WorldWideScience

Sample records for environment air diffusion

  1. Microclimatic control in the museum environment: Air diffusion performance

    Energy Technology Data Exchange (ETDEWEB)

    Ascione, Fabrizio; Minichiello, Francesco [DETEC, University of Naples Federico II, P.le Tecchio 80, 80125 Naples, NA (Italy)

    2010-06-15

    For the conservation of cultural heritage, museums need appropriate HVAC systems. Besides the time stability of the microclimatic parameters in the exhibition rooms, a high spatial uniformity is necessary and, thus, an optimal performance of the air diffusion systems. Using numerical codes based on Building Energy Performance Simulation (BEPS) and Computational Fluid Dynamics (CFD) techniques, in this paper an analysis has been carried out to compare different suitable air diffusion equipments, as regards uniformity of thermal-hygrometric and kinetic fields in a modelled typical exhibition room. For various part load conditions, the values of thermal-hygrometric parameters in different volumes of the room have been evaluated, as well as an innovative spatial thermal-hygrometric performance index. Globally estimating indoor temperature, relative humidity and their uniformity, for high exhibition rooms (5 m) the swirling diffusers have shown the best average performances, followed by the perimetrical stripes of slot diffusers, while for very high rooms (9 m) nozzles have resulted preferable. (author)

  2. Air Motion and Thermal Environment in Pig Housing Facilities with Diffuse Inlet

    DEFF Research Database (Denmark)

    Jacobsen, Lis

    A ventilation system with ambient air supply through diffuse ceiling used in pig production facilities is presented. The climatic conditions were examined both experimentally and numerically in an full scale experimental room and the inlet boundary conditions of the diffuse inlet were examined...... in ambient temperature and air exchange rate. The effect of housing equipment on environmental conditions has been examined both experimental and numerically and it was found that impervious housing equipment has a significant effect on the climatic conditions close to the wall in the occupational zone...... in a wind tunnel model. In the full scale experiments the focus has been on the correlation between variations in ambient climatic conditions and changes in environmental condition in the occupational zone. It was found that the environmental conditions in the occupational zone were independent on changes...

  3. Dependence of Rn adsorption rate and effective half-life time on diffusion barrier type and moving air environment

    International Nuclear Information System (INIS)

    Arafa, Wafaa; Badran, Heba

    2005-01-01

    The variation of the adsorbed radon rate during the exposure time using charcoal canister was studied applying moving air environment inside the radon chamber and compared to the static air measurements. The air movement increases the accumulation time leading to more accurate results. Different types of membrane have been tested as diffusion barrier for activated charcoal canisters. The Makrofol and aluminized polycarbonate improve the adsorption/desorption rate more than the polyehylene membrane. The measured effective half-life time showed a remarkable correlation with the previously measured permeability constant for corresponding membranes. Different types of commercially available charcoal were investigated to develop a local version of charcoal canister for radon measurements. Applying static and moving air environments, the break point and radon collection efficiency were determined at different temperatures. Both of the temperature and air movement accelerate the appearance of the break point. Th efficiency of the locally developed charcoal is 87% and 84.5% of that Calgon PCB charcoal used by EPA. (author)

  4. AQB - air quality biomonitoring an innovative and standardized approach for the evaluation of traffic pollutant diffusion in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Virano, M. [SITAF Spa, Susa (Italy); Orsi, M. [Consulagri Srl., Torino (Italy); Badino, G. [Univ. degli Studi di Torino, Torino (Italy). Dipt. di Biologia Animale e dell' Uomo; Ostacoli, G.; Zelano, V.; Gastaldi, D. [Univ. degli Studi di Torino, Torino (Italy). Dipt. di Chimica Analitica; Parodi, A. [Univ. degli Studi di Torino, Torino (Italy). Dipt. di Biologia Animale e dell' Uomo]|[Consulagri Srl., Torino (Italy)

    2002-07-01

    AQB - Air Quality Biomonitoring - is a wide scale, effective and valid biorecording system at both a scientific and an economic level. It enables a detailed evaluation of pollutant diffusion in space, as well as their accumulation over time. The data relate to the diffusion of pollutants (PAH and heavy metals) due to traffic emissions on the A32 Turin-Bardonecchia motorway. Results were obtained using aeroponic culture biostations equipped with vegetal biosensors: Brassica oleracea and Holcus lanatus. (orig.)

  5. Airflow Pattern Genereated by Three Air Diffusers

    DEFF Research Database (Denmark)

    Olmedo, Inés; Nielsen, Peter V.; de Adana, Manuel Ruiz

    The correct description of air diffusers plays a crucial role in the CFD predictions of the airflow pattern into a room. The numerical simulation of air distribution in an indoor space is challenging because of the complicated airflow pattern generated. An experimental study has been carried out...... in a full scale test room, 4.10 m (length), 3.20 m (width), and 2.70 m (height), in order to take velocity measurements of the airflow pattern generated by three different air diffusers: displacement, mixing and a low impulse diffuser. Smoke visualization has been developed to determine the direction...

  6. Airflow Pattern Generated by Three Air Diffusers

    DEFF Research Database (Denmark)

    Olmedo, Inés; Nielsen, Peter V.; Ruiz de Adana, Manuel

    2011-01-01

    The correct description of air diffusers plays a crucial role in the CFD predictions of the airflow pattern into a room. The numerical simulation of air distribution in an indoor space is challenging because of the complicated airflow pattern generated. Many authors have developed simplified geom...

  7. Air pollution and the school air environment

    OpenAIRE

    Fsadni, Peter; Montefort, Stephen

    2015-01-01

    There is growing concern about the association of school indoor air quality (SIAQ) with asthma, rhinitis, and rhinoconjunctivitis. Students and school staff deserve the highest standards of school air quality to ensure a safe and productive environment for our children’s education. Existing studies highlight the presence of several air pollutants present within school classrooms that have a direct association with poor health and poor student performance. Very little data exist ab...

  8. The diffusion and impact of clean indoor air laws.

    Science.gov (United States)

    Eriksen, Michael P; Cerak, Rebecca L

    2008-01-01

    Over the past quarter century, primarily as a result of scientific discovery, citizen advocacy, and legislative action, comprehensive clean indoor air laws have spread rapidly throughout the world. Laws that establish completely smoke-free indoor environments have many relative advantages including being low cost, safe, effective, and easy to implement. The diffusion of these laws has been associated with a dramatic and rapid reduction in population levels of serum cotinine among nonsmokers and has also contributed to a reduction in overall cigarette consumption among smokers, with no adverse economic impact, except to the tobacco industry. Currently, nearly half of the U.S. population lives in jurisdictions with some combination of completely smoke-free workplaces, restaurants, or bars. The diffusion of clean indoor air laws is spreading rapidly throughout the world, stimulated by the first global health treaty, the Framework Convention on Tobacco Control.

  9. Radon diffusion studies in air, gravel, sand, soil and water

    International Nuclear Information System (INIS)

    Singh, B.; Singh, S.; Virk, H.S.

    1993-01-01

    Radon isotopes are practically inert and have properties of gases under conditions of geological interest. During their brief lives their atoms are capable of moving from sites of their generation. Radon diffusion studies were carried out in air, gravel, sand, soil and water using silicon diffused junction electronic detector, Alphameter-400. Diffusion constant and diffusion length is calculated for all these materials. (author)

  10. Plant air systems safety study: Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    1982-05-01

    The Portsmouth Gaseous Diffusion Plant Air System facilities and operations are reviewed for potential safety problems not covered by standard industrial safety procedures. Information is presented under the following section headings: facility and process description (general); air plant equipment; air distribution system; safety systems; accident analysis; plant air system safety overview; and conclusion

  11. Air sampling program at the Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Hulett, S.H.

    1975-01-01

    An extensive air sampling program has been developed at the Portsmouth Gaseous Diffusion Plant for monitoring the concentrations of radioactive aerosols present in the atmosphere on plantsite as well as in the environs. The program is designed to minimize exposures of employees and the environment to airborne radioactive particulates. Five different air sampling systems, utilizing either filtration or impaction, are employed for measuring airborne alpha and beta-gamma activity produced from 235 U and 234 Th, respectively. Two of the systems have particle selection capabilities: a personal sampler with a 10-mm nylon cyclone eliminates most particles larger than about 10 microns in diameter; and an Annular Kinetic Impactor collects particulates greater than 0.4 microns in diameter which have a density greater than 12-15 gm/cm 3 . A Hi-Volume Air Sampler and an Eberline Model AIM-3 Scintillation Air Monitor are used in collecting short-term samples for assessing compliance with ''ceiling'' standards or peak concentration limits. A film-sort aperture IBM card system is utilized for continuous 8-hour samples. This sampling program has proven to be both practical and effective for assuring accurate monitoring of the airborne activity associated with plant operations

  12. Anisotropic diffusion of volatile pollutants at air-water interface

    Directory of Open Access Journals (Sweden)

    Li-ping Chen

    2013-04-01

    Full Text Available The volatile pollutants that spill into natural waters cause water pollution. Air pollution arises from the water pollution because of volatilization. Mass exchange caused by turbulent fluctuation is stronger in the direction normal to the air-water interface than in other directions due to the large density difference between water and air. In order to explore the characteristics of anisotropic diffusion of the volatile pollutants at the air-water interface, the relationship between velocity gradient and mass transfer rate was established to calculate the turbulent mass diffusivity. A second-order accurate smooth transition differencing scheme (STDS was proposed to guarantee the boundedness for the flow and mass transfer at the air-water interface. Simulations and experiments were performed to study the trichloroethylene (C2HCl3 release. By comparing the anisotropic coupling diffusion model, isotropic coupling diffusion model, and non-coupling diffusion model, the features of the transport of volatile pollutants at the air-water interface were determined. The results show that the anisotropic coupling diffusion model is more accurate than the isotropic coupling diffusion model and non-coupling diffusion model. Mass transfer significantly increases with the increase of the air-water relative velocity at a low relative velocity. However, at a higher relative velocity, an increase in the relative velocity has no effect on mass transfer.

  13. Fractional Diffusion in Gaussian Noisy Environment

    Directory of Open Access Journals (Sweden)

    Guannan Hu

    2015-03-01

    Full Text Available We study the fractional diffusion in a Gaussian noisy environment as described by the fractional order stochastic heat equations of the following form: \\(D_t^{(\\alpha} u(t, x=\\textit{B}u+u\\cdot \\dot W^H\\, where \\(D_t^{(\\alpha}\\ is the Caputo fractional derivative of order \\(\\alpha\\in (0,1\\ with respect to the time variable \\(t\\, \\(\\textit{B}\\ is a second order elliptic operator with respect to the space variable \\(x\\in\\mathbb{R}^d\\ and \\(\\dot W^H\\ a time homogeneous fractional Gaussian noise of Hurst parameter \\(H=(H_1, \\cdots, H_d\\. We obtain conditions satisfied by \\(\\alpha\\ and \\(H\\, so that the square integrable solution \\(u\\ exists uniquely.

  14. Turbulent Diffusion in Non-Homogeneous Environments

    Science.gov (United States)

    Diez, M.; Redondo, J. M.; Mahjoub, O. B.; Sekula, E.

    2012-04-01

    Many experimental studies have been devoted to the understanding of non-homogeneous turbulent dynamics. Activity in this area intensified when the basic Kolmogorov self-similar theory was extended to two-dimensional or quasi 2D turbulent flows such as those appearing in the environment, that seem to control mixing [1,2]. The statistical description and the dynamics of these geophysical flows depend strongly on the distribution of long lived organized (coherent) structures. These flows show a complex topology, but may be subdivided in terms of strongly elliptical domains (high vorticity regions), strong hyperbolic domains (deformation cells with high energy condensations) and the background turbulent field of moderate elliptic and hyperbolic characteristics. It is of fundamental importance to investigate the different influence of these topological diverse regions. Relevant geometrical information of different areas is also given by the maximum fractal dimension, which is related to the energy spectrum of the flow. Using all the available information it is possible to investigate the spatial variability of the horizontal eddy diffusivity K(x,y). This information would be very important when trying to model numerically the behaviour in time of the oil spills [3,4] There is a strong dependence of horizontal eddy diffusivities with the Wave Reynolds number as well as with the wind stress measured as the friction velocity from wind profiles measured at the coastline. Natural sea surface oily slicks of diverse origin (plankton, algae or natural emissions and seeps of oil) form complicated structures in the sea surface due to the effects of both multiscale turbulence and Langmuir circulation. It is then possible to use the topological and scaling analysis to discriminate the different physical sea surface processes. We can relate higher orden moments of the Lagrangian velocity to effective diffusivity in spite of the need to calibrate the different regions determining the

  15. Diffuse Ceiling Inlet Systems and the Room Air Distribution

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Jensen, Rasmus Lund; Rong, Li

    2010-01-01

    A diffuse ceiling inlet system is an air distribution system which is supplying the air through the whole ceiling. The system can remove a large heat load without creating draught in the room. The paper describes measurements in the case of both cooling and heating, and CFD predictions are given...

  16. Use of perforated acoustic panels as supply air diffusers in diffuse ceiling ventilation systems

    DEFF Research Database (Denmark)

    Iqbal, Ahsan; Kazemi, Seyed Hossein; Ardkapan, Siamak Rahimi

    Ventilation is needed for diluting and removing the contaminants, odour and excess heat from the building interior. It is important that the inhabitants perceive the ventilated spaces as comfortable. Therefore, the supply air should reach all parts of the occupied zones. Troldtekt has been...... manufacturing perforated acoustic panels for the last 13 years. The panels can be used not only in applications related to acoustics but also as low pressure drop supply air diffusers, particularly in diffuse ceiling ventilation systems. The present study verifies on a theoretically level the performance...

  17. Toxic potency and effects of diffuse air pollution

    NARCIS (Netherlands)

    Hamers, T.H.M.

    2002-01-01

    Diffuse air pollution consists of an omnipresent complex mixture of pollutants that is emitted from many widely dispersed sources as traffic, industries, households, energy plants, waste incinerators, and agriculture. It can be deposited in relatively remote areas as a result of

  18. Air Distribution in a Room with Ceiling-Mounted Diffusers

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Heby, Thomas; Moeller-Jensen, Bertil

    2006-01-01

    . The characteristics of the air distribution systems are addressed by analysing the acceptable conditions for the supply flow rate and the temperature difference for the different systems. The paper shows that an air distribution system with ceiling-mounted air terminal units is able to generate comfortable velocity...... with swirling flow generates a flow pattern in the room which is rather uninfluenced by the thermal load. The flow is highly mixed above the occupied zone and the air movement penetrates the occupied zone close to the walls. All systems are tested in the same room with the same heat load consisting of two...... manikins, each sitting at a desk, two pc's and two desk lamps producing a total heat load of 480 W. The design of the air distribution system is in all five cases based on flow elements from the diffuser, a maximum velocity assumption and a critical vertical temperature gradient in the room...

  19. Evidence for Enhanced Matrix Diffusion in Geological Environment

    Science.gov (United States)

    Sato, Kiminori; Fujimoto, Koichiro; Nakata, Masataka; Shikazono, Naotatsu

    2013-01-01

    Molecular diffusion in rock matrix, called as matrix diffusion, has been appreciated as a static process for elemental migration in geological environment that has been acknowledged in the context of geological disposal of radioactive waste. However, incomprehensible enhancement of matrix diffusion has been reported at a number of field test sites. Here, the matrix diffusion of saline water at Horonobe, Hokkaido, Japan is highlighted directly probing angstrom-scale pores on a field scale up to 1 km by positron--positronium annihilation spectroscopy. The first application of positron--positronium annihilation spectroscopy to field-scale geophysical research reveals the slight variation of angstrom-scale pores influenced by saline water diffusion with complete accuracy. We found widely interconnected 3 Å pores, which offer the pathway of saline water diffusion with the highly enhanced effective matrix diffusion coefficient of 4× 10-6 cm2 s-1. The present findings provide unambiguous evidence that the angstrom-scale pores enhance effective matrix diffusion on a field scale in geological environment.

  20. DIFFUSE DBD IN ATMOSPHERIC AIR AT DIFFERENT APPLIED PULSE WIDTHS

    Directory of Open Access Journals (Sweden)

    Ekaterina Alexandrovna Shershunova

    2015-02-01

    Full Text Available The paper deals with the realization and the diagnostics of the volume diffuse dielectric barrier discharge in 1-mm air gap when applying high voltage rectangular pulses to the electrodes. The effect of the applied pulse width on the discharge dissipated energy was studied in detail. It was found experimentally, the energy stayed nearly constant with the pulse elongation from 600 ns to 1 ms.

  1. Electronic air cleaners and the indoor environment

    International Nuclear Information System (INIS)

    Krafthefer, B.

    1986-01-01

    The growing awareness over the quality of air in the indoor environment is driving the search for effective control methods for the contaminants of concern. Electronic air cleaners can control such pollutants as dust, pollen, tobacco smoke, radon decay products, and other particulates. This paper presents an examination of the various types of electronic air cleaners and their effects on indoor pollutants. It also examines the mechanism for contaminant removal, the relationship of the efficiency to the characteristics of the contaminant, and what type of contaminants can be controlled with the electronic air cleaner, with particular emphasis placed on the removal of radon decay products. From a study on radon product removal in residences, the electronic air cleaner was found to have an efficiency of up to 70%. Not only was there a reduction in the residential working level, but the fluctuations in the working level were also reduced. With this information, they can better understand how to solve the air treatment problem of the inhabited space. 17 references, 8 figures

  2. Performance of Chilled Beam with Radial Swirl Jet and Diffuse Ceiling Air Supply in Heating Mode

    DEFF Research Database (Denmark)

    Bertheussen, Bård; Mustakallio, Panu; Melikov, Arsen Krikor

    2013-01-01

    ). The room air temperature was kept at 21 °C. Tracer gas was used to simulate pollution from floor and desk. The experimental conditions comprised: 1) night time without heat sources in the room; the room air conditioning system was used to heat up the room; 2) heat load generated by an occupant (simulated...... by dressed thermal manikin) and a laptop; 3) heating by convectors positioned under the window (convectors used alone and convector used together with CSW supplying isothermal air for ventilation). The heat distribution provided by the systems was not effective compare to the distribution provided......The performance of diffuse ceiling air supply and chilled beam with swirl jet (CSW) in heating mode (winter situation) was studied and compared with regard to the generated indoor environment. An office mock-up with one occupant was simulated in a test room (4.5 x 3.95 x 3.5 m3 (L x W x H...

  3. Diffusion in crowded biological environments: applications of Brownian dynamics

    OpenAIRE

    Długosz, Maciej; Trylska, Joanna

    2011-01-01

    Biochemical reactions in living systems occur in complex, heterogeneous media with total concentrations of macromolecules in the range of 50 - 400 mg/ml. Molecular species occupy a significant fraction of the immersing medium, up to 40% of volume. Such complex and volume-occupied environments are generally termed 'crowded' and/or 'confined'. In crowded conditions non-specific interactions between macromolecules may hinder diffusion - a major process determining metabolism, transport, and sign...

  4. Symposium on turbulence, diffusion, and air pollution, 4th, Reno, NV, January 15-18, 1979, preprints

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Papers on turbulence, diffusion and air pollution are presented. Major topics include point-source air quality models, point-source air quality studies, geothermal energy and cooling tower studies, wind energy studies, complex terrain diffusion models, complex terrain diffusion studies, the effects of air pollution on visibility, chemical transformations of pollutants, regional air quality studies, urban air quality studies, boundary layer models and experiments, air pollution removal, air quality studies using remote sensing techniques, large-scale and lakeshore air quality studies, the effects of buildings and terrain features on diffusion, and general air quality and diffusion studies

  5. Diffusion air effects on the soot axial distribution concentration in a premixed acetylene/air flame

    Energy Technology Data Exchange (ETDEWEB)

    Fassani, Fabio Luis; Santos, Alex Alisson Bandeira; Goldstein Junior, Leonardo [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia Termica e de Fluidos]. E-mails: fassani@fem.unicamp.br; absantos@fem.unicamp.br; leonardo@fem.unicamp.br; Ferrari, Carlos Alberto [Universidade Estadual de Campinas, SP (Brazil). Inst. de Fisica. Dept. de Eletronica Quantica]. E-mail: ferrari@ifi.unicamp.br

    2000-07-01

    Soot particles are produced during the high temperature pyrolysis or combustion of hydrocarbons. The emission of soot from a combustor, or from a flame, is determined by the competition between soot formation and its oxidation. Several factors affect these processes, including the type of fuel, the air-to-fuel ratio, flame temperature, pressure, and flow pattern. In this paper, the influence of the induced air diffusion on the soot axial distribution concentration in a premixed acetylene/air flame was studied. The flame was generated in a vertical axis burner in which the fuel - oxidant mixture flow was surrounded by a nitrogen discharge coming from the annular region between the burner tube and an external concentric tube. The nitrogen flow provided a shield that protected the flame from the diffusion of external air, enabling its control. The burner was mounted on a step-motor driven, vertical translation table. The use of several air-to-fuel ratios made possible to establish the sooting characteristics of this flame, by measuring soot concentration along the flame height with a non-intrusive laser light absorption technique. (author)

  6. Effects of preheated combustion air on laminar coflow diffusion flames under normal and microgravity conditions

    Science.gov (United States)

    Ghaderi Yeganeh, Mohammad

    Global energy consumption has been increasing around the world, owing to the rapid growth of industrialization and improvements in the standard of living. As a result, more carbon dioxide and nitrogen oxide are being released into the environment. Therefore, techniques for achieving combustion at reduced carbon dioxide and nitric oxide emission levels have drawn increased attention. Combustion with a highly preheated air and low-oxygen concentration has been shown to provide significant energy savings, reduce pollution and equipment size, and uniform thermal characteristics within the combustion chamber. However, the fundamental understanding of this technique is limited. The motivation of the present study is to identify the effects of preheated combustion air on laminar coflow diffusion flames. Combustion characteristics of laminar coflow diffusion flames are evaluated for the effects of preheated combustion air temperature under normal and low-gravity conditions. Experimental measurements are conducted using direct flame photography, particle image velocimetry (PIV) and optical emission spectroscopy diagnostics. Laminar coflow diffusion flames are examined under four experimental conditions: normal-temperature/normal-gravity (case I), preheated-temperature/normal gravity (case II), normal-temperature/low-gravity (case III), and preheated-temperature/low-gravity (case IV). Comparisons between these four cases yield significant insights. In our studies, increasing the combustion air temperature by 400 K (from 300 K to 700 K), causes a 37.1% reduction in the flame length and about a 25% increase in peak flame temperature. The results also show that a 400 K increase in the preheated air temperature increases CH concentration of the flame by about 83.3% (CH is a marker for the rate of chemical reaction), and also increases the C2 concentration by about 60% (C2 is a marker for the soot precursor). It can therefore be concluded that preheating the combustion air

  7. Real scale experimental study for performance evaluation of unidirectional air diffuser perforated panels

    Science.gov (United States)

    Tăcutu, Laurenţiu; Nastase, Ilinca; Iordache, Vlad; Catalina, Tiberiu; Croitoru, Cristiana Verona

    2018-02-01

    Nowadays, there is an increasing emphasis on indoor air quality due to technological evolution and the fact that people spend most of the time in enclosed spaces. Also, energy efficiency is another related factor that gains more and more attention. Improving air distribution in an enclosure can lead to achieve these goals. This improvement can be done by adjustingthe air terminals position, theredimensions or the air diffuser perforations. The paper presents the study of 8 types of panels with different perforations shapes. The systems were characterized by flow, pressure loss and noise. Usualand special geometries were chosen, all having the same flowsurface. The perforated panels were mounted in a unidirectional air flow (UAF)diffuser, also called a laminar air flow (LAF)diffuser, that is placed in a real scale operating room (OR) in our laboratory.The purpose of this study is to determine whether changing the shape in the perforated panels can improve the technical parameters of the diffuser.

  8. Acoustic radiosity for computation of sound fields in diffuse environments

    Science.gov (United States)

    Muehleisen, Ralph T.; Beamer, C. Walter

    2002-05-01

    The use of image and ray tracing methods (and variations thereof) for the computation of sound fields in rooms is relatively well developed. In their regime of validity, both methods work well for prediction in rooms with small amounts of diffraction and mostly specular reflection at the walls. While extensions to the method to include diffuse reflections and diffraction have been made, they are limited at best. In the fields of illumination and computer graphics the ray tracing and image methods are joined by another method called luminous radiative transfer or radiosity. In radiosity, an energy balance between surfaces is computed assuming diffuse reflection at the reflective surfaces. Because the interaction between surfaces is constant, much of the computation required for sound field prediction with multiple or moving source and receiver positions can be reduced. In acoustics the radiosity method has had little attention because of the problems of diffraction and specular reflection. The utility of radiosity in acoustics and an approach to a useful development of the method for acoustics will be presented. The method looks especially useful for sound level prediction in industrial and office environments. [Work supported by NSF.

  9. A novel complex air supply model for indoor air quality control via the occupant micro-environment demand ventilation

    International Nuclear Information System (INIS)

    Yang, Jie; Zhou, Bo; Jin, Maozhu; Wang, Jun; Xiong, Feng

    2016-01-01

    Protection of indoor air quality and human health can be achieved via ventilation, which has becomes one of the most important tasks for sustainable buildings. This approach also requires highly efficient and energy saving methods for modern building ventilations consisting of a set of parameters of the complex indoor system. Therefore, the advancement in understanding the characteristics of various ventilation methods is highly necessary. This study presents one novel air supply model for the complex occupant micro-environment demand control ventilations, to analyze the efficiency of various ventilation types. This model is established primarily according to the momentum and mass conservations, and goal of occupant micro-environment demand, which is a complex system with the characteristics of diversity and dynamic variation. As for different occupant densities, characteristics of outdoor air supply for controlling gaseous pollutant and three basic features of outdoor airflow supply reaching occupant micro-environment were obtained. This research shows that for various types of occupant density and storey height, the rising and descending rates of the demand outdoor airflow in mixing ventilation are higher than those under displacement ventilation conditions. In addition, since the structure is better designed and sewage flow is more efficient, the mixing ventilation also requires a much higher peak demand outdoor airflow than its counterpart. The increase of storey height will lead to a decline of pollutants in the breathing zone and the demand outdoor airflow. Fluctuations of air flow diffusion caused by the change of occupant density in architectural space, will lead to variations of outdoor airflow reaching occupant micro-environment. Accordingly, it would lead to the different peak values of demand outdoor airflow, and the difference becomes even significant if the occupant density increases. The variations of the air supply and fraction of air reaching the

  10. The determination of volatile chlorinated hydrocarbons in air. Sampling rate and efficiency of diffuse samplers

    Energy Technology Data Exchange (ETDEWEB)

    Giese, U.; Stenner, H.; Kettrup, A.

    1989-05-01

    When applicating diffusive sampling-systems to workplace air-monitoring it is necessary to know the behaviour of the diffusive-rate and the efficiency in dependence of concentration, exposition time and the type of pollutant. Especially concerning mixtures of pollutants there are negative influences by competition and mutual displacement possible. Diffusive-rate and discovery for CH/sub 2/Cl/sub 2/ and CHCl/sub 3/ were investigated using two different types of diffuse samplers. For this it was necessary to develop suitable defices for standard gas generation and for the exposition of diffusive-samplers to a standard gas mixture. (orig.).

  11. Operating systems in the air transportation environment.

    Science.gov (United States)

    Cherry, G. W.

    1971-01-01

    Consideration of the problems facing air transport at present, and to be expected in the future. In the Northeast Corridor these problems involve community acceptance, airway and airport congestion and delays, passenger acceptance, noise reduction, and improvements in low-density short-haul economics. In the development of a superior short-haul operating system, terminal-configured vs cruise-configured vehicles are evaluated. CTOL, STOL, and VTOL aircraft of various types are discussed. In the field of noise abatement, it is shown that flight procedural techniques are capable of supplementing ?quiet engine' technology.

  12. Nitrogen-doped carbonaceous catalysts for gas-diffusion cathodes for alkaline aluminum-air batteries

    Science.gov (United States)

    Davydova, E. S.; Atamanyuk, I. N.; Ilyukhin, A. S.; Shkolnikov, E. I.; Zhuk, A. Z.

    2016-02-01

    Cobalt tetramethoxyphenyl porphyrin and polyacrylonitrile - based catalysts for oxygen reduction reaction were synthesized and characterized by means of SEM, TEM, XPS, BET, limited evaporation method, rotating disc and rotating ring-disc electrode methods. Half-cell and Al-air cell tests were carried out to determine the characteristics of gas-diffusion cathodes. Effect of active layer thickness and its composition on the characteristics of the gas-diffusion cathodes was investigated. Power density of 300 mW cm-2 was achieved for alkaline Al-air cell with an air-breathing polyacrylonitrile-based cathode.

  13. The electrical and diffusive properties of unattached 218Po in air systems

    International Nuclear Information System (INIS)

    Leung, H.M.-Y.; Phillips, C.R.

    1988-01-01

    The electrical and diffusive properties of unattached 218 Po were determined in air environments containing traces of other gases. Of particular interest was the neutralisation of charged, unattached 218 Po. An electrostatic collection apparatus and a pulse width modulated ion mobility analyser were used to determine the fraction of the unattached 218 Po having a positive charge at the end of the recoil path (f); the diffusion coefficient of the neutral, unattached 218 Po Dsub(Α): the mobility of the charged, unattached 218 Po (B); and the neutralisation rate constant of charged, unattached 218 Po (K). Average values found for f, Dsub(Α), B and K were similar to those determined earlier for the argon system. Two mechanisms may be responsible for neutralisation, namely, scavenging of electrons from trace gases (charge transfer), and recombination with negative small ions. Which neutralisation mechanism is dominant depends on the amount and type of trace gas or organic vapour present and the degree of gas ionisation. (author)

  14. Air quality inside subway metro indoor environment worldwide: A review.

    Science.gov (United States)

    Xu, Bin; Hao, Jinliang

    2017-10-01

    The air quality in the subway metro indoor microenvironment has been of particular public concern. With specific reference to the growing demand of green transportation and sustainable development, subway metro systems have been rapidly developed worldwide in last decades. The number of metro commuters has continuously increased over recent years in metropolitan cities. In some cities, metro system has become the primary public transportation mode. Although commuters typically spend only 30-40min in metros, the air pollutants emitted from various interior components of metro system as well as air pollutants carried by ventilation supply air are significant sources of harmful air pollutants that could lead to unhealthy human exposure. Commuters' exposure to various air pollutants in metro carriages may cause perceivable health risk as reported by many environmental health studies. This review summarizes significant findings in the literature on air quality inside metro indoor environment, including pollutant concentration levels, chemical species, related sources and health risk assessment. More than 160 relevant studies performed across over 20 countries were carefully reviewed. These comprised more than 2000 individual measurement trips. Particulate matters, aromatic hydrocarbons, carbonyls and airborne bacteria have been identified as the primary air pollutants inside metro system. On this basis, future work could focus on investigating the chronic health risks of exposure to various air pollutants other than PM, and/or further developing advanced air purification unit to improve metro in-station air quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Role of Fluid-Dynamics in Soot Formation and Microstructure in Acetylene-Air Laminar Diffusion Flames

    Directory of Open Access Journals (Sweden)

    Praveen Pandey

    2015-03-01

    Full Text Available Residence time and thermo-chemical environment are important factors in the soot-formation process in flames. Studies have revealed that flow-dynamics plays a dominant role in soot formation process. For understanding the effect of flow dynamics on soot formation and physical structure of the soot formed in different combustion environments two types of laminar diffusion flames of Acetylene and air, a normal diffusion flame (NDF and an inverse diffusion flame (IDF have been investigated. The fuel and air supply in the reaction zone in two flame types were kept constant but the interchange of relative position of fuel and air altered the burner exit Reynolds and Froude numbers of gases, fuel/air velocity ratio and flame shape. Soot samples were collected using thermophoretic sampling on transmission electron microscope (TEM grids at different flame heights and were analyzed off-line in a Transmission Electron Microscope. Soot primary particle size, soot aggregate size and soot volume fraction were measured using an image analysis software. In NDF the maximum flame temperature was about 1525 K and 1230 K for IDF. The soot primary particles are distinctly smaller in size in IDF (between 19 – 26 nm compared to NDF (between 29–34 nm. Both NDF and IDF show chainlike branched structure of soot agglomerate with soot particles of a nearly spherical shape. The average number of soot primary particles per aggregate in NDF was in the range of 24 to 40 and in IDF it varied between 16 to 24. Soot volume fraction was between 0.6 to 1.5 ppm in NDF where as it was less than 0.2 ppm in IDF. The change in sooting characteristics of the two flame types is attributed to changed fuel/air velocity ratio, entrainment of gas molecules and thermophoresis on soot particles.

  16. Determination of 1-octanol-air partition coefficient using gaseous diffusion in the air boundary layer.

    Science.gov (United States)

    Ha, Yeonjeong; Kwon, Jung-Hwan

    2010-04-15

    Exact determination of the partition coefficient between 1-octanol and air (K(OA)) is very important because it is a key descriptor for describing the thermodynamic partitioning between the air and organic phases. In spite of its importance, the number and quality of experimental K(OA) values for hydrophobic organic chemicals are limited because of experimental difficulties. Thus, to measure K(OA) values, a high-throughput method was developed that used liquid-phase extraction with 1-octanol drop at the tip of a microsyringe needle. The concentration in the headspace surrounding the 1 muL octanol drop was equilibrated with liquid octanol containing polycyclic aromatic hydrocarbons (PAHs). The change in concentrations of PAHs in the octanol drop was measured to obtain mass transfer rate constants, and these rate constants were then converted into K(OA) values using a film diffusion model. Thirteen polycyclic aromatic hydrocarbons with log K(OA) between 5 and 12 were chosen for the proof of the principle. Experimental determination of log K(OA) was accomplished in 30 h for PAHs with their log K(OA) less than 11. The measured log K(OA) values were very close to those obtained by various experimental and estimation methods in the literature, suggesting that this new method can provide a fast and easy determination of log K(OA) values for many chemicals of environmental interests. In addition, the applicability of the method can be extended to determine Henry's law constant for compounds with low vapor pressure and to estimate gaseous transfer rate of semivolatile compounds for environmental fate modeling.

  17. Comparison of the Performance of Chilled Beam with Swirl Jet and Diffuse Ceiling Air Supply: Impact of Heat Load Distribution

    DEFF Research Database (Denmark)

    Bertheussen, Bård; Mustakallio, Panu; Kosonen, Risto

    2013-01-01

    The impact of heat load strength and positioning on the indoor environment generated by diffuse ceiling air supply and chilled beam with radial swirl jet was studied and compared. An office room with two persons and a meeting room with six persons were simulated in a test room (4.5 x 3.95 x 3.5 m3......) and Category B thermal environment in the meeting room at high heat load of 94 W∙m−2. The air distribution pattern was influenced by the convective flows from the heat sources. The maximum local velocity in the occupied zone was 0.23–0.26 m∙s−1. The diffuse ceiling supply did not ensure complete mixing...... temperature was controlled at 24 °C. The quality of the generated indoor environment as defined in ISO standard 7730 (2005) was assessed based on comprehensive physical measurements. The systems created Category A thermal environment in cooling situations at heat load of 50 W∙m−2 and 78 W∙m−2 (office room...

  18. Investigation of soot formation and temperature field in laminar diffusion flames of LPG-air mixture

    Energy Technology Data Exchange (ETDEWEB)

    Shahad, Haroun A.K.; Mohammed, Yassar K.A. [Babylon Univ., Dept. of Mechanical Engineering, Babylon (Israel)

    2000-11-01

    Soot formation and burnout were studied at atmospheric pressure in co-flowing, axisymmetric buoyant laminar diffusion flames and double flames of liquefied petroleum gases (LPG)-air mixtures. In diffusion flames, two different fuel flow rates were examined. In double flames, three different primary air flow rates were examined. A soot sampling probe and a thermocouple were used to measure the local soot mass concentration and flame temperature, respectively. Flame residence time was predicted using a uniformly accelerated motion model as function of axial distance of the flame. The increase of primary air flow rate was found to suppress the energy transfer from the annular region, at which the soot is produced, to the flame axis. The time required to initiate soot formation at the flame axis becomes longer as the primary air is increased. The trend rate of soot formation was found to be similar along the flame axis in all tested diffusion flames. The increase of primary air by 10% of the stoichiometric air requirement of the fuel results in a 70% reduction in maximum soot concentration. The final exhaust of soot, which is determined by the net effect of soot formation and burnout, is much lower in double flames than that in diffusion flames. (Author)

  19. Environmental monitoring of tritium in air with passive diffusion samplers

    International Nuclear Information System (INIS)

    Wood, M.J.; Workman, W.J.G.

    1992-01-01

    This paper reports on a field trail in which outdoor air was sampled with an active reference sampler and several passive HTO-in-air samplers simultaneously carried out at Chalk River Laboratories. Both passive and active samplers were changed on an approximately monthly schedule from 1990 September 2 to 1991 April 18. Average temperatures for the sampling intervals ranged from -8.06 degrees C to +15.5 degrees C and HTO-in-air concentrations measured by the active sampler were typically 10 Bq/m 3 . A total of 1290 passive HTO-in-air sampler measurements were made during the seven sampling intervals. The passive samplers used for the field trial were prepared with either tritium-free water or a solution of 50% tritium-free water and 50% ethylene glycol. As expected, the samplers prepared with the water-glycol solution performed more consistently than the samplers prepared with water only. Good agreement between passive and active sampler measurements was observed throughout the field trial

  20. Hospital-acquired infections associated with poor air quality in air-conditioned environments

    Directory of Open Access Journals (Sweden)

    Daniela Pinheiro da Silva

    2013-10-01

    Full Text Available Backgound and Objectives: Individuals living in cities increasingly spend more time indoors in air-conditioned environments. Air conditioner contamination can be caused by the presence of aerosols from the external or internal environment, which may be associated with disease manifestations in patients present in this type of environment. Therefore, the aim of this review was to assess the air quality in air-conditioned hospital environments as a risk factor for hospital-acquired infections – HAI – as the air can be a potential source of infection, as well as assess the exposure of professionals and patients to different pollutants. Material and Methods: A literature review was performed in the LILACS, MEDLINE, SCIELO, SCIENCE DIRECT databases, CAPES thesis database and Ministry of Health – Brazil, including studies published between 1982 and 2008. The literature search was grouped according to the thematic focus, as follows: ventilation, maintenance and cleaning of systems that comprehend the environmental quality standard. Discussion and Conclusion: Outbreaks of hospital-acquired infections associated with Aspergillus, Acinetobacter, Legionella, and other genera such as Clostridium and Nocardia, which were found in air conditioners, were observed, thus indicating the need for air-conditioning quality control in these environments.

  1. Normal diffusion-weighted imaging in cerebral air embolism complicating angiography

    Energy Technology Data Exchange (ETDEWEB)

    Sayama, T.; Inamura, T.; Fukui, M. [Dept. of Neurosurgery, Kyushu University Hospital, Fukuoka (Japan); Mitani, M.; Yagi, H. [Dept. of Neurosurgery, Yagi Hospital, Fukuoka (Japan)

    2000-03-01

    We report a case of cerebral air embolism resulting from accidental air infection during cerebral angiography. A 60-year-old man was accidentally injected with air via the left subclavian artery. Angiography demonstrated air within the basilar artery. The patient showed signs of posterior circulation ischaemia (confusion, blindness, gaze palsy and hemiparesis). However, MRI, including diffusion-weighted imaging, showed no abnormality 4 h later. The patient was treated with hyperbaric oxygen within 5 h of the embolism. All symptoms and signs resolved completely within a week. (orig.)

  2. Centrifugal Compressor Surge Margin Improved With Diffuser Hub Surface Air Injection

    Science.gov (United States)

    Skoch, Gary J.

    2002-01-01

    Aerodynamic stability is an important parameter in the design of compressors for aircraft gas turbine engines. Compression system instabilities can cause compressor surge, which may lead to the loss of an aircraft. As a result, engine designers include a margin of safety between the operating line of the engine and the stability limit line of the compressor. The margin of safety is typically referred to as "surge margin." Achieving the highest possible level of surge margin while meeting design point performance objectives is the goal of the compressor designer. However, performance goals often must be compromised in order to achieve adequate levels of surge margin. Techniques to improve surge margin will permit more aggressive compressor designs. Centrifugal compressor surge margin improvement was demonstrated at the NASA Glenn Research Center by injecting air into the vaned diffuser of a 4:1-pressure-ratio centrifugal compressor. Tests were performed using injector nozzles located on the diffuser hub surface of a vane-island diffuser in the vaneless region between the impeller trailing edge and the diffuser-vane leading edge. The nozzle flow path and discharge shape were designed to produce an air stream that remained tangent to the hub surface as it traveled into the diffuser passage. Injector nozzles were located near the leading edge of 23 of the 24 diffuser vanes. One passage did not contain an injector so that instrumentation located in that passage would be preserved. Several orientations of the injected stream relative to the diffuser vane leading edge were tested over a range of injected flow rates. Only steady flow (nonpulsed) air injection was tested. At 100 percent of the design speed, a 15-percent improvement in the baseline surge margin was achieved with a nozzle orientation that produced a jet that was bisected by the diffuser vane leading edge. Other orientations also improved the baseline surge margin. Tests were conducted at speeds below the

  3. Preparation of standard mixtures of gas hydrocarbons in air by the diffusion dilution method

    International Nuclear Information System (INIS)

    Garcia, M. R.; Perez, M. M.

    1979-01-01

    An original diffusion system able to produce continuously gaseous samples is described. This system can generate samples with concentrations of benzene in air from 0.1 to 1 ppm a reproducible way. The diffusion dilution method used Is also studied. The use of this diffusion system has been extended to the preparation of binary mixtures (benzene-toluene). Whit a secondary dilution device is possible preparing these mixtures over a wide range of concentrations (0.11 to 0.04 ppm for benzene and 0.06 to 0.02 for toluene). (Author) 7 refs

  4. Facilitated diffusion in a crowded environment: from kinetics to stochastics

    International Nuclear Information System (INIS)

    Meroz, Yasmine; Klafter, Joseph; Eliazar, Iddo

    2009-01-01

    Facilitated diffusion is a fundamental search process used to describe the problem of a searcher protein finding a specific target site over a very large DNA strand. In recent years macromolecular crowding has been recognized to affect this search process. In this paper, we bridge between two different modelling methodologies of facilitated diffusion: the physics-oriented kinetic approach, which yields the reaction rate of the search process, and the probability-oriented stochastic approach, which yields the probability distribution of the search duration. We translate the former approach to the latter, ascertaining that the two approaches yield coinciding results, both with and without macromolecular crowding. We further show that the stochastic approach markedly generalizes the kinetic approach by accommodating a vast array of search mechanisms, including mechanisms having no reaction rates, and thus being beyond the realm of the kinetic approach.

  5. Long-term calibration monitoring of Spectralon diffusers BRDF in the air-ultraviolet.

    Science.gov (United States)

    Georgiev, Georgi T; Butler, James J

    2007-11-10

    Long-term calibration monitoring of the bidirectional reflectance distribution function (BRDF) of Spectralon diffusers in the air-ultraviolet is presented. Four Spectralon diffusers were monitored in this study. Three of the diffusers, designated as H1, H2, and H3, were used in the prelaunch radiance calibration of the Solar Backscatter Ultraviolet/2 (SBUV/2) satellite instruments on National Oceanic and Atmospheric Administration (NOAA) 14 and 16. A fourth diffuser, designated as the 400 diffuser, was used in the prelaunch calibration of the Ozone Mapping and Profiler Suite (OMPS) instrument scheduled for initial flight in 2009 on the National Polar Orbiting Environmental Satellite System Preparatory Project. The BRDF data of this study were obtained between 1994 and 2005 using the scatterometer located in the National Aeronautics and Space Administration Goddard Space Flight Center Diffuser Calibration Laboratory. The diffusers were measured at 13 wavelengths between 230 and 425 nm at the incident and scatter angles used in the prelaunch calibrations of SBUV/2 and OMPS. Spectral features in the BRDF of Spectralon are also discussed. The comparison shows how the air-ultraviolet BRDF of these Spectralon samples changed over time under clean room deployment conditions.

  6. A novel enhanced diffusion sampler for collecting gaseous pollutants without air agitation.

    Science.gov (United States)

    Pan, Xuelian; Zhuo, Shaojie; Zhong, Qirui; Chen, Yuanchen; Du, Wei; Cheng, Hefa; Wang, Xilong; Zeng, Eddy Y; Xing, Baoshan; Tao, Shu

    2018-03-06

    A novel enhanced diffusion sampler for collecting gaseous phase polycyclic aromatic hydrocarbons (PAHs) without air agitation is proposed. The diffusion of target compounds into a sampling chamber is facilitated by continuously purging through a closed-loop flow to create a large concentration difference between the ambient air and the air in the sampling chamber. A glass-fiber filter-based prototype was developed. It was demonstrated that the device could collect gaseous PAHs at a much higher rate (1.6 ± 1.4 L/min) than regular passive samplers, while the ambient air is not agitated. The prototype was also tested in both the laboratory and field for characterizing the concentration gradients over a short distance from the soil surface. The sampler has potential to be applied in other similar situations to characterize the concentration profiles of other chemicals.

  7. Diffusion

    International Nuclear Information System (INIS)

    Kubaschewski, O.

    1983-01-01

    The diffusion rate values of titanium, its compounds and alloys are summarized and tabulated. The individual chemical diffusion coefficients and self-diffusion coefficients of certain isotopes are given. Experimental methods are listed which were used for the determination of diffusion coefficients. Some values have been taken over from other studies. Also given are graphs showing the temperature dependences of diffusion and changes in the diffusion coefficient with concentration changes

  8. Indoor air quality in public utility environments-a review.

    Science.gov (United States)

    Śmiełowska, Monika; Marć, Mariusz; Zabiegała, Bożena

    2017-04-01

    Indoor air quality has been the object of interest for scientists and specialists from the fields of science such as chemistry, medicine and ventilation system design. This results from a considerable number of potential factors, which may influence the quality of the broadly understood indoor air in a negative way. Poor quality of indoor air in various types of public utility buildings may significantly affect an increase in the incidence of various types of civilisation diseases. This paper presents information about a broad spectrum of chemical compounds that were identified and determined in the indoor environment of various types of public utility rooms such as churches, museums, libraries, temples and hospitals. An analysis of literature data allowed for identification of the most important transport paths of chemical compounds that significantly influence the quality of the indoor environment and thus the comfort of living and the health of persons staying in it.

  9. Advection-diffusion model for the simulation of air pollution distribution from a point source emission

    Science.gov (United States)

    Ulfah, S.; Awalludin, S. A.; Wahidin

    2018-01-01

    Advection-diffusion model is one of the mathematical models, which can be used to understand the distribution of air pollutant in the atmosphere. It uses the 2D advection-diffusion model with time-dependent to simulate air pollution distribution in order to find out whether the pollutants are more concentrated at ground level or near the source of emission under particular atmospheric conditions such as stable, unstable, and neutral conditions. Wind profile, eddy diffusivity, and temperature are considered in the model as parameters. The model is solved by using explicit finite difference method, which is then visualized by a computer program developed using Lazarus programming software. The results show that the atmospheric conditions alone influencing the level of concentration of pollutants is not conclusive as the parameters in the model have their own effect on each atmospheric condition.

  10. Numerical Investigation of Laminar Diffusion Flames Established on a Horizontal Flat Plate in a Parallel Air Stream

    Directory of Open Access Journals (Sweden)

    E. D. Gopalakrishnan

    2011-06-01

    Full Text Available Numerical investigation of laminar diffusion flames established on a flat plate in a parallel air stream is presented. A numerical model with a multi-step chemical kinetics mechanism, variable thermo-physical properties, multi-component species diffusion and a radiation sub-model is employed for this purpose. Both upward and downward injection of fuel has been considered in a normal gravity environment. The thermal and aerodynamic structure of the flame has been explained with the help of temperature and species contours, net reaction rate of fuel and streamlines. Flame characteristics and stability aspects for several air and fuel velocity combinations have been studied. An important characteristic of a laminar boundary layer diffusion flame with upward injection of fuel is the velocity overshoot that occurs near the flame zone. This is not observed when the fuel is injected in the downward direction. The flame standoff distance is slightly higher for the downward injection of fuel due to increase in displacement thickness of boundary layer. Influence of an obstacle, namely the backward facing step, on the flame characteristics and stability aspects is also investigated. Effects of air and fuel velocities, size and location of the step are studied in detail. Based on the air and fuel velocities, different types of flames are predicted. The use of a backward-facing step as a flame holding mechanism for upward injection of fuel, results in increased stability limits due to the formation of a recirculation zone behind the step. The predicted stability limits match with experimentally observed limits. The step location is seen to play a more important role as compared to the step height in influencing the stability aspects of flames.

  11. Corrosion of well casings in compressed air energy storage environments

    Energy Technology Data Exchange (ETDEWEB)

    Elmore, R.P.; Stottlemyre, J.A.

    1980-10-01

    The goal of this study was to determine corrosive effects of compressed air energy storage (CAES) environments on several well casing materials to aid in material selections. A literature search on corrosion behavior of well casing material in similar environments revealed that corrosion rates of 0.20 to 0.25 mm/y might be expected. This information was employed in designing the laboratory study. Unstressed electrically isolate samples of various carbon steels were autoclaved at varying humidities, temperatures, and exposure durations to simulate anticipated environments in the well bore during CAES operation. All compressed air tests were run at 12.1 MPa. Temperatures varied from 323/sup 0/K to 573/sup 0/K, and humidity varied from 100% to completely dry air. The effects of salts in the humidified air were also studied. Results indicated that typical well casings of carbon steel as used in oil, gas, and water production wells adequately withstand the anticipated CAES reservoir environment. An acceptable corrosion rate arrived at by these laboratory simulations was between 0.0015 and 0.15 mm/y. Corrosion was caused by metal oxidation that formed a protective scale of iron oxide. Higher temperatures, humidity rates, or salinity content of the humid air increased corrosion. Corrosion also increased on a metal coupon in contact with a sandstone sample, possibly due to crevice corrosion. For each of these factors either singularly or collectively, the increased corrosion rates were still acceptable with the maximum measured at 0.15 mm/y. When coupons were reused in an identical test, the corrosion rates increased beyond the anticipated values that had been determined by extrapolation from one-time runs. Fine cracking of the protective scale probably occurred due to thermal variations, resulting in increased corrosion rates and a greater potential for particulates, which could plug the reservoir.

  12. How Can Innovative Learning Environments Promote the Diffusion of Innovation?

    Science.gov (United States)

    Osborne, Mark

    2016-01-01

    Schools implementing innovative learning environments (ILEs) face many challenges, including the need to discard previously cherished practices and behaviours, adjust mindsets, and invent successful new ways of operating. Leaders can support these processes by implementing structures that: i) support ongoing, distributed, participatory innovation;…

  13. Plants Clean Air and Water for Indoor Environments

    Science.gov (United States)

    2007-01-01

    Wolverton Environmental Services Inc., founded by longtime government environmental scientist B.C. "Bill" Wolverton, is an environmental consulting firm that gives customers access to the results of his decades of cutting-edge bioremediation research. Findings about how to use plants to improve indoor air quality have been published in dozens of NASA technical papers and in the book, "How to Grow Fresh Air: 50 Houseplants That Purify Your Home or Office." The book has now been translated into 12 languages and has been on the shelves of bookstores for nearly 10 years. A companion book, "Growing Clean Water: Nature's Solution to Water Pollution," explains how plants can clean waste water. Other discoveries include that the more air that is allowed to circulate through the roots of the plants, the more effective they are at cleaning polluted air; and that plants play a psychological role in welfare in that people recover from illness faster in the presence of plants. Wolverton Environmental is also working in partnership with Syracuse University, to engineer systems consisting of modular wicking filters tied into duct work and water supplies, essentially tying plant-based filters into heating, ventilation, and air conditioning (HVAC) systems. Also, the company has recently begun to assess the ability of the EcoPlanter to remove formaldehyde from interior environments. Wolverton Environmental is also in talks with designers of the new Stennis Visitor's Center, who are interested in using its designs for indoor air-quality filters

  14. Compressed air noise reductions from using advanced air gun nozzles in research and development environments.

    Science.gov (United States)

    Prieve, Kurt; Rice, Amanda; Raynor, Peter C

    2017-08-01

    The aims of this study were to evaluate sound levels produced by compressed air guns in research and development (R&D) environments, replace conventional air gun models with advanced noise-reducing air nozzles, and measure changes in sound levels to assess the effectiveness of the advanced nozzles as engineering controls for noise. Ten different R&D manufacturing areas that used compressed air guns were identified and included in the study. A-weighted sound level and Z-weighted octave band measurements were taken simultaneously using a single instrument. In each area, three sets of measurements, each lasting for 20 sec, were taken 1 m away and perpendicular to the air stream of the conventional air gun while a worker simulated typical air gun work use. Two different advanced noise-reducing air nozzles were then installed. Sound level and octave band data were collected for each of these nozzles using the same methods as for the original air guns. Both of the advanced nozzles provided sound level reductions of about 7 dBA, on average. The highest noise reductions measured were 17.2 dBA for one model and 17.7 dBA for the other. In two areas, the advanced nozzles yielded no sound level reduction, or they produced small increases in sound level. The octave band data showed strong similarities in sound level among all air gun nozzles within the 10-1,000 Hz frequency range. However, the advanced air nozzles generally had lower noise contributions in the 1,000-20,000 Hz range. The observed decreases at these higher frequencies caused the overall sound level reductions that were measured. Installing new advanced noise-reducing air nozzles can provide large sound level reductions in comparison to existing conventional nozzles, which has direct benefit for hearing conservation efforts.

  15. Morphological bubble evolution induced by air diffusion on submerged hydrophobic structures

    Science.gov (United States)

    Lv, Pengyu; Xiang, Yaolei; Xue, Yahui; Lin, Hao; Duan, Huiling

    2017-03-01

    Bubbles trapped in the cavities always play important roles in the underwater applications of structured hydrophobic surfaces. Air exchange between bubbles and surrounding water has a significant influence on the morphological bubble evolution, which in turn frequently affects the functionalities of the surfaces, such as superhydrophobicity and drag reduction. In this paper, air diffusion induced bubble evolution on submerged hydrophobic micropores under reduced pressures is investigated experimentally and theoretically. The morphological behaviors of collective and single bubbles are observed using confocal microscopy. Four representative evolution phases of bubbles are captured in situ. After depressurization, bubbles will not only grow and coalesce but also shrink and split although the applied pressure remains negative. A diffusion-based model is used to analyze the evolution behavior and the results are consistent with the experimental data. A criterion for bubble growth and shrinkage is also derived along with a phase diagram, revealing that the competition of effective gas partial pressures across the two sides of the diffusion layer dominates the bubble evolution process. Strategies for controlling the bubble evolution behavior are also proposed based on the phase diagram. The current work provides a further understanding of the general behavior of bubble evolution induced by air diffusion and can be employed to better designs of functional microstructured hydrophobic surfaces.

  16. Reduced energy reqirement for air conditioning by using air diffusion with air flow from floor to ceiling

    Energy Technology Data Exchange (ETDEWEB)

    Bach, H; Dittes, W; Mangelsdorf, R; Detzer, R; Jungbaeck, E; Fitzner, K; Radtke, W; Soethout, F

    1982-02-01

    The condition of the air in the occupied zone in airconditioned rooms is influenced by the mixing of supply air with room air. When supplying air from the ceiling there is a mixing all over the room, when supplying from the floor or from desks there is a mixing region only in the lower area. Above this their is warm air from which the return air is drawn. For air supply from below the cooling load can be decreased. In combination with the possible enthalpy difference between room air and supply air this decrease of the cooling load influences the necessary air rate. The interdependence of various air conditioning systems and various air temperatures is shown with a computer program. The load factor for various air distribution system at various cooling loads have been measured in a room of (8 x 5)m/sup 2/ x 3m. Experiments in a smaller model room (scale 1:3) showed how the heat was transported from the mixing region to the stratification region. The theoretically gained influence of the supply air jets of the height of the mixing region and on the load rate could be verified by the experiments. For the design of the fresh air rate, experience has been gained by measurements with tracegas (N/sub 2/O) in a third room. In comparing calculations the annual energy consumption has been computed for a building assuming various air conditioning systems and typical operation data. From experience with the existing systems the conclusions have been drawn how air distribution from floor to ceiling can be installed and operated.

  17. Diffusion layer characteristics for increasing the performance of activated carbon air cathodes in microbial fuel cells

    KAUST Repository

    Zhang, Xiaoyuan; He, Weihua; Yang, Wulin; Liu, Jia; Wang, Qiuying; Liang, Peng; Huang, Xia; Logan, Bruce E.

    2016-01-01

    The characteristics of several different types of diffusion layers were systematically examined to improve the performance of activated carbon air cathodes used in microbial fuel cells (MFCs). A diffusion layer of carbon black and polytetrafluoroethylene (CB + PTFE) that was pressed onto a stainless steel mesh current collector achieved the highest cathode performance. This cathode also had a high oxygen mass transfer coefficient and high water pressure tolerance (>2 m), and it had the highest current densities in abiotic chronoamperometry tests compared to cathodes with other diffusion layers. In MFC tests, this cathode also produced maximum power densities (1610 ± 90 mW m−2) that were greater than those of cathodes with other diffusion layers, by 19% compared to Gore-Tex (1350 ± 20 mW m−2), 22% for a cloth wipe with PDMS (1320 ± 70 mW m−2), 45% with plain PTFE (1110 ± 20 mW m−2), and 19% higher than those of cathodes made with a Pt catalyst and a PTFE diffusion layer (1350 ± 50 mW m−2). The highly porous diffusion layer structure of the CB + PTFE had a relatively high oxygen mass transfer coefficient (1.07 × 10−3 cm s−1) which enhanced oxygen transport to the catalyst. The addition of CB enhanced cathode performance by increasing the conductivity of the diffusion layer. Oxygen mass transfer coefficient, water pressure tolerance, and the addition of conductive particles were therefore critical features for achieving higher performance AC air cathodes.

  18. Diffusive flux of PAHs across sediment-water and water-air interfaces at urban superfund sites.

    Science.gov (United States)

    Minick, D James; Anderson, Kim A

    2017-09-01

    Superfund sites may be a source of polycyclic aromatic hydrocarbons (PAHs) to the surrounding environment. These sites can also act as PAH sinks from present-day anthropogenic activities, especially in urban locations. Understanding PAH transport across environmental compartments helps to define the relative contributions of these sources and is therefore important for informing remedial and management decisions. In the present study, paired passive samplers were co-deployed at sediment-water and water-air interfaces within the Portland Harbor Superfund Site and the McCormick and Baxter Superfund Site. These sites, located along the Willamette River (Portland, OR, USA), have PAH contamination from both legacy and modern sources. Diffusive flux calculations indicate that the Willamette River acts predominantly as a sink for low molecular weight PAHs from both the sediment and the air. The sediment was also predominantly a source of 4- and 5-ring PAHs to the river, and the river was a source of these same PAHs to the air, indicating that legacy pollution may be contributing to PAH exposure for residents of the Portland urban center. At the remediated McCormick and Baxter Superfund Site, flux measurements highlight locations within the sand and rock sediment cap where contaminant breakthrough is occurring. Environ Toxicol Chem 2017;36:2281-2289. © 2017 SETAC. © 2017 SETAC.

  19. Air quality and passenger comfort in an air-conditioned bus micro-environment.

    Science.gov (United States)

    Zhu, Xiaoxuan; Lei, Li; Wang, Xingshen; Zhang, Yinghui

    2018-04-12

    In this study, passenger comfort and the air pollution status of the micro-environmental conditions in an air-conditioned bus were investigated through questionnaires, field measurements, and a numerical simulation. As a subjective analysis, passengers' perceptions of indoor environmental quality and comfort levels were determined from questionnaires. As an objective analysis, a numerical simulation was conducted using a discrete phase model to determine the diffusion and distribution of pollutants, including particulate matter with a diameter air quality and dissatisfactory thermal comfort conditions in Jinan's air-conditioned bus system. To solve these problems, three scenarios (schemes A, B, C) were designed to alter the ventilation parameters. According to the results of an improved simulation of these scenarios, reducing or adding air outputs would shorten the time taken to reach steady-state conditions and weaken the airflow or lower the temperature in the cabin. The airflow pathway was closely related to the layout of the air conditioning. Scheme B lowered the temperature by 0.4 K and reduced the airflow by 0.01 m/s, while scheme C reduced the volume concentration of PM 10 to 150 μg/m 3 . Changing the air supply angle could further improve the airflow and reduce the concentration of PM 10 . With regard to the perception of airflow and thermal comfort, the scheme with an airflow provided by a 60° nozzle was considered better, and the concentration of PM 10 was reduced to 130 μg/m 3 .

  20. [Measurement of Chemical Compounds in Indoor and Outdoor Air in Chiba City Using Diffusive Sampling Devices].

    Science.gov (United States)

    Sakamoto, Hironari; Uchiyama, Shigehisa; Kihara, Akiko; Tsutake, Toyoshige; Bekki, Kanae; Inaba, Yohei; Nakagome, Hideki; Kunugita, Naoki

    2015-01-01

    Indoor air quality (IAQ) is a major concern, because people on average spend the vast majority of their time indoors and they are repeatedly exposed to indoor air pollutants. In this study, to assess indoor air quality in Chiba City, gaseous chemical compounds were surveyed using four types of diffusive sampler. Gaseous chemical compounds such as carbonyls, volatile organic compounds (VOC), acid gases, basic gases, and ozone were measured in indoor and outdoor air of 50 houses throughout Chiba City in winter and summer. Four types of diffusive sampler were used in this study: DSD-BPE/DNPH packed with 2,4-dinitrophenyl hydrazine and trans-1,2-bis(2-pyridyl)ethylene-coated silica for ozone and carbonyls; VOC-SD packed with Carboxen 564 particles for volatile organic compounds; DSD-TEA packed with triethanolamine-impregnated silica for acid gases; and DSD-NH3 packed with phosphoric acid-impregnated silica for basic gases. Almost all compounds in indoor air were detected at higher concentrations in summer than in winter. However, the nitrogen dioxide concentration in indoor air particularly increased only in winter, which well correlated with the formic acid concentration (correlation coefficient=0.974). The compound with the highest concentrations in indoor air was p-dichlorobenzene, with recorded levels of 13,000 μg m(-3) in summer and 1,100 μg m(-3) in winter in indoor air. p-Dichlorobenzene in summer and nitrogen dioxide in winter are detected at markedly high concentrations. Pollution control and continuous monitoring of IAQ are indispensable for human health.

  1. Release to the environment and diffusion of radioiodine in the environment, 1

    International Nuclear Information System (INIS)

    Murata, Toshifumi

    1979-01-01

    1. Radioactivity of iodine nuclides accumulated in nuclear facilities. Radioactive iodine nuclides which are produced in nuclear plants consist mainly of short lived 131 I- 135 I, while 129 I with long half life is being produced in a small amount. The radioactivity of iodine in a power reactor of 1,000 MWe which burns uranium fuel amounts to about 6 x 10 8 C sub(i). In the case of fuel which is handled in a reprocessing plant of spent fuel, almost all radioactive iodine remaining in the fuel is 129 I (half life: 1.7 x 10 7 years) because of cooling period of more than 6 months which is imposed by the plant. 2. Release of radioactive iodine during normal operating conditions. In an event of fuel failure in light water cooled reactors, a part of radioactive iodine is dissolved in water and very small amount is released as gaseous iodine to the environment through the ventillation system. The actual amount of radioactive iodine which was released from various types of nuclear reactors in the world between 1970 to 1974 is recorded as much lower than to the presently regulated value in all cases. 3. Behavior of radioactive iodine during postulated accident. The amount of radioactive iodine which will be released from reactor core to the containment vessel varies with conditions to be assumed. In the event of a severe accidental condition such as fuel melt down or oxidation, 25% of radioactive iodine in the fuel are assumed to be released. The iodine released to the containment vessel is mostly removed by planting out to the wall of the containment or washed out by core spray, while the remaining part in air is to be removed by a filter unit which is installed in the emergency gas treatment system. (author)

  2. Experimental study of perforated suspended ceilings as diffuse ventilation air inlets

    DEFF Research Database (Denmark)

    Hviid, Christian Anker; Svendsen, Svend

    2013-01-01

    An experimental study is reported in this paper for a diffuse ceiling ventilation concept. The analyses were carried out with two different porous surfaces mounted in a suspended ceiling: perforated tiles of aluminium and of gypsum. Ventilation air was supplied above the suspended ceiling effecti...... surface which increases the potential and applicability of the concept. Risk of thermal discomfort was not disclosed but the study did show evidence of large fluctuating air movements which could stem from transient behaviour creating sensations of draught to the occupants....

  3. Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Gao, Jinlong; Li, Zhongshan

    2014-01-01

    Rapid transition from glow discharge to thermal arc has been a common problem in generating stable high-power non-thermal plasmas especially at ambient conditions. A sustained diffusive gliding arc discharge was generated in a large volume in atmospheric pressure air, driven by an alternating...... current (AC) power source. The plasma column extended beyond the water-cooled stainless steel electrodes and was stabilized by matching the flow speed of the turbulent air jet with the rated output power. Comprehensive investigations were performed using high-speed movies measured over the plasma column...

  4. Impact of co-flow air on buoyant diffusion flames flicker

    Energy Technology Data Exchange (ETDEWEB)

    Gohari Darabkhani, H., E-mail: h.g.darabkhani@gmail.com [School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Sackville Street, Manchester M13 9PL (United Kingdom); Wang, Q.; Chen, L.; Zhang, Y. [Mechanical Engineering Department, University of Sheffield, Mapping Street, Sheffield S1 3JD (United Kingdom)

    2011-08-15

    Highlights: {yields} We present the co-flow effects on flickering behaviour of diffusion flames. {yields} Co-flow air is shown to fully suppress the buoyancy driven flame oscillations. {yields} Schlieren and PIV illustrate the shift of outer vortices beyond the flame zone. {yields} Stability controlling parameter as a ratio of air to fuel velocities is presented. {yields} Equation for linear increase in flickering frequency by co-flow air is presented. - Abstract: This paper describes experimental investigation of co-flow air velocity effects on the flickering behaviour of laminar non-lifted methane diffusion flames. Chemiluminescence, high-speed photography, schlieren and Particle Imaging Velocimetry (PIV), have been used to study the changes in the flame/vortex interactions as well as the flame flickering frequency and magnitude by the co-flow air. Four cases of methane flow rates at different co-flow air velocities are investigated. It has been observed that the flame dynamics and stability of co-flow diffusion flames are strongly affected by the co-flow air velocity. When the co-flow velocity has reached a certain value the buoyancy driven flame oscillation was completely suppressed. The schlieren and PIV imaging have revealed that the co-flow of air is able to push the initiation point of the outer toroidal vortices beyond the visible flame to create a very steady laminar flow region in the reaction zone. Then the buoyancy driven instability is only effective in the plume of hot gases above the visible flame. It is observed that a higher co-flow rate is needed in order to suppress the flame flickering at a higher fuel flow rate. Therefore the ratio of the air velocity to the fuel velocity, {gamma}, is a stability controlling parameter. The velocity ratio, {gamma}, was found to be 0.72 for the range of tested flow rates. The dominant flickering frequency was observed to increase linearly with the co-flow rate (a) as; f = 0.33a + 11. The frequency amplitudes

  5. Analytical-numerical method for treatment of turbulent diffusion of particles in the air

    International Nuclear Information System (INIS)

    Arsov, L.J.

    1976-01-01

    This work deals with the problem of air pollution around a stationary punctual source. For description of air pollution from a punctual source a mathematical model is suggested, and for calculation of effluents concentration an analytical-numerical algorithm is given. In addition to the analitical treatment the mathematical model is far more flexible and complete. Eddy diffusivity is represented by an arbitrary function, and an arbitrary wind velocity profile ahs been proposed. The apsorption of the ground is introduced through a variable apsorption coefficient, and the sedimentation through the mean velocity of deposition. To determine the movement of particles a parabolic equation of diffusion is used. The method has been tested through calculation of effluents concentration for different values of physical parameters

  6. Partitioned airs at microscale and nanoscale: thermal diffusivity in ultrahigh porosity solids of nanocellulose

    Science.gov (United States)

    Sakai, Koh; Kobayashi, Yuri; Saito, Tsuguyuki; Isogai, Akira

    2016-02-01

    High porosity solids, such as plastic foams and aerogels, are thermally insulating. Their insulation performance strongly depends on their pore structure, which dictates the heat transfer process in the material. Understanding such a relationship is essential to realizing highly efficient thermal insulators. Herein, we compare the heat transfer properties of foams and aerogels that have very high porosities (97.3-99.7%) and an identical composition (nanocellulose). The foams feature rather closed, microscale pores formed with a thin film-like solid phase, whereas the aerogels feature nanoscale open pores formed with a nanofibrous network-like solid skeleton. Unlike the aerogel samples, the thermal diffusivity of the foam decreases considerably with a slight increase in the solid fraction. The results indicate that for suppressing the thermal diffusion of air within high porosity solids, creating microscale spaces with distinct partitions is more effective than directly blocking the free path of air molecules at the nanoscale.

  7. Diffuse flow environments within basalt- and sediment-based hydrothermal vent ecosystems harbor specialized microbial communities.

    Science.gov (United States)

    Campbell, Barbara J; Polson, Shawn W; Zeigler Allen, Lisa; Williamson, Shannon J; Lee, Charles K; Wommack, K Eric; Cary, S Craig

    2013-01-01

    Hydrothermal vents differ both in surface input and subsurface geochemistry. The effects of these differences on their microbial communities are not clear. Here, we investigated both alpha and beta diversity of diffuse flow-associated microbial communities emanating from vents at a basalt-based hydrothermal system along the East Pacific Rise (EPR) and a sediment-based hydrothermal system, Guaymas Basin. Both Bacteria and Archaea were targeted using high throughput 16S rRNA gene pyrosequencing analyses. A unique aspect of this study was the use of a universal set of 16S rRNA gene primers to characterize total and diffuse flow-specific microbial communities from varied deep-sea hydrothermal environments. Both surrounding seawater and diffuse flow water samples contained large numbers of Marine Group I (MGI) Thaumarchaea and Gammaproteobacteria taxa previously observed in deep-sea systems. However, these taxa were geographically distinct and segregated according to type of spreading center. Diffuse flow microbial community profiles were highly differentiated. In particular, EPR dominant diffuse flow taxa were most closely associated with chemolithoautotrophs, and off axis water was dominated by heterotrophic-related taxa, whereas the opposite was true for Guaymas Basin. The diversity and richness of diffuse flow-specific microbial communities were strongly correlated to the relative abundance of Epsilonproteobacteria, proximity to macrofauna, and hydrothermal system type. Archaeal diversity was higher than or equivalent to bacterial diversity in about one third of the samples. Most diffuse flow-specific communities were dominated by OTUs associated with Epsilonproteobacteria, but many of the Guaymas Basin diffuse flow samples were dominated by either OTUs within the Planctomycetes or hyperthermophilic Archaea. This study emphasizes the unique microbial communities associated with geochemically and geographically distinct hydrothermal diffuse flow environments.

