WorldWideScience

Sample records for envelope velocity evolution

  1. 14 CFR 29.87 - Height-velocity envelope.

    Science.gov (United States)

    2010-01-01

    ... Category A engine isolation requirements, the height-velocity envelope for complete power failure must be... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Height-velocity envelope. 29.87 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Performance § 29.87 Height-velocity envelope. (a...

  2. EVOLUTION OF ROTATIONAL VELOCITIES OF A-TYPE STARS

    International Nuclear Information System (INIS)

    Yang Wuming; Bi Shaolan; Tian Zhijia; Meng Xiangcun

    2013-01-01

    The equatorial velocity of A-type stars undergoes an acceleration in the first third of the main sequence (MS) stage, but the velocity decreases as if the stars were not undergoing any redistribution of angular momentum in the external layers in the last stage of the MS phase. Our calculations show that the acceleration and the decrease of the equatorial velocity can be reproduced by the evolution of the differential rotation zero-age MS model with the angular momentum transport caused by hydrodynamic instabilities during the MS stage. The acceleration results from the fact that the angular momentum stored in the interiors of the stars is transported outward. In the last stage, the core and the radiative envelope are uncoupling, and the rotation of the envelope is a quasi-solid rotation; the uncoupling and the expansion of the envelope indicate that the decrease of the equatorial velocity approximately follows the slope for the change in the equatorial velocity of the model without any redistribution of angular momentum. When the fractional age 0.3 ∼ MS ∼< 0.5, the equatorial velocity remains almost constant for stars whose central density increases with age in the early stage of the MS phase, while the velocity decreases with age for stars whose central density decreases with age in the early stage of the MS phase.

  3. Common envelope evolution

    NARCIS (Netherlands)

    Taam, Ronald E.; Ricker, Paul M.

    2010-01-01

    The common envelope phase of binary star evolution plays a central role in many evolutionary pathways leading to the formation of compact objects in short period systems. Using three dimensional hydrodynamical computations, we review the major features of this evolutionary phase, focusing on the

  4. Evolution of envelope solitons of ionization waves

    International Nuclear Information System (INIS)

    Ohe, K.; Hashimoto, M.

    1985-01-01

    The time evolution of a particle-like envelope soliton of ionization waves in plasma was investigated theoretically. The hydrodynamic equations of one spatial dimension were solved and the nonlinear dispersion relation was derived. For the amplitude of the wave the nonlinear Schroedinger equation was derived. Its soliton solution was interpreted as the envelope soliton which was experimentally found. The damping rate of the envelope soliton was estimated. (D.Gy.)

  5. Formation of Low-Mass X-Ray Binaries. II. Common Envelope Evolution of Primordial Binaries with Extreme Mass Ratios

    Science.gov (United States)

    Kalogera, Vassiliki; Webbink, Ronald F.

    1998-01-01

    We study the formation of low-mass X-ray binaries (LMXBs) through helium star supernovae in binary systems that have each emerged from a common envelope phase. LMXB progenitors must satisfy a large number of evolutionary and structural constraints, including survival through common envelope evolution, through the post-common envelope phase, where the precursor of the neutron star becomes a Wolf-Rayet star, and survival through the supernova event. Furthermore, the binaries that survive the explosion must reach interaction within a Hubble time and must satisfy stability criteria for mass transfer. These constraints, imposed under the assumption of a symmetric supernova explosion, prohibit the formation of short-period LMXBs transferring mass at sub-Eddington rates through any channel in which the intermediate progenitor of the neutron star is not completely degenerate. Barring accretion-induced collapse, the existence of such systems therefore requires that natal kicks be imparted to neutron stars. We use an analytical method to synthesize the distribution of nascent LMXBs over donor masses and orbital periods and evaluate their birthrate and systemic velocity dispersion. Within the limitations imposed by observational incompleteness and selection effects, and our neglect of secular evolution in the LMXB state, we compare our results with observations. However, our principal objective is to evaluate how basic model parameters (common envelope ejection efficiency, rms kick velocity, primordial mass ratio distribution) influence these results. We conclude that the characteristics of newborn LMXBs are primarily determined by age and stability constraints and the efficiency of magnetic braking and are largely independent of the primordial binary population and the evolutionary history of LMXB progenitors (except for extreme values of the average kick magnitude or of the common envelope ejection efficiency). Theoretical estimates of total LMXB birthrates are not credible

  6. Velocity structure of protostellar envelopes: gravitational collapse and rotation

    International Nuclear Information System (INIS)

    Belloche, Arnaud

    2002-01-01

    Stars form from the gravitational collapse of pre-stellar condensations in molecular clouds. The major aim of this thesis is to compare the predictions of collapse models with observations of both very young (class 0) protostars and starless condensations in millimeter molecular lines. We wish to understand what determines the masses of forming stars and whether the initial conditions have an effect on the dynamical evolution of a condensation. Using a Monte-Carlo radiative transfer code, we analyze rotation and infall spectroscopic signatures to study the velocity structure of a sample of protostellar condensations. We show that the envelope of the class 0 protostar IRAM 04191 in the Taurus molecular cloud is undergoing both extended, subsonic infall and fast, differential rotation. We propose that the inner part of the envelope is a magnetically supercritical core in the process of decoupling from the ambient cloud still supported by the magnetic field. We suggest that the kinematical properties observed for IRAM 04191 are representative of the physical conditions characterizing isolated protostars shortly after point mass formation. On the other hand, a similar study for the pre-stellar condensations of the Rho Ophiuchi proto-cluster yields mass accretion rates that are an order of magnitude higher than in IRAM 04191. This suggests that individual protostellar collapse in clusters is induced by external disturbances. Moreover, we show that the condensations do not have time to orbit significantly through the proto-cluster gas before evolving into protostars and pre-main-sequence stars. This seems inconsistent with models which resort to dynamical interactions and competitive accretion to build up a mass spectrum comparable to the stellar initial mass function. We conclude that protostellar collapse is nearly spontaneous in regions of isolated star formation such as the Taurus cloud but probably strongly induced in proto-clusters. (author) [fr

  7. Helioseismic measurements in the solar envelope using group velocities of surface waves

    Science.gov (United States)

    Vorontsov, S. V.; Baturin, V. A.; Ayukov, S. V.; Gryaznov, V. K.

    2014-07-01

    At intermediate- and high-degree l, solar p and f modes can be considered as surface waves. Using variational principle, we derive an integral expression for the group velocities of the surface waves in terms of adiabatic eigenfunctions of normal modes, and address the benefits of using group-velocity measurements as a supplementary diagnostic tool in solar seismology. The principal advantage of using group velocities, when compared with direct analysis of the oscillation frequencies, comes from their smaller sensitivity to the uncertainties in the near-photospheric layers. We address some numerical examples where group velocities are used to reveal inconsistencies between the solar models and the seismic data. Further, we implement the group-velocity measurements to the calibration of the specific entropy, helium abundance Y, and heavy-element abundance Z in the adiabatically stratified part of the solar convective envelope, using different recent versions of the equation of state. The results are in close agreement with our earlier measurements based on more sophisticated analysis of the solar oscillation frequencies. These results bring further support to the downward revision of the solar heavy-element abundances in recent spectroscopic measurements.

  8. Evolution of a blue supergiant with a neutron star companion immersed in its envelope

    International Nuclear Information System (INIS)

    Delgado, A.J.

    1980-01-01

    The evolution of a binary system consisting of 1 Msub(sun) neutron star and a 25 Msub(sun) blue supergiant through a phase of common envelope is investigated. We include the effects of an additional energy source on the supergiant's envelope, due to the presence of the neutron star, and variable mass loss from the system, taken as proportional to the total luminosity. The results indicate that, independently of the initial period, the system loses its whole envelope as a consequence of the common envelope phase, the final product of this being a detached system, consisting of a neutron star and a helium star. (orig.)

  9. Non-linear Evolution of the Transverse Instability of Plane-Envelope Solitons

    DEFF Research Database (Denmark)

    Janssen, Peter A. E. M.; Juul Rasmussen, Jens

    1983-01-01

    The nonlinear evolution of the transverse instability of plane envelope soliton solutions of the nonlinear Schrödinger equation is investigated. For the case where the spatial derivatives in the two‐dimensional nonlinear Schrödinger equation are elliptic a critical transverse wavenumber is found...

  10. Tatooines Future: The Eccentric Response of Keplers Circumbinary Planets to Common-Envelope Evolution of their Host Stars

    Science.gov (United States)

    Kostov, Veselin B.; Moore, Keavin; Tamayo, Daniel; Jayawardhana, Ray; Rinehart, Stephen A.

    2016-01-01

    Inspired by the recent Kepler discoveries of circumbinary planets orbiting nine close binary stars, we explore the fate of the former as the latter evolve off the main sequence. We combine binary star evolution models with dynamical simulations to study the orbital evolution of these planets as their hosts undergo common-envelope stages, losing in the process a tremendous amount of mass on dynamical timescales. Five of the systems experience at least one Roche-lobe overflow and common-envelope stages (Kepler-1647 experiences three), and the binary stars either shrink to very short orbits or coalesce; two systems trigger a double-degenerate supernova explosion. Kepler's circumbinary planets predominantly remain gravitationally bound at the end of the common-envelope phase, migrate to larger orbits, and may gain significant eccentricity; their orbital expansion can be more than an order of magnitude and can occur over the course of a single planetary orbit. The orbits these planets can reach are qualitatively consistent with those of the currently known post-common-envelope, eclipse-time variations circumbinary candidates. Our results also show that circumbinary planets can experience both modes of orbital expansion (adiabatic and non-adiabatic) if their host binaries undergo more than one common-envelope stage; multiplanet circumbinary systems like Kepler-47 can experience both modes during the same common-envelope stage. Additionally, unlike Mercury orbiting the Sun, a circumbinary planet with the same semi-major axis can survive the common envelope evolution of a close binary star with a total mass of 1 Solar Mass.

  11. Envelope evolution of a laser pulse in an active medium

    International Nuclear Information System (INIS)

    Fisher, D.L.; Tajima, T.; Downer, M.C.; Siders, C.W.

    1994-11-01

    The authors show that the envelope velocity, v env , of a short laser pulse can, via propagation in an active medium, be made less than, equal to, or even greater than c, the vacuum phase velocity of light. Simulation results, based on moving frame propagation equations coupling the laser pulse, active medium and plasma, are presented, as well as equations that determines the design value of super- and sub-luminous v env . In this simulation the laser pulse evolves in time in a moving frame as opposed to their earlier work where the profile was fixed. The elimination of phase slippage and pump depletion effects in the laser wakefield accelerator is discussed as a particular application. Finally they discuss media properties necessary for an experimental realization of this technique

  12. Dissipative Nonlinear Schrödinger Equation for Envelope Solitary Rossby Waves with Dissipation Effect in Stratified Fluids and Its Solution

    Directory of Open Access Journals (Sweden)

    Yunlong Shi

    2014-01-01

    Full Text Available We solve the so-called dissipative nonlinear Schrödinger equation by means of multiple scales analysis and perturbation method to describe envelope solitary Rossby waves with dissipation effect in stratified fluids. By analyzing the evolution of amplitude of envelope solitary Rossby waves, it is found that the shear of basic flow, Brunt-Vaisala frequency, and β effect are important factors to form the envelope solitary Rossby waves. By employing trial function method, the asymptotic solution of dissipative nonlinear Schrödinger equation is derived. Based on the solution, the effect of dissipation on the evolution of envelope solitary Rossby wave is also discussed. The results show that the dissipation causes a slow decrease of amplitude of envelope solitary Rossby waves and a slow increase of width, while it has no effect on the propagation velocity. That is quite different from the KdV-type solitary waves. It is notable that dissipation has certain influence on the carrier frequency.

  13. Evolution of semilocal string networks. II. Velocity estimators

    Science.gov (United States)

    Lopez-Eiguren, A.; Urrestilla, J.; Achúcarro, A.; Avgoustidis, A.; Martins, C. J. A. P.

    2017-07-01

    We continue a comprehensive numerical study of semilocal string networks and their cosmological evolution. These can be thought of as hybrid networks comprised of (nontopological) string segments, whose core structure is similar to that of Abelian Higgs vortices, and whose ends have long-range interactions and behavior similar to that of global monopoles. Our study provides further evidence of a linear scaling regime, already reported in previous studies, for the typical length scale and velocity of the network. We introduce a new algorithm to identify the position of the segment cores. This allows us to determine the length and velocity of each individual segment and follow their evolution in time. We study the statistical distribution of segment lengths and velocities for radiation- and matter-dominated evolution in the regime where the strings are stable. Our segment detection algorithm gives higher length values than previous studies based on indirect detection methods. The statistical distribution shows no evidence of (anti)correlation between the speed and the length of the segments.

  14. Evolution of velocity dispersion along cold collisionless flows

    International Nuclear Information System (INIS)

    Banik, Nilanjan; Sikivie, Pierre

    2016-01-01

    We found that the infall of cold dark matter onto a galaxy produces cold collisionless flows and caustics in its halo. If a signal is found in the cavity detector of dark matter axions, the flows will be readily apparent as peaks in the energy spectrum of photons from axion conversion, allowing the densities, velocity vectors and velocity dispersions of the flows to be determined. We also discuss the evolution of velocity dispersion along cold collisionless flows in one and two dimensions. A technique is presented for obtaining the leading behaviour of the velocity dispersion near caustics. The results are used to derive an upper limit on the energy dispersion of the Big Flow from the sharpness of its nearby caustic, and a prediction for the dispersions in its velocity components

  15. Common Envelope Evolution: Implications for Post-AGB Stars and Planetary Nebulae

    Science.gov (United States)

    Nordhaus, J.

    2017-10-01

    Common envelopes (CE) are of broad interest as they represent one method by which binaries with initially long-period orbits of a few years can be converted into short-period orbits of a few hours. Despite their importance, the brief lifetimes of CE phases make them difficult to directly observe. Nevertheless, CE interactions are potentially common, can produce a diverse array of nebular shapes, and can accommodate current post-AGB and planetary nebula outflow constraints. Here, I discuss ongoing theoretical and computational work on CEs and speculate on what lies ahead for determining accurate outcomes of this elusive phase of evolution.

  16. COSMIC EVOLUTION OF SIZE AND VELOCITY DISPERSION FOR EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Fan, L.; Lapi, A.; Bressan, A.; De Zotti, G.; Danese, L.; Bernardi, M.

    2010-01-01

    Massive (stellar mass M * ∼> 3 x 10 10 M sun ), passively evolving galaxies at redshifts z ∼> 1 exhibit on average physical sizes smaller, by factors ∼3, than local early-type galaxies (ETGs) endowed with the same stellar mass. Small sizes are in fact expected on theoretical grounds, if dissipative collapse occurs. Recent results show that the size evolution at z ∼ 1, where both compact and already extended galaxies are observed and the scatter in size is remarkably larger than it is locally. The presence at high redshift of a significant number of ETGs with the same size as their local counterparts, as well as ETGs with quite small size (∼ H (z). We demonstrate that the projected mass of compact, high-redshift galaxies and that of local ETGs within the same physical radius, the nominal half-luminosity radius of high-redshift ETGs, differ substantially in that the high-redshift ETGs are on average significantly denser. This result suggests that the physical mechanism responsible for the size increase should also remove mass from central galaxy regions (r ∼ 1, we predict the local velocity dispersion distribution function. On comparing it to the observed one, we show that velocity dispersion evolution of massive ETGs is fully compatible with the observed average evolution in size at constant stellar mass. Less massive ETGs (with stellar masses M * ∼ 10 M sun ) are expected to evolve less both in size and in velocity dispersion, because their evolution is essentially determined by supernova feedback, which cannot yield winds as powerful as those triggered by quasars. The differential evolution is expected to leave imprints in the size versus luminosity/mass, velocity dispersion versus luminosity/mass, and central black hole mass versus velocity dispersion relationships, as observed in local ETGs.

  17. The limited role of recombination energy in common envelope removal

    Science.gov (United States)

    Grichener, Aldana; Sabach, Efrat; Soker, Noam

    2018-05-01

    We calculate the outward energy transport time by convection and photon diffusion in an inflated common envelope and find this time to be shorter than the envelope expansion time. We conclude therefore that most of the hydrogen recombination energy ends in radiation rather than in kinetic energy of the outflowing envelope. We use the stellar evolution code MESA and inject energy inside the envelope of an asymptotic giant branch star to mimic energy deposition by a spiraling-in stellar companion. During 1.7 years the envelope expands by a factor of more than 2. Along the entire evolution the convection can carry the energy very efficiently outwards, to the radius where radiative transfer becomes more efficient. The total energy transport time stays within several months, shorter than the dynamical time of the envelope. Had we included rapid mass loss, as is expected in the common envelope evolution, the energy transport time would have been even shorter. It seems that calculations that assume that most of the recombination energy ends in the outflowing gas might be inaccurate.

  18. Rotational velocities of low-mass stars

    International Nuclear Information System (INIS)

    Stauffer, J.B.; Hartmann, L.W.; Harvard-Smithsonian Center for Astrophysics, Cambridge, MA)

    1986-01-01

    The rotational velocities of stars provide important clues to how stars form and evolve. Yet until recently, studies of stellar rotation were limited to stars more massive than the sun. This is beginning to change, and an observational outline of the rotational velocity evolution of stars less massive than the sun can now be provided. Low-mass stars rotate slowly during the early stages of premain-sequence evolution, and spin up as they contract to the main sequence. This spin-up culminates in a brief period of very rapid rotation at an age of order 50 million years. Physical interpretation of this increase in rotation and the subsequent main-sequence spin-down are complicated by the possibility of differential internal rotation. The observed rapidity of spin-down among G dwarfs suggests that initially only the outer convective envelopes of these stars are slowed. The data suggest an intrinsic spread in angular momentum among young stars of the same mass and age, a spread which is apparently minimized by the angular-momentum loss mechanism in old low-mass stars. 83 references

  19. Evolution of massive close binary stars

    International Nuclear Information System (INIS)

    Masevich, A.G.; Tutukov, A.V.

    1982-01-01

    Some problems of the evolution of massive close binary stars are discussed. Most of them are nonevolutionized stars with close masses of components. After filling the Roche cavity and exchange of matter between the components the Wolf-Rayet star is formed. As a result of the supernovae explosion a neutron star or a black hole is formed in the system. The system does not disintegrate but obtains high space velocity owing to the loss of the supernovae envelope. The satellite of the neutron star or black hole - the star of the O or B spectral class loses about 10 -6 of the solar mass for a year. Around the neighbouring component a disc of this matter is formed the incidence of which on a compact star leads to X radiation appearance. The neutron star cannot absorb the whole matter of the widening component and the binary system submerges into the common envelope. As a result of the evolution of massive close binary systems single neutron stars can appear which after the lapse of some time become radiopulsars. Radiopulsars with such high space velocities have been found in our Galaxy [ru

  20. The evolution of protostellar envelopes of masses 3 Msub(sun) and 10 Msub(sun)

    International Nuclear Information System (INIS)

    Yorke, H.W.

    1979-10-01

    The results of numerical calculations solving the coupled equations of hydrodynamics and radiation transfer are presented in a sequence of papers describing the structure, evolution and appearance of protostellar clouds of intermediate mass (3 Msub(sun) 10 Msub(sun). These numerical calculations begin at the time of initial gravitational collapse and continue through the birth of a central protostar, until the infall of material onto the central object has been reversed. For the 10 M case the formation and evolution of a compact HII region is crudely followed after the gas density in the envelope had decreased sufficiently to allow an ionization front to propagate outwards. For all cases calculated spherical symmetry was assumed. Solar abundances were used. (orig.) 891 WL/orig. 892 RDG

  1. Gravitational Waves from Accreting Neutron Stars Undergoing Common-envelope Inspiral

    Science.gov (United States)

    Holgado, A. Miguel; Ricker, Paul M.; Huerta, E. A.

    2018-04-01

    The common-envelope phase is a likely formation channel for close binary systems containing compact objects. Neutron stars in common envelopes accrete at a fraction of the Bondi–Hoyle–Lyttleton accretion rate, since the stellar envelope is inhomogeneous, but they may still be able to accrete at hypercritical rates (though not enough to become black holes). We show that common-envelope systems consisting of a neutron star with a massive primary may be gravitational-wave (GW) sources detectable in the Advanced LIGO band as far away as the Magellanic Clouds. To characterize their evolution, we perform orbital integrations using 1D models of 12 M ⊙ and 20 M ⊙ primaries, considering the effects of density gradient on the accretion onto the NS and spin evolution. From the range of possible accretion rates relevant to common-envelope evolution, we find that these systems may be louder GW sources than low-mass X-ray binaries like Sco X-1, which are currently the target of directed searches for continuous GWs. We also find that their strain amplitude signal may allow for novel constraints on the orbital separation and inspiral timescale in common envelopes when combined with pre-common-envelope electromagnetic observations.

  2. Glimpsing over the event horizon: evolution of nuclear pores and envelope.

    Science.gov (United States)

    Jékely, Gáspár

    2005-02-01

    The origin of eukaryotes from prokaryotic ancestors is one of the major evolutionary transitions in the history of life. The nucleus, a membrane bound compartment for confining the genome, is a central feature of eukaryotic cells and its origin also has to be a central feature of any workable theory that ventures to explain eukaryotic origins. Recent bioinformatic analyses of components of the nuclear pore complex (NPC), the nuclear envelope (NE), and the nuclear transport systems revealed exciting evolutionary connections (e.g., between NPC and coated vesicles) and provided a useful record of the phyletic distribution and history of NPC and NE components. These analyses allow us to refine theories on the origin and evolution of the nucleus, and consequently, of the eukaryotic cell.

  3. Evolution of planetary nebulae. III. Position-velocity images of butterfly-type nebulae

    International Nuclear Information System (INIS)

    Icke, V.; Preston, H.L.; Balick, B.

    1989-01-01

    Observations of the motions of the shells of the planetary nebulae NGC 2346, NGC 2371-2, NGC 2440, NGC 6058, NGC 6210, IC 1747, IC 5217, J-320, and M2-9 are presented. These are all 'butterfly' type PNs, and show evidence for bipolar shocks. The observations are interpreted in terms of a fast spherical wind, driven by the central star into a quasi-toroidal envelope deposited earlier by the star, during its slow-wind phase on the asymptotic giant branch. It is shown that this model, which is a straightforward extension of a mechanism previously invoked to account for elliptical PNs, reproduces the essential kinematic features of butterfly PNs. It is inferred that the envelopes of butterflies must have a considerable equator-to-pole density gradient, and it is suggested that the origin of this asphericity must be sought in an as yet unknown mechanism during the AGB, Mira, or OH/IR phases of late stellar evolution. 28 references

  4. The Effect of Velocity Correlation on the Spatial Evolution of Breakthrough Curves in Heterogeneous Media

    Science.gov (United States)

    Massoudieh, A.; Dentz, M.; Le Borgne, T.

    2017-12-01

    In heterogeneous media, the velocity distribution and the spatial correlation structure of velocity for solute particles determine the breakthrough curves and how they evolve as one moves away from the solute source. The ability to predict such evolution can help relating the spatio-statistical hydraulic properties of the media to the transport behavior and travel time distributions. While commonly used non-local transport models such as anomalous dispersion and classical continuous time random walk (CTRW) can reproduce breakthrough curve successfully by adjusting the model parameter values, they lack the ability to relate model parameters to the spatio-statistical properties of the media. This in turns limits the transferability of these models. In the research to be presented, we express concentration or flux of solutes as a distribution over their velocity. We then derive an integrodifferential equation that governs the evolution of the particle distribution over velocity at given times and locations for a particle ensemble, based on a presumed velocity correlation structure and an ergodic cross-sectional velocity distribution. This way, the spatial evolution of breakthrough curves away from the source is predicted based on cross-sectional velocity distribution and the connectivity, which is expressed by the velocity transition probability density. The transition probability is specified via a copula function that can help construct a joint distribution with a given correlation and given marginal velocities. Using this approach, we analyze the breakthrough curves depending on the velocity distribution and correlation properties. The model shows how the solute transport behavior evolves from ballistic transport at small spatial scales to Fickian dispersion at large length scales relative to the velocity correlation length.

  5. Evolution of deformation velocity in narrowing for Zircaloy 2

    Energy Technology Data Exchange (ETDEWEB)

    Cetlin, P R [Minas Gerais Univ., Belo Horizonte (Brazil). Dept. de Engenharia Metalurgica; Okuda, M Y [Goias Univ., Goiania (Brazil). Inst. de Matematica e Fisica

    1980-09-01

    Some studies on the deformation instability in strain shows that the differences in this instability may lead to localized narrowing or elongated narrowing, for Zircaloy-2. The variation of velocity deformation with the narrowing evolution is expected to be different for these two cases. The mentioned variation is discussed, a great difference in behavior having been observed for the case of localized narrowing.

  6. Envelope matching for enhanced backward Raman amplification by using self-ionizing plasmas

    International Nuclear Information System (INIS)

    Zhang, Z. M.; Zhang, B.; Hong, W.; Teng, J.; He, S. K.; Gu, Y. Q.; Yu, M. Y.

    2014-01-01

    Backward Raman amplification (BRA) in plasmas has been promoted as a means for generating ultrapowerful laser pulses. For the purpose of achieving the maximum intensities over the shortest distances, an envelope matching between the seed pulse and the amplification gain is required, i.e., the seed pulse propagates at the same velocity with the gain such that the peak of the seed pulse can always enjoy the maximum gain. However, such an envelope matching is absent in traditional BRA because in the latter the amplification gain propagates at superluminous velocity while the seed pulse propagates at the group velocity, which is less than the speed of light. It is shown here that, by using self-ionizing plasmas, the speed of the amplification gain can be well reduced to reach the envelope matching regime. This results in a favorable BRA process, in which higher saturated intensity, shorter interaction length and higher energy-transfer efficiency are achieved

  7. Experimental research on time-resolved evolution of cathode plasma expansion velocity in a long pulsed magnetically insulated coaxial diode

    Science.gov (United States)

    Zhu, Danni; Zhang, Jun; Zhong, Huihuang; Ge, Xingjun; Gao, Jingming

    2018-02-01

    Unlike planar diodes, separate research of the axial and radial plasma expansion velocities is difficult for magnetically insulated coaxial diodes. Time-resolved electrical diagnostic which is based on the voltage-ampere characteristics has been employed to study the temporal evolution of the axial and radial cathode plasma expansion velocities in a long pulsed magnetically insulated coaxial diode. Different from a planar diode with a "U" shaped profile of temporal velocity evolution, the temporal evolution trend of the axial expansion velocity is proved to be a "V" shaped profile. Apart from the suppression on the radial expansion velocity, the strong magnetic field is also conducive to slowing down the axial expansion velocity. Compared with the ordinary graphite cathode, the carbon velvet and graphite composite cathode showed superior characteristics as judged by the low plasma expansion velocity and long-term electrical stability as a promising result for applications where long-pulsed and reliable operation at high power is required.

  8. Dispersion - does it degrade a pulse envelope

    International Nuclear Information System (INIS)

    Deighton, M.O.

    1985-01-01

    In hostile environments, transmitting information as ultrasonic Lamb wave pulses has advantages, since the stainless steel strip serving as a waveguide is very durable. Besides attenuation, velocity dispersion (inherent in Lamb waves) can be important even in fairly short guides. Theory shows that unlimited propagation of a pulsed r.f. envelope is possible, even with dispersion present. The constant group velocity needed would favour asub(o)-mode pulses over other modes, provided ordinary attenuation is small. An approximate formula indicates the useful range of a pulse, when group velocity does vary. (author)

  9. Pressure evolution of the high-frequency sound velocity in liquid water

    International Nuclear Information System (INIS)

    Krisch, M.; Sette, F.; D'Astuto, M.; Lorenzen, M.; Mermet, A.; Monaco, G.; Verbeni, R.; Loubeyre, P.; Le Toullec, R.; Ruocco, G.; Cunsolo, A.

    2002-01-01

    The high-frequency sound velocity v ∞ of liquid water has been determined to densities of 1.37 g/cm 3 by inelastic x-ray scattering. In comparison to the hydrodynamic sound velocity v 0 , the increase of v ∞ with density is substantially less pronounced, indicating that, at high density, the hydrogen-bond network is decreasingly relevant to the physical properties of liquid water. Furthermore, we observe an anomaly in v ∞ at densities around 1.12 g/cm 3 , contrasting the smooth density evolution of v 0

  10. The dynamics of short envelope solitons in media with controlled dispersion

    International Nuclear Information System (INIS)

    Aseeva, N.V.; Gromov, E.M.; Tyutin, V.V.

    2007-01-01

    The dynamics of short envelope solitons in media with controlled dispersion is investigated in the framework of the third-order nonlinear Schroedinger equation. Evolution of the solitons amplitude is analyzed in the adiabatic approximation. The existence of short envelope solitons independent from linear dispersion inhomogeneity is shown

  11. VELOCITY EVOLUTION AND THE INTRINSIC COLOR OF TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Foley, Ryan J.; Sanders, Nathan E.; Kirshner, Robert P.

    2011-01-01

    To understand how best to use observations of Type Ia supernovae (SNe Ia) to obtain precise and accurate distances, we investigate the relations between spectra of SNe Ia and their intrinsic colors. Using a sample of 1630 optical spectra of 255 SNe, based primarily on data from the CfA Supernova Program, we examine how the velocity evolution and line strengths of Si II λ6355 and Ca II H and K are related to the B – V color at peak brightness. We find that the maximum-light velocity of Si II λ6355 and Ca II H and K and the maximum-light pseudo-equivalent width of Si II λ6355 are correlated with intrinsic color, with intrinsic color having a linear relation with the Si II λ6355 measurements. Ca II H and K does not have a linear relation with intrinsic color, but lower-velocity SNe tend to be intrinsically bluer. Combining the spectroscopic measurements does not improve intrinsic color inference. The intrinsic color scatter is larger for higher-velocity SNe Ia—even after removing a linear trend with velocity—indicating that lower-velocity SNe Ia are more 'standard crayons'. Employing information derived from SN Ia spectra has the potential to improve the measurements of extragalactic distances and the cosmological properties inferred from them.

  12. Defect evolution in cosmology and condensed matter quantitative analysis with the velocity-dependent one-scale model

    CERN Document Server

    Martins, C J A P

    2016-01-01

    This book sheds new light on topological defects in widely differing systems, using the Velocity-Dependent One-Scale Model to better understand their evolution. Topological defects – cosmic strings, monopoles, domain walls or others - necessarily form at cosmological (and condensed matter) phase transitions. If they are stable and long-lived they will be fossil relics of higher-energy physics. Understanding their behaviour and consequences is a key part of any serious attempt to understand the universe, and this requires modelling their evolution. The velocity-dependent one-scale model is the only fully quantitative model of defect network evolution, and the canonical model in the field. This book provides a review of the model, explaining its physical content and describing its broad range of applicability.

  13. Radio Imaging of Envelopes of Evolved Stars

    Science.gov (United States)

    Cotton, Bill

    2018-04-01

    This talk will cover imaging of stellar envelopes using radio VLBI techniques; special attention will be paid to the technical differences between radio and optical/IR interferomery. Radio heterodyne receivers allow a straightforward way to derive spectral cubes and full polarization observations. Milliarcsecond resolution of very bright, i.e. non thermal, emission of molecular masers in the envelopes of evolved stars can be achieved using VLBI techniques with baselines of thousands of km. Emission from SiO, H2O and OH masers are commonly seen at increasing distance from the photosphere. The very narrow maser lines allow accurate measurements of the velocity field within the emitting region.

  14. Supernova 2010as: the lowest-velocity member of a family of flat-velocity type IIb supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Folatelli, Gastón; Bersten, Melina C.; Nomoto, Ken' ichi [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Kuncarayakti, Hanindyo; Hamuy, Mario [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Olivares Estay, Felipe; Pignata, Giuliano [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago (Chile); Anderson, Joseph P. [European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago (Chile); Holmbo, Simon; Stritzinger, Maximilian [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Maeda, Keiichi [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Morrell, Nidia; Contreras, Carlos; Phillips, Mark M. [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Förster, Francisco [Center for Mathematical Modelling, Universidad de Chile, Avenida Blanco Encalada 2120 Piso 7, Santiago (Chile); Prieto, José Luis [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Peyton Hall, Princeton, NJ 08544 (United States); Valenti, Stefano [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Afonso, Paulo; Altenmüller, Konrad; Elliott, Jonny, E-mail: gaston.folatelli@ipmu.jp [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße 1, D-85740 Garching (Germany); and others

    2014-09-01

    We present extensive optical and near-infrared photometric and spectroscopic observations of the stripped-envelope supernova SN 2010as. Spectroscopic peculiarities such as initially weak helium features and low expansion velocities with a nearly flat evolution place this object in the small family of events previously identified as transitional Type Ib/c supernovae (SNe). There is ubiquitous evidence of hydrogen, albeit weak, in this family of SNe, indicating that they are in fact a peculiar kind of Type IIb SNe that we name 'flat-velocity' Type IIb. The flat-velocity evolution—which occurs at different levels between 6000 and 8000 km s{sup –1} for different SNe—suggests the presence of a dense shell in the ejecta. Despite the spectroscopic similarities, these objects show surprisingly diverse luminosities. We discuss the possible physical or geometrical unification picture for such diversity. Using archival Hubble Space Telescope images, we associate SN 2010as with a massive cluster and derive a progenitor age of ≈6 Myr, assuming a single star-formation burst, which is compatible with a Wolf-Rayet progenitor. Our hydrodynamical modeling, on the contrary, indicates that the pre-explosion mass was relatively low, ≈4 M {sub ☉}. The seeming contradiction between a young age and low pre-SN mass may be solved by a massive interacting binary progenitor.

  15. Nonlinear evolutions of an ultra-intense ultra-short laser pulse in a rarefied plasma through a new quasi-static theory

    Science.gov (United States)

    Yazdanpanah, J.

    2018-02-01

    In this paper, we present a new description of self-consistent wake excitation by an intense short laser pulse, based on applying the quasi-static approximation (slow variations of the pulse-envelope) in the instantaneous Lorentz-boosted pulse co-moving frame (PCMF), and best verify our results through comparison with particle-in-cell simulations. According to this theory, the plasma motion can be treated perturbatively in the PCMF due to its high initial-velocity and produces a quasi-static wakefield in this frame. The pulse envelope, on the other hand, is governed by a form of the Schrödinger equation in the PCMF, in which the wakefield acts as an effective potential. In this context, pulse evolutions are characterized by local conservation laws resulted from this equation and subjected to Lorentz transformation into the laboratory frame. Using these conservation laws, precise formulas are obtained for spatiotemporal pulse evolutions and related wakefield variations at initial stages, and new equations are derived for instantaneous group velocity and carrier frequency. In addition, based on properties of the Schrödinger equation, spectral-evolutions of the pulse are described and the emergence of an anomalous dispersion branch with linear relation ω ≈ ck (c is the light speed) is predicted. Our results are carefully discussed versus previous publications and the significance of our approach is described by showing almost all suggestive definitions of group-velocity based on energy arguments fail to reproduce our formula and correctly describe the instantaneous pulse-velocity.

  16. Effect of emplaced nZVI mass and groundwater velocity on PCE dechlorination and hydrogen evolution in water-saturated sand

    International Nuclear Information System (INIS)

    Kim, Hye-Jin; Leitch, Megan; Naknakorn, Bhanuphong; Tilton, Robert D.; Lowry, Gregory V.

    2017-01-01

    Highlights: • Reactivity of nZVI increased linearly with nZVI concentration above 10 g/L, but was non-linear below 10 g/L. • nZVI reactivity with PCE is more sensitive to solution redox potential than solution pH. • Mass transfer limits the reactivity of emplaced nZVI under typical groundwater flow velocity. • Lowering pH increases H_2 evolution from nZVI more than reactivity with PCE. • Design of nZVI remediation strategies should consider mass loading and flow velocity on performance and lifetime. - Abstract: The effect of nZVI mass loading and groundwater velocity on the tetrachloroethylene (PCE) dechlorination rate and the hydrogen evolution rate for poly(maleic acid-co-olefin) (MW = 12 K) coated nZVI was examined. In batch reactors, the PCE reaction rate constant (3.7 × 10"−"4 L hr"−"1 m"−"2) and hydrogen evolution rate constant (1.4 nanomol L hr"−"1 m"−"2) were independent of nZVI concentration above 10 g/L, but the PCE dechlorination rate decreased and the hydrogen evolution rate increased for nZVI concentration below 10 g/L. The nonlinearity between nZVI mass loading and PCE dechlorination and H_2 evolution was explained by differences in pH and E_h at each nZVI mass loading; PCE reactivity increased when solution E_h decreased, and the H_2 evolution rate increased with decreasing pH. Thus, nZVI mass loading of <5 g/L yields lower reactivity with PCE and lower efficiency of Fe° utilization than for higher nZVI mass loading. The PCE dechlorination rate increased with increasing pore-water velocity, suggesting that mass transfer limits the reaction at low porewater velocity. Overall, this work suggests that design of nZVI-based reactive barriers for groundwater treatment should consider the non-linear effects of both mass loading and flow velocity on performance and expected reactive lifetime.

  17. Effect of emplaced nZVI mass and groundwater velocity on PCE dechlorination and hydrogen evolution in water-saturated sand

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hye-Jin [Civil & Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States); Chemical Research Division, Environmental Health Research Department, National Institute of Environmental Research, Incheon 404-708 (Korea, Republic of); Leitch, Megan [Civil & Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States); Center for Environmental Implications of Nanotechnology, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States); Naknakorn, Bhanuphong [Civil & Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States); Tilton, Robert D. [Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States); Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States); Center for Environmental Implications of Nanotechnology, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States); Lowry, Gregory V., E-mail: glowry@cmu.edu [Civil & Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States); Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States); Center for Environmental Implications of Nanotechnology, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States)

    2017-01-15

    Highlights: • Reactivity of nZVI increased linearly with nZVI concentration above 10 g/L, but was non-linear below 10 g/L. • nZVI reactivity with PCE is more sensitive to solution redox potential than solution pH. • Mass transfer limits the reactivity of emplaced nZVI under typical groundwater flow velocity. • Lowering pH increases H{sub 2} evolution from nZVI more than reactivity with PCE. • Design of nZVI remediation strategies should consider mass loading and flow velocity on performance and lifetime. - Abstract: The effect of nZVI mass loading and groundwater velocity on the tetrachloroethylene (PCE) dechlorination rate and the hydrogen evolution rate for poly(maleic acid-co-olefin) (MW = 12 K) coated nZVI was examined. In batch reactors, the PCE reaction rate constant (3.7 × 10{sup −4} L hr{sup −1} m{sup −2}) and hydrogen evolution rate constant (1.4 nanomol L hr{sup −1} m{sup −2}) were independent of nZVI concentration above 10 g/L, but the PCE dechlorination rate decreased and the hydrogen evolution rate increased for nZVI concentration below 10 g/L. The nonlinearity between nZVI mass loading and PCE dechlorination and H{sub 2} evolution was explained by differences in pH and E{sub h} at each nZVI mass loading; PCE reactivity increased when solution E{sub h} decreased, and the H{sub 2} evolution rate increased with decreasing pH. Thus, nZVI mass loading of <5 g/L yields lower reactivity with PCE and lower efficiency of Fe° utilization than for higher nZVI mass loading. The PCE dechlorination rate increased with increasing pore-water velocity, suggesting that mass transfer limits the reaction at low porewater velocity. Overall, this work suggests that design of nZVI-based reactive barriers for groundwater treatment should consider the non-linear effects of both mass loading and flow velocity on performance and expected reactive lifetime.

  18. Full waveform inversion using envelope-based global correlation norm

    Science.gov (United States)

    Oh, Ju-Won; Alkhalifah, Tariq

    2018-05-01

    To increase the feasibility of full waveform inversion on real data, we suggest a new objective function, which is defined as the global correlation of the envelopes of modelled and observed data. The envelope-based global correlation norm has the advantage of the envelope inversion that generates artificial low-frequency information, which provides the possibility to recover long-wavelength structure in an early stage. In addition, the envelope-based global correlation norm maintains the advantage of the global correlation norm, which reduces the sensitivity of the misfit to amplitude errors so that the performance of inversion on real data can be enhanced when the exact source wavelet is not available and more complex physics are ignored. Through the synthetic example for 2-D SEG/EAGE overthrust model with inaccurate source wavelet, we compare the performance of four different approaches, which are the least-squares waveform inversion, least-squares envelope inversion, global correlation norm and envelope-based global correlation norm. Finally, we apply the envelope-based global correlation norm on the 3-D Ocean Bottom Cable (OBC) data from the North Sea. The envelope-based global correlation norm captures the strong reflections from the high-velocity caprock and generates artificial low-frequency reflection energy that helps us recover long-wavelength structure of the model domain in the early stages. From this long-wavelength model, the conventional global correlation norm is sequentially applied to invert for higher-resolution features of the model.

  19. PROBING SHOCK BREAKOUT AND PROGENITORS OF STRIPPED-ENVELOPE SUPERNOVAE THROUGH THEIR EARLY RADIO EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Keiichi, E-mail: keiichi.maeda@ipmu.jp [Kavli Institute for the Physics and Mathematics of the Universe (Kavli-IPMU), Todai Institutes for Advanced Study (TODIAS), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan)

    2013-01-01

    We study properties of early radio emission from stripped-envelope supernovae (SNe; those of Type IIb/Ib/Ic). We suggest there is a sub-class of stripped-envelope SNe based on their radio properties, including the optically well-studied Type Ic SNe (SNe Ic) 2002ap and 2007gr, showing a rapid rise to a radio peak within {approx}10 days and reaching a low luminosity (at least an order of magnitude fainter than a majority of SNe IIb/Ib/Ic). They show a decline after the peak that is shallower than that of other stripped-envelope SNe while their spectral index is similar. We show that all these properties are naturally explained if the circumstellar material (CSM) density is low and therefore the forward shock is expanding into the CSM without deceleration. Since the forward shock velocity in this situation, as estimated from the radio properties, still records the maximum velocity of the SN ejecta following the shock breakout, observing these SNe in radio wavelengths provides new diagnostics on the nature of both the breakout and the progenitor which otherwise require a quite rapid follow-up in other wavelengths. The inferred post-shock breakout velocities of SNe Ic 2002ap and 2007gr are sub-relativistic, {approx}0.3c. These are higher than that inferred for SN II 1987A, in line with suggested compact progenitors. However, these are lower than expected for a Wolf-Rayet (W-R) progenitor. It may reflect an as yet unresolved nature of the progenitors just before the explosion, and we suggest that the W-R progenitor envelopes might have been inflated which could quickly reduce the maximum ejecta velocity from the initial shock breakout velocity.

  20. Refractive index dispersion measurement using carrier-envelope phasemeters

    International Nuclear Information System (INIS)

    Hansinger, Peter; Töpfer, Philipp; Adolph, Daniel; Hoff, Dominik; Rathje, Tim; Sayler, A Max; Paulus, Gerhard G; Dimitrov, Nikolay; Dreischuh, Alexander

    2017-01-01

    We introduce a novel method for direct and accurate measurement of refractive index dispersion based on carrier-envelope phase detection of few-cycle laser pulses, exploiting the difference between phase and group velocity in a dispersive medium. In a layout similar to an interferometer, two carrier-envelope phasemeters are capable of measuring the dispersion of a transparent or reflective sample, where one phasemeter serves as the reference and the other records the influence of the sample. Here we report on proof-of-principle measurements that already reach relative uncertainties of a few 10 −4 . Further development is expected to allow for unprecedented precision. (paper)

  1. Formation of a Keplerian disk in the infalling envelope around L1527 IRS: transformation from infalling motions to Kepler motions

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Nagayoshi [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Saigo, Kazuya [Chile Observatory, National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo 181-8588 (Japan); Aso, Yusuke; Koyamatsu, Shin [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Aikawa, Yuri [Department of Earth and Planetary Sciences, Kobe University, Kobe 657-8501 (Japan); Machida, Masahiro N. [Department of Earth and Planetary Sciences, Faculty of Sciences, Kyushu University, Fukuoka 812-8581 (Japan); Saito, Masao [Joint ALMA Observatory, Ave. Alonso de Cordova 3107, Vitacura, Santiago (Chile); Takahashi, Sanemichi Z. [Department of Physics, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Takakuwa, Shigehisa; Yen, Hsi-Wei [Academia Sinica Institute of Astronomy and Astrophysics, PO Box 23-141, Taipei 10617, Taiwan (China); Tomida, Kengo [Department of Astronomical Science, Princeton University, Princeton, NJ 08544 (United States); Tomisaka, Kohji, E-mail: nohashi@naoj.org [National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo 181-8588 (Japan)

    2014-12-01

    We report Atacama Large Millimeter/submillimeter Array (ALMA) cycle 0 observations of the C{sup 18}O (J = 2-1), SO (J{sub N} = 6{sub 5}-5{sub 4}), and the 1.3 mm dust continuum toward L1527 IRS, a class 0 solar-type protostar surrounded by an infalling and rotating envelope. C{sup 18}O emission shows strong redshifted absorption against the bright continuum emission associated with L1527 IRS, strongly suggesting infall motions in the C{sup 18}O envelope. The C{sup 18}O envelope also rotates with a velocity mostly proportional to r {sup –1}, where r is the radius, whereas the rotation profile at the innermost radius (∼54 AU) may be shallower than r {sup –1}, suggestive of formation of a Keplerian disk around the central protostar of ∼0.3 M {sub ☉} in dynamical mass. SO emission arising from the inner part of the C{sup 18}O envelope also shows rotation in the same direction as the C{sup 18}O envelope. The rotation is, however, rigid-body-like, which is very different from the differential rotation shown by C{sup 18}O. In order to explain the line profiles and the position-velocity (PV) diagrams of C{sup 18}O and SO observed, simple models composed of an infalling envelope surrounding a Keplerian disk of 54 AU in radius orbiting a star of 0.3 M {sub ☉} are examined. It is found that in order to reproduce characteristic features of the observed line profiles and PV diagrams, the infall velocity in the model has to be smaller than the free-fall velocity yielded by a star of 0.3 M {sub ☉}. Possible reasons for the reduced infall velocities are discussed.

  2. HOW THERMAL EVOLUTION AND MASS-LOSS SCULPT POPULATIONS OF SUPER-EARTHS AND SUB-NEPTUNES: APPLICATION TO THE KEPLER-11 SYSTEM AND BEYOND

    International Nuclear Information System (INIS)

    Lopez, Eric D.; Miller, Neil; Fortney, Jonathan J.

