WorldWideScience

Sample records for environment division monday

  1. Discovery Mondays

    CERN Multimedia

    2003-01-01

    From the 5th May onwards, Microcosm gives you and your family the chance to discover areas of CERN that you might not even know existed! Every first Monday of the month, there will be animations on a different theme : from cryogenics to ultrasound, and surveying to astronomy... Entry is free and you can come and go as you please between the hours of 7.30 pm and 9 pm in Microcosm. Find out more in the next Bulletin and on the web site: http://www.cern.ch/microcosm/

  2. Discovery Mondays

    CERN Multimedia

    2003-01-01

    Many people don't realise quite how much is going on at CERN. Would you like to gain first-hand knowledge of CERN's scientific and technological activities and their many applications? Try out some experiments for yourself, or pick the brains of the people in charge? If so, then the «Lundis Découverte» or Discovery Mondays, will be right up your street. Starting on May 5th, on every first Monday of the month you will be introduced to a different facet of the Laboratory. CERN staff, non-scientists, and members of the general public, everyone is welcome. So tell your friends and neighbours and make sure you don't miss this opportunity to satisfy your curiosity and enjoy yourself at the same time. You won't have to listen to a lecture, as the idea is to have open exchange with the expert in question and for each subject to be illustrated with experiments and demonstrations. There's no need to book, as Microcosm, CERN's interactive museum, will be open non-stop from 7.30 p.m. to 9 p.m. On the first Discovery M...

  3. Health, Safety, and Environment Division

    Energy Technology Data Exchange (ETDEWEB)

    Wade, C [comp.

    1992-01-01

    The primary responsibility of the Health, Safety, and Environmental (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environmental protection. These activities are designed to protect the worker, the public, and the environment. Meeting these responsibilities requires expertise in many disciplines, including radiation protection, industrial hygiene, safety, occupational medicine, environmental science and engineering, analytical chemistry, epidemiology, and waste management. New and challenging health, safety, and environmental problems occasionally arise from the diverse research and development work of the Laboratory, and research programs in HSE Division often stem from these applied needs. These programs continue but are also extended, as needed, to study specific problems for the Department of Energy. The results of these programs help develop better practices in occupational health and safety, radiation protection, and environmental science.

  4. Discovery Mondays: Surveyors' Tools

    CERN Multimedia

    2003-01-01

    Surveyors of all ages, have your rulers and compasses at the ready! This sixth edition of Discovery Monday is your chance to learn about the surveyor's tools - the state of the art in measuring instruments - and see for yourself how they work. With their usual daunting precision, the members of CERN's Surveying Group have prepared some demonstrations and exercises for you to try. Find out the techniques for ensuring accelerator alignment and learn about high-tech metrology systems such as deviation indicators, tracking lasers and total stations. The surveyors will show you how they precisely measure magnet positioning, with accuracy of a few thousandths of a millimetre. You can try your hand at precision measurement using different types of sensor and a modern-day version of the Romans' bubble level, accurate to within a thousandth of a millimetre. You will learn that photogrammetry techniques can transform even a simple digital camera into a remarkable measuring instrument. Finally, you will have a chance t...

  5. Environment and Medical Sciences Division Progress Report

    International Nuclear Information System (INIS)

    Hainge, W.M.

    1980-06-01

    The 1979 annual progress report of the UKAEA Environmental and Medical Sciences Division covers both radiological and non-nuclear research programmes in the environmental and toxicological fields. The specific topics were 1) 'atmospheric pollution' which included the analysis of atmospheric trace gases by gas chromatography/mass spectrometry, the life cycle of atmospheric sulphur compounds, photochemical pollution, studies on stratospheric reactions, stratospheric ozone and the effects of pollutants, upper air sampling and monitoring gaseous atmospheric pollutants with passive samplers; 2) miscellaneous 'environmental safety projects'; 3) 'radiation physics' projects concerning a) radioactive fallout, b) studies of stable trace elements in the atmospheric environment and studies of radioactivity in the environment, c) various aspects of dosimetry research including radiation biophysics, d) personnel dosimetry, e) applied radiation spectrometry and f) data systems; 5) 'aerosol and metabolic studies' including whole body counting studies; 6) 'inhalation toxicology and radionuclide analysis' studies including actinide inhalation, cytotoxicity and fibrogenicity of non-radioactive dusts, asbestos and glass fibre research, a Qauntimet 720 image analysis service and radionuclide analysis in biological materials; and 7) 'analytical services' used in relation to 'environmental safety and chemical analysis' projects. (U.K.)

  6. Energy and Environment Division annual report, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Camp, J.A. (ed.)

    1978-01-01

    Research activities of this Division are reported under nine separate programs, namely: Energy Analysis; Solar Energy; Energy-Efficient Buildings; Chemical Process Research and Development; Environmental Research; Atmospheric Aerosol Research; Oil Shale Research; Instrumentation Development; and Combustion Research. A separate abstract was prepared for each of the nine programs, each of which contained several individual research summaries, with responsible researchers listed. All of the abstracts will appear in Energy Research Abstracts (ERA), and five will appear in Energy Abstracts for Policy Analysis (EAPA).

  7. A View Indoors, Indoor Environment Division's e-Article Series

    Science.gov (United States)

    The Indoor Environments Division has created partnership with public and private sector entities to help encourage the public to take action to minimize their risk and mitigate indoor air quality problems.

  8. Discovery Mondays: Zoom on materials

    CERN Multimedia

    2003-01-01

    Following the success of the first Discovery Monday, which had over 100 visitors, the series of evening events in Microcosm continues. On Monday 2nd June, discover the world of materials. Find out how CERN scientists examine, manufacture and study different materials, at different scales. Did you know for example that using electrons you can observe a hair at a scale equivalent to looking at a boat with the naked eye? Also, that using ultrasound, you can measure the thickness of an object that is completely inaccessible? Find out more about these techniques, and also the high-tech machining and soldering that is carried out in CERN's central workshop. Plus, see how engineers can detect tiny leaks through solder points - essential for maintaining the vacuum in the LHC. The evening is open to all, without reservation, suggested age 12 and above. Rendez-vous in Microcosm on Monday 2nd June From 19.30 - 21.00 Free entry For more information : http://www.cern.ch/microcosm Using a scanning microscope, the head o...

  9. Discovery Monday: How to measure success

    CERN Multimedia

    2003-01-01

    The last Discovery Monday which was carried out by the surveyors at CERN was a great success, one which they could not measure with their usual precision. The various entertaining as well as instructive experiments deserve a big "Thank you" to the SU group at the EST division. Children learn how to measure with the water level, like in Roman times.At CERN, photogrammetric techniques are used to precisely measure positions of complex ensembles like detectors. In Microcosm, photogrammetry is also invaluable to take the measure of visitors who can no longer cheat about their size. They were measured to a precision of one tenth of a millimetre and received a certificate.The alignment of accelerators is one of the big challenges for the surveyors at CERN. But even with good instruments, you need to have good eyes!

  10. Cell-Division Behavior in a Heterogeneous Swarm Environment.

    Science.gov (United States)

    Erskine, Adam; Herrmann, J Michael

    2015-01-01

    We present a system of virtual particles that interact using simple kinetic rules. It is known that heterogeneous mixtures of particles can produce particularly interesting behaviors. Here we present a two-species three-dimensional swarm in which a behavior emerges that resembles cell division. We show that the dividing behavior exists across a narrow but finite band of parameters and for a wide range of population sizes. When executed in a two-dimensional environment the swarm's characteristics and dynamism manifest differently. In further experiments we show that repeated divisions can occur if the system is extended by a biased equilibrium process to control the split of populations. We propose that this repeated division behavior provides a simple model for cell-division mechanisms and is of interest for the formation of morphological structure and to swarm robotics.

  11. Health, Safety, and Environment Division: Annual progress report 1987

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, M.A. (comp.)

    1988-04-01

    The primary responsibility of the Health, Safety, and Environment (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environment protection. These activities are designed to protect the worker, the public, and the environment. Many disciplines are required to meet the responsibilities, including radiation protection, industrial hygiene, safety, occupational medicine, environmental science, epidemiology, and waste management. New and challenging health and safety problems arise occasionally from the diverse research and development work of the Laboratory. Research programs in HSE Division often stem from these applied needs. These programs continue but are also extended, as needed to study specific problems for the Department of Energy and to help develop better occupational health and safety practices.

  12. Health, Safety, and Environment Division: Annual progress report 1987

    International Nuclear Information System (INIS)

    Rosenthal, M.A.

    1988-04-01

    The primary responsibility of the Health, Safety, and Environment (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environment protection. These activities are designed to protect the worker, the public, and the environment. Many disciplines are required to meet the responsibilities, including radiation protection, industrial hygiene, safety, occupational medicine, environmental science, epidemiology, and waste management. New and challenging health and safety problems arise occasionally from the diverse research and development work of the Laboratory. Research programs in HSE Division often stem from these applied needs. These programs continue but are also extended, as needed to study specific problems for the Department of Energy and to help develop better occupational health and safety practices

  13. Health, Safety, and Environment Division annual report, 1988

    International Nuclear Information System (INIS)

    Rosenthal, M.A.

    1989-10-01

    The primary responsibility of the Health, Safety, and Environment (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environmental protection. These activities are designed to protect the worker, the public, and the environment. Many disciplines are required to meet the responsibilities, including radiation protection, industrial hygiene, safety, occupational medicine, environmental science, epidemiology, and waste management. New and challenging health and safety problems occasionally arise from the diverse research and development work of the Laboratory. Research programs in HSE Division often stem from these applied needs. These programs continue but are also extended, as needed, to study specific problems for the Department of Energy and to help develop better occupational health and safety practices. 52 refs

  14. Monday Morning Workload Reports (FY15 - 17)

    Data.gov (United States)

    Department of Veterans Affairs — The Monday Morning Workload Report (MMWR) displays a snapshot of the Veterans Benefits Administration’s (VBA) workload as of a specified date, typically the previous...

  15. Discovery Mondays - 'Eureka! Meet the inventors'

    CERN Document Server

    2006-01-01

    Fabio Sauli, the inventor of the GEM detector. Do you imagine an invention as a spontaneous brainchild emergi from the convoluted mind of some scatterbrained and dishevelled scientist? If so, you are mistaken! Join us at Microcosm for the next Discovery Monday at which inventors will be the guests of honour. There you will meet scientists who, thanks to their creativity, have made technological progress possible. By constantly rising to new scientific and technological challenges, CERN has delivered numerous innovations, particularly in the medical field. Members of the Crystal Clear collaboration and the inventor of the GEM detector will give talks about their innovations and their applications, in particular for medical purposes. You will also be able to speak to members of the Medipix collaboration, which is working on improvements to X-ray and gamma ray imaging techniques. The event will be conducted in French. Come to Microcosm, (Reception Building 33, Meyrin site), on Monday 6 February from 7.30 p...

  16. Occupational health and environment research 1983: Health, Safety, and Environment Division. Progress report

    International Nuclear Information System (INIS)

    Voelz, G.L.

    1985-05-01

    The primary responsibility of the Health, Safety, and Environment (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environmental protection. These activities are designed to protect the workers, the public, and the environment. Evaluation of respiratory protective equipment included the XM-30 and M17A1 military masks, use of MAG-1 spectacles in respirators, and eight self-contained units. The latter units were used in an evaluation of test procedures used for Bureau of Mines approval of breathing apparatuses. Analyses of air samples from field studies of a modified in situ oil shale retorting facility were performed for total cyclohexane extractables and selected polynuclear aromatic hydrocarbons. Aerosols generation and characterization of effluents from oil shale processing were continued as part of an inhalation toxicology study. Additional data on plutonium excretion in urine are presented and point up problems in using the Langham equation to predict plutonium deposition in the body from long-term excretion data. Environmental surveillance at Los Alamos during 1983 showed the highest estimated radiation dose from Laboratory operations to be about 26% of the natural background radiation dose. Several studies on radionuclides and their transport in the Los Alamos environment are described. The chemical quality of surface and ground water near the geothermal hot dry rock facility is described. Short- and long-term consequences to man from releases of radionuclides into the environment can be simulated by the BIOTRAN computer model, which is discussed brirfly

  17. Discovery Mondays: crystals and particles for medicine

    CERN Multimedia

    2003-01-01

    Question: what are as heavy as lead, as clear as glass, and appear as tiny specks in a doctor's scanner but large as life in a physicist's detector? Answer: the crystals you will be able to observe in all their facets on 1 September at the start of a new season of Discovery Mondays at Microcosm. Come along and meet the CERN physicists who use crystals not only in their detectors but also in the latest generation of scanners. Four workshops will be organised, each devoted to a different medical imaging technique. The first workshop will be run by a physicist from the Crystal Clear collaboration, who will present her collaboration's special breed of crystals, which emit light when they are traversed by high-energy particles, and explain to you these crystals' role in Positron Emission Tomographs. The second workshop will focus on an imaging technique known as the Compton Camera, also based on scintillating crystals. Crystals worth looking at and admiring. Come to the next Discovery Monday to find out how they ...

  18. Discovery Mondays - The detectors: tracking particles

    CERN Multimedia

    2005-01-01

    View of a module from the LHCb vertex detector, which will be presented at the next Discovery Monday. How do you observe the invisible? In order to deepen still further our knowledge of the infinitely small, physicists accelerate beams of particles and generate collisions between them at extraordinary energies. The collisions give birth to showers of new particles. What are they? In order to find out, physicists slip into the role of detectives thanks to the detectors. At the next Discovery Monday you will find out about the different methods used at CERN to detect particles. A cloud chamber will allow you to see the tracks of cosmic particles live. You will also be given the chance to see real modules for the ATLAS and for the LHCb experiments. Strange materials will be on hand, such as crystals that are heavier than iron and yet as transparent as glass... Come to the Microcosm and become a top detective yourself! This event will take place in French. Join us at the Microcosm (Reception Building 33, M...

  19. Discovery Mondays: The very early Universe

    CERN Multimedia

    2003-01-01

    Copyright NASARetracing the very early Universe to understand why there is "something rather than nothing" is one of the challenges facing astrophysics today. It is also the theme of the third Discovery Monday, to be held in the Microcosm on 7 July, where you will be welcomed by a number of scientists. A professional astronomer will allow you to look through his telescope and explain how it works. A cosmologist will talk to you about the very early Universe and a CERN physicist will show you how it's possible to trap antimatter. The mirror of matter, antimatter should have existed in the same quantities as matter in the very early stages of the Universe but today it seems to have virtually disappeared. Perhaps the research being done at CERN will one day explain how an infinitesimal predominance of matter over antimatter resulted in such a richly structured Universe. Come along to the Microcosm on Monday, 7 July between 7.30 p.m. and 9.00 p.m. Entrance is free http://www.cern.ch/microcosm N.B.: The Discove...

  20. Discovery Mondays - Mass: a question of weight?

    CERN Multimedia

    2006-01-01

    Mass and weight: two rather commonplace phenomena on the surface of it, but would you be able to explain the difference between them? And do you know how gravity works? If you let go of a paperclip and an apple at the same time, which of the two will hit the floor first? At the next Discovery Monday scientists will introduce you to these concepts that are often rather difficult to get to grips with. Find out what kind of particles are thought to be responsible for mass and gravity. Get to know the graviton, a particle that has yet to be observed, has no mass or charge but is thought to be a messenger particle for gravity. You will also encounter the famous Higgs boson, which scientists believe could elucidate the mystery of mass and hope to discover with the LHC. An evening for tackling some very weighty questions... The event will be conducted in French. Join us at Microcosm (Reception, Building 33, Meyrin site), on Monday 6 March from 7.30 p.m. to 9.00 p.m. Entrance Free http://www.cern.ch/LundisDeco...

  1. Discovery Mondays - The detectors: tracking particles

    CERN Multimedia

    2005-01-01

    View of a module from the LHCb vertex detector, which will be presented at the next Discovery Monday. How do you observe the invisible? In order to deepen still further our knowledge of the infinitely small, physicists accelerate beams of particles at close to the speed of light, then generate collisions between them at extraordinary energies, giving birth to showers of new particles. What are these particles? In order to find out, physicists transform themselves into detectives with the help of the detectors. Located around the collision area, these exceptional machines are made up of various layers, each of which detects and measures specific properties of the particles that travel through them. Powerful computers then reconstruct their trajectory and record their charge, mass and energy in order to build up a kind of particle ID card. At the next Discovery Monday you will be able to find out about the different methods used at CERN to detect particles. A cloud chamber will provide live images of the trac...

  2. Discovery Monday - Behind the plug: communication networks

    CERN Multimedia

    2004-01-01

    Ever wondered what happens to your email when you click "send"? And when you make a phone call, how does your voice travel down the wire? Find out more about communication networks and their applications at the next Discovery Monday in Microcosm on 1 March. At CERN, networks are used for a multitude of reasons. Mobile phones, for example, are used in the laboratory's underground areas. Optical fibre cabling ensures that CERN's computers are connected to the rest of the world. But how do optical fibres work and what does the future have in store? CERN's experiments also need networks. Particle detectors are made of many layers, each relays complex information to a computer analysis centre which reconstitutes the passage of the particles resulting from collisions. Many billions of bytes are transmitted every second from a multitude of sources, to many computers.  No single computer can handle such a huge flow of information. The next Discovery Monday is your chance to find out how this works.  Participate i...

  3. Discovery Mondays: "Robots: At your service!"

    CERN Multimedia

    2005-01-01

    Two of the ISOLDE robots. Robots at CERN? Yes, because their presence is essential for replacing human beings when some tasks are too difficult for them, for example when materials are too fragile or too risky to work with. Come and discover the ISOLDE robots. You will also be able to meet "the Crab", in charge of carrying the LHC magnets in its claws. EPFL engineers from Autonomous Systems Lab and the Laboratory of Intelligent Systems will introduce you to some of their creations, including a robot built for planetary exploration, an indoor flying robot and a microrobot as tiny as a lump of sugar. At the next Discovery Monday, you will have the opportunity to meet robots of many sizes and forms. You will be amazed by their diversity and their personalities. Join us at the Microcosm (Reception Building 33, Meyrin site) on Monday 4 April from 7.30 p.m. to 9.00 p.m. Entrance Free http://www.cern.ch/microcosm http://intranet.cern.ch/Microcosm/LundisDecouverte/

  4. Discovery Mondays: "Robots: At your service!"

    CERN Multimedia

    2005-01-01

    Two of the ISOLDE robots. Robots at CERN? Yes, because their presence is essential for replacing human beings when some tasks are too difficult for them, for example when materials are too fragile or too risky to work with. Come and discover the ISOLDE robots. You will also be able to meet "the Crab", in charge of carrying the LHC magnets in its claws. EPFL engineers from Autonomous Systems Lab and the Laboratory of Intelligent Systems will introduce you to some of their creations, including a robot built for planetary exploration, an indoor flying robot and a microrobot as tiny as a lump of sugar. At the next Discovery Monday, you will have the opportunity to meet robots of many sizes and forms. You will be amazed by their diversity and their personalities. Join us at the Microcosm (Reception Building 33, Meyrin site) on Monday 4 April from 7.30 p.m. to 9.00 p.m. Entrance Free http://www.cern.ch/microcosm http://cern.ch/lundisdecouverte

  5. Discovery Mondays: 'Separating science from fiction'

    CERN Multimedia

    2006-01-01

    Photo credit: ESA/NASA, the AVO project and Paolo PadovaniDoes the imaginary word of fiction always end up becoming scientific reality? What futuristic visions can we extrapolate from today's technologies? Here is a short quiz to test your knowledge. Can YOU tell truth from fiction? True False The laser swords featuring in the Star Wars films really exist. Time travel is possible using black holes. You could eat a cake of antimatter. Levitation vehicles really exist. Dan Brown is a space alien. How can you distinguish truth from fiction, dreams from reality, real science and technology from the sci-fi fantasies so realistically described in novels, television and cinema? You are invited to come and discuss these questions at a Discovery Monday at the very frontiers of science..... Join us at Microcosm (Reception, Building 33, Meyrin site), on Monday, 4 September from 7:30 p.m. to 9 p.m. Entrance Free The event will be conducted in French. http://www.cern.ch/LundisDecouverte/ ...

  6. Energy and Environment Division, annual report FY 1980

    Energy Technology Data Exchange (ETDEWEB)

    Osowitt, M. (ed.)

    1981-07-01

    This report covers research in: energy analysis; energy efficiency studies; solar energy; chemical process; energy-efficient buildings; environmental pollutant studies; combustion research; laser spectroscopy and trace elements; and oil shale and coal research. An energy and environment personnel listing is appended. Separate projects are indexed individually for the database. (PSB)

  7. Discovery Mondays: Quantum physics - incredible but true

    CERN Multimedia

    2006-01-01

    Physicists use two main theories to describe the world around us - the general theory of relativity to describe the infinitely large and quantum theory to describe the infinitesimally small, at the scale of the atom and its constituent parts. Quantum physics is as fascinating as it is bewildering. And yet it's used in many practical applications - medical imaging, lasers and computers, to name but a few. Over the course of the evening, you'll become acquainted with strange phenomena such as super-fluidity, teleportation and quantum cryptography. And through some amazing sleights-of-hand and experiments, you'll be taken on a journey into the mysteries of the infinitesimally small... The event will be conducted in French. Come to Microcosm, (Reception Building 33, Meyrin site), on Monday 3 July from 7.30 p.m. to 9.00 p.m. Entrance is free http://www.cern.ch/LundisDecouverte/

  8. Computation Offloading Algorithm for Arbitrarily Divisible Applications in Mobile Edge Computing Environments: An OCR Case

    Directory of Open Access Journals (Sweden)

    Bo Li

    2018-05-01

    Full Text Available Divisible applications are a class of tasks whose loads can be partitioned into some smaller fractions, and each part can be executed independently by a processor. A wide variety of divisible applications have been found in the area of parallel and distributed processing. This paper addresses the problem of how to partition and allocate divisible applications to available resources in mobile edge computing environments with the aim of minimizing the completion time of the applications. A theoretical model was proposed for partitioning an entire divisible application according to the load of the application and the capabilities of available resources, and the solutions were derived in closed form. Both simulations and real experiments were carried out to justify this model.

  9. ENERGY EFFICIENT BUILDINGS PROGRAM. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979

    Energy Technology Data Exchange (ETDEWEB)

    Authors, Various

    1979-12-01

    The research reported in this volume was undertaken during FY 1979 within the Energy & Environment Division of the Lawrence Berkeley Laboratory. This volume will comprise a section of the Energy & Environment Division 1979 Annual Report, to be published in the summer of 1980. Work reported relate to: thermal performance of building envelopes; building ventilation and indoor air quality; a computer program for predicting energy use in buildings; study focused specifically on inherently energy intensive hospital buildings; energy efficient windows and lighting; potential for energy conservation and savings in the buildings sector; and evaluation of energy performance standards for residential buildings.

  10. Discovery Mondays: 'The Grid: a universal computer'

    CERN Multimedia

    2006-01-01

    How can one store and analyse the 15 million billion pieces of data that the LHC will produce each year with a computer that isn't the size of a sky-scraper? The IT experts have found the answer: the Grid, which will harness the power of tens of thousands of computers in the world by putting them together on one network and making them work like a single computer achieving a power that has not yet been matched. The Grid, inspired from the Web, already exists - in fact, several of them exist in the field of science. The European EGEE project, led by CERN, contributes not only to the study of particle physics but to medical research as well, notably in the study of malaria and avian flu. The next Discovery Monday invites you to explore this futuristic computing technology. The 'Grid Masters' of CERN have prepared lively animations to help you understand how the Grid works. Children can practice saving the planet on the Grid video game. You will also discover other applications such as UNOSAT, a United Nations...

  11. Discovery Mondays - 'Particle tracks: Seeing the invisible'

    CERN Multimedia

    2007-01-01

    Simulation of particle tracks in the CMS detector. How can you 'see' something as infinitesimal and fleeting as an elementary particle that defeats even the most powerful microscope? Well, physicists have detectors to snoop on them. Unlike biologists looking at bacteria, physicists don't see the particles themselves. They study their impact on sensitive materials as they pass through them at ultra high speed, a bit like seeing plane vapour trails in a clear sky. At the next Discovery Monday you will be able to find out about the different methods used at CERN to detect particles. There will be demonstrations of the cloud chamber, where particles leave tell-tale evidence of their passage in tracks of droplets. You will also learn about past and current particle track detection techniques and how the tracks are reconstructed into magnificent composite images. Don't miss this opportunity to learn about the various ways of 'seeing' particles. The event will be conducted in French. Come along to the Microcosm ...

  12. Discovery Monday: Much ado about nothing: vacuums

    CERN Multimedia

    2004-01-01

    Most people seem to agree that an empty space has nothing in it. But what about the physicists? "Wait a minute!", they will tell you, at the Microcosm's next Discovery Monday on 5th April, for they know that even interstellar space is not as empty as it might seem... Because particles, the tiny constituents of matter, are everywhere. Even the most sophisticated vacuum pumps cannot get rid of them all. What's more, energy is omnipresent in the Universe. Energy has the habit of turning itself into matter then disappearing, only to come back again as energy... and all this in the twinkling of an eye. Hence the term "virtual matter". A completely empty space simply does not exist. Vacuums are of vital importance to CERN's physicists. In the accelerators, it is essential to obtain the best possible vacuum inside the tube through which the particles travel, in order to avoid interference from other, stray particles. To this end they use "getter" strips, which act like fly traps. When these strip...

  13. Monday (after work) is party time!

    CERN Multimedia

    Antonella Del Rosso

    2013-01-01

    In this interview with Hermann Schmickler, CERN accelerator expert and, more recently, manager of the Open Day organising team, the Bulletin looks behind the scenes of the organisation of CERN’s most popular events for the public.  After the huge endeavour, the “Bosons&More” party awaits you too!   The Open Days core team. “In the early days of the preparations when we still had some spare time, we decided to take photos in two different dress codes to illustrate the spirit of “Bosons&More”: formal evening dress and festival type clothes,” says Herman Schmickler. What will your dress code be on Monday evening?   When Hermann is asked “what did you like best” about this whole adventure, he has no hesitation: “The team,” he says. “We have a wonderful team of very motivated people.” Let’s make a rough calculation: the core team compris...

  14. Technology Development, Evaluation, and Application (TDEA) FY 2001 Progress Report Environment, Safety, and Health (ESH) Division

    Energy Technology Data Exchange (ETDEWEB)

    L.G. Hoffman; K. Alvar; T. Buhl; E. Foltyn; W. Hansen; B. Erdal; P. Fresquez; D. Lee; B. Reinert

    2002-05-01

    This progress report presents the results of 11 projects funded ($500K) in FY01 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division (ESH). Five projects fit into the Health Physics discipline, 5 projects are environmental science and one is industrial hygiene/safety. As a result of their TDEA-funded projects, investigators have published sixteen papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplement funds and in-kind contributions, such as staff time, instrument use, and workspace, were also provided to TDEA-funded projects by organizations external to ESH Divisions.

  15. Technology Development, Evaluation, and Application (TDEA) FY 1999 Progress Report, Environment, Safety, and Health (ESH) Division

    Energy Technology Data Exchange (ETDEWEB)

    Larry G. Hoffman

    2000-12-01

    This progress report presents the results of 10 projects funded ($500K) in FY99 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division. Five are new projects for this year; seven projects have been completed in their third and final TDEA-funded year. As a result of their TDEA-funded projects, investigators have published thirty-four papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplemental funds and in-kind contributions, such as staff time, instrument use, and work space, were also provided to TDEA-funded projects by organizations external to ESH Division.

  16. Technology Development, Evaluation, and Application (TDEA) FY 1999 Progress Report, Environment, Safety, and Health (ESH) Division

    International Nuclear Information System (INIS)

    Hoffman, Larry G.

    2000-01-01

    This progress report presents the results of 10 projects funded ($500K) in FY99 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division. Five are new projects for this year; seven projects have been completed in their third and final TDEA-funded year. As a result of their TDEA-funded projects, investigators have published thirty-four papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplemental funds and in-kind contributions, such as staff time, instrument use, and work space, were also provided to TDEA-funded projects by organizations external to ESH Division

  17. Technology Development, Evaluation, and Application (TDEA) FY 1998 Progress Report Environment, Safety, and Health (ESH) Division

    Energy Technology Data Exchange (ETDEWEB)

    Larry G. Hoffman; Kenneth Alvar; Thomas Buhl; Bruce Erdal; Philip Fresquez; Elizabeth Foltyn; Wayne Hansen; Bruce Reinert

    1999-06-01

    This progress report presents the results of 10 projects funded ($504K) in FY98 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division. Nine projects are new for this year; two projects were completed in their third and final TDEA-funded year. As a result of their TDEA-funded projects, investigators have published 19 papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplemental funds and in-kind contributions, such as staff time, instrument use, and work space were also provided to the TDEA-funded projects by organizations external to ESH Division. Products generated from the projects funded in FY98 included a new extremity dosimeter that replaced the previously used finger-ring dosimeters, a light and easy-to-use detector to measure energy deposited by neutron interactions, and a device that will allow workers to determine the severity of a hazard.

  18. Discovery Monday: Fetch the engine! Fetch the engine!

    CERN Multimedia

    2004-01-01

    The demonstration by the CERN Fire Brigade at the last Discovery Monday at Microcosm proved a roaring success. The range of workshops on offer captured the imagination of young and old alike. Everybody had the chance to slip into the role of a rescuer for the evening and to become acquainted with different first aid techniques. In order for the accident simulations to appear more realistic, the firemen put their excellent make-up skills to good use. The audience was completely taken in! Follow the rope! A simple yet vital exercise: how to find your way in a room that is ablaze and filled with smoke, where there is virtually no visibility. All you need to do is use the lifeline consisting of several strands of differing lengths to find your way out or to the source of the fire.The victim is carried on a stretcher but he is comfortable thanks to the rescuers from the Hazardous Environments Response Team.The fundamental steps of first aid can be learnt at all ages! Knowing how to give mouth-to-mouth resuscitati...

  19. Discovery Mondays - Men of fire: the fire brigade show their mettle

    CERN Multimedia

    2004-01-01

    Flashover and backdraught, these technical terms refer to two of the most dangerous phenomena associated with fires. In order to train in dealing with them, in the course of their fire fighting duties the CERN fire brigade use special simulation equipment. The demonstrations are rather spectacular... Thrills are therefore guaranteed at the next Discovery Monday on 2 February! In the course of the evening, you will see fire-fighters demonstrate climbing techniques including abseiling, a method they would have to use to access underground structures on the CERN site in the event of an accident. The accomplished climbers (the Hazardous Environments Response Team) will provide detailed explanations of the rescue techniques and procedures they use in tunnels and hazardous environments. CERN firemen simulate the backdraft phenomena for training. The demonstration, which you will have the opportunity to observe, on the next Discovery Monday, is spectacular. However, the remit of the CERN fire brigade goes well b...

  20. Debunking the Monday Irrationality through the External Affection of Investors

    Directory of Open Access Journals (Sweden)

    Rayenda Brahmana

    2016-02-01

    Full Text Available This study aims to reveal the mechanism of the influences of the full moon and high temperatures on investors’ Monday irrationality. In contrast to other studies, this research was built under a retroductive approach by using a time series quasi experimental study. Investors were directly assessed for their irrationality by using an adapted psychometric test on 4 occasions. The results indicate that there were indeed effects of the full moon and high temperatures on investors’ irrationality. Because the full moon and high temperatures frequently occurred on Mondays, it is most probably those two variables that were the drivers of the Monday irrationality. In the end, we concluded that the rational behaviour assumption can no longer be held. Instead of rationality, the investors were quasi rational. The utility function of Von Neumann-Morgenstern in decision making has to be replaced by the hedonic utility.

  1. Immunologic and clinical responses to "Monday morning miseries" antigens.

    Science.gov (United States)

    Cernelc, S; Stropnik, Z

    1987-01-01

    Authors analysed 96 workers exposed to air conditioning system (Group A), and 71 workers (Group B) breathing normal ambient air. 38 workers in group A had a positive clinical history of "Monday morning miseries". Eight cases with the diagnosis hypersensitivity pneumonitis, acute and chronic form was based on environmental history, clinical investigations, physical examination, Chest-X-ray examination, immunological test "in vivo" and "in vitro" with common allergens and antigen "Monday morning miseries", ELISA, spirometry and PEFR (Peak Expiratory Flow-Rate) measurements. Exposure to contaminated air may be responsible for morbidity and reduced performance of workers.

  2. The reversal of the Monday effect in Canada and the US

    OpenAIRE

    Cleary, Sally Anne

    2005-01-01

    This paper examines the Monday effect in US and Canadian equity markets and finds that: 1) the Monday effect in US and Canadian equity markets reversed during the period 1988 to 1998, and 2) there is a concentration of positive Monday returns during the first half of the month, i.e. the week-of-themonth distribution is more positive in the first and second Mondays of the month. Keywords: Monday (weekend) effect; US and Canadian equity markets; reversal; concentration of Monday returns in firs...

  3. LASER SPECTROSCOPY AND TRACE ELEMENT ANALYSIS Chapter from the Energy and Environment Division Annual Report 1980

    Energy Technology Data Exchange (ETDEWEB)

    Various, Authors

    1981-05-01

    In order to control pollutants resulting from energy production and utilization, adequate methods are required for monitoring the level of various substances often present at low concentrations. The Energy and Environment Division Applied Research in Laser Spectroscopy & Analytical Techniques Program is directed toward meeting these needs, Emphasis is on the development of physical methods, as opposed to conventional chemical analysis techniques. The advantages, now widely recognized, include ultra-high sensitivity coupled with minimal sample preparation. In some instances physical methods provide multi-parameter measurements which often provide the only means of achiev·ing the sensitivity necessary for the detection of trace contaminants. Work is reported in these areas: APPLIED PHYSICS AND LASER SPECTROSCOPY RESEARCH; MICROPROCESSOR CONTROLLER ANODIC STRIPPING VOLTAMETER FOR TRACE METALS ANALYSIS IN WATER; THE SURVEY OF INSTRUMENTATION FOR ENVIRONMENTAL MONITORING; THE POSSIBLE CHRONDRITIC NATURE OF THE DANISH CRETACEOUS~TERTIARY BOUNDARY; IMPROVEMENT OF THE SENSITIVITY AND PRECISION OF NEUTRON ACTIVATION ANALYSIS OF SOME ELEMENTS IN PLANKTON AND PLANKTONIC FISH; and SOURCES OF SOME SECONDARILY WORKED OBSIDIAN ARTIFACTS FROM TIKAL, GUATEMALA.

  4. Occupational health and environment research 1984: Health, Safety, and environmental Division. Progress report

    International Nuclear Information System (INIS)

    Voelz, G.L.

    1986-05-01

    The primary responsibility of the Health, Safety, and Environment (HSE) Division is to provide comprehensive occupational health and safety programs, waste processing, and environment protection. Two supplied-air suits tested for their functional protection were considered to be unacceptable because of low fit factors. Respiratory protective equipment testing for the uS Air Force, Navy, and Army was performed during 1984. The laser aerosol spectrometer (LAS-X) has been shown to operate successfully for measuring and sizing aerosols used for quality assurance testing of high-efficiency particulate air filters used at DOE facilities. Radioanalyses for 239 Pu and 241 Am are presented for the complete skeletal parts of two persons. Air samples from work areas in a coal gasification plant in Yugoslavia show minimal concentration of organic vapors, amines, polynuclear aromatic hydrocarbons, and phenols. Aerosol characteristics of oil shale vapors and manmade vitreous fibers used in ongoing inhalation toxicology studies are presented. Epidemiologic studies of smoking patterns among Los Alamos employees reveal 24.3% smokers compared with the US rate of 32.5%. Environmental surveillance at Los Alamos during 1984 showed the highest estimated radiation dose to an individual at or outside the Laboratory boundary to be about 25% of the natural background radiation dose. Surveillance studies on water and sediment transport of radionuclides, depleted uranium, and silver are described. Bibliographic review of the rooting depth of native plants indicates that even many grass species will root to depths greater than the earth overburden depths to cover low-level radioactive waste sites

  5. Pengujian Fenomena Efek Senin (Monday Effect) dan Weekfour Effectdi Bursa Efek Indonesia

    OpenAIRE

    Silaban, Delia Tika; Alvia, Liza

    2009-01-01

    The objective of this research is to reexamine the anomaly of Monday effect and week four effect at Indonesian Stock Exchange (ISE). Using Jakarta Composite Index from 2003 until 2007 and ANOVA to answer the research questions. The results of this research show that there was no difference return between Monday and Tuesday until Friday. The first hypothesis said that Monday return would be lower than another day return was rejected. And also for the second hypothesis, Monday return would be l...

  6. Discovery Mondays "State-of-the-art technologies for precision"

    CERN Multimedia

    2007-01-01

    Ceramic plate drilled with high precision in CERN’s workshop. The diameter of each hole is only 0.02 millimetres, comparable to the diameter of a hair.Scientists have to be infinitely precise to study the infinitely small. Thus, even though the LHC is the world’s largest accelerator, it has to be aligned to within a tenth of a millimetre. The detectors weigh several thousand tonnes but are capable of detecting the tiniest vibration of the Earth. Join us at the next Discovery Monday to find out about CERN’s state-of-the-art tools for achieving the degrees of resolution required in the field of particle physics. Don’t miss this opportunity to discover the world of precision! The event will be conducted in FrenchCome along to the Microcosm (Reception Building 33, Meyrin site) on Monday 5 November from 7.30 p.m. to 9.00 p.m. Entrance Free http://www.cern.ch/LundisDecouverte/

  7. Discovery Mondays - Simulations: using maths to predict the future

    CERN Multimedia

    2006-01-01

    CERN's physicists often play with dice, using chance to simulate particle collisions and the tracks they will leave behind them in the detectors. Random number generators and various kinds of probability methods are just some of the mathematics tools physicists rely on to create random variables and predict events. The well-known Monte-Carlo simulation method derives its name from the games of chance for which the town of Monte-Carlo is famous. Particle physicists are not the only ones to make use of chance and probabilities. They have daily applications in many fields, both scientific and non-scientific, including climatology, cosmology and the world of finance. The only thing of which we can be certain is that the chances of learning more about the science of chance at the next Discovery Monday are very high! The event will be conducted in French. Join us at Microcosm (Reception, Building 33, Meyrin site) on Monday, 4 December from 7.30 p.m. to 9 p.m. Entrance is free http://www.cern.ch/LundisDecouverte...

  8. Discovery Mondays: Transporting tonnes of equipment with millimetre precision

    CERN Multimedia

    2005-01-01

    Transporting huge, very heavy but also frequently fragile items at CERN often presents a real challenge. The task becomes even more challenging when it involves lowering huge LHC machine and detector components 100 metres below ground. The Laboratory's Transport Service uses various techniques and different types of transport and heavy handling equipment to perform these delicate operations. You will have an opportunity to find out more about how they do their job at the next Discovery Monday event. You will have a close encounter with the trailer used to transport the impressive 15 metre-long, 35-tonne dipole magnets. You will be able to install mock-up magnets in a beam line or test your skill using heavy handling equipment to carry out a most unusual fishing operation. You will be able to take a trip in a three-metre-high lorry and have a once-in-a-lifetime opportunity to operate a crane. You will also be able to take a test drive in the famous roll-over simulator vehicle. At the coming Discovery Monday...

  9. Discovery Mondays - Gases: more to them than meets the eye!

    CERN Multimedia

    2005-01-01

    We generally tend to think that if a space is empty there is nothing in it. However, did you know that at the Earth's surface there are 25 million million million (1018) molecules of gas in every cubic centimetre of atmosphere? CERN uses a lot of gas to operate its experiments. Above a few of the helium tanks for the LHC. At CERN, gases are put to multiple uses. Gases are used to protect, to cool and also to detect particles... Suffice to say that gases play a vital role at CERN. Why does the air supply to the accelerator tunnel 100 metres below the surface have to be treated and what treatment techniques are used? What are the different types of apparatus that enable you to breathe in confined spaces? How are gases used as a detection medium in the particle detectors? What is Brownian motion? To find out the answers, step on the gas to join us for the next Discovery Monday! This Discovery Monday will be taking place as part of the World Year of Physics, as its theme is closely associated with one of the ...

  10. Discovery Mondays - Gases: more to them than meets the eye!

    CERN Multimedia

    2005-01-01

    CERN uses a lot of gas to operate its experiments. Above a few of the helium tanks for the LHC. We generally tend to think that if a space is empty there is nothing in it. However, did you know that at the Earth's surface there are 25 million million million (1018) molecules of gas in every cubic centimetre of atmosphere? At CERN, gases are put to multiple uses. They are used to protect, to cool and also to detect particles... Suffice it to say that gases play a vital role at CERN. Why does the air supply to the accelerator tunnel 100 metres below the surface have to be treated and what treatment techniques are used? What are the different types of apparatus that enable you to breathe in confined spaces? How are gases used as a detection medium in the particle detectors? How are vacuums made? To find out the answers, step on the gas and join us for the next Discovery Monday! This Discovery Monday will be taking place as part of the World Year of Physics, as its theme is closely associated with one of the ...

  11. Discovery Monday 'Everyday physics: CERN in my kitchen?'

    CERN Multimedia

    2005-01-01

    Using lasers in the ASACUSA experiment at CERN. As you start imagining menus for the festive season, the next Discovery Monday invites you to think about the physics behind the food you prepare. In fact you may be surprised to find science and technologies used at CERN in many of your dosmestic appliances! Be it the oven used to cook the turkey, the fridge that chills the champagne or the laser in the CD machine you use to play Christmas carols, discover the technologies that make them work and how these same technologies are also applied at CERN. In the case of the CD player, the subject is particularly topical as this year's Nobel Physics Prize was awarded for advances in lasers. Find out more about this and how lasers are used at CERN. In some cases, CERN is developing new technologies that may end up in future domestic appliances, such as the vacuum technology used for flat-screen televisions. After this festive Discovery Monday, join us for a taste of liquid nitrogen ice-cream or a cup of coffee (ma...

  12. Moon Phase as the Cause of Monday Irrationality: Case of Asean Day of the Week Anomaly

    Directory of Open Access Journals (Sweden)

    Rayenda Khresna Brahmana

    2014-07-01

    Full Text Available Many Day-of-the week anomaly papers have suggested investor behaviour as the explanation of highly differentiated returns on Mondays; yet, rarely found a paper has empirically investigated it. Therefore, this paper proposes Moon-Induced mood as the determinant of that irrational behaviour. This proposition is based on our preliminary findings that the full moon phase occurred more often on Mondays compared to other days; an indication of a causal relationship. By taking Indonesia, Malaysia, Thailand, and the Philippines as samples during the period of 1999-2010, this paper found: (1 There is evidence of a Monday effect across all the ASEAN stock markets, (2 The moon phase and its interaction with Mondays has significantly influenced the Monday effect, and (3 A full moon on Monday has significant negative influenced on Monday returns. In conclusion, the stimulation by moon phase forms affection bias, and the resulting outcome is the irrational stock market behavior.

  13. Discovery Mondays - Men of fire: the fire brigade show their mettle

    CERN Multimedia

    2004-01-01

    Flashover and backdraught, these technical terms refer to two of the most dangerous phenomena associated with fires. In order to train in dealing with them, in the course of their fire fighting duties the CERN fire brigade use special simulation equipment. The demonstrations are rather spectacular... Thrills are therefore guaranteed at the next Discovery Monday on 2 February! In the course of the evening, you will see fire-fighters demonstrate climbing techniques including abseiling, a method they would have to use to access underground structures on the CERN site in the event of an accident. The accomplished climbers (the Hazardous Environments Response Team) will provide detailed explanations of the rescue techniques and procedures they use in tunnels and hazardous environments. However, the remit of the CERN fire brigade goes well beyond fire-fighting. It ranges from monitoring confined spaces to dealing with flooding and preventing chemical hazards. A wide range of equipment enables them to fulfil thei...

  14. Discovery Mondays: 'Sensors, or the art of measuring limits'

    CERN Document Server

    2006-01-01

    The gigantic LHC machine and experiments will be teeming with minuscule sensors like this one, capable of measuring the tiniest of phenomena. In their study of the infinitesimally small, CERN's physicists, engineers and technicians work at the highest levels of precision. To ensure maximum performance, the most sensitive accelerator and detector components have to be positioned with razor-sharp precision. Detector components, for instance, sometimes need to be aligned to the nearest thousandth of a millimetre! The positioning of the LHC beam is another crucial operation requiring similarly phenomenal precision. Come to the next Discovery Monday and see how different types of sensors are used to achieve the required degrees of precision. The Hydrostatic Levelling System (HLS), for instance, relies on the same principle of communicating vessels that was already employed in antiquity for the construction of aqueducts, bridges and other edifices. You will discover the instrumentation that makes it possible to ...

  15. Discovery Mondays "Controlling the accelerators: tracking the protons"

    CERN Multimedia

    2007-01-01

    Le Centre de contrôle des accélérateurs du CERN.Like a train of particles that picks up speed every time it passes a set of points, by the time they collide the protons and ions in the LHC will have followed their path through the six stages of the CERN accelerator complex, picking up speed at each stage. Operating the controls of this huge complex designed to accelerate the infinitesimally small are its peerless controllers. From the CERN Control Centre, they will be on duty day and night to accelerate the "wagon-loads" of particles, ensuring that they stay on track and lining them up for head-on collisions. At the next Discovery Monday you will discover the path taken by the particles through the accelerator chain. You will gain an insight into the complex work performed by those controlling the particles and learn more about the CERN accelerator complex and its Control Centre. Hop on board for a speed-of-light tour of the C...

