program are listed as well as faculty members visting scientists and engineers.

  14. Research highlights in energy and eco-efficient built environment

    Energy Technology Data Exchange (ETDEWEB)

    Airaksinen, M. (ed.)

    2012-06-15

    This publication presents a compilation of VTT's recent research on energy and eco-efficient built environment. Sustainability as a dominating driver of technology development can also be seen in the R and D portfolio of VTT Technical Research Centre of Finland. A clear focus of our research for the building sector is sustainable construction, particularly the energy efficiency of the built environment. Buildings and the whole built environment are in a key role when societies are mitigating climate change and adapting to its consequences. Despite the temporary economic downturn, construction globally remains one of the most significant areas of human activities globally. Due to the urgency of measures related to climate change and the need to provide a proper environment for living and working, a large number of national and international measures have been agreed to guarantee the future development of sustainable built environment for all. Indirectly, this has lead to a need to develop existing and completely new technologies and processes for the built environment with a speed faster than ever and with a more holistic performance metrics than ever.

  15. Devolution of the Economy and Environment Program for Southeast ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    EEPSEA). EEPSEA is the only program in Southeast Asia dedicated to helping economists and environmental researchers gain expertise in environmental economics research. Since its inception, the program has been managed by IDRC from its ...

  16. The undergraduate research fellows program: a unique model to promote engagement in research.

    Science.gov (United States)

    Vessey, Judith A; DeMarco, Rosanna F

    2008-01-01

    Well-educated nurses with research expertise are needed to advance evidence-based nursing practice. A primary goal of undergraduate nursing curricula is to create meaningful participatory experiences to help students develop a research skill set that articulates with rapid career advancement of gifted, young graduates interested in nursing research and faculty careers. Three research enrichment models-undergraduate honors programs, research assistant work-for-hire programs, and research work/mentorship programs-to be in conjunction with standard research content are reviewed. The development and implementation of one research work/mentorship program, the Boston College undergraduate research fellows program (UGRF), is explicated. This process included surveying previous UGRFs followed by creating a retreat and seminars to address specific research skill sets. The research skill sets included (a) how to develop a research team, (b) accurate data retrieval, (c) ethical considerations, (d) the research process, (e) data management, (f) successful writing of abstracts, and (g) creating effective poster presentations. Outcomes include evidence of involvement in research productivity and valuing of evidenced-based practice through the UGRF mentorship process with faculty partners.

  17. Overview of the Defense Programs Research and Technology Development Program for fiscal year 1993. Appendix II research laboratories and facilities

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-30

    This document contains summaries of the research facilities that support the Defense Programs Research and Technology Development Program for FY 1993. The nine program elements are aggregated into three program clusters as follows: (1) Advanced materials sciences and technologies; chemistry and materials, explosives, special nuclear materials (SNM), and tritium. (2) Design sciences and advanced computation; physics, conceptual design and assessment, and computation and modeling. (3) Advanced manufacturing technologies and capabilities; system engineering science and technology, and electronics, photonics, sensors, and mechanical components. Section I gives a brief summary of 23 major defense program (DP) research and technology facilities and shows how these major facilities are organized by program elements. Section II gives a more detailed breakdown of the over 200 research and technology facilities being used at the Laboratories to support the Defense Programs mission.

  18. Tulane/Xavier Center for Bioenvironmental Research; project: hazardous materials in aquatic environments; subproject: biomarkers and risk assessment in Bayou Trepagnier, LA

    International Nuclear Information System (INIS)

    Ide, C.

    1996-01-01

    Tulane and Xavier Universities have singled out the environment as a major strategic focus for research and training for now and beyond the year 2000. the Tulane/Xavier Center for Bioenvironmental Research (CBR) was established in 1989 as the umbrella organization to coordinate environmental research at both universities. CBR projects funded by the DOE under the Hazardous Materials in Aquatic Environments grant are defining the following: (1) the complex interactions that occur during the transport of contaminants through wetlands environments, (2) the actual and potential impact of contaminants on ecological systems and health, (3) the mechanisms and new technologies through which these impacts might be remediated, and (4) new programs aimed at educating and training environmental workers of the future. The subproject described in this report, 'Biomarkers and Risk Assessment in Bayou Trepagnier, LN', is particularly relevant to the US Department of Energy's Environmental Restoration and Waste Management program aimed at solving problems related to hazard monitoring and clean-up prioritization at sites with aquatic pollution problems in the DOE complex

  19. Attributes of a research environment that contribute to excellent research and development

    Energy Technology Data Exchange (ETDEWEB)

    G. B. Jordan; L. D. Streit; J. S. Binkley

    1999-04-01

    This paper presents initial work at two U. S. Department of Energy (DOE) national laboratories to identify attributes of DOE Laboratory research environments that are most important for fostering excellent research.

  20. Small-grants programs: lessons from community-based approaches to changing nutrition environments.

    Science.gov (United States)

    Johnson, Donna B; Smith, Lynne T; Bruemmer, Barbara

    2007-02-01

    Providing small grants to community organizations can be an effective way to encourage changes in the environment that support better nutrition. This is effective because these organizations can provide insights into their communities, ready-made relationships with community members, and the trust of the community. Small-grants programs are more likely to be successful when they are tailored to the needs of individual communities, led by organizations that have established reputations with the community, fully supported by the lead community organization, and engage local partners that complement the skills and resources of the lead organization. An evaluation of a small-grants program, Grants for Healthy Youth, found that grantees developed unique approaches to improving their community nutrition environments, gained experience and skills in program development, built partnerships, and received recognition for their project work. Grantees faced some common barriers, especially with program evaluation. Small-grants programs can be an effective way to improve community nutrition environments, but granting agencies need to provide effective technical assistance to communities throughout the process.

  1. Radon Research Program, FY 1992

    International Nuclear Information System (INIS)

    1993-04-01

    The United States Department of Energy, Office of Health and Environmental Research (DOE/OHER) is the principal federal agency conducting basic research related to indoor radon. The scientific information being sought in this program encompasses research designed to determine radon availability and transport outdoors, modeling transport into and within buildings, physics and chemistry of radon and radon progeny, dose response relationships, lung cancer risk, and mechanisms of radon carcinogenesis. There still remains a significant number of uncertainties in the currently available knowledge that is used to estimate lung cancer risk from exposure to environmental levels of radon and its progeny. The main goal of the DOE/OHER Radon Research Program is to develop information to reduce these uncertainties and thereby provide an improved health risk estimate of exposure to radon and its progeny and to identify and understand biological mechanisms of lung cancer development and required copollutants at low levels of exposure. Information useful in radon control strategies is also provided by the basic science undertaken in this program

  2. The ASSURE Summer REU Program: Introducing research to first-generation and underserved undergraduates through space sciences and engineering projects

    Science.gov (United States)

    Barron, Darcy; Peticolas, Laura; Multiverse Team at UC Berkeley's Space Sciences Lab

    2018-01-01

    The Advancing Space Science through Undergraduate Research Experience (ASSURE) summer REU program is an NSF-funded REU site at the Space Sciences Lab at UC Berkeley that first started in summer 2014. The program recruits students from all STEM majors, targeting underserved students including community college students and first-generation college students. The students have little or no research experience and a wide variety of academic backgrounds, but have a shared passion for space sciences and astronomy. We will describe our program's structure and the components we have found successful in preparing and supporting both the students and their research advisors for their summer research projects. This includes an intensive first week of introductory lectures and tutorials at the start of the program, preparing students for working in an academic research environment. The program also employs a multi-tiered mentoring system, with layers of support for the undergraduate student cohort, as well as graduate student and postdoctoral research advisors.

  3. Evaluation of doctoral nursing programs in Japan by faculty members and their educational and research activities.

    Science.gov (United States)

    Arimoto, Azusa; Gregg, Misuzu F; Nagata, Satoko; Miki, Yuko; Murashima, Sachiyo

    2012-07-01

    Evaluation of doctoral programs in nursing is becoming more important with the rapid increase in the programs in Japan. This study aimed to evaluate doctoral nursing programs by faculty members and to analyze the relationship of the evaluation with educational and research activities of faculty members in Japan. Target settings were all 46 doctoral nursing programs. Eighty-five faculty members from 28 programs answered the questionnaire, which included 17 items for program evaluation, 12 items for faculty evaluation, 9 items for resource evaluation, 3 items for overall evaluations, and educational and research activities. A majority gave low evaluations for sources of funding, the number of faculty members and support staff, and administrative systems. Faculty members who financially supported a greater number of students gave a higher evaluation for extramural funding support, publication, provision of diverse learning experiences, time of supervision, and research infrastructure. The more time a faculty member spent on advising doctoral students, the higher were their evaluations on the supportive learning environment, administrative systems, time of supervision, and timely feedback on students' research. The findings of this study indicate a need for improvement in research infrastructure, funding sources, and human resources to achieve quality nursing doctoral education in Japan. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Decontamination Systems Information and Research Program

    International Nuclear Information System (INIS)

    Berg, M.; Sack, W.A.; Gabr, M.

    1994-01-01

    The Decontamination Systems Information and Research Program at West Virginia University consists of research and development associated with hazardous waste remediation problems at the Department of Energy complex and elsewhere. This program seeks to facilitate expedited development and implementation of solutions to the nation's hazardous waste clean-up efforts. By a unique combination of university research and private technology development efforts, new paths toward implementing technology and speeding clean-ups are achievable. Mechanisms include aggressive industrial tie-ins to academic development programs, expedited support of small business technology development efforts, enhanced linkages to existing DOE programs, and facilitated access to hazardous waste sites. The program topically falls into an information component, which includes knowledge acquisition, technology evaluation and outreach activities and an R and D component, which develops and implements new and improved technologies. Projects began in February 1993 due to initiation of a Cooperative Agreement between West Virginia University and the Department of Energy

  5. Research-Based Practices in Afterschool Mentoring Programs

    Science.gov (United States)

    McDaniel, Sara C.; Yarbrough, Anna-Margaret; Besnoy, Kevin

    2015-01-01

    Most communities have afterschool programs that give school-aged students a safe place to go after the dismissal bell rings. The next step after simply providing a safe haven is to create a nurturing environment that develops young people's talents and supports their needs. A formal mentoring program can help to achieve this goal. In order to…

  6. Nursing research programs gather strength in Australia.

    Science.gov (United States)

    Borbasi, Sally; Emden, Carolyn; Jackson, Debra

    2005-04-01

    To shed light on programmatic research through direct experience is highly beneficial to nursing scholarship. Following a recent description of a successful Australian program of research centered around people's chronic illness experience we are inspired to continue the commentary (Koch et al 2005). Koch et al's (2005) case study reported on several 'core elements' they believe have contributed to the growth and effectiveness of their program. In this paper we consider some of these in light of current literature and our own challenging experiences within several Australian universities. Koch et al (2005) also makes a not too subtle distinction between dedicated research units independent of universities and research programs emanating from academia, suggesting the former are more productive. While one of the authors in the above paper, a UK scholar and nursing academic, makes interesting observations about this assertion, we contend that his UK perspective fails to capture the urgency of establishing nursing research programs in Australian universities. Consequently, we have chosen to extend the discussion about nursing research programs from the perspective of Australian academe, including comment on building productive relationships, strengthening a track record, research and practice as symbiotic processes, competitive funding strategies, and the integral role of research students. The entire commentary is located in a celebratory context of 20 years of Australian nursing education in the university sector, a context not without controversy. We give consideration to the best way ahead for the future of nursing research programs and hope our ideas spark further sharing of experiences.

  7. The Impact of and Lessons Learned from NITARP, the NASA/IPAC Teacher Archive Research Program

    Science.gov (United States)

    Rebull, L. M.; Nitarp Team

    2014-07-01

    NITARP, the NASA/IPAC Teacher Archive Research Program, gets teachers involved in authentic astronomical research. We partner small groups of educators with a professional astronomer mentor for a year-long original research project. The teams echo the entire research process, from writing a proposal, to doing the research, to presenting the results at an American Astronomical Society (AAS) meeting. The program runs from January through January. Applications are available annually in May and are due in September. The educators' experiences color their teaching for years to come, influencing hundreds of students per teacher. This program differs from other programs we know of that get real astronomy data into the classroom in three ways. First, each team works on an original, unique project. There are no canned labs here! Second, each team presents their results in posters in science sessions at an American Astronomical Society meeting alongside other researchers' work (participants are not given a “free pass” because they are educators or students). Third, the “product” is the scientific result, not any sort of curriculum packet. The teachers adapt their project and their experiences to fit in their classroom environment. NITARP changes the way teachers think about science and scientists. More information is available online at http://nitarp.ipac.caltech.edu/.

  8. Program of research 1988-89

    International Nuclear Information System (INIS)

    1988-08-01

    From 1 July 1988, the research activities of ANSTO have reorganised into five programs: advanced materials; applications of nuclear physics; environmental science; applications of radioisotopes and radiation; biomedicine and health. This structure not only groups the main research activities but also identifies the underpinning of ANSTO's commercial activities. This document describes the projects to be undertaken in the 1988-89 financial year. Each project in a particular program area is defined in terms of background, objective, recent work and achievements, work planned, resources and the project manager is identified. Research is also undertaken in areas of the operational activities of the organisation and these also are detailed

  9. Diagnostics of communication and information environment of pedagogical program means

    Directory of Open Access Journals (Sweden)

    Елена Вадимовна Журавлёва

    2010-06-01

    Full Text Available The efficiency of pedagogical program means is considered through the correctness of a communication and information environment organization. The totality of pedagogical conditions is adduced; the communication and information environment answers these conditions. The main directions (didactic, psychological, ergonomic of analysis are determined and the methods choice for their diagnostics is grounded.

  10. Program Leader | IDRC - International Development Research Centre

    International Development Research Centre (IDRC) Digital Library (Canada)

    Leads in the identification of the overall development research ... Ensures that a regional perspective is brought to bear on program planning at the PI and ... The incumbent is the manager of the Program Initiative program and team and as such: ... projects between Canadian and developing country researchers; and; When ...

  11. Electromagnetic pulse research on electric power systems: Program summary and recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, P.R.; McConnell, B.W.; Van Dyke, J.W. (Oak Ridge National Lab., TN (United States)); Tesche, F.M. (Tesche (F.M.), Dallas, TX (United States)); Vance, E.F. (Vance (E.F.), Fort Worth, TX (United States))

    1993-01-01

    A single nuclear detonation several hundred kilometers above the central United States will subject much of the nation to a high-altitude electromagnetic pulse (BENT). This pulse consists of an intense steep-front, short-duration transient electromagnetic field, followed by a geomagnetic disturbance with tens of seconds duration. This latter environment is referred to as the magnetohydrodynamic electromagnetic pulse (NMENT). Both the early-time transient and the geomagnetic disturbance could impact the operation of the nation's power systems. Since 1983, the US Department of Energy has been actively pursuing a research program to assess the potential impacts of one or more BENT events on the nation's electric energy supply. This report summarizes the results of that program and provides recommendations for enhancing power system reliability under HENT conditions. A nominal HENP environment suitable for assessing geographically large systems was developed during the program and is briefly described in this report. This environment was used to provide a realistic indication of BEMP impacts on electric power systems. It was found that a single high-altitude burst, which could significantly disturb the geomagnetic field, may cause the interconnected power network to break up into utility islands with massive power failures in some areas. However, permanent damage would be isolated, and restoration should be possible within a few hours. Multiple bursts would likely increase the blackout areas, component failures, and restoration time. However, a long-term blackout of many months is unlikely because major power system components, such as transformers, are not likely to be damaged by the nominal HEND environment. Moreover, power system reliability, under both HENT and normal operating conditions, can be enhanced by simple, and often low cost, modifications to current utility practices.

  12. NRC sponsored rotating equipment vibration research: a program description and progress report

    International Nuclear Information System (INIS)

    Nitzel, M.E.

    1986-01-01

    The Idaho National Engineering Laboratory (INEL) is currently involved in a research project sponsored by the United States Nuclear Regulatory Commission (NRC) regarding operational vibration in rotating equipment. The object of this program is to assess the nature of vibrational failures and the effect that improved qualification standards may have in reducing the incidence of failure. In order to limit the scope of the initial effort, safety injection (SI) pumps were chosen as the component group for concentrated study. The task has been oriented to addressing the issues of whether certain SI pumps experience more failures than others, examining the dynamic environments in operation, examining the adequacy of current qualification standards, and examining what performance parameters could be used more efficiently to predict degradation or failure. Results of a literature search performed to survey SI pump failures indicate that failures are due to a diversity of causes, many of which may not be influenced by qualification criteria. Cooperative efforts have been undertaken with a limited number of nuclear utilities to describe the variety of possible operating environments and to analyze available data. The results of this analysis as they apply to the research issues are presented and possibilities for the future direction of the program are discussed

  13. Radioecological research on the behavior of actinides in the environment

    International Nuclear Information System (INIS)

    Schuettelkopf, H.; Pimpl, M.

    1983-01-01

    The results of the research program on ''Investigation of the physical and chemical environmental behavior of radionuclides characterized by a particular biological effectivenes - Pu, Am, Cm'' are presented. Analytical procedures for Pu, Am, and Cm were developed. The behavior of Pu in the environment has been studied. Releases, dispersion, deposition, transport in soil, transfer to animals, dilution in a river and sedimentation were measured using Pu from nuclear weapon fallout and Pu release of Karlsruhe Nuclear Fuel Reprocessing Plant. The distribution coefficients and the availability of Pu, Am, and Cm in soil were determined. A greenhouse strated its operation during the last months. The transfer factors for Pu, Am, and Cm will be determined for 15 to 20 food plants, and different types of soil. (orig./DG)

  14. Teacher Research Programs = Increased Student Achievement

    Science.gov (United States)

    Dubner, J.

    2011-12-01

    Columbia University's Summer Research Program for Science Teachers (SRP), founded in 1990, is one of the largest, best known university professional development programs for science teachers in the U.S. For eight weeks in each of two consecutive summers, teachers participate as a member of a research team, led by a member of Columbia University's research faculty. In addition to the laboratory experience, all teachers meet weekly during the summer for a series of pedagogical activities to assist them in transferring the experience to their classrooms. The primary goal of the program is to provide K-12 science teachers with opportunities to work at the cutting edge of science and engineering, and thus to revitalize their teaching and help them to appreciate the use of inquiry-based methods in their classroom instruction. The secondary goals of the program are to give the pre-college teacher the ability to guide their students toward careers in science and engineering, to develop new teaching strategies, and to foster long-term scholarly collaborations. The last is especially important as it leads to a model of the teacher as active in science yet committed to the pre-college classroom. Since its inception, SRP has focused on an objective assessment of the program's impact on attitudes and instructional practices of participating teachers, on the performance of these teachers in their mentors' laboratories, and most importantly, on the impact of their participation in the program has on student interest and performance in science. Our research resulted in a paper published in the journal Science. SRP also facilitates a multi-site survey-based evaluation of other teacher research programs around the country. The author will present the findings of both studies.

  15. AutoMicromanager: A microscopy scripting toolkit for LABVIEW and other programming environments

    Science.gov (United States)

    Ashcroft, Brian Alan; Oosterkamp, Tjerk

    2010-11-01

    We present a scripting toolkit for the acquisition and analysis of a wide variety of imaging data by integrating the ease of use of various programming environments such as LABVIEW, IGOR PRO, MATLAB, SCILAB, and others. This toolkit is designed to allow the user to quickly program a variety of standard microscopy components for custom microscopy applications allowing much more flexibility than other packages. Included are both programming tools as well as graphical user interface classes allowing a standard, consistent, and easy to maintain scripting environment. This programming toolkit allows easy access to most commonly used cameras, stages, and shutters through the Micromanager project so the scripter can focus on their custom application instead of boilerplate code generation.

  16. AutoMicromanager: a microscopy scripting toolkit for LABVIEW and other programming environments.

    Science.gov (United States)

    Ashcroft, Brian Alan; Oosterkamp, Tjerk

    2010-11-01

    We present a scripting toolkit for the acquisition and analysis of a wide variety of imaging data by integrating the ease of use of various programming environments such as LABVIEW, IGOR PRO, MATLAB, SCILAB, and others. This toolkit is designed to allow the user to quickly program a variety of standard microscopy components for custom microscopy applications allowing much more flexibility than other packages. Included are both programming tools as well as graphical user interface classes allowing a standard, consistent, and easy to maintain scripting environment. This programming toolkit allows easy access to most commonly used cameras, stages, and shutters through the Micromanager project so the scripter can focus on their custom application instead of boilerplate code generation.

  17. Role of EPA in Asset Management Research – The Aging Water Infrastructure Research Program

    Science.gov (United States)

    This slide presentation provides an overview of the EPA Office of Research and Development’s Aging Water infrastructure Research Program (AWIRP). The research program origins, goals, products, and plans are described. The research program focuses on four areas: condition asses...

  18. Study on systemizing technology on investigation and analysis of deep underground geological environment. Japanese fiscal year, 2007 (Contract research)

    International Nuclear Information System (INIS)

    Kojima, Keiji; Ohnishi, Yuzo; Aoki, Kenji; Watanabe, Kunio; Nishigaki, Makoto; Tosaka, Hiroyuki; Shimada, Jun; Tochiyama, Osamu; Yoshida, Hidekazu; Ogata, Nobuhisa; Nishio, Kazuhisa

    2009-03-01

    In this year, the following studies were carried out with the aim of systemizing the technology on the investigation and analysis to understand the deep underground geological environment in relation to the radioactive waste disposal. (1) The study on the research and development (R and D) subjects which turned to the practical investigation and analysis of deep underground geological environment. (2) The study on the advanced technical basis for the investigation and analysis of deep underground geological environment. The results obtained from the studies are as follows: Regarding (1), the specific investigations, measurements and numerical and chemical analyses were performed particularly for research subjects: 1) engineering technology and 2) geological environment. Based on the results on (1), 3) tasks of collaboration research on intermediate area between the research fields, including the safety assessment field, were selected. Also redefinition of the NFC (Near Field Concept) were discussed. Regarding (2), based on the extracted tasks of JAEA (Japan Atomic Energy Agency) research project, the study was implemented considering previous R and D results and detailed research at the research field was carried out. This study contributed to the R and D development for its practical application. Concurrently, information exchange and discussion on the 2nd phase (the Construction Phase) of the MIU (Mizunami Underground Research Laboratory) research program were often held. (author)

  19. Research to protect, restore, and manage the environment

    National Research Council Canada - National Science Library

    Committee on Environmental Research, National Research Council

    This book assesses the strengths and weaknesses of current environmental research programs, describes the desirable characteristics of an effective program, and recommends cultural and organizational...

  20. Measurement plan and observational construction program on drift excavation at the Horonobe Underground Research Laboratory project

    International Nuclear Information System (INIS)

    Yamasaki, Masanao; Yamaguchi, Takehiro; Funaki, Hironori; Fujikawa, Daisuke; Tsusaka, Kimikazu

    2008-09-01

    The Horonobe URL Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formations at Horonobe, northern Hokkaido. The project consists of two major research areas, 'Geoscientific Research' and 'R and D' on Geological Disposal', and proceeds in three overlapping phases, 'Phase I: Surface-based investigation', 'Phase II: Construction' and 'Phase III: Operation', over a period of 20 years. On the Horonobe URL Project, 'Phase 1' was finished in 2005FY and construction of the underground facility was started since then. Now, 'Phase 2' (investigations during construction of the underground facilities) is on-going. On the 'Development of engineering techniques for use in the deep underground environment' in Phase 1, based on the various types of data acquired on investigations from the surface, the design of underground facility in advance was planned. At the inception of the Phase II investigations, an investigation report titled 'Measurement Plan and Observational Construction Program on Shaft Excavation at the Horonobe URL Project' (hereinafter referred to as 'Observational Construction Program') was published. The Observational Construction Program summarizes followings from the Phase I investigations: measurements for safety/reasonable construction, measurements for R and D on enhancement of shaft design/construction technology, and measurements for verification of the deep geological environment model estimated before shaft excavation, and it is on-going. This report summarizes the measurement plan during construction of drifts based on the design in advance and the observational construction program for feedback measurements data into design and construction on subsequent steps. This report also describes about design and construction management program of underground facility and R and D program on

  1. Transporting ideas between marine and social sciences: experiences from interdisciplinary research programs

    Directory of Open Access Journals (Sweden)

    Lucy M. Turner

    2017-03-01

    Full Text Available The oceans comprise 70% of the surface area of our planet, contain some of the world’s richest natural resources and are one of the most significant drivers of global climate patterns. As the marine environment continues to increase in importance as both an essential resource reservoir and facilitator of global change, it is apparent that to find long-term sustainable solutions for our use of the sea and its resources and thus to engage in a sustainable blue economy, an integrated interdisciplinary approach is needed. As a result, interdisciplinary working is proliferating. We report here our experiences of forming interdisciplinary teams (marine ecologists, ecophysiologists, social scientists, environmental economists and environmental law specialists to answer questions pertaining to the effects of anthropogenic-driven global change on the sustainability of resource use from the marine environment, and thus to transport ideas outwards from disciplinary confines. We use a framework derived from the literature on interdisciplinarity to enable us to explore processes of knowledge integration in two ongoing research projects, based on analyses of the purpose, form and degree of knowledge integration within each project. These teams were initially focused around a graduate program, explicitly designed for interdisciplinary training across the natural and social sciences, at the Gothenburg Centre for Marine Research at the University of Gothenburg, thus allowing us to reflect on our own experiences within the context of other multi-national, interdisciplinary graduate training and associated research programs.

  2. Journal of Research in Forestry, Wildlife and Environment: Site Map

    African Journals Online (AJOL)

    Journal of Research in Forestry, Wildlife and Environment: Site Map. Journal Home > About the Journal > Journal of Research in Forestry, Wildlife and Environment: Site Map. Log in or Register to get access to full text downloads.

  3. Summer Undergraduate Research Program: Environmental studies

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, J. [ed.

    1994-12-31

    The purpose of the summer undergraduate internship program for research in environmental studies is to provide an opportunity for well-qualified students to undertake an original research project as an apprentice to an active research scientist in basic environmental research. The students are offered research topics at the Medical University in the scientific areas of pharmacology and toxicology, epidemiology and risk assessment, environmental microbiology, and marine sciences. Students are also afforded the opportunity to work with faculty at the University of Charleston, SC, on projects with an environmental theme. Ten well-qualified students from colleges and universities throughout the eastern United States were accepted into the program.