    2012-01-01

    We use models of thermal evolution and extreme ultraviolet (XUV) driven mass loss to explore the composition and history of low-mass, low-density transiting planets. We investigate the Kepler-11 system in detail and provide estimates of both the current and past planetary compositions. We find that an H/He envelope on Kepler-11b is highly vulnerable to mass loss. By comparing to formation models, we show that in situ formation of the system is extremely difficult. Instead we propose that it is a water-rich system of sub-Neptunes that migrated from beyond the snow line. For the broader population of observed planets, we show that there is a threshold in bulk planet density and incident flux above which no low-mass transiting planets have been observed. We suggest that this threshold is due to the instability of H/He envelopes to XUV-driven mass loss. Importantly, we find that this mass-loss threshold is well reproduced by our thermal evolution/contraction models that incorporate a standard mass-loss prescription. Treating the planets' contraction history is essential because the planets have significantly larger radii during the early era of high XUV fluxes. Over time low-mass planets with H/He envelopes can be transformed into water-dominated worlds with steam envelopes or rocky super-Earths. Finally, we use this threshold to provide likely minimum masses and radial-velocity amplitudes for the general population of Kepler candidates. Likewise, we use this threshold to provide constraints on the maximum radii of low-mass planets found by radial-velocity surveys.

  3. Decoupling of magnetic fields in collapsing protostellar envelopes and disc formation and fragmentation

    Science.gov (United States)

    Zhao, Bo; Caselli, Paola; Li, Zhi-Yun; Krasnopolsky, Ruben

    2018-02-01

    Efficient magnetic braking is a formidable obstacle to the formation of rotationally supported discs (RSDs) around protostars in magnetized dense cores. We have previously shown, through 2D (axisymmetric) non-ideal magnetohydrodynamic simulations, that removing very small grains (VSGs: ∼10 Å to few 100 Å) can greatly enhance ambipolar diffusion and enable the formation of RSDs. Here, we extend the simulations of disc formation enabled by VSG removal to 3D. We find that the key to this scenario of disc formation is that the drift velocity of the magnetic field almost cancels out the infall velocity of the neutrals in the 102-103 au scale 'pseudo-disc' where the field lines are most severely pinched and most of protostellar envelope mass infall occurs. As a result, the bulk neutral envelope matter can collapse without dragging much magnetic flux into the disc-forming region, which lowers the magnetic braking efficiency. We find that the initial discs enabled by VSG removal tend to be Toomre-unstable, which leads to the formation of prominent spiral structures that function as centrifugal barriers. The piling-up of infall material near the centrifugal barrier often produces dense fragments of tens of Jupiter masses, especially in cores that are not too strongly magnetized. Some fragments accrete on to the central stellar object, producing bursts in mass accretion rate. Others are longer lived, although whether they can survive for a long term to produce multiple systems remains to be ascertained. Our results highlight the importance of dust grain evolution in determining the formation and properties of protostellar discs and potentially multiple systems.

  4. Solitons, envelope solitons in collisonless plasmas

    International Nuclear Information System (INIS)

    Ichikawa, Y.H.; Watanabe, S.

    1977-08-01

    A review is given to extensive development of theoretical, computational and experimental studies of nonlinear wave propagation in collisionless plasmas. Firstly, the historical experiment of Ikezi et al. is discussed in comparison with theoretical analysis based on the Korteweg-de Vries equation. Systematic discrepancy between the observation and the theoretical prediction suggests that it is necessary to examine such as higher order mode coupling effect and contribution of trapped particles. Secondly, effects of the nonlinear Landau damping on the envelope solution of ion plasma wave is discussed on the basis of theoretical study of Ichikawa-Taniuti, experimental observation of Watanabe and numerical analysis of Yajima et al. Finally, a new type of evolution equation derived for the Alfven wave is examined in some detail. The rigorous solution obtained for this mode represents a new kind of envelope solution, in which both of its phase and amplitude are subject to modulation of comparable spatial extension. In conclusion, the emphasis will be placed on the fact that much more intensive experimental researches are expected to be done, since the powerful methods to disentangle various nonlinear evolution equations are now available for theoretical approach. (auth.)

  5. Induced wave propagation from a vibrating containment envelope

    International Nuclear Information System (INIS)

    Stout, R.B.; Thigpen, L.; Rambo, J.T.

    1985-09-01

    Low frequency wave forms are observed in the particle velocity measurements around the cavity and containment envelope formed by an underground nuclear test. The vibration solution for a spherical shell is used to formulate a model for the low frequency wave that propagates outward from this region. In this model the containment envelope is the zone of material that is crushed by the compressive shock wave of the nuclear explosion. The containment envelope is approximated by a spherical shell of material. The material in the spherical shell is densified and is given a relatively high kinetic energy density because of the high compressive stress and particle velocity of the shock wave. After the shock wave has propagated through the spherical shell, the spherical shell vibrates in order to dissipate the kinetic energy acquired from the shock wave. Based on the model, the frequency of vibration depends on the dimensions and material properties of the spherical shell. The model can also be applied in an inverse mode to obtain global estimates of averaged materials properties. This requires using experimental data and semi-empirical relationships involving the material properties. A particular case of estimating a value for shear strength is described. Finally, the oscillation time period of the lowest frequency from five nuclear tests is correlated with the energy of the explosion. The correlation provides another diagnostic to estimate the energy of a nuclear explosion. Also, the longest oscillation time period measurement provides additional experimental data that can be used to assess and validate various computer models. 11 refs., 2 figs

  6. Evolution of Proton and Alpha Particle Velocities through the Solar Cycle

    Science.gov (United States)

    Ďurovcová, T.; Šafránková, J.; Němeček, Z.; Richardson, J. D.

    2017-12-01

    Relative properties of solar wind protons and α particles are often used as indicators of a source region on the solar surface, and analysis of their evolution along the solar wind path tests our understanding of physics of multicomponent magnetized plasma. The paper deals with the comprehensive analysis of the difference between proton and α particle bulk velocities at 1 au with a special emphasis on interplanetary coronal mass ejections (ICMEs). A comparison of about 20 years of Wind observations at 1 au with Helios measurements closer to the Sun (0.3-0.7 au) generally confirms the present knowledge that (1) the differential speed between both species increases with the proton speed; (2) the differential speed is lower than the local Alfvén speed; (3) α particles are faster than protons near the Sun, and this difference decreases with the increasing distance. However, we found a much larger portion of observations with protons faster than α particles in Wind than in Helios data and attributed this effect to a preferential acceleration of the protons in the solar wind. A distinct population characterized by a very small differential velocity and nearly equal proton and α particle temperatures that is frequently observed around the maximum of solar activity was attributed to ICMEs. Since this population does not exhibit any evolution with increasing collisional age, we suggest that, by contrast to the solar wind from other sources, ICMEs are born in an equilibrium state and gradually lose this equilibrium due to interactions with the ambient solar wind.

  7. Accretion Disk Assembly During Common Envelope Evolution: Implications for Feedback and LIGO Binary Black Hole Formation

    Energy Technology Data Exchange (ETDEWEB)

    Murguia-Berthier, Ariadna; Ramirez-Ruiz, Enrico; Antoni, Andrea; Macias, Phillip [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); MacLeod, Morgan, E-mail: armurgui@ucsc.edu [School of Natural Sciences, Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540 (United States)

    2017-08-20

    During a common envelope (CE) episode in a binary system, the engulfed companion spirals to tighter orbital separations under the influence of drag from the surrounding envelope material. As this object sweeps through material with a steep radial gradient of density, net angular momentum is introduced into the flow, potentially leading to the formation of an accretion disk. The presence of a disk would have dramatic consequences for the outcome of the interaction because accretion might be accompanied by strong, polar outflows with enough energy to unbind the entire envelope. Without a detailed understanding of the necessary conditions for disk formation during CE, therefore, it is difficult to accurately predict the population of merging compact binaries. This paper examines the conditions for disk formation around objects embedded within CEs using the “wind tunnel” formalism developed by MacLeod et al. We find that the formation of disks is highly dependent on the compressibility of the envelope material. Disks form only in the most compressible of stellar envelope gas, found in envelopes’ outer layers in zones of partial ionization. These zones are largest in low-mass stellar envelopes, but comprise small portions of the envelope mass and radius in all cases. We conclude that disk formation and associated accretion feedback in CE is rare, and if it occurs, transitory. The implication for LIGO black hole binary assembly is that by avoiding strong accretion feedback, CE interactions should still result in the substantial orbital tightening needed to produce merging binaries.

  8. Radial extension of drift waves in presence of velocity profiles

    International Nuclear Information System (INIS)

    Sen, S.; Weiland, J.

    1994-01-01

    The effect of a radially varying poloidal velocity field on the recently found radially extended toroidal drift waves is investigated analytically. The role of velocity curvature (υ φ '') is found to have robust effects on the radial model structure of the mode. For a positive value of the curvature (Usually found in the H-mode edges) the radial model envelope, similar to the sheared slab case, becomes fully outgoing. The mode is therefore stable. On the other hand, for a negative value of the curvature (usually observed in the L-mode edges) all the characteristics of conventional drift waves return back. The radial mode envelope reduces to a localized Gaussian shape and the mode is therefore unstable again for typical (magnetic) shear values in tokamaks. Velocity shear (υ φ ??) on the other hand is found to have rather insignificant role both in determining the radial model structure and stability

  9. The effects of diffusion in hot subdwarf progenitors from the common envelope channel

    Science.gov (United States)

    Byrne, Conor M.; Jeffery, C. Simon; Tout, Christopher A.; Hu, Haili

    2018-04-01

    Diffusion of elements in the atmosphere and envelope of a star can drastically alter its surface composition, leading to extreme chemical peculiarities. We consider the case of hot subdwarfs, where surface helium abundances range from practically zero to almost 100 percent. Since hot subdwarfs can form via a number of different evolution channels, a key question concerns how the formation mechanism is connected to the present surface chemistry. A sequence of extreme horizontal branch star models was generated by producing post-common envelope stars from red giants. Evolution was computed with MESA from envelope ejection up to core-helium ignition. Surface abundances were calculated at the zero-age horizontal branch for models with and without diffusion. A number of simulations also included radiative levitation. The goal was to study surface chemistry during evolution from cool giant to hot subdwarf and determine when the characteristic subdwarf surface is established. Only stars leaving the giant branch close to core-helium ignition become hydrogen-rich subdwarfs at the zero-age horizontal branch. Diffusion, including radiative levitation, depletes the initial surface helium in all cases. All subdwarf models rapidly become more depleted than observations allow. Surface abundances of other elements follow observed trends in general, but not in detail. Additional physics is required.

  10. EVOLUTION OF QUIESCENT AND STAR-FORMING GALAXIES SINCE z ∼ 1.5 AS A FUNCTION OF THEIR VELOCITY DISPERSIONS

    International Nuclear Information System (INIS)

    Bezanson, Rachel; Van Dokkum, Pieter; Franx, Marijn

    2012-01-01

    We measure stellar masses and structural parameters for 5500 quiescent and 20,000 star-forming galaxies at 0.3 < z ≤ 1.5 in the Newfirm Medium Band Survey COSMOS and UKIDSS UDS fields. We combine these measurements to infer velocity dispersions and determine how the number density of galaxies at fixed inferred dispersion, or the velocity dispersion function (VDF), evolves with time for each population. We show that the number of galaxies with high velocity dispersions appears to be surprisingly stable with time, regardless of their star formation history. Furthermore, the overall VDF for star-forming galaxies is constant with redshift, extending down to the lowest velocity dispersions probed by this study. The only galaxy population showing strong evolution are quiescent galaxies with low inferred dispersions, whose number density increases by a factor of ∼4 since z = 1.5. This buildup leads to an evolution in the quiescent fraction of galaxies such that the threshold dispersion above which quiescent galaxies dominate the counts moves to lower velocity dispersion with time. We show that our results are qualitatively consistent with a simple model in which star-forming galaxies quench and are added to the quiescent population. In order to compensate for the migration into the quiescent population, the velocity dispersions of star-forming galaxies must increase, with a rate that increases with dispersion.

  11. GEOMETRIC AND KINEMATIC STRUCTURE OF THE OUTFLOW/ENVELOPE SYSTEM OF L1527 REVEALED BY SUBARCSECOND-RESOLUTION OBSERVATION OF CS

    Energy Technology Data Exchange (ETDEWEB)

    Oya, Yoko; López-Sepulcre, Ana; Watanabe, Yoshimasa; Yamamoto, Satoshi [Department of Physics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Sakai, Nami [The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-0198 (Japan); Lefloch, Bertrand; Ceccarelli, Cecilia, E-mail: oya@taurus.phys.s.u-tokyo.ac.jp [Universite Grenoble Alpes, IPAG, F-38000 Grenoble (France)

    2015-10-10

    Subarcsecond-resolution images of the rotational line emissions of CS and c-C{sub 3}H{sub 2} obtained toward the low-mass protostar IRAS 04368+2557 in L1527 with the Atacama Large Millimeter/submillimeter Array are investigated to constrain the orientation of the outflow/envelope system. The distribution of CS consists of an envelope component extending from north to south and a faint butterfly shaped outflow component. The kinematic structure of the envelope is well reproduced by a simple ballistic model of an infalling rotating envelope. Although the envelope has a nearly edge-on configuration, we find that the western side of the envelope faces the observer. This configuration is opposite to the direction of the large-scale (∼10{sup 4} AU) outflow suggested previously from the {sup 12}CO (J = 3–2) observation, and to the morphology of infrared reflection near the protostar (∼200 AU). The latter discrepancy could originate from high extinction by the outflow cavity of the western side, or may indicate that the outflow axis is not parallel to the rotation axis of the envelope. Position–velocity diagrams show the accelerated outflow cavity wall, and its kinematic structure in the 2000 AU scale is explained by a standard parabolic model with the inclination angle derived from the analysis of the envelope. The different orientation of the outflow between the small and large scale implies a possibility of precession of the outflow axis. The shape and the velocity of the outflow in the vicinity of the protostar are compared with those of other protostars.

  12. IR photometry results and dust envelope model for symbiotic Mira star candidate V 335 Vul

    Science.gov (United States)

    Bogdanov, M. B.; Taranova, O. G.; Shenavrin, V. I.

    2017-10-01

    We present the results of JHKLM-photometry for the symbiotic Mira star candidate V 335 Vul. Based on the average flux data, supplemented by IRAS, MSX, AKARI, and WISE mid-IR observations, we calculated a model of a spherically symmetric dust envelope of the star, made up of amorphous carbon and silicon carbide particles. The optical depth of the envelope in the visible range with a dust temperature at the inner boundary of T 1 = 1300 K is τ V = 0.58. For an envelope expansion velocity of 26.5 km s-1, the estimated mass loss rate is equal to 5.7 × 10-7 M ⊙ yr-1.

  13. Ion-acoustic envelope modes in a degenerate relativistic electron-ion plasma

    Energy Technology Data Exchange (ETDEWEB)

    McKerr, M.; Kourakis, I. [Centre for Plasma Physics, School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN Belfast, Northern Ireland (United Kingdom); Haas, F. [Instituto de Física, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, RS (Brazil)

    2016-05-15

    A self-consistent relativistic two-fluid model is proposed for one-dimensional electron-ion plasma dynamics. A multiple scales perturbation technique is employed, leading to an evolution equation for the wave envelope, in the form of a nonlinear Schrödinger type equation (NLSE). The inclusion of relativistic effects is shown to introduce density-dependent factors, not present in the non-relativistic case—in the conditions for modulational instability. The role of relativistic effects on the linear dispersion laws and on envelope soliton solutions of the NLSE is discussed.

  14. In situ accretion of gaseous envelopes on to planetary cores embedded in evolving protoplanetary discs

    Science.gov (United States)

    Coleman, Gavin A. L.; Papaloizou, John C. B.; Nelson, Richard P.

    2017-09-01

    The core accretion hypothesis posits that planets with significant gaseous envelopes accreted them from their protoplanetary discs after the formation of rocky/icy cores. Observations indicate that such exoplanets exist at a broad range of orbital radii, but it is not known whether they accreted their envelopes in situ, or originated elsewhere and migrated to their current locations. We consider the evolution of solid cores embedded in evolving viscous discs that undergo gaseous envelope accretion in situ with orbital radii in the range 0.1-10 au. Additionally, we determine the long-term evolution of the planets that had no runaway gas accretion phase after disc dispersal. We find the following. (I) Planets with 5 M⊕ cores never undergo runaway accretion. The most massive envelope contained 2.8 M⊕ with the planet orbiting at 10 au. (II) Accretion is more efficient on to 10 M⊕ and 15 M⊕ cores. For orbital radii ap ≥ 0.5 au, 15 M⊕ cores always experienced runaway gas accretion. For ap ≥ 5 au, all but one of the 10 M⊕ cores experienced runaway gas accretion. No planets experienced runaway growth at ap = 0.1 au. (III) We find that, after disc dispersal, planets with significant gaseous envelopes cool and contract on Gyr time-scales, the contraction time being sensitive to the opacity assumed. Our results indicate that Hot Jupiters with core masses ≲15 M⊕ at ≲0.1 au likely accreted their gaseous envelopes at larger distances and migrated inwards. Consistently with the known exoplanet population, super-Earths and mini-Neptunes at small radii during the disc lifetime, accrete only modest gaseous envelopes.

  15. HIV-1 subtype C envelope characteristics associated with divergent rates of chronic disease progression

    Directory of Open Access Journals (Sweden)

    Goulder Philip JR

    2010-11-01

    Full Text Available Abstract Background HIV-1 envelope diversity remains a significant challenge for the development of an efficacious vaccine. The evolutionary forces that shape the diversity of envelope are incompletely understood. HIV-1 subtype C envelope in particular shows significant differences and unique characteristics compared to its subtype B counterpart. Here we applied the single genome sequencing strategy of plasma derived virus from a cohort of therapy naïve chronically infected individuals in order to study diversity, divergence patterns and envelope characteristics across the entire HIV-1 subtype C gp160 in 4 slow progressors and 4 progressors over an average of 19.5 months. Results Sequence analysis indicated that intra-patient nucleotide diversity within the entire envelope was higher in slow progressors, but did not reach statistical significance (p = 0.07. However, intra-patient nucleotide diversity was significantly higher in slow progressors compared to progressors in the C2 (p = 0.0006, V3 (p = 0.01 and C3 (p = 0.005 regions. Increased amino acid length and fewer potential N-linked glycosylation sites (PNGs were observed in the V1-V4 in slow progressors compared to progressors (p = 0.009 and p = 0.02 respectively. Similarly, gp41 in the progressors was significantly longer and had fewer PNGs compared to slow progressors (p = 0.02 and p = 0.02 respectively. Positive selection hotspots mapped mainly to V1, C3, V4, C4 and gp41 in slow progressors, whereas hotspots mapped mainly to gp41 in progressors. Signature consensus sequence differences between the groups occurred mainly in gp41. Conclusions These data suggest that separate regions of envelope are under differential selective forces, and that envelope evolution differs based on disease course. Differences between slow progressors and progressors may reflect differences in immunological pressure and immune evasion mechanisms. These data also indicate that the pattern of envelope evolution

  16. A theoretical study of problems in classical nova evolution

    International Nuclear Information System (INIS)

    Shankar, A.

    1990-01-01

    Three distinct issues in classical nova evolution are addressed with the aid of one- and two-dimensional numerical hydrodynamics. The effects of convection on nova outbursts are examined within the confines of the mixing length theory. It is found that increasing the efficiency of convection enhances the violence of the thermonuclear runaway (TNR). This also relates to the question of the feasibility of obtaining nova outbursts on magnetic white dwarfs among the AM Her systems. The effects of a strong magnetic field on the TNR are explored. The field interferes with the development of convection during the TNR, which results in lower ejection velocities. However, for field strengths typical of cataclysmic variables, the violence of strong outbursts is affected only moderately. The conditions necessary for the production of strong TNR's in the hibernation model of cataclysmic binary evolution are also examined. The feasibility of obtaining strong nova outbursts is investigated when the accretion rate during hibernation is decreased. It is found that a reduction (by a factor of 100) for periods of longer than a couple thousand years, is sufficient to ensure violent outbursts, even in the presence of large pre-outburst accretion rates. The effects of a common envelope phase (CEP) on the outburst are discussed. The motion of the secondary through an expanding common envelope is resisted by frictional drag. This dissipates both energy and angular momentum from the orbit inducing hydrodynamic motion. Significant departures are found to occur in the manner in which mass is lost when the effects of drag are taken into account. Specifically, a CEP is found to accelerate and enhance mass loss. Ejection is found to be concentrated in the orbital plane, with velocities of a few thousand km/sec

  17. The species velocity of trees in Alaska

    Science.gov (United States)

    Morrison, B. D.; Napier, J.; de Lafontaine, G.; Heath, K.; Li, B.; Hu, F.; Greenberg, J. A.

    2017-12-01

    Anthropogenic climate change has motivated interest in the paleo record to enhance our knowledge about past vegetation responses to climate change and help understand potential responses in the future. Additionally, polar regions currently experience the most rapid rates of climate change globally, prompting concern over changes in the ecological composition of high latitude ecosystems. Recent analyses have attempted to construct methods to estimate a species' ability to track climate change by computing climate velocity; a measure of the rate of climate displacement across a landscape which may indicate the speed an organism must migrate to keep pace with climate change. However, a challenge to using climate velocity in understanding range shifts is a lack of species-specificity in the velocity calculations: climate velocity does not actually use any species data in its analysis. To solve the shortcomings of climate velocity in estimating species displacement rates, we computed the "species velocity" of white spruce, green and grey alder populations across the state of Alaska from the Last Glacial Maximum (LGM) to today. Species velocity represents the rate and direction a species is required to migrate to keep pace with a changing climate following the LGM. We used a species distribution model to determine past and present white spruce and alder distributions using statistically downscaled climate data at 60m. Species velocity was then derived from the change in species distribution per year by the change in distribution over Alaska (km/yr). High velocities indicate locations where the species environmental envelope is changing drastically and must disperse rapidly to survive climate change. As a result, high velocity regions are more vulnerable to distribution shifts and higher risk of local extinction. Conversely, low species velocities indicate locations where the local climate envelope is shifting relatively slowly, reducing the stress to disperse quickly

  18. SiO maser emission as a density tracer of circumstellar envelopes

    Science.gov (United States)

    Stroh, Michael; Pihlstrom, Ylva; Sjouwerman, Lorant

    2018-06-01

    The circumstellar envelopes (CSEs) of evolved stars offer a method to construct a sample of point-masses along the full Galactic plane, which can be used to test models of the gravitational potential. In the CSEs of red giants, SiO maser emission is frequently observed at 43 and 86 GHz, providing line-of-sight velocities. The Bulge Asymmetries and Dynamical Evolution (BAaDE) project aims to explore the complex structure of the inner Galaxy and Galactic Bulge, by observing 43 GHz SiO at the Very Large Array and 86 GHz SiO at the Atacama Large Millimeter/submillimeter Array, with an expected final sample of about 20,000 line-of-sight velocities and positions. We observed the 43 GHz and 86 GHz transitions near-simultaneously in a subsample of the sources using the Australia Telescope Compact Array and found that on average the 43 GHz v=1 line is 1.3 times stronger than the 86 GHz v=1 line. The presence of a detectable 43 GHz v=3 line alters the statistics, consistent with the SiO masers displaying 43 GHz v=3 emission arising in a denser regime in the circumstellar shell compared to those without. Comparing our results with radiative models implies that the 43 GHz v=3 line is a tracer of density variations caused by stellar pulsations. We will discuss these results in the context of the BAaDE project.

  19. Conservation of the egg envelope digestion mechanism of hatching enzyme in euteleostean fishes.

    Science.gov (United States)

    Kawaguchi, Mari; Yasumasu, Shigeki; Shimizu, Akio; Sano, Kaori; Iuchi, Ichiro; Nishida, Mutsumi

    2010-12-01

    We purified two hatching enzymes, namely high choriolytic enzyme (HCE; EC 3.4.24.67) and low choriolytic enzyme (LCE; EC 3.4.24.66), from the hatching liquid of Fundulus heteroclitus, which were named Fundulus HCE (FHCE) and Fundulus LCE (FLCE). FHCE swelled the inner layer of egg envelope, and FLCE completely digested the FHCE-swollen envelope. In addition, we cloned three Fundulus cDNAs orthologous to cDNAs for the medaka precursors of egg envelope subunit proteins (i.e. choriogenins H, H minor and L) from the female liver. Cleavage sites of FHCE and FLCE on egg envelope subunit proteins were determined by comparing the N-terminal amino acid sequences of digests with the sequences deduced from the cDNAs for egg envelope subunit proteins. FHCE and FLCE cleaved different sites of the subunit proteins. FHCE efficiently cleaved the Pro-X-Y repeat regions into tripeptides to dodecapeptides to swell the envelope, whereas FLCE cleaved the inside of the zona pellucida domain, the core structure of egg envelope subunit protein, to completely digest the FHCE-swollen envelope. A comparison showed that the positions of hatching enzyme cleavage sites on egg envelope subunit proteins were strictly conserved between Fundulus and medaka. Finally, we extended such a comparison to three other euteleosts (i.e. three-spined stickleback, spotted halibut and rainbow trout) and found that the egg envelope digestion mechanism was well conserved among them. During evolution, the egg envelope digestion by HCE and LCE orthologs was established in the lineage of euteleosts, and the mechanism is suggested to be conserved. © 2010 The Authors Journal compilation © 2010 FEBS.

  20. POET: Planetary Orbital Evolution due to Tides

    Science.gov (United States)

    Penev, Kaloyan

    2014-08-01

    POET (Planetary Orbital Evolution due to Tides) calculates the orbital evolution of a system consisting of a single star with a single planet in orbit under the influence of tides. The following effects are The evolutions of the semimajor axis of the orbit due to the tidal dissipation in the star and the angular momentum of the stellar convective envelope by the tidal coupling are taken into account. In addition, the evolution includes the transfer of angular momentum between the stellar convective and radiative zones, effect of the stellar evolution on the tidal dissipation efficiency, and stellar core and envelope spins and loss of stellar convective zone angular momentum to a magnetically launched wind. POET can be used out of the box, and can also be extended and modified.

  1. Enveloping Aerodynamic Decelerator

    Science.gov (United States)

    Nock, Kerry T. (Inventor); Aaron, Kim M. (Inventor); McRonald, Angus D. (Inventor); Gates, Kristin L. (Inventor)

    2018-01-01

    An inflatable aerodynamic deceleration method and system is provided for use with an atmospheric entry payload. The inflatable aerodynamic decelerator includes an inflatable envelope and an inflatant, wherein the inflatant is configured to fill the inflatable envelope to an inflated state such that the inflatable envelope surrounds the atmospheric entry payload, causing aerodynamic forces to decelerate the atmospheric entry payload.

  2. Analytical study of envelope modes for a fully depressed beam in solenoidal and quadrupole periodic transport channels

    International Nuclear Information System (INIS)

    Bukh, Boris; Lund, Steven M.

    2003-01-01

    We present an analysis of envelope perturbations evolving in the limit of a fully space-charge depressed (zero emittance) beam in periodic, thin-lens focusing channels. Both periodic solenoidal and FODO quadrupole focusing channels are analyzed. The phase advance and growth rate of normal mode perturbations are analytically calculated as a function of the undepressed particle phase advance to characterize the evolution of envelope perturbations

  3. (Quasi-)Poisson enveloping algebras

    OpenAIRE

    Yang, Yan-Hong; Yao, Yuan; Ye, Yu

    2010-01-01

    We introduce the quasi-Poisson enveloping algebra and Poisson enveloping algebra for a non-commutative Poisson algebra. We prove that for a non-commutative Poisson algebra, the category of quasi-Poisson modules is equivalent to the category of left modules over its quasi-Poisson enveloping algebra, and the category of Poisson modules is equivalent to the category of left modules over its Poisson enveloping algebra.

  4. UNVEILING THE EVOLUTIONARY SEQUENCE FROM INFALLING ENVELOPES TO KEPLERIAN DISKS AROUND LOW-MASS PROTOSTARS

    Energy Technology Data Exchange (ETDEWEB)

    Yen, Hsi-Wei [Institute of Astrophysics, National Taiwan University, Taipei 10617, Taiwan (China); Takakuwa, Shigehisa; Ohashi, Nagayoshi; Ho, Paul T. P., E-mail: hwyen@asiaa.sinica.edu.tw [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China)

    2013-07-20

    We performed Submillimeter Array observations in the C{sup 18}O (2-1) emission line toward six Class 0 and I protostars to study rotational motions of their surrounding envelopes and circumstellar material on 100-1000 AU scales. C{sup 18}O (2-1) emission with intensity peaks located at the protostellar positions is detected toward all six sources. The rotational velocities of the protostellar envelopes as a function of radius were measured from the position-velocity diagrams perpendicular to the outflow directions passing through the protostellar positions. Two Class 0 sources, B335 and NGC 1333 IRAS 4B, show no detectable rotational motion, while L1527 IRS (Class 0/I) and L1448-mm (Class 0) exhibit rotational motions with radial profiles of V{sub rot}{proportional_to}r {sup -1.0{+-}0.2} and {proportional_to}r {sup -1.0{+-}0.1}, respectively. The other Class I sources, TMC-1A and L1489 IRS, exhibit the fastest rotational motions among the sample, and their rotational motions have flatter radial profiles of V{sub rot}{proportional_to}r {sup -0.6{+-}0.1} and {proportional_to}r {sup -0.5{+-}0.1}, respectively. The rotational motions with the radial dependence of {approx}r {sup -1} can be interpreted as rotation with a conserved angular momentum in a dynamically infalling envelope, while those with the radial dependence of {approx}r {sup -0.5} can be interpreted as Keplerian rotation. These observational results demonstrate categorization of rotational motions from infalling envelopes to Keplerian-disk formation. Models of the inside-out collapse where the angular momentum is conserved are discussed and compared with our observational results.

  5. Solitons of an envelope in an inhomogeneous medium

    International Nuclear Information System (INIS)

    Churilov, S.M.

    1982-01-01

    Solutions of the Schroedinger nonlinear equation (SNE) used for the description of evolution of a wave packet envelope has been investigated in inhomogeneous and nonstationary media. It is shown that the SNE solution possessing two important properties exists. Firstly, the wave packet remains localized when propagating in an inhomogeneous medium. Secondly, the soliton width and amplitude are determined only with local characteristics of medium and don't depend on the prehistory. Problem of limits of obtained result applicability has been considered

  6. Storage envelopes or sleeves

    International Nuclear Information System (INIS)

    Freshwater, J.R.; Wagman, P.I.

    1980-01-01

    A storage envelope or sleeve particularly for processed X-ray films is described. It consists of front and back panels joined together at a hinge line and connected along the intermediate sides by connecting flaps. An inner pocket is formed from a third flap which is folded to lie against the inner face of the back panel. The panels may have additional score lines parallel to the closed sides of the envelope and the inner pocket so that the envelope and the inner pocket can accommodate bulky contents. The free edge of the pocket is inset from the open side of the envelope, and finger cut-outs may be provided to facilitate access to the contents of the envelope and the pocket. (author)

  7. Protective plasma envelope

    International Nuclear Information System (INIS)

    Bocharov, V.N.; Konstantinov, S.G.; Kudryavtsev, A.M.; Myskin, O.K.; Panasyuk, V.M.; Tsel'nik, F.A.

    1984-06-01

    A method of creating an annular plasma envelope used to protect the hot plasma from flows of impurities and gases from the walls of the vacuum chamber is described. The diameter of the envelope is 30 cm, the thickness of the wall is 1.5 cm, the length is 2.5 m, and its density is from 10 13 to 10 14 cm -3 . The envelope attenuates the incident (from outside) flow of helium 10-fold and the low of hydrogen 20-fold

  8. Evolution of building envelope construction techniques in coastal British Columbia

    Energy Technology Data Exchange (ETDEWEB)

    Mattock, C.; Ito, K.; Oshikawa, T. [International Eco-House Inc., (Canada)

    1999-11-01

    Changes in the significant evolutionary development over the past 3 years in building envelope construction for multi storey wood frame housing in British Columbia are described. The urban areas of this region are characterized by a maritime climate which features a high frequency of wind driven rain and little accumulation of snow. Buildings are exposed to high wetting with little drying potential, and moderate temperatures allow for fungal growth even in the winter. While as in the rest of Canada wetting is often due to condensation of moisture contained in indoor air as it leaks out of the building, in British Columbia wind driven rain is a much larger source of moisture. Given this, the following principles of moisture control have been promoted to the B.C. building industry in order of priority: 1) deflection - using parts and elements of the building such as overhangs and flashings that reduce the exposure of the exterior walls to rain, 2) drainage - using envelope assemblies that will then redirect liquid water to the outside, 3) employing drying elements that promote drying through diffusion such as highly permeable wall sheathings, and 4) use of durable materials - using materials that resist rot such as treated lumber, stainless steel fastenings, etc. A variety of air barrier systems other than the conventional sealed polyethylene approach have been employed because of the introduction of recent building code requirements for enhanced airtightness and air barrier durability combined with the use of rain screen construction. This variety of air barrier systems includes: an airtight drywall, an exterior permeable membrane, and an exterior impermeable membrane.

  9. The VLT-FLAMES Tarantula Survey. XII. Rotational velocities of the single O-type stars

    Science.gov (United States)

    Ramírez-Agudelo, O. H.; Simón-Díaz, S.; Sana, H.; de Koter, A.; Sabín-Sanjulían, C.; de Mink, S. E.; Dufton, P. L.; Gräfener, G.; Evans, C. J.; Herrero, A.; Langer, N.; Lennon, D. J.; Maíz Apellániz, J.; Markova, N.; Najarro, F.; Puls, J.; Taylor, W. D.; Vink, J. S.

    2013-12-01

    Context. The 30 Doradus (30 Dor) region of the Large Magellanic Cloud, also known as the Tarantula nebula, is the nearest starburst region. It contains the richest population of massive stars in the Local Group, and it is thus the best possible laboratory to investigate open questions on the formation and evolution of massive stars. Aims: Using ground-based multi-object optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS), we aim to establish the (projected) rotational velocity distribution for a sample of 216 presumably single O-type stars in 30 Dor. The sample is large enough to obtain statistically significant information and to search for variations among subpopulations - in terms of spectral type, luminosity class, and spatial location - in the field of view. Methods: We measured projected rotational velocities, νesini, by means of a Fourier transform method and a profile fitting method applied to a set of isolated spectral lines. We also used an iterative deconvolution procedure to infer the probability density, P(νe), of the equatorial rotational velocity, νe. Results: The distribution of νesini shows a two-component structure: a peak around 80 kms-1 and a high-velocity tail extending up to ~600 kms-1. This structure is also present in the inferred distribution P(νe) with around 80% of the sample having 0 rate less than 20% of their break-up velocity. For the bulk of the sample, mass loss in a stellar wind and/or envelope expansion is not efficient enough to significantly spin down these stars within the first few Myr of evolution. If massive-star formation results in stars rotating at birth with a large portion of their break-up velocities, an alternative braking mechanism, possibly magnetic fields, is thus required to explain the present-day rotational properties of the O-type stars in 30 Dor. The presence of a sizeable population of fast rotators is compatible with recent population synthesis computations that

  10. Evolution of close binaries and the formation of pulsars

    International Nuclear Information System (INIS)

    Van Den Heuvel, E.P.J.

    1981-01-01

    The various ways in which compact objects (neutron stars and black holes) may be formed in interacting binary systems are examined. Attention is given to the final evolution of the primary star in a close binary system as a function of the time of Roche-lobe overflow relative to the onset of helium burning, and conditions on primary mass and orbital period leading to the appearance of a compact remnant are noted. Consideration of the fate of the stellar envelope in stars that directly evolve to core collapse indicates that binaries that evolve with conservation of total mass and orbital angular momentum will eventually become systems of two runaway pulsars. In cases of nonconservative evolution, the final state is expected to be a young runaway pulsar with a low- or moderate mass runaway star companion, or a low-mass population I X-ray binary with high space velocity. Compact objects may also be formed when a white dwarf of suitable chemical composition is driven over the Chandrasehkar limit by accretion, resulting in a low-mass X-ray binary

  11. Biomimetic Envelopes

    OpenAIRE

    Ilaria Mazzoleni

    2010-01-01

    How to translate the lessons learned from the analysis and observation of the animal world is the design learning experience presented in this article. Skin is a complex and incredibly sophisticated organ that performs various functions, including protection, sensation and heat and water regulation. In a similar way building envelopes serve multiple roles, as they are the interface between the building inhabitants and environmental elements. The resulting architectural building envelopes prot...

  12. LITHIUM DEPLETION IS A STRONG TEST OF CORE-ENVELOPE RECOUPLING

    International Nuclear Information System (INIS)

    Somers, Garrett; Pinsonneault, Marc H.

    2016-01-01

    Rotational mixing is a prime candidate for explaining the gradual depletion of lithium from the photospheres of cool stars during the main sequence. However, previous mixing calculations have relied primarily on treatments of angular momentum transport in stellar interiors incompatible with solar and stellar data in the sense that they overestimate the internal differential rotation. Instead, recent studies suggest that stars are strongly differentially rotating at young ages but approach a solid body rotation during their lifetimes. We modify our rotating stellar evolution code to include an additional source of angular momentum transport, a necessary ingredient for explaining the open cluster rotation pattern, and examine the consequences for mixing. We confirm that core-envelope recoupling with a ∼20 Myr timescale is required to explain the evolution of the mean rotation pattern along the main sequence, and demonstrate that it also provides a more accurate description of the Li depletion pattern seen in open clusters. Recoupling produces a characteristic pattern of efficient mixing at early ages and little mixing at late ages, thus predicting a flattening of Li depletion at a few Gyr, in agreement with the observed late-time evolution. Using Li abundances we argue that the timescale for core-envelope recoupling during the main sequence decreases sharply with increasing mass. We discuss the implications of this finding for stellar physics, including the viability of gravity waves and magnetic fields as agents of angular momentum transport. We also raise the possibility of intrinsic differences in initial conditions in star clusters using M67 as an example.

  13. Visualising Three Dimensional Damage and Failure Envelopes: Implications for True Triaxial Deformation

    Science.gov (United States)

    Harland, S. R.; Browning, J.; Healy, D.; Meredith, P. G.; Mitchell, T. M.

    2017-12-01

    Ultimate failure in brittle rocks is commonly accepted to occur as a coalescence of micro-crack damage into a single failure plane. The geometry and evolution with stress of the cracks (damage) within the medium will play a role in dictating the geometry of the ultimate failure plane. Currently, the majority of experimental studies investigating damage evolution and rock failure use conventional triaxial stress states (σ1 > σ2 = σ3). Results from these tests can easily be represented on a Mohr-Coulomb plot (σn - τ), conveniently allowing the user to determine the geometry of the resultant failure plane. In reality however, stress in the subsurface is generally truly triaxial (σ1 > σ2 > σ3) and in this case, the Mohr-Coulomb failure criterion is inadequate as it incorporates no dependence on the intermediate stress (σ2), which has been shown to play an important role in controlling failure. It has recently been shown that differential stress is the key driver in initiating crack growth, regardless of the mean stress. Polyaxial failure criteria that incorporate the effect of the intermediate stress do exist and include the Modified Lade, Modified Wiebols and Cook, and the Drucker-Prager criteria. However, unlike the Mohr-Coulomb failure criterion, these polyaxial criteria do not offer any prediction of, or insight into, the geometry of the resultant failure plane. An additional downfall of all of the common conventional and polyaxial failure criteria is that they fail to describe the geometry of the damage (i.e. pre-failure microcracking) envelope with progressive stress; it is commonly assumed that the damage envelope is parallel to the ultimate brittle failure envelope. Here we use previously published polyaxial failure data for the Shirahama sandstone and Westerley granite to illustrate that the commonly used Mohr-Coulomb and polyaxial failure criteria do not sufficiently describe or capture failure or damage envelopes under true triaxial stress states

  14. Building envelope

    CSIR Research Space (South Africa)

    Gibberd, Jeremy T

    2009-01-01

    Full Text Available for use in the building. This is done through photovoltaic and solar water heating panels and wind turbines. Ideally these are integrated in the design of the building envelope to improve the aesthetic quality of the building and minimise material... are naturally ventilated. Renewable energy The building envelope includes renewable energy generation such as photovoltaics, wind turbines and solar water heaters and 10% of the building’s energy requirements are generated from these sources. Views All...

  15. Extremely Low Mass: The Circumstellar Envelope of a Potential Proto-Brown Dwarf

    Science.gov (United States)

    Wiseman, Jennifer

    2011-01-01

    What is the environment for planet formation around extremely low mass stars? Is the environment around brown dwarfs and extremely low mass stars conducive and sufficiently massive for planet production? The determining conditions may be set very early in the process of the host object's formation. IRAS 16253-2429, the source of the Wasp-Waist Nebula seen in Spitzer IRAC images, is an isolated, very low luminosity ("VeLLO") Class 0 protostar in the nearby rho Ophiuchi cloud. We present VLA ammonia mapping observations of the dense gas envelope feeding the central core accreting system. We find a flattened envelope perpendicular to the outflow axis, and gas cavities that appear to cradle the outflow lobes as though carved out by the flow and associated (apparently precessing) jet, indicating environmental disruption. Based on the NH3 (1,1) and (2,2) emission distribution, we derive the mass, velocity fields and temperature distribution for the envelope. We discuss the combined evidence for this source to be one of the youngest and lowest mass sources in formation yet known, and discuss the ramifications for planet formation potential in this extremely low mass system.

  16. The LHC on an envelope

    CERN Multimedia

    2007-01-01

    The series of envelopes featuring CERN issued this summer was a huge success. The French postal services of the Pays de Gex will shortly be launching the second set of pre-paid envelopes issued in collaboration with the Laboratory this year, this time highlighting the LHC. Five thousand envelopes describing the accelerator’s capabilities will go on sale on 12 November, and some of the packs will even contain a small sample of the cables from the heart of the LHC magnets. The sets of ten pre-paid envelopes will tell you everything about CERN’s flagship accelerator, from its astounding technical capabilities to its spin-offs in the fields of technology and human resources. Each envelope will feature a different attribute or spin-off of the LHC. People will be invited to consult CERN’s public website for more detailed explanations if they want to know more. The new envelopes will be available from five post offices in the Pays ...

  17. A Directed Molecular Evolution Approach to Improved Immunogenicity of the HIV-1 Envelope Glycoprotein

    Science.gov (United States)

    Du, Sean X.; Xu, Li; Zhang, Wenge; Tang, Susan; Boenig, Rebecca I.; Chen, Helen; Mariano, Ellaine B.; Zwick, Michael B.; Parren, Paul W. H. I.; Burton, Dennis R.; Wrin, Terri; Petropoulos, Christos J.; Ballantyne, John A.; Chambers, Michael; Whalen, Robert G.

    2011-01-01

    A prophylactic vaccine is needed to slow the spread of HIV-1 infection. Optimization of the wild-type envelope glycoproteins to create immunogens that can elicit effective neutralizing antibodies is a high priority. Starting with ten genes encoding subtype B HIV-1 gp120 envelope glycoproteins and using in vitro homologous DNA recombination, we created chimeric gp120 variants that were screened for their ability to bind neutralizing monoclonal antibodies. Hundreds of variants were identified with novel antigenic phenotypes that exhibit considerable sequence diversity. Immunization of rabbits with these gp120 variants demonstrated that the majority can induce neutralizing antibodies to HIV-1. One novel variant, called ST-008, induced significantly improved neutralizing antibody responses when assayed against a large panel of primary HIV-1 isolates. Further study of various deletion constructs of ST-008 showed that the enhanced immunogenicity results from a combination of effective DNA priming, an enhanced V3-based response, and an improved response to the constant backbone sequences. PMID:21738594

  18. Supernovae from massive stars with extended tenuous envelopes

    Science.gov (United States)

    Dessart, Luc; Yoon, Sung-Chul; Livne, Eli; Waldman, Roni

    2018-04-01

    Massive stars with a core-halo structure are interesting objects for stellar physics and hydrodynamics. Using simulations for stellar evolution, radiation hydrodynamics, and radiative transfer, we study the explosion of stars with an extended and tenuous envelope (i.e. stars in which 95% of the mass is contained within 10% or less of the surface radius). We consider both H-rich supergiant and He-giant progenitors resulting from close-binary evolution and dying with a final mass of 2.8-5 M⊙. An extended envelope causes the supernova (SN) shock to brake and a reverse shock to form, sweeping core material into a dense shell. The shock-deposited energy, which suffers little degradation from expansion, is trapped in ejecta layers of moderate optical depth, thereby enhancing the SN luminosity at early times. With the delayed 56Ni heating, we find that the resulting optical and near-IR light curves all exhibit a double-peak morphology. We show how an extended progenitor can explain the blue and featureless optical spectra of some Type IIb and Ib SNe. The dense shell formed by the reverse shock leads to line profiles with a smaller and near-constant width. This ejecta property can explain the statistically narrower profiles of Type IIb compared to Type Ib SNe, as well as the peculiar Hα profile seen in SN 1993J. At early times, our He-giant star explosion model shows a high luminosity, a blue colour, and featureless spectra reminiscent of the Type Ib SN 2008D, suggesting a low-mass progenitor.

  19. Time evolution of scattering states and velocity increase due to nonlinear processes in the quantum hall regime

    International Nuclear Information System (INIS)

    Riess, J.; Duport, C.

    1991-01-01

    We report the first numerical results (with realistic parameter values) for the time evolution of a scattered Landau function in a model system. They give a striking illustration for the Hall velocity increase beyond the classical value of the conduction electrons in the quantum Hall regime. This phenomenon, which is crucial for the integer quantum Hall effect, is caused by a special kind of nonclassical particle dynamics induced by disorder and cannot be described by linear response theory

  20. Toward 2D Seismic Wavefield Monitoring: Seismic Gradiometry for Long-Period Seismogram and Short-Period Seismogram Envelope applied to the Hi-net Array

    Science.gov (United States)

    Maeda, T.; Nishida, K.; Takagi, R.; Obara, K.

    2015-12-01

    The high-sensitive seismograph network Japan (Hi-net) operated by National Research Institute for Earth Science and Disaster Prevention (NIED) has about 800 stations with average separation of 20 km. We can observe long-period seismic wave propagation as a 2D wavefield with station separations shorter than wavelength. In contrast, short-period waves are quite incoherent at stations, however, their envelope shapes resemble at neighbor stations. Therefore, we may be able to extract seismic wave energy propagation by seismogram envelope analysis. We attempted to characterize seismic waveform at long-period and its envelope at short-period as 2D wavefield by applying seismic gradiometry. We applied the seismic gradiometry to a synthetic long-period (20-50s) dataset prepared by numerical simulation in realistic 3D medium at the Hi-net station layout. Wave amplitude and its spatial derivatives are estimated by using data at nearby stations. The slowness vector, the radiation pattern and the geometrical spreading are extracted from estimated velocity, displacement and its spatial derivatives. For short-periods at shorter than 1 s, seismogram envelope shows temporal and spatial broadening through scattering by medium heterogeneity. It is expected that envelope shape may be coherent among nearby stations. Based on this idea, we applied the same method to the time-integration of seismogram envelope to estimate its spatial derivatives. Together with seismogram envelope, we succeeded in estimating the slowness vector from the seismogram envelope as well as long-period waveforms by synthetic test, without using phase information. Our preliminarily results show that the seismic gradiometry suits the Hi-net to extract wave propagation characteristics both at long and short periods. This method is appealing that it can estimate waves at homogeneous grid to monitor seismic wave as a wavefield. It is promising to obtain phase velocity variation from direct waves, and to grasp wave

  1. The LHC in an envelope

    CERN Multimedia

    2007-01-01

    The series of envelopes featuring CERN issued this summer was a huge success. The French postal services of the Pays de Gex will shortly be launching the second set of pre-paid envelopes issued in collaboration with the Laboratory this year, this time highlighting the LHC. Five thousand envelopes describing the accelerator’s capabilities will go on sale on 12 November, and some of the packs will even contain a small sample of the cables from the heart of the LHC magnets. The sets of ten pre-paid envelopes will tell you everything about CERN’s flagship accelerator, from its astounding technical capabilities to its spin-offs in the fields of technology and human resources. Each envelope will feature a different attribute or spin-off of the LHC. People will be invited to consult CERN’s public website for more detailed explanations if they want to know more. The new envelopes will be available from five post offices in the Pays de Gex (Ferney-Voltaire, Prévessin...