  8. Diffuse plasma treatment of polyamide 66 fabric in atmospheric pressure air

    International Nuclear Information System (INIS)

    Li, Lee; Peng, Ming-yang; Teng, Yun; Gao, Guozhen

    2016-01-01

    Graphical abstract: - Highlights: • A cylindrical-electrode nanosecond-pulse diffuse-discharge reactor is presented. • Large-scale non-thermal plasmas were generated steadily in atmospheric air. • Treated PA66 fabric is etched with oxygen-containing group increases. • The hydrophily of treated PA66 fabric improves effectively. • Extending the treatment time is a method to reduce the treatment frequency. - Abstract: The polyamide 66 (PA66) fabrics are hard to be colored or glued in industrial production due to the poor hydrophily. Diffuse plasma is a kind of non-thermal plasma generated at atmospheric pressure in air. This paper proposes that large-scale diffuse plasma generated between wire electrodes can be employed for improving the hydrophily of PA66 fabrics. A repetitive nanosecond-pulse diffuse-discharge reactor using a cylindrical wire electrode configuration is presented, which can generate large-scale non-thermal plasmas steadily at atmospheric pressure without any barrier dielectric. Then the reactor is used to treat PA66 fabrics in different discharge conditions. The hydrophilicity property of modified PA66 is measured by wicking test method. The modified PA66 is also analyzed by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) to prove the surface changes in physical microstructure and chemical functional groups, respectively. What's more, the effects of treatment time and treatment frequency on surface modification are investigated and discussed.

  9. Lead and cadmium in indoor air and the urban environment

    International Nuclear Information System (INIS)

    Komarnicki, Guenter J.K.

    2005-01-01

    The present study was conducted to find potential terrestrial biomonitors for heavy metals in indoor air in an urban environment. TSP, PM 10 , and PM 2.5 were collected in three retirement facilities in the urban area of Vienna. In addition, particulate matter and soil, vegetation, and isopods (Porcellio scaber L.) were collected in the adjacent garden areas. Aerosols were sampled with a low-volume air sampler. The sampled materials were wet ashed and total lead and cadmium contents were determined. Water-soluble heavy metal concentrations were measured in aqueous extracts from air exposed filters, soil, and vegetation. Lead and cadmium were analyzed by graphite furnace AAS. Lead contents in the vegetation were inferred from water-soluble lead in soils. Lead in isopods generally reflected the contents in vegetation. Cadmium in plants probably derived from soil solutions as well as from atmospheric input. Isopods reflected the total cadmium contents in soils. Particulate matter was dominated by PM 2.5 , both with respect to mass concentrations and to heavy metal contents. The indoor aerosol was found to be influenced by human activity, indoor sources, and outdoor particles. Relationships between indoor airborne heavy metals and the contents in vegetation (lead and cadmium: positive) and isopods (lead: negative) were identified to have the potential for biomonitoring indoor air quality. - Urban vegetation and isopods are potential indicators for indoor aerial heavy metals

  10. Behavior of aerosols in a steam-air environment

    International Nuclear Information System (INIS)

    Adams, R.E.; Tobias, M.L.; Longest, A.W.

    1985-01-01

    The behavior of aerosols assumed to be characteristic of those generated during light water reactor (LWR) accident sequences and released into containment is being studied in the Nuclear Safety Pilot Plant (NSPP) which is located at the Oak Ridge National Laboratory (ORNL). The program plan for the NSPP aerosol project provides for the study of the behavior, within containment, of simulated LWR accident aerosols emanating from fuel, reactor core structural materials, and from concrete-molten core materials interactions. The aerodynamic behavior of each of these aerosols was studied individually to establish its characteristics; current experiments involve mixtures of these aerosols to establish their interaction and collective behavior within containment. Tests have been conducted with U 3 O 8 aerosols, Fe 2 O 3 aerosols, and concrete aerosols in an environment of either dry air [relative humidity (RH) less than 20%] or steam-air [relative humidity (RH) approximately 100%] with aerosol mass concentration being the primary experimental variable

  11. Performance of an alpha air monitor in a dusty environment

    International Nuclear Information System (INIS)

    Hoover, M.D.; Newton, G.J.; Yeh, H.C.; Seiler, F.A.; Boecker, B.B.

    1988-01-01

    The Eberline Alpha-6 Continuous Air Monitor (CAM) was evaluated for use in detecting alpha radiation from 238 Pu and 239 Pu in the presence of background aerosols of salt dust and radon progeny. The Alpha-6 method uses an embedded, multichannel analyzer and real-time computer to correct for the presence of alpha-emitting radon progeny and to accurately report plutonium air concentration in dust-free environments. However, accumulation of mg/cm 2 salt dust on the sample collection filter was found to be equivalent to an infinitely thick layer. Dust loading raises the limit of detection in proportion to the concentration of airborne salt. Proper detection of 239 Pu is impaired by airborne concentrations of salt greater than 2 mg/m 3 . Alpha spectral analysis at a central monitoring computer is recommended to avoid detection errors at higher salt concentrations. (author)

  12. The role of diatom nanostructures in biasing diffusion to improve uptake in a patchy nutrient environment.

    Directory of Open Access Journals (Sweden)

    James G Mitchell

    Full Text Available BACKGROUND: Diatoms are important single-celled autotrophs that dominate most lit aquatic environments and are distinguished by surficial frustules with intricate designs of unknown function. PRINCIPAL FINDINGS: We show that some frustule designs constrain diffusion to positively alter nutrient uptake. In nutrient gradients of 4 to 160 times over <5 cm, the screened-chambered morphology of Coscincodiscus sp. biases the nutrient diffusion towards the cell by at least 3.8 times the diffusion to the seawater. In contrast, the open-chambers of Thalassiosira eccentrica produce at least a 1.3 times diffusion advantage to the membrane over Coscincodiscus sp. when nutrients are homogeneous. SIGNIFICANCE: Diffusion constraint explains the success of particular diatom species at given times and the overall success of diatoms. The results help answer the unresolved question of how adjacent microplankton compete. Furthermore, diffusion constraint by supramembrane nanostructures to alter molecular diffusion suggests that microbes compete via supramembrane topology, a competitive mechanism not considered by the standard smooth-surface equations used for nutrient uptake nor in microbial ecology and cell physiology.

  13. Flow control in s-shaped air intake diffuser of gas turbine using proposed energy promoters

    Directory of Open Access Journals (Sweden)

    Jessam Raed A.

    2017-01-01

    Full Text Available This paper presents an experimental and numerical investigation of the flow control in an air intake S-shaped diffuser with and without energy promoters. The S-shaped diffuser had an area ratio 3.1and turning angle of 45°/45°. The proposed energy promoter was named as stream line sheet energy promoter. Computational Fluid Dynamics simulation was performed through commercial ANSYS-FLUENT 16.2 software. The measurements were made inside annular subsection, 45° from 360° of the complete annular shape of the diffuser, at Reynolds number 5.8×104 and turbulence intensity 4.1%. Results for the bare S-shaped diffuser (without energy promoters showed the flow structures within the S-shaped diffuser were dominated by counter-rotating vortices and boundary layer separation especially in the outer surface. The combination of the adverse pressure gradient at the first bend of outer surface and upstream low momentum wakes caused the boundary layer to separate early. The combinations of proposed energy promoters were installed on the inner and outer surfaces at three installation planes. The use of energy promoters resulting in significantly decreased the outer surface boundary layer separation with consequential improving the static pressure coefficient and reduction of total pressure losses

  14. Air Purification in Closed Environments: An Overview of Spacecraft Systems

    Science.gov (United States)

    Perry, Jay L.; LeVan, Douglas; Crumbley, Robert (Technical Monitor)

    2002-01-01

    The primary goal for a collective protection system and a spacecraft environmental control and life support system (ECLSS) are strikingly similar. Essentially both function to provide the occupants of a building or vehicle with a safe, habitable environment. The collective protection system shields military and civilian personnel from short-term exposure to external threats presented by toxic agents and industrial chemicals while an ECLSS sustains astronauts for extended periods within the hostile environment of space. Both have air quality control similarities with various aircraft and 'tight' buildings. This paper reviews basic similarities between air purification system requirements for collective protection and an ECLSS that define surprisingly common technological challenges and solutions. Systems developed for air revitalization on board spacecraft are discussed along with some history on their early development as well as a view of future needs. Emphasis is placed upon two systems implemented by the National Aeronautics and Space Administration (NASA) onboard the International Space Station (ISS): the trace contaminant control system (TCCS) and the molecular sieve-based carbon dioxide removal assembly (CDRA). Over its history, the NASA has developed and implemented many life support systems for astronauts. As the duration, complexity, and crew size of manned missions increased from minutes or hours for a single astronaut during Project Mercury to days and ultimately months for crews of 3 or more during the Apollo, Skylab, Shuttle, and ISS programs, these systems have become more sophisticated. Systems aboard spacecraft such as the ISS have been designed to provide long-term environmental control and life support. Challenges facing the NASA's efforts include minimizing mass, volume, and power for such systems, while maximizing their safety, reliability, and performance. This paper will highlight similarities and differences among air purification systems

  15. A constant flow filter air sampler for workplace environments

    International Nuclear Information System (INIS)

    Parulian, A.; Rodgers, J.C.; McFarland, A.R.

    1996-01-01

    A filter air sampler has been developed for sampling radionuclide aerosol particles form the workplace environment. It provides easy filter changing, constant flow sampling, and a visual display to indicate proper operation. An experimental study was conducted to characterize the collection efficiency of the sampler as affected by variations in room air velocity, particle size, sampling flow rate, inlet geometry, and inlet orientation to the free stream. Tests were carried out in a wing tunnel at velocities between 0.3 m s -1 and 2.0 m s -1 , which is a range that covers anticipated velocities in the typical highly ventilated workplace environment of a nuclear facility. Nearly monodisperse aerosols with sizes between 5 and 20 μm aerodynamic diameter were sampled at flow rates between 28.3 and 84.9 L min -1 . Inlet orientations of 0 degree, 90 degree, and 180 degree from the horizontal were selected for evaluation. When the sampler was oriented at 0 degree over various ranges of free stream velocities, sampling flow rates and particle sizes, the transmission efficiency of aerosol was typically greater than 95%. The transmission efficiencies varied form 80% to 106% for 10-μm aerodynamic diameter particles over the previously noted range of free stream velocities and inlet orientations. Uniformity of deposits of 10 μm aerodynamic diameter particles on collection filters was examined for a sampling rate of 57 L min -1 , a sampler orientation of 90 degree into the wind and wind speeds of 0.3-2 m s -1 . The coefficients of variation for the areal density of the deposits ranged from 6.1% to 37.2%. A miniature critical flow venturi with a constant sampling flow rate of 57 L min -1 was developed for application to the new filter air sampler. It was demonstrated that the performance of the new filter air sampler is quite acceptable over a wide range of conditions. 31 refs., 8 figs., 1 tab

  16. [Impact of new trend of ecological environment changes on growth, reproduction and diffusion of Oncomelania hupensis].

    Science.gov (United States)

    Juan, Xie; Li-Yong, Wen

    2016-03-07

    Oncomelania hupensis is the only intermediate host of Schistosoma japonicum , and the growth, reproduction and distribution of O.hupensis play an important role in schistosomiasis prevalence and transmission. This article reviews the influence of the new trend of ecological environment changes on the growth, reproduction and diffusion of the snails.

  17. Limitations of ambient air quality standards in evaluating indoor environments

    International Nuclear Information System (INIS)

    Peterson, J.E.

    1992-01-01

    Analysis of the kinds of data used for the derivation of ambient air quality standards (AAQSs) for carbon monoxide and ozone shows that these values are based on the toxicology of the materials and thus are suitable for evaluating potential health effects of indoor environments, especially on the very young, the aged, and the infirm. A similar analysis shows that the AAQSs for suspended particulate matter, nitrogen dioxide, and sulfur dioxide are strictly empirical and that they should not be used for any but their first, intended purpose. The AAQSs for non-methane hydrocarbons are based on photochemical smog production, not injury of any kind, and have no utility for indoor environment evaluation

  18. Environment and air pollution: health services bequeath to grotesque menace.

    Science.gov (United States)

    Qureshi, Muhammad Imran; Rasli, Amran Md; Awan, Usama; Ma, Jian; Ali, Ghulam; Faridullah; Alam, Arif; Sajjad, Faiza; Zaman, Khalid

    2015-03-01

    The objective of the study is to establish the link between air pollution, fossil fuel energy consumption, industrialization, alternative and nuclear energy, combustible renewable and wastes, urbanization, and resulting impact on health services in Malaysia. The study employed two-stage least square regression technique on the time series data from 1975 to 2012 to possibly minimize the problem of endogeniety in the health services model. The results in general show that air pollution and environmental indicators act as a strong contributor to influence Malaysian health services. Urbanization and nuclear energy consumption both significantly increases the life expectancy in Malaysia, while fertility rate decreases along with the increasing urbanization in a country. Fossil fuel energy consumption and industrialization both have an indirect relationship with the infant mortality rate, whereas, carbon dioxide emissions have a direct relationship with the sanitation facility in a country. The results conclude that balancing the air pollution, environment, and health services needs strong policy vistas on the end of the government officials.

  19. Microbial air contamination in indoor environment of a university library.

    Science.gov (United States)

    Kalwasińska, Agnieszka; Burkowska, Aleksandra; Wilk, Iwona

    2012-01-01

    The present study was aimed at evaluating the number of bacteria and mould fungi in the indoor and outdoor environment of Toruń University Library. The sampling sites were located in the rooms serving the functions typical of libraries (i.e. in the Main Reading Room, Current Periodicals Reading Room, Collections Conservation Laboratory, Old Prints Storeroom, in rooms serving other (non-library) functions (i.e. main hall, cafeteria, and toilet) as well as outside the library building. The analyses reveal that the concentrations of bacterial as well as fungal aerosols estimated with the use of the impaction method ranged between 10(1)-10(3) CFU·m(-3), which corresponds to the concentrations normally observed in areas of this kind. Evaluation of the hygienic condition of the studied areas was based on the criteria for microbiological cleanliness in interiors submitted by the European Commission in 1993. According to this classification, the air was considered to be heavily or moderately contaminated with bacteria, while the air contamination with mould fungi was described as low or moderate. The air in the Old Prints Storeroom was considered the least contaminated with microbial aerosol.

  20. RESIDENCE TIMES OF PARTICLES IN DIFFUSIVE PROTOPLANETARY DISK ENVIRONMENTS. I. VERTICAL MOTIONS

    International Nuclear Information System (INIS)

    Ciesla, F. J.

    2010-01-01

    The chemical and physical evolution of primitive materials in protoplanetary disks are determined by the types of environments they are exposed to and their residence times within each environment. Here, a method for calculating representative paths of materials in diffusive protoplanetary disks is developed and applied to understanding how the vertical trajectories that particles take impact their overall evolution. The methods are general enough to be applied to disks with uniform diffusivity, the so-called constant-α cases, and disks with a spatially varying diffusivity, such as expected in 'layered-disks'. The average long-term dynamical evolution of small particles and gaseous molecules is independent of the specific form of the diffusivity in that they spend comparable fractions of their lifetimes at different heights in the disk. However, the paths that individual particles and molecules take depend strongly on the form of the diffusivity leading to a different range of behavior of particles in terms of deviations from the mean. As temperatures, gas densities, chemical abundances, and photon fluxes will vary with height in protoplanetary disks, the different paths taken by primitive materials will lead to differences in their chemical and physical evolution. Examples of differences in gas phase chemistry and photochemistry are explored here. The methods outlined here provide a powerful tool that can be integrated with chemical models to understand the formation and evolution of primitive materials in protoplanetary disks on timescales of 10 5 -10 6 years.

  1. Air ion concentrations in various urban outdoor environments

    Science.gov (United States)

    Ling, Xuan; Jayaratne, Rohan; Morawska, Lidia

    2010-06-01

    Atmospheric ions are produced by many natural and anthropogenic sources and their concentrations vary widely between different environments. There is very little information on their concentrations in different types of urban environments, how they compare across these environments and their dominant sources. In this study, we measured airborne concentrations of small ions, particles and net particle charge at 32 different outdoor sites in and around a major city in Australia and identified the main ion sources. Sites were classified into seven groups as follows: park, woodland, city centre, residential, freeway, power lines and power substation. Generally, parks were situated away from ion sources and represented the urban background value of about 270 ions cm -3. Median concentrations at all other groups were significantly higher than in the parks. We show that motor vehicles and power transmission systems are two major ion sources in urban areas. Power lines and substations constituted strong unipolar sources, while motor vehicle exhaust constituted strong bipolar sources. The small ion concentration in urban residential areas was about 960 cm -3. At sites where ion sources were co-located with particle sources, ion concentrations were inhibited due to the ion-particle attachment process. These results improved our understanding on air ion distribution and its interaction with particles in the urban outdoor environment.

  2. Investigations into exhaust air plume diffusion in the atmosphere. Progress report July 1973 - June 1974. P. 1

    International Nuclear Information System (INIS)

    Vogt, K.J.; Geiss, H.; Horbert, M.; Nordsieck, H.; Polster, G.; Rohloff, F.

    1974-09-01

    The paper is the first part of the status report on the research project 'Diffusion of pollutants in the atmosphere and environmental hazards'. It investigates the diffusion of exhaust air plumes in tracer experiments, thereby continuing the present investigations of the same issue. (orig./AK) [de

  3. Experimental Determination of Drug Diffusion Coefficients in Unstirred Aqueous Environments by Temporally Resolved Concentration Measurements

    DEFF Research Database (Denmark)

    Di Cagno, Massimiliano Pio; Clarelli, Fabrizio; Vabenø, Jon

    2018-01-01

    or the need for dedicated instrumentation. In this work, a simple but reliable method based on time resolved concentration measurements by UV-visible spectroscopy in an unstirred aqueous environment was developed. This method is based on spectroscopic measurement of the variation of the local concentration...... characteristics (i.e. ionic strength and presence of complexing agents) on the diffusivity. The method can be employed in any research laboratory equipped with a standard UV-visible spectrophotometer, and could become a useful and straightforward tool in order to characterize diffusion coefficients...

  4. Role of soot in the transport of chlorine in hydrocarbon-air diffusion flames

    International Nuclear Information System (INIS)

    Venkatesh, S.; Saito, K.; Stencel, J.M.; Majidi, V.; Owens, M.

    1991-01-01

    Soot is an inevitable product of incomplete combustion in many practical combustion systems such as automobiles, incinerators and furnaces. Recent studies on chlorinated hydrocarbon combustion have shown that soot and other praticulates (eg. fly ash) play an important role in secondary reactions leading to the formation of chlorine substituted polyaromatic hydrocarbons (PAHs). In order to attain very high destruction efficiencies the fundamental chemical and physical processes that are associated with combustion, and post-combustion cleanup must be well understood. In order to understand the effect of chlorine on the soot formed in a combustion system, fundamental studies using a coflow laminar hydrocarbon-air diffusion flame have been carried out. Phenomenological studies have revealed the effect of chlorine on the visible structure of the flame. Soot inception activation energies were estimated for methane, ethane and ethylene diffusion flames for the case of with and without chlorine addition. No significant difference in the activation energy was estimated for either case. The effect of chlorine on the soot escape rate of an acetylene diffusion flame was estimated. The soot formed in these diffusion flames was analyzed for chlorine using scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS) and by laser induced plasma spectroscopy (LIPS). REsults from these techniques indicate the presence of chlorine in the soot formed. In this paper a chemical scheme to explain the chlorine found in the soot is proposed based on known theories of soot formation

  5. Electro-scrubbing volatile organic carbons in the air stream with a gas diffusion electrode

    Energy Technology Data Exchange (ETDEWEB)

    Yang Ji, E-mail: yangji@ecust.edu.cn [School of Resources and Environmental Engineering, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237 (China); School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Liu Kaichen; Jia Jinping; Cao Limei [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2011-04-15

    It is demonstrated that exposing the VOC air streams to the electro-scrubbing reactor with a gas diffusion electrode leads to an efficient removal of organics. The importance order of the influence factors on the electro-scrubbing reactor performance is: conductivity, voltage and air stream flow-rate. The effective conductivity and high voltages generally are beneficial to the removal process and the air flow-rate is not a significant factor compared with the other two, indicating that the reactor might have a consistently satisfying performance within a wide range of gas volumetric load. The mass transfer of both organics and oxygen in the reactor is estimated by mathematical model, and the calculation determines the concentration boundary conditions for the 2-ethoxyethyl acetate removal: if the 2-ethoxyethyl acetate concentration in the inflow air stream holds C{sub G,i} {<=} 0.7198 % , the removal in the electro-scrubbing reactor is electrochemical reaction controlled; if C{sub G,i} > 0.7198 % , the controlling step will be the oxygen mass transfer from the air to the liquid in the electro-scrubbing reactor. The Apparent Current Efficiency of the electro-scrubbing reactor was also determined using COD data, which is significantly higher than some commercial metal oxide electrodes, showing that the reactor is energy efficient and has the promise for the future scale-up.

  6. Characteristics and applications of diffuse discharge of water electrode in air

    Science.gov (United States)

    Wenzheng, LIU; Tahan, WANG; Xiaozhong, CHEN; Chuanlong, MA

    2018-01-01

    Plasma water treatment technology, which aims to produce strong oxidizing reactive particles that act on the gas-liquid interface by way of discharging, is used to treat the organic pollutants that do not degrade easily in water. This paper presents a diffuse-discharge plasma water treatment method, which is realized by constructing a conical air gap through an uneven medium layer. The proposed method uses water as one electrode, and a dielectric barrier discharge electrode is constructed by using an uneven dielectric. The electric field distribution in the discharge space will be uneven, wherein the long gap electric field will have a smaller intensity, while the short one will have a larger intensity. A diffuse glow discharge is formed in the cavity. With this type of plasma water treatment equipment, a methyl orange solution with a concentration of 10 mg l-1 was treated, and the removal rate was found to reach 88.96%.

  7. Large-eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D)

    International Nuclear Information System (INIS)

    Pitsch, H.; Steiner, H.

    2000-01-01

    The Lagrangian Flamelet Model is formulated as a combustion model for large-eddy simulations of turbulent jet diffusion flames. The model is applied in a large-eddy simulation of a piloted partially premixed methane/air diffusion flame (Sandia flame D). The results of the simulation are compared to experimental data of the mean and RMS of the axial velocity and the mixture fraction and the unconditional and conditional averages of temperature and various species mass fractions, including CO and NO. All quantities are in good agreement with the experiments. The results indicate in accordance with experimental findings that regions of high strain appear in layer like structures, which are directed inwards and tend to align with the reaction zone, where the turbulence is fully developed. The analysis of the conditional temperature and mass fractions reveals a strong influence of the partial premixing of the fuel. (c) 2000 American Institute of Physics

  8. Modeling Unidirectional Pedestrian Movement: An Investigation of Diffusion Behavior in the Built Environment

    Directory of Open Access Journals (Sweden)

    Ying Liu

    2015-01-01

    Full Text Available Unidirectional pedestrian movement is a special phenomenon in the evacuation process of large public buildings and urban environments at pedestrian scale. Several macroscopic models for collective behaviors have been built to predict pedestrian flow. However, current models do not explain the diffusion behavior in pedestrian crowd movement, which can be important in representing spatial-temporal crowd density differentiation in the movement process. This study builds a macroscopic model for describing crowd diffusion behavior and evaluating unidirectional pedestrian flow. The proposed model employs discretization of time and walking speed in geometric distribution to calculate downstream pedestrian crowd flow and analyze movement process based on upstream number of pedestrians and average walking speed. The simulated results are calibrated with video observation data in a baseball stadium to verify the model precision. Statistical results have verified that the proposed pedestrian diffusion model could accurately describe pedestrian macromovement behavior within the margin of error.

  9. Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air

    Science.gov (United States)

    Zhu, Jiajian; Gao, Jinlong; Li, Zhongshan; Ehn, Andreas; Aldén, Marcus; Larsson, Anders; Kusano, Yukihiro

    2014-12-01

    Rapid transition from glow discharge to thermal arc has been a common problem in generating stable high-power non-thermal plasmas especially at ambient conditions. A sustained diffusive gliding arc discharge was generated in a large volume in atmospheric pressure air, driven by an alternating current (AC) power source. The plasma column extended beyond the water-cooled stainless steel electrodes and was stabilized by matching the flow speed of the turbulent air jet with the rated output power. Comprehensive investigations were performed using high-speed movies measured over the plasma column, synchronized with simultaneously recorded current and voltage waveforms. Dynamic details of the novel non-equilibrium discharge are revealed, which is characterized by a sinusoidal current waveform with amplitude stabilized at around 200 mA intermediate between thermal arc and glow discharge, shedding light to the governing mechanism of the sustained spark-suppressed AC gliding arc discharge.

  10. Guidelines on Thermal Comfort of Air Conditioned Indoor Environment

    Science.gov (United States)

    Miura, Toyohiko

    The thermal comfort of air conditioned indoor environment for workers depended, of course, on metabolic rate of work, race, sex, age, clothing, climate of the district and state of acclimatization. The attention of the author was directed to the seasonal variation and the sexual difference of comfortable temperature and a survey through a year was conducted on the thermal comfort, and health conditions of workers engaged in light work in a precision machine factory, in some office workers. Besides, a series of experiments were conducted for purpose of determinning the optimum temperature of cooling in summer time in relation to the outdoor temperature. It seemed that many of workers at present would prefer somewhat higher temperature than those before the World War II. Forty years ago the average homes and offices were not so well heated as today, and clothing worn on the average was considerably heavier.

  11. The Future of the Brigade Combat Team: Air-Ground Integration and the Operating Environment

    Science.gov (United States)

    2017-06-09

    coordinate, and control joint and multinational aircraft during CAS situations in combat and training. The current system which the CAS mission falls...current system , experiences from Vietnam, Operation Desert Storm, Afghanistan and Iraq help to identify future challenges to the operating environment ...multinational partners. 15. SUBJECT TERMS Air Ground Integration, Theater Air Ground System , Theater Air Control System , Army Air Ground System , Joint

  12. Multiscale diffusion of a molecular probe in a crowded environment: a concept

    Science.gov (United States)

    Currie, Megan; Thao, Chang; Timerman, Randi; Welty, Robb; Berry, Brenden; Sheets, Erin D.; Heikal, Ahmed A.

    2015-08-01

    Living cells are crowded with macromolecules and organelles. Yet, it is not fully understood how macromolecular crowding affects the myriad of biochemical reactions, transport and the structural stability of biomolecules that are essential to cellular function and survival. These molecular processes, with or without electrostatic interactions, in living cells are therefore expected to be distinct from those carried out in test tube in dilute solutions where excluded volumes are absent. Thus there is an urgent need to understand the macromolecular crowding effects on cellular and molecular biophysics towards quantitative cell biology. In this report, we investigated how biomimetic crowding affects both the rotational and translation diffusion of a small probe (rhodamine green, RhG). For biomimetic crowding agents, we used Ficoll-70 (synthetic polymer), bovine serum albumin and ovalbumin (proteins) at various concentrations in a buffer at room temperature. As a control, we carried out similar measurements on glycerolenriched buffer as an environment with homogeneous viscosity as a function of glycerol concentration. The corresponding bulk viscosity was measured independently to test the validity of the Stokes-Einstein model of a diffusing species undergoing a random walk. For rotational diffusion (ps-ns time scale), we used time-resolved anisotropy measurements to examine potential binding of RhG as a function of the crowding agents (surface structure and size). For translational diffusion (μs-s time scale), we used fluorescence correlation spectroscopy for single-molecule fluctuation analysis. Our results allow us to examine the diffusion model of a molecular probe in crowded environments as a function of concentration, length scale, homogeneous versus heterogeneous viscosity, size and surface structures. These biomimetic crowding studies, using non-invasive fluorescence spectroscopy methods, represent an important step towards understanding cellular biophysics and

  13. Gas diffusion, non-Darcy air permeability, and computed tomography images of a clay subsoil affected by compaction

    DEFF Research Database (Denmark)

    Schjønning, Per; Lamandé, Mathieu; Berisso, Feto Esimo

    2013-01-01

    Soil productivity and other soil functions are dependent on processes in the untilled subsoil. Undisturbed soil cores were collected at the 0.3- to 0.4-m depth from a heavy clay soil in Finland subjected to a single heavy traffic event by agricultural machinery three decades before sampling....... Untrafficked control plots were used as a reference. Computed tomography (CT) scanning was performed on soil cores at a field-sampled field capacity water content. Gas diffusion and air permeability were measured when the soil cores were drained to −1000 hPa matric potential (air permeability also at −100...... and −300 hPa). The air-filled pore space was measured with an air pycnometer and also calculated from mass balance and CT data. Gas diffusion and air permeability were also measured on a straight model tube and on autoclaved aerated concrete. The compaction treatment had not influenced soil total porosity...

  14. The diffusion and deposition of the gaseous and solid alpha radionuclides/aerosols in air

    International Nuclear Information System (INIS)

    Danis, A.; Ciubotariu, M.; Oncescu, M.; Mocsy, I.

    1999-01-01

    The diffusion and deposition of gaseous and solids alpha radionuclides and aerosols in air are processes which implicate low element amounts and therefore their studies require the using of very accurate and sensitive analysis methods. The alpha track method meets these requirements. The used alpha radionuclides were: Rn-222, as gaseous radionuclide and its solid descendants genetically related as solid radionuclides and the descendants attached to different particles from air as alpha aerosols. All these radionuclides were obtained from a calibrated Ra-226 source. The source was included into an air tight device with a well known volume and used after 40 days when the Ra-226 and its alpha descendants were under radioactive equilibrium. The relative amount and activity of each decay product, at any duration, for any initial mass of Ra-226 parent radionuclide, were calculated using a programme for computation of the U-238 radioactive series gamma accumulation, UURASE, adapted for alpha accumulation as ALFAURASE programme. The radon, Rn-222, as well as the solid alpha radionuclides and aerosols were measured using a new alpha monitoring device with or without paper filter for solid radionuclides and aerosols stopping. The track detectors of CR-39 type were incorporated with these monitoring devices. In order to calibrate the CR-39 detectors, a radon intercomparison programme was established with the participation of the SSNTD group from the Institute of Nuclear Research ATOMKI, Debrecen, Hungary, Institute of Public Health, Cluj-Napoca and SSNTD research group from IFIN-HH. We have used for radon calibration a special experimental device and a Ra-226 source. Using an air tight diffusion and deposition device, coupled with the source device, the concentration of radon and solid alpha radionuclides and aerosols were determined using the alpha track method. The alpha monitoring devices were fixed vertically at different distances from the place of radon penetration into

  15. Air Traffic Complexity Measurement Environment (ACME): Software User's Guide

    Science.gov (United States)

    1996-01-01

    A user's guide for the Air Traffic Complexity Measurement Environment (ACME) software is presented. The ACME consists of two major components, a complexity analysis tool and user interface. The Complexity Analysis Tool (CAT) analyzes complexity off-line, producing data files which may be examined interactively via the Complexity Data Analysis Tool (CDAT). The Complexity Analysis Tool is composed of three independently executing processes that communicate via PVM (Parallel Virtual Machine) and Unix sockets. The Runtime Data Management and Control process (RUNDMC) extracts flight plan and track information from a SAR input file, and sends the information to GARP (Generate Aircraft Routes Process) and CAT (Complexity Analysis Task). GARP in turn generates aircraft trajectories, which are utilized by CAT to calculate sector complexity. CAT writes flight plan, track and complexity data to an output file, which can be examined interactively. The Complexity Data Analysis Tool (CDAT) provides an interactive graphic environment for examining the complexity data produced by the Complexity Analysis Tool (CAT). CDAT can also play back track data extracted from System Analysis Recording (SAR) tapes. The CDAT user interface consists of a primary window, a controls window, and miscellaneous pop-ups. Aircraft track and position data is displayed in the main viewing area of the primary window. The controls window contains miscellaneous control and display items. Complexity data is displayed in pop-up windows. CDAT plays back sector complexity and aircraft track and position data as a function of time. Controls are provided to start and stop playback, adjust the playback rate, and reposition the display to a specified time.

  16. Effect of Soret diffusion on lean hydrogen/air flames at normal and elevated pressure and temperature

    KAUST Repository

    Zhou, Zhen; Hernandez Perez, Francisco; Shoshin, Yuriy; van Oijen, Jeroen A.; de Goey, Laurentius P.H.

    2017-01-01

    The influence of Soret diffusion on lean premixed flames propagating in hydrogen/air mixtures is numerically investigated with a detailed chemical and transport models at normal and elevated pressure and temperature. The Soret diffusion influence on the one-dimensional (1D) flame mass burning rate and two-dimensional (2D) flame propagating characteristics is analysed, revealing a strong dependency on flame stretch rate, pressure and temperature. For 1D flames, at normal pressure and temperature, with an increase of Karlovitz number from 0 to 0.4, the mass burning rate is first reduced and then enhanced by Soret diffusion of H2 while it is reduced by Soret diffusion of H. The influence of Soret diffusion of H2 is enhanced by pressure and reduced by temperature. On the contrary, the influence of Soret diffusion of H is reduced by pressure and enhanced by temperature. For 2D flames, at normal pressure and temperature, during the early phase of flame evolution, flames with Soret diffusion display more curved flame cells. Pressure enhances this effect, while temperature reduces it. The influence of Soret diffusion of H2 on the global consumption speed is enhanced at elevated pressure. The influence of Soret diffusion of H on the global consumption speed is enhanced at elevated temperature. The flame evolution is more affected by Soret diffusion in the early phase of propagation than in the long run due to the local enrichment of H2 caused by flame curvature effects. The present study provides new insights into the Soret diffusion effect on the characteristics of lean hydrogen/air flames at conditions that are relevant to practical applications, e.g. gas engines and turbines.

  17. Effect of Soret diffusion on lean hydrogen/air flames at normal and elevated pressure and temperature

    KAUST Repository

    Zhou, Zhen

    2017-04-12

    The influence of Soret diffusion on lean premixed flames propagating in hydrogen/air mixtures is numerically investigated with a detailed chemical and transport models at normal and elevated pressure and temperature. The Soret diffusion influence on the one-dimensional (1D) flame mass burning rate and two-dimensional (2D) flame propagating characteristics is analysed, revealing a strong dependency on flame stretch rate, pressure and temperature. For 1D flames, at normal pressure and temperature, with an increase of Karlovitz number from 0 to 0.4, the mass burning rate is first reduced and then enhanced by Soret diffusion of H2 while it is reduced by Soret diffusion of H. The influence of Soret diffusion of H2 is enhanced by pressure and reduced by temperature. On the contrary, the influence of Soret diffusion of H is reduced by pressure and enhanced by temperature. For 2D flames, at normal pressure and temperature, during the early phase of flame evolution, flames with Soret diffusion display more curved flame cells. Pressure enhances this effect, while temperature reduces it. The influence of Soret diffusion of H2 on the global consumption speed is enhanced at elevated pressure. The influence of Soret diffusion of H on the global consumption speed is enhanced at elevated temperature. The flame evolution is more affected by Soret diffusion in the early phase of propagation than in the long run due to the local enrichment of H2 caused by flame curvature effects. The present study provides new insights into the Soret diffusion effect on the characteristics of lean hydrogen/air flames at conditions that are relevant to practical applications, e.g. gas engines and turbines.

  18. Dependence of alpha radionuclide diffusion and deposition on relative air humidity

    International Nuclear Information System (INIS)

    Danis, A.; Ciubotariu, M.; Oncescu, M.; Mocsy, I.; Tomulescu, V.

    2000-01-01

    The diffusion and deposition of the gaseous and solid alpha radionuclides/aerosols depend strongly on the relative air humidity. This dependence gets a great significance in the case of radon and their genetically related alpha radionuclides monitoring in the dwelling and working places for radioprotection purposes, particularly in establishing the equilibrium factor. For the gaseous and solid alpha radionuclides genetically related, Rn-222 and its solid alpha descendants including their aerosols obtained by radionuclide attachments to different particles present in air, the vertical gradient of volume concentrations was experimentally determined. The experiments were performed in: an airtight tubular laboratory chamber, a house cellar (Cluj-Napoca) and the entrance gallery of an abandoned mine (Avram Iancu, Bihor), in which the relative humidity was ranging from 65% up to 96%. For the laboratory chamber, these radionuclides were generated by a calibrated Ra-226 source, prepared at the Radionuclide Production Centre, IPNE-HH, Bucharest. The source was included into an air tight device with a well known volume and it was used only after 40 days, when the Ra-226 and its alpha descendants were under radioactive equilibrium. For the diffusion/deposition studies, this source was coupled with the airtight laboratory chamber. In the mine gallery and house cellar, the radon and its descendants were naturally and continuously generated by radium sources in soil and building materials. The alpha volume concentration determinations required the use of a very accurate and sensitive alpha measurement method. These requirements were met by the alpha track method. This method was used by us in the following conditions: the CR-39 plastic track detector (Page, England) for the detection of the alpha particles and the optical microscopy for the study of alpha tracks (Wild stereomicroscope M7S and a Karl Zeiss Jena binocular microscope). The volume concentrations of radon and the

  19. Extensive air showers and diffused Cherenkov light detection: The ULTRA experiment

    International Nuclear Information System (INIS)

    Agnetta, G.; Assis, P.; Biondo, B.

    2007-01-01

    The Uv Light Transmission and Reflection in the Atmosphere (ULTRA) experiment has been designed to provide quantitative measurements of the backscattered Cherenkov signal associated to the Extensive Air Showers (EAS) at the impact point on the Earth surface. The knowledge of such information will test the possibility to detect the diffused Cherenkov light spot from space within the Ultra high-energy cosmic ray observation. The Cherenkov signal is necessary to give an absolute reference for the track, allowing the measurement of the shower maximum and easing the separation between neutrino and hadronic showers. In this paper we discuss the experimental set-up with detailed information on the detection method; the in situ and laboratory calibrations; the simulation of the expected detector response and finally the preliminary results on the detector performance

  20. An Evaluation of Antifungal Agents for the Treatment of Fungal Contamination in Indoor Air Environments

    Directory of Open Access Journals (Sweden)

    Senthaamarai Rogawansamy

    2015-06-01

    Full Text Available Fungal contamination in indoor environments has been associated with adverse health effects for the inhabitants. Remediation of fungal contamination requires removal of the fungi present and modifying the indoor environment to become less favourable to growth.  This may include treatment of indoor environments with an antifungal agent to prevent future growth. However there are limited published data or advice on chemical agents suitable for indoor fungal remediation. The aim of this study was to assess the relative efficacies of five commercially available cleaning agents with published or anecdotal use for indoor fungal remediation. The five agents included two common multi-purpose industrial disinfectants (Cavicide® and Virkon®, 70% ethanol, vinegar (4.0%-4.2% acetic acid, and a plant-derived compound (tea tree (Melaleuca alternifolia oil tested in both a liquid and vapour form. Tea tree oil has recently generated interest for its antimicrobial efficacy in clinical settings, but has not been widely employed for fungal remediation. Each antifungal agent was assessed for fungal growth inhibition using a disc diffusion method against a representative species from two common fungal genera, (Aspergillus fumigatus and Penicillium chrysogenum, which were isolated from air samples and are commonly found in indoor air. Tea tree oil demonstrated the greatest inhibitory effect on the growth of both fungi, applied in either a liquid or vapour form. Cavicide® and Virkon® demonstrated similar, although less, growth inhibition of both genera. Vinegar (4.0%–4.2% acetic acid was found to only inhibit the growth of P. chrysogenum, while 70% ethanol was found to have no inhibitory effect on the growth of either fungi. There was a notable inhibition in sporulation, distinct from growth inhibition after exposure to tea tree oil, Virkon®, Cavicide® and vinegar. Results demonstrate that common cleaning and antifungal agents differ in their capacity to

  1. An evaluation of antifungal agents for the treatment of fungal contamination in indoor air environments.

    Science.gov (United States)

    Rogawansamy, Senthaamarai; Gaskin, Sharyn; Taylor, Michael; Pisaniello, Dino

    2015-06-02

    Fungal contamination in indoor environments has been associated with adverse health effects for the inhabitants. Remediation of fungal contamination requires removal of the fungi present and modifying the indoor environment to become less favourable to growth.  This may include treatment of indoor environments with an antifungal agent to prevent future growth. However there are limited published data or advice on chemical agents suitable for indoor fungal remediation. The aim of this study was to assess the relative efficacies of five commercially available cleaning agents with published or anecdotal use for indoor fungal remediation. The five agents included two common multi-purpose industrial disinfectants (Cavicide® and Virkon®), 70% ethanol, vinegar (4.0%-4.2% acetic acid), and a plant-derived compound (tea tree (Melaleuca alternifolia) oil) tested in both a liquid and vapour form. Tea tree oil has recently generated interest for its antimicrobial efficacy in clinical settings, but has not been widely employed for fungal remediation. Each antifungal agent was assessed for fungal growth inhibition using a disc diffusion method against a representative species from two common fungal genera, (Aspergillus fumigatus and Penicillium chrysogenum), which were isolated from air samples and are commonly found in indoor air. Tea tree oil demonstrated the greatest inhibitory effect on the growth of both fungi, applied in either a liquid or vapour form. Cavicide® and Virkon® demonstrated similar, although less, growth inhibition of both genera. Vinegar (4.0%-4.2% acetic acid) was found to only inhibit the growth of P. chrysogenum, while 70% ethanol was found to have no inhibitory effect on the growth of either fungi. There was a notable inhibition in sporulation, distinct from growth inhibition after exposure to tea tree oil, Virkon®, Cavicide® and vinegar. Results demonstrate that common cleaning and antifungal agents differ in their capacity to inhibit the growth

  2. Simulation of Electron and Ion Transport in Methane-Air Counterflow Diffusion Flames

    Science.gov (United States)

    Choi, Sangkyu; Bisetti, Fabrizio; Chung, Suk Ho

    2010-11-01

    The spatial distribution of charged species in a methane-air counterflow diffusion flame is simulated with a detailed ion chemistry. The electric field induced by the distribution of charged species is calculated and compared to that obtained invoking the ambipolar diffusion assumption. The two calculations showed identical profiles for charged species and electric field. The profiles of ion mole fractions show two peaks: one near the maximum temperature and a second peak on the oxidizer side. The major ions near the maximum temperature are electron, C2H3O+ and H3O+. CHO3- and H3O+ contribute to the second peak. These profiles are quite different from those adopting a simplified three-step mechanism based solely on E-, CHO+ and H3O+, which shows only a single peak. Reaction pathway analyses showed that near the flame region, the proton is transferred by the path of CHO+ -> H3O+ -> C2H3O+ -> CHO+ in a circulating manner. In the second peak, CHO3- is produced though the pathway of E- -> O- -> OH- -> CHO3-. The sensitivity of the charged species profiles to transport properties is investigated, and it is found that the variation of charged species profiles near peak temperature is relatively small, while on the oxidizer side, it is quite sensitive to transport properties.

  3. Protection of air in premises and environment against beryllium aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Bitkolov, N.Z.; Vishnevsky, E.P.; Krupkin, A.V. [Research Inst. of Industrial and Marine Medicine, St. Petersburg (Russian Federation)

    1998-01-01

    First and foremost, the danger of beryllium aerosols concerns a possibility of their inhalation. The situation is aggravated with high biological activity of the beryllium in a human lung. The small allowable beryllium aerosols` concentration in air poses a rather complex and expensive problem of the pollution prevention and clearing up of air. The delivery and transportation of beryllium aerosols from sites of their formation are defined by the circuit of ventilation, that forms aerodynamics of air flows in premises, and aerodynamic links between premises. The causes of aerosols release in air of premises from hoods, isolated and hermetically sealed vessels can be vibrations, as well as pulses of temperature and pressure. Furthermore, it is possible the redispersion of aerosols from dirty surfaces. The effective protection of air against beryllium aerosols at industrial plants is provided by a complex of hygienic measures: from individual means of breath protection up to collective means of the prevention of air pollution. (J.P.N.)

  4. Resistance of HEPA filter separator materials to humid air--hydrogen fluoride--fluorine environments

    International Nuclear Information System (INIS)

    Weber, C.W.; Petit, G.S.; Woodfin, S.B.

    1977-01-01

    The U. S. Energy Research and Development Administration (ERDA) is interested in the development of a high-efficiency particulate air (HEPA) filter that is resistant to such corrosive reagents as hydrogen fluoride (HF) and fluorine (F 2 ) in air environments of normal relative humidity (about 50% RH). Several types of separator materials are used in the fabrication of commercial filters. The basic types of separator materials are asbestos, Kraft paper, plastic, and aluminum. At the request of the ERDA Division of Operational Safety, the different types of separator materials have been evaluated for their resistance to corrosive attack by HF and F 2 . The separator materials were dynamically tested in the 4-stage multiunit tester located in the Oak Ridge Gaseous Diffusion Plant laboratories. This is the system previously used in the evaluation of the Herty Foundation filter paper samples. Concurrent with the testing of filter media for its resistance to HF and F 2 , another component of the completed filter, the separator, was tested. All samples were exposed to a constant air flow (50% RH) of 32 liters/min, at 100 0 F, containing 900 ppM HF and 300 ppM F 2 . Exposure periods varied from 2 to 1000 h; however, the longer exposures were made only on the stronger candidates. Test results show the plastic and aluminum separator materials to be superior to the other types in resistance to HF and F 2 . The asbestos separators disintegrated after a relatively short exposure time; the Kraft paper types were the next weakest. The Clear Plastic S was the best performer of the plastics tested

  5. Educational Process Reengineering and Diffusion of Innovation in Formal Learning Environment

    DEFF Research Database (Denmark)

    Khalid, Md. Saifuddin; Hossain, Mohammad Shahadat; Rongbutsri, Nikorn

    2011-01-01

    administration and evaluation and assessment. Educational environments are flexible and not governed by standard operating procedures, making technology use lithe. Theory of diffusion of innovations‟ is recommended to be integrated to reason and measure acceptance or rejection of EPR selected technology......In technology mediated learning while relative advantages of technologies is proven, lack of contextualization and process centric change, and lack of user driven change has kept intervention and adoption of educational technologies among individuals and organizations as challenges. Reviewing...... the formal, informal and non-formal learning environments, this study focuses on the formal part. This paper coins the term 'Educational Process Reengineering (EPR) based on the established concept of 'Business Process Reengineering (BPR) for process improvement of teaching learning activities, academic...

  6. Assessing the Effects of Mechanic Activities on Uyo Air Environment ...

    African Journals Online (AJOL)

    Prior to the advancement of science and technology, our air was fresh, and wholesome. Expansion in the economic sector one of which is mechanic workshops brought along with it advantages and disadvantages, one of which is air pollution. Activities carried out in these workshops included engine repairs, paneling, open ...

  7. Thermal Environment for Classrooms. Central System Approach to Air Conditioning.

    Science.gov (United States)

    Triechler, Walter W.

    This speech compares the air conditioning requirements of high-rise office buildings with those of large centralized school complexes. A description of one particular air conditioning system provides information about the system's arrangement, functions, performance efficiency, and cost effectiveness. (MLF)

  8. Wet effluent diffusion denuder technique and determination of volatile organic compounds in air. I. Oxo compounds (alcohols and ketones)

    Czech Academy of Sciences Publication Activity Database

    Sklenská, Jana; Pařízek, Petr; Večeřa, Zbyněk

    2001-01-01

    Roč. 918, č. 1 (2001), s. 153-158 ISSN 0021-9673 R&D Projects: GA ČR GA203/98/0943 Institutional research plan: CEZ:AV0Z4031919 Keywords : diffusion denuders * alcohols * air analysis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.793, year: 2001

  9. Humidification and perceived indoor air quality in the office environment.

    Science.gov (United States)

    Reinikainen, L M; Aunela-Tapola, L; Jaakkola, J J

    1997-01-01

    OBJECTIVE: To evaluate the effect of humidification on the odour, acceptability, and stuffiness of indoor air. METHODS: In a six period cross over trial at the Pasila Office Center, Helsinki, the air of two wings of the building in turn were ventilated with air of 30%-40% humidity. A third wing served as a non-humidified control area. The quality of indoor air was assessed weekly by a panel containing 18 to 23 members. The intraindividual differences in the ratings for odour, stuffiness, and acceptability between humidified and non-humidified wings were used to assess the effect of humidification. The roles of sex, current smoking, and age as potential effect modifiers were assessed by comparing the mean intraindividual differences in ratings between the groups. RESULTS: Humidified air was found to be more odorous and stuffy (paired t test P = 0.0001) and less acceptable than the non-humidified air (McNemar's test P humidification decreases the perceived air quality. This effect is strongest in women and young subjects. PMID:9196454

  10. Cooling energy efficiency and classroom air environment of a school building operated by the heat recovery air conditioning unit

    International Nuclear Information System (INIS)

    Wang, Yang; Zhao, Fu-Yun; Kuckelkorn, Jens; Liu, Di; Liu, Li-Qun; Pan, Xiao-Chuan

    2014-01-01

    The recently-built school buildings have adopted novel heat recovery ventilator and air conditioning system. Heat recovery efficiency of the heat recovery facility and energy conservation ratio of the air conditioning unit were analytically modeled, taking the ventilation networks into account. Following that, school classroom displacement ventilation and its thermal stratification and indoor air quality indicated by the CO 2 concentration have been numerically modeled concerning the effects of delivering ventilation flow rate and supplying air temperature. Numerical results indicate that the promotion of mechanical ventilation rate can simultaneously boost the dilution of indoor air pollutants and the non-uniformity of indoor thermal and pollutant distributions. Subsequent energy performance analysis demonstrates that classroom energy demands for ventilation and cooling could be reduced with the promotion of heat recovery efficiency of the ventilation facility, and the energy conservation ratio of the air conditioning unit decreases with the increasing temperatures of supplying air. Fitting correlations of heat recovery ventilation and cooling energy conservation have been presented. - Highlights: • Low energy school buildings and classroom environment. • Heat recovery facility operating with an air conditioning unit. • Displacement ventilation influenced by the heat recovery efficiency. • Energy conservation of cooling and ventilation through heat recovery. • Enhancement of classroom environment with reduction of school building energy

  11. Potential contamination of shipboard air samples by diffusive emissions of PCBs and other organic pollutants: implications and solutions.

    Science.gov (United States)

    Lohmann, Rainer; Jaward, Foday M; Durham, Louise; Barber, Jonathan L; Ockenden, Wendy; Jones, Kevin C; Bruhn, Regina; Lakaschus, Soenke; Dachs, Jordi; Booij, Kees

    2004-07-15

    Air samples were taken onboard the RRS Bransfield on an Atlantic cruise from the United Kingdom to Halley, Antarctica, from October to December 1998, with the aim of establishing PCB oceanic background air concentrations and assessing their latitudinal distribution. Great care was taken to minimize pre- and post-collection contamination of the samples, which was validated through stringent QA/QC procedures. However, there is evidence that onboard contamination of the air samples occurred,following insidious, diffusive emissions on the ship. Other data (for PCBs and other persistent organic pollutants (POPs)) and examples of shipboard contamination are presented. The implications of these findings for past and future studies of global POPs distribution are discussed. Recommendations are made to help critically appraise and minimize the problems of insidious/diffusive shipboard contamination.

  12. Plasma surface treatment of Cu by nanosecond-pulse diffuse discharges in atmospheric air

    Science.gov (United States)

    Cheng, ZHANG; Jintao, QIU; Fei, KONG; Xingmin, HOU; Zhi, FANG; Yu, YIN; Tao, SHAO

    2018-01-01

    Nanosecond-pulse diffuse discharges could provide high-density plasma and high-energy electrons at atmospheric pressure. In this paper, the surface treatment of Cu by nanosecond-pulse diffuse discharges is conducted in atmospheric air. Factors influencing the water contact angle (WCA), chemical composition and microhardness, such as the gap spacing and treatment time, are investigated. The results show that after the plasma surface treatment, the WCA considerably decreases from 87° to 42.3°, and the surface energy increases from 20.46 mJ m-2 to 66.28 mJ m-2. Results of energy dispersive x-ray analysis show that the concentration of carbon decreases, but the concentrations of oxygen and nitrogen increase significantly. Moreover, the microhardness increases by approximately 30% after the plasma treatment. The aforementioned changes on the Cu surface indicate the plasma surface treatment enhances the hydrophilicity and microhardness, and it cleans the carbon and achieves oxidization on the Cu surface. Furthermore, by increasing the gap spacing and treatment time, better treatment effects can be obtained. The microhardness in the case of a 2.5 cm gap is higher than that in the case of a 3 cm gap. More oxygen and nitrogen species appear on the Cu surface for the 2.5 cm gap treatment than for the 3 cm gap treatment. The WCA significantly decreases with the treatment time when it is no longer than 90 s, and then it reaches saturation. In addition, more oxygen-containing and nitrogen-containing groups appear after extended plasma treatment time. They contribute to the improvement of the hydrophilicity and oxidation on the Cu surface.

  13. Outdoor-indoor air pollution in urban environment: Challenges and opportunity

    Directory of Open Access Journals (Sweden)

    Dennis Y.C. eLeung

    2015-01-01

    Full Text Available With the continual improvement in our quality of life, indoor air quality has become an important area of concern in the 21st century. Indoor air quality is affected by many factors including the type and running conditions of indoor pollution sources, ventilation conditions, as well as indoor activities. Studies revealed that the outdoor environment is also an important factor that cannot be neglected for indoor air quality studies. In this review, the indoor and outdoor air pollution relationships obtained from different studies are discussed in order to identify the key factors affecting the indoor air quality. As climate change is recognized as imposing impacts on the environment, how it affects the indoor air quality and the health impacts to the occupants will be evaluated in this paper. The major challenges and opportunities in indoor/outdoor air pollution studies will be highlighted.

  14. Liftoff and blowoff of a diffusion flame between parallel streams of fuel and air

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Tarrazo, Eduardo [I.N.T.A. Area de Propulsion-Edificio R02, Ctra. Ajalvir, km 4, 28850 Torrejon de Ardoz, Madrid (Spain); Vera, Marcos [Area de Mecanica de Fluidos, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Linan, Amable [Departamento de Motopropulsion y Termofluidodinamica, Universidad Politecnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid (Spain)

    2006-01-01

    A numerical analysis is presented to describe the liftoff and blowoff of a diffusion flame in the mixing layer between two parallel streams of fuel (mainly methane diluted with nitrogen) and air emerging from porous walls. The analysis, which takes into account the effects of thermal expansion, assumes a one-step overall Arrhenius reaction, where the activation energy E is allowed to vary to reproduce the variations of the planar flame propagation velocity with the equivalence ratio. First, we describe the steady flame-front structure when stabilized close to the porous wall (attached flame regime). Then, we analyze the case where the flame front is located far away from the porous wall, at a distance x{sub f}' such that, upstream of the flame front, the mixing layer has a self-similar structure (lifted flame regime). For steady lifted flames, the results, given here in the case when the fuel and air streams are injected with the same velocity, relate U{sub f}'/S{sub L}, the front velocity (relative to the upstream flow) measured with the planar stoichiometric flame velocity, with the Damkohler number D{sub m}=({delta}{sub m}/{delta}{sub L}){sup 2}, based on the thickness, {delta}{sub m}, of the nonreacting mixing layer at the flame-front position and the laminar flame thickness, {delta}{sub L}. For large values of D{sub m}, the results, presented here for a wide range of dilutions of the fuel stream, provide values of the front propagation velocity that are in good agreement with previous experimental results, yielding well-defined conditions for blowoff. The calculated flame-front velocity can also be used to describe the transient flame-front dynamics after ignition by an external energy source.

  15. Diffusion Dominant Solute Transport Modelling in Fractured Media Under Deep Geological Environment - 12211

    Energy Technology Data Exchange (ETDEWEB)

    Kwong, S. [National Nuclear Laboratory (United Kingdom); Jivkov, A.P. [Research Centre for Radwaste and Decommissioning and Modelling and Simulation Centre, University of Manchester (United Kingdom)

    2012-07-01

    Deep geologic disposal of high activity and long-lived radioactive waste is gaining increasing support in many countries, where suitable low permeability geological formation in combination with engineered barriers are used to provide long term waste contaminant and minimise the impacts to the environment and risk to the biosphere. This modelling study examines the solute transport in fractured media under low flow velocities that are relevant to a deep geological environment. In particular, reactive solute transport through fractured media is studied using a 2-D model, that considers advection and diffusion, to explore the coupled effects of kinetic and equilibrium chemical processes. The effects of water velocity in the fracture, matrix porosity and diffusion on solute transport are investigated and discussed. Some illustrative modelled results are presented to demonstrate the use of the model to examine the effects of media degradation on solute transport, under the influences of hydrogeological (diffusion dominant) and microbially mediated chemical processes. The challenges facing the prediction of long term degradation such as cracks evolution, interaction and coalescence are highlighted. The potential of a novel microstructure informed modelling approach to account for these effects is discussed, particularly with respect to investigating multiple phenomena impact on material performance. The GRM code is used to examine the effects of media degradation for a geological waste disposal package, under the combined hydrogeological (diffusion dominant) and chemical effects in low groundwater flow conditions that are typical of deep geological disposal systems. An illustrative reactive transport modelling application demonstrates the use of the code to examine the interplay of kinetic controlled biogeochemical reactive processes with advective and diffusive transport, under the influence of media degradation. The initial model results are encouraging which show the

  16. Nanomaterials for benign indoor environments: Electrochromics for 'smart windows', sensors for air quality, and photo-catalysts for air cleaning

    International Nuclear Information System (INIS)

    Granqvist, C.G.; Azens, A.; Heszler, P.; Kish, L.B.; OEsterlund, L.

    2007-01-01

    Nanomaterials can be used in a number of technologies in order to accomplish benign indoor environments. This paper takes a unified view on this problem from a solar-energy-based perspective and specifically considers electrochromics for achieving good day-lighting jointly with energy efficiency, sensors aimed at air quality assessment, and photocatalysis for air cleaning. Recent results, mainly from the authors' laboratories, are reported for all of these areas. (author)

  17. The influence of fuel-air swirl intensity on flame structures of syngas swirl-stabilized diffusion flame

    Science.gov (United States)

    Shao, Weiwei; Xiong, Yan; Mu, Kejin; Zhang, Zhedian; Wang, Yue; Xiao, Yunhan

    2010-06-01

    Flame structures of a syngas swirl-stabilized diffusion flame in a model combustor were measured using the OH-PLIF method under different fuel and air swirl intensity. The flame operated under atmospheric pressure with air and a typical low heating-value syngas with a composition of 28.5% CO, 22.5% H2 and 49% N2 at a thermal power of 34 kW. Results indicate that increasing the air swirl intensity with the same fuel, swirl intensity flame structures showed little difference except a small reduction of flame length; but also, with the same air swirl intensity, fuel swirl intensity showed great influence on flame shape, length and reaction zone distribution. Therefore, compared with air swirl intensity, fuel swirl intensity appeared a key effect on the flame structure for the model combustor. Instantaneous OH-PLIF images showed that three distinct typical structures with an obvious difference of reaction zone distribution were found at low swirl intensity, while a much compacter flame structure with a single, stable and uniform reaction zone distribution was found at large fuel-air swirl intensity. It means that larger swirl intensity leads to efficient, stable combustion of the syngas diffusion flame.

  18. Diffusive-to-ballistic transition of the modulated heat transport in a rarefied air chamber

    Directory of Open Access Journals (Sweden)

    C. L. Gomez-Heredia

    2017-01-01

    Full Text Available Modulated heat transfer in air subject to pressures from 760 Torr to 10-4 Torr is experimentally studied by means of a thermal-wave resonant cavity placed in a vacuum chamber. This is done through the analysis of the amplitude and phase delay of the photothermal signal as a function of the cavity length and pressure through of the Knudsen’s number. The viscous, transitional, and free molecular regimes of heat transport are observed for pressures P>1.5 Torr, 25 mTorrdiffusive and ballistic heat transport.

  19. N-nitroso compounds in the air environment

    International Nuclear Information System (INIS)

    Fine, D.H.; Edwards, G.S.; Krull, I.S.; Wolf, M.H.

    1979-01-01

    The measurement and chemistry of N-nitroso compounds, most of which are known carcinogens, in the air are discussed. Methods for the analysis of N-nitroso compounds in the ambient air usually employ a nitrosamine-specific detector, coupled to a gas chromatograph or a high-pressure liquid chromatograph, with structural confirmation by high-resolution mass spectroscopy and extensive artifact experiments required. Airborne N-nitrosamines have been detected at significant trace levels near leather tanneries, rocket fuel plants, tire factories, tobacco smoke, amine factories, cooking vapors and in the ambient air. Nitrosation of amines has been demonstrated with nitrogen oxides, certain C-nitro compounds and nitrous acid, and tertiary amines, tertiary amine oxides and primary amines have been nitrosated

  20. Indoor air quality: The hidden side of the indoor environment

    NARCIS (Netherlands)

    Oliveira Fernandes, E. de; Bluyssen, P.M.; Clausen, G.H.

    1996-01-01

    The physical environment can be defined and understood in manv different ways, both from its nature, e.g., thermal, accoustic, etc., or its dimension, e.g., global, local, urban, indoors. The indoor environment is much more than the space or the light effects; it is the result of a complex

  1. Human requirements in future air-conditioned environments

    DEFF Research Database (Denmark)

    Fanger, Povl Ole

    1999-01-01

    Although air-conditioning has played a positive role for economic development in warm climates, its image is globally mixed. Field studies demonstrate that there are substantial numbers of dissatisfied people in many buildings, among them those suffering from Sick Building Syndrome (SBS) symptoms...

  2. Human requirements in future air-conditioned environments

    DEFF Research Database (Denmark)

    Fanger, Povl Ole

    2001-01-01

    Although air-conditioning has played a positive role for economic development in warm climates, its image is globally mixed. Field studies demonstrate that there are substantial numbers of dissatisfied people in many buildings, among them those suffering from Sick Building Syndrome (SBS) symptoms...

  3. Human requirements in future air-conditioned environments

    DEFF Research Database (Denmark)

    Fanger, Povl Ole

    2002-01-01

    Air-conditioning of buildings has played a very positive role for economic development in warm climates. Still its image is globally mixed. Field studies demonstrate that there are substantial numbers of dissatisfied people in many buildings, among them those suffering from SBS symptoms, even...

  4. Response to a small external force and fluctuations of a passive particle in a one-dimensional diffusive environment

    Science.gov (United States)

    Huveneers, François

    2018-04-01

    We investigate the long-time behavior of a passive particle evolving in a one-dimensional diffusive random environment, with diffusion constant D . We consider two cases: (a) The particle is pulled forward by a small external constant force and (b) there is no systematic bias. Theoretical arguments and numerical simulations provide evidence that the particle is eventually trapped by the environment. This is diagnosed in two ways: The asymptotic speed of the particle scales quadratically with the external force as it goes to zero, and the fluctuations scale diffusively in the unbiased environment, up to possible logarithmic corrections in both cases. Moreover, in the large D limit (homogenized regime), we find an important transient region giving rise to other, finite-size scalings, and we describe the crossover to the true asymptotic behavior.

  5. Experimental Study on Branch and Diffuse Type of Streamers in Leader Restrike of Long Air Gap Discharge

    International Nuclear Information System (INIS)

    Chen She; Zeng Rong; Zhuang Chijie; Zhou Xuan; Ding Yujian

    2016-01-01

    One of the main problems in the Ultra High Voltage (UHV) transmission project is to choose the external insulation distance, which requires a deep understanding of the long air gap discharge mechanism. The leader-streamer propagation is one of most important stages in long air gap discharge. In the conductor-tower lattice configuration, we have measured the voltage, the current on the high voltage side and the electric field in the gap. While the streamer in the leader-streamer system presented a conical or hyperboloid diffuse shape, the clear branch structure streamer in front of the leader was firstly observed by a high speed camera in the experiment. Besides, it is found that the leader velocity, width and injected charge for the branch type streamer are greater than those of a diffuse type. We propose that the phenomenon results from the high humidity, which was 15.5-16.5 g/m 3 in our experiment. (paper)

  6. Study of containment air cooler capacity in steam air environment during accident conditions

    International Nuclear Information System (INIS)

    Kansal, M.; Mohan, N.; Bhawal, R.N.; Bajaj, S.S.

    2002-01-01

    Full text: The air coolers are provided for controlling the temperature in the reactor building during normal operation. These air coolers also serve as the main heat sink for the removal of energy from high enthalpy air-steam mixture expected in reactor building under accident conditions. A subroutine COOLER has been developed to estimate the heat removal rate of the air coolers at high temperature and steam conditions. The subroutine COOLER has been attached with the code PACSR (post accident containment system response) used for containment pressure temperature calculation. The subroutine was validated using design parameters at normal operating condition. A study was done to estimate the heat removal rate for some postulated accident conditions. The study reveals that, under accident conditions, the heat removal rate of air coolers increases several times compared with normal operating conditions

  7. Six years of ground–air temperature tracking at Malence (Slovenia): thermal diffusivity from subsurface temperature data

    Czech Academy of Sciences Publication Activity Database

    Dědeček, Petr; Rajver, D.; Čermák, Vladimír; Šafanda, Jan; Krešl, Milan

    2013-01-01

    Roč. 10, č. 2 (2013), 025012/1-025012/9 ISSN 1742-2132 R&D Projects: GA ČR(CZ) GAP210/11/0183; GA MŠk LM2010008 Institutional support: RVO:67985530 Keywords : ground-air temperature coupling * thermal diffusivity * conductive-convective heat transfer Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.895, year: 2013

  8. Numerical modeling of soot formation in a turbulent C2H4/air diffusion flame

    Directory of Open Access Journals (Sweden)

    Manedhar Reddy Busupally

    2016-06-01

    Full Text Available Soot formation in a lifted C2H4-Air turbulent diffusion flame is studied using two different paths for soot nucleation and oxidation; by a 2D axisymmetric RANS simulation using ANSYS FLUENT 15.0. The turbulence-chemistry interactions are modeled using two different approaches: steady laminar flamelet approach and flamelet-generated manifold. Chemical mechanism is represented by POLIMI to study the effect of species concentration on soot formation. P1 approximation is employed to approximate the radiative transfer equation into truncated series expansion in spherical harmonics while the weighted sum of gray gases is invoked to model the absorption coefficient while the soot model accounts for nucleation, coagulation, surface growth, and oxidation. The first route for nucleation considers acetylene concentration as a linear function of soot nucleation rate, whereas the second route considers two and three ring aromatic species as function of nucleation rate. Equilibrium-based and instantaneous approach has been used to estimate the OH concentration for soot oxidation. Lee and Fenimore-Jones soot oxidation models are studied to shed light on the effect of OH on soot oxidation. Moreover, the soot-radiation interactions are also included in terms of absorption coefficient of soot. Furthermore, the soot-turbulence interactions have been invoked using a temperature/mixture fraction-based single variable PDF. Both the turbulence-chemistry interaction models are able to accurately predict the flame liftoff height, and for accurate prediction of flame length, radiative heat loss should be accounted in an accurate way. The soot-turbulence interactions are found sensitive to the PDF used in present study.

  9. A New Control and Design of PEM Fuel Cell System Powered Diffused Air Aeration System

    Directory of Open Access Journals (Sweden)

    Hassen T. Dorrah

    2012-06-01

    Full Text Available The goal of aquaculture ponds is to maximize production and profits while holding labor and management efforts to the minimum. Poor water quality in most ponds causes risk of fish kills, disease outbreaks which lead to minimization of pond production. Dissolved Oxygen (DO is considered to be among the most important water quality parameters in fish culture. Fish ponds in aquaculture farms are usually located in remote areas where grid lines are at far distance. Aeration of ponds is required to prevent mortality and to intensify production, especially when feeding is practical, and in warm regions. To increase pond production it is necessary to control dissolved oxygen. Aeration offers the most immediate and practical solution to water quality problems encountered at higher stocking and feeding rates. Many units of aeration system are electrical units so using a continuous, high reliability, affordable, and environmentally friendly power sources is necessary. Fuel cells have become one of the major areas of research in the academia and the industry. Aeration of water by using PEM fuel cell power is not only a new application of the renewable energy, but also, it provides an affordable method to promote biodiversity in stagnant ponds and lakes. This paper presents a new design and control of PEM fuel cell powered a diffused air aeration system for a shrimp farm in Mersa Matruh in Egypt. Also Artificial intelligence (AI control techniques are used to control the fuel cell output power by controlling its input gases flow rate. Moreover the mathematical modeling and simulation of PEM fuel cell is introduced. A comparative study is applied between the performance of fuzzy logic controller (FLC and neural network controller (NNC. The results show the effectiveness of NNC over FLC.

  10. Indoor air in school environment and the impact on children’s health

    International Nuclear Information System (INIS)

    Krajcova, D.; Vondrova, D.; Hirosova, K.; Sevcikova, L.

    2014-01-01

    More attention is paid to assessing the quality of not only outdoor but also indoor air. Since children spend large part of their time at schools, several studies are aimed at indoor air monitoring in schools. These studies confirmed association between poor quality of indoor environment and the incidence of asthma and other respiratory diseases of children. The most serious indoor air pollutants includes dust particles, inorganic and volatile organic compounds, components of tobacco smoke, mold and dust mites. Providing healthy school environment should be one of the basic methods to protect and support physical and mental health and development of children. (author)

  11. THE QUALITY OF AIR IN HOSPITAL ENVIRONMENTS CLIMATIZED AND ITS INFLUENCE IN THE OCCURRENCE OF INFECTIONS

    Directory of Open Access Journals (Sweden)

    Patrícia Staciarini Anders

    2004-08-01

    Full Text Available Climatized environment is defined as the environment where temperature and humidity are controlled.We have made a review of literature, from 1990 to 2001, through data base MEDLINE, LILACS and Ministry ofHealth – Brazil. The aim of this study was to analyze the air quality in climatized environment and the last as a riskfactor for hospital infection – HI. Twenty-three articles where analyzed and gathered by the focused theme;patterns and principles for maintaining the air quality; air quality and isolation of microorganism; air quality andoccurrence of infection. The standard of quality quotes: ventilation, maintenance and cleanness of climatizationsystems. Aspergillus, Legionella, Acinetobacter, Clostridium, Nocardia, among others where found in airconditioned devices and the first three ones being responsable for booms of HI.