  4. Space Environments and Effects Concept: Transitioning Research to Operations and Applications

    Science.gov (United States)

    Edwards, David L.; Spann, James; Burns, Howard D.; Schumacher, Dan

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. NASA has established numerous offices specializing in specific space environments disciplines that will serve to enable these missions. To complement these existing discipline offices, a concept focusing on the development of space environment and effects application is presented. This includes space climate, space weather, and natural and induced space environments. This space environment and effects application is composed of 4 topic areas; characterization and modeling, engineering effects, prediction and operation, and mitigation and avoidance. These topic areas are briefly described below. Characterization and modeling of space environments will primarily focus on utilization during Program mission concept, planning, and design phases. Engineering effects includes materials testing and flight experiments producing data to be used in mission planning and design phases. Prediction and operation pulls data from existing sources into decision-making tools and empirical data sets to be used during the operational phase of a mission. Mitigation and avoidance will develop techniques and strategies used in the design and operations phases of the mission. The goal of this space environment and effects application is to develop decision-making tools and engineering products to support the mission phases of mission concept through operations by focusing on transitioning research to operations. Products generated by this space environments and effects application are suitable for use in anomaly investigations. This paper will outline the four topic areas, describe the need, and discuss an organizational structure for this space environments and effects

  5. Karlsruhe Nuclear Research Center. Research and development program 1991

    International Nuclear Information System (INIS)

    1990-01-01

    The R and D activities of the KfK are classified in 8 main research activities: 1) project nuclear fusion; 2) project pollutant mitigation in the environment; 3) solid state and materials research; 4) nuclear and elementary particle physics; 5) microtechnics e.g. X-ray lithography; 6) materials handling; 7) project nuclear safety research; 8) radioactive waste management. (orig.) [de

  6. Work environments and organizational effectiveness: A call for integration

    Energy Technology Data Exchange (ETDEWEB)

    Heerwagen, J.H.; Heubach, J.G.; Brown, B.W.; Sanchez, J.A.; Montgomery, J.C.; Weimer, W.C.

    1994-07-01

    In response to a request from the Pacific Northwest Laboratory`s Analytical Chemistry Upgrades Program, a team was formed to (1) review work environment and productivity research, (2) report the research in a manner usable to organizational decision-makers, (3) identify Hanford Site facilities examples of the work environment principles and research, and (4) publish the review results in a referred journal. This report summarizes the work environment-organizational effectiveness research reviewed, provides the foundation for a publishable article, and outlines the integration of work environment research and organizational effectiveness in continuing improvement programs and strategic planning. The research cited in this review shows that the physical work environment offers a valuable tool that, used wisely, can contribute significantly to the performance of an organization, its bottom-line economics, and the well-being of all of its employees. This finding leads to one central recommendation: to derive the maximum benefit to the corporation, managers and designers must integrate organizational goals and programs with work environment design. While much of the research cited focuses on office environments, the results and design principles and practices are relevant to a full range of settings: laboratories, schools, hospitals, and factories. The major findings of the research reviewed are summarized below in four areas: (1) performance, (2) well-being, (3) image, and (4) turnover and recruitment.

  7. Legal Research in a Changing Information Environment

    African Journals Online (AJOL)

    tduplessis

    opportunities for research into constitutional issues, constitutional development and the relationship ... Legal research is a fundamental skill in the legal profession.9 Although all areas of law do not require ..... 1999 Legal RSQ 78. 56 In the print information environment lawyers use standard citation formats, e.g. X v Z 1999.

  8. International Research and Studies Program

    Science.gov (United States)

    Office of Postsecondary Education, US Department of Education, 2012

    2012-01-01

    The International Research and Studies Program supports surveys, studies, and instructional materials development to improve and strengthen instruction in modern foreign languages, area studies, and other international fields. The purpose of the program is to improve and strengthen instruction in modern foreign languages, area studies and other…

  9. Sandia Combustion Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, S.C.; Palmer, R.E.; Montana, C.A. (eds.)

    1988-01-01

    During the late 1970s, in response to a national energy crisis, Sandia proposed to the US Department of Energy (DOE) a new, ambitious program in combustion research. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''user facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative-involving US inventories, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions several research projects which have been simulated by working groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship program, supported through the Office of Energy Research, has been instrumental in the success of some of these joint efforts. The remainder of this report presents results of calendar year 1988, separated thematically into eleven categories. Referred journal articles appearing in print during 1988 and selected other publications are included at the end of Section 11. Our traditional'' research activities--combustion chemistry, reacting flows, diagnostics, engine and coal combustion--have been supplemented by a new effort aimed at understanding combustion-related issues in the management of toxic and hazardous materials.

  10. Impact of the Surgical Research Methodology Program on surgical residents' research profiles.

    Science.gov (United States)

    Farrokhyar, Forough; Amin, Nalin; Dath, Deepak; Bhandari, Mohit; Kelly, Stephan; Kolkin, Ann M; Gill-Pottruff, Catherine; Skot, Martina; Reid, Susan

    2014-01-01

    To evaluate whether implementing the formal Surgical Research Methodology (SRM) Program in the surgical residency curriculum improved research productivity compared with the preceding informal Research Seminar Series (RSS). The SRM Program replaced the RSS in July 2009. In the SRM Program, the curriculum in Year-1 consisted of 12 teaching sessions on the principles of clinical epidemiology and biostatistics, whereas the focus in Year-2 was on the design, conduct, and presentation of a research project. The RSS consisted of 8 research methodology sessions repeated annually for 2 years along with the design, conduct, and presentation of a research project. Research productivity was measured as the number of peer-reviewed publications and the generation of studies with higher levels of evidence. Outcome measures were independently assessed by 2 authors to avoid bias. Student t test and chi-square test were used for the analysis. Frequencies, mean differences with 95% CI, and effect sizes have been reported. In this study, 81 SRM residents were compared with 126 RSS residents. The performance of the SRM residents was superior on all metrics in our evaluation. They were significantly more productive and published more articles than the RSS residents (mean difference = 1.0 [95% CI: 0.5-1.5], p research performance improved 11.0 grades (95% CI: 8.5%-13.5%, p research methodology is crucial to appropriately apply evidence-based findings in clinical practice. The SRM Program has significantly improved the research productivity and performance of the surgical residents from all disciplines. The implementation of a similar research methodology program is highly recommended for the benefit of residents' future careers and ultimately, evidence-based patient care. Copyright © 2014 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  11. University Research Consortium annual review meeting program

    International Nuclear Information System (INIS)

    1996-07-01

    This brochure presents the program for the first annual review meeting of the University Research Consortium (URC) of the Idaho National Engineering Laboratory (INEL). INEL is a multiprogram laboratory with a distinctive role in applied engineering. It also conducts basic science research and development, and complex facility operations. The URC program consists of a portfolio of research projects funded by INEL and conducted at universities in the United States. In this program, summaries and participant lists for each project are presented as received from the principal investigators

  12. University Research Consortium annual review meeting program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This brochure presents the program for the first annual review meeting of the University Research Consortium (URC) of the Idaho National Engineering Laboratory (INEL). INEL is a multiprogram laboratory with a distinctive role in applied engineering. It also conducts basic science research and development, and complex facility operations. The URC program consists of a portfolio of research projects funded by INEL and conducted at universities in the United States. In this program, summaries and participant lists for each project are presented as received from the principal investigators.

  13. FY 1995 research highlights: PNL accomplishments in OER programs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    Pacific Northwest Laboratory (PNL) conducts fundamental and applied research in support of the US Department of Energy`s (DOE) core missions in science and technology, environmental quality, energy resources, and national security. Much of this research is funded by the program offices of DOE`s Office of Energy Research (DOE-ER), primarily the Office of Basic Energy Sciences (BES) and the Office of Health and Environmental Research (OHER), and by PNL`s Laboratory Directed Research and Development (LDRD) Program. This document is a collection of research highlights that describe PNL`s accomplishments in DOE-ER funded programs during Fiscal Year 1995. Included are accomplishments in research funded by OHER`s Analytical Technologies, Environmental Research, Health Effects, General Life Sciences, and Carbon Dioxide Research programs; BES`s Materials Science, Chemical Sciences, Engineering and Geoscience, and Applied Mathematical Sciences programs; and PNL`s LDRD Program. Summaries are given for 70 projects.

  14. Defense Nanotechnology Research and Development Program

    National Research Council Canada - National Science Library

    2007-01-01

    ...), Army Research Office (ARO) and the Air Force Office of Scientific Research (AFOSR)initiated numerous research and development programs focusing on advancing science and technology below one micron in size...

  15. Environment, sustainability, and education policy research

    DEFF Research Database (Denmark)

    McKenzie, Marcia; Rickinson, Mark; Bengtssen, Stefan

    Introduction: This session is a two part symposium on the topic of environment and sustainability in relation to educational policy development, enactment, and analysis. This format is modeled on similar formats used in other international conferences, such as the Association of American...... and methodological approaches to policy and policy research. Some key questions to be addressed include:- What kinds of understandings of policy and policy research are informing work in environmental and sustainability education?- Are there interdisiplinary approaches to policy research that can be useful...... for furthering critical education policy analysis?- What are the relationships between policy development and its enactment or implementation? - To what extent has the environmental education field researched policy development and/or enactment?- What might environmental education research have to offer...

  16. Design for energy efficiency: Energy efficient industrialized housing research program. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Kellett, R.; Berg, R.; Paz, A.; Brown, G.Z.

    1991-03-01

    Since 1989, the U.S. Department of Energy has sponsored the Energy Efficient Industrialized Housing research program (EEIH) to improve the energy efficiency of industrialized housing. Two research centers share responsibility for this program: The Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. Additional funding is provided through the participation of private industry, state governments and utilities. The program is guided by a steering committee comprised of industry and government representatives. This report summarizes Fiscal Year (FY) 1990 activities and progress, and proposed activities for FY 1991 in Task 2.1 Design for Energy Efficiency. This task establishes a vision of energy conservation opportunities in critical regions, market segments, climate zones and manufacturing strategies significant to industrialized housing in the 21st Century. In early FY 1990, four problem statements were developed to define future housing demand scenarios inclusive of issues of energy efficiency, housing design and manufacturing. Literature surveys were completed to assess seven areas of influence for industrialized housing and energy conservation in the future. Fifty-five future trends were identified in computing and design process; manufacturing process; construction materials, components and systems; energy and environment; demographic context; economic context; and planning policy and regulatory context.

  17. Summary of entire research achievements of creative engineering research program on nuclear fuel cycle

    International Nuclear Information System (INIS)

    Takenaka, Shingo; Ikegami, Tetsuo

    2008-03-01

    Creative Engineering Research Program on Nuclear Fuel Cycle (former In-house Innovative Research Encouraging Program) was implemented from FY 2001 to FY 2007 in order to support such in-house researches that create innovative new concepts and aim technical break-through. Totally 37 applications have been received and 14 research themes have been accepted and been performed in this program. As for the research achievements of the 14 research themes, first author papers accepted by scientific journals and by science councils were 47 and 32, respectively, and oral presentations at scientific societies were 99. Furthermore, interpretive articles for scientific journals, requested lectures, patents, and prize winnings were 13, 30, 8, and 3, respectively. Consequently, it can be evaluated that the research achievements resulted from this program are generally in high level and that the expectations, at the starting point of this program, to activate the innovative research activities have been accomplished. In this report, the final reports of the 14 research themes together with the outline of this program are included. (author)

  18. The Skype-Buddy Model in an Online Environment: Patterns and Perceptions of Language Teachers in a Professional Development Program

    Science.gov (United States)

    Macharaschwili, Carmen E.

    2013-01-01

    Patterns and perceptions of language teachers in a professional development program were examined through various forms of classroom discourse & multimodal products. Research questions include: What kinds of learning patterns emerge with the use of Skype in an online environment? What phases of cognitive engagement are evident in Skype…

  19. Online public health preparedness training programs: an evaluation of user experience with the technological environment.

    Science.gov (United States)

    Nambisan, Priya

    2010-01-01

    Several public health education programs and government agencies across the country have started offering virtual or online training programs in emergency preparedness for people who are likely to be involved in managing or responding to different types of emergency situations such as natural disasters, epidemics, bioterrorism, etc. While such online training programs are more convenient and cost-effective than traditional classroom-based programs, their success depends to a great extent on the underlying technological environment. Specifically, in an online technological environment, different types of user experiences come in to play-users' utilitarian or pragmatic experience, their fun or hedonic experience, their social experience, and most importantly, their usability experience-and these different user experiences critically shape the program outcomes, including course completion rates. This study adopts a multi-disciplinary approach and draws on theories in human computer interaction, distance learning theories, usability research, and online consumer behavior to evaluate users' experience with the technological environment of an online emergency preparedness training program and discusses its implications for the design of effective online training programs. . Data was collected using a questionnaire from 377 subjects who had registered for and participated in online public health preparedness training courses offered by a large public university in the Northeast. Analysis of the data indicates that as predicted, participants had higher levels of pragmatic and usability experiences compared to their hedonic and sociability experiences. Results also indicate that people who experienced higher levels of pragmatic, hedonic, sociability and usability experiences were more likely to complete the course(s) they registered for compared to those who reported lower levels. The study findings hold important implications for the design of effective online emergency

  20. [Research within the reach of Osakidetza professionals: Primary Health Care Research Program].

    Science.gov (United States)

    Grandes, Gonzalo; Arce, Verónica; Arietaleanizbeaskoa, María Soledad

    2014-04-01

    To provide information about the process and results of the Primary Health Care Research Program 2010-2011 organised by the Primary Care Research Unit of Bizkaia. Descriptive study. Osakidetza primary care. The 107 health professionals who applied for the program from a total of 4,338 general practitioners, nurses and administrative staff who were informed about it. Application level, research topics classification, program evaluation by participants, projects funding and program costs. Percentage who applied, 2.47%; 95% CI 2.41-2.88%. Of the 28 who were selected and 19 completed. The research topics were mostly related to the more common chronic diseases (32%), and prevention and health promotion (18%). Over 90% of participants assessed the quality of the program as good or excellent, and half of them considered it as difficult or very difficult. Of the18 new projects generated, 12 received funding, with 16 grants, 10 from the Health Department of the Basque Government, 4 from the Carlos III Institute of Health of the Ministry of Health of Spain, and 2 from Kronikgune. A total of €500,000 was obtained for these projects. This program cost €198,327. This experience can be used by others interested in the promotion of research in primary care, as the program achieved its objectives, and was useful and productive. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  1. Efficient radiologic reading environment by using an open-source macro program as connection software.

    Science.gov (United States)

    Lee, Young Han

    2012-01-01

    The objectives are (1) to introduce an easy open-source macro program as connection software and (2) to illustrate the practical usages in radiologic reading environment by simulating the radiologic reading process. The simulation is a set of radiologic reading process to do a practical task in the radiologic reading room. The principal processes are: (1) to view radiologic images on the Picture Archiving and Communicating System (PACS), (2) to connect the HIS/EMR (Hospital Information System/Electronic Medical Record) system, (3) to make an automatic radiologic reporting system, and (4) to record and recall information of interesting cases. This simulation environment was designed by using open-source macro program as connection software. The simulation performed well on the Window-based PACS workstation. Radiologists practiced the steps of the simulation comfortably by utilizing the macro-powered radiologic environment. This macro program could automate several manual cumbersome steps in the radiologic reading process. This program successfully acts as connection software for the PACS software, EMR/HIS, spreadsheet, and other various input devices in the radiologic reading environment. A user-friendly efficient radiologic reading environment could be established by utilizing open-source macro program as connection software. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  2. Efficient radiologic reading environment by using an open-source macro program as connection software

    International Nuclear Information System (INIS)

    Lee, Young Han

    2012-01-01

    Purpose: The objectives are (1) to introduce an easy open-source macro program as connection software and (2) to illustrate the practical usages in radiologic reading environment by simulating the radiologic reading process. Materials and methods: The simulation is a set of radiologic reading process to do a practical task in the radiologic reading room. The principal processes are: (1) to view radiologic images on the Picture Archiving and Communicating System (PACS), (2) to connect the HIS/EMR (Hospital Information System/Electronic Medical Record) system, (3) to make an automatic radiologic reporting system, and (4) to record and recall information of interesting cases. This simulation environment was designed by using open-source macro program as connection software. Results: The simulation performed well on the Window-based PACS workstation. Radiologists practiced the steps of the simulation comfortably by utilizing the macro-powered radiologic environment. This macro program could automate several manual cumbersome steps in the radiologic reading process. This program successfully acts as connection software for the PACS software, EMR/HIS, spreadsheet, and other various input devices in the radiologic reading environment. Conclusion: A user-friendly efficient radiologic reading environment could be established by utilizing open-source macro program as connection software.

  3. Fermilab Research Program Workbook

    International Nuclear Information System (INIS)

    Rubinstein, R.

    1984-05-01

    The Fermilab Research Program Workbook has been published annually for the past several years to assist the Physics Advisory Committee in the yearly program review conducted during its summer meeting. While this is still a major aim, it is hoped that the Workbook will also prove useful to others seeking information on the current status of Fermilab experiments and the properties of beams at the Laboratory. In addition, short summaries of approved experiments are also included

  4. Nuclear plant aging research program

    International Nuclear Information System (INIS)

    Eissenberg, D.M.

    1987-01-01

    The U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, has established the Nuclear Plant Aging Research (NPAR) program in its Division of Engineering Technology. Principal contractors for this program include Oak Ridge National Laboratory, Brookhaven National Laboratory, Idaho National Engineering Laboratory, and Pacific Northwest Laboratory. The program goals are: to identify and characterize time-dependent degradation (aging) of nuclear plant safety-related electrical and mechanical components which could lead to loss of safety function; to identify and recommend methods for detecting and trending aging effects prior to loss of safety function so that timely maintenance can be implemented; and to recommend maintenance practices for mitigating the effects of aging. Research activities include prioritization of system and component aging in nuclear plants, characterization of aging degradation of specific components including identification of functional indicators useful for trending degradation, and testing of practical methods and devices for measuring the functional indicators. Aging assessments have been completed on electric motors, snubbers, motor-operated valves, and check valves. Testing of trending methods and devices for motor-operated valves and check valves is in progress

  5. Research Program to Investigate the Fundamental Chemistry of Technetium

    International Nuclear Information System (INIS)

    Edelstein, Norman M.; Burns, Carol J.; Shuh, David D.; Lukens, Wayne

    2000-01-01

    Technetium (99Tc, half-life = 2.13x105 years, b-emitter) is one of the radionuclides of major concern for nuclear waste disposal. This concern is due to the long half-life of 99Tc, the ease with which pertechnetate, TcO4 -, migrates in the geosphere, and the corresponding regulatory considerations. The problem of mobility of pertechnetate in the environment is compounded by the fact that pertechnetate is the thermodynamically stable form of technetium in aerobic environments. These two factors present challenges for the safe, long term immobilization of technetium in waste forms. Because of the stability of pertechnetate, technetium has been assumed to exist as pertechnetate in the aqueous phase of nuclear waste tanks. However, recent studies indicate that a significant fraction of the technetium is in a different chemical form. This program addresses the fundamental solution chemistry of technetium in the waste tank environment, and in a second part, the stability of technetium in various waste forms. The chemistry of this element will be studied in aqueous solutions at high pH, with various added salts such as nitrate, nitrite, and organic complexants, and as a function of radiation dose, to determine whether radiolysis effects can reduce TcO4 -. A separate facet of this research is the search for chemical forms of technetium that may be thermodynamically and/or kinetically stable and may be incorporated in various waste forms for long term storage. This phase of the program will address the problem of the possible oxidation of lower valent technetium species in various waste form matrices and the subsequent leaching of the highly soluble TcO4 -

  6. Fossil Energy Advanced Research and Technology Development (AR TD) Materials Program semiannual progress report for the period ending September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.; Cole, N.C. (comps.)

    1992-04-01

    The objective of the Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The Program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Research is outlined in four areas: Ceramics, New Alloys, Corrosion and Erosion Research, and Technology Development and Transfer. (VC)

  7. A mixed-methods exploration of an environment for learning computer programming

    Directory of Open Access Journals (Sweden)

    Richard Mather

    2015-08-01

    Full Text Available A mixed-methods approach is evaluated for exploring collaborative behaviour, acceptance and progress surrounding an interactive technology for learning computer programming. A review of literature reveals a compelling case for using mixed-methods approaches when evaluating technology-enhanced-learning environments. Here, ethnographic approaches used for the requirements engineering of computing systems are combined with questionnaire-based feedback and skill tests. These are applied to the ‘Ceebot’ animated 3D learning environment. Video analysis with workplace observation allowed detailed inspection of problem solving and tacit behaviours. Questionnaires and knowledge tests provided broad sample coverage with insights into subject understanding and overall response to the learning environment. Although relatively low scores in programming tests seemingly contradicted the perception that Ceebot had enhanced understanding of programming, this perception was nevertheless found to be correlated with greater test performance. Video analysis corroborated findings that the learning environment and Ceebot animations were engaging and encouraged constructive collaborative behaviours. Ethnographic observations clearly captured Ceebot's value in providing visual cues for problem-solving discussions and for progress through sharing discoveries. Notably, performance in tests was most highly correlated with greater programming practice (p≤0.01. It was apparent that although students had appropriated technology for collaborative working and benefitted from visual and tacit cues provided by Ceebot, they had not necessarily deeply learned the lessons intended. The key value of the ‘mixed-methods’ approach was that ethnographic observations captured the authenticity of learning behaviours, and thereby strengthened confidence in the interpretation of questionnaire and test findings.

  8. Turning research on the psychosocial working environment into regulatory practice

    DEFF Research Database (Denmark)

    Hansen, Agnete Meldgaard; Nielsen, Klaus Tranetoft; Starheim, Liv

    The psychosocial working environment is an expanding field of research. Within the last decades a lot of knowledge has been developed in the field. The question however remains how this knowledge can be, and is being, utilized in the regulation of the psychosocial working environment. This question...... we understand this process as a translation of knowledge into policies, tools and actors dealing with the psychosocial working environment. Drawing on this understanding we develop a model that illustrates the utility of different types of research on the psychosocial working environment...

  9. Undergraduate Research Program Between SCU and SOFIA

    Science.gov (United States)

    Kulas, Kristin Rose; Andersson, B.-G.

    2018-06-01

    We present results on an undergraduate research program run in collaboration between Santa Clara University (SCU), a predominately undergraduate liberal arts college and the SOFIA Science Center/USRA. We have started a synergistic program between SCU and SOFIA (located at NASA Ames) where the students are able to be fully immersed in astronomical research; from helping to write telescope observing proposal; to observing at a world-class telescope; to reducing and analyzing the data that they acquired and ultimately to presenting/publishing their findings. A recently awarded NSF collaborative grant will allow us to execute and expand this program over the next several years. In this poster we present some of our students research and their success after the program. In addition, we discuss how a small university can actively collaborate with a large government-funded program like SOFIA, funded by NASA.

  10. Teacher Research Experience Programs = Increase in Student Achievement

    Science.gov (United States)

    Dubner, J.

    2010-12-01

    Columbia University's Summer Research Program for Science Teachers (SRP), founded in 1990, is one of the largest, best known university-based professional development programs for science teachers in the U.S. The program’s basic premise is simple: teachers cannot effectively teach science if they have not experienced it firsthand. For eight weeks in each of two consecutive summers, teachers participate as a member of a research team, led by a member of Columbia University’s research faculty. In addition to the laboratory experience, all teachers meet as a group one day each week during the summer for a series of pedagogical activities. A unique quality of the Summer Research Program is its focus on objective assessment of its impact on attitudes and instructional practices of participating teachers, on the performance of these teachers in their mentors’ laboratories, and most importantly, on the impact of their participation in the program on student interest and performance in science. SRP uses pass rate on the New York State Regents standardized science examinations as an objective measure of student achievement. SRP's data is the first scientific evidence of a connection between a research experience for teachers program and gains in student achievement. As a result of the research, findings were published in Science Magazine. The author will present an overview of Columbia's teacher research program and the results of the published program evaluation.

  11. Some aspects of research relevant to environment radiochemistry

    International Nuclear Information System (INIS)

    Chen Shi; Ma Mingxie

    1997-01-01

    The authors suggest some research aspects relevant to environmental radiochemistry from the view point of environmental protection and radiation protection: the migration behavior of radionuclides, their interaction with environment medium and their speciation in environment. The status and prospect of these aspects and the relationship between them are discussed

  12. Building Innovation and Sustainability in Programs of Research.

    Science.gov (United States)

    Villarruel, Antonia M

    2018-01-01

    Innovation and sustainability are two important concepts of impactful programs of research. While at first glance these concepts and approaches may seem at odds, they are synergistic. We examine the social, political, and policy context as it relates to innovation and sustainability. We present an exemplar of a program of research and discuss factors to consider in developing innovative and sustainable programs of research. Innovation is an important component of sustainable programs of research. Understanding the social and political context and addressing relevant policy issues are factors to be considered in both innovation and sustainability. Innovation and sustainability, important components of research, are also central to clinical practice. Open communication between researchers and clinicians can support the acceleration of innovations and the integration of evidence-based findings in practice. © 2017 Sigma Theta Tau International.

  13. Virtual Research Environments: The role of the facilitator

    CSIR Research Space (South Africa)

    Bowers, N

    2012-06-01

    Full Text Available This conference presentation discusses the authors' duties as the facilitators of the POL-SABINA Natural Products Virtual Research Environment. In summary, they facilitated the use and content population of the Natural Products Virtual Research...