  2. SYNTHETIC AGB EVOLUTION .1. A NEW MODEL

    NARCIS (Netherlands)

    GROENEWEGEN, MAT; DEJONG, T

    We have constructed a model to calculate in a synthetic way the evolution of stars on the asymptotic giant branch (AGB). The evolution is started at the first thermal pulse (TP) and is terminated when the envelope mass has been lost due to mass loss or when the core mass reaches the Chandrasekhar

  3. On protostellar evolution

    International Nuclear Information System (INIS)

    Westbrook, C.K.; Tarter, C.B.

    1975-01-01

    An investigation of the evolution of spherically symmetric protostars with initial masses in the range 0.1less than or equal toM/M/sub sun/less than or equal to50 has been carried out. In order to perform the calculations, a numerical technique has been developed in which rapid dynamical motions in one region of the star and quasi-static evolution in another region can be simultaneously computed. The general evolutionary features are similar to those found by other workers: an initial free-fall collapse is followed by the creation of a core in hydrostatic equilibrium, and the core's subsequent accretion of the surrounding envelope. However, our final hydrostatic-equilibrium configurations have radii large compared with those of the protostellar models of Larson (but in reasonable agreement with those of conventional pre-main-sequence models). For low-mass protostars (Mless than or equal toM/sub sun/) the luminosity remains relatively small until late evolutionary times and the evolution is very sensitive to the treatment of convective energy transport. For large-mass protostars (Mgreater than or equal to3M/sub sun/) a convective phase never exists, and a fraction (increasing with mass) of the initial mass is ejected by the combined effects of heating and radiation pressure in the envelope

  4. Accuracy of inference on the physics of binary evolution from gravitational-wave observations

    Science.gov (United States)

    Barrett, Jim W.; Gaebel, Sebastian M.; Neijssel, Coenraad J.; Vigna-Gómez, Alejandro; Stevenson, Simon; Berry, Christopher P. L.; Farr, Will M.; Mandel, Ilya

    2018-04-01

    The properties of the population of merging binary black holes encode some of the uncertain physics underlying the evolution of massive stars in binaries. The binary black hole merger rate and chirp-mass distribution are being measured by ground-based gravitational-wave detectors. We consider isolated binary evolution, and explore how accurately the physical model can be constrained with such observations by applying the Fisher information matrix to the merging black hole population simulated with the rapid binary-population synthesis code COMPAS. We investigate variations in four COMPAS parameters: common-envelope efficiency, kick-velocity dispersion, and mass-loss rates during the luminous blue variable and Wolf-Rayet stellar-evolutionary phases. We find that ˜1000 observations would constrain these model parameters to a fractional accuracy of a few per cent. Given the empirically determined binary black hole merger rate, we can expect gravitational-wave observations alone to place strong constraints on the physics of stellar and binary evolution within a few years. Our approach can be extended to use other observational data sets; combining observations at different evolutionary stages will lead to a better understanding of stellar and binary physics.

  5. Test particle method for incorporation of the kinetic effects into the envelope simulations of Raman backscattering

    International Nuclear Information System (INIS)

    Hur, Min Sup; Suk, Hyyong

    2007-01-01

    A new test particle method is presented for self-consistent incorporation of the kinetic effects into the fluid three-wave model. One of the most important kinetic effects is the electron trapping and it has been found that the trapping affects significantly the behavior of Raman backscatter and Raman backward laser amplification. The conventional fluid three-wave model cannot reproduce the kinetic simulations in the trapping regime. The test particle scheme utilizes the same equations for the laser evolution as in the three-wave model. However, the plasma wave is treated by the envelope-kinetic equation, which consists of envelope evolution and the kinetic term. The core of the new scheme is employing test particles to compute the kinetic term self-consistently. The benchmarking results against the averaged particle-in-cell (aPIC) code show excellent agreements, and the computation speed gain over the aPIC is from 2 to 20 depending on parameters

  6. Formation of polycyclic aromatic hydrocarbons in circumstellar envelopes

    International Nuclear Information System (INIS)

    Frenklach, M.; Feigelson, E.D.

    1989-01-01

    Production of polycyclic aromatic hydrocarbons in carbon-rich circumstellar envelopes was investigated using a kinetic approach. A detailed chemical reaction mechanism of gas-phase PAH formation and growth, containing approximately 100 reactions of 40 species, was numerically solved under the physical conditions expected in cool stellar winds. The chemistry is based on studies of soot production in hydrocarbon pyrolysis and combustion. Several first-ring and second-ring cyclization processes were considered. A linear lumping algorithm was used to describe PAH growth beyond the second aromatic ring. PAH production using this mechanism was examined with respect to a grid of idealized constant velocity stellar winds as well as several published astrophysical models. The basic result is that the onset of PAH production in the interstellar envelopes is predicted to occur within the temperature interval of 1100 to 900 K. The absolute amounts of the PAHs formed, however, are very sensitive to a number of parameters, both chemical and astrophysical, whose values are not accurately known. Astrophysically meaningful quantities of PAHs require particularly dense and slow stellar winds and high initial acetylene abundance. It is suggested that most of the PAHs may be produced in a relatively small fraction of carbon-rich red giants. 87 refs

  7. Cortical processing of dynamic sound envelope transitions.

    Science.gov (United States)

    Zhou, Yi; Wang, Xiaoqin

    2010-12-08

    Slow envelope fluctuations in the range of 2-20 Hz provide important segmental cues for processing communication sounds. For a successful segmentation, a neural processor must capture envelope features associated with the rise and fall of signal energy, a process that is often challenged by the interference of background noise. This study investigated the neural representations of slowly varying envelopes in quiet and in background noise in the primary auditory cortex (A1) of awake marmoset monkeys. We characterized envelope features based on the local average and rate of change of sound level in envelope waveforms and identified envelope features to which neurons were selective by reverse correlation. Our results showed that envelope feature selectivity of A1 neurons was correlated with the degree of nonmonotonicity in their static rate-level functions. Nonmonotonic neurons exhibited greater feature selectivity than monotonic neurons in quiet and in background noise. The diverse envelope feature selectivity decreased spike-timing correlation among A1 neurons in response to the same envelope waveforms. As a result, the variability, but not the average, of the ensemble responses of A1 neurons represented more faithfully the dynamic transitions in low-frequency sound envelopes both in quiet and in background noise.

  8. (2+1)-dimensional dissipation nonlinear Schrödinger equation for envelope Rossby solitary waves and chirp effect

    International Nuclear Information System (INIS)

    Li Jin-Yuan; Fang Nian-Qiao; Yuan Xiao-Bo; Zhang Ji; Xue Yu-Long; Wang Xue-Mu

    2016-01-01

    In the past few decades, the (1+1)-dimensional nonlinear Schrödinger (NLS) equation had been derived for envelope Rossby solitary waves in a line by employing the perturbation expansion method. But, with the development of theory, we note that the (1+1)-dimensional model cannot reflect the evolution of envelope Rossby solitary waves in a plane. In this paper, by constructing a new (2+1)-dimensional multiscale transform, we derive the (2+1)-dimensional dissipation nonlinear Schrödinger equation (DNLS) to describe envelope Rossby solitary waves under the influence of dissipation which propagate in a plane. Especially, the previous researches about envelope Rossby solitary waves were established in the zonal area and could not be applied directly to the spherical earth, while we adopt the plane polar coordinate and overcome the problem. By theoretical analyses, the conservation laws of (2+1)-dimensional envelope Rossby solitary waves as well as their variation under the influence of dissipation are studied. Finally, the one-soliton and two-soliton solutions of the (2+1)-dimensional NLS equation are obtained with the Hirota method. Based on these solutions, by virtue of the chirp concept from fiber soliton communication, the chirp effect of envelope Rossby solitary waves is discussed, and the related impact factors of the chirp effect are given. (paper)

  9. Accretion and evolution of ∼2.5 M ⊕ planets with voluminous H/He envelopes

    International Nuclear Information System (INIS)

    Bodenheimer, Peter; Lissauer, Jack J.

    2014-01-01

    Formation of planets in the Neptune size range with low-mass, but voluminous, H 2 /He gaseous envelopes is modeled by detailed numerical simulations according to the core-nucleated accretion scenario. Formation locations ranging from 0.5 to 4 AU from a star of 1 M ☉ are considered. The final planets have heavy-element cores of 2.2-2.5 M ⊕ and envelopes in the range 0.037-0.16 M ⊕ . After the formation process, which lasts 2 Myr or less, the planets evolve at constant mass up to an age of several Gyr. For assumed equilibrium temperatures of 250, 500, and 1000 K, their calculated final radii are compared with those observed by the Kepler spacecraft. For the particular case of Kepler-11 f, we address the question whether it could have formed in situ or whether migration from a formation location farther out in the disk is required.

  10. Evolution of Mass and Velocity Field in the Cosmic Web: Comparison between Baryonic and Dark Matter

    Science.gov (United States)

    Zhu, Weishan; Feng, Long-Long

    2017-03-01

    We investigate the evolution of the cosmic web since z = 5 in grid-based cosmological hydrodynamical simulations, focusing on the mass and velocity fields of both baryonic and cold dark matter. The tidal tensor of density is used as the main method for web identification, with λ th = 0.2-1.2. The evolution trends in baryonic and dark matter are similar, although moderate differences are observed. Sheets appear early, and their large-scale pattern may have been set up by z = 3. In terms of mass, filaments supersede sheets as the primary collapsing structures from z ˜ 2-3. Tenuous filaments assembled with each other to form prominent ones at z dark matter field, and is even moderately stronger between {\\boldsymbol{ω }} and {{\\boldsymbol{e}}}1, and ω and {{\\boldsymbol{e}}}3. Compared with dark matter, there is slightly less baryonic matter found residing in filaments and clusters, and its vorticity developed more significantly below 2-3 Mpc. These differences may be underestimated because of the limited resolution and lack of star formation in our simulation. The impact of the change of dominant structures in overdense regions at z ˜ 2-3 on galaxy formation and evolution is shortly discussed.

  11. Implications of the Galilean satellites ice envelope explosions. 3

    International Nuclear Information System (INIS)

    Agafonova, I.I.; Drobyshevski, E.M.

    1985-01-01

    Secondary explosions of the primary ice fragments ejected in the explosion of the electrolyzed massive ice envelopes of the Galilean satellites are capable of imparting velocities of up to 5 km s -1 to the secondary fragments. As a result, the secondary fragments can enter the orbits of the irregular satellites and the Trojan libration orbits. Since the icy mix of the fragments contains hydrocarbons and particulate material (silicates and the like), after ice sublimation from the surface layers the Trojans should reveal type C and RD spectra typical for Jupiter's irregular satellites, comet nuclei and other distant ice bodies of similar origin. Among the Trojans there cannot be rocky or metallic objects which are known to exist in the main asteroid belt. It is shown that a velocity perturbation of 150-200 m s -1 resulting from a purely mechanical impact of two bodies may be sufficient to move collision fragments from the orbits of the Trojans to horseshoe-shaped trajectories with a subsequent transfer to the cometary orbits of Jupiter's family. (Auth.)

  12. Three-Dimensional Coupled NLS Equations for Envelope Gravity Solitary Waves in Baroclinic Atmosphere and Modulational Instability

    Directory of Open Access Journals (Sweden)

    Baojun Zhao

    2018-01-01

    Full Text Available Envelope gravity solitary waves are an important research hot spot in the field of solitary wave. And the weakly nonlinear model equations system is a part of the research of envelope gravity solitary waves. Because of the lack of technology and theory, previous studies tried hard to reduce the variable numbers and constructed the two-dimensional model in barotropic atmosphere and could only describe the propagation feature in a direction. But for the propagation of envelope gravity solitary waves in real ocean ridges and atmospheric mountains, the three-dimensional model is more appropriate. Meanwhile, the baroclinic problem of atmosphere is also an inevitable topic. In the paper, the three-dimensional coupled nonlinear Schrödinger (CNLS equations are presented to describe the evolution of envelope gravity solitary waves in baroclinic atmosphere, which are derived from the basic dynamic equations by employing perturbation and multiscale methods. The model overcomes two disadvantages: (1 baroclinic problem and (2 propagation path problem. Then, based on trial function method, we deduce the solution of the CNLS equations. Finally, modulational instability of wave trains is also discussed.

  13. All the Universe in an envelope

    CERN Multimedia

    2007-01-01

    Do you know which force is hidden in an envelope or how many billions of years old are the atoms it contains? You will find the answers to these (curious) questions in a post office in the Pays de Gex. The French postal services of the Pays de Gex are again issuing pre-paid envelopes in collaboration with CERN (see Bulletin No. 24/2006). The new series presents some of the concepts of modern physics in an amazing way by showing what you can learn about the Universe with a single envelope. Packets of ten pre-stamped envelopes, each carrying a statement on fundamental physics, will be on sale from 7 July onwards. To learn more about the physics issues presented on the envelopes, people are invited to go to the CERN Web site where they will find the explanations. Five thousand envelopes will be put on sale in July and five thousand more during the French "Fête de la science" in October. They will be available from five post offices in the Pays de Gex (F...

  14. Mass-loss evolution of close-in exoplanets: Evaporation of hot Jupiters and the effect on population

    Energy Technology Data Exchange (ETDEWEB)

    Kurokawa, H. [Department of Physics, Nagoya Univsersity, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602 (Japan); Nakamoto, T., E-mail: kurokawa@nagoya-u.jp [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan)

    2014-03-01

    During their evolution, short-period exoplanets may lose envelope mass through atmospheric escape owing to intense X-ray and extreme ultraviolet (XUV) radiation from their host stars. Roche-lobe overflow induced by orbital evolution or intense atmospheric escape can also contribute to mass loss. To study the effects of mass loss on inner planet populations, we calculate the evolution of hot Jupiters considering mass loss of their envelopes and thermal contraction. Mass loss is assumed to occur through XUV-driven atmospheric escape and the following Roche-lobe overflow. The runaway effect of mass loss results in a dichotomy of populations: hot Jupiters that retain their envelopes and super Earths whose envelopes are completely lost. Evolution primarily depends on the core masses of planets and only slightly on migration history. In hot Jupiters with small cores (≅ 10 Earth masses), runaway atmospheric escape followed by Roche-lobe overflow may create sub-Jupiter deserts, as observed in both mass and radius distributions of planetary populations. Comparing our results with formation scenarios and observed exoplanets populations, we propose that populations of closely orbiting exoplanets are formed by capturing planets at/inside the inner edges of protoplanetary disks and subsequent evaporation of sub-Jupiters.

  15. Mass-loss evolution of close-in exoplanets: Evaporation of hot Jupiters and the effect on population

    International Nuclear Information System (INIS)

    Kurokawa, H.; Nakamoto, T.

    2014-01-01

    During their evolution, short-period exoplanets may lose envelope mass through atmospheric escape owing to intense X-ray and extreme ultraviolet (XUV) radiation from their host stars. Roche-lobe overflow induced by orbital evolution or intense atmospheric escape can also contribute to mass loss. To study the effects of mass loss on inner planet populations, we calculate the evolution of hot Jupiters considering mass loss of their envelopes and thermal contraction. Mass loss is assumed to occur through XUV-driven atmospheric escape and the following Roche-lobe overflow. The runaway effect of mass loss results in a dichotomy of populations: hot Jupiters that retain their envelopes and super Earths whose envelopes are completely lost. Evolution primarily depends on the core masses of planets and only slightly on migration history. In hot Jupiters with small cores (≅ 10 Earth masses), runaway atmospheric escape followed by Roche-lobe overflow may create sub-Jupiter deserts, as observed in both mass and radius distributions of planetary populations. Comparing our results with formation scenarios and observed exoplanets populations, we propose that populations of closely orbiting exoplanets are formed by capturing planets at/inside the inner edges of protoplanetary disks and subsequent evaporation of sub-Jupiters.

  16. Envelope method for determination of the ion linear accelerator acceptance

    International Nuclear Information System (INIS)

    Sharshanov, A.A.; Goncharenko, I.I.; Revutskij, E.I.

    1974-01-01

    The acceptance defined by the slit u 2 2 in space u, ν, z (u=coordinate of the accelerated particle in the direction perpendicular to the accelerator axis, ν=ratio of the transverse particle velocity component to the longitudinal component, z=accelerator axis, a=dimensions of slit) represents a convex curvilinear polygon with centre of symmetry at the origin of the co-ordinates. The sides of the polygon are sections of ellipses and straight lines, the ellipses being part of an envelope to the set of proto-types of all cross-sections of the slit in planes z=3, where 0<=xi<=z and z is the length of the accelerator, and the straight lines are tangents to the ends of the envelope. In the paper the equations of the ellipses forming the sides of the polygon are written using an elementary variable matrix of the accelerator structure, and the co-ordinates of the polygon apexes are found. A numerical value is derived for the area of the polygon for one transverse co-ordinate of the particular accelerator, the pre-stripping section of the LUMZI-10. (author)

  17. A stochastic differential equation framework for the turbulent velocity field

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Schmiegel, Jürgen

    We discuss a stochastic differential equation, as a modelling framework for the turbulent velocity field, that is capable of capturing basic stylized facts of the statistics of velocity increments. In particular, we focus on the evolution of the probability density of velocity increments...

  18. Unique Fe2P Nanoparticles Enveloped in Sandwichlike Graphited Carbon Sheets as Excellent Hydrogen Evolution Reaction Catalyst and Lithium-Ion Battery Anode.

    Science.gov (United States)

    Zhang, Yan; Zhang, Huijuan; Feng, Yangyang; Liu, Li; Wang, Yu

    2015-12-09

    The novel Fe2P nanoparticles encapsulated in sandwichlike graphited carbon envelope nanocomposite (Fe2P/GCS) that can be first applied in hydrogen evolution reaction (HER) as well as lithium-ion batteries (LIBs) has been designed and fabricated. The unique sandwiched Fe2P/GCS is characterized with several prominent merits, including large specific surface area, nanoporous structure, excellent electronic conductivity, enhanced structural integrity and so on. All of these endow the Fe2P/GCS with brilliant electrochemical performance. When used as a HER electrocatalyst in acidic media, the harvested Fe2P/GCS demonstrates low onset overpotential and Tafel slope as well as particularly outstanding durability. Moreover, as an anode material for LIBs, the sandwiched Fe2P/GCS presents high specific capacity and excellent cyclability and rate capability. As a consequence, the acquired Fe2P/GCS is a promising material for energy applications, especially HER and LIBs.

  19. Radiative transfer in spherical circumstellar dust envelopes. III. Dust envelope models of some well known infrared stars

    International Nuclear Information System (INIS)

    Apruzese, J.P.

    1975-01-01

    The radiative transfer techniques described elsewhere by the author have been employed to construct dust envelope models of several well known infrared stars. The resulting calculations indicate that the infrared emissivity of circumstellar grains generally must be higher than that which many calculations of small nonsilicate grains yield. This conclusion is dependent to some degree on the (unknown) size of the stellar envelopes considered, but is quite firm in the case of the spatially resolved envelope of IRC+10216. Further observations of the spatial distribution of the infrared radiation from stellar envelopes will be invaluable in deciphering the properties of the circumstellar grains

  20. Single rotating stars and the formation of bipolar planetary nebula

    Energy Technology Data Exchange (ETDEWEB)

    García-Segura, G. [Instituto de Astronomía, Universidad Nacional Autónoma de Mexico, Km. 103 Carr. Tijuana-Ensenada, 22860 Ensenada, B. C. (Mexico); Villaver, E. [Departamento de Física Teórica, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Langer, N. [Argelander-Institut für Astronomie, Universität Bonn, D-53121 Bonn (Germany); Yoon, S.-C. [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul, 151-747 (Korea, Republic of); Manchado, A., E-mail: ggs@astrosen.unam.mx [Instituto de Astrofísica de Canarias, Via Láctea s/n, E-38200 La Laguna, Tenerife (Spain)

    2014-03-10

    We have computed new stellar evolution models that include the effects of rotation and magnetic torques under different hypotheses. The goal is to test whether a single star can sustain the rotational velocities needed in the envelope for magnetohydrodynamical(MHD) simulations to shape bipolar planetary nebulae (PNe) when high mass-loss rates take place. Stellar evolution models with main sequence masses of 2.5 and 5 M {sub ☉} and initial rotational velocities of 250 km s{sup –1} have been followed through the PNe formation phase. We find that stellar cores have to be spun down using magnetic torques in order to reproduce the rotation rates observed for white dwarfs. During the asymptotic giant branch phase and beyond, the magnetic braking of the core has a practically null effect on increasing the rotational velocity of the envelope since the stellar angular momentum is efficiently removed by the wind. We have also tested the best possible case scenarios in rather non-physical contexts to give enough angular momentum to the envelope. We find that we cannot get the envelope of a single star to rotate at the speeds needed for MHD simulations to form bipolar PNe. We conclude that single stellar rotators are unlikely to be the progenitors of bipolar PNe under the current MHD model paradigm.

  1. Evolution of Deeply Embedded Protostars

    DEFF Research Database (Denmark)

    Frimann, Søren

    consequences for the evolution of protostellar systems. The sublimation of CO-ice from dust grains in the surrounding envelope can be used to trace accretion variability in protostars, because the increased heating during an accretion burst will cause the CO-ice to sublimate into the gas-phase where the excess...

  2. Creating a Lunar EVA Work Envelope

    Science.gov (United States)

    Griffin, Brand N.; Howard, Robert; Rajulu, Sudhakar; Smitherman, David

    2009-01-01

    A work envelope has been defined for weightless Extravehicular Activity (EVA) based on the Space Shuttle Extravehicular Mobility Unit (EMU), but there is no equivalent for planetary operations. The weightless work envelope is essential for planning all EVA tasks because it determines the location of removable parts, making sure they are within reach and visibility of the suited crew member. In addition, using the envelope positions the structural hard points for foot restraints that allow placing both hands on the job and provides a load path for reacting forces. EVA operations are always constrained by time. Tasks are carefully planned to ensure the crew has enough breathing oxygen, cooling water, and battery power. Planning first involves computers using a virtual work envelope to model tasks, next suited crew members in a simulated environment refine the tasks. For weightless operations, this process is well developed, but planetary EVA is different and no work envelope has been defined. The primary difference between weightless and planetary work envelopes is gravity. It influences anthropometry, horizontal and vertical mobility, and reaction load paths and introduces effort into doing "overhead" work. Additionally, the use of spacesuits other than the EMU, and their impacts on range of motion, must be taken into account. This paper presents the analysis leading to a concept for a planetary EVA work envelope with emphasis on lunar operations. There is some urgency in creating this concept because NASA has begun building and testing development hardware for the lunar surface, including rovers, habitats and cargo off-loading equipment. Just as with microgravity operations, a lunar EVA work envelope is needed to guide designers in the formative stages of the program with the objective of avoiding difficult and costly rework.

  3. Accretion and evolution of ∼2.5 M {sub ⊕} planets with voluminous H/He envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Bodenheimer, Peter [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Lissauer, Jack J., E-mail: peter@ucolick.org, E-mail: Jack.J.Lissauer@nasa.gov [Space Science and Astrobiology Division, NASA-Ames Research Center, Moffett Field, CA 94035 (United States)

    2014-08-20

    Formation of planets in the Neptune size range with low-mass, but voluminous, H{sub 2}/He gaseous envelopes is modeled by detailed numerical simulations according to the core-nucleated accretion scenario. Formation locations ranging from 0.5 to 4 AU from a star of 1 M {sub ☉} are considered. The final planets have heavy-element cores of 2.2-2.5 M {sub ⊕} and envelopes in the range 0.037-0.16 M {sub ⊕}. After the formation process, which lasts 2 Myr or less, the planets evolve at constant mass up to an age of several Gyr. For assumed equilibrium temperatures of 250, 500, and 1000 K, their calculated final radii are compared with those observed by the Kepler spacecraft. For the particular case of Kepler-11 f, we address the question whether it could have formed in situ or whether migration from a formation location farther out in the disk is required.

  4. On the evolution of magnetic and velocity fields of an originating sunspot group

    International Nuclear Information System (INIS)

    Bachmann, G.

    1978-01-01

    Magnetographic measurements were made to derive longitudinal magnetic field strengths, line-of-sight velocities and the brightness distribution in an originating sunspot group. These results and photographs of the group are used to compare the evaluation of a relatively simple active region with our present ideas about the evolution of active regions in general. We found that the total magnetic flux increased from about 4 to 20x10 20 Mx over three days. The downward flow of gas in regions with stronger magnetic fields is formed only after the magnetic field has already been bipolar for two days. The maximum velocity always occurred in the main spots of the preceding and the subsequent parts of the sunspot group. Transformation into a flow pattern, which looks like Evershed motion, is observed in the main preceding sunspot after the formation of the penumbra. The generation of new active regions by concentration and amplification of magnetic fields, under the action of supergranulation flow in photospheric layers, cannot play an important role. On the contrary, the behaviour of the active region is in agreement with the conception of rising flux tubes, out of which the gas flows down. Our observations confirm that a magnetic field strength, leading to the generation of sunspots, is attained earlier in the preceding part of the originating active region than in its subsequent part. A series of subflares occurred in the active region, when short-lived small magnetic structure elements emerged in the larger bipolar magnetic field. (author)

  5. Solitary Alfven wave envelopes and the modulational instability

    International Nuclear Information System (INIS)

    Kennel, C.F.

    1987-06-01

    The derivative nonlinear Schroedinger equation describes the modulational instability of circularly polarized dispersive Alfven wave envelopes. It also may be used to determine the properties of finite amplitude localized stationary wave envelopes. Such envelope solitons exist only in conditions of modulational stability. This leaves open the question of whether, and if so, how, the modulational instability produces envelope solitons. 12 refs

  6. Modified Feynman ratchet with velocity-dependent fluctuations

    Directory of Open Access Journals (Sweden)

    Jack Denur

    2004-03-01

    Full Text Available Abstract: The randomness of Brownian motion at thermodynamic equilibrium can be spontaneously broken by velocity-dependence of fluctuations, i.e., by dependence of values or probability distributions of fluctuating properties on Brownian-motional velocity. Such randomness-breaking can spontaneously obtain via interaction between Brownian-motional Doppler effects --- which manifest the required velocity-dependence --- and system geometrical asymmetry. A non random walk is thereby spontaneously superposed on Brownian motion, resulting in a systematic net drift velocity despite thermodynamic equilibrium. The time evolution of this systematic net drift velocity --- and of velocity probability density, force, and power output --- is derived for a velocity-dependent modification of Feynman's ratchet. We show that said spontaneous randomness-breaking, and consequent systematic net drift velocity, imply: bias from the Maxwellian of the system's velocity probability density, the force that tends to accelerate it, and its power output. Maximization, especially of power output, is discussed. Uncompensated decreases in total entropy, challenging the second law of thermodynamics, are thereby implied.

  7. Genetic Diversity of Koala Retroviral Envelopes

    Directory of Open Access Journals (Sweden)

    Wenqin Xu

    2015-03-01

    Full Text Available Genetic diversity, attributable to the low fidelity of reverse transcription, recombination and mutation, is an important feature of infectious retroviruses. Under selective pressure, such as that imposed by superinfection interference, gammaretroviruses commonly adapt their envelope proteins to use alternative receptors to overcome this entry block. The first characterized koala retroviruses KoRV subgroup A (KoRV-A were remarkable in their absence of envelope genetic variability. Once it was determined that KoRV-A was present in all koalas in US zoos, regardless of their disease status, we sought to isolate a KoRV variant whose presence correlated with neoplastic malignancies. More than a decade after the identification of KoRV-A, we isolated a second subgroup of KoRV, KoRV-B from koalas with lymphomas. The envelope proteins of KoRV-A and KoRV-B are sufficiently divergent to confer the ability to bind and employ distinct receptors for infection. We have now obtained a number of additional KoRV envelope variants. In the present studies we report these variants, and show that they differ from KoRV-A and KoRV-B envelopes in their host range and superinfection interference properties. Thus, there appears to be considerable variation among KoRVs envelope genes suggesting genetic diversity is a factor following the KoRV-A infection process.

  8. 14 CFR 27.87 - Height-speed envelope.

    Science.gov (United States)

    2010-01-01

    ... applicable power failure condition in paragraph (b) of this section, a limiting height-speed envelope must be... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Height-speed envelope. 27.87 Section 27.87... STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Performance § 27.87 Height-speed envelope. (a) If there is any...

  9. Optimum moisture levels for biodegradation of mortality composting envelope materials.

    Science.gov (United States)

    Ahn, H K; Richard, T L; Glanville, T D

    2008-01-01

    Moisture affects the physical and biological properties of compost and other solid-state fermentation matrices. Aerobic microbial systems experience different respiration rates (oxygen uptake and CO2 evolution) as a function of moisture content and material type. In this study the microbial respiration rates of 12 mortality composting envelope materials were measured by a pressure sensor method at six different moisture levels. A wide range of respiration (1.6-94.2mg O2/g VS-day) rates were observed for different materials, with alfalfa hay, silage, oat straw, and turkey litter having the highest values. These four envelope materials may be particularly suitable for improving internal temperature and pathogen destruction rates for disease-related mortality composting. Optimum moisture content was determined based on measurements across a range that spans the maximum respiration rate. The optimum moisture content of each material was observed near water holding capacity, which ranged from near 60% to over 80% on a wet basis for all materials except a highly stabilized soil compost blend (optimum around 25% w.b.). The implications of the results for moisture management and process control strategies during mortality composting are discussed.

  10. Time Variations of the Radial Velocity of H2O Masers in the Semi-Regular Variable R Crt

    Science.gov (United States)

    Sudou, Hiroshi; Shiga, Motoki; Omodaka, Toshihiro; Nakai, Chihiro; Ueda, Kazuki; Takaba, Hiroshi

    2017-12-01

    H2O maser emission {at 22 GHz} in the circumstellar envelope is one of the good tracers of detailed physics and inematics in the mass loss process of asymptotic giant branch stars. Long-term monitoring of an H2O maser spectrum with high time resolution enables us to clarify acceleration processes of the expanding shell in the stellar atmosphere. We monitored the H2O maser emission of the semi-regular variable R Crt with the Kagoshima 6-m telescope, and obtained a large data set of over 180 maser spectra over a period of 1.3 years with an observational span of a few days. Using an automatic peak detection method based on least-squares fitting, we exhaustively detected peaks as significant velocity components with the radial velocity on a 0.1 km s^{-1} scale. This analysis result shows that the radial velocity of red-shifted and blue-shifted components exhibits a change between acceleration and deceleration on the time scale of a few hundred days. These velocity variations are likely to correlate with intensity variations, in particular during flaring state of H2O masers. It seems reasonable to consider that the velocity variation of the maser source is caused by shock propagation in the envelope due to stellar pulsation.However, it is difficult to explain the relationship between the velocity variation and the intensity variation only from shock propagation effects. We found that a time delay of the integrated maser intensity with respect to the optical light curve is about 150 days.

  11. Envelope as Climate Negotiator: Evaluating adaptive building envelope's capacity to moderate indoor climate and energy

    Science.gov (United States)

    Erickson, James

    Through manipulation of adaptable opportunities available within a given environment, individuals become active participants in managing personal comfort requirements, by exercising control over their comfort without the assistance of mechanical heating and cooling systems. Similarly, continuous manipulation of a building skin's form, insulation, porosity, and transmissivity qualities exerts control over the energy exchanged between indoor and outdoor environments. This research uses four adaptive response variables in a modified software algorithm to explore an adaptive building skin's potential in reacting to environmental stimuli with the purpose of minimizing energy use without sacrificing occupant comfort. Results illustrate that significant energy savings can be realized with adaptive envelopes over static building envelopes even under extreme summer and winter climate conditions; that the magnitude of these savings are dependent on climate and orientation; and that occupant thermal comfort can be improved consistently over comfort levels achieved by optimized static building envelopes. The resulting adaptive envelope's unique climate-specific behavior could inform designers in creating an intelligent kinetic aesthetic that helps facilitate adaptability and resiliency in architecture.

  12. UNVEILING THE DETAILED DENSITY AND VELOCITY STRUCTURES OF THE PROTOSTELLAR CORE B335

    Energy Technology Data Exchange (ETDEWEB)

    Kurono, Yasutaka; Saito, Masao; Kamazaki, Takeshi; Morita, Koh-Ichiro; Kawabe, Ryohei, E-mail: yasutaka.kurono@nao.ac.jp [Chile Observatory, National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo 181-8588 (Japan)

    2013-03-10

    We present an observational study of the protostellar core B335 harboring a low-mass Class 0 source. The observations of the H{sup 13}CO{sup +}(J = 1-0) line emission were carried out using the Nobeyama 45 m telescope and Nobeyama Millimeter Array. Our combined image of the interferometer and single-dish data depicts detailed structures of the dense envelope within the core. We found that the core has a radial density profile of n(r){proportional_to}r {sup -p} and a reliable difference in the power-law indices between the outer and inner regions of the core: p Almost-Equal-To 2 for r {approx}> 4000 AU and p Almost-Equal-To 1.5 for r {approx}< 4000 AU. The dense core shows a slight overall velocity gradient of {approx}1.0 km s{sup -1} over the scale of 20, 000 AU across the outflow axis. We believe that this velocity gradient represents a solid-body-like rotation of the core. The dense envelope has a quite symmetrical velocity structure with a remarkable line broadening toward the core center, which is especially prominent in the position-velocity diagram across the outflow axis. The model calculations of position-velocity diagrams do a good job of reproducing observational results using the collapse model of an isothermal sphere in which the core has an inner free-fall region and an outer region conserving the conditions at the formation stage of a central stellar object. We derived a central stellar mass of {approx}0.1 M{sub Sun }, and suggest a small inward velocity, v{sub r{>=}r{sub i{sub n{sub f}}}}{approx}0 km s{sup -1} in the outer core at {approx}> 4000 AU. We concluded that our data can be well explained by gravitational collapse with a quasi-static initial condition, such as Shu's model, or by the isothermal collapse of a marginally critical Bonnor-Ebert sphere.

  13. Injection envelope matching in storage rings

    International Nuclear Information System (INIS)

    Minty, M.G.; Spence, W.L.

    1995-05-01

    The shape and size of the transverse phase space injected into a storage ring can be deduced from turn-by-turn measurements of the transient behavior of the beam envelope in the ring. Envelope oscillations at 2 x the β-tron frequency indicate the presence of a β-mismatch, while envelope oscillations at the β-tron frequency are the signature of a dispersion function mismatch. Experiments in injection optimization using synchrotron radiation imaging of the beam and a fast-gated camera at the SLC damping rings are reported

  14. Envelope Protection for In-Flight Ice Contamination

    Science.gov (United States)

    Gingras, David R.; Barnhart, Billy P.; Ranaudo, Richard J.; Ratvasky, Thomas P.; Morelli, Eugene A.

    2010-01-01

    Fatal loss-of-control (LOC) accidents have been directly related to in-flight airframe icing. The prototype system presented in this paper directly addresses the need for real-time onboard envelope protection in icing conditions. The combinations of a-priori information and realtime aerodynamic estimations are shown to provide sufficient input for determining safe limits of the flight envelope during in-flight icing encounters. The Icing Contamination Envelope Protection (ICEPro) system has been designed and implemented to identify degradations in airplane performance and flying qualities resulting from ice contamination and provide safe flight-envelope cues to the pilot. Components of ICEPro are described and results from preliminary tests are presented.

  15. MAGNETIZATION OF CLOUD CORES AND ENVELOPES AND OTHER OBSERVATIONAL CONSEQUENCES OF RECONNECTION DIFFUSION

    International Nuclear Information System (INIS)

    Lazarian, A.; Esquivel, A.; Crutcher, R.

    2012-01-01

    Recent observational results for magnetic fields in molecular clouds reviewed by Crutcher seem to be inconsistent with the predictions of the ambipolar diffusion theory of star formation. These include the measured decrease in mass to flux ratio between envelopes and cores, the failure to detect any self-gravitating magnetically subcritical clouds, the determination of the flat probability distribution function (PDF) of the total magnetic field strengths implying that there are many clouds with very weak magnetic fields, and the observed scaling B∝ρ 2/3 that implies gravitational contraction with weak magnetic fields. We consider the problem of magnetic field evolution in turbulent molecular clouds and discuss the process of magnetic field diffusion mediated by magnetic reconnection. For this process that we termed 'reconnection diffusion', we provide a simple physical model and explain that this process is inevitable in view of the present-day understanding of MHD turbulence. We address the issue of the expected magnetization of cores and envelopes in the process of star formation and show that reconnection diffusion provides an efficient removal of magnetic flux that depends only on the properties of MHD turbulence in the core and the envelope. We show that as the amplitude of turbulence as well as the scale of turbulent motions decrease from the envelope to the core of the cloud, the diffusion of the magnetic field is faster in the envelope. As a result, the magnetic flux trapped during the collapse in the envelope is being released faster than the flux trapped in the core, resulting in much weaker fields in envelopes than in cores, as observed. We provide simple semi-analytical model calculations which support this conclusion and qualitatively agree with the observational results. Magnetic reconnection is also consistent with the lack of subcritical self-gravitating clouds, with the observed flat PDF of field strengths, and with the scaling of field strength

  16. MAGNETIZATION OF CLOUD CORES AND ENVELOPES AND OTHER OBSERVATIONAL CONSEQUENCES OF RECONNECTION DIFFUSION

    Energy Technology Data Exchange (ETDEWEB)

    Lazarian, A. [Astronomy Department, University of Wisconsin, Madison, WI 53706 (United States); Esquivel, A. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, 04510 Mexico D.F. (Mexico); Crutcher, R. [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801 (United States)

    2012-10-01

    Recent observational results for magnetic fields in molecular clouds reviewed by Crutcher seem to be inconsistent with the predictions of the ambipolar diffusion theory of star formation. These include the measured decrease in mass to flux ratio between envelopes and cores, the failure to detect any self-gravitating magnetically subcritical clouds, the determination of the flat probability distribution function (PDF) of the total magnetic field strengths implying that there are many clouds with very weak magnetic fields, and the observed scaling B{proportional_to}{rho}{sup 2/3} that implies gravitational contraction with weak magnetic fields. We consider the problem of magnetic field evolution in turbulent molecular clouds and discuss the process of magnetic field diffusion mediated by magnetic reconnection. For this process that we termed 'reconnection diffusion', we provide a simple physical model and explain that this process is inevitable in view of the present-day understanding of MHD turbulence. We address the issue of the expected magnetization of cores and envelopes in the process of star formation and show that reconnection diffusion provides an efficient removal of magnetic flux that depends only on the properties of MHD turbulence in the core and the envelope. We show that as the amplitude of turbulence as well as the scale of turbulent motions decrease from the envelope to the core of the cloud, the diffusion of the magnetic field is faster in the envelope. As a result, the magnetic flux trapped during the collapse in the envelope is being released faster than the flux trapped in the core, resulting in much weaker fields in envelopes than in cores, as observed. We provide simple semi-analytical model calculations which support this conclusion and qualitatively agree with the observational results. Magnetic reconnection is also consistent with the lack of subcritical self-gravitating clouds, with the observed flat PDF of field strengths, and

  17. Thermal Activated Envelope

    DEFF Research Database (Denmark)

    Foged, Isak Worre; Pasold, Anke

    2015-01-01

    The research studies the making of a responsive architectural envelope based on bi-materials. The bi-materials are organized according to a method that combines different isotropic metals and plastic into an active composite structure that reacts to temperature variations. Through an evolutionary......, environmental dynamics and occupancy dynamics. Lastly, a physical prototype is created, which illustrates the physical expression of the bi-materials and the problems related to manufacturing of these composite structures.......The research studies the making of a responsive architectural envelope based on bi-materials. The bi-materials are organized according to a method that combines different isotropic metals and plastic into an active composite structure that reacts to temperature variations. Through an evolutionary...

  18. Fullerenes and fulleranes in circumstellar envelopes

    International Nuclear Information System (INIS)

    Zhang, Yong; Kwok, Sun; Sadjadi, SeyedAbdolreza

    2016-01-01

    Three decades of search have recently led to convincing discoveries of cosmic fullerenes. The presence of C_6_0 and C"+ _6_0 in both circumstellar and interstellar environments suggests that these molecules and their derivatives can be efficiently formed in circumstellar envelopes and survive in harsh conditions. Detailed analysis of the infrared bands from fullerenes and their connections with the local properties can provide valuable information on the physical conditions and chemical processes that occurred in the late stages of stellar evolution. The identification of C"+ _6_0 as the carrier of four diffuse interstellar bands (DIBs) suggests that fullerene- related compounds are abundant in interstellar space and are essential for resolving the DIB mystery. Experiments have revealed a high hydrogenation rate when C_6_0 is exposed to atomic hydrogen, motivating the attempt to search for cosmic fulleranes. In this paper, we present a short review of current knowledge of cosmic fullerenes and fulleranes and briefly discuss the implications on circumstellar chemistry. (paper)

  19. Analysis of Building Envelope Construction in 2003 CBECS

    Energy Technology Data Exchange (ETDEWEB)

    Winiarski, David W.; Halverson, Mark A.; Jiang, Wei

    2007-06-01

    The purpose of this analysis is to determine "typical" building envelope characteristics for buildings built after 1980. We address three envelope components in this paper - roofs, walls, and window area. These typical building envelope characteristics were used in the development of DOE’s Reference Buildings .

  20. The South Carolina bridge-scour envelope curves

    Science.gov (United States)

    Benedict, Stephen T.; Feaster, Toby D.; Caldwell, Andral W.

    2016-09-30

    The U.S. Geological Survey, in cooperation with the South Carolina Department of Transportation, conducted a series of three field investigations to evaluate historical, riverine bridge scour in the Piedmont and Coastal Plain regions of South Carolina. These investigations included data collected at 231 riverine bridges, which lead to the development of bridge-scour envelope curves for clear-water and live-bed components of scour. The application and limitations of the South Carolina bridge-scour envelope curves were documented in four reports, each report addressing selected components of bridge scour. The current investigation (2016) synthesizes the findings of these previous reports into a guidance manual providing an integrated procedure for applying the envelope curves. Additionally, the investigation provides limited verification for selected bridge-scour envelope curves by comparing them to field data collected outside of South Carolina from previously published sources. Although the bridge-scour envelope curves have limitations, they are useful supplementary tools for assessing the potential for scour at riverine bridges in South Carolina.

  1. Comprehensive search for intra- and inter-specific sequence polymorphisms among coding envelope genes of retroviral origin found in the human genome: genes and pseudogenes

    Directory of Open Access Journals (Sweden)

    Vasilescu Alexandre

    2005-09-01

    Full Text Available Abstract Background The human genome carries a high load of proviral-like sequences, called Human Endogenous Retroviruses (HERVs, which are the genomic traces of ancient infections by active retroviruses. These elements are in most cases defective, but open reading frames can still be found for the retroviral envelope gene, with sixteen such genes identified so far. Several of them are conserved during primate evolution, having possibly been co-opted by their host for a physiological role. Results To characterize further their status, we presently sequenced 12 of these genes from a panel of 91 Caucasian individuals. Genomic analyses reveal strong sequence conservation (only two non synonymous Single Nucleotide Polymorphisms [SNPs] for the two HERV-W and HERV-FRD envelope genes, i.e. for the two genes specifically expressed in the placenta and possibly involved in syncytiotrophoblast formation. We further show – using an ex vivo fusion assay for each allelic form – that none of these SNPs impairs the fusogenic function. The other envelope proteins disclose variable polymorphisms, with the occurrence of a stop codon and/or frameshift for most – but not all – of them. Moreover, the sequence conservation analysis of the orthologous genes that can be found in primates shows that three env genes have been maintained in a fully coding state throughout evolution including envW and envFRD. Conclusion Altogether, the present study strongly suggests that some but not all envelope encoding sequences are bona fide genes. It also provides new tools to elucidate the possible role of endogenous envelope proteins as susceptibility factors in a number of pathologies where HERVs have been suspected to be involved.

  2. Flight envelope protection system for unmanned aerial vehicles

    KAUST Repository

    Claudel, Christian G.

    2016-04-28

    Systems and methods to protect the flight envelope in both manual flight and flight by a commercial autopilot are provided. A system can comprise: an inertial measurement unit (IMU); a computing device in data communication with the IMU; an application executable by the computing device comprising: logic that estimates an angle of attack; a slip angle; and a speed of an unmanned aerial vehicle (UAV) based at least in part on data received from the UAV. A method can comprise estimating, via a computing device, flight data of a UAV based at least in part on data received from an IMU; comparing the estimated flight data with measured flight data; and triggering an error indication in response to a determination that the measured flight data exceeds a predefined deviation of the estimated flight data. The estimated speed can comprise an estimated airspeed, vertical speed and/or ground velocity.

  3. Dust Coagulation in Infalling Protostellar Envelopes I. Compact Grains

    Science.gov (United States)

    Yorke, H.; Lin, D.; Suttner, G.

    1999-01-01

    Dust plays a key role in the optical, thermodynamic and gas dynamical behavior of collapsing molecular cores. Because of relative velocities of the individual dust grains, coagulation and shattering can modify the grain size distribution and -- due to corresponding changes in the medium's opacity significantly -- influence the evolution during early phases of star formation.

  4. CCS Observations of the Protostellar Envelope of B335

    Science.gov (United States)

    Velusamy, T.; Kuiper, T. B. H.; Langer, W. D.

    1995-01-01

    Knowledge of the density, velocity and chemical profiles around protostars is of fundamental importance for testing dynamical models of protostar evolution and understanding the nature of the material falling onto circumstellar disks. Presented are single dish and interferometric spectral line observations of CCS towards the core of B335, a classic example of a young, low mass stellar object.

  5. The dynamical evolution of the Orion Trapezium

    Science.gov (United States)

    Allen, C.; Costero, R.; Ruelas-Mayorga, A.; Sánchez, L.

    2018-01-01

    Using recent observational data on transverse and radial velocities of the bright Orion Trapezium stars we study the dynamical evolution of ensembles of systems mimicking the Trapezium. To this end we perform numerical N-body integrations using the observed planar positions and velocities, the radial velocities, and random z-positions for all components. We include perturbations in these quantities compatible with the observational errors. We discuss the dynamical outcome of the evolution of such systems and the properties of the resulting binaries.

  6. 200 Area Deactivation Project Facilities Authorization Envelope Document

    International Nuclear Information System (INIS)

    DODD, E.N.