  12. Effects of repository environment on diffusion behavior of radionuclides in buffer materials

    International Nuclear Information System (INIS)

    Kozaki, Tamotsu; Sato, Seichi

    2004-03-01

    Compacted bentonite is considered as a candidate buffer material in the geological disposal of high-level radioactive waste. An important function of the compacted bentonite is to retard the transport of radionuclides from waste forms to the surrounding host rock after degradation of an overpack. Therefore, diffusion behavior of radionuclides in the compacted bentonite has been extensively studied by many researchers for the performance assessments of the geological disposal. However, diffusion mechanism of radionuclides in the bentonite cannot be fully understood, and most experimental data have been obtained at room temperature for the bentonite saturated with low salinity water, which would disagree often with real repository conditions. In this study, therefore, apparent diffusion coefficients were determined at various diffusion temperatures for chloride ions in Na-montmorillonite samples saturated with NaCl solution of high salinity. Activation energies for the apparent diffusion were also obtained from the temperature dependence of the diffusion coefficients at different salinity. As the salinity increased, the apparent diffusion coefficients of chloride ions in montmorillonite were found to increase slightly. On the other hand, the activation energies for the chloride diffusion were found to be almost constant (approximately 12 kJ mol -1 ) and less than that in free water (17.4 kJ mol -1 ). Effects of salinity on diffusion behavior of radionuclides in montmorillonite were discussed from the viewpoints of microstructure of montmorillonite and distribution of ions in the montmorillonite. As a result, the diffusion behavior of sodium ions could be explained by the changes of the predominant diffusion process among pore water diffusion, surface diffusion, and interlayer diffusion that could be caused by the increase of salinity. (author)

  13. Influence of drying conditions on the effective diffusivity and activation energy during convective air and vacuum drying of pumpkin

    Directory of Open Access Journals (Sweden)

    Liliana SEREMET (CECLU

    2015-12-01

    Full Text Available The main purpose of the work is to investigate the efficiency of convective air and vacuum processing on pumpkin drying kinetics. The pumpkin samples were of two different geometrical shapes (cylinder and cube and were dried in a laboratory scale hot air dryer using some specific parameters (constant air velocity of 1.0 m/s, three different temperatures 50, 60 and 70ºC suited to relative humidity (RH values of 9.8, 6.5, and 5.4% respectively. The vacuum drying was led at constant pressures of 5 kPa and accordance temperatures of 50, 60 and 70ºC. Moisture transfer from pumpkin slices was described by applying Fick’s diffusion model. Temperature dependence of the effective diffusivity was described by the Arrhenius-type equation. Cylindrical samples have a slightly better behaviour compared to cubic samples, due to the disposition of the tissues, and the mass and thermic transfer possibilities. Analysing the results of both drying methods, it was deduced that the most efficient method is convective air drying at 70ºC.

  14. The Performance of Diffuse Ceiling Inlet and other Room Air Distribution Systems

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Jakubowska, Ewa

    2009-01-01

    The paper analyses different room air distribution systems, and describes a design chart which can be used for the evaluation of variables as air quality, air velocity and temperature gradient as a function of flow rate and temperature difference in the supply system. The design chart can also be...

  15. Characterization and health risk assessment of VOCs in occupational environments in Buenos Aires, Argentina

    Science.gov (United States)

    Colman Lerner, J. E.; Sanchez, E. Y.; Sambeth, J. E.; Porta, A. A.

    2012-08-01

    To detect volatile organic compounds (VOCs) in indoor air in small enterprises in La Plata city and surrounding areas, sampling was conducted using passive diffusion monitors (3M-3500) and analysis of the samples were performed byCG-FID. Analytic methodology was optimized for 23 VOCs (n-alkanes, cycloalkanes, aromatic and chlorinated compounds, ketones and terpenes compounds) by determining the recovery factor and detection limit for each analyte. Different recovery values were obtained by desorbing with a mixture of dichloromethane: methanol (50:50), with a standard deviation lower than 5%. Enterprise analyzed included chemical analysis laboratories, sewing workrooms, electromechanical repair and car painting centers, take away food shops, and a photocopy center. The highest levels of VOCs were found to be in electromechanical repair and car painting centers (hexane, BTEX, CHCl3, CCl4) followed by chemical analysis laboratories and sewing workrooms. Cancer and noncancer risks were assessed using conventional approaches (HQ and LCR, US EPA) using the benzene, trichloroethylene, chloroform for cancer risk, and toluene, xylene and n-hexane, for noncancer risks as markers. The results showed different LCR for benzene and trichloroethylene between the different indoor environments analyzed (electromechanical repair and car painting center ≫ others) and chloroform (laboratory > others), but comparing with the results obtained by other research, are in similar order of magnitude for equivalents activities. Similar finding were founded for HQ. Comparing these results with the worker protection legislation the electromechanical repair and car painting center and chemical analysis laboratories are close to the limits advised by OSHA and ACGIH. These facts show the importance of the use of abatement technologies for the complete reduction of VOCs levels, to mitigate their impact in the worker's health and their venting to the atmosphere.

  16. Turbulent-diffusion vertical transfer coefficient in relationship to the electrical parameters of air

    International Nuclear Information System (INIS)

    Milhau, A.

    1971-01-01

    The vertical movement of ions in the lower atmosphere is due to two main causes: the atmospheric electrical field and turbulent diffusion. The vertical current is thus the sum of a conduction current and of a diffusion current. In order to resolve the discrepancies between the theories usually adopted (which neglect the diffusion current) and the experimental results, we propose here a theoretical model which takes into account the turbulent diffusion. This model makes it possible, if it is assumed that the conductivity is independent of the altitude in the exchange layer, to calculate the diffusivity from the three basic electrical parameters: electrical field, space charge, conductivity. The diffusivity values thus obtained have been compared to those deduced from thoron determinations made at different levels, and carried out at the same point and at the same time as the measurements of the electrical parameters. When the diffusivity is greater than 0.05 m 2 s -1 (this corresponding to adiabatic or super-adiabatic conditions) the values obtained are practically equal. This theoretical model thus appears to be satisfactory. (author) [fr

  17. Effects of soft interactions and bound mobility on diffusion in crowded environments: a model of sticky and slippery obstacles

    Science.gov (United States)

    Stefferson, Michael W.; Norris, Samantha L.; Vernerey, Franck J.; Betterton, Meredith D.; E Hough, Loren

    2017-08-01

    Crowded environments modify the diffusion of macromolecules, generally slowing their movement and inducing transient anomalous subdiffusion. The presence of obstacles also modifies the kinetics and equilibrium behavior of tracers. While previous theoretical studies of particle diffusion have typically assumed either impenetrable obstacles or binding interactions that immobilize the particle, in many cellular contexts bound particles remain mobile. Examples include membrane proteins or lipids with some entry and diffusion within lipid domains and proteins that can enter into membraneless organelles or compartments such as the nucleolus. Using a lattice model, we studied the diffusive movement of tracer particles which bind to soft obstacles, allowing tracers and obstacles to occupy the same lattice site. For sticky obstacles, bound tracer particles are immobile, while for slippery obstacles, bound tracers can hop without penalty to adjacent obstacles. In both models, binding significantly alters tracer motion. The type and degree of motion while bound is a key determinant of the tracer mobility: slippery obstacles can allow nearly unhindered diffusion, even at high obstacle filling fraction. To mimic compartmentalization in a cell, we examined how obstacle size and a range of bound diffusion coefficients affect tracer dynamics. The behavior of the model is similar in two and three spatial dimensions. Our work has implications for protein movement and interactions within cells.

  18. Dual gas-diffusion membrane- and mediatorless dihydrogen/air-breathing biofuel cell operating at room temperature

    Science.gov (United States)

    Xia, Hong-qi; So, Keisei; Kitazumi, Yuki; Shirai, Osamu; Nishikawa, Koji; Higuchi, Yoshiki; Kano, Kenji

    2016-12-01

    A membraneless direct electron transfer (DET)-type dihydrogen (H2)/air-breathing biofuel cell without any mediator was constructed wherein bilirubin oxidase from Myrothecium verrucaria (BOD) and membrane-bound [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F (MBH) were used as biocatalysts for the cathode and the anode, respectively, and Ketjen black-modified water proof carbon paper (KB/WPCC) was used as an electrode material. The KB/WPCC surface was modified with 2-aminobenzoic acid and p-phenylenediamine, respectively, to face the positively charged electron-accepting site of BOD and the negatively charged electron-donating site of MBH to the electrode surface. A gas-diffusion system was employed for the electrodes to realize high-speed substrate supply. As result, great improvement in the current density of O2 reduction with BOD and H2 reduction with MBH were realized at negatively and postively charged surfaces, respectively. Gas diffusion system also suppressed the oxidative inactivation of MBH at high electrode potentials. Finally, based on the improved bioanode and biocathode, a dual gas-diffusion membrane- and mediatorless H2/air-breathing biofuel cell was constructed. The maximum power density reached 6.1 mW cm-2 (at 0.72 V), and the open circuit voltage was 1.12 V using 1 atm of H2 gas as a fuel at room temperature and under passive and quiescent conditions.

  19. Indoor Air Quality Tools for Schools Program: Benefits of Improving Air Quality in the School Environment.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC. Office of Radiation and Indoor Air.

    The U.S. Environmental Protection Agency (EPA) developed the Indoor Air Quality Tools for Schools (IAQ TfS) Program to help schools prevent, identify, and resolve their IAQ problems. This publication describes the program and its advantages, explaining that through simple, low-cost measures, schools can: reduce IAQ-related health risks and…

  20. Chicago Residents' Perceptions of Air Quality: Objective Pollution, the Built Environment, and Neighborhood Stigma Theory.

    Science.gov (United States)

    King, Katherine E

    2015-09-01

    Substantial research documents higher pollution levels in minority neighborhoods, but little research evaluates how residents perceive their own communities' pollution risks. According to "Neighborhood stigma" theory, survey respondents share a cultural bias that minorities cause social dysfunction, leading to over-reports of dysfunction in minority communities. This study investigates perceptions of residential outdoor air quality by linking objective data on built and social environments with multiple measures of pollution and a representative survey of Chicago residents. Consistent with the scholarly narrative, results show air quality is rated worse where minorities and poverty are concentrated, even after extensive adjustment for objective pollution and built environment measures. Perceptions of air pollution may thus be driven by neighborhood socioeconomic position far more than by respondents' ability to perceive pollution. The finding that 63.5% of the sample reported excellent or good air quality helps to explain current challenging in promoting environmental action.

  1. Preterm infant thermal care: differing thermal environments produced by air versus skin servo-control incubators.

    Science.gov (United States)

    Thomas, K A; Burr, R

    1999-06-01

    Incubator thermal environments produced by skin versus air servo-control were compared. Infant abdominal skin and incubator air temperatures were recorded from 18 infants in skin servo-control and 14 infants in air servo-control (26- to 29-week gestational age, 14 +/- 2 days postnatal age) for 24 hours. Differences in incubator and infant temperature, neutral thermal environment (NTE) maintenance, and infant and incubator circadian rhythm were examined using analysis of variance and scatterplots. Skin servo-control resulted in more variable air temperature, yet more stable infant temperature, and more time within the NTE. Circadian rhythm of both infant and incubator temperature differed by control mode and the relationship between incubator and infant temperature rhythms was a function of control mode. The differences between incubator control modes extend beyond temperature stability and maintenance of NTE. Circadian rhythm of incubator and infant temperatures is influenced by incubator control.

  2. Diffusion of Innovation: Factors Promoting Interest in Solar Photovoltaic Generation Systems Within Air Force Installations

    National Research Council Canada - National Science Library

    Diaz, Jr, Daniel

    2007-01-01

    .... The construct model was developed based on past literature on Diffusion of Innovation Theory. The model comprised of measures defined as motivation, knowledge, experience, and familiarity as well as contextual variables...

  3. Analysis and experimental study on formation conditions of large-scale barrier-free diffuse atmospheric pressure air plasmas in repetitive pulse mode

    Science.gov (United States)

    Li, Lee; Liu, Lun; Liu, Yun-Long; Bin, Yu; Ge, Ya-Feng; Lin, Fo-Chang

    2014-01-01

    Atmospheric air diffuse plasmas have enormous application potential in various fields of science and technology. Without dielectric barrier, generating large-scale air diffuse plasmas is always a challenging issue. This paper discusses and analyses the formation mechanism of cold homogenous plasma. It is proposed that generating stable diffuse atmospheric plasmas in open air should meet the three conditions: high transient power with low average power, excitation in low average E-field with locally high E-field region, and multiple overlapping electron avalanches. Accordingly, an experimental configuration of generating large-scale barrier-free diffuse air plasmas is designed. Based on runaway electron theory, a low duty-ratio, high voltage repetitive nanosecond pulse generator is chosen as a discharge excitation source. Using the wire-electrodes with small curvature radius, the gaps with highly non-uniform E-field are structured. Experimental results show that the volume-scaleable, barrier-free, homogeneous air non-thermal plasmas have been obtained between the gap spacing with the copper-wire electrodes. The area of air cold plasmas has been up to hundreds of square centimeters. The proposed formation conditions of large-scale barrier-free diffuse air plasmas are proved to be reasonable and feasible.

  4. Air quality and particles: impact on the environment and health. What to prescribe for tomorrow?

    International Nuclear Information System (INIS)

    Vaiss, Pierre; POISSON, Nathalie; Poulleau, Jean; Gondcaille, Catherine

    2009-09-01

    After having recalled that particles in the air are present under the form of liquid or solid matters and are characterized by their size, and that the term aerosol is generally used for a mix of air and particles in suspension, this publication proposes an overview of tools used to characterize particle pollutions, of the different impacts of particles on health, on the way ecosystems react with particle pollutions, on impacts of particles on building environment (outside and inside)

  5. Pneumatosis cystoides intestinalis associated with massive free air mimicking perforated diffuse peritonitis

    OpenAIRE

    Sakurai, Yoichi; Hikichi, Masahiro; Isogaki, Jun; Furuta, Shinpei; Sunagawa, Risaburo; Inaba, Kazuki; Komori, Yoshiyuki; Uyama, Ichiro

    2008-01-01

    While pneumatosis cystoides intestinalis (PCI) is a rare disease entity associated with a wide variety of gastrointestinal and non-gastrointestinal disorders, PCI associated with massive intra- and retroperitoneal free air is extremely uncommon, and is difficult to diagnose differentially from perforated peritonitis. We present two cases of PCI associated with massive peritoneal free air and/or retroperitoneal air that mimicked perforated peritonitis. These cases highlight the clinical import...

  6. Preferred Air Velocity and Local Cooling Effect of desk fans in warm environments

    DEFF Research Database (Denmark)

    Simone, Angela; Olesen, Bjarne W.

    2013-01-01

    to compensate for higher environmental temperatures at the expense of no or relatively low energy consumption. When using desk fans, local air movement is generated around the occupant and a certain cooling effect is perceived. The impact of the local air movement generated by different air flow patterns......Common experiences, standards, and laboratory studies show that increased air velocity helps to offset warm sensation due to high environmental temperatures. In warm climate regions the opening of windows and the use of desk or ceiling fans are the most common systems to generate increased airflows......, and the possibility to keep comfortable conditions for the occupants in warm environments were evaluated in studies with human subjects. In an office-like climatic chamber, the effect of higher air velocity was investigated at room temperatures between 26°C to 34°C and at constant absolute humidity of 12.2 g...

  7. Construction and application of an intelligent air quality monitoring system for healthcare environment.

    Science.gov (United States)

    Yang, Chao-Tung; Liao, Chi-Jui; Liu, Jung-Chun; Den, Walter; Chou, Ying-Chyi; Tsai, Jaw-Ji

    2014-02-01

    Indoor air quality monitoring in healthcare environment has become a critical part of hospital management and policy. Manual air sampling and analysis are cost-inhibitive and do not provide real-time air quality data and response measures. In this month-long study over 14 sampling locations in a public hospital in Taiwan, we observed a positive correlation between CO(2) concentration and population, total bacteria, and particulate matter concentrations, thus monitoring CO(2) concentration as a general indicator for air quality could be a viable option. Consequently, an intelligent environmental monitoring system consisting of a CO(2)/temperature/humidity sensor, a digital plug, and a ZigBee Router and Coordinator was developed and tested. The system also included a backend server that received and analyzed data, as well as activating ventilation and air purifiers when CO(2) concentration exceeded a pre-set value. Alert messages can also be delivered to offsite users through mobile devices.

  8. Analysis of diffusion process and influence factors in the air ingress accident of the HTR-PM

    Energy Technology Data Exchange (ETDEWEB)

    Yanhua, Zheng, E-mail: zhengyh@mail.tsinghua.edu.cn; Fubing, Chen; Lei, Shi

    2014-05-01

    Air ingress, one of the beyond design basis accidents for high temperature gas-cooled reactors, receives high attention during the design of the 250 MW pebble-bed modular high temperature gas-cooled reactor (HTR-PM), because it may result in severe consequence including the corrosion of the fuel element and graphite reflector. The diffusion process and the set-up time of the stable natural convection after the double-ended guillotine break of the hot-gas duct are studied in the paper. On the basis of the preliminary design of the HTR-PM and its DLOCA analysis results, the diffusion process, as well as the influence of the core temperature distribution and the length of the hot-gas duct, is studied with the DIFFLOW code, which adopts a one-dimension variable cross-section diffusion model with fixed wall temperature. To preliminarily estimate the influence of chemical reaction between oxygen and graphite, which will change the gas component of the mixture, the diffusion processes between the He/N{sub 2}, He/O{sub 2}, He/CO and He/CO{sub 2} are calculated, respectively. Furthermore, the code has been improved and the varying wall temperature can be simulated. The more accurate analysis is carried out with the changing temperature distribution from the DLOCA calculation. The analysis shows that there is enough time to adopt appropriate mitigation measures to stop the air ingress and the severe consequence of fuel element damage and large release of fission product can be avoided.

  9. Effects of diffuser airflow minima on occupant comfort, air mixing, and building energy use (RP-1515)

    DEFF Research Database (Denmark)

    Arens, Edward; Zhang, Hui; Hoyt, Tyler

    2015-01-01

    There is great energy-saving potential in reducing variable air volume box minimum airflow set-points to about 10% of maximum. Typical savings are on the order of 10%-30% of total HVAC energy, remarkable for an inexpensive controls set-point change that properly maintains outside air ventilation....

  10. Development of System Architecture to Investigate the Impact of Integrated Air and Missile Defense in a Distributed Lethality Environment

    Science.gov (United States)

    2017-12-01

    SYSTEM ARCHITECTURE TO INVESTIGATE THE IMPACT OF INTEGRATED AIR AND MISSILE DEFENSE IN A DISTRIBUTED LETHALITY ENVIRONMENT by Justin K. Davis...TO INVESTIGATE THE IMPACT OF INTEGRATED AIR AND MISSILE DEFENSE IN A DISTRIBUTED LETHALITY ENVIRONMENT 5. FUNDING NUMBERS 6. AUTHOR(S) Justin K...ARCHITECTURE TO INVESTIGATE THE IMPACT OF INTEGRATED AIR AND MISSILE DEFENSE IN A DISTRIBUTED LETHALITY ENVIRONMENT Justin K. Davis Lieutenant

  11. Advances in energy and environment. Vol. 2: Air quality, water quality

    International Nuclear Information System (INIS)

    El-Sharkawy, A.L.; Kummler, R.H.

    1996-01-01

    The 5th conference of energy and environment was held on 3-6 June 1996 in Cairo. The specialists discussed the effects of advances in energy and environment. The applications of solar energy, heat transfer, thermal application, storage and bio-conversion, fuels, energy and development. This second volume covers papers presented on the subjects air pollution, environmental protection, solid and hazardous wastes, water and wastewater treatment. tabs., figs

  12. Channel Model of Molecular Communication via Diffusion in a Vessel-like Environment Considering a Partially Covering Receiver

    OpenAIRE

    Turan, Meriç; Kuran, Mehmet Sukru; Yilmaz, H. Birkan; Demirkol, Ilker; Tugcu, Tuna

    2018-01-01

    By considering potential health problems that a fully covering receiver may cause in vessel-like environments, the implementation of a partially covering receiver is needed. To this end, distribution of hitting location of messenger molecules (MM) is analyzed within the context of molecular communication via diffusion with the aim of channel modeling. The distribution of these MMs for a fully covering receiver is analyzed in two parts: angular and radial dimensions. For the angular distributi...

  13. Pneumatosis cystoides intestinalis associated with massive free air mimicking perforated diffuse peritonitis.

    Science.gov (United States)

    Sakurai, Yoichi; Hikichi, Masahiro; Isogaki, Jun; Furuta, Shinpei; Sunagawa, Risaburo; Inaba, Kazuki; Komori, Yoshiyuki; Uyama, Ichiro

    2008-11-21

    While pneumatosis cystoides intestinalis (PCI) is a rare disease entity associated with a wide variety of gastrointestinal and non-gastrointestinal disorders, PCI associated with massive intra- and retroperitoneal free air is extremely uncommon, and is difficult to diagnose differentially from perforated peritonitis. We present two cases of PCI associated with massive peritoneal free air and/or retroperitoneal air that mimicked perforated peritonitis. These cases highlight the clinical importance of PCI that mimics perforated peritonitis, which requires emergency surgery. Preoperative imaging modalities and diagnostic laparoscopy are useful to make an accurate diagnosis.

  14. Singularités de la rhéologie de l'air humide saturé et diffusion moléculaire dans les milieux nuageuxSingularities in the rheology of saturated humid air, and molecular diffusion in cloods

    Science.gov (United States)

    Bois, Pierre-Antoine

    Under realistic assumptions, we propose a thermodynamical formalism providing, for the moist-saturated air (cloudy air), a generalized Fick's law. This Fick's law leads to a double diffusive rheology with Dufour effect. The form taken by the energy equation is slightly different from the classical form used in convection problems. We compare the equations with those of the convection in moist unsaturated air (the Dufour effect and all double diffusive effects disappear in this case). As application we demonstrate some consequences of this diffusion in cloudy convection. To cite this article: P.A. Bois, C. R. Mecanique 330 (2002) 627-632.

  15. Effects of H2O, CO2, and N2 Air Contaminants on Critical Airside Strain Rates for Extinction of Hydrogen-Air Counterflow Diffusion Flames

    Science.gov (United States)

    Pellett, G. L.; Wilson, L. G.; Northam, G. B.; Guerra, Rosemary

    1989-01-01

    Coaxial tubular opposed jet burners (OJB) were used to form dish shaped counterflow diffusion flames (CFDF), centered by opposing laminar jets of H2, N2 and both clean and contaminated air (O2/N2 mixtures) in an argon bath at 1 atm. Jet velocities for flame extinction and restoration limits are shown versus wide ranges of contaminant and O2 concentrations in the air jet, and also input H2 concentration. Blowoff, a sudden breaking of CFDF to a stable ring shape, occurs in highly stretched stagnation flows and is generally believed to measure kinetically limited flame reactivity. Restore, a sudden restoration of central flame, is a relatively new phenomenon which exhibits a H2 dependent hysteresis from Blowoff. For 25 percent O2 air mixtures, mole for mole replacement of 25 percent N2 contaminant by steam increased U(air) or flame strength at Blowoff by about 5 percent. This result is consistent with laminar burning velocity results from analogous substitution of steam for N2 in a premixed stoichiometric H2-O2-N2 (or steam) flame, shown by Koroll and Mulpuru to promote a 10 percent increase in experimental and calculated laminar burning velocity, due to enhanced third body efficiency of water in: H + O2 + M yields HO2 + M. When the OJB results were compared with Liu and MacFarlane's experimental laminar burning velocity of premixed stoichiometric H2 + air + steam, a crossover occurred, i.e., steam enhanced OJB flame strength at extinction relative to laminar burning velocity.

  16. Interaction of Cr-Ti-Si coating on VN-3 niobium alloy with air environment

    International Nuclear Information System (INIS)

    Lazarev, Eh.M.; Kozlov, A.T.; Monakhova, L.A.

    1985-01-01

    Investigation of heat-resistance, microstructure and phase composition of Cr-Ti-Si coating on VN-3 niobium alloy with air oxidation in the temperature interval of 1200-1600 deg C is conducted. Thermogravimetry, metallography, X-ray diffraction and microprobe analysis methods are used. It is ascertained that the coating is a dense niobium disilicide layer, luriched on the surface with chromium and titanium disilicides and separated and from the protected alloy by a narrow zone of the lowest niobium silicide Nb 5 Si 3 . The coating protective junctions are provided by a selective chromium and titanium disilicides oxidation as well as niobium disilicide oxidation at the temperature of 1600 deg C, and by the rates of niobium and silicon diffusion through Nb 5 SI 3 and NbSi 2 and oxygen diffusion through the amorphous SiO 2

  17. Enzymatically structured emulsions in simulated gastrointestinal environment: impact on interfacial proteolysis and diffusion in intestinal mucus.

    Science.gov (United States)

    Macierzanka, Adam; Böttger, Franziska; Rigby, Neil M; Lille, Martina; Poutanen, Kaisa; Mills, E N Clare; Mackie, Alan R

    2012-12-18

    Fundamental knowledge of physicochemical interactions in the gastrointestinal environment is required in order to support rational designing of protein-stabilized colloidal food and pharmaceutical delivery systems with controlled behavior. In this paper, we report on the colloidal behavior of emulsions stabilized with the milk protein sodium caseinate (Na-Cas), and exposed to conditions simulating the human upper gastrointestinal tract. In particular, we looked at how the kinetics of proteolysis was affected by adsorption to an oil-water interface in emulsion and whether the proteolysis and the emulsion stability could be manipulated by enzymatic structuring of the interface. After cross-linking with the enzyme transglutaminase, the protein was digested with use of an in vitro model of gastro-duodenal proteolysis in the presence or absence of physiologically relevant surfactants (phosphatidylcholine, PC; bile salts, BS). Significant differences were found between the rates of digestion of Na-Cas cross-linked in emulsion (adsorbed protein) and in solution. In emulsion, the digestion of a population of polypeptides of M(r) ca. 50-100 kDa was significantly retarded through the gastric digestion. The persistent interfacial polypeptides maintained the original emulsion droplet size and prevented the system from phase separating. Rapid pepsinolysis of adsorbed, non-cross-linked Na-Cas and its displacement by PC led to emulsion destabilization. These results suggest that structuring of emulsions by enzymatic cross-linking of the interfacial protein may affect the phase behavior of emulsion in the stomach and the gastric digestion rate in vivo. Measurements of ζ-potential revealed that BS displaced the remaining protein from the oil droplets during the simulated duodenal phase of digestion. Diffusion of the postdigestion emulsion droplets through ex vivo porcine intestinal mucus was only significant in the presence of BS due to the high negative charge these

  18. Distribution and air-sea exchange of mercury (Hg) in polluted marine environments

    Science.gov (United States)

    Bagnato, E.; Sprovieri, M.; Bitetto, M.; Bonsignore, M.; Calabrese, S.; Di Stefano, V.; Oliveri, E.; Parello, F.; Mazzola, S.

    2012-04-01

    Mercury (Hg) is emitted in the atmosphere by anthropogenic and natural sources, these last accounting for one third of the total emissions. Since the pre-industrial age, the atmospheric deposition of mercury have increased notably, while ocean emissions have doubled owing to the re-emission of anthropogenic mercury. Exchange between the atmosphere and ocean plays an important role in cycling and transport of mercury. We present the preliminary results from a study on the distribution and evasion flux of mercury at the atmosphere/sea interface in the Augusta basin (SE Sicily, southern Italy), a semi-enclosed marine area affected by a high degree of contamination (heavy metals and PHA) due to the oil refineries placed inside its commercial harbor. It seems that the intense industrial activity of the past have lead to an high Hg pollution in the bottom sediments of the basin, whose concentrations are far from the background mercury value found in most of the Sicily Strait sediments. The release of mercury into the harbor seawater and its dispersion by diffusion from sediments to the surface, make the Augusta basin a potential supplier of mercury both to the Mediterranean Sea and the atmosphere. Based on these considerations, mercury concentration and flux at the air-sea interface of the Bay have been estimated using a real-time atomic adsorption spectrometer (LUMEX - RA915+) and an home-made accumulation chamber, respectively. Estimated Total Atmospheric Mercury (TGM) concentrations during the cruise on the bay were in the range of 1-3 ng · m-3, with a mean value of about 1.4 ng · m-3. These data well fit with the background Hgatm concentration values detected on the land (1-2 ng · m-3, this work), and, more in general, with the background atmospheric TGM levels found in the North Hemisphere (1.5-1.7 ng · m-3)a. Besides, our measurements are in the range of those reported for other important polluted marine areas. The mercury evasion flux at the air-sea interface

  19. Indoor air quality of environments used for physical exercise and sports practice: Systematic review.

    Science.gov (United States)

    Andrade, Alexandro; Dominski, Fábio Hech

    2018-01-15

    Systematic reviews have the potential to contribute substantially to environmental health and risk assessment. This study aimed to investigate indoor air quality of environments used for physical exercise and sports practice through a systematic review. The systematic review followed the PRISMA guidelines and was recorded in the PROSPERO registry (CRD42016036057). The search was performed using the SciELO, Science Direct, Scopus, LILACS, MEDLINE via PubMed, and SPORTDiscus databases, from their inception through April 2017. The search terms used in the databases were {air pollution" OR "air pollutants" OR "air quality"} AND {"physical exercise" OR "physical activity" OR "sport"}. The results of selected studies were divided into 5 categories for analysis: monitoring of air quality in the environment according to international guidelines, indoor-to-outdoor ratio (I/O), air quality during physical exercise, impact of air quality on health, and interventions to improve indoor air quality. Among 1281 studies screened, 34 satisfied the inclusion criteria. The monitoring of pollutants was conducted in 20 studies. CO and NO 2 were the most investigated pollutants, and guidelines were discussed in most studies. The I/O ratio was investigated in 12 studies, of which 9 showed a higher concentration of some pollutants in indoor rather than outdoor environments. Among the 34 studies selected, only 7 investigated the impact of indoor air pollution on human health. The population in most of these studies consisted of hockey players. Most studies conducted monitoring of pollutants in indoor environments used for physical exercise and sports practice. The earliest studies were conducted in ice skating rinks and the most recent evaluated gymnasiums, fitness centers, and sports centers. The CO, particulate matter, and NO 2 concentrations were the most investigated and have the longest history of investigation. These pollutants were within the limits established by guidelines in most

  20. Air Pollution Abatement Performances of Green Infrastructure in Different Urban Environments – A Review

    Science.gov (United States)

    Intensifying the proportion of urban green infrastructure has been considered as one of the remedies for air pollution levels in cities, yet the impact of numerous vegetation types deployed in different built environments has to be fully synthesised and quantified. This review ex...

  1. Investigation of the Indoor Environment in a Passive House Apartment Building Heated by Ventilation Air

    DEFF Research Database (Denmark)

    Lysholt Hansen, MathiasYoung Bok; Koulani, Chrysanthi Sofia; Peuhkuri, Ruut Hannele

    2014-01-01

    comfort and the performance of the air heating system and solar shading. Thermal comfort category B according to ISO 7730 was obtained in the building during field measurements, indicating that the air heating system was able to maintain comfort conditions in winter, when the outdoor temperature had been...... building project finished medio 2012. The design challenge was met with a concept of air heating that is individually controlled in every room. It also applies external solar shading. This study used indoor climate measurements and dynamic simulations in one of these apartment buildings to evaluate thermal...... unusual low for a longer period. The dynamic simulations also indicated that air heating during winter can provide a comfortable thermal environment. Dynamic simulations also demonstrated that during summer, apartments with automatic external solar screens had no serious overheating, whereas in apartments...

  2. Thermal environment and air quality in office with personalized ventilation combined with chilled ceiling

    DEFF Research Database (Denmark)

    Lipczynska, Aleksandra; Kaczmarczyk, Jan; Melikov, Arsen Krikor

    2015-01-01

    The thermal environment and air quality conditions provided with combined system of chilled ceiling and personalized ventilation (PV) were studied in a simulated office room for two occupants. The proposed system was compared with total volume HVAC solutions used today, namely mixing ventilation...... and chilled ceiling combined with mixing ventilation. The objective of the study was to evaluate whether PV can be the only ventilation system in the rooms equipped with chilled ceiling. The room air temperature was 26°C in cases with traditional systems and 28°C when PV was used. PV supplied air...... with the temperature of 25°C. PV improved thermal conditions and was up to nearly 10 times more efficient in delivering clean air at workstations than mixing ventilation systems, which resulted in strong protection of occupants from the cross-infection. In the room space outside workstations no substantial differences...

  3. Investigation of creep rupture properties in air and He environments of alloy 617 at 800 °C

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woo-Gon, E-mail: wgkim@kaeri.re.k [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Ekaputra, I.M.W.; Park, Jae-Young [Pukyong National University, Busan 608-739 (Korea, Republic of); Kim, Min-Hwan; Kim, Yong-Wan [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2016-09-15

    Creep rupture properties for Alloy 617 were investigated by a series of creep tests under different applied stresses in air and He environments at 800 °C. The creep rupture time in air and He environments exhibited almost similar life in a short rupture time. However, when the creep rupture time reaches above 3000 h, the creep life in the He environment reduced compared with those of the air environment. The creep strain rate in the He environment was a little faster than that in the air environment above 3000 h. The reduction of creep life in the He environment was due to the difference of various microstructure features such as the carbide depleted zone, oxidation structures, surface cracking, voids below the surface, and voids in the matrix in air and He environments. Alloy 617 followed Norton’s power law and the Monkman–Grant relationship well. As the stress decreased, the creep ductility decreased slightly. The thickness of the outer and internal oxide layers presented the trend of a parabolic increase with an increase in creep rupture time in both the air and He environments. The thickness in the He environment was found to be thicker than in the air environment, although pure helium gas of 99.999% was used in the present investigation. The differences in the oxide-layer thickness caused detrimental effects on the creep resistance, even in a low oxygen-containing He agent.

  4. Investigation of creep rupture properties in air and He environments of alloy 617 at 800 °C

    International Nuclear Information System (INIS)

    Kim, Woo-Gon; Ekaputra, I.M.W.; Park, Jae-Young; Kim, Min-Hwan; Kim, Yong-Wan

    2016-01-01

    Creep rupture properties for Alloy 617 were investigated by a series of creep tests under different applied stresses in air and He environments at 800 °C. The creep rupture time in air and He environments exhibited almost similar life in a short rupture time. However, when the creep rupture time reaches above 3000 h, the creep life in the He environment reduced compared with those of the air environment. The creep strain rate in the He environment was a little faster than that in the air environment above 3000 h. The reduction of creep life in the He environment was due to the difference of various microstructure features such as the carbide depleted zone, oxidation structures, surface cracking, voids below the surface, and voids in the matrix in air and He environments. Alloy 617 followed Norton’s power law and the Monkman–Grant relationship well. As the stress decreased, the creep ductility decreased slightly. The thickness of the outer and internal oxide layers presented the trend of a parabolic increase with an increase in creep rupture time in both the air and He environments. The thickness in the He environment was found to be thicker than in the air environment, although pure helium gas of 99.999% was used in the present investigation. The differences in the oxide-layer thickness caused detrimental effects on the creep resistance, even in a low oxygen-containing He agent.

  5. Air-Sense: indoor environment monitoring evaluation system based on ZigBee network

    Science.gov (United States)

    Huang, Yang; Hu, Liang; Yang, Disheng; Liu, Hengchang

    2017-08-01

    In the modern life, people spend most of their time indoors. However, indoor environmental quality problems have always been affecting people’s social activities. In general, indoor environmental quality is also related to our indoor activities. Since most of the organic irritants and volatile gases are colorless, odorless and too tiny to be seen, because we have been unconsciously overlooked indoor environment quality. Consequently, our body suffer a great health problem. In this work, we propose Air-Sense system which utilizes the platform of ZigBee Network to collect and detect the real-time indoor environment quality. What’s more, Air-Sense system can also provide data analysis, and visualizing the results of the indoor environment to the user.

  6. assessment of concentration of air pollutants using analytical and numerical solution of the atmospheric diffusion equation

    International Nuclear Information System (INIS)

    Esmail, S.F.H.

    2011-01-01

    The mathematical formulation of numerous physical problems a results in differential equations actually partial or ordinary differential equations.In our study we are interested in solutions of partial differential equations.The aim of this work is to calculate the concentrations of the pollution, by solving the atmospheric diffusion equation(ADE) using different mathematical methods of solution. It is difficult to solve the general form of ADE analytically, so we use some assumptions to get its solution.The solutions of it depend on the eddy diffusivity profiles(k) and the wind speed u. We use some physical assumptions to simplify its formula and solve it. In the present work, we solve the ADE analytically in three dimensions using Green's function method, Laplace transform method, normal mode method and these separation of variables method. Also, we use ADM as a numerical method. Finally, comparisons are made with the results predicted by the previous methods and the observed data.

  7. Determination of nitrous acid in air using wet effluent diffusion denuder–FIA technique

    Czech Academy of Sciences Publication Activity Database

    Mikuška, Pavel; Motyka, Kamil; Večeřa, Zbyněk

    2008-01-01

    Roč. 77, č. 2 (2008), s. 635-641 ISSN 0039-9140. [International Conference on Flow Injection Analysis and Related Techniques. Berlin, 02.09.2007-07.09.2007] R&D Projects: GA MŽP SP/1B7/189/07 Institutional research plan: CEZ:AV0Z40310501 Keywords : nitrous acid * wet effluent diffusion denuder * FIA Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.206, year: 2008

  8. Numerical study of turbulent normal diffusion flame CH4-air stabilized by coaxial burner

    Directory of Open Access Journals (Sweden)

    Riahi Zouhair

    2013-01-01

    Full Text Available The practical combustion systems such as combustion furnaces, gas turbine, engines, etc. employ non-premixed combustion due to its better flame stability, safety, and wide operating range as compared to premixed combustion. The present numerical study characterizes the turbulent flame of methane-air in a coaxial burner in order to determine the effect of airflow on the distribution of temperature, on gas consumption and on the emission of NOx. The results in this study are obtained by simulation on FLUENT code. The results demonstrate the influence of different parameters on the flame structure, temperature distribution and gas emissions, such as turbulence, fuel jet velocity, air jet velocity, equivalence ratio and mixture fraction. The lift-off height for a fixed fuel jet velocity is observed to increase monotonically with air jet velocity. Temperature and NOx emission decrease of important values with the equivalence ratio, it is maximum about the unity.

  9. Indoor air quality of houses located in the urban environment of Agra, India.

    Science.gov (United States)

    Taneja, Ajay; Saini, Renuka; Masih, Amit

    2008-10-01

    Increased concern over the adverse health effects of air pollution has highlighted the need for air-pollution measurements, especially in urban areas, where many sources of air pollutants are normally monitored outdoors as part of obligations under the National Air Quality Strategies. Very little is known about air pollution indoors. In fact, the largest exposure to health-damaging indoor pollution probably occurs in the developing world, not in households, schools, and offices of developed countries where most research and control efforts have been focused to date. As a result much of the health impacts from air pollution worldwide seem to occur among the poorest and most vulnerable populations. The authors in their earlier studies have confirmed the importance of ambient air in determining the quality of air indoors. In this study an observation of air quality indoors and outdoors of domestic homes located in an urban environment from October 2004 to December 2005 in Agra, north central India, is performed. The purpose of this study was to characterize the indoor/outdoor (I/O) relationship of airborne pollutants and recognize their probable source in all three seasons, that is, winter, summer, and rainy season. Concentrations of SO(2), NO(2), CO(2), Cl(2), H(2)S, NH(3), RSPM, and PAH were monitored simultaneously and I/O ratios were calculated. In order to investigate the effect of seasonality on indoor and ambient air quality, winter to summer and winter to monsoon average ratios were calculated. It is apparent that there is a general pattern of increasing levels from monsoon to summer to winter, and similarly from outdoor to indoor air. Regressions analysis had been done to further investigate the influence of outdoor air-pollutant concentrations on indoor concentrations. The most probable categories of sources for these pollutants have been identified by using principal-component analysis. Indoor air pollution is a complex function of energy housing and

  10. Preliminary Study on a Reduced Scaled Model Regarding the Air Diffusion inside a Crew Quarter on Board of the ISS

    Science.gov (United States)

    Sandu, Mihnea; Nastase, Ilinca; Bode, Florin; Croitoru, CristianaVerona; Tacutu, Laurentiu

    2018-02-01

    The paper focus on the air quality inside the Crew Quarters on board of the International Space Station. Several issues to improve were recorded by NASA and ESA and most important of them are the following: noise level reduction, CO2 accumulation reduction and dust accumulation reduction. The study in this paper is centred on a reduced scaled model used to provide simulations related to the air diffusion inside the CQ. It is obvious that a new ventilation system is required to achieve the three issues mentioned above, and the solutions obtained by means of numerical simulation need to be validated by experimental approach. First of all we have built a reduced scaled physical model to simulate the flow pattern inside the CQ and the equipment inside the CQ has been reproduced using a geometrical scale ratio. The flow pattern was considered isothermal and incompressible. The similarity criteria used was the Reynolds number to characterize the flow pattern and the length scale was set at value 1/4. Water has been used inside the model to simulate air. Velocity magnitude vectors have been obtained using PIV measurement techniques.

  11. Preliminary Study on a Reduced Scaled Model Regarding the Air Diffusion inside a Crew Quarter on Board of the ISS

    Directory of Open Access Journals (Sweden)

    Sandu Mihnea

    2018-01-01

    Full Text Available The paper focus on the air quality inside the Crew Quarters on board of the International Space Station. Several issues to improve were recorded by NASA and ESA and most important of them are the following: noise level reduction, CO2 accumulation reduction and dust accumulation reduction. The study in this paper is centred on a reduced scaled model used to provide simulations related to the air diffusion inside the CQ. It is obvious that a new ventilation system is required to achieve the three issues mentioned above, and the solutions obtained by means of numerical simulation need to be validated by experimental approach. First of all we have built a reduced scaled physical model to simulate the flow pattern inside the CQ and the equipment inside the CQ has been reproduced using a geometrical scale ratio. The flow pattern was considered isothermal and incompressible. The similarity criteria used was the Reynolds number to characterize the flow pattern and the length scale was set at value 1/4. Water has been used inside the model to simulate air. Velocity magnitude vectors have been obtained using PIV measurement techniques.

  12. A new communication scheme for the neutron diffusion nodal method in a distributed computing environment

    International Nuclear Information System (INIS)

    Kirk, B.L.; Azmy, Y.

    1994-01-01

    A modified scheme is developed for solving the two-dimensional nodal diffusion equations on distributed memory computers. The scheme is aimed at minimizing the volume of communication among processors while maximizing the tasks in parallel. Results show a significant improvement in parallel efficiency on the Intel iPSC/860 hypercube compared to previous algorithms

  13. Outdoor air pollution, family and neighborhood environment, and asthma in LA FANS children.

    Science.gov (United States)

    Wilhelm, Michelle; Qian, Lei; Ritz, Beate

    2009-03-01

    We examined associations between outdoor air pollution and childhood asthma, using measures of SES, neighborhood quality, and social support from the Los Angeles Family and Neighborhood Survey (LA FANS). We linked residential census tracts for 3114 children to government air monitoring stations and estimated average pollutant concentrations for the year before interview. CO and NO(2) levels increased and O(3) levels decreased as neighborhood quality decreased, yet correlations were low. Pollutant levels were not correlated with neighborhood support. Even after adjustment for social environment characteristics, LA FANS children living in high O(3), PM(10), and CO areas appeared to have worse asthma morbidity.

  14. XPS response in the corrosion products analysis for copper exposed at clean air environment

    International Nuclear Information System (INIS)

    Mariaca, L.; Morcillo, M.; Feliu Jr, S.; Gonzalez, J.A.

    1998-01-01

    In this work is presented the obtained response for superficial analysis technique by X-ray photoelectron spectroscopy (XPS or ESCA), to determine the corrosion products formed during the copper exposure at environment without pollutants (clean air) at 50, 70 and 90 % of relative humidity at 35 Centigrade. One of the copper corrosion products most knew is Cu 2 O. This oxide is formed instantly to be exposed the copper at air. However in function of the exposure time and the relative humidity at it is exposed, the Cu 2 O oxide is transformed at Cu O and Cu(OH) 2 (Author)

  15. Wet effluent diffusion technique and determination of C1-C5 alcohols in air

    Czech Academy of Sciences Publication Activity Database

    Sklenská, Jana; Pařízek, Petr; Večeřa, Zbyněk

    2001-01-01

    Roč. 8, č. 1 (2001), s. 121-127 ISSN 1231-7098 R&D Projects: GA ČR GA203/98/0943 Grant - others:COPERNICUS(BE) SUB-AERO EVK2-1999-000327 Institutional research plan: CEZ:AV0Z4031919 Keywords : wet effluent difussion denuder * determination * air Subject RIV: CB - Analytical Chemistry, Separation

  16. Cold air plasma to decontaminate inanimate surfaces of the hospital environment.

    Science.gov (United States)

    Cahill, Orla J; Claro, Tânia; O'Connor, Niall; Cafolla, Anthony A; Stevens, Niall T; Daniels, Stephen; Humphreys, Hilary

    2014-03-01

    The hospital environment harbors bacteria that may cause health care-associated infections. Microorganisms, such as multiresistant bacteria, can spread around the patient's inanimate environment. Some recently introduced biodecontamination approaches in hospitals have significant limitations due to the toxic nature of the gases and the length of time required for aeration. This study evaluated the in vitro use of cold air plasma as an efficient alternative to traditional methods of biodecontamination of hospital surfaces. Cultures of methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli, and Acinetobacter baumannii were applied to different materials similar to those found in the hospital environment. Artificially contaminated sections of marmoleum, mattress, polypropylene, powder-coated mild steel, and stainless steel were then exposed to a cold air pressure plasma single jet for 30 s, 60 s, and 90 s, operating at approximately 25 W and 12 liters/min flow rate. Direct plasma exposure successfully reduced the bacterial load by log 3 for MRSA, log 2.7 for VRE, log 2 for ESBL-producing E. coli, and log 1.7 for A. baumannii. The present report confirms the efficient antibacterial activity of a cold air plasma single-jet plume on nosocomial bacterially contaminated surfaces over a short period of time and highlights its potential for routine biodecontamination in the clinical environment.

  17. A Passive Diffusion Sampler for HT- and HTO-in-Air

    International Nuclear Information System (INIS)

    Surette, R.A.; Nunes, J.C.

    2005-01-01

    Fusion research and tritium removal facilities potentially handle large inventories of tritium gas (HT). If any HT is released into the workplace, a fraction may be converted to tritiated water vapour (HTO). A convenient method to determine the activity concentration of each species is necessary to assess the potential hazard since the radiological hazard of HTO is more than 10 4 that due to HT. Passive samplers for measuring tritiated water vapour (HTO) have been shown to be suitable for use indoors and outdoors. These simple samplers consist of a standard 20-mL liquid scintillation vial with a diffusion orifice that determines the sampling rate.The total tritium samplers described herein are passive or diffusion samplers that contain a small amount of AECL-proprietary wet-proofed catalyst fixed to the underside of the sampling heads to allow conversion of the HT to HTO that is subsequently collected in the sink, (HTO), in the bottom of the sampler. After an appropriate sampling time, liquid scintillation cocktail is added to the vial and the activity collected determined by liquid scintillation analysis. When used in conjunction with the conventional HTO passive sampler the difference between the total and HTO samplers can be used to determine the HT fraction ((HT+HTO) - HTO HT). The sampling rates for the modified diffusion sampler were measured to be 4.6 and 8.1 L/d for HTO and HT, respectively. For a fifteen-minute sampling period, passive samplers can be used to measure tritium activity concentrations from 37 kBq/m 3 to 115 MBq/m 3

  18. Effect of pointed and diffused air injection on premixed flame confined in a Rijke tube

    Directory of Open Access Journals (Sweden)

    Nilaj N. Deshmukh

    2016-12-01

    Full Text Available The coupling between pressure fluctuations and unsteady heat release in a combustion systems results in acoustic oscillations inside the combustion system. These acoustic oscillations, when grow sufficiently, may cause serious structural damage thereby reducing the lifespan of jet engines, gas turbines, and industrial burners. The aim of the first part of study is to define acoustically stable and unstable regions. The second part is focused on studying the effect of change in pressure field near the flame on the amplitude and frequency of the oscillations of instability. This study is carried out for three-burner positions and equivalence ratio of 0.7 by varying heat supply and total flow rate. The results show two acoustically unstable regions for 0.1 and 0.2 burner positions and only one acoustically unstable region for 0.25 burner position. The effect of pointed injection and diffused injection over a premixed flame on the sound pressure level was studied. The results show for burner position of x/L = 0.2 there is 25 dB suppression is possible using pointed injection at higher total flow rate. The experiment of diffused injection shows sound amplification more than 12 dB was observed.

  19. Preliminary results of thermal igniter experiments in H2-air-steam environments

    International Nuclear Information System (INIS)

    Lowry, W.

    1981-01-01

    Thermal igniters (glow plugs), proposed by the Tennessee Valley Authority for intentional ignition of hydrogen in nuclear reactor containment, have been tested for functionability in mixtures of air, hydrogen, and steam. Test environments included 6% to 16% hydrogen concentrations in air, and 8%, 10%, and 12% hydrogen in mixtures with 30% and 40% steam fractions. All were conducted in a 10.6 ft 3 insulated pressure vessel. For all of these tests the glow plug successfully initiated combustion. Dry air/hydrogen tests exhibited a distinct tendency for complete combustion at hydrogen concentrations between 8% and 9%. Steam suppressed both peak pressures and completeness of combustion. No combustion could be initiated at or above a 50% steam fraction. Circulation of the mixture with a fan increased the completeness of combustion. The glow plug showed no evidence of performance degradation throughout the program

  20. Field evaluation and health assessment of air cleaners in removing radon decay products in domestic environments

    International Nuclear Information System (INIS)

    Li, Chih-Shan.

    1990-01-01

    In this study, field evaluations of two types of air cleaners were conducted in three single-family houses. The measurements included radon concentration, particle number concentration, and concentration and size distribution of radon decay products. The influence on the behavior of radon decay products by various indoor particles both with and without the air cleaning systems was investigated. A room model was used to calculate the changes in the aerosol parameters caused by the operation of the air cleaners. Using the James dosimetric models (1989 and 1990), the changes in the hourly bronchial dose rate per Bq m -3 radon for men, women, and children can be estimated for various domestic environments. 94 refs., 60 figs., 28 tabs

  1. Transport and Environment Database System (TRENDS): Maritime Air Pollutant Emission Modelling

    DEFF Research Database (Denmark)

    Georgakaki, Aliki; Coffey, Robert; Lock, Grahm

    2005-01-01

    This paper reports the development of the maritime module within the framework of the Transport and Environment Database System (TRENDS) project. A detailed database has been constructed for the calculation of energy consumption and air pollutant emissions. Based on an in-house database...... changes from findings reported in Methodologies for Estimating air pollutant Emissions from Transport (MEET). The database operates on statistical data provided by Eurostat, which describe vessel and freight movements from and towards EU 15 major ports. Data are at port to Maritime Coastal Area (MCA...... with a view to this purpose, are mentioned. Examples of the results obtained by the database are presented. These include detailed air pollutant emission calculations for bulk carriers entering the port of Helsinki, as an example of the database operation, and aggregate results for different types...

  2. Calculation and analysis of the mobility and diffusion coefficient of thermal electrons in methane/air premixed flames

    KAUST Repository

    Bisetti, Fabrizio

    2012-12-01

    Simulations of ion and electron transport in flames routinely adopt plasma fluid models, which require transport coefficients to compute the mass flux of charged species. In this work, the mobility and diffusion coefficient of thermal electrons in atmospheric premixed methane/air flames are calculated and analyzed. The electron mobility is highest in the unburnt region, decreasing more than threefold across the flame due to mixture composition effects related to the presence of water vapor. Mobility is found to be largely independent of equivalence ratio and approximately equal to 0.4m 2V -1s -1 in the reaction zone and burnt region. The methodology and results presented enable accurate and computationally inexpensive calculations of transport properties of thermal electrons for use in numerical simulations of charged species transport in flames. © 2012 The Combustion Institute.

  3. Effect of bio-cover equipped with a novel passive air diffusion system on methane emission reduciton from landfill

    DEFF Research Database (Denmark)

    Lu, W.J.; Mou, Zishen

    2011-01-01

    Based on the aerothermodynamic principles, a kind of breathing bio-cover system was designed to enhance oxygen (O2) supply efficiency and methane (CH4) oxidation capacity. The research showed that O2 concentration (v/v) considerably increased throughout whole profiles of the microcosm (1m) equipped...... with passive air diffusion system (MPADS). When the simulated landfill gas SLFG flow was 771 and 1028 gm−3 d−1, the O2 concentration in MPADS increased gradually and tended to be stable at the atmospheric level after 10 days. The CH4 oxidation rate was 100% when the SLFG flow rate was no more than 1285 gm−3 d......−1, which also was confirmed by the mass balance calculations. The breathing bio-cover system with in situ self-oxygen supply can address the problem of O2 insufficient in conventional landfill bio-cover. The proposed system presents high potential for improving CH4 emission reduction in landfills....

  4. Intracellular Transport of Cargo in a Sub-diffusive Environment over an Explicit Cytoskeletal Network

    Science.gov (United States)

    Maelfeyt, Bryan; Gopinathan, Ajay

    Intracellular transport occurs in nearly all eukaryotic cells, where materials such as proteins, lipids, carbohydrates, and nucleic acids travel to target locations through phases of passive, diffusion-based transport and active, motor-driven transport along filaments that make up the cell's cytoskeleton.We develop a computational model of the process with explicit cytoskeletal filament networks. In the active transport phase, cargo moves in straight lines along these filaments that are spread throughout the cell. To model the passive transport phase of cargo in the cytoplasm, where anomalous sub-diffusion is thought to take place, we implement a continuous-time random walk. We use this approach to provide a stepping stone to a predictive model where we can determine transport properties over a cytoskeletal network provided by experimental images of real filaments. We illustrate our approach by modeling the transport of insulin out of the cell and determining the impact of network geometry, anomalous sub-diffusion and motor number on the first-passage time distributions for insulin granules reaching their target destinations on the membrane.

  5. Study on the friction of κ-carrageenan hydrogels in air and aqueous environments.

    Science.gov (United States)

    Kozbial, Andrew; Li, Lei

    2014-03-01

    Understanding the friction mechanism of polysaccharide hydrogels, which is the key component of human cartilage that has very low friction coefficient, is critical to develop next generation artificial joint replacement materials. In this study, the friction of the polysaccharide κ-carrageenan hydrogel was investigated to elucidate the effect of external load, cross-linking density, velocity, and environment on friction. Our experimental results show that (1) coefficient of friction (COF) decreases with normal load in air and remains constant in water, (2) increasing cross-linking density concurrently increases friction and is proportional to Young's modulus, (3) COF increases with testing velocity in both air and water, and (4) friction is reduced in aqueous environment due to the lubricating effect of water. The underlying frictional mechanism is discussed on the basis of water transport from bulk to surface and a previously proposed "repulsion-adsorption" model. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Orthogonal design on range hood with air curtain and its effects on kitchen environment.

    Science.gov (United States)

    Liu, Xiaomin; Wang, Xing; Xi, Guang

    2014-01-01

    Conventional range hoods cannot effectively prevent the oil fumes containing cooking-induced harmful material from escaping into the kitchen Air curtains and guide plates have been used in range hoods to reduce the escape of airborne emissions and heat, thereby improving the kitchen environment and the cook's degree of comfort. In this article, numerical simulations are used to study the effects of the jet velocity of an air curtain, the jet angle of the air curtain, the width of the jet slot, the area of the guide plate, and the exhaust rate of the range hood on the perceived temperature, the perceived concentration of oil fumes, the release temperature of oil fumes, and the concentration of escaped oil fumes in a kitchen. The orthogonal experiment results show that the exhaust rate of the range hood is the main factor influencing the fumes concentration and the temperature distribution in the kitchen. For the range hood examined in the present study, the optimum values of the exhaust rate, the jet velocity of the air curtain, the jet angle of the air curtain, the width of the jet slot, and the area of the guide plate are 10.5 m(3)/min, 1.5 m/s, -5°, 4 mm, and 0.22 m(2), respectively, based on the results of the parametric study. In addition, the velocity field, temperature field, and oil fumes concentration field in the kitchen using the proposed range hood with the air curtain and guide plate are analyzed for those parameters. The study's results provide significant information needed for improving the kitchen environment.

  7. Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells

    KAUST Repository

    Zhang, Fang

    2011-08-01

    Activated carbon (AC) air-cathodes are inexpensive and useful alternatives to Pt-catalyzed electrodes in microbial fuel cells (MFCs), but information is needed on their long-term stability for oxygen reduction. AC cathodes were constructed with diffusion layers (DLs) with two different porosities (30% and 70%) to evaluate the effects of increased oxygen transfer on power. The 70% DL cathode initially produced a maximum power density of 1214±123mW/m 2 (cathode projected surface area; 35±4W/m 3 based on liquid volume), but it decreased by 40% after 1 year to 734±18mW/m 2. The 30% DL cathode initially produced less power than the 70% DL cathode, but it only decreased by 22% after 1 year (from 1014±2mW/m 2 to 789±68mW/m 2). Electrochemical tests were used to examine the reasons for the degraded performance. Diffusion resistance in the cathode was found to be the primary component of the internal resistance, and it increased over time. Replacing the cathode after 1 year completely restored the original power densities. These results suggest that the degradation in cathode performance was due to clogging of the AC micropores. These findings show that AC is a cost-effective material for oxygen reduction that can still produce ~750mW/m 2 after 1 year. © 2011 Elsevier B.V.

  8. OH density measured by PLIF in a nanosecond atmospheric pressure diffuse discharge in humid air under steep high voltage pulses

    Science.gov (United States)

    Ouaras, K.; Magne, L.; Pasquiers, S.; Tardiveau, P.; Jeanney, P.; Bournonville, B.

    2018-04-01

    The spatiotemporal distributions of the OH radical density are measured using planar laser induced fluorescence in the afterglow of a nanosecond diffuse discharge at atmospheric pressure in humid air. The diffuse discharge is generated between a pin and a grounded plate electrodes within a gap of 18 mm. The high voltage pulse applied to the pin ranges from 65 to 85 kV with a rise time of 2 ns. The specific electrical energy transferred to the gas ranges from 5 to 40 J l‑1. The influence of H2O concentration is studied from 0.5% to 1.5%. An absolute calibration of OH density is performed using a six-level transient rate equation model to simulate the dynamics of OH excitation by the laser, taking into account collisional processes during the optical pumping and the fluorescence. Rayleigh scattering measurements are used to achieve the geometrical part of the calibration. A local maximum of OH density is found in the pin area whatever the operating conditions. For 85 kV and 1% of H2O, this peak reaches a value of 2.0 × 1016 cm‑3 corresponding to 8% of H2O dissociation. The temporal decay of the spatially averaged OH density is found to be similar as in the afterglow of a homogeneous photo-triggered discharge for which a self-consistent modeling is done. These tools are then used to bring discussion elements on OH kinetics.

  9. Laser scattering in a hanging drop vapor diffusion apparatus for protein crystal growth in a microgravity environment

    Science.gov (United States)

    Casay, G. A.; Wilson, W. W.

    1992-01-01

    One type of hardware used to grow protein crystals in the microgravity environment aboard the U.S. Space Shuttle is a hanging drop vapor diffusion apparatus (HDVDA). In order to optimize crystal growth conditions, dynamic control of the HDVDA is desirable. A critical component in the dynamically controlled system is a detector for protein nucleation. We have constructed a laser scattering detector for the HDVDA capable of detecting the nucleation stage. The detector was successfully tested for several scatterers differing in size using dynamic light scattering techniques. In addition, the ability to detect protein nucleation using the HDVDA was demonstrated for lysozyme.

  10. Research on the Coupling Coordination Relationship between Urbanization and the Air Environment: A Case Study of the Area of Wuhan

    Directory of Open Access Journals (Sweden)

    Lei Ding

    2015-10-01

    Full Text Available China’s high-speed socioeconomic development has been characterized by rapid urbanization and a series of ecological environment issues, especially air pollution. This paper proposed a comprehensive indicator system for the evaluation of urbanization and the air environment in Wuhan, a metropolis in central China, and then investigated the relationship between urbanization and the air environment from the perspective of coupling coordination theory. Furthermore, a coupling coordination degree model (CCDM was constructed to estimate the relationship by using panel data collected from 1996–2013. The results showed the following: (1 Spatial urbanization and air environment quality make the greatest contributions to the compound system compared to other first grade indicators, indicating that they are critical factors to consider when the government is making relevant decisions about urban sprawl. (2 The comprehensive level of the air environment initially decreased from 1996–1998 and then increased with fluctuations in Wuhan, with several inflection points, meaning that the variation process of the air environment is unstable and repetitive, and efforts to improve the air environment must persist over a long period of time. Lastly, (3 the degree of coordinated coupling between urbanization and the air environment exhibited an S-shaped curve, indicating that Wuhan changed from having slightly unbalanced development to barely balanced development and then entered into a period of superiorly balanced development, with the air environment lagging. Thus, the ambient urban air quality has been subject to great pressure, and the government should continue to take effective action to improve it.

  11. Characteristics and transport of organochlorine pesticides in urban environment: air, dust, rain, canopy throughfall, and runoff.

    Science.gov (United States)

    Zhang, Wei; Ye, Youbin; Hu, Dan; Ou, Langbo; Wang, Xuejun

    2010-11-01

    Characteristics and transport of organochlorine pesticides (OCPs) in urban multiple environments, including air, dust, rain, canopy throughfall, and runoff water, are explored in this study. Hexachlorocyclohexanes (HCHs) dominated in both air and rain water, and dichlorodiphenyltrichloroethane (DDT) related substances showed a higher affinity to dust. Relatively high concentrations of DDT and dichlorodiphenyldichloroethylene (DDE) in air, rain and dust imply that technical DDT in the environment has been degrading, and there may be unknown local or regional emission sources that contain DDTs in the study area. Source identification showed that DDTs in Beijing urban environments with a fresh signature may originate from the atmospheric transport from remote areas. The ratio of α-/γ-HCH in dust, rain, canopy throughfall and runoff were close to 1, indicating the possible use of lindane. OCPs in runoff were transported from various sources including rain, dust, and canopy throughfall. In runoff, DDTs and hexachlorobenzene (HCB) were mainly transported from dust, and HCHs were mainly from rain and canopy throughfall.

  12. Diffusive-to-ballistic transition of the modulated heat transport in a rarefied air chamber

    Science.gov (United States)

    Gomez-Heredia, C. L.; Macias, J.; Ordonez-Miranda, J.; Ares, O.; Alvarado-Gil, J. J.

    2017-01-01

    Modulated heat transfer in air subject to pressures from 760 Torr to 10-4 Torr is experimentally studied by means of a thermal-wave resonant cavity placed in a vacuum chamber. This is done through the analysis of the amplitude and phase delay of the photothermal signal as a function of the cavity length and pressure through of the Knudsen's number. The viscous, transitional, and free molecular regimes of heat transport are observed for pressures P>1.5 Torr, 25 mTorrheat transport.

  13. Chaotic synchronization of nearest-neighbor diffusive coupling Hindmarsh-Rose neural networks in noisy environments

    International Nuclear Information System (INIS)

    Fang Xiaoling; Yu Hongjie; Jiang Zonglai

    2009-01-01

    The chaotic synchronization of Hindmarsh-Rose neural networks linked by a nonlinear coupling function is discussed. The HR neural networks with nearest-neighbor diffusive coupling form are treated as numerical examples. By the construction of a special nonlinear-coupled term, the chaotic system is coupled symmetrically. For three and four neurons network, a certain region of coupling strength corresponding to full synchronization is given, and the effect of network structure and noise position are analyzed. For five and more neurons network, the full synchronization is very difficult to realize. All the results have been proved by the calculation of the maximum conditional Lyapunov exponent.

  14. Preparation of standard mixtures of gas hydrocarbons in air by the diffusion dilution method; Preparacion de mezclas patrones de hidrocarburos gaseosos en aire por el metodo de dilucion por difusion

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M R; Perez, M M

    1979-07-01

    An original diffusion system able to produce continuously gaseous samples is described. This system can generate samples with concentrations of benzene in air from 0.1 to 1 ppm a reproducible way. The diffusion dilution method used Is also studied. The use of this diffusion system has been extended to the preparation of binary mixtures (benzene-toluene). Whit a secondary dilution device is possible preparing these mixtures over a wide range of concentrations (0.11 to 0.04 ppm for benzene and 0.06 to 0.02 for toluene). (Author) 7 refs.

  15. Inter-comparison of air pollutant concentrations in different indoor environments in Hong Kong

    Science.gov (United States)

    Lee, Shun-Cheng; Guo, Hai; Li, Wai-Ming; Chan, Lo-Yin

    Indoor air quality in selected indoor environments in Hong Kong such as homes, offices, schools, shopping malls and restaurants were investigated. Average CO 2 levels and total bacteria counts in air-conditioned classrooms, shopping malls and restaurants were comparatively higher than those measured in occupied offices and homes. Elevated CO 2 levels exceeding 1000 ppm and total bacteria counts resulted from high occupancy combined with inadequate ventilation. Average PM 10 levels were usually higher indoors than outdoors in homes, shopping malls and restaurants. The highest indoor PM 10 levels were observed at investigated restaurants due to the presence of cigarette smoking and extensive use of gas stoves for cooking. The restaurants and shopping malls investigated had higher formaldehyde levels than other indoor environments when building material, smoking and internal renovation work were present. Volatile organic compounds (VOCs) in both indoor and outdoor environments mainly resulted from vehicle exhaust emissions. It was observed that interior decoration work and the use of industrial solvents in an indoor environment could significantly increase the indoor levels of VOCs.

  16. Effect of air on speed of insulating material deterioration under simulated LOCA environment. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kusama, Yasuo; Yagi, Toshiaki; Ito, Masayuki; Okada, Sohei; Yoshikawa, Masato (Japan Atomic Energy Research Inst., Takasaki, Gunma. Takasaki Radiation Chemistry Research Establishment)

    1982-12-01

    To examine the quality approval testing method for the electric cables used for nuclear reactors, various covering insulating materials employed for the cables have been investigated from all angles. The factors which are considered to affect the deterioration of cable materials in a simulated LOCA (loss of coolant accident) environmental test are numerous. This paper reports on the result of investigation on the effect of air on the rate of deterioration of various organic materials usually used as the insulating and covering materials for the cables. Five kinds of polymer sheets (1 mm thick) used for reactor cables were employed as samples. The samples of both standard compounding ratio and the compounding ratio for practical reactor use were tested. As the deterioration prior to LOCA simulation, the thermal deterioration corresponding to 40 years aging (at 121 deg C for 7 days) was given, and subsequently, 50 Mrad gamma -irradiation at 1 Mrad/h was performed in the air. After that, the samples were subject to LOCA simulated environment. Since the results were different according to the kinds of samples, those are described separately for Hypalon, ethylene propylene rubber, cross-linked polyethylene, chloroprene and silicone rubber. The existence of air under LOCA environment accelerated the deterioration of insulation materials except silicone rubber, though its influence differed to the polymers. These materials swelled in the presence of air, and the degree of swelling increased with the temperature, having the close relation to oxidation deterioration. Polyethylene was more susceptible to the effect of air, and silicone rubber was rather stable. The samples of fire-retardant compounding ratio more swelled by water absorption than those of standard compounding ratio.

  17. Characterizing Spatial and Temporal Patterns of Thermal Environment and Air Quality in Taipei Metropolitan Area

    Science.gov (United States)

    Juang, J. Y.; Sun, C. H.; Jiang, J. A.; Wen, T. H.

    2017-12-01

    The urban heat island effect (UHI) caused by the regional-to-global environmental changes, dramatic urbanization, and shifting in land-use compositions has becoming an important environmental issue in recent years. In the past century, the coverage of urban area in Taipei Basin has dramatically increasing by ten folds. The strengthen of UHI effect significantly enhances the frequency of warm-night effect, and strongly influences the thermal environment of the residents in the Greater Taipei Metropolitan. In addition, the urban expansions due to dramatic increasing in urban populations and traffic loading significantly impacts the air quality and causes health issue in Taipei. In this study, the main objective is to quantify and characterize the temporal and spatial distributions of thermal environmental and air quality in the Greater Taipei Metropolitan Area by using monitoring data from Central Weather Bureau, Environmental Protection Administration. In addition, in this study, we conduct the analysis on the distribution of physiological equivalent temperature in the micro scale in the metropolitan area by using the observation data and quantitative simulation to investigate how the thermal environment is influenced under different conditions. Furthermore, we establish a real-time mobile monitoring system by using wireless sensor network to investigate the correlation between the thermal environment, air quality and other environmental factors, and propose to develop the early warning system for heat stress and air quality in the metropolitan area. The results from this study can be integrated into the management and planning system, and provide sufficient and important background information for the development of smart city in the metropolitan area in the future.