  14. Base Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Everett Sondreal; John Hendrikson

    2009-03-31

    In June 2009, the Energy & Environmental Research Center (EERC) completed 11 years of research under the U.S. Department of Energy (DOE) Base Cooperative Agreement No. DE-FC26-98FT40320 funded through the Office of Fossil Energy (OFE) and administered at the National Energy Technology Laboratory (NETL). A wide range of diverse research activities were performed under annual program plans approved by NETL in seven major task areas: (1) resource characterization and waste management, (2) air quality assessment and control, (3) advanced power systems, (4) advanced fuel forms, (5) value-added coproducts, (6) advanced materials, and (7) strategic studies. This report summarizes results of the 67 research subtasks and an additional 50 strategic studies. Selected highlights in the executive summary illustrate the contribution of the research to the energy industry in areas not adequately addressed by the private sector alone. During the period of performance of the agreement, concerns have mounted over the impact of carbon emissions on climate change, and new programs have been initiated by DOE to ensure that fossil fuel resources along with renewable resources can continue to supply the nation's transportation fuel and electric power. The agreement has addressed DOE goals for reductions in CO{sub 2} emissions through efficiency, capture, and sequestration while expanding the supply and use of domestic energy resources for energy security. It has further contributed to goals for near-zero emissions from highly efficient coal-fired power plants; environmental control capabilities for SO{sub 2}, NO{sub x}, fine respirable particulate (PM{sub 2.5}), and mercury; alternative transportation fuels including liquid synfuels and hydrogen; and synergistic integration of fossil and renewable resources (e.g., wind-, biomass-, and coal-based electrical generation).

  15. Programs of the Office of Energy Research

    International Nuclear Information System (INIS)

    1986-04-01

    The programs of the Office of Energy Research, DOE, include several thousand individual projects and hundreds of laboratories, universities, and other research facilities throughout the United States. The major programs and activities are described briefly, and include high energy and nuclear physics, fusion energy, basic energy sciences, and health and environmental research, as well as advisory, assessment, support, and scientific computing activities

  16. Natural and accelerated bioremediation research program plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This draft plan describes a ten-year program to develop the scientific understanding needed to harness and develop natural and enhanced biogeochemical processes to bioremediate contaminated soils, sediments and groundwater at DOE facilities. The Office of Health and Environmental Research (OHER) developed this program plan, with advice and assistance from DOE`s Office of Environmental Management (EM). The program builds on OHER`s tradition of sponsoring fundamental research in the life and environmental sciences and was motivated by OHER`s and Office of Energy Research`s (OER`s) commitment to supporting DOE`s environmental management mission and the belief that bioremediation is an important part of the solution to DOE`s environmental problems.

  17. Programs of the Office of Energy Research: Revision

    International Nuclear Information System (INIS)

    1987-06-01

    In establishing each of the Federal Agencies that have been successively responsible for energy technologies and their development - the Atomic Energy Commission, the Energy Research and Development Administration, and, currently, the US Department of Energy (DOE) - Congress made specific provisions for the conduct of advanced and fundamental research. The purpose of this research has been to support the energy technology development programs by providing insight into fundamental science and associated phenomena and developing new or advanced concepts and techniques. Today, this responsibility rests with the Office of Energy Research (ER), DOE, whose present programs have their origins in pioneering energy-related research of this nature, which was initiated nearly 40 years ago. The Director, Office of Energy Research, also acts as the chief scientist and scientific advisor to the Secretary of Energy for the entire spectrum of energy research and development (R and D) programs of the Department. ER programs include several thousand individual projects and hundreds of laboratories, universities, and other research facilities throughout the Unites States. In the following pages, each of these programs and activities are described briefly for the information of the scientific community and the public at large. 5 figs., 6 tabs

  18. HTGR safety research program

    International Nuclear Information System (INIS)

    Barsell, A.W.; Olsen, B.E.; Silady, F.A.

    1981-01-01

    An HTGR safety research program is being performed supporting and guided in priorities by the AIPA Probabilistic Risk Study. Analytical and experimental studies have been conducted in four general areas where modeling or data assumptions contribute to large uncertainties in the consequence assessments and thus, in the risk assessment for key core heat-up accident scenarios. Experimental data have been obtained on time-dependent release of fission products from the fuel particles, and plateout characteristics of condensible fission products in the primary circuit. Potential failure modes of primarily top head PCRV components as well as concrete degradation processes have been analyzed using a series of newly developed models and interlinked computer programs. Containment phenomena, including fission product deposition and potential flammability of liberated combustible gases have been studied analytically. Lastly, the behaviour of boron control material in the core and reactor subcriticality during core heatup have been examined analytically. Research in these areas has formed the basis for consequence updates in GA-A15000. Systematic derivation of future safety research priorities is also discussed. (author)

  19. Teachers' and postgraduate nursing students' experience of the educational environment in Iran: A qualitative Research.

    Science.gov (United States)

    Hajihosseini, Fatemeh; Tafreshi, Mansoureh Zagheri; Hosseini, Meimanat; Baghestani, Ahmad Reza

    2017-08-01

    The learning environment has a significant role in determining nursing students' academic achievements and course satisfaction. Creating a proper educational environment is therefore necessary for improving the quality of teaching and learning, and for delivering competent graduates to society. The present study was conducted to explore teachers' and postgraduate nursing students' experience of the educational environment in Iran. This qualitative study uses an inductive approach and conventional content analysis. Data were collected through semi-structured face-to-face interviews with seven PhD students, seven faculty members (directors) and two focus groups comprising of fourteen master's students in total, selected from three major universities in Tehran, Iran. Seven subcategories were extracted from the data, including the organizational context, interactive climate, teachers' competency, student appreciation, research centeredness, educational guidance and professionalism. The educational environment of postgraduate nursing programs in Iran encompasses different dimensions that can serve as both key points for educational environment evaluators and as guidelines for officials at different levels, to modify the weaknesses and improve the strengths of the system.

  20. Teachers’ and postgraduate nursing students’ experience of the educational environment in Iran: A qualitative Research

    Science.gov (United States)

    Hajihosseini, Fatemeh; Tafreshi, Mansoureh Zagheri; Hosseini, Meimanat; Baghestani, Ahmad Reza

    2017-01-01

    Background The learning environment has a significant role in determining nursing students’ academic achievements and course satisfaction. Creating a proper educational environment is therefore necessary for improving the quality of teaching and learning, and for delivering competent graduates to society. Objective The present study was conducted to explore teachers’ and postgraduate nursing students’ experience of the educational environment in Iran. Methods This qualitative study uses an inductive approach and conventional content analysis. Data were collected through semi-structured face-to-face interviews with seven PhD students, seven faculty members (directors) and two focus groups comprising of fourteen master’s students in total, selected from three major universities in Tehran, Iran. Results Seven subcategories were extracted from the data, including the organizational context, interactive climate, teachers’ competency, student appreciation, research centeredness, educational guidance and professionalism. Conclusion The educational environment of postgraduate nursing programs in Iran encompasses different dimensions that can serve as both key points for educational environment evaluators and as guidelines for officials at different levels, to modify the weaknesses and improve the strengths of the system. PMID:28979741

  1. Exploratory Technology Research Program for electrochemical energy storage

    Science.gov (United States)

    Kinoshita, Kim

    1994-09-01

    The U.S. Department of Energy's Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EV's). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratories (SNL); Lawrence Berkeley Laboratory (LBL) is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on selected candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EV's. The role of the FIR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1993.

  2. Real time programming environment for Windows

    Energy Technology Data Exchange (ETDEWEB)

    LaBelle, D.R. [LaBelle (Dennis R.), Clifton Park, NY (United States)

    1998-04-01

    This document provides a description of the Real Time Programming Environment (RTProE). RTProE tools allow a programmer to create soft real time projects under general, multi-purpose operating systems. The basic features necessary for real time applications are provided by RTProE, leaving the programmer free to concentrate efforts on his specific project. The current version supports Microsoft Windows{trademark} 95 and NT. The tasks of real time synchronization and communication with other programs are handled by RTProE. RTProE includes a generic method for connecting a graphical user interface (GUI) to allow real time control and interaction with the programmer`s product. Topics covered in this paper include real time performance issues, portability, details of shared memory management, code scheduling, application control, Operating System specific concerns and the use of Computer Aided Software Engineering (CASE) tools. The development of RTProE is an important step in the expansion of the real time programming community. The financial costs associated with using the system are minimal. All source code for RTProE has been made publicly available. Any person with access to a personal computer, Windows 95 or NT, and C or FORTRAN compilers can quickly enter the world of real time modeling and simulation.

  3. Horonobe Underground Research Laboratory project investigation program for the 2007 fiscal year (Translated document)

    International Nuclear Information System (INIS)

    Matsui, Hiroya; Nakayama, Masashi; Sanada, Hiroyuki; Yamaguchi, Takehiro

    2008-09-01

    As past of the research and development program on the geological disposal of high-level radioactive waste (HLW), the Horonobe Underground Research Center, a division of the Japan Atomic Energy Agency (JAEA), is implementing the Horonobe Underground Research Laboratory Project (Horonobe URL Project) with the aim at investigating sedimentary rock formations. According to the research plan described in the Midterm Plan of JAEA, geological investigations are to be carried out during the drilling of a shaft down to intermediate depth, while research and development in the areas of engineering technology and safety assessment are to be promoted by collaboration with other research organizations. The results of the R and D activities will be systematized as a 'knowledge base' that supports a wide range of arguments related to the safety of geological disposal. The Horonobe URL Project is planned to extend over a period of 20 years. The investigations will be conducted in three phases, namely 'Phase 1: Surface-based investigations', 'Phase 2: Construction phase' (investigations during construction of the underground facilities) and 'Phase 3: Operation phase' (research in the underground facilities). This report summarizes the investigation program for the 2007 fiscal year (2007/2008), the third year of the Phase 2 investigations. In the 2007 fiscal year, investigations in geoscientific research', including 'development of techniques for investigating the geological environment', 'development of techniques for use in the deep underground environment' and 'studies on the long-term stability of the geological environment', is continuously carried out. Investigations in 'research and development on geological disposal technology', including improving the reliability of disposal technologies' and 'enhancement of safety assessment methodologies' are also continuously carried out. Construction of the underground facilities is ongoing at the Ventilation Shaft and the East Shaft

  4. LASL's FY 1978 supporting research program

    International Nuclear Information System (INIS)

    Hammel, E.F.; Merlan, S.J.; Freiwald, D.A.

    1978-09-01

    This report gives a brief overview of Los Alamos Scientific Laboratory's supporting research program, including philosophy, management and program analysis, funding, and a brief description of the kinds of work currently supported. 10 figures

  5. IRSN research programs concerning reactor safety

    International Nuclear Information System (INIS)

    Bardelay, J.

    2005-01-01

    This paper is made up of 3 parts. The first part briefly presents the missions of IRSN (French research institute on nuclear safety), the second part reviews the research works currently led by IRSN in the following fields : -) the assessment of safety computer codes, -) thermohydraulics, -) reactor ageing, -) reactivity accidents, -) loss of coolant, -) reactor pool dewatering, -) core meltdown, -) vapor explosion, and -) fission product release. In the third part, IRSN is shown to give a major importance to experimental programs led on research or test reactors for collecting valid data because of the complexity of the physical processes that are involved. IRSN plans to develop a research program concerning the safety of high or very high temperature reactors. (A.C.)

  6. Third Pole Environment (TPE): a new frontier for interdisciplinary research

    Science.gov (United States)

    Liu, Z.; Yao, T.; Thompson, L. G.; Mosbrugger, V.; Zhang, F.; Ma, Y.; Yang, X.; Wang, W.; Joswiak, D.; Liu, X.; Devkota, L. P.; Tayal, S.; Luo, T.

    2013-12-01

    The Tibetan Plateau and surrounding mountain ranges, referred to by scientists as the Third Pole (TP), represent one of the largest ice masses of the Earth. The region is one of the most sensitive areas responding to global climate change due to its high altitude and the presence of permafrost and glaciers. The near 100,000 km2 of glaciers ensure the permanent flow of major rivers in this region and provide water to 1.4 billion people in Asia. Thus, environmental changes taking place on the TP significantly influences social and economic development of countries in this region such as China, India, Nepal, Tajikistan, Pakistan, Afghanistan and Bhutan. With an average elevation higher than 4,000 metres above sea level, the Third Pole is characterized by complex interactions of atmospheric, cryospheric, hydrological, geological and environmental processes that bear special significance for the Earth's biodiversity, climate and water cycles. For a comprehensive understanding of the environment of the TP and its implications on the development of the region, we need to integrate different disciplines under a them of 'water-ice-air-ecosystem -human' interactions and reveal environmental change processes and mechanisms on the TP and their influences on and regional responses to global changes, and thus to serve for enhancement of human adaptation to the changing environment. Like Antarctica and the Arctic, the Third Pole region is drawing increased attention of the international academic community. A series of observations and monitoring programs in the Third Pole region has been widely implemented. However, data necessary to precisely assess the environmental, societal and economic changes caused by alterations in the Third Pole dynamics are either lacking or insufficient. The Third Pole Environment (TPE) program is thus established as a comprehensive and coordinated international research, monitoring and capacity building initiative, with goals to address the influence

  7. Positive School and Classroom Environment: Precursors of Successful Implementation of Positive Youth Development Programs

    Directory of Open Access Journals (Sweden)

    Rachel C. F. Sun

    2008-01-01

    Full Text Available This case study was based on a school where the Tier 1 Program of the Project P.A.T.H.S. was integrated into the formal curriculum. In this case study, an interview with the school principal, vice-principal, and social worker was conducted in order to understand their perceptions of administrative arrangements and issues in the school, implementation characteristics, program effectiveness, program success, and overall impression. Results showed that several positive school and classroom attributes were conducive to program success, including positive school culture and belief in students' potentials, an inviting school environment, an encouraging classroom environment, high involvement of school administrative personnel, and systematic program arrangement.

  8. Research Experience in Psychiatry Residency Programs Across Canada: Current Status

    Science.gov (United States)

    Shanmugalingam, Arany; Ferreria, Sharon G; Norman, Ross M G; Vasudev, Kamini

    2014-01-01

    Objective: To determine the current status of research experience in psychiatry residency programs across Canada. Method: Coordinators of Psychiatric Education (COPE) resident representatives from all 17 psychiatry residency programs in Canada were asked to complete a survey regarding research training requirements in their programs. Results: Among the 17 COPE representatives, 15 completed the survey, representing 88% of the Canadian medical schools that have a psychiatry residency program. Among the 15 programs, 11 (73%) require residents to conduct a scholarly activity to complete residency. Some of these programs incorporated such a requirement in the past 5 years. Ten respondents (67%) reported availability of official policy and (or) guidelines on resident research requirements. Among the 11 programs that have a research requirement, 10 (91%) require residents to complete 1 scholarly activity; 1 requires completion of 2 scholarly activities. Eight (53%) residency programs reported having a separate research track. All of the programs have a research coordinator and 14 (93%) programs provide protected time to residents for conducting research. The 3 most common types of scholarly activities that qualify for the mandatory research requirement are a full independent project (10 programs), a quality improvement project (8 programs), and assisting in a faculty project (8 programs). Six programs expect their residents to present their final work in a departmental forum. None of the residency programs require publication of residents’ final work. Conclusions: The current status of the research experience during psychiatry residency in Canada is encouraging but there is heterogeneity across the programs. PMID:25565474

  9. Intelligent Flight Control Simulation Research Program

    National Research Council Canada - National Science Library

    Stolarik, Brian

    2007-01-01

    ...). Under the program, entitled "Intelligent Flight Control Simulation Research Laboratory," a variety of technologies were investigated or developed during the course of the research for AFRL/VAC...

  10. The in-core experimental program at the MIT Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kohse, G.E.; Hu, L-W., E-mail: kohse@mit.edu [Massachusetts Inst. of Technology, Nuclear Reactor Lab., Cambridge, Massachusetts (United States)

    2014-07-01

    This paper describes the program of in-core experiments at the Massachusetts Institute of Technology Research Reactor (MITR), a 6 MW research reactor. The MITR has a neutron flux and spectrum similar to those in water-cooled power reactors and therefore provides a useful test environment for materials and fuels research. In-core facilities include: a water loop operating at pressurized water or boiling water reactor conditions, an inert gas irradiation facility operating at temperature up to 850 {sup o}C and special purpose facilities including fuel irradiation experiments. Recent and ongoing tests include: water loop investigations of corrosion and thermal and mechanical property evolution of SiC/SiC composites for fuel cladding, irradiation of advanced materials and in-core sensors at elevated temperatures, irradiation in molten fluoride salt at 700 {sup o}C of metal alloy, graphite and composite materials for power reactor applications and instrumented irradiations of metal-bonded hydride fuel. (author)

  11. Building Technologies Program Multi-Year Program Plan Research and Development 2008

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2008-01-01

    Building Technologies Program Multi-Year Program Plan 2008 for research and development, including residential and commercial integration, lighting, HVAC and water heating, envelope, windows, and analysis tools.

  12. Everyone Plays! A Review of Research on the Integration of Sports and Physical Activity in Out of School Time Programs

    Science.gov (United States)

    Policy Studies Associates, Inc., 2006

    2006-01-01

    A growing body of research attests to the value of high-quality out-of-school time (OST) programs in promoting positive youth development. These programs provide environments where young people can engage in academic enrichment, build meaningful relationships with responsible adults and peers, nurture new interests, and develop the social and life…

  13. Program of research - 1990-1991

    International Nuclear Information System (INIS)

    1991-01-01

    The 1990-1991 Program of Research reflects the fundamental changes within the Australian Nuclear Science and Technology Organization (ANSTO) over the past three years as it has oriented itself towards being a more commercially driven organization, an organization responding to market demands and pressures. From July 1, 1990 several key projects have been linked together in the new Industrial Technology Program. The Program encompasses projects that have real potential to earn revenue for ANSTO and make measurable improvements in efficiency and productivity for Australian companies. The Isotope Technology project is researching and transferring to industry radioisotope technology for tracing the effectiveness of plant processes, the movement of materials within blast furnaces and leakages and outages in plant pipework. The two important newcomers are the Quality Technology Centre and the Safety and Reliability group. Details about project leaders, project titles and objectives are provided. ills

  14. 1999 Summer Research Program for High School Juniors at the University of Rochester's Laboratory for Laser Energetics

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-10-09

    oak-B202--During the summer of 1999, 12 students from Rochester-area high schools participated in the Laboratory for Laser Energetics' Summer High School Research Program. The goal of this program is to excite a group of high school students about careers in the areas of science and technology by exposing them to research in a state-of-the-art environment. Too often, students are exposed to ''research'' only through classroom laboratories that have prescribed procedures and predictable results. In LLE's summer program, the students experience all of the trials, tribulations, and rewards of scientific research. By participating in research in a real environment, the students often become more enthusiastic about careers in science and technology. In addition, LLE gains from the contributions of the many highly talented students who are attracted to the program. The students spent most of their time working on their individual research projects with members of LLE's technical staff. The projects were related to current research activities at LLE and covered a broad range of areas of interest including laser modeling, diagnostic development, chemistry, liquid crystal devices, and opacity data visualization. The students, their high schools, their LLE supervisors and their project titles are listed in the table. Their written reports are collected in this volume. The students attended weekly seminars on technical topics associated with LLE's research. Topics this year included lasers, fusion, holography, optical materials, global warming, measurement errors, and scientific ethics. The students also received safety training, learned how to give scientific presentations, and were introduced to LLE's resources, especially the computational facilities. The program culminated with the High School Student Summer Research Symposium on 25 August at which the students presented the results of their research to an audience that

  15. The AstroVR Collaboratory, an On-line Multi-User Environment for Research in Astrophysics

    Science.gov (United States)

    van Buren, D.; Curtis, P.; Nichols, D. A.; Brundage, M.

    We describe our experiment with an on-line collaborative environment where users share the execution of programs and communicate via audio, video, and typed text. Collaborative environments represent the next step in computer-mediated conferencing, combining powerful compute engines, data persistence, shared applications, and teleconferencing tools. As proof of concept, we have implemented a shared image analysis tool, allowing geographically distinct users to analyze FITS images together. We anticipate that \\htmllink{AstroVR}{http://astrovr.ipac.caltech.edu:8888} and similar systems will become an important part of collaborative work in the next decade, including with applications in remote observing, spacecraft operations, on-line meetings, as well as and day-to-day research activities. The technology is generic and promises to find uses in business, medicine, government, and education.

  16. Research Progress and Prospect of GNSS Space Environment Science

    Directory of Open Access Journals (Sweden)

    YAO Yibin

    2017-10-01

    Full Text Available Troposphere and ionosphere are two important components of the near-earth space environment. They are close to the surface of the earth and have great influence on human life. The developments of Global Navigation Satellite System (GNSS over the past several decades provide a great opportunity for the GNSS-based space environment science. This review summarizes the research progress and prospect of the GNSS-based research of the Earth's troposphere and ionosphere. On the tropospheric perspective, modeling of the key tropospheric parameters and inversion of precipitable water vapor (PWV are dominant researching fields. On the ionospheric perspective, 2D/3D ionospheric models and regional/global ionospheric monitoring are dominant researching fields.

  17. The Effect of Peer-Mentoring Program on Nursing Students’ Clinical Environment Stressors

    Directory of Open Access Journals (Sweden)

    F Sardari Kashkooli

    2014-01-01

    Results: There was a significant difference between stress scores before and after of the intervention in both groups (p=0.00. Mean difference of clinical environment stress factors in two groups were not statistically significant (p=0.99. Conclusions: Peer-mentoring program is not significant effective on clinical environment stress reduction. Key Words: Nursing Education, Peer Mentoring, Clinical Environment Stressors

  18. A Survey of Campus Coordinators of Undergraduate Research Programs

    Science.gov (United States)

    Hensley, Merinda Kaye; Shreeves, Sarah L.; Davis-Kahl, Stephanie

    2015-01-01

    Interest in supporting undergraduate research programs continues to grow within academic librarianship. This article presents how undergraduate research program coordinators perceive and value library support of their programs. Undergraduate research coordinators from a variety of institutions were surveyed on which elements of libraries and…

  19. Natural and accelerated bioremediation research program plan

    International Nuclear Information System (INIS)

    1995-09-01

    This draft plan describes a ten-year program to develop the scientific understanding needed to harness and develop natural and enhanced biogeochemical processes to bioremediate contaminated soils, sediments and groundwater at DOE facilities. The Office of Health and Environmental Research (OHER) developed this program plan, with advice and assistance from DOE's Office of Environmental Management (EM). The program builds on OHER's tradition of sponsoring fundamental research in the life and environmental sciences and was motivated by OHER's and Office of Energy Research's (OER's) commitment to supporting DOE's environmental management mission and the belief that bioremediation is an important part of the solution to DOE's environmental problems

  20. Federal Geothermal Research Program Update - Fiscal Year 2001

    Energy Technology Data Exchange (ETDEWEB)

    Laney, P.T.

    2002-08-31

    This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2001. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy.

  1. Qualitative Research in an International Research Program: Maintaining Momentum while Building Capacity in Nurses

    Directory of Open Access Journals (Sweden)

    Judy Mill RN, PhD

    2014-02-01

    Full Text Available Nurses are knowledgeable about issues that affect quality and equity of care and are well qualified to inform policy, yet their expertise is seldom acknowledged and their input infrequently invited. In 2007, a large multidisciplinary team of researchers and decision-makers from Canada and five low- and middle-income countries (Barbados, Jamaica, Uganda, Kenya, and South Africa received funding to implement a participatory action research (PAR program entitled “Strengthening Nurses' Capacity for HIV Policy Development in sub-Saharan Africa and the Caribbean.” The goal of the research program was to explore and promote nurses' involvement in HIV policy development and to improve nursing practice in countries with a high HIV disease burden. A core element of the PAR program was the enhancement of the research capacity, and particularly qualitative capacity, of nurses through the use of mentorship, role-modeling, and the enhancement of institutional support. In this article we: (a describe the PAR program and research team; (b situate the research program by discussing attitudes to qualitative research in the study countries; (c highlight the incremental formal and informal qualitative research capacity building initiatives undertaken as part of this PAR program; (d describe the approaches used to maintain rigor while implementing a complex research program; and (e identify strategies to ensure that capacity building was locally-owned. We conclude with a discussion of challenges and opportunities and provide an informal analysis of the research capacity that was developed within our international team using a PAR approach.

  2. Research and development of the geological environment data base management system

    International Nuclear Information System (INIS)

    Shimizu, Kazuhiko

    1989-10-01

    PNC (Power Reactor and Nuclear Fuel Development Corporation) has been carrying out investigation and research to understand characteristics of the geological environment throughout the country of Japan so as to prepare the fundamental data for evaluation of suitability of the entire geological environment. Being accumulated are a large quantity and variety of data on the geological environment which comprises the geology, lithology, geomechanics, geochemistry, geotectonic conditions and resource potential. It will be necessary hereafter to manage these data efficiently and apply them to comprehensive analysis to assess the framework of the geological environment of Japan. Thus it was decided that a computer aided data management system would be introduced to support extensively the task of experts in charge of investigation and evaluation of the geological environment of Japan. A basic design and a development plan of the system, named Geological Environment Data Base Management System, were made on the basis of task analysis and investigation on current technology of computer graphics which consists of the most important factor of the system development. The method of data management and the specification of functions to be realized were examined. The user-interface is designed in consideration of application of the system to presentation for public acceptance and operation by the unexperienced. The whole system is divided into seven subsystems and the entire program is compiled as an assembly of modules corresponding to each functions so that the system is applicable to partial reforming and functional expansion with the change of requirement to the system or the advance of computer technology in future. Only the input and output data format of each subsystems are standardized and unified to maintain the compatibility in the system. (author)

  3. 83-inch cyclotron research program. Final report

    International Nuclear Information System (INIS)

    Parkinson, W.C.

    1983-07-01

    In June of 1960 the US Atomic Energy Commission authorized the construction of a modern variable energy cyclotron facility at The University of Michigan to be used for research in nuclear spectroscopy. The Legislature of the State of Michigan made available funds for construction of a building to house the 83-inch cyclotron and auxiliary equipment as well as the University's remodeled 42-inch cyclotron. The research program centered around the 83-inch cyclotron was funded by the AEC and its successors, the Energy Research and Development Administration (ERDA) and the Department of Energy (DOE), from September 1964 through March 1977. The program represented a continuation of the research effort using the 42-inch cyclotron facility which had been supported continuously by the AEC since February 1950. This final report to DOE briefly describes the research facility, the research program, and highlights the principal accomplishments of the effort. It begins with a historical note to place this effort within the context of nuclear physics research in the Department of Physics of the University of Michigan

  4. Research of the Rio Grande Ecosystem Management Program

    Science.gov (United States)

    Deborah M. Finch

    2000-01-01

    This paper describes the mission, objectives, and preliminary results of the Middle Rio Grande Ecosystem Management Research Program managed at the Rocky Mountain Research Station's Albuquerque laboratory. This program was initiated in 1994 to address growing pressures to effectively manage the limited resources of the middle Rio Grande Basin. The program is...