    2000-01-01

    Project facilities as required by HNF-PRO-2701, Authorization Envelope and Authorization Agreement. The Authorization Agreements (AA's) do not identify the specific set of environmental safety and health requirements that are applicable to the facility. Therefore, the facility Authorization Envelopes are defined here to identify the applicable requirements. This document identifies the authorization envelopes for the 200 Area Deactivation

  7. Magnetic and Velocity Field Variations in the Active Regions NOAA ...

    Indian Academy of Sciences (India)

    Abstract. We study the magnetic and velocity field evolution in the two magnetically complex active regions NOAA 10486 and NOAA 10488 observed during October–November 2003. We have used the available data to examine net flux and Doppler velocity time profiles to identify changes associated with evolutionary and ...

  8. IRC +10 216 in 3D: morphology of a TP-AGB star envelope

    Science.gov (United States)

    Guélin, M.; Patel, N. A.; Bremer, M.; Cernicharo, J.; Castro-Carrizo, A.; Pety, J.; Fonfría, J. P.; Agúndez, M.; Santander-García, M.; Quintana-Lacaci, G.; Velilla Prieto, L.; Blundell, R.; Thaddeus, P.

    2018-02-01

    During their late pulsating phase, AGB stars expel most of their mass in the form of massive dusty envelopes, an event that largely controls the composition of interstellar matter. The envelopes, however, are distant and opaque to visible and NIR radiation: their structure remains poorly known and the mass-loss process poorly understood. Millimeter-wave interferometry, which combines the advantages of longer wavelength, high angular resolution and very high spectral resolution is the optimal investigative tool for this purpose. Mm waves pass through dust with almost no attenuation. Their spectrum is rich in molecular lines and hosts the fundamental lines of the ubiquitous CO molecule, allowing a tomographic reconstruction of the envelope structure. The circumstellar envelope IRC +10 216 and its central star, the C-rich TP-AGB star closest to the Sun, are the best objects for such an investigation. Two years ago, we reported the first detailed study of the CO(2-1) line emission in that envelope, made with the IRAM 30-m telescope. It revealed a series of dense gas shells, expanding at a uniform radial velocity. The limited resolution of the telescope (HPBW 11″) did not allow us to resolve the shell structure. We now report much higher angular resolution observations of CO(2-1), CO(1-0), CN(2-1) and C4H(24-23) made with the SMA, PdB and ALMA interferometers (with synthesized half-power beamwidths of 3″, 1″ and 0.3″, respectively). Although the envelope appears much more intricate at high resolution than with an 11″ beam, its prevailing structure remains a pattern of thin, nearly concentric shells. The average separation between the brightest CO shells is 16″ in the outer envelope, where it appears remarkably constant. Closer to the star (system with a period of 700 yr and a near face-on elliptical orbit. The companion fly-by triggers enhanced episodes of mass loss near periastron. The densification of the shell pattern observed in the central part of the

  9. Comparison of Fe and Ni opacity calculations for a better understanding of pulsating stellar envelopes

    International Nuclear Information System (INIS)

    Gilles, D.; Turck-Chieze, S.; Loisel, G.; Piau, L.; Ducret, J.E.; Poirier, M.; Blenski, T.; Thais, F.; Blancard, C.; Cosse, P.; Faussurier, G.; Gilleron, F.; Pain, J.C.; Porcherot, Q.; Guzik, J.A.; Kilcrease, D.P.; Magee, N.H.; Harris, J.; Busquet, M.; Delahaye, F.; Zeippen, C.J.; Bastiani-Ceccotti, S.

    2011-01-01

    Opacity is an important ingredient of the evolution of stars. The calculation of opacity coefficients is complicated by the fact that the plasma contains partially ionized heavy ions that contribute to opacity dominated by H and He. Up to now, the astrophysical community has greatly benefited from the work of the contributions of Los Alamos, Livermore and the Opacity Project (OP). However unexplained differences of up to 50% in the radiative forces and Rosseland mean values for Fe have been noticed for conditions corresponding to stellar envelopes. Such uncertainty has a real impact on the understanding of pulsating stellar envelopes, on the excitation of modes, and on the identification of the mode frequencies. Temperature and density conditions equivalent to those found in stars can now be produced in laboratory experiments for various atomic species. Recently the photo-absorption spectra of nickel and iron plasmas have been measured during the LULI 2010 campaign, for temperatures between 15 and 40 eV and densities of similar to 3 mg/cm 3 . A large theoretical collaboration, the 'OPAC', has been formed to prepare these experiments. We present here the set of opacity calculations performed by eight different groups for conditions relevant to the LULI 2010 experiment and to astrophysical stellar envelope conditions. (authors)

  10. ALMA Observations of the Water Fountain Pre-Planetary Nebula IRAS 16342-3814: High-Velocity Bipolar Jets and an Expanding Torus.

    Science.gov (United States)

    Sahai, R; Vlemmings, W H T; Gledhill, T; Sánchez Contreras, C; Lagadec, E; Nyman, L-Å; Quintana-Lacaci, G

    2017-01-20

    We have mapped 12 CO J=3-2 and other molecular lines from the "water-fountain" bipolar pre-planetary nebula (PPN) IRAS 16342-3814 with [Formula: see text] resolution using ALMA. We find (i) two very high-speed knotty, jet-like molecular outflows, (ii) a central high-density (> few × 10 6 cm -3 ), expanding torus of diameter 1300 AU, and (iii) the circumstellar envelope of the progenitor AGB, generated by a sudden, very large increase in the mass-loss rate to > 3.5 × 10 -4 M ⊙ yr -1 in the past ~455 yr. Strong continuum emission at 0.89 mm from a central source (690 mJy), if due to thermally-emitting dust, implies a substantial mass (0.017 M ⊙ ) of very large (~mm-sized) grains. The measured expansion ages of the above structural components imply that the torus (age~160 yr) and the younger high-velocity outflow (age~110 yr) were formed soon after the sharp increase in the AGB mass-loss rate. Assuming a binary model for the jets in IRAS 16342, the high momentum rate for the dominant jet-outflow in IRAS 16342 implies a high minimum accretion rate, ruling out standard Bondi-Hoyle-Lyttleton wind accretion and wind Roche lobe overflow (RLOF) models with white-dwarf or main-sequence companions. Most likely, enhanced RLOF from the primary or accretion modes operating within common envelope evolution are needed.

  11. Featured Image: Orbiting Stars Share an Envelope

    Science.gov (United States)

    Kohler, Susanna

    2016-03-01

    This beautiful series of snapshots from a simulation (click for a better look!) shows what happens when two stars in a binary system become enclosed in the same stellar envelope. In this binary system, one of the stars has exhausted its hydrogen fuel and become a red giant, complete with an expanding stellar envelope composed of hydrogen and helium. Eventually, the envelope expands so much that the companion star falls into it, where it releases gravitational potential energy into the common envelope. A team led by Sebastian Ohlmann (Heidelberg Institute for Theoretical Studies and University of Wrzburg) recently performed hydrodynamic simulations of this process. Ohlmann and collaborators discovered that the energy release eventually triggers large-scale flow instabilities, which leads to turbulence within the envelope. This process has important consequences for how these systems next evolve (for instance, determining whether or not a supernova occurs!). You can check out the authors video of their simulated stellar inspiral below, or see their paper for more images and results from their study.CitationSebastian T. Ohlmann et al 2016 ApJ 816 L9. doi:10.3847/2041-8205/816/1/L9

  12. Mechanism of protein import across the chloroplast envelope.

    Science.gov (United States)

    Chen, K; Chen, X; Schnell, D J

    2000-01-01

    The development and maintenance of chloroplasts relies on the contribution of protein subunits from both plastid and nuclear genomes. Most chloroplast proteins are encoded by nuclear genes and are post-translationally imported into the organelle across the double membrane of the chloroplast envelope. Protein import into the chloroplast consists of two essential elements: the specific recognition of the targeting signals (transit sequences) of cytoplasmic preproteins by receptors at the outer envelope membrane and the subsequent translocation of preproteins simultaneously across the double membrane of the envelope. These processes are mediated via the co-ordinate action of protein translocon complexes in the outer (Toc apparatus) and inner (Tic apparatus) envelope membranes.

  13. The performance of energy efficient residential building envelope systems

    Energy Technology Data Exchange (ETDEWEB)

    Proskiw, G.

    1996-08-01

    The adequacy and durability of residential building envelope systems under actual field conditions were evaluated. A building envelope offers protection from cold, heat, moisture, wind and noise. However, they are exposed to thermal, structural, and moisture stresses and their performance can degrade over time. Envelope performance was evaluated at 20 energy efficient and four conventional, detached modern homes in Winnipeg, Canada. The three complementary measurement tools were wood moisture content (WMC) of framing members, thermographic examinations, and airtightness tests. As expected, energy efficient building envelope systems performed better than the conventional systems. No evidence of envelope degradation was found in any of the energy efficient houses. The building envelopes using polyethylene air barriers performed slightly better than those which used the airtight drywall approach, although both were considered satisfactory. WMC levels were a bit lower in the polyethylene-clad house. 1 ref., 1 tab.

  14. Binary evolution and observational constraints

    International Nuclear Information System (INIS)

    Loore, C. de

    1984-01-01

    The evolution of close binaries is discussed in connection with problems concerning mass and angular momentum losses. Theoretical and observational evidence for outflow of matter, leaving the system during evolution is given: statistics on total masses and mass ratios, effects of the accretion of the mass gaining component, the presence of streams, disks, rings, circumstellar envelopes, period changes, abundance changes in the atmosphere. The effects of outflowing matter on the evolution is outlined, and estimates of the fraction of matter expelled by the loser, and leaving the system, are given. The various time scales involved with evolution and observation are compared. Examples of non conservative evolution are discussed. Problems related to contact phases, on mass and energy losses, in connection with entropy changes are briefly analysed. For advanced stages the disruption probabilities for supernova explosions are examined. A global picture is given for the evolution of massive close binaries, from ZAMS, through WR phases, X-ray phases, leading to runaway pulsars or to a binary pulsar and later to a millisecond pulsar. (Auth.)

  15. Dynamical Evolution of Ring-Satellite Systems

    Science.gov (United States)

    Ohtsuki, Keiji

    2005-01-01

    The goal of this research was to understand dynamical processes related to the evolution of size distribution of particles in planetary rings and application of theoretical results to explain features in the present rings of giant planets. We studied velocity evolution and accretion rates of ring particles in the Roche zone. We developed a new numerical code for the evolution of ring particle size distribution, which takes into account the above results for particle velocity evolution and accretion rates. We also studied radial diffusion rate of ring particles due to inelastic collisions and gravitational encounters. Many of these results can be also applied to dynamical evolution of a planetesimal disk. Finally, we studied rotation rates of moonlets and particles in planetary rings, which would influence the accretional evolution of these bodies. We describe our key accomplishments during the past three years in more detail in the following.

  16. Implementation of an Improved Safe Operating Envelope

    International Nuclear Information System (INIS)

    Prime, Robyn; McIntyre, Mark; Reeves, David

    2008-01-01

    This paper is a continuation of the paper presented at IYNC 2004 on 'The Definition of a Safe Operating Envelope'. The current paper concentrates on the implementation process of the Safe Operating Envelope employed at the Point Lepreau Generating Station. (authors)

  17. Envelope enhancement increases cortical sensitivity to interaural envelope delays with acoustic and electric hearing.

    Directory of Open Access Journals (Sweden)

    Douglas E H Hartley

    Full Text Available Evidence from human psychophysical and animal electrophysiological studies suggests that sensitivity to interaural time delay (ITD in the modulating envelope of a high-frequency carrier can be enhanced using half-wave rectified stimuli. Recent evidence has shown potential benefits of equivalent electrical stimuli to deaf individuals with bilateral cochlear implants (CIs. In the current study we assessed the effects of envelope shape on ITD sensitivity in the primary auditory cortex of normal-hearing ferrets, and profoundly-deaf animals with bilateral CIs. In normal-hearing animals, cortical sensitivity to ITDs (±1 ms in 0.1-ms steps was assessed in response to dichotically-presented i sinusoidal amplitude-modulated (SAM and ii half-wave rectified (HWR tones (100-ms duration; 70 dB SPL presented at the best-frequency of the unit over a range of modulation frequencies. In separate experiments, adult ferrets were deafened with neomycin administration and bilaterally-implanted with intra-cochlear electrode arrays. Electrically-evoked auditory brainstem responses (EABRs were recorded in response to bipolar electrical stimulation of the apical pair of electrodes with singe biphasic current pulses (40 µs per phase over a range of current levels to measure hearing thresholds. Subsequently, we recorded cortical sensitivity to ITDs (±800 µs in 80-µs steps within the envelope of SAM and HWR biphasic-pulse trains (40 µs per phase; 6000 pulses per second, 100-ms duration over a range of modulation frequencies. In normal-hearing animals, nearly a third of cortical neurons were sensitive to envelope-ITDs in response to SAM tones. In deaf animals with bilateral CI, the proportion of ITD-sensitive cortical neurons was approximately a fifth in response to SAM pulse trains. In normal-hearing and deaf animals with bilateral CI the proportion of ITD sensitive units and neural sensitivity to ITDs increased in response to HWR, compared with SAM stimuli

  18. INFALLING–ROTATING MOTION AND ASSOCIATED CHEMICAL CHANGE IN THE ENVELOPE OF IRAS 16293–2422 SOURCE A STUDIED WITH ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Oya, Yoko; López-Sepulcre, Ana; Watanabe, Yoshimasa; Yamamoto, Satoshi [Department of Physics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Sakai, Nami [The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-0198 (Japan); Ceccarelli, Cecilia; Lefloch, Bertrand; Favre, Cécile, E-mail: oya@taurus.phys.s.u-tokyo.ac.jp [Université Grenoble Alpes, IPAG, F-38000 Grenoble (France)

    2016-06-20

    We have analyzed rotational spectral line emission of OCS, CH{sub 3}OH, HCOOCH{sub 3}, and H{sub 2}CS observed toward the low-mass Class 0 protostellar source IRAS 16293–2422 Source A at a sub-arcsecond resolution (∼0.″6 × 0.″5) with ALMA. Significant chemical differentiation is found on a scale of 50 au. The OCS line is found to trace well the infalling–rotating envelope in this source. On the other hand, the distributions of CH{sub 3}OH and HCOOCH{sub 3} are found to be concentrated around the inner part of the infalling–rotating envelope. With a simple ballistic model of the infalling–rotating envelope, the radius of the centrifugal barrier (a half of the centrifugal radius) and the protostellar mass are evaluated from the OCS data to be from 40 to 60 au and from 0.5 to 1.0 M {sub ⊙}, respectively, assuming the inclination angle of the envelope/disk structure to be 60° (90° for the edge-on configuration). Although the protostellar mass is correlated with the inclination angle, the radius of the centrifugal barrier is not. This is the first indication of the centrifugal barrier of the infalling–rotating envelope in a hot corino source. CH{sub 3}OH and HCOOCH{sub 3} may be liberated from ice mantles by weak accretion shocks around the centrifugal barrier and/or by protostellar heating. The H{sub 2}CS emission seems to come from the disk component inside the centrifugal barrier in addition to the envelope component. The centrifugal barrier plays a central role not only in the formation of a rotationally supported disk but also in the chemical evolution from the envelope to the protoplanetary disk.

  19. Seismic Velocity Variation and Evolution of the Upper Oceanic Crust across the Mid-Atlantic Ridge at 1.3°S

    Science.gov (United States)

    Jian, H.; Singh, S. C.

    2017-12-01

    The oceanic crust that covers >70% of the solid earth is formed at mid-ocean ridges, but get modified as it ages. Understanding the evolution of oceanic crust requires investigations of crustal structures that extend from zero-age on the ridge axis to old crust. In this study, we analyze a part of a 2000-km-long seismic transect that crosses the Mid-Atlantic Ridge segment at 1.3°S, south of the Chain transform fault. The seismic data were acquired using a 12-km-long multi-sensor streamer and dense air-gun shots. Using a combination of downward continuation and seismic tomography methods, we have derived a high-resolution upper crustal velocity structure down to 2-2.5 km depth below the seafloor, from the ridge axis to 3.5 Ma on both sides of the ridge axis. The results demonstrate that velocities increase at all depths in the upper crust as the crust ages, suggesting that hydrothermal precipitations seal the upper crustal pore spaces. This effect is most significant in layer 2A, causing a velocity increase of 0.5-1 km/s after 1-1.5 Ma, beyond which the velocity increase is very small. Furthermore, the results exhibit a significant decrease in both the frequency and amplitude of the low-velocity anomalies associated with faults beyond 1-1.5 Ma, when faults become inactive, suggesting a linkage between the sealing of fault space and the extinction of hydrothermal activity. Besides, the off-axis velocities are systematically higher on the eastern side of the ridge axis compared to on the western side, suggesting that a higher hydrothermal activity should exist on the outside-corner ridge flank than on the inside-corner flank. While the tomography results shown here cover 0-3.5 Ma crust, the ongoing research will further extend the study area to older crust and also incorporating pre-stack migration and full waveform inversion methods to improve the seismic structure.

  20. Pushing the Envelope of Extreme Space Weather

    Science.gov (United States)

    Pesnell, W. D.

    2014-12-01

    Extreme Space Weather events are large solar flares or geomagnetic storms, which can cost billions of dollars to recover from. We have few examples of such events; the Carrington Event (the solar superstorm) is one of the few that had superlatives in three categories: size of solar flare, drop in Dst, and amplitude of aa. Kepler observations show that stars similar to the Sun can have flares releasing millions of times more energy than an X-class flare. These flares and the accompanying coronal mass ejections could strongly affect the atmosphere surrounding a planet. What level of solar activity would be necessary to strongly affect the atmosphere of the Earth? Can we map out the envelope of space weather along the evolution of the Sun? What would space weather look like if the Sun stopped producing a magnetic field? To what extreme should Space Weather go? These are the extremes of Space Weather explored in this talk.

  1. Safe operating envelope

    Energy Technology Data Exchange (ETDEWEB)

    Oliva, N [Ontario Hydro, Toronto, ON (Canada)

    1997-12-01

    Safe Operating Envelope is described representing: The outer bound of plant conditions within which day-to-day plant operation must be maintained in order to comply with regulatory requirements, associated safety design criteria and corporate nuclear safety goals. Figs.

  2. Safe operating envelope

    International Nuclear Information System (INIS)

    Oliva, N.

    1997-01-01

    Safe Operating Envelope is described representing: The outer bound of plant conditions within which day-to-day plant operation must be maintained in order to comply with regulatory requirements, associated safety design criteria and corporate nuclear safety goals. Figs

  3. Safeguards Envelope Progress FY08

    Energy Technology Data Exchange (ETDEWEB)

    Robert Bean; Richard Metcalf; Aaron Bevill

    2008-09-01

    The Safeguards Envelope Project met its milestones by creating a rudimentary safeguards envelope, proving the value of the approach on a small scale, and determining the most appropriate path forward. The Idaho Chemical Processing Plant’s large cache of reprocessing process monitoring data, dubbed UBER Data, was recovered and used in the analysis. A probabilistic Z test was used on a Markov Monte Carlo simulation of expected diversion data when compared with normal operating data. The data regarding a fully transient event in a tank was used to create a simple requirement, representative of a safeguards envelope, whose impact was a decrease in operating efficiency by 1.3% but an increase in material balance period of 26%. This approach is operator, state, and international safeguards friendly and should be applied to future reprocessing plants. Future requirements include tank-to-tank correlations in reprocessing facilities, detailed operations impact studies, simulation inclusion, automated optimization, advanced statistics analysis, and multi-attribute utility analysis.

  4. Safeguards Envelope Progress FY08

    International Nuclear Information System (INIS)

    Bean, Robert; Metcalf, Richard; Bevill, Aaron

    2008-01-01

    The Safeguards Envelope Project met its milestones by creating a rudimentary safeguards envelope, proving the value of the approach on a small scale, and determining the most appropriate path forward. The Idaho Chemical Processing Plant's large cache of reprocessing process monitoring data, dubbed UBER Data, was recovered and used in the analysis. A probabilistic Z test was used on a Markov Monte Carlo simulation of expected diversion data when compared with normal operating data. The data regarding a fully transient event in a tank was used to create a simple requirement, representative of a safeguards envelope, whose impact was a decrease in operating efficiency by 1.3% but an increase in material balance period of 26%. This approach is operator, state, and international safeguards friendly and should be applied to future reprocessing plants. Future requirements include tank-to-tank correlations in reprocessing facilities, detailed operations impact studies, simulation inclusion, automated optimization, advanced statistics analysis, and multi-attribute utility analysis

  5. Physical properties of the red giant envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Maciel, W J [Instituto de Astronomia e Geofisico da Universidade de Sao Paulo (Brazil)

    1978-12-01

    In this work, several model envelopes are calculated for cool giant stars with mass loss due to the action of stellar radiation pressure on molecules and grains. Molecular profiles as well as average values of some physical parameters of the envelopes are obtained.

  6. Implementation of an Improved Safe Operating Envelope

    Energy Technology Data Exchange (ETDEWEB)

    Prime, Robyn; McIntyre, Mark [NB Power Nuclear, P.O. Box 600, Lepreau, NB (Canada); Reeves, David [Atlantic Nuclear Services Ltd., PO Box 1268 Fredericton, NB (Canada)

    2008-07-01

    This paper is a continuation of the paper presented at IYNC 2004 on 'The Definition of a Safe Operating Envelope'. The current paper concentrates on the implementation process of the Safe Operating Envelope employed at the Point Lepreau Generating Station. (authors)

  7. THE EVOLUTION OF GAS CLOUDS FALLING IN THE MAGNETIZED GALACTIC HALO: HIGH-VELOCITY CLOUDS (HVCs) ORIGINATED IN THE GALACTIC FOUNTAIN

    International Nuclear Information System (INIS)

    Kwak, Kyujin; Shelton, Robin L.; Raley, Elizabeth A.

    2009-01-01

    In the Galactic fountain scenario, supernovae and/or stellar winds propel material into the Galactic halo. As the material cools, it condenses into clouds. By using FLASH three-dimensional magnetohydrodynamic simulations, we model and study the dynamical evolution of these gas clouds after they form and begin to fall toward the Galactic plane. In our simulations, we assume that the gas clouds form at a height of z = 5 kpc above the Galactic midplane, then begin to fall from rest. We investigate how the cloud's evolution, dynamics, and interaction with the interstellar medium (ISM) are affected by the initial mass of the cloud. We find that clouds with sufficiently large initial densities (n ≥ 0.1 H atoms cm -3 ) accelerate sufficiently and maintain sufficiently large column densities as to be observed and identified as high-velocity clouds (HVCs) even if the ISM is weakly magnetized (1.3 μG). However, the ISM can provide noticeable resistance to the motion of a low-density cloud (n ≤ 0.01 H atoms cm -3 ) thus making it more probable that a low-density cloud will attain the speed of an intermediate-velocity cloud rather than the speed of an HVC. We also investigate the effects of various possible magnetic field configurations. As expected, the ISM's resistance is greatest when the magnetic field is strong and perpendicular to the motion of the cloud. The trajectory of the cloud is guided by the magnetic field lines in cases where the magnetic field is oriented diagonal to the Galactic plane. The model cloud simulations show that the interactions between the cloud and the ISM can be understood via analogy to the shock tube problem which involves shock and rarefaction waves. We also discuss accelerated ambient gas, streamers of material ablated from the clouds, and the cloud's evolution from a sphere-shaped to a disk- or cigar-shaped object.

  8. Slope-velocity equilibrium and evolution of surface roughness on a stony hillslope

    Science.gov (United States)

    Nearing, Mark A.; Polyakov, Viktor O.; Nichols, Mary H.; Hernandez, Mariano; Li, Li; Zhao, Ying; Armendariz, Gerardo

    2017-06-01

    Slope-velocity equilibrium is hypothesized as a state that evolves naturally over time due to the interaction between overland flow and surface morphology, wherein steeper areas develop a relative increase in physical and hydraulic roughness such that flow velocity is a unique function of overland flow rate independent of slope gradient. This study tests this hypothesis under controlled conditions. Artificial rainfall was applied to 2 m by 6 m plots at 5, 12, and 20 % slope gradients. A series of simulations were made with two replications for each treatment with measurements of runoff rate, velocity, rock cover, and surface roughness. Velocities measured at the end of each experiment were a unique function of discharge rates, independent of slope gradient or rainfall intensity. Physical surface roughness was greater at steeper slopes. The data clearly showed that there was no unique hydraulic coefficient for a given slope, surface condition, or rainfall rate, with hydraulic roughness greater at steeper slopes and lower intensities. This study supports the hypothesis of slope-velocity equilibrium, implying that use of hydraulic equations, such as Chezy and Manning, in hillslope-scale runoff models is problematic because the coefficients vary with both slope and rainfall intensity.

  9. Physical properties of the red giant envelopes

    International Nuclear Information System (INIS)

    Maciel, W.J.

    1978-01-01

    In this work, several model envelopes are calculated for cool giant stars with mass loss due to the action of stellar radiation pressure on molecules and grains. Molecular profiles as well as average values of some physical parameters of the envelopes are obtained [pt

  10. Inhibition of enveloped viruses infectivity by curcumin.

    Directory of Open Access Journals (Sweden)

    Tzu-Yen Chen

    Full Text Available Curcumin, a natural compound and ingredient in curry, has antiinflammatory, antioxidant, and anticarcinogenic properties. Previously, we reported that curcumin abrogated influenza virus infectivity by inhibiting hemagglutination (HA activity. This study demonstrates a novel mechanism by which curcumin inhibits the infectivity of enveloped viruses. In all analyzed enveloped viruses, including the influenza virus, curcumin inhibited plaque formation. In contrast, the nonenveloped enterovirus 71 remained unaffected by curcumin treatment. We evaluated the effects of curcumin on the membrane structure using fluorescent dye (sulforhodamine B; SRB-containing liposomes that mimic the viral envelope. Curcumin treatment induced the leakage of SRB from these liposomes and the addition of the influenza virus reduced the leakage, indicating that curcumin disrupts the integrity of the membranes of viral envelopes and of liposomes. When testing liposomes of various diameters, we detected higher levels of SRB leakage from the smaller-sized liposomes than from the larger liposomes. Interestingly, the curcumin concentration required to reduce plaque formation was lower for the influenza virus (approximately 100 nm in diameter than for the pseudorabies virus (approximately 180 nm and the vaccinia virus (roughly 335 × 200 × 200 nm. These data provide insights on the molecular antiviral mechanisms of curcumin and its potential use as an antiviral agent for enveloped viruses.

  11. Inhibition of Enveloped Viruses Infectivity by Curcumin

    Science.gov (United States)

    Wen, Hsiao-Wei; Ou, Jun-Lin; Chiou, Shyan-Song; Chen, Jo-Mei; Wong, Min-Liang; Hsu, Wei-Li

    2013-01-01

    Curcumin, a natural compound and ingredient in curry, has antiinflammatory, antioxidant, and anticarcinogenic properties. Previously, we reported that curcumin abrogated influenza virus infectivity by inhibiting hemagglutination (HA) activity. This study demonstrates a novel mechanism by which curcumin inhibits the infectivity of enveloped viruses. In all analyzed enveloped viruses, including the influenza virus, curcumin inhibited plaque formation. In contrast, the nonenveloped enterovirus 71 remained unaffected by curcumin treatment. We evaluated the effects of curcumin on the membrane structure using fluorescent dye (sulforhodamine B; SRB)-containing liposomes that mimic the viral envelope. Curcumin treatment induced the leakage of SRB from these liposomes and the addition of the influenza virus reduced the leakage, indicating that curcumin disrupts the integrity of the membranes of viral envelopes and of liposomes. When testing liposomes of various diameters, we detected higher levels of SRB leakage from the smaller-sized liposomes than from the larger liposomes. Interestingly, the curcumin concentration required to reduce plaque formation was lower for the influenza virus (approximately 100 nm in diameter) than for the pseudorabies virus (approximately 180 nm) and the vaccinia virus (roughly 335 × 200 × 200 nm). These data provide insights on the molecular antiviral mechanisms of curcumin and its potential use as an antiviral agent for enveloped viruses. PMID:23658730

  12. The role of topography and lateral velocity heterogeneities on near-source scattering and ground-motion variability

    KAUST Repository

    Imperatori, W.

    2015-07-28

    The scattering of seismic waves travelling in the Earth is not only caused by random velocity heterogeneity but also by surface topography. Both factors are known to strongly affect ground-motion complexity even at relatively short distance from the source. In this study, we simulate ground motion with a 3-D finite-difference wave propagation solver in the 0–5 Hz frequency band using three topography models representative of the Swiss alpine region and realistic heterogeneous media characterized by the Von Karman correlation functions. Subsequently, we analyse and quantify the characteristics of the scattered wavefield in the near-source region. Our study shows that both topography and velocity heterogeneity scattering may excite large coda waves of comparable relative amplitude, especially at around 1 Hz, although large variability in space may occur. Using the single scattering model, we estimate average QC values in the range 20–30 at 1 Hz, 36–54 at 1.5 Hz and 62–109 at 3 Hz for constant background velocity models with no intrinsic attenuation. In principle, envelopes of topography-scattered seismic waves can be qualitatively predicted by theoretical back-scattering models, while forward- or hybrid-scattering models better reproduce the effects of random velocity heterogeneity on the wavefield. This is because continuous multiple scattering caused by small-scale velocity perturbations leads to more gentle coda decay and envelope broadening, while topography abruptly scatters the wavefield once it impinges the free surface. The large impedance contrast also results in more efficient mode mixing. However, the introduction of realistic low-velocity layers near the free surface increases the complexity of ground motion dramatically and indicates that the role of topography in elastic waves scattering can be relevant especially in proximity of the source. Long-period surface waves can form most of the late coda, especially when intrinsic attenuation is taken

  13. Moisture accumulation in a building envelope

    Energy Technology Data Exchange (ETDEWEB)

    Forest, T.W.; Checkwitch, K.

    1988-09-01

    In a large number of cases, the failure of a building envelope can be traced to the accumulation of moisture. In a cold winter climate, characteristic of the Canadian prairies, moisture is deposited in the structure by the movement of warm, moist air through the envelope. Tests on the moisture accumulation in a building envelope were initiated in a test house at an Alberta research facility during the 1987/88 heating season. The indoor moisture generation rate was measured and compared with the value inferred from the measured air infiltration rate. With the flue open, the moisture generation rate was approximately 5.5 kg/d of which 0.7 kg/d entered the building envelope; the remainder was exhausted through the flue. With the flue blocked, the moisture generation rate decreased to 3.4 kg/d, while the amount of moisture migrating through the envelope increased to 4.0 kg/d. The moisture accumulation in wall panels located on the north and south face of the test house was also monitored. Moisture was allowed to enter the wall cavity via a hole in the drywall. The fiberglass insulation remained dry throughout the test period. The moisture content of the exterior sheathing of the north panel increased to a maximum of 18% wt in the vicinity of the hole, but quickly dried when the ambient temperatures increased towards the end of the season. The south panel showed very little moisture accumlation due to the effects of solar radiation. 14 refs., 9 figs.

  14. The Rapid Evolution of the Exciting Star of the Stingray Nebula

    Science.gov (United States)

    Reindl, N.; Rauch, T.; Parthasarathy, M.; Werner, K.; Kruk, J.W.; Hamann, W. R.; Sander, A.; Todt, H.

    2014-01-01

    Context: SAO244567, the exciting star of the Stingray nebula, is rapidly evolving. Previous analyses suggested that it has heated up from an effective temperature of about 21 kK in 1971 to over 50 kK in the 1990s. Canonical post-asymptotic giant branch evolution suggests a relatively high mass while previous analyses indicate a low-mass star. Aims: A comprehensive model-atmosphere analysis of UV and optical spectra taken during 1988-2006 should reveal the detailed temporal evolution of its atmospheric parameters and provide explanations for the unusually fast evolution. Methods: Fitting line profiles from static and expanding non-LTE model atmospheres to the observed spectra allowed us to study the temporal change of effective temperature, surface gravity, mass-loss rate, and terminal wind velocity. In addition, we determined the chemical composition of the atmosphere. Results: We find that the central star has steadily increased its effective temperature from 38 kK in 1988 to a peak value of 60 kK in 2002. During the same time, the star was contracting, as concluded from an increase in surface gravity from log g = 4.8 to 6.0 and a drop in luminosity. Simultaneously, the mass-loss rate declined from log(M/M (solar mass) yr (exp -1)) = -9.0 to -11.6 and the terminal wind velocity increased from v (infinity) = 1800 km s (exp -1) to 2800 km s (exp -1). Since around 2002, the star stopped heating and has cooled down again to 55 kK by 2006. It has a largely solar surface composition with the exception of slightly subsolar carbon, phosphorus, and sulfur. The results are discussed by considering different evolutionary scenarios. Conclusions: The position of SAO244567 in the log T (sub eff) -log g plane places the star in the region of sdO stars. By comparison with stellar-evolution calculations, we confirm that SAO244567 must be a low-mass star (M nebula with a kinematical age of only about 1000 years. We speculate that the star could be a late He-shell flash object

  15. A Spectral Algorithm for Envelope Reduction of Sparse Matrices

    Science.gov (United States)

    Barnard, Stephen T.; Pothen, Alex; Simon, Horst D.

    1993-01-01

    The problem of reordering a sparse symmetric matrix to reduce its envelope size is considered. A new spectral algorithm for computing an envelope-reducing reordering is obtained by associating a Laplacian matrix with the given matrix and then sorting the components of a specified eigenvector of the Laplacian. This Laplacian eigenvector solves a continuous relaxation of a discrete problem related to envelope minimization called the minimum 2-sum problem. The permutation vector computed by the spectral algorithm is a closest permutation vector to the specified Laplacian eigenvector. Numerical results show that the new reordering algorithm usually computes smaller envelope sizes than those obtained from the current standard algorithms such as Gibbs-Poole-Stockmeyer (GPS) or SPARSPAK reverse Cuthill-McKee (RCM), in some cases reducing the envelope by more than a factor of two.

  16. Moisture Dynamics in Building Envelopes

    DEFF Research Database (Denmark)

    Peuhkuri, Ruut Hannele

    2003-01-01

    The overall scope of this Thesis "Moisture dynamics in building envelopes" has been to characterise how the various porous insulation materials investigated performed hygrothermally under conditions similar to those in a typical building envelope. As a result of the changing temperature...... part of the Thesis consists of a theory and literature review on the moisture storage and transport processes (Chapter 2), on the non-Fickian moisture transport (Chapter 3)and on the methods for determining the moisture properties (Chapter 4). In the second part, the conducted experimental work...

  17. Moisture dynamics in building envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Peuhkuri, R.

    2003-07-01

    The overall scope of this Thesis 'Moisture dynamics in building envelopes' has been to characterise how the various porous insulation materials investigated performed hygro thermally under conditions similar to those in a typical building envelope. As a result of the changing temperature and moisture conditions in the exterior weather and indoor climate the materials dynamically absorb and release moisture. The complexity of the impact of these conditions on the resulting moisture transport and content of the materials has been studied in this Thesis with controlled laboratory tests. (au)

  18. THE APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT: FIRST DETECTION OF HIGH-VELOCITY MILKY WAY BAR STARS

    Energy Technology Data Exchange (ETDEWEB)

    Nidever, David L.; Zasowski, Gail; Majewski, Steven R.; Beaton, Rachael L.; Wilson, John C.; Skrutskie, Michael F.; O' Connell, Robert W. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Bird, Jonathan; Schoenrich, Ralph; Johnson, Jennifer A.; Sellgren, Kris [Department of Astronomy and the Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210 (United States); Robin, Annie C.; Schultheis, Mathias [Institut Utinam, CNRS UMR 6213, OSU THETA, Universite de Franche-Comte, 41bis avenue de l' Observatoire, F-25000 Besancon (France); Martinez-Valpuesta, Inma; Gerhard, Ortwin [Max-Planck-Institut fuer Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Shetrone, Matthew [McDonald Observatory, University of Texas at Austin, Fort Davis, TX 79734 (United States); Schiavon, Ricardo P. [Gemini Observatory, 670 North A' Ohoku Place, Hilo, HI 96720 (United States); Weiner, Benjamin [Steward Observatory, 933 North Cherry Street, University of Arizona, Tucson, AZ 85721 (United States); Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Allende Prieto, Carlos, E-mail: dln5q@virginia.edu [Instituto de Astrofisica de Canarias, E-38205 La Laguna, Tenerife (Spain); and others

    2012-08-20

    Commissioning observations with the Apache Point Observatory Galactic Evolution Experiment (APOGEE), part of the Sloan Digital Sky Survey III, have produced radial velocities (RVs) for {approx}4700 K/M-giant stars in the Milky Way (MW) bulge. These high-resolution (R {approx} 22, 500), high-S/N (>100 per resolution element), near-infrared (NIR; 1.51-1.70 {mu}m) spectra provide accurate RVs ({epsilon}{sub V} {approx} 0.2 km s{sup -1}) for the sample of stars in 18 Galactic bulge fields spanning -1 Degree-Sign -32 Degree-Sign . This represents the largest NIR high-resolution spectroscopic sample of giant stars ever assembled in this region of the Galaxy. A cold ({sigma}{sub V} {approx} 30 km s{sup -1}), high-velocity peak (V{sub GSR} Almost-Equal-To +200 km s{sup -1}) is found to comprise a significant fraction ({approx}10%) of stars in many of these fields. These high RVs have not been detected in previous MW surveys and are not expected for a simple, circularly rotating disk. Preliminary distance estimates rule out an origin from the background Sagittarius tidal stream or a new stream in the MW disk. Comparison to various Galactic models suggests that these high RVs are best explained by stars in orbits of the Galactic bar potential, although some observational features remain unexplained.

  19. THE PROPERTIES OF HEAVY ELEMENTS IN GIANT PLANET ENVELOPES

    Energy Technology Data Exchange (ETDEWEB)

    Soubiran, François; Militzer, Burkhard [Department of Earth and Planetary Science, University of California, Berkeley, CA 94720 (United States)

    2016-09-20

    The core-accretion model for giant planet formation suggests a two-layer picture for the initial structure of Jovian planets, with heavy elements in a dense core and a thick H–He envelope. Late planetesimal accretion and core erosion could potentially enrich the H–He envelope in heavy elements, which is supported by the threefold solar metallicity that was measured in Jupiter’s atmosphere by the Galileo entry probe. In order to reproduce the observed gravitational moments of Jupiter and Saturn, models for their interiors include heavy elements, Z , in various proportions. However, their effect on the equation of state of the hydrogen–helium mixtures has not been investigated beyond the ideal mixing approximation. In this article, we report results from ab initio simulations of fully interacting H–He– Z mixtures in order to characterize their equation of state and to analyze possible consequences for the interior structure and evolution of giant planets. Considering C, N, O, Si, Fe, MgO, and SiO{sub 2}, we show that the behavior of heavy elements in H–He mixtures may still be represented by an ideal mixture if the effective volumes and internal energies are chosen appropriately. In the case of oxygen, we also compute the effect on the entropy. We find the resulting changes in the temperature–pressure profile to be small. A homogeneous distribution of 2% oxygen by mass changes the temperature in Jupiter’s interior by only 80 K.

  20. Slope-Velocity-Equilibrium and evolution of surface roughness on a stony hillslope

    Science.gov (United States)

    Slope-velocity equilibrium is hypothesized as a state that evolves naturally over time due to the interaction between overland flow and bed morphology, wherein steeper areas develop a relative increase in physical and hydraulic roughness such that flow velocity is a unique function of overland flow ...

  1. On the Origin of Sub-subgiant Stars. II. Binary Mass Transfer, Envelope Stripping, and Magnetic Activity

    Energy Technology Data Exchange (ETDEWEB)

    Leiner, Emily; Mathieu, Robert D. [Department of Astronomy, University of Wisconsin-Madison, 475 North Charter Street, Madison, WI 53706 (United States); Geller, Aaron M., E-mail: leiner@astro.wisc.edu [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States)

    2017-05-10

    Sub-subgiant stars (SSGs) lie to the red of the main sequence and fainter than the red giant branch in cluster color–magnitude diagrams (CMDs), a region not easily populated by standard stellar evolution pathways. While there has been speculation on what mechanisms may create these unusual stars, no well-developed theory exists to explain their origins. Here we discuss three hypotheses of SSG formation: (1) mass transfer in a binary system, (2) stripping of a subgiant’s envelope, perhaps during a dynamical encounter, and (3) reduced luminosity due to magnetic fields that lower convective efficiency and produce large starspots. Using the stellar evolution code MESA, we develop evolutionary tracks for each of these hypotheses, and compare the expected stellar and orbital properties of these models with six known SSGs in the two open clusters M67 and NGC 6791. All three of these mechanisms can create stars or binary systems in the SSG CMD domain. We also calculate the frequency with which each of these mechanisms may create SSG systems, and find that the magnetic field hypothesis is expected to create SSGs with the highest frequency in open clusters. Mass transfer and envelope stripping have lower expected formation frequencies, but may nevertheless create occasional SSGs in open clusters. They may also be important mechanisms to create SSGs in higher mass globular clusters.

  2. Different velocities in wave trains: early definitions and interpretations

    International Nuclear Information System (INIS)

    Lombardi, Anna M

    2002-01-01

    Recent experiments force us to re-examine the physical significance of the different velocities which one can introduce to describe the propagation of a wave train. In this paper we collect together the early definitions of these velocities, and their physical interpretations, dating back to the end of the 19th and to the first decades of the 20th century. Our purpose is to examine the scientific contexts in which some relevant definitions of velocities emerged, with particular attention paid to the early definitions of the group velocity. We recall some debates in which the group velocity had a dominant role, in order to follow the evolution of the physical meanings that have been ascribed to it. Finally, we focus our attention on the connection between the introduction of the group velocity and the problem of white light

  3. MHTGR thermal performance envelopes: Reliability by design

    International Nuclear Information System (INIS)

    Etzel, K.T.; Howard, W.W.; Zgliczynski, J.B.

    1992-05-01

    This document discusses thermal performance envelopes which are used to specify steady-state design requirements for the systems of the Modular High Temperature Gas-Cooled Reactor to maximize plant performance reliability with optimized design. The thermal performance envelopes are constructed around the expected operating point accounting for uncertainties in actual plant as-built parameters and plant operation. The components are then designed to perform successfully at all points within the envelope. As a result, plant reliability is maximized by accounting for component thermal performance variation in the design. The design is optimized by providing a means to determine required margins in a disciplined and visible fashion

  4. A stochastic differential equation framework for the timewise dynamics of turbulent velocities

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Schmiegel, Jürgen

    2008-01-01

    We discuss a stochastic differential equation as a modeling framework for the timewise dynamics of turbulent velocities. The equation is capable of capturing basic stylized facts of the statistics of temporal velocity increments. In particular, we focus on the evolution of the probability density...

  5. Acoustic and streaming velocity components in a resonant waveguide at high acoustic levels.

    Science.gov (United States)

    Daru, Virginie; Reyt, Ida; Bailliet, Hélène; Weisman, Catherine; Baltean-Carlès, Diana

    2017-01-01

    Rayleigh streaming is a steady flow generated by the interaction between an acoustic wave and a solid wall, generally assumed to be second order in a Mach number expansion. Acoustic streaming is well known in the case of a stationary plane wave at low amplitude: it has a half-wavelength spatial periodicity and the maximum axial streaming velocity is a quadratic function of the acoustic velocity amplitude at antinode. For higher acoustic levels, additional streaming cells have been observed. Results of laser Doppler velocimetry measurements are here compared to direct numerical simulations. The evolution of axial and radial velocity components for both acoustic and streaming velocities is studied from low to high acoustic amplitudes. Two streaming flow regimes are pointed out, the axial streaming dependency on acoustics going from quadratic to linear. The evolution of streaming flow is different for outer cells and for inner cells. Also, the hypothesis of radial streaming velocity being of second order in a Mach number expansion, is not valid at high amplitudes. The change of regime occurs when the radial streaming velocity amplitude becomes larger than the radial acoustic velocity amplitude, high levels being therefore characterized by nonlinear interaction of the different velocity components.

  6. POET: A Model for Planetary Orbital Evolution Due to Tides on Evolving Stars

    Science.gov (United States)

    Penev, Kaloyan; Zhang, Michael; Jackson, Brian

    2014-06-01

    We make publicly available an efficient, versatile, easy to use and extend tool for calculating the evolution of circular aligned planetary orbits due to the tidal dissipation in the host star. This is the first model to fully account for the evolution of the angular momentum of the stellar convective envelope by the tidal coupling, the transfer of angular momentum between the stellar convective and radiative zones, the effects of the stellar evolution on the tidal dissipation efficiency and stellar core and envelope spins, the loss of stellar convective zone angular momentum to a magnetically launched wind and frequency dependent tidal dissipation. This is only a first release and further development is under way to allow calculating the evolution of inclined and eccentric orbits, with the latter including the tidal dissipation in the planet and its feedback on planetary structure. Considerable effort has been devoted to providing extensive documentation detailing both the usage and the complete implementation details, in order to make it as easy as possible for independent groups to use and/or extend the code for their purposes. POET represents a significant improvement over some previous models for planetary tidal evolution and so has many astrophysical applications. In this article, we describe and illustrate several key examples.

  7. Spectral Envelopes and Additive + Residual Analysis/Synthesis

    Science.gov (United States)

    Rodet, Xavier; Schwarz, Diemo

    The subject of this chapter is the estimation, representation, modification, and use of spectral envelopes in the context of sinusoidal-additive-plus-residual analysis/synthesis. A spectral envelope is an amplitude-vs-frequency function, which may be obtained from the envelope of a short-time spectrum (Rodet et al., 1987; Schwarz, 1998). [Precise definitions of such an envelope and short-time spectrum (STS) are given in Section 2.] The additive-plus-residual analysis/synthesis method is based on a representation of signals in terms of a sum of time-varying sinusoids and of a non-sinusoidal residual signal [e.g., see Serra (1989), Laroche et al. (1993), McAulay and Quatieri (1995), and Ding and Qian (1997)]. Many musical sound signals may be described as a combination of a nearly periodic waveform and colored noise. The nearly periodic part of the signal can be viewed as a sum of sinusoidal components, called partials, with time-varying frequency and amplitude. Such sinusoidal components are easily observed on a spectral analysis display (Fig. 5.1) as obtained, for instance, from a discrete Fourier transform.

  8. Evolution of the giant planets

    International Nuclear Information System (INIS)

    Bodenheimer, P.