  18. Healthy environment--indoor air quality of Brazilian elementary schools nearby petrochemical industry.

    Science.gov (United States)

    Godoi, Ricardo H M; Godoi, Ana F L; Gonçalves Junior, Sérgio J; Paralovo, Sarah L; Borillo, Guilherme C; Gonçalves Gregório Barbosa, Cybelli; Arantes, Manoela G; Charello, Renata C; Rosário Filho, Nelson A; Grassi, Marco T; Yamamoto, Carlos I; Potgieter-Vermaak, Sanja; Rotondo, Giuliana G; De Wael, Karolien; van Grieken, Rene

    2013-10-01

    The mitigation of pollution released to the environment originating from the industrial sector has been the aim of all policy-makers and its importance is evident if the adverse health effects on the world population are considered. Although this concern is controversial, petroleum refinery has been linked to some adverse health effects for people living nearby. Apart from home, school is the most important indoor environment for children and there is increasing concern about the school environment and its impact on health, also in developing countries where the prevalence of pollution is higher. As most of the children spend more than 40% of their time in schools, it is critical to evaluate the pollution level in such environment. In the metropolitan region of Curitiba, South Brazil, five schools nearby industries and highways with high density traffic, were selected to characterize the aerosol and gaseous compounds indoor and outdoor of the classrooms, during 2009-2011. Size segregated aerosol samples were collected for analyses of bulk and single particle elemental profiles. They were analyzed by electron probe X-ray micro-analysis (EPXMA), and by energy-dispersive X-ray fluorescence (EDXRF), to investigate the elemental composition of individual particles and bulk samples. The concentrations of benzene, toluene, ethylbenzene, and xylene (BTEX); NO2; SO2; acetic acid; and formic acid were assessed indoor and outdoor using passive diffusion tubes. BTEX were analyzed by GC-MS and other collected gasses by ion chromatography. Individual exposition of BTEX was assessed by personal passive diffusion tubes. Results are interpreted separately and as a whole with the specific aim of identifying compounds that could affect the health of the scholars. In view of the chemical composition and size distribution of the aerosol particles, local deposition efficiencies in the children's respiratory systems were calculated, revealing the deposition of particles at extrathoracic

  19. DIFFUSIVE EXCHANGE OF GASEOUS POLYCYCLIC AROMATIC HYDROCARBONS AND POLYCHLORINATED BIPHENYLS ACROSS THE AIR-WATER INTERFACE OF THE CHESAPEAKE BAY. (R825245)

    Science.gov (United States)

    Dissolved and gas-phase concentrations of nine polycyclic aromatic hydrocarbons and 46 polychlorinated biphenyl congeners were measured at eight sites on the Chesapeake Bay at four different times of the year to estimate net diffusive air-water gas exchange rates. Gaseous PAHs ar...

  20. Numerical modeling on air quality in an urban environment with changes of the aspect ratio and wind direction.

    Science.gov (United States)

    Yassin, Mohamed F

    2013-06-01

    Due to heavy traffic emissions within an urban environment, air quality during the last decade becomes worse year by year and hazard to public health. In the present work, numerical modeling of flow and dispersion of gaseous emissions from vehicle exhaust in a street canyon were investigated under changes of the aspect ratio and wind direction. The three-dimensional flow and dispersion of gaseous pollutants were modeled using a computational fluid dynamics (CFD) model which was numerically solved using Reynolds-averaged Navier-Stokes (RANS) equations. The diffusion flow field in the atmospheric boundary layer within the street canyon was studied for different aspect ratios (W/H=1/2, 3/4, and 1) and wind directions (θ=90°, 112.5°, 135°, and 157.5°). The numerical models were validated against wind tunnel results to optimize the turbulence model. The numerical results agreed well with the wind tunnel results. The simulation demonstrated that the minimum concentration at the human respiration height within the street canyon was on the windward side for aspect ratios W/H=1/2 and 1 and wind directions θ=112.5°, 135°, and 157.5°. The pollutant concentration level decreases as the wind direction and aspect ratio increase. The wind velocity and turbulence intensity increase as the aspect ratio and wind direction increase.

  1. Power plant fuel switching and air quality in a tropical, forested environment

    Science.gov (United States)

    Medeiros, Adan S. S.; Calderaro, Gisele; Guimarães, Patricia C.; Magalhaes, Mateus R.; Morais, Marcos V. B.; Rafee, Sameh A. A.; Ribeiro, Igor O.; Andreoli, Rita V.; Martins, Jorge A.; Martins, Leila D.; Martin, Scot T.; Souza, Rodrigo A. F.

    2017-07-01

    How a changing energy matrix for electricity production affects air quality is considered for an urban region in a tropical, forested environment. Manaus, the largest city in the central Amazon Basin of Brazil, is in the process of changing its energy matrix for electricity production from fuel oil and diesel to natural gas over an approximately 10-year period, with a minor contribution by hydropower. Three scenarios of urban air quality, specifically afternoon ozone concentrations, were simulated using the Weather Research and Forecasting (WRF-Chem) model. The first scenario used fuel oil and diesel for electricity production, which was the reality in 2008. The second scenario was based on the fuel mix from 2014, the most current year for which data were available. The third scenario considered nearly complete use of natural gas for electricity production, which is the anticipated future, possibly for 2018. For each case, inventories of anthropogenic emissions were based on electricity generation, refinery operations, and transportation. Transportation and refinery operations were held constant across the three scenarios to focus on effects of power plant fuel switching in a tropical context. The simulated NOx and CO emissions for the urban region decrease by 89 and 55 %, respectively, after the complete change in the energy matrix. The results of the simulations indicate that a change to natural gas significantly decreases maximum afternoon ozone concentrations over the population center, reducing ozone by > 70 % for the most polluted days. The sensitivity of ozone concentrations to the fuel switchover is consistent with a NOx-limited regime, as expected for a tropical forest having high emissions of biogenic volatile organic compounds, high water vapor concentrations, and abundant solar radiation. There are key differences in a shifting energy matrix in a tropical, forested environment compared to other world environments. Policies favoring the burning of

  2. Mass concentrations of BTEX inside air environment of buses in Changsha, China

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaokai; Zhang, Guoqiang; Zhang, Quan [College of Civil Engineering, Hunan University, Changsha 410082, Hunan (China); Chen, Hong [College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan (China)

    2011-02-15

    In order to estimate the mass concentrations of benzene (B), toluene (T), ethylbenzene (E) and xylenes (X) inside air environment of buses and to analyze the influencing factors of the BTEX pollution levels, 22 public buses were investigated in Changsha, China. The interior air was collected through activated charcoal adsorption tubes and then the air samples were analyzed with thermally desorbed gas chromatograph. The mass concentrations ranged from 21.3 to 106.4 {mu}g/m{sup 3} for benzene, from 53.5 to 266.0 {mu}g/m{sup 3} for toluene, from 19.6 to 95.9 {mu}g/m{sup 3} for ethylbenzene and from 46.9 to 234.8 {mu}g/m{sup 3} for xylenes. Their mean values were 68.7, 179.7, 62.5 and 151.8 {mu}g/m{sup 3}, respectively. The rates of buses tested where the interior concentrations exceeded the limit levels of Chinese Indoor Air Quality Standard were 45.5% for toluene and 13.6% for xylenes. The BTEX levels increased when in-car temperature or relative humidity rose, and decreased when car age or travel distance increased. The BTEX concentrations were higher in leather trims buses than in non-leather trims ones, in air-conditioned buses than in non-air-conditioned ones, and in high-grade buses than in low-grade ones. According to the analysis of multiple linear regression equation, car age and in-car temperature were two most important factors influencing the BTEX pollution levels in the cabins of public buses. (author)

  3. Soot measurements by two angle scattering and extinction in an N 2 -diluted ethylene/air counterflow diffusion flame from 2 to 5 atm

    KAUST Repository

    Amin, Hafiz M.F.

    2016-06-27

    The soot formed in an N-diluted ethylene/air counterflow diffusion flame at elevated pressure was investigated using two angle light scattering/extinction technique. To provide a well-controlled pressurized environment for the flame, a novel pressure vessel was built with the required optical access. The soot parameters were measured along the centerline of the counterflow flame. These properties included soot volume fraction (f ), primary particle diameter (d ), population averaged radius of gyration (R ) and number density of primary particles (n ). The Rayleigh-Debye-Gans theory for Fractal Aggregates (RDG-FA) was used to retrieve these properties from scattering and extinction measurements. Soot volume fraction was measured via light extinction from 2 to 5atm while maintaining the same global strain rate at all pressures. Scattered light from soot particles was measured at 45° and 135° and primary particle diameter was calculated using scattering/extinction ratio and the radius of gyration was determined from the dissymmetry ratio. Soot volume fraction, primary particle diameter and radius of gyration all increased with pressure while the number density of primary particles decreased with increasing pressure.

  4. Soot measurements by two angle scattering and extinction in an N 2 -diluted ethylene/air counterflow diffusion flame from 2 to 5 atm

    KAUST Repository

    Amin, Hafiz M.F.; Roberts, William L.

    2016-01-01

    The soot formed in an N-diluted ethylene/air counterflow diffusion flame at elevated pressure was investigated using two angle light scattering/extinction technique. To provide a well-controlled pressurized environment for the flame, a novel pressure vessel was built with the required optical access. The soot parameters were measured along the centerline of the counterflow flame. These properties included soot volume fraction (f ), primary particle diameter (d ), population averaged radius of gyration (R ) and number density of primary particles (n ). The Rayleigh-Debye-Gans theory for Fractal Aggregates (RDG-FA) was used to retrieve these properties from scattering and extinction measurements. Soot volume fraction was measured via light extinction from 2 to 5atm while maintaining the same global strain rate at all pressures. Scattered light from soot particles was measured at 45° and 135° and primary particle diameter was calculated using scattering/extinction ratio and the radius of gyration was determined from the dissymmetry ratio. Soot volume fraction, primary particle diameter and radius of gyration all increased with pressure while the number density of primary particles decreased with increasing pressure.

  5. Turbulence structure and CO2 transfer at the air-sea interface and turbulent diffusion in thermally-stratified flows

    International Nuclear Information System (INIS)

    Komori, S.

    1996-01-01

    in clarifying environmental flow phenomena. This report summarizes research on two turbulence structure and diffusion topics; turbulence structure and the gas transfer mechanism across the air-sea (air-water) interface and the heat and momentum transfer mechanism in thermally stratified flows. The first study shows the relationship between the carbon dioxide (CO 2 ) transfer mechanism across a sheared air-water interface and the turbulence structure near the interface. The results revealed that the conventional proportional relationship between CO 2 transfer velocity across the air-sea interface and mean wind speed over the sea surface is incorrect. The second study numerically clarified the significant effects of molecular diffusivity (the Prandtl number) of active heat on heat transfer in stable thermally-stratified Hows. The results obtained from the two studies are described in the next two chapters. Since the results are mainly quoted from a series of previously published and in press works by Komori et al.'s research group (see references), this report might be considered as a summary of those works

  6. Data link air traffic control and flight deck environments: Experiment in flight crew performance

    Science.gov (United States)

    Lozito, Sandy; Mcgann, Alison; Corker, Kevin

    1993-01-01

    This report describes an experiment undertaken in a full mission simulation environment to investigate the performance impact of, and human/system response to, data-linked Air Traffic Control (ATC) and automated flight deck operations. Subjects were twenty pilots (ten crews) from a major United States air carrier. Crews flew the Advanced Concepts Flight Simulator (ACFS), a generic 'glass cockpit' simulator at NASA Ames. The method of data link used was similar to the data link implementation plans for a next-generation aircraft, and included the capability to review ATC messages and directly enter ATC clearance information into the aircraft systems. Each crew flew experimental scenarios, in which data reflecting communication timing, errors and clarifications, and procedures were collected. Results for errors and clarifications revealed an interaction between communication modality (voice v. data link) and communication type (air/ground v. intracrew). Results also revealed that voice crews initiated ATC contact significantly more than data link crews. It was also found that data link crews performed significantly more extraneous activities during the communication task than voice crews. Descriptive data from the use of the review menu indicate the pilot-not-flying accessing the review menu most often, and also suggest diffulty in accessing the target message within the review menu structure. The overall impact of communication modality upon air/ground communication and crew procedures is discussed.

  7. Variable pore connectivity model linking gas diffusivity and air-phase tortuosity to soil matric potential

    DEFF Research Database (Denmark)

    Chamindu, Deepagoda; Møldrup, Per; Schjønning, Per

    2012-01-01

    information on soil functional pore structure, e.g., pore network tortuosity and connectivity, can also be revealed from Dp/Do–ψ relations. Based on Dp/Do measurements in a wide range of soil types across geographically remote vadose zone profiles, this study analyzed pore connectivity for the development...... of a variable pore connectivity factor, X, as a function of soil matric potential, expressed as pF (=log |−ψ|), for pF values ranging from 1.0 to 3.5. The new model takes the form of X = X* (F/F*)A with F = 1 + pF−1, where X* is the pore network tortuosity at reference F (F*) and A is a model parameter......- and intraaggregate pore regions of aggregated soils. We further suggest that the new model with parameter values of X* = 1.7 and A = 0 may be used for upper limit Dp/Do predictions in risk assessments of, e.g., fluxes of toxic volatile organics from soil to indoor air at polluted soil sites....

  8. Comparison of different statistical modelling approaches for deriving spatial air temperature patterns in an urban environment

    Science.gov (United States)

    Straub, Annette; Beck, Christoph; Breitner, Susanne; Cyrys, Josef; Geruschkat, Uta; Jacobeit, Jucundus; Kühlbach, Benjamin; Kusch, Thomas; Richter, Katja; Schneider, Alexandra; Umminger, Robin; Wolf, Kathrin

    2017-04-01

    Frequently spatial variations of air temperature of considerable magnitude occur within urban areas. They correspond to varying land use/land cover characteristics and vary with season, time of day and synoptic conditions. These temperature differences have an impact on human health and comfort directly by inducing thermal stress as well as indirectly by means of affecting air quality. Therefore, knowledge of the spatial patterns of air temperature in cities and the factors causing them is of great importance, e.g. for urban planners. A multitude of studies have shown statistical modelling to be a suitable tool for generating spatial air temperature patterns. This contribution presents a comparison of different statistical modelling approaches for deriving spatial air temperature patterns in the urban environment of Augsburg, Southern Germany. In Augsburg there exists a measurement network for air temperature and humidity currently comprising 48 stations in the city and its rural surroundings (corporately operated by the Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health and the Institute of Geography, University of Augsburg). Using different datasets for land surface characteristics (Open Street Map, Urban Atlas) area percentages of different types of land cover were calculated for quadratic buffer zones of different size (25, 50, 100, 250, 500 m) around the stations as well for source regions of advective air flow and used as predictors together with additional variables such as sky view factor, ground level and distance from the city centre. Multiple Linear Regression and Random Forest models for different situations taking into account season, time of day and weather condition were applied utilizing selected subsets of these predictors in order to model spatial distributions of mean hourly and daily air temperature deviations from a rural reference station. Furthermore, the different model setups were

  9. Friction and wear behaviour of 18 polymers in contact with steel in environments of air and water

    NARCIS (Netherlands)

    Mens, J.W.M.; de Gee, A.W.J.

    1991-01-01

    18 polymers were characterized with respect to their friction and wear behaviour in contact with steel in environments of air and water. These were six unfilled materials, i.e. polyamide 66 (PA 66), polyoxymethylene (POM), polyethyleneterephthalate (PETP), polyetheretherketone (PEEK),

  10. Investigations on Chlorophytum comosum ability to remove toluene from air in a closed environment

    Science.gov (United States)

    Bulteau, G.; Lakel, A.

    Plants play a major role in bioregenerative systems for air and water supplies. They may also contribute to the removal of volatile organic compounds (VOC) from the air in a closed environment, based on the ability to absorb toxic compounds and to detoxify them. The aim of our work was to study the capabilities of Chlorophytum comosum for toluene removal and to identify the main parts of the plants which are responsible for the elimination. A 1-m3 sealed chamber was designed and built in 8-mm window glass assembled with UV-polymerized glue. It was equipped with one internal fan for air mixing. The other materials (low-emitting and low-adsorptive) were aluminium and PTFE. A cooling system was also used to regulate humidity content which was monitored continuously as well as temperature and carbon dioxide concentration. Experiments were carried out in this chamber with Chlorophytum comosum plants exposed to an initial concentration of 11.5x103 μg toluene m-3. Pollutant concentration was measured every five minutes during several days. Toluene removal was studied in various configurations (potting media, hydroponic conditions{ldots}) in order to document the level of contribution of each component (leaves, roots, microorganisms and soil) of the potted plants. Results show that 54 % of toluene was removed in 72 h with the whole potted plant. A large participation of the soil in the purification process was noticed whereas foliage seemed to have little effect at the light intensity used in the experiments. Moreover, the tests realized with both natural and sterilized soils suggest that soil bacteria (in potting media) play a significant role in the removal process showing that soil and its microorganisms may have complementary roles in the elimination phenomena. Detoxifying function of potted plants could find current applications in improving air quality, in particular indoor air from domestic buildings.

  11. Diffuse ceiling ventilation

    DEFF Research Database (Denmark)

    Zhang, Chen

    Diffuse ceiling ventilation is an innovative ventilation concept where the suspended ceiling serves as air diffuser to supply fresh air into the room. Compared with conventional ventilation systems, diffuse ceiling ventilation can significantly reduce or even eliminate draught risk due to the low...

  12. Healthy environment — indoor air quality of Brazilian elementary schools nearby petrochemical industry

    International Nuclear Information System (INIS)

    Godoi, Ricardo H.M.; Godoi, Ana F.L.; Gonçalves Junior, Sérgio J.; Paralovo, Sarah L.; Borillo, Guilherme C.; Gonçalves Gregório Barbosa, Cybelli; Arantes, Manoela G.; Charello, Renata C.; Rosário Filho, Nelson A.; Grassi, Marco T.; Yamamoto, Carlos I.; Potgieter-Vermaak, Sanja; Rotondo, Giuliana G.; De Wael, Karolien; Grieken, Rene van

    2013-01-01

    The mitigation of pollution released to the environment originating from the industrial sector has been the aim of all policy-makers and its importance is evident if the adverse health effects on the world population are considered. Although this concern is controversial, petroleum refinery has been linked to some adverse health effects for people living nearby. Apart from home, school is the most important indoor environment for children and there is increasing concern about the school environment and its impact on health, also in developing countries where the prevalence of pollution is higher. As most of the children spend more than 40% of their time in schools, it is critical to evaluate the pollution level in such environment. In the metropolitan region of Curitiba, South Brazil, five schools nearby industries and highways with high density traffic, were selected to characterize the aerosol and gaseous compounds indoor and outdoor of the classrooms, during 2009–2011. Size segregated aerosol samples were collected for analyses of bulk and single particle elemental profiles. They were analyzed by electron probe X-ray micro-analysis (EPXMA), and by energy-dispersive X-ray fluorescence (EDXRF), to investigate the elemental composition of individual particles and bulk samples. The concentrations of benzene, toluene, ethylbenzene, and xylene (BTEX); NO 2 ; SO 2 ; acetic acid; and formic acid were assessed indoor and outdoor using passive diffusion tubes. BTEX were analyzed by GC–MS and other collected gasses by ion chromatography. Individual exposition of BTEX was assessed by personal passive diffusion tubes. Results are interpreted separately and as a whole with the specific aim of identifying compounds that could affect the health of the scholars. In view of the chemical composition and size distribution of the aerosol particles, local deposition efficiencies in the children's respiratory systems were calculated, revealing the deposition of particles at

  13. Healthy environment — indoor air quality of Brazilian elementary schools nearby petrochemical industry

    Energy Technology Data Exchange (ETDEWEB)

    Godoi, Ricardo H.M., E-mail: rhmgodoi@ufpr.br [Department of Environmental Engineering, Federal University of Paran UFPR, Curitiba, PR (Brazil); Godoi, Ana F.L.; Gonçalves Junior, Sérgio J.; Paralovo, Sarah L.; Borillo, Guilherme C.; Gonçalves Gregório Barbosa, Cybelli; Arantes, Manoela G.; Charello, Renata C. [Department of Environmental Engineering, Federal University of Paran UFPR, Curitiba, PR (Brazil); Rosário Filho, Nelson A. [Department of Pediatric, Div. of Allergy and Pneumol, Federal University of Paran Curitiba, PR (Brazil); Grassi, Marco T. [Department of Chemistry, Federal University of Paraná, Curitiba, PR (Brazil); Yamamoto, Carlos I. [Department of Chemistry Engineering, Federal University of Paraná, Curitiba, PR (Brazil); Potgieter-Vermaak, Sanja [Division of Chemistry and Environmental Science, School of Science and the Environment, Manchester Metropolitan University, Manchester (United Kingdom); Rotondo, Giuliana G.; De Wael, Karolien; Grieken, Rene van [Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp (Belgium)

    2013-10-01

    The mitigation of pollution released to the environment originating from the industrial sector has been the aim of all policy-makers and its importance is evident if the adverse health effects on the world population are considered. Although this concern is controversial, petroleum refinery has been linked to some adverse health effects for people living nearby. Apart from home, school is the most important indoor environment for children and there is increasing concern about the school environment and its impact on health, also in developing countries where the prevalence of pollution is higher. As most of the children spend more than 40% of their time in schools, it is critical to evaluate the pollution level in such environment. In the metropolitan region of Curitiba, South Brazil, five schools nearby industries and highways with high density traffic, were selected to characterize the aerosol and gaseous compounds indoor and outdoor of the classrooms, during 2009–2011. Size segregated aerosol samples were collected for analyses of bulk and single particle elemental profiles. They were analyzed by electron probe X-ray micro-analysis (EPXMA), and by energy-dispersive X-ray fluorescence (EDXRF), to investigate the elemental composition of individual particles and bulk samples. The concentrations of benzene, toluene, ethylbenzene, and xylene (BTEX); NO{sub 2}; SO{sub 2}; acetic acid; and formic acid were assessed indoor and outdoor using passive diffusion tubes. BTEX were analyzed by GC–MS and other collected gasses by ion chromatography. Individual exposition of BTEX was assessed by personal passive diffusion tubes. Results are interpreted separately and as a whole with the specific aim of identifying compounds that could affect the health of the scholars. In view of the chemical composition and size distribution of the aerosol particles, local deposition efficiencies in the children's respiratory systems were calculated, revealing the deposition of

  14. Piloted simulation of an air-ground profile negotiation process in a time-based Air Traffic Control environment

    Science.gov (United States)

    Williams, David H.; Green, Steven M.

    1993-01-01

    Historically, development of airborne flight management systems (FMS) and ground-based air traffic control (ATC) systems has tended to focus on different objectives with little consideration for operational integration. A joint program, between NASA's Ames Research Center (Ames) and Langley Research Center (Langley), is underway to investigate the issues of, and develop systems for, the integration of ATC and airborne automation systems. A simulation study was conducted to evaluate a profile negotiation process (PNP) between the Center/TRACON Automation System (CTAS) and an aircraft equipped with a four-dimensional flight management system (4D FMS). Prototype procedures were developed to support the functional implementation of this process. The PNP was designed to provide an arrival trajectory solution which satisfies the separation requirements of ATC while remaining as close as possible to the aircraft's preferred trajectory. Results from the experiment indicate the potential for successful incorporation of aircraft-preferred arrival trajectories in the CTAS automation environment. Fuel savings on the order of 2 percent to 8 percent, compared to fuel required for the baseline CTAS arrival speed strategy, were achieved in the test scenarios. The data link procedures and clearances developed for this experiment, while providing the necessary functionality, were found to be operationally unacceptable to the pilots. In particular, additional pilot control and understanding of the proposed aircraft-preferred trajectory, and a simplified clearance procedure were cited as necessary for operational implementation of the concept.

  15. Double-diffusive mixed convection in the slot ventilated enclosure with different arrangements of supplying air flow ports

    Directory of Open Access Journals (Sweden)

    Heng-Sheng Cheng

    2015-03-01

    Full Text Available Steady double-diffusive mixed convection in an enclosure with side venting and discrete heat and contaminant sources is numerically studied under supplying upside and returning downside (STRB mode and returning upside and supplying downside mode (RTSB, respectively. The parameters governing the fluid flow include the Grashof number Gr (102–106, Reynolds number Re (100–500, supplying or returning distance H 1/HT (0–2, Prandtl number Pr (0.7, buoyancy ratio N, and Schmidt number Sc. Effects of Gr, Re, and H 1/HT on the flow patterns, thermal, and species transports were numerically investigated concerning STRB and RTSB modes. Fluid flow, heat, and species transports in the enclosure are visualized and analyzed by the contours of stream function, heat function, and mass function, respectively. Air age was also presented to evaluate the freshness of the enclosed fluid. Averaged Nusselt number of the heat source and Sherwood number of the contaminant source are power-law correlated with Gr, Re, and H 1/HT for two ventilation modes, respectively. The correlations demonstrate that the ratio of averaged Nusselt number to Sherwood number was approximately approaching unity, independent of ventilation modes and values of H 1/HT . This investigation could benefit the future design of room ventilation and thermal removals from the electronic chips.

  16. A novel microbial fuel cell sensor with a gas diffusion biocathode sensing element for water and air quality monitoring.

    Science.gov (United States)

    Jiang, Yong; Liang, Peng; Huang, Xia; Ren, Zhiyong Jason

    2018-07-01

    Toxicity monitoring is essential for the protection of public health and ecological safety. Microbial fuel cell (MFC) sensors demonstrated good potential in toxicity monitoring, but current MFC sensors can only be used for anaerobic water monitoring. In this study, a novel gas diffusion (GD)-biocathode sensing element was fabricated using a simple method. The GD-biocathode MFC sensor can directly be used for formaldehyde detection (from 0.0005% to 0.005%) in both aerobic and anaerobic water bodies. Electrochemical analysis indicated that the response by the sensor was caused by the toxic inhibition to the microbial activity for the oxygen reduction reaction (ORR). This study for the first time demonstrated that the GD-biocathode MFC sensor has a detection limit of 20 ppm for formaldehyde and can be used to monitor air pollution. Selective sensitivity to formaldehyde was not achieved as the result of using a mixed-culture, which confirms that it can serve as a generic biosensor for monitoring gaseous pollutants. This study expands the realm of knowledge for MFC sensor applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Turbulent transport across an interface between dry and humid air in a stratified environment

    Science.gov (United States)

    Gallana, Luca; de Santi, Francesca; di Savino, Silvio; Iovieno, Michele; Ricchiardone, Renzo; Tordella, Daniela

    2014-11-01

    The transport of energy and water vapor across a thin layer which separates two decaying isotropic turbulent flows with different kinetic energy and humidity is considered. The interface is placed in a shearless stratified environment in temporal decay. This system reproduces a few aspects of small scale turbulent transport across a dry air/moist air interface in an atmospheric like context. In our incompressible DNS at Reλ = 250 , Boussinesq's approximation is used for momentum and energy transport while the vapor is modeled as a passive scalar (Kumar, Schumacher & Shaw 2014). We investigated different stratification levels with an initial Fr between 0.8 and 8 in presence of a kinetic energy ratio equal to 7. As the buoyancy term becomes of the same order of the inertial ones, a spatial redistribution of kinetic energy, dissipation and vapor concentration is observed. This eventually leads to the onset of a well of kinetic energy in the low energy side of the mixing layer which blocks the entrainment of dry air. Results are discussed and compared with laboratory and numerical experiments. A posteriori estimates of the eventual compression/expansion of fluid particles inside the interfacial mixing layer are given (Nance & Durran 1994).

  18. A High-Fidelity Batch Simulation Environment for Integrated Batch and Piloted Air Combat Simulation Analysis

    Science.gov (United States)

    Goodrich, Kenneth H.; McManus, John W.; Chappell, Alan R.

    1992-01-01

    A batch air combat simulation environment known as the Tactical Maneuvering Simulator (TMS) is presented. The TMS serves as a tool for developing and evaluating tactical maneuvering logics. The environment can also be used to evaluate the tactical implications of perturbations to aircraft performance or supporting systems. The TMS is capable of simulating air combat between any number of engagement participants, with practical limits imposed by computer memory and processing power. Aircraft are modeled using equations of motion, control laws, aerodynamics and propulsive characteristics equivalent to those used in high-fidelity piloted simulation. Databases representative of a modern high-performance aircraft with and without thrust-vectoring capability are included. To simplify the task of developing and implementing maneuvering logics in the TMS, an outer-loop control system known as the Tactical Autopilot (TA) is implemented in the aircraft simulation model. The TA converts guidance commands issued by computerized maneuvering logics in the form of desired angle-of-attack and wind axis-bank angle into inputs to the inner-loop control augmentation system of the aircraft. This report describes the capabilities and operation of the TMS.

  19. Feasibility of a Networked Air Traffic Infrastructure Validation Environment for Advanced NextGen Concepts

    Science.gov (United States)

    McCormack, Michael J.; Gibson, Alec K.; Dennis, Noah E.; Underwood, Matthew C.; Miller,Lana B.; Ballin, Mark G.

    2013-01-01

    Abstract-Next Generation Air Transportation System (NextGen) applications reliant upon aircraft data links such as Automatic Dependent Surveillance-Broadcast (ADS-B) offer a sweeping modernization of the National Airspace System (NAS), but the aviation stakeholder community has not yet established a positive business case for equipage and message content standards remain in flux. It is necessary to transition promising Air Traffic Management (ATM) Concepts of Operations (ConOps) from simulation environments to full-scale flight tests in order to validate user benefits and solidify message standards. However, flight tests are prohibitively expensive and message standards for Commercial-off-the-Shelf (COTS) systems cannot support many advanced ConOps. It is therefore proposed to simulate future aircraft surveillance and communications equipage and employ an existing commercial data link to exchange data during dedicated flight tests. This capability, referred to as the Networked Air Traffic Infrastructure Validation Environment (NATIVE), would emulate aircraft data links such as ADS-B using in-flight Internet and easily-installed test equipment. By utilizing low-cost equipment that is easy to install and certify for testing, advanced ATM ConOps can be validated, message content standards can be solidified, and new standards can be established through full-scale flight trials without necessary or expensive equipage or extensive flight test preparation. This paper presents results of a feasibility study of the NATIVE concept. To determine requirements, six NATIVE design configurations were developed for two NASA ConOps that rely on ADS-B. The performance characteristics of three existing in-flight Internet services were investigated to determine whether performance is adequate to support the concept. Next, a study of requisite hardware and software was conducted to examine whether and how the NATIVE concept might be realized. Finally, to determine a business case

  20. Methodology to determine the appropriate amount of excess air for the operation of a gas turbine in a wet environment

    Energy Technology Data Exchange (ETDEWEB)

    Lugo-Leyte, R.; Zamora-Mata, J.M.; Torres-Aldaco, A. [Universidad Autonoma Metropolitana-Iztapalapa, Departamento de Ingenieria de Procesos e Hidraulica, San Rafael Atlixco 186, Col Vicentina 09340, Iztapalapa, Mexico, D.F. (Mexico); Toledo-Velazquez, M. [Instituto Politecnico Nacional, Escuela Superior de Ingenieria Mecanica y Electrica, Seccion de Estudios de Posgrado e Investigacion, Laboratorio de Ingenieria Termica e Hidraulica Aplicada, Unidad Profesional Adolfo Lopez Mateos, Edificio 5, 3er piso SEPI-ESIME, C.P. 07738, Col. Lindavista, Mexico D.F. (Mexico); Salazar-Pereyra, M. [Tecnologico de Estudios Superiores de Ecatepec, Division de Ingenieria Mecatronica e Industrial, Posgrado en Ciencias en Ingenieria Mecatronica, Av. Tecnologico s/n, Col. Valle de Anahuac, C.P. 55210, Ecatepec de Morelos, Estado de Mexico (Mexico)

    2010-02-15

    This paper addresses the impact of excess air on turbine inlet temperature, power, and thermal efficiency at different pressure ratios. An explicit relationship is developed to determine the turbine inlet temperature as a function of excess air, pressure ratio and relative humidity. The effect of humidity on the calculation of excess air to achieve a pre-established power output is analyzed and presented. Likewise it is demonstrated that dry air calculations provide a valid upper bound for the performance of a gas turbine under a wet environment. (author)

  1. Air pollution and asthma control in the Epidemiological study on the Genetics and Environment of Asthma

    Science.gov (United States)

    Jacquemin, Bénédicte; Kauffmann, Francine; Pin, Isabelle; Le Moual, Nicole; Bousquet, Jean; Gormand, Frédéric; Just, Jocelyne; Nadif, Rachel; Pison, Christophe; Vervloet, Daniel; Künzli, Nino; Siroux, Valérie

    2012-01-01

    Background The associations between exposure to air pollution and asthma control are not well known. The objective is to assess the association between long term exposure to NO2, O3 and PM10 and asthma control in the EGEA2 study (2003–2007). Methods Modeled outdoor NO2, O3 and PM10 estimates were linked to each residential address using the 4-km grid air pollutant surface developed by the French Institute of Environment for 2004. Asthma control was assessed in 481 subjects with current asthma using a multidimensional approach following the 2006–2009 GINA guidelines. Multinomial and ordinal logistic regressions were conducted adjusted on sex, age, BMI, education, smoking and use of inhaled corticosteroids. The association between air pollution and the three domains of asthma control (symptoms, exacerbations and lung function) was assessed. Odds Ratios (ORs) are reported per Inter Quartile Range (IQR). Results Median concentrations (μg.m−3) were 32(IQR 25–38) for NO2 (n=465), 46(41–52) for O3 and 21(18–21) for PM10 (n=481). In total, 44%, 29% and 27% had controlled, partly-controlled and uncontrolled asthma. The ordinal ORs for O3 and PM10 with asthma control were 1.69(95%CI 1.22–2.34) and 1.35(95%CI 1.13–1.64) respectively. When including both pollutants in the same model, both associations persisted. Associations were not modified by sex, smoking status, use of inhaled corticosteroids, atopy, season of examination or BMI. Both pollutants were associated with each of the three main domains of control. Conclusions The results suggest that long-term exposure to PM10 and O3 is associated with uncontrolled asthma in adults, defined by symptoms, exacerbations and lung function. Abstract Word count: 250 Key words: air pollution, asthma, asthma control PMID:21690606

  2. The Combined Influence of Air Pollution and Home Learning Environment on Early Cognitive Skills in Children

    Directory of Open Access Journals (Sweden)

    Lanair A. Lett

    2017-10-01

    Full Text Available Cognitive skills are one component of school readiness that reflect a child’s neurodevelopment and are influenced by environmental and social factors. Most studies assess the impact of these factors individually, without taking into consideration the complex interactions of multiple factors. The objective of this study was to examine the joint association of markers of environmental pollution and of social factors on early cognitive skills in an urban cohort of children. For this, we chose isophorone in ambient air as a marker of industrial air pollution. Low quality home learning environments was chosen as a marker of the social factors contributing to cognitive development. Using a subpopulation from the Early Childhood Longitudinal Study, Birth Cohort (N = 4050, isophorone exposure was assigned using the 2002 National Air Toxics Assessment. Home learning environment was assessed with a modified version of the Home Observation for Measurement of the Environment (HOME Inventory, and standardized math assessment scores were used as a measure of early cognitive skills. Multiple linear regression was used to estimate the effect of both exposures on math scores. After adjustment for confounders, children living in areas with ambient isophorone in the upper quintile of exposure (>0.49 ng/m3 had math scores that were 1.63 points lower than their less exposed peers [95% CI: −2.91, −0.34], and children with lower HOME scores (at or below 9 out of 12 had math scores that were 1.20 points lower than children with better HOME scores [95% CI: −2.30, −0.10]. In adjusted models accounting for identified confounders and both exposures of interest, both high isophorone exposure and low HOME score remained independently associated with math scores [−1.48, 95% CI: −2.79, −0.18; −1.05, 95% CI: −2.15, 0.05, respectively]. There was no statistical evidence of interaction between the two exposures, although children with both higher isophorone

  3. The Combined Influence of Air Pollution and Home Learning Environment on Early Cognitive Skills in Children.

    Science.gov (United States)

    Lett, Lanair A; Stingone, Jeanette A; Claudio, Luz

    2017-10-26

    Cognitive skills are one component of school readiness that reflect a child's neurodevelopment and are influenced by environmental and social factors. Most studies assess the impact of these factors individually, without taking into consideration the complex interactions of multiple factors. The objective of this study was to examine the joint association of markers of environmental pollution and of social factors on early cognitive skills in an urban cohort of children. For this, we chose isophorone in ambient air as a marker of industrial air pollution. Low quality home learning environments was chosen as a marker of the social factors contributing to cognitive development. Using a subpopulation from the Early Childhood Longitudinal Study, Birth Cohort (N = 4050), isophorone exposure was assigned using the 2002 National Air Toxics Assessment. Home learning environment was assessed with a modified version of the Home Observation for Measurement of the Environment (HOME) Inventory, and standardized math assessment scores were used as a measure of early cognitive skills. Multiple linear regression was used to estimate the effect of both exposures on math scores. After adjustment for confounders, children living in areas with ambient isophorone in the upper quintile of exposure (>0.49 ng/m³) had math scores that were 1.63 points lower than their less exposed peers [95% CI: -2.91, -0.34], and children with lower HOME scores (at or below 9 out of 12) had math scores that were 1.20 points lower than children with better HOME scores [95% CI: -2.30, -0.10]. In adjusted models accounting for identified confounders and both exposures of interest, both high isophorone exposure and low HOME score remained independently associated with math scores [-1.48, 95% CI: -2.79, -0.18; -1.05, 95% CI: -2.15, 0.05, respectively]. There was no statistical evidence of interaction between the two exposures, although children with both higher isophorone exposure and a low HOME score had a

  4. Power plant fuel switching and air quality in a tropical, forested environment

    Directory of Open Access Journals (Sweden)

    A. S. S. Medeiros

    2017-07-01

    Full Text Available How a changing energy matrix for electricity production affects air quality is considered for an urban region in a tropical, forested environment. Manaus, the largest city in the central Amazon Basin of Brazil, is in the process of changing its energy matrix for electricity production from fuel oil and diesel to natural gas over an approximately 10-year period, with a minor contribution by hydropower. Three scenarios of urban air quality, specifically afternoon ozone concentrations, were simulated using the Weather Research and Forecasting (WRF-Chem model. The first scenario used fuel oil and diesel for electricity production, which was the reality in 2008. The second scenario was based on the fuel mix from 2014, the most current year for which data were available. The third scenario considered nearly complete use of natural gas for electricity production, which is the anticipated future, possibly for 2018. For each case, inventories of anthropogenic emissions were based on electricity generation, refinery operations, and transportation. Transportation and refinery operations were held constant across the three scenarios to focus on effects of power plant fuel switching in a tropical context. The simulated NOx and CO emissions for the urban region decrease by 89 and 55 %, respectively, after the complete change in the energy matrix. The results of the simulations indicate that a change to natural gas significantly decreases maximum afternoon ozone concentrations over the population center, reducing ozone by > 70 % for the most polluted days. The sensitivity of ozone concentrations to the fuel switchover is consistent with a NOx-limited regime, as expected for a tropical forest having high emissions of biogenic volatile organic compounds, high water vapor concentrations, and abundant solar radiation. There are key differences in a shifting energy matrix in a tropical, forested environment compared to other world environments. Policies

  5. Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments - A review

    Science.gov (United States)

    Abhijith, K. V.; Kumar, Prashant; Gallagher, John; McNabola, Aonghus; Baldauf, Richard; Pilla, Francesco; Broderick, Brian; Di Sabatino, Silvana; Pulvirenti, Beatrice

    2017-08-01

    Intensifying the proportion of urban green infrastructure has been considered as one of the remedies for air pollution levels in cities, yet the impact of numerous vegetation types deployed in different built environments has to be fully synthesised and quantified. This review examined published literature on neighbourhood air quality modifications by green interventions. Studies were evaluated that discussed personal exposure to local sources of air pollution under the presence of vegetation in open road and built-up street canyon environments. Further, we critically evaluated the available literature to provide a better understanding of the interactions between vegetation and surrounding built-up environments and ascertain means of reducing local air pollution exposure using green infrastructure. The net effects of vegetation in each built-up environment are also summarised and possible recommendations for the future design of green infrastructure are proposed. In a street canyon environment, high-level vegetation canopies (trees) led to a deterioration in air quality, while low-level green infrastructure (hedges) improved air quality conditions. For open road conditions, wide, low porosity and tall vegetation leads to downwind pollutant reductions while gaps and high porosity vegetation could lead to no improvement or even deteriorated air quality. The review considers that generic recommendations can be provided for vegetation barriers in open road conditions. Green walls and roofs on building envelopes can also be used as effective air pollution abatement measures. The critical evaluation of the fundamental concepts and the amalgamation of key technical features of past studies by this review could assist urban planners to design and implement green infrastructures in the built environment.

  6. A questionnaire survey on sleeping thermal environment and bedroom air conditioning in high-rise residences in Hong Kong

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Z. [Institute of Heating, Ventilation, Air Conditioning and Gas Engineering, Tongji University, Shanghai (China); Deng, S. [Department of Building Services Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR (China)

    2006-07-01

    This paper reports on the results of a questionnaire survey on sleeping thermal environment and bedroom air conditioning in high-rise residential buildings in Hong Kong. The survey aimed at investigating the current situation of sleeping thermal environment and bedroom air conditioning, in order to gather relevant background information to develop strategies for bedroom air conditioning in the subtropics. It focused on the use patterns and types of bedroom air conditioning systems used, human factors such as the use of bedding and sleep wear during sleep, preference for indoor air temperature settings in bedrooms, ventilation control at nighttime with room air conditioner (RAC) turned on, etc. The results of the survey showed that most of the respondents would prefer a relatively low indoor air temperature at below 24 {sup o}C. Most of the respondents might however not be satisfied with the indoor air quality (IAQ) in bedrooms in Hong Kong. On the other hand, 68% of the respondents did not use any ventilation control intentionally during their sleep with their RACs turned on. A lack of knowledge of the ventilation control devices provided on window type room air conditioners (WRACs) indicated an urgent need for user education. (author)

  7. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 48: Valuing information in an interactive environment

    Science.gov (United States)

    Brinberg, Herbert R.; Pinelli, Thomas E.; Barclay, Rebecca O.

    1995-01-01

    Consideration effort has been devoted over the past 30 years to developing methods and means of assessing the value of information. Two approaches - value in exchange and value in use - dominate; however, neither approach enjoys much practical application because validation schema for decision-making is missing. The approaches fail to measure objectively the real costs of acquiring information and the real benefits that information will yield. Moreover, these approaches collectively fail to provide economic justification to build and/or continue to support an information product or service. In addition, the impact of Cyberspace adds a new dimension to the problem. A new paradigm is required to make economic sense in this revolutionary information environment. In previous work, the authors explored the various approaches to measuring the value of information and concluded that, in large measure, these methods were unworkable concepts and constructs. Instead, they proposed several axioms for valuing information. Most particularly they concluded that the 'value of information cannot be measured in the absence of a specific task, objective, or goal.' This paper builds on those axioms and describes under which circumstances information can be measured in objective and actionable terms. This paper also proposes a methodology for undertaking such measures and validating the results.

  8. Selective oxidation with nanoporous silica supported sensitizers: An environment friendly process using air and visible light

    Energy Technology Data Exchange (ETDEWEB)

    Saint-Cricq, Philippe; Pigot, Thierry; Blanc, Sylvie [Institut des Sciences Analytiques et de Physicochimie pour l' Environnement et les Materiaux, Universite de Pau et des Pays de l' Adour, Helioparc-2 Av. du President Angot, F-64053 Pau Cedex 09 (France); Lacombe, Sylvie, E-mail: sylvie.lacombe@univ-pau.fr [Institut des Sciences Analytiques et de Physicochimie pour l' Environnement et les Materiaux, Universite de Pau et des Pays de l' Adour, Helioparc-2 Av. du President Angot, F-64053 Pau Cedex 09 (France)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Photo-sensitizers were covalently grafted on silica matrices. Black-Right-Pointing-Pointer Grafted powdered silica was characterized by diffuse reflectance and emission spectroscopy. Black-Right-Pointing-Pointer Selective solvent-free photo-oxygenation was carried out with air under visible light. Black-Right-Pointing-Pointer Singlet generation and reactivity at the gas-solid interface was demonstrated. - Abstract: Transparent and porous silica xerogels containing various grafted photosensitizers (PSs) such as anthraquinone derivatives, Neutral Red, Acridine Yellow and a laboratory-made dicyano aromatics (DBTP) were prepared. In most cases, the xerogels were shown to be mainly microporous by porosimetry. The PSs were characterized in the powdered monoliths (form, aggregation, concentration) by electronic spectroscopy which also proved to be a useful tool for monitoring the material evolution after irradiation. These nanoporous xerogels were used as microreactors for gas/solid solvent-free photo-oxygenation of dimethylsulfide (DMS) using visible light and air as the sole reactant. All these PSs containing monoliths were efficient for gas-solid DMS oxidation, leading to sulfoxide and sulfone in varying ratios. As these polar oxidation products remained strongly adsorbed on the silica matrix, the gaseous flow at the outlet of the reactor was totally free of sulfide and odorless. The best results in term of yield and initial rate of degradation of DMS were obtained with DBTP containing xerogels. Moreover, as these materials were reusable without loss of efficiency and sensitizer photobleaching after a washing regeneration step, the concept of recyclable sensitizing materials was approved, opening the way to green process.

  9. A structural regression model for relationship between indoor air quality with dissatisfaction of occupants in education environment

    Science.gov (United States)

    Hosseini, Hamid Reza; Yunos, Mohd Yazid Mohd; Ismail, Sumarni; Yaman, Maheran

    2017-12-01

    This paper analysis the effects of indoor air elements on the dissatisfaction of occupants in education of environments. Tries to find the equation model for increasing the comprehension about these affects and optimizes satisfaction of occupants about indoor environment. Subsequently, increase performance of students, lecturers and staffs. As the method, a satisfaction questionnaire (SQ) and measuring environment elements (MEE) was conducted, 143 respondents at five classrooms, four staff rooms and five lectures rooms were considered. Temperature, air velocity and humidity (TVH) were used as independent variables and dissatisfaction as dependent variable. The hypothesis was tested for significant relationship between variables, and analysis was applied. Results found that indoor air quality presents direct effects on dissatisfaction of occupants and indirect effects on performance and the highest effects fallowed by temperature. These results may help to optimize the quality of efficiency and effectiveness in education environments.

  10. Thermomechanical fatigue behavior of SiC/Ti-24Al-11Nb in air and argon environments

    Science.gov (United States)

    Bartolotta, Paul A.; Verrilli, Michael J.

    1992-01-01

    A series of tension-tension, load-controlled thermomechanical fatigue (TMF) tests were conducted on a titanium aluminide composite in both laboratory air and a flowing argon environment. Results from these tests show that the environment plays an increasingly important role as applied stress levels are decreased. Differences in damage mechanisms between the two environments were observed which corresponds to observed variations in TMF lives.

  11. Effects of pressure and fuel dilution on coflow laminar methane-air diffusion flames: A computational and experimental study

    Science.gov (United States)

    Cao, Su; Ma, Bin; Giassi, Davide; Bennett, Beth Anne V.; Long, Marshall B.; Smooke, Mitchell D.

    2018-03-01

    In this study, the influence of pressure and fuel dilution on the structure and geometry of coflow laminar methane-air diffusion flames is examined. A series of methane-fuelled, nitrogen-diluted flames has been investigated both computationally and experimentally, with pressure ranging from 1.0 to 2.7 atm and CH4 mole fraction ranging from 0.50 to 0.65. Computationally, the MC-Smooth vorticity-velocity formulation was employed to describe the reactive gaseous mixture, and soot evolution was modelled by sectional aerosol equations. The governing equations and boundary conditions were discretised on a two-dimensional computational domain by finite differences, and the resulting set of fully coupled, strongly nonlinear equations was solved simultaneously at all points using a damped, modified Newton's method. Experimentally, chemiluminescence measurements of CH* were taken to determine its relative concentration profile and the structure of the flame front. A thin-filament ratio pyrometry method using a colour digital camera was employed to determine the temperature profiles of the non-sooty, atmospheric pressure flames, while soot volume fraction was quantified, after evaluation of soot temperature, through an absolute light calibration using a thermocouple. For a broad spectrum of flames in atmospheric and elevated pressures, the computed and measured flame quantities were examined to characterise the influence of pressure and fuel dilution, and the major conclusions were as follows: (1) maximum temperature increases with increasing pressure or CH4 concentration; (2) lift-off height decreases significantly with increasing pressure, modified flame length is roughly independent of pressure, and flame radius decreases with pressure approximately as P-1/2; and (3) pressure and fuel stream dilution significantly affect the spatial distribution and the peak value of the soot volume fraction.

  12. A compartment model of alveolar-capillary oxygen diffusion with ventilation-perfusion gradient and dynamics of air transport through the respiratory tract.

    Science.gov (United States)

    Jaworski, Jacek; Redlarski, Grzegorz

    2014-08-01

    This paper presents a model of alveolar-capillary oxygen diffusion with dynamics of air transport through the respiratory tract. For this purpose electrical model representing the respiratory tract mechanics and differential equations representing oxygen membrane diffusion are combined. Relevant thermodynamic relations describing the mass of oxygen transported into the human body are proposed as the connection between these models, as well as the influence of ventilation-perfusion mismatch on the oxygen diffusion. The model is verified based on simulation results of varying exercise intensities and statistical calculations of the results obtained during various clinical trials. The benefit of the approach proposed is its application in simulation-based research aimed to generate quantitative data of normal and pathological conditions. Based on the model presented, taking into account many essential physiological processes and air transport dynamics, comprehensive and combined studies of the respiratory efficiency can be performed. The impact of physical exercise, precise changes in respiratory tract mechanics and alterations in breathing pattern can be analyzed together with the impact of various changes in alveolar-capillary oxygen diffusion. This may be useful in simulation of effects of many severe medical conditions and increased activity level. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. The air quality impact of the port of Amsterdam on its environment: Development of an air quality tool

    NARCIS (Netherlands)

    Klok, L.; Breemen, T. van; Hulskotte, J.

    2011-01-01

    Due to the expansion of the Port of Amsterdam, Urban development and the construction of new highways, air pollution levels are about to exceed European guidelines in and around the port region of Amsterdam. To assess the air quality in this region and the impact of theport emissions on its

  14. Impacts of cooking system on indoor air environment: a case study on a Bangladeshi village

    International Nuclear Information System (INIS)

    Azad, A.K.; Afroze, S.; Azam, M.

    2005-01-01

    Energy is needed to meet the subsistence requirement as well as to meet the demand for economic growth and development. As like many other third world countries still more than half of the total consumed energy comes from the traditional fuels in Bangladesh. This is causing rapid deforestation and consequently a change in the eco-systems leading to erosion and change in the climatic pattern. Extreme use of raw (low quality) biomass traditional cook stoves causes significant impacts on indoor air environment and as well on human health. In the study, an assessment of the cooking energy usage pattern, its potential impacts on indoor air environment and human health in a village named Deyara in Khulna district has been performed. The socio-economic status of the villagers and cooking energy usage pattern were evaluated by a questionnaire survey. In the study village Deyara, about 74% of the total households rely on biomass fuel, where the mostly used biomass is trees and its residues (46%), next the crop wastes (39%) and lastly the cow dung (15%). Emissions of different types of air pollutants and greenhouse gases from the burning of biomass cooking fuels the study village are estimated. In the study area the estimated annual emission of CO/sub 2/ is 45.5 tons which about 94% of the total emission, where CO is 4.5%, PM is 1 % and about 0.5% emission is of SO/sub x/, NO/sub x/, N/sub 2/O. In the study area the concentrations of air pollutants in the kitchen environment were estimated using an indoor air quality model. The model results show that the concentration around the household areas is not at tolerable level and due to only 1 hour biomass burning this concentration is 323 mg/m/sup 3/ for CO, 50.6 mg/m/sup 3/ for PM, 15 mg/m/sup 3/ for NO/sub 2/ and 9.6 mg/m/sup 3/ for SO/sub 2/. Not only this, from the combustion of biomass cooking fuels this concentrations of different carcinogens are also at high levels. For 1 hour burning of biomass fuel this concentration is

  15. Tensile properties of V-5Cr-5Ti alloy after exposure in air environment

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Soppet, W.K. [Argonne National Lab., IL (United States)

    1997-04-01

    Oxidation studies were conducted on V-5Cr-5Ti alloy specimens in an air environment to evaluate the oxygen uptake behavior of the alloy as a function of temperature and exposure time. The oxidation rates, calculated from parabolic kinetic measurements of thermogravimetric testing and confirmed by microscopic analysis of cross sections of exposed specimens, were 5, 17, and 27 {mu}m per year after exposure at 300, 400, and 500{degrees}C, respectively. Uniaxial tensile tests were conducted at room temperature and at 500{degrees}C on preoxidized specimens of the alloy to examine the effects of oxidation and oxygen migration on tensile strength and ductility. Correlations were developed between tensile strength and ductility of the oxidized alloy and microstructural characteristics such as oxide thickness, depth of hardened layer, depth of intergranular fracture zone, and transverse crack length.

  16. Wear Behavior of Selected Nuclear Grade Graphites at Room Temperature in Ambient Air Environment

    International Nuclear Information System (INIS)

    Kim, Eung-Seon; Park, Kwang-Seok; Kim, Yong-Wan

    2008-01-01

    In a very high temperature reactor (VHTR), graphite will be used not only for as a moderator and reflector but also as a major structural component due to its excellent neutronic, thermal and mechanical properties. In the VHTR, wear of graphite components is inevitable due to a neutron irradiation-induced dimensional change, thermal gradient, relative motions of graphite components and a shock load such as an earthquake. Large wear particles accumulated at the bottom of a reactor can influence the cooling of the lower part and small wear particles accumulated on the primary circuit and heat exchanger tube can make it difficult to inspect the equipment, and also decrease the heat exchange rate. In the present work, preliminary wear tests were performed at room temperature in ambient air environment to understand the basic wear characteristics of selected nuclear grade graphites for the VHTR

  17. Effects of NATO air-raids on human environment and health of the population of Serbia

    International Nuclear Information System (INIS)

    Damjanov, V.; Vukicevic, A.; Grozdanov, J.

    2002-01-01

    The bombing targets of NATO forces were almost all larger towns in Serbia, and particularly the facilities of chemical and oil industry. The most severely attacked cities were Pancevo, Novi Sad, Belgrade, Nis, Kragujevac, Sombor, Krusevac, Bogutovac, Kraljevo, Smederevo, Bor, Prahovo, etc. Constantly and repeatedly attacked chemical and oil plants, in addition to direct destruction of the plants, produced divergent effects, such as emission of a variety of primary and secondary pollutants into the living environment (air, water, soil). The majority of these pollutants are documented to have not only the toxicological but also the potential carcinogenic, teratogenic and/or mutagenic effects. The activities of health service (preventive before all) included qualitative and, to a permissible extent, the quantitative measurements of the mineral oils, polychlorobiphenyls, polycyclic aromatic carbons, total carbons, phenol, 3-chloroethylene and tetrachloroethylene, benzene, toluene, xylene, ethylbenzene, styrene, phosgene, vinyl chloride monomer, 1 ,2-dichlor-oethane, dioxin, furan, toxic metals (lead, chromium, cadmium, nickel, arsenic, mercury) -first in air, then in water currents, soil, plants and animals. The peacetime networks for monitoring environmental pollution (air, water, foodstuffs) were not capable to follow up all changes that occurred during aggression. During bombing of the chemical and oil plants the health service did not register any significant increase of individuals (dwellers) presenting with accident-related signs and symptoms. The results of environmental quality obtained so far, indicate a need to follow up the subclinical and clinical manifestations of a long-term exposure of the population. However, the majority of substances that we were able to identify indicate the presence of environmental pollution which will persist for a long time in the years ahead and in concentrations which may eventually have toxicological, carcinogenic, mutagenic

  18. Deliberate ignition of hydrogen-air-steam mixtures in condensing steam environments

    International Nuclear Information System (INIS)

    Blanchat, T.K.; Stamps, D.W.

    1997-05-01

    Large scale experiments were performed to determine the effectiveness of thermal glow plug igniters to burn hydrogen in a condensing steam environment due to the presence of water sprays. The experiments were designed to determine if a detonation or accelerated flame could occur in a hydrogen-air-steam mixture which was initially nonflammable due to steam dilution but was rendered flammable by rapid steam condensation due to water sprays. Eleven Hydrogen Igniter Tests were conducted in the test vessel. The vessel was instrumented with pressure transducers, thermocouple rakes, gas grab sample bottles, hydrogen microsensors, and cameras. The vessel contained two prototypic engineered systems: (1) a deliberate hydrogen ignition system and (2) a water spray system. Experiments were conducted under conditions scaled to be nearly prototypic of those expected in Advanced Light Water Reactors (such as the Combustion Engineering (CE) System 80+), with prototypic spray drop diameter, spray mass flux, steam condensation rates, hydrogen injection flow rates, and using the actual proposed plant igniters. The lack of any significant pressure increase during the majority of the burn and condensation events signified that localized, benign hydrogen deflagration(s) occurred with no significant pressure load on the containment vessel. Igniter location did not appear to be a factor in the open geometry. Initially stratified tests with a stoichiometric mixture in the top showed that the water spray effectively mixes the initially stratified atmosphere prior to the deflagration event. All tests demonstrated that thermal glow plugs ignite hydrogen-air-steam mixtures under conditions with water sprays near the flammability limits previously determined for hydrogen-air-steam mixtures under quiescent conditions. This report describes these experiments, gives experimental results, and provides interpretation of the results. 12 refs., 127 figs., 16 tabs

  19. Gene-environment interactions linking air pollution and inflammation in Parkinson's disease.

    Science.gov (United States)

    Lee, Pei-Chen; Raaschou-Nielsen, Ole; Lill, Christina M; Bertram, Lars; Sinsheimer, Janet S; Hansen, Johnni; Ritz, Beate

    2016-11-01

    Both air pollution exposure and systemic inflammation have been linked to Parkinson's disease (PD). In the PASIDA study, 408 incident cases of PD diagnosed in 2006-2009 and their 495 population controls were interviewed and provided DNA samples. Markers of long term traffic related air pollution measures were derived from geographic information systems (GIS)-based modeling. Furthermore, we genotyped functional polymorphisms in genes encoding proinflammatory cytokines, namely rs1800629 in TNFα (tumor necrosis factor alpha) and rs16944 in IL1B (interleukin-1β). In logistic regression models, long-term exposure to NO 2 increased PD risk overall (odds ratio (OR)=1.06 per 2.94μg/m 3 increase, 95% CI=1.00-1.13). The OR for PD in individuals with high NO 2 exposure (≧75th percentile) and the AA genotype of IL1B rs16944 was 3.10 (95% CI=1.14-8.38) compared with individuals with lower NO 2 exposure (<75th percentile) and the GG genotype. The interaction term was nominally significant on the multiplicative scale (p=0.01). We did not find significant gene-environment interactions with TNF rs1800629. Our finds may provide suggestive evidence that a combination of traffic-related air pollution and genetic variation in the proinflammatory cytokine gene IL1B contribute to risk of developing PD. However, as statistical evidence was only modest in this large sample we cannot rule out that these results represent a chance finding, and additional replication efforts are warranted. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Footprints of air pollution and changing environment on the sustainability of built infrastructure.

    Science.gov (United States)

    Kumar, Prashant; Imam, Boulent

    2013-02-01

    Over 150 research articles relating three multi-disciplinary topics (air pollution, climate change and civil engineering structures) are reviewed to examine the footprints of air pollution and changing environment on the sustainability of building and transport structures (referred as built infrastructure). The aim of this review is to synthesize the existing knowledge on this topic, highlight recent advances in our understanding and discuss research priorities. The article begins with the background information on sources and emission trends of global warming (CO(2), CH(4), N(2)O, CFCs, SF(6)) and corrosive (SO(2), O(3), NO(X)) gases and their role in deterioration of building materials (e.g. steel, stone, concrete, brick and wood) exposed in outdoor environments. Further section covers the impacts of climate- and pollution-derived chemical pathways, generally represented by dose-response functions (DRFs), and changing environmental conditions on built infrastructure. The article concludes with the discussions on the topic areas covered and research challenges. A comprehensive inventory of DRFs is compiled. The case study carried out for analysing the inter-comparability of various DRFs on four different materials (carbon steel, limestone, zinc and copper) produced comparable results. Results of another case study revealed that future projected changes in temperature and/or relatively humidity are expected to have a modest effect on the material deterioration rate whereas changes in precipitation were found to show a more dominant impact. Evidences suggest that both changing and extreme environmental conditions are expected to affect the integrity of built infrastructure both in terms of direct structural damage and indirect losses of transport network functionality. Unlike stone and metals, substantially limited information is available on the deterioration of brick, concrete and wooden structures. Further research is warranted to develop more robust and

  1. Natural Attenuation of Hydrocarbon and Trichloroethylene Vapors in the Subsurface Environment at Plattsburgh Air Force Base

    National Research Council Canada - National Science Library

    Ostendorf, David

    1997-01-01

    .... UMASS tested the hypothesis that natural attenuation processes, stimulated by injected air, reduce emissions of hydrocarbons and trichloroethylene vapors to acceptable air quality standards at the site. Drs...

  2. Report by the Commission of environment accounting and economy - Health and outdoor air quality

    International Nuclear Information System (INIS)

    Depoorter, Stephanie; Niklaus, Doris; Rafenberg, Christophe; Dron, Dominique

    2012-07-01

    After an overview of the issue of air pollution (definition, pollutant emission, population exposure, main air pollutants and emission sources, assessment of air quality in France), this report discusses the various impacts of air pollution on health and their related costs: pathologies associated with a bad air quality, categories which are more exposed than others, assessment of health impacts of air pollution, health costs. The next part describes the current policies aimed at improving air quality: European and international commitments, national policy, public policy tools, impacts of policies of struggle against air pollution by some pollutants, current researches and knowledge to be improved

  3. Chemical characterization of particulate air pollutants Case studies on indoor air quality, cultural heritage and the marine environment

    Science.gov (United States)

    Horemans, Benjamin

    When attempting to discuss the effects of airborne particulate matter (PM), it is important to address both physical and chemical aspects of this pollutant. This work reports on the results of three separate case studies, each approaching a specific problem of air pollution by evaluating the chemical composition of PM. 1. In the US and Europe, office workers often complain about work-related health symptoms. These symptoms are collectively referred as the 'sick building syndrome'. This work could be considered as one of the largest data collections on particulate pollutants in Belgian offices. It helps to understand the sources as well as the behavior and fate of PM at our workplace environments. Especially the chemical information on PM makes the results unique, since it enables a better evaluation of the health risks connected to office dust. 2. The Alhambra and Generalife bring every year more than 3 million people to Granada in Southern Spain. Recently, the increasing urbanization of Granada and the immense pressure of mass tourism form a threat for this heritage. Despite the fact that atmospheric pollutants are known to he potentially aggressive for our cultural patrimony. this case study is the first to assess the effects of environmental aerosols on the Alhambra monument. The results of this study could help decision-makers at the Alhambra and the city of Granada with the formulation of preventive conservation measures. They show how local vehicular traffic is the main source for atmospheric pollution in and around the Alhambra monument. Targeted strategies are necessary in order to maximally preserve these monuments and their UNESCO world cultural heritage label. 3. Excessive input of nitrogen-containing atmospheric nutrients via dry and wet deposition can cause entrophication of marine regions, which is also a common, seasonal phenomenon along the coasts of the North Sea. This study is the first to give a complete quantitative description of the

  4. RESIDENCE TIMES OF PARTICLES IN DIFFUSIVE PROTOPLANETARY DISK ENVIRONMENTS. II. RADIAL MOTIONS AND APPLICATIONS TO DUST ANNEALING

    International Nuclear Information System (INIS)

    Ciesla, F. J.

    2011-01-01

    The origin of crystalline grains in comets and the outer regions of protoplanetary disks remains a mystery. It has been suggested that such grains form via annealing of amorphous precursors in the hot, inner region of a protoplanetary disk, where the temperatures needed for such transformations were found, and were then transported outward by some dynamical means. Here we develop a means of tracking the paths that dust grains would have taken through a diffusive protoplanetary disk and examine the types and ranges of environments that particles would have seen over a 10 6 yr time period in the dynamic disk. We then combine this model with three annealing laws to examine how the dynamic evolution of amorphous grains would have led to their physical restructuring and their delivery to various regions of the disk. It is found that 'sibling particles' - those particles that reside at the same location at a given period of time-take a wide range of unique and independent paths through the disk to arrive there. While high temperatures can persist in the disk for very long time periods, we find that those grains that are delivered to the cold outer regions of the disk are largely annealed in the first few x10 5 yr of disk history. This suggests that the crystallinity of grains in the outer disk would be determined early and remain unchanged for much of disk history, in agreement with recent astronomical observations.

  5. Real-time threat evaluation in a ground based air defence environment

    Directory of Open Access Journals (Sweden)

    JN Roux

    2008-06-01

    Full Text Available In a military environment a ground based air defence operator is required to evaluate the tactical situation in real-time and protect Defended Assets (DAs on the ground against aerial threats by assigning available Weapon Systems (WSs to engage enemy aircraft. Since this aerial environment requires rapid operational planning and decision making in stress situations, the associated responsibilities are typically divided between a number of operators and computerized systems that aid these operators during the decision making processes. One such a Decision Support System (DSS, a threat evaluation and weapon assignment system, assigns threat values to aircraft (with respect to DAs in real-time and uses these values to propose possible engagements of observed enemy aircraft by anti-aircraft WSs. In this paper a design of the threat evaluation part of such a DSS is put forward. The design follows the structured approach suggested in [Roux JN & van Vuuren JH, 2007, Threat evaluation and weapon assignment decision support: A review of the state of the art, ORiON, 23(2, pp. 151-187], phasing in a suite of increasingly complex qualitative and quantitative model components as more (reliable data become available.

  6. Analysis of the crush environment for lightweight air-transportable accident-resistant containers

    International Nuclear Information System (INIS)

    McClure, J.D.; Hartman, W.F.

    1981-12-01

    This report describes the longitudinal dynamic crush environment for a Lightweight Air-Transportable Accident-Resistant Container (LAARC, now called PAT-2) that can be used to transport small quantities of radioactive material. The analysis of the crush environment involves evaluation of the forces imposed upon the LAARC package during the crash of a large, heavily loaded, cargo aircraft. To perform the analysis, a cargo load column was defined which consisted of a longitudinal prism of cargo of cross-sectional area equal to the projected area of the radioactive-material package and length equal to the longitudinal extent of the cargo compartment in a commercial cargo jet aircraft. To bound the problem, two analyses of the cargo load column were performed, a static stability analysis and a dynamic analysis. The results of these analyses can be applied to other packaging designs and suggest that the physical limits or magnitude of the longitudinal crush forces, which are controlled in part by the yield strength of the cargo and the package size, are much smaller than previously estimated

  7. Imperiling urban environment through varying air pollution rein in measures and mass transit policies - a case study of Lahore

    International Nuclear Information System (INIS)

    Aziz, A.

    2015-01-01

    Gargantuan expansion of big cities has increased motor vehicular tremendously. Lahore, a primitive green city is now gripped with swelling motor vehicular air pollution. Mass public transport, a back bone of city transportation network, due to erroneous running significantly contributes toward motor vehicular air pollution. Policy initiatives of the Government to curb motor vehicular air pollution are merely focused upon reduction of air pollution at source by the use of technology and clean fuel programmes. The policies for introduction of mass transit remained imprecise which lead to rise in transportation demand and increase in surfeit emission; Half-baked policies normally stem out to get political popularity which imperils urban environment. The paper highlights inconsistent policy measures and unsound air pollution control strategies adopted in big cities of Pakistan. Furthermore it gives guidance for sustainable mass transit policy measures. (author)

  8. Controlled environment laboratory for the energy certification of refrigeration and air conditioning systems; Laboratorio de ambiente controlado para la certificacion energetica de sistemas de refrigeracion y aire acondicionado

    Energy Technology Data Exchange (ETDEWEB)

    Ambriz, Juan Jose; Romero Paredes, Hernando; Dorantes, Ruben [Universidad Autonoma Metropolitana, Mexico, D.F. (Mexico)

    1999-07-01

    In this paper the general characteristics of the Controlled Environment Laboratory (CELAB) are described and some of the possible tests that could be performed in this device to evaluate the energy efficiency in air conditioning systems, domestic refrigeration and industrial refrigeration, as well as tests to evaluate the hydrothermal comfort in national populations, are presented. [Spanish] En este trabajo se describen las caracteristicas generales del Laboratorio de Ambiente Controlado (LAB), y se presentan algunas de las posibles pruebas que podran ser desarrolladas en este dispositivo para evaluar la eficiencia energetica en sistemas de aire acondicionado, refrigeracion domestica y refrigeracion industrial, asi como para pruebas para evaluar el confort hidrotermico en poblaciones nacionales.

  9. Comparative hygienic assessment of active ingredients content in the air environment after treatment of cereal spiked crops by combined fungicides.

    Science.gov (United States)

    Kondratiuk, Mykola; Blagaia, Anna; Pelo, Ihor

    2018-01-01

    Introduction: The quality of the air environment significantly affects the health of the population. Chemical plant protection products in the spring and summer time may be the main pollutants of the air environment in rural areas. Chemical plant protection products are dangerous substances of anthropogenic origin. If applying pesticides in high concentrations, the risk of poisoning by active ingredients of pesticide preparations in workers directly contacting with it increases. The aim: Comparative hygienic assessment of active ingredients content in the air environment after treatment of cereal spiked crops by combined fungicides was the aim of the work. Materials and methods: Active ingredients of the studied combined fungicides, samples of air, and swabs from workers' skin and stripes from overalls were materials of the research. Methods of full-scale in-field hygienic experiment, gas-liquid chromatography, high-performance liquid chromatography, as well as statistical and bibliographic methods were used in the research. Results and conclusions: Active ingredients of the studied combined fungicides were not detected in the working zone air and atmospheric air at the levels exceeding the limits of its detection by appropriate chromatography methods. Findings confirmed the air environment safety for agricultural workers and rural population if studied combined fungicides are applied following the hygienically approved suggested application rates and in accordance of good agricultural practice rules. However the possible complex risk for workers after certain studied fungicides application may be higher than acceptable due to the elevated values for dermal effects. The complex risk was higher than acceptable in еру case of aerial spraying of both studied fungicides, meanwhile only one combination of active ingredients revealed possible risk for workers applying fungicides by rod method of cereal spiked crops treatment.

  10. Evaluation of physical sampling efficiency for cyclone-based personal bioaerosol samplers in moving air environments.

    Science.gov (United States)

    Su, Wei-Chung; Tolchinsky, Alexander D; Chen, Bean T; Sigaev, Vladimir I; Cheng, Yung Sung

    2012-09-01

    The need to determine occupational exposure to bioaerosols has notably increased in the past decade, especially for microbiology-related workplaces and laboratories. Recently, two new cyclone-based personal bioaerosol samplers were developed by the National Institute for Occupational Safety and Health (NIOSH) in the USA and the Research Center for Toxicology and Hygienic Regulation of Biopreparations (RCT & HRB) in Russia to monitor bioaerosol exposure in the workplace. Here, a series of wind tunnel experiments were carried out to evaluate the physical sampling performance of these two samplers in moving air conditions, which could provide information for personal biological monitoring in a moving air environment. The experiments were conducted in a small wind tunnel facility using three wind speeds (0.5, 1.0 and 2.0 m s(-1)) and three sampling orientations (0°, 90°, and 180°) with respect to the wind direction. Monodispersed particles ranging from 0.5 to 10 μm were employed as the test aerosols. The evaluation of the physical sampling performance was focused on the aspiration efficiency and capture efficiency of the two samplers. The test results showed that the orientation-averaged aspiration efficiencies of the two samplers closely agreed with the American Conference of Governmental Industrial Hygienists (ACGIH) inhalable convention within the particle sizes used in the evaluation tests, and the effect of the wind speed on the aspiration efficiency was found negligible. The capture efficiencies of these two samplers ranged from 70% to 80%. These data offer important information on the insight into the physical sampling characteristics of the two test samplers.