  16. Monday 9 January 2006: RESTRICTED ACCESS to the Technical Network

    CERN Multimedia

    CNIC Users Exchange and IT/CS

    2005-01-01

    As of Monday 9 January 2006, Ethernet access from the general CERN network to the Technical Network (TN) will be restricted in order to improve security on the TN. As a result, all Ethernet communication between the General Purpose Network (GPN) and the TN will be filtered. Only communication lines to the general IT services such as DNS, TP, NICE, DFS, AFS, Antivirus, Linux installation servers, License servers, OracleDB, TSM backup servers and dedicated AB and TS servers on the GPN will remain open. Please make sure that all your devices are registered properly in the network database (LANDB): http://network.cern.ch/. You are encouraged to make proper use of the 'Tag' and 'Description' fields in order to identify your system later on. If your system depends on special services on the GPN or is split between the GPN and the TN, e.g. consists of devices (PCs, PLCs, VME crates, webcams, etc.) connected to both the TN and the GPN, please contact the Technical-Network.Administrator@cern.ch . They will include...

  17. Discovery Mondays - Neutrinos: journeying with the phantom particles

    CERN Multimedia

    2006-01-01

    The target of the CNGS facility at CERN, which will enable the production of neutrinos. On 29 May, CNGS (CERN Neutrinos to Gran Sasso) will send the first neutrino beams from CERN to the Gran Sasso Laboratory in Italy. The neutrinos will journey 730 km through the earth's crust. To mark the occasion, Discovery Mondays is organising a special evening devoted to the CNGS project, whose purpose is to provide us with a better understanding of the neutrino, a particle that is still shrouded in mystery. The neutrino is an elusive particle that is very difficult to study. Masters of the art of evading capture, neutrinos can pass through thousands of kilometres of matter with little or no interaction. As you are reading this text, 400000 billion neutrinos from the sun are passing through your body every second. However, only one or two will be stopped by your body during your entire lifetime. Detecting neutrinos is therefore a very arduous task. This is why we still know so little about them. At the next Discovery ...

  18. Discovery Mondays - The particle physicist's best friend: electricity

    CERN Document Server

    2005-01-01

    One of CERN's electrical substations, at Prévessin. Electricity is one of CERN's closest allies. Without it, none of the physicists' extraordinary instruments would work. It is electricity that will guide and accelerate particles around the 27-km ring of the world's most powerful accelerator, the LHC. In the giant magnets inside the experiments electricity is also used to produce a magnetic field 200,000 times greater than the Earth's own magnetic field. Inside the detectors, the resulting magnetic force is used to bend the trajectories of the particles, allowing them to be identified and helping us gain a better understanding of what has happened at the heart of the collisions. Understanding how magnetic fields are produced inside the ATLAS experiment is one of several themes on the programme of the next Discovery Monday. And for a close-up view of operations, we'll also be taking you on a visit to the electricity substation at Meyrin. Come and meet CERN's best friend - electricity. Join us at the Micro...

  19. Site Environmental Report for 2006. Volume I, Environment, Health, and Safety Division

    Energy Technology Data Exchange (ETDEWEB)

    None

    2007-09-30

    Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1A, Environment, Safety, and Health Reporting.1 The Site Environmental Report for 2006 summarizes Berkeley Lab’s environmental management performance, presents environmental monitoring results, and describes significant programs for calendar year 2006. (Throughout this report, Ernest Orlando Lawrence Berkeley National Laboratory is referred to as “Berkeley Lab,” “the Laboratory,” “Lawrence Berkeley National Laboratory,” and “LBNL.”) The report is separated into two volumes. Volume I is organized into an executive summary followed by six chapters that contain an overview of the Laboratory, a discussion of the Laboratory’s environmental management system, the status of environmental programs, and summarized results from surveillance and monitoring activities. Volume II contains individual data results from surveillance and monitoring activities.

  20. Site Environmental Report for 2004. Volume 1, Environment, Health, and Safety Division

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-09-30

    Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1A, Environment, Safety, and Health Reporting.1 The Site Environmental Report for 2004 summarizes Berkeley Lab’s environmental management performance, presents environmental monitoring results, and describes significant programs for calendar year 2004. (Throughout this report, Ernest Orlando Lawrence Berkeley National Laboratory is referred to as “Berkeley Lab,” “the Laboratory,” “Lawrence Berkeley National Laboratory,” and “LBNL.”) The report is separated into two volumes. Volume I contains an overview of the Laboratory, the status of environmental programs, and summarized results from surveillance and monitoring activities. Volume II contains individual data results from these activities. This year, the Site Environmental Report was distributed by releasing it on the Web from the Berkeley Lab Environmental Services Group (ESG) home page, which is located at http://www.lbl.gov/ehs/esg/. Many of the documents cited in this report also are accessible from the ESG Web page. CD and printed copies of this Site Environmental Report are available upon request.

  1. The Significance of Family, Environment, and College Preparation: A Study of Factors Influencing Graduation and Persistence Rates of African American Males Playing Division I Basketball

    Science.gov (United States)

    Mitchell, Enzley, IV

    2017-01-01

    The purpose of this study was to identify specific external factors including family composition, pre-college environment, and college preparation that contribute to why some African American males playing basketball at the NCAA Division I level graduate and persist while others do not. Despite an aggressive advertising campaign from the NCAA…

  2. Discovery Mondays - 'The civil engineering genius of the 100-metre deep underground caverns'

    CERN Multimedia

    2004-01-01

    CERN is first and foremost a place where physicists study particle collisions. But to be able to observe the infinitely small, they need huge pieces of equipment, the accelerators and detectors, whose construction, some 100 metres below the earth's surface, calls on the services of other fascinating disciplines. Take civil engineering, for example. At the next Discovery Monday, come and find out about the machines involved in the large-scale excavation and concreting work. Everyone is welcome at Microcosm, which will be specially transformed into a worksite for the occasion! Come along to Microcosm (Reception Building 33, Meyrin site) on Monday 6 September from 7:30 p.m. to 9:00 p.m. Entrance Free http://www.cern.ch/microcosm

  3. Discovery Monday - The Power to attract: Magnets that make heads turn

    CERN Multimedia

    2004-01-01

    How do you steer particles round the LHC's 27 kilometre ring? How do you focus the particle beams in order to obtain collisions? How do you generate a magnetic field almost 200 000 times stronger than that of the Earth, using as little electricity as possible? By using superconducting magnets, of course! Come and discover the incredible properties of superconducting materials at Microcosm on Monday 7 June, where you will be able to try, among other things, to make a magnet levitate. You will also learn all you need to know about magnets and electromagnetism in general, thanks to some simple experiments. Come to the Microcosm on Monday 7 June, between 7.30 p.m. and 9.00 p.m. Entrance free. For further information see: http://www.cern.ch/microcosm

  4. Discovery Monday - 'The hunt for the phantom particles: sending neutrinos through the Alps'

    CERN Document Server

    2004-01-01

    Each second, billions of neutrinos bombard every square centimetre of the Earth's surface and therefore pass through our bodies, without us realising it. These phantom particles only rarely interact with matter. At the next Discovery Monday, light will be shed on the path that these intriguing particles will take to Gran Sasso. You will also learn about the methods physicists use to try and catch them in order to prove that they have a mass. Come and discover the phantom particles, at the Microcosm, in Meyrin (Reception, Building 33) on Monday 5 July from 7.30 p.m. to 9.00 p.m. Entrance Free http://www.cern.ch/microcosm

  5. Discovery Monday - Physics for medicine: the use of accelerators in therapy

    CERN Multimedia

    2004-01-01

    What does research at CERN have to do with medicine? Perhaps very little at first glance. And yet particle beams are proving to be efficient weapons in the fight against certain diseases. Doctors and physicists will explain how and why at the next Discovery Monday, to be held at Microcosm on 3 May. The event will take place at Microcosm on 3 May, from 7.30 p.m. to 9.00 p.m. Entrance free.

  6. Discovery Mondays - “Relativity Theory... strange! Did you say strange?”

    CERN Multimedia

    2005-01-01

    We all know that famous equation E=mc2, but do you know its true significance? Relativity theory: what is the meaning of this strange concept which plunged the physics world into turmoil 100 years ago? What effects can be observed today? Did you know that the GPS system would not work if relativity was not taken into account? The next Discovery Monday will take you on a journey into a strange world. You will be able to witness for yourselves the consequences of Einstein's theories. How, for example, can relativity theory be tested by eclipses? What consequences does it have for the accelerators at CERN? How can it be used to measure the mass of enormous black holes? And finally, how is it linked to the puzzle surrounding the missing mass of the Universe? As part of the World Year of Physics, the next Discovery Monday will be dedicated to one of the theories that Einstein published in 1905, his “annus mirabilis”. Join us at the Microcosm (Reception Building 33, Meyrin site), on Monday 5th September ...

  7. Discovery Mondays - “Relativity Theory... strange! Did you say strange?”

    CERN Multimedia

    2005-01-01

    We all know that famous equation E=mc2, but do you know its true significance? Relativity theory: what is the meaning of this strange concept which plunged the physics world into turmoil 100 years ago? What effects can be observed today? Did you know that the GPS system would not work if relativity was not taken into account? The next Discovery Monday will take you on a journey into a strange world. You will be able to witness for yourselves the consequences of Einstein's theories. How, for example, can relativity theory be tested by eclipses? What consequences does it have for the accelerators at CERN? How can it be used to measure the mass of enormous black holes? And finally, how is it linked to the puzzle surrounding the missing mass of the Universe? As part of the World Year of Physics, the next Discovery Monday will be dedicated to one of the theories that Einstein published in 1905, his “annus mirabilis”. Join us at the Microcosm (Reception Building 33, Meyrin site), on Monday 5th Septemb...

  8. Effect of microgravity environment on cell wall regeneration, cell divisions, growth, and differentiation of plants from protoplasts (7-IML-1)

    Science.gov (United States)

    Rasmussen, Ole

    1992-01-01

    The primary goal of this project is to investigate if microgravity has any influence on growth and differentiation of protoplasts. Formation of new cell walls on rapeseed protoplasts takes place within the first 24 hours after isolation. Cell division can be observed after 2-4 days and formation of cell aggregates after 5-7 days. Therefore, it is possible during the 7 day IML-1 Mission to investigate if cell wall formation, cell division, and cell differentiation are influenced by microgravity. Protoplasts of rapeseeds and carrot will be prepared shortly before launch and injected into 0.6 ml polyethylene bags. Eight bags are placed in an aluminum block inside the ESA Type 1 container. The containers are placed at 4 C in PTCU's and transferred to orbiter mid-deck. At 4 C all cell processes are slowed down, including cell wall formation. Latest access to the shuttle will be 12 hours before launch. In orbit the containers will be transferred from the PTC box to the 22 C Biorack incubator. The installation of a 1 g centrifuge in Biorack will make it possible to distinguish between effects of near weightlessness and effects caused by cosmic radiation and other space flight factors including vibrations. Parallel control experiments will be carried out on the ground. Other aspects of the experiment are discussed.

  9. The Role of Herd Behaviour in Determining the Investor‘s Monday Irrationality

    OpenAIRE

    Rayenda Brahmana; Chee Wooi Hooy; Zamri Ahmad

    2012-01-01

    With regards to determining whether herding is spontaneous and irrational behavior causing the Day-of-the-week anomaly, this paper intersects the Christie and Huang (1995) herd behaviour model with French's (1980) Day-of-the-week model in several layers of tests. We use firm-level data and investigate the return dispersion of 846 Bursa Malaysia stocks during 1990–2010. This paper found the herd behaviour is the determinant for investor’s Monday irrationality, especially in small caps indu...

  10. Process mapping and sequencing in production management: the case of the E and P HSEQ (Health, Safety, Environment and Quality) Division of Repsol YPF Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Paulo Roberto dos Santos; Silva, Douglas Resende Teixeira da [Repsol YPF Brasil S.A. - UN E and P (Brazil); Moyano, Ignacio Sanchez [Universidad Politecnica de Madrid (Spain); Ferreira Filho, Virgilio Jose Martins [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE)

    2008-07-01

    One of the main objectives of company's top executives is the optimization of production processes, and process mapping is usually the starting point to reach that goal. As a part of the active effort that Repsol YPF Brazil is making to achieve the optimization of its processes, the company intends to develop a process planning and scheduling management tool for its Exploration and Production (E and P) division, which has recently accomplished the process mapping of its exploration activities. The process mapping was done to make possible in the future a standardization of the exploration activities of the company worldwide, without getting into specific management details for every single process. The present work intends to make progress in the development of the E and P process management plan through the operational expertise of the Health, Safety, Environment and Quality (HSEQ) division of Repsol YPF Brazil. It proposes an initial process management model for the E and P HSEQ activities, which should be eventually expanded for the remaining mapped processes. (author)

  11. Radio-Isotopes Section, radiation Safety Division, Ministry Of The Environment, Israel: A General Review, And Future Developments

    International Nuclear Information System (INIS)

    Ben-Zion, S.

    1999-01-01

    The section of radio-isotopes in the Ministry Of Environment, is responsible for preventing environmental hazards fi.om radio-isotopes ''from cradle to grave's'. The management and the supervision of radioactive materials, includes about 350 institutes in Israel. We are dealing with the implementation and the enforcement of the environmental regulations and safety standards, and licensing for each institution and installation. Among our tasks are the following: Follow-up of the import, transportation and distribution, usage and storage and disposal of radio-isotopes, as well as legislation, risk-assessments, inspection, , and ''education'. We are also participating in committees / working groups discussing specific topics: Radioactive stores, Low RW disposal, Y2K, GIS, penalties charging, transportation and more

  12. Coal conversion and aquatic environments: overview of impacts and strategies for monitoring. Environmental Sciences Division publication No. 1112

    Energy Technology Data Exchange (ETDEWEB)

    Roop, R. D.; Sanders, F. S.; Barnthouse, L. W.

    1977-01-01

    Impact assessment and environmental monitoring are difficult but crucial steps needed to ensure the environmentally safe development of coal conversion technologies. This paper summarizes strategies for impact assessment and monitoring developed at Oak Ridge National Laboratory for DOE's program to build demonstration facilities. Impacts on aquatic environments depend heavily on the abiotic and biotic characteristics of the site and details of facility design. Key issues include availability of water, use of ''zero-discharge'' designs, and methods of handling solid wastes. In monitoring programs emphasis is placed on (1) thorough use of existing data, (2) use of a synoptic reconnaissance survey, criteria for choosing parameters to be measured, and the search for ecologically meaningful, cost-effective methods.

  13. Discovery Monday - 'The hunt for the phantom particles: sending neutrinos through the Alps'

    CERN Multimedia

    2004-01-01

    Work on the decay tube for the CERN Neutrinos to Gran Sasso (CNGS) Project. Each second, billions of neutrinos bombard every square centimetre of the Earth's surface and therefore pass through our bodies, without us realising it. These phantom particles only rarely interact with matter. They provide physicists with much food for thought, as they are difficult to 'catch' in detectors. Neutrinos are all the more elusive as they are capable of metamorphosis. There are in fact three types of neutrino, the electron neutrino, the muon neutrino and the tau neutrino, and each can mutate into the other. In 2006 CERN will send a beam of muon neutrinos through the Earth's crust to the Gran Sasso National Laboratory (Italy) some 730 kilometres away, in order to better understand the metamorphoses which the neutrino undergoes. At the next Discovery Monday, light will be shed on the path that these intriguing particles will take to Gran Sasso. You will also learn about the methods physicists use to try and catch them in or...

  14. Discovery Monday - Physics for medicine: the use of accelerators in therapy

    CERN Multimedia

    2004-01-01

    What does research at CERN have to do with medicine? Perhaps very little at first glance. And yet particle beams are proving to be efficient weapons in the fight against certain diseases. Doctors and physicists will explain how and why at the next Discovery Monday, to be held at Microcosm on 3 May. Various technologies and instruments will be presented during the evening. You will learn, for example, how scientists use radioisotopes to destroy tumours without damaging the surrounding tissues. You will also find out about LIBO, a small linear accelerator used for treating deep-seated tumours. Before therapy can begin, it is vital to make the right diagnosis. On this subject, radiologists will be showing how to interpret a number of X-rays, as well as teaching the youngest visitors about their anatomy and explaining how useful particle physics can be in medicine. The event will take place at Microcosm on 3rd May, from 7.30 p.m. to 9.00 p.m. Entrance free. For further information see: http://www.ce...

  15. Discovery Monday - The Power to attract: Magnets that make heads turn

    CERN Multimedia

    2004-01-01

    Model of a superconducting dipole magnet for the LHC project. How do you steer particles round the LHC's 27 kilometre ring? How do you focus the particle beams in order to obtain collisions? How do you generate a magnetic field almost 200 000 times stronger than that of the Earth, using as little electricity as possible? By using superconducting magnets, of course! Come and discover the incredible properties of superconducting materials at Microcosm on Monday 7 June, where you will be able to try, among other things, to make a magnet levitate. You will also learn all you need to know about magnets and electromagnetism in general, thanks to some simple experiments. Some 12 500 amperes, 30 000 times the strength of a 100-Watt electric light bulb, flow through the superconducting cable of the LHC's magnets without generating any resistance, and therefore with no loss of energy in the form of heat. There is just one problem. In order to function, the magnets have to be cooled to a temperature even colder than tha...

  16. Discovery Mondays "Particle collisions - searching for a needle in a haystack"

    CERN Multimedia

    2007-01-01

    Simulation of a collision in the ALICE detector.One of the great challenges facing the LHC experiments is how to find an interesting "needle" interaction in a "haystack" of data. The accelerator will generate up to 600 million proton collisions per second. Although the frequency of lead-ion collisions in the ALICE detector will be lower, ten times more data will be generated than in proton-proton collisions since each ion contains 82 protons and 126 neutrons. Each collision will produce, on average, 40,000 particles, so in the space of one month the experiment will potentially accumulate up to one petabyte (1015 bytes) of data! But the key question is how do you go about sorting, selecting and processing such colossal quantities of information? This challenge will be met by a state-of-the-art data acquisition, transmission, storage and processing chain. Come to the next Discovery Monday to find out about all the links in this ground-breaking chain. The event will be conducte...

  17. Discovery Mondays - The Web of the future: a calculator for the planet

    CERN Multimedia

    2003-01-01

    Physics is hungry for bytes. The LHC experiments will produce 10 petabytes (a 1 followed by 16 zeros) each year, enough to fill 16 million CD-ROMs. CERN is introducing some futuristic computing tools to process, manage and store this phenomenal flow of data. The most spectacular among them is without doubt the Grid, a development of the Web, which will make it possible to pool the computing resources of thousands of computers distributed around the world. The next Discovery Monday will offer you a glimpse into how this super computer works. Come and watch demonstrations of the Grid in action for such projects as UNOSAT, which gathers geographic data by satellite. Become one of the first users of the Grid by sending a job. In the course of the evening another cutting-edge tool will be unveiled. EDMS is a system which enables some 6000 scientists from around the world to communicate and track in real time all the technical documentation on the million-odd components for the LHC and its experiments. You will r...

  18. Discovery Mondays: 'The civil engineering genius of the 100-metre deep underground caverns'

    CERN Multimedia

    2004-01-01

    CERN is first and foremost a place where physicists study particle collisions. But to be able to observe the infinitely small, they need huge pieces of equipment, the accelerators and detectors, whose construction, some 100 metres below the earth's surface calls on the services of other fascinating disciplines. Take civil engineering, for example. For the construction of the LHC some 420 000 cubic metres of rock have had to be excavated for the 6500 metres of tunnel, 6 new shafts and 32 underground chambers and caverns. To avoid disrupting other experiments in progress, the work on these exceptional structures has had to be done without creating vibrations. The ATLAS experiment hall, a huge cathedral-like structure 100 metres below ground, is another mind-blowing feat of civil engineering. Its construction involved the use of ground-breaking technology, such as the system for suspending the ceiling put in place during the excavation work. At the next Discovery Monday, the specialists responsible for...

  19. Fusion energy division computer systems network

    International Nuclear Information System (INIS)

    Hammons, C.E.

    1980-12-01

    The Fusion Energy Division of the Oak Ridge National Laboratory (ORNL) operated by Union Carbide Corporation Nuclear Division (UCC-ND) is primarily involved in the investigation of problems related to the use of controlled thermonuclear fusion as an energy source. The Fusion Energy Division supports investigations of experimental fusion devices and related fusion theory. This memo provides a brief overview of the computing environment in the Fusion Energy Division and the computing support provided to the experimental effort and theory research

  20. EDH 'Millionaire' in PS Division

    CERN Multimedia

    2001-01-01

    Christmas cheer! Left to right: Gerard Lobeau receives a bottle of Champagne from Derek Mathieson and Jurgen De Jonghe in recognition of EDH's millionth document. At 14:33 on Monday 3 December a technician in PS division, Gerard Lobeau, unwittingly became part of an important event in the life of CERN's Electronic Document Handling system (EDH). While ordering some pieces of aluminum for one of the PS's 10Mhz RF cavities, he created EDH document number 1,000,000. To celebrate the event Derek Mathieson (EDH Project Leader) and Jurgen De Jonghe (Original EDH Project Leader) presented Mr Lobeau with a bottle of champagne. As with 93% of material requests, Mr Lobeau's order was delivered within 24 hours. 'I usually never win anything' said Mr Lobeau as he accepted his prize, 'I initially though there may have been a problem with EDH when the document number had so many zeros in it, and was then surprised to get a phone call from you a few minutes later.' The EDH team had been monitoring the EDH document number ...

  1. 20th Annual Systems Engineering Conference. Volume 1, Monday-Tuesday

    Science.gov (United States)

    2017-10-26

    20th Annual Systems Engineering Conference October 23-26, 2017 | Waterford at Springfield | Springfield, VA NDIA.org/systemsengineering...Conference Program SYSTEMS ENGINEERING CONFERENCE 2 Welcome to the NDIA Systems Engineering Conference On behalf of the National Defense Industrial...Association’s Systems Engineering Division, I would like to extend a very warm welcome to the 20th Annual Systems Engineering Conference. Yes, the 20th Annual

  2. Division of Public Health

    Science.gov (United States)

    Frontier Learn what marijuana means for Alaska and you It's your health - Teen Health Autism: Learn the Outbreak of Life-threatening Coagulopathy Associated with Synthetic Cannabinoids Use Friday, May 25, 2018 Impacts of Climate Change in Alaska PDF Monday, January 8, 2018 Breastfeeding mothers reporting marijuana

  3. Analisis Fenomena Day of the Week Effect: Pengujian Monday Effect, Week-Four Effect and Rogalski Effect (Studi Empiris Pada Perusahaan LQ 45 Di BEI)

    OpenAIRE

    Satoto, Shinta Heru

    2011-01-01

    The purpose of this study were to provide an empirical evidence of the day of the week phenomenon in Indonesian Capital Market. This research used 39 sample firms that list on LQ 45 Indonesian Capital Market on January 1, 2009 until December 31, 2010. The results indicate that Monday returns are positive and significant on average, and significantly different from returns of the rest of the week. Thus, no evidence was uncovered to support Monday effect and week four effect in Indonesian capit...

  4. First Meeting with Teachers and Principals of Unesco Associated Schools Project Held on Monday, 6 September 1982 at the Training Division, Prime Minister's Office, Castries, Saint Lucia.

    Science.gov (United States)

    International Understanding at School, 1982

    1982-01-01

    In September 1982, K-12 teachers and principals participating in Unesco's Associated Schools Project met to make preparations for the implementation of the project that was to commence when schools opened later that month. The project is intended to promote international understanding and peace. What happened at the meeting is described. (RM)

  5. Cell Division Synchronization

    Science.gov (United States)

    The report summarizes the progress in the design and construction of automatic equipment for synchronizing cell division in culture by periodic...Concurrent experiments in hypothermic synchronization of algal cell division are reported.

  6. Session 1984-85. Radioactive waste. Minutes of evidence, Monday 20 May 1985. Greenpeace

    International Nuclear Information System (INIS)

    1985-01-01

    The Environment Select Committee of the House of Commons received a memorandum from Greenpeace on radioactive waste, including the following aspects: UK nuclear power programme; Government policies; origins and inventories of waste; fuel reprocessing plants; waste storage, processing and disposal; classification of active wastes; transport; functions of some organisations concerned with radioactive wastes in UK; relevant international law; ICRP safety standards; London Dumping Convention; dispersal of radioactive wastes from Windscale - radiological impacts; discussion of particular proposals for disposal sites; sea dumping; deep sub-seabed disposal. Representatives of Greenpeace were examined on the subject of the memorandum and the Minutes of Evidence are recorded. (U.K.)

  7. Division of Finance Homepage

    Science.gov (United States)

    Top Department of Administration logo Alaska Department of Administration Division of Finance Search Search the Division of Finance site DOF State of Alaska Finance Home Content Area Accounting Charge Cards You are here Administration / Finance Division of Finance Updates IRIS Expenditure Object Codes

  8. Argonne Physics Division Colloquium

    Science.gov (United States)

    [Argonne Logo] [DOE Logo] Physics Division Home News Division Information Contact PHY Org Chart Physics Division Colloquium Auditorium, Building 203, Argonne National Laboratory Fridays at 11:00 AM 2017 : Sereres Johnston 15 Sep 2017 Joint Physics and Materials Science Colloquium J. C. Séamus Davis, Cornell

  9. Environment

    DEFF Research Database (Denmark)

    Valentini, Chiara

    2017-01-01

    The term environment refers to the internal and external context in which organizations operate. For some scholars, environment is defined as an arrangement of political, economic, social and cultural factors existing in a given context that have an impact on organizational processes and structures....... For others, environment is a generic term describing a large variety of stakeholders and how these interact and act upon organizations. Organizations and their environment are mutually interdependent and organizational communications are highly affected by the environment. This entry examines the origin...... and development of organization-environment interdependence, the nature of the concept of environment and its relevance for communication scholarships and activities....

  10. Materials division facilities and equipment

    International Nuclear Information System (INIS)

    Biest, O. v.d.

    1984-01-01

    The research activities of the Division at the Petten Establishment have the aims of characterising the properties of high temperature materials in industrial process environments and of understanding the structures involved in order to gain an insight into behavioural mechanisms. Metallic materials fall within the scope of the programme; the activities are, at present, almost entirely concerned with austenitic steels and nickel based alloys. Starting in 1984, advanced ceramic materials will be studied as well. The equipment available permits the study of mechanical properties in controlled gaseous environments, of the rates and mechanisms of corrosive reactions between materials and those environments, and of the surface and bulk structures by advanced physical techniques. Special preparation and treatment techniques are available. The Division has developed a Data Bank on high temperature alloys. It also operates an information Centre, the activities of which include the organisation of scientific meetings, the commissioning of ''state of the art'' studies on topics in the field of high temperature materials and their applications and the development of a inventory of current research activities in the field in Europe. This booklet is intended to present the facilities and services of the Division to the organizations which are interested in its programmes of work

  11. Computing, Environment and Life Sciences | Argonne National Laboratory

    Science.gov (United States)

    Computing, Environment and Life Sciences Research Divisions BIOBiosciences CPSComputational Science DSLData Argonne Leadership Computing Facility Biosciences Division Environmental Science Division Mathematics and Computer Science Division Facilities and Institutes Argonne Leadership Computing Facility News Events About

  12. On infinitely divisible semimartingales

    DEFF Research Database (Denmark)

    Basse-O'Connor, Andreas; Rosiński, Jan

    2015-01-01

    to non Gaussian infinitely divisible processes. First we show that the class of infinitely divisible semimartingales is so large that the natural analog of Stricker's theorem fails to hold. Then, as the main result, we prove that an infinitely divisible semimartingale relative to the filtration generated...... by a random measure admits a unique decomposition into an independent increment process and an infinitely divisible process of finite variation. Consequently, the natural analog of Stricker's theorem holds for all strictly representable processes (as defined in this paper). Since Gaussian processes...... are strictly representable due to Hida's multiplicity theorem, the classical Stricker's theorem follows from our result. Another consequence is that the question when an infinitely divisible process is a semimartingale can often be reduced to a path property, when a certain associated infinitely divisible...

  13. Division of atomic physics

    International Nuclear Information System (INIS)

    Kroell, S.

    1994-01-01

    The Division of Atomic Physics, Lund Institute of Technology (LTH), is responsible for the basic physics teaching in all subjects at LTH and for specialized teaching in Optics, Atomic Physics, Atomic and Molecular Spectroscopy and Laser Physics. The Division has research activities in basic and applied optical spectroscopy, to a large extent based on lasers. It is also part of the Physics Department, Lund University, where it forms one of eight divisions. Since the beginning of 1980 the research activities of our division have been centred around the use of lasers. The activities during the period 1991-1992 is described in this progress reports

  14. Discovery Mondays - CERN Microcosm

    CERN Multimedia

    Antonio Marin

    2003-01-01

    Le public est venu nombreux au sixième Lundi Découverte du 6.10.2003 pour voir et manipuler les outils des géomètres du CERN, o le groupe de métrologie de positionnement et de topométrie leur a concocté des animations d'une redoutable précision.

  15. Division: The Sleeping Dragon

    Science.gov (United States)

    Watson, Anne

    2012-01-01

    Of the four mathematical operators, division seems to not sit easily for many learners. Division is often described as "the odd one out". Pupils develop coping strategies that enable them to "get away with it". So, problems, misunderstandings, and misconceptions go unresolved perhaps for a lifetime. Why is this? Is it a case of "out of sight out…

  16. Computational Fair Division

    DEFF Research Database (Denmark)

    Branzei, Simina

    Fair division is a fundamental problem in economic theory and one of the oldest questions faced through the history of human society. The high level scenario is that of several participants having to divide a collection of resources such that everyone is satisfied with their allocation -- e.g. two...... heirs dividing a car, house, and piece of land inherited. The literature on fair division was developed in the 20th century in mathematics and economics, but computational work on fair division is still sparse. This thesis can be seen as an excursion in computational fair division divided in two parts....... The first part tackles the cake cutting problem, where the cake is a metaphor for a heterogeneous divisible resource such as land, time, mineral deposits, and computer memory. We study the equilibria of classical protocols and design an algorithmic framework for reasoning about their game theoretic...

  17. Divisible ℤ-modules

    Directory of Open Access Journals (Sweden)

    Futa Yuichi

    2016-03-01

    Full Text Available In this article, we formalize the definition of divisible ℤ-module and its properties in the Mizar system [3]. We formally prove that any non-trivial divisible ℤ-modules are not finitely-generated.We introduce a divisible ℤ-module, equivalent to a vector space of a torsion-free ℤ-module with a coefficient ring ℚ. ℤ-modules are important for lattice problems, LLL (Lenstra, Lenstra and Lovász base reduction algorithm [15], cryptographic systems with lattices [16] and coding theory [8].

  18. Theoretical physics division

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Research activities of the theoretical physics division for 1979 are described. Short summaries are given of specific research work in the following fields: nuclear structure, nuclear reactions, intermediate energy physics, elementary particles [fr

  19. Safety and Health Division achievements during 40 years

    International Nuclear Information System (INIS)

    Noriah Mod Ali

    2012-01-01

    During her speech, presenter outlined several issues regarding on establishment of Safety and Health Division since 40 years. This division contain of 3 sub unit; Physical Safety Group, Medical Physic Group and Non-ionizing Radiation group (NIR). The objectives of this division to implement R and D activities and services regarding safety and radiological health also non-radiological to ensure public safety, environment and asset suit with obligations established by authorities, IAEA standards and regulations.(author)

  20. The stem cell division theory of cancer.

    Science.gov (United States)

    López-Lázaro, Miguel

    2018-03-01

    All cancer registries constantly show striking differences in cancer incidence by age and among tissues. For example, lung cancer is diagnosed hundreds of times more often at age 70 than at age 20, and lung cancer in nonsmokers occurs thousands of times more frequently than heart cancer in smokers. An analysis of these differences using basic concepts in cell biology indicates that cancer is the end-result of the accumulation of cell divisions in stem cells. In other words, the main determinant of carcinogenesis is the number of cell divisions that the DNA of a stem cell has accumulated in any type of cell from the zygote. Cell division, process by which a cell copies and separates its cellular components to finally split into two cells, is necessary to produce the large number of cells required for living. However, cell division can lead to a variety of cancer-promoting errors, such as mutations and epigenetic mistakes occurring during DNA replication, chromosome aberrations arising during mitosis, errors in the distribution of cell-fate determinants between the daughter cells, and failures to restore physical interactions with other tissue components. Some of these errors are spontaneous, others are promoted by endogenous DNA damage occurring during quiescence, and others are influenced by pathological and environmental factors. The cell divisions required for carcinogenesis are primarily caused by multiple local and systemic physiological signals rather than by errors in the DNA of the cells. As carcinogenesis progresses, the accumulation of DNA errors promotes cell division and eventually triggers cell division under permissive extracellular environments. The accumulation of cell divisions in stem cells drives not only the accumulation of the DNA alterations required for carcinogenesis, but also the formation and growth of the abnormal cell populations that characterize the disease. This model of carcinogenesis provides a new framework for understanding the

  1. Theoretical Division progress report

    International Nuclear Information System (INIS)

    Cooper, N.G.

    1979-04-01

    This report presents highlights of activities in the Theoretical (T) Division from October 1976-January 1979. The report is divided into three parts. Part I presents an overview of the Division: its unique function at the Los Alamos Scientific Laboratory (LASL) and within the scientific community as a whole; the organization of personnel; the main areas of research; and a survey of recent T-Division initiatives. This overview is followed by a survey of the 13 groups within the Division, their main responsibilities, interests, and expertise, consulting activities, and recent scientific accomplisments. The remainder of the report, Parts II and III, is devoted to articles on selected research activities. Recent efforts on topics of immediate interest to energy and weapons programs at LASL and elsewhere are described in Part II, Major National Programs. Separate articles present T-Divison contributions to weapons research, reactor safety and reactor physics research, fusion research, laser isotope separation, and other energy research. Each article is a compilation of independent projects within T Division, all related to but addressing different aspects of the major program. Part III is organized by subject discipline, and describes recent scientific advances of fundamental interest. An introduction, defining the scope and general nature of T-Division efforts within a given discipline, is followed by articles on the research topics selected. The reporting is done by the scientists involved in the research, and an attempt is made to communicate to a general audience. Some data are given incidentally; more technical presentations of the research accomplished may be found among the 47 pages of references. 110 figures, 5 tables

  2. Power Dissipation in Division

    DEFF Research Database (Denmark)

    Liu, Wei; Nannarelli, Alberto

    2008-01-01

    A few classes of algorithms to implement division in hardware have been used over the years: division by digit-recurrence, by reciprocal approximation by iterative methods and by polynomial approximation. Due to the differences in the algorithms, a comparison among their implementation in terms o...... of performance and precision is sometimes hard to make. In this work, we use power dissipation and energy consumption as metrics to compare among those different classes of algorithms. There are no previous works in the literature presenting such a comparison....

  3. Digital Arithmetic: Division Algorithms

    DEFF Research Database (Denmark)

    Montuschi, Paolo; Nannarelli, Alberto

    2017-01-01

    Division is one of the basic arithmetic operations supported by every computer system. The operation can be performed and implemented by either hardware or software, or by a combination of the two. Although division is not as frequent as addition and multiplication, nowadays, most processors impl...... significant hardware resources and is more suitable for software implementation on the existing multiply units. The purpose of this entry is to provide an introductory survey using a presentation style suitable for the interested non-specialist readers as well....

  4. Environment

    International Nuclear Information System (INIS)

    McIntyre, A.D.; Turnbull, R.G.H.

    1992-01-01

    The development of the hydrocarbon resources of the North Sea has resulted in both offshore and onshore environmental repercussions, involving the existing physical attributes of the sea and seabed, the coastline and adjoining land. The social and economic repercussions of the industry were equally widespread. The dramatic and speedy impact of the exploration and exploitation of the northern North Sea resources in the early 1970s, on the physical resources of Scotland was quickly realised together with the concern that any environmental and social damage to the physical and social fabric should be kept to a minimum. To this end, a wide range of research and other activities by central and local government, and other interested agencies was undertaken to extend existing knowledge on the marine and terrestrial environments that might be affected by the oil and gas industry. The outcome of these activities is summarized in this paper. The topics covered include a survey of the marine ecosystems of the North Sea, the fishing industry, the impact of oil pollution on seabirds and fish stocks, the ecology of the Scottish coastline and the impact of the petroleum industry on a selection of particular sites. (author)

  5. Division of Agriculture

    Science.gov (United States)

    Department of Natural Resources logo, color scheme Department of Natural Resources Division of Agriculture Search Search DNR's site DNR State of Alaska Toggle main menu visibility Agriculture Home Programs Asset Disposals Alaska Caps Progam Board of Agriculture & Conservation Farm To School Program Grants

  6. Solid State Division

    International Nuclear Information System (INIS)

    Green, P.H.; Watson, D.M.

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces

  7. Solid State Division

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Watson, D.M. (eds.)

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

  8. Order Division Automated System.

    Science.gov (United States)

    Kniemeyer, Justin M.; And Others

    This publication was prepared by the Order Division Automation Project staff to fulfill the Library of Congress' requirement to document all automation efforts. The report was originally intended for internal use only and not for distribution outside the Library. It is now felt that the library community at-large may have an interest in the…

  9. Theoretical Physics Division

    International Nuclear Information System (INIS)

    This report is a survey of the studies done in the Theoretical Physics Division of the Nuclear Physics Institute; the subjects studied in theoretical nuclear physics were the few-nucleon problem, nuclear structure, nuclear reactions, weak interactions, intermediate energy and high energy physics. In this last field, the subjects studied were field theory, group theory, symmetry and strong interactions [fr

  10. 2002 Chemical Engineering Division annual report

    International Nuclear Information System (INIS)

    Lewis, D.; Graziano, D.; Miller, J. F.

    2003-01-01

    The Chemical Engineering Division is one of eight engineering research divisions within Argonne National Laboratory, one of the U.S. government's oldest and largest research laboratories. The University of Chicago oversees the laboratory on behalf of the U.S. Department of Energy (DOE). Argonne's mission is to conduct basic scientific research, to operate national scientific facilities, to enhance the nation's energy resources, and to develop better ways to manage environmental problems. Argonne has the further responsibility of strengthening the nation's technology base by developing innovative technology and transferring it to industry. The Division is a diverse early-stage engineering organization, specializing in the treatment of spent nuclear fuel, development of advanced electrochemical power sources, and management of both high- and low-level nuclear wastes. Although this work is often indistinguishable from basic research, our efforts are directed toward the practical devices and processes that are covered by Argonne's mission. Additionally, the Division operates the Analytical Chemistry Laboratory; Environment, Safety, and Health Analytical Chemistry services; and Dosimetry and Radioprotection services, which provide a broad range of analytical services to Argonne and other organizations. The Division is multidisciplinary. Its people have formal training as ceramists; physicists; material scientists; electrical, mechanical, chemical, and nuclear engineers; and chemists. They have experience working in academia; urban planning; and the petroleum, aluminum, and automotive industries. Their skills include catalysis, ceramics, electrochemistry, metallurgy, nuclear magnetic resonance spectroscopy, and petroleum refining, as well as the development of nuclear waste forms, batteries, and high-temperature superconductors. Our wide-ranging expertise finds ready application in solving energy and environmental problems. Division personnel are frequently called on by

  11. Energy Technology Division research summary -- 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    Research funded primarily by the NRC is directed toward assessing the roles of cyclic fatigue, intergranular stress corrosion cracking, and irradiation-assisted stress corrosion cracking on failures in light water reactor (LWR) piping systems, pressure vessels, and various core components. In support of the fast reactor program, the Division has responsibility for fuel-performance modeling and irradiation testing. The Division has major responsibilities in several design areas of the proposed International Thermonuclear Experimental Reactor (ITER). The Division supports the DOE in ensuring safe shipment of nuclear materials by providing extensive review of the Safety Analysis Reports for Packaging (SARPs). Finally, in the nuclear area they are investigating the safe disposal of spent fuel and waste. In work funded by DOE`s Energy Efficiency and Renewable Energy, the high-temperature superconductivity program continues to be a major focal point for industrial interactions. Coatings and lubricants developed in the division`s Tribology Section are intended for use in transportation systems of the future. Continuous fiber ceramic composites are being developed for high-performance heat engines. Nondestructive testing techniques are being developed to evaluate fiber distribution and to detect flaws. A wide variety of coatings for corrosion protection of metal alloys are being studied. These can increase lifetimes significant in a wide variety of coal combustion and gasification environments.

  12. Podcast: The Electronic Crimes Division

    Science.gov (United States)

    Sept 26, 2016. Chris Lukas, the Special Agent in Charge of the Electronic Crimes Division within the OIG's Office of Investigations talks about computer forensics, cybercrime in the EPA and his division's role in criminal investigations.

  13. Division of Integrity and Materials

    International Nuclear Information System (INIS)

    Zdarek, J.

    1995-01-01

    The organization structure is described of the Division of Integrity and Materials, Institute of Nuclear Research plc, Rez, and the main fields of their activities given. Listed are the major research projects of the Division in 1994. (Z.S.)

  14. 2016 T Division Lightning Talks

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, Marilyn Leann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Adams, Luke Clyde [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Ferre, Gregoire Robing [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Grantcharov, Vesselin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Iaroshenko, Oleksandr [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Krishnapriyan, Aditi [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Kurtakoti, Prajvala Kishore [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Le Thien, Minh Quan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Lim, Jonathan Ng [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Low, Thaddeus Song En [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Lystrom, Levi Aaron [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Ma, Xiaoyu [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Nguyen, Hong T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Pogue, Sabine Silvia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Orandle, Zoe Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Reisner, Andrew Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Revard, Benjamin Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Roy, Julien [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Sandor, Csanad [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Slavkova, Kalina Polet [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Weichman, Kathleen Joy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Wu, Fei [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Yang, Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division

    2016-11-29

    These are the slides for all of the 2016 T Division lightning talks. There are 350 pages worth of slides from different presentations, all of which cover different topics within the theoretical division at Los Alamos National Laboratory (LANL).

  15. 2017 T Division Lightning Talks

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, Marilyn Leann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Abeywardhana, Jayalath AMM [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Adams, Colin Mackenzie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Adams, Luke Clyde [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carter, Austin Lewis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ducru, Pablo Philippe [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Duignan, Thomas John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gifford, Brendan Joel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hills, Benjamin Hale [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hoffman, Kentaro Jack [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Khair, Adnan Ibne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kochanski, Kelly Anne Pribble [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ledwith, Patrick John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Leveillee, Joshua Anthony [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lewis, Sina Genevieve [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ma, Xiaoyu [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Merians, Hugh Drake [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Moore, Bryan Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nijjar, Parmeet Kaur [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Oles, Vladyslav [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Olszewski, Maciej W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Philipbar, Brad Montgomery [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reisner, Andrew Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Roberts, David Benjamin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rufa, Dominic Antonio [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sifain, Andrew E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Smith, Justin Steven [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Smith, Lauren Taylor Wisbey [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Svolos, Lampros [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Thibault, Joshua Ryan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ushijima-Mwesigwa, Hayato Montezuma [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Weaver, Claire Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Witzen, Wyatt Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zentgraf, Sabine Silvia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Alred, John Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-06

    All members of the T Division Community, students, staff members, group leaders, division management, and other interested individuals are invited to come and support the following student(s) as they present their Lightning Talks.

  16. CSIR Division of Mining Technology annual review 1993/94

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The Division of Mining Technology of the CSIR (Council for Scientific and Industrial Research) works in partnership with the mining industry to solve problems threatening the health, safety and well-being of the workforce, and the productivity of mining operations through the development and implementation of knowledge and technology. The annual review describes the Division's research projects in the following field: rock engineering (for gold, platinum and coal mining); mining environment; occupational hygiene; surface environment; and mining equipment and systems (systems and equipment, orebody information, coal mining and causes of accidents). Details are also given of the Division's publications, research and consultancy services and information centre.

  17. Division of Labor

    KAUST Repository

    Oke, Muse; Zaher, Manal S.; Hamdan, Samir

    2014-01-01

    The first assignment of DNA polymerases at the eukaryotic replication fork was possible after the in vitro reconstitution of the simian virus 40 (SV40) replication system. In this system, DNA polymerase α (Pol α) provides both leading and lagging strands with RNA-DNA primers that are extended by DNA polymerase δ (Pol δ). Extrapolating the architecture of the replication fork from the SV40 model system to an actual eukaryotic cell has been challenged by the discovery of a third DNA polymerase in Saccharomyces cerevisiae, DNA polymerase ε (Pol ε). A division of labor has been proposed for the eukaryotic replication fork whereby Pol ε replicates the leading strand and Pol δ replicates the lagging strand. However, an alternative model of unequal division of labor in which Pol δ can still participate in leading-strand synthesis is plausible.

  18. Division of Labor

    KAUST Repository

    Oke, Muse

    2014-09-12

    The first assignment of DNA polymerases at the eukaryotic replication fork was possible after the in vitro reconstitution of the simian virus 40 (SV40) replication system. In this system, DNA polymerase α (Pol α) provides both leading and lagging strands with RNA-DNA primers that are extended by DNA polymerase δ (Pol δ). Extrapolating the architecture of the replication fork from the SV40 model system to an actual eukaryotic cell has been challenged by the discovery of a third DNA polymerase in Saccharomyces cerevisiae, DNA polymerase ε (Pol ε). A division of labor has been proposed for the eukaryotic replication fork whereby Pol ε replicates the leading strand and Pol δ replicates the lagging strand. However, an alternative model of unequal division of labor in which Pol δ can still participate in leading-strand synthesis is plausible.