    1985-01-01

    The theory of the evolution of the giant planets is discussed with emphasis on detailed numerical calculations in the spherical approximation. Initial conditions are taken to be those provided by the two main hypotheses for the origin of the giant planets. If the planets formed by gravitational instability in the solar nebula, the initial mass is comparable to the present mass or larger. The evolution then goes through the following phases: (1) an initial contraction phase in hydrostatic equilibrium; (2) a hydrodynamic collapse induced by molecular dissociation; and (3) a second equilibrium phase involving contraction and cooling to the present state. During phase (1) a rock-ice core must form by precipitation or accretion. If, on the other hand, the giant planets formed by first accreting a solid core and then capturing gas from the surrounding nebula, then the evolutionary phases are as follows: (1) a period during which planetesimals accrete to form a core of about one earth mass, composed of rock and ice; (2) a gas accretion phase, during which a relatively low-mass gaseous envelope in hydrostatic equilibrium exists around the core, which itself continues to grow to 10 to 20 Earth masses; (3) the point of arrival at the ''critical'' core mass at which point the accretion of gas is much faster than the accretion of the core, and the envelope contracts rapidly; (4) continuation of accretion of gas from the nebula and buildup of the envelope mass to its present value (for the case of Jupiter or Saturn); and (5) a final phase, after termination of accretion, during which the protoplanet contracts and cools to its present state. Some observational constraints are described, and some problems with the two principal hypotheses are discussed

  9. Effect of group velocity mismatch on acousto-optic interaction of ultrashort laser pulses

    International Nuclear Information System (INIS)

    Yushkov, K B; Molchanov, V Ya

    2011-01-01

    Equations describing acousto-optic diffraction of ultrashort laser pulses in an anisotropic medium are derived, taking into account the group velocity mismatch of optical eigenmodes. It is shown that the solution of the modified coupled-mode equations taking into account the group delay is characterised by an increase in the pulse duration, a decrease in diffraction efficiency, a change in the shape of the wave packet envelope, as well as by an increase in the width of the transmission function.

  10. Preserving Envelope Efficiency in Performance Based Code Compliance

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Brian A. [Thornton Energy Consulting (United States); Sullivan, Greg P. [Efficiency Solutions (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baechler, Michael C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-06-20

    The City of Seattle 2012 Energy Code (Seattle 2014), one of the most progressive in the country, is under revision for its 2015 edition. Additionally, city personnel participate in the development of the next generation of the Washington State Energy Code and the International Energy Code. Seattle has pledged carbon neutrality by 2050 including buildings, transportation and other sectors. The United States Department of Energy (DOE), through Pacific Northwest National Laboratory (PNNL) provided technical assistance to Seattle in order to understand the implications of one potential direction for its code development, limiting trade-offs of long-lived building envelope components less stringent than the prescriptive code envelope requirements by using better-than-code but shorter-lived lighting and heating, ventilation, and air-conditioning (HVAC) components through the total building performance modeled energy compliance path. Weaker building envelopes can permanently limit building energy performance even as lighting and HVAC components are upgraded over time, because retrofitting the envelope is less likely and more expensive. Weaker building envelopes may also increase the required size, cost and complexity of HVAC systems and may adversely affect occupant comfort. This report presents the results of this technical assistance. The use of modeled energy code compliance to trade-off envelope components with shorter-lived building components is not unique to Seattle and the lessons and possible solutions described in this report have implications for other jurisdictions and energy codes.

  11. Evolution of the 1963 Vajont landslide (Northern Italy) from low and high velocity friction experiments

    Science.gov (United States)

    Ferri, F.; di Toro, G.; Hirose, T.; Han, R.; Noda, H.; Shimamoto, T.; Pennacchioni, G.

    2009-04-01

    The final slip at about 30 m/s of the Vajont landslide (Northern Italy) on 9th October 1963 was preceded by a long creeping phase which was monitored over about three years. Creep was localized in cm-thick clay-rich (50% Ca-montmorillonite + smectite + illite + vermiculite, 40% calcite and 10% quartz) gouge layers. The velocity results in thermoviscoplastic model of the landslide (Veveakis et al., 2007) suggested that during creep, compaction and frictional heating released water from the clay-rich layer and, by increasing the pore-pressure in the slipping zone, determined the final collapse of the landslide. Here we investigated the frictional evolution of the clay-rich layers and the transition towards the final collapse. Experiments were carried out on the clayey gouge from the slipping zone at atmospheric humidity conditions ("dry") and in the presence of excess water ("saturated"). High velocity friction experiments were performed in a rotary shear apparatus at 1 MPa normal stress (about the normal stress at the sliding surface of the Vajont landslide), velocity v from 0.006 m/s to 1.31 m/s and displacements up to 34 m. The 1 mm-thick clayey gouges were sandwiched between marble cylindrical specimens (24.95 mm in diameter) and confined by Teflon rings to avoid gouge expulsion during the experiments. The fluid release during the experiments was monitored with a humidity sensor. Low velocity friction experiments were performed in a biaxial apparatus at 5 MPa normal stress, v from 1.0 10E-7 m/s to 1.0 10E-4 m/s (within the range at which the slide became critical, 2.0 10E-7 m/s, Veveakis et al., 2007) and displacements up to 0.02 m. In dry experiments, friction is 0.43-0.47 at v Vajont clays), and decreases to 0.03-0.05 at v > 0.006 m/s. At dry conditions, dilatancy was observed for v > 0.7 m/s suggesting fault pressurization by water release due to smectite-to-illite decomposition. Decomposition occurred at temperatures above 300°C, as confirmed by the

  12. DATA ENVELOPMENT ANALYSIS OF BANKING SECTOR IN BANGLADESH

    Directory of Open Access Journals (Sweden)

    Md. Rashedul Hoque

    2012-05-01

    Full Text Available Banking sector of Bangladesh is flourishing and contributing to its economy. In this aspect measuring efficiency is important. Data Envelopment Analysis technique is used for this purpose. The data are collected from the annual reports of twenty four different banks in Bangladesh. Data Envelopment Analysis is mainly of two types - constant returns to scale and variable returns to scale. Since this study attempts to maximize output, so the output oriented Data Envelopment Analysis is used. The most efficient bank is one that obtains the highest efficiency score.

  13. Shape Transformation of the Nuclear Envelope during Closed Mitosis.

    Science.gov (United States)

    Zhu, Qian; Zheng, Fan; Liu, Allen P; Qian, Jin; Fu, Chuanhai; Lin, Yuan

    2016-11-15

    The nuclear envelope (NE) in lower eukaryotes such as Schizosaccharomyces pombe undergoes large morphology changes during closed mitosis. However, which physical parameters are important in governing the shape evolution of the NE, and how defects in the dividing chromosomes/microtubules are reflected in those parameters, are fundamental questions that remain unresolved. In this study, we show that improper separation of chromosomes in genetically deficient cells leads to membrane tethering or asymmetric division in contrast to the formation of two equal-sized daughter nuclei in wild-type cells. We hypothesize that the poleward force is transmitted to the nuclear membrane through its physical contact with the separated sister chromatids at the two spindle poles. A theoretical model is developed to predict the morphology evolution of the NE where key factors such as the work done by the poleward force and bending and surface energies stored in the membrane have been taken into account. Interestingly, the predicted phase diagram, summarizing the dependence of nuclear shape on the size of the load transmission regions, and the pole-to-pole distance versus surface area relationship all quantitatively agree well with our experimental observations, suggesting that this model captures the essential physics involved in closed mitosis. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Validating predictions from climate envelope models

    Science.gov (United States)

    Watling, J.; Bucklin, D.; Speroterra, C.; Brandt, L.; Cabal, C.; Romañach, Stephanie S.; Mazzotti, Frank J.

    2013-01-01

    Climate envelope models are a potentially important conservation tool, but their ability to accurately forecast species’ distributional shifts using independent survey data has not been fully evaluated. We created climate envelope models for 12 species of North American breeding birds previously shown to have experienced poleward range shifts. For each species, we evaluated three different approaches to climate envelope modeling that differed in the way they treated climate-induced range expansion and contraction, using random forests and maximum entropy modeling algorithms. All models were calibrated using occurrence data from 1967–1971 (t1) and evaluated using occurrence data from 1998–2002 (t2). Model sensitivity (the ability to correctly classify species presences) was greater using the maximum entropy algorithm than the random forest algorithm. Although sensitivity did not differ significantly among approaches, for many species, sensitivity was maximized using a hybrid approach that assumed range expansion, but not contraction, in t2. Species for which the hybrid approach resulted in the greatest improvement in sensitivity have been reported from more land cover types than species for which there was little difference in sensitivity between hybrid and dynamic approaches, suggesting that habitat generalists may be buffered somewhat against climate-induced range contractions. Specificity (the ability to correctly classify species absences) was maximized using the random forest algorithm and was lowest using the hybrid approach. Overall, our results suggest cautious optimism for the use of climate envelope models to forecast range shifts, but also underscore the importance of considering non-climate drivers of species range limits. The use of alternative climate envelope models that make different assumptions about range expansion and contraction is a new and potentially useful way to help inform our understanding of climate change effects on species.

  15. Validating predictions from climate envelope models.

    Directory of Open Access Journals (Sweden)

    James I Watling

    Full Text Available Climate envelope models are a potentially important conservation tool, but their ability to accurately forecast species' distributional shifts using independent survey data has not been fully evaluated. We created climate envelope models for 12 species of North American breeding birds previously shown to have experienced poleward range shifts. For each species, we evaluated three different approaches to climate envelope modeling that differed in the way they treated climate-induced range expansion and contraction, using random forests and maximum entropy modeling algorithms. All models were calibrated using occurrence data from 1967-1971 (t1 and evaluated using occurrence data from 1998-2002 (t2. Model sensitivity (the ability to correctly classify species presences was greater using the maximum entropy algorithm than the random forest algorithm. Although sensitivity did not differ significantly among approaches, for many species, sensitivity was maximized using a hybrid approach that assumed range expansion, but not contraction, in t2. Species for which the hybrid approach resulted in the greatest improvement in sensitivity have been reported from more land cover types than species for which there was little difference in sensitivity between hybrid and dynamic approaches, suggesting that habitat generalists may be buffered somewhat against climate-induced range contractions. Specificity (the ability to correctly classify species absences was maximized using the random forest algorithm and was lowest using the hybrid approach. Overall, our results suggest cautious optimism for the use of climate envelope models to forecast range shifts, but also underscore the importance of considering non-climate drivers of species range limits. The use of alternative climate envelope models that make different assumptions about range expansion and contraction is a new and potentially useful way to help inform our understanding of climate change effects on

  16. Transparent ceramic lamp envelope materials

    Energy Technology Data Exchange (ETDEWEB)

    Wei, G C [OSRAM SYLVANIA, 71 Cherry Hill Drive, Beverly, MA 01915 (United States)

    2005-09-07

    Transparent ceramic materials with optical qualities comparable to single crystals of similar compositions have been developed in recent years, as a result of the improved understanding of powder-processing-fabrication- sintering-property inter-relationships. These high-temperature materials with a range of thermal and mechanical properties are candidate envelopes for focused-beam, short-arc lamps containing various fills operating at temperatures higher than quartz. This paper reviews the composition, structure and properties of transparent ceramic lamp envelope materials including sapphire, small-grained polycrystalline alumina, aluminium oxynitride, yttrium aluminate garnet, magnesium aluminate spinel and yttria-lanthana. A satisfactory thermal shock resistance is required for the ceramic tube to withstand the rapid heating and cooling cycles encountered in lamps. Thermophysical properties, along with the geometry, size and thickness of a transparent ceramic tube, are important parameters in the assessment of its resistance to fracture arising from thermal stresses in lamps during service. The corrosive nature of lamp-fill liquid and vapour at high temperatures requires that all lamp components be carefully chosen to meet the target life. The wide range of new transparent ceramics represents flexibility in pushing the limit of envelope materials for improved beamer lamps.

  17. Novel Real-Time Flight Envelope Monitoring System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is an aircraft flight envelope monitoring system that will provide real-time in-cockpit estimations of aircraft flight envelope boundaries....

  18. The circumstellar envelopes of F and G type supergiants in the large magellanic cloud

    International Nuclear Information System (INIS)

    Hagen, W.; Humphreys, R.M.; Stencel, R.E.

    1981-01-01

    We have obtained high-dispersion echellograms at 2.5 and 5.1 A/mm of four F and G-type supergiants (Msub(V) approximately -9) in the large Magellanic Cloud for the purpose of studying their outer atmospheres as compared to their Milky Way counterparts. Line doubling at Na I D indicates extensive circumstellar envelopes and mass loss rates in excess of 10 -5 M . yr -1 with outflow velocities of 10-60 km s -1 . Deep exposures at Ca II H and K reveal new information about the chromospheres of extragalactic stars. The presence of H and K wing emission lines augments this, and also provides an independent way of estimating Msub(V). (author)

  19. Pre-paid envelopes commemorating the 2013 Open Days

    CERN Multimedia

    2013-01-01

    The post office on CERN's Prévessin site is still selling pre-paid envelopes commemorating the 2013 Open Days. Hurry while stocks last!   The special envelopes, which are valid in France for non-priority letters weighing up to 20 grams, are ideal for your Christmas and New Year correspondence. A set of ten envelopes, each featuring a different image, costs € 8.70 or 10 CHF. The post office is located in Building 866 on the Prévessin site and is open Mondays to Thursdays from 9.30 a.m. to 12.30 p.m.

  20. Optical spectra of 73 stripped-envelope core-collapse supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Modjaz, M.; Bianco, F. B.; Liu, Y. Q. [Center for Cosmology and Particle Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Blondin, S. [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388, Marseille (France); Kirshner, R. P.; Challis, P.; Hicken, M.; Marion, G. H. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Matheson, T. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Berlind, P.; Calkins, M. L. [F. L. Whipple Observatory, 670 Mt. Hopkins Road, P.O. Box 97, Amado, AZ 85645 (United States); Garnavich, P. [Department of Physics, 225 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556 (United States); Jha, S., E-mail: mmodjaz@nyu.edu [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States)

    2014-05-01

    We present 645 optical spectra of 73 supernovae (SNe) of Types IIb, Ib, Ic, and broad-lined Ic. All of these types are attributed to the core collapse of massive stars, with varying degrees of intact H and He envelopes before explosion. The SNe in our sample have a mean redshift (cz) = 4200 km s{sup –1}. Most of these spectra were gathered at the Harvard-Smithsonian Center for Astrophysics (CfA) between 2004 and 2009. For 53 SNe, these are the first published spectra. The data coverage ranges from mere identification (1-3 spectra) for a few SNe to extensive series of observations (10-30 spectra) that trace the spectral evolution for others, with an average of 9 spectra per SN. For 44 SNe of the 73 SNe presented here, we have well-determined dates of maximum light to determine the phase of each spectrum. Our sample constitutes the most extensive spectral library of stripped-envelope SNe to date. We provide very early coverage (as early as 30 days before V-band max) for photospheric spectra, as well as late-time nebular coverage when the innermost regions of the SN are visible (as late as 2 yr after explosion, while for SN 1993J, we have data as late as 11.6 yr). This data set has homogeneous observations and reductions that allow us to study the spectroscopic diversity of these classes of stripped SNe and to compare these to SNe-gamma-ray bursts. We undertake these matters in follow-up papers.

  1. Infection of human and non-human cells by a highly fusogenic primary CD4-independent HIV-1 isolate with a truncated envelope cytoplasmic tail

    International Nuclear Information System (INIS)

    Saha, Kunal; Yan Hui; Nelson, Julie A.E.; Zerhouni-Layachi, Bouchra

    2005-01-01

    Truncation of the envelope cytoplasmic tail has enabled FIV, SIV, and some laboratory HIV-1 strains to acquire broader cellular tropism and enhanced fusogenicity. Here we have characterized a primary CD4-independent HIV-1 isolate (92UG046-T8) with a truncated cytoplasmic tail that was able to infect and induce syncytia in primary lymphocytes from human, chimpanzee, and monkey, as well as CD4-negative cell lines from human and monkey. Increased syncytia were also noticeable with 293 cells expressing the cloned envelope from the 92UG046-T8 isolate suggesting envelope-mediated cellular fusion. Except pooled serum from HIV-1-infected individuals, monoclonal anti-envelope antibodies or antibodies/antagonists against CD4, CXCR4, and CCR5 were not able to prevent infection by the 92UG046-T8 isolate. This is the first report showing a primary HIV-1 variant with truncated cytoplasmic tail which is highly fusogenic and can infect a broad range of cells from human and non-human origins. In vivo evolution of similar HIV-1 mutants may have important implications in AIDS pathogenesis

  2. Global Envelope Tests for Spatial Processes

    DEFF Research Database (Denmark)

    Myllymäki, Mari; Mrkvička, Tomáš; Grabarnik, Pavel

    2017-01-01

    Envelope tests are a popular tool in spatial statistics, where they are used in goodness-of-fit testing. These tests graphically compare an empirical function T(r) with its simulated counterparts from the null model. However, the type I error probability α is conventionally controlled for a fixed d......) the construction of envelopes for a deviation test. These new tests allow the a priori selection of the global α and they yield p-values. We illustrate these tests using simulated and real point pattern data....

  3. Global envelope tests for spatial processes

    DEFF Research Database (Denmark)

    Myllymäki, Mari; Mrkvička, Tomáš; Grabarnik, Pavel

    Envelope tests are a popular tool in spatial statistics, where they are used in goodness-of-fit testing. These tests graphically compare an empirical function T(r) with its simulated counterparts from the null model. However, the type I error probability α is conventionally controlled for a fixed......) the construction of envelopes for a deviation test. These new tests allow the a priori selection of the global α and they yield p-values. We illustrate these tests using simulated and real point pattern data....

  4. Topological soliton solutions for some nonlinear evolution equations

    Directory of Open Access Journals (Sweden)

    Ahmet Bekir

    2014-03-01

    Full Text Available In this paper, the topological soliton solutions of nonlinear evolution equations are obtained by the solitary wave ansatz method. Under some parameter conditions, exact solitary wave solutions are obtained. Note that it is always useful and desirable to construct exact solutions especially soliton-type (dark, bright, kink, anti-kink, etc. envelope for the understanding of most nonlinear physical phenomena.

  5. Characteristics between the meshing pairs with different envelope profile in single screw compressors

    Science.gov (United States)

    Huang, R.; Liu, F.; Li, T.; Feng, Q.

    2017-08-01

    Single screw compressors have been used in various industrial fields. However, because the star-wheel teeth are easy to wear, the market for the development of single screw compressors is limited. In order to extend the service life of the star-wheel, researchers have developed different kinds of star-wheel tooth profile, such as single line envelope profile, single column envelope profile, and multi-column envelope profile. These profiles greatly affect the lubrication characteristics between the star-wheel teeth and the screw grooves. In this article, the lubrication characteristics between the meshing pairs with different envelope profiles are analyzed. Results show that the pressure peak of the single line envelope profile, single column envelope profile, and multi-column envelope profile are 3.23×105Pa, 3.38×105Pa, and 4.31×105Pa, respectively. This means that the multi-column enveloped meshing pair can resist the biggest external impact load. The deviation angle (γ) of the single line envelope profile, single column envelope profile, and multi-column envelope profile are 0.0139°~0.0286°, 0.0225°~0.0306° and 0.0122°~0.0262°, respectively. Thus, the self-balancing ability of the multi-column enveloped meshing pair is the strongest, and the oil film thickness on both sides of the multi-column enveloped star-wheel tooth is the most reasonable, which indicates a good lubrication state during operation, that is, longer operation life of the star-wheel teeth.

  6. Stability charts for uniform slopes in soils with nonlinear failure envelopes

    OpenAIRE

    Eid, Hisham T.

    2014-01-01

    Based on the results of an extensive parametric study, charts were developed for assessment of the stability of uniform slopes in soils with nonlinear shear strength failure envelopes. The study was conducted using envelopes formed to represent the realistic shapes of soil nonlinear drained strength envelopes and the associated different degrees of nonlinearity. The introduction of a simple methodology to describe the nonlinear envelopes and a stability parameter, the value of which depends o...

  7. Strain-dependent Damage Evolution and Velocity Reduction in Fault Zones Induced by Earthquake Rupture

    Science.gov (United States)

    Zhong, J.; Duan, B.

    2009-12-01

    Low-velocity fault zones (LVFZs) with reduced seismic velocities relative to the surrounding wall rocks are widely observed around active faults. The presence of such a zone will affect rupture propagation, near-field ground motion, and off-fault damage in subsequent earth-quakes. In this study, we quantify the reduction of seismic velocities caused by dynamic rup-ture on a 2D planar fault surrounded by a low-velocity fault zone. First, we implement the damage rheology (Lyakhovsky et al. 1997) in EQdyna (Duan and Oglesby 2006), an explicit dynamic finite element code. We further extend this damage rheology model to include the dependence of strains on crack density. Then, we quantify off-fault continuum damage distribution and velocity reduction induced by earthquake rupture with the presence of a preexisting LVFZ. We find that the presence of a LVFZ affects the tempo-spatial distribu-tions of off-fault damage. Because lack of constraint in some damage parameters, we further investigate the relationship between velocity reduction and these damage prameters by a large suite of numerical simulations. Slip velocity, slip, and near-field ground motions computed from damage rheology are also compared with those from off-fault elastic or elastoplastic responses. We find that the reduction in elastic moduli during dynamic rupture has profound impact on these quantities.

  8. A microscopic model of rate and state friction evolution

    Science.gov (United States)

    Li, Tianyi; Rubin, Allan M.

    2017-08-01

    Whether rate- and state-dependent friction evolution is primarily slip dependent or time dependent is not well resolved. Although slide-hold-slide experiments are traditionally interpreted as supporting the aging law, implying time-dependent evolution, recent studies show that this evidence is equivocal. In contrast, the slip law yields extremely good fits to velocity step experiments, although a clear physical picture for slip-dependent friction evolution is lacking. We propose a new microscopic model for rate and state friction evolution in which each asperity has a heterogeneous strength, with individual portions recording the velocity at which they became part of the contact. Assuming an exponential distribution of asperity sizes on the surface, the model produces results essentially similar to the slip law, yielding very good fits to velocity step experiments but not improving much the fits to slide-hold-slide experiments. A numerical kernel for the model is developed, and an analytical expression is obtained for perfect velocity steps, which differs from the slip law expression by a slow-decaying factor. By changing the quantity that determines the intrinsic strength, we use the same model structure to investigate aging-law-like time-dependent evolution. Assuming strength to increase logarithmically with contact age, for two different definitions of age we obtain results for velocity step increases significantly different from the aging law. Interestingly, a solution very close to the aging law is obtained if we apply a third definition of age that we consider to be nonphysical. This suggests that under the current aging law, the state variable is not synonymous with contact age.

  9. Optimizing velocities and transports for complex coastal regions and archipelagos

    OpenAIRE

    Haley, Patrick; Agarwal, Arpit; Lermusiaux, Pierre

    2015-01-01

    We derive and apply a methodology for the initialization of velocity and transport fields in complex multiply-connected regions with multiscale dynamics. The result is initial fields that are consistent with observations, complex geometry and dynamics, and that can simulate the evolution of ocean processes without large spurious initial transients. A class of constrained weighted least squares optimizations is defined to best fit first-guess velocities while satisfying the complex bathymetry,...

  10. Computation of Phase Equilibrium and Phase Envelopes

    DEFF Research Database (Denmark)

    Ritschel, Tobias Kasper Skovborg; Jørgensen, John Bagterp

    formulate the involved equations in terms of the fugacity coefficients. We present expressions for the first-order derivatives. Such derivatives are necessary in computationally efficient gradient-based methods for solving the vapor-liquid equilibrium equations and for computing phase envelopes. Finally, we......In this technical report, we describe the computation of phase equilibrium and phase envelopes based on expressions for the fugacity coefficients. We derive those expressions from the residual Gibbs energy. We consider 1) ideal gases and liquids modeled with correlations from the DIPPR database...... and 2) nonideal gases and liquids modeled with cubic equations of state. Next, we derive the equilibrium conditions for an isothermal-isobaric (constant temperature, constant pressure) vapor-liquid equilibrium process (PT flash), and we present a method for the computation of phase envelopes. We...

  11. SAFEGUARDS ENVELOPE: PREVIOUS WORK AND EXAMPLES

    International Nuclear Information System (INIS)

    Metcalf, Richard; Bevill, Aaron; Charlton, William; Bean, Robert

    2008-01-01

    The future expansion of nuclear power will require not just electricity production but fuel cycle facilities such as fuel fabrication and reprocessing plants. As large reprocessing facilities are built in various states, they must be built and operated in a manner to minimize the risk of nuclear proliferation. Process monitoring has returned to the spotlight as an added measure that can increase confidence in the safeguards of special nuclear material (SNM). Process monitoring can be demonstrated to lengthen the allowable inventory period by reducing accountancy requirements, and to reduce the false positive indications. The next logical step is the creation of a Safeguards Envelope, a set of operational parameters and models to maximize anomaly detection and inventory period by process monitoring while minimizing operator impact and false positive rates. A brief example of a rudimentary Safeguards Envelope is presented, and shown to detect synthetic diversions overlaying a measured processing plant data set. This demonstration Safeguards Envelope is shown to increase the confidence that no SNM has been diverted with minimal operator impact, even though it is based on an information sparse environment. While the foundation on which a full Safeguards Envelope can be built has been presented in historical demonstrations of process monitoring, several requirements remain yet unfulfilled. Future work will require reprocessing plant transient models, inclusion of 'non-traditional' operating data, and exploration of new methods of identifying subtle events in transient processes

  12. The nuclear envelope from basic biology to therapy.

    Science.gov (United States)

    Worman, Howard J; Foisner, Roland

    2010-02-01

    The nuclear envelope has long been a focus of basic research for a highly specialized group of cell biologists. More recently, an expanding group of scientists and physicians have developed a keen interest in the nuclear envelope since mutations in the genes encoding lamins and associated proteins have been shown to cause a diverse range of human diseases often called laminopathies or nuclear envelopathies. Most of these diseases have tissue-selective phenotypes, suggesting that the nuclear envelope must function in cell-type- and developmental-stage-specific processes such as chromatin organization, regulation of gene expression, controlled nucleocytoplasmic transport and response to stress in metazoans. On 22-23 April 2009, Professor Christopher Hutchison organized the 4th British Nuclear Envelope Disease and Chromatin Organization meeting at the College of St Hild and St Bede at Durham University, sponsored by the Biochemical Society. In attendance were investigators with one common interest, the nuclear envelope, but with diverse expertise and training in animal and plant cell biology, genetics, developmental biology and medicine. We were each honoured to be keynote speakers. This issue of Biochemical Society Transactions contains papers written by some of the presenters at this scientifically exciting meeting, held in a bucolic setting where the food was tasty and the wine flowed freely. Perhaps at the end of this excellent meeting more questions were raised than answered, which will stimulate future research. However, what became clear is that the nuclear envelope is a cellular structure with critical functions in addition to its traditional role as a barrier separating the nuclear and cytoplasmic compartments in interphase eukaryotic cells.

  13. Nonlinear evolution of MHD instabilities

    International Nuclear Information System (INIS)

    Bateman, G.; Hicks, H.R.; Wooten, J.W.; Dory, R.A.

    1975-01-01

    A 3-D nonlinear MHD computer code was used to study the time evolution of internal instabilities. Velocity vortex cells are observed to persist into the nonlinear evolution. Pressure and density profiles convect around these cells for a weak localized instability, or convect into the wall for a strong instability. (U.S.)

  14. Torsin Mediates Primary Envelopment of Large Ribonucleoprotein Granules at the Nuclear Envelope

    Directory of Open Access Journals (Sweden)

    Vahbiz Jokhi

    2013-04-01

    Full Text Available A previously unrecognized mechanism through which large ribonucleoprotein (megaRNP granules exit the nucleus is by budding through the nuclear envelope (NE. This mechanism is akin to the nuclear egress of herpes-type viruses and is essential for proper synapse development. However, the molecular machinery required to remodel the NE during this process is unknown. Here, we identify Torsin, an AAA-ATPase that in humans is linked to dystonia, as a major mediator of primary megaRNP envelopment during NE budding. In torsin mutants, megaRNPs accumulate within the perinuclear space, and the messenger RNAs contained within fail to reach synaptic sites, preventing normal synaptic protein synthesis and thus proper synaptic bouton development. These studies begin to establish the cellular machinery underlying the exit of megaRNPs via budding, offer an explanation for the “nuclear blebbing” phenotype found in dystonia models, and provide an important link between Torsin and the synaptic phenotypes observed in dystonia.

  15. Dynamics of Preferential Substrate Recognition in HIV-1 Protease: Redefining the Substrate Envelope

    Science.gov (United States)

    Özen, Ayşegül; Haliloğlu, Türkan; Schiffer, Celia A.

    2011-01-01

    HIV-1 protease (PR) permits viral maturation by processing the Gag and Gag-Pro-Pol polyproteins. Though HIV-1 PR inhibitors (PIs) are used in combination antiviral therapy, the emergence of drug resistance has limited their efficacy. The rapid evolution of HIV-1 necessitates the consideration of drug resistance in novel drug-design strategies. Drug-resistant HIV-1 PR variants, while no longer efficiently inhibited, continue to efficiently hydrolyze the natural viral substrates. Though highly diverse in sequence, the HIV-1 PR substrates bind in a conserved three-dimensional shape we defined as the “substrate envelope”. We previously showed that resistance mutations arise where PIs protrude beyond the substrate envelope, as these regions are crucial for drug binding but not for substrate recognition. Here, we extend this model by considering the role of protein dynamics in the interaction of HIV-1 PR with its substrates. Seven molecular dynamics simulations of PR-substrate complexes were performed to estimate the conformational flexibility of substrates in their complexes. Interdependency of the substrate-protease interactions may compensate for the variations in cleavage-site sequences, and explain how a diverse set of sequences can be recognized as substrates by the same enzyme. This diversity may be essential for regulating sequential processing of substrates. We also define a dynamic substrate envelope as a more accurate representation of PR-substrate interactions. This dynamic substrate envelope, described by a probability distribution function, is a powerful tool for drug design efforts targeting ensembles of resistant HIV-1 PR variants with the aim of developing drugs that are less susceptible to resistance. PMID:21762811

  16. Inversion of Auditory Spectrograms, Traditional Spectrograms, and Other Envelope Representations

    DEFF Research Database (Denmark)

    Decorsière, Remi Julien Blaise; Søndergaard, Peter Lempel; MacDonald, Ewen

    2015-01-01

    Envelope representations such as the auditory or traditional spectrogram can be defined by the set of envelopes from the outputs of a filterbank. Common envelope extraction methods discard information regarding the fast fluctuations, or phase, of the signal. Thus, it is difficult to invert, or re...... to the framework is proposed, which leads to a more accurate inversion of traditional spectrograms...

  17. Velocity Dispersion of Ionized Gas and Multiple Supernova Explosions

    Directory of Open Access Journals (Sweden)

    Vasiliev E. O.

    2015-06-01

    Full Text Available We use 3D numerical simulations to study the evolution of the Hα intensity and velocity dispersion for single and multiple supernova (SN explosions. We find that the IHα– σ diagram obtained for simulated gas flows is similar in shape to that observed in dwarf galaxies. We conclude that colliding SN shells with significant difference in age are responsible for high velocity dispersion that reaches up to ≳ 100 km s−1. Such a high velocity dispersion could be hardly obtained for a single SN remnant. Peaks of velocity dispersion in the IHα– σ diagram may correspond to several isolated or merged SN remnants with moderately different ages. Degrading the spatial resolution in the Hα intensity and velocity dispersion maps makes the simulated IHα– σ diagrams close to those observed in dwarf galaxies not only in shape, but also quantitatively.

  18. 14 CFR 29.1517 - Limiting height-speed envelope.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Limiting height-speed envelope. 29.1517... Operating Limitations § 29.1517 Limiting height-speed envelope. For Category A rotorcraft, if a range of... following power failure, the range of heights and its variation with forward speed must be established...

  19. Thermonuclear process and accretion onto neutron star envelopes: x-ray burst and transient sources

    International Nuclear Information System (INIS)

    Starrfield, S.; Kenyon, S.; Sparks, W.M.; Truran, J.W.; Theoretical Division, Los Alamos National Laboratory)

    1982-01-01

    We have used a Lagrangian, fully implicit, one-dimensional, hydrodynamic computer code to investigate the evolution of thermonuclear runaways in the thick, accreted, hydrogen-rich envelopes of 1.0 M/sub sun/ neutron stars with radii of 10 km and 20 km. Our simulations produce outbursts which range in time scale from about 2000 seconds to longer than 1 day. Peak effective temperature was 3.3 x 10 7 K (kTapprox.2.91 keV), and peak luminosity was 2 x 10 5 L/sub sun/ for the 10 km study. The 20 km neutron star produced a peak effective temperature and luminosity of 5.3 x 10 6 K and 5.9 x 10 2 L/sub sun/, respectively. We also investigated the effects of changes in the rates of the 14 O(α,p) and 15 O(α,ν) reactions on the evolution. Hydrodynamic expansion on the 10 km neutron star produced a precursor lasting about 10 - 6 seconds

  20. Boundaries, injective envelopes, and reduced crossed products

    DEFF Research Database (Denmark)

    Bryder, Rasmus Sylvester

    In this dissertation, we study boundary actions, equivariant injective envelopes, as well as theideal structure of reduced crossed products. These topics have recently been linked to thestudy of C-simple groups, that is, groups with simple reduced group C-algebras.In joint work with Matthew Kennedy......, we consider reduced twisted crossed products overC-simple groups. For any twisted C-dynamical system over a C-simple group, we provethat there is a one-to-one correspondence between maximal invariant ideals in the underlyingC-algebra and maximal ideals in the reduced crossed product. When......*-algebras, and relate the intersection property for group actions on unital C*-algebras to the intersection property for theequivariant injective envelope. Moreover, we also prove that the equivariant injective envelopeof the centre of the injective envelope of a unital C*-algebra can be regarded as a C...

  1. Solar envelope concepts: moderate density building applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Knowles, R.L.; Berry, R.D.

    1980-04-01

    Solar energy utilization in urban areas requires public guarantees that all property owners have direct access to the sun. The study examines the implications of this premise in relation to the need for cities to also encourage or accommodate rebuilding and future development. The public policy mechanism for guaranteeing solar access is conceptualized as a solar zoning envelope that allows the largest possible building bulk on a land parcel without shadowing neighboring properties during specified times. Step-by-step methods for generating solar envelopes are described with extensive drawings, showing a variety of urban platting and lot configurations. Development and design possibilities are examined on a selected set of Los Angeles sites with typically diverse urban characteristics. Envelope attributes suitable for encouraging moderate-density commercial and residential building are examined in the context of two hypothetical but realistic development programs: one for speculative office buildings and one for condominium housing. Numerous illustrations of envelope forms and prototypical building designs are provided. The results of development simulation studies on all test sites are tabulated to show building bulk, density, land-coverage and open space characteristics obtainable under the hypothesized envelopes.

  2. The Arabidopsis Nuclear Pore and Nuclear Envelope

    OpenAIRE

    Meier, Iris; Brkljacic, Jelena

    2010-01-01

    The nuclear envelope is a double membrane structure that separates the eukaryotic cytoplasm from the nucleoplasm. The nuclear pores embedded in the nuclear envelope are the sole gateways for macromolecular trafficking in and out of the nucleus. The nuclear pore complexes assembled at the nuclear pores are large protein conglomerates composed of multiple units of about 30 different nucleoporins. Proteins and RNAs traffic through the nuclear pore complexes, enabled by the interacting activities...

  3. MATTER MIXING IN ASPHERICAL CORE-COLLAPSE SUPERNOVAE: A SEARCH FOR POSSIBLE CONDITIONS FOR CONVEYING 56Ni INTO HIGH VELOCITY REGIONS

    International Nuclear Information System (INIS)

    Ono, Masaomi; Nagataki, Shigehiro; Ito, Hirotaka; Lee, Shiu-Hang; Mao, Jirong; Tolstov, Alexey; Hashimoto, Masa-aki

    2013-01-01

    We perform two-dimensional axisymmetric hydrodynamic simulations of matter mixing in aspherical core-collapse supernova explosions of a 16.3 M ☉ star with a compact hydrogen envelope. Observations of SN 1987A have provided evidence that 56 Ni synthesized by explosive nucleosynthesis is mixed into fast moving matter (∼>3500 km s –1 ) in the exploding star. In order to clarify the key conditions for reproducing such high velocity of 56 Ni, we revisit matter mixing in aspherical core-collapse supernova explosions. Explosions are initiated artificially by injecting thermal and kinetic energies around the interface between the iron core and the silicon-rich layer. Perturbations of 5% or 30% amplitude in the radial velocities are introduced at several points in time. We find that no high velocity 56 Ni can be obtained if we consider bipolar explosions with perturbations (5% amplitude) of pre-supernova origins. If large perturbations (30% amplitude) are introduced or exist due to some unknown mechanism in a later phase just before the shock wave reaches the hydrogen envelope, 56 Ni with a velocity of 3000 km s –1 can be obtained. Aspherical explosions that are asymmetric across the equatorial plane with clumpy structures in the initial shock waves are investigated. We find that the clump sizes affect the penetration of 56 Ni. Finally, we report that an aspherical explosion model that is asymmetric across the equatorial plane with multiple perturbations of pre-supernova origins can cause the penetration of 56 Ni clumps into fast moving matter of 3000 km s –1 . We show that both aspherical explosions with clumpy structures and perturbations of pre-supernova origins may be necessary to reproduce the observed high velocity of 56 Ni. To confirm this, more robust three-dimensional simulations are required

  4. A Search for Phosphine in Circumstellar Envelopes: PH3 in IRC +10216 and CRL 2688?

    Science.gov (United States)

    Tenenbaum, E. D.; Ziurys, L. M.

    2008-06-01

    We present the results of a search for the JK = 10→ 00 transition of PH3 (phosphine) at 267 GHz toward several circumstellar envelopes using the Arizona Radio Observatory 10 m Submillimeter Telescope (SMT). In the carbon-rich shells of IRC +10216 and CRL 2688, we have detected emission lines exactly at the PH3 frequency. Toward the oxygen-rich supergiant VY Canis Majoris, only an upper limit was obtained, while in the evolved carbon-rich proto-planetary nebula CRL 618, the transition is contaminated by vibrationally excited HC3N (ν7 = 4). The line shape in IRC +10216 appears to consist of two distinct components: a flat-topped profile with a width of ~28 km s-1, as is typical for this source, and a narrower feature approximately 4 km s-1 wide. The narrow component likely arises from the inner envelope (r < 8R*) where the gas has not reached the terminal expansion velocity, or it is nonthermal emission. Based on the broader component, the abundance of PH3 with respect to H2 is estimated to be 5 × 10-8 in a region with a radius of r < 150R*. If the narrower component is thermal, it implies a phosphine abundance of ~5 × 10-7 close to the stellar photosphere (r < 8R*). In CRL 2688, the PH3 abundance is less constrained, with plausible values ranging from 3 × 10-8 to 4 × 10-7, assuming a spherical distribution. Phosphine appears to be present in large concentrations in the inner envelope of C-rich AGB stars, and thus may function as a parent molecule for other phosphorus species.

  5. A new insight into opaque envelopes in a passive solar house: Properties and roles

    International Nuclear Information System (INIS)

    Long, Linshuang; Ye, Hong; Liu, Minghou

    2016-01-01

    Highlights: • A new insight into the opaque envelopes of a passive solar house was gained. • Five parts of envelopes, i.e., roof, south/east/west/north walls, were discussed. • Each part of envelopes were analyzed separately rather than treated as a whole. • Ideal properties of materials for each envelope are diverse from one another. • Differences are related to the envelopes’ leading roles as a heater or a cooler. - Abstract: Passive solar houses are effective solutions for minimizing the operating energy of buildings. The building envelopes of passive solar houses exert a significant influence on the degree of indoor thermal comfort. The focus of this study was the construction of high-performance opaque envelopes, i.e., the roof and walls, for a passive solar house, and a new conception of the envelopes from the perspective of the relation between the properties and roles was provided. The discussion was conducted based on a comprehensive range of envelope materials that were distinguished by the thermal conductivity and volumetric heat capacity. For the first time, each part of the envelopes was analyzed separately rather than considered as an entire envelope. By analyzing each envelope individually, the optimum properties of each envelope were found to be distinct from each other. The distinctions are determined by the dominant role of each envelope, which is associated with the location and absorbed solar irradiation. For summer or hot climate applications, when the dominant role is a cooler, the envelope, e.g., the south wall, should consist of materials with high thermal conductivity and large heat capacity; if a heater is the dominant role, the envelope, e.g., the roof, should consist of materials with low thermal conductivity. For winter or cold climate applications, the envelopes with a leading role of a heater or a cooler require materials with high or low thermal conductivity, respectively. Under the guidance of the results, a discussion

  6. Evolution of the spherical clusters

    International Nuclear Information System (INIS)

    Surdin, V.G.

    1978-01-01

    The possible processes of the Galaxy spherical clusters formation and evolution are described on a popular level. The orbits of spherical cluster motion and their spatial velocities are determined. Given are the distrbutions of spherical cluster stars according to their velocities and the observed distribution of spherical clusters in the area of the Galaxy slow evolution. The dissipation and dynamic friction processes destructing clusters with the mass less than 10 4 of solar mass and bringing about the reduction of clusters in the Galaxy are considered. The paradox of forming mainly X-ray sources in spherical clusters is explained. The schematic image of possible ways of forming X-ray sources in spherical clusters is given

  7. Sulfur Chemistry in the Envelope of VY Canis Majoris: Detailed Analysis of SO and SO2 Emission

    Science.gov (United States)

    Adande, G. R.; Edwards, J. L.; Ziurys, L. M.

    2013-11-01

    Detailed radiative transfer modeling has been carried out for SO2 and SO originating in the envelope of the O-rich supergiant star VY Canis Majoris (VY CMa). A total of 27 transitions of SO2 and 7 transitions of SO lying in the energy range 3.0-138.2 cm-1 were analyzed using a new non-LTE radiative transfer code that incorporates non-spherical geometries. The spectra were primarily obtained from the Arizona Radio Observatory (ARO) 1 mm spectral survey of VY CMa, conducted with the Submillimeter Telescope; additional lines were measured with the ARO 12 m antenna at 2 and 3 mm. SO2 and SO were found to arise from five distinct outflows within the envelope, four which are asymmetric with respect to the star. Three flows arise from high-velocity red-shifted material, one from a blue-shifted wind, and the final from a classic "spherical" expansion. In the spherical component, the peak fractional abundance, relative to H2, of both molecules is f ~ 2.5 × 10-7 at r ~ 25 R *, and steadily decreases outward. SO2 appears to be a "parent" molecule, formed near the stellar photosphere. In the asymmetric outflows, both SO and SO2 are more prominent at large stellar radii in dense (106-107 cm-3), clumpy material, achieving their maximum abundance between 200 and 600 R * with f ~ 3.0 × 10-8-1.5 × 10-7. These results suggest that in the collimated outflows, both species are either produced by shock chemistry or are remnant inner shell material swept up in the high-velocity winds.

  8. Intermittent Lagrangian velocities and accelerations in three-dimensional porous medium flow.

    Science.gov (United States)

    Holzner, M; Morales, V L; Willmann, M; Dentz, M

    2015-07-01

    Intermittency of Lagrangian velocity and acceleration is a key to understanding transport in complex systems ranging from fluid turbulence to flow in porous media. High-resolution optical particle tracking in a three-dimensional (3D) porous medium provides detailed 3D information on Lagrangian velocities and accelerations. We find sharp transitions close to pore throats, and low flow variability in the pore bodies, which gives rise to stretched exponential Lagrangian velocity and acceleration distributions characterized by a sharp peak at low velocity, superlinear evolution of particle dispersion, and double-peak behavior in the propagators. The velocity distribution is quantified in terms of pore geometry and flow connectivity, which forms the basis for a continuous-time random-walk model that sheds light on the observed Lagrangian flow and transport behaviors.

  9. Asymmetry of the SN 1987A envelope

    International Nuclear Information System (INIS)

    Chugaj, N.N.

    1991-01-01

    The origin of the peculiar structure in the profiles of the emission lines observed in the spectrum of SN 1987A, namely, (1) redshift of maxima, and (2) fine structure of hydrogen lines, is considered. Among the three proposed hypothesis for the redshift, at least two (electron scattering in the spherically-symmetric envelope, and geometrical effects in the fragmented envelope) have serious drawbacks. More favorable is the third hypothesis which invokes asymmetric distribution of 56 Ni and of the iron-peak elements

  10. Identification of new genes in a cell envelope-cell division gene cluster of Escherichia coli: cell envelope gene murG.

    Science.gov (United States)

    Salmond, G P; Lutkenhaus, J F; Donachie, W D

    1980-01-01

    We report the identification, cloning, and mapping of a new cell envelope gene, murG. This lies in a group of five genes of similar phenotype (in the order murE murF murG murC ddl) all concerned with peptidoglycan biosynthesis. This group is in a larger cluster of at least 10 genes, all of which are involved in some way with cell envelope growth. Images PMID:6998962

  11. Evolution of cyclic mixmaster universes with noncomoving radiation

    Science.gov (United States)

    Ganguly, Chandrima; Barrow, John D.

    2017-12-01

    We study a model of a cyclic, spatially homogeneous, anisotropic, "mixmaster" universe of Bianchi type IX, containing a radiation field with noncomoving ("tilted" with respect to the tetrad frame of reference) velocities and vorticity. We employ a combination of numerical and approximate analytic methods to investigate the consequences of the second law of thermodynamics on the evolution. We model a smooth cycle-to-cycle evolution of the mixmaster universe, bouncing at a finite minimum, by the device of adding a comoving "ghost" field with negative energy density. In the absence of a cosmological constant, an increase in entropy, injected at the start of each cycle, causes an increase in the volume maxima, increasing approach to flatness, falling velocities and vorticities, and growing anisotropy at the expansion maxima of successive cycles. We find that the velocities oscillate rapidly as they evolve and change logarithmically in time relative to the expansion volume. When the conservation of momentum and angular momentum constraints are imposed, the spatial components of these velocities fall to smaller values when the entropy density increases, and vice versa. Isotropization is found to occur when a positive cosmological constant is added because the sequence of oscillations ends and the dynamics expand forever, evolving towards a quasi-de Sitter asymptote with constant velocity amplitudes. The case of a single cycle of evolution with a negative cosmological constant added is also studied.

  12. MATTER MIXING IN ASPHERICAL CORE-COLLAPSE SUPERNOVAE: A SEARCH FOR POSSIBLE CONDITIONS FOR CONVEYING {sup 56}Ni INTO HIGH VELOCITY REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Masaomi; Nagataki, Shigehiro; Ito, Hirotaka; Lee, Shiu-Hang; Mao, Jirong; Tolstov, Alexey [Astrophysical Big Bang Laboratory, RIKEN, Saitama 351-0198 (Japan); Hashimoto, Masa-aki, E-mail: masaomi.ono@riken.jp [Department of Physics, Kyushu University, Fukuoka 812-8581 (Japan)

    2013-08-20

    We perform two-dimensional axisymmetric hydrodynamic simulations of matter mixing in aspherical core-collapse supernova explosions of a 16.3 M{sub Sun} star with a compact hydrogen envelope. Observations of SN 1987A have provided evidence that {sup 56}Ni synthesized by explosive nucleosynthesis is mixed into fast moving matter ({approx}>3500 km s{sup -1}) in the exploding star. In order to clarify the key conditions for reproducing such high velocity of {sup 56}Ni, we revisit matter mixing in aspherical core-collapse supernova explosions. Explosions are initiated artificially by injecting thermal and kinetic energies around the interface between the iron core and the silicon-rich layer. Perturbations of 5% or 30% amplitude in the radial velocities are introduced at several points in time. We find that no high velocity {sup 56}Ni can be obtained if we consider bipolar explosions with perturbations (5% amplitude) of pre-supernova origins. If large perturbations (30% amplitude) are introduced or exist due to some unknown mechanism in a later phase just before the shock wave reaches the hydrogen envelope, {sup 56}Ni with a velocity of 3000 km s{sup -1} can be obtained. Aspherical explosions that are asymmetric across the equatorial plane with clumpy structures in the initial shock waves are investigated. We find that the clump sizes affect the penetration of {sup 56}Ni. Finally, we report that an aspherical explosion model that is asymmetric across the equatorial plane with multiple perturbations of pre-supernova origins can cause the penetration of {sup 56}Ni clumps into fast moving matter of 3000 km s{sup -1}. We show that both aspherical explosions with clumpy structures and perturbations of pre-supernova origins may be necessary to reproduce the observed high velocity of {sup 56}Ni. To confirm this, more robust three-dimensional simulations are required.