  11. Probing the Interplay of Size, Shape, and Solution Environment in Macromolecular Diffusion Using a Simple Refraction Experiment

    Science.gov (United States)

    Mankidy, Bijith D.; Coutinho, Cecil A.; Gupta, Vinay K.

    2010-01-01

    The diffusion coefficient of polymers is a critical parameter in biomedicine, catalysis, chemical separations, nanotechnology, and other industrial applications. Here, measurement of macromolecular diffusion in solutions is described using a visually instructive, undergraduate-level optical refraction experiment based on Weiner's method. To…

  12. Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells

    KAUST Repository

    Zhang, Fang; Pant, Deepak; Logan, Bruce E.

    2011-01-01

    to examine the reasons for the degraded performance. Diffusion resistance in the cathode was found to be the primary component of the internal resistance, and it increased over time. Replacing the cathode after 1 year completely restored the original power

  13. Calculation and analysis of the mobility and diffusion coefficient of thermal electrons in methane/air premixed flames

    KAUST Repository

    Bisetti, Fabrizio; El Morsli, Mbark

    2012-01-01

    Simulations of ion and electron transport in flames routinely adopt plasma fluid models, which require transport coefficients to compute the mass flux of charged species. In this work, the mobility and diffusion coefficient of thermal electrons

  14. Modified chloride diffusion model for concrete under the coupling effect of mechanical load and chloride salt environment

    Science.gov (United States)

    Lei, Mingfeng; Lin, Dayong; Liu, Jianwen; Shi, Chenghua; Ma, Jianjun; Yang, Weichao; Yu, Xiaoniu

    2018-03-01

    For the purpose of investigating lining concrete durability, this study derives a modified chloride diffusion model for concrete based on the odd continuation of boundary conditions and Fourier transform. In order to achieve this, the linear stress distribution on a sectional structure is considered, detailed procedures and methods are presented for model verification and parametric analysis. Simulation results show that the chloride diffusion model can reflect the effects of linear stress distribution of the sectional structure on the chloride diffusivity with reliable accuracy. Along with the natural environmental characteristics of practical engineering structures, reference value ranges of model parameters are provided. Furthermore, a chloride diffusion model is extended for the consideration of multi-factor coupling of linear stress distribution, chloride concentration and diffusion time. Comparison between model simulation and typical current research results shows that the presented model can produce better considerations with a greater universality.

  15. Fighting ambient air pollution and its impact on health: from human rights to the right to a clean environment.

    Science.gov (United States)

    Guillerm, N; Cesari, G

    2015-08-01

    Clean air is one of the basic requirements of human health and well-being. However, almost nine out of 10 individuals living in urban areas are affected by air pollution. Populations living in Africa, South-East Asia, and in low- and middle-income countries across all regions are the most exposed. Exposure to outdoor air pollution ranks as the ninth leading risk factor for mortality, killing 3.2 million people each year, especially young children, the elderly, persons with lung or cardiovascular disease, those who work or exercise outdoors and low-income populations. In October 2013, the International Agency for Research on Cancer (IARC) classified outdoor air pollution as carcinogenic to humans, calling air pollution 'a major environmental health problem'. Human rights and environmental norms are powerful tools to combat air pollution and its impact on health. The dependence of human rights on environmental quality has been recognised in international texts and by human rights treaty bodies. The growing awareness of the environment has already yielded considerable legislative and regulatory output. However, the implementation of standards remains a pervasive problem. In the fight against violations of norms, citizens have a crucial role to play. We discuss the relevance of a yet to be proclaimed standalone right to a healthy environment.

  16. URBAN MORPHOLOGY AND AIR QUALITY IN DENSE RESIDENTIAL ENVIRONMENTS: CORRELATIONS BETWEEN MORPHOLOGICAL PARAMETERS AND AIR POLLUTION AT STREET-LEVEL

    Directory of Open Access Journals (Sweden)

    PRIYANTHA EDUSSURIYA

    2014-02-01

    Full Text Available This study is the second part of the series that identifies whether site-specific urban morphological parameters are correlated with air quality. This study aims to identify the most important urban morphological parameters that affects air quality at street level that affect air quality in metropolis like Hong Kong through field measurements and statistical analyses. The study considers 20 urban residential areas in five major districts of Hong Kong and real-time street level air pollutant and microclimatic data are collected from these areas. 21 morphological variables are identified and calculated based on the geometry of the urban fabric. Using principal component analyses, it is shown that out of the many urban morphological factors, only five morphological variables (plan area density, occlusivity, aerodynamic roughness height, mean built volume, compactness factor and four land development factors (aspect ratio, distance between building, mean building height and standard deviation of building height correlate with particulate matter. Besides mineralisation factor, contiguity and canyon ratio marginally correlate with particulate matter. On the other hand, nine variables (plan area density, compactness factor, occlusivity, aerodynamic roughness height, average size of building volume, aspect ratio, distance between buildings, mean building height and standard deviations of building heights correlate with NOx. All others play insignificant roles in street-level pollution effect. Moreover statistical analyses show little correlation between CO and ozone with urban morphological parameters. It is also established that the key microclimatic variables that connects PM and NOx with the urban morphological factors are northerly wind, relative humidity and temperature, which in turn translates to affecting the street-level air pollution.

  17. Performance Evaluation of the United Nations Environment Programme Air Quality Unit

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Reference data represents reference monitoring data associated with EPA-operated air monitoring equipment located at its AIRS test site in the Research Triangle...

  18. Assessing indoor air quality of school environments: transplanted lichen Pseudovernia furfuracea as a new tool for biomonitoring and bioaccumulation.

    Science.gov (United States)

    Protano, Carmela; Owczarek, Malgorzata; Antonucci, Arianna; Guidotti, Maurizio; Vitali, Matteo

    2017-07-01

    The aim of this research is to evaluate the ability of transplanted lichen Pseudovernia (P). furfuracea to biomonitor and bioaccumulate in urban indoor environments. The elements As, Cd, Cr, Cu, Hg, Ni and Pb and 12 selected polycyclic aromatic hydrocarbons (PAHs) were used to assess P. furfuracea as a biomonitoring tool for the indoor air quality of school environments. To achieve this purpose, lichen samples were exposed for 2 months in the outdoor and indoor environments of five school settings located in urban and rural areas. The results demonstrated that transplanted lichen P. furfuracea is a suitable biomonitoring tool for metals and PAHs in indoor settings and can discriminate between different levels of air pollution related to urbanisation and indoor conditions, such as those characterised by school environments. A transplanted lichen biomonitoring strategy is cost-effective, "green", educational for attending children and less "invasive" than traditional air sampling methods. The feasibility of indoor monitoring by P. furfuracea is a relevant finding and could be a key tool to improve air quality monitoring programmes in school scenarios and thus focus on health prevention interventions for children, who are one of the most susceptible groups in the population.

  19. Isolation of pathogenic yeasts in the air from hospital environments in the city of Fortaleza, northeast Brazil

    Directory of Open Access Journals (Sweden)

    Rossana A Cordeiro

    Full Text Available This paper reports the results of environmental surveillance of yeasts in specific areas of two tertiary local hospitals. From March 2007 to February 2008, samples from the air of two public hospitals were collected on a monthly basis. The samples were collected through passive sedimentation method (day and night exposure of Petri dishes. A total of 240 air samples from 10 hospital environments were analyzed. These environments presented similar contamination levels, from which 80 fungi isolates were isolated: Candida parapsilosis (n = 34, Rhodotorula spp. (19, Trichosporon asahii (11, C. tropicalis (8, C. albicans (4, C. glabrata (1, C. guilliermondii (1, C. krusei (1 and Saccharomyces spp. (1. Regarding the presence of yeasts and climatic conditions, there were 40 strains (50% in semi-critical areas (natural ventilation and critical areas (air conditioned. Considering the presence of microorganisms with pathogenic potential, environmental monitoring is necessary to prevent possible hospital infections.

  20. Air environment purification using photocatalyst. Hikari shokubai ni yoru taiki kankyo joka

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, K [National Institute for Resources and Environment, Tsukuba (Japan)

    1993-12-02

    Noticing that metal oxides have photocatalysis for reduction in NOx concentration and examining effects of the TiO2 selected on removal of pollutant, the paper proposes a direct purification method for the air environment. Since TiO2 causes electron excitation meeting near ultraviolet irradiation, it manifests a catalytic function for various oxidation/reduction reactions. Details of the reaction mechanism are unknown, various active oxygen species generated on the surface of TiO2 under light irradiation oxidize NOx and acquire it as nitric acid on the surface. It is found that mixture of activated carbon of low hygroscopicity with TiO2 is effective to prevent a tendency of NO to desorb before NO becomes nitric acid. What 40% of the catalyst with fluorine resin is formed into like a sheet shows a high removal rate even in the amount of ultraviolet irradiation in a winter cloudy day in the wide range of 0.5 - 95.0% of NOx and SO2, and if the photocatalyst is applied to the side wall of city buildings, the NOx concentration is estimated to be reduced by as much as 20%. 5 refs., 3 figs.

  1. Multi-terminal remote monitoring and warning system using Micro Air Vehicle for dangerous environment

    Science.gov (United States)

    Yu, Yanan; Wang, Xiaoxun; He, Chengcheng; Lai, Chenlong; Liu, Yuanchao

    2015-11-01

    For overcoming the problems such as remote operation and dangerous tasks, multi-terminal remote monitoring and warning system based on STC89C52 Micro Control Unit and wireless communication technique was proposed. The system with MCU as its core adopted multiple sets of sensor device to monitor environment parameters of different locations, such as temperature, humidity, smoke other harmful gas concentration. Data information collected was transmitted remotely by wireless transceiver module, and then multi-channel data parameter was processed and displayed through serial communication protocol between the module and PC. The results of system could be checked in the form of web pages within a local network which plays a wireless monitoring and warning role. In a remote operation, four-rotor micro air vehicle which fixed airborne data acquisition device was utilized as a middleware between collecting terminal and PC to increase monitoring scope. Whole test system has characteristics of simple construction, convenience, real time ability and high reliability, which could meet the requirements of actual use.

  2. A computational study of radiation and gravity effect on temperature and soot formation in a methane air co-flow diffusion flame

    Energy Technology Data Exchange (ETDEWEB)

    Bhowal, Arup Jyoti, E-mail: arupjyoti.bhowal@heritageit.edu [Department of Mechanical Engineering, Heritage Institute of Technology, Chowbaga Road, Anandapur, Kolkata-700 107, West Bengal (India); Mandal, Bijan Kumar, E-mail: bkm375@yahoo.co.in [Department of Mechanical Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah – 711103, West Bengal (India)

    2016-07-12

    An effort has been made for a quantitative assessment of the soot formed under steady state in a methane air co flow diffusion flame by a numerical simulation at normal gravity and at lower gravity levels of 0.5 G, 0.1 G and 0.0001 G (microgravity). The peak temperature at microgravity is reduced by about 50 K than that at normal gravity level. There is an augmentation of soot formation at lower gravity levels. Peak value at microgravity multiplies by a factor of ∼7 of that at normal gravity. However, if radiation is not considered, soot formation is found to be much more.

  3. Energy efficient and environment-friendly air-air heat pumps; Lucht-luchtwarmtepompen zeer zuinig en milieuvriendelijk

    Energy Technology Data Exchange (ETDEWEB)

    Trautwein, M. [Stulz, Amsterdam (Netherlands)

    2013-02-15

    In many buildings often two different systems are applied: a gas installation for heating and an airconditioning system for cooling. However, an air conditioner can also be used for heating. This can save on the gas installation and/or the central heating system [Dutch] In veel gebouwen worden vaak twee verschillende installaties gebruikt: een gasinstallatie voor verwarming en een airconditioninginstallatie voor koeling. Echter, met airconditioners kan men ook prima verwarmen. Daarmee kan worden bespaard op gasaansluiting en CV-installatie.

  4. Close Air Support in a Joint Environment: Disconnect Between the Services and How Can Close Air Support Be Improved

    Science.gov (United States)

    2013-04-05

    military expecting technology to close the gap between the lack of CAS training and the expected pilot proficiency in multiple roles? To be an... Research Project. Carlisle Barracks: U.S. Army War College, 19 March 2004. McGrath, John. Fire for Effect: Field Artillery and Close Air Support in...including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations

  5. Production of atmospheric pressure diffuse nanosecond pulsed dielectric barrier discharge using the array needles-plate electrode in air

    International Nuclear Information System (INIS)

    Yang Dezheng; Wang Wenchun; Jia Li; Nie Dongxia; Shi Hengchao

    2011-01-01

    In this paper, a bidirectional high pulse voltage with 20 ns rising time is employed to generate an atmospheric pressure diffuse dielectric barrier discharge using the array needles-plate electrode configuration. Both double needle and multiple needle electrode configurations nanosecond pulsed dielectric barrier discharges are investigated. It is found that a diffuse discharge plasma with low gas temperature can be obtained, and the plasma volume increases with the increase of the pulse peak voltage, but remains almost constant with the increase of the pulse repetition rate. In addition to showing the potential application on a topographically nonuniform surface treatment of the discharge, the multiple needle-plate electrode configuration with different needle-plate electrode gaps are also employed to generate diffuse discharge plasma.

  6. Localized Innovation, Localized Diffusion and the Environment: An Analysis of CO2 Emission Reductions by Passenger Cars, 2000-2007

    OpenAIRE

    Los, Bart; Verspagen, Bart

    2008-01-01

    We investigate technological change with regard to CO2 emissions by passenger cars, using a Free Disposal Hull methodology to estimate technological frontiers. We have a sample of cars available in the UK market in the period 2000 – 2007. Our results show that the rates of technological change (frontier movement) and diffusion (distance to frontier at the car brand level) differ substantial between segments of the car market. We conclude that successful policies should be aimed at diffusion o...

  7. Air distribution in office environment with asymmetric workstation layout using chilled beams

    Energy Technology Data Exchange (ETDEWEB)

    Koskela, Hannu; Haeggblom, Henna [Finnish Institute of Occupational Health, Lemminkaeisenkatu 14-18 B, 20520 Turku (Finland); Kosonen, Risto; Ruponen, Mika [Halton Oy, Niittyvillankuja 4, 01510 Vantaa (Finland)

    2010-09-15

    Air flow patterns and mean air speeds were studied under laboratory conditions representing a full scale open-plan office. Three basic conditions were tested: summer, spring/autumn and winter. Chilled beams were used to provide cooling, outdoor air supply and air distribution in the room. The heat sources had a notable influence on the flow pattern in the room causing large scale circulation and affecting the direction of inlet jets. The maximum air speed in the occupied zone was higher than the recommendations. The mean air speed was also high on at the floor level but low on at the head level. The air speed was highest in the summer case under high cooling load. Results indicate that especially with high heat loads, it is difficult to fulfill the targets of the existing standards in practice. Two main sources of draught risk were found: a) downfall of colliding inlet jets causing local maxima of air speed and b) large scale circulation caused by asymmetric layout of chilled beams and heat sources. The first phenomenon can cause local draught risk when the workstation is located in the downfall area. The flow pattern is not stable and the position of draught risk areas can change in time and also due to changes in room heat sources. The second phenomenon can cause more constant high air speeds on at the floor level. CFD-simulation was able to predict the general flow pattern but somewhat overestimated the air speed compared to measurements. (author)

  8. [Air pollutant exposure during pregnancy and fetal and early childhood development. Research protocol of the INMA (Childhood and Environment Project)].

    Science.gov (United States)

    Esplugues, Ana; Fernández-Patier, Rosalía; Aguilera, Inma; Iñíguez, Carmen; García Dos Santos, Saúl; Aguirre Alfaro, Amelia; Lacasaña, Marina; Estarlich, Marisa; Grimalt, Joan O; Fernández, Marieta; Rebagliato, Marisa; Sala, María; Tardón, Adonina; Torrent, Maties; Martínez, María Dolores; Ribas-Fitó, Núria; Sunyer, Jordi; Ballester, Ferran

    2007-01-01

    The INMA (INfancia y Medio Ambiente [Spanish for Environment and Childhood]) project is a cooperative research network. This project aims to study the effects of environment and diet on fetal and early childhood development. This article aims to present the air pollutant exposure protocol during pregnancy and fetal and early childhood development of the INMA project. The information to assess air pollutant exposure during pregnancy is based on outdoor measurement of air pollutants (nitrogen dioxide [NO2], volatile organic compounds [VOC], ozone, particulate matter [PM10, PM2,5 ] and of their composition [polycyclic aromatic hydrocarbons]); measurement of indoor and personal exposure (VOC and NO2); urinary measurement of a biological marker of hydrocarbon exposure (1-hydroxypyrene); and data gathered by questionnaires and geographic information systems. These data allow individual air pollutant exposure indexes to be developed, which can then be used to analyze the possible effects of exposure on fetal development and child health. This protocol and the type of study allow an approximation to individual air pollutant exposure to be obtained. Finally, the large number of participants (N = 4,000), as well as their geographic and social diversity, increases the study's potential.

  9. Effect of temporary open-air markets on the sound environment and acoustic perception based on the crowd density characteristics.

    Science.gov (United States)

    Meng, Qi; Sun, Yang; Kang, Jian

    2017-12-01

    The sound environment and acoustic perception of open-air markets, which are very common in high-density urban open spaces, play important roles in terms of the urban soundscape. Based on objective and subjective measurements of a typical temporary open-air market in Harbin city, China, the effects of the temporary open-air market on the sound environment and acoustic perception were studied, considering different crowd densities. It was observed that a temporary open-air market without zoning increases the sound pressure level and subjective loudness by 2.4dBA and 0.21dBA, respectively, compared to the absence of a temporary market. Different from the sound pressure level and subjective loudness, the relationship between crowd density and the perceived acoustic comfort is parabolic. Regarding the effect of a temporary open-air market with different zones on the sound environment and acoustic perception, when the crowd densities were the same, subjective loudness in the fruit and vegetable sales area was always higher than in the food sales area and the clothing sales area. In terms of acoustic comfort, with an increase in crowd density, acoustic comfort in the fruit and vegetable sales area decreased, and acoustic comfort in the food sales area and the clothing sales area exhibited a parabolic change trend of increase followed by decrease. Overall, acoustic comfort can be effectively improved by better planning temporary open-air markets in high-density urban open spaces. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Numerical study of the propagation of high power microwave pulses in air breakdown environment

    International Nuclear Information System (INIS)

    Kim, J.; Kuo, S.P.

    1992-01-01

    A theoretical model based on a set of two modal equations has been developed to describe self-consistently the propagation of an intense microwave pulse in an air breakdown environment. It includes Poynting's equation for the continuity of the power flux of the pulse and the rate equation of the electron density. A forward wave approximation is used to simplify Poynting's equation and a semi-empirical formula for the ionization frequency as a function of the wave field amplitude is adopted for this model. In order to improve the numerical efficiency of the model in terms of the required computation time and available subroutines for numerical analysis of pulse propagation over a long distance, a transformation to the frame of local time of the pulse is introduced. The effect of space-time dependence of the group velocity of the pulse is included in this properly designed transformation. The inhomogeneous feature of the background pressure is also preserved in the model. The resultant equations are reduced to the forms which can be solved directly by the available subroutine of ODE solver. In this work, a comprehensive numerical analysis of the propagation of high power microwave pulse through the atmosphere is performed. It is shown that the pulse energy can severely be attenuated by the self-generated plasma. Therefore, the aim of the present study is to identify the optimum parameters of the pulse so that the energy loss of the pulse before reaching the destination can be minimized. These parameters include the power, frequency, shape and length of the pulse. The conditions for maximizing the ionization at a destinated region in the upper atmosphere will also be determined

  11. Air quality perception of pedestrians in an urban outdoor Mediterranean environment: A field survey approach.

    Science.gov (United States)

    Pantavou, Katerina; Lykoudis, Spyridon; Psiloglou, Basil

    2017-01-01

    Perception plays a significant role on people's response to preventive measures. In the view of public awareness, the aim of this study was to explore factors that affect air quality perception and to reveal its potential patterns. Air quality perception of individuals, in terms of dust and overall air quality, was examined in relation to air pollutants concentrations, meteorological variables, personal characteristics as well as their thermal sensation and health condition. The data used were obtained from environmental measurements, in situ and from stations, and questionnaire surveys conducted in an outdoor urban Mediterranean area, Athens, Greece. The participants were asked to report their air quality perception and thermal sensation based on predefined scales. A thermal index, Physiological Equivalent Temperature (PET), was estimated to obtain an objective measure of thermal sensation. Particulate matter (PM 10 ) and nitrogen oxide (NO) were associated with dust perception. Nitrogen oxides (NO x ) and carbon monoxide (CO) were associated to air quality perception. Age, area of residence, health symptoms and thermal sensation also affected the perception of air quality. Dusty or poor air quality conditions were more likely to be reported when pollutants' concentrations were increased. Younger people, participants residing in the city center, experiencing health symptoms or warm thermal sensation showed a trend towards reporting more unfavorable air quality conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Incorporating wind availability into land use regression modelling of air quality in mountainous high-density urban environment.

    Science.gov (United States)

    Shi, Yuan; Lau, Kevin Ka-Lun; Ng, Edward

    2017-08-01

    Urban air quality serves as an important function of the quality of urban life. Land use regression (LUR) modelling of air quality is essential for conducting health impacts assessment but more challenging in mountainous high-density urban scenario due to the complexities of the urban environment. In this study, a total of 21 LUR models are developed for seven kinds of air pollutants (gaseous air pollutants CO, NO 2 , NO x , O 3 , SO 2 and particulate air pollutants PM 2.5 , PM 10 ) with reference to three different time periods (summertime, wintertime and annual average of 5-year long-term hourly monitoring data from local air quality monitoring network) in Hong Kong. Under the mountainous high-density urban scenario, we improved the traditional LUR modelling method by incorporating wind availability information into LUR modelling based on surface geomorphometrical analysis. As a result, 269 independent variables were examined to develop the LUR models by using the "ADDRESS" independent variable selection method and stepwise multiple linear regression (MLR). Cross validation has been performed for each resultant model. The results show that wind-related variables are included in most of the resultant models as statistically significant independent variables. Compared with the traditional method, a maximum increase of 20% was achieved in the prediction performance of annual averaged NO 2 concentration level by incorporating wind-related variables into LUR model development. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Morphometric partitioning of the respiratory surface area and diffusion capacity of the gills and swim bladder in juvenile Amazonian air-breathing fish, Arapaima gigas.

    Science.gov (United States)

    Fernandes, Marisa Narciso; da Cruz, André Luis; da Costa, Oscar Tadeu Ferreira; Perry, Steven Franklin

    2012-09-01

    The gills and the respiratory swim bladders of juvenile specimens (mean body mass 100g) of the basal teleost Arapaima gigas (Cuvier 1829) were evaluated using stereological methods in vertical sections. The surface areas, harmonic mean barrier thicknesses and morphometric diffusing capacities for oxygen and carbon dioxide were estimated. The average respiratory surface area of the swim bladder (2173 cm² kg⁻¹) exceeded that of the gills (780 cm² kg⁻¹) by a factor of 2.79. Due to the extremely thin air-blood barrier in the swim bladder (harmonic mean 0.22 μm) and the much thicker water-blood barrier of the gills (9.61 μm), the morphometric diffusing capacity for oxygen and carbon dioxide was 88 times greater in the swim bladder than in the gills. These data clearly indicate the importance of the swim bladder, even in juvenile A. gigas that still engage in aquatic respiration. Because of the much greater diffusion constant of CO₂ than O₂ in water, the gills also remain important for CO₂ release. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Analysis of a finite-difference and a Galerkin technique applied to the simulation of advection and diffusion of air pollutants from a line source

    International Nuclear Information System (INIS)

    Runca, E.; Melli, P.; Sardei, F.

    1985-01-01

    A finite-difference scheme and a Galerkin scheme are compared with respect to a very accurate solution describing time-dependent advection and diffusion of air pollutants from a line source in an atmosphere vertically stratified and limited by an inversion layer. The accurate solution was achieved by applying the finite-difference scheme on a very refined grid with a very small time step. The grid size and time step were defined according to stability and accuracy criteria discussed in the text. It is found that for the problem considered the two methods can be considered equally accurate. However, the Galerkin method gives a better approximation in the vicinity of the source. This was assumed to be partly due to the different way the source term is taken into account in the two methods. Improvement of the accuracy of the finite-difference scheme was achieved by approximating, at every step, the contribution of the source term by a Gaussian puff moving and diffusing with the velocity and diffusivity of the source location, instead of utilizing a stepwise function for the numerical approximation of the delta function representing the source term

  15. Thickness engineering of atomic layer deposited Al2O3 films to suppress interfacial reaction and diffusion of Ni/Au gate metal in AlGaN/GaN HEMTs up to 600 °C in air

    Science.gov (United States)

    Suria, Ateeq J.; Yalamarthy, Ananth Saran; Heuser, Thomas A.; Bruefach, Alexandra; Chapin, Caitlin A.; So, Hongyun; Senesky, Debbie G.

    2017-06-01

    In this paper, we describe the use of 50 nm atomic layer deposited (ALD) Al2O3 to suppress the interfacial reaction and inter-diffusion between the gate metal and semiconductor interface, to extend the operation limit up to 600 °C in air. Suppression of diffusion is verified through Auger electron spectroscopy (AES) depth profiling and X-ray diffraction (XRD) and is further supported with electrical characterization. An ALD Al2O3 thin film (10 nm and 50 nm), which functions as a dielectric layer, was inserted between the gate metal (Ni/Au) and heterostructure-based semiconductor material (AlGaN/GaN) to form a metal-insulator-semiconductor high electron mobility transistor (MIS-HEMT). This extended the 50 nm ALD Al2O3 MIS-HEMT (50-MIS) current-voltage (Ids-Vds) and gate leakage (Ig,leakage) characteristics up to 600 °C. Both, the 10 nm ALD Al2O3 MIS-HEMT (10-MIS) and HEMT, failed above 350 °C, as evidenced by a sudden increase of approximately 50 times and 5.3 × 106 times in Ig,leakage, respectively. AES on the HEMT revealed the formation of a Ni-Au alloy and Ni present in the active region. Additionally, XRD showed existence of metal gallides in the HEMT. The 50-MIS enables the operation of AlGaN/GaN based electronics in oxidizing high-temperature environments, by suppressing interfacial reaction and inter-diffusion of the gate metal with the semiconductor.

  16. Long term performance of particulate air-filter in an office environment

    DEFF Research Database (Denmark)

    Afshari, Alireza; Iqbal, Ahsan; Bergsøe, Niels Christian

    2015-01-01

    The present article is based on initial findings of an ongoing study. The objective of present study is to analyse the long term performance of an air particulate filter with and without ionizer. To study the performance of the air filters, a test rig was built in the Danish Building Research Ins...

  17. Transport and Environment Database System (TRENDS): Maritime Air Pollutant Emission Modelling

    DEFF Research Database (Denmark)

    Georgakaki, Aliki; Coffey, R. A.; Lock, G.

    2003-01-01

    This paper reports the development of the maritime module within the framework of the TRENDS project. A detailed database has been constructed, which includes all stages of the energy consumption and air pollutant emission calculations. The technical assumptions and factors incorporated in the da...... ¿ short sea or deep-sea shipping. Key Words: Air Pollution, Maritime Transport, Air Pollutant Emissions......This paper reports the development of the maritime module within the framework of the TRENDS project. A detailed database has been constructed, which includes all stages of the energy consumption and air pollutant emission calculations. The technical assumptions and factors incorporated...... encountered since the statistical data collection was not undertaken with a view to this purpose are mentioned. Examples of the results obtained by the database are presented. These include detailed air pollutant emission results per port and vessel type, to aggregate results for different types of movements...

  18. Use of local convective and radiant cooling at warm environment: effect on thermal comfort and perceived air quality

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Duszyk, Marcin; Krejcirikova, Barbora

    2012-01-01

    The effect of four local cooling devices (convective, radiant and combined) on thermal comfort and perceived air quality reported by 24 subjects at 28 ˚C and 50% RH was studied. The devices studied were: (1) desk cooling fan, (2) personalized ventilation providing clean air, (3) two radiant panels...... and (4) two radiant panels with one panel equipped with small fans. A reference condition without cooling was tested as well. The response of the subjects to the exposed conditions was collected by computerized questionnaires. The cooling devices significantly (pthermal comfort...... compared to without cooling. The acceptability of the thermal environment was similar for all cooling devices. The acceptability of air movement and PAQ increased when the local cooling methods were used. The best results were achieved with personalized ventilation and cooling fan. The improvement in PAQ...

  19. Air-tough: A fully 3-dimensional linking of atmosphere with soil using eddy diffusivity concept and V-TOUGH

    Energy Technology Data Exchange (ETDEWEB)

    Montazer, P. [Multimedia Environmental Technology, Inc., Newport Beach, CA (United States)

    1995-03-01

    In arid climates, evapotranspiration is a strongly-coupled thermodynamic process that is controlled by the interaction of the atmospheric boundary layer and the upper soil surface. Simulation of this process requires a fully-coupled thermodynamic multi-phase fluid-flow and energy-transport code. Such a code was developed in a previous investigation using V-TOUGH. The resulting efficient computer code, A-TOUGH, simulates the effect of dynamic atmospheric fluctuations on vapor movement between the soil and the atmosphere and the resulting moisture movement in the soil. However, the coupling between the atmosphere and soil employed eddy diffusivity which was only a function of time and not a function of space. In the present study the code is extended to allow spatial as well as temporal variation of eddy diffusivity.

  20. Air

    International Nuclear Information System (INIS)

    Gugele, B.; Scheider, J.; Spangl, W.

    2001-01-01

    In recent years several regulations and standards for air quality and limits for air pollution were issued or are in preparation by the European Union, which have severe influence on the environmental monitoring and legislation in Austria. This chapter of the environmental control report of Austria gives an overview about the legal situation of air pollution control in the European Union and in specific the legal situation in Austria. It gives a comprehensive inventory of air pollution measurements for the whole area of Austria of total suspended particulates, ozone, volatile organic compounds, nitrogen oxides, sulfur dioxide, carbon monoxide, heavy metals, benzene, dioxin, polycyclic aromatic hydrocarbons and eutrophication. For each of these pollutants the measured emission values throughout Austria are given in tables and geographical charts, the environmental impact is discussed, statistical data and time series of the emission sources are given and legal regulations and measures for an effective environmental pollution control are discussed. In particular the impact of fossil-fuel power plants on the air pollution is analyzed. (a.n.)

  1. Comparison of indoor air distribution and thermal environment for different combinations of radiant heating systems with mechanical ventilation systems

    DEFF Research Database (Denmark)

    Wu, Xiaozhou; Fang, Lei; Olesen, Bjarne W.

    2018-01-01

    A hybrid system with a radiant heating system and a mechanical ventilation system, which is regarded as an advanced heating, ventilation and air-conditioning (HVAC) system, has been applied in many modern buildings worldwide. To date, almost no studies focused on comparative analysis of the indoor...... air distribution and the thermal environment for all combinations of radiant heating systems with mechanical ventilation systems. Therefore, in this article, the indoor air distribution and the thermal environment were comparatively analyzed in a room with floor heating (FH) or ceiling heating (CH......) and mixing ventilation (MV) or displacement ventilation (DV) when the supply air temperature ranged from 15.0°C to 19.0°C. The results showed that the temperature effectiveness values were 1.05–1.16 and 0.95–1.02 for MV+ FH and MV+ CH, respectively, and they were 0.78–0.91 and 0.51–0.67 for DV + FH and DV...

  2. Environment and air pollution like gun and bullet for low-income countries: war for better health and wealth.

    Science.gov (United States)

    Zou, Xiang; Azam, Muhammad; Islam, Talat; Zaman, Khalid

    2016-02-01

    The objective of the study is to examine the impact of environmental indicators and air pollution on "health" and "wealth" for the low-income countries. The study used a number of promising variables including arable land, fossil fuel energy consumption, population density, and carbon dioxide emissions that simultaneously affect the health (i.e., health expenditures per capita) and wealth (i.e., GDP per capita) of the low-income countries. The general representation for low-income countries has shown by aggregate data that consist of 39 observations from the period of 1975-2013. The study decomposes the data set from different econometric tests for managing robust inferences. The study uses temporal forecasting for the health and wealth model by a vector error correction model (VECM) and an innovation accounting technique. The results show that environment and air pollution is the menace for low-income countries' health and wealth. Among environmental indicators, arable land has the largest variance to affect health and wealth for the next 10-year period, while air pollution exerts the least contribution to change health and wealth of low-income countries. These results indicate the prevalence of war situation, where environment and air pollution become visible like "gun" and "bullet" for low-income countries. There are required sound and effective macroeconomic policies to combat with the environmental evils that affect the health and wealth of the low-income countries.

  3. Cooling Effectiveness Measurements for Air Film Cooling of Thermal Barrier Coated Surfaces in a Burner Rig Environment Using Phosphor Thermometry

    Science.gov (United States)

    Eldridge, Jeffrey I.; Shyam, Vikram; Wroblewski, Adam C.; Zhu, Dongming; Cuy, Michael D.; Wolfe, Douglas E.

    2016-01-01

    While the effects of thermal barrier coating (TBC) thermal protection and air film cooling effectiveness are usually studied separately, their contributions to combined cooling effectiveness are interdependent and are not simply additive. Therefore, combined cooling effectiveness must be measured to achieve an optimum balance between TBC thermal protection and air film cooling. In this investigation, surface temperature mapping was performed using recently developed Cr-doped GdAlO3 phosphor thermometry. Measurements were performed in the NASA GRC Mach 0.3 burner rig on a TBC-coated plate using a scaled up cooling hole geometry where both the mainstream hot gas temperature and the blowing ratio were varied. Procedures for surface temperature and cooling effectiveness mapping of the air film-cooled TBC-coated surface are described. Applications are also shown for an engine component in both the burner rig test environment as well as an engine afterburner environment. The effects of thermal background radiation and flame chemiluminescence on the measurements are investigated, and advantages of this method over infrared thermography as well as the limitations of this method for studying air film cooling are discussed.

  4. The lasting effect of limonene-induced particle formation on air quality in a genuine indoor environment.

    Science.gov (United States)

    Rösch, Carolin; Wissenbach, Dirk K; von Bergen, Martin; Franck, Ulrich; Wendisch, Manfred; Schlink, Uwe

    2015-09-01

    Atmospheric ozone-terpene reactions, which form secondary organic aerosol (SOA) particles, can affect indoor air quality when outdoor air mixes with indoor air during ventilation. This study, conducted in Leipzig, Germany, focused on limonene-induced particle formation in a genuine indoor environment (24 m(3)). Particle number, limonene and ozone concentrations were monitored during the whole experimental period. After manual ventilation for 30 min, during which indoor ozone levels reached up to 22.7 ppb, limonene was introduced into the room at concentrations of approximately 180 to 250 μg m(-3). We observed strong particle formation and growth within a diameter range of 9 to 50 nm under real-room conditions. Larger particles with diameters above 100 nm were less affected by limonene introduction. The total particle number concentrations (TPNCs) after limonene introduction clearly exceed outdoor values by a factor of 4.5 to 41 reaching maximum concentrations of up to 267,000 particles cm(-3). The formation strength was influenced by background particles, which attenuated the formation of new SOA with increasing concentration, and by ozone levels, an increase of which by 10 ppb will result in a six times higher TPNC. This study emphasizes indoor environments to be preferred locations for particle formation and growth after ventilation events. As a consequence, SOA formation can produce significantly higher amounts of particles than transported by ventilation into the indoor air.

  5. Air-sea interactions of semi-volatile organic compounds in the tropical environment of Southeast Asia

    Directory of Open Access Journals (Sweden)

    Balasubramanian R.

    2010-12-01

    Full Text Available Major urban and industrial centers increase loadings of semi-volatile organic compounds (SVOCs to proximate sea waters through riverine transport, atmospheric deposition via dry particle deposition, wet deposition, and air-sea gas exchange. In addition to acting as sinks for SVOCs, oceans can act as sources of SVOCs to coastal atmospheres and play important roles in the global biogeochemistry of SVOCs. Particle-sorbed SVOCs can settle to the ocean surface by dry particle deposition, a uni-directional advective transport process from the atmosphere to the water, the removal rate by which is a function of the physical and chemical properties of the aerosols and bound pollutants, meteorological conditions and surface characteristics. In addition, SVOCs are removed from the atmosphere and transported to the waters by precipitation scavenging of atmospheric vapors and particles, which are incorporated into the rain within or below the clouds. After SVOCs are deposited into the bulk seawater, water-column partitioning can affect the distribution of pollutants between the dissolved aqueous and the solid phases and eventually impact the fate of these compounds in oceans. Other than the abovementioned processes, air-sea exchange can make SVOCs diffuse across the air-sea interface; however, the sea surface microlayer (SML, a unique compartment at the air-sea boundary defined operationally as the upper millimeter (1 ∼ 1000 μm of the sea surface, has large storage capacity to delay the transport of SVOCs across the interface. This article reports the dry particle deposition and wet deposition of selected SVOCs based on an extensive set of yearly data collected in Singapore. Singapore, a representative country of Southeast Asia (SEA, is a small but highly developed island with dense industrial parks in the Southwestern part, where the terrestrial sources affect the surrounding coasts. In this study, Singapore’s Southern coastline was chosen during

  6. Exposure to Air Ions in Indoor Environments: Experimental Study with Healthy Adults

    Directory of Open Access Journals (Sweden)

    Peter Wallner

    2015-11-01

    Full Text Available Since the beginning of the 20th century there has been a scientific debate about the potential effects of air ions on biological tissues, wellbeing and health. Effects on the cardiovascular and respiratory system as well as on mental health have been described. In recent years, there has been a renewed interest in this topic. In an experimental indoor setting we conducted a double-blind cross-over trial to determine if higher levels of air ions, generated by a special wall paint, affect cognitive performance, wellbeing, lung function, and cardiovascular function. Twenty healthy non-smoking volunteers (10 female, 10 male participated in the study. Levels of air ions, volatile organic compounds and indoor climate factors were determined by standardized measurement procedures. Air ions affected the autonomous nervous system (in terms of an increase of sympathetic activity accompanied by a small decrease of vagal efferent activity: In the test room with higher levels of air ions (2194/cm3 vs. 1038/cm3 a significantly higher low to high frequency ratio of the electrocardiography (ECG beat-to-beat interval spectrogram was found. Furthermore, six of nine subtests of a cognitive performance test were solved better, three of them statistically significant (verbal factor, reasoning, and perceptual speed, in the room with higher ion concentration. There was no influence of air ions on lung function and on wellbeing. Our results indicate slightly activating and cognitive performance enhancing effects of a short-term exposure to higher indoor air ion concentrations.

  7. Microbial Air Contamination in Indoor and Outdoor Environment of Pig Farms

    Directory of Open Access Journals (Sweden)

    Silvana Popescu

    2014-05-01

    Full Text Available Ensuring a good air quality in pig farms is important for the health of animals and human workers. The aim of this study was the assessment of the microbiological quality of the air inside the pig houses and outside of these. The study was accomplished in two pig-fattening farms in Cluj County. The microbiological air quality was assessed in the cold and warm season, by determination of the total counts of mesophilic bacteria, staphylococci, streptococci, gram-negative bacteria and fungi. The bacterial and fungal counts varied in the air of the investigated farms. In relation to the season the mean counts of bacteria and fungi were significantly higher (P 0.05 were found between the values of the parameters determined from the indoor air and those obtained outside, from a distance of 5 m from the pig houses. The numbers of the bacteria and fungi in the outdoor air lowered as the distance from the farms increased, the differences being significant at 25 and 50 m (P < 0.05. The results of the study show a high bacterial contamination of the indoor and outdoor air of the pig farms.

  8. Air refractometry in a length comparator and the response to changes in the measurement environment

    Energy Technology Data Exchange (ETDEWEB)

    Pieles, H

    1998-11-01

    Two different interference refractometers and one air parameter set-up are simultaneously operated in a temperature-stabilized casing of a length comparator. They allow absolute and relative measurements and calculations, respectively of the refractive index of air to be carried out for continuous interferometric length measurements. Measurement results are presented which were obtained under optimized environmental conditions. In addition, sources of disturbances are described which can significantly influence the measurements of the refractive index of air, and consequently may influence the accuracy of interferometric displacement measurements. (orig.)

  9. Geochemical Assessment of Groundwater in the Peri-urban Environment of Buenos Aires, Argentina

    Science.gov (United States)

    Gallardo, A.

    2014-12-01

    Groundwater pollution is a major concern in peri-urban environments. Thus, water quality is being investigated at several domestic wells in Brandsen, 70 km south of Buenos Aires, Argentina. To present, about 20 water sources were sampled in orchards and small farms of the area. There is limited data about the wells construction, although collected information suggests that groundwater is derived from the superficial sandy loams of the Pampean Aquifer. Samples were analysed for major inorganic elements using ion chromatography and ICP-MS. Titration was used to estimate alkalinity. Physical characteristics (EC, pH, temperature) were measured on site. Results show that groundwater pH ranges from 6.5 to 7.8, with a specific conductance of 180 to 255 mS/m. A peak of 360 mS/m in one horticultural parcel is associated to local NO3- concentrations up to 140 mg/L. This value exceeds the maximum recommendations set by the WHO (50 mg/L). Considering that fertilizer inputs in that property are negligible, the high levels of NO3- might be attributed to effluents from a neighbour septic tank. An increase in NO3- (>150mg/L) was also detected in two conventional farms. This increase correlates to elevated SO42- concentrations (>300 mg/L) suggesting thus, fertilizers percolation into the saturated zone. The leaching of these fluids might be exacerbated by irrigation during new planting, and accumulations of fertilizer-solids in the root zones from previous seasons. Chloride concentrations average ~90 mg/L and would not pose a threat to health at the moment. Its main origin would be related to connate waters in the loam matrix, although some anthropogenic inputs might occur in the previously described farms. In general, the rest of the analysed elements fall within acceptable levels for drinking purposes as well. Nevertheless, further work is still necessary to better define the fate of the potential harmful elements and assess seasonal variations in water quality.

  10. EMMA model: an advanced operational mesoscale air quality model for urban and regional environments

    International Nuclear Information System (INIS)

    Jose, R.S.; Rodriguez, M.A.; Cortes, E.; Gonzalez, R.M.

    1999-01-01

    Mesoscale air quality models are an important tool to forecast and analyse the air quality in regional and urban areas. In recent years an increased interest has been shown by decision makers in these types of software tools. The complexity of such a model has grown exponentially with the increase of computer power. Nowadays, medium workstations can run operational versions of these modelling systems successfully. Presents a complex mesoscale air quality model which has been installed in the Environmental Office of the Madrid community (Spain) in order to forecast accurately the ozone, nitrogen dioxide and sulphur dioxide air concentrations in a 3D domain centred on Madrid city. Describes the challenging scientific matters to be solved in order to develop an operational version of the atmospheric mesoscale numerical pollution model for urban and regional areas (ANA). Some encouraging results have been achieved in the attempts to improve the accuracy of the predictions made by the version already installed. (Author)

  11. Risk assessment - a research program aimed at health risks from air pollution in the general environment

    International Nuclear Information System (INIS)

    Lindahl-Kiessling, K.; Ahlborg, U.; Bylin, G.; Ehrenberg, L.; Hemminki, K.; Lindell, B.; Nilsson, Robert; Bostroem, C.E.; Swarn, U.

    1991-01-01

    The paper presents a new research program for assessment of health risks caused by air pollutants. It is important to develop general methods for quantitative risk assessments and to improve the scientific base materials. (KAE)

  12. Steady-state solution of the semi-empirical diffusion equation for area sources. [air pollution studies

    Science.gov (United States)

    Lebedeff, S. A.; Hameed, S.

    1975-01-01

    The problem investigated can be solved exactly in a simple manner if the equations are written in terms of a similarity variable. The exact solution is used to explore two questions of interest in the modelling of urban air pollution, taking into account the distribution of surface concentration downwind of an area source and the distribution of concentration with height.

  13. A basic system architecture for sensor data diffusion of environment sensors for intelligent cruise control systems; Eine Basis-Systemarchitektur zur Sensordatenfusion von Umfeldsensoren fuer Fahrerassistenzsysteme

    Energy Technology Data Exchange (ETDEWEB)

    Darms, M.

    2007-07-01

    The design of the system architecture for sensor data diffusion at the beginning of the development process has significant influence on the cost. With a view to intelligent cruise control systems, the author investigated general assumptions concerning data association and data filtering for sensor data diffusion of environment sensors which must be considered when designing an architecture or may be considered for optimisation. The validity of the assumption is illustrated by simulations of adaptive speed control and time-to-collision calculations as well as on the basis of available literature. A basic sytem architecture is presented as a precursor of the final architecture which is based on these assumptions. Their applicability is proved by implementation in the PRORETA project. The author's work provides a validated basis for architects of a serial system architecture enabling them to design and implement their ultimate systems. (orig.)

  14. Kriged and modeled ambient air levels of benzene in an urban environment: an exposure assessment study

    Directory of Open Access Journals (Sweden)

    Lai Dejian

    2011-03-01

    Full Text Available Abstract Background There is increasing concern regarding the potential adverse health effects of air pollution, particularly hazardous air pollutants (HAPs. However, quantifying exposure to these pollutants is problematic. Objective Our goal was to explore the utility of kriging, a spatial interpolation method, for exposure assessment in epidemiologic studies of HAPs. We used benzene as an example and compared census tract-level kriged predictions to estimates obtained from the 1999 U.S. EPA National Air Toxics Assessment (NATA, Assessment System for Population Exposure Nationwide (ASPEN model. Methods Kriged predictions were generated for 649 census tracts in Harris County, Texas using estimates of annual benzene air concentrations from 17 monitoring sites operating in Harris and surrounding counties from 1998 to 2000. Year 1999 ASPEN modeled estimates were also obtained for each census tract. Spearman rank correlation analyses were performed on the modeled and kriged benzene levels. Weighted kappa statistics were computed to assess agreement between discretized kriged and modeled estimates of ambient air levels of benzene. Results There was modest correlation between the predicted and modeled values across census tracts. Overall, 56.2%, 40.7%, 31.5% and 28.2% of census tracts were classified as having 'low', 'medium-low', 'medium-high' and 'high' ambient air levels of benzene, respectively, comparing predicted and modeled benzene levels. The weighted kappa statistic was 0.26 (95% confidence interval (CI = 0.20, 0.31, indicating poor agreement between the two methods. Conclusions There was a lack of concordance between predicted and modeled ambient air levels of benzene. Applying methods of spatial interpolation for assessing exposure to ambient air pollutants in health effect studies is hindered by the placement and number of existing stationary monitors collecting HAP data. Routine monitoring needs to be expanded if we are to use these data

  15. Integrating the Land and Air Components in an Anti-Access/Area Denial Environment

    Science.gov (United States)

    2013-06-01

    to his pursuit and bomber squadrons being already tasked to their limits, Fredendall retorted that he had lost 300 men due to enemy actions and the...190 Murray and Scales, The Iraq War, 173. 191 Author’s personal experience as a Close Air Support planner and Strike Package ...in the future the command and control structure will need to support air strike packages transitioning from interdiction and global strike missions to

  16. Spatiotemporal influence of temperature, air quality, and urban environment on cause-specific mortality during hazy days.

    Science.gov (United States)

    Ho, Hung Chak; Wong, Man Sing; Yang, Lin; Shi, Wenzhong; Yang, Jinxin; Bilal, Muhammad; Chan, Ta-Chien

    2018-03-01

    Haze is an extreme weather event that can severely increase air pollution exposure, resulting in higher burdens on human health. Few studies have explored the health effects of haze, and none have investigated the spatiotemporal interaction between temperature, air quality and urban environment that may exacerbate the adverse health effects of haze. We investigated the spatiotemporal pattern of haze effects and explored the additional effects of temperature, air pollution and urban environment on the short-term mortality risk during hazy days. We applied a Poisson regression model to daily mortality data from 2007 through 2014, to analyze the short-term mortality risk during haze events in Hong Kong. We evaluated the adverse effect on five types of cause-specific mortality after four types of haze event. We also analyzed the additional effect contributed by the spatial variability of urban environment on each type of cause-specific mortality during a specific haze event. A regular hazy day (lag 0) has higher all-cause mortality risk than a day without haze (odds ratio: 1.029 [1.009, 1.049]). We have also observed high mortality risks associated with mental disorders and diseases of the nervous system during hazy days. In addition, extreme weather and air quality contributed to haze-related mortality, while cold weather and higher ground-level ozone had stronger influences on mortality risk. Areas with a high-density environment, lower vegetation, higher anthropogenic heat, and higher PM 2.5 featured stronger effects of haze on mortality than the others. A combined influence of haze, extreme weather/air quality, and urban environment can result in extremely high mortality due to mental/behavioral disorders or diseases of the nervous system. In conclusion, we developed a data-driven technique to analyze the effects of haze on mortality. Our results target the specific dates and areas with higher mortality during haze events, which can be used for development of

  17. Environment

    DEFF Research Database (Denmark)

    Valentini, Chiara

    2017-01-01

    The term environment refers to the internal and external context in which organizations operate. For some scholars, environment is defined as an arrangement of political, economic, social and cultural factors existing in a given context that have an impact on organizational processes and structures....... For others, environment is a generic term describing a large variety of stakeholders and how these interact and act upon organizations. Organizations and their environment are mutually interdependent and organizational communications are highly affected by the environment. This entry examines the origin...... and development of organization-environment interdependence, the nature of the concept of environment and its relevance for communication scholarships and activities....

  18. Numerical Simulation to Air Pollution Emission Control near an Industrial Zone

    OpenAIRE

    Oyjinda, Pravitra; Pochai, Nopparat

    2017-01-01

    A rapid industrial development causes several environment pollution problems. One of the main problems is air pollution, which affects human health and the environment. The consideration of an air pollutant has to focus on a polluted source. An industrial factory is an important reason that releases the air pollutant into the atmosphere. Thus a mathematical model, an atmospheric diffusion model, is used to estimate air quality that can be used to describe the sulfur dioxide dispersion. In thi...

  19. Modeling persistence of motion in a crowded environment: The diffusive limit of excluding velocity-jump processes

    Science.gov (United States)

    Gavagnin, Enrico; Yates, Christian A.

    2018-03-01

    Persistence of motion is the tendency of an object to maintain motion in a direction for short time scales without necessarily being biased in any direction in the long term. One of the most appropriate mathematical tools to study this behavior is an agent-based velocity-jump process. In the absence of agent-agent interaction, the mean-field continuum limit of the agent-based model (ABM) gives rise to the well known hyperbolic telegraph equation. When agent-agent interaction is included in the ABM, a strictly advective system of partial differential equations (PDEs) can be derived at the population level. However, no diffusive limit of the ABM has been obtained from such a model. Connecting the microscopic behavior of the ABM to a diffusive macroscopic description is desirable, since it allows the exploration of a wider range of scenarios and establishes a direct connection with commonly used statistical tools of movement analysis. In order to connect the ABM at the population level to a diffusive PDE at the population level, we consider a generalization of the agent-based velocity-jump process on a two-dimensional lattice with three forms of agent interaction. This generalization allows us to take a diffusive limit and obtain a faithful population-level description. We investigate the properties of the model at both the individual and population levels and we elucidate some of the models' key characteristic features. In particular, we show an intrinsic anisotropy inherent to the models and we find evidence of a spontaneous form of aggregation at both the micro- and macroscales.

  20. Containing air pollution and traffic congestion: Transport policy and the environment in Singapore

    Science.gov (United States)

    Chin, Anthony T. H.

    Land transportation remains one of the main contributors of noise and air pollution in urban areas. This is in addition to traffic congestion and accidents which result in the loss of productive activity. While there is a close relationship between traffic volumes and levels of noise and air pollution, transport authorities often assume that solving traffic congestion would reduce noise and air pollutant levels. Tight control over automobile ownership and use in Singapore has contributed in improving traffic flows, travel speeds and air quality. The adoption of internationally accepted standards on automobile emissions and gasoline have been effective in reducing air pollution from motor vehicles. Demand management measures have largely focused on controlling the source of traffic congestion, i.e. private automobile ownership and its use especially within the Central Business District during the day. This paper reviews and analyzes the effectiveness of two measures which are instrumental in controlling congestion and automobile ownership, i.e. road pricing and the vehicle quota scheme (VQS). While these measures have been successful in achieving desired objectives, it has also led to the spreading of traffic externalities to other roads in the network, loss in consumer welfare and rent seeking by automobile traders.

  1. REDUCTION OF NO FORMATION BY THERMAL EFFECT OF A TURBULNENT DIFFUSION FLAME H2/AIR MODELED BY THE CONCEPT OF LAMINAR FLAMELET

    Directory of Open Access Journals (Sweden)

    HADEF AMAR

    2016-03-01

    Full Text Available Highly exothermic reactions are responsible for the formation of harmful polluting chemical species to humans and the biosphere. In this context, nitrogen oxides (NOx are pollutants that are the subject of special attention on the part of regulators. In this work we studied the impact of a co-flow swirl on the internal structure of a turbulent diffusion flame H2-N2/Air and its role in reducing the formation of NO, which is modeled by the concept of laminar flamelet, while the flow field is modeled by the standard model k-ε, with a correction term for round jets.The results show good agreement with data from the experimental data.

  2. An Evaluation of Antifungal Agents for the Treatment of Fungal Contamination in Indoor Air Environments

    OpenAIRE

    Rogawansamy, Senthaamarai; Gaskin, Sharyn; Taylor, Michael; Pisaniello, Dino

    2015-01-01

    Fungal contamination in indoor environments has been associated with adverse health effects for the inhabitants. Remediation of fungal contamination requires removal of the fungi present and modifying the indoor environment to become less favourable to growth.  This may include treatment of indoor environments with an antifungal agent to prevent future growth. However there are limited published data or advice on chemical agents suitable for indoor fungal remediation. The aim of this study wa...

  3. Neuroinflammation, hyperphosphorylated tau, diffuse amyloid plaques, and down-regulation of the cellular prion protein in air pollution exposed children and young adults.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Kavanaugh, Michael; Block, Michelle; D'Angiulli, Amedeo; Delgado-Chávez, Ricardo; Torres-Jardón, Ricardo; González-Maciel, Angelica; Reynoso-Robles, Rafael; Osnaya, Norma; Villarreal-Calderon, Rodolfo; Guo, Ruixin; Hua, Zhaowei; Zhu, Hongtu; Perry, George; Diaz, Philippe

    2012-01-01

    Air pollution exposures have been linked to neuroinflammation and neuropathology. Autopsy samples of the frontal cortex from control (n = 8) and pollution-exposed (n = 35) children and young adults were analyzed by RT-PCR (n = 43) and microarray analysis (n = 12) for gene expression changes in oxidative stress, DNA damage signaling, NFκB signaling, inflammation, and neurodegeneration pathways. The effect of apolipoprotein E (APOE) genotype on the presence of protein aggregates associated with Alzheimer's disease (AD) pathology was also explored. Exposed urbanites displayed differential (>2-fold) regulation of 134 genes. Forty percent exhibited tau hyperphosphorylation with pre-tangle material and 51% had amyloid-β (Aβ) diffuse plaques compared with 0% in controls. APOE4 carriers had greater hyperphosphorylated tau and diffuse Aβ plaques versus E3 carriers (Q = 7.82, p = 0.005). Upregulated gene network clusters included IL1, NFκB, TNF, IFN, and TLRs. A 15-fold frontal down-regulation of the prion-related protein (PrP(C)) was seen in highly exposed subjects. The down-regulation of the PrP(C) is critical given its important roles for neuroprotection, neurodegeneration, and mood disorder states. Elevation of indices of neuroinflammation and oxidative stress, down-regulation of the PrP(C) and AD-associated pathology are present in young megacity residents. The inducible regulation of gene expression suggests they are evolving different mechanisms in an attempt to cope with the constant state of inflammation and oxidative stress related to their environmental exposures. Together, these data support a role for air pollution in CNS damage and its impact upon the developing brain and the potential etiology of AD and mood disorders.

  4. Separation of γ-ray, electron and proton induced air showers applied to diffuse emission studies with H.E.S.S

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Tanya

    2017-01-18

    A fundamental issue in ground-based gamma-ray astronomy is the identification of γ-ray events among the overwhelming background of air showers induced by charged cosmic rays. Reconstruction techniques exist to distinguish most of the background of hadrons but an irreducible background of electrons and gamma-like protons still remain. I present here a new technique making use of high-altitude Cherenkov light emitted by the charged primary particle and air shower development properties. This method provides a way to distinguish between electrons and gamma rays on a statistical basis. In addition to this, the remaining proton background can also be identified. The technique was developed, tested and applied to studies using the High Energy Stereoscopic System (H.E.S.S.) located in Namibia. The analysis method is especially important in the detection of diffuse signals and eliminates the necessity of a background region in the field of view. The technique was applied to three scientific studies. The latitude profile of the Galactic diffuse γ-ray emission was analysed. A width of σ=0.25±0.05 (0.20±0.06 ) for energies of 380 to 900 GeV(1 to 6 TeV) was determined. The cosmic electron spectrum was measured between 0.38 and 14 TeV and a broken power law was fit to the data. The spectrum steepens from Γ=3.08±0.06 to Γ=3.72±0.12 at a break in energy of 1.11±0.04 TeV. In addition, upper limits on the maximum γ-ray contamination from the Isotropic γ-Ray Background was placed at 4 x 10{sup -3}(5 x 10{sup -3}) MeVcm{sup -2}s{sup -1}sr{sup -1} for energies of 1 to 6 TeV(380 to 900 GeV).

  5. Seat-integrated localized ventilation for exposure reduction to air pollutants in indoor environments

    DEFF Research Database (Denmark)

    Bivolarova, Mariya Petrova; Rezgals, Lauris; Melikov, Arsen Krikor

    2016-01-01

    A novel ventilation method for minimizing the spread of bioeffluent contaminants generated from sedentary people indoors was developed and studied. The concept of the method consists of a ventilated cushion which is able to suck the human bioeffluents at the area of the body where they are mainly...... generated before they disperse around a room. The polluted near the body air is exhausted into the cushion and it is removed from the room by a separate exhaust system. The performance of the method was studied in series of experiments. Full-scale room and a dressed thermal manikin sitting in front....... The experiments were conducted at 26°C room air temperature. The performance of the VC in conjunction with mixing total-volume background ventilation at 1 air change per hour (ACH) was compared with that of mixing background ventilation alone operating at 1, 1.5, 3 and 6 ACH. Experiments at exhaust airflow rate...

  6. Emotional and cognitive influences in air traffic controller tasks: An investigation using a virtual environment?

    Science.gov (United States)

    Truschzinski, Martina; Betella, Alberto; Brunnett, Guido; Verschure, Paul F M J

    2018-05-01

    Air traffic controllers are required to perform complex tasks which require attention and high precision. This study investigates how the difficulty of such tasks influences emotional states, cognitive workload and task performance. We use quantitative and qualitative measurements, including the recording of pupil dilation and changes in affect using questionnaires. Participants were required to perform a number of air traffic control tasks using the immersive human accessible Virtual Reality space in the "eXperience Induction Machine". Based on the data collected, we developed and validated a model which integrates personality, workload and affective theories. Our results indicate that the difficulty of an air traffic control task has a direct influence on cognitive workload as well as on the self-reported mood; whereas both mood and workload seem to change independently. In addition, we show that personality, in particular neuroticism, affects both mood and performance of the participants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Matrix-specific distribution and diastereomeric profiles of hexabromocyclododecane (HBCD) in a multimedia environment: Air, soil, sludge, sediment, and fish.

    Science.gov (United States)

    Jo, Hyeyeong; Son, Min-Hui; Seo, Sung-Hee; Chang, Yoon-Seok

    2017-07-01

    Hexabromocyclododecane (HBCD) contamination and its diastereomeric profile were investigated in a multi-media environment along a river at the local scale in air, soil, sludge, sediment, and fish samples. The spatial distribution of HBCD in each matrix showed a different result. The highest concentrations of HBCD in air and soil were detected near a general industrial complex; in the sediment and sludge samples, they were detected in the down-stream region (i.e., urban area). Each matrix showed the specific distribution patterns of HBCD diastereomers, suggesting continuous inputs of contaminants, different physicochemical properties, or isomerizations. The particle phases in air, sludge, and fish matrices were dominated by α-HBCD, owing to HBCD's various isomerization processes and different degradation rate in the environment, and metabolic capabilities of the fish; in contrast, the sediment and soil matrices were dominated by γ-HBCD because of the major composition of the technical mixtures and the strong adsorption onto solid particles. Based on these results, the prevalent and matrix-specific distribution of HBCD diastereomers suggested that more careful consideration should be given to the characteristics of the matrices and their effects on the potential influence of HBCD at the diastereomeric level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Use of bioindicators to evaluate air quality and genotoxic compounds in an urban environment in Southern Brazil

    International Nuclear Information System (INIS)

    Käffer, Márcia Isabel; Lemos, Andréa T.; Apel, Miriam Anders; Rocha, Jocelita Vaz; Martins, Suzana Maria de Azevedo

    2012-01-01

    Biological indicators are widely used to monitor genotic compounds and air quality in urban environments. Parmotrema tinctorum and Teloschistes exilis have been used to verify the presence of pollutants and analyze morphophysiological alterations in the thallus of species caused by their action. Species were exposed for seven months, in an urban area, in southern Brazil. Mutagenicity and cytotoxicity of PM10 organic extracts were assessed in the Salmonella/microsome assay at two stations. High concentrations of S, Pb, Cr, Zn and Hg were registered in the last period of exposure and more significant morphophysiological damages were verified in the lichens. Generally a higher mutagenic activity is observed in organic extracts of airborne particulate matter during the first months and in the third period of exposure of lichens. In addition, nitro compounds was detected through nitro-sensitive strains. Lichens and mutagenic biomarkers enabled the evaluation of air quality and the presence of environmentally-aggressive compounds. - Highlights: ► Biological indicators are widely used to monitor genotic compounds and air quality in urban environments. ► High concentrations of S and metals were registered in the last period of exposure. ► More significant morphophysiological damages were verified in the lichens in the last period of exposure. ► The results reveals that a set of factors contributed to the morphophysiological alterations of lichens. - Bioindicators are valuable monitors of genotoxic compounds and atmospheric pollution.

  9. Benzene levels in ambient air and breath of smokers and nonsmokers in urban and pristine environments

    Energy Technology Data Exchange (ETDEWEB)

    Wester, R.C.; Maibach, H.I.; Gruenke, L.D.; Craig, J.C.

    1986-01-01

    Benzene levels in human breath and in ambient air were compared in the urban area of San Francisco (SF) and in a more remote coastal pristine setting of Stinson Beach, Calif. (SB). Benzene analysis was done by gas chromatography-mass spectroscopy (GC-MS). Ambient benzene levels were sevenfold higher in SF (2.6 +/- 1.3 ppb, n = 25) than SB (0.38 +/- 0.39 ppb, n = 21). In SF, benzene in smokers' breath (6.8 +/- 3.0 ppb) was greater than in nonsmokers' breath (2.5 +/- 0.8 ppb) and smokers' ambient air (3.3 +/- 0.8 ppb). In SB the same pattern was observed: benzene in smokers' breath was higher than in nonsmokers' breath and ambient air. Benzene in SF nonsmokers' breath was greater than in SB nonsmokers' breath. Marijuana-only smokers had benzene breath levels between those of smokers and nonsmokers. There was little correlation between benzene in breath and number of cigarettes smoked, or with other benzene exposures such as diet. Of special interest was the finding that benzene in breath of SF nonsmokers (2.5 +/- 0.8 ppb) was greater than that in nonsmokers ambient air (1.4 +/- 0.1 ppb). The same was true in SB, where benzene in nonsmokers breath was greater than ambient air (1.8 +/- 0.2 ppb versus 1.0 +/- 0.1 ppb on d 1 and 1.3 +/- 0.3 ppb versus 0.23 +/- 0.18 ppb on d 2). This suggests an additional source of benzene other than outdoor ambient air.

  10. The experimental study on the wind turbine’s guide-vanes and diffuser of an exhaust air energy recovery system integrated with the cooling tower

    International Nuclear Information System (INIS)

    Chong, W.T.; Hew, W.P.; Yip, S.Y.; Fazlizan, A.; Poh, S.C.; Tan, C.J.; Ong, H.C.

    2014-01-01

    Highlights: • On-site exhaust air energy recovery turbine generator mounted above cooling tower. • Energy from wasted wind resources is re-used for electricity generation. • Optimum angle arrangement of guide-vanes and diffusers help to improve wind-flow. • Enclosure solves conventional wind turbine problems. • 13.3% reduction in CO 2 emission is expected to be achieved from this system. - Abstract: An assembly of two vertical axis wind turbines (VAWTs) and an enclosure is installed above a cooling tower to harness the discharged wind for electricity generation. The enclosure consists of guide-vanes and diffuser-plates, is used to enhance the rotational speed of the turbines for power augmentation. The angle of the guide-vanes is optimized to ensure the oncoming wind stream impinges the rotor blades of the turbine at an optimum angle. The diffuser-plates are tilted at an optimum angle to increase the discharged airflow rate. The performance of the system is tested in the laboratory followed by a field test on an actual size cooling tower. The VAWT performance is increased in the range of 7–8% with the integration of enclosure. There is no significant difference in the current consumption of the fan motor between the bare cooling tower and the one with installed VAWTs. With the presence of this system, approximately 17.5 GW h/year is expected to be recovered from 3000 units of cooling towers at commercial areas, assuming the cooling tower is driven by a 7.5 kW fan motor and operates 16 h/day. This amount of recovered energy can also be translated into 13% reduction in CO 2 emission

  11. In-air and pressurized water reactor environment fatigue experiments of 316 stainless steel to study the effect of environment on cyclic hardening

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish, E-mail: smohanty@anl.gov; Soppet, William K., E-mail: soppet@anl.gov; Majumdar, Saurindranath, E-mail: majumdar@anl.gov; Natesan, Krishnamurti, E-mail: natesan@anl.gov

    2016-05-15

    Argonne National Laboratory (ANL), under the sponsorship of Department of Energy's Light Water Reactor Sustainability (LWRS) program, is trying to develop a mechanistic approach for more accurate life estimation of LWR components. In this context, ANL has conducted many fatigue experiments under different test and environment conditions on type 316 stainless steel (316 SS) material which is widely used in the US reactors. Contrary to the conventional S ∼ N curve based empirical fatigue life estimation approach, the aim of the present DOE sponsored work is to develop an understanding of the material ageing issues more mechanistically (e.g. time dependent hardening and softening) under different test and environmental conditions. Better mechanistic understanding will help develop computer-based advanced modeling tools to better extrapolate stress-strain evolution of reactor components under multi-axial stress states and hence help predict their fatigue life more accurately. Mechanics-based modeling of fatigue such as by using finite element (FE) tools requires the time/cycle dependent material hardening properties. Presently such time-dependent material hardening properties are hardly available in fatigue modeling literature even under in-air conditions. Getting those material properties under PWR environment, are even harder. Through this work we made preliminary attempt to generate time/cycle dependent stress-strain data both under in-air and PWR water conditions for further study such as for possible development of material models and constitutive relations for FE model implementation. Although, there are open-ended possibility to further improve the discussed test methods and related material estimation techniques we anticipate that the data presented in this paper will help the metal fatigue research community particularly, the researchers who are dealing with mechanistic modeling of metal fatigue such as using FE tools. In this paper the fatigue

  12. Energy efficiency and the environment: Innovative ways to improve air quality in the Los Angeles Basin

    Energy Technology Data Exchange (ETDEWEB)

    Ritschard, R.

    1993-02-01

    This paper focuses on novel, innovative approaches for reducing or delaying the production of photochemical smog in the Los Angeles Basin. These approaches include modifying the surface characteristics of the basin by increasing surface albedo and an extensive tree-planting program. The changes in surface conditions are designed to reduce the basin air temperatures, especially during the summer months, which will result in two possible effects. First, a decrease in temperature would lead to a reduction in energy use with an associated decline in emissions of nitrogen oxides (NO[sub x]) and a lowering of evaporative emission of reactive organic gases. Reductions in these smog precursors could improve the air quality of the basin without imposing additional emissions regulations. The second effect is associated with the possible causal relationship between air temperature and smog formation (i.e., lower temperatures and lower incidence of smog). Since this approach to mitigating air emissions is broad, the studies to date have concentrated on how changes in surface characteristics affect the meteorological conditions of the basin and on how these meteorological changes subsequently affect smog production. A geographic information system database of key surface characteristics (i.e., vegetative cover, albedo, moisture availability, and roughness) was compiled, and these characteristics were evaluated using prognostic meteorological models. The results of two- and three-dimensional meteorological simulations will be presented and discussed in this paper.

  13. Energy efficiency and the environment: Innovative ways to improve air quality in the Los Angeles Basin

    Energy Technology Data Exchange (ETDEWEB)

    Ritschard, R.

    1993-02-01

    This paper focuses on novel, innovative approaches for reducing or delaying the production of photochemical smog in the Los Angeles Basin. These approaches include modifying the surface characteristics of the basin by increasing surface albedo and an extensive tree-planting program. The changes in surface conditions are designed to reduce the basin air temperatures, especially during the summer months, which will result in two possible effects. First, a decrease in temperature would lead to a reduction in energy use with an associated decline in emissions of nitrogen oxides (NO{sub x}) and a lowering of evaporative emission of reactive organic gases. Reductions in these smog precursors could improve the air quality of the basin without imposing additional emissions regulations. The second effect is associated with the possible causal relationship between air temperature and smog formation (i.e., lower temperatures and lower incidence of smog). Since this approach to mitigating air emissions is broad, the studies to date have concentrated on how changes in surface characteristics affect the meteorological conditions of the basin and on how these meteorological changes subsequently affect smog production. A geographic information system database of key surface characteristics (i.e., vegetative cover, albedo, moisture availability, and roughness) was compiled, and these characteristics were evaluated using prognostic meteorological models. The results of two- and three-dimensional meteorological simulations will be presented and discussed in this paper.