  5. The Summer Undergraduate Research Internship Program at the Pisgah Astronomical Research Institute

    Science.gov (United States)

    Cline, J. Donald; Castelaz, M.; Whitworth, C.; Clavier, D.; Owen, L.; Barker, T.

    2012-01-01

    Pisgah Astronomical Research Institute (PARI) offers summer undergraduate research internships. PARI has received support for the internships from the NC Space Grant Consortium, NSF awards for public science education, private donations, private foundations, and through a collaboration with the Pisgah Astronomical Research and Education Center of the University of North Carolina - Asheville. The internship program began in 2001 with 4 students. This year 7 funded students participated in 2011. Mentors for the interns include PARI's Science, Education, and Information Technology Directors and visiting faculty who are members of the PARI Research Affiliate Faculty program. Students work with mentors on radio and optical astronomy research, electrical engineering for robotic control of instruments, software development for instrument control and software for citizen science projects, and science education by developing curricula and multimedia and teaching high school students in summer programs at PARI. At the end of the summer interns write a paper about their research which is published in the PARI Summer Student Proceedings. Several of the students have presented their results at AAS Meetings. We will present a summary of specific research conducted by the students with their mentors, the logistics for hosting the PARI undergraduate internship program, and plans for growth based on the impact of an NSF supported renovation to the Research Building on the PARI campus.

  6. Cameco engineered tailings program: linking research with industrial processes for improved tailings performance

    International Nuclear Information System (INIS)

    Kotzer, T.; Hendry, M.J.

    2011-01-01

    The waste product from uranium mining and milling that generates the greatest public and regulatory concern is tailings. The tailings contain all of the mined material except uranium plus a host of processing reagents. These minerals and compounds have the potential to harm the local environment if not deposited in a fashion that is both geochemically and geotechnically stable. Environmental leadership impels Cameco Corporation to ensure that the methods used to dispose of tailings are at the forefront of best available technologies whereby tailings production results in a product with geotechnical and geochemical characteristics that minimize the environmental impact associated with long-term storage of this product. Cameco has developed an Engineered Tailings (ET) program to ensure optimization of long-term tailings performance and minimal impacts of elements of concern (EOCs) to the receiving environment, regardless of the ore being milled. Within this program chemical and physical performance of tailings from geochemical and geotechnical investigations and baseline environmental data, integrated with regulatory requirements and corporate commitments, will be used to evaluate and set criteria for mill- and tailings management facilities-based chemical and physical tailings characteristics, identify key knowledge gaps, prioritize areas of concern and implement appropriate responses. This paper provides an overview of the Engineered Tailings program, the research being conducted as part of the ET program, and how it links with present and future Cameco operations. (author)

  7. ANSTO program of research 1989-1990

    International Nuclear Information System (INIS)

    1989-09-01

    The 1989-1990 Program of Research of the Australian Nuclear Science and Technology Organization identifies the diversity of the organisation's current activities and the role of nuclear science and technology in achieving national goals. Major program areas continue to be biomedicine and health, advanced materials, applications of nuclear physics, environmental science, isotope technology and nuclear technology. Each project in a particular program area is defined in terms of background, objectives recent work and achievements, work planned and resources. External advisory committees which provide advice on research priorities, are viewed as a fundamental part of the ongoing evaluation process of the organization activities in response to changing priorities in industry, government and the community it serves

  8. Advanced research and technology development fossil energy materials program. Quarterly progress report for the period ending September 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, R.A. (comp.)

    1981-12-01

    This is the fourth combined quarterly progress report for those projects that are part of the Advanced Research and Technology Development Fossil Energy Materials Program. The objective is to conduct a program of research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Work performed on the program generally falls into the Applied Research and Exploratory Development categories as defined in the DOE Technology Base Review, although basic research and engineering development are also conducted. A substantial portion of the work on the AR and TD Fossil Energy Materials Program is performed by participating cntractor organizations. All subcontractor work is monitored by Program staff members at ORNL and Argonne National Laboratory. This report is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FY 1981 in which projects are organized according to fossil energy technologies. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program.

  9. The 2003 NASA Faculty Fellowship Program Research Reports

    Science.gov (United States)

    Nash-Stevenson, S. K.; Karr, G.; Freeman, L. M.; Bland, J. (Editor)

    2004-01-01

    For the 39th consecutive year, the NASA Faculty Fellowship Program (NFFP) was conducted at Marshall Space Flight Center. The program was sponsored by NASA Headquarters, Washington, DC, and operated under contract by The University of Alabama in Huntsville. In addition, promotion and applications are managed by the American Society for Engineering Education (ASEE) and assessment is completed by Universities Space Research Association (USRA). The nominal starting and finishing dates for the 10-week program were May 27 through August 1, 2003. The primary objectives of the NASA Faculty Fellowship Program are to: (1) Increase the quality and quantity of research collaborations between NASA and the academic community that contribute to NASA s research objectives; (2) provide research opportunities for college and university faculty that serve to enrich their knowledge base; (3) involve students in cutting-edge science and engineering challenges related to NASA s strategic enterprises, while providing exposure to the methods and practices of real-world research; (4) enhance faculty pedagogy and facilitate interdisciplinary networking; (5) encourage collaborative research and technology transfer with other Government agencies and the private sector; and (6) establish an effective education and outreach activity to foster greater awareness of this program.

  10. Evaluation of the Benefits Attributable to Automotive Lighweight Materials Program Research and Development Projects

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.

    2002-01-11

    The purpose of this project is to identify and test methods appropriate for estimating the benefits attributable to research and development (R and D) projects funded by the Automotive Lightweight Materials (ALM) Program of the Office of Advanced Automotive Technologies (OAAT) of the U.S. Department of Energy (DOE). The program focuses on the development and validation of advanced lightweight materials technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. The work supports the goals of the Partnership for a New Generation of Vehicles (PNGV). Up to thirty percent of the improvement required to meet the PNGV goal of tripling vehicle fuel economy and much of its cost, safety, and recyclability goal depend on the lightweight materials. Funded projects range from basic materials science research to applied research in production environments. Collaborators on these projects include national laboratories, universities, and private sector firms, such as leading automobile manufacturers and their suppliers.

  11. The SUPER Program: A Research-based Undergraduate Experience

    Science.gov (United States)

    Ernakovich, J. G.; Boone, R. B.; Boot, C. M.; Denef, K.; Lavallee, J. M.; Moore, J. C.; Wallenstein, M. D.

    2014-12-01

    Producing undergraduates capable of broad, independent thinking is one of the grand challenges in science education. Experience-based learning, specifically hands-on research, is one mechanism for increasing students' ability to think critically. With this in mind, we created a two-semester long research program called SUPER (Skills for Undergraduate Participation in Ecological Research) aimed at teaching students to think like scientists and enhancing the student research experience through instruction and active-learning about the scientific method. Our aim was for students to gain knowledge, skills, and experience, and to conduct their own research. In the first semester, we hosted active-learning workshops on "Forming Hypotheses", "Experimental Design", "Collecting and Managing Data", "Analysis of Data", "Communicating to a Scientific Audience", "Reading Literature Effectively", and "Ethical Approaches". Each lesson was taught by different scientists from one of many ecological disciplines so that students were exposed to the variation in approach that scientists have. In the second semester, students paired with a scientific mentor and began doing research. To ensure the continued growth of the undergraduate researcher, we continued the active-learning workshops and the students attended meetings with their mentors. Thus, the students gained technical and cognitive skills in parallel, enabling them to understand both "the how" and "the why" of what they were doing in their research. The program culminated with a research poster session presented by the students. The interest in the program has grown beyond our expectations, and we have now run the program successfully for two years. Many of the students have gone on to campus research jobs, internships and graduate school, and have attributed part of their success in obtaining their positions to their experience with the SUPER program. Although common in other sciences, undergraduate research experiences are

  12. Training program attracts work and health researchers

    DEFF Research Database (Denmark)

    Skakon, Janne

    2007-01-01

    Each year in Canada, the costs of disability arising from work-related causes – including workers’ compensation and health-care costs – exceed $6.7 billion. Despite the significant financial and social impacts of worker injury and illness, only a small fraction of Canadian researchers are dedicated...... to examining work disability prevention issues. An innovative program that attracts international students, the Work Disability Prevention Canadian Institutes of Health Research (CIHR) Strategic Training Program, aims to build research capacity in young researchers and to create a strong network that examines...

  13. UNIVERSITY TURBINE SYSTEMS RESEARCH PROGRAM SUMMARY AND DIRECTORY

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence P. Golan; Richard A. Wenglarz

    2004-07-01

    The South Carolina Institute for Energy Studies (SCIES), administratively housed at Clemson University, has participated in the advancement of combustion turbine technology for over a decade. The University Turbine Systems Research Program, previously referred to as the Advanced Gas Turbine Systems Research (AGTSR) program, has been administered by SCIES for the U.S. DOE during the 1992-2003 timeframe. The structure of the program is based on a concept presented to the DOE by Clemson University. Under the supervision of the DOE National Energy Technology Laboratory (NETL), the UTSR consortium brings together the engineering departments at leading U.S. universities and U.S. combustion turbine developers to provide a solid base of knowledge for the future generations of land-based gas turbines. In the UTSR program, an Industrial Review Board (IRB) (Appendix C) of gas turbine companies and related organizations defines needed gas turbine research. SCIES prepares yearly requests for university proposals to address the research needs identified by the IRB organizations. IRB technical representatives evaluate the university proposals and review progress reports from the awarded university projects. To accelerate technology transfer technical workshops are held to provide opportunities for university, industry and government officials to share comments and improve quality and relevancy of the research. To provide educational growth at the Universities, in addition to sponsored research, the UTSR provides faculty and student fellowships. The basis for all activities--research, technology transfer, and education--is the DOE Turbine Program Plan and identification, through UTSR consortium group processes, technology needed to meet Program Goals that can be appropriately researched at Performing Member Universities.

  14. Microbial Enhanced Oil Recovery and Wettability Research Program. Annual report, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    Bala, G.A.; Barrett, K.B.; Eastman, S.L.; Herd, M.D.; Jackson, J.D.; Robertson, E.P.; Thomas, C.P.

    1993-09-01

    This report covers research results for fiscal year 1991 for the Microbial Enhanced Oil Recovery (MEOR) and Wettability Research Program conducted by EG&G Idaho, Inc. at the Idaho National Engineering Laboratory ONEL) for the US Department of Energy Idaho Field Office (DOE-ID). The program is funded by the Assistant Secretary of Fossil Energy, and managed by DOE-ID and the Bartlesville Project Office (BPO). The objectives of this multi-year program are to develop MEOR systems for application to reservoirs containing medium to heavy crude oils and to design and implement an industry cost-shared field demonstration project of the developed technology. An understanding of the controlling mechanisms will first be developed through the use of laboratory scale testing to determine the ability of microbially mediated processes to recover oil under reservoir conditions and to develop the design criteria for scale-up to the field. Concurrently with this work, the isolation and characterization of microbial species collected from various locations including target oil field environments is underway to develop more effective oil recovery systems for specific applications. Research focus includes the study of biogenic product and formation souring processes including mitigation and prevention. Souring research performed in FY 1991 also included the development of microsensor probe technology for the detection of total sulfide in collaboration with the Montana State University Center for Interfacial Microbial Process Engineering (CIMPE). Wettability research is a multi-year collaborative effort with the New Mexico Petroleum Recovery Research Center (NMPRRC) at the New Mexico institute of Mining and Technology, Socorro, NM to evaluate reservoir wettability and its effects on oil recovery. Results from the wettability research will be applied to determine if alteration of wettability is a significant contributing mechanism for MEOR systems.

  15. Environmental Research Program. 1994 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.J.

    1995-04-01

    The objective of the Environmental Research Program is to enhance the understanding of, and mitigate the effects of pollutants on health, ecological systems, global and regional climate, and air quality. The program is multi-disciplinary and includes fundamental research and development in efficient and environmentally-benign combustion, pollutant abatement and destruction, and novel methods of detection and analysis of criteria and non-criteria pollutants. This diverse group conducts investigations in combustion, atmospheric and marine processes, flue-gas chemistry, and ecological systems.

  16. The ABC's of Delivering A Research-Driven Adventure Learning Program From the Field

    Science.gov (United States)

    Pregont, P.; Porsild, M.

    2008-12-01

    A is for anchoring the delivery of your research to your audience in a standard-aligned curriculum. B is for BGAN Satellite Communication System assisting in delivering real-time authentic media. C is for a collaborative online learning environment to engage learners" Z is for the peaceful sleep you will get once your program is up and running! As part of Team GoNorth! (http://www.PolarHusky.com) it is our job to deliver adventure learning. We set out to do this back when the computer was a 4-foot, 50-lb box powered by a hand-crank where one would have a window of ten minutes in a 24-hour period to catch the satellite (before Al Gore created the Internet!). Every year we review the quantum leaps in what is now possible from the field and in the classroom, and over the years we have wrestled technical issues, solutions and numerous re-structures in the process of our of curriculum development. With this presentation we will provide some basic ABC's on how you can remained focused on your research, yet deliver an adventure learning program for learners to investigate real-world issues within your scientific research. Our scales are most likely different. The volume of our curriculum is an annual production of 4-500 pages to be used from Kindergarden through 12th grade around the world. The framework of our online learning environment must be able to supports millions of users at a time. "In the field" means on a a 3-4 month dogsled expedition - so sending out our live updates involve thawing out the computers and setting up the satellite communication system to work in a ground blizzard! But regardless of the scope and location of your field research, you can probably build on some of our experiences in the planning of an upcoming adventure learning program to engage learners of all or any ages in your scientific explorations!

  17. Jointly Sponsored Research Program on Energy Related Research

    Energy Technology Data Exchange (ETDEWEB)

    No, author

    2013-12-31

    Cooperative Agreements, DE-FC26-08NT43293, DOE-WRI Cooperative Research and Development Program for Fossil Energy-Related Resources began in June 2009. The goal of the Program was to develop, commercialize, and deploy technologies of value to the nation’s fossil and renewable energy industries. To ensure relevancy and early commercialization, the involvement of an industrial partner was encouraged. In that regard, the Program stipulated that a minimum of 20% cost share be achieved in a fiscal year. This allowed WRI to carry a diverse portfolio of technologies and projects at various development technology readiness levels. Depending upon the maturity of the research concept and technology, cost share for a given task ranged from none to as high as 67% (two-thirds). Over the course of the Program, a total of twenty six tasks were proposed for DOE approval. Over the period of performance of the Cooperative agreement, WRI has put in place projects utilizing a total of $7,089,581 in USDOE funds. Against this funding, cosponsors have committed $7,398,476 in private funds to produce a program valued at $14,488,057. Tables 1 and 2 presented at the end of this section is a compilation of the funding for all the tasks conducted under the program. The goal of the Cooperative Research and Development Program for Fossil Energy-Related Resources was to through collaborative research with the industry, develop or assist in the development of innovative technology solutions that will: • Increase the production of United States energy resources – coal, natural gas, oil, and renewable energy resources; • Enhance the competitiveness of United States energy technologies in international markets and assist in technology transfer; • Reduce the nation's dependence on foreign energy supplies and strengthen both the United States and regional economies; and • Minimize environmental impacts of energy production and utilization. Success of the Program can be measured by

  18. Program of Research and Education in Aerospace Structures

    Science.gov (United States)

    Whitesides, John L.; Johansen, Laurie W.

    2005-01-01

    Since its inception in January 2003, the program has provided support for 1 research professor and a total of 10 Graduate Research Scholar Assistants of these all 10 have completed their MS degree program. The program has generated 10 MS thesis. Final report lists papers presented in seminars for the period January 1, 2003 through June 30, 2005.

  19. Animal Resource Program | Center for Cancer Research

    Science.gov (United States)

    CCR Animal Resource Program The CCR Animal Resource Program plans, develops, and coordinates laboratory animal resources for CCR’s research programs. We also provide training, imaging, and technology development in support of moving basic discoveries to the clinic. The ARP Manager:

  20. Animal Resource Program | Center for Cancer Research

    Science.gov (United States)

    CCR Animal Resource Program The CCR Animal Resource Program plans, develops, and coordinates laboratory animal resources for CCR’s research programs. We also provide training, imaging, and technology development in support of moving basic discoveries to the clinic. The ARP Office:

  1. Environmental research program: FY 1987, annual report

    International Nuclear Information System (INIS)

    1988-03-01

    This multidisciplinary research program includes fundamental and applied research in physics, chemistry, engineering, and biology, as well as research on the development of advanced methods of measurement and analysis. The Program's Annual Report contains summaries of research performed during FY 1987 in the areas of atmospheric aerosols, flue gas chemistry, combustion, membrane bioenergetics, and analytical chemistry. The main research interests of the Atmospheric Aerosol Research group concern the chemical and physical processes that occur in haze, clouds, and fogs. For their studies, the group is developing novel analytical and research methods for characterizing aerosol species. Aerosol research is performed in the laboratory and in the field. Studies of smoke emissions from fires and their possible effects on climatic change, especially as related to nuclear winter, are an example of the collaboration between the Atmospheric Aerosol Research and Combustion Research Groups

  2. Environmental research program: FY 1987, annual report

    Energy Technology Data Exchange (ETDEWEB)

    1988-03-01

    This multidisciplinary research program includes fundamental and applied research in physics, chemistry, engineering, and biology, as well as research on the development of advanced methods of measurement and analysis. The Program's Annual Report contains summaries of research performed during FY 1987 in the areas of atmospheric aerosols, flue gas chemistry, combustion, membrane bioenergetics, and analytical chemistry. The main research interests of the Atmospheric Aerosol Research group concern the chemical and physical processes that occur in haze, clouds, and fogs. For their studies, the group is developing novel analytical and research methods for characterizing aerosol species. Aerosol research is performed in the laboratory and in the field. Studies of smoke emissions from fires and their possible effects on climatic change, especially as related to nuclear winter, are an example of the collaboration between the Atmospheric Aerosol Research and Combustion Research Groups.

  3. Programs of the Office of Energy Research

    International Nuclear Information System (INIS)

    1992-09-01

    The programs of the Office of Energy Research provide basic science support for energy technologies as well as advancing understanding in general science and training future scientists. Energy Research provides insights into fundamental science and associated phenomena and develops new or advanced concepts and techniques. Research of this type has been supported by the Department of Energy and its predecessors for over 40 years and includes research in the natural and physical sciences, including high energy and nuclear physics; magnetic fusion energy; biological and environmental research; and basic energy sciences research in the materials, chemical, and applied mathematical sciences, engineering and geosciences, and energy biosciences. These basic research programs help build the science and technology base that underpins energy development by Government and industry

  4. Status of anesthesiology resident research education in the United States: structured education programs increase resident research productivity.

    Science.gov (United States)

    Ahmad, Shireen; De Oliveira, Gildasio S; McCarthy, Robert J

    2013-01-01

    The enhancement of resident research education has been proposed to increase the number of academic anesthesiologists with the skills and knowledge to conduct meaningful research. Program directors (PDs) of the U.S. anesthesiology residency programs were surveyed to evaluate the status of research education during residency training and to test the hypothesis that structured programs result in greater resident research productivity based on resident publications. Survey responses were solicited from 131 anesthesiology residency PDs. Seventy-four percent of PDs responded to the survey. Questions evaluated department demographic information, the extent of faculty research activity, research resources and research funding in the department, the characteristics of resident research education and resident research productivity, departmental support for resident research, and perceived barriers to resident research education. Thirty-two percent of programs had a structured resident research education program. Structured programs were more likely to be curriculum based, require resident participation in a research project, and provide specific training in presentation and writing skills. Productivity expectations were similar between structured and nonstructured programs. Forty percent of structured programs had > 20% of trainees with a publication in the last 2 years compared with 14% of departments with unstructured programs (difference, 26%; 99% confidence interval [CI], 8%-51%; P = 0.01). The percentage of programs that had research rotations for ≥2 months was not different between the structured and the nonstructured programs. A research rotation of >2 months did not increase the percentage of residents who had published an article within the last 2 months compared with a research rotation of 20% of residents with a publication in the last 2 years compared with 36% in programs with >20% of faculty involvement (difference, 21%; 99% CI, -4% to 46%; P = 0.03). Our

  5. Tablet and Face-to-Face Hybrid Professional Development: Providing Earth Systems Science Educators Authentic Research Opportunities through The GLOBE Program at Purdue University

    Science.gov (United States)

    Wegner, K.; Branch, B. D.; Smith, S. C.

    2013-12-01

    The Global Learning and Observations to Benefit the Environment (GLOBE) program is a worldwide hands-on, primary and secondary school-based science and education program (www.globe.gov). GLOBE's vision promotes and supports students, teachers and scientists to collaborate on inquiry-based authentic science investigations of the environment and the Earth system working in close partnership with NASA, NOAA and NSF Earth System Science Projects (ESSP's) in study and research about the dynamics of Earth's environment. GLOBE Partners conduct face-to-face Professional Development in more than 110 countries, providing authentic scientific research experience in five investigation areas: atmosphere, earth as a system, hydrology, land cover, and soil. This presentation will provide a sample for a new framework of Professional Development that was implemented in July 2013 at Purdue University lead by Mr. Steven Smith who has tested GLOBE training materials for future training. The presentation will demonstrate how institutions can provide educators authentic scientific research opportunities through various components, including: - Carrying out authentic research investigations - Learning how to enter their authentic research data into the GLOBE database and visualize it on the GLOBE website - Learn how to access to NASA's Earth System Science resources via GLOBE's new online 'e-Training Program' - Exploring the connections of their soil protocol measurements and the history of the soil in their area through iPad soils app - LIDAR data exposure, Hydrology data exposure

  6. Low-level radioactive waste research program plan

    International Nuclear Information System (INIS)

    O'Donnell, E.; Lambert, J.

    1989-11-01

    The Waste Management Branch, Division of Engineering, Office of Nuclear Regulatory Research, has developed a strategy for conducting research on issues of concern to the US Nuclear Regulatory Commission (NRC) in its efforts to ensure safe disposal of low-level radioactive waste (LLW). The resulting LLW research program plan provides an integrated framework for planning the LLW research program to ensure that the program and its products are responsive and timely for use in NRC's LLW regulatory program. The plan discusses technical and scientific issues and uncertainties associated with the disposal of LLW, presents programmatic goals and objectives for resolving them, establishes a long-term strategy for conducting the confirmatory and investigative research needed to meet these goals and objectives, and includes schedules and milestones for completing the research. Areas identified for investigation include waste form and other material concerns, failure mechanisms and radionuclide releases, engineered barrier performance, site characterization and monitoring, and performance assessment. The plan proposes projects that (1) analyze and test actual LLW and solidified LLW under laboratory and field conditions to determine leach rates and radionuclide releases, (2) examine the short- and long-term performance of concrete-enhanced LLW burial structures and high-integrity containers, and (3) attempt to predict water movement and contaminant transport through low permeability saturated media and unsaturated porous media. 4 figs., 3 tabs

  7. Research Review: Laboratory Student Magazine Programs.

    Science.gov (United States)

    Wheeler, Tom

    1994-01-01

    Explores research on student-produced magazines at journalism schools, including the nature of various programs and curricular structures, ethical considerations, and the role of faculty advisors. Addresses collateral sources that provide practical and philosophical foundations for the establishment and conduct of magazine production programs.…

  8. Structuring learning environments: Lessons from the organization of post-literacy programs

    Science.gov (United States)

    Easton, Peter A.

    1989-12-01

    New conceptual and historical work on the nature of literacy and information on several bellwether post-literacy efforts in developing countries furnish a basis for diagnosing some of the deficiencies in current approaches to post-literacy programming. The key issue is the design of a `literate environment'. Heretofore attention has been concentrated too exclusively on the reading materials and continuing education side of the problem, and insufficient attention has been given to the more critical and difficult aspect: ensuring adequate opportunities for the application of new literate skills. The availability of these functional opportunities is closely related to the possibilities for accumulation and reinvestment of economic surplus in the environment, and to the way in which the related activities are organized. Literacy programs can unite skills relevant to management of local resources with strategies of cultural, political or religious revitalization that mobilize people to use their human resources. They therefore continue to offer an attractive means of initiating a reinvestment spiral from limited initial capital. To realize these potentials at the post-literacy stage, however, requires planning post-literacy before literacy, broadening programs to address primary school leavers as well, and paying greatly increased attention to the economic and social structure of the learning environment.

  9. Acquisition Research Program Homepage

    OpenAIRE

    2015-01-01

    Includes an image of the main page on this date and compressed file containing additional web pages. Established in 2003, Naval Postgraduate School’s (NPS) Acquisition Research Program provides leadership in innovation, creative problem solving and an ongoing dialogue, contributing to the evolution of Department of Defense acquisition strategies.

  10. Virtual Environments: Issues and Opportunities for Researching Inclusive Educational Practices

    Science.gov (United States)

    Sheehy, Kieron

    This chapter argues that virtual environments offer new research areas for those concerned with inclusive education. Further, it proposes that they also present opportunities for developing increasingly inclusive research processes. This chapter considers how researchers might approach researching some of these affordances. It discusses the relationship between specific features of inclusive pedagogy, derived from an international systematic literature review, and the affordances of different forms of virtual characters and environments. Examples are drawn from research in Second LifeTM (SL), virtual tutors and augmented reality. In doing this, the chapter challenges a simplistic notion of isolated physical and virtual worlds and, in the context of inclusion, between the practice of research and the research topic itself. There are a growing number of virtual worlds in which identified educational activities are taking place, or whose activities are being noted for their educational merit. These encompasses non-themed worlds such as SL and Active Worlds, game based worlds such as World of Warcraft and Runescape, and even Club Penguin, a themed virtual where younger players interact through a variety of Penguin themed environments and activities. It has been argued that these spaces, outside traditional education, are able to offer pedagogical insights (Twining 2009) i.e. that these global virtual communities have been identified as being useful as creative educational environments (Delwiche 2006; Sheehy 2009). This chapter will explore how researchers might use these spaces to investigative and create inclusive educational experiences for learners. In order to do this the chapter considers three interrelated issues: What is inclusive education?; How might inclusive education influence virtual world research? And, what might inclusive education look like in virtual worlds?