  13. Digital image envelope: method and evaluation

    Science.gov (United States)

    Huang, H. K.; Cao, Fei; Zhou, Michael Z.; Mogel, Greg T.; Liu, Brent J.; Zhou, Xiaoqiang

    2003-05-01

    Health data security, characterized in terms of data privacy, authenticity, and integrity, is a vital issue when digital images and other patient information are transmitted through public networks in telehealth applications such as teleradiology. Mandates for ensuring health data security have been extensively discussed (for example The Health Insurance Portability and Accountability Act, HIPAA) and health informatics guidelines (such as the DICOM standard) are beginning to focus on issues of data continue to be published by organizing bodies in healthcare; however, there has not been a systematic method developed to ensure data security in medical imaging Because data privacy and authenticity are often managed primarily with firewall and password protection, we have focused our research and development on data integrity. We have developed a systematic method of ensuring medical image data integrity across public networks using the concept of the digital envelope. When a medical image is generated regardless of the modality, three processes are performed: the image signature is obtained, the DICOM image header is encrypted, and a digital envelope is formed by combining the signature and the encrypted header. The envelope is encrypted and embedded in the original image. This assures the security of both the image and the patient ID. The embedded image is encrypted again and transmitted across the network. The reverse process is performed at the receiving site. The result is two digital signatures, one from the original image before transmission, and second from the image after transmission. If the signatures are identical, there has been no alteration of the image. This paper concentrates in the method and evaluation of the digital image envelope.

  14. Early Site Permit Demonstration Program: Plant parameters envelope report

    International Nuclear Information System (INIS)

    1993-03-01

    The Early Site Permit (ESP) Demonstration Program is the nuclear industry's initiative for piloting the early resolution of siting-related issues before the detailed design proceedings of the combined operating license review. The ESP Demonstration Program consists of three phases. The plant parameters envelopes task is part of Phase 1, which addresses the generic review of applicable federal regulations and develops criteria for safety and environmental assessment of potential sites. The plant parameters envelopes identify parameters that characterize the interface between an ALWR design and a potential site, and quantify the interface through values selected from the Utility Requirements Documents, vendor design information, or engineering assessments. When augmented with site-specific information, the plant parameters envelopes provide sufficient information to allow ESPs to be granted based on individual ALWR design information or enveloping design information for the evolutionary, passive, or generic ALWR plants. This document is expected to become a living document when used by future applicants

  15. Beam envelope profile of non-centrosymmetric polygonal phase space

    International Nuclear Information System (INIS)

    Chen Yinbao; Xie Xi

    1984-01-01

    The general theory of beam envelope profile of non-centrosymmetric polygonal phase space is developed. By means of this theory the beam envelope profile of non-centrosymmetric polygonal phase space can be calculated directly. An example is carried out in detail to show the practical application of the theory

  16. Intelligent building envelopes. Architectural concept and applications for daylighting quality

    Energy Technology Data Exchange (ETDEWEB)

    Wyckmans, Annemie

    2005-11-15

    How does an intelligent building envelope manage the variable and sometimes conflictive occupant requirements that arise in a day lit indoor environment. This is the research question that provides the basis for this Ph.D. work. As it touches upon several fields of application, the research question is untangled into four steps, each of which corresponds to a chapter of the thesis. 1) What characterises intelligent behaviour for a building envelope. 2) What characterises indoor day lighting quality. 3) Which functions can an intelligent building envelope be expected to perform in the context of day lighting quality. 4) How are the materials, components and composition of an intelligent building envelope designed to influence this performance. The emphasis is on design, environmental aspects, energy conservation, functional analysis and physical applications.

  17. High-Velocity Ly(Alpha) Emission from SMR 1987A

    Science.gov (United States)

    Michael, Eli; McCray, Richard; Borkowski, Kazimierz J.; Pun, Chu S. J.; Sonneborn, George

    1998-01-01

    The high-velocity Ly(Alpha) emission from SN 1987A observed with the Space Telescope Imaging Spectrograph (STIS) evidently comes from a reverse shock formed where the outer envelope of SN 1987A strikes ionized gas inside the inner circumstellar ring. The observations can be explained by a simple kinematic model, in which the Ly(Alpha) emission comes from hydrogen atoms with radial velocity approximately 15,000 km s(exp -1) crossing a reverse shock in the shape of a slightly prolate ellipsoid with equatorial radius 4.8 x 10(exp 17) cm or approximately 80% of the distance to the inner surface of the inner ring. N v double Lambda 1239, 1243 emission, if present, has a net luminosity approximately less than 30% times that of the Ly(Alpha) emission. Future STIS observations should enable us to predict the time of impact with the inner ring and to determine unambiguously whether or not N v emission is present. These observations will offer a unique opportunity to probe the structure of SN 1987A's circumstellar environment and the hydrodynamics and kinetics of very fast shocks.

  18. Functional incorporation of green fluorescent protein into hepatitis B virus envelope particles

    International Nuclear Information System (INIS)

    Lambert, Carsten; Thome, Nicole; Kluck, Christoph J.; Prange, Reinhild

    2004-01-01

    The envelope of hepatitis B virus (HBV), containing the L, M, and S proteins, is essential for virus entry and maturation. For direct visualization of HBV, we determined whether envelope assembly could accommodate the green fluorescent protein (GFP). While the C-terminal addition of GFP to S trans-dominant negatively inhibited empty envelope particle secretion, the N-terminal GFP fusion to S (GFP.S) was co-integrated into the envelope, giving rise to fluorescent particles. Microscopy and topogenesis analyses demonstrated that the proper intracellular distribution and folding of GFP.S, required for particle export were rescued by interprotein interactions with wild-type S. Thereby, a dual location of GFP, inside and outside the envelope, was observed. GFP.S was also efficiently packaged into the viral envelope, and these GFP-tagged virions retained the capacity for attachment to HBV receptor-positive cells in vitro. Together, GFP-tagged virions should be suitable to monitor HBV uptake and egress in live hepatocytes

  19. Searching for the Expelled Hydrogen Envelope in Type I Supernovae via Late-Time H α Emission

    Energy Technology Data Exchange (ETDEWEB)

    Vinko, J.; Silverman, J. M.; Wheeler, J. C.; MacQueen, P.; Marion, G. H. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Pooley, D. [Department of Physics and Astronomy, Trinity University, One Trinity Place, San Antonio, TX 78212 (United States); Szalai, T. [Department of Optics and Quantum Electronics, University of Szeged, Dom ter 9, Szeged, 6720 (Hungary); Kelly, P. [Department of Astronomy, University of California at Berkeley, 501 Campbell Hall, Berkeley, CA 94720-3411 (United States); Sárneczky, K. [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Konkoly Thege ut 15-17, Budapest, 1121 (Hungary)

    2017-03-01

    We report the first results from our long-term observational survey aimed at discovering late-time interaction between the ejecta of hydrogen-poor Type I supernovae (SNe I) and the hydrogen-rich envelope expelled from the progenitor star several decades/centuries before explosion. The expelled envelope, moving with a velocity of ∼10–100 km s{sup −1}, is expected to be caught up by the fast-moving SN ejecta several years/decades after explosion, depending on the history of the mass-loss process acting in the progenitor star prior to explosion. The collision between the SN ejecta and the circumstellar envelope results in net emission in the Balmer lines, especially H α . We look for signs of late-time H α emission in older SNe Ia/Ibc/IIb with hydrogen-poor ejecta via narrowband imaging. Continuum-subtracted H α emission has been detected for 13 point sources: 9 SN Ibc, 1 SN IIb, and 3 SN Ia events. Thirty-eight SN sites were observed on at least two epochs, from which three objects (SN 1985F, SN 2005kl, and SN 2012fh) showed significant temporal variation in the strength of their H α emission in our Direct Imaging Auxiliary Functions Instrument (DIAFI) data. This suggests that the variable emission is probably not due to nearby H ii regions unassociated with the SN and hence is an important additional hint that ejecta–circumstellar medium interaction may take place in these systems. Moreover, we successfully detected the late-time H α emission from the Type Ib SN 2014C, which was recently discovered as a strongly interacting SN in various (radio, infrared, optical, and X-ray) bands.

  20. Calculation of CWKB envelope in boson and fermion productions

    Indian Academy of Sciences (India)

    Abstract. We present the calculation of envelope of boson and of both low- and high- mass fermion production at the end of inflation when the coherently oscillating inflatons decay into bosons and fermions. We consider three different models of inflation and use. CWKB technique to calculate the envelope to understand the ...

  1. Precollisional velocity correlations in a hard-disk fluid with dissipative collisions.

    Science.gov (United States)

    Soto, R; Piasecki, J; Mareschal, M

    2001-09-01

    Velocity correlations are studied in granular fluids, modeled by the inelastic hard sphere gas. Making a density expansion of the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy for the evolution of the reduced distributions, we predict the presence of precollisional velocity correlations. They are created by the propagation through correlated sequences of collisions (ring events) of the velocity correlations generated after dissipative collisions. The correlations have their origin in the dissipative character of collisions, being always present in granular fluids. The correlations, that manifest microscopically as an alignment of the velocities of a colliding pair produce modifications of collisional averages, in particular, the virial pressure. The pressure shows a reduction with respect to the elastic case as a consequence of the velocity alignment. Good qualitative agreement is obtained for the comparison of the numerical evaluations of the obtained analytical expressions and molecular dynamics results that showed evidence of precollisional velocity correlations [R. Soto and M. Mareschal, Phys. Rev. E 63, 041303 (2001)].

  2. Cosmological evolution of p-brane networks

    International Nuclear Information System (INIS)

    Sousa, L.; Avelino, P. P.

    2011-01-01

    In this paper we derive, directly from the Nambu-Goto action, the relevant components of the acceleration of cosmological featureless p-branes, extending previous analysis based on the field theory equations in the thin-brane limit. The component of the acceleration parallel to the velocity is at the core of the velocity-dependent one-scale model for the evolution of p-brane networks. We use this model to show that, in a decelerating expanding universe in which the p-branes are relevant cosmologically, interactions cannot lead to frustration, except for fine-tuned nonrelativistic networks with a dimensionless curvature parameter k<<1. We discuss the implications of our findings for the cosmological evolution of p-brane networks.

  3. Stable numerical method in computation of stellar evolution

    International Nuclear Information System (INIS)

    Sugimoto, Daiichiro; Eriguchi, Yoshiharu; Nomoto, Ken-ichi.

    1982-01-01

    To compute the stellar structure and evolution in different stages, such as (1) red-giant stars in which the density and density gradient change over quite wide ranges, (2) rapid evolution with neutrino loss or unstable nuclear flashes, (3) hydrodynamical stages of star formation or supernova explosion, (4) transition phases from quasi-static to dynamical evolutions, (5) mass-accreting or losing stars in binary-star systems, and (6) evolution of stellar core whose mass is increasing by shell burning or decreasing by penetration of convective envelope into the core, we face ''multi-timescale problems'' which can neither be treated by simple-minded explicit scheme nor implicit one. This problem has been resolved by three prescriptions; one by introducing the hybrid scheme suitable for the multi-timescale problems of quasi-static evolution with heat transport, another by introducing also the hybrid scheme suitable for the multi-timescale problems of hydrodynamic evolution, and the other by introducing the Eulerian or, in other words, the mass fraction coordinate for evolution with changing mass. When all of them are combined in a single computer code, we can compute numerically stably any phase of stellar evolution including transition phases, as far as the star is spherically symmetric. (author)

  4. High frequency vibration analysis by the complex envelope vectorization.

    Science.gov (United States)

    Giannini, O; Carcaterra, A; Sestieri, A

    2007-06-01

    The complex envelope displacement analysis (CEDA) is a procedure to solve high frequency vibration and vibro-acoustic problems, providing the envelope of the physical solution. CEDA is based on a variable transformation mapping the high frequency oscillations into signals of low frequency content and has been successfully applied to one-dimensional systems. However, the extension to plates and vibro-acoustic fields met serious difficulties so that a general revision of the theory was carried out, leading finally to a new method, the complex envelope vectorization (CEV). In this paper the CEV method is described, underlying merits and limits of the procedure, and a set of applications to vibration and vibro-acoustic problems of increasing complexity are presented.

  5. Aspherical Dust Envelopes Around Oxygen-Rich AGB Stars

    Directory of Open Access Journals (Sweden)

    Kyung-Won Suh

    2006-12-01

    Full Text Available We model the aspherical dust envelopes around O-rich AGB stars. We perform the radiative transfer model calculations for axisymmetric dust distributions. We simulate what could be observed from the aspherical dust envelopes around O-rich AGB stars by presenting the model spectral energy distributions and images at various wavelengths for different optical depths and viewing angles. The model results are very different from the ones with spherically symmetric geometry.

  6. Condensins Exert Force on Chromatin-Nuclear Envelope Tethers to Mediate Nucleoplasmic Reticulum Formation in Drosophila melanogaster

    Science.gov (United States)

    Bozler, Julianna; Nguyen, Huy Q.; Rogers, Gregory C.; Bosco, Giovanni

    2014-01-01

    Although the nuclear envelope is known primarily for its role as a boundary between the nucleus and cytoplasm in eukaryotes, it plays a vital and dynamic role in many cellular processes. Studies of nuclear structure have revealed tissue-specific changes in nuclear envelope architecture, suggesting that its three-dimensional structure contributes to its functionality. Despite the importance of the nuclear envelope, the factors that regulate and maintain nuclear envelope shape remain largely unexplored. The nuclear envelope makes extensive and dynamic interactions with the underlying chromatin. Given this inexorable link between chromatin and the nuclear envelope, it is possible that local and global chromatin organization reciprocally impact nuclear envelope form and function. In this study, we use Drosophila salivary glands to show that the three-dimensional structure of the nuclear envelope can be altered with condensin II-mediated chromatin condensation. Both naturally occurring and engineered chromatin-envelope interactions are sufficient to allow chromatin compaction forces to drive distortions of the nuclear envelope. Weakening of the nuclear lamina further enhanced envelope remodeling, suggesting that envelope structure is capable of counterbalancing chromatin compaction forces. Our experiments reveal that the nucleoplasmic reticulum is born of the nuclear envelope and remains dynamic in that they can be reabsorbed into the nuclear envelope. We propose a model where inner nuclear envelope-chromatin tethers allow interphase chromosome movements to change nuclear envelope morphology. Therefore, interphase chromatin compaction may be a normal mechanism that reorganizes nuclear architecture, while under pathological conditions, such as laminopathies, compaction forces may contribute to defects in nuclear morphology. PMID:25552604

  7. Condensins exert force on chromatin-nuclear envelope tethers to mediate nucleoplasmic reticulum formation in Drosophila melanogaster.

    Science.gov (United States)

    Bozler, Julianna; Nguyen, Huy Q; Rogers, Gregory C; Bosco, Giovanni

    2014-12-30

    Although the nuclear envelope is known primarily for its role as a boundary between the nucleus and cytoplasm in eukaryotes, it plays a vital and dynamic role in many cellular processes. Studies of nuclear structure have revealed tissue-specific changes in nuclear envelope architecture, suggesting that its three-dimensional structure contributes to its functionality. Despite the importance of the nuclear envelope, the factors that regulate and maintain nuclear envelope shape remain largely unexplored. The nuclear envelope makes extensive and dynamic interactions with the underlying chromatin. Given this inexorable link between chromatin and the nuclear envelope, it is possible that local and global chromatin organization reciprocally impact nuclear envelope form and function. In this study, we use Drosophila salivary glands to show that the three-dimensional structure of the nuclear envelope can be altered with condensin II-mediated chromatin condensation. Both naturally occurring and engineered chromatin-envelope interactions are sufficient to allow chromatin compaction forces to drive distortions of the nuclear envelope. Weakening of the nuclear lamina further enhanced envelope remodeling, suggesting that envelope structure is capable of counterbalancing chromatin compaction forces. Our experiments reveal that the nucleoplasmic reticulum is born of the nuclear envelope and remains dynamic in that they can be reabsorbed into the nuclear envelope. We propose a model where inner nuclear envelope-chromatin tethers allow interphase chromosome movements to change nuclear envelope morphology. Therefore, interphase chromatin compaction may be a normal mechanism that reorganizes nuclear architecture, while under pathological conditions, such as laminopathies, compaction forces may contribute to defects in nuclear morphology. Copyright © 2015 Bozler et al.

  8. Glycosylation in HIV-1 envelope glycoprotein and its biological implications

    KAUST Repository

    Ho, Yung Shwen

    2013-08-01

    Glycosylation of HIV-1 envelope proteins (Env gp120/gp41) plays a vital role in viral evasion from the host immune response, which occurs through the masking of key neutralization epitopes and the presentation of the Env glycosylation as \\'self\\' to the host immune system. Env glycosylation is generally conserved, yet its continual evolution plays an important role in modulating viral infectivity and Env immunogenicity. Thus, it is believed that Env glycosylation, which is a vital part of the HIV-1 architecture, also controls intra- and inter-clade genetic variations. Discerning intra- and inter-clade glycosylation variations could therefore yield important information for understanding the molecular and biological differences between HIV clades and may assist in effectively designing Env-based immunogens and in clearly understanding HIV vaccines. This review provides an in-depth perspective of various aspects of Env glycosylation in the context of HIV-1 pathogenesis. © 2013 Future Medicine Ltd.

  9. Spectral envelope sensitivity of musical instrument sounds.

    Science.gov (United States)

    Gunawan, David; Sen, D

    2008-01-01

    It is well known that the spectral envelope is a perceptually salient attribute in musical instrument timbre perception. While a number of studies have explored discrimination thresholds for changes to the spectral envelope, the question of how sensitivity varies as a function of center frequency and bandwidth for musical instruments has yet to be addressed. In this paper a two-alternative forced-choice experiment was conducted to observe perceptual sensitivity to modifications made on trumpet, clarinet and viola sounds. The experiment involved attenuating 14 frequency bands for each instrument in order to determine discrimination thresholds as a function of center frequency and bandwidth. The results indicate that perceptual sensitivity is governed by the first few harmonics and sensitivity does not improve when extending the bandwidth any higher. However, sensitivity was found to decrease if changes were made only to the higher frequencies and continued to decrease as the distorted bandwidth was widened. The results are analyzed and discussed with respect to two other spectral envelope discrimination studies in the literature as well as what is predicted from a psychoacoustic model.

  10. The cell envelope glycoconjugates of Mycobacterium tuberculosis

    Science.gov (United States)

    Angala, Shiva Kumar; Belardinelli, Juan Manuel; Huc-Claustre, Emilie; Wheat, William H.; Jackson, Mary

    2015-01-01

    Tuberculosis (TB) remains the second most common cause of death due to a single infectious agent. The cell envelope of Mycobacterium tuberculosis (Mtb), the causative agent of the disease in humans, is a source of unique glycoconjugates and the most distinctive feature of the biology of this organism. It is the basis of much of Mtb pathogenesis and one of the major causes of its intrinsic resistance to chemotherapeutic agents. At the same time, the unique structures of Mtb cell envelope glycoconjugates, their antigenicity and essentiality for mycobacterial growth provide opportunities for drug, vaccine, diagnostic and biomarker development, as clearly illustrated by recent advances in all of these translational aspects. This review focuses on our current understanding of the structure and biogenesis of Mtb glycoconjugates with particular emphasis on one of most intriguing and least understood aspect of the physiology of mycobacteria: the translocation of these complex macromolecules across the different layers of the cell envelope. It further reviews the rather impressive progress made in the last ten years in the discovery and development of novel inhibitors targeting their biogenesis. PMID:24915502

  11. Mass-radius relations and core-envelope decompositions of super-Earths and sub-Neptunes

    Energy Technology Data Exchange (ETDEWEB)

    Howe, Alex R.; Burrows, Adam [Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544 (United States); Verne, Wesley, E-mail: arhowe@astro.princeton.edu, E-mail: burrows@astro.princeton.edu [Department of Computer Science, Princeton University, Princeton, NJ 08544 (United States)

    2014-06-01

    Many exoplanets have been discovered with radii of 1-4 R {sub ⊕}, between that of Earth and Neptune. A number of these are known to have densities consistent with solid compositions, while others are 'sub-Neptunes' likely to have significant H{sub 2}-He envelopes. Future surveys will no doubt significantly expand these populations. In order to understand how the measured masses and radii of such planets can inform their structures and compositions, we construct models both for solid layered planets and for planets with solid cores and gaseous envelopes, exploring a range of core masses, H{sub 2}-He envelope masses, and associated envelope entropies. For planets in the super-Earth/sub-Neptune regime for which both radius and mass are measured, we estimate how each is partitioned into a solid core and gaseous envelope, associating a specific core mass and envelope mass with a given exoplanet. We perform this decomposition for both ''Earth-like'' rock-iron cores and pure ice cores, and find that the necessary gaseous envelope masses for this important sub-class of exoplanets must range very widely from zero to many Earth masses, even for a given core mass. This result bears importantly on exoplanet formation and envelope evaporation processes.

  12. Mass-radius relations and core-envelope decompositions of super-Earths and sub-Neptunes

    International Nuclear Information System (INIS)

    Howe, Alex R.; Burrows, Adam; Verne, Wesley

    2014-01-01

    Many exoplanets have been discovered with radii of 1-4 R ⊕ , between that of Earth and Neptune. A number of these are known to have densities consistent with solid compositions, while others are 'sub-Neptunes' likely to have significant H 2 -He envelopes. Future surveys will no doubt significantly expand these populations. In order to understand how the measured masses and radii of such planets can inform their structures and compositions, we construct models both for solid layered planets and for planets with solid cores and gaseous envelopes, exploring a range of core masses, H 2 -He envelope masses, and associated envelope entropies. For planets in the super-Earth/sub-Neptune regime for which both radius and mass are measured, we estimate how each is partitioned into a solid core and gaseous envelope, associating a specific core mass and envelope mass with a given exoplanet. We perform this decomposition for both ''Earth-like'' rock-iron cores and pure ice cores, and find that the necessary gaseous envelope masses for this important sub-class of exoplanets must range very widely from zero to many Earth masses, even for a given core mass. This result bears importantly on exoplanet formation and envelope evaporation processes.

  13. Solar envelope zoning: application to the city planning process. Los Angeles case study

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Solar envelope zoning represents a promising approach to solar access protection. A solar envelope defines the volume within which a building will not shade adjacent lots or buildings. Other solar access protection techniques, such as privately negotiated easements, continue to be tested and implemented but none offer the degree of comprehensiveness evident in this approach. Here, the City of Los Angeles, through the Mayor's Energy Office, the City Planning Department, and the City Attorney's Office, examine the feasibility of translating the concept of solar envelopes into zoning techniques. They concluded that envelope zoning is a fair and consistent method of guaranteeing solar access, but problems of complexity and uncertainty may limit its usefulness. Envelope zoning may be inappropriate for the development of high density centers and for more restrictive community plans. Aids or tools to administer envelope zoning need to be developed. Finally, some combination of approaches, including publicly recorded easements, subdivision approval and envelope zoning, need to be adopted to encourage solar use in cities. (MHR)

  14. Sulfur chemistry in the envelope of VY Canis Majoris: Detailed analysis of SO and SO2 emission

    International Nuclear Information System (INIS)

    Adande, G. R.; Edwards, J. L.; Ziurys, L. M.

    2013-01-01

    Detailed radiative transfer modeling has been carried out for SO 2 and SO originating in the envelope of the O-rich supergiant star VY Canis Majoris (VY CMa). A total of 27 transitions of SO 2 and 7 transitions of SO lying in the energy range 3.0-138.2 cm –1 were analyzed using a new non-LTE radiative transfer code that incorporates non-spherical geometries. The spectra were primarily obtained from the Arizona Radio Observatory (ARO) 1 mm spectral survey of VY CMa, conducted with the Submillimeter Telescope; additional lines were measured with the ARO 12 m antenna at 2 and 3 mm. SO 2 and SO were found to arise from five distinct outflows within the envelope, four which are asymmetric with respect to the star. Three flows arise from high-velocity red-shifted material, one from a blue-shifted wind, and the final from a classic 'spherical' expansion. In the spherical component, the peak fractional abundance, relative to H 2 , of both molecules is f ∼ 2.5 × 10 –7 at r ∼ 25 R * , and steadily decreases outward. SO 2 appears to be a 'parent' molecule, formed near the stellar photosphere. In the asymmetric outflows, both SO and SO 2 are more prominent at large stellar radii in dense (10 6 -10 7 cm –3 ), clumpy material, achieving their maximum abundance between 200 and 600 R * with f ∼ 3.0 × 10 –8 -1.5 × 10 –7 . These results suggest that in the collimated outflows, both species are either produced by shock chemistry or are remnant inner shell material swept up in the high-velocity winds.

  15. Subphotospheric fluctuations in magnetized radiative envelopes: contribution from unstable magnetosonic waves

    Science.gov (United States)

    Sen, Koushik; Fernández, Rodrigo; Socrates, Aristotle

    2018-06-01

    We examine the excitation of unstable magnetosonic waves in the radiative envelopes of intermediate- and high-mass stars with a magnetic field of ˜kG strength. Wind clumping close to the star and microturbulence can often be accounted for when including small-scale, subphotospheric density or velocity perturbations. Compressional waves - with wavelengths comparable to or shorter than the gas pressure scale height - can be destabilized by the radiative flux in optically thick media when a magnetic field is present, in a process called the radiation-driven magneto-acoustic instability (RMI). The instability does not require radiation or magnetic pressure to dominate over gas pressure, and acts independently of subsurface convection zones. Here we evaluate the conditions for the RMI to operate on a grid of stellar models covering a mass range 3-40 M⊙ at solar metallicity. For a uniform 1 kG magnetic field, fast magnetosonic modes are unstable down to an optical depth of a few tens, while unstable slow modes extend beyond the depth of the iron convection zone. The qualitative behaviour is robust to magnetic field strength variations by a factor of a few. When combining our findings with previous results for the saturation amplitude of the RMI, we predict velocity fluctuations in the range ˜0.1-10 km s-1. These amplitudes are a monotonically increasing function of the ratio of radiation to gas pressure, or alternatively, of the zero-age main sequence mass.

  16. Evolution of star-bearing molecular clouds: the high-velocity HCO+ flow in NGC 2071

    International Nuclear Information System (INIS)

    Wootten, A.; Loren, R.B.; Sandqvist, A.; Friberg, P.; Hjalmarson, Aa.

    1984-01-01

    The J = 1-0 and J = 302 lines of HCO + and H 13 CO + have been observed in the molecular cloud NGC 2071, where they map the dense portions of a bidirectional molecular flow. The high resolution (42'') of our observations has enabled us to determine the distribution of mass, momentum , and energy in the flow as a function of projected distance from the cluster. Both momentum and energy diminish with distance from the central cluster of infrared sources. The highest velocities at a given intensity in this dense flow occur in a limited region coincident with an infrared cluster and the densest part of the molecular cloud. Higher resolution (33'') CO and 13 CO observations reveal that the extreme velocities in the flow occur in regions displaced on opposite sides of the cluster, suggesting that the flow only becomes visible in molecular line emission at distances approx.0.1 pc from its supposed source. Lower velocity material containing most of the mass of the flow is found over larger regions, as expected if the flow has decelerated as it has evolved. Assuming conservation of momentum, the historical rate of momentum injection is found to have been roughly constant over a period of 10 4 years, suggesting a constancy of the average luminosity of the central cluster over that time. The J = 3--2 HCO + profile does not show the absorption which is a prominent feature of the J = 1--0 profile, and the J = 3--2 line appears to be a useful probe of conditions specific to the dense cores of clouds. The high velocity HCO + emission correlates very well with spatial and velocity events of molecular hydrogen emission. The abundance of HCO + [X(HCO + )approx.10 -8 ], and by inference the electron density, is similar in material at all velocities

  17. Magnified Neural Envelope Coding Predicts Deficits in Speech Perception in Noise.

    Science.gov (United States)

    Millman, Rebecca E; Mattys, Sven L; Gouws, André D; Prendergast, Garreth

    2017-08-09

    Verbal communication in noisy backgrounds is challenging. Understanding speech in background noise that fluctuates in intensity over time is particularly difficult for hearing-impaired listeners with a sensorineural hearing loss (SNHL). The reduction in fast-acting cochlear compression associated with SNHL exaggerates the perceived fluctuations in intensity in amplitude-modulated sounds. SNHL-induced changes in the coding of amplitude-modulated sounds may have a detrimental effect on the ability of SNHL listeners to understand speech in the presence of modulated background noise. To date, direct evidence for a link between magnified envelope coding and deficits in speech identification in modulated noise has been absent. Here, magnetoencephalography was used to quantify the effects of SNHL on phase locking to the temporal envelope of modulated noise (envelope coding) in human auditory cortex. Our results show that SNHL enhances the amplitude of envelope coding in posteromedial auditory cortex, whereas it enhances the fidelity of envelope coding in posteromedial and posterolateral auditory cortex. This dissociation was more evident in the right hemisphere, demonstrating functional lateralization in enhanced envelope coding in SNHL listeners. However, enhanced envelope coding was not perceptually beneficial. Our results also show that both hearing thresholds and, to a lesser extent, magnified cortical envelope coding in left posteromedial auditory cortex predict speech identification in modulated background noise. We propose a framework in which magnified envelope coding in posteromedial auditory cortex disrupts the segregation of speech from background noise, leading to deficits in speech perception in modulated background noise. SIGNIFICANCE STATEMENT People with hearing loss struggle to follow conversations in noisy environments. Background noise that fluctuates in intensity over time poses a particular challenge. Using magnetoencephalography, we demonstrate

  18. High pressure treatment under subfreezing temperature results in drastic inactivation of enveloped and non-enveloped viruses.

    Science.gov (United States)

    Kishida, T; Cui, F-D; Ohgitani, E; Gao, F; Hayakawa, K; Mazda, O

    2013-08-01

    Some viruses are sensitive to high pressure. The freeze-pressure generation method (FPGM) applies pressure as high as 250 MPa on a substance, simply by freezing a pressure-resistant reservoir in which the substance is immersed in water. Here we examined whether the FPGM successfully inactivates herpes simplex virus type 1 (HSV-1), an enveloped DNA virus belonging to the human Herpesviridae, and encephalomyocarditis virus (EMCV), an envelope-free RNA virus belonging to the Picornaviridae. After the treatment, HSV-1 drastically reduced the ability to form plaque in Vero cells in vitro as well as to kill mice in vivo. EMCV that had been pressurized failed to proliferate in HeLa cells and induce interferon response. The results suggest that the FPGM provides a feasible procedure to inactivate a broad spectrum of viruses.

  19. Microclimatic conditions at the external surface of building envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Kragh, M.K.

    1998-12-31

    The project is described, the motivation for the research and the microclimate is defined in relation to both building physics research and applications. Air temperatur, air humidity, solar radiation and air velocity are briefly considered, whilst driving rain and long-wave radiation are described in more detail. Convective heat transfer and surface coefficients are discussed, although they are not microclimatic factors, merely resulting from combinations of such factors. They are included as they are important in relation to transfer of heat and moisture at the surface of the building envelope. Driving rain measurement is the main area of interest, including development of measurement equipment. Long-wave irradiation is measured and compared with empirical formulae from the literature. Window convection heat transfer is another main area of interest. Nocturnal convective heat transfer from a double pane glazing is studied and measurement principles are discussed. Finally, a compilation of meteorological data for hygrothermal simulations, including estimation of driving rain, is described. System error estimation in relation to the window convection measurements, design notes on an apparatus for external convection measurement, formulae for conversion of relative humitity and dry-bulb temperature into dew point temperature. (EG) 66 refs.

  20. Microclimatic conditions at the external surface of building envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Kragh, M K

    1999-12-31

    The project is described, the motivation for the research and the microclimate is defined in relation to both building physics research and applications. Air temperatur, air humidity, solar radiation and air velocity are briefly considered, whilst driving rain and long-wave radiation are described in more detail. Convective heat transfer and surface coefficients are discussed, although they are not microclimatic factors, merely resulting from combinations of such factors. They are included as they are important in relation to transfer of heat and moisture at the surface of the building envelope. Driving rain measurement is the main area of interest, including development of measurement equipment. Long-wave irradiation is measured and compared with empirical formulae from the literature. Window convection heat transfer is another main area of interest. Nocturnal convective heat transfer from a double pane glazing is studied and measurement principles are discussed. Finally, a compilation of meteorological data for hygrothermal simulations, including estimation of driving rain, is described. System error estimation in relation to the window convection measurements, design notes on an apparatus for external convection measurement, formulae for conversion of relative humitity and dry-bulb temperature into dew point temperature. (EG) 66 refs.

  1. A study of some Be star envelopes

    International Nuclear Information System (INIS)

    Kitchen, C.R.

    1976-01-01

    The envelope model and emission region radius of six Be stars have been determined from 36 lines on 15 spectra taken with the Isaac Newton telescope. The results have been compared with earlier determinations to search for changes with the time. No definite evidence for such changes has been found, although there may be an indication of a change in phi Per. A re-determination of the errors involved in the method of analysis shows that these are smaller than previously estimated and range from about 9% to 35% for both envelope model and emission region radius. (Auth.)

  2. A controlled trial of envelope colour for increasing response rates in older women.

    Science.gov (United States)

    Mitchell, Natasha; Hewitt, Catherine E; Torgerson, David J

    2011-06-01

    Postal questionnaires are widely used in health research to provide measurable outcomes in areas such as quality of life. Participants who fail to return postal questionnaires can introduce non-response bias. Previous studies within populations over the age of 65 years have shown that response rates amongst older people can be 60% or less. The current study sought to investigate whether envelope colour affected response rates in a study about the effectiveness of screening older women for osteoporosis. A total of 2803 eligible female participants aged between 70 and 85 were sent an invitation pack from their GP practice. The invitation was either in a brown or white envelope and contained a matching pre-paid reply envelope. A study questionnaire was also sent out in brown or white envelopes 1 week after consenting to participate in the trial. The overall response rate was 78%. There was little evidence of an effect of envelope colour on response to the invitation to participate in the trial (OR 1.04, 95% CI 0.87-1.24). Similarly, there was no influence of envelope colour on the number of participants returning their questionnaires (OR 0.99, 95% CI 0.60-1.63). There was weak evidence of an effect of envelope colour on the response rates of the consent process (OR 0.86, 95% CI 0.74-1.00). When we updated a recent meta-analysis with the results of this study, there was a non-statistically- significant trend for greater response rates with brown envelopes compared with white envelopes (OR 1.19, 95% CI 0.86-1.64, I2=92%). However, the results where influenced by one study and when this study was excluded the pooled estimate was 0.98 (95% CI 0.89-1.08, I2=0%). This study found no evidence to suggest envelope colour has an effect on response to participate in a trial or questionnaire returns. There is weak evidence to suggest envelope colour may affect consent into a trial.

  3. The psychic envelopes in psychoanalytic theories of infancy.

    Directory of Open Access Journals (Sweden)

    Denis eMellier

    2014-07-01

    Full Text Available This paper aims to review the topic of psychic envelopes and to sketch the main outlines of this concept in infancy. We first explore the origins of the concept in Freud's 'protective shield' and then its development in adult psychoanalysis before going on to see how this fits in infancy with post-Bionian psychoanalysis and development. Four central notions guide this review:1 Freud's protective shield describes a barrier to protect the psychic apparatus against potentially overflowing trauma. It is a core notion which highlights a serious clinical challenge for patients for whom the shield is damaged or faulty: the risk of confusion of borders between the internal/external world, conscious/unconscious, mind/body, or self-conservation/sexuality.2 Anzieu's Skin-Ego is defined by the different senses of the body. The different layers of experienced sensation, of this body-ego, go on to form the psychic envelope. This theory contributes to our understanding of how early trauma, due to the failures of maternal care, can continue to have an impact in adult life. 3 Bick's psychic skin establishes the concept in relation to infancy. The mother’s containing functions allow a first psychic skin to develop, which then defines an infant’s psychic space and affords the infant a degree of self-containment. Houzel then conceptualized this process as a stabilization of drive forces.4 Stern's narrative envelope derives from the intersection between psychoanalysis and neuroscience. It gives us another way to conceptualise the development of pre-verbal communication. It may also pave the way for a finer distinction of different types of envelopes.Ultimately, in this review we find that psychic envelopes in infancy can be viewed from four different perspectives (economic, topographical, dynamic and genetic and recommend further investigation.

  4. Variation of Quench Propagation Velocities in YBCO Cables

    CERN Document Server

    Härö, E.; Stenvall, A.; 10.1007/s10948-015-2976-y

    2015-01-01

    changes during the quench. Due to the large temperature margin between the operation and the current sharing temperatures, the normal zone does not propagate with the temperature front. This means that the temperature will rise in a considerably larger volume when compared to the quenched volume. Thus, the evolution of the temperature distribution below current sharing temperature Tcs after the quench onset affects the normal zone propagation velocity in HTS more than in LTS coils. This can be seen as an acceleration of the quench propagation velocities while the quench evolves when margin to Tcs is high. In this paper we scrutinize quench propagation in a stack of YBCO cables with an in-house finite element method software which solves the heat diffusion equation. We compute the longitudinal and transverse normal zone propagation velocities at various distances from the hot spot to demonstrate the distance-variation...

  5. HIV-1 envelope glycoprotein

    Science.gov (United States)

    Caulfield, Michael; Cupo, Albert; Dean, Hansi; Hoffenberg, Simon; King, C. Richter; Klasse, P. J.; Marozsan, Andre; Moore, John P.; Sanders, Rogier W.; Ward, Andrew; Wilson, Ian; Julien, Jean-Philippe

    2017-08-22

    The present application relates to novel HIV-1 envelope glycoproteins, which may be utilized as HIV-1 vaccine immunogens, and antigens for crystallization, electron microscopy and other biophysical, biochemical and immunological studies for the identification of broad neutralizing antibodies. The present invention encompasses the preparation and purification of immunogenic compositions, which are formulated into the vaccines of the present invention.

  6. Handbook on data envelopment analysis

    CERN Document Server

    Cooper, William W; Zhu, Joe

    2011-01-01

    Focusing on extensively used Data Envelopment Analysis topics, this volume aims to both describe the state of the field and extend the frontier of DEA research. New chapters include DEA models for DMUs, network DEA, models for supply chain operations and applications, and new developments.

  7. Monte Carlo investigation of the low-dose envelope from scanned proton pencil beams

    International Nuclear Information System (INIS)

    Sawakuchi, Gabriel O; Titt, Uwe; Mirkovic, Dragan; Ciangaru, George; Zhu, X Ronald; Sahoo, Narayan; Gillin, Michael T; Mohan, Radhe

    2010-01-01

    Scanned proton pencil beams carry a low-dose envelope that extends several centimeters from the individual beam's central axis. Thus, the total delivered dose depends on the size of the target volume and the corresponding number and intensity of beams necessary to cover the target volume uniformly. This dependence must be considered in dose calculation algorithms used by treatment planning systems. In this work, we investigated the sources of particles contributing to the low-dose envelope using the Monte Carlo technique. We used a validated model of our institution's scanning beam line to determine the contributions to the low-dose envelope from secondary particles created in a water phantom and particles scattered in beam line components. Our results suggested that, for high-energy beams, secondary particles produced by nuclear interactions in the water phantom are the major contributors to the low-dose envelope. For low-energy beams, the low-dose envelope is dominated by particles undergoing multiple Coulomb scattering in the beam line components and water phantom. Clearly, in the latter situation, the low-dose envelope depends directly on beam line design features. Finally, we investigated the dosimetric consequences of the low-dose envelope. Our results showed that if not modeled properly the low-dose envelope may cause clinically relevant dose disturbance in the target volume. This work suggested that this low-dose envelope is beam line specific for low-energy beams, should be thoroughly experimentally characterized and validated during commissioning of the treatment planning system, and therefore is of great concern for accurate delivery of proton scanning beam doses.

  8. Time-Dependent Simulations of the Formation and Evolution of Disk-Accreted Atmospheres Around Terrestrial Planets

    Science.gov (United States)

    Stoekl, Alexander; Dorfi, Ernst

    2014-05-01

    In the early, embedded phase of evolution of terrestrial planets, the planetary core accumulates gas from the circumstellar disk into a planetary envelope. This atmosphere is very significant for the further thermal evolution of the planet by forming an insulation around the rocky core. The disk-captured envelope is also the staring point for the atmospheric evolution where the atmosphere is modified by outgassing from the planetary core and atmospheric mass loss once the planet is exposed to the radiation field of the host star. The final amount of persistent atmosphere around the evolved planet very much characterizes the planet and is a key criterion for habitability. The established way to study disk accumulated atmospheres are hydrostatic models, even though in many cases the assumption of stationarity is unlikely to be fulfilled. We present, for the first time, time-dependent radiation hydrodynamics simulations of the accumulation process and the interaction between the disk-nebula gas and the planetary core. The calculations were performed with the TAPIR-Code (short for The adaptive, implicit RHD-Code) in spherical symmetry solving the equations of hydrodynamics, gray radiative transport, and convective energy transport. The models range from the surface of the solid core up to the Hill radius where the planetary envelope merges into the surrounding protoplanetary disk. Our results show that the time-scale of gas capturing and atmospheric growth strongly depends on the mass of the solid core. The amount of atmosphere accumulated during the lifetime of the protoplanetary disk (typically a few Myr) varies accordingly with the mass of the planet. Thus, a core with Mars-mass will end up with about 10 bar of atmosphere while for an Earth-mass core, the surface pressure reaches several 1000 bar. Even larger planets with several Earth masses quickly capture massive envelopes which in turn become gravitationally unstable leading to runaway accretion and the eventual

  9. Nonlinear evolution of astrophysical Alfven waves

    Science.gov (United States)

    Spangler, S. R.

    1984-01-01

    Nonlinear Alfven waves were studied using the derivative nonlinear Schrodinger equation as a model. The evolution of initial conditions, such as envelope solitons, amplitude-modulated waves, and band-limited noise was investigated. The last two furnish models for naturally occurring Alfven waves in an astrophysical plasma. A collapse instability in which a wave packet becomes more intense and of smaller spatial extent was analyzed. It is argued that this instability leads to enhanced plasma heating. In studies in which the waves are amplified by an electron beam, the instability tends to modestly inhibit wave growth.

  10. Dynamical model for the dusty envelope around the symbiotic nova PU Vulpeculae

    International Nuclear Information System (INIS)

    Men'shchikov, A.B.; Tutukov, A.V.; Shustov, B.M.; Ergma, E.V.

    1985-01-01

    An evolutionary model for PU Vul, Object Kuwano--Honda, indicates that the deep 1980--1981 minimum may have resulted from detachment of a dust envelope. The envelope ejection process and the changes in the infrared spectrum are studied numerically; evidently the envelope departs strongly from spherical symmetry. The bluing observed at minimum light might have been due to dissipation of shock energy

  11. The Taxonomy of Blue Amorphous Galaxies. II. Structure and Evolution

    Science.gov (United States)

    Marlowe, Amanda T.; Meurer, Gerhardt R.; Heckman, Timothy M.

    1999-09-01

    Dwarf galaxies play an important role in our understanding of galaxy formation and evolution, and starbursts are believed to affect the structure and evolution of dwarf galaxies strongly. We have therefore embarked on a systematic study of 12 of the nearest dwarf galaxies thought to be undergoing bursts of star formation. These were selected primarily by their morphological type (blue ``amorphous'' galaxies). We show that these blue amorphous galaxies are not physically distinguishable from dwarfs selected as starbursting by other methods, such as blue compact dwarfs (BCDs) and H II galaxies. All these classes exhibit surface brightness profiles that are exponential in the outer regions (r>~1.5re) but often have a predominantly central blue excess, suggesting a young burst in an older, redder galaxy. Typically, the starbursting ``cores'' are young (~107-108 yr) events compared to the older (~109-1010 yr) underlying galaxy (the ``envelope''). The ratio of the core to envelope in blue light ranges from essentially zero to about 2. These starbursts are therefore modest events involving only a few percent of the stellar mass. The envelopes have surface brightnesses that are much higher than typical dwarf irregular (dI) galaxies, so it is unlikely that there is a straightforward evolutionary relation between typical dIs and dwarf starburst galaxies. Instead we suggest that amorphous galaxies may repeatedly cycle through starburst and quiescent phases, corresponding to the galaxies with strong and weak/absent cores, respectively. Once amorphous galaxies use up the available gas (either through star formation or galactic winds) so that star formation is shut off, the faded remnants would strongly resemble dwarf elliptical galaxies. However, in the current cosmological epoch, this is evidently a slow process that is the aftermath of a series of many weak, recurring bursts. Present-day dE's must have experienced more rapid and intense evolution than this in the distant past.

  12. Semiparametric Power Envelopes for Tests of the Unit Root Hypothesis

    DEFF Research Database (Denmark)

    Jansson, Michael

    This paper derives asymptotic power envelopes for tests of the unit root hypothesis in a zero-mean AR(1) model. The power envelopes are derived using the limits of experiments approach and are semiparametric in the sense that the underlying error distribution is treated as an unknown...

  13. Envelope-like retrotransposons in the plant kingdom: evidence of their presence in gymnosperms (Pinus pinaster).

    Science.gov (United States)

    Miguel, Célia; Simões, Marta; Oliveira, Maria Margarida; Rocheta, Margarida

    2008-11-01

    Retroviruses differ from retrotransposons due to their infective capacity, which depends critically on the encoded envelope. Some plant retroelements contain domains reminiscent of the env of animal retroviruses but the number of such elements described to date is restricted to angiosperms. We show here the first evidence of the presence of putative env-like gene sequences in a gymnosperm species, Pinus pinaster (maritime pine). Using a degenerate primer approach for conserved domains of RNaseH gene, three clones from putative envelope-like retrotransposons (PpRT2, PpRT3, and PpRT4) were identified. The env-like sequences of P. pinaster clones are predicted to encode proteins with transmembrane domains. These sequences showed identity scores of up to 30% with env-like sequences belonging to different organisms. A phylogenetic analysis based on protein alignment of deduced aminoacid sequences revealed that these clones clustered with env-containing plant retrotransposons, as well as with retrotransposons from invertebrate organisms. The differences found among the sequences of maritime pine clones isolated here suggest the existence of different putative classes of env-like retroelements. The identification for the first time of env-like genes in a gymnosperm species may support the ancestrality of retroviruses among plants shedding light on their role in plant evolution.