  14. Performance Evaluation of the United Nations Environment Programme Air Quality Monitoring Unit

    Science.gov (United States)

    A request for technical collaboration between the UNEP and the US EPA resulted in the establishment of a MCRADA. The purpose of this agreement was to evaluate an air quality monitoring system (referred to as the UNEP pod) developed by the UNEP for use in environmental situations ...

  15. Modelling of human exposure to air pollution in the urban environment: a GPS-based approach.

    Science.gov (United States)

    Dias, Daniela; Tchepel, Oxana

    2014-03-01

    The main objective of this work was the development of a new modelling tool for quantification of human exposure to traffic-related air pollution within distinct microenvironments by using a novel approach for trajectory analysis of the individuals. For this purpose, mobile phones with Global Positioning System technology have been used to collect daily trajectories of the individuals with higher temporal resolution and a trajectory data mining, and geo-spatial analysis algorithm was developed and implemented within a Geographical Information System to obtain time-activity patterns. These data were combined with air pollutant concentrations estimated for several microenvironments. In addition to outdoor, pollutant concentrations in distinct indoor microenvironments are characterised using a probabilistic approach. An example of the application for PM2.5 is presented and discussed. The results obtained for daily average individual exposure correspond to a mean value of 10.6 and 6.0-16.4 μg m(-3) in terms of 5th-95th percentiles. Analysis of the results shows that the use of point air quality measurements for exposure assessment will not explain the intra- and inter-variability of individuals' exposure levels. The methodology developed and implemented in this work provides time-sequence of the exposure events thus making possible association of the exposure with the individual activities and delivers main statistics on individual's air pollution exposure with high spatio-temporal resolution.

  16. Human requirements in future air-conditioned environments: a search for excellence

    DEFF Research Database (Denmark)

    Fanger, Povl Ole

    2000-01-01

    Although air-conditioning has played a positive role for economic development in warm climates, its image is globally mixed. Field studies demonstrate that there are substantial numbers of dissatisfied people in many buildings, among them those suffering from SBS symptoms, even though existing...

  17. Optimal Exercise Boundary of American Fractional Lookback Option in a Mixed Jump-Diffusion Fractional Brownian Motion Environment

    Directory of Open Access Journals (Sweden)

    Zhaoqiang Yang

    2017-01-01

    Full Text Available A new framework for pricing the American fractional lookback option is developed in the case where the stock price follows a mixed jump-diffusion fraction Brownian motion. By using Itô formula and Wick-Itô-Skorohod integral a new market pricing model is built. The fundamental solutions of stochastic parabolic partial differential equations are estimated under the condition of Merton assumptions. The explicit integral representation of early exercise premium and the critical exercise price are also given. Numerical simulation illustrates some notable features of American fractional lookback options.

  18. Mathematical Modeling of Air Flowfield at Urban Environment: the Case of Road Network at the Historical Centre of Kifissia's Municipality

    Science.gov (United States)

    Papakonstantinou, K.; Belias, C.

    2008-09-01

    The present paper refers to the numerical analysis of air flowfield at urban environments and the conducting thermal comfort after the evaluation of the examined space using CFD methods, taking into account bioclimatic principles at the architectural design. More specially, the paper draws attention to the physical procedures governing air movement at an urban environment (a road network) at Kifissia (a Municipality of north Athens), trying to form them in such way that will lead to the thermal comfort of the area's users. The study presents a mathematical model, implemented in a general computer code that can provide detailed information on velocity, prevailing in three-dimensional spaces of any geometrical complexity. Turbulent flow is simulated and buoyancy effects are taken into account. This simulation procedure is intended to contribute to the effort towards designing urban environments, using thermal comfort criteria at the bioclimatic design. A computer model of this kind will provide the architects or the environmental engineers with powerful and economical means of evaluating alternative spaces' designs.

  19. Reactive Minerals and Dechlorinating Communities: Mechanisms Governing the Degradation of Chlorinated Ethenes during Back Diffusion from Low Permeability Zones in Aerobic and Anaerobic Environments

    Science.gov (United States)

    Berns, E. C.; Zeng, R.; Singh, H.; Valocchi, A. J.; Sanford, R. A.; Strathmann, T. J.; Schaefer, C. E.; Werth, C. J.

    2017-12-01

    Low permeability zones (LPZs) comprised of silts and clays, and contaminated with chlorinated ethenes, can act as a long term source of contaminated groundwater by diffusion into adjacent high permeability zones (HPZs). Following initial remediation efforts, chlorinated ethenes that have diffused into LPZs will back diffuse and recontaminate HPZs. Because chlorinated ethenes are known to cause cancer and damage the liver, kidneys, and central nervous system, it is important to understand how they degrade in natural systems and how to model their fate and transport. Previous work has shown that anaerobic hydrogenolysis reactions are facilitated by both dechlorinating microorganisms and reactive minerals. Abiotic dichloro-elimination reactions with reactive minerals can also degrade chlorinated ethenes to acetylene, albeit at slower rates than biotic processes. More recently, studies have explored aerobic abiotic degradation of chlorinated ethenes to formate, glycolate, and carbon dioxide. This study focuses on these biotic and abiotic reactions and their contributions to chlorinated ethene degradation under aerobic and anaerobic conditions at the LPZ/HPZ interface. A two-dimensional flow cell was constructed to model this interface using clay and sand from Pease Air Force Base. The clay was inoculated with a dechlorinating enrichment culture. Tenax adsorbent beads equilibrated with trichloroethylene (TCE) were used as a chlorinated ethene source zone at the base of the clay. TCE and its degradation products diffused from the clay into the sand, where they were removed from the flow cell by groundwater at a rate of 50 mL/day. Volatile compounds were trapped in a sample loop and removed every 48 hours for analysis by GC-FID. Organic and inorganic ions in the effluent were analyzed on the HPLC and IC. The experiment was terminated by freezing the flow cell, and chemical profiles through the flow cell material were created to show the spatial distribution of degradation

  20. Provision of an air traffic control services in an airport environment : design and development of a Java application through the Hibernate persistence framework

    OpenAIRE

    Galduf Tel, Enrique

    2011-01-01

    Galduf Tel, E. (2010). Provision of an air traffic control services in an airport environment : design and development of a Java application through the Hibernate persistence framework. http://hdl.handle.net/10251/10161. Archivo delegado

  1. Compressive Creep Behavior of NEXTEL(TradeMark) 720/Alumina Ceramic Matrix Composite at 1200 Degrees C in Air and in Steam Environment

    National Research Council Canada - National Science Library

    Szymczak, Neil R

    2006-01-01

    ...) 720/Alumina ceramic matrix composite at 1200 deg. C in air and 100% steam environments. The effects of creep loading history on the tensile and compressive material behavior will also be examined...

  2. Diffusion of energy-saving innovations in industry and the built environment: Dutch studies as inputs for a more integrated analytical framework

    International Nuclear Information System (INIS)

    Dieperink, C.; Brand, I.; Vermeulen, W.

    2004-01-01

    The need to improve eco-efficiency is indisputable, and the way forward is through widespread application of environmental innovations. Yet research into the dissemination of such innovations in the Netherlands has been limited in scope. Most studies tend to focus on the feasibility of a particular technology. Few try to explain how technology spreads throughout society. The explanatory factors discerned in these studies are often not related to each other. In this contribution the authors try to integrate different partial explanations for the diffusion of energy-saving technologies in industry and the built environment into one conceptual framework. This integration is based on a secondary analysis of relatively well-elaborated studies dealing with the diffusion of heat pumps, combined heat and power and condensing boilers in industry and the built environment. Core of the framework is the decision-making process of the potentially adapting actor. Characteristics of the actor and the networks in which the actor participates (government, market, society) could have impact on this decision-making process. Technological and economic characteristics of the innovation and more general context factors are also relevant as factors that influence the considerations made in the decision-making process. This conceptual framework can be used both in more elaborate research projects and in brainstorming projects to improve policymaking

  3. [Risk for environment-induced diseases due to air pollution from motor vehicles in road-patrol officers].

    Science.gov (United States)

    Mikhaĭlichenko, K Iu; Kas'ianenko, A A; Shchelkunova, I G; Grechko, A V

    2010-01-01

    The paper describes risk factors for environment-induced diseases in road-patrol (RP) officers under the existing working conditions: noise and chemical ambient air pollution from motor vehicles. There is evidence for a significant increase in the incidence of diseases of the cardiovascular and nervous system, sense organs, digestive and endocrine metabolic systems in the State Road Safety Inspectorate officers who are directly engaged in traffic management. Potential and real risks from motor transport to the health of RP roads have been estimated. Recommendations on optimizing the working conditions are given.

  4. Thermal cyclic oxidation behavior of the developed compositionally gradient graphite material of SiC/C in air environment

    International Nuclear Information System (INIS)

    Nakano, Junichi; Fujii, Kimio; Shindo, Masami

    1993-08-01

    For the developed compositionally gradient graphite material composed of surface SiC coating layer, middle SiC/C layer and graphite matrix, the thermal cyclic oxidation test was performed together with two kinds of the SiC coated graphite materials in air environment. It was made clear that the developed material exhibited high performance under severe thermal cyclic condition independent of the morphology of middle SiC/C layers and had the longer time or the more cycle margins from crack initiation to failure for surface SiC coating layer compared with the SiC coated graphite materials. (author)

  5. Quantum Fingerprint-Based Air Quality Monitoring in Coastal Environments, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Coastal environments vital to our nation are strongly impacted by natural and human factors and are also sensitive to global climate change. A need exists for...

  6. [Research of the air environment in cafes and restaurants, where a nargile is smoked].

    Science.gov (United States)

    Levshin, V F; Ladan, B V; Slepchenko, N I

    2016-01-01

    By means of special devices there was performed research of air in premises of 17 cafes and restaurants where nargile is smoking. In the premises during the day and more there was evaluated a concentration of the following markers of tobacco smoke: carbon monoxide (CO), nicotine, tobacco smoke particles PM2,5 andpolycyclic aromatic hydrocarbons (PAHs). In the air of the examined enterprises the concentration of the major markers of tobacco smoke was established to exceed by several times acceptable and safe levels. At that in cafes and restaurants where nargile smoking the higher concentration of CO and PAHs was on average significantly more frequently than in a cafes with a rare nargile smoking. The data obtained can be used to refute the opinion on the safety of nargile smoking and tobacco smoke from the nargiles. All modern legislative and administrative measures to restrict and ban tobacco smoking should be extend to smoking nargile.

  7. Quantitative Analysis of Major Phytochemicals in Orthodox tea (Camellia sinensis), Oxidized under Compressed Air Environment.

    Science.gov (United States)

    Panda, Brajesh Kumar; Datta, Ashis Kumar

    2016-04-01

    This study describes major changes in phytochemical composition of orthodox tea (Camellia sinensis var. Assamica) oxidized under compressed air (CA). The experiments for oxidation were conducted under air pressure (101, 202, and 303 kPa) for 150 min. Relative change in the concentrations of caffeine, catechins, theaflavins (TF), and thearubigins (TR) were analyzed. Effect of CA pressure was found to be nonsignificant in regulating caffeine concentration during oxidation. But degradation in different catechins as well as formation of different TF was significantly affected by CA pressure. At high CA pressure, TF showed highest peak value. TR was found to have slower rate of formation during initial phase of oxidation than TF. Even though the rate of TR formation was significantly influenced by CA, a portion of catechins remained unoxidized at end of oxidation. Except caffeine, the percent change in rate of formation or degradation were more prominent at 202 kPa. © 2016 Institute of Food Technologists®

  8. Influence of air and vacuum environment on fatigue behavior of Zr-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Wang, G.Y.; Liaw, P.K.; Yokoyama, Y.; Peter, W.H.; Yang, B.; Freels, M.; Buchanan, R.A.; Liu, C.T.; Brooks, C.R.

    2007-01-01

    High-cycle fatigue (HCF) experiments in air and vacuum at room temperature were conducted on zirconium (Zr)-based bulk-metallic glasses (BMGs): Zr 50 Cu 40 Al 10 , Zr 50 Cu 30 Al 10 Ni 10 , and Zr 50 Cu 37 Al 10 Pd 3 in atomic percent. The fatigue-endurance limit of Zr 50 Cu 37 Al 10 Pd 3 was found to be significantly greater than those of Zr 50 Cu 40 Al 10 and Zr 50 Cu 30 Al 10 Ni 10 , which indicates that the inclusions of Pd and the resulting nano structures improve the fatigue resistances of the Zr-based BMGs. The fatigue lives in vacuum and air were generally found to be comparable

  9. Basing Strategies for Air Refueling Forces in Anti-access/Area-Denial Environments

    Science.gov (United States)

    2015-09-01

    likely, increase manpower allocations to provide specialist technician coverage at all locations. Connecting subunits by air or surface lift could re...at disaggregated bases also may be overwhelmed by local challenges ranging from base security breaches and supply shortages to the presence of...supported units offers some opportunity to protect tanker forces. But the requirement to establish supply warehouses , access agreements, and the like

  10. Measurement of air exchange rates in different indoor environments using continuous CO2 sensors

    Institute of Scientific and Technical Information of China (English)

    Yan YOU; Can Niu; Jian Zhou; Yating Liu; Zhipeng Bai; Jiefeng Zhang; Fei He; Nan Zhang

    2012-01-01

    A new air exchange rate (AER) monitoring method using continuous CO2 sensors was developed and validated through both laboratory experiments and field studies.Controlled laboratory simulation tests were conducted in a 1-m3 environmental chamber at different AERs (0.1-10.0 hr-1).AERs were determined using the decay method based on box model assumptions.Field tests were conducted in classrooms,dormitories,meeting rooms and apartments during 2-5 weekdays using CO2 sensors coupled with data loggers.Indoor temperature,relative humidity (RH),and CO2 concentrations were continuously monitored while outdoor parameters combined with on-site climate conditions were recorded.Statistical results indicated that good laboratory performance was achieved:duplicate precision was within 10%,and the measured AERs were 90%-120% of the real AERs.Average AERs were 1.22,1.37,1.10,1.91 and 0.73 hr-1 in dormitories,air-conditioned classrooms,classrooms with an air circulation cooling system,reading rooms,and meeting rooms,respectively.In an elderly particulate matter exposure study,all the homes had AER values ranging from 0.29 to 3.46 hr-1 in fall,and 0.12 to 1.39 hr-1 in winter with a median AER of 1.15.

  11. Measurement of air exchange rates in different indoor environments using continuous CO2 sensors.

    Science.gov (United States)

    You, Yan; Niu, Can; Zhou, Jian; Liu, Yating; Bai, Zhipeng; Zhang, Jiefeng; He, Fei; Zhang, Nan

    2012-01-01

    A new air exchange rate (AER) monitoring method using continuous CO2 sensors was developed and validated through both laboratory experiments and field studies. Controlled laboratory simulation tests were conducted in a 1-m3 environmental chamber at different AERs (0.1-10.0 hr(-1)). AERs were determined using the decay method based on box model assumptions. Field tests were conducted in classrooms, dormitories, meeting rooms and apartments during 2-5 weekdays using CO2 sensors coupled with data loggers. Indoor temperature, relative humidity (RH), and CO2 concentrations were continuously monitored while outdoor parameters combined with on-site climate conditions were recorded. Statistical results indicated that good laboratory performance was achieved: duplicate precision was within 10%, and the measured AERs were 90%-120% of the real AERs. Average AERs were 1.22, 1.37, 1.10, 1.91 and 0.73 hr(-1) in dormitories, air-conditioned classrooms, classrooms with an air circulation cooling system, reading rooms, and meeting rooms, respectively. In an elderly particulate matter exposure study, all the homes had AER values ranging from 0.29 to 3.46 hr(-1) in fall, and 0.12 to 1.39 hr(-1) in winter with a median AER of 1.15.

  12. The effects of mixing air distribution and heat load arrangement on the performance of ceiling radiant panels under cooling mode of operation

    DEFF Research Database (Denmark)

    Mustakallio, Panu; Kosonen, Risto; Melikov, Arsen Krikor

    2016-01-01

    arrangement and air distribution generated in a room by linear slot diffuser, radial multi-nozzle diffuser and radial swirl induction unit on the cooling power of radiant panels was compared. The impact on the thermal environment was also studied. Measurements were carried out without and with supply air...

  13. Long-term aging of Ag/a-C:H:O nanocomposite coatings in air and in aqueous environment

    Science.gov (United States)

    Drábik, Martin; Pešička, Josef; Biederman, Hynek; Hegemann, Dirk

    2015-04-01

    Nanocomposite coatings of silver particles embedded in a plasma polymer matrix possess interesting properties depending on their microstructure. The film microstructure is affected among others also by the RF power supplied during the deposition, as shown by transmission electron microscopy. The optical properties are characterized by UV-vis-NIR spectroscopy. An anomalous optical absorption peak from the Ag nanoparticles is observed and related to the microstructure of the nanocomposite films. Furthermore, a long-term aging of the coatings is studied in-depth in ambient air and in aqueous environments. It is shown that the studied films are not entirely stable. The deposition conditions and the microstructure of the films affect the processes taking place during their aging in both environments.

  14. ReaDDy--a software for particle-based reaction-diffusion dynamics in crowded cellular environments.

    Directory of Open Access Journals (Sweden)

    Johannes Schöneberg

    Full Text Available We introduce the software package ReaDDy for simulation of detailed spatiotemporal mechanisms of dynamical processes in the cell, based on reaction-diffusion dynamics with particle resolution. In contrast to other particle-based reaction kinetics programs, ReaDDy supports particle interaction potentials. This permits effects such as space exclusion, molecular crowding and aggregation to be modeled. The biomolecules simulated can be represented as a sphere, or as a more complex geometry such as a domain structure or polymer chain. ReaDDy bridges the gap between small-scale but highly detailed molecular dynamics or Brownian dynamics simulations and large-scale but little-detailed reaction kinetics simulations. ReaDDy has a modular design that enables the exchange of the computing core by efficient platform-specific implementations or dynamical models that are different from Brownian dynamics.

  15. The Shared Pathoetiological Effects of Particulate Air Pollution and the Social Environment on Fetal-Placental Development

    Science.gov (United States)

    2014-01-01

    Exposure to particulate air pollution and socioeconomic risk factors are shown to be independently associated with adverse pregnancy outcomes; however, their confounding relationship is an epidemiological challenge that requires understanding of their shared etiologic pathways affecting fetal-placental development. The purpose of this paper is to explore the etiological mechanisms associated with exposure to particulate air pollution in contributing to adverse pregnancy outcomes and how these mechanisms intersect with those related to socioeconomic status. Here we review the role of oxidative stress, inflammation and endocrine modification in the pathoetiology of deficient deep placentation and detail how the physical and social environments can act alone and collectively to mediate the established pathology linked to a spectrum of adverse pregnancy outcomes. We review the experimental and epidemiological literature showing that diet/nutrition, smoking, and psychosocial stress share similar pathways with that of particulate air pollution exposure to potentially exasperate the negative effects of either insult alone. Therefore, socially patterned risk factors often treated as nuisance parameters should be explored as potential effect modifiers that may operate at multiple levels of social geography. The degree to which deleterious exposures can be ameliorated or exacerbated via community-level social and environmental characteristics needs further exploration. PMID:25574176

  16. Assessment of polycyclic aromatic hydrocarbons in indoor and outdoor air of preschool environments (3–5 years old children)

    International Nuclear Information System (INIS)

    Oliveira, Marta; Slezakova, Klara; Delerue-Matos, Cristina; Pereira, Maria do Carmo; Morais, Simone

    2016-01-01

    This work characterizes levels of polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor air of preschool environments, and assesses the respective risks for 3–5-years old children. Eighteen gaseous and particulate (PM_1 and PM_2_._5) PAHs were collected indoors and outdoors during 63 days at preschools in Portugal. Gaseous PAHs accounted for 94–98% of total concentration (Σ_P_A_H_s). PAHs with 5–6 rings were predominantly found in PM_1 (54–74% particulate Σ_P_A_H_s). Lighter PAHs originated mainly from indoor sources whereas congeners with 4–6 rings resulted mostly from outdoor emissions penetration (motor vehicle, fuel burning). Total cancer risks of children were negligible according to USEPA, but exceeded (8–13 times) WHO health-based guideline. Carcinogenic risks due to indoor exposure were higher than for outdoors (4–18 times). - Highlights: • Lighter PAHs originate from indoor sources, 4–6 rings PAHs result from outdoors. • Gaseous PAHs account for the majority of PAH content in indoor air of preschools. • Lifetime lung cancer risk values exceed WHO health-based guideline level of 10"−"5. • Carcinogenic risks due to preschool indoor exposure are higher than for outdoors. - This work fills gap providing information on levels, phase distribution (gas, PM_1, PM_2_._5) and risks of polycyclic aromatic hydrocarbons in indoor and outdoor air of preschool settings.

  17. Energy transitions in Built Environment of Netherlands : A System Dynamics approach to diffusion of Solar boilers and Insulation

    NARCIS (Netherlands)

    Muhaimin, T.A.; Nikolaos, M.

    2014-01-01

    In context of rising demand for energy amidst limited resources, energy efficiency is one of the major concerns of a modernized world. Gas consumption in the built environment constitutes for more than 30% of the overall energy consumption in the world. Hence, energy transitions and their

  18. Tensile properties of aluminized V-5Cr-5Ti alloy after exposure in air environment

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Soppet, W.K. [Argonne National Lab., IL (United States)

    1997-08-01

    The objectives of this task are to (a) develop procedures to modify surface regions of V-Cr-Ti alloys in order to minimize oxygen uptake by the alloys when exposed to environments that contain oxygen, (b) evaluate the oxygen uptake of the surface-modified V-Cr-Ti alloys as a function of temperature an oxygen partial pressure in the exposure environment, (c) characterize the microstructures of oxide scales and oxygen trapped at the grain boundaries of the substrate alloys, and (d) evaluate the influence of oxygen uptake on the tensile properties of the modified alloys at room and elevated temperatures.

  19. Evaluation of different numerical methodologies for dispersion of air pollutants in an urban environment

    International Nuclear Information System (INIS)

    Mumovic, D.; Crowther, J.M.; Stevanovic, Z.

    2003-01-01

    Since 1950 the world population has more than doubled but meanwhile the global number of cars has increased by a factor of 10. In that same period the fraction of people living in urban areas has increased by a factor of 4. Apart from large point-sources of local air pollution, traffic induced pollution is now the most significant contributor to urban air quality in city centres, particularly for carbon monoxide, oxides of nitrogen and fine particulate matter. Until recently, pollutant dispersion in urban areas has usually been numerically investigated by using empirical models, such as the Gaussian plume model, or by extensions of this technique to line sources and multiple sources. More recently, advanced computational fluid dynamics (CFD) simulations have been attempted but have been mainly two-dimensional and often encompassing only a single street canyon. This paper provides a comprehensive, critical evaluation of dispersion of pollutants in urban areas. A three-dimensional flow model has been set-up for a staggered crossroad, using the Navier-Stokes equations and the conservation equation for species concentration. The effect of using several different turbulence models, including the k-ε model, modifications and extensions, has been investigated. Cartesian coordinates have been used in connection with the Partial Solution Algorithm (PARSOL) and Body Fitted Coordinates (BFC). The effects of several different numerical algorithms for discretization of differential equations have also been studied. More than thirty cases are analysed, and the main results are compared with wind tunnel experiments. The numerical results are presented as non-dimensional values to facilitate comparison between experimental and numerical studies. It has been shown that the numerical studies have been able to simulate the air-flow in urban areas and confirm, qualitatively, the previous field observations and wind tunnel results. This success encouraged the authors to extend such

  20. Evaluation of different numerical methodologies for dispersion of air pollutants in an urban environment

    Energy Technology Data Exchange (ETDEWEB)

    Mumovic, D.; Crowther, J.M. [Glasgow Caledonian Univ., School of Built and Natural Environment, Glasgow (United Kingdom)]. E-mail: dmumov10@caledonian.ac.uk; Stevanovic, Z. [Univ. of Belgrade, Inst. of Nuclear Sciences, Belgrade (Serbia and Montenegro)

    2003-07-01

    Since 1950 the world population has more than doubled but meanwhile the global number of cars has increased by a factor of 10. In that same period the fraction of people living in urban areas has increased by a factor of 4. Apart from large point-sources of local air pollution, traffic induced pollution is now the most significant contributor to urban air quality in city centres, particularly for carbon monoxide, oxides of nitrogen and fine particulate matter. Until recently, pollutant dispersion in urban areas has usually been numerically investigated by using empirical models, such as the Gaussian plume model, or by extensions of this technique to line sources and multiple sources. More recently, advanced computational fluid dynamics (CFD) simulations have been attempted but have been mainly two-dimensional and often encompassing only a single street canyon. This paper provides a comprehensive, critical evaluation of dispersion of pollutants in urban areas. A three-dimensional flow model has been set-up for a staggered crossroad, using the Navier-Stokes equations and the conservation equation for species concentration. The effect of using several different turbulence models, including the k-{epsilon} model, modifications and extensions, has been investigated. Cartesian coordinates have been used in connection with the Partial Solution Algorithm (PARSOL) and Body Fitted Coordinates (BFC). The effects of several different numerical algorithms for discretization of differential equations have also been studied. More than thirty cases are analysed, and the main results are compared with wind tunnel experiments. The numerical results are presented as non-dimensional values to facilitate comparison between experimental and numerical studies. It has been shown that the numerical studies have been able to simulate the air-flow in urban areas and confirm, qualitatively, the previous field observations and wind tunnel results. This success encouraged the authors to extend

  1. Project AIR FORCE Modeling Capabilities for Support of Combat Operations in Denied Environments

    Science.gov (United States)

    2015-01-01

    within the Air Force and OSD.7 First, we thank Generals Herbert Carlisle, PACAF/CC, and Janet Wolfenbarger, AFMC/CC, for sponsoring this work. Gen...A5X, Brig Gen (s) John Cherrey, AF/A5XS, Col Jordan Thomas, AFA5XS, Lt Col Nathan Mead , AF/A5XS, Col Rich Gannon, AF/A9F, Ray Miller, AF/A9FC...linear programming (LP), which was developed in the 1940s by George Danzig to solve problems relevant to military logistics. Setting up MIP is

  2. Properties of aerosol floating in the air in a nuclear power plant workplace environment

    International Nuclear Information System (INIS)

    Karasawa, H.; Funabashi, M.; Ito, M.

    1992-01-01

    An investigation was carried out on properties of radioactive aerosol floating in the air at several workplaces in nuclear power plant. The principal results are as follows: the aerosol particle size distributions consisted of two particle groups, whose aerodynamic diameters ranged from 4 to 7 microns and from 0.4 to 0.6 microns; the radioactive aerosol particle size distribution were unimodal. The mean activity median aerodynamic diameter (AMAD) was 6 microns, with geometric standard deviation microns; and, the average density of the aerosol was about 2.2g/cm 3 . (author)

  3. Interrelations of UV-global/global/diffuse solar irradiance components and UV-global attenuation on air pollution episode days in Athens, Greece

    International Nuclear Information System (INIS)

    Koronakis, P.S.; Sfantos, G.K.

    2002-01-01

    An investigation of global ultraviolet (G UV ), global (G) and diffuse (G d ) solar intensities, continuously recorded over a period of five years at a station in Athens, Greece, and stored on the basis of hourly time intervals since 1996, has revealed the following: (a) UV-global irradiation, associated with the 290-395 nm wavelength region, constitutes 4.1% of global solar. (b) UV-global irradiance ranges from an average minimum of 2.4 W m -2 and 3.1% of global solar in January to an average maximum of 45 W m -2 and 7.8%, respectively, in June, both considered at 13:00, solar time. (c) There exists a good correlation among the two dimensionless irradiance ratios G UV /G d and G d /G in the form of an exponential relationship. (d) UV-global monthly irradiation data show evidence of temporal variability in Athens, from 1996 to 2000. (e) Anthropogenic and photochemical atmospheric pollutant agents (O 3 , CO, SO 2 , NO x , smoke) causing air pollution episodes seem to affect differently solar irradiance components. The main results of analysis (measurements within ± 2 h from solar noon) indicate that a buildup of O 3 and NO x inside the urban Athens plume during cloudless and windless warm days could cause: (i) UV-global irradiance depletion between 5.4% and 14.4%. (ii) Diffuse solar irradiance enhancement up to 38.1%. (iii) Global solar irradiance attenuation ranging up to 6.3%. (author)

  4. Diffuse Ceiling Ventilation

    DEFF Research Database (Denmark)

    Zhang, Chen; Heiselberg, Per; Nielsen, Peter V.

    2014-01-01

    As a novel air distribution system, diffuse ceiling ventilation combines the suspended acoustic ceiling with ventilation supply. Due to the low-impulse supply from the large ceiling area, the system does not generate draught when supplying cold air. However, heat sources play an important role...

  5. High Temperature Oxidation Behavior of Zirconium Alloy with Nano structured Oxide Layer in Air Environment

    International Nuclear Information System (INIS)

    Park, Y. J.; Kim, J. W.; Park, J. W.; Cho, S. O.

    2016-01-01

    If the temperature of the cladding materials increases above 1000 .deg. C, which can be caused by a loss of coolant accident (LOCA), Zr becomes an auto-oxidation catalyst and hence produces a huge amount of hydrogen gas from water. Therefore, many investigations are being carried out to prevent (or reduce) the hydrogen production from Zr-based cladding materials in the nuclear reactors. Our team has developed an anodization technique by which nanostructured oxide can be formed on various flat metallic elements such as Al, Ti, and Zr-based alloy. Anodization is a simple electrochemical technique and requires only a power supply and an electrolyte. In this study, Zr-based alloys with nanostructured oxide layers were oxidized by using Thermogravimetry analysis (TGA) and compared with the pristine one. It reveals that the nanostructured oxide layer can prevent oxidation of substrate metal in air. Oxidation behavior of the pristine Zr-Nb-Sn alloy and the Zr-Nb-Sn alloy with nanostructured oxide layer evaluated by measuring weight gain (TGA). In comparison with the pristine Zr-Nb-Sn alloy, weight gain of the Zr-Nb-Sn alloy with nanostructured oxide layer is lower than 10% even for 12 hours oxidation in air.

  6. Acidification of air and precipitation and its consequences on the natural environment

    Energy Technology Data Exchange (ETDEWEB)

    Oden, S

    1968-01-01

    Changes in the chemistry of the atmosphere were discussed using 15 years of data collected by a European sampling network, beginning in 1952. Sulfur content of air and precipitation were closely related to air pollution from cities and industry, as a result of increasing use of sulfurous fuels. A special study of the acidity of 600 lakes in western Scandinavia showed that between 1959 and 1967 pH values declined an average of 0.4 units. Acid precipitation will eventually acidify rivers. The change in pH will depend on the buffering capacity of the catchment area and other factors. Negative trends have already been noted. Acificiation threatens aquatic organisms as most cannot exist in water below pH 4.0. Certain valuable fish such as salmon are threatened at pH 5.5 and catches have begun to decline. Soils may also be affected if the supply of neutralizing substances declines. Decreased crop production and reduced forest growth rate may result. The balance of nature is disturbed by the present atmospheric pollution of sulfuric and other acids. (MDF)

  7. The air quality and regional climate effects of widespread solar power generation under a changing regulatory environment

    Science.gov (United States)

    Millstein, D.; Zhai, P.; Menon, S.

    2011-12-01

    used to investigate the effects of the various solar generation scenarios given emissions projections that account for changing regulatory environment, economic and population growth, and technological change. The results will help to quantify the potential air quality benefits of promotion of solar electricity generation in regions containing high penetration of coal-fired power generation. Note current national solar incentives that are based only on solar generation capacity. Further investigation of changes to regional climate due to emission reductions of aerosols and relevant precursors will provide insight into the environmental effects that may occur if solar power generation becomes widespread.

  8. Diffusion bonding

    International Nuclear Information System (INIS)

    Anderson, R.C.

    1976-01-01

    A method is described for joining beryllium to beryllium by diffusion bonding. At least one surface portion of at least two beryllium pieces is coated with nickel. A coated surface portion is positioned in a contiguous relationship with another surface portion and subjected to an environment having an atmosphere at a pressure lower than ambient pressure. A force is applied on the beryllium pieces for causing the contiguous surface portions to abut against each other. The contiguous surface portions are heated to a maximum temperature less than the melting temperature of the beryllium, and the applied force is decreased while increasing the temperature after attaining a temperature substantially above room temperature. A portion of the applied force is maintained at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions

  9. Scientific production on indoor air quality of environments used for physical exercise and sports practice: Bibliometric analysis.

    Science.gov (United States)

    Andrade, Alexandro; Dominski, Fábio Hech; Coimbra, Danilo Reis

    2017-07-01

    In order to minimize adverse health effects and increase the benefits of physical activity, it is important to systematize indoor air quality study in environments used for physical exercise and sports. To investigate and analyze the scientific production related to indoor air quality of environments used for physical exercise and sports practice through a bibliometric analysis. The databases Scielo, Science Direct, Scopus, Lilacs, Medline via Pubmed, and SportDiscus were searched from their inception to March 2016. Bibliometric analysis was performed for authors, institutions, countries, and collaborative networks, in relation to publication year, theme, citation network, funding agency, and analysis of titles and keywords of publications. Country, area, and impact factor of the journals were analyzed. Of 1281 studies screened, 34 satisfied the inclusion criteria. The first publication occurred in 1975. An increase in publications was observed in the last 15 years. Most of the studies were performed by researchers in the USA, followed by Portugal and Italy. Seventeen different scientific journals have published studies on the subject, and most are in the area of Environmental Sciences. It was noted that the categories of author keywords associated with "Pollutants," "Sport Environment," and "Physical Exercise" were the most commonly used in most studies. A total of 68% of the studies had at least one funding agency, and 81% of studies published in the last decade had funding. Our results demonstrate that there is recent exponential growth, driven in the last decade by researchers in environmental science from European institutions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Escherichia coli in settled-dust and air samples collected in residential environments in Mexico City.

    OpenAIRE

    Rosas, I; Salinas, E; Yela, A; Calva, E; Eslava, C; Cravioto, A

    1997-01-01

    Escherichia coli, an important indicator of the presence of fecal material, was isolated from indoor and outdoor environments in Mexico City. The heterogeneity of E. coli was represented by 89 serotypes, most of them coming from settled-dust indoor samples; 21% of them presented antibiotic multiresistance. The numbers of plasmids were higher among the antibiotic-resistant strains. The results of this study suggest that intestinal infections produced by environmental strains could be of more e...

  11. Airpower and the Environment: The Ecological Implications of Modern Air Warfare

    Science.gov (United States)

    2013-07-01

    competency.54 Knowledge of the foundational concepts and domains of culture and enhancing behaviors such as cultural relativism will promote and sustain...ned as “the ability to adapt eec- tively in cross- cultural environments.” Sands, “ Cultural Relativism ,” 13. e DOD has identied 3C as a necessary... Relativism and the Convergence of Ethnography and 3C [cross- cultural competence].” Military Intelligence Professional Bulletin, PB-34-12-1 (January/March

  12. Dosimetry of Rn-222 in the air in environments located above and below ground level

    International Nuclear Information System (INIS)

    Cazula, Camila Dias

    2015-01-01

    Exposure of the general population to ionizing radiation comes mainly from natural sources. The main contribution is due to inhalation of radon (Rn-222), a gas that occurs naturally (UNSCEAR, 2000). The Rn-222 concentration in the environment is controlled by factors such as soil permeability and water content, the weather variability, materials used in the foundation and the usual positive pressure differential between the soil and the internal environment. Studies indicate that the concentration of radon shows a wide variation in the basement, ground floor and upper floors of buildings. The objective of this study is to determine radon levels in basements, ground floor and floors above ground level, at a university in the city of Sao Paulo and in one residential building in the city of Peruibe. Rn-222 measurements were performed using the method with nuclear track of solid state detectors (CR-39). The studied environments present Rn-222 concentration well below the values recommended by the International Commission on Radiological Protection, published in the 2009 document, of 300 Bq/m 3 for homes and 1000 Bq/m 3 for the workplace. In the residential building, the concentration of Ra-266, Th-232 and K-40 in the materials used in the building construction was also analyzed, by gamma spectrometry. The effective total dose for the resident due to external exposure was 0.8 mSv y -1 , lower than the annual dose limit for the general public of 1 mSv y -1 . (author)

  13. Tool for assessing health and equity impacts of interventions modifying air quality in urban environments.

    Science.gov (United States)

    Cartier, Yuri; Benmarhnia, Tarik; Brousselle, Astrid

    2015-12-01

    Urban outdoor air pollution (AP) is a major public health concern but the mechanisms by which interventions impact health and social inequities are rarely assessed. Health and equity impacts of policies and interventions are questioned, but managers and policy agents in various institutional contexts have very few practical tools to help them better orient interventions in sectors other than the health sector. Our objective was to create such a tool to facilitate the assessment of health impacts of urban outdoor AP interventions by non-public health experts. An iterative process of reviewing the academic literature, brainstorming, and consultation with experts was used to identify the chain of effects of urban outdoor AP and the major modifying factors. To test its applicability, the tool was applied to two interventions, the London Low Emission Zone and the Montréal BIXI public bicycle-sharing program. We identify the chain of effects, six categories of modifying factors: those controlling the source of emissions, the quantity of emissions, concentrations of emitted pollutants, their spatial distribution, personal exposure, and individual vulnerability. Modifiable and non-modifiable factors are also identified. Results are presented in the text but also graphically, as we wanted it to be a practical tool, from pollution sources to emission, exposure, and finally, health effects. The tool represents a practical first step to assessing AP-related interventions for health and equity impacts. Understanding how different factors affect health and equity through air pollution can provide insight to city policymakers pursuing Health in All Policies. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. An experimental and numerical study of diffusion flames in cross-flow and quiescent environment at smoke point condition

    Science.gov (United States)

    Goh, Sien Fong

    An experimental and numerical study of a turbulent smoke point diffusion flame in a quiescent and cross-flow condition was performed. The fuel mass flow rate of a turbulent smoke point flame was determined at a quiescent condition and in cross-flow with velocity ranging from 2 to 4 m/s. This fuel mass flow rate is defined as the Critical Fuel Mass Flow Rate (CFMFR). At a fuel mass flow rate below the CFMFR the flame produces smoke. In the dilution study, an amount of inert gas (nitrogen) was added to the fuel stream to achieve the smoke point condition for ten different fractions of CFMFR. From this dilution study, three regions were defined, the chemically-dominated region, transition region, and momentum-dominated region. The first objective of this study was to determine the factors behind the distinction of these three regions. The second objective was to understand the effect of cross-flow velocity on the smoke point flame structure. The flame temperature, radiation, geometrical dimension of flame, velocity, and global emissions and in-flame species concentration were measured. The third objective was to study a numerical model that can simulate the turbulent smoke point flame structure. The dilution study showed that the flames in quiescent condition and in the 3.5 and 4 m/s cross-flow condition had the chemically-dominated region at 5% to 20% CFMFR, the transition region at 20% to 40% CFMFR, and the momentum-dominated region at 40% to 100% CFMFR. On the other hand, the flame in cross-flow of 2 to 3 m/s showed the chemically-dominated region at 5% to 10% CFMFR, the transition region at 10% to 30% CFMFR, and the momentum-dominated region at 30% to 100% CFMFR. The chemically-dominated flame had a sharp dual-peak structure for the flame temperature, CO2 and NO concentration profiles at 25% and 50% flame length. However, the momentum-dominated region flame exhibited a dual peak structure only at 25% flame length. The decrease of flow rate from 30% to 10% CFMFR

  15. Stakeholder Analysis for Sharing Agro-environment Issues Towards Concerted Action: A Case Study on Diffuse Nitrate Pollution

    Directory of Open Access Journals (Sweden)

    Pier Paolo Roggero

    2006-12-01

    Full Text Available There is increasing need for participatory approaches to support the development of sustainable farming systems, based on the active involvement of stakeholders in the definition of research objectives and priorities. This paper reports the experience of a team of agronomy researchers involved in the SLIM project (http://slim.open.ac.uk, around a case study of nitrate pollution. The agro-ecosystem analysis included biophysical processes at microcatchment scale and the stakeholders’ perceptions, interests and practices related to the nitrate issue (stakeholders analysis. The conceptual SLIM framework model supported new interactions among stakeholders, that were facilitated by researchers, using dialogical tools to enable them to use scientific data and to integrate their own knowledge on the farming system. The agro-environment policies, based on compulsory prescriptions, revealed weak assumptions and insufficient integration of scientific knowledge. The stakeholder analysis contributed to the identification of priorities both for scientific research and agro-environment policies. Researchers provided the site-specific scientific knowledge, in a way that enabled stakeholders to identify the relationships between agricultural practices, landscape values and the nitrate pollution issue and to elaborate shared strategies to develop concerted actions. New spaces for interaction between researchers and stakeholders should be created to face complex agro-environment issues at catchment scale, such as the nitrate pollution of groundwater. The implication for agronomy research is that the experiments should be designed to produce suitable results to facilitate participatory sessions and that it is worthwhile to invest in specific skills of communication science and group dynamics management within the agronomy researchers’ community, in order to integrate agronomy knowledge into high quality participatory processes.

  16. Stakeholder Analysis for Sharing Agro-environment Issues Towards Concerted Action: A Case Study on Diffuse Nitrate Pollution

    Directory of Open Access Journals (Sweden)

    Marco Toderi

    2011-02-01

    Full Text Available There is increasing need for participatory approaches to support the development of sustainable farming systems, based on the active involvement of stakeholders in the definition of research objectives and priorities. This paper reports the experience of a team of agronomy researchers involved in the SLIM project (http://slim.open.ac.uk, around a case study of nitrate pollution. The agro-ecosystem analysis included biophysical processes at microcatchment scale and the stakeholders’ perceptions, interests and practices related to the nitrate issue (stakeholders analysis. The conceptual SLIM framework model supported new interactions among stakeholders, that were facilitated by researchers, using dialogical tools to enable them to use scientific data and to integrate their own knowledge on the farming system. The agro-environment policies, based on compulsory prescriptions, revealed weak assumptions and insufficient integration of scientific knowledge. The stakeholder analysis contributed to the identification of priorities both for scientific research and agro-environment policies. Researchers provided the site-specific scientific knowledge, in a way that enabled stakeholders to identify the relationships between agricultural practices, landscape values and the nitrate pollution issue and to elaborate shared strategies to develop concerted actions. New spaces for interaction between researchers and stakeholders should be created to face complex agro-environment issues at catchment scale, such as the nitrate pollution of groundwater. The implication for agronomy research is that the experiments should be designed to produce suitable results to facilitate participatory sessions and that it is worthwhile to invest in specific skills of communication science and group dynamics management within the agronomy researchers’ community, in order to integrate agronomy knowledge into high quality participatory processes.

  17. A Sustainable Industry-Environment Model for the Identification of Urban Environmental Risk to Confront Air Pollution in Beijing, China

    Directory of Open Access Journals (Sweden)

    Guilin Gao

    2018-03-01

    Full Text Available In this study, an optimized industry-environment model is proposed for identifying environmental risk under uncertainties. The strategy associated with an emission-permit trading mechanism has been introduced into the industrial-environment regulation (model for remitting the pressures of frequent/severe haze events in Beijing City. A dual stochastic mixed fuzzy risk analysis method with Laplace’s criterion (DSFRL can be embedded into industry-environment issues with a trading emission-permit trading mechanism (IEST for handling uncertainties regarded as possibility and probability distributions. Meanwhile, this can also reflect the environmental risks and corresponding system benefits due to the occurrence of a random event (such as random wind velocity. Based on the application of the proposed IEST with DSFRL, the numbers of the obtained results associated with production reduction, adjustment of industrial layout pattern, emission-permit transactions, pollutant mitigation and system benefits under various Laplace criterion cases can be analyzed. A tradeoff between production development and pollution mitigation based on the preference of policymakers can be used for rectifying current strategies with a sustainable mode, which can prompt an effort to confront air pollution

  18. Environmental surveillance of the US Department of Energy Portsmouth Gaseous Diffusion Plant and surrounding environs during 1986: Volume 4

    International Nuclear Information System (INIS)

    Oakes, T.W.; Wiehle, W.E.; Valentine, B.L.

    1987-04-01

    This report provides monitoring data for the installation and surrounding environs that may have been affected by operations on the plant site; provides detailed information about the installation; provides detailed information on input and assumption used in all calculations; integrates monitoring data and related studies in one document to pull together, highlight, and summarize the information contained in many documents; provides trend analyses, where possible, to indicate increases and decreases in environmental conditions; and provides general information on the plant site and quality assurance. Routine monitoring and sampling for radiation, radioactive materials, and chemical substances on and off the DOE reservation and PORTS are used to document compliance with appropriate standards, identify trends, provide information for the public, and contribute to general environmental knowledge. The surveillance program assists in fulfilling the DOE policy of protecting the public, employees, and the environment from harm that could be caused by its activities and reducing negative environmental impacts to the greatest degree practicable. Environmental monitoring information complements data on specific releases, trends, and summaries. 68 refs., 203 figs., 112 tabs

  19. The back-diffusion effect of air on the discharge characteristics of atmospheric-pressure radio-frequency glow discharges using bare metal electrodes

    International Nuclear Information System (INIS)

    Sun Wenting; Liang Tianran; Wang Huabo; Li Heping; Bao Chengyu

    2007-01-01

    Radio-frequency (RF), atmospheric-pressure glow discharge (APGD) plasmas using bare metal electrodes have promising prospects in the fields of plasma-aided etching, deposition, surface treatment, disinfection, sterilization, etc. In this paper, the discharge characteristics, including the breakdown voltage and the discharge voltage for sustaining a stable and uniform α mode discharge of the RF APGD plasmas are presented. The experiments are conducted by placing the home-made planar-type plasma generator in ambient and in a vacuum chamber, respectively, with helium as the primary plasma-forming gas. When the discharge processes occur in ambient, particularly for the lower plasma-working gas flow rates, the experimental measurements show that it is the back-diffusion effect of air in atmosphere, instead of the flow rate of the gas, that results in the obvious decrease in the breakdown voltage with increasing plasma-working gas flow rate. Further studies on the discharge characteristics, e.g. the luminous structures, the concentrations and distributions of chemically active species in plasmas, with different plasma-working gases or gas mixtures need to be conducted in future work

  20. The “Carpet-3” air shower array to search for diffuse gamma rays with energy Eγ>100TeV

    Science.gov (United States)

    Dzhappuev, D. D.; I, V. B. Petkov V.; Kudzhaev, A. U.; Lidvansky, A. S.; Volchenko, V. I.; Volchenko, G. V.; Gorbacheva, E. A.; Dzaparova, I. M.; Klimenko, N. F.; Kurenya, A. N.; Mikhilova, O. I.; Khadzhiev, M. M.; Yanin, A. F.

    2017-12-01

    At present an experiment for measuring the flux of cosmic diffuse gamma rays with energy higher than 100 TeV (experiment “Carpet-3”) is being prepared at the Baksan Neutrino Observatory of the Institute for Nuclear Research, Russian Academy of Sciences. The preparation of the experiment implies considerable enlargement of the area of both muon detector and surface part of the shower array. At the moment the plastic scintillation counters with a total continuous area of 410 m2 are installed in the muon detector (MD) underground tunnels, and they are totally equipped with electronics. Adjusting of the counters and their electronic circuits is in progress. Six modules of shower detectors (out of twenty planned to be installed) have already been placed on the surface of the MD absorber. A new liquid scintillation detector is developed for modules of the ground -surface part of the array, whose characteristics are presented. It is shown that the “Carpet-3” air shower array will have the best sensitivity to the flux of primary gamma rays with energies in the range 100TeV - 1PeV, being quite competitive in gamma-ray astronomy at such energies.

  1. Induced Environment Contamination Monitor (IECM), air sampler - Results from the Space Transport System (STS-2) flight

    Science.gov (United States)

    Peters, P. N.; Hester, H. B.; Bertsch, W.; Mayfield, H.; Zatko, D.

    1983-01-01

    An investigation involving sampling the rapidly changing environment of the Shuttle cargo bay is considered. Four time-integrated samples and one rapid acquisition sample were collected to determine the types and quantities of contaminants present during ascent and descent of the Shuttle. The sampling times for the various bottles were controlled by valves operated by the Data Acquisition and Control System (DACS) of the IECM. Many of the observed species were found to be common solvents used in cleaning surfaces. When the actual volume sampled is taken into account, the relative mass of organics sampled during descent is about 20 percent less than during ascent.

  2. Gaseous and air decontamination technologies for Clostridium difficile in the healthcare environment.

    Science.gov (United States)

    Davies, A; Pottage, T; Bennett, A; Walker, J

    2011-03-01

    The recent data for hospital-acquired infections suggest that infection rates for meticillin-resistant Staphylococcus aureus (MRSA) and Clostridium difficile are beginning to decrease. However, while there is still pressure to maintain this trend, the resistance of C. difficile spores to standard detergents continues to present a problem for many UK hospitals trying to prevent its spread or control outbreaks. Alternative disinfection technologies such as gaseous decontamination are currently being marketed to the healthcare sector as an alternative/supplement to manual disinfection, and have been shown to be effective in reducing environmental contamination. When used correctly, they offer a complementary technology to manual cleaning that increases the probability of an effective reduction in viability and provides a comparatively uniform distribution of disinfectant. Three gaseous decontamination technologies are examined for their suitability in reducing environmental contamination with C. difficile: gaseous hydrogen peroxide, chlorine dioxide and ozone. Air decontamination and UV-based technologies are also briefly described. We conclude that while there is a role to play for these new technologies in the decontamination of ward surfaces contaminated with C. difficile, the requirement for both a preclean before use and the limited 'in vivo' evidence means that extensive field trials are necessary to determine their cost-effectiveness in a healthcare setting. Copyright © 2010 The Hospital Infection Society. Published by Elsevier Ltd. All rights reserved.

  3. Combustion of Methanol Droplets in Air-Diluent Environments with Reduced and Normal Gravity

    Directory of Open Access Journals (Sweden)

    Benjamin Shaw

    2012-01-01

    Full Text Available Reduced and normal gravity combustion experiments were performed with fiber-supported methanol droplets with initial diameters in the 1 mm size range. Experiments were performed with air-diluent mixtures at about 0.101 MPa and 298 K, where carbon dioxide, helium, or xenon was separately used as the diluent gas. Results indicate that ambient gas transport properties play an important role in determining flammability and combustion behaviors including burning rates and radiant heat output histories of the droplets. Droplets would burn with significantly higher mole fractions of xenon than helium or carbon dioxide. In reduced gravity, droplets would burn steadily with a xenon mole fraction of 0.50 but would not burn steadily if helium or carbon dioxide mole fractions were 0.50. Comparison with previous experimental data shows that ignitability and combustion characteristics of droplets are influenced by the fuel type and also the gravitational level. Burning rates were about 40% to 70% higher in normal gravity than in reduced gravity. Methanol droplets also had burning rates that were typically larger than 1-propanol burning rates by about 20% in reduced gravity. In normal gravity, however, burning rate differences between the two fuels were significantly smaller.

  4. Geochemical atlas of Radovish and the environs and the distribution of heavy metals in the air

    International Nuclear Information System (INIS)

    Stafilov, Trajche; Bacheva, Katerina; Boev, Blazho; Shajn, Robert; Balabanova, Biljana

    2010-01-01

    Mining activities, ore processing and processing of waste are potential emitters of heavy metals in air. As more important are mining activities on surface excavation of ore due to the large number of direct polluting factors that are difficult to control and manage. Special emphasis is given to the organization of the pit (road movement of dampers carrying ore waste), waste management (ore and flotation tailings) as well as the frequency of explosions for excavation of mining minerals. One of the major emission sources of some metals in the eastern part of the R. Macedonia is Buchim copper mine and flotation, near the town of Radovish. The mine and plant for the preparation of ore are in function from the late seventies of the last century. Ore excavation is from open pit and the ore tailings are stored in the open, in mine vicinity. The produced copper ore from the mine is processed in the flotation tailings are separated, disposed of and deposited on a dump site in an adjacent valley near the village Topolnica.

  5. Air Traffic Controller Performance and Acceptability of Multiple UAS in a Simulated NAS Environment

    Science.gov (United States)

    Vu, Kim-Phuong L.; Strybel, Thomas; Chiappe, Dan; Morales, Greg; Battiste, Vernol; Shively, Robert Jay

    2014-01-01

    Previously, we showed that air traffic controllers (ATCos) rated UAS pilot verbal response latencies as acceptable when a 1.5 s delay was added to the UAS pilot responses, but a 5 s delay was rated as mostly unacceptable. In the present study we determined whether a 1.5 s added delay in the UAS pilots' verbal communications would affect ATCos interactions with UAS and other conventional aircraft when the number and speed of the UAS were manipulated. Eight radar-certified ATCos participated in this simulation. The ATCos managed a medium altitude sector containing arrival aircraft, en route aircraft, and one to four UAS. The UAS were conducting a surveillance mission and flew at either a "slow" or "fast" speed. We measured both UAS and conventional pilots' verbal communication latencies, and obtained ATCos' acceptability ratings for these latencies. Although the UAS pilot response latencies were longer than those of conventional pilots, the ATCos rated UAS pilot verbal communication latencies to be as acceptable as those of conventional pilots. Because the overall traffic load within the sector was held constant, ATCos only performed slightly worse when multiple UAS were in their sector compared to when only one UAS was in the sector. Implications of these findings for UAS integration in the NAS are discussed.

  6. Electron densities and energies of a guided argon streamer in argon and air environments

    International Nuclear Information System (INIS)

    Hübner, S; Hofmann, S; Van Veldhuizen, E M; Bruggeman, P J

    2013-01-01

    In this study we report the temporally and spatially resolved electron densities and mean energies of a guided argon streamer in ambient argon and air obtained by Thomson laser scattering. The plasma is driven by a positive monopolar 3.5 kV pulse, with a pulse width of 500 ns and a frequency of 5 kHz which is synchronized with the high repetition rate laser system. This configuration enables us to use the spatial and temporal stability of the guided streamer to accumulate a multitude of laser/plasma shots by a triple grating spectrometer equipped with an ICCD camera and to determine the electron parameters. We found a strong initial n e -overshoot with a maximum of 7 × 10 19  m −3 and a mean electron energy of 4.5 eV. This maximum is followed by a fast decay toward the streamer channel. Moreover, a 2D distribution of the electron density is obtained which exhibits a peculiar mushroom-like shape of the streamer head with a diameter significantly larger than that of the emission profile. A correlation of the width of the streamer head with the expected pre-ionization channel is found. (paper)

  7. Impact of Isotonic Beverage on the Hydration Status of Healthy Chinese Adults in Air-Conditioned Environment

    Directory of Open Access Journals (Sweden)

    Phei Ching Siow

    2017-03-01

    Full Text Available People living in tropical climates spend much of their time in confined air-conditioned spaces, performing normal daily activities. This study investigated the effect of distilled water (W or isotonic beverage (IB on the hydration status in subjects living under these conditions. In a randomized crossover design, forty-nine healthy male subjects either consumed beverage or IB over a period of 8 h (8 h in a controlled air-conditioned environment. Blood, urine, and saliva samples were collected at baseline and after 8 h. Hydration status was assessed by body mass, urine output, blood and plasma volume, fluid retention, osmolality, electrolyte concentration and salivary flow rate. In the IB group, urine output (1862 ± 86 mL vs. 2104 ± 98 mL was significantly lower and more fluids were retained (17% ± 3% vs. 7% ± 3% as compared to W (p < 0.05 after 8 h. IB also resulted in body mass gain (0.14 ± 0.06 kg, while W led to body mass loss (−0.04 ± 0.05 kg (p = 0.01. A significantly smaller drop in blood volume and lower free water clearance was observed in IB (−1.18% ± 0.43%; 0.55 ± 0.26 mL/min compared to W (−2.11% ± 0.41%; 1.35 ± 0.24 mL/min (p < 0.05. IB increased salivary flow rate (0.54 ± 0.05 g/min 0.62 ± 0.04 g/min. In indoor environments, performing routine activities and even without excessive sweating, isotonic beverages may be more effective at retaining fluids and maintaining hydration status by up to 10% compared to distilled water.

  8. Impact of air pollution in deterioration of carbonate building materials in Italian urban environments

    International Nuclear Information System (INIS)

    Barca, Donatella; Comite, Valeria; Belfiore, Cristina M.; Bonazza, Alessandra; La Russa, Mauro F.; Ruffolo, Silvestro A.; Crisci, Gino M.; Pezzino, Antonino; Sabbioni, Cristina

    2014-01-01

    Highlights: • Geochemical study of black crusts developed on three monuments located in Milan, Florence and Rome. • Trace element composition of the black crusts is greatly influenced by anthropogenic pollution. • Geochemical characterization of black crusts can be used as a reliable indicator of environmental pollution. - Abstract: This work presents results from a petrographic, morphological and chemical study of the black crusts developing on monuments in three Italian cities, the Cathedral of Milan, the Cathedral of St. Maria del Fiore in Florence, and the Vittoriano Monument in Rome. Black crusts (BCs) were studied with traditional techniques such as optical microscopy (OM), scanning electron microscopy coupled with energy-dispersive X-ray spectrometry (SEM-EDS) and infrared spectroscopic techniques (FT-IR), in combination with laser ablation inductively coupled mass spectrometry (LA-ICP-MS), which has shown itself to be particularly useful in determining concentrations of heavy metals in BCs. Although the BCs of the three monuments show general enrichment in heavy metals with respect to the substrate (S), interesting differences were observed among them. The BCs from Milan are the richest in heavy metals, particularly Pb and Zn, reflecting the severe air pollution of this very large city, which, in addition to its intense traffic, is located in the most highly industrialized area of Northern Italy. The BCs from the south-eastern side of the Cathedral of St. Maria del Fiore in Florence, facing a pedestrian area, show little enrichment in heavy metals, and those from the Vittoriano Monument in Rome, which is exposed to intense road traffic, display variable enrichment, attributable to mobile emission sources. Results show that the various enrichment trends in heavy metals observed in the BCs of these three monuments are due to many factors: various sources of anthropogenic pollution, sampling height, exposure, orientation, and the shape of the deposition

  9. Autonomous Landing and Ingress of Micro-Air-Vehicles in Urban Environments Based on Monocular Vision

    Science.gov (United States)

    Brockers, Roland; Bouffard, Patrick; Ma, Jeremy; Matthies, Larry; Tomlin, Claire

    2011-01-01

    Unmanned micro air vehicles (MAVs) will play an important role in future reconnaissance and search and rescue applications. In order to conduct persistent surveillance and to conserve energy, MAVs need the ability to land, and they need the ability to enter (ingress) buildings and other structures to conduct reconnaissance. To be safe and practical under a wide range of environmental conditions, landing and ingress maneuvers must be autonomous, using real-time, onboard sensor feedback. To address these key behaviors, we present a novel method for vision-based autonomous MAV landing and ingress using a single camera for two urban scenarios: landing on an elevated surface, representative of a rooftop, and ingress through a rectangular opening, representative of a door or window. Real-world scenarios will not include special navigation markers, so we rely on tracking arbitrary scene features; however, we do currently exploit planarity of the scene. Our vision system uses a planar homography decomposition to detect navigation targets and to produce approach waypoints as inputs to the vehicle control algorithm. Scene perception, planning, and control run onboard in real-time; at present we obtain aircraft position knowledge from an external motion capture system, but we expect to replace this in the near future with a fully self-contained, onboard, vision-aided state estimation algorithm. We demonstrate autonomous vision-based landing and ingress target detection with two different quadrotor MAV platforms. To our knowledge, this is the first demonstration of onboard, vision-based autonomous landing and ingress algorithms that do not use special purpose scene markers to identify the destination.

  10. The environment of nature reserves under anthropogenic load: air transport of pollution to the North of European Russia

    Science.gov (United States)

    Vinogradova, A. A.; Ivanova, Yu. A.; Veremeychik, A. O.

    2012-04-01

    Nature reserves are created to keep in their original states natural environment, flora and fauna of various ecological systems, territories, climatic zones, etc. Now natural objects everywhere exist under anthropogenic loading from man-made activities. It is impossible to avoid atmospheric or river transport of pollution to the environment of reserved territories. The main idea of the work is to analyze atmospheric transport of anthropogenic metals (Ni, Cu, Pb, Fe, Al), as well as of soot (black carbon - BC) from Russian large industrial areas (source-regions) to the territories of nature reserves at the North of European Russia - the Kostomukshsky reserve (KR) in Karelia (64.57°N, 30.67°E) and the Nenetzky reserve (NR) at the Pechora River mouth (68,5°N, 53,5°E). The basic data for these 2 points were back trajectories of air mass transport calculated for every day of January, April, July, and October during 10 years from 2001 to 2010. We used NCEP/NCAR Reanalysis Data Files with HYSPLIT 4 model and two approaches for analyzing the trajectories. The main source-regions were chosen for each reserve. The annual source emissions for the last decade are generalized from the data published by Roshydromet of Russia (http://www.nii-atmosphere.ru/files/PUBL/Eg_2008.doc). The deposition velocity was a sum of dry and wet components. The equal values of deposition velocities onto the surface were assumed for all impurities because they are mainly on submicron aerosol particles under atmospheric transport for a long distance. The seasonal and spatial variations of averaged deposition velocity were accounted in accordance with surface properties and precipitation regimes. As a result, the maximal air concentrations of aerosol pollutants are observed in cold seasons, whereas the maximal fluxes onto the surface occur in warm period. Thus, it's possible that the cleanest air does not indicate the same surface. Fe and Al are the crust (dust or soil) elements. Thus, their main

  11. Plutonium diffusion in the marine environment: a quantitative study on marine species of the channel shores, from Brest to Honfleur

    International Nuclear Information System (INIS)

    Fraizier, A.; Guary, J.C.

    1977-01-01

    Plutonium levels were measured on marine species of the Channel shores, from Cancale to Honfleur in 1975, from Brest to the Cap de La Hague in 1976. Measurements carried out on a lichen: Lichina pygmaea, two algae: Corallina officinalis and Fucus serratus, a spongiae: Hymeniacidon sanguinea and a crustacean: Balanus balanoides, showed the effect of waste disposal from a fuel reprocessing plant on the radioactivity levels of these organisms. This effect, decreasing progressively appeared at distances of at least 150 km from the point of release. As compared to the values observed for samples taken as the far west end of Brittany and also to the plutonium levels in the marine environment resulting from atmosphere fallout only, the levels observed in the studied area were higher and varying according to the geographic position, increasing by a factor of 100 near the emissary. These data are an actual instance of radioactive dispersal following disposal into the sea; they should bring valuable information for the assessment of the radiological capacity of a given coastal area [fr

  12. New sensitive micro-measurements of dynamic surface tension and diffusion coefficients: Validated and tested for the adsorption of 1-Octanol at a microscopic air-water interface and its dissolution into water.

    Science.gov (United States)

    Kinoshita, Koji; Parra, Elisa; Needham, David

    2017-02-15

    Currently available dynamic surface tension (DST) measurement methods, such as Wilhelmy plate, droplet- or bubble-based methods, still have various experimental limitations such as the large size of the interface, convection in the solution, or a certain "dead time" at initial measurement. These limitations create inconsistencies for the kinetic analysis of surfactant adsorption/desorption, especially significant for ionic surfactants. Here, the "micropipette interfacial area-expansion method" was introduced and validated as a new DST measurement having a high enough sensitivity to detect diffusion controlled molecular adsorption at the air-water interfaces. To validate the new technique, the diffusion coefficient of 1-Octanol in water was investigated with existing models: the Ward Tordai model for the long time adsorption regime (1-100s), and the Langmuir and Frumkin adsorption isotherm models for surface excess concentration. We found that the measured diffusion coefficient of 1-Octanol, 7.2±0.8×10 -6 cm 2 /s, showed excellent agreement with the result from an alternative method, "single microdroplet catching method", to measure the diffusion coefficient from diffusion-controlled microdroplet dissolution, 7.3±0.1×10 -6 cm 2 /s. These new techniques for determining adsorption and diffusion coefficients can apply for a range of surface active molecules, especially the less-characterized ionic surfactants, and biological compounds such as lipids, peptides, and proteins. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. PHOTOCITYTEX - A LIFE project on the air pollution treatment in European urban environments by means of photocatalytic textiles

    Science.gov (United States)

    Ródenas, Milagros; Fages, Eduardo; Fatarella, Enrico; Herrero, David; Castagnoli, Lidia; Borrás, Esther; Vera, Teresa; Gómez, Tatiana; Carreño, Javier; López, Ramón; Gimeno, Cristina; Catota, Marlon; Muñoz, Amalia

    2016-04-01

    In urban areas, air pollution from traffic is becoming a growing problem. In recent years the use of titanium dioxide (TiO2) based photocatalytic self-cleaning and de-polluting materials has been considered to remove these pollutants. TiO2 is now commercially available and used in construction material or paints for environmental purposes. Further work, however, is still required to clarify the potential impacts from wider TiO2 use. Specific test conditions are required to provide objective and accurate knowledge. Under the LIFE PHOTOCITYTEX project, the effectiveness of using TiO2-based photocatalytic nanomaterials in building textiles as a way of improving the air quality in urban areas will be assessed. Moreover, information on secondary products formed during the tests will be obtained, yielding a better overall understanding of the whole process and its implications. For this purpose, a series of demonstrations are foreseen, comprising 1. lab-test and development of textile prototypes at lab scale, 2. larger scale demonstration of the use of photocatalytic textiles in the depollution of urban environments employing the EUPHORE chambers to simulate a number of environmental conditions of various European cities and 3. field demonstrations installing the photocatalytic textiles in two urban locations in Quart de Poblet, a tunnel and a school. A one-year extensive passive dosimetric campaign has already being carried out to characterize the selected urban sites before the installation of the photocatalytic textile prototypes, and a similar campaign after their installation is ongoing. Also, more comprehensive intensive active measurement campaigns have been conducted to account for winter and summer conditions. In parallel, lab-tests have already been completed to determine optimal photocatalytic formulations on textiles, followed by experiments at EUPHORE. Information on the deployment of the campaigns is given together with laboratory conclusions and first

  14. MEASURING AIR AND TERRESTRIAL TRANSPORT COMPANY REPUTATION: TOURISM INTANGIBLES EXPRESSED IN THE DIGITAL ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Célia M.Q. Ramos

    2017-12-01

    Full Text Available The reputation of companies within the transport industry is influenced by competitive dynamics within the sector: low-cost flights, the attractiveness of destinations, online user-generated content about users’ experiences, and more. At the same time, social media provides a means for companies to manage issues of tourism intangibles. Thus, it is relevant to analyse transport reputation in the digital environment, taking into consideration the resources for managing these intangibles. This paper presents a method for measuring transport reputation based on an analysis of tourism consumers’ digital opinions and passengers’ comments about their experiences with these firms. The use of social media, such as TripAdvisor and Facebook, conjugated with business intelligence tools and complemented by data mining techniques, can contribute to the development of metrics that consider intangibles like emotions and experiences, with the aim of measuring, analysing, and visualizing the complex relationships between these intangibles and transport companies’ reputations. The results present the impacts of these intangibles through clusters and positioning maps focusing on these issues. This investigation contributes to our knowledge about airlines and terrestrial transport companies that seek to differentiate their positioning in tourism markets through their reputations.

  15. Autocalibrating vision guided navigation of unmanned air vehicles via tactical monocular cameras in GPS denied environments

    Science.gov (United States)

    Celik, Koray

    This thesis presents a novel robotic navigation strategy by using a conventional tactical monocular camera, proving the feasibility of using a monocular camera as the sole proximity sensing, object avoidance, mapping, and path-planning mechanism to fly and navigate small to medium scale unmanned rotary-wing aircraft in an autonomous manner. The range measurement strategy is scalable, self-calibrating, indoor-outdoor capable, and has been biologically inspired by the key adaptive mechanisms for depth perception and pattern recognition found in humans and intelligent animals (particularly bats), designed to assume operations in previously unknown, GPS-denied environments. It proposes novel electronics, aircraft, aircraft systems, systems, and procedures and algorithms that come together to form airborne systems which measure absolute ranges from a monocular camera via passive photometry, mimicking that of a human-pilot like judgement. The research is intended to bridge the gap between practical GPS coverage and precision localization and mapping problem in a small aircraft. In the context of this study, several robotic platforms, airborne and ground alike, have been developed, some of which have been integrated in real-life field trials, for experimental validation. Albeit the emphasis on miniature robotic aircraft this research has been tested and found compatible with tactical vests and helmets, and it can be used to augment the reliability of many other types of proximity sensors.

  16. The coastal environment affects lead and sodium uptake by the moss Hypnum cupressiforme used as an air pollution biomonitor.

    Science.gov (United States)

    Renaudin, Marie; Leblond, Sébastien; Meyer, Caroline; Rose, Christophe; Lequy, Emeline

    2018-02-01

    Several studies suggest that potential competition exists between marine cations and heavy metals for binding sites on the cell wall of mosses. This competition would impact the heavy metal concentration measured in mosses by biomonitoring programs, which may underestimate air pollution by heavy metals in a coastal environment. In the present study, we aim to identify possible mechanisms affecting lead uptake by mosses in a coastal environment, specifically, the competition between lead (Pb 2+ ) and sodium (Na + ) for binding sites in Hypnum cupressiforme (Hc). We also compared the response of continental and coastal Hc populations to Pb 2+ exposure by immersing the moss samples in artificial solutions that comprised six experimental treatments and subsequently locating and quantifying Pb 2+ and Na + using the sequential elution technique and X-ray microanalyses with a scanning electron microscope. We demonstrated that high concentrations of Pb 2+ prevented Na + from binding to the cell wall. We also examined the effect of the salt acclimation of Hc on Pb 2+ and Na + accumulation. Coastal Hc populations accumulated more Na and less Pb than continental Hc populations in all treatments. Moreover, our results showed treatment effects on the intra/extracellular distribution of Na + , as well as site. This feedback on the influence of salt stress tolerance on Pb 2+ uptake by mosses requires further study and can be investigated for other heavy metals, leading to a better use of mosses as biomonitoring tools. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A Computational and Experimental Study of Coflow Laminar Methane/Air Diffusion Flames: Effects of Fuel Dilution, Inlet Velocity, and Gravity

    Science.gov (United States)

    Cao, S.; Ma, B.; Bennett, B. A. V.; Giassi, D.; Stocker, D. P.; Takahashi, F.; Long, M. B.; Smooke, M. D.