  19. 3. Theoretical Physics Division

    International Nuclear Information System (INIS)

    For the period September 1980 - Aug 1981, the studies in theoretical physics divisions have been compiled under the following headings: in nuclear physics, nuclear structure, nuclear reactions and intermediate energies; in particle physics, NN and NantiN interactions, dual topological unitarization, quark model and quantum chromodynamics, classical and quantum field theories, non linear integrable equations and topological preons and Grand unified theories. A list of publications, lectures and meetings is included [fr

  20. Earth Sciences Division annual report 1990

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-06-01

    This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division`s research deals with the physical and chemical properties and processes in the earth`s crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriate chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989 a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will in the coming years be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required.

  1. Division Quilts: A Measurement Model

    Science.gov (United States)

    Pratt, Sarah S.; Lupton, Tina M.; Richardson, Kerri

    2015-01-01

    As teachers seek activities to assist students in understanding division as more than just the algorithm, they find many examples of division as fair sharing. However, teachers have few activities to engage students in a quotative (measurement) model of division. Efraim Fischbein and his colleagues (1985) defined two types of whole-number…

  2. Mapping Urban Social Divisions

    Directory of Open Access Journals (Sweden)

    Susan Ball

    2010-05-01

    Full Text Available Against the background of increased levels of interest in space and images beyond the field of geography, this article (re- introduces earlier work on the semiotics of maps undertaken by geographers in the 1960s. The data limitations, purpose and cultural context in which a user interprets a map's codes and conventions are highlighted in this work, which remains relevant to the interpretation of maps—new and old—forty years later. By means of drawing on geography's contribution to the semiotics of maps, the article goes on to examine the concept of urban social divisions as represented in map images. Using a small number of map images, including two of the most widely known maps of urban social division in Europe and North America, the roles of context, data and purpose in the production and interpretation of maps are discussed. By presenting the examples chronologically the article shows that although advances in data collection and manipulation have allowed researchers to combine different social variables in maps of social division, and to interact with map images, work by geographers on the semiotics of maps is no less relevant today than when it was first proposed forty years ago. URN: urn:nbn:de:0114-fqs1002372

  3. Session 1984-85. Radioactive waste. Minutes of evidence, Monday 17 June 1985. Nuclear Industry Radioactive Waste Executive

    International Nuclear Information System (INIS)

    1985-01-01

    The Environment Select Committee of the House of Commons received a memorandum from the Nuclear Industry Radioactive Waste Executive, on the management and disposal of radioactive waste arising in the UK, under the headings: introduction; the structure of NIREX; the nature of radioactive waste; plans for the disposal of low and intermediate level wastes. Representatives of NIREX were examined on the subject of the memorandum and the minutes of evidence are recorded. (U.K.)

  4. BNFL Springfields Fuel Division

    International Nuclear Information System (INIS)

    Tarkiainen, S.; Plit, H.

    1998-01-01

    The Fuel Division of British Nuclear Fuels Ltd (BNFL) manufactures nuclear fuel elements for British Magnox and AGR power plants as well as for LWR plants. The new fuel factory - Oxide Fuel Complex (OFC), located in Springfields, is equipped with modern technology and the automation level of the factory is very high. With their quality products, BNFL aims for the new business areas. A recent example of this expansion was shown, when BNFL signed a contract to design and license new VVER-440 fuel for Finnish Loviisa and Hungarian Paks power plants. (author)

  5. Session 1984-1985. Radioactive waste. Minutes of evidence, Monday 13 May 1985. British Nuclear Fuels plc

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    The Environment Select Committee of the House of Commons received a memorandum from British Nuclear Fuels plc on the treatment and preparation for disposal of radioactive wastes, under the headings: introduction; waste categories; waste management policy; waste arisings; waste treatment plans; appendix I - British Nuclear Fuels plc; appendix II - the nuclear fuel cycle for Magnox, AGR and LWR reactors; appendix III - control of liquid radioactive discharges from Sellafield and their environmental impact. Representatives of BNF plc were examined on the subject of the memorandum and the minutes of evidence are recorded.

  6. Session 1984-85. Radioactive waste. Minutes of evidence, Monday 13 May 1985. British Nuclear Fuels plc

    International Nuclear Information System (INIS)

    1985-01-01

    The Environment Select Committee of the House of Commons received a memorandum from British Nuclear Fuels plc on the treatment and preparation for disposal of radioactive wastes, under the headings: introduction; waste categories; waste management policy; waste arisings; waste treatment plans; appendix I - British Nuclear Fuels plc; appendix II - the nuclear fuel cycle for Magnox, AGR and LWR reactors; appendix III - control of liquid radioactive discharges from Sellafield and their environmental impact. Representatives of BNF plc were examined on the subject of the memorandum and the minutes of evidence are recorded. (U.K.)

  7. Nuclear Power Division

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The 1981-85 research program planned by the Nuclear Power Division of EPRI places major emphasis on the assurance of safety and realiability of light water reactors (LWRs). Of high priority is a better knowledge of LWR-system behavior undeer abnormal conditions and the behavior of structural materials used for pressure vessels, piping, and large nuclear-plant components. Strong emphasis is also placed on achieving the most-effective performance and utilization of nuclear fuels and improving the corrosion resistance of pressurized-water-reactor steam generators. Efforts are underway to reduce radiation exposure and outage duration and to investigate the human factors involved in plant operation and maintenance. Substantial emphasis is placed on short-range goals designed to achieve useful results in the next two to seven years. The Division's mid- and long-range goal is to improve the use of fissionable and fertile materials and aid in the realization of other reactor systems. A series of general goals, categorized into three time frames and planned expenditures shows the trend of work to be undertaken. 53 figures

  8. Wavefront division digital holography

    Science.gov (United States)

    Zhang, Wenhui; Cao, Liangcai; Li, Rujia; Zhang, Hua; Zhang, Hao; Jiang, Qiang; Jin, Guofan

    2018-05-01

    Digital holography (DH), mostly Mach-Zehnder configuration based, belongs to non-common path amplitude splitting interference imaging whose stability and fringe contrast are environmental sensitive. This paper presents a wavefront division DH configuration with both high stability and high-contrast fringes benefitting from quasi common path wavefront-splitting interference. In our proposal, two spherical waves with similar curvature coming from the same wavefront are used, which makes full use of the physical sampling capacity of the detectors. The interference fringe spacing can be adjusted flexibly for both in-line and off-axis mode due to the independent modulation to these two waves. Only a few optical elements, including the mirror-beam splitter interference component, are used without strict alignments, which makes it robust and easy-to-implement. The proposed wavefront division DH promotes interference imaging physics into the practical and miniaturized a step forward. The feasibility of this method is proved by the imaging of a resolution target and a water flea.

  9. Energy Technology Division research summary -- 1994

    International Nuclear Information System (INIS)

    1994-09-01

    Research funded primarily by the NRC is directed toward assessing the roles of cyclic fatigue, intergranular stress corrosion cracking, and irradiation-assisted stress corrosion cracking on failures in light water reactor (LWR) piping systems, pressure vessels, and various core components. In support of the fast reactor program, the Division has responsibility for fuel-performance modeling and irradiation testing. The Division has major responsibilities in several design areas of the proposed International Thermonuclear Experimental Reactor (ITER). The Division supports the DOE in ensuring safe shipment of nuclear materials by providing extensive review of the Safety Analysis Reports for Packaging (SARPs). Finally, in the nuclear area they are investigating the safe disposal of spent fuel and waste. In work funded by DOE's Energy Efficiency and Renewable Energy, the high-temperature superconductivity program continues to be a major focal point for industrial interactions. Coatings and lubricants developed in the division's Tribology Section are intended for use in transportation systems of the future. Continuous fiber ceramic composites are being developed for high-performance heat engines. Nondestructive testing techniques are being developed to evaluate fiber distribution and to detect flaws. A wide variety of coatings for corrosion protection of metal alloys are being studied. These can increase lifetimes significant in a wide variety of coal combustion and gasification environments

  10. Chemical Technology Division annual technical report, 2001

    International Nuclear Information System (INIS)

    Lewis, D.; Gay, E. C.; Miller, J. C.; Boparai, A. S.

    2002-01-01

    The Chemical Technology Division (CMT) is one of eight engineering research divisions within Argonne National Laboratory, one of the U.S. government's oldest and largest research laboratories. The University of Chicago oversees the laboratory on behalf of the U.S. Department of Energy (DOE). Argonne's mission is to conduct basic scientific research, to operate national scientific facilities, to enhance the nation's energy resources, and to develop better ways to manage environmental problems. Argonne has the further responsibility of strengthening the nation's technology base by developing innovative technology and transferring it to industry. CMT is a diverse early-stage engineering organization, specializing in the treatment of spent nuclear fuel, development of advanced electrochemical power sources, and management of both high- and low-level nuclear wastes. Although this work is often indistinguishable from basic research, our efforts are directed toward the practical devices and processes that are covered by Argonne's mission. Additionally, the Division operates the Analytical Chemistry Laboratory and Environment, Safety, and Health Analytical Chemistry services, which provide a broad range of analytical services to Argonne and other organizations. The Division is multidisciplinary. Its people have formal training as ceramists; physicists; material scientists; electrical, mechanical, chemical, and nuclear engineers; and chemists. They have experience working in academia; urban planning; and the petroleum, aluminum, and automotive industries. Their skills include catalysis, ceramics, electrochemistry, metallurgy, nuclear magnetic resonance spectroscopy, and petroleum refining, as well as the development of nuclear waste forms, batteries, and high-temperature superconductors

  11. Ecological Research Division, Marine Research Program

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    This report presents program summaries of the various projects sponsored during 1979 by the Marine Research Program of the Ecological Research Division. Program areas include the effects of petroleum hydrocarbons on the marine environment; a study of the baseline ecology of a proposed OTEC site near Puerto Rico; the environmental impact of offshore geothermal energy development; the movement of radionuclides through the marine environment; the environmental aspects of power plant cooling systems; and studies of the physical and biological oceangraphy of the continental shelves bordering the United States.

  12. Ecological Research Division, Marine Research Program

    International Nuclear Information System (INIS)

    1980-05-01

    This report presents program summaries of the various projects sponsored during 1979 by the Marine Research Program of the Ecological Research Division. Program areas include the effects of petroleum hydrocarbons on the marine environment; a study of the baseline ecology of a proposed OTEC site near Puerto Rico; the environmental impact of offshore geothermal energy development; the movement of radionuclides through the marine environment; the environmental aspects of power plant cooling systems; and studies of the physical and biological oceangraphy of the continental shelves bordering the United States

  13. Physics division annual report 2005

    International Nuclear Information System (INIS)

    Glover, J.

    2007-01-01

    This report highlights the research performed in 2005 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The mission of Nuclear Physics is to understand the origin, evolution and structure of baryonic matter in the universe--the matter that makes up stars, planets and human life itself. The Division's research focuses on innovative new ways to address this mission and 2005 was a year of great progress. One of the most exciting developments is the initiation of the Californium Rare Ion Breeder Upgrade, CARIBU. By combining a Cf-252 fission source, the gas catcher technology developed for rare isotope beams, a high-resolution isobar separator, and charge breeding ECR technology, CARIBU will make hundreds of new neutron-rich isotope beams available for research. The cover illustration shows the anticipated intensities of low-energy beams that become available for low-energy experiments and for injection into ATLAS for reacceleration. CARIBU will be completed in early 2009 and provide us with considerable experience in many of the technologies developed for a future high intensity exotic beam facility. Notable results in research at ATLAS include a measurement of the isomeric states in 252 No that helps pin down the single particle structure expected for superheavy elements, and a new low-background measurement of 16 N beta-decay to determine the 12 C(α, γ) 16 O reaction rate that is so important in astrophysical environments. Precise mass measurements shed new light on the unitarity of the quark weak-mixing matrix in the search for physics beyond the standard model. ATLAS operated for 4686 hours of research in FY2005 while achieving 95% efficiency of beam delivery for experiments. In Medium-Energy Physics, radium isotopes were trapped in an atom trap for

  14. Physics division annual report 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Glover, J.; Physics

    2007-03-12

    This report highlights the research performed in 2005 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The mission of Nuclear Physics is to understand the origin, evolution and structure of baryonic matter in the universe--the matter that makes up stars, planets and human life itself. The Division's research focuses on innovative new ways to address this mission and 2005 was a year of great progress. One of the most exciting developments is the initiation of the Californium Rare Ion Breeder Upgrade, CARIBU. By combining a Cf-252 fission source, the gas catcher technology developed for rare isotope beams, a high-resolution isobar separator, and charge breeding ECR technology, CARIBU will make hundreds of new neutron-rich isotope beams available for research. The cover illustration shows the anticipated intensities of low-energy beams that become available for low-energy experiments and for injection into ATLAS for reacceleration. CARIBU will be completed in early 2009 and provide us with considerable experience in many of the technologies developed for a future high intensity exotic beam facility. Notable results in research at ATLAS include a measurement of the isomeric states in {sup 252}No that helps pin down the single particle structure expected for superheavy elements, and a new low-background measurement of {sup 16}N beta-decay to determine the {sup 12}C({alpha},{gamma}){sup 16}O reaction rate that is so important in astrophysical environments. Precise mass measurements shed new light on the unitarity of the quark weak-mixing matrix in the search for physics beyond the standard model. ATLAS operated for 4686 hours of research in FY2005 while achieving 95% efficiency of beam delivery for experiments. In Medium-Energy Physics, radium

  15. Security and Emergency Management Division

    Data.gov (United States)

    Federal Laboratory Consortium — Volpe's Security and Emergency Management Division identifies vulnerabilities, risks, and opportunities to improve the security of transportation systems, critical...

  16. Situational Awareness and Logistics Division

    Data.gov (United States)

    Federal Laboratory Consortium — Volpe's Situational Awareness and Logistics Division researches, develops, implements, and analyzes advanced systems to protect, enhance, and ensure resilienceof the...

  17. Systems Safety and Engineering Division

    Data.gov (United States)

    Federal Laboratory Consortium — Volpe's Systems Safety and Engineering Division conducts engineering, research, and analysis to improve transportation safety, capacity, and resiliency. We provide...

  18. Infrastructure Engineering and Deployment Division

    Data.gov (United States)

    Federal Laboratory Consortium — Volpe's Infrastructure Engineering and Deployment Division advances transportation innovation by being leaders in infrastructure technology, including vehicles and...

  19. Earth Sciences Division annual report 1990

    International Nuclear Information System (INIS)

    1991-06-01

    This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division's research deals with the physical and chemical properties and processes in the earth's crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriate chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989 a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will in the coming years be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required

  20. Chemical Technology Division. Annual technical report, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Laidler, J.J.; Myles, K.M.; Green, D.W.; McPheeters, C.C.

    1996-06-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1995 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (3) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (4) processes for separating and recovering selected elements from waste streams, concentrating low-level radioactive waste streams with advanced evaporator technology, and producing {sup 99}Mo from low-enriched uranium; (5) electrometallurgical treatment of different types of spent nuclear fuel in storage at Department of Energy sites; and (6) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems.

  1. Division of Analytical Chemistry, 1998

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    1999-01-01

    The article recounts the 1998 activities of the Division of Analytical Chemistry (DAC- formerly the Working Party on Analytical Chemistry, WPAC), which body is a division of the Federation of European Chemical Societies (FECS). Elo Harald Hansen is the Danish delegate, representing The Danish...... Chemical Society/The Society for Analytical Chemistry....

  2. Lightning Talks 2015: Theoretical Division

    Energy Technology Data Exchange (ETDEWEB)

    Shlachter, Jack S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-25

    This document is a compilation of slides from a number of student presentations given to LANL Theoretical Division members. The subjects cover the range of activities of the Division, including plasma physics, environmental issues, materials research, bacterial resistance to antibiotics, and computational methods.

  3. Important projects of the Division

    International Nuclear Information System (INIS)

    2008-01-01

    In this chapter important projects of the Division for Radiation Safety, NPP Decommissioning and Radwaste Management of the VUJE, a. s. are presented. Division for Radiation Safety, NPP Decommissioning and Radwaste Management has successfully carried out variety of significant projects. The most significant projects that were realised, are implemented and possible future projects are introduced in the following part of presentation.

  4. E-Division activities report

    International Nuclear Information System (INIS)

    Barschall, H.H.

    1979-07-01

    This report describes some of the activities in E (Experimental Physics) Division during the past year. E-Division carries out research and development in areas related to the missions of the Laboratory. Many of the activities are in pure and applied atomic and nuclear physics. In addition, this report describes work on accelerators, radiation damage, microwaves, and plasma diagnostics

  5. Developmental control of cell division

    NARCIS (Netherlands)

    Boxem, M. (Mike)

    2002-01-01

    During development of multicellular organisms, cell divisions need to be coordinated with the developmental program of the entire organism. Although the mechanisms that drive cells through the division cycle are well understood, very little is known about the pathways that link extracellular signals

  6. Fermilab | Particle Physics Division

    Science.gov (United States)

    Diversity Education Safety Sustainability and Environment Contact Science Science Particle Physics Neutrinos Scientific Computing Research & Development Key Discoveries Benefits of Particle Physics Particle Superconducting Test Accelerator LHC and Future Accelerators Accelerators for Science and Society Particle Physics

  7. Special address by the Director of the Federal Radiation Protection Service, Prof. Akin Ojo at the opening ceremony of the national workshop on radiation protection and quality control in medical and industrial practices FRPS, Ibadan on Monday 15 November 1999

    International Nuclear Information System (INIS)

    Ojo, A.

    1999-01-01

    A special address by the Director of the Federal Radiation Protection Service, Prof. Akin Ojo at the opening ceremony of the national workshop on radiation protection and quality control in medical and industrial practices held at the Federal Radiation Protection Service, Physics Dept. University of Ibadan from Monday 15 to Friday 19 November 1999

  8. Scientific Equipment Division - Overview

    International Nuclear Information System (INIS)

    Halik, J.

    2001-01-01

    Full text: The Scientific Equipment Division consists of the Design Group and the Mechanical Workshop. The activity of the Division includes the following: - designing of devices and equipment for experiments in physics, their mechanical construction and assembly. In particular, there are vacuum chambers and installations for HV and UHV; - maintenance and upgrading of the existing installations and equipment in our Institute; - participation of our engineers and technicians in design works, equipment assembly and maintenance for experiments in foreign laboratories. The Design Group is equipped with PC-computers and AutoCAD graphic software (release 2000 and Mechanical Desktop 4.0) and a AO plotter, what allows us to make drawings and 2- and 3-dimensional mechanical documentation to the world standards. The Mechanical Workshop can offer a wide range of machining and treatment methods with satisfactory tolerances and surface quality. It offers the following possibilities: - turning - cylindrical elements of a length up to 2000 mm and a diameter up to 400 mm, and also disc-type elements of a diameter up to 600 mm and a length not exceeding 300 mm; - milling - elements of length up to 1000 mm and gear wheels of diameter up to 300 mm; - grinding - flat surfaces of dimensions up to 300 mm x 1000 mm and cylindrical elements of a diameter up to 200 mm and a length up to 800 mm; - drilling - holes of a diameter up to 50 mm; - welding - electrical and gas welding, including TIG vacuum-tight welding; - soft and hard soldering; - mechanical works including precision engineering; - plastics treatment - machining and polishing using diamond milling, modelling, lamination of various shapes and materials, including plexiglas, scintillators and light-guides; - painting - paint spraying with possibility of using furnace-fred drier of internal dimensions of 800 mm x 800 mm x 800 mm. Our workshop posses CNC milling machine which can be used for machining of work-pieces up to 500 kg

  9. 77 FR 40586 - Coastal Programs Division

    Science.gov (United States)

    2012-07-10

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Coastal Programs Division AGENCY: Coastal Programs Division, Office of Ocean and Coastal Resource Management, National Ocean.... FOR FURTHER INFORMATION CONTACT: Kerry Kehoe, Coastal Programs Division (NORM/3), Office of Ocean and...

  10. Physics division annual report 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Glover, J.; Physics

    2008-02-28

    This report highlights the activities of the Physics Division of Argonne National Laboratory in 2006. The Division's programs include the operation as a national user facility of ATLAS, the Argonne Tandem Linear Accelerator System, research in nuclear structure and reactions, nuclear astrophysics, nuclear theory, investigations in medium-energy nuclear physics as well as research and development in accelerator technology. The mission of nuclear physics is to understand the origin, evolution and structure of baryonic matter in the universe--the core of matter, the fuel of stars, and the basic constituent of life itself. The Division's research focuses on innovative new ways to address this mission.

  11. Applied Physics Division 1998 Progress Report

    International Nuclear Information System (INIS)

    Cecchini, M.; Crescentini, L; Ghezzi, L.; Kent, C.; Bottomei, M.

    2001-01-01

    This report outlines the 1998 research activities carried out by the Applied Physics Division of the Innovation Department of ENEA (Italian Agency for New Technologies, Energy and Environment). The fields addressed and discussed include: optical and electro-optical technologies (chaps. 1 and 2); accelerator technologies (chap. 3); diagnostic systems for science and engineering (chaps. 4 and 5); theory, modelling and computational methods (chaps. 6 and 7). The aim of the Applied Physics Division is to develop technologies and systems that can be directly applied by internal (ENEA) and external users in research (high-resolution spectroscopy, laser-generated soft-x-ray sources), production processes (laser material photoproduction, structural analysis), social, cultural and environmental sciences (laser remote sensing, modelling of ecosystems and population dynamics) and medicine (particle accelerator for radiotherapy). Most of the work in 1998 was performed by the division's laboratories at the Frascati, Casaccia and Bologna Research Centres of ENEA; some was done elsewhere in collaboration with other ENEA units, external laboratories and industries. A good share of the activities was carried out for international projects; in particular, the IV European Union Framework Program

  12. Chemical Technology Division annual technical report, 1985

    International Nuclear Information System (INIS)

    1986-04-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1985 are presented. In this period, CMT conducted research and development in areas that include the following: (1) advanced batteries - mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) advanced fuel cells with molten carbonate or solid oxide electrolytes; (3) corrosion-protective coatings for high-strength steel; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methodologies for recovery of energy from municipal waste; (6) nuclear technology related to waste management, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and proof of breeding in a light water breeder reactor; and (7) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of catalytic hydrogenation and catalytic oxidation; materials chemistry for associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; the thermochemistry of zeolites and related silicates; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL

  13. Chemical Technology Division, Annual technical report, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  14. Chemical Technology Division annual technical report 1989

    International Nuclear Information System (INIS)

    1990-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1989 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including high-performance batteries (mainly lithium/iron sulfide and sodium/metal chloride), aqueous batteries (lead-acid and nickel/iron), and advanced fuel cells with molten carbonate and solid oxide electrolytes: (2) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste and for producing 99 Mo from low-enriched uranium targets, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor (the Integral Fast Reactor), and waste management; and (5) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be administratively responsible for and the major user of the Analytical Chemistry Laboratory at Argonne National Laboratory (ANL)

  15. Chemical Technology Division annual technical report, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1994 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion; (3) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from waste streams, concentrating radioactive waste streams with advanced evaporator technology, and producing {sup 99}Mo from low-enriched uranium for medical applications; (6) electrometallurgical treatment of the many different types of spent nuclear fuel in storage at Department of Energy sites; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, and impurities in scrap copper and steel; and the geochemical processes involved in mineral/fluid interfaces and water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  16. Applied Physics Division 1998 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Cecchini, M.; Crescentini, L; Ghezzi, L.; Kent, C.; Bottomei, M. [ENEA, Centro Ricerche Frascati, Frascati, RM (Italy). Applied physics Division

    1999-07-01

    This report outlines the 1998 research activities carried out by the Applied Physics Division of the Innovation Department of ENEA (Italian Agency for New Technologies, Energy and Environment). The fields addressed and discussed include: optical and electro-optical technologies (chaps. 1 and 2); accelerator technologies (chap. 3); diagnostic systems for science and engineering (chaps. 4 and 5); theory, modelling and computational methods (chaps. 6 and 7). The aim of the Applied Physics Division is to develop technologies and systems that can be directly applied by internal (ENEA) and external users in research (high-resolution spectroscopy, laser-generated soft-x-ray sources), production processes (laser material photoproduction, structural analysis), social, cultural and environmental sciences (laser remote sensing, modelling of ecosystems and population dynamics) and medicine (particle accelerator for radiotherapy). Most of the work in 1998 was performed by the division's laboratories at the Frascati, Casaccia and Bologna Research Centres of ENEA; some was done elsewhere in collaboration with other ENEA units, external laboratories and industries. A good share of the activities was carried out for international projects; in particular, the IV European Union Framework Program.

  17. Chemical Technology Division annual technical report, 2001

    International Nuclear Information System (INIS)

    Lewis, D.; Gay, E. C.; Miller, J. C.; Boparai, A. S.

    2002-01-01

    The Chemical Technology Division (CMT) is one of eight engineering research divisions within Argonne National Laboratory, one of the U.S. government's oldest and largest research laboratories. The University of Chicago oversees the laboratory on behalf of the U.S. Department of Energy (DOE). Argonne's mission is to conduct basic scientific research, to operate national scientific facilities, to enhance the nation's energy resources, and to develop better ways to manage environmental problems. Argonne has the further responsibility of strengthening the nation's technology base by developing innovative technology and transferring it to industry. CMT is a diverse early-stage engineering organization, specializing in the treatment of spent nuclear fuel, development of advanced electrochemical power sources, and management of both high- and low-level nuclear wastes. Although this work is often indistinguishable from basic research, our efforts are directed toward the practical devices and processes that are covered by Argonne's mission. Additionally, the Division operates the Analytical Chemistry Laboratory and Environment, Safety, and Health Analytical Chemistry services, which provide a broad range of analytical services to Argonne and other organizations. The Division is multidisciplinary. Its people have formal training as ceramists; physicists; material scientists; electrical, mechanical, chemical, and nuclear engineers; and chemists. They have experience working in academia; urban planning; and the petroleum, aluminum, and automotive industries. Their skills include catalysis, ceramics, electrochemistry, metallurgy, nuclear magnetic resonance spectroscopy, and petroleum refining, as well as the development of nuclear waste forms, batteries, and high-temperature super-conductors. The Division's wide-ranging expertise finds ready application in solving energy and environmental problems. Division personnel are frequently called on by governmental and industrial

  18. Discovery Mondays: Chips with everything!

    CERN Multimedia

    2003-01-01

    Electronics to hear the sound of matter From the TV to the fridge, the wristwatch to the washing machine, hardly any consumer product in this day and age can escape the influence of electronics, and the ever more powerful microchip. So it's hardly surprising to learn that such sophisticated devices as particle detectors are bristling with the best and most powerful microchips technology has to offer! Particle detectors known as trackers are like 3-D digital cameras. They are used to detect the tracks of particles created in the accelerator and to pin down their momentum and thus their identity. A chip seen with a microscope.Come to Microcosm and see with your own eyes a silicon detector, packed full of electronic microchips. Get up closer with a microscope and admire the way in which the fine details of the etchings break down light. Further on, watch a TV as you've never done before - from the inside! Then try out our special simulation game that helps you understand the purpose of a particle detector. Bu...

  19. Discovery Mondays Chips with everything !

    CERN Multimedia

    2003-01-01

    From the TV to the fridge, the wristwatch to the washing machine, hardly any consumer product in this day and age can escape the influence of electronics, and the ever more powerful microchip. So it's hardly surprising to learn that such sophisticated devices as particle detectors are bristling with the best and most powerful microchips technology has to offer! Particle detectors known as trackers are like 3-D digital cameras. They are used to detect the tracks of particles created in the accelerator and to pin down their momentum and thus their identity. Come to Microcosm and see with your own eyes a silicon detector, packed full of electronic microchips. Get up closer with a microscope and admire the way in which the fine details of the etchings break down light. Further on, watch a TV as you've never done before - from the inside! Then try out our special simulation game that helps you understand the purpose of a particle detector. But before you actually start making collisions, why not brush up on you...

  20. Computers in Nuclear Physics Division

    International Nuclear Information System (INIS)

    Kowalczyk, M.; Tarasiuk, J.; Srebrny, J.

    1997-01-01

    Improving of the computer equipment in Nuclear Physics Division is described. It include: new computer equipment and hardware upgrading, software developing, new programs for computer booting and modernization of data acquisition systems

  1. Division 1137 property control system

    Energy Technology Data Exchange (ETDEWEB)

    Pastor, D.J.

    1982-01-01

    An automated data processing property control system was developed by Mobile and Remote Range Division 1137. This report describes the operation of the system and examines ways of using it in operational planning and control.

  2. E-Division activities report

    International Nuclear Information System (INIS)

    Barschall, H.H.

    1984-07-01

    E (Experimental Physics) Division carries out basic and applied research in atomic and nuclear physics, in materials science, and in other areas related to the missions of the Laboratory. Some of the activities are cooperative efforts with other divisions of the Laboratory, and, in a few cases, with other laboratories. Many of the experiments are directly applicable to problems in weapons and energy, some have only potential applied uses, and others are in pure physics. This report presents abstracts of papers published by E (Experimental Physics) Division staff members between July 1983 and June 1984. In addition, it lists the members of the scientific staff of the division, including visitors and students, and some of the assignments of staff members on scientific committees. A brief summary of the budget is included

  3. Microbial mutagenesis and cell division

    International Nuclear Information System (INIS)

    Adler, H.I.; Carrasco, A.; Nagel, R.; Gill, J.S.; Crow, W.D.

    1982-01-01

    Our group has been pursuing three related objectives. The first of these is a study of a mechanism by which the bacterium Escherichia coli repairs radiation-induced damage. In particular, we have observed that cells of certain strains of this bacterium, mutant at the lon locus, can be restored to viability after exposure to ionizing radiation if they are incubated in a nutrient medium to which a preparation of partially purified bacterial membranes has been added. These preparations stimulate division by producing chemical alterations in the nutrient medium and simultaneously creating a highly anaerobic environment. A second objective of the group was to make use of lon mutants for a rapid, sensitive, and inexpensive assay for chemical mutagens. Cells of lon mutants form long multinucleate filaments if exposed to a variety of agents that react with DNA. These filaments can readily be observed microscopically 2 to 3 h after exposure to the suspect agent. A third objective of our group has been to make use of the oxygen reducing properties of bacterial membrane preparations to stimulate the growth of anaerobic bacteria. Our general goal is to develop basic microbiological techniques that will facilitate the application of genetic manipulation methods to important anaerobic species. To this end, we have developed a method, based on the use of membranes, that allows us to grow liquid cultures of Clostridium acetobutylicum from very small inocula to high titers without elaborate chemical or physical methods for excluding oxygen. We have also developed efficient methods for plating this bacterium that do not require the use of anaerobic incubators

  4. E-Division activities report

    International Nuclear Information System (INIS)

    Barschall, H.H.

    1981-07-01

    This report describes some of the activities in E (Experimental Physics) Division during the past year. E-Division carries out research and development in areas related to the missions of the Laboratory. Many of the activities are in pure and applied atomic and nuclear physics and in material science. In addition this report describes work on accelerators, microwaves, plasma diagnostics, determination of atmospheric oxygen and of nitrogen in tissue

  5. Technical activities, 1990: Surface Science Division

    International Nuclear Information System (INIS)

    Powell, C.J.

    1991-05-01

    The report summarizes technical activities and accomplishments of the NIST Surface Science Division during Fiscal Year 1990. Overviews are presented of the Division and of its three constituent groups: Surface Dynamical Processes, Thin Films and Interfaces, and Surface Spectroscopies and Standards. These overviews are followed by reports of selected technical accomplishments during the year. A summary is given of Division outputs and interactions that includes lists of publications, talks, committee assignments, seminars (including both Division seminars and Interface Science seminars arranged through the Division), conferences organized, and a standard reference material certified. Finally, lists are given of Division staff and of guest scientists who have worked in the Division during the past year

  6. Progress report, Health Sciences Division, 1 October - 31 December, 1981

    International Nuclear Information System (INIS)

    1982-03-01

    The work of the Health Sciences Division during the quarter included development of improved radiation counters and dosimeters, studies of radionuclide migration through the environment, investigations of the effects of radiation upon a variety of living organisms, and calculation of improved dosimetry factors

  7. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    Hirota, Jitsuya; Asaoka, Takumi; Suzuki, Tomoo; Mitani, Hiroshi; Akino, Fujiyoshi

    1977-09-01

    Research activities in the Division of Reactor Engineering in fiscal 1976 are described. Works of the division concern mainly the development of multi-purpose Very High Temperature Gas Cooled Reactor, fusion reactor engineering, and the development of Liquid Metal Fast Breeder Reactor in Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology, and activities of the Committee on Reactor Physics. (auth.)

  8. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    1980-09-01

    Research activities in the Division of Reactor Engineering in fiscal 1979 are described. The work of the Division is closely related to development of multi-purpose Very High Temperature Gas Cooled Reactor and fusion reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and fusion reactor technology, and activities of the Committees on Reactor Physics and on Decomissioning of Nuclear Facilities. (author)

  9. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    1978-10-01

    Research activities in the Division of Reactor Engineering in fiscal 1977 are described. Works of the Division are development of multi-purpose Very High Temperature Gas Cooled Reactor, fusion reactor engineering, and development of Liquid Metal Fast Breeder Reactor for Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology, and Committee on Reactor Physics. (Author)

  10. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    1976-09-01

    Research activities conducted in Reactor Engineering Division in fiscal 1975 are summarized in this report. Works in the division are closely related to the development of multi-purpose High-temperature Gas Cooled Reactor, the development of Liquid Metal Fast Breeder Reactor by Power Reactor and Nuclear Fuel Development Corporation, and engineering research of thermonuclear fusion reactor. Many achievements are described concerning nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology and activities of the Committee on Reactor Physics. (auth.)

  11. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    Matsuura, Shojiro; Nakahara, Yasuaki; Takano, Hideki

    1982-09-01

    Research and development activities in the Division of Reactor Engineering in fiscal 1981 are described. The work of the Division is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and fusion reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and fusion reactor technology, and activities of the Committee on Reactor Physics. (author)

  12. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    1975-11-01

    Research activities in fiscal 1974 in Reactor Engineering Division of eight laboratories and computing center are described. Works in the division are closely related with the development of a multi-purpose High-temperature Gas Cooled Reactor, the development of a Liquid Metal Fast Breeder Reactor in Power Reactor and Nuclear Fuel Development Corporation, and engineering of thermonuclear fusion reactors. They cover nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology and aspects of the computing center. (auth.)

  13. Chemical Technology Division annual technical report 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1989 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including high-performance batteries (mainly lithium/iron sulfide and sodium/metal chloride), aqueous batteries (lead-acid and nickel/iron), and advanced fuel cells with molten carbonate and solid oxide electrolytes: (2) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste and for producing {sup 99}Mo from low-enriched uranium targets, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor (the Integral Fast Reactor), and waste management; and (5) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be administratively responsible for and the major user of the Analytical Chemistry Laboratory at Argonne National Laboratory (ANL).

  14. Chemical technology division: Annual technical report 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1987 are presented. In this period, CMT conducted research and development in the following areas: (1) high-performance batteries--mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methods for the electromagnetic continuous casting of steel sheet and for the purification of ferrous scrap; (6) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (7) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and waste management; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for liquids and vapors at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; the thermochemistry of various minerals; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 54 figs., 9 tabs.

  15. Chemical Technology Division annual technical report, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1987-06-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1986 are presented. In this period, CMT conducted research and development in areas that include the following: (1) high-performance batteries - mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants, the technology for fluidized-bed combustion, and a novel concept for CO/sub 2/ recovery from fossil fuel combustion; (5) methods for recovery of energy from municipal waste; (6) methods for the electromagnetic continuous casting of steel sheet; (7) techniques for treatment of hazardous waste such as reactive metals and trichloroethylenes; (8) nuclear technology related to waste management, a process for separating and recovering transuranic elements from nuclear waste, and the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor; and (9) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of catalytic hydrogenation and catalytic oxidation; materials chemistry for associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; the thermochemistry of zeolites and related silicates; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 127 refs., 71 figs., 8 tabs.

  16. Chemical technology division: Annual technical report 1987

    International Nuclear Information System (INIS)

    1988-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1987 are presented. In this period, CMT conducted research and development in the following areas: (1) high-performance batteries--mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methods for the electromagnetic continuous casting of steel sheet and for the purification of ferrous scrap; (6) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (7) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and waste management; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for liquids and vapors at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; the thermochemistry of various minerals; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 54 figs., 9 tabs

  17. Chemical Technology Division annual technical report, 1988

    International Nuclear Information System (INIS)

    1989-05-01

    Highlights of the Chemical Technology (CMT) Divisions's activities during 1988 are presented. In this period, CMT conducted research and development in the following areas: (1) high-performance batteries (mainly lithium-alloy/metal sulfide, sodium/metal chloride, and sodium/sulfur); (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methods for recovery of energy from municipal waste and techniques for treatment of hazardous chemical water; (6) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste and for producing /sup 99/Mo from low-enriched uranium targets, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and waste management; and (7) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 53 figs., 16 tabs

  18. Chemical Technology Division annual technical report, 1986

    International Nuclear Information System (INIS)

    1987-06-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1986 are presented. In this period, CMT conducted research and development in areas that include the following: (1) high-performance batteries - mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants, the technology for fluidized-bed combustion, and a novel concept for CO 2 recovery from fossil fuel combustion; (5) methods for recovery of energy from municipal waste; (6) methods for the electromagnetic continuous casting of steel sheet; (7) techniques for treatment of hazardous waste such as reactive metals and trichloroethylenes; (8) nuclear technology related to waste management, a process for separating and recovering transuranic elements from nuclear waste, and the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor; and (9) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of catalytic hydrogenation and catalytic oxidation; materials chemistry for associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; the thermochemistry of zeolites and related silicates; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 127 refs., 71 figs., 8 tabs

  19. Transportation Environment Data Bank index

    International Nuclear Information System (INIS)

    Davidson, C.A.; Foley, J.T.

    1977-04-01

    In an effort to determine the environment intensities to which energy materials in transit will be exposed, a ''Data Bank'' of environmental information has been established by Sandia Laboratories, Division 1285 for the ERDA Division of Environmental Control Technology. This document is an index which can be used to request data of interest

  20. Transportation environment data bank index

    International Nuclear Information System (INIS)

    Davidson, C.A.; Foley, J.T.

    1976-02-01

    In an effort to determine the environment intensities to which shipping containers will be exposed, a ''Data Bank'' of environmental information has been established by Sandia Laboratories, Division 1285 for the ERDA Division of Environmental Control Technology. This document is an index which can be used to request data of interest

  1. Nuclear Science Division annual report, October 1, 1984-September 30, 1985

    International Nuclear Information System (INIS)

    Mahoney, J.

    1986-09-01

    This report summarizes the activities of the Nuclear Science Division during the period October 1, 1984 to September 30, 1985. As in previous years, experimental research has for the most part been carried out using three local accelerators, the Bevalac, the SuperHILAC and the 88-Inch Cyclotron. However, during this time, preparations began for a new generation of relativistic heavy-ion experiments at CERN. The Nuclear Science Division is involved in three major experiments at CERN and several smaller ones. The report is divided into 5 sections. Part I describes the research programs and operations, and Part II contains condensations of experimental papers arranged roughly according to program and in order of increasing energy, without any further subdivisions. Part III contains condensations of theoretical papers, again ordered according to program but in order of decreasing energy. Improvements and innovations in instrumentation and in experimental or analytical techniques are presented in Part IV. Part V consists of appendices, the first listing publications by author for this period, in which the LBL report number only is given for papers that have not yet appeared in journals; the second contains abstracts of PhD theses awarded during this period; and the third gives the titles and speakers of the NSD Monday seminars, the Bevatron Research Meetings and the theory seminars that were given during the report period. The last appendix is an author index for this report

  2. Nuclear Science Division annual report, October 1, 1984-September 30, 1985

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, J. (ed.)

    1986-09-01

    This report summarizes the activities of the Nuclear Science Division during the period October 1, 1984 to September 30, 1985. As in previous years, experimental research has for the most part been carried out using three local accelerators, the Bevalac, the SuperHILAC and the 88-Inch Cyclotron. However, during this time, preparations began for a new generation of relativistic heavy-ion experiments at CERN. The Nuclear Science Division is involved in three major experiments at CERN and several smaller ones. The report is divided into 5 sections. Part I describes the research programs and operations, and Part II contains condensations of experimental papers arranged roughly according to program and in order of increasing energy, without any further subdivisions. Part III contains condensations of theoretical papers, again ordered according to program but in order of decreasing energy. Improvements and innovations in instrumentation and in experimental or analytical techniques are presented in Part IV. Part V consists of appendices, the first listing publications by author for this period, in which the LBL report number only is given for papers that have not yet appeared in journals; the second contains abstracts of PhD theses awarded during this period; and the third gives the titles and speakers of the NSD Monday seminars, the Bevatron Research Meetings and the theory seminars that were given during the report period. The last appendix is an author index for this report.

  3. Division of Information Technology - Overview

    International Nuclear Information System (INIS)

    Szlachciak, J.

    2007-01-01

    I have a great pleasure to introduce the youngest division in our Institute, namely the Division of Information Technology. The division was created in 2005, but this is the first time when it reports its activities. The main purpose of creation was a better management of al IT activities in different departments, lowering IT costs and increase security over all computer systems used be the Institute. Although we have started with small human resources, we have received a big support from other departments. Special thanks go to the Department of Detectors and Nuclear Electronics. Our division handles many service-oriented activities. In daily work we answer many IT-related questions and deliver our help in order to solve hardware and software problems. The style of our work can be described as a result-oriented one. Here is the list of our biggest achievements: · construction of the server room; · implementation of two electronic bank systems; · development of the dynamic hardware and software inventory system; · development of the Scientific Activity Database. (author)

  4. Nuclear Physics division progress report

    International Nuclear Information System (INIS)

    Lees, E.W.; Longworth, G.; Scofield, C.J.

    1981-07-01

    Work undertaken by the Nuclear Physics Division of AERE, Harwell during 1980 is presented under the headings: (1) Nuclear Data and Technology for Nuclear Power. (2) Nuclear Studies. (3) Applications of Nuclear and Associated Techniques. (4) Accelerator Operation, Maintenance and Development. Reports, publications and conference papers presented during the period are given and members of staff listed. (U.K.)

  5. Nuclear Physics Division progress report

    International Nuclear Information System (INIS)

    West, D.; Cookson, J.A.; Findlay, D.J.S.

    1984-06-01

    The 1983 progress report of the Nuclear Physics Division, UKAEA Harwell, is divided into four main topics. These are a) nuclear data and technology for nuclear power; b) nuclear studies; c) applications of nuclear and associated techniques, including ion beam techniques and moessbauer spectroscopy; and d) accelerator operation, maintenance and development. (U.K.)

  6. Environmental Transport Division: 1979 report

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, C.E. Jr.; Schubert, J.F.; Bowman, W.W.; Adams, S.E.

    1980-03-01

    During 1979, the Environmental Transport Division (ETD) of the Savannah River Laboratory conducted atmospheric, terrestrial, aquatic, and marine studies, which are described in a series of articles. Separate abstracts were prepared for each. Publications written about the 1979 research are listed at the end of the report.

  7. Home | Division of Cancer Prevention

    Science.gov (United States)

    Our Research The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into cancer. |

  8. Environmental Transport Division: 1979 report

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.; Schubert, J.F.; Bowman, W.W.; Adams, S.E.

    1980-03-01

    During 1979, the Environmental Transport Division (ETD) of the Savannah River Laboratory conducted atmospheric, terrestrial, aquatic, and marine studies, which are described in a series of articles. Separate abstracts were prepared for each. Publications written about the 1979 research are listed at the end of the report

  9. Chemical Technology Division annual technical report, 1994

    International Nuclear Information System (INIS)

    1995-06-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1994 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion; (3) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from waste streams, concentrating radioactive waste streams with advanced evaporator technology, and producing 99 Mo from low-enriched uranium for medical applications; (6) electrometallurgical treatment of the many different types of spent nuclear fuel in storage at Department of Energy sites; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, and impurities in scrap copper and steel; and the geochemical processes involved in mineral/fluid interfaces and water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL)

  10. Chemical Technology Division, Annual technical report, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  11. Chemical Technology Division annual technical report, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

    1994-04-01

    Chemical Technology (CMT) Division this period, conducted research and development in the following areas: advanced batteries and fuel cells; fluidized-bed combustion and coal-fired magnetohydrodynamics; treatment of hazardous waste and mixed hazardous/radioactive waste; reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; separating and recovering transuranic elements, concentrating radioactive waste streams with advanced evaporators, and producing {sup 99}Mo from low-enriched uranium; recovering actinide from IFR core and blanket fuel in removing fission products from recycled fuel, and disposing removal of actinides in spent fuel from commercial water-cooled nuclear reactors; and physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, thin-film diamond surfaces, effluents from wood combustion, and molten silicates; and the geochemical processes involved in water-rock interactions. The Analytical Chemistry Laboratory in CMT also provides a broad range of analytical chemistry support.

  12. Chemical Technology Division, Annual technical report, 1991

    International Nuclear Information System (INIS)

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL)

  13. Chemical Technology Division annual technical report, 1993

    International Nuclear Information System (INIS)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

    1994-04-01

    Chemical Technology (CMT) Division this period, conducted research and development in the following areas: advanced batteries and fuel cells; fluidized-bed combustion and coal-fired magnetohydrodynamics; treatment of hazardous waste and mixed hazardous/radioactive waste; reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; separating and recovering transuranic elements, concentrating radioactive waste streams with advanced evaporators, and producing 99 Mo from low-enriched uranium; recovering actinide from IFR core and blanket fuel in removing fission products from recycled fuel, and disposing removal of actinides in spent fuel from commercial water-cooled nuclear reactors; and physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, thin-film diamond surfaces, effluents from wood combustion, and molten silicates; and the geochemical processes involved in water-rock interactions. The Analytical Chemistry Laboratory in CMT also provides a broad range of analytical chemistry support

  14. Progress report: 1996 Radiation Safety Systems Division

    International Nuclear Information System (INIS)

    Bhagwat, A.M.; Sharma, D.N.; Abani, M.C.; Mehta, S.K.