  14. Dynamical evolution of star-forming regions - II. Basic kinematics

    Science.gov (United States)

    Parker, Richard J.; Wright, Nicholas J.

    2016-04-01

    We follow the dynamical evolution of young star-forming regions with a wide range of initial conditions and examine how the radial velocity dispersion, σ, evolves over time. We compare this velocity dispersion to the theoretically expected value for the velocity dispersion if a region were in virial equilibrium, σvir and thus assess the virial state (σ/σvir) of these systems. We find that in regions that are initially subvirial, or in global virial equilibrium but subvirial on local scales, the system relaxes to virial equilibrium within several million years, or roughly 25-50 crossing times, according to the measured virial ratio. However, the measured velocity dispersion, σ, appears to be a bad diagnostic of the current virial state of these systems as it suggests that they become supervirial when compared to the velocity dispersion estimated from the virial mass, σvir. We suggest that this discrepancy is caused by the fact that the regions are never fully relaxed, and that the early non-equilibrium evolution is imprinted in the one-dimensional velocity dispersion at these early epochs. If measured early enough (interquartile range (IQR) dispersion, with measures of spatial structure, places stronger constraints on the dynamical history of a region than using the velocity dispersion in isolation.

  15. Synthesis and transfer of galactolipids in the chloroplast envelope membranes of Arabidopsis thaliana.

    Science.gov (United States)

    Kelly, Amélie A; Kalisch, Barbara; Hölzl, Georg; Schulze, Sandra; Thiele, Juliane; Melzer, Michael; Roston, Rebecca L; Benning, Christoph; Dörmann, Peter

    2016-09-20

    Galactolipids [monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG)] are the hallmark lipids of photosynthetic membranes. The galactolipid synthases MGD1 and DGD1 catalyze consecutive galactosyltransfer reactions but localize to the inner and outer chloroplast envelopes, respectively, necessitating intermembrane lipid transfer. Here we show that the N-terminal sequence of DGD1 (NDGD1) is required for galactolipid transfer between the envelopes. Different diglycosyllipid synthases (DGD1, DGD2, and Chloroflexus glucosyltransferase) were introduced into the dgd1-1 mutant of Arabidopsis in fusion with N-terminal extensions (NDGD1 and NDGD2) targeting to the outer envelope. Reconstruction of DGDG synthesis in the outer envelope membrane was observed only with diglycosyllipid synthase fusion proteins carrying NDGD1, indicating that NDGD1 enables galactolipid translocation between envelopes. NDGD1 binds to phosphatidic acid (PA) in membranes and mediates PA-dependent membrane fusion in vitro. These findings provide a mechanism for the sorting and selective channeling of lipid precursors between the galactolipid pools of the two envelope membranes.

  16. Experimental study of the spatial distribution of the velocity field of sedimenting particles: mean velocity, pseudo-turbulent fluctuations, intrinsic convection

    International Nuclear Information System (INIS)

    Bernard-Michel, G.

    2001-01-01

    This work follows previous experiments from Nicolai et al. (95), Peysson and Guazzelli (98) and Segre et al. (97), which consisted in measures of the velocity of particles sedimenting in a liquid at low particular Reynolds numbers. Our goal, introduced in the first part with a bibliographic study, is to determinate the particles velocity fluctuations properties. The fluctuations are indeed of the same order as the mean velocity. We are proceeding with PIV Eulerian measures. The method is described in the second part. Its originality comes from measures obtained in a thin laser light sheet, from one side to the other of the cells, with a square section: the measures are therefore spatially localised. Four sets of cells and three sets of particles were used, giving access to ratios 'cell width over particle radius' ranging from about 50 up to 800. In the third part, we present the results concerning the velocity fluctuations structure and their spatial distribution. The intrinsic convection between to parallel vertical walls is also studied. The velocity fluctuations are organised in eddy structures. Their size (measured with correlation length) is independent of the volume fraction, contradicting the results of Segre et al. (97). The results concerning the velocity fluctuations spatial profiles - from one side to the other of the cell - confirm those published by Peysson and Guazzelli (98) in the case of stronger dilution. The evolution of the spatial mean velocity fluctuations confirms the results obtained by Segre et al. (97). The intrinsic convection is also observed in the case of strong dilutions. (author)

  17. Envelope proteins of bovine herpesvirus 1: immunological and biochemical studies

    International Nuclear Information System (INIS)

    Rodriguez Roque, L.L.

    1986-01-01

    The authors studied immunological and biochemical properties of the bovid herpesvirus 1 (BHV-1) envelope proteins in order to understand the pathogenesis of BHV-1 infection and to provide basic information for the production of effective subunit vaccines against BHV-1. Ten glycoproteins MW 180, 150, 130, 115, 97, 77, 74, 64, 55, and 45 kilodaltons (K), and a single non-glycosylated 108 K protein were quantitatively removed from purified BHV-1 virions by detergent treatment. These glycoproteins were present on the virion envelope and on the surface of BHV-1 infected cells. The quantitative removal from virions by treatment with nonionic detergents and their presence on the surface of infected cells indicate that 180/97, 150/77, and 130/74/55 K are major components of the BHV-1 envelope and are also the targets of virus neutralizing humoral immune response. Envelope glycoproteins of herpes simplex type 1 (HSV-1) bind immunoglobulin by the Fc end and it is suggested this may increase pathogenicity of this virus. They searched for a similar function in BVH-1 by measuring the ability of BHV-1 infected cells and viral envelope proteins to bind radiolabelled rabbit and bovine IgG. Binding activity for rabbit IgG or bovine IgG-Fc could not be demonstrated by BHV-1 infected MDBK cells, whereas, MDBK cells infected with HSV-1 bound rabbit IgG and bovine IgG-Fc. None of the three major envelope proteins of BHV-1 bound to rabbit or bovine IgG. The results of this study indicate that BHV-1, unlike some other herpesviruses, lack Fc binding activity

  18. Thermal performance envelopes for MHTGRs - Reliability by design

    International Nuclear Information System (INIS)

    Etzel, K.T.; Howard, W.W.; Zgliczynski, J.

    1992-01-01

    Thermal performance envelopes are used to specify steady-state design requirements for the systems of the modular high-temperature gas-cooled reactor (MHTGR) to maximize plant performance reliability with optimized design. The thermal performance envelopes are constructed around the expected operating point to account for uncertainties in actual plant as-built parameters and plant operation. The components are then designed to perform successfully at all points within the envelope. As a result, plant reliability is maximized by accounting for component thermal performance variation in the design. The design is optimized by providing a means to determine required margins in a disciplined and visible fashion. This is accomplished by coordinating these requirements with the various system and component designers in the early stages of the design, applying the principles of total quality management. The design is challenged by the more complex requirements associated with a range of operating conditions, but in return, high probability of delivering reliable performance throughout the plant life is ensured

  19. Studying the instantaneous velocity field in gas-sheared liquid films in a horizontal duct

    Science.gov (United States)

    Vasques, Joao; Tokarev, Mikhail; Cherdantsev, Andrey; Hann, David; Hewakandamby, Buddhika; Azzopardi, Barry

    2016-11-01

    In annular flow, the experimental validation of the basic assumptions on the liquid velocity profile is vital for developing theoretical models of the flow. However, the study of local velocity of liquid in gas-sheared films has proven to be a challenging task due to the highly curved and disturbed moving interface of the phases, small scale of the area of interrogation, high velocity gradients and irregular character of the flow. This study reports on different optical configurations and interface-tracking methods employed in a horizontal duct in order to obtain high-resolution particle image velocimetry (PIV) data in such types of complex flows. The experimental envelope includes successful measurements in 2D and 3D waves regimes, up to the disturbance wave regime. Preliminary data show the presence of complex structures in the liquid phase, which includes re-circulation areas below the liquid interface due to the gas-shearing action, together with non-uniform transverse movements of the liquid phase close to the wall due to the presence of 3D waves at the interface. With the aid of the moving interface-tracking, PIV, time-resolved particle-tracking velocimetry and vorticity measurements were performed.

  20. Evolution of rotating stars. III. Predicted surface rotation velocities for stars which conserve total angular momentum

    International Nuclear Information System (INIS)

    Endal, A.S.; Sofia, S.

    1979-01-01

    Predicted surface rotation velocities are presented for Population I stars at 10, 7, 5, 3, and 1.5M/sub sun/. The surface velocities have been computed for three different cases of angular momentum redistribution: no radial redistribution (rotation on decoupled shells), complete redistribution (rigid-body rotation), and partial redistribution as predicted by detailed consideration of circulation currents in rotation stars. The velocities for these cases are compared to each other and to observed stellar rotation rates (upsilon sin i).Near the main sequence, rotational effects can substantially reduce the moment of inertia of a star, so nonrotating models consistently underestimate the expected velocities for evolving stars. The magnitude of these effects is sufficient to explain the large numbers of Be stars and, perhaps, to explain the bimodal distribution of velocities observed for the O stars.On the red giant branch, angular momentum redistribution reduces the surface velocity by a factor of 2 or more, relative to the velocity expected for no radial redistribution. This removes the discrepancy between predicted and observed rotation rates for the K giants and makes it unlikely that these stars lose significant amounts of angular momentum by stellar winds. Our calculations indicate that improved observations (by the Fourier-transform technique) of the red giants in the Hyades cluster can be used to determine how angular momentum is redistributed by convection

  1. The 1994 Northridge, California, earthquake: Investigation of rupture velocity, risetime, and high-frequency radiation

    Science.gov (United States)

    Hartzell, S.; Liu, P.; Mendoza, C.

    1996-01-01

    A hybrid global search algorithm is used to solve the nonlinear problem of calculating slip amplitude, rake, risetime, and rupture time on a finite fault. Thirty-five strong motion velocity records are inverted by this method over the frequency band from 0.1 to 1.0 Hz for the Northridge earthquake. Four regions of larger-amplitude slip are identified: one near the hypocenter at a depth of 17 km, a second west of the hypocenter at about the same depth, a third updip from the hypocenter at a depth of 10 km, and a fourth updip from the hypocenter and to the northwest. The results further show an initial fast rupture with a velocity of 2.8 to 3.0 km/s followed by a slow termination of the rupture with velocities of 2.0 to 2.5 km/s. The initial energetic rupture phase lasts for 3 s, extending out 10 km from the hypocenter. Slip near the hypocenter has a short risetime of 0.5 s, which increases to 1.5 s for the major slip areas removed from the hypocentral region. The energetic rupture phase is also shown to be the primary source of high-frequency radiation (1-15 Hz) by an inversion of acceleration envelopes. The same global search algorithm is used in the envelope inversion to calculate high-frequency radiation intensity on the fault and rupture time. The rupture timing from the low- and high-frequency inversions is similar, indicating that the high frequencies are produced primarily at the mainshock rupture front. Two major sources of high-frequency radiation are identified within the energetic rupture phase, one at the hypocenter and another deep source to the west of the hypocenter. The source at the hypocenter is associated with the initiation of rupture and the breaking of a high-stress-drop asperity and the second is associated with stopping of the rupture in a westerly direction.

  2. Inability of keratinocytes lacking their specific transglutaminase to form cross-linked envelopes: Absence of envelopes as a simple diagnostic test for lamellar ichthyosis

    OpenAIRE

    Jeon, Saewha; Djian, Philippe; Green, Howard

    1998-01-01

    Epidermal keratinocytes, late in their terminal differentiation, form cross-linked envelopes resistant to ionic detergent and reducing agent. Because the cross-linking process is catalyzed by the keratinocyte transglutaminase, the absence of active transglutaminase should result in failure of the keratinocyte to form a cross-linked envelope. Three keratinocyte strains bearing mutations in the keratinocyte transglutaminase were examined: two contained no detectable transglutaminase mRNA and no...

  3. Enveloping algebras of Lie groups with descrete series

    International Nuclear Information System (INIS)

    Nguyen huu Anh; Vuong manh Son

    1990-09-01

    In this article we shall prove that the enveloping algebra of the Lie algebra of some unimodular Lie group having discrete series, when localized at some element of the center, is isomorphic to the tensor product of a Weyl algebra over the ring of Laurent polynomials of one variable and the enveloping algebra of some reductive Lie algebra. In particular, it will be proved that the Lie algebra of a unimodular solvable Lie group having discrete series satisfies the Gelfand-Kirillov conjecture. (author). 6 refs

  4. Friction properties and deformation mechanisms of halite(-mica) gouges from low to high sliding velocities

    NARCIS (Netherlands)

    Buijze, L.; Niemeijer, A.R.; Han, R.; Shimamoto, T.; Spiers, C.J.

    2017-01-01

    The evolution of friction as a function of slip rate is important in understanding earthquake nucleation and propagation. Many laboratory experiments investigating friction of fault rocks are either conducted in the low velocity regime (10−8–10−4 ms−1) or in the high velocity regime (0.01–1 m s−1).

  5. Neural encoding of the speech envelope by children with developmental dyslexia.

    Science.gov (United States)

    Power, Alan J; Colling, Lincoln J; Mead, Natasha; Barnes, Lisa; Goswami, Usha

    2016-09-01

    Developmental dyslexia is consistently associated with difficulties in processing phonology (linguistic sound structure) across languages. One view is that dyslexia is characterised by a cognitive impairment in the "phonological representation" of word forms, which arises long before the child presents with a reading problem. Here we investigate a possible neural basis for developmental phonological impairments. We assess the neural quality of speech encoding in children with dyslexia by measuring the accuracy of low-frequency speech envelope encoding using EEG. We tested children with dyslexia and chronological age-matched (CA) and reading-level matched (RL) younger children. Participants listened to semantically-unpredictable sentences in a word report task. The sentences were noise-vocoded to increase reliance on envelope cues. Envelope reconstruction for envelopes between 0 and 10Hz showed that the children with dyslexia had significantly poorer speech encoding in the 0-2Hz band compared to both CA and RL controls. These data suggest that impaired neural encoding of low frequency speech envelopes, related to speech prosody, may underpin the phonological deficit that causes dyslexia across languages. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Evolution of microstructure and elastic wave velocities in dehydrated gypsum samples

    Science.gov (United States)

    Milsch, Harald; Priegnitz, Mike

    2012-12-01

    We report on changes in P and S-wave velocities and rock microstructure induced by devolatilization reactions using gypsum as a reference analog material. Cylindrical samples of natural alabaster were dehydrated in air, at ambient pressure, and temperatures between 378 and 423 K. Dehydration did not proceed homogeneously but via a reaction front moving sample inwards separating an outer highly porous rim from the remaining gypsum which, above approximately 393 (±5) K, concurrently decomposed into hemihydrate. Overall porosity was observed to continuously increase with reaction progress from approximately 2% for fully hydrated samples to 30% for completely dehydrated ones. Concurrently, P and S-wave velocities linearly decreased with porosity from 5.2 and 2.7 km/s to 1.0 and 0.7 km/s, respectively. It is concluded that a linearized empirical Raymer-type model extended by a critical porosity term and based on the respective time dependent mineral and pore volumes reasonably replicates the P and S-wave data in relation to reaction progress and porosity.

  7. Envelope correlation in (N, N) MIMO antenna array from scattering parameters

    DEFF Research Database (Denmark)

    Thaysen, Jesper; Jakobsen, Kaj Bjarne

    2006-01-01

    the envelope correlation coefficient. This approach has the advantage that it does not require knowledge of the antenna radiation pattern. Numerical data that include conductor and permittivity loss are shown to validate the approach. Using the scattering parameters for calculating the envelope correlation......A simple closed-form equation to calculate the envelope correlation between any two receiver or transmitter antennas in a multi-input multi-output (MIMO) system of an arbitrary number of elements is derived. The equation uses the scattering parameters obtained at the antenna feed point to calculate...

  8. A Python Calculator for Supernova Remnant Evolution

    Science.gov (United States)

    Leahy, D. A.; Williams, J. E.

    2017-05-01

    A freely available Python code for modeling supernova remnant (SNR) evolution has been created. This software is intended for two purposes: to understand SNR evolution and to use in modeling observations of SNR for obtaining good estimates of SNR properties. It includes all phases for the standard path of evolution for spherically symmetric SNRs. In addition, alternate evolutionary models are available, including evolution in a cloudy ISM, the fractional energy-loss model, and evolution in a hot low-density ISM. The graphical interface takes in various parameters and produces outputs such as shock radius and velocity versus time, as well as SNR surface brightness profile and spectrum. Some interesting properties of SNR evolution are demonstrated using the program.

  9. Enveloped virus flocculation and removal in osmolyte solutions.

    Science.gov (United States)

    Gencoglu, Maria F; Heldt, Caryn L

    2015-07-20

    Our ability to reduce infectious disease burden throughout the world has been greatly improved by the creation of vaccines. However, worldwide immunization rates are low. The two most likely reasons are the lack of sufficient distribution in underdeveloped countries and the high cost of vaccine products. The high costs are due to the difficulties of manufacturing individual vaccine products with specialized purification trains. In this study, we propose to use virus flocculation in osmolytes, followed by microfiltration, as an alternative vaccine purification operation. In our previous work, we demonstrated that osmolytes preferentially flocculate a non-enveloped virus, porcine parvovirus (PPV). In this work we show that osmolytes flocculate the enveloped virus, Sindbis virus heat resistant strain (SVHR), and demonstrate a >80% removal with a 0.2 μm microfilter membrane while leaving proteins in solution. The best osmolytes were tested for their ability to flocculate SVHR at different concentrations, pH and ionic strengths. Our best removal was 98% of SVHR in 0.3M mannitol at a pH of 5. We propose that osmolytes are able to flocculate hydrophobic non-enveloped and enveloped virus particles by the reduction of the hydration layer around the particles, which stimulates virus aggregation. Now that we have demonstrated that protecting osmolytes flocculate viruses, this method has the potential to be a future platform purification process for vaccines. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Multi-layered breathing architectural envelope

    DEFF Research Database (Denmark)

    Lund Larsen, Andreas; Foged, Isak Worre; Jensen, Rasmus Lund

    2014-01-01

    A multi layered breathing envelope is developed as a method of natural ventilation. The two main layers consist of mineral wool and air permeable concrete. The mineral wool works as a dynamic insulation and the permeable concrete as a heat recovery system with a high thermal mass for heat storage...

  11. Stability of an expanding cylindrical plasma envelope: Rayleigh--Taylor instability

    International Nuclear Information System (INIS)

    Han, S.J.

    1982-01-01

    The stability of a cylindrically symmetric plasma envelope driven outward by blast waves is considered. The plasma fluid is assumed to be a compressible, isentropic gas describable as an ideal gas ( p = arho/sup γ/, γ>1). The stability problem of such an envelope undergoing self-similar motion is solved by considering the initial-value problem. It is shown that in the early phase of an expansion, the envelope is unstable to Rayleigh--Taylor modes which develop at the inner surface. In the later phase of the expansion, the Rayleigh--Taylor modes are weakened due to the geometrical divergence effect. The implications of the time-dependent behavior of the Rayleigh--Taylor instability for plasma switches are discussed

  12. Envelope method for background elimination from X-ray fluorescence spectra

    International Nuclear Information System (INIS)

    Monakhov, V.V.; Naumenko, P.A.; Chashinskaya, O.A.

    2006-01-01

    The influence of the background noise caused by Bremsstrahlung on the accuracy of the envelope method at x-ray fluorescence spectra processing is studied. This is carried out by the example of model spectra at different forms of Bremsstrahlung noise as well as at the presence of background noise in spectra. The interpolation by parabolic splines is used for the estimation of the error of the envelope method for the elimination of continuos background noise. It is found out that the error of the proposed method constitutes decimal parts of percent. It is shown that the envelope method is the effective technique for the elimination of the continuous Bremsstrahlung from x-ray fluorescence spectra of the first order [ru

  13. Pulsar velocity observations: Correlations, interpretations, and discussion

    International Nuclear Information System (INIS)

    Helfand, D.J.; Tademaru, E.

    1977-01-01

    From an examination of the current sample of 12 pulsars with measured proper motions and the z-distribution of the much larger group of over 80 sources with measured period derivatives, we develop a self-consistent picture of pulsar evolution. The apparent tendency of pulsars to move parallel to the galactic plane is explained as the result of various selection effects. A method for calculating the unmeasurable radial velocity of a pulsar is presented; it is shown that the total space velocities thus obtained are consistent with the assumption of an extreme Population I origin for pulsars which subsequently move away from the plane with a large range of velocities. The time scale for pulsar magnetic field decay is derived from dynamical considerations. A strong correlation of the original pulsar field strength with the magnitude of pulsar velocity is discussed. This results in the division of pulsars into two classes: Class A sources characterized by low space velocities, a small scale height, and low values of P 0 P 0 ; and Class B sources with a large range of velocities (up to 1000 km s -1 ), a much greater scale height, and larger values of initial field strength. It is postulated that Class A sources originate in tight binaries where their impulse acceleration at birth is insufficient to remove them from the system, while the Class B sources arise from single stars or loosely bound binaries and are accelerated to high velocities by their asymmetric radiation force. The evolutionary picture which is developed is shown to be consistent with a number of constraints imposed by supernova rates, the relative frequency of massive binaries and Class A sources, theoretical field-decay times, and the overall pulsar galactic distribution

  14. Experimental characterization of initial conditions and spatio-temporal evolution of a small Atwood number Rayleigh-Taylor mixing layer

    Energy Technology Data Exchange (ETDEWEB)

    Mueschke, N J; Andrews, M J; Schilling, O

    2005-09-26

    The initial multi-mode interfacial velocity and density perturbations present at the onset of a small Atwood number, incompressible, miscible, Rayleigh-Taylor instability-driven mixing layer have been quantified using a combination of experimental techniques. The streamwise interfacial and spanwise interfacial perturbations were measured using high-resolution thermocouples and planar laser-induced fluorescence (PLIF), respectively. The initial multi-mode streamwise velocity perturbations at the two-fluid density interface were measured using particle-image velocimetry (PIV). It was found that the measured initial conditions describe an initially anisotropic state, in which the perturbations in the streamwise and spanwise directions are independent of one another. The evolution of various fluctuating velocity and density statistics, together with velocity and density variance spectra, were measured using PIV and high-resolution thermocouple data. The evolution of the velocity and density statistics is used to investigate the early-time evolution and the onset of strongly-nonlinear, transitional dynamics within the mixing layer. The early-time evolution of the density and vertical velocity variance spectra indicate that velocity fluctuations are the dominant mechanism driving the instability development. The implications of the present experimental measurements on the initialization of Reynolds-averaged turbulent transport and mixing models and of direct and large-eddy simulations of Rayleigh-Taylor instability-induced turbulence are discussed.

  15. Design and evaluation of a Flight Envelope Protection haptic feedback system

    NARCIS (Netherlands)

    Ellerbroek, J.; Rodriguez Martin, M.J.M.; Lombaerts, T; van Paassen, M.M.; Mulder, M.

    2016-01-01

    This paper describes the design and evaluation of a shared control, haptic feedback system to communicate Flight Envelope Protection System intent. The concept uses a combination of stiffness feedback and vibration to communicate proximity of the aircraft state to flight envelope boundaries. In

  16. Advancing the manufacture of complex geometry GFRC for today's building envelopes

    Directory of Open Access Journals (Sweden)

    Thomas Henriksen

    2017-06-01

    With this research the current architectural knowledge base has been advanced in terms of complex geometry thin-walled GFRC for building envelopes. The identified solutions should allow building with complex geometries to be realised using thin-walled GFRC as the envelope cladding.

  17. Circumstellar envelopes of Cepheids: a possible bias affecting the distance scale?

    Science.gov (United States)

    Kervella, Pierre; Gallenne, Alexandre; Mérand, Antoine

    2013-02-01

    Circumstellar envelopes (CSEs) have been detected around many Cepheids, first based on long-baseline interferometry, and now also using other observing techniques. These envelopes are particularly interesting for two reasons: their presence could impact the Cepheid distance scale, and they may be valuable tracers of stellar mass loss. Here we focus on their potential impact on the calibration of the Cepheid distance scale. We consider the photometric contribution of the envelopes in the visible, near-, and thermal-infrared domains. We conclude that the impact of CSEs on the apparent luminosities of Cepheids is negligible at visible wavelengths and generally weak (case. Overall, the contribution of CSEs to the usual period-luminosity relations (from the visible to the K band) is mostly negligible. They could affect calibrations at longer wavelengths, although the presence of envelopes may have been partially taken into account in the existing empirical calibrations.

  18. Evolution of the MHD sheet pinch

    International Nuclear Information System (INIS)

    Matthaeus, W.H.; Montgomery, D.

    1979-01-01

    A magnetohydrodynamic (MHD) problem of recurrent interest for both astrophysical and laboratory plasmas is the evolution of the unstable sheet pinch, a current sheet across which a dc magnetic field reverses sign. The evolution of such a sheet pinch is followed with a spectral-method, incompressible, two-dimensional, MHD turbulence code. Spectral diagnostics are employed, as are contour plots of vector potential (magnetic field lines), electric current density, and velocity stream function (velocity streamlines). The nonlinear effect which seems most important is seen to be current filamentation: the concentration of the current density onto sets of small measure near a mgnetic X point. A great deal of turbulence is apparent in the current distribution, which, for high Reynolds numbers, requires large spatial grids (greater than or equal to (64) 2 ). 11 figures, 1 table

  19. Evolution of a massive binary in a star field

    International Nuclear Information System (INIS)

    Baranov, A.S.

    1984-01-01

    The orbital evolution of a massive binary system interacting with a background field of single stars whose phase density is homogeneous in configuration space is considered. The velocity distribution is assumed isotropic up to some limiting value, and a typical field star is regarded as having a velocity much higher than the orbital speed of the pair components. An expression is derived for the transfer of energy from the binary to the field stars. The time evolution of the orbit parameters a, e is established, and the evolution rate is estimated for Kardashev's (1983) model galactic nucleus containing a central black-hole binary. On the above assumptions the components should become twice as close together within only a few tens of millennia, although the picture may change fundamentally if the nucleus is rotating. 13 references

  20. Amphibious Shear Velocity Structure of the Cascadia Subduction Zone

    Science.gov (United States)

    Janiszewski, H. A.; Gaherty, J. B.; Abers, G. A.; Gao, H.

    2017-12-01

    The amphibious Cascadia Initiative crosses the coastline of the Cascadia subduction zone (CSZ) deploying seismometers from the Juan de Fuca ridge offshore to beyond the volcanic arc onshore. This allows unprecedented seismic imaging of the CSZ, enabling examination of both the evolution of the Juan de Fuca plate prior to and during subduction as well as the along strike variability of the subduction system. Here we present new results from an amphibious shear velocity model for the crust and upper mantle across the Cascadia subduction zone. The primary data used in this inversion are surface-wave phase velocities derived from ambient-noise Rayleigh-wave data in the 10 - 20 s period band, and teleseismic earthquake Rayleigh wave phase velocities in the 20 - 160 s period band. Phase velocity maps from these data reflect major tectonic structures including the transition from oceanic to continental lithosphere, Juan de Fuca lithosphere that is faster than observations in the Pacific for oceanic crust of its age, slow velocities associated with the accretionary prism, the front of the fast subducting slab, and the Cascades volcanic arc which is associated with slower velocities in the south than in the north. Crustal structures are constrained by receiver functions in the offshore forearc and onshore regions, and by active source constraints on the Juan de Fuca plate prior to subduction. The shear-wave velocities are interpreted in their relationships to temperature, presence of melt or hydrous alteration, and compositional variation of the CSZ.

  1. Biomimetic Architecture in Building Envelope Maintenance (A Literature

    Directory of Open Access Journals (Sweden)

    Agus Salim N.A.

    2014-01-01

    Full Text Available The study of biomimetic architecture on building envelope is the main structure of this research. The concept is believed more sustainable and efficient for energy saving, operating cost consumption, waste recycle and design renewal in the future. The inspiration from the nature developed the intention on this study to explore on what and how this concept to overcome the problems through design. Biomimicry does catch the attention of human to study more on the system and function of its nature course. The designers are not exception influenced by this concept when the form, shape, texture and colour inspired them in their design. The domination of building form will affect the building envelope as the skin of the structure. A clear impact on building failure is begun with building envelope appearance without a proper maintenance. The faults in building design place a heavy burden on the building for the rest of its operational life and there is no compensation for it. In such situations, the responsibility falls on the shoulders of the designer.

  2. The epigenetics of nuclear envelope organization and disease

    International Nuclear Information System (INIS)

    Schirmer, Eric C.

    2008-01-01

    Mammalian chromosomes and some specific genes have non-random positions within the nucleus that are tissue-specific and heritable. Work in many organisms has shown that genes at the nuclear periphery tend to be inactive and altering their partitioning to the interior results in their activation. Proteins of the nuclear envelope can recruit chromatin with specific epigenetic marks and can also recruit silencing factors that add new epigenetic modifications to chromatin sequestered at the periphery. Together these findings indicate that the nuclear envelope is a significant epigenetic regulator. The importance of this function is emphasized by observations of aberrant distribution of peripheral heterochromatin in several human diseases linked to mutations in NE proteins. These debilitating inherited diseases range from muscular dystrophies to the premature aging progeroid syndromes and the heterochromatin changes are just one early clue for understanding the molecular details of how they work. The architecture of the nuclear envelope provides a unique environment for epigenetic regulation and as such a great deal of research will be required before we can ascertain the full range of its contributions to epigenetics

  3. Operating envelope to minimize probability of fractures in Zircaloy-2 pressure tubes

    International Nuclear Information System (INIS)

    Azer, N.; Wong, H.

    1994-01-01

    The failure mode of primary concern with Candu pressure tubes is fast fracture of a through-wall axial crack, resulting from delayed hydride crack growth. The application of operating envelopes is demonstrated to minimize the probability of fracture in Zircaloy-2 pressure tubes based on Zr-2.5%Nb pressure tube experience. The technical basis for the development of the operating envelopes is also summarized. The operating envelope represents an area on the pressure versus temperature diagram within which the reactor may be operated without undue concern for pressure tube fracture. The envelopes presented address both normal operating conditions and the condition where a pressure tube leak has been detected. The examples in this paper are prepared to illustrate the methodology, and are not intended to be directly applicable to the operation of any specific reactor. The application of operating envelopes to minimized the probability of fracture in 80 mm diameter Zircaloy-2 pressure tubes has been discussed. Both normal operating and leaking pressure tube conditions have been considered. 3 refs., 4 figs

  4. Nature of 'unseen' galactic envelopes

    International Nuclear Information System (INIS)

    McCrea, W.H.

    1983-01-01

    In this paper, it is suggested that unseen matter in a galactic envelope or in a group of galaxies may consist of substellar bodies originating as the first permanent 'stars' in the formation of a very massive galaxy according to a model for galaxy-formation on the basis of simple big-bang cosmology. (Auth.)

  5. Safeguards Envelope Progress FY10

    International Nuclear Information System (INIS)

    Metcalf, Richard

    2010-01-01

    The Safeguards Envelope is a strategy to determine a set of specific operating parameters within which nuclear facilities may operate to maximize safeguards effectiveness without sacrificing safety or plant efficiency. This paper details the additions to the advanced operating techniques that will be applied to real plant process monitoring (PM) data from the Idaho Chemical Processing Plant (ICPP). Research this year focused on combining disparate pieces of data together to maximize operating time with minimal downtime due to safeguards. A Chi-Square and Croiser's cumulative sum were both included as part of the new analysis. Because of a major issue with the original data, the implementation of the two new tests did not add to the existing set of tests, though limited one-variable optimization made a small increase in detection probability. Additional analysis was performed to determine if prior analysis would have caused a major security or safety operating envelope issue. It was determined that a safety issue would have resulted from the prior research, but that the security may have been increased under certain conditions.

  6. Modeling continuous seismic velocity changes due to ground shaking in Chile

    Science.gov (United States)

    Gassenmeier, Martina; Richter, Tom; Sens-Schönfelder, Christoph; Korn, Michael; Tilmann, Frederik

    2015-04-01

    the integrated envelope of the ground acceleration over 1 day which is the discretization interval of the velocity measurements. In our model the amplitude of the velocity reduction as well as the recovery time are proportional to the size of the excitation. This model with the two free scaling parameters for the shaking induced velocity variation fits the data in remarkable detail. Additionally, a linear trend is observed that might be related to a recovery process from one or more earthquakes before our measurement period. For the Tocopilla earthquake in 2007 and the Iquique earthquake in 2014 velocity reductions are also observed at other stations of the IPOC network. However, a clear relationship between the ground shaking and the induced velocity reductions is not visible at other stations. We attribute the outstanding sensitivity of PATCX to ground shaking to the special geological setting of the station, where the material consists of relatively loose conglomerate with high pore volume.

  7. THE EVOLUTION OF THE KINEMATICS OF NEBULAR SHELLS IN PLANETARY NEBULAE IN THE MILKY WAY BULGE

    International Nuclear Information System (INIS)

    Richer, Michael G.; Lopez, Jose Alberto; Garcia-Diaz, Maria Teresa; Clark, David M.; Pereyra, Margarita; Diaz-Mendez, Enrique

    2010-01-01

    We study the line widths in the [O III]λ5007 and Hα lines for two groups of planetary nebulae in the Milky Way bulge based upon spectroscopy obtained at the Observatorio Astronomico Nacional in the Sierra San Pedro Martir (OAN-SPM) using the Manchester Echelle Spectrograph. The first sample includes objects early in their evolution, having high Hβ luminosities, but [O III]λ5007/Hβ 0.5. These planetary nebulae represent evolutionary phases preceding and following those of the objects studied by Richer et al. in 2008. Our sample of planetary nebulae with weak [O III]λ5007 has a line width distribution similar to that of the expansion velocities of the envelopes of asymptotic giant branch stars and shifted to systematically lower values as compared to the less evolved objects studied by Richer et al. The sample with strong He II λ4686 has a line width distribution indistinguishable from that of the more evolved objects from Richer et al., but a distribution in angular size that is systematically larger and so they are clearly more evolved. These data and those of Richer et al. form a homogeneous sample from a single Galactic population of planetary nebulae, from the earliest evolutionary stages until the cessation of nuclear burning in the central star. They confirm the long-standing predictions of hydrodynamical models of planetary nebulae, where the kinematics of the nebular shell are driven by the evolution of the central star.

  8. Early Site Permit Demonstration Program: Plant parameters envelope report. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    The Early Site Permit (ESP) Demonstration Program is the nuclear industry`s initiative for piloting the early resolution of siting-related issues before the detailed design proceedings of the combined operating license review. The ESP Demonstration Program consists of three phases. The plant parameters envelopes task is part of Phase 1, which addresses the generic review of applicable federal regulations and develops criteria for safety and environmental assessment of potential sites. The plant parameters envelopes identify parameters that characterize the interface between an ALWR design and a potential site, and quantify the interface through values selected from the Utility Requirements Documents, vendor design information, or engineering assessments. When augmented with site-specific information, the plant parameters envelopes provide sufficient information to allow ESPs to be granted based on individual ALWR design information or enveloping design information for the evolutionary, passive, or generic ALWR plants. This document is expected to become a living document when used by future applicants.

  9. Spectral Envelope Transformation in Singing Voice for Advanced Pitch Shifting

    Directory of Open Access Journals (Sweden)

    José L. Santacruz

    2016-11-01

    Full Text Available The aim of the present work is to perform a step towards more natural pitch shifting techniques in singing voice for its application in music production and entertainment systems. In this paper, we present an advanced method to achieve natural modifications when applying a pitch shifting process to singing voice by modifying the spectral envelope of the audio excerpt. To this end, an all-pole model has been selected to model the spectral envelope, which is estimated using a constrained non-linear optimization. The analysis of the global variations of the spectral envelope was carried out by identifying changes of the parameters of the model along with the changes of the pitch. With the obtained spectral envelope transformation functions, we applied our pitch shifting scheme to some sustained vowels in order to compare results with the same transformation made by using the Flex Pitch plugin of Logic Pro X and pitch synchronous overlap and add technique (PSOLA. This comparison has been carried out by means of both an objective and a subjective evaluation. The latter was done with a survey open to volunteers on our website.

  10. Scaling exponents of the velocity structure functions in the interplanetary medium

    Directory of Open Access Journals (Sweden)

    V. Carbone

    Full Text Available We analyze the scaling exponents of the velocity structure functions, obtained from the velocity fluctuations measured in the interplanetary space plasma. Using the expression for the energy transfer rate which seems the most relevant in describing the evolution of the pseudo-energy densities in the interplanetary medium, we introduce an energy cascade model derived from a simple fragmentation process, which takes into account the intermittency effect. In the absence and in the presence of the large-scale magnetic field decorrelation effect the model reduces to the fluid and the hydromagnetic p-model, respectively. We show that the scaling exponents of the q-th power of the velocity structure functions, as obtained by the model in the absence of the decorrelation effect, furnishes the best-fit to the data analyzed from the Voyager 2 velocity field measurements at 8.5 AU. Our results allow us to hypothesize a new kind of scale-similarity for magnetohydrodynamic turbulence when the decorrelation effect is at work, related to the fourth-order velocity structure function.

  11. Switching from static to adaptable and dynamic building envelopes: A paradigm shift for the energy efficiency in buildings

    Directory of Open Access Journals (Sweden)

    Marco Perino

    2015-11-01

    Full Text Available The key role of the building envelope in attaining building energy efficiency and satisfactory indoor comfort has long been established. Nevertheless, until recent times, all efforts and attention have mainly been focused on increasing and optimizing the thermal insulation of the envelope components. This strategy was a winning approach for a long time, but its limitations became obvious when users and designers started to consider the overall energy demand of a building and started to aim for Zero Energy Building (ZEB or nearly ZEB goals. New and more revolutionary concepts and technologies needed to be developed to satisfy such challenging requirements. The potential benefits of this technological development are relevant since the building envelope plays a key role in controlling the energy and mass flows from outdoors to indoors (and vice versa and, moreover, the facades offer a significant opportunity for solar energy exploitation. Several researches have demonstrated that the limitation of the existing facades could be overcome only by switching from ‘static’ to ‘responsive’ and ‘dynamic’ systems, such as Multifunctional Facade Modules (MFMs and Responsive Building Elements (RBE. These components are able to continuously and pro-actively react to outdoor and indoor environment conditions and facilitate and enhance the exploitation of renewable and low exergy sources. In order to reduce the energy demand, to maximize the indoor comfort conditions and to produce energy at the site, these almost ‘self-sufficient’, or even ‘positive energy’ building skins frequently incorporate different technologies and are functionally connected to other building services and installations. An overview of the technological evolution of the building envelope that has taken place, ranging from traditional components to the innovative skins, will be given in this paper, while focusing on the different approaches that have characterized this

  12. WD0837+185: THE FORMATION AND EVOLUTION OF AN EXTREME MASS-RATIO WHITE-DWARF-BROWN-DWARF BINARY IN PRAESEPE

    International Nuclear Information System (INIS)

    Casewell, S. L.; Burleigh, M. R.; Wynn, G. A.; Alexander, R. D.; Lawrie, K. A.; Jameson, R. F.; Napiwotzki, R.; Dobbie, P. D.; Hodgkin, S. T.

    2012-01-01

    There is a striking and unexplained dearth of brown dwarf companions in close orbits ( ☉ (B9). The high mass of the white dwarf means the substellar companion must have been engulfed by the B star's envelope while it was on the late asymptotic giant branch (AGB). Hence, the initial separation of the system was ∼2 AU, with common envelope evolution reducing the separation to its current value. The initial and final orbital separations allow us to constrain the combination of the common envelope efficiency (α) and binding energy parameters (λ) for the AGB star to αλ ∼ 3. We examine the various formation scenarios and conclude that the substellar object was most likely captured by the white dwarf progenitor early in the life of the cluster, rather than forming in situ.

  13. Magnetic field-aligned plasma expansion in critical ionization velocity space experiments

    International Nuclear Information System (INIS)

    Singh, N.

    1989-01-01

    Motivated by the recent Critical Ionization Velocity (CIV) experiments in space, the temporal evolution of a plasma cloud released in an ambient plasma is studied. Time-dependent Vlasov equations for both electrons and ions, along with the Poisson equation for the self-consistent electric field parallel to the ambient magnetic field, are solved. The initial cloud is assumed to consist of cold, warm, and hot electrons with temperatures T/sub c/ ≅ 0.2 eV, T/sub w/ ≅ 2 eV, and T/sub h/ ≅ 10 eV, respectively. It is found that the minor hot electrons escape the cloud, and their velocity distribution function shows the typical time-of-flight dispersion feature - that is, the larger the distance from the cloud, the larger is the average drift velocity of the escaping electrons. The major warm electrons expand along the magnetic field line with the corresponding ion-acoustic speed. The combined effect of the escaping hot electrons and the expanding warm ones sets up an electric potential structure which accelerates the ambient electrons into the cloud. Thus, the energy loss due to the electron escape is partly replenished. The electric field distribution in the potential structure depends on the stage of the evolution; before the rarefaction waves propagating from the edges of the cloud reach its center, the electric fields point into the cloud. After this stage the cloud divides into two subclouds, with each having their own bipolar electric fields. Effects of collisions on the evolution of plasma clouds are also discussed. The relevance of the results seen from the calculations are discussed in the context of recent space experiments on CIV

  14. Kinematic morphology of large-scale structure: evolution from potential to rotational flow

    International Nuclear Information System (INIS)

    Wang, Xin; Szalay, Alex; Aragón-Calvo, Miguel A.; Neyrinck, Mark C.; Eyink, Gregory L.

    2014-01-01

    As an alternative way to describe the cosmological velocity field, we discuss the evolution of rotational invariants constructed from the velocity gradient tensor. Compared with the traditional divergence-vorticity decomposition, these invariants, defined as coefficients of the characteristic equation of the velocity gradient tensor, enable a complete classification of all possible flow patterns in the dark-matter comoving frame, including both potential and vortical flows. We show that this tool, first introduced in turbulence two decades ago, is very useful for understanding the evolution of the cosmic web structure, and in classifying its morphology. Before shell crossing, different categories of potential flow are highly associated with the cosmic web structure because of the coherent evolution of density and velocity. This correspondence is even preserved at some level when vorticity is generated after shell crossing. The evolution from the potential to vortical flow can be traced continuously by these invariants. With the help of this tool, we show that the vorticity is generated in a particular way that is highly correlated with the large-scale structure. This includes a distinct spatial distribution and different types of alignment between the cosmic web and vorticity direction for various vortical flows. Incorporating shell crossing into closed dynamical systems is highly non-trivial, but we propose a possible statistical explanation for some of the phenomena relating to the internal structure of the three-dimensional invariant space.

  15. Kinematic morphology of large-scale structure: evolution from potential to rotational flow

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin; Szalay, Alex; Aragón-Calvo, Miguel A.; Neyrinck, Mark C.; Eyink, Gregory L. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2014-09-20

    As an alternative way to describe the cosmological velocity field, we discuss the evolution of rotational invariants constructed from the velocity gradient tensor. Compared with the traditional divergence-vorticity decomposition, these invariants, defined as coefficients of the characteristic equation of the velocity gradient tensor, enable a complete classification of all possible flow patterns in the dark-matter comoving frame, including both potential and vortical flows. We show that this tool, first introduced in turbulence two decades ago, is very useful for understanding the evolution of the cosmic web structure, and in classifying its morphology. Before shell crossing, different categories of potential flow are highly associated with the cosmic web structure because of the coherent evolution of density and velocity. This correspondence is even preserved at some level when vorticity is generated after shell crossing. The evolution from the potential to vortical flow can be traced continuously by these invariants. With the help of this tool, we show that the vorticity is generated in a particular way that is highly correlated with the large-scale structure. This includes a distinct spatial distribution and different types of alignment between the cosmic web and vorticity direction for various vortical flows. Incorporating shell crossing into closed dynamical systems is highly non-trivial, but we propose a possible statistical explanation for some of the phenomena relating to the internal structure of the three-dimensional invariant space.

  16. Cosmic clocks: a tight radius-velocity relationship for H I-selected galaxies

    Science.gov (United States)

    Meurer, Gerhardt R.; Obreschkow, Danail; Wong, O. Ivy; Zheng, Zheng; Audcent-Ross, Fiona M.; Hanish, D. J.

    2018-05-01

    H I-selected galaxies obey a linear relationship between their maximum detected radius Rmax and rotational velocity. This result covers measurements in the optical, ultraviolet, and H I emission in galaxies spanning a factor of 30 in size and velocity, from small dwarf irregulars to the largest spirals. Hence, galaxies behave as clocks, rotating once a Gyr at the very outskirts of their discs. Observations of a large optically selected sample are consistent, implying this relationship is generic to disc galaxies in the low redshift Universe. A linear radius-velocity relationship is expected from simple models of galaxy formation and evolution. The total mass within Rmax has collapsed by a factor of 37 compared to the present mean density of the Universe. Adopting standard assumptions, we find a mean halo spin parameter λ in the range 0.020-0.035. The dispersion in λ, 0.16 dex, is smaller than expected from simulations. This may be due to the biases in our selection of disc galaxies rather than all haloes. The estimated mass densities of stars and atomic gas at Rmax are similar (˜0.5 M⊙ pc-2), indicating outer discs are highly evolved. The gas consumption and stellar population build time-scales are hundreds of Gyr, hence star formation is not driving the current evolution of outer discs. The estimated ratio between Rmax and disc scalelength is consistent with long-standing predictions from monolithic collapse models. Hence, it remains unclear whether disc extent results from continual accretion, a rapid initial collapse, secular evolution, or a combination thereof.

  17. Effects of mass loss on the evolution of massive stars. I. Main-sequence evolution

    International Nuclear Information System (INIS)

    Dearborn, D.S.P.; Blake, J.B.; Hainebach, K.L.; Schramm, D.N.