    2014-01-01

    The influences of fuel dilution, inlet velocity, and gravity on the shape and structure of laminar coflow CH4-air diffusion flames were investigated computationally and experimentally. A series of nitrogen-diluted flames measured in the Structure and Liftoff in Combustion Experiment (SLICE) on board the International Space Station was assessed numerically under microgravity (mu g) and normal gravity (1g) conditions with CH4 mole fraction ranging from 0.4 to 1.0 and average inlet velocity ranging from 23 to 90 cm/s. Computationally, the MC-Smooth vorticity-velocity formulation was employed to describe the reactive gaseous mixture, and soot evolution was modeled by sectional aerosol equations. The governing equations and boundary conditions were discretized on a two-dimensional computational domain by finite differences, and the resulting set of fully coupled, strongly nonlinear equations was solved simultaneously at all points using a damped, modified Newton's method. Experimentally, flame shape and soot temperature were determined by flame emission images recorded by a digital color camera. Very good agreement between computation and measurement was obtained, and the conclusions were as follows. (1) Buoyant and nonbuoyant luminous flame lengths are proportional to the mass flow rate of the fuel mixture; computed and measured nonbuoyant flames are noticeably longer than their 1g counterparts; the effect of fuel dilution on flame shape (i.e., flame length and flame radius) is negligible when the flame shape is normalized by the methane flow rate. (2) Buoyancy-induced reduction of the flame radius through radially inward convection near the flame front is demonstrated. (3) Buoyant and nonbuoyant flame structure is mainly controlled by the fuel mass flow rate, and the effects from fuel dilution and inlet velocity are secondary.

  18. Oligo-cyclic damage and behaviour of a 304 L austenitic stainless steel according to environment (vacuum, air, PWR primary water) at 300 C

    International Nuclear Information System (INIS)

    De Baglion, L.

    2011-01-01

    Nowadays, for nuclear power plants licensing or operating life extensions, various safety authorities require the consideration of the primary water environment effect on the fatigue life of Pressurized Water Reactor (PWR) components. Thus, this work focused on the study of low cycle fatigue damage kinetics and mechanisms, of a type 304L austenitic stainless steel. Several parameters effects such as temperature, strain rate or strain amplitude were investigated in air as in PWR water. Thanks to targeted in-vacuum tests, the intrinsic influence of these parameters and environments on the fatigue behaviour of the material was studied. It appears that compared with vacuum, air is already an active environment which is responsible for a strong decrease in fatigue lifetime of this steel, especially at 300 C and low strain amplitude. The PWR water coolant environment is more active than air and leads to increased damage kinetics, without any modifications of the initiation sites or propagation modes. Moreover, the decreased fatigue life in PWR water is essentially attributed to an enhancement of both initiation and micropropagation of 'short cracks'. Finally, the deleterious influence of low strain rates on the 304L austenitic stainless steel fatigue lifetime was observed in PWR water environment, in air and also in vacuum without any environmental effects. This intrinsic strain rate effect is attributed to the occurrence of the Dynamic Strain Aging phenomenon which is responsible for a change in deformation modes and for an enhancement of cracks initiation. (author)

  19. Enhanced Oxygen Diffusion Within the Internal Oxidation Zone of Alloy 617 in Controlled Impurity Helium Environments from 1023 K to 1123 K (750 °C to 850 °C)

    Science.gov (United States)

    Gulsoy, Gokce; Was, Gary S.

    2015-04-01

    Alloy 617 was exposed to He-CO-CO2 environments with of either 9 or 1320 at temperatures from 1023 K to 1123 K (750 °C to 850 °C) to determine the oxygen diffusion coefficients within the internal oxidation zone of the alloy. The oxygen diffusion coefficients determined based on both intergranular and transgranular oxidation rates were several orders of magnitude greater than those reported in pure nickel and in nickel-based binary alloys, indicating that the rapid internal aluminum oxidation of Alloy 617 was primarily due to enhanced oxygen diffusion along the incoherent Al2O3-alloy interfaces. The range of activation energy values determined for oxygen diffusion associated with the intergranular aluminum oxidation was from 149.6 to 154.7 kJ/mol, and that associated with the transgranular aluminum oxidation was from 244.7 to 283.5 kJ/mol.

  20. Proof-of-Concept of a Networked Validation Environment for Distributed Air/Ground NextGen Concepts

    Science.gov (United States)

    Grisham, James; Larson, Natalie; Nelson, Justin; Reed, Joshua; Suggs, Marvin; Underwood, Matthew; Papelis, Yiannis; Ballin, Mark G.

    2013-01-01

    The National Airspace System (NAS) must be improved to increase capacity, reduce flight delays, and minimize environmental impacts of air travel. NASA has been tasked with aiding the Federal Aviation Administration (FAA) in NAS modernization. Automatic Dependent Surveillance-Broadcast (ADS-B) is an enabling technology that is fundamental to realization of the Next Generation Air Transportation System (NextGen). Despite the 2020 FAA mandate requiring ADS-B Out equipage, airspace users are lacking incentives to equip with the requisite ADS-B avionics. A need exists to validate in flight tests advanced concepts of operation (ConOps) that rely on ADS-B and other data links without requiring costly equipage. A potential solution is presented in this paper. It is possible to emulate future data link capabilities using the existing in-flight Internet and reduced-cost test equipment. To establish proof-of-concept, a high-fidelity traffic operations simulation was modified to include a module that simulated Internet transmission of ADS-B messages. An advanced NASA ConOp, Flight Deck Interval Management (FIM), was used to evaluate technical feasibility. A preliminary assessment of the effects of latency and dropout rate on FIM was performed. Flight hardware that would be used by proposed test environment was connected to the simulation so that data transfer from aircraft systems to test equipment could be verified. The results indicate that the FIM ConOp, and therefore, many other advanced ConOps with equal or lesser response characteristics and data requirements, can be evaluated in flight using the proposed concept.

  1. Environment

    International Nuclear Information System (INIS)

    McIntyre, A.D.; Turnbull, R.G.H.

    1992-01-01

    The development of the hydrocarbon resources of the North Sea has resulted in both offshore and onshore environmental repercussions, involving the existing physical attributes of the sea and seabed, the coastline and adjoining land. The social and economic repercussions of the industry were equally widespread. The dramatic and speedy impact of the exploration and exploitation of the northern North Sea resources in the early 1970s, on the physical resources of Scotland was quickly realised together with the concern that any environmental and social damage to the physical and social fabric should be kept to a minimum. To this end, a wide range of research and other activities by central and local government, and other interested agencies was undertaken to extend existing knowledge on the marine and terrestrial environments that might be affected by the oil and gas industry. The outcome of these activities is summarized in this paper. The topics covered include a survey of the marine ecosystems of the North Sea, the fishing industry, the impact of oil pollution on seabirds and fish stocks, the ecology of the Scottish coastline and the impact of the petroleum industry on a selection of particular sites. (author)

  2. Computational Fluid Dynamics and Room Air Movement

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    2004-01-01

    on the mass fraction transport equation. The importance of ?false? or numerical diffusion is also addressed in connection with the simple description of a supply opening. The different aspects of boundary conditions in the indoor environment as e.g. the simulation of Air Terminal Devices and the simulation......Nielsen, P.V. Computational Fluid Dynamics and Room Air Movement. Indoor Air, International Journal of Indoor Environment and Health, Vol. 14, Supplement 7, pp. 134-143, 2004. ABSTRACT Computational Fluid Dynamics (CFD) and new developments of CFD in the indoor environment as well as quality...... considerations are important elements in the study of energy consumption, thermal comfort and indoor air quality in buildings. The paper discusses the quality level of Computational Fluid Dynamics and the involved schemes (first, second and third order schemes) by the use of the Smith and Hutton problem...

  3. Preliminary assessment of using tree-tissue analysis and passive-diffusion samplers to evaluate trichloroethene contamination of ground water at Site SS-34N, McChord Air Force Base, Washington, 2001

    Science.gov (United States)

    Cox, S.E.

    2002-01-01

    Two low-cost innovative sampling procedures for characterizing trichloroethene (TCE) contamination in ground water were evaluated for use at McChord Air Force Base (AFB) by the U.S. Geological Survey, in cooperation with the U.S. Air Force McChord Air Force Base Installation Restoration Program, in 2001. Previous attempts to characterize the source of ground-water contamination in the heterogeneous glacial outwash aquifer at McChord site SS-34N using soil-gas surveys, direct-push exploration, and more than a dozen ground-water monitoring wells have had limited success. The procedures assessed in this study involved analysis of tree-tissue samples to map underlying ground-water contamination and deploying passive-diffusion samplers to measure TCE concentrations in existing monitoring wells. These procedures have been used successfully at other U.S. Department of Defense sites and have resulted in cost avoidance and accelerated site characterization. Despite the presence of TCE in ground water at site SS-34N, TCE was not detected in any of the 20 trees sampled at the site during either early spring or late summer sampling. The reason the tree tissue procedure was not successful at the McChord AFB site SS-34N may have been due to an inability of tree roots to extract moisture from a water table 30 feet below the land surface, or that concentrations of TCE in ground water were not large enough to be detectable in the tree tissue at the sampling point. Passive-diffusion samplers were placed near the top, middle, and bottom of screened intervals in three monitoring wells and TCE was observed in all samplers. Concentrations of TCE from the passive-diffusion samplers were generally similar to concentrations found in samples collected in the same wells using conventional pumping methods. In contrast to conventional pumping methods, the collection of ground-water samples using the passive-diffusion samples did not generate waste purge water that would require hazardous

  4. Ophthalmic requirements and considerations for the en route air traffic control specialist : an ergonomic analysis of the visual work environment.

    Science.gov (United States)

    1996-04-01

    The Federal Air Surgeon requested continued investigation of visual disorders and vision corrective devices as to their relevance to the medical certification of airmen and controllers. The en route Air Traffic Control Specialist (ATCS) works with a ...

  5. Cyclic variations of gonad development of an air-breathing fish, Channa striata in the lentic and lotic environments

    Directory of Open Access Journals (Sweden)

    Nasim Al Mahmud

    2016-03-01

    Full Text Available Abstract The study was conducted to know the cyclic changes in gonadal maturation and to investigate the developmental stages of oocytes and testicular germ cells of an air-breathing fish, Channa striata. Fish were sampled monthly from lentic and lotic environments of three geographical locations of Bangladesh from December to November and the histological analysis of their gonad was done to evaluate the objectives. The highest mean GSI was 5.95 ± 0.20 for female in July and 0.14 ± 0.01 for male also in July showing that the gonadal development reached its peak during this month. The highest mean oocyte diameter was 1257.50 ± 24.17 μm observed in July implying that the oocyte reached maturity in this month. Histological study of ovary revealed the evidence of early yolk granule stage and late yolk granule stage from April to July. In case of male four stages of spermatogenesis were distinguished and spermatozoa were highly abundant in June and July. So the monthly pooled values of GSI and the analysis of gonadal histology indicated that the peak breeding season of C. striata occurred in July in the lentic and lotic environments. Samples collected from lentic and lotic habitats are suggestive of no difference in the development of the gonad. The results of the present study will be useful for selective breeding programme, conservation and sustainable fishery management of C. striata in its natural habitat.

  6. Evaluation of the vibration attenuation properties of an air-inflated cushion with two different heavy machinery seats in multi-axis vibration environments including jolts.

    Science.gov (United States)

    Ji, Xiaoxu; Eger, Tammy R; Dickey, James P

    2017-03-01

    Seats and cushions can attenuate whole-body vibration (WBV) exposures and minimize health risks for heavy machine operators. We successfully developed neural network (NN) algorithms to identify the vibration attenuation properties for four different seating conditions (seat/cushion combinations), and implemented each of the NN models to predict the equivalent daily exposure A(8) values for various vehicles in the forestry and mining environments. We also evaluated the performance of the new prototype No-Jolt™ air-inflated cushion and the original cushion of each seat with jolt exposures. We observed that the air cushion significantly improved the vibration attenuation properties of the seat that initially had good performance, but not for the seat that had relatively poor vibration attenuation properties. In addition, operator's anthropometrics and sex influenced the performance of the air-inflated cushion when the vibration environment included jolt exposures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Indoor air quality in low-energy houses in the Netherlands: Does mechanical ventilation provide a healthy indoor environment?

    NARCIS (Netherlands)

    Balvers, J.R.; Boxem, G.; Wit, de M.H.; Strøm-Tejsen, P; Olesen, B.W.; Wargocki, P; Zukowska, D; Toftum, J

    2008-01-01

    Increasing environmental awareness has led to new, energy-efficient building standards such as the German Passivhaus-standard. This study was designed to investigate the indoor air quality (IAQ) of four different Dutch low-energy houses built according to this standard. Air flow, indoor air

  8. Diffusive flux of methane from warm wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Barber, T.R.; Burke, R.A.; Sackett, W.M. (Univ. of South Florida, St. Petersburg (USA))

    1988-12-01

    Diffusion of methane across the air-water interface from several wetland environments in south Florida was estimated from measured surface water concentrations using an empirically derived gas exchange model. The flux from the Everglades sawgrass marsh system varied widely, ranging from 0.18 + or{minus}0.21 mol CH{sub 4}/sq m/yr for densely vegetated regions to 2.01 + or{minus}0.88 for sparsely vegetated, calcitic mud areas. Despite brackish salinities, a strong methane flux, 1.87 + or{minus}0.63 mol CH{sub 4}/sq m/yr, was estimated for an organic-rich mangrove pond near Florida Bay. The diffusive flux accounted for 23, 36, and 13% of the total amount of CH{sub 4} emitted to the atmosphere from these environments, respectively. The average dissolved methane concentration for an organic-rich forested swamp was the highest of any site at 12.6 microM; however, the calculated diffusive flux from this location, 2.57 + or{minus}1.88 mol CH{sub 4}/sq m/yr, was diminished by an extensive plant canopy that sheltered the air-water interface from the wind. The mean diffusive flux from four freshwater lakes, 0.77 + or{minus}0.73 mol CH{sub 4}/sq m/yr, demonstrated little temperature dependence. The mean diffusive flux for an urbanized, subtropical estuary was 0.06 + or{minus}0.05 mol CH{sub 4}/sq m/yr.

  9. Inverse identification of unknown finite-duration air pollutant release from a point source in urban environment

    Science.gov (United States)

    Kovalets, Ivan V.; Efthimiou, George C.; Andronopoulos, Spyros; Venetsanos, Alexander G.; Argyropoulos, Christos D.; Kakosimos, Konstantinos E.

    2018-05-01

    In this work, we present an inverse computational method for the identification of the location, start time, duration and quantity of emitted substance of an unknown air pollution source of finite time duration in an urban environment. We considered a problem of transient pollutant dispersion under stationary meteorological fields, which is a reasonable assumption for the assimilation of available concentration measurements within 1 h from the start of an incident. We optimized the calculation of the source-receptor function by developing a method which requires integrating as many backward adjoint equations as the available measurement stations. This resulted in high numerical efficiency of the method. The source parameters are computed by maximizing the correlation function of the simulated and observed concentrations. The method has been integrated into the CFD code ADREA-HF and it has been tested successfully by performing a series of source inversion runs using the data of 200 individual realizations of puff releases, previously generated in a wind tunnel experiment.

  10. Hydrogen diffusion into fatigue cracks of aluminium alloy 6013 in a corrosive environment; Wasserstoffeinlagerung an Ermuedungsrissen der Aluminiumlegierung 6013 unter korrosiver Umgebung

    Energy Technology Data Exchange (ETDEWEB)

    Lenk, Christian Alexander

    2009-08-13

    The author attempted a time-resolved detection of raised hydrogen concentrations in the plastic deformation region of fatigue cracks in an aluminium test piece deformed by cyclic stress in a corrosive environment. Mechanical material parameters like the crack propagation velocity under cyclic stress change dramatically in a corrosive environment. This is assumed to be caused by hydrogen diffusion, but so far there is no method that reliably measures additional hydrogen from the corrosive environment. For this reason, a special analytical configuration was set up which makes use of the thermal desorption method. First, chips with a thickness of about 20 micrometers are sawed out of the test specimen in high-vacuum conditions. The chips fall into a hot melting vessel in a UHV chamber, where the hydrogen contained in the chips is released. The resulting pressure increase is recorded by a mass spectrometer. A hydrogen profile of the test specimen is obtained by assigning the chip position to the signal. For the corrosive medium in which the test specimen is immersed during crack initiation, i.e. NaCl solution, heavy water was used. This makes it possible to distinguish between the hydrogen contained in a piece of technical aluminium alloy (AA6013) and the deuterium diffusing in from the corrosive fluid. The deuterium is found exclusively in the test piece volume in the strongly plastically deformed region surrounding the fatigue crack. (orig.) [German] Das Ziel der vorliegenden Arbeit besteht im ortsaufgeloesten Nachweis einer erhoehten Wasserstoffkonzentration im plastisch deformierten Bereich von Ermuedungsrissen einer unter korrosiver Umgebung zyklisch verformten Aluminiumprobe. Mechanische Materialparameter wie z.B. die Rissausbreitungsgeschwindigkeit unter zyklischer Belastung aendern sich drastisch in korrosiver Umgebung. Als Ursache fuer dieses Verhalten wird eine Eindiffusion von Wasserstoff vermutet, jedoch gibt es bisher keine Messung die den zusaetzlichen

  11. Gender, airborne chemical monitoring, and physical work environment are related to indoor air symptoms among nonindustrial workers in the Klang Valley, Malaysia.

    Science.gov (United States)

    Syazwan, Aizat Ismail; Hafizan, Juahir; Baharudin, Mohd Rafee; Azman, Ahmad Zaid Fattah; Izwyn, Zulkapri; Zulfadhli, Ismail; Syahidatussyakirah, Katis

    2013-01-01

    The purpose of this study was to analyze the relationship of airborne chemicals and the physical work environment risk element on the indoor air symptoms of nonindustrial workers. A cross-sectional study consisting of 200 office workers. A random selection of 200 buildings was analyzed for exposure and indoor air symptoms based on a pilot study in the Klang Valley, Malaysia. A set of modified published questionnaires by the Department of Occupational Safety and Health (DOSH), Malaysia and a previous study (MM040NA questionnaire) pertaining to indoor air symptoms was used in the evaluation process of the indoor air symptoms. Statistical analyses involving logistic regression and linear regression were used to determine the relationship between exposure and indoor air symptoms for use in the development of an indoor risk matrix. The results indicate that some indoor air pollutants (carbon monoxide, formaldehyde, total volatile organic compound, and dust) are related to indoor air symptoms of men and women. Temperature and relative humidity showed a positive association with complaints related to the perceived indoor environmental condition (drafts and inconsistency of temperature). Men predominantly reported general symptoms when stratification of gender involved exposure to formaldehyde. Women reported high levels of complaints related to mucosal and general symptoms from exposure to the dust level indoors. Exposure to pollutants (total volatile organic compounds, carbon monoxide, and formaldehyde) and physical stressors (air temperature and relative humidity) influence reported symptoms of office workers. These parameters should be focused upon and graded as one of the important elements in the grading procedure when qualitatively evaluating the indoor environment.

  12. Solar photoelectro-Fenton degradation of the antibiotic metronidazole using a flow plant with a Pt/air-diffusion cell and a CPC photoreactor

    International Nuclear Information System (INIS)

    Pérez, Tzayam; Garcia-Segura, Sergi; El-Ghenymy, Abdellatif; Nava, José L.; Brillas, Enric

    2015-01-01

    Highlights: • Degradation of metronidazole solutions at pH 3.0 by EF and SPEF in a flow plant. • High recalcitrance of the antibiotic and its products to be destroyed by ·OH radicals. • Only 53% mineralization by the most potent SPEF process at 55.4 mA cm −2 . • 5 heterocyclic products, 12 hydroxylated derivatives and 2 carboxylic acids were found. • Release of NO 3 − ion and generation of persistent N-products and N-volatile species. - Abstract: The degradation of 10 dm 3 of solutions of the heterocyclic antibiotic metronidazole in 0.10 mol dm −3 Na 2 SO 4 of pH 3.0 has been comparatively studied by electro-Fenton (EF) and solar photoelectro-Fenton (SPEF). Experiments were performed in a solar flow plant equipped with a Pt/air-diffusion cell and coupled to a compound parabolic collector (CPC) photoreactor. A very weak mineralization was found for the EF process in the dark, indicating a large recalcitrance of heterocyclic compounds to be destroyed by hydroxyl radicals formed at the Pt anode from water oxidation and mainly in the bulk from Fenton's reaction between added Fe 2+ and cathodically generated H 2 O 2 . The quick photolysis of intermediates by UV radiation from sunlight enhanced largely the mineralization process by SPEF. The effect of applied current density and Fe 2+ and drug contents on the SPEF treatment was examined. The best process was found for 1.39 mmol dm −3 metronidazole with 0.50 mmol dm −3 Fe 2+ at 55.4 mA cm −2 giving 53% mineralization, 36% mineralization current efficiency and 0.339 kWh (g DOC) −1 in 300 min. Metrodinazole was completely removed and its decay obeyed a pseudo-first-order kinetics. LC-MS analysis allowed identifying five heterocyclic products and twelve hydroxylated derivatives. Ion-exclusion HPLC analysis revealed that final oxalic and oxamic acids were practically removed at the end of electrolysis due to the efficient photolysis of their Fe(III) complexes by sunlight. The initial N of

  13. Anodic oxidation, electro-Fenton and photoelectro-Fenton degradations of pyridinium- and imidazolium-based ionic liquids in waters using a BDD/air-diffusion cell

    International Nuclear Information System (INIS)

    Garcia-Segura, Sergi; Lima, Álvaro Silva; Cavalcanti, Eliane Bezerra; Brillas, Enric

    2016-01-01

    Highlights: • Treatment of 1-butyl-4-methylpyridinium chloride and 1-ethyl-3-methylimidazolium chloride. • Almost total mineralization of both compounds by AO-H_2O_2, EF and PEF at high current density. • Release of NH_4"+ and NO_3"− in different proportion depending on the ionic liquid. • Large decay of initial Cl"− with main formation of ClO_3"− and, in lesser extent, of ClO_4"−. • Detection of primary heteroaromatic products and carboxylic acids generated. - Abstract: The degradation of two representative ionic liquids, 1-butyl-4-methylpyridinium chloride and 1-ethyl-3-methylimidazolium chloride, has been studied in 100 cm"3 of aqueous sulfate medium of pH 3.0 by electrochemical advanced oxidation processes (EAOPs) like anodic oxidation with electrogenerated H_2O_2 (AO-H_2O_2), electro-Fenton (EF) and photoelectro-Fenton (PEF). The electrolytic cell contained a boron-doped diamond (BDD) anode and an air diffusion cathode. The main oxidants were hydroxyl radicals formed at the anode surface from water discharge and in the bulk from Fenton’s reaction between generated H_2O_2 and added Fe"2"+. The solutions of both compounds underwent an almost total mineralization with 97% and 94% of dissolved organic abatement by the most powerful PEF at high current density, being similar and slightly lower for AO-H_2O_2 and EF, respectively. At low current density, the pyridinium-based ionic liquid showed similar mineralization rate by AO-H_2O_2 and PEF, whereas the imidazolium-based ionic liquid was more rapidly degraded in the sequence: AO-H_2O_2 < EF < PEF, where the positive effect of UVA irradiation in PEF was more apparent. The current efficiency decreased gradually with increasing current density in all EAOPs and its value was always superior for the latter compound. The NO_3"− and NH_4"+ concentrations produced in each process were quantified by ion chromatography. This technique confirmed a drastic oxidation of Cl"− contained in the parent

  14. Experimental evaluation on energy performance of innovative clean air heat pump for indoor environment control in summer and winter seasons

    DEFF Research Database (Denmark)

    Nie, Jinzhe; Fang, Lei; Olesen, Bjarne W.

    2014-01-01

    Based on the air purification capacity of regenerative silica gel rotor, an innovative clean air heat pump (CAHP) was designed, developed and investigated through experimental studies. The CAHP integrated air purification, dehumidification and heating/cooling in one unit. A prototype of the CAHP...... was developed. Laboratory experimental studies were conducted to investigate its energy performance under different outdoor climates including cold, mild-cold, mild-hot and extremely hot and humid climates. The energy performance of the CAHP was then evaluated by comparing with a conventional air source heat...... pump. The results showed that to keep same indoor air quality, the CAHP could save substantial amount of energy. For example, compared to the conventional air source heat pump, the CAHP could save up to 59%, 40%, 30% of electricity for ventilation and air conditioning in a test room in summer...

  15. Atmospheric turbulence and diffusion research

    International Nuclear Information System (INIS)

    Hosker, R.P. Jr.

    1993-01-01

    The Atmospheric Turbulence and Diffusion Division (well known in the atmospheric dispersion community as the Atmospheric Turbulence and Diffusion Laboratory, ATDL) is one of several field facilities of NOAAs Air Resources Laboratory, headquartered in Silver Spring, Maryland. The laboratory conducts research on matters of atmospheric diffusion and turbulent exchange, concerning air quality. ATDD focuses attention on the physics of the lower atmosphere, with special emphasis on the processes contributing to atmospheric transport, dispersion, deposition, and air-surface exchange, and on the development of predictive capabilities using the results of this research. Research is directed toward issues of national and global importance related to the missions of DOE, to DOE's Oak Ridge Field Office, and to NOAA. The program is divided into four major projects: plume transport and diffusion in the planetary boundary layer, complex topography, canopy micrometeorology, and air-surface exchange

  16. Effect of duration of exposure to polluted air environment on lung function in subjects exposed to crude oil spill into sea water.

    Science.gov (United States)

    Meo, Sultan Ayoub; Al-Drees, Abdul Majeed; Rasheed, Shahzad; Meo, Imran Mu; Khan, Muhammad Mujahid; Al-Saadi, Muslim M; Alkandari, Jasem Ramadan

    2009-01-01

    Oil spill in sea water represents a huge environmental disaster for marine life and humans in the vicinity. The aim was to investigate the effect of duration of exposure to polluted air environment on lung function in subjects exposed to crude oil spill into sea water. The present study was conducted under the supervision of Department of Physiology, College of Medicine, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia, during the period July 2003 - December 2004. This was a comparative study of spirometry in 31 apparently healthy, non smoking, male workers, exposed to crude oil spill environment during the oil cleaning operation. The exposed group was matched with similar number of male, non smoking control subjects. Pulmonary function test was performed by using an electronic spirometer. Subjects exposed to polluted air for periods longer than 15 days showed a significant reduction in Forced Vital Capacity (FVC), Forced Expiratory Volume in First Second (FEV1), Forced Expiratory Flow in 25-25% (FEF25-75%) and Maximal Voluntary Ventilation (MVV). Air environment polluted due to crude oil spill into sea water caused impaired lung function and this impairment was associated with dose response effect of duration of exposure to air polluted by crude oil spill into sea water.

  17. 210Po and 210Pb emissions to air from the thermal phosphorus plant in Europe: measurements in the environment and dose assessment for regulatory purpose

    International Nuclear Information System (INIS)

    Tanzi, C.P.; Knetsch, G.J.

    2013-01-01

    In 1983 in The Netherlands, an environmental survey at a river estuary revealed elevated radionuclide concentrations above the background level. The source was identified as an industrial plant producing elemental phosphorus, by means of a thermal process. Within a few years a permit for emissions of radionuclides to the environment was requested under the prevailing Nuclear Energy Act, and granted. Since 1987 the industry reports its emission data to the mandated Ministry. This phosphorus plant contributes the highest release of 210 Po and 210 Pb to air in the Netherlands. The difficulty of identifying the enhanced activity due to the elemental phosphorus through environmental measurement is here illustrated by showing, by means of an air dispersion model, that the radioactivity added by the phosphorus plant to the environment is comparable to the natural background level. The estimate of the excess air concentration given exclusively by a continuous annual emission of 500 GBq, bound to aerosols of size less than 1 micron, varies from 450 to 750 micro Bq/m 3 at a distance of 3.5 km from the phosphorus plant, depending on yearly weather variations. This may be compared to the natural background level as it is measured at a distance of over 100 km inland from the phosphorus plant, at RIVM, the National Institute for Public Health and the Environment. The yearly average measured 210 Pb activity concentration in air is 363±5 micro Bq/m 3 in 2009 which is within range of other years. At the coastal site where the phosphorus plant is located, the natural background will be lower. The gross beta activity concentration near the phosphorus plant is 296 micro Bq/m 3 in 2009: this includes the emissions to air from the sintering process. The emission to air for the year 2009 reported by the phosphorus plan is 80 GBq/y of 210 Pb

  18. Investigation of molecular metabolites in expired air of healthy man in condition of long-term isolation in hermetical confined environment

    Science.gov (United States)

    Tsarkov, Dmitriy; Mardanov, Robert; Markin, Andrey; Moukhamedieva, Lana

    Investigation of intermediary metabolites, produced in cells, in expired air of healthy man is directed on determination of molecular markers which are reflecting normal physiological pro-cesses in an organism, as well as on determination and validation of biomarkers for objective screening and non-invasive prenosological diagnostics of disorders in metabolic processes caused by negative effect of live environment. Investigation of influence of long-term isolation in her-metical confined environment on composition of healthy human expired air was made during experiment with 105 days isolation in condition of controlled environment and standard food ra-tion. Expired air samples were analyzed on gas chromatograph associated with the quadrupole mass spectrometer. The investigation results show that at rest hydroxy ketones, mostly 1-hydroxy-prorapanone-2 (acetol), aldehydes (decenal, benzaldehyde), acetophenone, phenol and fatty acids were determined. After physical performance (oxidative stress) the content of ke-tones (heptanone-2, heptanone-3), phenol, determined aldehydes (decenal, octadecenal) and acetol in expired air of volunteers decreased. It can be concerned with prevailing of alternative -methylglyoxalic metabolic pathway and caused by oxidative stress. Analysis of expired air samples taken on 30, 60 and 90 day of isolation showed that in conditions of long-term iso-lation concentration of heptanone-2, heptanone-3, 2,3-butadione, acetol, furanones, aldehydes (decenal, benzaldehyde) and acetophenone is increasing while concentration of phenol and fatty acids is decreasing as compared to samples taken before isolation. It was shown that dynamics of concentration of saturated hydrocarbons in expired air can be informative marker for estima-tion of organism response to oxidative stress, while the level of acetol can be used as indicator of man's training status, validity of exercise load and as a marker of hypoxic state.

  19. High temperature corrosion studies on friction welded low alloy steel and stainless steel in air and molten salt environment at 650 oC

    International Nuclear Information System (INIS)

    Arivazhagan, N.; Narayanan, S.; Singh, Surendra; Prakash, Satya; Reddy, G.M.

    2012-01-01

    Highlights: → Thermogravimetric analysis on friction welded AISI 304 with AISI 4140 exposed in air and molten salt environment. → Comparative study on friction welded AISI 4140 with AISI 304 exposed in air, Na 2 SO 4 -60%V 2 O 5 and NaCl-50%Na 2 SO 4 at 650 o C. → SEM/EDAX, XRD analysis on corroded dissimilar AISI 304 and AISI 4140 materials. -- Abstract: The investigation on high-temperature corrosion resistance of the weldments is necessary for prolonged service lifetime of the components used in corrosive environments. This paper reports on the performance of friction welded low alloy steel AISI 4140 and stainless steel AISI 304 in air as well as molten salt environment of Na 2 SO 4 -60%V 2 O 5 and NaCl-50%Na 2 SO 4 at 650 o C. This paper reports several studies carried out for characterizing the weldments corrosion behavior. Initially thermogravimetric technique was used to establish the kinetics of corrosion. For analyzing the corrosion products, X-ray diffraction, scanning electron microscopy/energy-dispersive analysis and electron probe micro analysis techniques were used. From the results of the experiments, it is observed that the weldments suffered accelerated corrosion in NaCl-Na 2 SO 4 environment and showed spalling/sputtering of the oxide scale. Furthermore, corrosion resistance of weld interface was found to be lower than that of parent metals in molten salt environment. Weight gain kinetics in air oxidation studies reveals a steady-state parabolic rate law while the kinetics with salt deposits displays multi-stage growth rates. Moreover NaCl is the main corrosive species in high temperature corrosion, involving mixtures of NaCl and Na 2 SO 4 which is responsible for formation of internal attack.

  20. Diffusion between evolving interfaces

    International Nuclear Information System (INIS)

    Juntunen, Janne; Merikoski, Juha

    2010-01-01

    Diffusion in an evolving environment is studied by continuous-time Monte Carlo simulations. Diffusion is modeled by continuous-time random walkers on a lattice, in a dynamic environment provided by bubbles between two one-dimensional interfaces driven symmetrically towards each other. For one-dimensional random walkers constrained by the interfaces, the bubble size distribution dominates diffusion. For two-dimensional random walkers, it is also controlled by the topography and dynamics of the interfaces. The results of the one-dimensional case are recovered in the limit where the interfaces are strongly driven. Even with simple hard-core repulsion between the interfaces and the particles, diffusion is found to depend strongly on the details of the dynamical rules of particles close to the interfaces.

  1. Urban diffusion problems

    International Nuclear Information System (INIS)

    Hanna, S.R.

    1976-01-01

    It is hoped that urban diffusion models of air pollutants can eventually confidently be used to make major decisions, such as in planning the layout of a new industrial park, determining the effects of a new highway on air quality, or estimating the results of a new automobile emissions exhaust system. The urban diffusion model itself should be able to account for point, line, and area sources, and the local aerodynamic effects of street canyons and building wakes. Removal or transformations due to dry or wet deposition and chemical reactions are often important. It would be best if the model included meteorological parameters such as wind speed and temperature as dependent variables, since these parameters vary significantly when air passes from rural surfaces over urban surfaces

  2. Air quality in a simulated office environment as a result of reducing pollution sources and increasing ventilation

    DEFF Research Database (Denmark)

    Wargocki, Pawel; Bako-Biro, Zsolt; Clausen, Geo

    2002-01-01

    Air quality was studied in an office space classified as low-polluting and ventilated with outdoor air at a rate of 1 h-1. The pollution load in the space was changed by introducing or removing common building-related indoor pollution sources (linoleum, sealant and wooden shelves with books and p...

  3. Gender, airborne chemical monitoring, and physical work environment are related to indoor air symptoms among nonindustrial workers in the Klang Valley, Malaysia

    Directory of Open Access Journals (Sweden)

    Syazwan AI

    2013-03-01

    Full Text Available Aizat Ismail Syazwan,1 Juahir Hafizan,2 Mohd Rafee Baharudin,1 Ahmad Zaid Fattah Azman,1 Zulkapri Izwyn,3 Ismail Zulfadhli,4 Katis Syahidatussyakirah11Department of Community Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia; 2Department of Environmental Science/Environmental Forensics Research Center (ENFORCE, Universiti Putra Malaysia, Selangor, 3Department of Biosciences and Health Science, Universiti Teknologi Malaysia; 4Faculty of Built Environment, Universiti Teknologi Malaysia, Johor, MalaysiaObjectives: The purpose of this study was to analyze the relationship of airborne chemicals and the physical work environment risk element on the indoor air symptoms of nonindustrial workers.Design: A cross-sectional study consisting of 200 office workers. A random selection of 200 buildings was analyzed for exposure and indoor air symptoms based on a pilot study in the Klang Valley, Malaysia.Methods: A set of modified published questionnaires by the Department of Occupational Safety and Health (DOSH, Malaysia and a previous study (MM040NA questionnaire pertaining to indoor air symptoms was used in the evaluation process of the indoor air symptoms. Statistical analyses involving logistic regression and linear regression were used to determine the relationship between exposure and indoor air symptoms for use in the development of an indoor risk matrix.Results: The results indicate that some indoor air pollutants (carbon monoxide, formaldehyde, total volatile organic compound, and dust are related to indoor air symptoms of men and women. Temperature and relative humidity showed a positive association with complaints related to the perceived indoor environmental condition (drafts and inconsistency of temperature. Men predominantly reported general symptoms when stratification of gender involved exposure to formaldehyde. Women reported high levels of complaints related to mucosal and general symptoms from exposure to the dust

  4. Molecular investigation of Staphylococcus aureus isolated from the patients, personnel, air and environment of an ICU in a hospital in Tehran.

    Science.gov (United States)

    Mirzaii, Mehdi; Emaneini, Mohammad; Jabalameli, Fereshteh; Halimi, Shahnaz; Taherikalani, Morovat

    2015-01-01

    The aim of this study was to determine the prevalence and characteristics of Staphylococcus aureus isolates from the patients, staff, air and environments of an ICU in a hospital in Tehran. During this study, 37 S. aureus isolates were collected and analyzed via the spa typing method. Of the 37 S. aureus isolates, 35 (94%) were methicillin resistant (MRSA), 28 (76%) were identified as SCCmec types III or IIIA, four (10%) were identified as SCCmec types I or IA and three (8%) were identified a SCCmec type IV. All of the MRSA isolates were resistant to oxacillin and contained mecA. The isolates were all spa typed and found to comprise 11 spa types, including t7688, t7689, and t7789, which have not previously been reported. The spa type t7688 was isolated from the hands of two ICU personnel. The spa type t7689 was observed among five isolates from the air and the environment. The spa type t7789 was observed among three isolates from the patients, ventilators and the air. The majority of the isolates (43%) belonged to spa types t030 and t037. Our results revealed that MRSA strains that were isolated from the air, the environment of the ICU and the patients who were colonized or infected with MRSA often exhibited the same spa and SCCmec types. These results also reveal that the isolates from the patients and environment were usually indistinguishable. Copyright © 2014 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  5. Oxygen diffusion through soil covers on sulphidic mine tailings

    International Nuclear Information System (INIS)

    Yanful, E.K.

    1993-01-01

    Engineered soil covers are being evaluated under Canada's Mine Environment Neutral Drainage (MEND) program for their effectiveness in preventing and controlling acid generation in sulfidic mill tailings. A critical parameter for predicting the performance of these covers is the diffusion coefficient of gaseous oxygen in the cover materials. Laboratory experiments conducted to determine the effective diffusion coefficient of a candidate cover material, a glacial till from an active mine site, are described. The diffusion coefficient is determined by fitting a semianalytic solution of the one-dimensional, transient diffusion equation to experimental gaseous oxygen concentration versus time graphs. Effective diffusion coefficients determined at high water saturations (85%--95%) were of the order of 8 x 10 -8 m 2 /s. The diffusion coefficients decreased with increase in water saturation as a result of the low diffusivity of gaseous oxygen in water relative to that in air and the low solubility of oxygen in water. Placement of soil covers in high saturation conditions would ensure that the flux of oxygen into tailings underneath such covers is low, resulting in low acid flux. This is confirmed by combined laboratory, field, and modeling studies

  6. Danish activities concerning noise in the environment (A)

    DEFF Research Database (Denmark)

    Ingerslev, Fritz

    1982-01-01

    the country in international collaboration. It is claimed that noise abatement will be diffuse and weak, if it is not based on a national strategy. The discussion of noise in the environment covers: external industrial noise, road traffic noise, and air traffic noise. The principles on which the maximum...

  7. Utilisation of an Air-conditioning System to Control the Levels of Radon and Radon Progeny in a Workplace Environment

    International Nuclear Information System (INIS)

    Marley, F.

    2000-01-01

    From long-term real-time radon and radon progeny measurements taken in a relatively large retail store, cyclical patterns were evident, which were found to relate to the overriding influence of the timed air-conditioning system. Concentration of radon, radon progeny and the variability of F factor were found to depend significantly on the intermittent operation of this ventilation-air-conditioning system. After pressure equalisation remedial measures proved ineffective, the air-movement system was utilised to reduce the levels of radon and radon progeny to well within established norms applicable during working hours. It is demonstrated that the average levels for radon and radon progeny are reduced in absolute terms. This amounted to less than 12% of the general level, during designated work periods. Where air movement systems are already installed, as well as other circumstances, their regulation provides an economical solution to meeting legal and other standards for radon in the workplace. (author)

  8. Interaction between heterogeneous environmental quality domains (air, water, land, socio-demographic and built environment) on preterm birth.

    Science.gov (United States)

    Environmental exposures are often measured individually, though many occur in tandem. To address aggregate exposures, a county-level Environmental Quality Index (EQI) representing five environmental domains (air, water, land, built and sociodemographic) was constructed. Recent st...

  9. Methodology for setup and data processing of mobile air quality measurements to assess the spatial variability of concentrations in urban environments

    International Nuclear Information System (INIS)

    Van Poppel, Martine; Peters, Jan; Bleux, Nico

    2013-01-01

    A case study is presented to illustrate a methodology for mobile monitoring in urban environments. A dataset of UFP, PM 2.5 and BC concentrations was collected. We showed that repeated mobile measurements could give insight in spatial variability of pollutants at different micro-environments in a city. Streets of contrasting traffic intensity showed increased concentrations by a factor 2–3 for UFP and BC and by 2.5 . The first quartile (P25) of the mobile measurements at an urban background zone seems to be good estimate of the urban background concentration. The local component of the pollutant concentrations was determined by background correction. The use of background correction reduced the number of runs needed to obtain representative results. The results presented, are a first attempt to establish a methodology for setup and data processing of mobile air quality measurements to assess the spatial variability of concentrations in urban environments. -- Highlights: ► Mobile measurements are used to assess the variability of air pollutants in urban environments. ► PM 2.5 , BC and UFP concentrations are presented for zones with different traffic characteristics. ► A methodology for background correction based on the mobile measurements is presented. ► The background concentration is estimated as the 25th percentile of the urban background data. ► The minimum numbers of runs for a representative estimate is reduced after background correction. -- This paper shows that the spatial variability of air pollutants in an urban environment can be assessed by a mobile monitoring methodology including background correction

  10. Development of methods for evaluating options for improving air quality in Santiago, Chile and its environs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M.D.; Brown, M.J.

    1993-10-01

    Santiago, Chile has a serious air pollution problem. Aerosols reach very high levels and ozone exceeds US ambient standards on over 100 days a year. Chileans are very concerned about the poor air quality of Santiago and the effect of emissions from their copper smelters both near Santiago and at other sites. Officials from both the Santiago metropolitan air quality commission (La Comision Especial de Descontaminacion de le Region Metropolitana) and a government owned copper development company (La Empress Nacional de Mineria (ENAMI)) have asked for assistance to deal with the air quality problems in the city and associated with smelter emissions. This report describes the first steps in that effort. Santiago lies in a valley between a small coastal range to the west and the towering Andes to the cast. Air motion is greatly affected by the major topographical features which include the Pacific Ocean, the coastal range, and the Andes. In this first year of work the authors concentrated on gathering information on the meteorology, topography, and air quality of the metropolitan region. They examined two smelter sites and applied models to them to help their understanding and to provide assistance to ENAMI. One smelter, Ventanas, was located on the Pacific coast to the northwest of Santiago, while the other, Paipote, was located several hundred kilometers to the north. The Ventanas emissions may potentially affect Santiago air quality. Several advantages of working with the smelters in the first phase of the project are: (1) there is more monitoring in the vicinity of the smelters, (2) the development of a useful emission inventory is easier, (3) they pose a simpler problem of immediate interest whose resolution will provide an early benefit to the Chilean colleagues, and (4) the authors gain important experience as they prepare to delve deeper into Santiago`s air pollution problems.

  11. Re-Examination of Mixed Media Communication: The Impact of Voice, Data Link, and Mixed Air Traffic Control Environments on the Flight Deck

    Science.gov (United States)

    Dunbar, Melisa; McGann, Alison; Mackintosh, Margaret-Anne; Lozito, Sandra; Ashford, Rose (Technical Monitor)

    2001-01-01

    A simulation in the B747-400 was conducted at NASA Ames Research Center that compared how crews handled voice and data link air traffic control (ATC) messages in a single medium versus a mixed voice and data link ATC environment The interval between ATC messages was also varied to examine the influence of time pressure in voice, data link, and mixed ATC environments. For messages sent via voice, transaction times were lengthened in the mixed media environment for closely spaced messages. The type of environment did not affect data link times. However, messages times were lengthened in both single and mixed-modality environments under time pressure. Closely spaced messages also increased the number of requests for clarification for voice messages in the mixed environment and review menu use for data link messages. Results indicated that when time pressure is introduced, the mix of voice and data link does not necessarily capitalize on the advantages of both media. These findings emphasize the need to develop procedures for managing communication in mixed voice and data link environments.

  12. Development of More Cost-Effective Methods for Long-Term Monitoring of Soil Vapor Intrusion to Indoor Air Using Quantitative Passive Diffusive-Adsorptive Sampling Techniques

    Science.gov (United States)

    2015-05-01

    ASTM ASTM International ASU Arizona State University ATD automated thermal desorption BENZ Benzene C/Co passive sampler concentration...Protection Agency [USEPA], 1998a, b; California Department of Toxic Substance Control, 2011; ASTM International [ASTM] D7758, 2011). This demonstration... microporous sintered polyethylene, through which the vapors diffuse. Figure 1b. Radiello sampler with regular (white) and low-uptake rate

  13. Flow characteristics in occupied zone – An experimental study with symmetrically located thermal plumes and low-momentum diffuse ceiling air distribution

    DEFF Research Database (Denmark)

    Lestinen, Sami; Kilpeläinen, Simo; Kosonen, Risto

    2018-01-01

    and turbulent mixing that can further yield a draught discomfort in an occupied zone. The main objective was to investigate large-scale airflow patterns and fluctuations as a result of interaction of buoyancy flows and diffuse ceiling flow. Experiments were performed in a test room of 5.5 m (length) x 3.8 m...

  14. Investigation of the quality of stored red blood cells after simulated air drop in the maritime environment.

    Science.gov (United States)

    Meli, Athinoula; Hancock, Vicky; Doughty, Heidi; Smedley, Steve; Cardigan, Rebecca; Wiltshire, Michael

    2018-02-01

    Maritime medical capability may be compromised by blood resupply. Air-dropped red blood cells (RBCs) is a possible mitigation factor. This study set out to evaluate RBC storage variables after a simulated parachute air drop into the sea, as limited data exist. The air load construction for the air drop of blood was subject to static drop assessment to simulate a worst-case parachute drop scenario. One control and two test Golden Hour shipping containers were each packaged with 10 RBC units. The control box was not dropped; Test Boxes 1 and 2 were further reinforced with waterproof boxes and underwent a simulated air drop on Day 7 or Day 8 postdonation, respectively. One day after the drop and once a week thereafter until Day 43 of storage, RBCs from each box were sampled and tested for full blood counts, hemolysis, adenosine triphosphate, 2,3-diphosphoglycerate, pH, extracellular potassium, glucose, lactate, deformability, and RBC microvesicles. The packaging configuration completed the air drop with no water ingress or physical damage. All units met UK specifications for volume, hemoglobin, and hemolysis. There were no significant differences for any of the variables studied between RBCs in the control box compared to RBCs in Test Boxes 1 and 2 combined over storage. The test proved that the packaging solution and the impact of a maritime air drop as performed in this study, on Day 7 or Day 8 postdonation, did not affect the in vitro quality of RBCs in SAGM over storage for 35 days. © 2017 AABB.

  15. A Sustainable Industry-Environment Model for the Identification of Urban Environmental Risk to Confront Air Pollution in Beijing, China

    OpenAIRE

    Guilin Gao; Xueting Zeng; Chunjiang An; Lei Yu

    2018-01-01

    In this study, an optimized industry-environment model is proposed for identifying environmental risk under uncertainties. The strategy associated with an emission-permit trading mechanism has been introduced into the industrial-environment regulation (model) for remitting the pressures of frequent/severe haze events in Beijing City. A dual stochastic mixed fuzzy risk analysis method with Laplace’s criterion (DSFRL) can be embedded into industry-environment issues with a trading emission-perm...

  16. Synergy between air pollution and urban meteorological changes through aerosol-radiation-diffusion feedback―A case study of Beijing in January 2013

    Science.gov (United States)

    Kajino, Mizuo; Ueda, Hiromasa; Han, Zhiwei; Kudo, Rei; Inomata, Yayoi; Kaku, Hidenori

    2017-12-01

    The interactions of aerosol-radiation-stratification-turbulence-cloud processes during a severe haze event in Beijing in January 2013 were studied using a numerical model. For the clear days, solar radiation flux was reduced by approximately 15% and surface temperature was slightly decreased from 0 to 0.5 K throughout the day and night, except for a 1.4 K decrease around sunrise when fog was presented. The longwave radiation cooling was intensified by the fog or drizzle droplets near the top of the fog layer. Thus, in Beijing, both in the daytime and at night, the surface air temperature was decreased by air pollutants. In the presence of the low-level stratus and light precipitation, the modification of meteorology by aerosols was amplified and changed the wind speed and direction much more significantly compared to clear days. The non-linear effect (or positive feedback) of pollutant emission control on the surface air concentration was newly assessed―severe air pollution leads to the intensification of stable stratification near the surface at night and delays the evolution of the mixing layer, which in turn causes more severe air pollution. The non-linear effect was not significant for the current emission levels in the current case, approximately 10%. In another word, the mixing ratio of aerosols became higher by 10% due to their radiation effects.

  17. Determination and behaviour of plutonium emitted with liquid effluents and exhaust air into the environment of the Nuclear Research Centre Karlsruhe

    International Nuclear Information System (INIS)

    Schuettelkopf, H.; Pimpl, M.

    1986-01-01

    The plutonium concentrations in the surroundings of the Karlsruhe Nuclear Research Centre (KfK) are in the range of variation of the global plutonium contamination caused by fallout of atmospheric nuclear tests. Exclusively in the sediments of the Old River Rhine, which serves as main canal for the liquid effluents, higher plutonium concentrations could be detected. The dose exposure of the population living in the environment of the KfK caused by the measured plutonium concentrations is negligible low. From the Karlsruhe Reprocessing Plant (WAK) and the facilities needed to decontaminate radioactive wastes 0.48 GBq (13 mCi) plutonium alpha activity has been emitted within 11 years of operation until 1982 - 1/3 with the liquid effluents and 2/3 with the exhaust air. Following the pathway with the exhaust air, plutonium concentrations in the environment of the Karlsruhe Reprocessing Plant were measured in groundlevel air, in soil, in plants, in food and in animal tissues. Radioecological parameters like dispersion factors, deposition velocities, migration velocities in soil and transfer soil-to-plant were investigated. Following the pathway with the liquid effluents, plutonium concentrations were measured in surface waters, sediments, water plants, plankton and animals. Dilution and sedimentation behaviour were studied as well as the transfer water-to-plant and water-to-animals. (orig.) [de

  18. Extensive Viable Middle East Respiratory Syndrome (MERS) Coronavirus Contamination in Air and Surrounding Environment in MERS Isolation Wards.

    Science.gov (United States)

    Kim, Sung-Han; Chang, So Young; Sung, Minki; Park, Ji Hoon; Bin Kim, Hong; Lee, Heeyoung; Choi, Jae-Phil; Choi, Won Suk; Min, Ji-Young

    2016-08-01

    The largest outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) outside the Middle East occurred in South Korea in 2015 and resulted in 186 laboratory-confirmed infections, including 36 (19%) deaths. Some hospitals were considered epicenters of infection and voluntarily shut down most of their operations after nearly half of all transmissions occurred in hospital settings. However, the ways that MERS-CoV is transmitted in healthcare settings are not well defined. We explored the possible contribution of contaminated hospital air and surfaces to MERS transmission by collecting air and swabbing environmental surfaces in 2 hospitals treating MERS-CoV patients. The samples were tested by viral culture with reverse transcription polymerase chain reaction (RT-PCR) and immunofluorescence assay (IFA) using MERS-CoV Spike antibody, and electron microscopy (EM). The presence of MERS-CoV was confirmed by RT-PCR of viral cultures of 4 of 7 air samples from 2 patients' rooms, 1 patient's restroom, and 1 common corridor. In addition, MERS-CoV was detected in 15 of 68 surface swabs by viral cultures. IFA on the cultures of the air and swab samples revealed the presence of MERS-CoV. EM images also revealed intact particles of MERS-CoV in viral cultures of the air and swab samples. These data provide experimental evidence for extensive viable MERS-CoV contamination of the air and surrounding materials in MERS outbreak units. Thus, our findings call for epidemiologic investigation of the possible scenarios for contact and airborne transmission, and raise concern regarding the adequacy of current infection control procedures. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  19. Landscapes, depositional environments and human occupation at Middle Paleolithic open-air sites in the southern Levant, with new insights from Nesher Ramla, Israel

    Science.gov (United States)

    Zaidner, Yossi; Frumkin, Amos; Friesem, David; Tsatskin, Alexander; Shahack-Gross, Ruth

    2016-04-01

    Middle Paleolithic human occupation in the Levant (250-50 ka ago) has been recorded in roofed (cave and rockshelter) and open-air sites. Research at these different types of sites yielded different perspectives on the Middle Paleolithic human behavior and evolution. Until recently, open-air Middle Paleolithic sites in the Levant were found in three major sedimentary environments: fluvial, lake-margin and spring. Here we describe a unique depositional environment and formation processes at the recently discovered open-air site of Nesher Ramla (Israel) and discuss their contribution to understanding site formation processes in open-air sites in the Levant. The site is 8-m-thick Middle Paleolithic sequence (OSL dated to 170-80 ka) that is located in a karst sinkhole formed by gravitational deformation and sagging into underground voids. The sedimentary sequence was shaped by gravitational collapse, cyclic colluviation of soil and gravel into the depression, waterlogging, in situ pedogenesis and human occupation. Original bedding and combustion features are well-preserved in the Lower archaeological sequence, a rare occurrence in comparison to other open-air archaeological sites. This phenomenon coincides with episodes of fast sedimentation/burial, which also allowed better preservation of microscopic remains such as ash. The Upper archaeological sequence does not exhibit bedding or preservation of ash, despite presence of heat-affected lithic artifacts, which makes it similar to other open-air sites in the Levant. We suggest that rate of burial is the major factor that caused the difference between the Upper and Lower sequences. The differences in the burial rate may be connected to environmental and vegetation changes at the end of MIS 6. We also identified an interplay between sediment in-wash and density of human activity remains, i.e. during episodes of low natural sediment input the density of artifacts is higher relative to episodes with high rate of sediment in

  20. Temperature-Dependent Diffusion of H2SO4 in Air at Atmospherically Relevant Conditions: Laboratory Measurements Using Laminar Flow Technique.

    Czech Academy of Sciences Publication Activity Database

    Brus, David; Škrabalová, Lenka; Herrmann, E.; Olenius, T.; Trávníčková, Tereza; Makkonen, U.; Merikanto, J.

    2017-01-01

    Roč. 8, č. 7 (2017), č. článku 132. ISSN 2073-4433 R&D Projects: GA ČR GAP209/11/1342 Grant - others:ERC(FI) 257360; AFCE(FI) 272041; GA AF(FI) 288440 Institutional support: RVO:67985858 Keywords : diffusion coefficient * sulfuric acid * laminar flow tube Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 1.487, year: 2016

  1. Numerical model for stack gas diffusion in terrain with buildings. Variations in air flow and gas concentration with additional building near stack

    International Nuclear Information System (INIS)

    Sada, Koichi; Michioka, Takenobu; Ichikawa, Yoichi; Komiyama, Sumito; Numata, Kunio

    2009-01-01

    A numerical simulation method for predicting atmospheric flow and stack gas diffusion using a calculation domain of several km around a stack under complex terrain conditions containing buildings has been developed. The turbulence closure technique using a modified k-ε-type model without a hydrostatic approximation was used for flow calculation, and some of the calculation grids near the ground were treated as buildings using a terrain-following coordinate system. Stack gas diffusion was predicted using the Lagrangian particle model, that is, the stack gas was represented by trajectories of released particles. The developed numerical model was applied to a virtual terrain and building conditions in this study prior to the applications of a numerical model for real terrain and building conditions. The height of the additional building (H a ), located about 200 m leeward from the stack, was varied (i.e., H a =0, 20, 30 and 50 m), and its effects on airflow and the concentration of stack gas at a released height of 75 m were calculated. Furthermore, effective stack height, which was used in the safety analysis of atmospheric diffusion for nuclear facilities in Japan, was evaluated from the calculated ground-level concentration of stack gas. The cavity region behind the additional building was calculated, and turbulence near the cavity was observed to decrease when the additional building was present. According to these flow variations with the additional building, tracer gas tended to diffuse to the ground surface rapidly with the additional building at the leeward position of the cavity, and the ground-level stack gas concentration along the plume axis also increased with the height of the additional building. However, the variations in effective stack height with the height of the additional building were relatively small and ranged within several m in this study. (author)

  2. Environment of care: Is it time to reassess microbial contamination of the operating room air as a risk factor for surgical site infection in total joint arthroplasty?

    Science.gov (United States)

    Parvizi, Javad; Barnes, Sue; Shohat, Noam; Edmiston, Charles E

    2017-11-01

    In the modern operating room (OR), traditional surgical mask, frequent air exchanges, and architectural barriers are viewed as effective in reducing airborne microbial populations. Intraoperative sampling of airborne particulates is rarely performed in the OR because of technical difficulties associated with sampling methodologies and a common belief that airborne contamination is infrequently associated with surgical site infections (SSIs). Recent studies suggest that viable airborne particulates are readily disseminated throughout the OR, placing patients at risk for postoperative SSI. In 2017, virtually all surgical disciplines are engaged in the implantation of selective biomedical devices, and these implants have been documented to be at high risk for intraoperative contamination. Approximately 1.2 million arthroplasties are performed annually in the United States, and that number is expected to increase to 3.8 million by the year 2030. The incidence of periprosthetic joint infection is perceived to be low (<2.5%); however, the personal and fiscal morbidity is significant. Although the pharmaceutic and computer industries enforce stringent air quality standards on their manufacturing processes, there is currently no U.S. standard for acceptable air quality within the OR environment. This review documents the contribution of air contamination to the etiology of periprosthetic joint infection, and evidence for selective innovative strategies to reduce the risk of intraoperative microbial aerosols. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  3. Satellite-Surface Perspectives of Air Quality and Aerosol-Cloud Effects on the Environment: An Overview of 7-SEAS BASELInE

    Science.gov (United States)

    Tsay, Si-Chee; Maring, Hal B.; Lin, Neng-Huei; Buntoung, Sumaman; Chantara, Somporn; Chuang, Hsiao-Chi; Gabriel, Philip M.; Goodloe, Colby S.; Holben, Brent N.; Hsiao, Ta-Chih; hide

    2016-01-01

    The objectives of 7-SEASBASELInE (Seven SouthEast Asian Studies Biomass-burning Aerosols and Stratocumulus Environment: Lifecycles and Interactions Experiment) campaigns in spring 2013-2015 were to synergize measurements from uniquely distributed ground-based networks (e.g., AERONET (AErosol RObotic NETwork)), MPLNET ( NASA Micro-Pulse Lidar Network)) and sophisticated platforms (e.g.,SMARTLabs (Surface-based Mobile Atmospheric Research and Testbed Laboratories), regional contributing instruments), along with satellite observations retrievals and regional atmospheric transport chemical models to establish a critically needed database, and to advance our understanding of biomass-burning aerosols and trace gases in Southeast Asia (SEA). We present a satellite-surface perspective of 7-SEASBASELInE and highlight scientific findings concerning: (1) regional meteorology of moisture fields conducive to the production and maintenance of low-level stratiform clouds over land; (2) atmospheric composition in a biomass-burning environment, particularly tracers-markers to serve as important indicators for assessing the state and evolution of atmospheric constituents; (3) applications of remote sensing to air quality and impact on radiative energetics, examining the effect of diurnal variability of boundary-layer height on aerosol loading; (4) aerosol hygroscopicity and ground-based cloud radar measurements in aerosol-cloud processes by advanced cloud ensemble models; and (5) implications of air quality, in terms of toxicity of nanoparticles and trace gases, to human health. This volume is the third 7-SEAS special issue (after Atmospheric Research, vol. 122, 2013; and Atmospheric Environment, vol. 78, 2013) and includes 27 papers published, with emphasis on air quality and aerosol-cloud effects on the environment. BASELInE observations of stratiform clouds over SEA are unique, such clouds are embedded in a heavy aerosol-laden environment and feature characteristically greater

  4. Conservative diffusions

    International Nuclear Information System (INIS)

    Carlen, E.A.

    1984-01-01

    In Nelson's stochastic mechanics, quantum phenomena are described in terms of diffusions instead of wave functions. These diffusions are formally given by stochastic differential equations with extremely singular coefficients. Using PDE methods, we prove the existence of solutions. This reult provides a rigorous basis for stochastic mechanics. (orig.)

  5. Diffuse Ceiling Ventilation

    DEFF Research Database (Denmark)

    Zhang, Chen; Yu, Tao; Heiselberg, Per Kvols

    cooling capacity, energy saving, low investment cost and low noise level; while the limitations include condensation risk and the limit on the room geometry. Furthermore, the crucial design parameters are summarized and their effects on the system performance are discussed. In addition to the stand...... is not well structured with this system. These become the motivations in developing the design guide. This design guide aims to establish a systematic understanding of diffuse ceiling ventilation and provide assistance in designing of such a system. The guide is targeted at design engineers, architects...... and manufacturers and the users of diffuse ceiling technology. The design guide introduces the principle and key characteristics of room air distribution with diffuse ceiling ventilation. It provides an overview of potential benefit and limitations of this technology. The benefits include high thermal comfort, high...

  6. Development of a High-Fidelity Simulation Environment for Shadow-Mode Assessments of Air Traffic Concepts

    Science.gov (United States)

    Robinson, John E., III; Lee, Alan; Lai, Chok Fung

    2017-01-01

    This paper describes the Shadow-Mode Assessment Using Realistic Technologies for the National Airspace System (SMART-NAS) Test Bed. The SMART-NAS Test Bed is an air traffic simulation platform being developed by the National Aeronautics and Space Administration (NASA). The SMART-NAS Test Bed's core purpose is to conduct high-fidelity, real-time, human-in-the-loop and automation-in-the-loop simulations of current and proposed future air traffic concepts for the United States' Next Generation Air Transportation System called NextGen. The setup, configuration, coordination, and execution of realtime, human-in-the-loop air traffic management simulations are complex, tedious, time intensive, and expensive. The SMART-NAS Test Bed framework is an alternative to the current approach and will provide services throughout the simulation workflow pipeline to help alleviate these shortcomings. The principle concepts to be simulated include advanced gate-to-gate, trajectory-based operations, widespread integration of novel aircraft such as unmanned vehicles, and real-time safety assurance technologies to enable autonomous operations. To make this possible, SNTB will utilize Web-based technologies, cloud resources, and real-time, scalable, communication middleware. This paper describes the SMART-NAS Test Bed's vision, purpose, its concept of use, and the potential benefits, key capabilities, high-level requirements, architecture, software design, and usage.

  7. Levels, distribution and air-soil exchange fluxes of polychlorinated biphenyls (PCBs) in the environment of Punjab Province, Pakistan.

    Science.gov (United States)

    Syed, Jabir Hussain; Malik, Riffat Naseem; Li, Jun; Zhang, Gan; Jones, Kevin C

    2013-11-01

    An initial survey of the concentrations of polychlorinated biphenyl (PCB) compounds in air and soils across industrial and agricultural areas of Punjab Province, Pakistan, was conducted from January to March 2011. The total concentration of all PCBs (31 PCBs) ranged from 34 to 389pgm(-3) in air and from 7 to 45ngg(-1) dry weight in soils, where both ranges were similar to the average ranges in other areas of the world. PCBs were elevated across industrial regions near urban and industrial sources. Consistently low air concentrations of PCBs at the agricultural sites suggest that they are less widespread or uniformly distributed in the Pakistani atmosphere. The calculated air and soil fugacity fraction values indicated that soils are a potential secondary source of PCBs in agricultural areas, whereas they are in equilibrium or atmospheric deposition in industrial and urban areas. TEQ concentrations of dioxin-like PCBs for soil samples met the Canadian standard. However, local authorities should address the human health threats from urban and industrial soils in Punjab Province, Pakistan. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Economic growth and the environment: reassessing the environmental Kuznets Curve for air pollution emissions in OECD countries

    NARCIS (Netherlands)

    Georgiev, E.S.; Mihaylov, E.S.

    2015-01-01

    This paper tests the Environmental Kuznets Curve (EKC) hypothesis for four local (SOx, NOx , CO, VOC) and two global (CO2, GHG) air pollutants. Using a panel data set of thirty OECD countries, the paper finds that the postulated inverted U-shaped relationship between income and pollution does not

  9. Turbulent eddy diffusion models in exposure assessment - Determination of the eddy diffusion coefficient.

    Science.gov (United States)

    Shao, Yuan; Ramachandran, Sandhya; Arnold, Susan; Ramachandran, Gurumurthy

    2017-03-01

    The use of the turbulent eddy diffusion model and its variants in exposure assessment is limited due to the lack of knowledge regarding the isotropic eddy diffusion coefficient, D T . But some studies have suggested a possible relationship between D T and the air changes per hour (ACH) through a room. The main goal of this study was to accurately estimate D T for a range of ACH values by minimizing the difference between the concentrations measured and predicted by eddy diffusion model. We constructed an experimental chamber with a spatial concentration gradient away from the contaminant source, and conducted 27 3-hr long experiments using toluene and acetone under different air flow conditions (0.43-2.89 ACHs). An eddy diffusion model accounting for chamber boundary, general ventilation, and advection was developed. A mathematical expression for the slope based on the geometrical parameters of the ventilation system was also derived. There is a strong linear relationship between D T and ACH, providing a surrogate parameter for estimating D T in real-life settings. For the first time, a mathematical expression for the relationship between D T and ACH has been derived that also corrects for non-ideal conditions, and the calculated value of the slope between these two parameters is very close to the experimentally determined value. The values of D T obtained from the experiments are generally consistent with values reported in the literature. They are also independent of averaging time of measurements, allowing for comparison of values obtained from different measurement settings. These findings make the use of turbulent eddy diffusion models for exposure assessment in workplace/indoor environments more practical.

  10. A regression-based method for mapping traffic-related air pollution. Application and testing in four contrasting urban environments

    International Nuclear Information System (INIS)

    Briggs, D.J.; De Hoogh, C.; Elliot, P.; Gulliver, J.; Wills, J.; Kingham, S.; Smallbone, K.

    2000-01-01

    Accurate, high-resolution maps of traffic-related air pollution are needed both as a basis for assessing exposures as part of epidemiological studies, and to inform urban air-quality policy and traffic management. This paper assesses the use of a GIS-based, regression mapping technique to model spatial patterns of traffic-related air pollution. The model - developed using data from 80 passive sampler sites in Huddersfield, as part of the SAVIAH (Small Area Variations in Air Quality and Health) project - uses data on traffic flows and land cover in the 300-m buffer zone around each site, and altitude of the site, as predictors of NO 2 concentrations. It was tested here by application in four urban areas in the UK: Huddersfield (for the year following that used for initial model development), Sheffield, Northampton, and part of London. In each case, a GIS was built in ArcInfo, integrating relevant data on road traffic, urban land use and topography. Monitoring of NO 2 was undertaken using replicate passive samplers (in London, data were obtained from surveys carried out as part of the London network). In Huddersfield, Sheffield and Northampton, the model was first calibrated by comparing modelled results with monitored NO 2 concentrations at 10 randomly selected sites; the calibrated model was then validated against data from a further 10-28 sites. In London, where data for only 11 sites were available, validation was not undertaken. Results showed that the model performed well in all cases. After local calibration, the model gave estimates of mean annual NO 2 concentrations within a factor of 1.5 of the actual mean (approx. 70-90%) of the time and within a factor of 2 between 70 and 100% of the time. r 2 values between modelled and observed concentrations are in the range of 0.58-0.76. These results are comparable to those achieved by more sophisticated dispersion models. The model also has several advantages over dispersion modelling. It is able, for example, to

  11. Analysis of innovation diffusion theory under “micro” environment - Survey analysis of application and promotion of WeChat among the youth group

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2016-01-01

    Full Text Available Since WeChat has been launched in 2011, as of the first quarter of 2015, the active users have reached 549 million per month1. WeChat has become the largest mobile instant messaging software among the user groups in Asia. Therefore, WeChat is no longer “micro”, and grabs the attention of more youth groups by virtue of the “micro” advantages in the Internet era in a way of low-priced new media. Through sorting 192 effective questionnaires recovered, this paper summarizes some transmitting tendency and suggestions of “micro” innovation diffusion from the research view of the concept of innovation diffusion theory, and development stage of WeChat in the youth group, based on the survey data and by the use of the statistics of informatics, qualitative and quantitative analysis method, so as to provide a certain theoretical basis for the future research of WeChat.

  12. Application of the Monte Carlo method in calculation of energy-time distribution from a pulsed photon source in homogeneous air environment

    International Nuclear Information System (INIS)

    Ilic, R.D.; Vojvodic, V.I.; Orlic, M.P.

    1981-01-01

    The stochastic nature of photon interactions with matter and the characteristics of photon transport through real materials, are very well suited for applications of the Monte Carlo method in calculations of the energy-space distribution of photons. Starting from general principles of the Monte Carlo method, physical-mathematical model of photon transport from a pulsed source is given for the homogeneous air environment. Based on that model, a computer program is written which is applied in calculations of scattered photons delay spectra and changes of the photon energy spectrum. Obtained results provide the estimation of the timespace function of the electromagnetic field generated by photon from a pulsed source. (author)

  13. Air pollution around the Keihin heavy chemical industrial zone, and living environment and health injury in the inhabitants therein

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, I

    1975-08-01

    A survey of air pollution levels and the health of high school pupils and their parents was conducted in a heavily industrialized area of Kawasaki, Japan. The concentration of sulfur oxides in 1974 was about half of that in 1970 (0.029 ppM). The concentration of nitrogen oxides ranged from 0.030 to 0.040 ppM. There was a correlation between the concentrations of oxides of sulfur nitrogen. According to questionnaires, about 32 percent of the inhabitants showed concern about air pollution and photochemical smog. About 22 percent of the inhabitants complained of symptoms such as cold, rhinitis, and pharyngitis; and there was a correlation between total subjective symptoms and concentration of sulfur oxides. Near roadsides the concentration of nitrogen oxides was very high. Green plants are gradually disappearing from the heavily polluted area. Further industrialization in this area appears to be very dangerous for man and other living things.

  14. Effect of air pollution and racism on ethnic differences in respiratory health among adolescents living in an urban environment.