    1997-01-01

    The activities of Radiation Safety Systems Division include (i) development of specialised monitoring systems and radiation safety information network, (ii) radiation hazards control at the nuclear fuel cycle facilities, the radioisotope programmes at Bhabha Atomic Research Centre (BARC) and for the accelerators programme at BARC and Centre for Advanced Technology (CAT), Indore. The systems on which development and upgradation work was carried out during the year included aerial gamma spectrometer, automated environment monitor using railway network, radioisotope package monitor and air monitors for tritium and alpha active aerosols. Other R and D efforts at the division included assessment of risk for radiation exposures and evaluation of ICRP 60 recommendations in the Indian context, shielding evaluation and dosimetry for the new upcoming accelerator facilities and solid state nuclear track detector techniques for neutron measurements. The expertise of the divisional members was provided for 36 safety committees of BARC and Atomic Energy Regulatory Board (AERB). Twenty three publications were brought out during the year 1996. (author)

  15. UKAEA Government Division Annual Review 1994-95

    International Nuclear Information System (INIS)

    1995-01-01

    This is the first annual review of the United Kingdom Atomic Energy Authority (UKAEA) Government Division. The Division was set up in April 1994 with the primary responsibility of completing the UKAEA's nuclear mission by caring for and decommissioning the radioactive facilities used in pursuit of the national nuclear programme over the past 50 years; this includes the safe disposal of the resulting radioactive waste. The progress made in the first year towards carrying out this responsibility at the lowest cost while continuing to ensure safety and protection of the environment is reported. Other responsibilities of Government Division which are reviewed include: management of the UKAEA's sites, buildings and operating facilities; oversight of the United Kingdom fusion research programme and provision for the Joint European Torus which is situated next to the Culham fusion site; and the UKAEA Constabulary. Appended to the review are a financial statement and a list of the main decommissioning tasks. (UK)

  16. INO80 Chromatin Remodeling Coordinates Metabolic Homeostasis with Cell Division

    Directory of Open Access Journals (Sweden)

    Graeme J. Gowans

    2018-01-01

    Full Text Available Adaptive survival requires the coordination of nutrient availability with expenditure of cellular resources. For example, in nutrient-limited environments, 50% of all S. cerevisiae genes synchronize and exhibit periodic bursts of expression in coordination with respiration and cell division in the yeast metabolic cycle (YMC. Despite the importance of metabolic and proliferative synchrony, the majority of YMC regulators are currently unknown. Here, we demonstrate that the INO80 chromatin-remodeling complex is required to coordinate respiration and cell division with periodic gene expression. Specifically, INO80 mutants have severe defects in oxygen consumption and promiscuous cell division that is no longer coupled with metabolic status. In mutant cells, chromatin accessibility of periodic genes, including TORC1-responsive genes, is relatively static, concomitant with severely attenuated gene expression. Collectively, these results reveal that the INO80 complex mediates metabolic signaling to chromatin to restrict proliferation to metabolically optimal states.

  17. Modeling of Complex Life Cycle Prediction Based on Cell Division

    Directory of Open Access Journals (Sweden)

    Fucheng Zhang

    2017-01-01

    Full Text Available Effective fault diagnosis and reasonable life expectancy are of great significance and practical engineering value for the safety, reliability, and maintenance cost of equipment and working environment. At present, the life prediction methods of the equipment are equipment life prediction based on condition monitoring, combined forecasting model, and driven data. Most of them need to be based on a large amount of data to achieve the problem. For this issue, we propose learning from the mechanism of cell division in the organism. We have established a moderate complexity of life prediction model across studying the complex multifactor correlation life model. In this paper, we model the life prediction of cell division. Experiments show that our model can effectively simulate the state of cell division. Through the model of reference, we will use it for the equipment of the complex life prediction.

  18. Characterization of dependencies between growth and division in budding yeast.

    Science.gov (United States)

    Mayhew, Michael B; Iversen, Edwin S; Hartemink, Alexander J

    2017-02-01

    Cell growth and division are processes vital to the proliferation and development of life. Coordination between these two processes has been recognized for decades in a variety of organisms. In the budding yeast Saccharomyces cerevisiae , this coordination or 'size control' appears as an inverse correlation between cell size and the rate of cell-cycle progression, routinely observed in G 1 prior to cell division commitment. Beyond this point, cells are presumed to complete S/G 2 /M at similar rates and in a size-independent manner. As such, studies of dependence between growth and division have focused on G 1 Moreover, in unicellular organisms, coordination between growth and division has commonly been analysed within the cycle of a single cell without accounting for correlations in growth and division characteristics between cycles of related cells. In a comprehensive analysis of three published time-lapse microscopy datasets, we analyse both intra- and inter-cycle dependencies between growth and division, revisiting assumptions about the coordination between these two processes. Interestingly, we find evidence (i) that S/G 2 /M durations are systematically longer in daughters than in mothers, (ii) of dependencies between S/G 2 /M and size at budding that echo the classical G 1 dependencies, and (iii) in contrast with recent bacterial studies, of negative dependencies between size at birth and size accumulated during the cell cycle. In addition, we develop a novel hierarchical model to uncover inter-cycle dependencies, and we find evidence for such dependencies in cells growing in sugar-poor environments. Our analysis highlights the need for experimentalists and modellers to account for new sources of cell-to-cell variation in growth and division, and our model provides a formal statistical framework for the continued study of dependencies between biological processes. © 2017 The Author(s).

  19. Chemical Technology Division. Annual technical report, 1995

    International Nuclear Information System (INIS)

    Laidler, J.J.; Myles, K.M.; Green, D.W.; McPheeters, C.C.

    1996-06-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1995 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (3) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (4) processes for separating and recovering selected elements from waste streams, concentrating low-level radioactive waste streams with advanced evaporator technology, and producing 99 Mo from low-enriched uranium; (5) electrometallurgical treatment of different types of spent nuclear fuel in storage at Department of Energy sites; and (6) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems

  20. Ergonomic Analysis of Garment Industry using Posture Evaluation Index (PEI) in Virtual Environment

    OpenAIRE

    Erlinda Muslim; Boy Nurtjahyo; Romadhani Ardi

    2011-01-01

    This research tried to study, in a virtual environment, the ergonomics of four divisions in garment industry: cutting division, sewing division, button division, and finishing division. Variables that influence the working conditions in each division are different; depend on the real situations that happened. The purpose is to assess the real working conditions based on ergonomics  study  using Posture Evaluation Index (PEI). PEI integrates  the scores of  low back analysi...

  1. Anglo-French Collaboration in the Nuclear Sector: The Human, Social and Ethical Dimensions. Graduate seminar, Maison Francaise d'Oxford, Monday 15 May 2017

    International Nuclear Information System (INIS)

    Denoun, Martin; Tsuchiya, Miyuki; Degremont-Dorville, Marie; Bouillet, Jeremy; Deront, Eva; Kim, Tae-Hoon; Kobylka, Krzysztof; Nithesh, Antony; Defard, Camille; Giachetti, Charles; Nivole, Audrey; Takahashi, Makoto; Pini, Paul-Etienne; Lloyd, Clara

    2017-05-01

    A graduate workshop was held on Monday 15 May, at the Maison francaise d'Oxford, involving a little group of graduate students, from the UK and France. They were invited to present their research and to engage in discussions over the place of nuclear energy in the context of the social sciences and humanities. Wider issues of relevance and interest regarding nuclear energy - such as its human, cultural and philosophical dimensions - have not received sufficient attention in either France or Britain. A number of specific areas were identified to be significant in this respect: - The need for clearer, 'unbiased' information, explanations and better understanding of the wider human dimensions associated with nuclear energy. - A better understanding of the influences upon, and differences in social attitudes towards nuclear in France and Britain. - The factors influencing varying attitudes within Britain and France amongst different sections of society. Particular references were made to the younger age groups and gender differences. - And understanding of 'changes' of attitude and support found in Britain and France, in more recent times. - The importance of the community, social, cultural, ethical and human dimensions given the unique nature of the nuclear sector, and in particular the long term nature and scale of economic and social investments associated with nuclear energy. - The impact of perceptions about the nuclear risk factors that may, or may not, be very different to reality over time. - The global nature of the impact of the sector on Anglo-French interests and the opportunities for positive collaboration, and learning in the wider human, social, ethical, cultural and philosophical aspects. - The multitude of social media channels available for disseminating information and opinions that influence social attitudes about nuclear energy. - A lack of trust in policy or operational statements emanating from the government, company or

  2. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    1975-02-01

    This report summarizes main research achievements in the 48th fiscal year which were made by Reactor Engineering Division consisted of eight laboratories and Computing Center. The major research and development projects, with which the research programmes in the Division are associated, are development of High Temperature Gas Cooled Reactor for multi-purpose use, development of Liquid Metal Fast Breeder Reactor conducted by Power Reactor and Nuclear Fuel Development Corporation, and Engineering Research Programme for Thermonuclear Fusion Reactor. Many achievements are reported in various research items such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology and activities of Computing Center. (auth.)

  3. Ontario Hydro Research Division, 1980

    International Nuclear Information System (INIS)

    The work of the Research Division of Ontario Hydro provides technical and scientific support for the engineering and operation of a power system that includes hydraulic, fossil-fired, and nuclear generation. It also relates to the transmission and distribution of electricity and to the need to help customers use electricity with safety and economy. Among the examples of projects given are qualification of CANDU heat transport system components, pressure tube replacement, steam generator integrity, testing for earthquake resistance, and radioactive waste disposal

  4. Division of solid state physics

    International Nuclear Information System (INIS)

    Beckman, O.

    1983-09-01

    This report gives a survey of the present research projects at the division of solid state physics, Inst. of Technology, Uppsala University. The projects fall within the fields of magnetism, i.e. spin glasses, ordered magnetic structures and itinerant electron magnetism, and optics, i.e. properties of crystalline and amorphous materials for selective transmission and absorption in connection with energy-related research. (author)

  5. Division of household tasks and financial management

    NARCIS (Netherlands)

    Antonides, G.

    2011-01-01

    Both the standard economic model and bargaining theory make predictions about financial management and the division of household labor between household partners. Using a large Internet survey, we have tested several predictions about task divisions reported by Dutch household partners. The division

  6. Analytical Chemistry Division's sample transaction system

    International Nuclear Information System (INIS)

    Stanton, J.S.; Tilson, P.A.

    1980-10-01

    The Analytical Chemistry Division uses the DECsystem-10 computer for a wide range of tasks: sample management, timekeeping, quality assurance, and data calculation. This document describes the features and operating characteristics of many of the computer programs used by the Division. The descriptions are divided into chapters which cover all of the information about one aspect of the Analytical Chemistry Division's computer processing

  7. Prokaryotic cell division: flexible and diverse

    NARCIS (Netherlands)

    den Blaauwen, T.

    2013-01-01

    Gram-negative rod-shaped bacteria have different approaches to position the cell division initiating Z-ring at the correct moment in their cell division cycle. The subsequent maturation into a functional division machine occurs in vastly different species in two steps with appreciable time in

  8. Phenotypic plasticity and effects of selection on cell division symmetry in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Uttara N Lele

    Full Text Available Aging has been demonstrated in unicellular organisms and is presumably due to asymmetric distribution of damaged proteins and other components during cell division. Whether the asymmetry-induced aging is inevitable or an adaptive and adaptable response is debated. Although asymmetric division leads to aging and death of some cells, it increases the effective growth rate of the population as shown by theoretical and empirical studies. Mathematical models predict on the other hand, that if the cells divide symmetrically, cellular aging may be delayed or absent, growth rate will be reduced but growth yield will increase at optimum repair rates. Therefore in nutritionally dilute (oligotrophic environments, where growth yield may be more critical for survival, symmetric division may get selected. These predictions have not been empirically tested so far. We report here that Escherichia coli grown in oligotrophic environments had greater morphological and functional symmetry in cell division. Both phenotypic plasticity and genetic selection appeared to shape cell division time asymmetry but plasticity was lost on prolonged selection. Lineages selected on high nutrient concentration showed greater frequency of presumably old or dead cells. Further, there was a negative correlation between cell division time asymmetry and growth yield but there was no significant correlation between asymmetry and growth rate. The results suggest that cellular aging driven by asymmetric division may not be hardwired but shows substantial plasticity as well as evolvability in response to the nutritional environment.

  9. Atmospheric sciences division. Annual report, fiscal year 1981

    International Nuclear Information System (INIS)

    Raynor, G.S.

    1981-12-01

    The research activities of the Atmospheric Sciences Division of the Department of Energy and Environment for FY 1981 are presented. Facilities and major items of equipment are described. Research programs are summarized in three categories, modeling, field and laboratory experiments and data management and analysis. Each program is also described individually with title, principal investigator, sponsor and funding levels for FY 1981 and FY 1982. Future plans are summarized. Publications for FY 1981 are listed with abstracts. A list of personnel is included

  10. Environmental and Medical Sciences Division progress report January - December, 1980

    International Nuclear Information System (INIS)

    Hainge, W.M.

    1982-02-01

    A progress report on the work performed during 1980 by the Environmental and Medical Sciences Division at UKAEA Harwell is given. The programmes considered were atmospheric pollution; landfill research; monitoring of radioactive fallout and other radionuclides and trace elements in the environment; radioactive and non-radioactive aerosol metabolic studies; inhalation toxicology of radioactive aerosols and other hazardous materials; chemical analytical services; and radiation physics in dosimetry research, applied radiation spectrometry and data systems. (U.K.)

  11. A decade of Radiometallurgy Division

    International Nuclear Information System (INIS)

    Ganguly, C.; Bahl, J.K.

    1988-12-01

    The main thrust of the Research and Development (R and D) activities of the Radiometallurgy Division of the Bhabha Atomic Research Centre is on (1) R and D work and production of plutonium bearing nuclear fuels, (2) Post-Irradiation Examination (PIE) of fuels and structural materials, and (3) failure analysis of power reactor components. The main activities and achievements of the Division during the decade beginning from April 1978 are highlighted and the new thrust areas oriented towards installing a series of 235 MWe and 500 MWe PHWR units and prototype fast breeder reactor (PFBR) of 500 MWe capacity during the next 15 years are described in brief. The major achievements during last ten years are: (1) development and irradiation testing of mixed uranium plutonium oxide (MOX), as an alternative fuel for boiling water reactors at Tarapur, (2) setting up of a 10 tons/year pilot plant for fabrication of oxide fuels and technical support for setting up such plants, (3) development and production of plutonium rich, advanced mixed uranium plutonium monocarbide driver fuel for the Fast Breeder Test Reactor comm issioned at Kalpakkam, (4) development and fabrication of Al- 233 U plate fuel elements for KAMINI reactor, (5) PIE of fuel elements from Indian reactors in operation, (6) failure analysis of reactor components, and (7) in-pile performance analysis of power reactor structural materials. A list of publications during 1978-88 by the scientists of the Division is given at the end. The publications are listed under the headings: (1) fuels, (2) non-destructive evaluation, (3) engineering development, (4) welding development, (5) characterization and property evaluation, and (6) post irradiation examination. The entire text is illustrated with a number of diagrams and photographs - many of them coloured . (M.G.B.)

  12. Physics division annual report - 1999

    International Nuclear Information System (INIS)

    Thayer, K.

    2000-01-01

    This report summarizes the research performed in the past year in the Argonne Physics Division. The Division's programs include operation of ATLAS as a national heavy-ion user facility, nuclear structure and reaction research with beams of heavy ions, accelerator research and development especially in superconducting radio frequency technology, nuclear theory and medium energy nuclear physics. The Division took significant strides forward in its science and its initiatives for the future in the past year. Major progress was made in developing the concept and the technology for the future advanced facility of beams of short-lived nuclei, the Rare Isotope Accelerator. The scientific program capitalized on important instrumentation initiatives with key advances in nuclear science. In 1999, the nuclear science community adopted the Argonne concept for a multi-beam superconducting linear accelerator driver as the design of choice for the next major facility in the field a Rare Isotope Accelerator (RIA) as recommended by the Nuclear Science Advisory Committee's 1996 Long Range Plan. Argonne has made significant R and D progress on almost all aspects of the design concept including the fast gas catcher (to allow fast fragmentation beams to be stopped and reaccelerated) that in large part, defined the RIA concept the superconducting rf technology for the driver accelerator, the multiple-charge-state concept (to permit the facility to meet the design intensity goals with existing ion-source technology), and designs and tests of high-power target concepts to effectively deal with the full beam power of the driver linac. An NSAC subcommittee recommended the Argonne concept and set as tie design goal Uranium beams of 100-kwatt power at 400 MeV/u. Argonne demonstrated that this goal can be met with an innovative, but technically in-hand, design

  13. Heparan sulfate and cell division

    Directory of Open Access Journals (Sweden)

    Porcionatto M.A.

    1999-01-01

    Full Text Available Heparan sulfate is a component of vertebrate and invertebrate tissues which appears during the cytodifferentiation stage of embryonic development. Its structure varies according to the tissue and species of origin and is modified during neoplastic transformation. Several lines of experimental evidence suggest that heparan sulfate plays a role in cellular recognition, cellular adhesion and growth control. Heparan sulfate can participate in the process of cell division in two distinct ways, either as a positive or negative modulator of cellular proliferation, or as a response to a mitogenic stimulus.

  14. Progress report : Technical Physics Division

    International Nuclear Information System (INIS)

    Gopalaraman, C.P.; Deshpande, R.Y.

    1978-01-01

    The research and development work carried out in the Technical Physics Division of the Bhabha Atomic Research Centre, Bombay, is reported. Some of the achievements are: (1) fabrication of mass spectrometers for heavy water analysis and lithium 6/7 isotope ratio measurement, (2) fabrication of electronic components for mass spectrometers, (3) growing of sodium iodide crystals for radiation detectors, (4) development of sandwich detectors comprising of NaI(Tl) and CaI(Na), (5) fabrication of mass spectrometer type leak detectors and (6) fabrication of the high vacuum components of the vacuum system of the variable energy cyclotron based at Calcutta. (M.G.B.)

  15. Chemical Technology Division annual technical report, 1990

    International Nuclear Information System (INIS)

    1991-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1990 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for coal- fired magnetohydrodynamics and fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for a high-level waste repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, concentrating plutonium solids in pyrochemical residues by aqueous biphase extraction, and treating natural and process waters contaminated by volatile organic compounds; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the scientific and engineering programs at Argonne National Laboratory (ANL). 66 refs., 69 figs., 6 tabs

  16. Chemical Technology Division annual technical report, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1990 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for coal- fired magnetohydrodynamics and fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for a high-level waste repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, concentrating plutonium solids in pyrochemical residues by aqueous biphase extraction, and treating natural and process waters contaminated by volatile organic compounds; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the scientific and engineering programs at Argonne National Laboratory (ANL). 66 refs., 69 figs., 6 tabs.

  17. Time-division optical interconnects for local-area and micro-area networks

    Science.gov (United States)

    Krol, Mark F.; Boncek, Raymond K.; Johns, Steven T.; Stacy, John L.

    1991-12-01

    This report describes the development of an optical Time-Division Multiple-Access (TDMA) interconnect suitable for applications in local-area and micro-area networks. The advantages of using time-division techniques instead of frequency-division, wavelength-division, or code-division techniques in a shared-medium environment are discussed in detail. Furthermore, a detailed description of the TDMA architecture is presented along with various experiments pertaining to the actual components needed to implement the system. Finally, experimental data is presented for an actual optical TDMA test bed. The experimental data demonstrates the feasibility of the architecture, and shows that currently the system has the capability to accommodate up to 50 channels. The bit-error-rate per channel was measured to be less than 10(exp -9) for pseudo-random bit-sequences.

  18. NEN Division Funding Gap Analysis

    International Nuclear Information System (INIS)

    Esch, Ernst I.; Goettee, Jeffrey D.; Desimone, David J.; Lakis, Rollin E.; Miko, David K.

    2012-01-01

    The work in NEN Division revolves around proliferation detection. The sponsor funding model seems to have shifted over the last decades. For the past three lustra, sponsors are mainly interested in funding ideas and detection systems that are already at a technical readiness level 6 (TRL 6 -- one step below an industrial prototype) or higher. Once this level is reached, the sponsoring agency is willing to fund the commercialization, implementation, and training for the systems (TRL 8, 9). These sponsors are looking for a fast turnaround (1-2 years) technology development efforts to implement technology. To support the critical national and international needs for nonprolifertion solutions, we have to maintain a fluent stream of subject matter expertise from the fundamental principals of radiation detection through prototype development all the way to the implementation and training of others. NEN Division has large funding gaps in the Valley of Death region. In the current competitive climate for nuclear nonproliferation projects, it is imminent to increase our lead in this field.

  19. Environment, Health and Safety (EH&S): Division Liaisons

    Science.gov (United States)

    . Israel Tadesse Chemical Sciences x4043 Cell: 610-0856 Maram Kassis Electronic waste (E-waste) pickup or Source Representative 2231, 2014 Scott E. Taylor Chemical Safety Subcommittee Chairperson 4103 Hendrik Representative 7457 Stephen M. Franaszek Genomics Representative 925-296-5807 Vera Potapenko Marcia Ocon Leimer

  20. Radiological survey of Ingalls Shipbuilding Division, Pascagoula, Mississippi, and environs

    International Nuclear Information System (INIS)

    Fowler, T.W.; Windham, S.T.; Callis, R.S.; Phillips, C.R.

    1983-09-01

    This report presents results of the survey conducted by EERF personnel to assess environmental radioactivity remaining from operations of nuclear-powered vessels at Ingalls Shipyard, Pascagoula, Mississippi. Since Ingalls Shipyard will no longer build or service nuclear powered ships and has completed the decommissioning of the nuclear support facilities, an additional purpose of the survey was to determine if there is any remaining radioactivity from previous operations which could contribute to significant population exposure

  1. Chemical Technology Division annual technical report 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials and electrified interfaces. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division`s activities during 1997 are presented.

  2. The 1988 Leti Division progress report

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The 1988 progress report of the CEA's LETI Division (Division of Electronics, Technology and Instrumentation, France) is presented. The missions of LETI Division involve military and nuclear applications of electronics and fundamental research. The research programs developed in 1988 are the following: materials and components, non-volatile silicon memories, silicon-over-insulator, integrated circuits technologies, common experimental laboratory (opened to the European community), mass memories, photodetectors, micron sensors and flat screens [fr

  3. Current programmes of Metallurgy Division (1991)

    International Nuclear Information System (INIS)

    1991-01-01

    Current research and development programmes of the Metallurgy Division are listed under the headings: 1)Thrust Areas, 2)High Temperature Materials Section, 3)Chemical Metallurgy Section, 4)Metallurgical Thermochemistry Section, 5)Physical Metallurgy Section, 6)Mechanical Metallurgy Section, 7)Corrosion Metallurgy Section, 8)Electrochemical Science and Technology Section, 9)Ceramics Section, and 10)Fabrication and Maintenance Group. A list of equipment in the Division and a list of sciientific personnel of the Division are also given. (M.G.B.)

  4. Indoor Environment Program

    International Nuclear Information System (INIS)

    Daisey, J.M.

    1993-06-01

    This paper reports progress during the year 1992 in the Indoor Environment Program in the Energy and Environment Division of Lawrence Berkeley Laboratory. Studies in the following areas are reported: energy performance and ventilation in buildings; physical and chemical characterization of indoor air pollutants; indoor radon; indoor air quality; exposure to indoor air pollutants and risk analysis. Pollutants of particular interest include: radon; volatile, semi-volatile and particulate organic compounds; and combustion emissions including environmental tobacco smoke, carbon monoxide, and nitrogen oxides

  5. MP-Division health and safety reference handbook. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    Putnam, T.M.

    1987-09-01

    This report presents the objectives, organization, policies, and essential rules and procedures that have been adopted by MP Division and that form the basis of the Health and Safety Program of the Clinton P. Anderson Meson Physics Facility (LAMPF). The facility includes the beam-delivery systems for the Los Alamos Neutron Scattering Center and the Weapons Neutron Research Facility (LANSCE/WNR). The program is designed not only to assure the health and safety of all personnel, including users, in their work at LAMPF, and of MP-Division staff in their work on the LANSCE/WNR beam lines, but also to protect the facility (buildings and equipment) and the environment. 33 refs., 18 figs., 2 tabs.

  6. MP-Division health and safety reference handbook

    International Nuclear Information System (INIS)

    Putnam, T.M.

    1987-09-01

    This report presents the objectives, organization, policies, and essential rules and procedures that have been adopted by MP Division and that form the basis of the Health and Safety Program of the Clinton P. Anderson Meson Physics Facility (LAMPF). The facility includes the beam-delivery systems for the Los Alamos Neutron Scattering Center and the Weapons Neutron Research Facility (LANSCE/WNR). The program is designed not only to assure the health and safety of all personnel, including users, in their work at LAMPF, and of MP-Division staff in their work on the LANSCE/WNR beam lines, but also to protect the facility (buildings and equipment) and the environment. 33 refs., 18 figs., 2 tabs

  7. Chemical Technology Division annual technical report 1984

    International Nuclear Information System (INIS)

    1985-02-01

    In this period, CMT conducted research and development in the following areas: (1) advanced batteries - mainly lithium alloy/metal sulfide and sodium/sulfur for electric vehicles; (2) aqueous batteries - mainly improved lead-acid and nickel/iron for electric vehicles; (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamic plants and the technology for pressurized fluidized-bed combustors; (5) methodologies for recovery of energy from municipal waste; (6) solid and liquid desiccants that allow moisture to be removed with a minium of energy; (7) nuclear technology related to waste management, proof of breeding for a light water reactor, and the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor; and (8) physical chemistry of selected materials in environments simulating those of fission, fusion, and other energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting abundant raw materials to desired products; materials chemistry of liquids and vapors at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; atmospheric chemistry, most notably SO 2 oxidation mechanisms; and the thermochemistry of zeolites, related silicates, and inorganic compounds

  8. Chemical Technology Division annual technical report, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

    1993-06-01

    In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous waste, mixed hazardous/radioactive waste, and municipal solid waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, treating water contaminated with volatile organics, and concentrating radioactive waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (EFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials (corium; Fe-U-Zr, tritium in LiAlO{sub 2} in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel` ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, and molecular sieve structures; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  9. Chemical Technology Division annual technical report, 1992

    International Nuclear Information System (INIS)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

    1993-06-01

    In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous waste, mixed hazardous/radioactive waste, and municipal solid waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, treating water contaminated with volatile organics, and concentrating radioactive waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (EFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials (corium; Fe-U-Zr, tritium in LiAlO 2 in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel' ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, and molecular sieve structures; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL)

  10. Radioactive Waste and Clean-up Division

    International Nuclear Information System (INIS)

    Collard, G.

    2001-01-01

    The main objectives of the Radioactive Waste and Clean-up division of SCK-CEN are outlined. The division's programme consists of research, development and demonstration projects and aims to contribute to the objectives of Agenda 21 on sustainable development in the field of radioactive waste and rehabilitation of radioactively contaminated sites

  11. Publications - Geospatial Data | Alaska Division of Geological &

    Science.gov (United States)

    from rocks collected in the Richardson mining district, Big Delta Quadrangle, Alaska: Alaska Division Island 2009 topography: Alaska Division of Geological & Geophysical Surveys Miscellaneous Publication , Geologic map of portions of the Livengood B-3, B-4, C-3, and C-4 quadrangles, Tolovana mining district

  12. "American Gothic" and the Division of Labor.

    Science.gov (United States)

    Saunders, Robert J.

    1987-01-01

    Provides historical review of gender-based division of labor. Argues that gender-based division of labor served a purpose in survival of tribal communities but has lost meaning today and may be a handicap to full use of human talent and ability in the arts. There is nothing in various art forms which make them more appropriate for males or…

  13. Medical Sciences Division report for 1993

    International Nuclear Information System (INIS)

    1993-01-01

    This year's Medical Sciences Division (MSD) Report is organized to show how programs in our division contribute to the core competencies of Oak Ridge Institute for Science and Education (ORISE). ORISE's core competencies in education and training, environmental and safety evaluation and analysis, occupational and environmental health, and enabling research support the overall mission of the US Department of Energy (DOE)

  14. Materials Sciences Division 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  15. Radiochemistry Division annual progress report : 1992

    International Nuclear Information System (INIS)

    Natarajan, V.; Godbole, S.V.; Iyer, R.H.

    1994-01-01

    The research and development activities of the Radiochemistry Division during 1992 are briefly described in the form of individual summaries grouped under the headings: 1) Nuclear Chemistry, 2) Actinide Chemistry, 3) Spectroscopy, and 4) Instrumentation. A list of publications numbering 95 by the scientific staff of the Division is also included in the report. (author). 35 figs., 56 tabs

  16. Earth Sciences Division, collected abstracts-1977

    International Nuclear Information System (INIS)

    Quitiquit, W.A.; Ledbetter, G.P.; Henry, A.L.

    1978-01-01

    This report is a compilation of abstracts of papers, internal reports, and talks presented during 1977 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore Laboratory. It is arranged alphabetically by author and includes a cross-reference by subject indicating the areas of research interest of the Earth Sciences Division

  17. Physics Division annual report 2004.

    Energy Technology Data Exchange (ETDEWEB)

    Glover, J.

    2006-04-06

    This report highlights the research performed in 2004 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The intellectual challenges of this research represent some of the most fundamental challenges in modern science, shaping our understanding of both tiny objects at the center of the atom and some of the largest structures in the universe. A great strength of these efforts is the critical interplay of theory and experiment. Notable results in research at ATLAS include a measurement of the charge radius of He-6 in an atom trap and its explanation in ab-initio calculations of nuclear structure. Precise mass measurements on critical waiting point nuclei in the rapid-proton-capture process set the time scale for this important path in nucleosynthesis. An abrupt fall-off was identified in the subbarrier fusion of several heavy-ion systems. ATLAS operated for 5559 hours of research in FY2004 while achieving 96% efficiency of beam delivery for experiments. In Medium Energy Physics, substantial progress was made on a long-term experiment to search for the violation of time-reversal invariance using trapped Ra atoms. New results from HERMES reveal the influence of quark angular momentum. Experiments at JLAB search for evidence of color transparency in rho-meson production and study the EMC effect in helium isotopes. New theoretical results include a Poincare covariant description of baryons as composites of confined quarks and non-point-like diquarks. Green's function Monte Carlo techniques give accurate descriptions of the excited states of light nuclei and these techniques been extended to scattering states for astrophysics studies. A theoretical description of the phenomena of proton radioactivity has been extended to triaxial nuclei. Argonne

  18. Physics Division annual report 2004

    International Nuclear Information System (INIS)

    Glover, J.

    2006-01-01

    This report highlights the research performed in 2004 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The intellectual challenges of this research represent some of the most fundamental challenges in modern science, shaping our understanding of both tiny objects at the center of the atom and some of the largest structures in the universe. A great strength of these efforts is the critical interplay of theory and experiment. Notable results in research at ATLAS include a measurement of the charge radius of He-6 in an atom trap and its explanation in ab-initio calculations of nuclear structure. Precise mass measurements on critical waiting point nuclei in the rapid-proton-capture process set the time scale for this important path in nucleosynthesis. An abrupt fall-off was identified in the subbarrier fusion of several heavy-ion systems. ATLAS operated for 5559 hours of research in FY2004 while achieving 96% efficiency of beam delivery for experiments. In Medium Energy Physics, substantial progress was made on a long-term experiment to search for the violation of time-reversal invariance using trapped Ra atoms. New results from HERMES reveal the influence of quark angular momentum. Experiments at JLAB search for evidence of color transparency in rho-meson production and study the EMC effect in helium isotopes. New theoretical results include a Poincare covariant description of baryons as composites of confined quarks and non-point-like diquarks. Green's function Monte Carlo techniques give accurate descriptions of the excited states of light nuclei and these techniques been extended to scattering states for astrophysics studies. A theoretical description of the phenomena of proton radioactivity has been extended to triaxial nuclei. Argonne continues to

  19. Chemical Technology Division annual technical report 1997

    International Nuclear Information System (INIS)

    1998-06-01

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials and electrified interfaces. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division's activities during 1997 are presented

  20. 1998 Chemical Technology Division Annual Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ackerman, J.P.; Einziger, R.E.; Gay, E.C.; Green, D.W.; Miller, J.F.

    1999-08-06

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division's activities during 1998 are presented.

  1. Israel: the Division before Peace

    Directory of Open Access Journals (Sweden)

    Ferran Izquierdo Brichs

    2000-01-01

    Full Text Available The process of the Middle East peace negotiations at the beginning of the 1990s has its roots in the changes in the international system and in Israeli society. The end of the Cold War, the Gulf War in 1990-1991 and globalization forced all the region’s actors to resituate themselves within the new international context. However, Israeli society neither experienced the international changes in the same way as its neighbors nor did it undergo the same evolutionduring the conflict with the Arabs. Because of this, the debate over peace and the future of the occupied territories became a factor for political and ideological division. Influencing this debate were revised conceptions on security, the economy, and the role Israel should play in the world. The Middle East peace talks began because the strongest side in the conflict, Israel’s Labor government, came to perceive that the maintenance of the status quo was negative forits interests. From the Israeli point of view, the conflict had long been considered a zero-sum game despite the Palestinian’s compromises since the construction of the Palestinian State involved handing over part of the territory claimed by the Jews. Recent changes in the perceptions of Israeli’s own interests, though, led some sectors of Jewish society to re-think and diminish the supposed incompatibility between Palestine nationalism and Zionism, which then opened the doors towards peace. For the Labor government, the territorial occupation of all Palestine was no longer a central objective. In fact, the basic interests of the Labor party’s policies shifted due to the globalization of the international system. For Likud and the Zionist revisionists, however, the occupation and the colonization of Eretz Israel still form the basic ideology of the State –of its reason for being– for which even today both are associated with the national interest, together with Israel’s very survival. Seen this way, Israel

  2. 49 CFR 1242.03 - Made by accounting divisions.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Made by accounting divisions. 1242.03 Section 1242... accounting divisions. The separation shall be made by accounting divisions, where such divisions are maintained, and the aggregate of the accounting divisions reported for the quarter and for the year. ...

  3. Division of Information Technology - Overview

    International Nuclear Information System (INIS)

    Szlachciak, J.

    2008-01-01

    Full text: The Division of Information Technology continued its service-oriented activities in 2007. Our main duty was a day-to-day support to all units in the Institute in IT related matters. One of our tasks was the acquiring, configuration and delivery of new computer equipment to our users. We prepared technical specification for several biddings and we verified bids received from the point of view of correctness. Due to financial support from our government, we purchased about one-fourth of our existing computer equipment. This hardware has partially replaced the old units and partially supported our new staff. Implemented at the end of 2006 the Scientific Activity Database has continued its operation and has been extended by several useful reports and fields containing important information. We started preliminary activities related to implementation of video conferencing services in our Institute. Apart of taking part in seminars and consulting several companies, we have managed to transmit a few scientific seminars from Warsaw to our department in Lodz. (author)

  4. Division algebras with integral elements

    International Nuclear Information System (INIS)

    Koca, M.; Ozdes, N.

    1988-06-01

    Pairing two elements of a given division algebra furnished with a multiplication rule leads to an algebra of higher dimension restricted by 8. This fact is used to obtain the roots of SO(4) and SP(2) from the roots ±1 of SU(2) and the weights ±1/2 of its spinor representation. The root lattice of SO(8) described by 24 integral quaternions are obtained by pairing two sets of roots of SP(2). The root system of F 4 is constructed in terms of 24 integral and 24 ''half-integral'' quaternions. The root lattice of E 8 expressed as 240 integral octonions are obtained by pairing two sets of roots of F 4 . 24 integral quaternions of SO(8) forming a discrete subgroup of SU(2) is shown to be the automorphism group of the root lattices of SO(8), F 4 and E 8 . The roots of maximal subgroups SO(16), E 7 XSU(2), E 6 XSU(3), SU(9) and SU(5)XSU(5) of E 8 are identified with a simple method. Subsets of the discrete subgroup of SU(2) leaving maximal subgroups of E 8 are obtained. Constructions of E 8 root lattice with integral octonions in 7 distinct ways are made. Magic square of integral lattices of Goddard, Nahm, Olive, Ruegg and Schwimmer are derived. Possible physical applications are suggested. (author). 16 refs, 6 figs, 5 tabs

  5. Physics division annual report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, K., ed.; Physics

    2000-12-06

    This report summarizes the research performed in the past year in the Argonne Physics Division. The Division's programs include operation of ATLAS as a national heavy-ion user facility, nuclear structure and reaction research with beams of heavy ions, accelerator research and development especially in superconducting radio frequency technology, nuclear theory and medium energy nuclear physics. The Division took significant strides forward in its science and its initiatives for the future in the past year. Major progress was made in developing the concept and the technology for the future advanced facility of beams of short-lived nuclei, the Rare Isotope Accelerator. The scientific program capitalized on important instrumentation initiatives with key advances in nuclear science. In 1999, the nuclear science community adopted the Argonne concept for a multi-beam superconducting linear accelerator driver as the design of choice for the next major facility in the field a Rare Isotope Accelerator (WA) as recommended by the Nuclear Science Advisory Committee's 1996 Long Range Plan. Argonne has made significant R&D progress on almost all aspects of the design concept including the fast gas catcher (to allow fast fragmentation beams to be stopped and reaccelerated) that in large part defined the RIA concept the superconducting rf technology for the driver accelerator, the multiple-charge-state concept (to permit the facility to meet the design intensity goals with existing ion-source technology), and designs and tests of high-power target concepts to effectively deal with the full beam power of the driver linac. An NSAC subcommittee recommended the Argonne concept and set as tie design goal Uranium beams of 100-kwatt power at 400 MeV/u. Argonne demonstrated that this goal can be met with an innovative, but technically in-hand, design. The heavy-ion research program focused on GammaSphere, the premier facility for nuclear structure gamma-ray studies. One example

  6. Environmental Sciences Division annual progress report for period ending September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division of Oak Ridge National Laboratory during the period October 1, 1990, through September 30, 1991. The report is structured to provide descriptions of current activities and accomplishments in each of the division`s major organizational units. Following the sections describing the organizational units is a section devoted to lists of information necessary to convey the scope of the work in the division. The Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) conducts environmental research and analyses associated with both energy technology development and the interactions between people and the environment. The division engages in basic and applied research for a diverse list of sponsors. While the US Department of Energy (DOE) is the primary sponsor ESD staff also perform research for other federal agencies, state agencies, and private industry. The division works collaboratively with federal agencies, universities, and private organizations in achieving its research objectives and hosts a large number of visiting investigators from these organizations. Given the diverse interdisciplinary specialization of its staff, ESD provides technical expertise on complex environmental problems and renders technical leadership for major environmental issues of national and local concern. This progress report highlights many of ESD`s accomplishment in these and other areas in FY 1991.

  7. Insights into the Mechanisms of Chloroplast Division

    Directory of Open Access Journals (Sweden)

    Yamato Yoshida

    2018-03-01

    Full Text Available The endosymbiosis of a free-living cyanobacterium into an ancestral eukaryote led to the evolution of the chloroplast (plastid more than one billion years ago. Given their independent origins, plastid proliferation is restricted to the binary fission of pre-existing plastids within a cell. In the last 25 years, the structure of the supramolecular machinery regulating plastid division has been discovered, and some of its component proteins identified. More recently, isolated plastid-division machineries have been examined to elucidate their structural and mechanistic details. Furthermore, complex studies have revealed how the plastid-division machinery morphologically transforms during plastid division, and which of its component proteins play a critical role in generating the contractile force. Identifying the three-dimensional structures and putative functional domains of the component proteins has given us hints about the mechanisms driving the machinery. Surprisingly, the mechanisms driving plastid division resemble those of mitochondrial division, indicating that these division machineries likely developed from the same evolutionary origin, providing a key insight into how endosymbiotic organelles were established. These findings have opened new avenues of research into organelle proliferation mechanisms and the evolution of organelles.

  8. Division of Scientific Equipment - Overview

    International Nuclear Information System (INIS)

    Halik, J.

    2002-01-01

    Full text: The Scientific Equipment Division consists of the Design Group and the Mechanical Workshop. The activity of the Division includes the following: * designs of devices and equipment for experiments in physics; their mechanical construction and assembly. In particular, these are vacuum chambers and installations for HV and UHV;* maintenance and upgrading of the existing installations and equipment in our Institute; * participation of our engineers and technicians in design works, equipment assembly and maintenance for experiments in foreign laboratories. The Design Group is equipped with PC-computers and AutoCAD graphic software (release 2000 and Mechanical Desktop 4.0) and an A0 plotter, which allow us to make drawings and 2- and 3-dimensional mechanical documentation to the world standards. The Mechanical Workshop offers a wide range of machining and treatment methods with satisfactory tolerances and surface quality. They include: * turning - cylindrical elements of a length up to 2000 mm and a diameter up to 400 mm, and also disc type elements of a diameter up to 600 mm and a length not exceeding 300 mm, * milling - elements of length up to 1000 mm and gear wheels of diameter up to 300 mm, * grinding - flat surfaces of dimensions up to 300 mm x 1000 mm and cylindrical elements of a diameter up to 200 mm and a length up to 800 mm, * drilling - holes of a diameter up to 50 mm, * welding - electrical and gas welding, including TIG vacuum-tight welding, * soft and hard soldering, * mechanical works including precision engineering, * plastics treatment - machining and polishing using diamond milling, modelling, lamination of various shapes and materials, including plexiglas, scintillators and light-guides, * painting - paint spraying with possibility of using furnace-fired drier of internal dimensions of 800 mm x 800 mm x 800 mm. Our workshop is equipped with the CNC milling machine which can be used for machining of work pieces up to 500 kg. The machine

  9. Cell growth and division cycle

    International Nuclear Information System (INIS)

    Darzynkiewicz, Z.

    1986-01-01

    The concept of the cell cycle in its present form was introduced more than three decades ago. Studying incorporation of DNA precursors by autoradiography, these authors observed that DNA synthesis in individual cells was discontinuous and occupied a discrete portion of the cell life (S phase). Mitotic division was seen to occur after a certain period of time following DNA replication. A distinct time interval between mitosis and DNA replication was also apparent. Thus, the cell cycle was subdivided into four consecutive phases, G/sub 1/, S, G/sub 2/, and M. The G/sub 1/ and G/sub 2/ phases represented the ''gaps'' between mitosis and the start of DNA replication, and between the end of DNA replication and the onset of mitosis, respectively. The cell cycle was defined as the interval between the midpoint of mitosis and the midpoint of the subsequent mitosis of the daughter cell(s). The authors' present knowledge on the cell cycle benefited mostly from the development of four different techniques: autoradiography, time-lapse cinematography, cell synchronization and flow cytometry. Of these, autoradiography has been the most extensively used, especially during the past two decades. By providing a means to analyse incorporation of precursors of DNA, RNA or proteins by individual cells and, in combination with various techniques of cell synchronization, autoradiography yielded most of the data fundamental to the current understanding of the cell cycle-related phenomena. Kinetics of cell progression through the cell cycle could be analysed in great detail after development of such sophisticated autoradiographic approaches as measurements of the fraction of labeled mitoses (''FLM curves'') or multiple sequential cell labelling with /sup 3/H- and /sup 14/C-TdR

  10. Chemical and Laser Sciences Division annual report 1989

    International Nuclear Information System (INIS)

    Haines, N.

    1990-06-01

    The Chemical and Laser Sciences Division Annual Report includes articles describing representative research and development activities within the Division, as well as major programs to which the Division makes significant contributions

  11. 75 FR 45154 - National Security Division; Agency Information Collection Activities:

    Science.gov (United States)

    2010-08-02

    ... DEPARTMENT OF JUSTICE [OMB Number 1124-0003] National Security Division; Agency Information...), National Security Division (NSD), will be submitting the following information collection request to the..., 10th & Constitution Avenue, NW., National Security Division, Counterespionage Section/Registration Unit...

  12. Earth Sciences Division collected abstracts: 1979

    International Nuclear Information System (INIS)

    Henry, A.L.; Schwartz, L.L.

    1980-01-01

    This report is a compilation of abstracts of papers, internal reports, and talks presented during 1979 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore Laboratory. The arrangement is alphabetical (by author). For a given report, a bibliographic reference appears under the name of each coauthor, but the abstract iself is given only under the name of the first author or the first Earth Sciences Division author. A topical index at the end of the report provides useful cross references, while indicating major areas of research interest in the Earth Sciences Division

  13. Biology and Medicine Division: Annual report 1986

    Energy Technology Data Exchange (ETDEWEB)

    1987-04-01

    The Biology and Medicine Division continues to make important contributions in scientific areas in which it has a long-established leadership role. For 50 years the Division has pioneered in the application of radioisotopes and charged particles to biology and medicine. There is a growing emphasis on cellular and molecular applications in the work of all the Division's research groups. The powerful tools of genetic engineering, the use of recombinant products, the analytical application of DNA probes, and the use of restriction fragment length polymorphic DNA are described and proposed for increasing use in the future.