  11. Development of Virtual Environment under Member State Support Program

    International Nuclear Information System (INIS)

    Koh, Byungmarn; Lee, Nayoung

    2013-01-01

    Member State Support Program (MSSP) is comprised of various programs such as development of safeguards approach, training, information analysis and so on. Each support programs would be evaluated biennially through coordinators' meeting. IAEA publish 'Development and Implementation Support Programme for Nuclear Verification' so that the member state can review it. In the program, IAEA specify the need to develop the virtual reality based training tools. The objective of this project is to develop comprehensive training software dedicated to verification activities in the field based on the virtual environment. The training for the IAEA inspector is indispensable to maintain or improve their verification capability and to be prepared for the inspection of the complicated facilities. However, the grabbing of the available facility is not easy due to following limitations such as security, confidentiality, interference of the commercial operation and so on. Therefore, the virtual environment, which can replace a real facility, is required for the IAEA training. The objective of this software is to support the IAEA's verification capability. It is useful for the trainer and trainee to better understand how nuclear materials are processed in the fuel fabrication facility and what kind safeguards approaches are needed at each process before inspections. The final product will be integrated in the IAEA safeguards training courses to improve the efficiency of the safeguards training. Also we are going to make a decision if additional projects such as CANDU fuel parts or other facilities depending on evaluation results at the IAEA training course will be held on Korea in this year

  12. Development of Virtual Environment under Member State Support Program

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Byungmarn; Lee, Nayoung [Korea Institute of Nuclear Non-proliferation and Control, Daejeon (Korea, Republic of)

    2013-05-15

    Member State Support Program (MSSP) is comprised of various programs such as development of safeguards approach, training, information analysis and so on. Each support programs would be evaluated biennially through coordinators' meeting. IAEA publish 'Development and Implementation Support Programme for Nuclear Verification' so that the member state can review it. In the program, IAEA specify the need to develop the virtual reality based training tools. The objective of this project is to develop comprehensive training software dedicated to verification activities in the field based on the virtual environment. The training for the IAEA inspector is indispensable to maintain or improve their verification capability and to be prepared for the inspection of the complicated facilities. However, the grabbing of the available facility is not easy due to following limitations such as security, confidentiality, interference of the commercial operation and so on. Therefore, the virtual environment, which can replace a real facility, is required for the IAEA training. The objective of this software is to support the IAEA's verification capability. It is useful for the trainer and trainee to better understand how nuclear materials are processed in the fuel fabrication facility and what kind safeguards approaches are needed at each process before inspections. The final product will be integrated in the IAEA safeguards training courses to improve the efficiency of the safeguards training. Also we are going to make a decision if additional projects such as CANDU fuel parts or other facilities depending on evaluation results at the IAEA training course will be held on Korea in this year.

  13. Outline of research proposals selected in the Nuclear Energy Research Initiative (NERI) program

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Okubo, Tsutomu; Usui, Shuji

    1999-08-01

    The U.S. Department of Energy (DOE) created a new R and D program called Nuclear Energy Research Initiative (NERI)' in FY 1999 with the appropriation of $19 million. The major objectives of the NERI program is to preserve the nuclear science and engineering infrastructure in the U.S. and to maintain a competitive position in the global nuclear market in the 21st century. In may, 1999, the DOE selected 45 research proposals for the first year of the NERI program. The proposals are classified into the following five R and D areas: Proliferation Resistant Reactors and/or Fuel Cycles, New Reactor Designs, Advanced Nuclear Fuel, New Technology for Management of Nuclear Waste, Fundamental Nuclear Science. Since the NERI is a very epoch-making and strategic nuclear research program sponsored by the U.S. government, the trend of the NERI is considered to affect the future R and D programs in Japanese nuclear industries and research institutes including JAERI. The present report summarizes the analyzed results of the selected 45 research proposals. Staffs comments are made on each proposal in connection with the R and D activities in JAERI. (author)

  14. Comments on the NRC Safety Research Program budget

    International Nuclear Information System (INIS)

    1979-07-01

    This report includes comments on the budget levels and program plans for the supplemental request for FY 1980 to support research related to the accident at Three Mile Island, Unit 2 (TMI) as well as for the FY 1981 Budget. For both budgets, the funding levels considered by the ACRS are the original requests by RES and the Budget Review Group (BRG) markup as of July 10, 1979. In its current review of the NRC research program, the ACRS has given special attention to both the short- and long-term implications of the TMI accident and their significance to research for both the short- and long-term research programs

  15. Incorporating resident research into the dermatology residency program

    Science.gov (United States)

    Wagner, Richard F; Raimer, Sharon S; Kelly, Brent C

    2013-01-01

    Programmatic changes for the dermatology residency program at The University of Texas Medical Branch were first introduced in 2005, with the faculty goal incorporating formal dermatology research projects into the 3-year postgraduate training period. This curriculum initially developed as a recommendation for voluntary scholarly project activity by residents, but it evolved into a program requirement for all residents in 2009. Departmental support for this activity includes assignment of a faculty mentor with similar interest about the research topic, financial support from the department for needed supplies, materials, and statistical consultation with the Office of Biostatistics for study design and data analysis, a 2-week elective that provides protected time from clinical activities for the purpose of preparing research for publication and submission to a peer-reviewed medical journal, and a departmental award in recognition for the best resident scholarly project each year. Since the inception of this program, five classes have graduated a total of 16 residents. Ten residents submitted their research studies for peer review and published their scholarly projects in seven dermatology journals through the current academic year. These articles included three prospective investigations, three surveys, one article related to dermatology education, one retrospective chart review, one case series, and one article about dermatopathology. An additional article from a 2012 graduate about dermatology education has also been submitted to a journal. This new program for residents was adapted from our historically successful Dermatology Honors Research Program for medical students at The University of Texas Medical Branch. Our experience with this academic initiative to promote dermatology research by residents is outlined. It is recommended that additional residency programs should consider adopting similar research programs to enrich resident education. PMID:23901305

  16. Incorporating resident research into the dermatology residency program.

    Science.gov (United States)

    Wagner, Richard F; Raimer, Sharon S; Kelly, Brent C

    2013-01-01

    Programmatic changes for the dermatology residency program at The University of Texas Medical Branch were first introduced in 2005, with the faculty goal incorporating formal dermatology research projects into the 3-year postgraduate training period. This curriculum initially developed as a recommendation for voluntary scholarly project activity by residents, but it evolved into a program requirement for all residents in 2009. Departmental support for this activity includes assignment of a faculty mentor with similar interest about the research topic, financial support from the department for needed supplies, materials, and statistical consultation with the Office of Biostatistics for study design and data analysis, a 2-week elective that provides protected time from clinical activities for the purpose of preparing research for publication and submission to a peer-reviewed medical journal, and a departmental award in recognition for the best resident scholarly project each year. Since the inception of this program, five classes have graduated a total of 16 residents. Ten residents submitted their research studies for peer review and published their scholarly projects in seven dermatology journals through the current academic year. These articles included three prospective investigations, three surveys, one article related to dermatology education, one retrospective chart review, one case series, and one article about dermatopathology. An additional article from a 2012 graduate about dermatology education has also been submitted to a journal. This new program for residents was adapted from our historically successful Dermatology Honors Research Program for medical students at The University of Texas Medical Branch. Our experience with this academic initiative to promote dermatology research by residents is outlined. It is recommended that additional residency programs should consider adopting similar research programs to enrich resident education.

  17. Design research and the globalization of healthcare environments.

    Science.gov (United States)

    Shepley, Mardelle McCuskey; Song, Yilin

    2014-01-01

    Global healthcare practice has expanded in the past 20 years. At the same time the incorporation of research into the design process has gained prominence as a best practice among architects. The authors of this study investigated the status of design research in a variety of international settings. We intended to answer the question, "how pervasive is healthcare design research outside of the United States?" The authors reviewed the international literature on the design of healthcare facilities. More than 500 international studies and conference proceedings were incorporated in this literature review. A team of five research assistants searched multiple databases comparing approximately 16 keywords to geographic location. Some of those keywords included: evidence-based design, salutogenic design, design research, and healthcare environment. Additional articles were gathered by contacting prominent researchers and asking for their personal assessment of local health design research studies. While there are design researchers in most parts of the world, the majority of studies focus on the needs of populations in developed countries and generate guidelines that have significant cost and cultural implications that prohibit their implementation in developing countries. Additionally, the body of literature discussing the role of culture in healthcare environments is extremely limited. Design researchers must address the cultural implications of their studies. Additionally, we need to expand our research objectives to address healthcare design in countries that have not been previous considered. © 2014 Vendome Group, LLC.

  18. Portable parallel programming in a Fortran environment

    International Nuclear Information System (INIS)

    May, E.N.

    1989-01-01

    Experience using the Argonne-developed PARMACs macro package to implement a portable parallel programming environment is described. Fortran programs with intrinsic parallelism of coarse and medium granularity are easily converted to parallel programs which are portable among a number of commercially available parallel processors in the class of shared-memory bus-based and local-memory network based MIMD processors. The parallelism is implemented using standard UNIX (tm) tools and a small number of easily understood synchronization concepts (monitors and message-passing techniques) to construct and coordinate multiple cooperating processes on one or many processors. Benchmark results are presented for parallel computers such as the Alliant FX/8, the Encore MultiMax, the Sequent Balance, the Intel iPSC/2 Hypercube and a network of Sun 3 workstations. These parallel machines are typical MIMD types with from 8 to 30 processors, each rated at from 1 to 10 MIPS processing power. The demonstration code used for this work is a Monte Carlo simulation of the response to photons of a ''nearly realistic'' lead, iron and plastic electromagnetic and hadronic calorimeter, using the EGS4 code system. 6 refs., 2 figs., 2 tabs

  19. Experience of the Paris Research Consortium Climate-Environment-Society

    Science.gov (United States)

    Joussaume, Sylvie; Pacteau, Chantal; Vanderlinden, Jean Paul

    2016-04-01

    It is now widely recognized that the complexity of climate change issues translates itself into a need for interdisciplinary approaches to science. This allows to first achieve a more comprehensive vision of climate change and, second, to better inform the decision-making processes. However, it seems that willingness alone is rarely enough to implement interdisciplinarity. The purpose of this presentation is to mobilize reflexivity to revisit and analyze the experience of the Paris Consortium for Climate-Environment-Society. The French Consortium Climate-Environment-Society aims to develop, fund and coordinate interdisciplinary research into climate change and its impacts on society and environment. Launched in 2007, the consortium relies on the research expertise of 17 laboratories and federation in the Paris area working mainly in the fields of climatology, hydrology, ecology, health sciences, and the humanities and social sciences. As examples, economists and climatologists have studied greenhouse gas emission scenarios compatible with climate stabilization goals. Historical records have provided both knowledge about past climate change and vulnerability of societies. Some regions, as the Mediterranean and the Sahel, are particularly vulnerable and already have to cope with water availability, agricultural production and even health issues. A project showed that millet production in West Africa is expected to decline due to warming in a higher proportion than observed in recent decades. Climate change also raises many questions concerning health: combined effects of warming and air quality, impacts on the production of pollens and allergies, impacts on infectious diseases. All these issues lead to a need for approaches integrating different disciplines. Furthermore, climate change impacts many ecosystems which, in turn, affect its evolution. Our experience shows that interdisciplinarity supposes, in order to take shape, the conjunction between programming

  20. Retail food environments research: Promising future with more work to be done.

    Science.gov (United States)

    Fuller, Daniel; Engler-Stringer, Rachel; Muhajarine, Nazeem

    2016-06-09

    As members of the scientific committee for the Food Environments in Canada conference, we reflect on the current state of food environments research in Canada. We are very encouraged that the field is growing and there have been many collaborative efforts to link researchers in Canada, including the 2015 Food Environments in Canada Symposium and Workshop. We believe there are 5 key challenges the field will need to collectively address: theory and causality; replication and extension; consideration of rural, northern and vulnerable populations; policy analysis; and intervention research. In addressing the challenges, we look forward to working together to conduct more sophisticated, complex and community-driven food environments research in the future.

  1. Laboratory Directed Research and Development Program FY2011

    Energy Technology Data Exchange (ETDEWEB)

    none, none

    2012-04-27

    Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2011 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). Going forward in FY 2012, the LDRD program also supports the Goals codified in the new DOE Strategic Plan of May, 2011. The LDRD program also supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Brief summares of projects and accomplishments for the period for each division are included.

  2. Research program plan: steam generators

    International Nuclear Information System (INIS)

    Muscara, J.; Serpan, C.Z. Jr.

    1985-07-01

    This document presents a plan for research in Steam Generators to be performed by the Materials Engineering Branch, MEBR, Division of Engineering Technology, (EDET), Office of Nuclear Regulatory Research. It is one of four plans describing the ongoing research in the corresponding areas of MEBR activity. In order to answer the questions posed, the Steam Generator Program has been organized with the three elements of non-destructive examination; mechanical integrity testing; and corrosion, cleaning and decontamination

  3. After the Conference of United Nations Conference on Environment and Development. The national environmental action program

    International Nuclear Information System (INIS)

    1996-01-01

    Following to the Strategy, priorities and principles of the state environmental policy the government of the Slovak republic has accepted by resolution No 350/1996 the first National environmental action program (NEAP), This NEAP contains the measures for attaining of aims of the Strategy in all nine sectors of protection and creation of the environment. The NEAP contains 1356 measures with conceptual, legislative, economic, educational-educational, scientific-research (including monitoring) and organizational character. The measures of the NEAP in detail are discussed

  4. Research waste management program - An action proposal

    International Nuclear Information System (INIS)

    Costa Ramos, A.; Esposito, I.

    1997-01-01

    The Brazilian Nuclear Energy Commission planned prepared and established a Research Waste Management Program, started in 1996, in order to map, to analyze and to solve the common problems in the research field. The specific study done included a large number of academic institutions. The procedures, results and operational methodology used by the Team linked to the Program, in one of the research institutions studied where corrective actions were implemented to avoid unnecessary dose to the public, will be discussed in this article. (author)

  5. The second workshop of neutron science research program

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Hideshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Tone, Tatsuzo [eds.

    1997-11-01

    The Japan Atomic Energy Research Institute(JAERI) has been proposing the Neutron Science Research Program to explore a broad range of basic research and the nuclear technology including actinide transmutation with use of powerful spallation neutron sources. For this purpose, the JAERI is conducting the research and development of an intense proton linac, the development of targets, as well as the conceptual design study of experimental facilities required for applications of spallation neutrons and secondary particle beams. The Special Task Force for Neutron Science Initiative was established in May 1996 to promote aggressively and systematically the Neutron Science Research Program. The second workshop on neutron science research program was held at the JAERI Tokai Research Establishment on 13 and 14 March 1997 for the purpose of discussing the results obtained since the first workshop in March 1996. The 27 of the presented papers are indexed individually. (J.P.N.)

  6. NRL HIFAR research program

    International Nuclear Information System (INIS)

    1989-01-01

    The use of a beam of heavy ions to ignite a thermonuclear pellet places severe constraints on beam emittance throughout the accelerator system. Nonlinearities which occur during beam transport, acceleration, and focusing, can cause emittance growth which limits spot intensity. Because of the high beam intensities required to achieve ignition, details of the self-consistent evolution of nonlinear space charge forces are generally important in this process. Computer simulations have, in turn, become an important tool in examining beam dynamics in this nonlinear regime. The Naval Research Laboratory HIFAR research program has been a major contributor to the successful use of numerical simulation to understand the detailed mechanisms by which space charge nonlinearities can contribute to emittance growth and the dilution of beam intensity. This program has been conducted in close cooperation with LLNL and LBL personnel to maximize support for those programs. Codes developed at NRL have been extensively shared and models developed at the other laboratories have been incorporated in the NRL codes. Because of the collaborative nature of much of the work over the past year, which has emphasized the development of numerical tools and techniques for general use, progress has generally resulted from shared efforts. The work, as reported here, emphasizes those contributions which can be attributed primarily to the NRL effort

  7. JSpOC Mission System Application Development Environment

    Science.gov (United States)

    Luce, R.; Reele, P.; Sabol, C.; Zetocha, P.; Echeverry, J.; Kim, R.; Golf, B.

    2012-09-01

    The Joint Space Operations Center (JSpOC) Mission System (JMS) is the program of record tasked with replacing the legacy Space Defense Operations Center (SPADOC) and Astrodynamics Support Workstation (ASW) capabilities by the end of FY2015 as well as providing additional Space Situational Awareness (SSA) and Command and Control (C2) capabilities post-FY2015. To meet the legacy replacement goal, the JMS program is maturing a government Service Oriented Architecture (SOA) infrastructure that supports the integration of mission applications while acquiring mature industry and government mission applications. Future capabilities required by the JSpOC after 2015 will require development of new applications and procedures as well as the exploitation of new SSA data sources. To support the post FY2015 efforts, the JMS program is partnering with the Air Force Research Laboratory (AFRL) to build a JMS application development environment. The purpose of this environment is to: 1) empower the research & development community, through access to relevant tools and data, to accelerate technology development, 2) allow the JMS program to communicate user capability priorities and requirements to the developer community, 3) provide the JMS program with access to state-of-the-art research, development, and computing capabilities, and 4) support market research efforts by identifying outstanding performers that are available to shepherd into the formal transition process. The application development environment will consist of both unclassified and classified environments that can be accessed over common networks (including the Internet) to provide software developers, scientists, and engineers everything they need (e.g., building block JMS services, modeling and simulation tools, relevant test scenarios, documentation, data sources, user priorities/requirements, and SOA integration tools) to develop and test mission applications. The developed applications will be exercised in these

  8. Astrobiology Field Research in Moon/Mars Analogue Environments: Preface

    Science.gov (United States)

    Foing, B. H.; Stoker, C.; Ehrenfreund, P.

    2011-01-01

    Extreme environments on Earth often provide similar terrain conditions to landing/operation sites on Moon and Mars. Several field campaigns (EuroGeoMars2009 and DOMMEX/ILEWG EuroMoonMars from November 2009 to March 2010) were conducted at the Mars Desert Research Station (MDRS) in Utah. Some of the key astrobiology results are presented in this special issue on Astrobiology field research in Moon/Mars analogue environments relevant to investigate the link between geology, minerals, organics and biota. Preliminary results from a multidisciplinary field campaign at Rio Tinto in Spain are presented.

  9. Nanocommunication design in graduate-level education and research training programs at Osaka University

    Science.gov (United States)

    Sekiya, Mizuki; An, SoonHwa; Ata, Masafumi

    2014-09-01

    After more than ten years of strategic investment research and development supported by government policies on science and technology, nanotechnology in Japan is making a transition from the knowledge creation stage of exploratory research to the stage of making the outcomes available for the benefit of society as a whole. Osaka University has been proactive in discussions about the relationship between nanotechnology and society as part of graduate and continuing education programs. These programs are intended to fulfill the social accountability obligation of scientists and corporations involved in R&D, and to deepen their understanding of the relationship between science and society. To meet those aims, the program has covered themes relating to overall public engagement relating to nanotechnology governance, such as risk management of nanomaterials, international standardization for nanotechnology, nanomeasurement, intellectual property management in an open innovation environment, and interactive communication with society. Nanotechnology is an emerging field of science and technology. This paper reports and comments on initiatives for public engagement on nanotechnology at Osaka University's Institute for NanoScience Design, which aims to create new technologies based on nanotechnology that can help realize a sustainable society.

  10. Challenges in Measuring Benefit of Clinical Research Training Programs--the ASH Clinical Research Training Institute Example.

    Science.gov (United States)

    Sung, Lillian; Crowther, Mark; Byrd, John; Gitlin, Scott D; Basso, Joe; Burns, Linda

    2015-12-01

    The American Society of Hematology developed the Clinical Research Training Institute (CRTI) to address the lack of training in patient-oriented research among hematologists. As the program continues, we need to consider metrics for measuring the benefits of such a training program. This article addresses the benefits of clinical research training programs. The fundamental and key components are education and mentorship. However, there are several other benefits including promotion of collaboration, job and advancement opportunities, and promotion of work-life balance. The benefits of clinical research training programs need to be measured so that funders and society can judge if they are worth the investment in time and resources. Identification of elements that are important to program benefit is essential to measuring the benefit of the program as well as program planning. Future work should focus on the constructs which contribute to benefits of clinical research training programs such as CRTI.

  11. Nuclear Plant Aging Research (NPAR) program plan

    International Nuclear Information System (INIS)

    1991-06-01

    A comprehensive Nuclear Plant Aging Research (NPAR) Program was implemented by the US NRC office of Nuclear Regulatory Research in 1985 to identify and resolve technical safety issues related to the aging of systems, structures, and components in operating nuclear power plants. This is Revision 2 to the Nuclear Plant Aging Research Program Plant. This planes defines the goals of the program the current status of research, and summarizes utilization of the research results in the regulatory process. The plan also describes major milestones and schedules for coordinating research within the agency and with organizations and institutions outside the agency, both domestic and foreign. Currently the NPAR Program comprises seven major areas: (1) hardware-oriented engineering research involving components and structures; (2) system-oriented aging interaction studies; (3) development of technical bases for license renewal rulemaking; (4) determining risk significance of aging phenomena; (5) development of technical bases for resolving generic safety issues; (6) recommendations for field inspection and maintenance addressing aging concerns; (7) and residual lifetime evaluations of major LWR components and structures. The NPAR technical database comprises approximately 100 NUREG/CR reports by June 1991, plus numerous published papers and proceedings that offer regulators and industry important insights to aging characteristics and aging management of safety-related equipment. Regulatory applications include revisions to and development of regulatory guides and technical specifications; support to resolve generic safety issues; development of codes and standards; evaluation of diagnostic techniques; (e.g., for cables and valves); and technical support for development of the license renewal rule. 80 refs., 25 figs., 10 tabs

  12. Creation of an American Holistic Nurses Association research consultation program.

    Science.gov (United States)

    Robertson, Sue; Clingerman, Evelyn; Zahourek, Rothlyn P; Mariano, Carla; Lange, Bernadette

    2012-12-01

    A goal of the American Holistic Nurses Association (AHNA) Research Committee is to prepare holistic nurses to conduct holistic nursing research. This article describes the creation of a Research Consultation Program and how the knowledge gained from the program will contribute to the development of a formal research mentor program.

  13. The AECL research and development program

    International Nuclear Information System (INIS)

    Hart, R.G.; Woods, A.D.B.

    1980-02-01

    The research and development program of the Atomic Energy of Canada Research Company is briefly described. Goals and objectives are emphasized, some recent highlights are given and the importance of technology transfer is discussed. A short representative bibliography is included. (auth)

  14. EU`s research programs - an important source for Norwegian innovation; EUs forskningsprogrammer - en viktig kilde til norsk innovasjon

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    This document presents some examples of the Norwegian participation in the research programs of the European Union (EU). By the end of 1997, Norwegian researchers had taken part in the formulation of more than 2400 applications. Over 660 applications with Norwegian participation have been granted support from the EU for common European projects. The examples most directly relating to energy technology and environment are from the following fields: (1) Well technology (CENET project). Utilization of abandoned oil- and gas installations to the benefit of the fisheries, (2) Climate research based on forest observations (FOREST project), (3) Improved methods of analysing and characterising the sea floor (ISACS project), (4) Water-based hydraulic systems, (5) Surface treatment of aluminium, (6) The Arctic environment, (7) Solar cells

  15. Learning about the Earth through Societally-relevant Interdisciplinary Research Projects: the Honours Integrated Science Program at McMaster

    Science.gov (United States)

    Eyles, C.; Symons, S. L.; Harvey, C. T.

    2016-12-01

    Students in the Honours Integrated Science (iSci) program at McMaster University (Hamilton, Ontario, Canada) learn about the Earth through interdisciplinary research projects that focus on important societal issues. The iSci program is a new and innovative undergraduate program that emphasizes the links between scientific disciplines and focuses on learning through research and the development of scientific communication skills. The program accepts up to 60 students each year and is taught by a team of 18 instructors comprising senior and junior faculty, post-doctoral fellows, a lab coordinator, instructional assistant, a librarian and library staff, and an administrator. The program is designed around a pedagogical model that emphasizes hands-on learning through interdisciplinary research (Research-based Integrated Education: RIE) and is mostly project-based and experiential. In their freshman year students learn fundamental Earth science concepts (in conjunction with chemistry, physics, mathematics and biology) through research projects focused on environmental contamination, interplanetary exploration, the effect of drugs on the human body and environment, sustainable energy, and cancer. In subsequent years they conduct research on topics such as the History of the Earth, Thermodynamics, Plant-Animal Interactions, Wine Science, Forensics, and Climate Change. The iSci program attracts students with a broad interest in science and has been particularly effective in directing high quality students into the Earth sciences as they are introduced to the discipline in their first year of study through research projects that are interesting and stimulating. The structure of the iSci program encourages consideration of geoscientific applications in a broad range of societally relevant research projects; these projects are reviewed and modified each year to ensure their currency and ability to meet program learning objectives.