    Science.gov (United States)

    Astell-Burt, Thomas; Maynard, Maria J; Lenguerrand, Erik; Whitrow, Melissa J; Molaodi, Oarabile R; Harding, Seeromanie

    2013-09-01

    Recent studies suggest that stress can amplify the harm of air pollution. We examined whether experience of racism and exposure to particulate matter with an aerodynamic diameter of less than 2.5 µm and 10 µm (PM2.5 and PM10) had a synergistic influence on ethnic differences in asthma and lung function across adolescence. Analyses using multilevel models showed lower forced expiratory volume (FEV1), forced vital capacity (FVC) and lower rates of asthma among some ethnic minorities compared to Whites, but higher exposure to PM2.5, PM10 and racism. Racism appeared to amplify the relationship between asthma and air pollution for all ethnic groups, but did not explain ethnic differences in respiratory health. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Rooftop Air Conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shrestha, Som S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shen, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Linkous, Randall Lee [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Goetzler, William [Navigant Consulting Inc., Burlington, MA (United States); Guernsey, Matt [Navigant Consulting Inc., Burlington, MA (United States); Bargach, Youssef [Navigant Consulting Inc., Burlington, MA (United States)

    2016-09-01

    The Oak Ridge National Laboratory (ORNL) High-Ambient-Temperature Evaluation Program for Low-Global Warming Potential (Low-GWP) Refrigerants aims to develop an understanding of the performance of low-GWP alternative refrigerants relative to hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) refrigerants in packaged or Rooftop Unit (RTU) air conditioners under high-ambient-temperature conditions. This final report describes the parties involved, the alternative refrigerants selection process, the test procedures, and the final results.

  16. Non-technical skills evaluation in the critical care air ambulance environment: introduction of an adapted rating instrument--an observational study.

    Science.gov (United States)

    Myers, Julia A; Powell, David M C; Psirides, Alex; Hathaway, Karyn; Aldington, Sarah; Haney, Michael F

    2016-03-08

    In the isolated and dynamic health-care setting of critical care air ambulance transport, the quality of clinical care is strongly influenced by non-technical skills such as anticipating, recognising and understanding, decision making, and teamwork. However there are no published reports identifying or applying a non-technical skills framework specific to an intensive care air ambulance setting. The objective of this study was to adapt and evaluate a non-technical skills rating framework for the air ambulance clinical environment. In the first phase of the project the anaesthetists' non-technical skills (ANTS) framework was adapted to the air ambulance setting, using data collected directly from clinician groups, published literature, and field observation. In the second phase experienced and inexperienced inter-hospital transport clinicians completed a simulated critical care air transport scenario, and their non-technical skills performance was independently rated by two blinded assessors. Observed and self-rated general clinical performance ratings were also collected. Rank-based statistical tests were used to examine differences in the performance of experienced and inexperienced clinicians, and relationships between different assessment approaches and assessors. The framework developed during phase one was referred to as an aeromedical non-technical skills framework, or AeroNOTS. During phase two 16 physicians from speciality training programmes in intensive care, emergency medicine and anaesthesia took part in the clinical simulation study. Clinicians with inter-hospital transport experience performed more highly than those without experience, according to both AeroNOTS non-technical skills ratings (p = 0.001) and general performance ratings (p = 0.003). Self-ratings did not distinguish experienced from inexperienced transport clinicians (p = 0.32) and were not strongly associated with either observed general performance (r(s) = 0.4, p = 0

  17. Comparative levels of radioactive air pollutants from industry and fallout. A progress report of radioecological investigations of airborne radioactivity in the Utah environment

    International Nuclear Information System (INIS)

    Pendleton, R.C.

    1972-01-01

    Results are reported of measurements carried on during the year 1971 and the first two months of 1972 on the radioactivity from natural as compared to artificial radiation sources in the environment in Utah. During this time, a major portion of our work was devoted to analyses of the data and preparation of a report related to the Baneberry venting event and the accumulation of data on fallout from the January 7, 1972 Chinese nuclear explosion. Calibration procedures were developed for air samplers for the establishment of the numbers of pCi/m 3 in air. The responses of the air monitors in relationship to the ventilation index, seasonal effect, and the industrial complexity of the area were analyzed. Continuous measurements were made of the levels of radioactive materials in soils and vegetation and the results of these studies are presented mainly in tabular form. Comparisons have been made of the levels of radioactive materials in soils on the basis of square mile levels and the distribution of the radioactive materials in the soil profiles. Measurements of farm crops, including the major sources from which dairy products would be produced, have been made, and some comparisons by year and location have been made. Studies of secondary aerosols have been made using the dust accumulated on farm implements as the indicator of the kinds of secondary aerosols to which farmers and outdoorsmen might be exposed. These results would also be indicative of the kinds of dusts produced when high winds resuspend soil deposited radionuclides

  18. A novel genetic score approach using instruments to investigate interactions between pathways and environment: application to air pollution.

    Directory of Open Access Journals (Sweden)

    Marie-Abele Bind

    Full Text Available Air pollution has been associated with increased systemic inflammation markers. We developed a new pathway analysis approach to investigate whether gene variants within relevant pathways (oxidative stress, endothelial function, and metal processing modified the association between particulate air pollution and fibrinogen, C-reactive protein (CRP, intercellular adhesion molecule-1 (ICAM-1, and vascular cell adhesion molecule-1 (VCAM-1. Our study population consisted of 822 elderly participants of the Normative Aging Study (1999-2011. To investigate the role of biological mechanisms and to reduce the number of comparisons in the analysis, we created pathway-specific scores using gene variants related to each pathway. To select the most appropriate gene variants, we used the least absolute shrinkage and selection operator (Lasso to relate independent outcomes representative of each pathway (8-hydroxydeoxyguanosine for oxidative stress, augmentation index for endothelial function, and patella lead for metal processing to gene variants. A high genetic score corresponds to a higher allelic risk profile. We fit mixed-effects models to examine modification by the genetic score of the weekly air pollution association with the outcome. Among participants with higher genetic scores within the oxidative stress pathway, we observed significant associations between particle number and fibrinogen, while we did not find any association among participants with lower scores (p(interaction = 0.04. Compared to individuals with low genetic scores of metal processing gene variants, participants with higher scores had greater effects of particle number on fibrinogen (p(interaction = 0.12, CRP (p(interaction = 0.02, and ICAM-1 (pinteraction = 0.08. This two-stage penalization method is easy to implement and can be used for large-scale genetic applications.

  19. Quantitative determination of flame color and its determining factor in hydrocarbon/air laminar diffusion flames; Soryu kakusan kaen ni okeru kaenshoku no teiryoka to sono kettei yoin

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, S. [Asahikawa National College of Technology, Hokkaido (Japan); Fujita, O.; Ito, K. [Hokkaido University, Sapporo (Japan)

    1998-08-25

    The color of laminar diffusion flames burning propane, methane and ethylene was determined by chromaticity coordinates (x, y) defined by the CIE 1931 standard colorimetric system. The differences in flame color attributed to burning condition and fuel types were examined with a colorimeter. Spectroscopic measurement and numerical analysis using a simplified radiation model were also carried out to discuss the determining factors of the flame color. The relation between x and y measured on the central axis of the flames was expressed in the experimental equations. The (x, y) in the luminous region plotted on a chromaticity diagram changed along Planckian locus with the burning conditions. The contribution of the thermal radiation of soot particles and the chemiluminescence to the flame color was successfully evaluated by introducing the concept of additive mixture of color stimuli. The (x, y) profiles from the numerical analysis agreed well with the experimental results. 17 refs., 14 figs., 1 tab.

  20. Two Methods of Automatic Evaluation of Speech Signal Enhancement Recorded in the Open-Air MRI Environment

    Science.gov (United States)

    Přibil, Jiří; Přibilová, Anna; Frollo, Ivan

    2017-12-01

    The paper focuses on two methods of evaluation of successfulness of speech signal enhancement recorded in the open-air magnetic resonance imager during phonation for the 3D human vocal tract modeling. The first approach enables to obtain a comparison based on statistical analysis by ANOVA and hypothesis tests. The second method is based on classification by Gaussian mixture models (GMM). The performed experiments have confirmed that the proposed ANOVA and GMM classifiers for automatic evaluation of the speech quality are functional and produce fully comparable results with the standard evaluation based on the listening test method.

  1. Additive Interaction between Heterogeneous Environmental Quality Domains (Air, Water, Land, Sociodemographic, and Built Environment) on Preterm Birth.

    Science.gov (United States)

    Grabich, Shannon C; Rappazzo, Kristen M; Gray, Christine L; Jagai, Jyotsna S; Jian, Yun; Messer, Lynne C; Lobdell, Danelle T

    2016-01-01

    Environmental exposures often occur in tandem; however, epidemiological research often focuses on singular exposures. Statistical interactions among broad, well-characterized environmental domains have not yet been evaluated in association with health. We address this gap by conducting a county-level cross-sectional analysis of interactions between Environmental Quality Index (EQI) domain indices on preterm birth in the Unites States from 2000 to 2005. The EQI, a county-level index constructed for the 2000-2005 time period, was constructed from five domain-specific indices (air, water, land, built, and sociodemographic) using principal component analyses. County-level preterm birth rates ( n  = 3141) were estimated using live births from the National Center for Health Statistics. Linear regression was used to estimate prevalence differences (PDs) and 95% confidence intervals (CIs) comparing worse environmental quality to the better quality for each model for (a) each individual domain main effect, (b) the interaction contrast, and (c) the two main effects plus interaction effect (i.e., the "net effect") to show departure from additivity for the all U.S. counties. Analyses were also performed for subgroupings by four urban/rural strata. We found the suggestion of antagonistic interactions but no synergism, along with several purely additive (i.e., no interaction) associations. In the non-stratified model, we observed antagonistic interactions, between the sociodemographic/air domains [net effect (i.e., the association, including main effects and interaction effects) PD: -0.004 (95% CI: -0.007, 0.000), interaction contrast: -0.013 (95% CI: -0.020, -0.007)] and built/air domains [net effect PD: 0.008 (95% CI 0.004, 0.011), interaction contrast: -0.008 (95% CI: -0.015, -0.002)]. Most interactions were between the air domain and other respective domains. Interactions differed by urbanicity, with more interactions observed in non-metropolitan regions. Observed

  2. Additive interaction between heterogeneous environmental quality domains (air, water, land, sociodemographic and built environment on preterm birth

    Directory of Open Access Journals (Sweden)

    Shannon Grabich

    2016-10-01

    Full Text Available BACKGROUND Environmental exposures often occur in tandem; however, epidemiological research often focuses on singular exposures. Statistical interactions among broad, well-characterized environmental domains have not yet been evaluated in association with health. We address this gap by conducting a county-level cross-sectional analysis of interactions between Environmental Quality Index (EQI domain indices on preterm birth in the Unites States from 2000-2005.METHODS: The EQI, a county-level index constructed for the 2000-2005 time period, was constructed from five domain-specific indices (air, water, land, built and sociodemographic using principal component analyses. County-level preterm birth rates (n=3141 were estimated using live births from the National Center for Health Statistics. Linear regression was used to estimate prevalence differences (PD and 95% confidence intervals (CI comparing worse environmental quality to the better quality for each model for a each individual domain main effect b the interaction contrast and c the two main effects plus interaction effect (i.e., the net effect to show departure from additivity for the all U.S counties. Analyses were also performed for subgroupings by four urban/rural strata. RESULTS: We found the suggestion of antagonistic interactions but no synergism, along with several purely additive (i.e., no interaction associations. In the non-stratified model, we observed antagonistic interactions, between the sociodemographic/air domains (net effect (i.e. the association including main effects and interaction effects PD: -0.004 (95% CI:-0.007, 0.000, interaction contrast: -0.013 (95% CI:-0.020, -0.007 and built/air domains (net effect PD: 0.008 (95% CI 0.004, 0.011, interaction contrast: -0.008 (95% CI:-0.015, -0.002. Most interactions were between the air domain and other respective domains. Interactions differed by urbanicity, with more interactions observed in non-metropolitan regions

  3. Remote Sensing and Spatial Growth Modeling Coupled With Air Quality Modeling to Assess the Impact of Atlanta, Georgia on the Local and Regional Environment

    Science.gov (United States)

    Quattrochi, D. A.; Estes, M. G.; Crosson, W. L.; Johnson, H.; Khan, M.

    2006-05-01

    compared with USGS 1km land use/land cover data that have traditionally been used in modeling. Air quality prediction for future scenarios to 2030 is being facilitated by land use projections using a spatial growth model. Land use projections were developed using the 2030 Regional Transportation Plan developed by the Atlanta Regional Commission, the regional planning agency for the area. This allows the Georgia Environmental Protection Division to evaluate how these transportation plans will affect future air quality. The coupled SGM and air quality modeling approach provides insight on what the impacts of Atlanta's growth will be on the local and regional environment and exists as a mechanism that can be used by policy makers to make rational decisions on urban growth and sustainability for the metropolitan area in the future.

  4. Spatial Growth Modeling and High Resolution Remote Sensing Data Coupled with Air Quality Modeling to Assess the Impact of Atlanta, Georgia on the Local and Regional Environment

    Science.gov (United States)

    Quattrochi, Dale A.; Estes, Maurice G., Jr.; Crosson, William; Johnson, Hoyt; Khan, Maudood

    2006-01-01

    with USGS lkm land use/land cover data that have traditionally been used in modeling. Air quality prediction for future scenarios to 2030 is being facilitated by land use projections using a spatial growth model. Land use projections were developed using the 2030 Regional Transportation Plan developed by the Atlanta Regional Commission, the regional planning agency for the area. This allows the Georgia Environmental Protection Division to evaluate how these transportation plans will affect future air quality. The coupled SGM and air quality modeling approach provides insight on what the impacts of Atlanta s growth will be on the local and regional environment and exists as a mechanism that can be used by policy makers to make rational decisions on urban growth and sustainability for the metropolitan area in the future.

  5. FISSION 2120: a program for assessing the need for engineered safety feature grade air cleaning systems in post accident environments

    International Nuclear Information System (INIS)

    Martin, G. Jr.; Michlewicz, D.; Thomas, J.

    1979-01-01

    A computer program FISSION 2120, has been developed to evaluate the need for various engineered Safety Feature grade air cleaning systems to mitigate radiation exposures resulting from accidential releases of radioactivity. Those systems which are generally investigated include containment sprays with chemical additives, containment fan coolers with charcoal filters, and negative pressure maintenance systems for double barrier containments with either one-pass filtration or recirculation with filtration. The program can also be used to calculate the radiation doses to control room personnel. This type of analysis is directed towards the various protection aspects of the emergency ventilation system and involves the modeling of the radiological source terms and the atmospheric transport of the radioactive releases. The modeling is enhanced by the inherent capability of the program to accommodate simultaneous release of activity from several sources and to perform a dose evaluation for a wide range of the design characteristics of control room emergency air filtration systems. Use of the program has resulted in considerable savings in the time required to perform such analyses and in the selection of the most cost-effective Engineered Safety Features

  6. Active vibration control of a cylindrical structure using flexible piezoactuators: experimental work in air and water environments

    International Nuclear Information System (INIS)

    Sohn, Jung Woo; Choi, Seung-Bok

    2014-01-01

    In the present work, the modal characteristics and vibration control performance of a cylindrical structure in air and water are experimentally investigated, and the results are presented in time and frequency domains. In order to achieve this goal, an end-capped cylindrical shell structure is considered as a host structure, and MFC (macro fiber composite) actuators, which are flexible, are bonded on the surface of the structure. After manufacturing a cylindrical shell structure with aluminum, a modal test is carried out, and the natural frequencies of the proposed structure are obtained and analyzed. To verify the modal test results, a finite element analysis is also performed, and the results are compared with the modal test results. By using the experimentally obtained modal characteristics, a state space control model is established. An optimal controller is then designed in order to control the unwanted vibration and is experimentally realized. It has been shown that the structural vibration can be effectively decreased with the optimal control methodology in both air and water environmental conditions. (technical note)

  7. Calculation methods for air supply design in industrial facilities. Literature review

    Energy Technology Data Exchange (ETDEWEB)

    Hagstroem, K; Siren, K; Zhivov, A M

    1999-09-01

    The objectives of air distribution systems for warm air heating, ventilating, and air-conditioning are to create the proper thermal environment conditions in the occupied zone (combination of temperature, humidity, and air movement), and to control vapor and air born particle concentration within the target levels set by the process requirements and/or threshold limit values based on health effects, fire and explosion prevention, or other considerations. HVAC systems designs are constrained by existing codes, standards, and guidelines, which specify some minimum requirements for the HVAC system elements, occupant`s and process environmental quality and safety. There is a variety of different methods consulting engineers use to design room air diffusion and to select and size air diffusers, such as assumption of perfect mixing, design methods employing the empirical relations determined through research, such as the air diffusion performance index (ADPI), air jet theory and computational fluid dynamics (CFD) codes. Air supplied into the room through the various types of outlets (grills, ceiling mounted air diffusers, perforated panels etc.), is distributed by turbulent air jets. In mixing type air distribution systems, these air jets are the primary factor affecting room air motion. Numerous theoretical and experimental studies that developed a solid base for turbulent air jets theory were conducted concurrently in different countries (Germany, Sweden, Russia, U.K., USA) from the 1930`s through the 1980`s. Design methods based on air jet theory allows for the prediction of extreme values of air velocities and air temperatures in the occupied zone of empty spaces. Current air jet theory techniques account for the effects of buoyancy, confinement, jets interaction. For many conditions of jet discharge, it is possible to analyze jet performance and determine: the angle of divergence of the jet boundary; the velocity patterns along heated or chilled the jet axis; the

  8. Fractional Diffusion Equations and Anomalous Diffusion

    Science.gov (United States)

    Evangelista, Luiz Roberto; Kaminski Lenzi, Ervin

    2018-01-01

    Preface; 1. Mathematical preliminaries; 2. A survey of the fractional calculus; 3. From normal to anomalous diffusion; 4. Fractional diffusion equations: elementary applications; 5. Fractional diffusion equations: surface effects; 6. Fractional nonlinear diffusion equation; 7. Anomalous diffusion: anisotropic case; 8. Fractional Schrödinger equations; 9. Anomalous diffusion and impedance spectroscopy; 10. The Poisson–Nernst–Planck anomalous (PNPA) models; References; Index.

  9. Quantum chemistry in arbitrary dielectric environments: Theory and implementation of nonequilibrium Poisson boundary conditions and application to compute vertical ionization energies at the air/water interface

    Science.gov (United States)

    Coons, Marc P.; Herbert, John M.

    2018-06-01

    Widely used continuum solvation models for electronic structure calculations, including popular polarizable continuum models (PCMs), usually assume that the continuum environment is isotropic and characterized by a scalar dielectric constant, ɛ. This assumption is invalid at a liquid/vapor interface or any other anisotropic solvation environment. To address such scenarios, we introduce a more general formalism based on solution of Poisson's equation for a spatially varying dielectric function, ɛ(r). Inspired by nonequilibrium versions of PCMs, we develop a similar formalism within the context of Poisson's equation that includes the out-of-equilibrium dielectric response that accompanies a sudden change in the electron density of the solute, such as that which occurs in a vertical ionization process. A multigrid solver for Poisson's equation is developed to accommodate the large spatial grids necessary to discretize the three-dimensional electron density. We apply this methodology to compute vertical ionization energies (VIEs) of various solutes at the air/water interface and compare them to VIEs computed in bulk water, finding only very small differences between the two environments. VIEs computed using approximately two solvation shells of explicit water molecules are in excellent agreement with experiment for F-(aq), Cl-(aq), neat liquid water, and the hydrated electron, although errors for Li+(aq) and Na+(aq) are somewhat larger. Nonequilibrium corrections modify VIEs by up to 1.2 eV, relative to models based only on the static dielectric constant, and are therefore essential to obtain agreement with experiment. Given that the experiments (liquid microjet photoelectron spectroscopy) may be more sensitive to solutes situated at the air/water interface as compared to those in bulk water, our calculations provide some confidence that these experiments can indeed be interpreted as measurements of VIEs in bulk water.

  10. Annual report 2004 of the air-quality and meteorological measurements of the Federal Environment Agency Austria

    International Nuclear Information System (INIS)

    Spangl, W.; Nagl, C.; Leeb, C.

    2005-01-01

    The air quality and meteorological measurements performed in several stations (Enzenkirchen, Illmitz, Pillersdorf, St. Koloman, St. Sigmund, Sonnblick, Stolzalpe, Sulzberg, Vorhegg and Zoebelboden) in Austria during 2004 are given. These activities were performed to fulfill the Emissions Protection law (Immissionsschutzgesetz-Luft) and the Ozone Law (Ozongesetz) as well as to collaborate with the Global Atmosphere Watch-measurement program of the World Meteorological Organization. The following pollutants were measured: ozone, PM10, PM2.5, PM1, carbon dioxide, carbon monoxide, nitrogen oxides, sulfur dioxide, heavy metals (lead, cadmium, arsenic, nickel), VOC (benzene, toluene, xylenes, alkenes, alkanes), atmospheric precipitations (SO 4 2- , NO 3 - -N, NH 4 + -N, Na + , Mg 2+ , Ca 2+ , Cl - , K + ), methane. The meteorological measurements were wind, temperature, global radiations, duration of sun shine, rainfall precipitation. figs. 32, tabs. 45 (nevyjel)

  11. Corrosion product identification and relative rates of corrosion of candidate metals in an irradiated air-steam environment

    International Nuclear Information System (INIS)

    Reed, D.T.; Swayambunathan, V.; Tani, B.S.; Van Konynenburg, R.A.

    1989-01-01

    Previously reported work by others indicates that dicopper trihydroxide nitrate, Cu 2 NO 3 (OH) 3 , forms on copper and copper alloys subjected to irradiated moist air near room temperature. We have performed experiments over a range of temperature and humidity, and have found that this species is formed at temperatures up to at least 150 degree C if low to intermediate relative humidities are present. At 150 degree C and 100% relative humidity, only Cu 2 O and CuO were observed. The relative general corrosion rates of the copper materials tested in 1-month experiments at dose rates of 0.7 and 2.0 kGy/h were Cu > 70/30 Cu--Ni > Al-bronze. High-nickel alloy 825 showed no observable corrosion. 29 refs., 4 tabs

  12. Mechanical characterization of metallic materials for high-temperature gas-cooled reactors in air and in helium environments

    International Nuclear Information System (INIS)

    Sainfort, G.; Cappelaere, M.; Gregoire, J.; Sannier, J.

    1984-01-01

    In the French R and D program for high-temperature gas-cooled reactors (HTGRs), three metallic alloys were studied: steel Chromesco-3 with 2.25% chromium, alloy 800H, and Hastelloy-X. The Chromesco-3 and alloy 800H creep behavior is the same in air and in HTGR atmosphere (helium). The tensile tests of Hastelloy-X specimens reveal that aging has embrittlement and hardening effects up to 700 0 C, but the creep tests at 800 0 C show opposite effects. This particular behavior could be due to induced precipitation by aging and the depletion of hardening elements from the matrix. Tests show a low influence of cobalt content on mechanical properties of Hastelloy-X

  13. Comparison between Different Air Distribution Systems

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    The aim of an air conditioning system is to remove excess heat in a room and replace room air with fresh air to obtain a high air quality. It is not sufficient to remove heat and contaminated air, it is also necessary to distribute and control the air movement in the room to create thermal comfort...... in the occupied zone. Most air distribution systems are based on mixing ventilation with ceiling or wall-mounted diffusers or on displacement ventilation with wall-mounted low velocity diffusers. New principles for room air distribution were introduced during the last decades, as the textile terminals mounted...... in the ceiling and radial diffusers with swirling flow also mounted in the ceiling. This paper addresses five air distribution systems in all, namely mixing ventilation from a wallmounted terminal, mixing ventilation from a ceiling-mounted diffuser, mixing ventilation from a ceiling-mounted diffuser...

  14. Land use and air quality in urban environments: Human health risk assessment due to inhalation of airborne particles.

    Science.gov (United States)

    Mateos, A C; Amarillo, A C; Carreras, H A; González, C M

    2018-02-01

    Particle matter (PM) and its associated compounds are a serious problem for urban air quality and a threat to human health. In the present study, we assessed the intraurban variation of PM, and characterized the human health risk associated to the inhalation of particles measured on PM filters, considering different land use areas in the urban area of Cordoba city (Argentina) and different age groups. To assess the intraurban variation of PM, a biomonitoring network of T. capillaris was established in 15 sampling sites with different land use and the bioaccumulation of Co, Cu, Fe, Mn, Ni, Pb and Zn was quantified. After that, particles were collected by instrumental monitors placed at the most representative sampling sites of each land use category and an inhalation risk was calculated. A remarkable intraurban difference in the heavy metals content measured in the biomonitors was observed, in relation with the sampling site land use. The higher content was detected at industrial areas as well as in sites with intense vehicular traffic. Mean PM 10 levels exceeded the standard suggested by the U.S. EPA in all land use areas, except for the downtown. Hazard Index values were below EPA's safe limit in all land use areas and in the different age groups. In contrast, the carcinogenic risk analysis showed that all urban areas exceeded the acceptable limit (1 × 10 -6 ), while the industrial sampling sites and the elder group presented a carcinogenic risk higher that the unacceptable limit. These findings validate the use of T. capillaris to assess intraurban air quality and also show there is an important intraurban variation in human health risk associated to different land use. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Radon diffusion studies in some building materials using solid state nuclear track detectors

    CERN Document Server

    Singh, S; Singh, B; Singh, J

    1999-01-01

    LR-115 plastic track detector has been used to study radon diffusion through some building materials, viz. cement, soil, marble chips, sand and lime as well as air. Diffusion constant and diffusion length is calculated for all these materials.

  16. Developing a passive trap for diffusive atmospheric {sup 14}CO{sub 2} sampling

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Jennifer C.; Xu, Xiaomei [Department of Earth System Science, University of California, Irvine, Irvine, CA (United States); Fahrni, Simon M. [Department of Earth System Science, University of California, Irvine, Irvine, CA (United States); Institute of Particle Physics, ETH, Zurich (Switzerland); Lupascu, Massimo [Department of Earth System Science, University of California, Irvine, Irvine, CA (United States); Department of Geography, National University of Singapore (Singapore); Czimczik, Claudia I. [Department of Earth System Science, University of California, Irvine, Irvine, CA (United States)

    2015-10-15

    {sup 14}C-CO{sub 2} measurement is an unique tool to quantify source-based emissions of CO{sub 2} for both the urban and natural environments. Acquiring a sample that temporally integrates the atmospheric {sup 14}C-CO{sub 2} signature that allows for precise {sup 14}C analysis is often necessary, but can require complex sampling devices, which can be difficult to deploy and maintain, especially for multiple locations. Here we describe our progress in developing a diffusive atmospheric CO{sub 2} molecular sieve trap, which requires no power to operate. We present results from various cleaning procedures, and rigorously tested for blank and memory effects. Traps were tested in the environment along-side conventional sampling flasks for accuracy. Results show that blank and memory effects can be minimized with thorough cleaning and by avoiding overheating, and that diffusively collected air samples agree well with traditionally canister-sampled air.

  17. Radial diffusive samplers for determination of 8-h concentration of BTEX, acetone, ethanol and ozone in ambient air during a sea breeze event

    Science.gov (United States)

    Roukos, Joelle; Locoge, Nadine; Sacco, Paolo; Plaisance, Hervé

    2011-01-01

    The radial diffusive sampler Radiello ® filled with Carbograph 4 was evaluated for monitoring BTEX, ethanol and acetone concentrations for 8-hour exposure time. The sampling rates were first evaluated in an exposure chamber under standard conditions. Benzene and toluene showed the highest sampling rates with satisfactory standard deviations. Ethylbenzene and xylenes showed medium sampling rates but higher standard deviations that can be attributed to a low affinity of these compounds with the adsorbent medium for short sampling time. Acetone has a fair result because of the increase of its partial pressure in the vicinity of the adsorbent surface in the course of sampling. The Carbograph 4 adsorbent does not seem to be suitable for sampling ethanol, likely because of its high volatility. The influences of three environmental factors (temperature (T), relative humidity (RH) and concentration level (C)) on the sampling rates were also evaluated, following a fractional factorial design at two factor levels (low and high). Results were only investigated on benzene, toluene and acetone. Temperature and relative humidity are found to be the most important factors leading to variability of the benzene and toluene sampling rates. The applicability of the sampler for 8-hour sampling was demonstrated by the results of a measurement campaign carried out during a sea breeze event. Mapping of benzene, toluene and acetone concentrations showed the highest concentrations in the industrial zone following the wind direction coming from the North. Nevertheless, the sea breeze tends to reduce the spread of the industrial plumes. On the contrary, the ozone map presents the lowest concentrations at the same industrial area indicating a net consumption of ozone. The highest ozone concentrations were found in the southeastern zone suggesting a local ozone formation.

  18. Atmospheric dry deposition in the vicinity of the Salton Sea, California - I: Air pollution and deposition in a desert environment

    Science.gov (United States)

    Alonso, R.; Bytnerowicz, A.; Boarman, W.I.

    2005-01-01

    Air pollutant concentrations and atmospheric dry deposition were monitored seasonally at the Salton Sea, southern California. Measurements of ozone (O 3), nitric acid vapor (HNO3), ammonia (NH3), nitric oxide (NO), nitrogen dioxide (NO2) and sulfur dioxide (SO 2) were performed using passive samplers. Deposition rates of NO 3-, NH4+, Cl-, SO 42-, Na+, K+ and Ca2+ to creosote bush branches and nylon filters as surrogate surfaces were determined for one-week long exposure periods. Maximum O3 values were recorded in spring with 24-h average values of 108.8 ??g m-3. Concentrations of NO and NO2 were low and within ranges of the non-urban areas in California (0.4-5.6 and 3.3-16.2 ??g m-3 ranges, respectively). Concentrations of HNO3 (2.0-6.7 ??g m-3) and NH 3 (6.4-15.7 ??g m-3) were elevated and above the levels typical for remote locations in California. Deposition rates of Cl-, SO42-, Na+, K+ and Ca2+ were related to the influence of sea spray or to suspended soil particles, and no strong enrichments caused by ions originated by human activities were detected. Dry deposition rates of NO3- and NH4+ were similar to values registered in areas where symptoms of nitrogen saturation and changes in species composition have been described. Deposition of nitrogenous compounds might be contributing to eutrophication processes at the Salton Sea. ?? 2005 Elsevier Ltd. All rights reserved.

  19. Special solution with air curtain to guarantee a draft-free environment; Speciale oplossing met luchtgordijn waarborgt tochtvrije omgeving

    Energy Technology Data Exchange (ETDEWEB)

    Attema, A. [Biddle, Kootstertille (Netherlands)

    2002-01-01

    The impact of air curtains in the luggage dispatch facility of the Dutch airport Schiphol on the working conditions is discussed. [Dutch] Om het klimaat in een grote ruimte op een aangenaam niveau te houden, zoeken werkgevers vaak naar een oplossing, waarbij de luchtstromen in die ruimte voor de werknemers aanvaardbaar zijn. Vooral voor een gebouw dat onderhevig is aan sterke windaanvallen dient de oplossing met grote zorgvuldigheid te worden gekozen. De bagageruimte op de D-pier van luchthaven Schiphol staat op een plaats met ongunstige windstromingen. De vier openingen in de bagageruimte, waar bagagewagentjes in en uitrijden, zijn om die reden voorzien van industrie-luchtgordijnen. Per deur is gekozen voor een oplossing met ongeveer tien toestellen, die in drie rijen achter elkaar zijn geinstalleerd. Afhankelijk van de buiten emperatuur en de windinvloed worden de ventilatoren trapsgewijze ingeschakeld, zodra de pendeldeuren open gaan. De luchtgordijnen laten een onbelemmerde toegang tot de bagageruinite toe en realiseren een optimale scheiding van bet binnen- en buitenklimaat.

  20. Enhancement of diffusers BRDF accuracy

    Science.gov (United States)

    Otter, Gerard; Bazalgette Courrèges-Lacoste, Gregory; van Brug, Hedser; Schaarsberg, Jos Groote; Delwart, Steven; del Bello, Umberto

    2017-11-01

    This paper reports the result of an ESA study conducted at TNO to investigate properties of various diffusers. Diffusers are widely used in space instruments as part of the on-board absolute calibration. Knowledge of the behaviour of the diffuser is therefore most important. From measurements of launched instruments in-orbit it has been discovered that when a diffuser is used in the vacuum of space the BRDF can change with respect to the one in ambient conditions. This is called the air/vacuum effect and has been simulated in this study by measuring the BRDF in a laboratory in ambient as well as vacuum conditions. Another studied effect is related to the design parameters of the optical system and the scattering properties of the diffuser. The effect is called Spectral Features and is a noise like structure superimposed on the diffuser BRDF. Modern space spectrometers, which have high spectral resolution and/or a small field of view (high spatial resolution) are suffering from this effect. The choice of diffuser can be very critical with respect to the required absolute radiometric calibration of an instrument. Even if the Spectral Features are small it can influence the error budget of the retrieval algorithms for the level 2 products. in this presentation diffuser trade-off results are presented and the Spectral Features model applied to the optical configuration of the MERIS instrument is compared to in-flight measurements of MERIS.

  1. Report of a workshop on environment and health. Evaluating European air quality research and translating priorities into actions 19-20 January 2009

    International Nuclear Information System (INIS)

    Taalman, R.; Rushton, E.; Minsavage, G.

    2010-11-01

    Scientists, academics, regulators, and representatives of industry and non-governmental organizations from some 18 countries around the world convened at the Bedford Hotel and Congress Centre, Brussels, Belgium on January 19-20, 2009 to participate in a Workshop on Environment and Health: Evaluating European Air Quality Research and Translating Priorities into Actions. The Workshop was organized by CONCAWE with contributions from the European Commission.s DG Research, Session Chairpersons and other distinguished presenters. The workshop provided scientific updates in a number of key areas including toxicology, epidemiology and exposure assessment of airborne pollutants. Invited platform presentations and submitted posters followed by facilitated discussions amongst participants resulted in a series of recommendations which are summarized in the present report.

  2. Numerical analysis of diffuse ceiling ventilation and its integration with a radiant ceiling system

    DEFF Research Database (Denmark)

    Zhang, Chen; Heiselberg, Per Kvols; Chen, Qingyan

    2017-01-01

    A novel system combining diffuse ceiling ventilation and radiant ceiling was proposed recently, with the aim of providing energy efficient and comfort environment to office buildings. Designing of such a system is challenging because of complex interactions between the two subsystems and a large ......-uniformity air distribution and further led to the draught problem in the occupied zone. This system was recommended to apply in the small offices instead of large, open spaces....

  3. MEASUREMENT OF INDOOR RADON-THORON IN AIR AND EXHALATION FROM SOIL IN THE ENVIRONMENT OF WESTERN HARYANA, INDIA.

    Science.gov (United States)

    Mann, Nisha; Kumar, Amit; Kumar, Sushil; Chauhan, R P

    2016-10-01

    Measurement of indoor radon and thoron is important because the inhalation of radon-thoron and their daughters contributes more than 50 % of the total dose from natural sources. One of the important parameters to find out the contribution of soil and building materials towards indoor radon is radon exhalation rates, which can be used for estimation of indoor radon levels. The indoor radon and thoron levels from the air and radon exhalation rates from soil samples collected from two districts (Hisar and Fatehabad) of Western Haryana are measured using pin-hole-based radon-thoron dosimeter and LR-115 solid-state nuclear track detector by canister technique. The results show that the indoor radon and thoron levels from Hisar district varied from 11 to 112 and 11 to 80 Bq m -3 , while for Fatehabad district from 5 to 24 and 59 to 105 Bq m -3 , respectively, in summer season. In winter season, indoor radon and thoron levels from Hisar district varied from 15 to 43 and 32 to 102 Bq m -3 , while for Fatehabad district from 18 to 31 and 11 to 80 Bq m -3 , respectively. The indoor radon levels of 95 % locations lie well below the limit recommended by International Commission of Radiation Protection, 2011. The radon mass exhalation rate varied from 6 to 56 mBq kg -1 h -1 The radon mass exhalation rates from the soil samples were lower than the worldwide average, i.e. 56 mBq kg -1 h -1 There exists a poor correlation between indoor radon and exhalation rates. More investigations of measurement of radionuclide contents from rock and stone of study area can improve the understanding. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Radon diffusion chamber

    International Nuclear Information System (INIS)

    Pretzsch, G.; Boerner, E.; Lehmann, R.; Sarenio, O.

    1986-01-01

    The invention relates to the detection of radioactive gases emitting alpha particles like radon, thoron and their alpha-decaying daughters by means of a diffusion chamber with a passive detector, preferably with a solid state track detector. In the chamber above and towards the detector there is a single metallized electret with negative polarity. The distance between electret and detector corresponds to the range of the alpha particles of radon daughters in air at the most. The electret collects the positively charged daughters and functions as surface source. The electret increases the sensitivity by the factor 4

  5. Development of quality control and instrumentation performance metrics for diffuse optical spectroscopic imaging instruments in the multi-center clinical environment

    Science.gov (United States)

    Keene, Samuel T.; Cerussi, Albert E.; Warren, Robert V.; Hill, Brian; Roblyer, Darren; Leproux, AnaÑ--s.; Durkin, Amanda F.; O'Sullivan, Thomas D.; Haghany, Hosain; Mantulin, William W.; Tromberg, Bruce J.

    2013-03-01

    Instrument equivalence and quality control are critical elements of multi-center clinical trials. We currently have five identical Diffuse Optical Spectroscopic Imaging (DOSI) instruments enrolled in the American College of Radiology Imaging Network (ACRIN, #6691) trial located at five academic clinical research sites in the US. The goal of the study is to predict the response of breast tumors to neoadjuvant chemotherapy in 60 patients. In order to reliably compare DOSI measurements across different instruments, operators and sites, we must be confident that the data quality is comparable. We require objective and reliable methods for identifying, correcting, and rejecting low quality data. To achieve this goal, we developed and tested an automated quality control algorithm that rejects data points below the instrument noise floor, improves tissue optical property recovery, and outputs a detailed data quality report. Using a new protocol for obtaining dark-noise data, we applied the algorithm to ACRIN patient data and successfully improved the quality of recovered physiological data in some cases.

  6. Radon progeny distribution in cylindrical diffusion chambers

    International Nuclear Information System (INIS)

    Pressyanov, Dobromir S.

    2008-01-01

    An algorithm to model the diffusion of radioactive decay chain atoms is presented. Exact mathematical solutions in cylindrical geometry are given. They are used to obtain expressions for the concentrations of 222 Rn progeny atoms in the volume and deposited on the wall surface in cylindrical diffusion chambers. The dependence of volume fractions of 222 Rn progeny and chamber sensitivity on the coefficient of diffusion of 222 Rn progeny atoms in air is modeled.

  7. Variability of carbonaceous aerosols in remote, rural, urban and industrial environments in Spain: implications for air quality policy

    Science.gov (United States)

    Querol, X.; Alastuey, A.; Viana, M.; Moreno, T.; Reche, C.; Minguillón, M. C.; Ripoll, A.; Pandolfi, M.; Amato, F.; Karanasiou, A.; Pérez, N.; Pey, J.; Cusack, M.; Vázquez, R.; Plana, F.; Dall'Osto, M.; de la Rosa, J.; Sánchez de la Campa, A.; Fernández-Camacho, R.; Rodríguez, S.; Pio, C.; Alados-Arboledas, L.; Titos, G.; Artíñano, B.; Salvador, P.; García Dos Santos, S.; Fernández Patier, R.

    2013-07-01

    NO2 / (OC + EC) ratios as these standards have been much less effective for the abatement of NOx exhaust emissions in passenger diesel cars. This study concludes that EC, EBC, and especially nmC and OC + EC are very good candidates for new air quality standards since they cover both emission impact and health-related issues.

  8. Addimer diffusions on Si(100)

    International Nuclear Information System (INIS)

    Lee, Gun Do; Wang, C. Z.; Lu, Z. Y.; Ho, K. M.

    1999-01-01

    The diffusion pathways along the trough and between the trough and the dimer row on the Si(100) surface are investigated by tight-binding molecular dynamics calculations using the environment dependent tight-binding silicon potential and by ab initio calculations using the Car-Parrinello method. The studies discover new diffusion pathways consisting of rotation of addimer. The calculated energy barrier are in excellent agreement with experiment. The rotational diffusion pathway between the trough and the dimer row is much more energetically favorable than other diffusion pathways by parallel and perpendicular addimer. The new pathway along the trough is nearly same as the energy barrier of the diffusion pathway by dissociation of the addimer

  9. Air Quality Management Process Cycle

    Science.gov (United States)

    Air quality management are activities a regulatory authority undertakes to protect human health and the environment from the harmful effects of air pollution. The process of managing air quality can be illustrated as a cycle of inter-related elements.

  10. What's in a Rash? Viral Exanthem Versus CBRNE Exposure: Teleconsultation Support for Two Special Forces Soldiers With Diffuse Rash in an Austere Environment.

    Science.gov (United States)

    Lee, Howard D; Butterfield, Samuel; Maddry, Joseph; Powell, Douglas; Vasios, William N; Yun, Heather; Ferraro, David; Pamplin, Jeremy C

    2018-01-01

    Review clinical thought process and key principles for diagnosing weaponized chemical and biologic injuries. Clinical Context: Special Operation Forces (SOF) team deployed in an undisclosed, austere environment. Organic Expertise: Two SOF Soldiers with civilian EMT-Basic certification. Closest Medical Support: Mobile Forward Surgical Team (2 hours away); medical consults available by e-mail, phone, or video-teleconsultation. Earliest Evacuation: Earliest military evacuation from country 12-24 hours. With teleconsultation, patients departed to Germany as originally scheduled without need for Medical Evacuation. 2018.

  11. Concentrations of polybrominated diphenyl ethers (PBDEs) in central air-conditioner filter dust and relevance of non-dietary exposure in occupational indoor environments in Greece.

    Science.gov (United States)

    Besis, Athanasios; Katsoyiannis, Athanasios; Botsaropoulou, Elisavet; Samara, Constantini

    2014-05-01

    Polybrominated Diphenyl Ethers (PBDEs) are ubiquitous in the indoor environment owing to their use in consumer products and various studies around the world have found higher concentrations indoors than outdoors. Central air conditioner (A/C) systems have been widely used in many workplaces, therefore, studying of PBDEs in central A/C filter dust is useful to better understand the occurrences and health implications of PBDEs in indoor environments. The present study examined the occurrence of PBDEs in central A/C filter dust collected from various workplaces (n = 20) in Thessaloniki, Greece. The sum concentrations of 21 target congeners (∑21PBDE) in A/C dust ranged between 84 and 4062 ng g(-1) with a median value of 1092 ng g(-1), while BDE-209 was found to be the most abundant BDE congener. The daily intake via dust ingestion of PBDEs estimated for the employees of the occupational settings ranged from 3 to 45 ng day(-1) (median 12 ng day(-1)). Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Multipassage diffuser

    International Nuclear Information System (INIS)

    Lalis, A.; Rouviere, R.; Simon, G.

    1976-01-01

    A multipassage diffuser having 2p passages comprises a leak-tight cylindrical enclosure closed by a top cover and a bottom end-wall, parallel porous tubes which are rigidly assembled in sectors between tube plates and through which the gas mixture flows, the tube sectors being disposed at uniform intervals on the periphery of the enclosure. The top tube plates are rigidly fixed to an annular header having the shape of a half-torus and adapted to communicate with the tubes of the corresponding sector. Each passage is constituted by a plurality of juxtaposed sectors in which the mixture circulates in the same direction, the header being divided into p portions limited by radial partition-walls and each constituting two adjacent passages. The diffuser is provided beneath the bottom end-wall with p-1 leak-tight chambers each adapted to open into two different portions of the header, and with two collector-chambers each fitted with a nozzle for introducing the gas mixture and discharging the fraction of the undiffused mixture. By means of a central orifice formed in the bottom end-wall the enclosure communicates with a shaft for discharging the diffused fraction of the gas mixture

  13. Paducah Gaseous Diffusion Plant Environmental report for 1990

    Energy Technology Data Exchange (ETDEWEB)

    Counce-Brown, D. (ed.)

    1991-09-01

    This two-part report, Paducah Gaseous Diffusion Plant Site Environmental Report for 1990, is published annually. It reflects the results of a comprehensive, year-round program to monitor the impact of operations at Paducah Gaseous Diffusion Plant (PGDP) on the area's groundwater and surface waters, soil, air quality, vegetation, and wildlife. In addition, an assessment of the effect of PGDP effluents on the resident human population is made. PGDP's overall goal for environmental management is to protect the environment and PGDP's neighbors and to maintain full compliance with all current regulations. The current environmental strategy is to identify any deficiencies and to develop a system to resolve them. The long-range goal of environmental management is to minimize the source of pollutants, to reduce the formation of waste, and to minimize hazardous waste by substitution of materials.

  14. The Effect of Molecular Structure and Environment on the Miscibility and Diffusivity in Polythiophene-Methanofullerene Bulk Heterojunctions: Theory and Modeling with the RISM Approach

    Directory of Open Access Journals (Sweden)

    Alexander E. Kobryn

    2016-04-01

    Full Text Available Although better means to model the properties of bulk heterojunction molecular blends are much needed in the field of organic optoelectronics, only a small subset of methods based on molecular dynamics- and Monte Carlo-based approaches have been hitherto employed to guide or replace empirical characterization and testing. Here, we present the first use of the integral equation theory of molecular liquids in modelling the structural properties of blends of phenyl-C61-butyric acid methyl ester (PCBM with poly(3-hexylthiophene (P3HT and a carboxylated poly(3-butylthiophene (P3BT, respectively. For this, we use the Reference Interaction Site Model (RISM with the Universal Force Field (UFF to compute the microscopic structure of blends and obtain insight into the miscibility of its components. Input parameters for RISM, such as optimized molecular geometries and charge distribution of interaction sites, are derived by the Density Functional Theory (DFT methods. We also run Molecular Dynamics (MD simulation to compare the diffusivity of the PCBM in binary blends with P3HT and P3BT, respectively. A remarkably good agreement with available experimental data and results of alternative modelling/simulation is observed for PCBM in the P3HT system. We interpret this as a step in the validation of the use of our approach for organic photovoltaics and support of its results for new systems that do not have reference data for comparison or calibration. In particular, for the less-studied P3BT, our results show that expectations about its performance in binary blends with PCBM may be overestimated, as it does not demonstrate the required level of miscibility and short-range structural organization. In addition, the simulated mobility of PCBM in P3BT is somewhat higher than what is expected for polymer blends and falls into a range typical for fluids. The significance of our predictive multi-scale modelling lies in the insights it offers into nanoscale

  15. Banco de semillas en ambientes de las sierras de Azul (Buenos Aires, Argentina con distinta intensidad de disturbios Seed bank in environments of the Azul sierras (Buenos Aires, Argentina with different disturbance intensities

    Directory of Open Access Journals (Sweden)

    F. Gianaccini

    2009-12-01

    Full Text Available A fin de evaluar el impacto de la agricultura sobre la flora potencial de pastizales serranos en el Partido de Azul (Buenos Aires, Argentina, se comparó el banco de semillas en los 20 cm superficiales del suelo entre dos sectores adyacentes en las primeras estribaciones serranas. Uno de ellos está sometido a agricultura permanente y el otro conserva un pastizal natural bajo pastoreo y quemas no programados. Este último sector presentó en promedio una densidad de 70.000 sem m-2 contra 36.720 sem m-2 en el primero. La representación de semillas de especies nativas se redujo notablemente en el ambiente agrícola. Stipa caudata con 31360 sem m-2 resultó la especie más abundante en el pastizal. En el ambiente de cultivo, su densidad se redujo a 9940 sem m-2 y fue superada por Chenopodium album con 10560 sem m-2. La similitud en la composición del banco fue de 55% en términos cualitativos y 27% en términos cuantitativos. Estos resultados evidencian que, en el área de estudio, el reemplazo del pastizal natural por agricultura reduce notoriamente las reservas de semillas y modifica la composición cualitativa y cuantitativa del banco con una elevada pérdida en la proporción de especies nativas.In order to evaluate the impact of agriculture on the potential flora of grasslands of the sierras of Azul (Buenos Aires Province, Argentina, the soil seed bank in the top 20 cm from two adjacent areas on the first foothill spurs were compared. One is submitted to continuous agriculture. The other area has grasslands under grazing and non programmed burning. The latter showed a mean density of 70.000 seeds m-2 against a mean density of 36.720 seeds m-2 in the first area. The proportional representation of native species seeds decreased strongly in the agricultural environment. The most abundant species in the grasslands was Stipa caudata (31.360 seeds m-2. In the agricultural environment, its density decreased to 9940 seeds m-2. It was surpassed by

  16. Quantum diffusion

    International Nuclear Information System (INIS)

    Habib, S.

    1994-01-01

    We consider a simple quantum system subjected to a classical random force. Under certain conditions it is shown that the noise-averaged Wigner function of the system follows an integro-differential stochastic Liouville equation. In the simple case of polynomial noise-couplings this equation reduces to a generalized Fokker-Planck form. With nonlinear noise injection new ''quantum diffusion'' terms rise that have no counterpart in the classical case. Two special examples that are not of a Fokker-Planck form are discussed: the first with a localized noise source and the other with a spatially modulated noise source

  17. Radiation chemical effects in experiments to study the reaction of glass in an environment of gamma-irradiated air, groundwater, and tuff

    International Nuclear Information System (INIS)

    Van Konynenburg, R.A.

    1986-01-01

    The results of experiments performed by John K. Bates et al. on the reaction of nuclear waste glass with a gamma-irradiated 90 0 C aqueous solution were analyzed using theory developed from past research in radiation chemistry. The aqueous solution they used is similar to what would be expected in a water-saturated environment in a nuclear waste repository in tuff. The purpose of our study was to develop an understanding of the radiation-chemical processes that occurred in the Bates et al. experiments so the results could be applied to the design and performance analysis of a proposed repository in unsaturated tuff in Nevada. For the Bates et al. experiments at the highest dose (269 Mrad), which originally contained about 16 ml of ''equilibrated'' water taken from Nevada Test Site Well J-13 and 5.4 ml of air, we predicted that water decomposition to H 2 and O 2 would produce a pressure increase of at least 1.0 MPa at 20 0 C. We also predicted that nitrogen fixation from the air would occur, producing an increase of 1.6 x 10 -4 M in total fixed nitrogen concentration in solution. In addition, an equimolar production of H + would occur, which would be buffered by the HCO 3 - in the water. The fixed nitrogen in solution was predicted to be present as NO 2 - and NO 3 - with the ratio influenced by the presence of materials catalytic to the decomposition of H 2 O 2 . We found reasonable agreement between our predictions and the observations of Bates et al., where comparisons were possible. We apply the results to the proposed Nevada repository to the degree possible, given the different expected conditions

  18. Experimental characterization of methane inverse diffusion flame

    KAUST Repository

    Elbaz, Ayman M.; Roberts, William L.

    2014-01-01

    This article presents 10-kHz images of OH-PLIF simultaneously with 2-D PIV measurements in an inverse methane diffusion flame. Under a constant fuel flow rate, the central air jet Re was varied, leading to air to fuel velocity ratio, Vr, to vary

  19. Hereditary Diffuse Gastric Cancer

    Science.gov (United States)

    ... Hereditary Diffuse Gastric Cancer Request Permissions Hereditary Diffuse Gastric Cancer Approved by the Cancer.Net Editorial Board , 10/2017 What is hereditary diffuse gastric cancer? Hereditary diffuse gastric cancer (HDGC) is a rare ...

  20. Magnetic diffuse scattering

    International Nuclear Information System (INIS)

    Cable, J.W.

    1987-01-01

    The diffuse scattering of neutrons from magnetic materials provides unique and important information regarding the spatial correlations of the atoms and the spins. Such measurements have been extensively applied to magnetically ordered systems, such as the ferromagnetic binary alloys, for which the observed correlations describe the magnetic moment fluctuations associated with local environment effects. With the advent of polarization analysis, these techniques are increasingly being applied to study disordered paramagnetic systems such as the spin-glasses and the diluted magnetic semiconductors. The spin-pair correlations obtained are essential in understanding the exchange interactions of such systems. In this paper, we describe recent neutron diffuse scattering results on the atom-pair and spin-pair correlations in some of these disordered magnetic systems. 56 refs

  1. Plutonium diffusion in the marine environment: a quantitative study on marine species of the channel shores, from Brest (St Mathieu Point) to Honfleur

    International Nuclear Information System (INIS)

    Fraizier, Albert; Guary, J.-C.

    1977-03-01

    Plutonium levels were measured on marine species of the Channel shores, from Cancale to Honfleur in 1975, from Brest to the Cap de La Hague in 1976. Measurements carried out on a lichen: Lichina pygmaea, two algae: Corallina officinalis and Fucus serratus, a spongiae: Hymeniacidon sanguinea and a crustacean: Balamus balanoides, showed the effect of waste disposal from La Hague fuel reprocessing plant on the radioactivity levels of these organisms. This effect, decreasing progressively, appeared at distances of about 150 km from the point of release. As compared to value observed for samples taken at the far West of Brittany and to plutonium levels in the marine environment resulting from atmospheric fallout only, the levels observed in the studied area were higher and varying according to the geographic position, increasing by a factor of 100 near the emissary. These data are an actual instance of radioactive dispersal following disposal into the sea; they should bring valuable information for the assessment of the radiological capacity of a given coastal area [fr

  2. Experimental study of diffuse ceiling ventilation in classroom

    DEFF Research Database (Denmark)

    Hviid, Christian Anker; Terkildsen, Søren

    Diffuse ceiling ventilation is a novel air distribution device that combines the suspended acoustic ceiling with ventilation supply. A diffuse ceiling distributes the supply air above the acoustic tiles and has proven performance in laboratory experiments. To study the performance in real conditi...

  3. Oxygen diffusion in zircon

    Science.gov (United States)

    Watson, E. B.; Cherniak, D. J.

    1997-05-01

    Oxygen diffusion in natural, non-metamict zircon was characterized under both dry and water-present conditions at temperatures ranging from 765°C to 1500°C. Dry experiments were performed at atmospheric pressure by encapsulating polished zircon samples with a fine powder of 18O-enriched quartz and annealing the sealed capsules in air. Hydrothermal runs were conducted in cold-seal pressure vessels (7-70 MPa) or a piston cylinder apparatus (400-1000 MPa) on zircon samples encapsulated with both 18O-enriched quartz and 18O water. Diffusive-uptake profiles of 18O were measured in all samples with a particle accelerator, using the 18O(p, α) 15N reaction. For dry experimental conditions at 1100-1500°C, the resulting oxygen diffusivities (24 in all) are well described by: D dry (m 2/s) = 1.33 × 10 -4exp(-53920/T) There is no suggestion of diffusive anisotropy. Under wet conditions at 925°C, oxygen diffusion shows little or no dependence upon P H 2O in the range 7-1000 MPa, and is insensitive to total pressure as well. The results of 27 wet experiments at 767-1160°C and 7-1000 MPa can be described a single Arrhenius relationship: D wet (m 2/s) = 5.5 × 10 -12exp(-25280/T) The insensitivity of oxygen diffusion to P H 2O means that applications to geologic problems can be pursued knowing only whether the system of interest was 'wet' (i.e., P H 2O > 7MPa ) or 'dry'. Under dry conditions (presumably rare in the crust), zircons are extremely retentive of their oxygen isotopic signatures, to the extent that δ 18O would be perturbed at the center of a 200 μm zircon only during an extraordinarily hot and protracted event (e.g., 65 Ma at 900°C). Under wet conditions, δ 18O may or may not be retained in the central regions of individual crystals, cores or overgrowth rims, depending upon the specific thermal history of the system.

  4. Concentrations of polybrominated diphenyl ethers (PBDEs) in central air-conditioner filter dust and relevance of non-dietary exposure in occupational indoor environments in Greece

    International Nuclear Information System (INIS)

    Besis, Athanasios; Katsoyiannis, Athanasios; Botsaropoulou, Elisavet; Samara, Constantini

    2014-01-01

    Polybrominated Diphenyl Ethers (PBDEs) are ubiquitous in the indoor environment owing to their use in consumer products and various studies around the world have found higher concentrations indoors than outdoors. Central air conditioner (A/C) systems have been widely used in many workplaces, therefore, studying of PBDEs in central A/C filter dust is useful to better understand the occurrences and health implications of PBDEs in indoor environments. The present study examined the occurrence of PBDEs in central A/C filter dust collected from various workplaces (n = 20) in Thessaloniki, Greece. The sum concentrations of 21 target congeners (∑ 21 PBDE) in A/C dust ranged between 84 and 4062 ng g −1 with a median value of 1092 ng g −1 , while BDE-209 was found to be the most abundant BDE congener. The daily intake via dust ingestion of PBDEs estimated for the employees of the occupational settings ranged from 3 to 45 ng day −1 (median 12 ng day −1 ). - Highlights: • PBDEs were investigated in dust of A/C filters in occupational settings in Thessaloniki, Greece. • BDE-209 was found to be the most abundant BDE congener. • High levels of PBDEs were found in a newspaper building, internet cafes and electronic shops. • PBDEs were attributable to the extensive presence and/or usage of electronic devices. • Exposure of employees to PBDEs via indoor dust ingestion was estimated at 12 ng day −1 . - PBDEs were for the first time measured in dust from central A/C filters in workplaces of Greece and their concentrations were used to estimate the non-dietary human exposure

  5. Development of a management protocol for the reduction of fuel consumption and decreasing of the emanations of CO2 as contaminant of environment in air service companies

    International Nuclear Information System (INIS)

    Montoya Maroto, Manuel

    2012-01-01

    A management protocol is developed for air services companies to improve the eco-efficiency of its processes. The application of operational procedures have allowed the reduction of fuel consumption and decreased the emanations of CO 2 into the environment. The methodology of the research has consisted in quantitative and qualitative analysis of the variables and processes that have influenced significantly in the operation of airline fleet. An integral analysis is realized of the procedures of management and use of resources in the cockpits of the aircraft (Cockpit Resource Management) and navigation based in performance (NBP). The results of analysis are used to elaborate a protocol to minimize the fuel consumption and energy through the application of practices and operational procedures more efficient and safe. The environmental burdens associated with the services that are provided in the airline industry are minimized. The application of methods of improvement and procedures that are updated continuously have achieved the sustainability of the protocol. The operational procedures are applied to decrease the fuel consumption. Sensitization programs are developed for the utilization of more efficient operational practices and friendly with the environment. An incentive program is implemented to optimize the fuel consumption safely by pilots. A new procedure of flight scheduling is modified based on performance of the pilots and fleet degradation factors, assigning the pilots who have had higher consumption to airplanes with lower degradation, and the pilots who have had lower consumption, to airplanes with higher degradation. A self-liquidating incentive plan is developed based on the savings achieved in the operation in high-performance, could reinforce the change of attitude necessary for the group of pilots can support the implementation of the protocol [es

  6. A comparative study of creep rupture behaviour of modified 316L(N) base metal and 316L(N)/16-8-2 weldment in air and liquid sodium environments

    International Nuclear Information System (INIS)

    Mishra, M.P.; Mathew, M.D.; Mannan, S.L.; Rodriguez, P.; Borgstedt, H.U.

    1997-01-01

    Creep rupture behaviour of modified type 316L(N) stainless steel base metal and weldments prepared with 16-8-2 filler wire has been investigated in air and flowing sodium environments at 823 K. No adverse environmental effects have been noticed due to sodium on the creep rupture behaviour of these weldments for tests up to 10 000 h. Rupture lives of the weldment were higher in the sodium environment than those in air. Rupture lives of the weldments were found to be lower than those of the base metal by a factor of two to five in both air and sodium environments. Minimum creep rates were essentially the same for the weldment as well as for the base metal in both the environments, whereas rupture strain was usually lower for the weldment than that of the base metal. The reduction in area of the weldment specimens increased with increase in stress. Failures in the specimens of weldments were in the weld metal region. Microstructural studies carried out on failed weldment specimens after the creep rupture tests revealed extensive cavitation in the weld metal region in air tested specimens predominantly at the austerite/δ-ferrite interphase. However, no cavitation was observed in specimens tested in sodium. (author)

  7. Atmospheric diffusion of large clouds

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, T. V. [Univ. of California, Lawrence Radiation Lab., Livermore, California (United States)

    1967-07-01

    Clouds of pollutants travel within a coordinate system that is fixed to the earth's surface, and they diffuse and grow within a coordinate system fixed to the cloud's center. This paper discusses an approach to predicting the cloud's properties, within the latter coordinate system, on space scales of a few hundred meters to a few hundred kilometers and for time periods of a few days. A numerical cloud diffusion model is presented which starts with a cloud placed arbitrarily within the troposphere. Similarity theories of atmospheric turbulence are used to predict the horizontal diffusivity as a function of initial cloud size, turbulent atmospheric dissipation, and time. Vertical diffusivity is input as a function of time and height. Therefore, diurnal variations of turbulent diffusion in the boundary layer and effects of temperature inversions, etc. can be modeled. Nondiffusive cloud depletion mechanisms, such as dry deposition, washout, and radioactive decay, are also a part of this numerical model. An effluent cloud, produced by a reactor run at the Nuclear Rocket Development Station, Nevada, is discussed in this paper. Measurements on this cloud, for a period of two days, are compared to calculations with the above numerical cloud diffusion model. In general, there is agreement. within a factor of two, for airborne concentrations, cloud horizontal area, surface air concentrations, and dry deposition as airborne concentration decreased by seven orders of magnitude during the two-day period. (author)

  8. KINEMATIC STUDY OF THE AIR FLOW PRODUCED BY SOME SPRAYERS USED IN “TENDONE” VINEYARDS

    Directory of Open Access Journals (Sweden)

    Simone Pascuzzi

    2008-09-01

    Full Text Available A computerized measuring system to analyse the vector field of the air velocities in a volume surrounding the fan of air assisted sprayers usually used in tendone vineyards was designed and built. The performance of three different sprayers was tested: the first, a traditional air-convection sprayer, the other two, suitably designed for treatments in tendone vineyards. The air flow which exited through the discharge diffusers and moving towards the target sucked air from the surrounding environment that enlarged the flow rate on the target. The available flow was that which reached the vegetative and productive area, placed in a horizontal position respectively at 1.8 m and 2.0 m from the ground plane. The pneumatic sprayer produced an air flow clearly directed towards the top of the vines.

  9. Diffusion in cladding materials

    International Nuclear Information System (INIS)

    Anand, M.S.; Pande, B.M.; Agarwala, R.P.

    1992-01-01

    Aluminium has been used as a cladding material in most research reactors because its low neutron absorption cross section and ease of fabrication. However, it is not suitable for cladding in power reactors and as such zircaloy-2 is normally used as a clad because it can withstand high temperature. It has low neutron absorption cross section, good oxidation, corrosion, creep properties and possesses good mechanical strength. With the passage of time, further development in this branch of science took place and designers started looking for better neutron economy and less hydrogen pickup in PHW reactors. The motion of fission products in the cladding material could pose a problem after long operation. In order to understand their behaviour under reactor environment, it is essential to study first the diffusion under normal conditions. These studies will throw light on the interaction of defects with impurities which would in turn help in understanding the mechanism of diffusion. In this article, it is intended to discuss the diffusion behaviour of impurities in cladding materials.(i.e. aluminium, zircaloy-2, zirconium-niobium alloy etc.). (author). 94 refs., 4 figs., 3 tabs

  10. Paducah Gaseous Diffusion Plant Annual Site Environmental Report for 1993

    International Nuclear Information System (INIS)

    1994-10-01

    The purpose of this document is to summarize effluent monitoring and environmental surveillance results and compliance with environmental laws, regulations, and orders at the Paducah Gaseous Diffusion Plant (PGDP). Environmental monitoring at PGDP consists of two major activities: effluent monitoring and environmental surveillance. Effluent monitoring is direct measurement or the collection and analysis of samples of liquid and gaseous discharges to the environment. Environmental surveillance is direct measurement or the collection and analysis of samples of air, water, soil, foodstuff, biota, and other media. Environmental monitoring is performed to characterize and quantify contaminants, assess radiation exposures of members of the public, demonstrate compliance with applicable standards and permit requirements, and detect and assess the effects (if any) on the local environment. Multiple samples are collected throughout the year and are analyzed for radioactivity, chemical content, and various physical attributes

  11. United States Air Force Computer-Aided Acquisition & Logistics Support (CALS): CAD/CAM/CAE Current and Future Environment (1988 - 1998). Version 3.0

    Science.gov (United States)

    1988-11-01

    The diffusion and adoption of new technologies across national, sectoral, and : organizational boundaries has been a topic of considerable research. While the : exact transfer mechanism remains a matter of hypothesis, it seems clear that the : direct...

  12. Diffusion archeology for diffusion progression history reconstruction.

    Science.gov (United States)

    Sefer, Emre; Kingsford, Carl

    2016-11-01

    Diffusion through graphs can be used to model many real-world processes, such as the spread of diseases, social network memes, computer viruses, or water contaminants. Often, a real-world diffusion cannot be directly observed while it is occurring - perhaps it is not noticed until some time has passed, continuous monitoring is too costly, or privacy concerns limit data access. This leads to the need to reconstruct how the present state of the diffusion came to be from partial diffusion data. Here, we tackle the problem of reconstructing a diffusion history from one or more snapshots of the diffusion state. This ability can be invaluable to learn when certain computer nodes are infected or which people are the initial disease spreaders to control future diffusions. We formulate this problem over discrete-time SEIRS-type diffusion models in terms of maximum likelihood. We design methods that are based on submodularity and a novel prize-collecting dominating-set vertex cover (PCDSVC) relaxation that can identify likely diffusion steps with some provable performance guarantees. Our methods are the first to be able to reconstruct complete diffusion histories accurately in real and simulated situations. As a special case, they can also identify the initial spreaders better than the existing methods for that problem. Our results for both meme and contaminant diffusion show that the partial diffusion data problem can be overcome with proper modeling and methods, and that hidden temporal characteristics of diffusion can be predicted from limited data.

  13. Indoor air quality

    DEFF Research Database (Denmark)

    Jensen, Trine Susanne; Recevska, Ieva

     The objective of the 35th specific agreement is to provide support to the EEA activities in Environment and Health (E&H) on the topic of indoor air quality. The specific objectives have been to provide an overview of indoor air related projects in EU and indoor air related policies as well...... as idenfiying "good practices" to reduce health impact of indoor air exposure and suggest areas for future improvements....

  14. Human health effects of air pollution

    International Nuclear Information System (INIS)

    Kampa, Marilena; Castanas, Elias

    2008-01-01

    Hazardous chemicals escape to the environment by a number of natural and/or anthropogenic activities and may cause adverse effects on human health and the environment. Increased combustion of fossil fuels in the last century is responsible for the progressive change in the atmospheric composition. Air pollutants, such as carbon monoxide (CO), sulfur dioxide (SO 2 ), nitrogen oxides (NOx), volatile organic compounds (VOCs), ozone (O 3 ), heavy metals, and respirable particulate matter (PM2.5 and PM10), differ in their chemical composition, reaction properties, emission, time of disintegration and ability to diffuse in long or short distances. Air pollution has both acute and chronic effects on human health, affecting a number of different systems and organs. It ranges from minor upper respiratory irritation to chronic respiratory and heart disease, lung cancer, acute respiratory infections in children and chronic bronchitis in adults, aggravating pre-existing heart and lung disease, or asthmatic attacks. In addition, short- and long-term exposures have also been linked with premature mortality and reduced life expectancy. These effects of air pollutants on human health and their mechanism of action are briefly discussed. - The effect of air pollutants on human health and underlying mechanisms of cellular action are discussed

  15. 环境风对直接空冷岛换热的影响%The Effects of Environment Wind on Heat Transfer of Direct Air Cooled Island

    Institute of Scientific and Technical Information of China (English)

    丁振宇; 陈巍; 田永兴; 李学智

    2011-01-01

    以国内蒙达电厂600MW直接空冷机组为例,针对当前直接空冷机组运行中的突出问题--环境风的不利影响,利用CFD数值模拟软件Fluent,对空冷岛外部流场进行数值模拟.发现炉后来风、热风回流、倒灌是造成空冷岛换热效率下降的主要因素,分析了炉后来风、热风回流、倒灌等对空冷岛外部流场和换热性能的影响机理,并得到环境风速与热风回流和倒灌的关系.%Taking Mengda 600MW direct air-cooled units ii our country into consideration,in view of serious hurdles of air-cooled units available-the unfavorable influences of Ambient Wind,we tentatively proceeds to making numerical simulation research on external flow field of direct air-cooled island by using CFD software Fluent. Found that the wind generating from the boiler house afterwards,hot air re-circulation and air inverse flow are the main factors of decline in the efficiency of air-cooled island heat. This paper proposed the mechanism of ambient wind impacts,and the analysis on such effects of the wind generating from the boiler house afterwards,hot air re-circulation and air inverse flow on external flow field and heat exchange efficiency of air-cooled island was thus been within reach, found out hot air re-circulation and air inverse flow relationship between the wind speed.

  16. Atmospheric diffusion wind tunnel with automatic measurement

    Energy Technology Data Exchange (ETDEWEB)

    Maki, S; Sakai, J; Murata, E

    1974-01-01

    A wind tunnel which permits estimates of atmospheric diffusion is described. Smoke from power plant smoke stacks, for example, can be simulated and traced to determine the manner of diffusion in the air as well as the grade of dilution. The wind tunnel is also capable of temperature controlled diffusion tests in which temperature distribution inside the wind tunnel is controlled. A minimum wind velocity of 10 cm can be obtained with accuracy within plus or minus 0.05 percent using a controlled direct current motor; diffusion tests are often made at low wind velocity. Fully automatic measurements can be obtained by using a minicomputer so that the operation and reading of the measuring instruments can be remotely controlled from the measuring chamber. (Air Pollut. Abstr.)

  17. Pesticides and the Environment

    Science.gov (United States)

    ; Environment Human Health Animal Health Safe Use Practices Food Safety Environment Air Water Soil Wildlife Home Page Pesticides and the Environment Related Topics: What Happens to Pesticides Released into the Environment? Pesticide Storage Pesticide Disposal Pesticide Products Integrated Pest Management (IPM) How Safe

  18. Evaluation of the impact of general phosphate fertilizers factories company on the surrounding environment by determining natural radionuclides and some trace elements in air particulates

    International Nuclear Information System (INIS)

    Al-Masri, M. S.; Al-Kharfan, K.; Al-Hamwi, A.; Al-Shamali, K.

    2004-01-01

    Natural radionuclides and some trace element levels in air particulates of the areas surrounding the phosphate fertilizers factory in Homs have been determined Mean total air particulates concentration ranged from 31 μg/m3 in Kerba Al-Teen in Autumn period. While trace element concentrations in air particulates were relatively high in air particulates collected from AECS center and other sites situated north east of the factory; about 1.7 ng/m3 in AECS site and 1.7 ng/m3 in Abel for uranium and cadmium, respectively. In addition, radioactivity analysis of air particulates has shown low levels of polonium 210 and lead 210; a value of 2 mBq/m3 in Kerba Al-Teen has not been