  14. Biology and Medicine Division: Annual report 1986

    International Nuclear Information System (INIS)

    1987-04-01

    The Biology and Medicine Division continues to make important contributions in scientific areas in which it has a long-established leadership role. For 50 years the Division has pioneered in the application of radioisotopes and charged particles to biology and medicine. There is a growing emphasis on cellular and molecular applications in the work of all the Division's research groups. The powerful tools of genetic engineering, the use of recombinant products, the analytical application of DNA probes, and the use of restriction fragment length polymorphic DNA are described and proposed for increasing use in the future

  15. Chemical Sciences Division annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The division is one of ten LBL research divisions. It is composed of individual research groups organized into 5 scientific areas: chemical physics, inorganic/organometallic chemistry, actinide chemistry, atomic physics, and chemical engineering. Studies include structure and reactivity of critical reaction intermediates, transients and dynamics of elementary chemical reactions, and heterogeneous and homogeneous catalysis. Work for others included studies of superconducting properties of high-{Tc} oxides. In FY 1994, the division neared completion of two end-stations and a beamline for the Advanced Light Source, which will be used for combustion and other studies. This document presents summaries of the studies.

  16. Division of labour in the yeast

    DEFF Research Database (Denmark)

    Wloch-Salamon, Dominika M.; Fisher, Roberta May; Regenberg, Birgitte

    2017-01-01

    . Saccharomyces cerevisiae displays several phenotypes that could be considered a division of labour, including quiescence, apoptosis and biofilm formation, but they have not been explicitly treated as such. We discuss each of these examples, using a definition of division of labour that involves phenotypic...... variation between cells within a population, cooperation between cells performing different tasks and maximization of the inclusive fitness of all cells involved. We then propose future research directions and possible experimental tests using S. cerevisiae as a model organism for understanding the genetic...... mechanisms and selective pressures that can lead to the evolution of the very first stages of a division of labour....

  17. Energy Technology Division research summary 2004

    International Nuclear Information System (INIS)

    Poeppel, R. B.; Shack, W. J.

    2004-01-01

    The Energy Technology (ET) Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy (DOE). The Division's capabilities are generally applied to technical issues associated with energy systems, biomedical engineering, transportation, and homeland security. Research related to the operational safety of commercial light water nuclear reactors (LWRs) for the US Nuclear Regulatory Commission (NRC) remains another significant area of interest for the Division. The pie chart below summarizes the ET sources of funding for FY 2004

  18. Progress report of Environmental Assessment Division 1991-1994

    International Nuclear Information System (INIS)

    Sadasivan, S.; Nambi, K.S.V.

    1994-01-01

    The research and development (R and D) activities of Environmental Assessment Division during the period 1991-1994 are reported in the form of individual summaries arranged under the headings: 1) Studies on radioactivity measurements, 2) Dosimetry, 3) Epidemiological studies, 4) Aerosol studies, 5) Pollution monitoring systems, 6) Studies on trace constituents in the environment, and 7) Modelling studies. At the end of the report a list of publications including papers published in journals, presented at symposia, conferences etc., and published technical reports is given. (author)

  19. Progress report of Environmental Assessment Division: 1995-1997

    Energy Technology Data Exchange (ETDEWEB)

    Nair, P V.N.; Nambi, K S.V. [comps.; Environmental Assessment Division, Bhabha Atomic Research Centre, Mumbai (India)

    1998-08-01

    The research and development (R and D) activities of Environmental Assessment Division during the period 1995 - 1997 are reported in the form of individual summaries arranged under the headings: 1) Studies on Radioactivity Measurements 2) Internal Dosimetry Studies 3) Epidemiological Studies 4) Aerosol Studies 5) Pollution Monitoring Systems 6) Studies on Trace Constituents in the Environment 7) Modelling Studies 8) Radiological Safety Assessment and 9) Dating Studies. At the end of the report, list of publications including papers published in journals, papers in symposium proceedings, papers in bulletins/newsletters and reports and summaries of Ph.D. theses completed during the period are given. (author)

  20. Progress report of Environmental Assessment Division 1991-1994

    Energy Technology Data Exchange (ETDEWEB)

    Sadasivan, S; Nambi, K S.V. [comps.; Bhabha Atomic Research Centre, Bombay (India). Environmental Assessment Div.

    1994-12-31

    The research and development (R and D) activities of Environmental Assessment Division during the period 1991-1994 are reported in the form of individual summaries arranged under the headings: (1) Studies on radioactivity measurements, (2) Dosimetry, (3) Epidemiological studies, (4) Aerosol studies, (5) Pollution monitoring systems, (6) Studies on trace constituents in the environment, and (7) Modelling studies. At the end of the report a list of publications including papers published in journals, presented at symposia, conferences etc., and published technical reports is given. (author).

  1. Life Sciences Division progress report for CYs 1997-1998[Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Mann, Reinhold C.

    1999-01-01

    common mission of the division is to advance science and technology to understand complex biological systems and their relationship with human health and the environment

  2. Life Sciences Division progress report for CYs 1997-1998 [Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Reinhold C.

    1999-06-01

    common mission of the division is to advance science and technology to understand complex biological systems and their relationship with human health and the environment.

  3. Contacts in the Office of Pesticide Programs, Registration Division

    Science.gov (United States)

    The Registration Division (RD) is responsible product registrations, amendments, registrations, tolerances, experimental use permits, and emergency exemptions for conventional chemical pesticides. Find contacts in this division.

  4. Nature Conservation Division, Transvaal Provincial Administration.

    African Journals Online (AJOL)

    Nature Conservation Division, Transvaal Provincial Administration. ... The surrogate mothers consisted of a wooden box base covered with 12 gauge iron mesh. This .... Data available for F at the age of five months are included in this table for.

  5. Earth Sciences Division annual report 1981

    International Nuclear Information System (INIS)

    1982-09-01

    Separate abstracts were prepared for the 59 papers of the 1981 annual report of the Earth Sciences Division at Lawrence Berkeley Laboratory. The general topics covered included nuclear waste isolation, geophysics and reservoir engineering, and geosciences

  6. Research Award: Donor Partnership Division | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2016-09-07

    Sep 7, 2016 ... In the remaining 50% of their time, the Research Award Recipient will contribute to the management of the division through a variety of ... Strong research, analytical, and writing skills, and familiar with website applications.

  7. Research Award: Communications Division Deadline: 12 ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Jean-Claude Dumais

    2012-09-12

    Sep 12, 2012 ... IDRC's Communications Division has undertaken a number of initiatives to promote research results to key ... How are new technologies changing the face of publishing and how can development agencies benefit? • How can ...

  8. Chemical Sciences Division: Annual report 1992

    International Nuclear Information System (INIS)

    1993-10-01

    The Chemical Sciences Division (CSD) is one of twelve research Divisions of the Lawrence Berkeley Laboratory, a Department of Energy National Laboratory. The CSD is composed of individual groups and research programs that are organized into five scientific areas: Chemical Physics, Inorganic/Organometallic Chemistry, Actinide Chemistry, Atomic Physics, and Physical Chemistry. This report describes progress by the CSD for 1992. Also included are remarks by the Division Director, a description of work for others (United States Office of Naval Research), and appendices of the Division personnel and an index of investigators. Research reports are grouped as Fundamental Interactions (Photochemical and Radiation Sciences, Chemical Physics, Atomic Physics) or Processes and Techniques (Chemical Energy, Heavy-Element Chemistry, and Chemical Engineering Sciences)

  9. Theoretical Division annual report, FY 1975

    International Nuclear Information System (INIS)

    Carruthers, P.A.

    1976-02-01

    This report presents an overview of the activities in the Theoretical Division and a summary of research highlights during FY 1975. It is intended to inform a wide audience about the theoretical work of the LASL and, therefore, contains introductory material which places recent advances in a broader context. The report is organized into two special interest reports: reactor safety research and the Advanced Research Committee, and 11 reports from the T-Division group leaders on the work of their respective groups. Main interests and responsibilities are outlined including the relationship of the group's work to the work of other T-Division groups and other divisions at the Laboratory. The description of research highlights for FY 1975 explains in a fairly simple, straightforward manner the major recent advances and their significance. Each group report is followed by a publication list for FY 1975 (330 references) and a list of talks given outside the Laboratory (140 references). 29 figures

  10. Environmental Research Division's Data Access Program (ERDDAP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — ERDDAP (the Environmental Research Division's Data Access Program) is a data server that gives you a simple, consistent way to download subsets of scientific...

  11. Civil Remedies Division Administrative Law Judge Decisions

    Data.gov (United States)

    U.S. Department of Health & Human Services — Decisions issued by Administrative Law Judges of the Departmental Appeals Board's Civil Remedies Division concerning fraud and abuse determinations by the Office of...

  12. DNR Division of Enforcement Officer Patrol Areas

    Data.gov (United States)

    Minnesota Department of Natural Resources — This theme shows the DNR Division of Enforcement Office Patrol Areas as of January 1, 2003. Patrol areas were defined and verified by Patrol Officers during the fall...

  13. Radiochemistry Division annual progress report : 1991

    International Nuclear Information System (INIS)

    Natarajan, V.; Godbole, S.V.; Iyer, R.H.

    1993-01-01

    The research and development activities of the Radiochemistry Division during 1991 are briefly described under the headings: (i) Nuclear chemistry, (ii) Actinide chemistry, and (iii) Spectroscopy. In the field of nuclear chemistry, the main emphasis has been on the studies of fission process induced by reactor neutrons and light and heavy ions on actinides and low Z (Z c superconductors. A list of publications by the scientific staff of the Division is given at the end. (author). 31 figs., 49 tabs

  14. Earth Sciences Division, collected abstracts, 1978

    International Nuclear Information System (INIS)

    Taasevigen, D.K.; Henry, A.L.; Madsen, S.K.

    1979-01-01

    Abstracts of papers, internal reports, and talks presented during 1978 at national and international meetings by members of the Earth Sciences Division of the Lawrence Livermore Laboratory are compiled. The arrangement is alphabetical (by author). For any given report, a bibliographic reference appears under the name of each coauthor. A topical index at the end provides useful cross references, while indicating major areas of research interest in the Earth Sciences Division

  15. Medical Sciences Division report for 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    This year`s Medical Sciences Division (MSD) Report is organized to show how programs in our division contribute to the core competencies of Oak Ridge Institute for Science and Education (ORISE). ORISE`s core competencies in education and training, environmental and safety evaluation and analysis, occupational and environmental health, and enabling research support the overall mission of the US Department of Energy (DOE).

  16. Nuclear Physics Division annual report 1992

    International Nuclear Information System (INIS)

    Betigeri, M.G.

    1993-01-01

    The report covers the research and development activities of the Nuclear Physics Division for the period January to December 1992. These research and development activities are reported under the headings: 1) Experiments, 2) Theory, 3) Applications, 4) Instrumentation, and 5) The Pelletron Accelerator. At the end a list of publications by the staff scientists of the Division is given. Colloquia and seminars held during the year are also listed. (author). refs., tabs., figs

  17. Weapons Experiments Division Explosives Operations Overview

    Energy Technology Data Exchange (ETDEWEB)

    Laintz, Kenneth E. [Los Alamos National Laboratory

    2012-06-19

    Presentation covers WX Division programmatic operations with a focus on JOWOG-9 interests. A brief look at DARHT is followed by a high level overview of explosives research activities currently being conducted within in the experimental groups of WX-Division. Presentation covers more emphasis of activities and facilities at TA-9 as these efforts have been more traditionally aligned with ongoing collaborative explosive exchanges covered under JOWOG-9.

  18. Activity Report of Reactor Physics Division - 1997

    International Nuclear Information System (INIS)

    Singh, Om Pal

    1998-01-01

    The research and development activities of the Reactor Physics Division of the Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam during 1997 are reported. The activities are arranged under the headings: nuclear data processing and validation, PFBR and KAMINI core physics, FBTR core physics, radioactivity and shielding and safety analysis. A list of publications of the Division and seminars delivered are included at the end of the report

  19. Earth Sciences Division collected abstracts: 1980

    Energy Technology Data Exchange (ETDEWEB)

    Henry, A.L.; Hornady, B.F. (eds.)

    1981-10-15

    This report is a compilation of abstracts of papers, reports, and talks presented during 1980 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore National Laboratory. The arrangement is alphabetical (by author). For a given report, a bibliographic reference appears under the name of each coauthor, but the abstract itself is given only under the name of the first author (indicated in capital letters) or the first Earth Sciences Division author.

  20. Nuclear Science Division: 1993 Annual report

    International Nuclear Information System (INIS)

    Myers, W.D.

    1994-06-01

    This report describes the activities of the Nuclear Science Division for the 1993 calendar year. This was another significant year in the history of the Division with many interesting and important accomplishments. Activities for the following programs are covered here: (1) nuclear structure and reactions program; (2) the Institute for Nuclear and Particle Astrophysics; (3) relativistic nuclear collisions program; (4) nuclear theory program; (5) nuclear data evaluation program, isotope project; and (6) 88-inch cyclotron operations

  1. Power Efficient Division and Square Root Unit

    DEFF Research Database (Denmark)

    Liu, Wei; Nannarelli, Alberto

    2012-01-01

    Although division and square root are not frequent operations, most processors implement them in hardware to not compromise the overall performance. Two classes of algorithms implement division or square root: digit-recurrence and multiplicative (e.g., Newton-Raphson) algorithms. Previous work....... The proposed unit is compared to similar solutions based on the digit-recurrence algorithm and it is compared to a unit based on the multiplicative Newton-Raphson algorithm....

  2. Nuclear Science Division: 1993 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Myers, W.D. [ed.

    1994-06-01

    This report describes the activities of the Nuclear Science Division for the 1993 calendar year. This was another significant year in the history of the Division with many interesting and important accomplishments. Activities for the following programs are covered here: (1) nuclear structure and reactions program; (2) the Institute for Nuclear and Particle Astrophysics; (3) relativistic nuclear collisions program; (4) nuclear theory program; (5) nuclear data evaluation program, isotope project; and (6) 88-inch cyclotron operations.

  3. A division algebra classification of generalized supersymmetries

    International Nuclear Information System (INIS)

    Toppan, Francesco

    2004-10-01

    Generalized supersymmetries admitting bosonic tensor central charges are classified in accordance with their division algebra properties. Division algebra consistent constraints lead (in the complex and quaternionic cases) to the classes of hermitian and holomorphic generalized supersymmetries. Applications to the analytic continuation of the M-algebra to the Euclidean and the systematic investigation of certain classes of models in generic space-times are briefly mentioned. (author)

  4. Earth Sciences Division annual report 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This Annual Report presents summaries of selected representative research activities from Lawrence Berkeley Laboratory grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrology, Geology and Geochemistry, and Geophysics and Geomechanics. We are proud to be able to bring you this report, which we hope will convey not only a description of the Division's scientific activities but also a sense of the enthusiasm and excitement present today in the Earth Sciences.

  5. Stationary infinitely divisible processes

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole E.

    Several recent strands of work has led to the consideration of various types of continuous time stationary and infinitely divisible processes. A review of these types, with some new results, is presented.......Several recent strands of work has led to the consideration of various types of continuous time stationary and infinitely divisible processes. A review of these types, with some new results, is presented....

  6. Fuel Chemistry Division: progress report for 1987

    International Nuclear Information System (INIS)

    1990-01-01

    The progress of research and development activities of the Fuel Chemistry Division of the Bhabha Atomic Research Centre, Bombay, during 1987 is reported in the form of summaries which are arranged under the headings: Fuel Development Chemistry, Chemistry of Actinides, Chemical Quality Control of Fuel, and Studies related to Nuclear Material Accounting. A list of publications by the members of the Division during the report period is given at the end of the report. (M.G.B.). refs., 15 figs., 85 tabs

  7. Earth Sciences Division collected abstracts: 1980

    International Nuclear Information System (INIS)

    Henry, A.L.; Hornady, B.F.

    1981-01-01

    This report is a compilation of abstracts of papers, reports, and talks presented during 1980 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore National Laboratory. The arrangement is alphabetical (by author). For a given report, a bibliographic reference appears under the name of each coauthor, but the abstract itself is given only under the name of the first author (indicated in capital letters) or the first Earth Sciences Division author

  8. Energy Technology Division research summary 2001

    International Nuclear Information System (INIS)

    2001-01-01

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the U.S. Department of Energy. As shown on the preceding page, the Division is organized into eight sections, four with concentrations in the materials area and four in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officer, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. This Overview highlights some major ET research areas. Research related to the operational safety of commercial light water nuclear reactors (LWRs) for the U.S. Nuclear Regulatory Commission (NRC) remains a significant area of interest for the Division. We currently have programs on environmentally assisted cracking, steam generator integrity, and the integrity of high-burnup fuel during loss-of-coolant accidents. The bulk of the NRC research work is carried out by three ET sections: Corrosion and Mechanics of Materials; Irradiation Performance; and Sensors, Instrumentation, and Nondestructive Evaluation

  9. Division of Information Technology - Overview

    International Nuclear Information System (INIS)

    Szlachciak, J.

    2010-01-01

    Full text: The Division of Information Technology continued its service-oriented activities in 2009. Our main duty was day-to-day support to all units in the Institute in IT related matters. One of our tasks was the acquiring, configuration and delivery of new computer equipment to our users. We automated the standard software installation task and decreased the delivery time for new and fully reconfigured computers to end users. We prepared the technical specifications for several bid and we verified thai the received bids complied with the specification. In addition to regular purchasing of computer equipment we supported the special software -related needs of EU projects. We purchased new licenses for: Computer Simulation Technology Studio Suite, Pulsar Physics General Particle Tracerm. Altium Designer. Autodesk Inventor. Autodesk AutoCAD Electrical, Altera Quartus II. Lahey/Fujitsu Fortran Professional. Code Gear Delphi, Steema Software TeeChart Pro, ANSYS Academic Research, Math Works Matlab, Keil PK51 Professional Developer's Kit, Corel Corporation CorelDraw Graphics Suite, Abbyy FineReader Professional, Adobe Acrobat Professional. We also renewed and increased the number of licenses for Microsoft and GFI products. We implemented a full high definition video conferencing system based on equipment from Lifesize. One-video conferencing terminal is placed in Swierk. another, enabling 4-way conferences, is located in Warsaw. This equipment is mainly used for teleconferences between our Institute and our partners in DESY and CERN. By the implementation of such a system we significantly improved the exchange of information and saved on travel costs. In addition the rooms housing the video conferencing systems were equipped with professional data projectors. We continued the modernization of the Local Area Network infrastructure. The first main achievement was a full replacement of cables and active network devices in the building where the Departments of Plasma

  10. The History of Metals and Ceramics Division

    Energy Technology Data Exchange (ETDEWEB)

    Craig, D.F.

    1999-01-01

    The division was formed in 1946 at the suggestion of Dr. Eugene P. Wigner to attack the problem of the distortion of graphite in the early reactors due to exposure to reactor neutrons, and the consequent radiation damage. It was called the Metallurgy Division and assembled the metallurgical and solid state physics activities of the time which were not directly related to nuclear weapons production. William A. Johnson, a Westinghouse employee, was named Division Director in 1946. In 1949 he was replaced by John H Frye Jr. when the Division consisted of 45 people. He was director during most of what is called the Reactor Project Years until 1973 and his retirement. During this period the Division evolved into three organizational areas: basic research, applied research in nuclear reactor materials, and reactor programs directly related to a specific reactor(s) being designed or built. The Division (Metals and Ceramics) consisted of 204 staff members in 1973 when James R. Weir, Jr., became Director. This was the period of the oil embargo, the formation of the Energy Research and Development Administration (ERDA) by combining the Atomic Energy Commission (AEC) with the Office of Coal Research, and subsequent formation of the Department of Energy (DOE). The diversification process continued when James O. Stiegler became Director in 1984, partially as a result of the pressure of legislation encouraging the national laboratories to work with U.S. industries on their problems. During that time the Division staff grew from 265 to 330. Douglas F. Craig became Director in 1992.

  11. Energy Technology Division research summary - 1999.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-31

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization, or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book.

  12. Environmental Sciences Division annual progress report for period ending September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division of Oak Ridge National Laboratory during the period October 1, 1990, through September 30, 1991. The report is structured to provide descriptions of current activities and accomplishments in each of the division's major organizational units. Following the sections describing the organizational units is a section devoted to lists of information necessary to convey the scope of the work in the division. The Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) conducts environmental research and analyses associated with both energy technology development and the interactions between people and the environment. The division engages in basic and applied research for a diverse list of sponsors. While the US Department of Energy (DOE) is the primary sponsor ESD staff also perform research for other federal agencies, state agencies, and private industry. The division works collaboratively with federal agencies, universities, and private organizations in achieving its research objectives and hosts a large number of visiting investigators from these organizations. Given the diverse interdisciplinary specialization of its staff, ESD provides technical expertise on complex environmental problems and renders technical leadership for major environmental issues of national and local concern. This progress report highlights many of ESD's accomplishment in these and other areas in FY 1991.

  13. Nuclear Chemistry Division annual report FY83

    International Nuclear Information System (INIS)

    Struble, G.

    1983-01-01

    The purpose of the annual reports of the Nuclear Chemistry Division is to provide a timely summary of research activities pursued by members of the Division during the preceding year. Throughout, details are kept to a minimum; readers desiring additional information are encouraged to read the referenced documents or contact the authors. The Introduction presents an overview of the Division's scientific and technical programs. Next is a section of short articles describing recent upgrades of the Division's major facilities, followed by sections highlighting scientific and technical advances. These are grouped under the following sections: nuclear explosives diagnostics; geochemistry and environmental sciences; safeguards technology and radiation effect; and supporting fundamental science. A brief overview introduces each section. Reports on research supported by a particular program are generally grouped together in the same section. The last section lists the scientific, administrative, and technical staff in the Division, along with visitors, consultants, and postdoctoral fellows. It also contains a list of recent publications and presentations. Some contributions to the annual report are classified and only their abstracts are included in this unclassified portion of the report (UCAR-10062-83/1); the full article appears in the classified portion (UCAR-10062-83/2)

  14. Nuclear Chemistry Division annual report FY83

    Energy Technology Data Exchange (ETDEWEB)

    Struble, G. (ed.)

    1983-01-01

    The purpose of the annual reports of the Nuclear Chemistry Division is to provide a timely summary of research activities pursued by members of the Division during the preceding year. Throughout, details are kept to a minimum; readers desiring additional information are encouraged to read the referenced documents or contact the authors. The Introduction presents an overview of the Division's scientific and technical programs. Next is a section of short articles describing recent upgrades of the Division's major facilities, followed by sections highlighting scientific and technical advances. These are grouped under the following sections: nuclear explosives diagnostics; geochemistry and environmental sciences; safeguards technology and radiation effect; and supporting fundamental science. A brief overview introduces each section. Reports on research supported by a particular program are generally grouped together in the same section. The last section lists the scientific, administrative, and technical staff in the Division, along with visitors, consultants, and postdoctoral fellows. It also contains a list of recent publications and presentations. Some contributions to the annual report are classified and only their abstracts are included in this unclassified portion of the report (UCAR-10062-83/1); the full article appears in the classified portion (UCAR-10062-83/2).

  15. Fuel Chemistry Division: progress report for 1985

    International Nuclear Information System (INIS)

    1988-01-01

    Fuel Chemistry Division was formed in May 1985 to give a larger emphasis on the research and development in chemistry of the nuclear fuel cycle. The areas of research in Fuel Chemistry Division are fuel development and its chemical quality control, understanding of the fuel behaviour and post irradiation examinations, chemistry of reprocessing and waste management processes as also the basic aspects of actinide and relevant fission product elements. This report summarises the work by the staff of the Division during 1985 and also some work from the previous periods which was not reported in the progress reports of the Radiochemistry Division. The work related to the FBTR fuel was one of the highlights during this period. In the area of process chemistry useful work has been carried out for processing of plutonium bearing solutions. In the area of mass spectrometry, the determination of trace constituents by spark source mass spectrometry has been a major area of research. Significant progress has also been made in the use of alpha spectromet ry techniques for the determination of plutonium in dissolver solution and other samples. The technology of plutonium utilisation is quite complex and the Division would continue to look into the chemical aspects of this technology and provide the necessary base for future developments in this area. (author)

  16. Energy and Environmental Systems Division's publications publications 1968-1982

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-03-01

    Books, journal articles, conference papers, and technical reports produced by the Energy and Environmental Systems Division of Argonne National Laboratory are listed in this bibliography. Subjects covered are energy resources (recovery and use); energy-efficient technology; electric utilities, and environments. (MCW)

  17. Biology Division progress report, October 1, 1991--September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, F.C.; Cook, J.S.

    1993-10-01

    This Progress Report summarizes the research endeavors of the Biology Division of the Oak Ridge National Laboratory during the period October 1, 1991, through September 30, 1993. The report is structured to provide descriptions of current activities and accomplishments in each of the Division`s major organizational units. Lists of information to convey the entire scope of the Division`s activities are compiled at the end of the report.

  18. An analysis of the job of strength and conditioning coach for football at the Division II level.

    Science.gov (United States)

    Massey, C Dwayne; Schwind, Justin J; Andrews, Donnie C; Maneval, Mark W

    2009-12-01

    The purpose of this investigation was to describe the working environment of the heretofore unexamined Division II football strength and conditioning coach (SCC). Data were collected on demographic characteristics, job satisfaction, major job duties and responsibilities, work environment, and professional and personal relationships. A total of 63 questionnaires were returned by the potential 155 institutions identified at the Division II level. Percentages were used in the reporting of data. The results indicate that this group is relatively young (34.1), new to the profession, have low job stability, a low rate of professional certification, make a salary less than their Division I-A counterparts, and assume more duties and responsibilities than their Division I-A colleagues. Despite these apparent drawbacks, by and large, these SCC appeared content with their career choice and circumstances.

  19. Can't Wait for Monday

    Science.gov (United States)

    Esquith, Rafe

    2014-01-01

    "When did teachers became the scapegoats for factors beyond their control?" wonders Rafe Esquith in this passionate article. A 30-year veteran teacher, Esquith understands all too clearly the factors undermining teacher morale: ubiquitous tests, rules, and regulations; unfair, often ridiculous expectations; rising poverty and decaying…

  20. 1775-IJBCS-Article-Odin Monday

    African Journals Online (AJOL)

    hp

    tetraoxochromate(VI) acid, trifloroperacetic acid and hydrogen peroxide as oxidants, catalyzed ... Department of Pure and Industrial Chemistry, Kogi State University, Anyigba, Nigeria. ... diuretic should increase the output of sodium as well as ...

  1. Media truck guidelines effective Monday, April 23

    OpenAIRE

    Owczarski, Mark

    2007-01-01

    All private media vehicles (those without a visible logo) must have a media permit. If you are planning to stay on the campus of Virginia Tech beyond Sunday, April 22, you will need a free media parking permit. All non-logo media vehicles will be ticketed if a media permit is not displayed.

  2. Monday 8 October: Exhibition, presentation, nibbles

    CERN Multimedia

    2012-01-01

    GMP SA, supplier to CERN and specialist in lasers, spectroscopy and micro-positioning for more than 30 years, will be presenting their products at CERN.   Programme: • From 9 a.m. till 5 p.m.: In building 500 there will be a mini-expo of micro-positioning systems, piezo actuators, spectrometers and other various high-tech items from suppliers such as Gentec, Zaber, Ocean Optics and Queensgate. On hand to answer your questions will be Robert Tye, sales engineer at GMP, and Ferdinando Ciceri from Queensgate. • 10 a.m. and 3 p.m.: In room 61C of the main building there will be a short presentation (20 min) given by Mr. Tye: GMP SA, its products, experience, expertise and engineering department. This will be followed by coffee and croissants in the morning and drinks in the afternoon with time for questions and discussion. Open to all, but places limited.  

  3. Radiochemistry Division annual progress report: 1988

    International Nuclear Information System (INIS)

    1990-01-01

    The report covers the research and development (R and D) work carried out by Radiochemistry Division, Bhabha Atomic Research Centre, Bombay during the period 1987-1988. The R and D work is reported in the form of individual summari es grouped under the headings: (1)Actinide Chemistry, (2)Nuclear Chemistry, and (3)Spectroscopy. Some of the highlights of the work are studies on : (a)solvent extraction and complexation behaviour of actinides, (b)helium ion induced fission of 238 U and 165 Ho and fission yield of 252 Cf(sf), (c)separation of rare earths from fission products, (d)positron annihilation spectroscopy of high Tc superconductors, and (e)EPR spectroscopy of high Tc superconductors. Radioanalytical services and radiation sources given to the other Divisions and Organisations are listed. A list of publications and symposia papers by scientists of the Division is also given. 45 figs., 49 tabs

  4. Organization structure. Main activities of the Division

    International Nuclear Information System (INIS)

    2008-01-01

    In this chapter the organization structure as well as main activities of the Division for radiation safety, NPP decommissioning and radioactive waste management are presented. This Division of the VUJE, a.s. consists of the following sections and departments: Section for economic and technical services; Section for radiation protection of employees; Department for management of emergency situations and risk assessment; Department for implementation of nuclear power facilities decommissioning and RAW management; Department for personnel and environmental dosimetry; Department for preparation of NPP decommissioning; Department for RAW treatment technologies; Department for chemical regimes and physico-chemical analyses; Department for management of nuclear power facilities decommissioning and RAW management. Main activities of this Division are presented.

  5. Parallel optoelectronic trinary signed-digit division

    Science.gov (United States)

    Alam, Mohammad S.

    1999-03-01

    The trinary signed-digit (TSD) number system has been found to be very useful for parallel addition and subtraction of any arbitrary length operands in constant time. Using the TSD addition and multiplication modules as the basic building blocks, we develop an efficient algorithm for performing parallel TSD division in constant time. The proposed division technique uses one TSD subtraction and two TSD multiplication steps. An optoelectronic correlator based architecture is suggested for implementation of the proposed TSD division algorithm, which fully exploits the parallelism and high processing speed of optics. An efficient spatial encoding scheme is used to ensure better utilization of space bandwidth product of the spatial light modulators used in the optoelectronic implementation.

  6. Analytical Chemistry Division : annual report (for) 1985

    International Nuclear Information System (INIS)

    Mahadevan, N.

    1986-01-01

    An account of the various activities of the Analytical Chemistry Division of the Bhabha Atomic Research Centre, Bombay, during 1985 is presented. The main function of the Division is to provide chemical analysis support to India's atomic energy programme. In addition, the Division also offers its analytical services, mostly for measurement of concentrations at trace levels to Indian industries and other research organization in the country. A list of these determinations is given. The report also describes the research and development (R and D) activities - both completed and in progress, in the form of individual summaries. During the year an ultra trace analytical laboratory for analysis of critical samples without contamination was set up using indigenous material and technology. Publications and training activities of the staff, training of the staff from other institution, guidance by the staff for post-graduate degree and invited talks by the staff are listed in the appendices at the end of the report. (M.G.B.)

  7. Cell Division and Evolution of Biological Tissues

    Science.gov (United States)

    Rivier, Nicolas; Arcenegui-Siemens, Xavier; Schliecker, Gudrun

    A tissue is a geometrical, space-filling, random cellular network; it remains in this steady state while individual cells divide. Cell division (fragmentation) is a local, elementary topological transformation which establishes statistical equilibrium of the structure. Statistical equilibrium is characterized by observable relations (Lewis, Aboav) between cell shapes, sizes and those of their neighbours, obtained through maximum entropy and topological correlation extending to nearest neighbours only, i.e. maximal randomness. For a two-dimensional tissue (epithelium), the distribution of cell shapes and that of mother and daughter cells can be obtained from elementary geometrical and physical arguments, except for an exponential factor favouring division of larger cells, and exponential and combinatorial factors encouraging a most symmetric division. The resulting distributions are very narrow, and stationarity severely restricts the range of an adjustable structural parameter

  8. Chemical Technology Division annual technical report, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    CMT is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. It conducts R&D in 3 general areas: development of advanced power sources for stationary and transportation applications and for consumer electronics, management of high-level and low-level nuclear wastes and hazardous wastes, and electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, materials chemistry of electrified interfaces and molecular sieves, and the theory of materials properties. It also operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at ANL and other organizations. Technical highlights of the Division`s activities during 1996 are presented.

  9. The Astrophysics Science Division Annual Report 2008

    Science.gov (United States)

    Oegerle, William; Reddy, Francis; Tyler, Pat

    2009-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radio wavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. This report includes the Division's activities during 2008.

  10. Division V: Commission 42: Close Binaries

    Science.gov (United States)

    Ribas, Ignasi; Richards, Mercedes T.; Rucinski, Slavek; Bradstreet, David H.; Harmanec, Petr; Kaluzny, Janusz; Mikolajewska, Joanna; Munari, Ulisse; Niarchos, Panagiotis; Olah, Katalin; Pribulla, Theodor; Scarfe, Colin D.; Torres, Guillermo

    2015-08-01

    Commission 42 (C42) co-organized, together with Commission 27 (C27) and Division V (Div V) as a whole, a full day of science and business sessions that were held on 24 August 2012. The program included time slots for discussion of business matters related to Div V, C27 and C42, and two sessions of 2 hours each devoted to science talks of interest to both C42 and C27. In addition, we had a joint session between Div IV and Div V motivated by the proposal to reformulate the division structure of the IAU and the possible merger of the two divisions into a new Div G. The current report gives an account of the matters discussed during the business session of C42.

  11. Parkin suppresses Drp1-independent mitochondrial division

    International Nuclear Information System (INIS)

    Roy, Madhuparna; Itoh, Kie; Iijima, Miho; Sesaki, Hiromi

    2016-01-01

    The cycle of mitochondrial division and fusion disconnect and reconnect individual mitochondria in cells to remodel this energy-producing organelle. Although dynamin-related protein 1 (Drp1) plays a major role in mitochondrial division in cells, a reduced level of mitochondrial division still persists even in the absence of Drp1. It is unknown how much Drp1-mediated mitochondrial division accounts for the connectivity of mitochondria. The role of a Parkinson’s disease-associated protein—parkin, which biochemically and genetically interacts with Drp1—in mitochondrial connectivity also remains poorly understood. Here, we quantified the number and connectivity of mitochondria using mitochondria-targeted photoactivatable GFP in cells. We show that the loss of Drp1 increases the connectivity of mitochondria by 15-fold in mouse embryonic fibroblasts (MEFs). While a single loss of parkin does not affect the connectivity of mitochondria, the connectivity of mitochondria significantly decreased compared with a single loss of Drp1 when parkin was lost in the absence of Drp1. Furthermore, the loss of parkin decreased the frequency of depolarization of the mitochondrial inner membrane that is caused by increased mitochondrial connectivity in Drp1-knockout MEFs. Therefore, our data suggest that parkin negatively regulates Drp1-indendent mitochondrial division. -- Highlights: •A Drp1-mediated mechanism accounts for ∼95% of mitochondrial division. •Parkin controls the connectivity of mitochondria via a mechanism that is independent of Drp1. •In the absence of Drp1, connected mitochondria transiently depolarize. •The transient depolarization is independent of calcium signaling and uncoupling protein 2.

  12. Parkin suppresses Drp1-independent mitochondrial division

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Madhuparna, E-mail: mroy17@jhmi.edu; Itoh, Kie, E-mail: kito5@jhmi.edu; Iijima, Miho, E-mail: miijima@jhmi.edu; Sesaki, Hiromi, E-mail: hsesaki@jhmi.edu

    2016-07-01

    The cycle of mitochondrial division and fusion disconnect and reconnect individual mitochondria in cells to remodel this energy-producing organelle. Although dynamin-related protein 1 (Drp1) plays a major role in mitochondrial division in cells, a reduced level of mitochondrial division still persists even in the absence of Drp1. It is unknown how much Drp1-mediated mitochondrial division accounts for the connectivity of mitochondria. The role of a Parkinson’s disease-associated protein—parkin, which biochemically and genetically interacts with Drp1—in mitochondrial connectivity also remains poorly understood. Here, we quantified the number and connectivity of mitochondria using mitochondria-targeted photoactivatable GFP in cells. We show that the loss of Drp1 increases the connectivity of mitochondria by 15-fold in mouse embryonic fibroblasts (MEFs). While a single loss of parkin does not affect the connectivity of mitochondria, the connectivity of mitochondria significantly decreased compared with a single loss of Drp1 when parkin was lost in the absence of Drp1. Furthermore, the loss of parkin decreased the frequency of depolarization of the mitochondrial inner membrane that is caused by increased mitochondrial connectivity in Drp1-knockout MEFs. Therefore, our data suggest that parkin negatively regulates Drp1-indendent mitochondrial division. -- Highlights: •A Drp1-mediated mechanism accounts for ∼95% of mitochondrial division. •Parkin controls the connectivity of mitochondria via a mechanism that is independent of Drp1. •In the absence of Drp1, connected mitochondria transiently depolarize. •The transient depolarization is independent of calcium signaling and uncoupling protein 2.

  13. Chemical Technology Division Annual Report 2000

    International Nuclear Information System (INIS)

    Lewis, D.; Gay, E. C.; Miller, J. F.; Einziger, R. E.; Green, D. W.

    2001-01-01

    The Chemical Technology Division (CMT) is one of eight engineering research divisions within Argonne National Laboratory (ANL), one of the U.S. government's oldest and largest research laboratories. The University of Chicago oversees the laboratory on behalf of the U.S. Department of Energy (DOE). Argonne's mission is to conduct basic scientific research, to operate national scientific facilities, to enhance the nation's energy resources, and to develop better ways to manage environmental problems. Argonne has the further responsibility of strengthening the nation's technology base through developing industrial technology and transferring that technology to industry. The Chemical Technology Division is a diverse early-stage engineering organization, specializing in the treatment of spent nuclear fuel, development of advanced power sources, and management of both high- and low-level nuclear wastes. Although this work is often indistinguishable from basic research, our efforts are directed toward the practical devices and processes that are covered by ANL's mission. Additionally, the Division operates the Analytical Chemistry Laboratory, which provides a broad range of analytical services to ANL and other organizations. The Division is multi-disciplinary. Its people have formal training as ceramists; physicists; material scientists; electrical, mechanical, chemical, and nuclear engineers; and chemists. They have experience working in academia, urban planning, and the petroleum, aluminum, and automotive industries. Their skills include catalysis, ceramics, electrochemistry, metallurgy, nuclear magnetic resonance spectroscopy, and petroleum refining, as well as the development of nuclear waste forms, batteries, and high-temperature superconductors. In this annual report we present an overview of the technical programs together with representative highlights. The report is not intended to be comprehensive or encyclopedic, but to serve as an indication of the condition

  14. Radiochemistry Division annual progress report 1989

    International Nuclear Information System (INIS)

    1990-01-01

    The research and development activities of the Division during 1989 are briefly described in the form of individual summaries arranged under the headings: (1)Nuclear chemistry, (2)Actinide chemistry, and (3)Spectroscopy. In the field of nuclear chemistry, main emphasis is on studies in fission chemistry. R and D work in actinide chemistry area is oriented towards study of solvent extraction behaviour of actinide ions from aqueous solutions. The spectroscpoic studies are mainly concerned with EPR investigations. A list of publications by the scientist of the division is given at the end. (author). 22 figs., 39 tabs

  15. Nuclear Physics Division: annual report 1991

    International Nuclear Information System (INIS)

    Betigeri, M.G.

    1993-01-01

    A brief account of the research and development activities carried out by the Nuclear Physics Division, Bhabha Atomic Research Centre, Bombay during the period January 1991 to December 1991 is presented. These R and D activities are reported under the headings : 1) Accelerator Facilities, 2) Research Activities, and 3) Instrumentation. At the end, a list of publications by the staff scientists of the Division is given. The list includes papers published in journals, papers presented at conferences, symposia etc., and technical reports. (author). figs., tabs

  16. Quantum internet using code division multiple access

    Science.gov (United States)

    Zhang, Jing; Liu, Yu-xi; Özdemir, Şahin Kaya; Wu, Re-Bing; Gao, Feifei; Wang, Xiang-Bin; Yang, Lan; Nori, Franco

    2013-01-01

    A crucial open problem inS large-scale quantum networks is how to efficiently transmit quantum data among many pairs of users via a common data-transmission medium. We propose a solution by developing a quantum code division multiple access (q-CDMA) approach in which quantum information is chaotically encoded to spread its spectral content, and then decoded via chaos synchronization to separate different sender-receiver pairs. In comparison to other existing approaches, such as frequency division multiple access (FDMA), the proposed q-CDMA can greatly increase the information rates per channel used, especially for very noisy quantum channels. PMID:23860488

  17. Chemistry Division: progress report (1983-84)

    International Nuclear Information System (INIS)

    Shastri, L.V.; George, A.M.

    1985-01-01

    This is the seventh progress report of the Chemistry Division covering the two years 1983 and 1984. The main emphasis of the Division continues to be on basic research though spin offs in high technology areas are closely pursued. Laboratory facilities have been considerably augmented during this period. Besides the design and fabrication of a crossed molecular beam chemiluminescence apparatus, a 80 MHz FTNMR and a 5nsec. excimer laser kinetic spectrometer were acquired; a 5nsec. pulsed electron accelerator would be installed in 1985. The research and development projects taken up during the VI Five Year Plan have achieved considerable progress. Only brief accounts of investigations are presented in the report. (author)

  18. Activity report of Reactor Physics Division - 1988

    International Nuclear Information System (INIS)

    Keshavamurthy, R.S.

    1989-01-01

    This report highlights the progress of activities carried out during the year 1988 in Reactor Physics Division in the form of brief summaries. The topics are organised under the following subject categories:(1) nuclear data evaluation , processing and validation, (2) core physics and analysis, (3) reactor kinetics and safety analysis, (4) noise analysis and (5) radiation transport and shielding. List of publications by the members of the Division and the Reactor Physics Seminars held during the year 1988, is included at the end of report. (author). refs., figs., tabs

  19. Life Sciences Division annual report, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Marrone, B.L.; Cram, L.S. (comps.)

    1989-04-01

    This report summarizes the research and development activities of Los Alamos National Laboratory's Life Sciences Division for the calendar year 1988. Technical reports related to the current status of projects are presented in sufficient detail to permit the informed reader to assess their scope and significance. Summaries useful to the casual reader desiring general information have been prepared by the Group Leaders and appear in each group overview. Investigators on the staff of the Life Sciences Division will be pleased to provide further information.

  20. Bidding in common value fair division games

    OpenAIRE

    Brünner, Tobias; Becker, Alice

    2013-01-01

    In a fair division game an indivisible object with an unknown common value is owned by a group of individuals and should be allocated to one of them while the others are compensated monetarily. Implementing fair division games in the lab, we fi nd many occurrences of the winner's curse under the first-price rule but only few occurrences under the second-price rule. Moreover, bidding behavior is very heterogeneous across subjects. A considerable share of our subjects anticipates that other bid...

  1. Life Sciences Division annual report, 1988

    International Nuclear Information System (INIS)

    Marrone, B.L.; Cram, L.S.

    1989-04-01

    This report summarizes the research and development activities of Los Alamos National Laboratory's Life Sciences Division for the calendar year 1988. Technical reports related to the current status of projects are presented in sufficient detail to permit the informed reader to assess their scope and significance. Summaries useful to the casual reader desiring general information have been prepared by the Group Leaders and appear in each group overview. Investigators on the staff of the Life Sciences Division will be pleased to provide further information

  2. Division of Mechanical Construction - Overview

    International Nuclear Information System (INIS)

    Halik, J.

    1999-01-01

    . Finalizing of design and manufacturing of magnetic channel I; Design and manufacturing of magnetic channel II. Design and manufacturing of a device for magnetic field measurements in the region of magnetic channel I inside the cyclotron chamber; Design of a device for measurements magnetic field in the region of magnetic channel II inside the cyclotron chamber; Design of deflector II for extraction cyclotron beam outside the cyclotron chamber. 2. Manufacturing of mechanical elements of gradient coils. 3. Manufacturing of Anti-coincidence Shielding for Low-Background Measurements of Radioactive Contaminations of the Environment. 4. The upgrade of Luminosity Monitor for ZEUS Experiment at DESY. 5. Manufacturing of experimental chamber frames for SHOWER Detector at HADES Experiment at GSI in Darmstadt. 6. Experimental Chamber for Free Electron Laser Project on Tesla Test Facility at DESY. 7. Supports for diagnostic equipment of TTF FEL Project at DESY. (author)

  3. 2014 News Articles | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  4. 2018 News Articles | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  5. 2013 News Articles | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  6. Towers of generalized divisible quantum codes

    Science.gov (United States)

    Haah, Jeongwan

    2018-04-01

    A divisible binary classical code is one in which every code word has weight divisible by a fixed integer. If the divisor is 2ν for a positive integer ν , then one can construct a Calderbank-Shor-Steane (CSS) code, where X -stabilizer space is the divisible classical code, that admits a transversal gate in the ν th level of Clifford hierarchy. We consider a generalization of the divisibility by allowing a coefficient vector of odd integers with which every code word has zero dot product modulo the divisor. In this generalized sense, we construct a CSS code with divisor 2ν +1 and code distance d from any CSS code of code distance d and divisor 2ν where the transversal X is a nontrivial logical operator. The encoding rate of the new code is approximately d times smaller than that of the old code. In particular, for large d and ν ≥2 , our construction yields a CSS code of parameters [[O (dν -1) ,Ω (d ) ,d ] ] admitting a transversal gate at the ν th level of Clifford hierarchy. For our construction we introduce a conversion from magic state distillation protocols based on Clifford measurements to those based on codes with transversal T gates. Our tower contains, as a subclass, generalized triply even CSS codes that have appeared in so-called gauge fixing or code switching methods.

  7. Budget Setting Strategies for the Company's Divisions

    NARCIS (Netherlands)

    Berg, M.; Brekelmans, R.C.M.; De Waegenaere, A.M.B.