  16. The Horonobe Underground Research Laboratory (Tentative name) Project. A program on survey and research performed from earth surface

    International Nuclear Information System (INIS)

    2001-03-01

    The Horonobe Underground Research Laboratory (Tentative name) Project under planning at Horonobe-machi by the Japan Nuclear Cycle Development Institute (JNC) is a research facility on deep underground shown in the Long-term program on research, development and application of nuclear energy (June, 1994)' (LPNE), where some researches on the deep underground targeted at sedimentary rocks are carried out. The plan on The Horonobe Underground Research Laboratory performed at Horonobe-machi' is an about 20 years plan ranging from beginning to finishing of its survey and research, which is carried out by three steps such as 'Survey and research performed from earth surface', 'Survey and research performed under excavation of road', and Survey and research performed by using the road'. The Horonobe Underground Research Laboratory is one of research facilities on deep underground shown its importance in LPNE, and carries out some researches on the deep underground at a target of the sedimentary rocks. And also The Horonobe Underground Research Laboratory confirms some technical reliability and support on stratum disposal shown in the 'Technical reliability on stratum disposal of the high level radioactive wastes. The Second Progress Report of R and D on geological disposal' summarized on November, 1999 by JNC through actual tests and researches at the deep stratum. The obtained results are intended to reflect to disposal business of The Horonobe Underground Research Laboratory and safety regulation and so on performed by the government, together with results of stratum science research, at the Tono Geoscience Center, of geological disposal R and D at the Tokai Works, or of international collaborations. For R and D at the The Horonobe Underground Research Laboratory after 2000, following subjects are shown: 1) Survey technique on long-term stability of geological environment, 2) Survey technique on geological environment, 3) Engineering technique on engineered barrier and

  17. Lewis' Educational and Research Collaborative Intership Program Grant Closeout Report

    Science.gov (United States)

    2003-01-01

    The Lewis' Educational and Research Collaborative Internship Program (LERCIP) is a collaborative undertaking by the Office of Educational Programs at NASA Glenn Research Center at Lewis Field (formerly NASA Lewis Research Center) and the Ohio Aerospace Institute. This program provides 10-week internships and 10 or 12-week fellowships for undergraduate/graduate students and secondary school teachers. Approximately 130 interns are selected to participate in this program each year and begin arriving the second week in May. The internships provide students with introductory professional experiences to complement their academic programs. The interns are given assignments on research and development projects under the personal guidance of NASA professional staff members. Each intern is assigned a NASA mentor who facilitates a research assignment. In addition to the research assignment, the summer program includes a strong educational component that enhances the professional stature of the participants. The educational activities include a research symposium and a variety of workshops, lectures and short courses. An important aspect of the program is that it includes students with diverse social, cultural and economic backgrounds.

  18. Optimiturve research program in 1991

    International Nuclear Information System (INIS)

    Leinonen, A.

    1992-01-01

    The target of the program is to develop a peat production method, based on solar energy, by which it is possible to double the present annual hectare yield. It has been estimated that if the target of the program can be fulfilled it is possible to decrease the production costs by about 20 %. The target has been strived by intensification of utilization of solar radiation, by improving the collection rate of dry peat, by decreasing the rain effects on production, by lengthening the production season and by decreasing the storage losses. Three new peat production methods have so far been developed in the Optimiturve research program, by which it is possible to obtain the targets of the program. These methods are the new sod peat production method, the ridge drying method and the Multi method

  19. Minority International Research Training Program: Global Collaboration in Nursing Research.

    Science.gov (United States)

    McElmurry, Beverly J.; Misner, Susan J.; Buseh, Aaron G.

    2003-01-01

    The Minority International Research Training Program pairs minority nursing students with faculty mentors at international sites for short-term research. A total of 26 undergraduate, 22 graduate, and 6 postdoctoral students have participated. Challenges include recruitment, orientation, and preparation of students; identification and preparation…

  20. Program Analysis and Its Relevance for Educational Research

    Directory of Open Access Journals (Sweden)

    Bernd Käpplinger

    2008-01-01

    Full Text Available Program analyses are frequently used in research on continuing education. The use of such analyses will be described in this article. Existing data sources, research topics, qualitative, quantitative and mixed methods, will be discussed. Three types of program analysis will be developed. The article ends with a discussion of the advantages and disadvantages of program analysis in contrast to questionnaires. Future developments and challenges will be sketched in the conclusion. Recommendations for the future development of program analysis will be given. URN: urn:nbn:de:0114-fqs0801379

  1. Italian Antarctic Research Program: environmental radioactivity survey around the Italian base (1987-1991) Terra Nova Bay - Ross Sea region

    Energy Technology Data Exchange (ETDEWEB)

    Tubertini, O.; Bettoli, M.G.; Cantelli, L. [Bologna Univ. (Italy)] [and others

    1995-12-31

    Investigations have been carried out by the Italian Antartic Research Program to determine the natural and artificial radioactivity levels of both the marine and terrestrial environments. Also, natural and anthropogenic fluxes of aerosol particles onto the Antartic surface have been examined. (Author).

  2. Italian Antarctic Research Program: environmental radioactivity survey around the Italian base (1987-1991) Terra Nova Bay - Ross Sea region

    International Nuclear Information System (INIS)

    Tubertini, O.; Bettoli, M.G.; Cantelli, L.

    1995-01-01

    Investigations have been carried out by the Italian Antartic Research Program to determine the natural and artificial radioactivity levels of both the marine and terrestrial environments. Also, natural and anthropogenic fluxes of aerosol particles onto the Antartic surface have been examined. (Author)

  3. Containment integrity research program plan

    International Nuclear Information System (INIS)

    1987-08-01

    This report presents a plan for research on the question of containment performance in postulated severe accident scenarios. It focuses on the research being performed by the Structural and Seismic Engineering Branch, Division of Engineering, Office of Nuclear Regulatory Research. Summaries of the plans for this work have previously been published in the ''Nuclear Power Plant Severe Accident Research Plan'' (NUREG-0900). This report provides an update to reflect current status. This plan provides a summary of results to date as well as an outline of planned activities and milestones to the contemplated completion of the program in FY 1989

  4. AECL programs in basic physics research

    International Nuclear Information System (INIS)

    Bartholomew, G.A.; Dolling, G.; Harvey, M.; Milton, J.C.D.

    1982-02-01

    This report describes the CRNL program of research into the basic properties of atomic nuclei and condensed matter (liquids and solids). Brief descriptions are given of some of the current experimental programs done principally at the NRU reactor and MP tandem accelerator, the associated theoretical studies, and some highlights of past achievements

  5. The Joint Space Operations Center Mission System and the Advanced Research, Collaboration, and Application Development Environment Status Update 2016

    Science.gov (United States)

    Murray-Krezan, Jeremy; Howard, Samantha; Sabol, Chris; Kim, Richard; Echeverry, Juan

    2016-05-01

    The Joint Space Operations Center (JSpOC) Mission System (JMS) is a service-oriented architecture (SOA) infrastructure with increased process automation and improved tools to enhance Space Situational Awareness (SSA) performed at the US-led JSpOC. The Advanced Research, Collaboration, and Application Development Environment (ARCADE) is a test-bed maintained and operated by the Air Force to (1) serve as a centralized test-bed for all research and development activities related to JMS applications, including algorithm development, data source exposure, service orchestration, and software services, and provide developers reciprocal access to relevant tools and data to accelerate technology development, (2) allow the JMS program to communicate user capability priorities and requirements to developers, (3) provide the JMS program with access to state-of-the-art research, development, and computing capabilities, and (4) support JMS Program Office-led market research efforts by identifying outstanding performers that are available to shepherd into the formal transition process. In this paper we will share with the international remote sensing community some of the recent JMS and ARCADE developments that may contribute to greater SSA at the JSpOC in the future, and share technical areas still in great need.

  6. Living with a Star Space Environment Testbed

    Science.gov (United States)

    Barth, Janet

    2003-01-01

    Summary of activities: (1) FYO1 NRA - Model development and data mining. (2) FY03 NRA - Flight investigations. (3) SET carrier development. (4) Study for accommodation of SET carrier to support advanced detectors. (5) Collaboration with other programs: LWS TR&T to maximize synergy between TR&T space environment research and SET space environment effects research. LWS Data System to optimize dissemination of SET data. NASA Electronic Parts and Packaging Program to leverage ground testing of technologies. Defense Threat Reduction Agency to leverage ground testing and common interests in advanced detectors. and Air Force Research Laboratory to leverage flight opportunities. (6) Education and Public Outreach.

  7. Space Life Sciences Research and Education Program

    Science.gov (United States)

    Coats, Alfred C.

    2001-01-01

    Since 1969, the Universities Space Research Association (USRA), a private, nonprofit corporation, has worked closely with the National Aeronautics and Space Administration (NASA) to advance space science and technology and to promote education in those areas. USRA's Division of Space Life Sciences (DSLS) has been NASA's life sciences research partner for the past 18 years. For the last six years, our Cooperative Agreement NCC9-41 for the 'Space Life Sciences Research and Education Program' has stimulated and assisted life sciences research and education at NASA's Johnson Space Center (JSC) - both at the Center and in collaboration with outside academic institutions. To accomplish our objectives, the DSLS has facilitated extramural research, developed and managed educational programs, recruited and employed visiting and staff scientists, and managed scientific meetings.

  8. Robot Task Commander with Extensible Programming Environment

    Science.gov (United States)

    Hart, Stephen W (Inventor); Yamokoski, John D. (Inventor); Wightman, Brian J (Inventor); Dinh, Duy Paul (Inventor); Gooding, Dustin R (Inventor)

    2014-01-01

    A system for developing distributed robot application-level software includes a robot having an associated control module which controls motion of the robot in response to a commanded task, and a robot task commander (RTC) in networked communication with the control module over a network transport layer (NTL). The RTC includes a script engine(s) and a GUI, with a processor and a centralized library of library blocks constructed from an interpretive computer programming code and having input and output connections. The GUI provides access to a Visual Programming Language (VPL) environment and a text editor. In executing a method, the VPL is opened, a task for the robot is built from the code library blocks, and data is assigned to input and output connections identifying input and output data for each block. A task sequence(s) is sent to the control module(s) over the NTL to command execution of the task.

  9. Laboratory Directed Research ampersand Development Program

    International Nuclear Information System (INIS)

    Ogeka, G.J.; Romano, A.J.

    1993-12-01

    At Brookhaven National Laboratory the Laboratory Directed Research and Development (LDRD) Program is a discretionary research and development tool critical in maintaining the scientific excellence and vitality of the laboratory. It is also a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor in achieving and maintaining staff excellence, and a means to address national needs, within the overall mission of the Department of Energy and Brookhaven National Laboratory. This report summarizes research which was funded by this program during fiscal year 1993. The research fell in a number of broad technical and scientific categories: new directions for energy technologies; global change; radiation therapies and imaging; genetic studies; new directions for the development and utilization of BNL facilities; miscellaneous projects. Two million dollars in funding supported 28 projects which were spread throughout all BNL scientific departments

  10. The development of a TED-Ed online resident research training program.

    Science.gov (United States)

    Moreau, Katherine A; Pound, Catherine M; Peddle, Beth; Tokarewicz, Jaclyn; Eady, Kaylee

    2014-01-01

    Pediatric health research is important for improving the health and well-being of children and their families. To foster the development of physicians' research competencies, it is vital to integrate practical and context-specific research training into residency programs. To describe the development of a resident research training program at one tertiary care pediatric academic health sciences center in Ontario, Canada. We surveyed residents and pediatricians/research staff to establish the need and content for a resident research training program. Residents and resident research supervisors agreed or strongly agreed that research training is important for residents. However, few residents and supervisors believed that their academic health sciences center provided adequate training and resources to support resident research. As such, an online resident research training program was established. Residents and supervisors agreed that the program should focus on the following topics: 1) critically evaluating research literature, 2) writing a research proposal, 3) submitting an application for research funding, and 4) writing a manuscript. This highly accessible, context-specific, and inexpensive online program model may be of interest and benefit to other residency programs as a means to enhance residents' scholarly roles. A formal evaluation of the research training program is now underway.

  11. The development of a TED-Ed online resident research training program

    Directory of Open Access Journals (Sweden)

    Katherine A. Moreau

    2014-12-01

    Full Text Available Background: Pediatric health research is important for improving the health and well-being of children and their families. To foster the development of physicians’ research competencies, it is vital to integrate practical and context-specific research training into residency programs. Purpose: To describe the development of a resident research training program at one tertiary care pediatric academic health sciences center in Ontario, Canada. Methods: We surveyed residents and pediatricians/research staff to establish the need and content for a resident research training program. Results: Residents and resident research supervisors agreed or strongly agreed that research training is important for residents. However, few residents and supervisors believed that their academic health sciences center provided adequate training and resources to support resident research. As such, an online resident research training program was established. Residents and supervisors agreed that the program should focus on the following topics: 1 critically evaluating research literature, 2 writing a research proposal, 3 submitting an application for research funding, and 4 writing a manuscript. Discussion: This highly accessible, context-specific, and inexpensive online program model may be of interest and benefit to other residency programs as a means to enhance residents’ scholarly roles. A formal evaluation of the research training program is now underway.

  12. SKB's program for societal research 2004-2011. An evaluation

    International Nuclear Information System (INIS)

    Soederberg, Olof

    2012-04-01

    This evaluation of the program of societal research that SKB conducted the years 2004-2011 has been performed on behalf of Swedish Nuclear Fuel and Waste Management Company (SKB). The review has focused on answers to a series of questions as follows: General questions - Why was a program started? - What was SKB's purpose with the program? - Does the result mean that the objective has been achieved? - Has the program had effects (positive or negative) that were not anticipated when the purpose was formulated? - Strengths and weaknesses of the program? Questions about the implementation - How did announcement and selection procedures work? - Which forms were used for reporting results from the research projects? Questions about the continued investment in societal research - Are there such needs? - In that case, is it in SKB's interest to contribute financially to such research? - What forms might be appropriate if SKB sees interest to contribute financially to such research?

  13. Research into fisheries and the marine environment 1989-90

    International Nuclear Information System (INIS)

    1992-01-01

    This biannual report includes notes on the work of the Aquatic Environment Protection Division of the Directorate of Fisheries Research, Lowestoft in relation to assessment and monitoring of radioactive waste disposal and research into the environmental behaviour of radionuclides. (UK)

  14. The 2013 Summer Undergraduate Research Internship Program at the Pisgah Astronomical Research Institute

    Science.gov (United States)

    Castelaz, Michael W.; Cline, J. D.; Whitworth, C.; Clavier, D.; Barker, T.

    2014-01-01

    Pisgah Astronomical Research Institute (PARI) offers summer undergraduate research internships. PARI has received support for the internships from the EMC Corporation, private donations, private foundations, and through a collaboration with the Pisgah Astronomical Research and Education Center of the University of North Carolina - Asheville. The internship program began in 2001 with 4 students. This year 10 funded students participated. Mentors for the interns include PARI’s Directors of Science, Education, and Information Technology and visiting faculty who are members of the PARI Research Faculty Affiliate program. Students work with mentors on radio and optical astronomy research, electrical engineering for robotic control of instruments, software development for instrument control and and science education by developing curricula and multimedia and teaching high school students in summer programs at PARI. At the end of the summer interns write a paper about their research which is published in the PARI Summer Student Proceedings. Students are encouraged to present their research at AAS Meetings. We will present a summary of specific research conducted by the students with their mentors.

  15. Connected vehicle applications : environment.

    Science.gov (United States)

    2016-01-01

    The U.S. Department of Transportation has developed a number of connected vehicle environmental applications, including the Applications for the Environment Real-Time Information Synthesis (AERIS) research program applications and road weather applic...

  16. Controlled thermonuclear research program

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The Plasma Physics and Controlled-Fusion Research Program at the Lawrence Berkeley Laboratory is divided into five projects: Plasma Production and Heating Experiments, Plasma Theory, Atomic Physics Studies, the Tormac Project, and Neutral-Beam Development and Technology listed in order of increasing magnitude, as regards manpower and budget. Some cross sections and yields are shown in atomic physics

  17. ENVIRONMENT PROTECTION AND ENVIRONMENT MONITORING ISSUES IN THE PROJECTS OF SUBGLACIAL LAKES STUDIES IN ANTARCTICA

    Directory of Open Access Journals (Sweden)

    I. A. Alekhina

    2012-01-01

    Full Text Available Antarctic subglacial lakes can represent extreme natural habitats for microorganisms from the position of their evolution and adaptation, as well as they can contain the information on Antarctic ice sheet history and climatic changes in their sediments. Now only direct measurements and sampling from these habitats can answer on many fundamental questions. Special precaution should be complied at penetration into these unique relic environments without unfavorable impacts and contamination. A number of recommendations were developed on levels of cleanliness and sterility during direct exploration and research of subglacial environments. Documents considered in the article are the first and necessary steps for appropriate and long-term ecological management of subglacial Antarctic environments. Today there are three projects of subglacial aquatic environment research which are in preparation and realization – the Russian project of Lake Vostok, the similar British project of Lake Ellsworth and the American project on Whillans Ice Stream. The programs of ecological stewardship for direct exploration of these lakes are discussed. All these subglacial aquatic objects of further exploration and research are so various on their structure, age and regime, that only results of all programs as a whole can help to draw us a uniform picture of a subglacial ecological system. Ecological stewardship of these should provide the minimal ecological impact with maximal scientific results. On the basis of existing documents and recommendations the general approaches and the program of ecological stewardship for Lake Vostok research are discussed. Study of drilling fluid, drilling chips, Vostok ice core and the fresh frozen water will allow to make an assessment of biological and chemical contamination as a result of the first penetration and to modify the further stewardship program for the second penetration and direct exploration of lake water.

  18. Applied Information Systems Research Program Workshop

    Science.gov (United States)

    1991-01-01

    The first Applied Information Systems Research Program (AISRP) Workshop provided the impetus for several groups involved in information systems to review current activities. The objectives of the workshop included: (1) to provide an open forum for interaction and discussion of information systems; (2) to promote understanding by initiating a dialogue with the intended benefactors of the program, the scientific user community, and discuss options for improving their support; (3) create an advocacy in having science users and investigators of the program meet together and establish the basis for direction and growth; and (4) support the future of the program by building collaborations and interaction to encourage an investigator working group approach for conducting the program.

  19. Management and research priorities of NASA 'Human Research Program'

    International Nuclear Information System (INIS)

    Zhou Weijun; Diao Tianxi; Li Lijuan; Li Zulan

    2013-01-01

    Research on humans has been the focus of the United States space biomedical research, while 'Human Research Program', as an important project initiated by NASA, aims to reduce the risks to the health and performance of astronauts. This paper analyzed this project in terms of organization and management, funding investment and research directions. (authors)

  20. Future on the ITER program. On a branch of research on nuclear fusion

    International Nuclear Information System (INIS)

    Masaike, Akira

    2000-01-01

    As a huge cost for research and development of nuclear fusion is required, some international cooperative research such as ITER program have been intended to promote, to which Japanese response is required. As the program can be understood on its meaning at a viewpoint of promotion of basic science, concept on a key of energy problem is not insufficient yet And, its effect on technical problems and environment cannot be neglected Here was shown some proposals necessity for discussion on how the program had to be promoted under consideration of these problems. When a large scale program consuming national budget will be carried out, it is natural that agreement of national peoples must be obtained. Regretfully, in Japan discussion on science program above all nuclear policy has scarcely been experienced at citizens' levels, and some bitter experiences, where the concerned have promoted it in one side under a concept without any change once decided, have been pressured without any response to scientific advancements and social changes. Therefore, future plan on the nuclear fusion must be carried out a number of thorough discussion at a wide range from various viewpoints such as its realizing feasibility, safety, economics, and so forth, to promote careful adaptabilities. And, the concerned under promotion of the program and the relatives in the academic community seem to have a responsibility to easily explain present condition and scope of the plan to not only scientists but also citizens to awake them to promote its discussion with them. (G.K.)

  1. Summary and abstracts: Applied Research Units and Projects 1996 UCETF Program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-21

    The Urban Consortium (UC), created by PTI, is a network of jurisdictions with populations of over 250,000. The UC provides a platform for research and enterprise through its Energy, Environmental, Transportation, and Telecommunications and Information Task Forces. The UC provides a unique creative forum where elected and appointed officials and technical managers identify, test, and validate practical ways to improve the provision of public services and, where possible, generate new revenue opportunities. Public Technology, Inc., is the non-profit technology organization of the National League of Cities, the National Association of Counties, and the International City/County Management Association. PTI creates and advances technology-based products, services, and enterprises in cities and counties nationwide. Staffed by PTI, the UC addresses the critical needs of local governments through its Task Forces. The Urban Consortium Energy Task Force (UCETF) program has, since its inception, acted as a laboratory to develop, test solutions and share the resulting products or management approaches with the wider audience of local governments. It has addressed the overlap between energy and environment and economic development policy issues, and, is the nation's most extensive cooperative local government program to improve energy management and decision-making through applied research and technology cooperation. Proposals to meet the specific objectives of the UCETF annual R and D program are solicited from major urban jurisdictions. Projects based on these proposals are then selected by the UCETF for direct conduct and management by staff of city and county governments. Projects selected for each year's program are organized in thematic units to assure effective management and ongoing peer-to-peer experience exchange, with results documented at the end of each program year.

  2. Sustaining health education research programs in Aboriginal communities.

    Science.gov (United States)

    Wisener, Katherine; Shapka, Jennifer; Jarvis-Selinger, Sandra

    2017-09-01

    Despite evidence supporting the ongoing provision of health education interventions in First Nations communities, there is a paucity of research that specifically addresses how these programs should be designed to ensure sustainability and long-term effects. Using a Community-Based Research approach, a collective case study was completed with three Canadian First Nations communities to address the following research question: What factors are related to sustainable health education programs, and how do they contribute to and/or inhibit program success in an Aboriginal context? Semi-structured interviews and a sharing circle were completed with 19 participants, including members of community leadership, external partners, and program staff and users. Seven factors were identified to either promote or inhibit program sustainability, including: 1) community uptake; 2) environmental factors; 3) stakeholder awareness and support; 4) presence of a champion; 5) availability of funding; 6) fit and flexibility; and 7) capacity and capacity building. Each factor is provided with a working definition, influential moderators, and key evaluation questions. This study is grounded in, and builds on existing research, and can be used by First Nations communities and universities to support effective sustainability planning for community-based health education interventions.

  3. Undergraduate Student Involvement in International Research - The IRES Program at MAX-lab, Sweden

    Science.gov (United States)

    Briscoe, William; O'Rielly, Grant; Fissum, Kevin

    2014-03-01

    Undergraduate students associated with The George Washington University and UMass Dartmouth have had the opportunity to participate in nuclear physics research as a part of the PIONS@MAXLAB Collaboration performing experiments at MAX-lab at Lund University in Sweden. This project has supported thirteen undergraduate students during 2009 - 2011. The student researchers are involved with all aspects of the experiments performed at the laboratory, from set-up to analysis and presentation at national conferences. These experiments investigate the dynamics responsible for the internal structure of the nucleon through the study of pion photoproduction off the nucleon and high-energy Compton scattering. Along with the US and Swedish project leaders, members of the collaboration (from four different countries) have contributed to the training and mentoring of these students. This program provides students with international research experiences that prepare them to operate successfully in a global environment and encourages them to stay in areas of science, technology, engineering and math (STEM) that are crucial for our modern, technology-dependent society. We will present the history, goals and outcomes in both physics results and student success that have come from this program. This work supported by NSF OISE/IRES award 0553467.

  4. Research program on regulatory safety research - Synthesis report 2008

    International Nuclear Information System (INIS)

    Mailaender, R

    2009-06-01

    This report for the Swiss Federal Office of Energy (SFOE) summarises the program's main points of interest, work done in the year 2008 and the results obtained. The main points of the research program, which is co-ordinated by the Swiss Federal Nuclear Safety Inspectorate ENSI, are discussed. Topics covered concern reactor safety as well as human, organisational and safety aspects. Work done in several areas concerning reactor safety and materials as well as interactions in severe accidents in light-water reactors is described. Radiation protection, the transport and disposal of radioactive wastes and safety culture are also looked at. Finally, national and international co-operation is briefly looked at and work to be done in 2009 is reviewed. The report is completed with a list of research and development projects co-ordinated by ENSI

  5. Fermilab research program workbook

    International Nuclear Information System (INIS)

    Rubinstein, R.

    1983-05-01

    The Fermilab Research Program Workbook has been produced annually for the past several years, with the original motivation of assisting the Physics Advisory Committee in its yearly program review conducted during its summer meeting. While this is still the primary goal, the Workbook is increasingly used by others needing information on the current status of Fermilab experiments, properties of beams, and short summaries of approved experiments. At the present time, considerable changes are taking place in the facilities at Fermilab. We have come to the end of the physics program using the 400 GeV Main Ring, which is now relegated to be just an injector for the soon-to-be commissioned Tevatron. In addition, the experimental areas are in the midst of a several-year program of upgrading to 1000 GeV capability. Several new beam lines will be built in the next few years; some indications can be given of their properties, although with the caveat that designs for some are by no means final. Already there is considerable activity leading to experiments studying anti p p collisions at √s = 2000 GeV

  6. Examining the Relationship between the Research Training Environment, Course Experiences, and Graduate Students’ Research Self-Efficacy Beliefs

    Directory of Open Access Journals (Sweden)

    Steven Chesnut

    2015-10-01

    Full Text Available This study examined the relationship between graduate students’ research training environment, course experience, and research self-efficacy beliefs. The findings of the descriptive and regression analyses suggest that graduate students’ (n = 161 general research, quantitative, and qualitative research self-efficacy beliefs varied and that these beliefs were related to different aspects of the research training environment and course experiences, including their own personal research experiences. While course experience variables were significant predictors of quantitative and qualitative research self-efficacy, they were not predictive of general research methods self-efficacy. Also, while mentorship was a significant predictor of general research methods self-efficacy, it was not a significant predictor of quantitative and qualitative research self-efficacy. The implications of this study for research and graduate education are discussed.

  7. Research on budget management under IT environment

    Directory of Open Access Journals (Sweden)

    Wenchang Li

    2017-03-01

    Full Text Available IT technology has become a key element of core competitiveness of enterprises, and also the basis for its daily operation. The budget is a management process of forecasting and planning of the future operation and financial activities under the guidance of the strategic objectives, and completion of the strategic objectives to a maximum extent. Whether both of them can be effectively combined with is the key to effective implementation of the budget. Through analysis of the existing problems of the traditional budget of the enterprise and the budget under the information technology environment, analysis of the internal and external influencing factors of the budget management of the large and medium sized enterprises under the current environment with SWOT, factor quantization and weight with AHP, development of the strategic program according to the priority of weight, and finally verification with a case, this paper concludes that, the budget management work can be more strategic and forward-looking through combination with AHP and SWOT analysis.

  8. North American long-term soil productivity research program

    Science.gov (United States)

    Allan E. Tiarks; Robert F. Powers; Jerry F. Ragus; Deborah S. Page-Dumroese; Felix Ponder; Douglas M. Stone

    1997-01-01

    The National Long-term Soil Productivity research program was chartered to address National Forest Management Act concerns over possible losses n soil productivity on national forest lands. The program supports validation of soil quality monitoring standards and process-level productivity research. Summarized results are supplied to forests as collected. National...

  9. A Program of Research and Education in Astronautics at the NASA Langley Research Center

    Science.gov (United States)

    Tolson, Robert H.

    2000-01-01

    The objectives of the Program were to conduct research at the NASA Langley Research Center in the area of astronautics and to provide a comprehensive education program at the Center leading to advanced degrees in Astronautics. We believe that the program has successfully met the objectives and has been of significant benefit to NASA LaRC, the GWU and the nation.

  10. Small Business Innovation Research Program. Program solicitation FY 1984

    International Nuclear Information System (INIS)

    1984-01-01

    The Nuclear Regulatory Commission (NRC) invites science-based and high-technology small business firms to submit research proposals under this program solicitation entitled Small Business Innovation Research (SBIR). Firms with strong research capabilities in science or engineering in any of the following topic areas are encouraged to participate. NRC will support high-quality research proposals on important scientific or engineering problems and opportunities that could lead to significant advancement in the safety of nuclear operations or nuclear power plants. Objectives of the solicitation include stimulating technological innovation in the private sector, strengthening the role of small business in meeting Federal research and development needs, increasing the commercial application of NRC-supported research results, and improving the return on investment from Federally funded research for economic and social benefits to the Nation

  11. Evaluation of a Research Mentorship Program in Community Care

    Science.gov (United States)

    Ploeg, Jenny; de Witt, Lorna; Hutchison, Brian; Hayward, Lynda; Grayson, Kim

    2008-01-01

    This article describes the results of a qualitative case study evaluating a research mentorship program in community care settings in Ontario, Canada. The purpose of the program was to build evaluation and research capacity among staff of community care agencies through a mentorship program. Data were collected through in-depth, semi-structured…

  12. NASA's Student Airborne Research Program (SARP) 2009-2017

    Science.gov (United States)

    Schaller, E. L.

    2017-12-01

    The NASA Student Airborne Research Program (SARP) is a unique summer internship program for rising senior undergraduates majoring in any of the STEM disciplines. SARP participants acquire hands-on research experience in all aspects of a NASA airborne campaign, including flying onboard NASA research aircraft while studying Earth system processes. Approximately thirty-two students are competitively selected each summer from colleges and universities across the United States. Students work in four interdisciplinary teams to study surface, atmospheric, and oceanographic processes. Participants assist in the operation of instruments onboard NASA aircraft where they sample and measure atmospheric gases and image land and water surfaces in multiple spectral bands. Along with airborne data collection, students participate in taking measurements at field sites. Mission faculty and research mentors help to guide participants through instrument operation, sample analysis, and data reduction. Over the eight-week program, each student develops an individual research project from the data collected and delivers a conference-style final presentation on their results. Each year, several students present the results of their SARP research projects in scientific sessions at this meeting. We discuss the results and effectiveness of the program over the past nine summers and plans for the future.

  13. Publications of the Fossil Energy Advanced Research and Technology Development Materials Program: April 1, 1993--March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, P.T. [comp.

    1995-04-01

    The objective of the Fossil Energy Advanced Research and Technology Development (AR and TD) Materials Program is to conduct research and development on materials for fossil energy applications, with a focus on the longer-term needs for materials with general applicability to the various fossil fuel technologies. The Program includes research aimed at a better understanding of materials behavior in fossil energy environments and on the development of new materials capable of substantial improvement in plant operations and reliability. The scope of the Program addresses materials requirements for all fossil energy systems, including materials for coal preparation, coal liquefaction, coal gasification, heat engines and heat recovery, combustion systems, and fuel cells. Work on the Program is conducted at national and government laboratories, universities, and industrial research facilities. This bibliography covers the period of April 1, 1993, through March 31, 1995, and is a supplement to previous bibliographies in this series. It is the intent of this series of bibliographies to list only those publications that can be conveniently obtained by a researcher through relatively normal channels. The publications listed in this document have been limited to topical reports, open literature publications in refereed journals, full-length papers in published proceedings of conferences, full-length papers in unrefereed journals, and books and book articles. 159 refs.

  14. Laboratory Directed Research and Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.

    1991-12-01

    Today, new ideas and opportunities, fostering the advancement of technology, are occurring at an ever-increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of these new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and which develops new fundable'' R D projects and programs. At Brookhaven National Laboratory (BNL), one such method is through its Laboratory Directed Research and Development (LDRD) Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor achieving and maintaining staff excellence, and a means to address national needs, with the overall mission of the Department of Energy (DOE) and the Brookhaven National Laboratory. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals, and presentations at meetings and forums.

  15. Program Evaluation - Automotive Lightweighting Materials Program Research and Development Projects Assessment of Benefits - Case Studies No. 2

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.

    2003-01-23

    This report is the second of a series of studies to evaluate research and development (R&D) projects funded by the Automotive Lightweighting Materials (ALM) Program of the Office of Advanced Automotive Technologies (OAAT) of the U.S. Department of Energy (DOE). The objectives of the program evaluation are to assess short-run outputs and long-run outcomes that may be attributable to the ALM R&D projects. The ALM program focuses on the development and validation of advanced technologies that significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. Funded projects range from fundamental materials science research to applied research in production environments. Collaborators on these projects include national laboratories, universities, and private sector firms, such as leading automobile manufacturers and their suppliers. Three ALM R&D projects were chosen for this evaluation: Design and Product Optimization for Cast Light Metals, Durability of Lightweight Composite Structures, and Rapid Tooling for Functional Prototyping of Metal Mold Processes. These projects were chosen because they have already been completed. The first project resulted in development of a comprehensive cast light metal property database, an automotive application design guide, computerized predictive models, process monitoring sensors, and quality assurance methods. The second project, the durability of lightweight composite structures, produced durability-based design criteria documents, predictive models for creep deformation, and minimum test requirements and suggested test methods for establishing durability properties and characteristics of random glass-fiber composites for automotive structural composites. The durability project supported Focal Project II, a validation activity that demonstrates ALM program goals and reduces the lead time for bringing new technology into the marketplace. Focal

  16. The research program coordinator: an example of effective management.

    Science.gov (United States)

    Merry, Lisa; Gagnon, Anita J; Thomas, Julia

    2010-01-01

    Careers in clinical research management are increasingly common. Despite nurses' important role in clinical research, their status as research professionals is underrecognized. In this article, we describe the role of a "program coordinator" (PC) in the context of a complex research program on migration and reproductive health. The PC role expands beyond the usual role of a research coordinator because he or she is involved in all aspects of the program of research and his or her responsibilities include research, education, clinical, and administration components. He or she ensures optimal organization and continuity across several studies and ensures ethical and scientific standards are applied for each individual study. His or her clinical knowledge assures data are accurate and subjects are safe. In addition, he or she assists with applying for funding, the maintenance of research partnerships, and dissemination of research findings; he or she supports students' learning and completes all regulatory aspects related to the program of research. Key to the PC role is relationship building and the application of Good Clinical Practice principles. The advanced role of a PC also warrants opportunities for professional development and a competitive salary. A PC is an effective approach for research management and a natural role for professional nurse. Copyright 2010 Elsevier Inc. All rights reserved.

  17. Health, Safety, and Environment Division: Annual progress report 1987

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, M.A. (comp.)

    1988-04-01

    The primary responsibility of the Health, Safety, and Environment (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environment protection. These activities are designed to protect the worker, the public, and the environment. Many disciplines are required to meet the responsibilities, including radiation protection, industrial hygiene, safety, occupational medicine, environmental science, epidemiology, and waste management. New and challenging health and safety problems arise occasionally from the diverse research and development work of the Laboratory. Research programs in HSE Division often stem from these applied needs. These programs continue but are also extended, as needed to study specific problems for the Department of Energy and to help develop better occupational health and safety practices.

  18. Health, Safety, and Environment Division: Annual progress report 1987

    International Nuclear Information System (INIS)

    Rosenthal, M.A.

    1988-04-01

    The primary responsibility of the Health, Safety, and Environment (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environment protection. These activities are designed to protect the worker, the public, and the environment. Many disciplines are required to meet the responsibilities, including radiation protection, industrial hygiene, safety, occupational medicine, environmental science, epidemiology, and waste management. New and challenging health and safety problems arise occasionally from the diverse research and development work of the Laboratory. Research programs in HSE Division often stem from these applied needs. These programs continue but are also extended, as needed to study specific problems for the Department of Energy and to help develop better occupational health and safety practices

  19. Overview of NRC PRA research program

    International Nuclear Information System (INIS)

    Cunningham, M.A.; Drouin, M.T.; Ramey-Smith, A.M.; VanderMolen, M.T.

    1997-01-01

    The NRC's research program in probabilistic risk analysis includes a set of closely-related elements, from basic research to regulatory applications. The elements of this program are as follows: (1) Development and demonstration of methods and advanced models and tools for use by the NRC staff and others performing risk assessments; (2) Support to agency staff on risk analysis and statistics issues; (3) Reviews of risk assessments submitted by licensees in support of regulatory applications, including the IPEs and IPEEEs. Each of these elements is discussed in the paper, providing highlights of work within an element, and, where appropriate, describing important support and feedback mechanisms among elements

  20. Defense Coastal/Estuarine Research Program (DCERP)

    Science.gov (United States)

    2007-09-19

    activities, splash points and Landing Craft Air Cushion (LCAC) operations) and non-military Base activities (e.g., sewage treatment , storm water runoff and...We will measure the metabolism of benthic microalgae, the water column, eelgrass, and any dominant macroalgae by developing series of photosynthesis...activities (storm water control and sewage treatment ). Defense Coastal/Estuarine Research Program (DCERP) Research Plan DCERP Research Plan 32 September 19

  1. Scientific Merit Review of Directed Research Tasks Within the NASA Human Research Program

    Science.gov (United States)

    Charles, John B.

    2010-01-01

    The Human Research Program is instrumental in developing and delivering research findings, health countermeasures, and human systems technologies for spacecraft. :HRP is subdivided into 6 research entities, or Elements. Each Element is charged with providing the Program with knowledge and capabilities to conduct research to address the human health and performance risks as well as advance the readiness levels of technology and countermeasures. Project: An Element may be further subdivided into Projects, which are defined as an integrated set of tasks undertaken to deliver a product or set of products

  2. Assertion checking environment (ACE) for formal verification of C programs

    International Nuclear Information System (INIS)

    Sharma, Babita; Dhodapkar, S.D.; Ramesh, S.

    2003-01-01

    In this paper we describe an Assertion Checking Environment (ACE) for compositional verification of programs, which are written in an industrially sponsored safe subset of C programming language called MISRA C [Guidelines for the Use of the C Language in Vehicle Based Software, 1998]. The theory is based on Hoare logic [Commun. ACM 12 (1969) 576] and the C programs are verified using static assertion checking technique. First the functional specifications of the program, captured in the form of pre- and post-conditions for each C function, are derived from the specifications. These pre- and post-conditions are then introduced as assertions (also called annotations or formal comments) in the program code. The assertions are then proved formally using ACE and theorem proving tool called Stanford Temporal Prover [The Stanford Temporal Prover User's Manual, 1998]. ACE has been developed by us and consists mainly of a translator c2spl, a GUI and some utility programs. The technique and tools developed are targeted towards verification of real-time embedded software

  3. A research program in empirical computer science

    Science.gov (United States)

    Knight, J. C.

    1991-01-01

    During the grant reporting period our primary activities have been to begin preparation for the establishment of a research program in experimental computer science. The focus of research in this program will be safety-critical systems. Many questions that arise in the effort to improve software dependability can only be addressed empirically. For example, there is no way to predict the performance of the various proposed approaches to building fault-tolerant software. Performance models, though valuable, are parameterized and cannot be used to make quantitative predictions without experimental determination of underlying distributions. In the past, experimentation has been able to shed some light on the practical benefits and limitations of software fault tolerance. It is common, also, for experimentation to reveal new questions or new aspects of problems that were previously unknown. A good example is the Consistent Comparison Problem that was revealed by experimentation and subsequently studied in depth. The result was a clear understanding of a previously unknown problem with software fault tolerance. The purpose of a research program in empirical computer science is to perform controlled experiments in the area of real-time, embedded control systems. The goal of the various experiments will be to determine better approaches to the construction of the software for computing systems that have to be relied upon. As such it will validate research concepts from other sources, provide new research results, and facilitate the transition of research results from concepts to practical procedures that can be applied with low risk to NASA flight projects. The target of experimentation will be the production software development activities undertaken by any organization prepared to contribute to the research program. Experimental goals, procedures, data analysis and result reporting will be performed for the most part by the University of Virginia.

  4. Northwest Hazardous Waste Research, Development, and Demonstration Center: Program Plan

    International Nuclear Information System (INIS)

    1988-02-01

    The Northwest Hazardous Waste Research, Development, and Demonstration Center was created as part of an ongoing federal effort to provide technologies and methods that protect human health and welfare and environment from hazardous wastes. The Center was established by the Superfund Amendments and Reauthorization Act (SARA) to develop and adapt innovative technologies and methods for assessing the impacts of and remediating inactive hazardous and radioactive mixed-waste sites. The Superfund legislation authorized $10 million for Pacific Northwest Laboratory to establish and operate the Center over a 5-year period. Under this legislation, Congress authorized $10 million each to support research, development, and demonstration (RD and D) on hazardous and radioactive mixed-waste problems in Idaho, Montana, Oregon, and Washington, including the Hanford Site. In 1987, the Center initiated its RD and D activities and prepared this Program Plan that presents the framework within which the Center will carry out its mission. Section 1.0 describes the Center, its mission, objectives, organization, and relationship to other programs. Section 2.0 describes the Center's RD and D strategy and contains the RD and D objectives, priorities, and process to be used to select specific projects. Section 3.0 contains the Center's FY 1988 operating plan and describes the specific RD and D projects to be carried out and their budgets and schedules. 9 refs., 18 figs., 5 tabs

  5. Student perception of the educational environment in regular and bridging nursing programs in Saudi Arabia using the Dundee Ready Educational Environment Measure.

    Science.gov (United States)

    Al Nozha, Omar Mansour; Fadel, Hani T

    2017-01-01

    Taibah University offers regular nursing (RNP) and nursing bridging (NBP) bachelor programs. We evaluated student perception of the learning environment as one means of quality assurance. To assess nursing student perception of their educational environment, to compare the perceptions of regular and bridging students, and to compare the perceptions of students in the old and new curricula. Cross-sectional survey. College of Nursing at Taibah University, Madinah, Saudi Arabia. The Dundee Ready Educational Environment Measure (DREEM) instrument was distributed to over 714 nursing students to assess perception of the educational environment. Independent samples t test and Pearson's chi square were used to compare the programs and curricula. The DREEM inventory score. Of 714 students, 271 (38%) were RNP students and 443 (62%) were NBP students. The mean (standard deviation) DREEM score was 111 (25). No significant differences were observed between the programs except for the domain "academic self-perceptions" being higher in RNP students (P .05). Nursing students generally perceived their learning environment as more positive than negative. Regular students were more positive than bridging students. Students who experienced the new curriculum were more positive towards learning. The cross-sectional design and unequal gender and study level distributions may limit generalizability of the results. Longitudinal, large-scale studies with more even distributions of participant characteristics are needed.

  6. Programs of the Office of Energy Research

    International Nuclear Information System (INIS)

    1984-04-01

    An overview is given for the DOE research programs in high energy and nuclear physics; fusion energy; basic energy sciences; health and environmental research; and advisory, assessment and support activities

  7. Advancing research on loyalty programs: a future research agenda

    OpenAIRE

    Breugelmans, Els; Bijmolt, Tammo H. A.; Zhang, Jie; Basso, Leonardo J.; Dorotic, Matilda; Kopalle, Praveen; Minnema, Alec; Mijnlieff, Willem Jan; Wünderlich, Nancy V.

    2015-01-01

    This is the authors’ accepted and refereed manuscript to the article Despite the growing literature on loyalty program (LP) research, many questions remain underexplored. Driven by advancements in information technology, marketing analytics, and consumer interface platforms (e.g., mobile devices), there have been many recent developments in LP practices around the world. They impose new challenges and create exciting opportunities for future LP research. The main objective of this paper is...

  8. NASA Small Business Innovation Research program

    Science.gov (United States)

    Johnson, Harry W.

    1985-01-01

    NASA activities in the framework of the 11-agency federal Small Business Innovation Research program are outlined in tables and graphs and briefly characterized. Statistics on the program are given; the technical topics covered are listed; and the procedures involved in evaluating applications for support are discussed. A number of typical defects in proposals are indicated, and recommendations for avoiding them are provided.

  9. New energy technologies. Research program proposition

    International Nuclear Information System (INIS)

    2005-02-01

    This document presents the most promising program propositions of research and development and the public financing needed for their realization. The concerned technologies are: the hydrogen and the fuel cell PAN-H, the separation and the storage of the CO 2 , the photovoltaic solar electricity, the PREBAT program of the building energy recovery and the bio-energies. (A.L.B.)

  10. Research requirements related to radioactivity in the environment

    International Nuclear Information System (INIS)

    Fry, F.A.; Hill, M.D.; Wilkins, B.; Cooper, J.R.

    1988-05-01

    A set of papers identifying perceived national research requirements to 1989 had been prepared by various organisations for the Radioactivity, Research and Environmental Monitoring Committee. The Committee had also received a set of papers describing the research to be carried out or commissioned by Government Departments, advisory bodies and the nuclear industry in 1987-9. The purpose of the present report in the general area of radioactivity in the environment is to consider those papers and identify any gaps or overlaps in the national research effort to 1989. Five gaps are identified and their significance is commented upon. (author)

  11. ERATOSTHENES: excellence research Centre for Earth surveillance and space-based monitoring of the environment, the EXCELSIOR Horizon 2020 teaming project

    Science.gov (United States)

    Hadjimitsis, Diofantos G.; Kontoes, Haris; Schreier, Gunter; Ansmann, Albert; Komodromos, George; Themistocleous, Kyriacos; Mamouri, Rodanthi; Michaelides, Silas; Nisantzi, Argyro; Papoutsa, Christiana; Neocleous, Kyriacos; Mettas, Christodoulos; Tzouvaras, Marios; Evagorou, Evagoras; Christofe, Andreas; Melillos, George; Papoutsis, Ioannis

    2017-10-01

    The aim of this paper is to present the strategy and vision to upgrade the existing ERATOSTHENES Research Centre (ERC) established within the Cyprus University of Technology (CUT) into a sustainable, viable and autonomous Centre of Excellence (CoE) for Earth Surveillance and Space-Based Monitoring of the Environment, which will provide the highest quality of related services on the National, European and International levels. EXCELSIOR is a Horizon 2020 Teaming project which addresses a specific challenge defined by the work program, namely, the reduction of substantial disparities in the European Union by supporting research and innovation activities and systems in low performing countries. It also aims at establishing long-term and strategic partnerships between the Teaming partners, thus reducing internal research and innovation disparities within European Research and Innovation landscape. The proposed CoE envisions the upgrading of the existing ERC into an inspiring environment for conducting basic and applied research and innovation in the areas of the integrated use of remote sensing and space-based techniques for monitoring the environment. Environment has been recognized by the Smart Specialization Strategy of Cyprus as the first horizontal priority for future growth of the island. The foreseen upgrade will regard the expansion of this vision to systematic monitoring of the environment using Earth Observation, space and ground based integrated technologies. Such an approach will lead to the systematic monitoring of all three domains of the Environment (Air, Land, Water). Five partners have united to upgrade the existing ERC into a CoE, with the common vision to become a world-class innovation, research and education centre, actively contributing to the European Research Area (ERA). More specifically, the Teaming project is a team effort between the Cyprus University of Technology (CUT, acting as the coordinator), the German Aerospace Centre (DLR), the

  12. Western hardwoods : value-added research and demonstration program

    Science.gov (United States)

    D. W. Green; W. W. Von Segen; S. A. Willits

    1995-01-01

    Research results from the value-added research and demonstration program for western hardwoods are summarized in this report. The intent of the program was to enhance the economy of the Pacific Northwest by helping local communities and forest industries produce wood products more efficiently. Emphasis was given to value-added products and barriers to increased...

  13. Testing Algorithmic Skills in Traditional and Non-Traditional Programming Environments

    Science.gov (United States)

    Csernoch, Mária; Biró, Piroska; Máth, János; Abari, Kálmán

    2015-01-01

    The Testing Algorithmic and Application Skills (TAaAS) project was launched in the 2011/2012 academic year to test first year students of Informatics, focusing on their algorithmic skills in traditional and non-traditional programming environments, and on the transference of their knowledge of Informatics from secondary to tertiary education. The…

  14. Characteristics of research tracks in dermatology residency programs: a national survey.

    Science.gov (United States)

    Narala, Saisindhu; Loh, Tiffany; Shinkai, Kanade; Paravar, Taraneh

    2017-12-15

    Pursuing research is encouraged in dermatology residency programs. Some programs offer specific research or investigative tracks. Currently, there is little data on the structure or scope of research tracks in dermatology residency programs. An anonymous online survey was distributed to the Association of Professors of Dermatology listserve in 2016. Program directors of dermatology residency programs in the United States were asked to participate and 38 of the 95 program directors responded. The survey results confirmed that a 2+2 research track, which is two years of clinical training followed by two years of research, was the most common investigator trackmodel and may promote an academic career at the resident's home institution. Further studies will help determine the most effective research track models to promote long-term outcomes.

  15. Quality assurance mechanisms for the unregulated research environment.

    Science.gov (United States)

    Riedl, Denise Hanway; Dunn, Michael K

    2013-10-01

    Discussions on research quality and reproducibility are appearing in the pages of scientific journals with heightened significance and gaining media attention. Many institutions have developed guidelines to address the topic of quality in basic research, but questions remain about how best to implement and monitor compliance. Herein we present quality assurance (QA) mechanisms developed specifically for the unregulated discovery research environment to preempt growing concerns arising in both academia and industry for data-driven applications of biotechnology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Research on IoT-based water environment benchmark data acquisition management

    Science.gov (United States)

    Yan, Bai; Xue, Bai; Ling, Lin; Jin, Huang; Ren, Liu

    2017-11-01

    Over the past more than 30 years of reform and opening up, China’s economy has developed at a full speed. However, this rapid growth is under restrictions of resource exhaustion and environmental pollution. Green sustainable development has become a common goal of all humans. As part of environmental resources, water resources are faced with such problems as pollution and shortage, thus hindering sustainable development. The top priority in water resources protection and research is to manage the basic data on water resources, and determine what is the footstone and scientific foundation of water environment management. By studying the aquatic organisms in the Yangtze River Basin, the Yellow River Basin, the Liaohe River Basin and the 5 lake areas, this paper puts forward an IoT-based water environment benchmark data management platform which can transform parameters measured to electric signals by way of chemical probe identification, and then send the benchmark test data of the water environment to node servers. The management platform will provide data and theoretical support for environmental chemistry, toxicology, ecology, etc., promote researches on environmental sciences, lay a solid foundation for comprehensive and systematic research on China’s regional environment characteristics, biotoxicity effects and environment criteria, and provide objective data for compiling standards of the water environment benchmark data.

  17. Investment Climate and Business Environment Research Fund ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The United Nations Commission on the Private Sector and Development, the ... livelihood creation without eroding social, human or ecological capital. ... Project report on Intellectual Property Training Program for Eastern Africa, ... population and public health, and health systems research relevant to the emerging crisis.

  18. Nuclear medicine research: an evaluation of the ERDA program

    International Nuclear Information System (INIS)

    1976-08-01

    Legislation which established the Energy Research and Development Administration (ERDA) January 19, 1975, stipulated that this new agency should be responsible for all activities previously assigned to the Atomic Energy Commission (AEC) and not specifically assigned to other agencies. Such activities included the nuclear medicine research program of the AEC Division of Biomedical and Environmental Research (DBER). To determine whether continuation of this program under the broader ERDA mission of energy-related research was in fact appropriate, a special task force was appointed in January 1975 by Dr. James L. Liverman, the director of DBER. This task force, comprised of established scientists knowledgeable about issues related to nuclear medicine either currently or in the past, was charged specifically to assess the historical impact of the AEC/ERDA nuclear medicine program on the development of nuclear medicine, the current status of this program, and its future role within the structure of ERDA. The specific recommendations, in brief form, are as follows: the federal government should continue to support the medical application of nuclear technology; ERDA should retain primary responsibility for support and management of federal nuclear medicine research programs; and management and emphasis of the ERDA nuclear medicine program require modification in certain areas, which are set forth

  19. Laboratory directed research and development program, FY 1996

    International Nuclear Information System (INIS)

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices

  20. Laboratory directed research and development program, FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.

  1. Education Program for Doctoral Researchers by Industrial-Government-Academic Cooperation and Interaction between Different Research Fields

    Science.gov (United States)

    Oki, Kazuya; Sawaragi, Tetsuo; Hasebe, Shinji; Morisawa, Shinsuke

    New education program to train graduate students and postdoctoral researchers who can be good leaders in a variety of social fields by cooperation of graduate school of engineering and pharmaceutical sciences is conducted as an advanced activity in Kyoto University. This program consists of four sub-programs and the educational effect by the collaboration of industry-government-academic and the interaction between dissimilar research fields is described in this paper. Trainees in this program acquire the ability to understand objectively one’ s research from comprehensive point of view and to debate with researchers in different fields. This program supports them to become ‘Global Leaders’ who play an important role internationally in advanced technology.