    1997-01-01

    The paper deals with the issue of budget setting to the divisions of a company. The approach is quantitative in nature both in the formulation of the requirements for the set-budgets, as related to different general managerial objectives of interest, and in the modelling of the inherent

  8. Nutritional Science Staff | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  9. Quality assurance plan, Westinghouse Water Reactor Divisions

    Energy Technology Data Exchange (ETDEWEB)

    1976-03-01

    The Quality Assurance Program used by Westinghouse Nuclear Energy Systems Water Reactor Divisions is described. The purpose of the program is to assure that the design, materials, and workmanship on Nuclear Steam Supply System (NSSS) equipment meet applicable safety requirements, fulfill the requirements of the contracts with the applicants, and satisfy the applicable codes, standards, and regulatory requirements.

  10. Physics Division activities report, 1986--1987

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    This report summarizes the research activities of the Physics Division for the years 1986 and 1987. Areas of research discussed in this paper are: research on e/sup +/e/sup /minus// interactions; research on p/bar p/ interactions; experiment at TRIUMF; double beta decay; high energy astrophysics; interdisciplinary research; and advanced technology development and the SSC.

  11. Flexible frontiers for text division into rows

    Directory of Open Access Journals (Sweden)

    Dan L. Lacrămă

    2009-01-01

    Full Text Available This paper presents an original solution for flexible hand-written text division into rows. Unlike the standard procedure, the proposed method avoids the isolated characters extensions amputation and reduces the recognition error rate in the final stage.

  12. Problems on Divisibility of Binomial Coefficients

    Science.gov (United States)

    Osler, Thomas J.; Smoak, James

    2004-01-01

    Twelve unusual problems involving divisibility of the binomial coefficients are represented in this article. The problems are listed in "The Problems" section. All twelve problems have short solutions which are listed in "The Solutions" section. These problems could be assigned to students in any course in which the binomial theorem and Pascal's…

  13. Earth Sciences Division annual report, 1976

    International Nuclear Information System (INIS)

    Hornady, B.; Duba, A.

    1977-01-01

    This compilation lists abstracts of papers, internal reports, and talks presented during 1976 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore Laboratory. Subjects include: coal gasification, gas stimulation, geothermal fields, oil shale retorting, radioactive waste management, geochemistry, geophysics, seismology, explosive phenomenology, and miscellaneous studies

  14. Clinical Trials Management | Division of Cancer Prevention

    Science.gov (United States)

    Information for researchers about developing, reporting, and managing NCI-funded cancer prevention clinical trials. Protocol Information Office The central clearinghouse for clinical trials management within the Division of Cancer Prevention.Read more about the Protocol Information Office. | Information for researchers about developing, reporting, and managing NCI-funded

  15. Mechanical Division of Cell-Sized Liposomes

    NARCIS (Netherlands)

    Deshpande, S.R.; Kerssemakers, J.W.J.; Dekker, C.

    2018-01-01

    Liposomes, self-assembled vesicles with a lipid-bilayer boundary similar to cell membranes, are extensively used in both fundamental and applied sciences. Manipulation of their physical properties, such as growth and division, may significantly expand their use as model systems in cellular and

  16. On-chip mode division multiplexing technologies

    DEFF Research Database (Denmark)

    Ding, Yunhong; Frellsen, Louise Floor; Guan, Xiaowei

    2016-01-01

    Space division multiplexing (SDM) is currently widely investigated in order to provide enhanced capacity thanks to the utilization of space as a new degree of multiplexing freedom in both optical fiber communication and on-chip interconnects. Basic components allowing the processing of spatial...... photonic integrated circuit mode (de) multiplexer for few-mode fibers (FMFs)....

  17. Business Enterprise Program | Division of Vocational Rehabilitation

    Science.gov (United States)

    About Us > Business Enterprise Program Business Enterprise Program The Division of Vocational Rehabilitation's (DVR) Business Enterprise Program (BEP) provides employment opportunities to people who experience contact their DVR counselor or the BEP coordinator. List of Business Enterprise Program Vendors BEP Policy

  18. Theoretical Division annual report, FY 1975. [LASL

    Energy Technology Data Exchange (ETDEWEB)

    Carruthers, P.A.

    1976-02-01

    This report presents an overview of the activities in the Theoretical Division and a summary of research highlights during FY 1975. It is intended to inform a wide audience about the theoretical work of the LASL and, therefore, contains introductory material which places recent advances in a broader context. The report is organized into two special interest reports: reactor safety research and the Advanced Research Committee, and 11 reports from the T-Division group leaders on the work of their respective groups. Main interests and responsibilities are outlined including the relationship of the group's work to the work of other T-Division groups and other divisions at the Laboratory. The description of research highlights for FY 1975 explains in a fairly simple, straightforward manner the major recent advances and their significance. Each group report is followed by a publication list for FY 1975 (330 references) and a list of talks given outside the Laboratory (140 references). 29 figures. (auth)

  19. Chemical Biodynamics Division. Annual report 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    The Chemical Biodynamics Division of LBL continues to conduct basic research on the dynamics of living cells and on the interaction of radiant energy with organic matter. Many aspects of this basic research are related to problems of environmental and health effects of fossil fuel combustion, solar energy conversion and chemical/ viral carcinogenesis.

  20. Materials Sciences Division 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  1. Ontario Hydro Research Division annual report 1988

    International Nuclear Information System (INIS)

    1988-01-01

    The Research Division of Ontario Hydro conducts research in the fields of chemistry, civil engineering, electrical engineering, mechanical engineering, metallurgy, and operations. Much of the research has a bearing on the safe, environmentally benign operation of Ontario Hydro's nuclear power plants. Particular emphasis has been placed on nuclear plant component aging and plant life assurance

  2. Radiochemistry Division annual progress report for 1977

    International Nuclear Information System (INIS)

    Iyer, R.H.; Natarajan, P.R.

    1979-01-01

    The research and development work carried by the Radiochemistry Division of the Bhabha Atomic Research Centre, Bombay, during the calendar year 1977 in the areas of reactor chemistry, actinide chemistry, process chemistry of neptunium and plutonium-239, radioanalytical chemistry and nuclear chemistry has been reported. (M.G.B.)

  3. Physics Division activities report, 1986--1987

    International Nuclear Information System (INIS)

    1987-01-01

    This report summarizes the research activities of the Physics Division for the years 1986 and 1987. Areas of research discussed in this paper are: research on e + e/sup /minus// interactions; research on p/bar p/ interactions; experiment at TRIUMF; double beta decay; high energy astrophysics; interdisciplinary research; and advanced technology development and the SSC

  4. Propagation by Cuttings, Layering and Division

    OpenAIRE

    Relf, Diane; Ball, Elizabeth Carter

    2009-01-01

    The major methods of asexual propagation are cuttings, layering, division, and budding/grafting. Cuttings involve rooting a severed piece of the parent plant; layering involves rooting a part of the parent and then severing it; and budding and grafting are joining two plant parts from different varieties.

  5. Materials Sciences Division 1990 annual report

    International Nuclear Information System (INIS)

    1990-01-01

    This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals

  6. Genes involved in cell division in mycoplasmas

    Directory of Open Access Journals (Sweden)

    Frank Alarcón

    2007-01-01

    Full Text Available Bacterial cell division has been studied mainly in model systems such as Escherichia coli and Bacillus subtilis, where it is described as a complex process with the participation of a group of proteins which assemble into a multiprotein complex called the septal ring. Mycoplasmas are cell wall-less bacteria presenting a reduced genome. Thus, it was important to compare their genomes to analyze putative genes involved in cell division processes. The division and cell wall (dcw cluster, which in E. coli and B. subtilis is composed of 16 and 17 genes, respectively, is represented by only three to four genes in mycoplasmas. Even the most conserved protein, FtsZ, is not present in all mycoplasma genomes analyzed so far. A model for the FtsZ protein from Mycoplasma hyopneumoniae and Mycoplasma synoviae has been constructed. The conserved residues, essential for GTP/GDP binding, are present in FtsZ from both species. A strong conservation of hydrophobic amino acid patterns is observed, and is probably necessary for the structural stability of the protein when active. M. synoviae FtsZ presents an extended amino acid sequence at the C-terminal portion of the protein, which may participate in interactions with other still unknown proteins crucial for the cell division process.

  7. Nuclear size and cell division delay

    International Nuclear Information System (INIS)

    Bird, R.P.

    1986-01-01

    Radiation-induced division delay has been linked to damage at the nuclear envelope. Further, cells in G 2 phase are drastically arrested by high LET radiation such that single particles traversing cell nuclei may produce measurable division delay. A modest effort was initiated using two related cell lines of different size, near-diploid cells and near-tetraploid cells of Chinese hamster origin, to compare their sensitivity for radiation-induced division delay. If the nuclear surface is the critical target, then a larger nuclear cross-section presented to an alpha-particle beam should exhibit delay induced by a lesser particle fluence. Preliminary estimates of the extent of delay in asynchronous cultures following low doses of gamma-irradiation or of alpha-irradiation were made by in-situ observation of the time of onset of mitosis and by fixation and staining of cultures to determine the mitotic index as a function of time after irradiation. The basic approach to evaluating division delay will be to use Colecemid to accumulate mitotic cells over a period of time

  8. Wavelet based multicarrier code division multiple access ...

    African Journals Online (AJOL)

    This paper presents the study on Wavelet transform based Multicarrier Code Division Multiple Access (MC-CDMA) system for a downlink wireless channel. The performance of the system is studied for Additive White Gaussian Noise Channel (AWGN) and slowly varying multipath channels. The bit error rate (BER) versus ...

  9. Division of Mechanical Construction - Overview

    International Nuclear Information System (INIS)

    Halik, J.

    2000-01-01

    workshop posses CNC milling machine which can be used for machining of work-pieces up to 500 kg. The machine allows the following tool movements in particular axes: X -1000 mm, Y - 500 mm, Z - 500 mm; it is controlled by HEIDENHAIN 407 Control System, and ensures the accuracy and reproducibility of machining of 0.01 mm in each of the axis. In 1999 the Department of Mechanical Construction designed, manufactured and assembled an equipment for the following foreign laboratories: - Deutsches Elektronen Synchrotron, Hamburg, FRG; - Institute of Physics, Polish Academy of Science, Warszawa, Poland; - Jagiellonian University, Krakow, Poland; - Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; - University of Rochester. Rochester, NY, USA; - Brookhaven National Laboratory, Upton, NY, USA. Besides the large designs and systems described below, some interesting works have been made for the departments of our Institute and other institutions: 1.Mechanical Structure for Time of Flight Wall for PHOBOS Experiment at Brookhaven National Laboratory. 2. The works for Cyclotron Section: In 1999 the following units of beam extraction channel of cyclotron AIC-144: - Magnetic channel I; - Magnetic channel II; - Magnetic channel III; - Devices for measurements magnetic field in the region of magnetic channels I, II and III, inside the cyclotron chamber; - Deflector I; - Deflector II; - Deflector III for extraction cyclotron beam outside the cyclotron chamber. 3. Manufacturing of mechanical elements of gradient coils. 4.Manufacturing of Anticoincidence Shielding for Low-Background Measurements of Radioactive Contamination of the Environment. 5. The upgrade of Luminosity Monitor for ZEUS Experiment at DESY. (author)

  10. Energy Technology Division research summary 1997

    International Nuclear Information System (INIS)

    1997-01-01

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book. This Overview highlights some major trends. Research related to the operational safety of commercial light water nuclear

  11. Energy Technology Division research summary 1997.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-21

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book. This Overview highlights some major trends. Research related to the operational safety of commercial light water

  12. Urbanism and the division of labour in the Roman Empire.

    Science.gov (United States)

    Hanson, J W; Ortman, S G; Lobo, J

    2017-11-01

    One of the hallmarks of human agglomeration is an increase in the division of labour, but the exact nature of this relationship has been debated among anthropologists, sociologists, economists, and historians and archaeologists. Over the last decade, researchers investigating contemporary urban systems have suggested a novel explanation for the links between the numbers of inhabitants in settlements and many of their most important characteristics, which is grounded in a view of settlements as social networks embedded in built environments. One of the remarkable aspects of this approach is that it is not based on the specific conditions of the modern world (such as capitalism or industrialization), which raises the issue of whether the relationships observed in contemporary urban systems can also be detected in pre-modern urban or even non-urban systems. Here, we present a general model for the relationship between the population and functional diversity of settlements, where the latter is viewed as an indicator of the division of labour. We then explore the applicability of this model to pre-modern contexts, focusing on cities in the Roman Empire, using estimates of their numbers of inhabitants, numbers of documented professional associations, and numbers of recorded inscriptions to develop an index of functional diversity. Our results are consistent with theoretical expectations, adding further support to the view that urban systems in both contemporary and pre-modern contexts reflect a common set of generative processes. © 2017 The Authors.

  13. Optical Code-Division Multiple-Access and Wavelength Division Multiplexing: Hybrid Scheme Review

    OpenAIRE

    P. Susthitha Menon; Sahbudin Shaari; Isaac A.M. Ashour; Hesham A. Bakarman

    2012-01-01

    Problem statement: Hybrid Optical Code-Division Multiple-Access (OCDMA) and Wavelength-Division Multiplexing (WDM) have flourished as successful schemes for expanding the transmission capacity as well as enhancing the security for OCDMA. However, a comprehensive review related to this hybrid system are lacking currently. Approach: The purpose of this paper is to review the literature on OCDMA-WDM overlay systems, including our hybrid approach of one-dimensional coding of SAC OCDMA with WDM si...

  14. 2003 Chemical Engineering Division annual technical report

    International Nuclear Information System (INIS)

    Lewis, D.; Graziano, D.; Miller, J. F.; Vandegrift, G.

    2004-01-01

    The Chemical Engineering Division is one of six divisions within the Engineering Research Directorate at Argonne National Laboratory, one of the U.S. government's oldest and largest research laboratories. The University of Chicago oversees the laboratory on behalf of the U.S. Department of Energy (DOE). Argonne's mission is to conduct basic scientific research, to operate national scientific facilities, to enhance the nation's energy resources, to promote national security, and to develop better ways to manage environmental problems. Argonne has the further responsibility of strengthening the nation's technology base by developing innovative technology and transferring it to industry. The Division is a diverse early-stage engineering organization, specializing in the treatment of spent nuclear fuel, development of advanced electrochemical power sources, and management of both high- and low-level nuclear wastes. Additionally, the Division operates the Analytical Chemistry Laboratory, which provides a broad range of analytical services to Argonne and other organizations. The Division is multidisciplinary. Its people have formal training in chemistry; physics; materials science; and electrical, mechanical, chemical, and nuclear engineering. They are specialists in electrochemistry, ceramics, metallurgy, catalysis, materials characterization, nuclear magnetic resonance, repository science, and the nuclear fuel cycle. Our staff have experience working in and collaborating with university, industry and government research and development laboratories throughout the world. Our wide-ranging expertise finds ready application in solving energy, national security, and environmental problems. Division personnel are frequently called on by governmental and industrial organizations for advice and contributions to problem solving in areas that intersect present and past Division programs and activities. Currently, we are engaged in the development of several technologies of

  15. Heavy mineral sorting and distributions within massive sandstone divisions (Bouma A divisions) of Brushy Canyon Formation turbidites

    Science.gov (United States)

    Motanated, K.; Tice, M. M.

    2009-12-01

    KANNIPA MOTANATED and MICHAEL M. TICE Department of Geology and Geophysics, Texas A&M University, College Station, TX 77843-3115, USA Sediment sorting data are commonly used for interpreting depositional environments, analyzing mechanisms of deposition and transportation, and inferring relative transport distance of sediments. Typically, sorting in sandstones is estimated by point-counting thin sections which is a time consuming procedure and requires cutting sections of rock samples. We demonstrate a new technique for quantifying sediment sorting using element distribution maps obtained by x-ray fluorescence microscopy. We show that hydraulic sorting of Zr- and Ti- bearing grains (probably zircon and rutile, respectively) results in characteristic vertical profiles of Zr and Ti abundances within the Bouma A divisions of turbidites of the Brushy Canyon Formation, Delaware Basin, southern New Mexico. Zr- and Ti- bearing grains decrease in abundance and diameter from bases to tops of A divisions in every sample examined in this study. These results contrast with previous observations which suggest that grading in Brushy Canyon Formation structureless sandstones is absent or rare. The data support turbiditic interpretations of these rocks against traction current interpretations which rely on the lack of textural grading. Grading is reflected in vertical profiles of Ti/Al, Zr/Al and Zr/Ti ratios, which each decrease upward. These compositional variations could potentially be used as geochemical proxies for physical sorting, and might be useful for inferring depositional processes and relative transport distances.

  16. Variable threshold algorithm for division of labor analyzed as a dynamical system.

    Science.gov (United States)

    Castillo-Cagigal, Manuel; Matallanas, Eduardo; Navarro, Iñaki; Caamaño-Martín, Estefanía; Monasterio-Huelin, Félix; Gutiérrez, Álvaro

    2014-12-01

    Division of labor is a widely studied aspect of colony behavior of social insects. Division of labor models indicate how individuals distribute themselves in order to perform different tasks simultaneously. However, models that study division of labor from a dynamical system point of view cannot be found in the literature. In this paper, we define a division of labor model as a discrete-time dynamical system, in order to study the equilibrium points and their properties related to convergence and stability. By making use of this analytical model, an adaptive algorithm based on division of labor can be designed to satisfy dynamic criteria. In this way, we have designed and tested an algorithm that varies the response thresholds in order to modify the dynamic behavior of the system. This behavior modification allows the system to adapt to specific environmental and collective situations, making the algorithm a good candidate for distributed control applications. The variable threshold algorithm is based on specialization mechanisms. It is able to achieve an asymptotically stable behavior of the system in different environments and independently of the number of individuals. The algorithm has been successfully tested under several initial conditions and number of individuals.

  17. Chlamydia co-opts the rod shape-determining proteins MreB and Pbp2 for cell division.

    Science.gov (United States)

    Ouellette, Scot P; Karimova, Gouzel; Subtil, Agathe; Ladant, Daniel

    2012-07-01

    Chlamydiae are obligate intracellular bacterial pathogens that have extensively reduced their genome in adapting to the intracellular environment. The chlamydial genome contains only three annotated cell division genes and lacks ftsZ. How this obligate intracellular pathogen divides is uncharacterized. Chlamydiae contain two high-molecular-weight (HMW) penicillin binding proteins (Pbp) implicated in peptidoglycan synthesis, Pbp2 and Pbp3/FtsI. We show here, using HMW Pbp-specific penicillin derivatives, that both Pbp2 and Pbp3 are essential for chlamydial cell division. Ultrastructural analyses of antibiotic-treated cultures revealed distinct phenotypes: Pbp2 inhibition induced internal cell bodies within a single outer membrane whereas Pbp3 inhibition induced elongated phenotypes with little internal division. Each HMW Pbp interacts with the Chlamydia cell division protein FtsK. Chlamydiae are coccoid yet contain MreB, a rod shape-determining protein linked to Pbp2 in bacilli. Using MreB-specific antibiotics, we show that MreB is essential for chlamydial growth and division. Importantly, co-treatment with MreB-specific and Pbp-specific antibiotics resulted in the MreB-inhibited phenotype, placing MreB upstream of Pbp function in chlamydial cell division. Finally, we showed that MreB also interacts with FtsK. We propose that, in Chlamydia, MreB acts as a central co-ordinator at the division site to substitute for the lack of FtsZ in this bacterium. © 2012 Blackwell Publishing Ltd.

  18. Engineering Research Division publication report, calendar year 1980

    International Nuclear Information System (INIS)

    Miller, E.K.; Livingston, P.L.; Rae, D.C.

    1980-06-01

    Each year the Engineering Research Division of the Electronics Engineering Department at Lawrence Livermore Laboratory has issued an internal report listing all formal publications produced by the Division during the calendar year. Abstracts of 1980 reports are presented

  19. DNR Division of Parks and Trails District Boundaries

    Data.gov (United States)

    Minnesota Department of Natural Resources — This data shows the DNR Division of Parks and Trails District Boundaries as of May 2010. The boundaries were created by the Division Leadership Team. Boundaries are...

  20. AC/ARNG Integrated Division Concept Study, Appendices, Volume 3

    National Research Council Canada - National Science Library

    Twohig, John

    1997-01-01

    ...) division headquarters. The US Army Training and Doctrine Command (TRADOC) was tasked to conduct a viability assessment of the AC/ARNG Integrated Division concept and focus on merits and implementation issues...

  1. Chemical Technology Division annual technical report, 1996

    International Nuclear Information System (INIS)

    1997-06-01

    CMT is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. It conducts R ampersand D in 3 general areas: development of advanced power sources for stationary and transportation applications and for consumer electronics, management of high-level and low-level nuclear wastes and hazardous wastes, and electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, materials chemistry of electrified interfaces and molecular sieves, and the theory of materials properties. It also operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at ANL and other organizations. Technical highlights of the Division's activities during 1996 are presented

  2. Activity report of Reactor Physics Division - 1989

    International Nuclear Information System (INIS)

    1990-01-01

    The highlights of the various studies carried out during the year 1989 in Reactor Physics Division are presented in this report in the form of summaries. The topics are organised under the following subjects: (1) nuclear data evaluation, processing and validation, (2) core physics and analysis, (3) reacto r kinetics and safety analysis, (4) noise analysis, and radiation transport and shielding. It is observed that with the restart and operation of FBTR at low power for some time, some of the low power physics experiments were completed and plans and procedures for the remaining physics experiments at intermediate and high power (upto 10 MWt) have been prepared. The lists of publications by the members of Division and the Reactor Physics Seminars held during the year 19 89, are included at the end of the report. (author). refs., figs., tabs

  3. Radiochemistry Division annual progress report for 1982

    International Nuclear Information System (INIS)

    Bhargava, V.K.; Rao, V.K.

    1984-01-01

    The progress report of the Radiochemistry Division of the Bhabha Atomic Research Centre, Bombay, presents the research and development work carried out during 1982 in the form of individual summaries arranged under the headings: reactor fuel chemistry, heavy element chemistry, radioanalytical chemistry, and nuclear chemistry. Some of the highlights of the R and D activities are: (1) optimisation of the chemical parameters for the preparation of UO 2 microspheres by internal gelation method, (2) synergetic extraction studies of various actinides from aqueous solutions, (3) development of methods of determination of uranium, 241 Am and 239 Pu, (4) fission studies of 232 Th, 236 U, 252 Cf and 229 Th, (5) determination of half-life of 241 Pu by various methods. A list of publications of the members of the Division published during 1982 is also given. (M.G.B.)

  4. Radiochemistry Division annual progress report : 1990

    International Nuclear Information System (INIS)

    Iyer, R.H.

    1992-01-01

    This progress report provides an account of the research and development activities of the Radiochemistry Division during the year 1990 in the areas of nuclear chemistry, actinide chemistry and spectroscopy. The main area of work in nuclear chemistry is centered around the fission process induced by reactor neutrons, and light and heavy ions on actinides and low Z (Z<80) elements. Actinide chemistry research is concerned mostly with extraction, complexation and separation of actinide ions from aqueous media using a variety of organic reagents under different experimental conditions. Spectroscopic studies include development and optimisation of chemical/analytical methods for separation and determination of trace metallic impurities and rare earths in fuel materials and EPR and microwave studies on several compounds to understand their superconducting, structural and magnetic properties. A list of publications by the scientific staff of the Division during 1990 is also given in the report. (author). 45 figs., 44 tabs

  5. Radiochemistry Division: annual progress report: 1987

    International Nuclear Information System (INIS)

    1989-01-01

    The progress of Research and Development (R and D) activities during the year 1987 are reported in the form of summaries, which are presented under the headings (1) Actinide Chemistry, (2) Nuclear Chemistry, and (3) Spectroscopy. Microwave absorption studies of the high Tsub(c) oxide superconductor YBa 2 Cu 3 Osub(7-x) using electron paramagnetic resonance techniques are the new feature during the report year. Radioanalytical services and radiation sources in the form of electrodeposited sources or standard soluti ons were also given to the other Divisions, other units of the Department of Atomic Energy, and other organisations in the country. A list of papers by the members of the Division published in various journals and presented at various symposia, conferences etc. is given at the end of the report. (M.G.B.). refs., 51 tabs., 33 figs

  6. Division algebras, extended supersymmetries and applications

    International Nuclear Information System (INIS)

    Toppan, F.

    2001-03-01

    I present here some new results which make explicit the role of the division algebras R, C, H, O in the construction and classification of, respectively, N= 1, 2, 4, 8 global supersymmetric quantum mechanical and classical dynamical systems. In particular an N=8 Malcev superaffine algebra is introduced and its relation to the non-associative N = 8 SCA is discussed. A list of present and possible future applications is given. (author)

  7. Activity report of Reactor Physics Division - 1993

    International Nuclear Information System (INIS)

    Indira, R.

    1994-01-01

    The research and development (R and D) activities of the Reactor Physics Division of Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam during 1993 are reported. The activities are arranged under the headings: Nuclear Data Processing and validation, Core Physics and Operation Studies, Reactor Kinetics and Safety analysis, Reactor Noise Analysis and Radiation Transport and Shielding Studies. List of publication is given at the end. (author). refs., figs., tabs

  8. Activity report of Reactor Physics Division-1995

    International Nuclear Information System (INIS)

    Gopalakrishnan, V.

    1996-01-01

    The research and development (R and D) activities of the Reactor Physics Division of Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam during 1995 are reported. The activity are arranged under the headings: Nuclear Data Processing and Validation, Core Physics and Operation Studies, Reactor Kinetics and Safety analysis, Reactor Noise Analysis and Radiation Transport and Shielding Studies. List of publication is given at the end. refs., figs., tabs

  9. Childcare and the division of parental leave

    OpenAIRE

    Norén, Anna

    2015-01-01

    Despite several policies aimed at increasing fathers' participation in the caring of children, Swedish mothers still use the bulk of the paid parental leave which may have several negative consequences for the family e.g. in terms of weaker labor market attachment for the mother. Division of parental leave is likely affected by how parents value the costs associated with parental leave. I investigate whether a reduction in the care burden, or a decreased non-monetary cost, of parental leave t...

  10. Gender Division of Labor and Alimony

    OpenAIRE

    Waka Cheung; Yew-Kwang Ng

    2011-01-01

    According to the principle of comparative advantage, the gender division of labor is utility enhancing during marriage. However, in the long term it decreases the earning power of the party who specializes in housework. Once the marriage is dissolved she/he will be the losing party and hence should be compensated by the other party, who specializes in paid work which usually involves higher degree in the accumulation of human capital. As an effective means of compensation, it is shown formall...

  11. Earth Sciences Division annual report 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-07-01

    Summaries of the highlights of programs in the Earth Sciences Division are presented under four headings; Geosciences, Geothermal Energy Development, Nuclear Waste Isolation, and Marine Sciences. Utilizing both basic and applied research in a wide spectrum of topics, these programs are providing results that will be of value in helping to secure the nation's energy future. Separate abstracts have been prepared for each project for inclusion in the Energy Data Base. (DMC)

  12. Division Artillery: Linking Strategy to Tactics

    Science.gov (United States)

    2017-05-25

    1 Sean MacFarland, Michael Shields, and Jefferey Snow, The King and I: The Impending Crisis in the Field Artillery’s Ability to Provide...New York: Holt, 2003), 305-312; Boyd Dastrup, King of Battle: A Branch History of the US Army’s Field Artillery, 1992, 209; Carlo D’Este, World War...Strategic Plan for the Persian Gulf War (New York, NY: Naval Institute Press, 2008), 60. 56 US Army, Third Armored Division Artillery Historical

  13. The Division of Labor, Investment, and Capital

    OpenAIRE

    Xiaokai Yang

    1999-01-01

    This paper uses a dynamic general equilibrium model based on corner solutions to formalize the classical theory of investment and capital which considers investment to be a vehicle for developing a high level of division of labor in roundabout productive activities. If it takes time for a specialist producer of tractors to learn the right method in producing commercially viable tractors, specialization in producing tractors is infeasible in the absence of investment in terms of consumption go...

  14. Inorganic Materials Division annual report, 1975

    International Nuclear Information System (INIS)

    Duba, A.; Hornady, B.

    1976-01-01

    This compilation lists abstracts of papers, internal reports, and talks presented during 1975 at national and international meetings by members of the Geoscience and Engineering Section, Inorganic Materials Division, Chemistry and Materials Science Department, Lawrence Livermore Laboratory. Titles of talks at university and local meetings are also listed when available. The subjects range from the in situ retorting of coal to the temperature profile of the moon. A subject classification is included

  15. Division algebras, extended supersymmetries and applications

    International Nuclear Information System (INIS)

    Toppan, F.

    2001-01-01

    I present here some new results which make explicit the role of the division algebras R, C, H, O in the construction and classification of, respectively, N = 1, 2, 4, 8 global supersymmetric quantum mechanical and classical dynamical systems. In particular an N = 8 Malcev superaffine algebra is introduced and its relation to the non-associative N = 8 SCA is discussed. A list of present and possible future applications is given

  16. Activity report of Reactor Physics Division - 1993

    Energy Technology Data Exchange (ETDEWEB)

    Indira, R [ed.; Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    1994-12-31

    The research and development (R and D) activities of the Reactor Physics Division of Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam during 1993 are reported. The activities are arranged under the headings: Nuclear Data Processing and validation, Core Physics and Operation Studies, Reactor Kinetics and Safety analysis, Reactor Noise Analysis and Radiation Transport and Shielding Studies. List of publication is given at the end. (author). refs., figs., tabs.

  17. Women of the Solar Physics Division

    Science.gov (United States)

    Dupree, Andrea K.

    2007-05-01

    In 1970, when the Solar Physics Division was established, the invitation to become a founding member of the Division was extended by the Organizing Committee to a group of 61 solar scientists of which 4 were women (6.6%). At the first SPD meeting in Huntsville AL (1970), 11% of the papers were given by women. Near that time (1973), women accounted for 8% of all AAS members. The representation of women in the SPD has more than doubled in percentage since the first years. Currently, women comprise about 15.5% of SPD members which, however, is less than the percentage in the AAS general membership (18%) in March 2007. In the 37 years that the SPD has existed, women have frequently held the office of Treasurer and Secretary of the Division and made notable contributions. Elske V.P. Smith was elected the first Treasurer of the SPD and that began a long tradition. Women appear to be considered exceptionally trustworthy since they have been reelected and occupied the position of Treasurer for 75% of the available terms. The Office of SPD Secretary has seen a woman for 13% of the terms. Yet women are practically absent among those in the top leadership positions and in the lists of prize winners of the SPD. Among the 21 SPD Chairs, only 1 woman, Judith T. Karpen, has held that office. The Hale Prize has been awarded 19 times in almost 3 decades, and all of the awardees have been men. Several aspects of the participation of women and their contributions to the Solar Physics Division of the AAS will be reviewed, and compared to that of the AAS and astronomy in general.

  18. Couples’ Attitudes, Childbirth, and the Division of Labor

    NARCIS (Netherlands)

    Jansen, Miranda; Liefbroer, Aart C.

    2006-01-01

    In this article, the authors examine effects of partners’ attitudes on the timing of the birth of a first child, the division of domestic labor, the division of child care, and the division of paid labor of couples. They use data from the Panel Study of Social Integration in the Netherlands, which

  19. Reactor Engineering Division Material for World Wide Web Pages

    International Nuclear Information System (INIS)

    1996-01-01

    This document presents the home page of the Reactor Engineering Division of Argonne National Laboratory. This WWW site describes the activities of the Division, an introduction to its wide variety of programs and samples of the results of research by people in the division

  20. 78 FR 49111 - Airworthiness Directives; Pratt & Whitney Division Turbofan Engines

    Science.gov (United States)

    2013-08-13

    ... Airworthiness Directives; Pratt & Whitney Division Turbofan Engines AGENCY: Federal Aviation Administration (FAA... & Whitney Division (PW) turbofan engine model PW4074, PW4074D, PW4077, PW4077D, PW4084D, PW4090, and PW4090...) Applicability This AD applies to all Pratt & Whitney Division (PW) turbofan engine models PW4074, PW4074D...

  1. 15 CFR 950.8 - Satellite Data Services Division (SDSD).

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Satellite Data Services Division (SDSD... THE ENVIRONMENTAL DATA SERVICE ENVIRONMENTAL DATA AND INFORMATION § 950.8 Satellite Data Services Division (SDSD). The Satellite Data Services Division of the EDIS National Climatic Center provides...

  2. The Maryland Division of Correction hospice program.

    Science.gov (United States)

    Boyle, Barbara A

    2002-10-01

    The Maryland Division of Correction houses 24,000 inmates in 27 geographically disparate facilities. The inmate population increasingly includes a frail, elderly component, as well as many inmates with chronic or progressive diseases. The Division houses about 900 human immunodeficiency virus (HIV)-positive detainees, almost one quarter with an acquired immune deficiency syndrome (AIDS) diagnosis. A Ryan White Special Project of National Significance (SPNS) grant and the interest of a community hospice helped transform prison hospice from idea to reality. One site is operational and a second site is due to open in the future. Both facilities serve only male inmates, who comprise more than 95% of Maryland's incarcerated. "Medical parole" is still the preferred course for terminally ill inmates; a number have been sent to various local community inpatient hospices or released to the care of their families. There will always be some who cannot be medically paroled, for whom hospice is appropriate. Maryland's prison hospice program requires a prognosis of 6 months or less to live, a do-not-resuscitate (DNR) order and patient consent. At times, the latter two of these have been problematic. Maintaining the best balance between security requirements and hospice services to dying inmates takes continual communication, coordination and cooperation. Significant complications in some areas remain: visitation to dying inmates by family and fellow prisoners; meeting special dietary requirements; what role, if any, will be played by inmate volunteers. Hospice in Maryland's Division of Correction is a work in progress.

  3. Deconstructing Interocular Suppression: Attention and Divisive Normalization.

    Directory of Open Access Journals (Sweden)

    Hsin-Hung Li

    2015-10-01

    Full Text Available In interocular suppression, a suprathreshold monocular target can be rendered invisible by a salient competitor stimulus presented in the other eye. Despite decades of research on interocular suppression and related phenomena (e.g., binocular rivalry, flash suppression, continuous flash suppression, the neural processing underlying interocular suppression is still unknown. We developed and tested a computational model of interocular suppression. The model included two processes that contributed to the strength of interocular suppression: divisive normalization and attentional modulation. According to the model, the salient competitor induced a stimulus-driven attentional modulation selective for the location and orientation of the competitor, thereby increasing the gain of neural responses to the competitor and reducing the gain of neural responses to the target. Additional suppression was induced by divisive normalization in the model, similar to other forms of visual masking. To test the model, we conducted psychophysics experiments in which both the size and the eye-of-origin of the competitor were manipulated. For small and medium competitors, behavioral performance was consonant with a change in the response gain of neurons that responded to the target. But large competitors induced a contrast-gain change, even when the competitor was split between the two eyes. The model correctly predicted these results and outperformed an alternative model in which the attentional modulation was eye specific. We conclude that both stimulus-driven attention (selective for location and feature and divisive normalization contribute to interocular suppression.

  4. Deconstructing Interocular Suppression: Attention and Divisive Normalization.

    Science.gov (United States)

    Li, Hsin-Hung; Carrasco, Marisa; Heeger, David J

    2015-10-01

    In interocular suppression, a suprathreshold monocular target can be rendered invisible by a salient competitor stimulus presented in the other eye. Despite decades of research on interocular suppression and related phenomena (e.g., binocular rivalry, flash suppression, continuous flash suppression), the neural processing underlying interocular suppression is still unknown. We developed and tested a computational model of interocular suppression. The model included two processes that contributed to the strength of interocular suppression: divisive normalization and attentional modulation. According to the model, the salient competitor induced a stimulus-driven attentional modulation selective for the location and orientation of the competitor, thereby increasing the gain of neural responses to the competitor and reducing the gain of neural responses to the target. Additional suppression was induced by divisive normalization in the model, similar to other forms of visual masking. To test the model, we conducted psychophysics experiments in which both the size and the eye-of-origin of the competitor were manipulated. For small and medium competitors, behavioral performance was consonant with a change in the response gain of neurons that responded to the target. But large competitors induced a contrast-gain change, even when the competitor was split between the two eyes. The model correctly predicted these results and outperformed an alternative model in which the attentional modulation was eye specific. We conclude that both stimulus-driven attention (selective for location and feature) and divisive normalization contribute to interocular suppression.

  5. Chemical Engineering Division annual technical report, 1980

    International Nuclear Information System (INIS)

    Burris, L.; Webster, D.S.; Barney, D.L.; Cafasso, F.A.; Steindler, M.J.

    1981-06-01

    Highlights of the Chemical Engineering (CEN) Division's activities during 1980 are presented. In this period, CEN conducted research and development in the following areas: (1) rechargeable lithium-aluminum/iron sulfide batteries for electric vehicles and other applications; (2) ambient-temperature batteries - improved lead-acid, nickel/zinc, and nickel/iron - for electric vehicles; (3) energy-efficient industrial electrochemical processes; (4) molten carbonate fuel cells for use by electric utilities; (5) coal technology, mainly fluidized-bed combustion of coal in the presence of SO 2 sorbent of limestone; (6) heat- and seed-recovery technology for open-cycle magnetohydrodynamic systems; (7) solar energy collectors and thermal energy storage; (8) fast breeder reactor chemistry research - chemical support of reactor safety studies, chemistry of irradiated fuels, and sodium technology; (9) fuel cycle technology - management of nuclear wastes, reprocessing of nuclear fuels, and proof-of-breeding studies for the Light Water Breeder Reactor; and (10) magnetic fusion research - systems analysis and engineering experimentation, materials research, and neutron dosimetry and damage analysis. The CEN Division also has a basic energy sciences program, which includes experimental and theoretical research on (1) the catalytic hydrogenation of carbon monoxide and methanol homologation, (2) the thermodynamic properties of a wide variety of inorganic and organic materials, (3) significant mechanisms for the formation of atmospheric sulfate and nitrogen-bearing aerosols, (4) processes occurring at electrodes and in electrolytes, and (5) the physical properties of salt vapors. In addition, the Division operated the Central Analytical Chemistry Laboratory

  6. Progress report [of] Technical Physics Division

    International Nuclear Information System (INIS)

    Vijendran, P.; Deshpande, R.Y.

    1975-01-01

    Activities of the Technical Physics Division of the Bhabha Atomic Research Centre, Bombay, over the last few years are reported. This division is engaged in developing various technologies supporting the development of nuclear technology. The various fields in which development is actively being carried out are : (i) vacuum technology, (ii) mass spectrometry, (iii) crystal technology, (iv) cryogenics, and (v) magnet technology. For surface studies, the field emission microscope and the Auger electron spectrometer and other types of spectrometers have been devised and perfected. Electromagnets of requisite strength to be used in MHD programme and NMR instruments are being fabricated. Various crystals such as NaI(Tl), Ge, Fluorides, etc. required as windows and prisms in X and gamma-ray spectroscopy, have been grown. In the cryogenics field, expansion engines required for air liquefaction plants, vacuum insulated dewars, helium gas thermometers etc. have been constructed. In addition to the above, the Division provides consultancy and training to personnel from various institutions and laboratories. Equipment and systems perfected are transferred to commercial organizations for regular production. (A.K.)

  7. DIVISIONS AND SEGREGATIONS OF THE PATRIMONY

    Directory of Open Access Journals (Sweden)

    CRISTIAN GHEORGHE

    2012-05-01

    Full Text Available For a long time, dispute resolution and alternative techniques like mediation have been dealing with a classic conception: every part involved in dispute resolution was carrying exactly one patrimony. Irrespective of physical or moral person the rule was the same: one person, one patrimony. Alternative dispute resolution, like mediation, dealt with persons in order to reach a mutual agreement affecting their unique patrimony. The rule is already history. Still remain the first premise: every person has a patrimony. But under present Civil code the provision is stopping here. As a result, the uniqueness of the patrimony vanished from new law. Dealing with different patrimonies a dispute solver should be able to understand the new notion and to assist the parties to finals agreements according to the rules of the divisions of the patrimony. First at all we should observe that any division of the patrimony of a person have to have a legal basis. The “liberalisation” of the patrimony is not so advanced in order to accept any voluntary division of the patrimony of the person. Second, the prominent creation in this field are represented by fiducia (a kind of Anglo-Saxon trust concept and assigned patrimony. Fiducia is new for our legal system only, following in fact the Quebec civil code regulation. The assigned patrimony was already been present in our legislation. The Ordinance no 44/2008 was dealing with this concept in commercial field.

  8. Progress report of Applied Physics Division. 1 October 1980 - 30 June 1981. Acting Division Chief - Dr. J. Parry

    International Nuclear Information System (INIS)

    2004-01-01

    In September 1980, the Commission approved a reorganization of Physics Division, Engineering Research Division and Instrumentation and Control Division to form two new research divisions to be known as Applied Physics Division and Nuclear Technology Division. The Applied Physics Division will be responsible for applied science programs, particularly those concerned with nuclear techniques. The Division is organized as four sections with the following responsibilities: (1) Nuclear Applications and Energy Studies Section. Program includes studies in nuclear physics, nuclear applications, ion implantation and neutron scattering. (2) Semiconductor and Radiation Physics Section. Studies in semiconductor radiation detectors, radiation standards and laser applications. (3) Electronic Systems Section. This includes systems analysis, digital systems, instrument design, project instrumentation and instrument maintenance. (4) Fusion Physics Section. This covers work carried out by staff currently attached to university groups (author)

  9. Atmospheric and Geophysical Sciences Division Program Report, 1988--1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    In 1990, the Atmospheric and Geophysical Sciences Division begins its 17th year as a division. As the Division has grown over the years, its modeling capabilities have expanded to include a broad range of time and space scales ranging from hours to decades and from local to global. Our modeling is now reaching out from its atmospheric focus to treat linkages with the oceans and the land. In this report, we describe the Division's goal and organizational structure. We also provide tables and appendices describing the Division's budget, personnel, models, and publications. 2 figs., 1 tab.

  10. Biology Division progress report, October 1, 1993--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    This Progress Report summarizes the research endeavors of the Biology Division of the Oak Ridge National Laboratory during the period October 1, 1993, through September 30, 1995. The report is structured to provide descriptions of current activities and accomplishments in each of the Division`s major organizational units. Lists of information to convey the entire scope of the Division`s activities are compiled at the end of the report. Attention is focused on the following research activities: molecular, cellular, and cancer biology; mammalian genetics and development; genome mapping program; and educational activities.

  11. Physics division. Progress report, January 1, 1995--December 31, 1996

    International Nuclear Information System (INIS)

    Stewart, M.; Bacon, D.S.; Aine, C.J.; Bartsch, R.R.

    1997-10-01

    This issue of the Physics Division Progress Report describes progress and achievements in Physics Division research during the period January 1, 1995-December 31, 1996. The report covers the five main areas of experimental research and development in which Physics Division serves the needs of Los Alamos National Laboratory and the nation in applied and basic sciences: (1) biophysics, (2) hydrodynamic physics, (3) neutron science and technology, (4) plasma physics, and (5) subatomic physics. Included in this report are a message from the Division Director, the Physics Division mission statement, an organizational chart, descriptions of the research areas of the five groups in the Division, selected research highlights, project descriptions, the Division staffing and funding levels for FY95-FY97, and a list of publications and presentations

  12. Physics division. Progress report, January 1, 1995--December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, M.; Bacon, D.S.; Aine, C.J.; Bartsch, R.R. [eds.] [comps.] [and others

    1997-10-01

    This issue of the Physics Division Progress Report describes progress and achievements in Physics Division research during the period January 1, 1995-December 31, 1996. The report covers the five main areas of experimental research and development in which Physics Division serves the needs of Los Alamos National Laboratory and the nation in applied and basic sciences: (1) biophysics, (2) hydrodynamic physics, (3) neutron science and technology, (4) plasma physics, and (5) subatomic physics. Included in this report are a message from the Division Director, the Physics Division mission statement, an organizational chart, descriptions of the research areas of the five groups in the Division, selected research highlights, project descriptions, the Division staffing and funding levels for FY95-FY97, and a list of publications and presentations.

  13. Research into fisheries and the marine environment 1989-90

    International Nuclear Information System (INIS)

    1992-01-01

    This biannual report includes notes on the work of the Aquatic Environment Protection Division of the Directorate of Fisheries Research, Lowestoft in relation to assessment and monitoring of radioactive waste disposal and research into the environmental behaviour of radionuclides. (UK)

  14. How bacterial cell division might cheat turgor pressure - a unified mechanism of septal division in Gram-positive and Gram-negative bacteria.

    Science.gov (United States)

    Erickson, Harold P

    2017-08-01

    An important question for bacterial cell division is how the invaginating septum can overcome the turgor force generated by the high osmolarity of the cytoplasm. I suggest that it may not need to. Several studies in Gram-negative bacteria have shown that the periplasm is isoosmolar with the cytoplasm. Indirect evidence suggests that this is also true for Gram-positive bacteria. In this case the invagination of the septum takes place within the uniformly high osmotic pressure environment, and does not have to fight turgor pressure. A related question is how the V-shaped constriction of Gram-negative bacteria relates to the plate-like septum of Gram-positive bacteria. I collected evidence that Gram-negative bacteria have a latent capability of forming plate-like septa, and present a model in which septal division is the basic mechanism in both Gram-positive and Gram-negative bacteria. © 2017 WILEY Periodicals, Inc.