  2. The Effects of Visual Cues and Learners' Field Dependence in Multiple External Representations Environment for Novice Program Comprehension

    Science.gov (United States)

    Wei, Liew Tze; Sazilah, Salam

    2012-01-01

    This study investigated the effects of visual cues in multiple external representations (MER) environment on the learning performance of novices' program comprehension. Program codes and flowchart diagrams were used as dual representations in multimedia environment to deliver lessons on C-Programming. 17 field independent participants and 16 field…

  3. DOE program guide for universities and other research groups. Part I. DOE Research and Development Programs; Part II. DOE Procurement and Assistance Policies/Procedures

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-01

    This guide addresses the DOE responsibility for fostering advanced research and development of all energy resources, both current and potential. It is intended to provide, in a single publication, all the fundamental information needed by an institution to develop a potential working relationship with DOE. Part I describes DOE research and development programs and facilities, and identifies areas of additional research needs and potential areas for new research opportunities. It also summarizes budget data and identifies the DOE program information contacts for each program. Part II provides researchers and research administrators with an introduction to the DOE administrative policies and procedures for submission and evaluation of proposals and the administration of resulting grants, cooperative agreements, and research contracts. (RWR)

  4. U.S. Department of Energy student research participation programs. Underrepresented minorities in U.S. Department of Energy student research participation programs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The purpose of this study was to identify those particular aspects of US Department of Energy (DOE) research participation programs for undergraduate and graduate students that are most associated with attracting and benefiting underrepresented minority students and encouraging them to pursue careers in science, engineering, and technology. A survey of selected former underrepresented minority participants, focus group analysis, and critical incident analysis serve as the data sources for this report. Data collected from underrepresented minority participants indicate that concerns expressed and suggestions made for conducting student research programs at DOE contractor facilities are not remarkably different from those made by all participants involved in such student research participation programs. With the exception of specific suggestions regarding recruitment, the findings summarized in this report can be interpreted to apply to all student research participants in DOE national laboratories. Clearly defined assignments, a close mentor-student association, good communication, and an opportunity to interact with other participants and staff are those characteristics that enhance any educational program and have positive impacts on career development.

  5. Evaluating the High School Lunar Research Projects Program

    Science.gov (United States)

    Shaner, A. J.; Shipp, S. S.; Allen, J.; Kring, D. A.

    2012-12-01

    The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute and NASA's Johnson Space Center, is one of seven member teams of the NASA Lunar Science Institute (NLSI). In addition to research and exploration activities, the CLSE team is deeply invested in education and outreach. In support of NASA's and NLSI's objective to train the next generation of scientists, CLSE's High School Lunar Research Projects program is a conduit through which high school students can actively participate in lunar science and learn about pathways into scientific careers. The objectives of the program are to enhance 1) student views of the nature of science; 2) student attitudes toward science and science careers; and 3) student knowledge of lunar science. In its first three years, approximately 140 students and 28 teachers from across the United States have participated in the program. Before beginning their research, students undertake Moon 101, a guided-inquiry activity designed to familiarize them with lunar science and exploration. Following Moon 101, and guided by a lunar scientist mentor, teams choose a research topic, ask their own research question, and design their own research approach to direct their investigation. At the conclusion of their research, teams present their results to a panel of lunar scientists. This panel selects four posters to be presented at the annual Lunar Science Forum held at NASA Ames. The top scoring team travels to the forum to present their research. Three instruments have been developed or modified to evaluate the extent to which the High School Lunar Research Projects meets its objectives. These three instruments measure changes in student views of the nature of science, attitudes towards science and science careers, and knowledge of lunar science. Exit surveys for teachers, students, and mentors were also developed to elicit general feedback about the program and its impact. The nature of science

  6. Summer Research Program - 1998 High School Apprenticeship Program. Volume 14. Phillips Laboratory

    National Research Council Canada - National Science Library

    Moore, Gary

    1998-01-01

    The United States Air Force Summer Research Program (USAF-SRP) is designed to introduce university, college, and technical institute faculty members, graduate students, and high school students to Air Force research...

  7. Summer Research Program - 1998 High School Apprenticeship Program Volume 13 Rome Laboratory

    National Research Council Canada - National Science Library

    Moore, Gary

    1998-01-01

    The United States Air Force Summer Research Program (USAF-SRP) is designed to introduce university, college, and technical institute faculty members, graduate students, and high school students to Air Force research...

  8. Summer Research Program - 1997 High School Apprenticeship Program. Volume 14, Rome Laboratory

    National Research Council Canada - National Science Library

    Moore, Gary

    1997-01-01

    The United States Air Force Summer Research Program (USAF-SRP) is designed to introduce university, college, and technical institute faculty members, graduate students, and high school students to Air Force research...

  9. Summer Research Program - 1996 High School Apprenticeship Program Volume 13 Phillips Laboratory

    National Research Council Canada - National Science Library

    Moore, Gary

    1996-01-01

    The United States Air Force Summer Research Program (USAF-SRP) is designed to introduce university, college, and technical institute faculty members, graduate students, and high school students to Air Force research...

  10. Transit Marketing : A Program of Research, Demonstration and Communication

    Science.gov (United States)

    1985-04-01

    This report recommends a five-year program of research, demonstration, and communication to improve the effectiveness of marketing practice in the U.S. transit industry. The program is oriented toward the development of improved market research tools...

  11. Crew behavior and performance in space analog environments

    Science.gov (United States)

    Kanki, Barbara G.

    1992-01-01

    The objectives and the current status of the Crew Factors research program conducted at NASA-Ames Research Center are reviewed. The principal objectives of the program are to determine the effects of a broad class of input variables on crew performance and to provide guidance with respect to the design and management of crews assigned to future space missions. A wide range of research environments are utilized, including controlled experimental settings, high fidelity full mission simulator facilities, and fully operational field environments. Key group processes are identified, and preliminary data are presented on the effect of crew size, type, and structure on team performance.

  12. Research Based Science Education: An Exemplary Program for Broader Impacts

    Science.gov (United States)

    Walker, C. E.; Pompea, S. M.

    2016-12-01

    Broader impacts are most effective when standing on the shoulders of successful programs. The Research Based Science Education (RBSE) program was such a successful program and played a major role in activating effective opportunities beyond the scope of its program. NSF funded the National Optical Astronomy Observatory (NOAO) to oversee the project from 1996-2008. RBSE provided primarily high school teachers with on-site astronomy research experiences and their students with astronomy research projects that their teachers could explain with confidence. The goal of most student research projects is to inspire and motivate students to go into STEM fields. The authors of the original NSF proposal felt that for students to do research in the classroom, a foundational research experience for teachers must first be provided. The key components of the program consisted of 16 teachers/year on average; a 15-week distance learning course covering astronomy content, research, mentoring and leadership skills; a subsequent 10-day summer workshop with half the time on Kitt Peak on research-class telescopes; results presented on the 9th day; research brought back to the classroom; more on-site observing opportunities for students and teachers; data placed on-line to reach a wider audience; opportunities to submit research articles to the project's refereed journal; and travel for teachers (and the 3 teachers they each mentored) to a professional meeting. In 2004, leveraging on the well-established RBSE program, the NOAO/NASA Spitzer Space Telescope Research began. Between 2005 and 2008, metrics included 32 teachers (mostly from RBSE), 10 scientists, 15 Spitzer Director Discretionary proposals, 31 AAS presentations and many Intel ISEF winners. Under new funding in 2009, the NASA/IPAC Teacher Archive Research Program was born with similar goals and thankfully still runs today. Broader impacts, lessons learned and ideas for future projects will be discussed in this presentation.

  13. Cloud hosting of the IPython Notebook to Provide Collaborative Research Environments for Big Data Analysis

    Science.gov (United States)

    Kershaw, Philip; Lawrence, Bryan; Gomez-Dans, Jose; Holt, John

    2015-04-01

    We explore how the popular IPython Notebook computing system can be hosted on a cloud platform to provide a flexible virtual research hosting environment for Earth Observation data processing and analysis and how this approach can be expanded more broadly into a generic SaaS (Software as a Service) offering for the environmental sciences. OPTIRAD (OPTImisation environment for joint retrieval of multi-sensor RADiances) is a project funded by the European Space Agency to develop a collaborative research environment for Data Assimilation of Earth Observation products for land surface applications. Data Assimilation provides a powerful means to combine multiple sources of data and derive new products for this application domain. To be most effective, it requires close collaboration between specialists in this field, land surface modellers and end users of data generated. A goal of OPTIRAD then is to develop a collaborative research environment to engender shared working. Another significant challenge is that of data volume and complexity. Study of land surface requires high spatial and temporal resolutions, a relatively large number of variables and the application of algorithms which are computationally expensive. These problems can be addressed with the application of parallel processing techniques on specialist compute clusters. However, scientific users are often deterred by the time investment required to port their codes to these environments. Even when successfully achieved, it may be difficult to readily change or update. This runs counter to the scientific process of continuous experimentation, analysis and validation. The IPython Notebook provides users with a web-based interface to multiple interactive shells for the Python programming language. Code, documentation and graphical content can be saved and shared making it directly applicable to OPTIRAD's requirements for a shared working environment. Given the web interface it can be readily made into a hosted

  14. Mechanical properties test program on structural materials in a sodium environment

    International Nuclear Information System (INIS)

    Natesan, K.; Chopra, O.K.; Kassner, T.F.

    1979-10-01

    This document describes in detail the ongoing and planned US Test program on the mechanical properties of sodium-exposed Type 316 austenitic stainless and Fe-2 1/4 Cr-1 Mo ferritic steels. The test program is based on the Development Requirement Specifications (DRS) established by the DOE/Clinch River Breeder Reactor Project (CRBRP) Program Office, the general need for the development of LMFBR structural-design criteria established by the Nuclear Systems Materials Handbook, and the need for a fundamental understanding of materials behavior in a sodium environment, which is generic to LMFBR systems. The planned test program is an extension of work based on current knowledge of sodium chemistry and the influence of sodium purity on the mechanical properties of structural materials

  15. Laboratory Directed Research and Development Program, FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical nation science and technology problems: accelerators and fusion, chemical sciences, earth sciences, energy and environment, engineering, life sciences, materials, nuclear science, physics, and structural biology (hyperthermophilic microorganisms).

  16. Laboratory Directed Research and Development Program, FY 1995

    International Nuclear Information System (INIS)

    1995-01-01

    This program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical nation science and technology problems: accelerators and fusion, chemical sciences, earth sciences, energy and environment, engineering, life sciences, materials, nuclear science, physics, and structural biology (hyperthermophilic microorganisms)

  17. ORD Water Quality Research Program Mid-Cycle Review - June 2009

    Science.gov (United States)

    The Board of Scientific Counselors (BOSC) completed a mid-cycle review of the Office of Research and Development’s (ORD) Water Quality Research Program (WQRP), focusing on Agency efforts to enhance the program following the 2006 BOSC program review.

  18. Linked Environments for Atmospheric Discovery (LEAD): A Cyberinfrastructure for Mesoscale Meteorology Research and Education

    Science.gov (United States)

    Droegemeier, K.

    2004-12-01

    complete framework for mesoscale meteorology research and education. A set of Integrated Grid and Web Services Testbeds will maintain a rolling archive of several months of recent data, provide tools for operating on them, and serve as an infrastructure (i.e., a mini Grid) for developing distributed Web services capabilities. Education Testbeds will integrate education and outreach throughout the entire LEAD program, and will help shape LEAD research into applications that are congruent with pedagogic requirements, national standards, and evaluation metrics. Ultimately, the LEAD environments will enable researchers, educators, and students to run atmospheric models and other tools in much more realistic, real time settings than is now possible, with emphasis on the use of locally or otherwise uniquely available data.

  19. 77 FR 48527 - National Customs Automation Program (NCAP) Test Concerning Automated Commercial Environment (ACE...

    Science.gov (United States)

    2012-08-14

    ... National Customs Automation Program (NCAP) test concerning the simplified entry functionality in the... DEPARTMENT OF HOMELAND SECURITY U.S. Customs and Border Protection National Customs Automation Program (NCAP) Test Concerning Automated Commercial Environment (ACE) Simplified Entry: Modification of...

  20. The 2004 NASA Faculty Fellowship Program Research Reports

    Science.gov (United States)

    Pruitt, J. R.; Karr, G.; Freeman, L. M.; Hassan, R.; Day, J. B. (Compiler)

    2005-01-01

    This is the administrative report for the 2004 NASA Faculty Fellowship Program (NFFP) held at the George C. Marshall Space Flight Center (MSFC) for the 40th consecutive year. The NFFP offers science and engineering faculty at U.S. colleges and universities hands-on exposure to NASA s research challenges through summer research residencies and extended research opportunities at participating NASA research Centers. During this program, fellows work closely with NASA colleagues on research challenges important to NASA's strategic enterprises that are of mutual interest to the fellow and the Center. The nominal starting and .nishing dates for the 10-week program were June 1 through August 6, 2004. The program was sponsored by NASA Headquarters, Washington, DC, and operated under contract by The University of Alabama, The University of Alabama in Huntsville, and Alabama A&M University. In addition, promotion and applications are managed by the American Society for Engineering Education (ASEE) and assessment is completed by Universities Space Research Association (USRA). The primary objectives of the NFFP are to: Increase the quality and quantity of research collaborations between NASA and the academic community that contribute to the Agency s space aeronautics and space science mission. Engage faculty from colleges, universities, and community colleges in current NASA research and development. Foster a greater public awareness of NASA science and technology, and therefore facilitate academic and workforce literacy in these areas. Strengthen faculty capabilities to enhance the STEM workforce, advance competition, and infuse mission-related research and technology content into classroom teaching. Increase participation of underrepresented and underserved faculty and institutions in NASA science and technology.

  1. 77 FR 46805 - Small Business Innovation Research Program Policy Directive

    Science.gov (United States)

    2012-08-06

    ... Vol. 77 Monday, No. 151 August 6, 2012 Part II Small Business Administration 13 CFR Chapter I Small Business Innovation Research Program Policy Directive; Small Business Technology Transfer Program Policy Directive; Small Business Innovation Research (SBIR) Program and Small Business Technology...

  2. The SSI reviews of the SKB research programs 1992

    International Nuclear Information System (INIS)

    Jensen, Mikael.

    1993-02-01

    The Swedish Radiation Protection Institute (SSI) has scrutinized the research programs 1992 of the Swedish Nuclear Fuel and Waste Management Co (SKB). The judgement is that SKB has both the competence and resources to perform the presented research programs

  3. Proposed research on class I components to test a general approach to accelerated aging under combined stress environments

    International Nuclear Information System (INIS)

    Gillen, K.T.; Salazar, E.A.; Frank, C.W.

    1977-04-01

    This report summarizes research on the aging of Class I components in environments representative of nuclear power plants. It discusses Class IE equipment used in nuclear power plants, typical environments encountered by Class IE components, and aging techniques used to qualify this equipment. General discussions of radiation chemistry of polymers and accelerated aging techniques are also included. Based on the inadequacies of present aging techniques for Class IE equipment, a proposal for an experimental program on electrical cables is presented. One of the main purposes of the proposed work is to obtain relevant data in two areas of particular concern--the effect of radiation dose rate on polymer degradation, and the importance of synergism for combined thermal and radiation environments. A new model that allows combined environment accelerated aging to be carried out is introduced, and it is shown how the experimental data to be generated can be used to test this model

  4. FORMATION OF THE TEACHER-RESEARCHER ACADEMIC CULTURE IN A DIGITAL CREATIVE ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Olena M. Semenoh

    2017-12-01

    Full Text Available The article outlines conceptual foundations of the future teachers-researchers academic culture formation in a digital creative environment. Academic culture of the researcher as an integral personal characteristic that is manifested in the culture of creative-critical thinking, academic virtue, scientific linguistic, narrative-digital culture has been investigated. The formation of the academic culture of the future teacher-researcher in terms of digital creative environment is seen as a complex, multidimensional process of qualitative changes, which happens in stages. The digital creative environment as a learning environment that involves the purposeful use of tools, technologies and information resources that enable creative expression of personality by means of digital technologies, integrating information and communication technologies, intellectual systems, human sensitivity and contextual experience of scientific and pedagogical activity has been defined.

  5. LDRD 2013 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Bookless, W. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2013-12-31

    This LDRD project establishes a research program led by Jingguang Chen, who has started a new position as a Joint Appointee between BNL and Columbia University as of FY2013. Under this project, Dr. Chen will establish a new program in catalysis science at BNL and Columbia University. The LDRD program will provide initial research funding to start research at both BNL and Columbia. At BNL, Dr. Chen will initiate laboratory research, including hiring research staff, and will collaborate with the existing BNL catalysis and electrocatalysis research groups. At Columbia, a subcontract to Dr. Chen will provide startup funding for his laboratory research, including initial graduate student costs. The research efforts will be linked under a common Catalysis Program in Sustainable Fuels. The overall impact of this project will be to strengthen the BNL catalysis science program through new linked research thrusts and the addition of an internationally distinguished catalysis scientist.

  6. Regulatory research and support program for 1989/90

    International Nuclear Information System (INIS)

    1989-01-01

    The Regulatory Research and Support Program is intended to augment and extend the Atomic Energy Control Board's regulatory program beyond the capability of in-house resources. The overall objective of the research and support program is to produce pertinent and independent information that will assist the Board and its staff in making correct, timely and credible decisions on regulating nuclear energy. The program is divided into eight main areas of research covering the safety of nuclear facilities, radioactive waste management, health physics, physical security and the development of regulatory processes. A total of 83 projects are planned for 1989/90, including a number which are ongoing from the previous fiscal year. Projects that are held in reserve in case funding becomes available are also listed. Most of the projects will be carried out under contracts issued through the Department of Supply and Services. This Information Bulletin contains a list of the projects with a brief description of each, and additional supporting information

  7. INEEL BNCT Research Program Annual Report, CY-2000

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, James Robert

    2001-03-01

    This report is a summary of the activities conducted in conjunction with the Idaho National Engineering and Environmental Laboratory (INEEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 2000. Applications of supportive research and development, as well as technology deployment in the fields of chemistry, radiation physics and dosimetry, neutron source design and demonstration, and support the Department of Energy’s (DOE) National BNCT Program goals are the goals of this Program. Contributions from the individual contributors about their projects are included, specifically described are the following, chemistry: analysis of biological samples and an infrared blood-boron analyzer, and physics: progress in the patient treatment planning software, measurement of neutron spectra for the Argentina RA-6 reactor, and recalculation of the Finnish research reactor FiR 1 neutron spectra, BNCT accelerator technology, and modification to the research reactor at Washington State University for an epithermal-neutron beam.

  8. Federal Geothermal Research Program Update Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    2004-02-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal and Wind Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The following mission and goal statements guide the overall activities of the Office of Geothermal and Wind Technologies. This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 1999. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal and Wind Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy.

  9. Multi-Language Programming Environments for High Performance Java Computing

    Directory of Open Access Journals (Sweden)

    Vladimir Getov

    1999-01-01

    Full Text Available Recent developments in processor capabilities, software tools, programming languages and programming paradigms have brought about new approaches to high performance computing. A steadfast component of this dynamic evolution has been the scientific community’s reliance on established scientific packages. As a consequence, programmers of high‐performance applications are reluctant to embrace evolving languages such as Java. This paper describes the Java‐to‐C Interface (JCI tool which provides application programmers wishing to use Java with immediate accessibility to existing scientific packages. The JCI tool also facilitates rapid development and reuse of existing code. These benefits are provided at minimal cost to the programmer. While beneficial to the programmer, the additional advantages of mixed‐language programming in terms of application performance and portability are addressed in detail within the context of this paper. In addition, we discuss how the JCI tool is complementing other ongoing projects such as IBM’s High‐Performance Compiler for Java (HPCJ and IceT’s metacomputing environment.

  10. NRC/AMRMC Resident Research Associateship Program

    Science.gov (United States)

    2018-05-01

    conducted the following activities in support of the subject contract: Outreach and Promotion The promotional schedule to advertise the NRC Research...Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT During this reporting period, the NRC promoted research...Associateship Programs included the following: 1) attendance at meetings of major scientific and engineering professional societies; 2) advertising in

  11. [The marine coastal water monitoring program of the Italian Ministry of the Environment].

    Science.gov (United States)

    Di Girolamo, Irene

    2003-01-01

    The Ministry of the Environment carries out marine and coastal monitoring programs with the collaboration of the coastal Regions. The program in progress (2001-2003), on the basis of results of the previous one, has identified 73 particulary significant areas (57 critical areas and 16 control areas). The program investigates several parameters on water, plancton, sediments, mollusks and benthos with analyses fortnightly, six-monthly and annual. The main aim of these three year monitoring programs is to assess the quality of national marine ecosystem.

  12. NRC/AMRMC Resident Research Associateship Program

    Science.gov (United States)

    2018-05-01

    2- 0010 Report Period: 02/06/2012-02/28/2018 4/11/2018, 12:17 PM During the reporting period, the National Academies of Sciences, Engineering , and...to advertise the NRC Research Associateship Programs included the following: 1) attendance at meetings of major scientific and engineering ...professional societies; 2) advertising in programs and career centers for these and other professional society meetings; 3) direct mailing and emailing of

  13. Research and Development Conference CIEE Program 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    CIEE`s second annual Research and Development Conference will introduce you to some of the results achieved to date through CIEE-sponsored multiyear research performed in three programs: Building Energy Efficiency, Air Quality Impacts of Energy Efficiency, and End-Use Resource Planning. Results from scoping studies, Director`s discretionary research, and exploratory research will also be featured in this report.

  14. Research and Development Conference CIEE Program 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    CIEE's second annual Research and Development Conference will introduce you to some of the results achieved to date through CIEE-sponsored multiyear research performed in three programs: Building Energy Efficiency, Air Quality Impacts of Energy Efficiency, and End-Use Resource Planning. Results from scoping studies, Director's discretionary research, and exploratory research will also be featured in this report.

  15. Federal Geothermal Research Program Update Fiscal Year 2002

    Energy Technology Data Exchange (ETDEWEB)

    2003-09-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The goals are: (1) Double the number of States with geothermal electric power facilities to eight by 2006; (2) Reduce the levelized cost of generating geothermal power to 3-5 cents per kWh by 2007; and (3) Supply the electrical power or heat energy needs of 7 million homes and businesses in the United States by 2010. This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2002. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy. balanced strategy for the Geothermal Program.

  16. Federal Geothermal Research Program Update Fiscal Year 2003

    Energy Technology Data Exchange (ETDEWEB)

    2004-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The following mission and goal statements guide the overall activities of the Office. The goals are: (1) Reduce the levelized cost of generating geothermal power to 3-5 cents per kWh by 2007; (2) Double the number of States with geothermal electric power facilities to eight by 2006; and (3) Supply the electrical power or heat energy needs of 7 million homes and businesses in the United States by 2010. This Federal Geothermal Program Research Update reviews the accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2003. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy. balanced strategy for the Geothermal Program.

  17. Army Medical Research and Materiel Command Resident Research Associateship Program

    Science.gov (United States)

    2018-05-01

    Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT During this reporting period, the NRC promoted research opportunities at AMRMC institutes through a... productivity of these Associates is listed in the technical report. 15. SUBJECT TERMS- Associateship program, post-doc, awards 16. SECURITY CLASSIFICATION OF...following activities in support of the subject contract: Outreach and Promotion The promotional schedule to advertise the NRC Research Associateship

  18. DEGAS: Dynamic Exascale Global Address Space Programming Environments

    Energy Technology Data Exchange (ETDEWEB)

    Demmel, James [Univ. of California, Berkeley, CA (United States)

    2018-02-23

    The Dynamic, Exascale Global Address Space programming environment (DEGAS) project will develop the next generation of programming models and runtime systems to meet the challenges of Exascale computing. The Berkeley part of the project concentrated on communication-optimal code generation to optimize speed and energy efficiency by reducing data movement. Our work developed communication lower bounds, and/or communication avoiding algorithms (that either meet the lower bound, or do much less communication than their conventional counterparts) for a variety of algorithms, including linear algebra, machine learning and genomics. The Berkeley part of the project concentrated on communication-optimal code generation to optimize speed and energy efficiency by reducing data movement. Our work developed communication lower bounds, and/or communication avoiding algorithms (that either meet the lower bound, or do much less communication than their conventional counterparts) for a variety of algorithms, including linear algebra, machine learning and genomics.

  19. SimITK: rapid ITK prototyping using the Simulink visual programming environment

    Science.gov (United States)

    Dickinson, A. W. L.; Mousavi, P.; Gobbi, D. G.; Abolmaesumi, P.

    2011-03-01

    The Insight Segmentation and Registration Toolkit (ITK) is a long-established, software package used for image analysis, visualization, and image-guided surgery applications. This package is a collection of C++ libraries, that can pose usability problems for users without C++ programming experience. To bridge the gap between the programming complexities and the required learning curve of ITK, we present a higher-level visual programming environment that represents ITK methods and classes by wrapping them into "blocks" within MATLAB's visual programming environment, Simulink. These blocks can be connected to form workflows: visual schematics that closely represent the structure of a C++ program. Due to the heavily C++ templated nature of ITK, direct interaction between Simulink and ITK requires an intermediary to convert their respective datatypes and allow intercommunication. We have developed a "Virtual Block" that serves as an intermediate wrapper around the ITK class and is responsible for resolving the templated datatypes used by ITK to native types used by Simulink. Presently, the wrapping procedure for SimITK is semi-automatic in that it requires XML descriptions of the ITK classes as a starting point, as this data is used to create all other necessary integration files. The generation of all source code and object code from the XML is done automatically by a CMake build script that yields Simulink blocks as the final result. An example 3D segmentation workflow using cranial-CT data as well as a 3D MR-to-CT registration workflow are presented as a proof-of-concept.

  20. Maryland controlled fusion research program. Volume I

    International Nuclear Information System (INIS)

    1985-01-01

    This renewal proposal describes the University of Maryland research program on Magnetic Fusion Energy for a three-year period beginning January 1, 1986. This program consists of five tasks: (I) Plasma Theory; (II) Electron Cyclotron Emission Diagnostics for Mirror Machines; (III) Electron Cyclotron Emission Diagnostics on TFTR; (IV) Atomic Physics; and (V) Magnetic Field Measurement by Ion Beams. The four separate tasks of continuing research (Tasks I to IV) and the new experimental task (Task V) are described in detail. The task descriptions contain estimated budgets for CY 86, 87, and 88