  15. Experimental Facilities Division/User Program Division technical progress report 1999-2000

    International Nuclear Information System (INIS)

    2001-01-01

    In October 1999, the two divisions of the Advanced Photon Source (APS), the Accelerator Systems Division (ASD) and the Experimental Facilities Division (XFD), were reorganized into four divisions (see high-level APS organizational chart, Fig. 1.1). In addition to ASD and XFD, two new divisions were created, the APS Operations Division (AOD), to oversee APS operations, and the User Program Division (UPD), to serve the APS user community by developing and maintaining the highest quality user technical and administration support. Previous XFD Progress Reports (ANL/APS/TB-30 and ANL/APS/TB-34) covered a much broader base, including APS user administrative support and what was previously XFD operations (front ends, interlocks, etc.) This Progress Report summarizes the main scientific and technical activities of XFD, and the technical support, research and development (R and D) activities of UPD from October 1998 through November 2000. The report is divided into four major sections, (1) Introduction, (2) SRI-CAT Beamlines, Technical Developments, and Scientific Applications, (3) User Technical Support, and (4) Major Plans for the Future. Sections 2 and 3 describe the technical activities and research accomplishments of the XFD and UPD personnel in supporting the synchrotron radiation instrumentation (SRI) collaborative access team (CAT) and the general APS user community. Also included in this report is a comprehensive list of publications (Appendix 1) and presentations (Appendix 2) by XFD and UPD staff during the time period covered by this report. The organization of section 2, SRI CAT Beamlines, Technical Developments, and Scientific Applications has been made along scientific techniques/disciplines and not ''geographical'' boundaries of the sectors in which the work was performed. Therefore items under the subsection X-ray Imaging and Microfocusing could have been (and were) performed on several different beamlines by staff in different divisions. The management of

  16. Instrumentation and Controls Division Progress report, July 1, 1992--June 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, D.W.

    1995-06-01

    The Instrumentation and Controls (I&C) Division serves a national laboratory, and as such has an expansive domain: science, industry, and national defense. The core mission is to support the scientific apparatus of the Laboratory and all of the systems that protect the safety and health of people and the environment. Progress is reported for the five sections: photonics and measurements systems, electronic systems, signal processing, controls and systems integration, and technical support.

  17. Nuclear Science Division 1994 annual report

    International Nuclear Information System (INIS)

    Myers, W.D.

    1995-06-01

    This report describes the activities of the Nuclear Science Division for the period of January 1, 1994, to December 31, 1994. This was a time of significant accomplishment for all of the programs in the Division. Assembly of the solar neutrino detector at the Sudbury Neutrino Observatory is well under way. All of the components fabricated by LBL were shipped to Sudbury early in the year and our efforts are now divided between assisting the assembly of the detector and preparing software for data analysis once the detector is operational in 1996. Much of the activity at the 88-Inch Cyclotron centered on Gammasphere. The open-quotes early implementationclose quotes phase of the detector ended in September. This phase was extremely successful, involving over 60 experiments with nearly 200 users from 37 institutions worldwide. The mechanical structure was installed and the final electronic system is expected to operate in March 1995. The Division concurrently hosted a conference on physics for large γ-ray detector arrays at the Clark Kerr Campus at UC Berkeley in August. This was a very successful meeting, reflecting the enthusiasm for this field worldwide. Also at the Cyclotron, the progress toward weak interaction experiments using ultra-thin sources passed a major milestone with the trapping of radioactive 21 Na atoms. We are now engaged in a major upgrade of the experimental area and the outlook is very promising for these novel experiments. Another highlight of research at the Cyclotron was the confirmation of element 106. This development allowed the original LLNL/LBL discovery team to move forward with their proposal to name this element seaborgium

  18. Nuclear Science Division 1994 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Myers, W.D. [ed.

    1995-06-01

    This report describes the activities of the Nuclear Science Division for the period of January 1, 1994, to December 31, 1994. This was a time of significant accomplishment for all of the programs in the Division. Assembly of the solar neutrino detector at the Sudbury Neutrino Observatory is well under way. All of the components fabricated by LBL were shipped to Sudbury early in the year and our efforts are now divided between assisting the assembly of the detector and preparing software for data analysis once the detector is operational in 1996. Much of the activity at the 88-Inch Cyclotron centered on Gammasphere. The {open_quotes}early implementation{close_quotes} phase of the detector ended in September. This phase was extremely successful, involving over 60 experiments with nearly 200 users from 37 institutions worldwide. The mechanical structure was installed and the final electronic system is expected to operate in March 1995. The Division concurrently hosted a conference on physics for large {gamma}-ray detector arrays at the Clark Kerr Campus at UC Berkeley in August. This was a very successful meeting, reflecting the enthusiasm for this field worldwide. Also at the Cyclotron, the progress toward weak interaction experiments using ultra-thin sources passed a major milestone with the trapping of radioactive {sup 21}Na atoms. We are now engaged in a major upgrade of the experimental area and the outlook is very promising for these novel experiments. Another highlight of research at the Cyclotron was the confirmation of element 106. This development allowed the original LLNL/LBL discovery team to move forward with their proposal to name this element seaborgium.

  19. Laboratory Astrophysics Division of The AAS (LAD)

    Science.gov (United States)

    Salama, Farid; Drake, R. P.; Federman, S. R.; Haxton, W. C.; Savin, D. W.

    2012-10-01

    The purpose of the Laboratory Astrophysics Division (LAD) is to advance our understanding of the Universe through the promotion of fundamental theoretical and experimental research into the underlying processes that drive the Cosmos. LAD represents all areas of astrophysics and planetary sciences. The first new AAS Division in more than 30 years, the LAD traces its history back to the recommendation from the scientific community via the White Paper from the 2006 NASA-sponsored Laboratory Astrophysics Workshop. This recommendation was endorsed by the Astronomy and Astrophysics Advisory Committee (AAAC), which advises the National Science Foundation (NSF), the National Aeronautics and Space Administration (NASA), and the U.S. Department of Energy (DOE) on selected issues within the fields of astronomy and astrophysics that are of mutual interest and concern to the agencies. In January 2007, at the 209th AAS meeting, the AAS Council set up a Steering Committee to formulate Bylaws for a Working Group on Laboratory Astrophysics (WGLA). The AAS Council formally established the WGLA with a five-year mandate in May 2007, at the 210th AAS meeting. From 2008 through 2012, the WGLA annually sponsored Meetings in-a-Meeting at the AAS Summer Meetings. In May 2011, at the 218th AAS meeting, the AAS Council voted to convert the WGLA, at the end of its mandate, into a Division of the AAS and requested draft Bylaws from the Steering Committee. In January 2012, at the 219th AAS Meeting, the AAS Council formally approved the Bylaws and the creation of the LAD. The inaugural gathering and the first business meeting of the LAD were held at the 220th AAS meeting in Anchorage in June 2012. You can learn more about LAD by visiting its website at http://lad.aas.org/ and by subscribing to its mailing list.

  20. Physics division annual report - October 2000.

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, K. [ed.

    2000-10-16

    This report summarizes the research performed in the past year in the Argonne Physics Division. The Division's programs include operation of ATLAS as a national heavy-ion user facility, nuclear structure and reaction research with beams of heavy ions, accelerator research and development especially in superconducting radio frequency technology, nuclear theory and medium energy nuclear physics. The Division took significant strides forward in its science and its initiatives for the future in the past year. Major progress was made in developing the concept and the technology for the future advanced facility of beams of short-lived nuclei, the Rare Isotope Accelerator. The scientific program capitalized on important instrumentation initiatives with key advances in nuclear science. In 1999, the nuclear science community adopted the Argonne concept for a multi-beam superconducting linear accelerator driver as the design of choice for the next major facility in the field a Rare Isotope Accelerator (RIA) as recommended by the Nuclear Science Advisory Committee's 1996 Long Range Plan. Argonne has made significant R&D progress on almost all aspects of the design concept including the fast gas catcher (to allow fast fragmentation beams to be stopped and reaccelerated) that in large part, defined the RIA concept the superconducting rf technology for the driver accelerator, the multiple-charge-state concept (to permit the facility to meet the design intensity goals with existing ion-source technology), and designs and tests of high-power target concepts to effectively deal with the full beam power of the driver linac. An NSAC subcommittee recommended the Argonne concept and set as tie design goal Uranium beams of 100-kwatt power at 400 MeV/u. Argonne demonstrated that this goal can be met with an innovative, but technically in-hand, design.

  1. Laboratory Astrophysics Division of the AAS (LAD)

    Science.gov (United States)

    Salama, Farid; Drake, R. P.; Federman, S. R.; Haxton, W. C.; Savin, D. W.

    2012-01-01

    The purpose of the Laboratory Astrophysics Division (LAD) is to advance our understanding of the Universe through the promotion of fundamental theoretical and experimental research into the underlying processes that drive the Cosmos. LAD represents all areas of astrophysics and planetary sciences. The first new AAS Division in more than 30 years, the LAD traces its history back to the recommendation from the scientific community via the White Paper from the 2006 NASA-sponsored Laboratory Astrophysics Workshop. This recommendation was endorsed by the Astronomy and Astrophysics Advisory Committee (AAAC), which advises the National Science Foundation (NSF), the National Aeronautics and Space Administration (NASA), and the U.S. Department of Energy (DOE) on selected issues within the fields of astronomy and astrophysics that are of mutual interest and concern to the agencies. In January 2007, at the 209th AAS meeting, the AAS Council set up a Steering Committee to formulate Bylaws for a Working Group on Laboratory Astrophysics (WGLA). The AAS Council formally established the WGLA with a five-year mandate in May 2007, at the 210th AAS meeting. From 2008 through 2012, the WGLA annually sponsored Meetings in-a-Meeting at the AAS Summer Meetings. In May 2011, at the 218th AAS meeting, the AAS Council voted to convert the WGLA, at the end of its mandate, into a Division of the AAS and requested draft Bylaws from the Steering Committee. In January 2012, at the 219th AAS Meeting, the AAS Council formally approved the Bylaws and the creation of the LAD. The inaugural gathering and the first business meeting of the LAD were held at the 220th AAS meeting in Anchorage in June 2012. You can learn more about LAD by visiting its website at http://lad.aas.org/ and by subscribing to its mailing list.

  2. Wavelength division multiplexing a practical engineering guide

    CERN Document Server

    Grobe, Klaus

    2013-01-01

    In this book, Optical Wavelength Division Multiplexing (WDM) is approached from a strictly practical and application-oriented point of view. Based on the characteristics and constraints of modern fiber-optic components, transport systems and fibers, the text provides relevant rules of thumb and practical hints for technology selection, WDM system and link dimensioning, and also for network-related aspects such as wavelength assignment and resilience mechanisms. Actual 10/40 Gb/s WDM systems are considered, and a preview of the upcoming 100 Gb/s systems and technologies for even higher bit rate

  3. Activity report of Reactor Physics Division : 1990

    International Nuclear Information System (INIS)

    Mohanakrishnan, P.

    1991-01-01

    The major Research and Development and Project activities carried out during the year 1990 in Reactor Physics Division are presented in the form of summaries in this report. The various activities are organised under the following areas : (1) Nuclear Data Evaluation, Processing and Validation, (2) Core Physics and Analysis, (3) Reactor Kinetics and Safety Analysis, (4) Noise Analysis, and (5) Radiation Transport and Shielding. FBTR was restarted in July 1990 and the power was raised upto 500 kW. A number of low power physics experiments on reactivity coefficients, kinetics and noise, neutron flux and gamma dose in B cells, were performed, which are discussed in this report. (author). figs., tabs

  4. Westinghouse Water Reactor Divisions quality assurance plan

    International Nuclear Information System (INIS)

    1977-09-01

    The Quality Assurance Program used by Westinghouse Water Reactor Divisions is described. The purpose of the program is to assure that the design, materials, and workmanship on Nuclear Steam Supply System (NSSS) equipment meet applicable safety requirements, fulfill the requirements of the contracts with the applicants, and satisfy the applicable codes, standards, and regulatory requirements. This program satisfies the NRC Quality Assurance Criteria, 10CFR50 Appendix B, to the extent that these criteria apply to safety related NSSS equipment. Also, it follows the regulatory position provided in NRC regulatory guides and the requirements of ANSI Standard N45.2.12 as identified in this Topical Report

  5. On derived groups of division rings II

    International Nuclear Information System (INIS)

    Mahdavi Hezavehi, M.; Akbari Feyzaabaadi, S.; Mehraabaadi, M.; Hajie Abolhassan, H.

    1995-05-01

    Let D be a division ring with centre F and denote by D' the derived group (commutator subgroup) of D * = D - {0}. It is shown that if each element of D' is algebraic over F, then D is algebraic over F. It is also proved that each finite separable extension of F in D is of the form F(c) for some element c in the derived group D'. Using these results, it is shown that if each element of the derived group D' is of bounded degree over F, then D is finite dimensional over F. (author). 5 refs

  6. Service activities of chemical analysis division

    International Nuclear Information System (INIS)

    Eom, Tae Yoon; Suh, Moo Yul; Park, Kyoung Kyun; Jung, Ki Suk; Joe, Kih Soo; Jee, Kwang Yong; Jung, Woo Sik; Sohn, Se Chul; Yeo, In Heong; Han, Sun Ho

    1988-12-01

    Progress of the Division during the year of 1988 was described on the service activities for various R and D projects carrying out in the Institute, for the fuel fabrication and conversion plant, and for the post-irradiation examination facility. Relevant analytical methodologies developed for the chemical analysis of an irradiated fuel, safeguards chemical analysis, and pool water monitoring were included such as chromatographic separation of lanthanides, polarographic determination of dissolved oxygen in water, and automation on potentiometric titration of uranium. Some of the laboratory manuals revised were also included in this progress report. (Author)

  7. Environmental Chemistry Division annual report, 1989

    International Nuclear Information System (INIS)

    Newman, L.

    1990-01-01

    The research activities making up the programs in the Environmental Chemistry Division of the Department of Applied Science are presented. Some of the more significant accomplishments during 1989 are described and plans for 1990 are discussed briefly. Publications for the period are listed and abstracts are provided. Research objectives and principal investigators are given for each of the active programs. A list of personnel and collaborators during the past year is presented. The support distribution of FY 1989 is approximately 85% from the Department of Energy (65% Office of Health and Environmental Research), and 15% other agencies (principally from the Electric Power Research Institute)

  8. Activation of cell divisions in legume nodulation

    DEFF Research Database (Denmark)

    Nadzieja, Marcin

    organogenesis. Coordination of these two interdependent processes results in formation of nodules - bacterial accommodating structures where fixation of atmospheric nitrogen takes place. Plant hormones such as auxin and cytokinin play important roles in nodulation. In some legumes the infection process...... of auxin transport inhibitors or cytokinin alone was shown to induce cortical cell divisions in the absence of rhizobia in certain legume species. While the roles of auxin and cytokinin in nodulation have been studied extensively, the precise timing, location and means of molecular crosstalk between...

  9. Chemistry Division : Annual progress report of 1974

    International Nuclear Information System (INIS)

    1974-01-01

    Research and development activities (during 1974) of the Chemistry Division of the Bhabha Atomic Research Centre, Bombay, are described. Some of the activities of particular interest to nuclear science and technology are: (1) chemistry-based problems of the operating power reactors such as development of a decontaminating solution for power reactors, correlation of iodine-131 levels in the primary heat transport system of a reactor with its operation (2) release of fission gases like xenon from ceramic fuels and (3) radiation chemistry of nitrate solutions (M.G.B.)

  10. Time division multiple access for vehicular communications

    CERN Document Server

    Omar, Hassan Aboubakr

    2014-01-01

    This brief focuses on medium access control (MAC) in vehicular ad hoc networks (VANETs), and presents VeMAC, a novel MAC scheme based on distributed time division multiple access (TDMA) for VANETs. The performance of VeMAC is evaluated via mathematical analysis and computer simulations in comparison with other existing MAC protocols, including the IEEE 802.11p standard. This brief aims at proposing TDMA as a suitable MAC scheme for VANETs, which can support the quality-of-service requirements of high priority VANET applications.

  11. SERVICE HANDBOOK FOR THE DESKTOP SUPPORT CONTRACT WIH IT DIVISION

    CERN Multimedia

    2000-01-01

    A Desktop Support Contract has been running since January 1999 to offer help to all users at CERN with problems that occur with their desktop computers. The contract is run conjointly by the Swedish Company WM-data and the Swiss company DCS.The contract is comprised of the Computing Helpdesk, a General Service for all parts of CERN and also Local Service for those divisions and groups that want faster response times and additional help with their specific computer environment.In order to describe what services are being offered, and also to give a better understanding of the structure of the contract, a Service Handbook has been created. The intended audience for the Service Handbook is everyone that is using the contract, i.e. users, managers and also the service staff inside the contract. In the handbook you will find what help you can get from the contract, how to get in touch with the contract, and also what response times you can expect. Since the computer environment at CERN is a never-changing entity, ...

  12. Division of labor associated with brood rearing in the honey bee: how does it translate to colony fitness?

    Directory of Open Access Journals (Sweden)

    Ramesh R Sagili

    2011-02-01

    Full Text Available Division of labor is a striking feature observed in honey bees and many other social insects. Division of labor has been claimed to benefit fitness. In honey bees, the adult work force may be viewed as divided between non-foraging hive bees that rear brood and maintain the nest, and foragers that collect food outside the nest. Honey bee brood pheromone is a larval pheromone that serves as an excellent empirical tool to manipulate foraging behaviors and thus division of labor in the honey bee. Here we use two different doses of brood pheromone to alter the foraging stimulus environment, thus changing demographics of colony division of labor, to demonstrate how division of labor associated with brood rearing affects colony growth rate. We examine the effects of these different doses of brood pheromone on individual foraging ontogeny and specialization, colony level foraging behavior, and individual glandular protein synthesis. Low brood pheromone treatment colonies exhibited significantly higher foraging population, decreased age of first foraging and greater foraging effort, resulting in greater colony growth compared to other treatments. This study demonstrates how division of labor associated with brood rearing affects honey bee colony growth rate, a token of fitness.

  13. Radiochemistry Division annual progress report: 1993

    International Nuclear Information System (INIS)

    Natarajan, V.; Godbole, S.V.; Iyer, R.H.

    1995-01-01

    The research and development activities of the Radiochemistry Division of BARC during the year 1993 are briefly described under the headings: (i) nuclear chemistry; (ii) actinide chemistry; (iii) spectroscopy and (iv) instrumentation. Nuclear chemistry work deals with areas of nuclear reactions, nuclear fission, nuclear spectroscopy, nuclear data measurements and synthesis of transplutonium isotopes. The research programme in actinide chemistry deals mainly with the complexation of actinides, lanthanides and fission products from aqueous media with organic reagents such as amides, diamides, CMPO, crown ethers and macrocyclic ligands. Spectroscopic studies include electron paramagnetic resonance and optical investigations to probe phase transitions in actinide and other compounds, investigation of role of radiation induced radical ions in the thermoluminescence of actinide doped phosphors, photoacoustic spectra of uranium compounds and development of analytical methods for the determination of silver and rare earths from uranium and thorium oxide matrices. The instrumentation group has developed electronic circuitry and software support for installing a pilot plant for the preparation of dry gel microspheres of UO 2 and (U, Pu)O 2 . A list of publications by the scientific staff of the Division is also included. (author). refs., 38 figs., 26 tabs

  14. Radiochemistry Division annual progress report: 1994

    International Nuclear Information System (INIS)

    Babu, Y.; Seshagiri, T.K.; Iyer, R.H.

    1996-01-01

    The research and development activities of Radiochemistry Division during 1994 are briefly described under the headings: (i) nuclear chemistry; (ii) actinide chemistry; (iii) spectroscopy and (iv) instrumentation. Nuclear chemistry work deals with the areas of nuclear reactions, nuclear fission, nuclear spectroscopy, nuclear data measurements, neutron activation analysis and positron annihilation spectroscopy. The research programme in actinide chemistry deals mainly with the complexation of the actinides, lanthanides and fission products from aqueous media with organic reagents such as amides, diamides, HTTA, CMPO, BEHSO and macrocyclic ligands. Spectroscopic studies include electron paramagnetic resonance investigations of actinide and other compounds, investigation of role of radiation induced radical ions in the thermoluminescence of actinide/lanthanide doped phosphors and development of analytical methods for the determination of metallic impurities in plutonium, uranium, thorium oxide and yttrium aluminium garnet matrices. A sinusoidal waveform generator for facilitating electrochemical etching of nuclear tracks and an IBM PC/AT based data station for the IR spectrophotometer were developed by the instrumentation group. A list of publications, numbering 107, by the Scientific staff of the Division is also included in the report. (author). refs., 32 tabs., 31 figs

  15. Evaluation of Tablets Divisibility in Pharmacoeconomic Aspects

    Directory of Open Access Journals (Sweden)

    Omer Yemsen

    2013-10-01

    Full Text Available Aim: Divisibility and dose homogeneity in scored tablets which form a part of the drugs those are in tablet forms in Turkey and have an extensive implementation area in drug therapy have a high importance for patient compliance and safety. In this study, it is aimed to evaluate Turkey%u2019s pharmaceutical market about cost differences of dividing scored tablets which has different unit quantities of the same active substance. Material and Method: In Turkey%u2019s pharmaceutical market, to detect cost differences of dividing scored tablets which has different unit quantities of the same active substance, All Drug%u2019s Price List that has been published on Turkish Medicine and Medical Devices Agency%u2019s web site is evaluated by using cost-minimization analysis method. Results: It is determined that the use of scored tablets make a price advantage of about 70%. Discussion: In conclusion, on package leaflets and outer packaging information those are prepared for the use of patients, the warning %u201CDon%u2019t divide, crack or swallow the tablets unless otherwise recommended by your doctor.%u201D should be stated and it is considered that it would be useful if the patient is informed about divisibility by the pharmacist.

  16. Spectroscopy Division: progress report for 1990

    International Nuclear Information System (INIS)

    Sharma, A.; Marathe, S.M.

    1991-01-01

    This report summarises the work done by members of the Spectroscopy Division both within BARC as well as in scientific institutions elsewhere during the calendar year 1990. Main areas of research activity include atomic spectroscopy for hyperfine structure and isotope shift determination, theoretical and experimental studies of diatomic molecules, infrared and Raman spectroscopy of polyatomic molecules, design and fabrication of beam line optics for INDUS-I synchrotron radiation source, beam foil spectroscopy and laser spectroscopy of various atomic and molecular systems. Major experimental facilities that have been utilised include a fourier transform spectrometer, an excimer laser pumped dye-laser and a continous wave argon-ion laser. The report also includes the spectroscopic analytical service rendered for various DAE units and describes briefly some new analytical facilities like laser enhanced ionization in flames and resonance ionization mass spectroscopy using pulsed lasers which are being set up. The above activites were reported by members of the Spectroscopy Division via invited lectures, papers presented in various national and international conferences and publication in scientific journals. Details of these are given at the end of the report. (author). figs., tabs

  17. Frequency division using a micromechanical resonance cascade

    Energy Technology Data Exchange (ETDEWEB)

    Qalandar, K. R., E-mail: kamala@engineering.ucsb.edu; Gibson, B.; Sharma, M.; Ma, A.; Turner, K. L. [Department of Mechanical Engineering, University of California at Santa Barbara, Santa Barbara, California 93106 (United States); Strachan, B. S. [Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan 48823 (United States); Department of Electrical Engineering, Michigan State University, East Lansing, Michigan 48823 (United States); Shaw, S. W. [Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan 48823 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48823 (United States)

    2014-12-15

    A coupled micromechanical resonator array demonstrates a mechanical realization of multi-stage frequency division. The mechanical structure consists of a set of N sequentially perpendicular microbeams that are connected by relatively weak elastic elements such that the system vibration modes are localized to individual microbeams and have natural frequencies with ratios close to 1:2:⋯:2{sup N}. Conservative (passive) nonlinear inter-modal coupling provides the required energy transfer between modes and is achieved by finite deformation kinematics. When the highest frequency beam is excited, this arrangement promotes a cascade of subharmonic resonances that achieve frequency division of 2{sup j} at microbeam j for j = 1, …, N. Results are shown for a capacitively driven three-stage divider in which an input signal of 824 kHz is passively divided through three modal stages, producing signals at 412 kHz, 206 kHz, and 103 kHz. The system modes are characterized and used to delineate the range of AC input voltages and frequencies over which the cascade occurs. This narrow band frequency divider has simple design rules that are scalable to higher frequencies and can be extended to a larger number of modal stages.

  18. The Commingled Division of Visual Attention.

    Directory of Open Access Journals (Sweden)

    Yuechuan Sun

    Full Text Available Many critical activities require visual attention to be distributed simultaneously among distinct tasks where the attended foci are not spatially separated. In our two experiments, participants performed a large number of trials where both a primary task (enumeration of spots and a secondary task (reporting the presence/absence or identity of a distinctive shape required the division of visual attention. The spots and the shape were commingled spatially and the shape appeared unpredictably on a relatively small fraction of the trials. The secondary task stimulus (the shape was reported in inverse proportion to the attentional load imposed by the primary task (enumeration of spots. When the shape did appear, performance on the primary task (enumeration suffered relative to when the shape was absent; both speed and accuracy were compromised. When the secondary task required identification in addition to detection, reaction times increased by about 200 percent. These results are broadly compatible with biased competition models of perceptual processing. An important area of application, where the commingled division of visual attention is required, is the augmented reality head-up display (AR-HUD. This innovation has the potential to make operating vehicles safer but our data suggest that there are significant concerns regarding driver distraction.

  19. Scattering amplitudes from multivariate polynomial division

    Energy Technology Data Exchange (ETDEWEB)

    Mastrolia, Pierpaolo, E-mail: pierpaolo.mastrolia@cern.ch [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany); Dipartimento di Fisica e Astronomia, Universita di Padova, Padova (Italy); INFN Sezione di Padova, via Marzolo 8, 35131 Padova (Italy); Mirabella, Edoardo, E-mail: mirabell@mppmu.mpg.de [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany); Ossola, Giovanni, E-mail: GOssola@citytech.cuny.edu [New York City College of Technology, City University of New York, 300 Jay Street, Brooklyn, NY 11201 (United States); Graduate School and University Center, City University of New York, 365 Fifth Avenue, New York, NY 10016 (United States); Peraro, Tiziano, E-mail: peraro@mppmu.mpg.de [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany)

    2012-11-15

    We show that the evaluation of scattering amplitudes can be formulated as a problem of multivariate polynomial division, with the components of the integration-momenta as indeterminates. We present a recurrence relation which, independently of the number of loops, leads to the multi-particle pole decomposition of the integrands of the scattering amplitudes. The recursive algorithm is based on the weak Nullstellensatz theorem and on the division modulo the Groebner basis associated to all possible multi-particle cuts. We apply it to dimensionally regulated one-loop amplitudes, recovering the well-known integrand-decomposition formula. Finally, we focus on the maximum-cut, defined as a system of on-shell conditions constraining the components of all the integration-momenta. By means of the Finiteness Theorem and of the Shape Lemma, we prove that the residue at the maximum-cut is parametrized by a number of coefficients equal to the number of solutions of the cut itself.

  20. Goddard's Astrophysics Science Division Annual Report 2013

    Science.gov (United States)

    Weaver, Kimberly A. (Editor); Reddy, Francis J. (Editor); Tyler, Patricia A. (Editor)

    2014-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radio wavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for two orbiting astrophysics missions Fermi Gamma-ray Space Telescope and Swift as well as the Science Support Center for Fermi. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contrast imaging techniques to search for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and support the astronomical community, and enable future missions by conceiving new concepts and inventing new technologies.

  1. The Astrophysics Science Division Annual Report 2009

    Science.gov (United States)

    Oegerle, William (Editor); Reddy, Francis (Editor); Tyler, Pat (Editor)

    2010-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum - from gamma rays to radio wavelengths - as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions - WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contrast imaging techniques to search for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and support the astronomical community, and enable future missions by conceiving new concepts and inventing new technologies.

  2. Goddard's Astrophysics Science Division Annual Report 2011

    Science.gov (United States)

    Centrella, Joan; Reddy, Francis; Tyler, Pat

    2012-01-01

    The Astrophysics Science Division(ASD) at Goddard Space Flight Center(GSFC)is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radiowavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contract imaging techniques to serch for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, and provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and suppport the astronomical community, and enable future missions by conceiving new conepts and inventing new technologies.

  3. The architecture of the Cassini division

    Science.gov (United States)

    Hedman, M.M.; Nicholson, P.D.; Baines, K.H.; Buratti, B.J.; Sotin, Christophe; Clark, R.N.; Brown, R.H.; French, R.G.; Marouf, E.A.

    2010-01-01

    The Cassini Division in Saturn's rings contains a series of eight named gaps, three of which contain dense ringlets. Observations of stellar occultations by the Visual and Infrared Mapping Spectrometer onboard the Cassini spacecraft have yielded 40 accurate and precise measurements of the radial position of the edges of all of these gaps and ringlets. These data reveal suggestive patterns in the shapes of many of the gap edges: the outer edges of the five gaps without ringlets are circular to within 1 km, while the inner edges of six of the gaps are eccentric, with apsidal precession rates consistent with those expected for eccentric orbits near each edge. Intriguingly, the pattern speeds of these eccentric inner gap edges, together with that of the eccentric Huygens Ringlet, form a series with a characteristic spacing of 006 day-1. The two gaps with non-eccentric inner edges lie near first-order inner Lindblad resonances (ILRs) with moons. One such edge is close to the 5:4 ILR with Prometheus, and the radial excursions of this edge do appear to have an m = 5 component aligned with that moon. The other resonantly confined edge is the outer edge of the B ring, which lies near the 2:1 Mimas ILR. Detailed investigation of the B-ring-edge data confirm the presence of an m = 2 perturbation on the B-ring edge, but also show that during the course of the Cassini Mission, this pattern has drifted backward relative to Mimas. Comparisons with earlier occultation measurements going back to Voyager suggest the possibility that the m = 2 pattern is actually librating relative to Mimas with a libration frequency L 006 day-1 (or possibly 012 day -1). In addition to the m = 2 pattern, the B-ring edge also has an m = 1 component that rotates around the planet at a rate close to the expected apsidal precession rate (?? ?? ?? B ??? 5.??06 day -1). Thus, the pattern speeds of the eccentric edges in the Cassini Division can be generated from various combinations of the pattern speeds

  4. An Evaluation of the Model School Division (MSD) Preschool Program for the School Year 1973-74.

    Science.gov (United States)

    District of Columbia Public Schools, Washington, DC. Dept. of Research and Evaluation.

    This study was designed to assess the extent to which children served by the Model Schools Division Preschool Program developed socially, intellectually, physically and emotionally during the 1973-74 school year. This evaluation was also designed to measure the appropriateness of the learning environment and the amount of services provided by the…

  5. Atmospheric and Geophysical Sciences Division: Program report, FY 1987

    International Nuclear Information System (INIS)

    1988-05-01

    In 1988 the Atmospheric and Geophysical Sciences Division began its 15th year as a division. As the Division has grown over the years, its modeling capabilities have expanded to include a broad range of time and space scales ranging from hours to years, and from kilometers to global, respectively. For this report, we have chosen to show a subset of results from several projects to illustrate the breadth, depth, and diversity of the modeling activities that are a major part of the Division's research, development, and application efforts. In addition, the recent reorganization of the Division, including the merger of another group with the Division, is described, and the budget, personnel, models, and publications are reviewed. 95 refs., 26 figs., 2 tabs

  6. Onset of cell division in maize germination: action of auxins

    International Nuclear Information System (INIS)

    de Jimenez, E.S.; Baiza, A.; Aguilar, R.

    1987-01-01

    Seed germination implies metabolic reactivation, synthesis of macromolecules and onset of cell division. During maize germination, meristematic tissues of embryos re-initiate cell division asynchronically. Since auxins are known to stimulate cell division, they asked how auxins might regulate cell cycle re-initiation. Embryonic tissues were incubated with and without auxins. A pulse of either 3 H-thymidine or 32 P-ortophosphate was given to the tissues. Mitotic indexes were determined and % of labeled mitotic cells recorded. Results indicated that meristematic cells re-initiate cell division either from G 1 or G 2 phases. Auxin stimulated differentially the cell division process of these cells. 32 P incorporation into cytoplasmic or nucleic histones was measured. Auxins stimulated this incorporation. Active turnover of histone phosphorylation occurred simultaneously to the cell division process. It is suggested that auxins might regulate the cell cycle by phosphorylation-dephosphorylation of histones

  7. Comprehensive Review on Divisible Load Theory: Concepts, Strategies, and Approaches

    Directory of Open Access Journals (Sweden)

    Shamsollah Ghanbari

    2014-01-01

    Full Text Available There is extensive literature concerning the divisible load theory. The divisible load theory is mainly applied for scheduling in the area of distributed computing. It is based on the fact that the load can be divided into some arbitrarily independent parts, in which each part can be processed independently by a processor. This paper reviews the literature concerning the divisible load theory, while focusing on the details of the basic concepts, approaches, strategies, typologies, and open problems.

  8. Quality Management Plan for the Environmental Assessment and Innovation Division

    Science.gov (United States)

    Quality management plan (QMP) which identifies the mission, roles, responsibilities of personnel with regard to quality assurance and quality management for the environmental assessment and innovation division.

  9. Quantitative regulation of B cell division destiny by signal strength.

    Science.gov (United States)

    Turner, Marian L; Hawkins, Edwin D; Hodgkin, Philip D

    2008-07-01

    Differentiation to Ab secreting and isotype-switched effector cells is tightly linked to cell division and therefore the degree of proliferation strongly influences the nature of the immune response. The maximum number of divisions reached, termed the population division destiny, is stochastically distributed in the population and is an important parameter in the quantitative outcome of lymphocyte responses. In this study, we further assessed the variables that regulate B cell division destiny in vitro in response to T cell- and TLR-dependent stimuli. Both the concentration and duration of stimulation were able to regulate the average maximum number of divisions undergone for each stimulus. Notably, a maximum division destiny was reached during provision of repeated saturating stimulation, revealing that an intrinsic limit to proliferation exists even under these conditions. This limit was linked directly to division number rather than time of exposure to stimulation and operated independently of the survival regulation of the cells. These results demonstrate that a B cell population's division destiny is regulable by the stimulatory conditions up to an inherent maximum value. Division destiny is a crucial parameter in regulating the extent of B cell responses and thereby also the nature of the immune response mounted.

  10. ADP Analysis project for the Human Resources Management Division

    Science.gov (United States)

    Tureman, Robert L., Jr.

    1993-01-01

    The ADP (Automated Data Processing) Analysis Project was conducted for the Human Resources Management Division (HRMD) of NASA's Langley Research Center. The three major areas of work in the project were computer support, automated inventory analysis, and an ADP study for the Division. The goal of the computer support work was to determine automation needs of Division personnel and help them solve computing problems. The goal of automated inventory analysis was to find a way to analyze installed software and usage on a Macintosh. Finally, the ADP functional systems study for the Division was designed to assess future HRMD needs concerning ADP organization and activities.

  11. Radix-16 Combined Division and Square Root Unit

    DEFF Research Database (Denmark)

    Nannarelli, Alberto

    2011-01-01

    Division and square root, based on the digitrecurrence algorithm, can be implemented in a combined unit. Several implementations of combined division/square root units have been presented mostly for radices 2 and 4. Here, we present a combined radix-16 unit obtained by overlapping two radix-4...... result digit selection functions, as it is normally done for division only units. The latency of the unit is reduced by retiming and low power methods are applied as well. The proposed unit is compared to a radix-4 combined division/square root unit, and to a radix-16 unit, obtained by cascading two...

  12. Radiochemistry Division annual progress report for 1976

    International Nuclear Information System (INIS)

    Iyer, R.H.

    1978-01-01

    An account of the work done in the Radiochemistry Division of the Bhabha Atomic Research Centre, Bombay, during the calendar year 1976 is given. Some of the major highlights are: (1) development of a technique LEADTRAP using lead as a tracer for determination of total uranium and plutonium in the accountability tank in the fuel reprocessing plants, (2) fabrication of a compact unit of each gamma absorptiometer, the acidity monitor and the calorimeter for in-line monitoring of fuel reprocessing streams, (3) design and fabrication of an annular neutron counter, and (4) participation in the international intercomparison experiments PAFEX-II for the determination of plutonium in dissolver solutions and the processing of Ge(Li) gamma spectra, both organised by the IAEA. (M.G.B.)

  13. 1998 Annual Report - Environmental Restoration Division

    International Nuclear Information System (INIS)

    Davis, L.B.

    1998-01-01

    This is a 1998 annual report for Environmental Restoration. Environmental Restoration's accomplishments were significant in 1998. The division, including its support organizations, completed one year without a lost time accident. It also met 111 enforceable agreement milestones on time, with more than 80% ahead of schedule. Funds used to meet these milestones were effectively utilized and $9.63 million in regulatory scope was added. Twelve new, innovative technologies were deployed, enabling ER to achieve significant progress on major field remediation projects, including: Remediation of 25 acres of radioactive burial ground; Removal of 1,300 batteries for recycling; Removal and safe storage of a radioactive underground tank; Extraction of 115,000 pounds of solvent; and Installation of 9 new recirculation wells and a second GeoSiphon Cell for additional removal of solvent Final Records of Decision were made for 9 base unit sites. No Further Action decisions were made for 61 additional sites

  14. Radiochemistry Division annual progress report for 1973

    International Nuclear Information System (INIS)

    Iyer, R.H.; Natarajan, P.R.

    1975-01-01

    The R and D work carried out in the Radiochemistry Division of the Bhabha Atomic Research Centre, Bombay, during 1973 is reported under the following topical headings : process chemistry (of transuranic elements), radioanalytical chemistry and services, chemical quality control of Pu fuels, heavy element chemistry, nuclear chemistry and instrumentation. The major highlights are : preparation of 238 Pu, non-destructive estimation of Pu by X-ray fluorescence and gamma counting, determining impurities in trace amounts in uranium and plutonium fuels, determination of solubility of PuF 3 in molten fluoride mixtures as a part of the chemical development programme for the molten salt reactor concept, studies on correlation between average total kinetic energy, fission asymmetry and shell structure. (M.G.B.)

  15. Protecting safeguards information / Division of technical support

    International Nuclear Information System (INIS)

    2002-01-01

    This DVD contains two films representing the key aspects of the IAEA Department of Safeguards. 'Protecting Safeguards Information' is a narrative/fiction film which presents the Agency's information handling and protection measures. A security representative from a fictional nation receives a briefing on the procedures and methods used by the Department. These techniques will assure member states that the information they provide to the Agency is kept safe and confidential. 'Division of Technical Support' is a non-fiction documentary which presents a detailed look at the technical capabilities and management techniques used by the Agency in nuclear material accountancy. The film covers many aspects of safeguards equipment and techniques including: NDA and DA instruments, seals, surveillance, training, development and maintenance. Taken together, these films provide an introduction and overview to many important aspects of the IAEA Department of Safeguards. (IAEA)

  16. Neutron interference by division of wave front

    International Nuclear Information System (INIS)

    Klein, A.G.; Kearney, P.D.; Opat, G.I.; Cimmimo, A.

    1981-01-01

    The highly successful perfect cyrstal neutron interferometer of the type first developed by Bonse and Rauch exhibits interference by amplitude division. It relies on dynamical Bragg diffraction in a highly perfect single crystal to provide the beamsplitting. This type of interferometer, topologically analogous to the Nach-Zehnder interferometer of classical optics, has been employed in a variety of interesting experiments using thermal neutrons. Its shortcomings, however, are its extreme sensitivity to mechanical and thermal disturbances, and its applicability only to wavelegths shorter than the Bragg cutoff (6.27 Angstrom in silicon). The authors discuss a novel type of neutron interferometer which was constructed and tested employing a split cylindrical zone plate with neutrons of 20 Angstrom wavelength. Its performance and relative merits are discussed

  17. Translational Control of Cell Division by Elongator

    Directory of Open Access Journals (Sweden)

    Fanelie Bauer

    2012-05-01

    Full Text Available Elongator is required for the synthesis of the mcm5s2 modification found on tRNAs recognizing AA-ending codons. In order to obtain a global picture of the role of Elongator in translation, we used reverse protein arrays to screen the fission yeast proteome for translation defects. Unexpectedly, this revealed that Elongator inactivation mainly affected three specific functional groups including proteins implicated in cell division. The absence of Elongator results in a delay in mitosis onset and cytokinesis defects. We demonstrate that the kinase Cdr2, which is a central regulator of mitosis and cytokinesis, is under translational control by Elongator due to the Lysine codon usage bias of the cdr2 coding sequence. These findings uncover a mechanism by which the codon usage, coupled to tRNA modifications, fundamentally contributes to gene expression and cellular functions.

  18. Biology and Medicine Division annual report, 1985

    International Nuclear Information System (INIS)

    1986-04-01

    This book briefly describes the activities of the Biology and Medicine Division of the Lawrence Berkeley Laboratory. During the past year the Donner Pavilion program on the treatment of arteriovenous malformations in the brain has chalked up very significant successes. The disease control rate has been high and objective measures of success using cerebral angiography have been established. The new high resolution positron emitting tomographic imager has been demonstrated to operate successfully. In the Radiation Biophysics program, the availability of higher mass ions up to uranium has allowed us cell and tissue studies in a radiation domain that is entirely new. Using uranium beams, investigators have already made new and exciting findings that are described in the body of the report

  19. Annual report of the Nuclear Physics Division

    International Nuclear Information System (INIS)

    Ramamurthy, V.S.; Rao, K.R.P.M.

    1974-01-01

    The various activities of the Nuclear Physics Division of the Bhabha Atomic Research Centre, India, during the year 1973 are reported. The main research programme, centred around the 5.5 meV Van-de-Graaff accelerator at Trombay, planning of the proposed experiments with the Variable Energy Cyclotron at Calcutta, expected to go into operation soon, experiments in fission physics involving multiparameter studies of spontaneous and neutron induced fission, etc. are described in detail. Apart from the advanced studies in X-ray and neutron diffraction, neutron scattering in solids and liquids, attempts have been made to use these techniques for the understanding of the geometrical structures of many biologically significant molecules, the magnetic structures of technologically important materials like ferrites and the dynamics of condensed media. Experiments with (1) the Fast Critical Facility, (2) Purnima and (3) the development of X-ray fluorescence spectrometer and the neutron radiography facility are also explained. (K.B.)

  20. On Secure Two-Party Integer Division

    DEFF Research Database (Denmark)

    Dahl, Morten; Ning, Chao; Toft, Tomas

    2012-01-01

    {\\mathcal{O}}(\\ell)$ arithmetic operations on encrypted values (secure addition and multiplication) in $\\ensuremath{\\mathcal{O}}(1)$ rounds. This is the most efficient constant-rounds solution to date. The second protocol requires only $\\ensuremath{\\mathcal{O}} \\left( (\\log^2 \\ell)(\\kappa + \\operatorname{loglog} \\ell) \\right......We consider the problem of secure integer division: given two Paillier encryptions of ℓ-bit values n and d, determine an encryption of $\\lfloor \\frac{n}{d}\\rfloor$ without leaking any information about n or d. We propose two new protocols solving this problem. The first requires $\\ensuremath......)$ arithmetic operations in $\\ensuremath{\\mathcal{O}}(\\log^2 \\ell)$ rounds, where κ is a correctness parameter. Theoretically, this is the most efficient solution to date as all previous solutions have required Ω(ℓ) operations. Indeed, the fact that an o(ℓ) solution is possible at all is highly surprising....

  1. Accepting the Other: Different Division Expression

    Directory of Open Access Journals (Sweden)

    Pedro Paulo Scandiuzzi

    2010-02-01

    Full Text Available This article describes some experiences in my work close to the forest indigenous people of Brazil and these descriptions are possible because ethnomathematics´s theory is based in Paulo Freire´s method and anthropology. Gathered at an indigenous people‘s meeting point, I gave some classes on mathematics teacher pre-service education to a group of 19 people with 13 different languages. I began the didactic work with drawings and observed different drawings associated with people of different languages. This article showsrepresentational differences in the algorithm of division. The representations, combined with idiom, myth, and affect, combine to illustrate cultural influences in mathematical education. This demonstrates the need for teachers in classrooms to be aware of people of different languages and cultures. Teachers need to be sensitive and respectful of linguistic and cultural difference, and to demonstrate solidarity, cooperation, and respect towards different students. A new posture in mathematical teaching is implied.

  2. Biology and Medicine Division annual report, 1985

    Energy Technology Data Exchange (ETDEWEB)

    1986-04-01

    This book briefly describes the activities of the Biology and Medicine Division of the Lawrence Berkeley Laboratory. During the past year the Donner Pavilion program on the treatment of arteriovenous malformations in the brain has chalked up very significant successes. The disease control rate has been high and objective measures of success using cerebral angiography have been established. The new high resolution positron emitting tomographic imager has been demonstrated to operate successfully. In the Radiation Biophysics program, the availability of higher mass ions up to uranium has allowed us cell and tissue studies in a radiation domain that is entirely new. Using uranium beams, investigators have already made new and exciting findings that are described in the body of the report.

  3. Radiochemistry Division annual progress report: 1986

    International Nuclear Information System (INIS)

    Datta, T.

    1988-01-01

    Research and Development (R and D) activities of the Radiochemistry Division of Bhabha Atomic Research Centre, Bombay during 1986 are reported. Some of the highlights of these activities are solvent extraction studies on U(VI) and trivalent Am, Cm and Cf, low energy and medium energy fission of actinides, nuclear reactions on 197 Au, perturbed angular correlation studies on polymerisation of Hf(IV) and EPR studies on Am doped BaCO 3 , SrSO 4 and LiKSO 4 . Investigations on the complexation, hydrolysis and speciation of Am(III) in phosphate and carbonate media have been carried out with a view to understanding the behaviour of Am ions in natural and waste water systems. The angular momentum studies have shown that fission fragment angular momentum increases with increasing excitation energy and angular momentum of the fissioning due to coupling of various collective rotational degrees of freedom. Angular distribution studies have shown that asymmetric mode fragments have higher anisotropy compared to the symmetric mode fragments due to extended saddle point shape and hence larger effective moment of inertia. Studies on alpha induced nuclear reaction on 197 Au have provided evidence for non-equilibrium particle emission process as against the expected compound nucleus mechanism. EPR and TSL studies on actinide doped solids have shown stabilisation of radicals produced on irradiations as well as provided evidence for chemically induced dynamic nuclear polarization. At the end of the report, a list of publications of the staff members of the Division during the report is given. These publications include journal articles, conference paper and technical reports. (Orig.)

  4. Biennial activity report of the Division for PIE and NDT Development [for years] 1989-1990

    International Nuclear Information System (INIS)

    Babu Rao, C.; Shyamsunder, M.T.; Murugan, S.; Ramabathiran, A.; Rajagopalan, C.; Bhattacharya, D.K.; Kumar, P.V.; Kalyanasundaram, P.; Kasiviswanathan, K.V.

    1992-01-01

    This is the first biennial report of the Division for Post-Irradiation Examination and Non-Destructive Testing (DPEND) of the Indira Gandhi Centre for Atomic Research, Kalpakkam. It covers the research and development (R and D) activities of the Division during 1989 and 1990. The R and D activities of the Division are both multidisciplinary and interdisciplinary. The principal areas of R and D of DPEND are post-irradiation examination of fuel and structural materials, irradiation experiments, non-destructive evaluation for material characterisation, quality assurance and inservice inspection, failure investigations, remote technology etc. These R and D activities are reported in the form of extended summaries arranged under the headings: research and development in non-destructive evaluation, material characterisation, instrumentation, development of techniques, software development, mechanical equipment and systems (development and commissioning), inspections, and failure analysis. Some of the highlights of these activities are : (1)setting up of a radio metallurgy laboratory with hot cells with recirculating nitrogen gas environment to facilitate post-irradiation examination of the carbide fuel of the Fast Breeder Test Reactor. (FBTR), (2) development of the remote milling and drilling machine and development of pressurised capsules for irradiation creep measurement experiments in FBTR, (b) fabrication of non-destructive testing (NDT) reference standards with controlled defects for use in Nuclear Fuel Complex, Hyderabad. There are a number of appendices listing publications, conference paper, invited talks, internal reports etc. by the scientists of the Division and also awards/prizes won by the scientists. A staff-chart of the Division is also given. (M.G.B.)

  5. Investigation into constant envelope orthogonal frequency division multiplexing for polarization-division multiplexing coherent optical communication

    Science.gov (United States)

    Li, Yupeng; Ding, Ding

    2017-09-01

    Benefiting from the high spectral efficiency and low peak-to-average power ratio, constant envelope orthogonal frequency division multiplexing (OFDM) is a promising technique in coherent optical communication. Polarization-division multiplexing (PDM) has been employed as an effective way to double the transmission capacity in the commercial 100 Gb/s PDM-QPSK system. We investigated constant envelope OFDM together with PDM. Simulation results show that the acceptable maximum launch power into the fiber improves 10 and 6 dB for 80- and 320-km transmission, respectively (compared with the conventional PDM OFDM system). The maximum reachable distance of the constant envelope OFDM system is able to reach 800 km, and even 1200 km is reachable if an ideal erbium doped fiber amplifier is employed.

  6. Earth Sciences Division, collected abstracts-1977. [Research programs

    Energy Technology Data Exchange (ETDEWEB)

    Quitiquit, W.A.; Ledbetter, G.P.; Henry, A.L.

    1978-05-24

    This report is a compilation of abstracts of papers, internal reports, and talks presented during 1977 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore Laboratory. It is arranged alphabetically by author and includes a cross-reference by subject indicating the areas of research interest of the Earth Sciences Division.

  7. The marital dynamics of conflict over the division of labor

    NARCIS (Netherlands)

    Kluwer, E.S.; Heesink, J.A.M.; Van de Vliert, E.

    The division of labor as a source of conflict is a concern for many couples. This study goes beyond the mere prediction of the amount of marital conflict by scrutinizing the relationship between spouses' discontent with the division of labor, their conflict interaction patterns, and subsequent

  8. Isotope and Nuclear Chemistry Division annual report, FY 1988

    International Nuclear Information System (INIS)

    1989-06-01

    This report describes some of the major research and development programs of the Isotope and Nuclear Chemistry Division during FY 1988. The report includes articles on weapons chemistry, biochemistry and nuclear medicine, nuclear structure and reactions, and the INC Division facilities and laboratories

  9. Nuclear Science Division, 1995--1996 annual report

    International Nuclear Information System (INIS)

    Poskanzer, A.M.

    1997-02-01

    This report describes the activities of the Nuclear Science Division (NSD) for the two-year period, January 1, 1995 to January 1, 1997. This was a time of major accomplishments for all research programs in the Division-many of which are highlighted in the reports of this document

  10. Plant cortical microtubule dynamics and cell division plane orientation

    NARCIS (Netherlands)

    Chakrabortty, Bandan

    2017-01-01

    This thesis work aimed at a better understanding of the molecular basis of oriented cell division in plant cell. As, the efficiency of plant morphogenesis depends on oriented cell division, this work should contribute towards a fundamental understanding of the molecular basis of efficient plant

  11. H-Division quarterly report, April--June 1976

    International Nuclear Information System (INIS)

    1976-01-01

    The purview of H-Division is the mechanics of fluids and solid bodies. Concise status reports of the projects undertaken by the various groups in the division are given. Representative topics studied include equations of state of various materials, fracture mechanics, penetration of armor by projectiles, turbulence generation, and the development of dynamics computer codes. 31 figures, 2 tables

  12. Ploidy-Dependent Unreductional Meiotic Cell Division in Polyploid Wheat

    Science.gov (United States)

    Meiosis includes one round of DNA replication and two successive nuclear divisions, i.e. meiosis I (reductional) and meiosis II (equational). This specialized cell division reduces chromosomes in half and generates haploid gametes in sexual reproduction of eukaryotes. It ensures faithful transmiss...

  13. 28 CFR 3.2 - Assistant Attorney General, Criminal Division.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Assistant Attorney General, Criminal... Attorney General, Criminal Division. The Assistant Attorney General, Criminal Division, is authorized to exercise the power and authority of and to perform the functions vested in the Attorney General by the Act...

  14. Adaptive pole placement: the division by zero problem

    NARCIS (Netherlands)

    Arent, Krzysztof; Arent, K.; Polderman, Jan W.; Mareels, I.M.Y.; Mareels, Iven

    1995-01-01

    We re-examine the division by zero problem which occurs in certainty equivalence based indirect adaptive control algorithms applied to linear systems. By exploiting a parametrization for linear systems induced by the continued fraction description of its transfer function, the division by zero

  15. The origin of the division between Middle Platonism and Neoplatonism

    DEFF Research Database (Denmark)

    Catana, Leo

    2013-01-01

    The division of Ancient Platonism into Middle Platonism and Neoplatonism is a fairly new one. The conceptual foundation of this division was cemented in Jacob Brucker’s pioneering Historia critica philosophiae (1742-44). In the 1770s and 1780s, the term ‘Neoplatonism’ was coined on the basis of B...

  16. 78 FR 16620 - Airworthiness Directives; Pratt & Whitney Division Turbofan Engines

    Science.gov (United States)

    2013-03-18

    ... Division Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... Division (PW) turbofan engine models PW4074, PW4074D, PW4077, PW4077D, PW4084D, PW4090, and PW4090-3 with a... proposed AD. Discussion We propose to adopt a new AD for all PW turbofan engine models PW4074, PW4074D...

  17. 77 FR 23637 - Airworthiness Directives; Pratt & Whitney Division Turbofan Engines

    Science.gov (United States)

    2012-04-20

    ... Airworthiness Directives; Pratt & Whitney Division Turbofan Engines AGENCY: Federal Aviation Administration (FAA... directive (AD) for certain Pratt & Whitney Division PW4000-94'' and PW4000-100'' turbofan engines having a...-flight engine shutdowns, in certain PW4000-94'' and PW4000-100'' turbofan engines. Pratt & Whitney's...

  18. 77 FR 16967 - Airworthiness Directives; Pratt & Whitney Division Turbofan Engines

    Science.gov (United States)

    2012-03-23

    ... Division Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed..., PW4164C, PW4164C/B, PW4168, and PW4168A turbofan engines with certain high- pressure turbine (HPT) stage 1...) Applicability This AD applies to the following Pratt & Whitney Division turbofan engines: (1) PW4052, PW4152...

  19. 77 FR 54791 - Airworthiness Directives; Pratt & Whitney Division Turbofan Engines

    Science.gov (United States)

    2012-09-06

    ... Airworthiness Directives; Pratt & Whitney Division Turbofan Engines AGENCY: Federal Aviation Administration (FAA... & Whitney Division PW4000-94'' and PW4000-100'' turbofan engines having a 1st stage high-pressure turbine... AD will affect 446 P&W PW4000-94'' and PW4000-100'' turbofan engines installed on airplanes of U.S...

  20. 77 FR 57007 - Airworthiness Directives; Pratt & Whitney Division Turbofan Engines

    Science.gov (United States)

    2012-09-17

    ... Airworthiness Directives; Pratt & Whitney Division Turbofan Engines AGENCY: Federal Aviation Administration (FAA... turbofan engines. That AD currently requires initial and repetitive fluorescent penetrant inspections (FPI... applies to the following Pratt & Whitney Division (Pratt & Whitney) turbofan engines: (1) PW4000-94...

  1. 77 FR 51459 - Airworthiness Directives; Pratt & Whitney Division Turbofan Engines

    Science.gov (United States)

    2012-08-24

    ... Airworthiness Directives; Pratt & Whitney Division Turbofan Engines AGENCY: Federal Aviation Administration (FAA..., PW4460, PW4462, PW4164, PW4164C, PW4164C/B, PW4168, and PW4168A turbofan engines with certain high... ADs None. (c) Applicability This AD applies to the following Pratt & Whitney Division turbofan engines...

  2. The exp-normal distribution is infinitely divisible

    OpenAIRE

    Pinelis, Iosif

    2018-01-01

    Let $Z$ be a standard normal random variable (r.v.). It is shown that the distribution of the r.v. $\\ln|Z|$ is infinitely divisible; equivalently, the standard normal distribution considered as the distribution on the multiplicative group over $\\mathbb{R}\\setminus\\{0\\}$ is infinitely divisible.

  3. High energy physics division semiannual report of research activities

    International Nuclear Information System (INIS)

    Schoessow, P.; Moonier, P.; Talaga, R.; Wagner, R.

    1991-08-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1991--June 30, 1991. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included

  4. Intuitions and Undefined Operations: The Cases of Division by Zero.

    Science.gov (United States)

    Tsamir, Pessia; Sheffer, Ruth; Tirosh, Dina

    2000-01-01

    Describes a study that explores secondary school students' conceptions of division by zero. Examines whether students identify expressions involving division by zero as undefined or tend to assign them numerical values. Studies students' justifications and analyzes the effects of age and level of achievement in mathematics on students' responses…

  5. Nuclear Science Division, 1995--1996 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Poskanzer, A.M. [ed.

    1997-02-01

    This report describes the activities of the Nuclear Science Division (NSD) for the two-year period, January 1, 1995 to January 1, 1997. This was a time of major accomplishments for all research programs in the Division-many of which are highlighted in the reports of this document.

  6. 5 CFR 831.641 - Division of a survivor annuity.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Division of a survivor annuity. 831.641... REGULATIONS (CONTINUED) RETIREMENT Survivor Annuities Eligibility § 831.641 Division of a survivor annuity. (a... annuities (not including any benefits based on an election of an insurable interest annuity) payable based...

  7. 5 CFR 842.613 - Division of a survivor annuity.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Division of a survivor annuity. 842.613... REGULATIONS (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Survivor Elections § 842.613 Division of a survivor annuity. (a) The maximum combined total of all current and former spouse annuities...

  8. Communicating Ocean Science at the Lower-Division Level

    Science.gov (United States)

    Coopersmith, A.

    2011-12-01

    Pacific Ocean Literacy for Youth, Publics, Professionals, and Scientists (POLYPPS) is an NSF-funded collaboration between the University of Hawai`i and the Center for Ocean Science Education Excellence (COSEE) - California, which is based at the Lawrence Hall of Science, University of California - Berkeley. One of the objectives of this project is to instutionalize ocean science communications courses at colleges and universities in Hawai`i. Although the focus of most of these communications courses has been on training graduate students and scientists, lower-division students interested in the ocean sciences are finding this background helpful. At the University of Hawai`i Maui College there are several marine science courses and certificate programs that require students to interact with the public through internships, research assistantships, and course-related service-learning projects. Oceanography 270, Communicating Ocean Science, is now offered to meet the needs of these students who engage with the public in informal educational settings. Other students who enroll in this course have a general interest in the marine environment and are considering careers in K-12 formal education. This course gives this group of students an opportunity to explore formal education by assisting classroom teachers and preparing and presenting problem-based, hands-on, inquiry activities. Employers at marine-related businesses and in the tourist industry have welcomed this course with a focus on communication skills and indicate that they prefer to hire local people with strong backgrounds in marine and natural sciences. A basic premise of POLYPPS is that science education must draw not only from the latest advances in science and technology but also from the cultural contexts in which the learners are embedded and that this will achieve increased understanding and stewardship of ocean environments. Students in Oceanography 270 integrate traditional Hawaiian knowledge into their

  9. Laser and Plasma Technology Division, Annual Reports 1996 and 1997

    International Nuclear Information System (INIS)

    Venkatramani, N.

    1999-04-01

    This report describes the activity of the Laser and Plasma Technology Division of Bhabha Atomic Research Centre during the two year period 1996- 1997. This division is engaged in the research and development of high power beams mainly laser, plasma and electron beams. Laser and Plasma Technology Division has strived to establish indigenous capability to cater to the requirements of Department of Atomic Energy. This involves development and technology readiness study of laser, plasma and electron beam devices. In addition, studies are also carried out on related physical phenomenon with a view to gain better understanding of the devices. This report has been compiled from individual reports of various groups/sections working in the division. A list of publications by the several members of the division is also included. (author)

  10. Division of labour in the yeast: Saccharomyces cerevisiae.

    Science.gov (United States)

    Wloch-Salamon, Dominika M; Fisher, Roberta M; Regenberg, Birgitte

    2017-10-01

    Division of labour between different specialized cell types is a central part of how we describe complexity in multicellular organisms. However, it is increasingly being recognized that division of labour also plays an important role in the lives of predominantly unicellular organisms. Saccharomyces cerevisiae displays several phenotypes that could be considered a division of labour, including quiescence, apoptosis and biofilm formation, but they have not been explicitly treated as such. We discuss each of these examples, using a definition of division of labour that involves phenotypic variation between cells within a population, cooperation between cells performing different tasks and maximization of the inclusive fitness of all cells involved. We then propose future research directions and possible experimental tests using S. cerevisiae as a model organism for understanding the genetic mechanisms and selective pressures that can lead to the evolution of the very first stages of a division of labour. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Peptidoglycan architecture can specify division planes in Staphylococcus aureus.

    Science.gov (United States)

    Turner, Robert D; Ratcliffe, Emma C; Wheeler, Richard; Golestanian, Ramin; Hobbs, Jamie K; Foster, Simon J

    2010-06-15

    Division in Staphylococci occurs equatorially and on specific sequentially orthogonal planes in three dimensions, resulting, after incomplete cell separation, in the 'bunch of grapes' cluster organization that defines the genus. The shape of Staphylococci is principally maintained by peptidoglycan. In this study, we use Atomic Force Microscopy (AFM) and fluorescence microscopy with vancomycin labelling to examine purified peptidoglycan architecture and its dynamics in Staphylococcus aureus and correlate these with the cell cycle. At the presumptive septum, cells were found to form a large belt of peptidoglycan in the division plane before the centripetal formation of the septal disc; this often had a 'piecrust' texture. After division, the structures remain as orthogonal ribs, encoding the location of past division planes in the cell wall. We propose that this epigenetic information is used to enable S. aureus to divide in sequentially orthogonal planes, explaining how a spherical organism can maintain division plane localization with fidelity over many generations.

  12. Energy and Environmental Division annual report, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Case, C.W. (ed.)

    1976-01-01

    Separate entries were made for the nine main sections of the report. These sections deal with geosciences, controlled thermonuclear research, solar energy, chemical processes, engineering, energy use, instrumentation, environment, and energy analysis.

  13. Differences in strength and conditioning coach self-perception of leadership style behaviors at the National Basketball Association, Division I-A, and Division II levels.

    Science.gov (United States)

    Magnusen, Marshall J

    2010-06-01

    Leader behaviors have been found to vary by competitive level (6,9,11,26). Similar differences based on the competitive environment have been reported with strength coaches and their training emphases (15,28) but not their leadership style behaviors. This latter area is important to explore because strength coach leader behaviors may result in enhanced cooperation, improved communication, and improved athlete psychological and emotional well-being (14,23,25,27). Accordingly, the purpose of this study was to examine the differences in self-perceived leadership styles of National Basketball Association, Division I-A (DI-A) men's basketball, and Division II (DII) men's basketball strength and conditioning coaches. The self-perceived leadership styles of 145 men's basketball strength coaches (National Basketball Association [NBA]=22, DI-A=92, and DII=31) were obtained using the Revised Leadership Scale for Sport (26,41). Frequency data about demographics and training methods were also collected. No significant differences were reported for positive feedback. Otherwise, NBA strength coaches reported more democratic leadership style behaviors than DI-A strength coaches. Division I-A strength coaches were found to be more autocratic than NBA or DII strength coaches. Both NBA and DI-A strength coaches indicated a higher level of training and instruction than did DII strength coaches. National Basketball Association strength coaches also reported engaging in more situational and socially supportive leader behaviors than DI-A and DII strength coaches. Leader behaviors can positively and negatively impact an athlete (23); thus, strength coaches need to evaluate their competitive environment and reflect on the impact of their behaviors and how their approach to leading athletes may need to vary based on the situation.

  14. Physics Research Integrated Development Environment (PRIDE)

    International Nuclear Information System (INIS)

    Burton, J.; Cormell, L.

    1993-12-01

    Past efforts to implement a Software Engineering approach to High Energy Physics computing have been met with significant resistance and have been, in many cases, only marginally successful. At least a portion of the problem has been the Lick of an integrated development environment, tailored to High Energy Physics and incorporating a suite of Computer Aided Software Engineering tools. The Superconducting Super Collider Physics Research Division Computing Department is implementing pilot projects to develop just such an environment

  15. Biological effect of aerospace environment on alfalfa

    International Nuclear Information System (INIS)

    Zhang Yuexue; Liu Jielin; Han Weibo; Tang Fenglan; Hao Ruochao; Shang Chen; DuYouying; Li Jikai; Wang Changshan

    2009-01-01

    The biological effect of aerospace environment on two varieties of Medicago sativa L. was studied. In M 1 germination results showed that aerospace environment increased cell division and the number of micronucleus, changed germination rate, caused seedling aberrations. Cytogenetical and seedling aberration of Zhaodong showed more sensitivity than Longmu 803. Branches and fresh weight of Zhaodong had shown more serious damage than control and Longmu 803. (authors)

  16. Nuclear Power and Safety Division activity

    International Nuclear Information System (INIS)

    Pazdera, F.

    1991-01-01

    History of the Division is briefly described. Present research is centered on reliability analyses and thermal hydraulic analyses of transients and accidents. Some results of the safety analyses have been applied at nuclear power plants. A characterization is presented of computer codes for analyzing the behavior of fuel in normal and accident conditions. Research activities in the field of water chemistry and corrosion are oriented to the corrosion process at high temperatures and high pressures, and the related mass and radioactivity transfer; the effect of some chemical processes on primary coolant circuit materials; optimization of PWR filtration systems; and the development of the requisite monitoring instrumentation. A computerized operator support system has been developed, and at present it is tested at the Dukovany nuclear power plant. A program of nuclear fuel cycle strategy and economy has been worked out for nuclear fuel performance evaluation. Various options for better fuel exploitation, alternatives for advanced fuelling, and fuel cycle costs are assessed, and out-of-reactor fuel cycle options are compared. (M.D.). 7 refs., 32 refs

  17. Resource Management in the Microgravity Science Division

    Science.gov (United States)

    Casselle, Justine

    2004-01-01

    In the Microgravity Science Division, the primary responsibilities of the Business Management Office are resource management and data collection. Resource management involves working with a budget to do a number of specific projects, while data collection involves collecting information such as the status of projects and workforce hours. This summer in the Business Management Office I assisted Margie Allen with resource planning and the implementation of specific microgravity projects. One of the main duties of a Project Control Specialists, such as my mentor, is to monitor and analyze project manager s financial plans. Project managers work from the bottom up to determine how much money their project will cost. They then set up a twelve month operating plan which shows when money will be spent. I assisted my mentor in checking for variances in her data against those of the project managers. In order to successfully check for those variances, we had to understand: where the project is including plans vs. actual performance, why it is in its present condition, and what the future impact will be based on known budgetary parameters. Our objective was to make sure that the plan, or estimated resources input, are a valid reflection of the actual cost. To help with my understanding of the process, over the course of my tenure I had to obtain skills in Microsoft Excel and Microsoft Access.

  18. Laser Division report 1986-89

    International Nuclear Information System (INIS)

    Monga, J.C.

    1995-01-01

    This report is a technical account of the scientific R and D activities pursued by the Laser Division of the Bhabha Atomic Research Centre during 1986-89. It covers in considerable detail, progress made in all the activities undertaken during that period in laser development and their application. The most important among them was the development of the 1 kJ glass laser. Studies of laser produced plasmas were pursued using a smaller 50 J chain and at different stages of development of the 1 kJ chain. Significant results of plasma instabilities and x-ray spectroscopic studies are reported. Several plasma diagnostic tools developed are also described which studied plasmas, radiation transport, and ablation induced shocks. Studies were also conducted on the performance of dye lasers during their development. Development of several CO 2 lasers, cw, pulsed, hybrid and wavelength turned/stabilized, have been described and their performance evaluated. Development and performance of a 16μ CF 4 laser is also given. An electron beam controlled CO 2 laser design is reported. (author). refs., figs., tabs

  19. Radiochemistry Division: annual progress report for 1980

    International Nuclear Information System (INIS)

    Jayadevan, N.C.; Manohar, S.B.

    1982-01-01

    The research and development (R and D) activities of the Radiochemistry Division of the Bhabha Atomic Research Centre (BARC), Bombay, during 1980 are reported in the form of individual summaries under the headings: reactor chemistry, heavy element chemistry, process chemistry (of actinides), nuclear chemistry and instrumentation. Some of the highlights of the R and D activities are: (1) setting up of the facilities for the prepa.ration of (U,Pu)O 2 microspheres by sot-gel process on laboratory scale, (2) studies on synergistic extraction of Am, Cm, Bk, Cf, Th(IV), Np(IV) and Pu(IV) with mixtures of TTA and oxodonor6s like TBP, (3) kinetics of radiation induced oxidation of Pu(IV) and that of reduction of Pu(VII), (4) determination of fission yields of 138 Xe, 139 Cs, 252 Cf and 229 Th, (5) measuring of gamma ray abundance of 229 Th and isotopic ratios in thorium and plutonium and (6) design and fabrication of an osmistor for the determination of the molecular weight of actinide complexes. A list of papers published in journals and papers presented at conference/symposia during the year is also given. (M.G.B.)

  20. Division of information and quantum sciences

    International Nuclear Information System (INIS)

    2016-01-01

    The advent of the digital society where tremendous amount of information is electronically accessible has brought the intelligent information processing technologies indispensable. This division consists of seven departments; Information Science Departments (Knowledge Science, Intelligent Media, Architecture for Intelligence, Reasoning for Intelligence), Quantum Science Departments (Photonic and Electronic Materials, Semiconductor Electronics, and Advanced Electron Devices. The former four and the latter three departments aim to establish fundamental techniques to support the advanced digital society in terms of software and hardware technologies respectively. The departments on the former software technologies work on the task of computerizing the intelligent human information processing capability to help solving difficult engineering problems and assist intellectual activities. The departments on the latter hardware technologies pursue various approaches in the fields of electronic materials design and tailoring, surface physics, nanometer scale materials fabrication and characterization, semiconductor nanostructures for quantum devices, semiconductor-based new bio/chemical sensors, organic materials and biomolecules. We challenge to output world-widely significant achievements under our systematic cooperation, and further collaborate with researchers of domestic and overseas universities, research institutes and private companies. Moreover, we educate many graduate students belonging to Graduate School of Science (Department of Physics), Graduate School of Engineering (Department of Electrical, Electronic and Information Engineering, Department of Applied Physics), Graduate School of Engineering Science (Department of Materials Engineering Science), and Graduate School of Information Science and Technology (Department of Computer Science, Department of Information and Physical Sciences) under the aim to grow young researchers having both advanced knowledge and

  1. Radiochemistry Division: Annual progress report for 1981

    International Nuclear Information System (INIS)

    Jayadevan, N.C.; Manohar, S.B.

    1983-01-01

    The progress report of the Radiochemistry Division of Bhabha Atomic Research Centre presents the research and development work carried out during 1981 in the form of individual summaries arranged under the headings: reactor fuel chemistry, heavy element chemistry, radioanalytical chemistry, and nuclear chemistry. Some of the highlights of the work are: (1) modification of the gelation set-up for making plutonium containing gel particles to get better yields of (U,Pu)O 2 containing up to 15% of plutonium, (2) studies on solvent extraction of Am(III), Cm(III), Bk(III) and Cf(III) by 1-phenyl-2-methyl-4-benzoyl pyrazolone-5 (HPMBP), (3) study of the radiation chemistry and photochemistry of aqueous solutions of plutonium, (4) study of crystal structure of uranyl oxalate and sulphates, (5) ESR study, thermoluminescence and spectral studies of americium doped SrSO 4 , phosphors, (6) determination of uranium and plutonium by spectrophotometry, mass spectroscopy and alpha spectroscopy, (7) determination of isotopic ratios of plutonium isotopes by gamma spectroscopy, (8) studies on several aspects of fission chemistry of 229 Th and 252 Cf, and (9) fabrication of a neutron well coincidence counter. (M.G.B.)

  2. APDAS : Applied Physics Division analytical services

    International Nuclear Information System (INIS)

    1989-01-01

    Applied Physics Division Analytical Services (APDAS) is a new initiative within the Australian Nuclear Science and Technology Organization. Because of its background and achievements in high-tech research, APDAS can provide solutions to many of the problems that arise in Australian industries. One of the facilities available to APDAS is a positive ion particle accelerator. This enables any positive ion in a gaseous medium to be accelerated to energies ranging from a few hundred thousand to three million electron volts for single charge states. Ion beams can be stead-state or pulsed with pulse durations as low as three nanoseconds. Target preparation and fully automated data recording are also available. Accelerator-based services, presently available are outlined in 7 separate leaflets, briefly describing the techniques, particular applications, typical costs and availability. These include : surface analysis and depth profiling using ion beams; standard neutron irradiation facility (SNIF); soil-moisture determination; hydrogen analysis neutron radiography; adsorbed dose calibration standards; gas phase enrichment monitor; 18 O analysis. 26 figs

  3. Comparison of Concussion Rates Between NCAA Division I and Division III Men's and Women's Ice Hockey Players.

    Science.gov (United States)

    Rosene, John M; Raksnis, Bryan; Silva, Brie; Woefel, Tyler; Visich, Paul S; Dompier, Thomas P; Kerr, Zachary Y

    2017-09-01

    Examinations related to divisional differences in the incidence of sports-related concussions (SRC) in collegiate ice hockey are limited. To compare the epidemiologic patterns of concussion in National Collegiate Athletic Association (NCAA) ice hockey by sex and division. Descriptive epidemiology study. A convenience sample of men's and women's ice hockey teams in Divisions I and III provided SRC data via the NCAA Injury Surveillance Program during the 2009-2010 to 2014-2015 academic years. Concussion counts, rates, and distributions were examined by factors including injury activity and position. Injury rate ratios (IRRs) and injury proportion ratios (IPRs) with 95% confidence intervals (CIs) were used to compare concussion rates and distributions, respectively. Overall, 415 concussions were reported for men's and women's ice hockey combined. The highest concussion rate was found in Division I men (0.83 per 1000 athlete-exposures [AEs]), followed by Division III women (0.78/1000 AEs), Division I women (0.65/1000 AEs), and Division III men (0.64/1000 AEs). However, the only significant IRR was that the concussion rate was higher in Division I men than Division III men (IRR = 1.29; 95% CI, 1.02-1.65). The proportion of concussions from checking was higher in men than women (28.5% vs 9.4%; IPR = 3.02; 95% CI, 1.63-5.59); however, this proportion was higher in Division I women than Division III women (18.4% vs 1.8%; IPR = 10.47; 95% CI, 1.37-79.75). The proportion of concussions sustained by goalkeepers was higher in women than men (14.2% vs 2.9%; IPR = 4.86; 95% CI, 2.19-10.77), with findings consistent within each division. Concussion rates did not vary by sex but differed by division among men. Checking-related concussions were less common in women than men overall but more common in Division I women than Division III women. Findings highlight the need to better understand the reasons underlying divisional differences within men's and women's ice hockey and the

  4. An examination of the stretching practices of Division I and Division III college football programs in the midwestern United States.

    Science.gov (United States)

    Judge, Lawrence W; Craig, Bruce; Baudendistal, Steve; Bodey, Kimberly J

    2009-07-01

    Research supports the use of preactivity warm-up and stretching, and the purpose of this study was to determine whether college football programs follow these guidelines. Questionnaires designed to gather demographic, professional, and educational information, as well as specific pre- and postactivity practices, were distributed via e-mail to midwestern collegiate programs from NCAA Division I and III conferences. Twenty-three male coaches (12 from Division IA schools and 11 from Division III schools) participated in the study. Division I schools employed certified strength coaches (CSCS; 100%), whereas Division III schools used mainly strength coordinators (73%), with only 25% CSCS. All programs used preactivity warm-up, with the majority employing 2-5 minutes of sport-specific jogging/running drills. Pre stretching (5-10 minutes) was performed in 19 programs (91%), with 2 (9%) performing no pre stretching. Thirteen respondents used a combination of static/proprioceptive neuromuscular facilitation/ballistic and dynamic flexibility, 5 used only dynamic flexibility, and 1 used only static stretching. All 12 Division I coaches used stretching, whereas only 9 of the 11 Division III coaches did (p = 0.22). The results indicate that younger coaches did not use pre stretching (p = 0.30). The majority of the coaches indicated that they did use post stretching, with 11 of the 12 Division I coaches using stretching, whereas only 5 of the 11 Division III coaches used stretching postactivity (p = 0.027). Divisional results show that the majority of Division I coaches use static-style stretching (p = 0.049). The results of this study indicate that divisional status, age, and certification may influence how well research guidelines are followed. Further research is needed to delineate how these factors affect coaching decisions.

  5. Evolutionary dynamics of division of labor games with selfish agents

    Science.gov (United States)

    Zhang, Jianlei; Li, Qiaoyu; Zhang, Chunyan

    2017-11-01

    The division of labor is one of the most basic and widely studied aspects of collective behavior in natural systems. Studies of division of labor are concerned with the integration of the individual worker behavior into a colony level task organization and with the question of how the regulation of the division of labor may contribute to the colony efficiency. This paper investigates the evolution of the division of labor with three strategies by employing the evolutionary game theory. Thus, these available strategies are, respectively, strategy A (performing task A), strategy B (performing task B), and strategy D (not performing any task but only free riding others' contributions). And, two typical networks (i.e., BA scale-free network and lattice network) are employed here for describing the interaction structure among agents. The theoretical analysis together with simulation results reveal that the division of labor can evolve and leads to players that differ in their tendency to take on a given task. The conditions under which the division of labor evolves depend on the costs for performing the task, the benefits led by performing the task, and the interaction structures among the players who are involved with division of labor games.

  6. Energy Division progress report, fiscal years 1994--1995

    Energy Technology Data Exchange (ETDEWEB)

    Moser, C.I. [ed.

    1996-06-01

    At ORNL, the Energy Division`s mission is to provide innovative solutions to energy and related issues of national and global importance through interdisciplinary research and development. Its goals and accomplishments are described in this progress report for FY 1994 and FY 1995. The Division`s expenditures in FY 1995 totaled 44.9 million. Sixty percent of the divisions work was supported by the US DOE. Other significant sponsors include the US DOT, the US DOD, other federal agencies, and some private organizations. The Division`s programmatic activities cover three main areas: (1) analysis and assessment, (2) transportation systems, and (3) energy use and delivery technologies. Analysis and assessment activities involve energy and resource analysis, preparation of environmental assessments and impact statements, and impact statements, research on emergency preparedness, analysis of energy and environmental needs in developing countries, and transportation analysis. Transportation systems research seeks to improve the quality of both civilian and military transportation efforts. Energy use and delivery technologies focus on building equipment, building envelopes, (walls, roofs, attics, and materials), improvement of energy efficiency in buildings, and electric power systems.

  7. Lead from the center. How to manage divisions dynamically.

    Science.gov (United States)

    Raynor, M E; Bower, J L

    2001-05-01

    Conventional wisdom holds that a company's divisions should be given almost total autonomy--especially under conditions of uncertainty--because they are closer to emerging technologies, customers, and competitors than corporate headquarters could ever be. But research from Michael Raynor and Joseph Bower suggests that the corporate office should be more, not less, directive in turbulent markets. Rapid changes in an industry make it difficult to predict where and when synergies among divisions might emerge. With so many possibilities and such uncertainty, companies can't afford to sacrifice their ability to flexibly execute business strategy. Corporate headquarters must play an active role in defining the scope of division-level strategy, the authors say, so that divisions do not act in ways that undermine opportunities to collaborate in the future. But neither can companies afford to sacrifice the competitiveness of their divisions as stand-alone businesses. In creating corporate-level strategic flexibility, a corporate office must balance the need for divisional autonomy now with the potential need for cooperation in the future. Through an examination of four corporations--Sprint, WPP, Teradyne, and Viacom--the authors challenge traditional approaches to diversification in which a company's divisions are either related (they share resources and collaborate) or unrelated (they compete for resources and operate as stand-alone businesses). They argue that companies should adopt a dynamic approach to cooperation among divisions, enabling varying degrees of relatedness between divisions depending on strategic circumstances. The authors offer four tactics to help executives manage divisions dynamically.

  8. Environmental Sciences Division Groundwater Program Office

    International Nuclear Information System (INIS)

    1993-01-01

    This first edition of the Martin Marietta Energy Systems, Inc., (Energy Systems) Groundwater Program Annual Report summarizes the work carried out by the Energy Systems GWPO for fiscal year (FY) 1993. This introductory section describes the GWPO's staffing, organization, and funding sources. The GWPO is responsible for coordination and oversight for all components of the groundwater program at the three Oak Ridge facilities [ORNL, the Oak Ridge Y-12 Plant, and the Oak Ridge K-25 Site], and the PGDP and PORTS, respectively. Several years ago, Energy systems senior management recognized that the manner in which groundwater activities were conducted at the five facilities could result in unnecessary duplication of effort, inadequate technical input to decisions related to groundwater issues, and could create a perception within the regulatory agencies of a confusing and inconsistent approach to groundwater issues at the different facilities. Extensive interactions among management from Environmental Compliance, Environmental Restoration (ER), Environmental Sciences Division, Environmental Safety and Health, and the five facilities ultimately led to development of a net technical umbrella organization for groundwater. On April 25, 1991, the GWPO was authorized to be set up within ORNL thereby establishing a central coordinating office that would develop a consistent technical and administrative direction for the groundwater programs of all facilities and result in compliance with all relevant U.S. Environmental Protection Agency (EPA) regulations such as RCRA and Comprehensive Environmental Restoration, Compensation and Liability Act (CERCLA) as well as U.S. Department of Energy (DOE) regulations and orders. For example, DOE Order 5400.1, issued on November 9, 1988, called for each DOE facility to develop an environmental monitoring program for all media (e.g., air, surface water, and groundwater)

  9. Laboratory portrait: the Saclay nuclear physics division

    International Nuclear Information System (INIS)

    Alamanos, N.; Auger, F.

    2005-01-01

    The research activities of the nuclear physics division (SPHN) of DAPNIA (Cea) take place within strong national and international collaborations. Its programs cover a broad range of topics in nuclear physics from low to high energies, they include the structure and dynamics of the nucleus, the structure of the nucleon, the search for phase transitions in nuclear matter, and contribution to the development of nuclear energy. Concerning the structure of the nucleus, SPHN is involved in the study of the structure of light exotic nuclei such as He 6-8 , C 10-11 , Ne 27 and in the study of shape coexistence in Kr isotopes. The experiments are performed at GANIL. SPHN is also involved in the study of the structure of Md 251 through experiments made in Finland. Near-barrier and sub-barrier fusion of light unstable nuclei and their respective stable isotopes with U 238 targets are studied in Louvain-la-Neuve (Belgium). Concerning nuclear phase transitions, the purpose of our activities is twofold: the study of the liquid-gas phase transition in nuclei at relatively low incident energies and the search for the quark-gluon plasma (QGP) at very high energies. We look for QGP signatures in 2 experiments: Phenix with the accelerator RHIC at Bnl and Alice at the LHC (CERN). Concerning the structure of the nucleon, SPHN is involved in 2 experimental programs both using electromagnetic probes, one to obtain information on the spin carried by the gluons in the proton (Compass at CERN) and the other to extract information on generalized parton distributions by means of deeply virtual Compton scattering (Clas at Jlab). Concerning nuclear energy, the activities are focused along 3 main lines: spallation studies, neutron cross-section measurements and application oriented modeling. (A.C.)

  10. Radiochemistry Division : annual progress report for 1978

    International Nuclear Information System (INIS)

    Subramanian, M.S.; Satya Prakash

    1981-01-01

    The research and development (R and D) activities of the Radiochemistry Division of the Bhabha Atomic Research Centre (BARC), Bombay, during 1978 are reported in the form of individual summaries under the headings: reactor chemistry, heavy element chemistry, process chemistry, radioanalytical chemistry and services, nuclear chemistry, and instrumentation. Some of the highlights of the R and D activities are: (1) preparation of microspheres of uranium oxide and uranium-thorium oxides by sol-gel process, (2) study of vaporization thermodynamics of Th and U by transpiration and boiling techniques, (3) preparation and characterisation of uranium(III) sulphates and double sulphates by X-ray, thermal and infra-red analysis, (4) extraction of trivalent actinides and lanthanides by long chain amines from chloride solutions, (5) study of radiation chemical behaviour of U(VI) in hydrochloric acid and sulphuric acid media, (6) purification and concentration of neptunium by the primary and secondary amines, (7) development of gamma spectroscopic method for determination of isotopic composition of plutonium using low energy gamma rays of plutonium isotopes, (8) standardisation of method of determination of isotopic abundances of uranium at nanogram level by thermal ionisation mass spectroscopy, (9) extraction photometric determination of Pu(IV) and Np(IV) present in mixtures, (10) study of various aspects of nuclear fission such as charge distribution, mass distribution and fragment angular momentum in low energy fission of actinides, and (11) fabrication of: (a) spark counting unit for counting fission tracks in their plastic films, (b) autoranging alpha monitor to be used with fractionating column, (c) remote pipetter for use in hot cells and (d) a thermoluminescence unit for glovebox operation. (M.G.B.)

  11. 77 FR 65582 - Pfizer Therapeutic Research, Pfizer Worldwide Reasearch & Development Division, Formerly Known as...

    Science.gov (United States)

    2012-10-29

    ... Research, Pfizer Worldwide Reasearch & Development Division, Formerly Known as Warner Lambert Company... workers of Pfizer Therapeutic Research, Pfizer Worldwide Research & Development Division, formerly known... follows: All workers of Pfizer Therapeutic Research, Pfizer Worldwide Research & Development Division...

  12. 75 FR 45151 - National Security Division; Agency Information Collection Activities: Proposed Collection...

    Science.gov (United States)

    2010-08-02

    ... DEPARTMENT OF JUSTICE [OMB Number 1124-0006] National Security Division; Agency Information...), National Security Division (NSD), will be submitting the following information collection request to the..., 10th & Constitution Avenue, NW., National Security Division, Counterespionage Section/Registration Unit...

  13. Biennial activity report of Metallurgy Division for 1989 and 1990

    International Nuclear Information System (INIS)

    Kamachi Mudali, U.; Muraleedharan, P.; Parameswaran, P.; Swaminathan, K.; Sreedharan, O.M.

    1993-01-01

    This is the first divisional biennial report of the Metallurgy Division of Indira Gandhi Centre for Atomic Research, for the year 1989-1990, after formation of the Metallurgy Division in September 1988. Major areas of work in the Division relate to aqueous corrosion and localised corrosion, stress corrosion cracking and liquid metal corrosion, high temperature oxidation, thermodynamic studies, physical metallurgy studies for structure-property correlations and failure analyses. The principal materials of studies have been the austenitic stainless steels, the current materials of construction in the Fast Breeder Test Reactor and the candidate materials for the Prototype Fast Breeder Reactor

  14. Marriage, Specialization, and the Gender Division of Labor

    OpenAIRE

    Matthew J. Baker; Joyce P. Jacobsen

    2005-01-01

    A customary gender division of labor is one in which women and men are directed towards certain tasks and/or explicitly prohibited from performing others. We offer an explanation as to why the gender division of labor is so often enforced by custom, and why customary gender divisions of labor generally involve both direction and prohibition. Our model builds on the literature on the marital hold-up problem, and considers both problems in choice of specialty and human capital acquisition in a ...

  15. Environmental Research Division technical progress report: January 1986--October 1987

    International Nuclear Information System (INIS)

    1988-07-01

    Technical process in the various research activities of Argonne National Laboratory's Environmental Research Division is reported for the period 1986-1987. Textual, graphic, and tabular information is used to briefly summarize (in separate chapters) the work of the Division's Atmospheric Physics, Environmental Effects Research, Fundamental Molecular Physics and Chemistry, and Organic Geochemistry and Environmental Instrumentation Programs. Information on professional qualifications, awards, and outstanding professional activities of staff members, as well as lists of publications, oral presentations, special events organized, and participants in educational programs, are provided in appendices at the end of each chapter. Individual projects under each division are processed separately for the data bases

  16. A connection between free and classical infinite divisibility

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Thorbjørnsen, Steen

    2004-01-01

    In this paper we continue our studies, initiated in Refs. 2–4, of the connections between the classes of infinitely divisible probability measures in classical and in free probability. We show that the free cumulant transform of any freely infinitely divisible probability measure equals...... the classical cumulant transform of a certain classically infinitely divisible probability measure, and we give several characterizations of the latter measure, including an interpretation in terms of stochastic integration. We find, furthermore, an alternative definition of the Bercovici–Pata bijection, which...

  17. Environmental Research Division technical progress report: January 1986--October 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    Technical process in the various research activities of Argonne National Laboratory's Environmental Research Division is reported for the period 1986-1987. Textual, graphic, and tabular information is used to briefly summarize (in separate chapters) the work of the Division's Atmospheric Physics, Environmental Effects Research, Fundamental Molecular Physics and Chemistry, and Organic Geochemistry and Environmental Instrumentation Programs. Information on professional qualifications, awards, and outstanding professional activities of staff members, as well as lists of publications, oral presentations, special events organized, and participants in educational programs, are provided in appendices at the end of each chapter. Individual projects under each division are processed separately for the data bases.

  18. Biennial activity report of Metallurgy Division for 1989 and 1990

    Energy Technology Data Exchange (ETDEWEB)

    Kamachi Mudali, U; Muraleedharan, P; Parameswaran, P; Swaminathan, K; Sreedharan, O M [eds.; Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    1994-12-31

    This is the first divisional biennial report of the Metallurgy Division of Indira Gandhi Centre for Atomic Research, for the year 1989-1990, after formation of the Metallurgy Division in September 1988. Major areas of work in the Division relate to aqueous corrosion and localised corrosion, stress corrosion cracking and liquid metal corrosion, high temperature oxidation, thermodynamic studies, physical metallurgy studies for structure-property correlations and failure analyses. The principal materials of studies have been the austenitic stainless steels, the current materials of construction in the Fast Breeder Test Reactor and the candidate materials for the Prototype Fast Breeder Reactor 7 figs., 6 tabs., 2 ills.

  19. Reasonable partiality in professional ethics: the moral division of labour.

    Science.gov (United States)

    Jacobs, Frans

    2005-04-01

    Attention is given to a background idea that is often invoked in discussions about reasonable partiality: the idea of a moral division of labour. It is not only a right, but also a duty for professionals to attend (almost) exclusively to the interests of their own clients, because their partial activities are part of an impartial scheme providing for an allocation of professional help to all clients. To clarify that idea, a difference is made between two kinds of division of labour, a technical one and a social one. In order to assess the applicability of the idea of a moral division of labour to professional ethics, journalism is contrasted with other professions.

  20. Biology Division progress report for period of October 1, 1988--September 30, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-02-01

    The Biology Division of the Oak Ridge National Laboratory is one component of the Department of Energy's intramural program in life sciences. With respect to experimental biology, the congressionally mandated mission of this Office is to study adverse health effects of energy production and utilization. Within this stated broad mission, common themes among the research programs of the Biology Division are interactions of animals, cells, and molecules with their respective environments. Investigations focus on genetic and somatic effects of radiation and chemicals. Goals include identification and quantification of these effects, elucidation of pathways by which the effects are expressed, assessment of risks associated with radiation and chemical exposures, and establishment of strategies for extrapolation of risk data from animals to humans. Concurrent basic studies in genetics, biochemistry, molecular biology, and cell biology illuminate normal life processes as prerequisites to comprehending mutagenic and carcinogenic effects of environmental agents. This Progress Report is intended to provide both broad perspectives of the Division's research programs and synopses of recent achievements. Readers are invited to contact individual principal investigators for more detailed information, including reprints of publications. 120 refs.