    1978-01-01

    The effect of mass loss on the evolution and surface composition of massive stars during main-sequence evolution are examined. While some details of the evolutionary track depend on the formula used for the mass loss, the results appear most sensitive to the total mass removed during the main-sequence lifetime. It was found that low mass-loss rates have very little effect on the evolution of a star; the track is slightly subluminous, but the lifetime is almost unaffected. High rates of mass loss lead to a hot, high-luminosity stellar model with a helium core surrounded by a hydrogen-deficient (Xapprox.0.1) envelope. The main-sequence lifetime is extended by a factor of 2--3. These models may be identified with Wolf-Rayet stars. Between these mass-loss extremes are intermediate models which appear as OBN stars on the main sequence. The mass-loss rates required for significant observable effects range from 8 x 10 -7 to 10 -5 M/sub sun/ yr -1 , depending on the initial stellar mass. It is found that observationally consistent mass-loss rates for stars with M> or =30 M/sub sun/ may be sufficiently high that these stars lose mass on a time scale more rapidly than their main-sequence core evolution time. This result implies that the helium cores resulting from the main-sequence evolution of these massive stars may all be very similar to that of a star of Mapprox.30 M/sub sun/ regardless of the zero-age mass

  18. Numerical calculation of air velocity and temperature in ice rinks

    Energy Technology Data Exchange (ETDEWEB)

    Bellache, O.; Galanis, N. [Sherbrooke Univ., PQ (Canada); Ouzzane, M.; Sunye, R. [Natural Resources Canada, Varennes, PQ (Canada). CANMET Energy Diversification Laboratory

    2002-07-01

    A computational fluid dynamic (CFD) model was developed to predict the energy consumption at an ice rink. Ice rinks in Canada consume approximately 3500 GWh of electricity annually and generate about 300,000 tons of gases contributing to the greenhouse effect. This newly developed model also considers ice quality and comfort conditions in the arena. The typical 2D configuration includes refrigeration loads as well as heat transfer coefficients between the air and the ice. The effects of heat losses through the ice rink envelope are also determined. A comparison of prediction results from 4 different formulations confirms that there are important differences in air velocities near the walls and in the temperature gradient near the ice. The turbulent mixed convection model gives the best estimate of the refrigeration load. It was determined that a good ventilation should circulate air throughout the building to avoid stagnant areas. Air velocities must be low near the stands where the temperature should be around 20 degrees C. Air temperature near the ice should be low to preserve ice quality and to reduce the refrigeration load. The complexity of this geometry has been taken into account in a numerical simulation of the hydrodynamic and thermal fields in the ice rink. 9 refs., 2 tabs., 5 figs.

  19. 3D Modeling of Accretion Disks and Circumbinary Envelopes in Close Binaries

    Science.gov (United States)

    Bisikalo, D.

    2010-12-01

    A number of observations prove the complex flow structure in close binary stars. The gas dynamic structure of the flow is governed by the stream of matter from the inner Lagrange point, the accretion disk, the circum-disk halo, and the circumbinary envelope. Observations reflect the current state of a binary system and for their interpretation one should consider the gas dynamics of flow patterns. Three-dimensional numerical gasdynamical modeling is used to study the gaseous flow structure and dynamics in close binaries. It is shown that the periodic variations of the positions of the disk and the bow shock formed when the inner parts of the circumbinary envelope flow around the disk result in variations in both the rate of angular-momentum transfer to the disk and the flow structure near the Lagrange point L3. All these factors lead to periodic ejections of matter from the accretion disk and circum-disk halo into the outer layers of the circumbinary envelope. The results of simulations are used to estimate the physical parameters of the circumbinary envelope, including 3D matter distribution in it, and the matter-flow configuration and dynamics. The envelope becomes optically thick for systems with high mass-exchange rates, M⊙=10-8 Msun/year, and has a significant influence on the binary's observed features. The uneven phase distributions of the matter and density variations due to periodic injections of matter into the envelope are important for interpretations of observations of CBSs.

  20. Ejection of the Massive Hydrogen-rich Envelope Timed with the Collapse of the Stripped SN 2014C

    Energy Technology Data Exchange (ETDEWEB)

    Margutti, Raffaella [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States); Kamble, A.; Milisavljevic, D.; Drout, M.; Chakraborti, S.; Kirshner, R.; Parrent, J. T.; Patnaude, D.; Soderberg, A. M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Zapartas, E.; De Mink, S. E. [Anton Pannenkoek Institute for Astronomy, University of Amsterdam, 1090 GE Amsterdam (Netherlands); Chornock, R. [Astrophysical Institute, Department of Physics and Astronomy, 251B Clippinger Lab, Ohio University, Athens, OH 45701 (United States); Risaliti, G. [INAF-Arcetri Astrophysical Observatory, Largo E. Fermi 5, I-50125 Firenze (Italy); Zauderer, B. A. [Center for Cosmology and Particle Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Bietenholz, M. [Department of Physics and Astronomy, York University, Toronto, ON M3J 1P3 (Canada); Cantiello, M. [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States); Chomiuk, L. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Fong, W. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Grefenstette, B. [Cahill Center for Astrophysics, 1216 E. California Boulevard, California Institute of Technology, Pasadena, CA 91125 (United States); Guidorzi, C. [University of Ferrara, Department of Physics and Earth Sciences, via Saragat 1, I-44122 Ferrara (Italy); and others

    2017-02-01

    We present multi-wavelength observations of SN 2014C during the first 500 days. These observations represent the first solid detection of a young extragalactic stripped-envelope SN out to high-energy X-rays ∼40 keV. SN 2014C shows ordinary explosion parameters ( E {sub k} ∼ 1.8 × 10{sup 51} erg and M {sub ej} ∼ 1.7 M{sub ⊙}). However, over an ∼1 year timescale, SN 2014C evolved from an ordinary hydrogen-poor supernova into a strongly interacting, hydrogen-rich supernova, violating the traditional classification scheme of type-I versus type-II SNe. Signatures of the SN shock interaction with a dense medium are observed across the spectrum, from radio to hard X-rays, and revealed the presence of a massive shell of ∼1 M {sub ⊙} of hydrogen-rich material at ∼6 × 10{sup 16} cm. The shell was ejected by the progenitor star in the decades to centuries before collapse. This result challenges current theories of massive star evolution, as it requires a physical mechanism responsible for the ejection of the deepest hydrogen layer of H-poor SN progenitors synchronized with the onset of stellar collapse. Theoretical investigations point at binary interactions and/or instabilities during the last nuclear burning stages as potential triggers of the highly time-dependent mass loss. We constrain these scenarios utilizing the sample of 183 SNe Ib/c with public radio observations. Our analysis identifies SN 2014C-like signatures in ∼10% of SNe. This fraction is reasonably consistent with the expectation from the theory of recent envelope ejection due to binary evolution if the ejected material can survive in the close environment for 10{sup 3}–10{sup 4} years. Alternatively, nuclear burning instabilities extending to core C-burning might play a critical role.

  1. Origin, differentiation and functional ultrastructure of egg envelopes in the cestode Echinococcus multilocularis Leuckart, 1863 (Cyclophyllidea: Taeniidae).

    Science.gov (United States)

    Świderski, Zdzisław; Miquel, Jordi; Azzouz-Maache, Samira; Pétavy, Anne-Françoise

    2017-07-01

    The origin, differentiation and functional ultrastructure of oncospheral or egg envelopes in Echinococcus multilocularis Leuckart, 1863 were studied by transmission electron microscopy (TEM) and cytochemistry. The purpose of our study is to describe the formation of the four primary embryonic envelopes, namely vitelline capsule, outer envelope, inner envelope and oncospheral membrane, and their transformation into the oncospheral or egg envelopes surrounding the mature hexacanth. This transformation takes place in the preoncospheral phase of embryonic development. The vitelline capsule and oncospheral membrane are thin membranes, while the outer and inner envelopes are thick cytoplasmic layers formed by two specific types of blastomeres: the outer envelope by cytoplasmic fusion of two macromeres and the inner envelope by cytoplasmic fusion of three mesomeres. Both outer and inner envelopes are therefore cellular in origin and syncytial in nature. During the advanced phase of embryonic development, the outer and inner envelopes undergo great modifications. The outer envelope remains as a metabolically active layer involved in the storage of glycogen and lipids for the final stages of egg development and survival. The inner envelope is the most important protective layer because of its thick layer of embryophoric blocks that assures oncospheral protection and survival. This embryophore is the principal layer of mature eggs, affording physical and physiological protection for the differentiated embryo or oncosphere, since the outer envelope is stripped from the egg before it is liberated. The embryophore is very thick and impermeable, consisting of polygonal blocks of an inert keratin-like protein held together by a cementing substance. The embryophore therefore assures extreme resistance of eggs, enabling them to withstand a wide range of environmental temperatures and physicochemical conditions.

  2. A multi-resolution envelope-power based model for speech intelligibility

    DEFF Research Database (Denmark)

    Jørgensen, Søren; Ewert, Stephan D.; Dau, Torsten

    2013-01-01

    The speech-based envelope power spectrum model (sEPSM) presented by Jørgensen and Dau [(2011). J. Acoust. Soc. Am. 130, 1475-1487] estimates the envelope power signal-to-noise ratio (SNRenv) after modulation-frequency selective processing. Changes in this metric were shown to account well...... to conditions with stationary interferers, due to the long-term integration of the envelope power, and cannot account for increased intelligibility typically obtained with fluctuating maskers. Here, a multi-resolution version of the sEPSM is presented where the SNRenv is estimated in temporal segments...... with a modulation-filter dependent duration. The multi-resolution sEPSM is demonstrated to account for intelligibility obtained in conditions with stationary and fluctuating interferers, and noisy speech distorted by reverberation or spectral subtraction. The results support the hypothesis that the SNRenv...

  3. Accounting for multiple climate components when estimating climate change exposure and velocity

    Science.gov (United States)

    Nadeau, Christopher P.; Fuller, Angela K.

    2015-01-01

    The effect of anthropogenic climate change on organisms will likely be related to climate change exposure and velocity at local and regional scales. However, common methods to estimate climate change exposure and velocity ignore important components of climate that are known to affect the ecology and evolution of organisms.We develop a novel index of climate change (climate overlap) that simultaneously estimates changes in the means, variation and correlation between multiple weather variables. Specifically, we estimate the overlap between multivariate normal probability distributions representing historical and current or projected future climates. We provide methods for estimating the statistical significance of climate overlap values and methods to estimate velocity using climate overlap.We show that climates have changed significantly across 80% of the continental United States in the last 32 years and that much of this change is due to changes in the variation and correlation between weather variables (two statistics that are rarely incorporated into climate change studies). We also show that projected future temperatures are predicted to be locally novel (using climate overlap compared to 1·4 km yr−1 when estimated using traditional methods.Our results suggest that accounting for changes in the means, variation and correlation between multiple weather variables can dramatically affect estimates of climate change exposure and velocity. These climate components are known to affect the ecology and evolution of organisms, but are ignored by most measures of climate change. We conclude with a set of future directions and recommend future work to determine which measures of climate change exposure and velocity are most related to biological responses to climate change.

  4. Envelope detection using temporal magnetization dynamics of resonantly interacting spin-torque oscillator

    Science.gov (United States)

    Nakamura, Y.; Nishikawa, M.; Osawa, H.; Okamoto, Y.; Kanao, T.; Sato, R.

    2018-05-01

    In this article, we propose the detection method of the recorded data pattern by the envelope of the temporal magnetization dynamics of resonantly interacting spin-torque oscillator on the microwave assisted magnetic recording for three-dimensional magnetic recording. We simulate the envelope of the waveform from recorded dots with the staggered magnetization configuration, which are calculated by using a micromagnetic simulation. We study the data detection methods for the envelope and propose a soft-output Viterbi algorithm (SOVA) for partial response (PR) system as a signal processing system for three dimensional magnetic recording.

  5. Analyzing energy consumption while heating one-layer building envelopes in conditions of intermittent heating

    Directory of Open Access Journals (Sweden)

    Vytchikov Yury

    2017-01-01

    Full Text Available This paper focuses on energy consumption for heating single layer building envelopes, used in conditions of intermittent heating in different physical and mechanical and thermophysical parameters of construction materials. The authors investigated several variants of single-layer building envelopes, used frequently in building practice, with different density and coefficients of building materials thermal conductivity. For each variant of a building envelope heat leakage and time spent on heating were calculated. Heating time was calculated by both exact and approximate analytical method. Then the researchers draw a graphic dependence of energy consumption on the density of the material taking this computational data as a basis. Further analysis showed that building envelopes made of lightweight aggregate concrete and porous concrete were the most energy efficient.This paper focuses on energy consumption for heating single layer building envelopes, used in conditions of intermittent heating in different physical and mechanical and thermophysical parameters of construction materials. The authors investigated several variants of single-layer building envelopes, used frequently in building practice, with different density and coefficients of building materials thermal conductivity. For each variant of a building envelope heat leakage and time spent on heating were calculated. Heating time was calculated by both exact and approximate analytical method. Then the researchers draw a graphic dependence of energy consumption on the density of the material taking this computational data as a basis. Further analysis showed that building envelopes made of lightweight aggregate concrete and porous concrete were the most energy efficient.

  6. Calculation of CWKB envelope in boson and fermion productions

    International Nuclear Information System (INIS)

    Biswas, S.; Chowdhury, I.

    2007-01-01

    We present the calculation of envelope of boson and of both low-and high-mass fermion production at the end of inflation when the coherently oscillating inflations decay into bosons and fermions. We consider three different models of inflation and use CWKB technique to calculate the envelope to understand the structure of resonance band formation. We observe that though low-mass fermion production is not effective in preheating because of Pauli blocking, it is quite probable for high-mass fermion to take part in pre heating. (author)

  7. Failure envelope approach for consolidated undrained capacity of shallow foundations

    OpenAIRE

    Vulpe, Cristina; Gourvenec, Susan; Leman, Billy; Fung, Kah Ngii

    2016-01-01

    A generalized framework is applied to predict consolidated undrained VHM failure envelopes for surface circular and strip foundations. The failure envelopes for consolidated undrained conditions are shown to be scaled from those for unconsolidated undrained conditions by the uniaxial consolidated undrained capacities, which are predicted through a theoretical framework based on fundamental critical state soil mechanics. The framework is applied to results from small-strain finite-element anal...

  8. High-magnification velocity field measurements on high-frequency, supersonic microactuators

    Science.gov (United States)

    Kreth, Phil; Fernandez, Erik; Ali, Mohd; Alvi, Farrukh

    2014-11-01

    The Resonance-Enhanced Microjet (REM) actuator developed at our laboratory produces pulsed, supersonic microjets by utilizing a number of microscale, flow-acoustic resonance phenomena. The microactuator used in this study consists of an underexpanded source jet flowing into a cylindrical cavity with a single orifice through which an unsteady, supersonic jet issues at a resonant frequency of 7 kHz. The flowfields of a 1 mm underexpanded free jet and the microactuator are studied in detail using high-magnification, phase-locked flow visualizations (microschlieren) and 2-component particle image velocimetry. The challenges of these measurements at such small scales and supersonic velocities are discussed. The results clearly show that the microactuator produces supersonic pulsed jets with velocities exceeding 400 m/s. This is the first direct measurement of the velocity field and its temporal evolution produced by such actuators. Comparisons are made between the flow visualizations, velocity field measurements, and simulations using Implicit LES for a similar microactuator. With high, unsteady momentum output, this type of microactuator has potential in a range of flow control applications.

  9. Stochastic spin evolution of neutron stars

    OpenAIRE

    Popov, S. B.; Prokhorov, M. E.; Khoperskov, A. V.; Lipunov, V. M.

    2001-01-01

    In this paper we present calculations of period distribution for old accreting isolated neutron stars (INSs). At the age about a few billions years low velocity INSs come to the stage of accretion. At that stage their period evolution is governed by magnetic breaking and accreted angular momentum. Due to turbulence of the interstellar medium (ISM) accreted momentum can both accelerate and decelerate rotation of an INS and spin evolution has chaotic character. Calculations show that for consta...

  10. Data Envelopment Analysis (DEA) Model in Operation Management

    Science.gov (United States)

    Malik, Meilisa; Efendi, Syahril; Zarlis, Muhammad

    2018-01-01

    Quality management is an effective system in operation management to develops, maintains, and improves quality from groups of companies that allow marketing, production, and service at the most economycal level as well as ensuring customer satisfication. Many companies are practicing quality management to improve their bussiness performance. One of performance measurement is through measurement of efficiency. One of the tools can be used to assess efficiency of companies performance is Data Envelopment Analysis (DEA). The aim of this paper is using Data Envelopment Analysis (DEA) model to assess efficiency of quality management. In this paper will be explained CCR, BCC, and SBM models to assess efficiency of quality management.

  11. Asymmetry of the envelope of supernova 1987A

    Energy Technology Data Exchange (ETDEWEB)

    Papaliolios, C.; Karovska, M.; Koechlin, L.; Nisenson, P.; Standley, C.; Heathcote, S.

    1989-04-13

    The supernova SN1987A in the Large Magellanic Cloud has been observed by high-angular-resolution speckle interferometry since 25 March (30 days after the explosion) with the 4-m telescope at the Cerro Tololo Interamerican Observatory. Data obtained on 25 March and 2 April 1987 revealed a second bright 'companion' source separated from the supernova by 60 milliarcseconds and less than three magnitudes fainter than the supernova. Measurements of the average diameter of the supernova envelope have been made from data recorded from March 1987 to April 1988. Here we present a more detailed analysis of these data, which shows that the expanding envelope is asymmetric. (author).

  12. Asymmetry of the envelope of supernova 1987A

    International Nuclear Information System (INIS)

    Papaliolios, C.; Karovska, M.; Koechlin, L.; Nisenson, P.; Standley, C.; Heathcote, S.

    1989-01-01

    The supernova SN1987A in the Large Magellanic Cloud has been observed by high-angular-resolution speckle interferometry since 25 March (30 days after the explosion) with the 4-m telescope at the Cerro Tololo Interamerican Observatory. Data obtained on 25 March and 2 April 1987 revealed a second bright 'companion' source separated from the supernova by 60 milliarcseconds and less than three magnitudes fainter than the supernova. Measurements of the average diameter of the supernova envelope have been made from data recorded from March 1987 to April 1988. Here we present a more detailed analysis of these data, which shows that the expanding envelope is asymmetric. (author)

  13. CARBON CHEMISTRY IN THE ENVELOPE OF VY CANIS MAJORIS: IMPLICATIONS FOR OXYGEN-RICH EVOLVED STARS

    International Nuclear Information System (INIS)

    Ziurys, L. M.; Tenenbaum, E. D.; Pulliam, R. L.; Woolf, N. J.; Milam, S. N.

    2009-01-01

    Observations of the carbon-bearing molecules CO, HCN, CS, HNC, CN, and HCO + have been conducted toward the circumstellar envelope of the oxygen-rich red supergiant star, VY Canis Majoris (VY CMa), using the Arizona Radio Observatory (ARO). CO and HCN were also observed toward the O-rich shells of NML Cyg, TX Cam, IK Tau, and W Hya. Rotational transitions of these species at 1 mm, 0.8 mm, and 0.4 mm were measured with the ARO Submillimeter Telescope, including the J = 6 → 5 line of CO at 691 GHz toward TX Cam and W Hya. The ARO 12 m was used for 2 mm and 3 mm observations. Four transitions were observed for HCO + in VY CMa, the first definitive identification of this ion in a circumstellar envelope. Molecular line profiles from VY CMa are complex, indicating three separate outflows: a roughly spherical flow and separate red- and blueshifted winds, as suggested by earlier observations. Spectra from the other sources appear to trace a single outflow component. The line data were modeled with a radiative transfer code to establish molecular abundances relative to H 2 and source distributions. Abundances for CO derived for these objects vary over an order of magnitude, f ∼ 0.4-5 x 10 -4 , with the lower values corresponding to the supergiants. For HCN, a similar range in abundance is found (f ∼ 0.9-9 x 10 -6 ), with no obvious dependence on the mass-loss rate. In VY CMa, HCO + is present in all three outflows with f ∼ 0.4-1.6 x 10 -8 and a spatial extent similar to that of CO. HNC is found only in the red- and blueshifted components with [HCN]/[HNC] ∼ 150-190, while [CN]/[HCN] ∼ 0.01 in the spherical flow. All three velocity components are traced in CS, which has a confined spatial distribution and f ∼ 2-6 x 10 -7 . These observations suggest that carbon-bearing molecules in O-rich shells are produced by a combination of photospheric shocks and photochemistry. Shocks may play a more prominent role in the supergiants because of their macroturbulent

  14. Carbon Chemistry in the Envelope of VY Canis Majoris: Implications for Oxygen-Rich Evolved Stars

    Science.gov (United States)

    Ziurys, L. M.; Tenenbaum, E. D.; Pulliam, R. L.; Woolf, N. J.; Milam, S. N.

    2009-04-01

    Observations of the carbon-bearing molecules CO, HCN, CS, HNC, CN, and HCO+ have been conducted toward the circumstellar envelope of the oxygen-rich red supergiant star, VY Canis Majoris (VY CMa), using the Arizona Radio Observatory (ARO). CO and HCN were also observed toward the O-rich shells of NML Cyg, TX Cam, IK Tau, and W Hya. Rotational transitions of these species at 1 mm, 0.8 mm, and 0.4 mm were measured with the ARO Submillimeter Telescope, including the J = 6 → 5 line of CO at 691 GHz toward TX Cam and W Hya. The ARO 12 m was used for 2 mm and 3 mm observations. Four transitions were observed for HCO+ in VY CMa, the first definitive identification of this ion in a circumstellar envelope. Molecular line profiles from VY CMa are complex, indicating three separate outflows: a roughly spherical flow and separate red- and blueshifted winds, as suggested by earlier observations. Spectra from the other sources appear to trace a single outflow component. The line data were modeled with a radiative transfer code to establish molecular abundances relative to H2 and source distributions. Abundances for CO derived for these objects vary over an order of magnitude, f ~ 0.4-5 × 10-4, with the lower values corresponding to the supergiants. For HCN, a similar range in abundance is found (f ~ 0.9-9 × 10-6), with no obvious dependence on the mass-loss rate. In VY CMa, HCO+ is present in all three outflows with f ~ 0.4-1.6 × 10-8 and a spatial extent similar to that of CO. HNC is found only in the red- and blueshifted components with [HCN]/[HNC] ~ 150-190, while [CN]/[HCN] ~ 0.01 in the spherical flow. All three velocity components are traced in CS, which has a confined spatial distribution and f ~ 2-6 × 10-7. These observations suggest that carbon-bearing molecules in O-rich shells are produced by a combination of photospheric shocks and photochemistry. Shocks may play a more prominent role in the supergiants because of their macroturbulent velocities.

  15. A model for the sustainable selection of building envelope assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Huedo, Patricia, E-mail: huedo@uji.es [Universitat Jaume I (Spain); Mulet, Elena, E-mail: emulet@uji.es [Universitat Jaume I (Spain); López-Mesa, Belinda, E-mail: belinda@unizar.es [Universidad de Zaragoza (Spain)

    2016-02-15

    The aim of this article is to define an evaluation model for the environmental impacts of building envelopes to support planners in the early phases of materials selection. The model is intended to estimate environmental impacts for different combinations of building envelope assemblies based on scientifically recognised sustainability indicators. These indicators will increase the amount of information that existing catalogues show to support planners in the selection of building assemblies. To define the model, first the environmental indicators were selected based on the specific aims of the intended sustainability assessment. Then, a simplified LCA methodology was developed to estimate the impacts applicable to three types of dwellings considering different envelope assemblies, building orientations and climate zones. This methodology takes into account the manufacturing, installation, maintenance and use phases of the building. Finally, the model was validated and a matrix in Excel was created as implementation of the model. - Highlights: • Method to assess the envelope impacts based on a simplified LCA • To be used at an earlier phase than the existing methods in a simple way. • It assigns a score by means of known sustainability indicators. • It estimates data about the embodied and operating environmental impacts. • It compares the investment costs with the costs of the consumed energy.

  16. CONTROL OF INDOOR ENVIRONMENTS VIA THE REGULATION OF BUILDING ENVELOPES

    Directory of Open Access Journals (Sweden)

    Mitja Košir

    2011-01-01

    Full Text Available The design of comfortable, healthy and stimulating indoor environments in buildings has a direct impact on the users and on energy consumption, as well as on the wider soci-economic environment of society.The indoor environment of buildings is defined with the formulation of the building envelope, which functions as an interface between the internal and external environments and its users. A properly designed, flexible and adequately controlled building envelope is a starting point in the formulation of a high-quality indoor environment. The systematic treatment of the indoor environment and building envelope from a user’s point of view represents an engineering approach that enables the holistic treatment of buildings, as well as integrated components and systems. The presented division of indoor environment in terms of visual, thermal, olfactory, acoustic and ergonomic sub-environments enables the classification and selection of crucial factors influencing design. This selection and classification can be implemented in the design, as well as in control applications of the building envelope. The implementation of the approach described is demonstrated with an example of an automated control system for the internal environment of an office in the building of the Faculty of Civil and Geodetic Engineering.

  17. A model for the sustainable selection of building envelope assemblies

    International Nuclear Information System (INIS)

    Huedo, Patricia; Mulet, Elena; López-Mesa, Belinda

    2016-01-01

    The aim of this article is to define an evaluation model for the environmental impacts of building envelopes to support planners in the early phases of materials selection. The model is intended to estimate environmental impacts for different combinations of building envelope assemblies based on scientifically recognised sustainability indicators. These indicators will increase the amount of information that existing catalogues show to support planners in the selection of building assemblies. To define the model, first the environmental indicators were selected based on the specific aims of the intended sustainability assessment. Then, a simplified LCA methodology was developed to estimate the impacts applicable to three types of dwellings considering different envelope assemblies, building orientations and climate zones. This methodology takes into account the manufacturing, installation, maintenance and use phases of the building. Finally, the model was validated and a matrix in Excel was created as implementation of the model. - Highlights: • Method to assess the envelope impacts based on a simplified LCA • To be used at an earlier phase than the existing methods in a simple way. • It assigns a score by means of known sustainability indicators. • It estimates data about the embodied and operating environmental impacts. • It compares the investment costs with the costs of the consumed energy.

  18. Three-dimensional distribution of random velocity inhomogeneities at the Nankai trough seismogenic zone

    Science.gov (United States)

    Takahashi, T.; Obana, K.; Yamamoto, Y.; Nakanishi, A.; Kaiho, Y.; Kodaira, S.; Kaneda, Y.

    2012-12-01

    The Nankai trough in southwestern Japan is a convergent margin where the Philippine sea plate is subducted beneath the Eurasian plate. There are major faults segments of huge earthquakes that are called Tokai, Tonankai and Nankai earthquakes. According to the earthquake occurrence history over the past hundreds years, we must expect various rupture patters such as simultaneous or nearly continuous ruptures of plural fault segments. Japan Agency for Marine-Earth Science and Technology (JAMSTEC) conducted seismic surveys at Nankai trough in order to clarify mutual relations between seismic structures and fault segments, as a part of "Research concerning Interaction Between the Tokai, Tonankai and Nankai Earthquakes" funded by Ministry of Education, Culture, Sports, Science and Technology, Japan. This study evaluated the spatial distribution of random velocity inhomogeneities from Hyuga-nada to Kii-channel by using velocity seismograms of small and moderate sized earthquakes. Random velocity inhomogeneities are estimated by the peak delay time analysis of S-wave envelopes (e.g., Takahashi et al. 2009). Peak delay time is defined as the time lag from the S-wave onset to its maximal amplitude arrival. This quantity mainly reflects the accumulated multiple forward scattering effect due to random inhomogeneities, and is quite insensitive to the inelastic attenuation. Peak delay times are measured from the rms envelopes of horizontal components at 4-8Hz, 8-16Hz and 16-32Hz. This study used the velocity seismograms that are recorded by 495 ocean bottom seismographs and 378 onshore seismic stations. Onshore stations are composed of the F-net and Hi-net stations that are maintained by National Research Institute for Earth Science and Disaster Prevention (NIED) of Japan. It is assumed that the random inhomogeneities are represented by the von Karman type PSDF. Preliminary result of inversion analysis shows that spectral gradient of PSDF (i.e., scale dependence of

  19. On the relationship between multi-channel envelope and temporal fine structure

    DEFF Research Database (Denmark)

    Søndergaard, Peter Lempel; Decorsiere, Remi Julien Blaise; Dau, Torsten

    2011-01-01

    The envelope of a signal is broadly defined as the slow changes in time of the signal, where as the temporal fine structure (TFS) are the fast changes in time, i.e. the carrier wave(s) of the signal. The focus of this paper is on envelope and TFS in multi-channel systems. We discuss the differenc...

  20. Jupiter's evolution with primordial composition gradients

    Science.gov (United States)

    Vazan, Allona; Helled, Ravit; Guillot, Tristan

    2018-02-01

    Recent formation and structure models of Jupiter suggest that the planet can have composition gradients and not be fully convective (adiabatic). This possibility directly affects our understanding of Jupiter's bulk composition and origin. In this Letter we present Jupiter's evolution with a primordial structure consisting of a relatively steep heavy-element gradient of 40 M⊕. We show that for a primordial structure with composition gradients, most of the mixing occurs in the outer part of the gradient during the early evolution (several 107 yr), leading to an adiabatic outer envelope (60% of Jupiter's mass). We find that the composition gradient in the deep interior persists, suggesting that 40% of Jupiter's mass can be non-adiabatic with a higher temperature than the one derived from Jupiter's atmospheric properties. The region that can potentially develop layered convection in Jupiter today is estimated to be limited to 10% of the mass. Movies associated to Figs. 1-3 are available at http://https://www.aanda.org

  1. Symmetries and invariants of the oscillator and envelope equations with time-dependent frequency

    Directory of Open Access Journals (Sweden)

    Hong Qin

    2006-05-01

    Full Text Available The single-particle dynamics in a time-dependent focusing field is examined. The existence of the Courant-Snyder invariant, a fundamental concept in accelerator physics, is fundamentally a result of the corresponding symmetry admitted by the harmonic oscillator equation with linear time-dependent frequency. It is demonstrated that the Lie algebra of the symmetry group for the oscillator equation with time-dependent frequency is eight dimensional, and is composed of four independent subalgebras. A detailed analysis of the admitted symmetries reveals a deeper connection between the nonlinear envelope equation and the oscillator equation. A general theorem regarding the symmetries and invariants of the envelope equation, which includes the existence of the Courant-Snyder invariant as a special case, is demonstrated. As an application to accelerator physics, the symmetries of the envelope equation enable a fast numerical algorithm for finding matched solutions without using the conventional iterative Newton’s method, where the envelope equation needs to be numerically integrated once for every iteration, and the Jacobi matrix needs to be calculated for the envelope perturbation.

  2. Rotating Hele-Shaw cell with a time-dependent angular velocity

    Science.gov (United States)

    Anjos, Pedro H. A.; Alvarez, Victor M. M.; Dias, Eduardo O.; Miranda, José A.

    2017-12-01

    Despite the large number of existing studies of viscous flows in rotating Hele-Shaw cells, most investigations analyze rotational motion with a constant angular velocity, under vanishing Reynolds number conditions in which inertial effects can be neglected. In this work, we examine the linear and weakly nonlinear dynamics of the interface between two immiscible fluids in a rotating Hele-Shaw cell, considering the action of a time-dependent angular velocity, and taking into account the contribution of inertia. By using a generalized Darcy's law, we derive a second-order mode-coupling equation which describes the time evolution of the interfacial perturbation amplitudes. For arbitrary values of viscosity and density ratios, and for a range of values of a rotational Reynolds number, we investigate how the time-dependent angular velocity and inertia affect the important finger competition events that traditionally arise in rotating Hele-Shaw flows.

  3. Critical Velocity for Shear Localization in A Mature Mylonitic Rock Analogue

    Science.gov (United States)

    Takahashi, M.; van den Ende, M.; Niemeijer, A. R.; Spiers, C. J.

    2016-12-01

    Highly localized slip zones, seen within ductile shear zones developed in nature, such as pseudotachylite bands occurring within mylonites, are widely recognized as evidence for earthquake nucleation and/or propagation within and overprinting the ductile regime. To understand brittle/frictional localization processes in ductile shear zones and to connect these to earthquake nucleation and propagation processes, we performed large velocity step-change tests on a brine-saturated, 80:20 (wt. %) halite and muscovite gouge mixture, after forming a mature mylonitic structure through pressure solution creep at low-velocity. The sharp increase in sliding strength that occurs in response to an instantaneous upward velocity-step (direct effect) is an important parameter in determining the potential for and nature of seismic rupture nucleation. We obtained reproducible results regarding low velocity mechanical behavior compared with previous work of Niemeijer and Spiers, [2006], but also obtained new insights into the effects of sudden increases in slip velocity on localization and strength evolution, at velocities above a specific critical velocity Vc ( 20 μm/sec). We found that once a ductile, mylonitic structure has developed in a shear zone, subsequent cataclastic deformation at high velocity (> Vc) is consistently localized in a narrow zone characterized by fine grains of halite aligned in arrays between foliated muscovite Due to this intense localization, structures presumably developed under low velocity conditions were still preserved in large parts of the gouge body. This switch to localized deformation is controlled by the imposed velocity, and becomes most apparent at velocities over Vc. In addition, the direct effect a decreases rapidly when the velocity exceeds Vc. This implies that slip can localize and accelerate towards seismic velocities more or less instantly once Vc is exceeded. Obtaining a measure for Vc in natural faults is therefore of key importance

  4. The Velocity Distribution of Isolated Radio Pulsars

    Science.gov (United States)

    Arzoumanian, Z.; Chernoff, D. F.; Cordes, J. M.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We infer the velocity distribution of radio pulsars based on large-scale 0.4 GHz pulsar surveys. We do so by modelling evolution of the locations, velocities, spins, and radio luminosities of pulsars; calculating pulsed flux according to a beaming model and random orientation angles of spin and beam; applying selection effects of pulsar surveys; and comparing model distributions of measurable pulsar properties with survey data using a likelihood function. The surveys analyzed have well-defined characteristics and cover approx. 95% of the sky. We maximize the likelihood in a 6-dimensional space of observables P, dot-P, DM, absolute value of b, mu, F (period, period derivative, dispersion measure, Galactic latitude, proper motion, and flux density). The models we test are described by 12 parameters that characterize a population's birth rate, luminosity, shutoff of radio emission, birth locations, and birth velocities. We infer that the radio beam luminosity (i) is comparable to the energy flux of relativistic particles in models for spin-driven magnetospheres, signifying that radio emission losses reach nearly 100% for the oldest pulsars; and (ii) scales approximately as E(exp 1/2) which, in magnetosphere models, is proportional to the voltage drop available for acceleration of particles. We find that a two-component velocity distribution with characteristic velocities of 90 km/ s and 500 km/ s is greatly preferred to any one-component distribution; this preference is largely immune to variations in other population parameters, such as the luminosity or distance scale, or the assumed spin-down law. We explore some consequences of the preferred birth velocity distribution: (1) roughly 50% of pulsars in the solar neighborhood will escape the Galaxy, while approx. 15% have velocities greater than 1000 km/ s (2) observational bias against high velocity pulsars is relatively unimportant for surveys that reach high Galactic absolute value of z distances, but is severe for

  5. Bursting the Bubble - Nuclear Envelope Rupture as a Path to Genomic Instability?

    NARCIS (Netherlands)

    Shah, P.; Wolf, K.A.; Lammerding, J.

    2017-01-01

    The nuclear envelope safeguards the genetic material inside the nucleus by separating it from the cytoplasm. Until recently, it was assumed that nuclear envelope (NE) breakdown occurs only in a highly controlled fashion during mitosis when the chromatin is condensed and divided between the daughter

  6. ENVIRONMENT AND PROTOSTELLAR EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yichen [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Tan, Jonathan C., E-mail: yczhang.astro@gmail.com [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States)

    2015-04-01

    Even today in our Galaxy, stars form from gas cores in a variety of environments, which may affect the properties of the resulting star and planetary systems. Here, we study the role of pressure, parameterized via ambient clump mass surface density, on protostellar evolution and appearance, focusing on low-mass Sun-like stars and considering a range of conditions from relatively low pressure filaments in Taurus, to intermediate pressures of cluster-forming clumps like the Orion Nebula Cluster, to very high pressures that may be found in the densest infrared dark clouds or in the Galactic center. We present unified analytic and numerical models for the collapse of prestellar cores, accretion disks, protostellar evolution, and bipolar outflows, coupled with radiative transfer calculations and a simple astrochemical model to predict CO gas-phase abundances. Prestellar cores in high-pressure environments are smaller and denser and thus collapse with higher accretion rates and efficiencies, resulting in higher luminosity protostars with more powerful outflows. The protostellar envelope is heated to warmer temperatures, affecting infrared morphologies (and thus classification) and astrochemical processes like CO depletion onto dust grain ice mantles (and thus CO morphologies). These results have general implications for star and planet formation, especially via their effect on astrochemical and dust grain evolution during infall to and through protostellar accretion disks.

  7. Delineating CD4 dependency of HIV-1: Adaptation to infect low level CD4 expressing target cells widens cellular tropism but severely impacts on envelope functionality.

    Directory of Open Access Journals (Sweden)

    David Beauparlant

    2017-03-01

    Full Text Available A hallmark of HIV-1 infection is the continuously declining number of the virus' predominant target cells, activated CD4+ T cells. With diminishing CD4+ T cell levels, the capacity to utilize alternate cell types and receptors, including cells that express low CD4 receptor levels such as macrophages, thus becomes crucial. To explore evolutionary paths that allow HIV-1 to acquire a wider host cell range by infecting cells with lower CD4 levels, we dissected the evolution of the envelope-CD4 interaction under in vitro culture conditions that mimicked the decline of CD4high target cells, using a prototypic subtype B, R5-tropic strain. Adaptation to CD4low targets proved to severely alter envelope functions including trimer opening as indicated by a higher affinity to CD4 and loss in shielding against neutralizing antibodies. We observed a strikingly decreased infectivity on CD4high target cells, but sustained infectivity on CD4low targets, including macrophages. Intriguingly, the adaptation to CD4low targets altered the kinetic of the entry process, leading to rapid CD4 engagement and an extended transition time between CD4 and CCR5 binding during entry. This phenotype was also observed for certain central nervous system (CNS derived macrophage-tropic viruses, highlighting that the functional perturbation we defined upon in vitro adaptation to CD4low targets occurs in vivo. Collectively, our findings suggest that CD4low adapted envelopes may exhibit severe deficiencies in entry fitness and shielding early in their evolution. Considering this, adaptation to CD4low targets may preferentially occur in a sheltered and immune-privileged environment such as the CNS to allow fitness restoring compensatory mutations to occur.

  8. Selecting Energy Efficient Building Envelope Retrofits to Existing Department of Defense Building Using Value Focused Thinking

    National Research Council Canada - National Science Library

    Pratt, David M

    2006-01-01

    ... these facilities that have the greatest potential for energy efficient building envelope retrofits. There are hundreds of various new building envelope technologies available to retrofit an existing building envelope, including window, roof, and wall technologies...

  9. Cost Analysis of Simple Phase Change Material-Enhanced Building Envelopes in Southern U.S. Climates

    Energy Technology Data Exchange (ETDEWEB)

    Kosny, Jan [Fraunhofer CSE, Cambridge, MA (United States); Shukla, Nitin [Fraunhofer CSE, Cambridge, MA (United States); Fallahi, Ali [Fraunhofer CSE, Cambridge, MA (United States)

    2013-01-01

    Traditional thermal designs of building envelope assemblies are based on static energy flows, yet building envelopes are subject to varying environmental conditions. This mismatch between the steady-state principles and their dynamic operation can decrease thermal efficiency. Design work supporting the development of low-energy houses showed that conventional insulations may not always be the most cost effective solution to improvement envelope thermal performance. PCM-enhanced building envelopes that simultaneously reduce the total cooling loads and shift the peak-hour loads are the focus of this report.

  10. Change rules of a stratospheric airship’s envelope shape during ascent process

    Directory of Open Access Journals (Sweden)

    Shuai Zhao

    2017-04-01

    Full Text Available Stratospheric airship is a special near-space air vehicle, and has more advantages than other air vehicles, such as long endurance, strong survival ability, excellent resolution, low cost, and so on, which make it an ideal stratospheric platform. It is of great significance to choose a reasonable and effective way to launch a stratospheric airship to the space for both academic research and engineering applications. In this paper, the non-forming launch way is studied and the method of differential pressure gradient is used to study the change rules of the airship’s envelope shape during the ascent process. Numerical simulation results show that the head of the envelope will maintain the inflatable shape and the envelope under the zero-pressure level will be compressed into a wide range of wrinkles during the ascent process. The airship’s envelope will expand with the ascent of the airship and the position of the zero-pressure level will move downward constantly. At the same time, the envelope will gradually form a certain degree of stiffness under the action of the inner and external differential pressure. The experimental results agree well with the analytical results, which shows that the non-forming launch way is effective and reliable, and the analytical method has exactness and feasibility.

  11. Modeling a Decision Support Tool for Buildable and Sustainable Building Envelope Designs

    Directory of Open Access Journals (Sweden)

    Natee Singhaputtangkul

    2015-05-01

    Full Text Available Sustainability and buildability requirements in building envelope design have significantly gained more importance nowadays, yet there is a lack of an appropriate decision support system (DSS that can help a building design team to incorporate these requirements and manage their tradeoffs at once. The main objective of this study is to build such a tool to facilitate a building design team to take into account sustainability and buildability criteria for assessment of building envelopes of high-rise residential buildings in Singapore. Literature reviews were conducted to investigate a comprehensive set of the sustainability and buildability criteria. This also included development of the tool using a Quality Functional Deployment (QFD approach combined with fuzzy set theory. A building design team was engaged to test the tool with the aim to evaluate usefulness of the tool in managing the tradeoffs among the sustainability and buildability criteria. The results from a qualitative data analysis suggested that the tool allowed the design team to effectively find a balance between the tradeoffs among the criteria when assessing multiple building envelope design alternatives. Main contributions of using this tool are achievement of a more efficient assessment of the building envelopes and more sustainable and buildable building envelope design.

  12. The nonlinear theory of slow-wave electron cyclotron masers with inclusion of the beam velocity spread

    International Nuclear Information System (INIS)

    Kong, Ling-Bao; Wang, Hong-Yu; Hou, Zhi-Ling; Jin, Hai-Bo; Du, Chao-Hai

    2013-01-01

    The nonlinear theory of slow-wave electron cyclotron masers (ECM) with an initially straight electron beam is developed. The evolution equation of the nonlinear beam electron energy is derived. The numerical studies of the slow-wave ECM efficiency with inclusion of Gaussian beam velocity spread are presented. It is shown that the velocity spread reduces the interaction efficiency. -- Highlights: •The theory of slow-wave electron cyclotron masers is considered. •The calculation of efficiency under the resonance condition is presented. •The efficiency under Gaussian velocity spreads has been obtained

  13. The nonlinear theory of slow-wave electron cyclotron masers with inclusion of the beam velocity spread

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Ling-Bao, E-mail: konglingbao@gmail.com [School of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Beijing Key Laboratory of Environmentally Harmful Chemicals Assessment, Beijing University of Chemical Technology, Beijing 100029 (China); Wang, Hong-Yu [School of Physics, Anshan Normal University, Anshan 114005 (China); Hou, Zhi-Ling, E-mail: houzl@mail.buct.edu.cn [School of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Beijing Key Laboratory of Environmentally Harmful Chemicals Assessment, Beijing University of Chemical Technology, Beijing 100029 (China); Jin, Hai-Bo [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Du, Chao-Hai [Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China)

    2013-12-15

    The nonlinear theory of slow-wave electron cyclotron masers (ECM) with an initially straight electron beam is developed. The evolution equation of the nonlinear beam electron energy is derived. The numerical studies of the slow-wave ECM efficiency with inclusion of Gaussian beam velocity spread are presented. It is shown that the velocity spread reduces the interaction efficiency. -- Highlights: •The theory of slow-wave electron cyclotron masers is considered. •The calculation of efficiency under the resonance condition is presented. •The efficiency under Gaussian velocity spreads has been obtained.

  14. The Experimental Research on Seismic Capacity of the Envelope Systems with Steel Frame

    Science.gov (United States)

    Li, Jiuyang; Wang, Bingbing; Li, Hengxu

    2017-09-01

    In this paper, according to the present application situation of the external envelope systems steel frame in the severe cold region, the stuffed composite wall panels are improved, the flexible connection with the steel frame is designed, the reduced scale specimens are made, the seismic capacity test is made and some indexes of the envelope systems such as bearing capacity, energy consumption and ductility, etc. are compared, which provide reference for the development and application of the steel frame envelope systems.

  15. On the evolution of cluster scaling relations

    International Nuclear Information System (INIS)

    Diemer, Benedikt; Kravtsov, Andrey V.; More, Surhud

    2013-01-01

    Understanding the evolution of scaling relations between the observable properties of clusters and their total mass is key to realizing their potential as cosmological probes. In this study, we investigate whether the evolution of cluster scaling relations is affected by the spurious evolution of mass caused by the evolving reference density with respect to which halo masses are defined (pseudo-evolution). We use the relation between mass, M, and velocity dispersion, σ, as a test case, and show that the deviation from the M-σ relation of cluster-sized halos caused by pseudo-evolution is smaller than 10% for a wide range of mass definitions. The reason for this small impact is a tight relation between the velocity dispersion and mass profiles, σ(evolution, halos approximately preserve their M-σ relation. This result highlights the fact that tight scaling relations are the result of tight equilibrium relations between radial profiles of physical quantities. We find exceptions at very small and very large radii, where the profiles deviate from the relations they exhibit at intermediate radii. We discuss the implications of these results for other cluster scaling relations and argue that pseudo-evolution should have a small effect on most scaling relations, except for those that involve the stellar masses of galaxies. In particular, we show that the relation between stellar-mass fraction and total mass is affected by pseudo-evolution and is largely shaped by it for halo masses ≲ 10 14 M ☉ .

  16. The psychic envelopes in psychoanalytic theories of infancy

    Science.gov (United States)

    Mellier, Denis

    2014-01-01

    This paper aims to review the topic of psychic envelopes and to sketch the main outlines of this concept in infancy. We first explore the origins of the concept in Freud's “protective shield” and then its development in adult psychoanalysis before going on to see how this fits in infancy with post-Bionian psychoanalysis and development. Four central notions guide this review: (1) Freud's “protective shield” describes a barrier to protect the psychic apparatus against potentially overflowing trauma. It is a core notion which highlights a serious clinical challenge for patients for whom the shield is damaged or faulty: the risk of confusion of borders between the internal/external world, conscious/unconscious, mind/body, or self-conservation/sexuality. (2) Anzieu's “Skin-Ego” is defined by the different senses of the body. The different layers of experienced sensation, of this body-ego, go on to form the psychic envelope. This theory contributes to our understanding of how early trauma, due to the failures of maternal care, can continue to have an impact in adult life. (3) Bick's “psychic skin” establishes the concept in relation to infancy. The mother's containing functions allow a first psychic skin to develop, which then defines an infant's psychic space and affords the infant a degree of self-containment. Houzel then conceptualized this process as a stabilization of drive forces. (4) Stern's “narrative envelope” derives from the intersection between psychoanalysis and neuroscience. It gives us another way to conceptualize the development of pre-verbal communication. It may also pave the way for a finer distinction of different types of envelopes. Ultimately, in this review we find that psychic envelopes in infancy can be viewed from four different perspectives (economic, topographical, dynamic, and genetic) and recommend further investigation. PMID:25076924

  17. Constructing canonical bases of quantized enveloping algebras

    OpenAIRE

    Graaf, W.A. de

    2001-01-01

    An algorithm for computing the elements of a given weight of the canonical basis of a quantized enveloping algebra is described. Subsequently, a similar algorithm is presented for computing the canonical basis of a finite-dimensional module.

  18. Bacillus subtilis extracytoplasmic function (ECF) sigma factors and defense of the cell envelope.

    Science.gov (United States)

    Helmann, John D

    2016-04-01

    Bacillus subtilis provides a model for investigation of the bacterial cell envelope, the first line of defense against environmental threats. Extracytoplasmic function (ECF) sigma factors activate genes that confer resistance to agents that threaten the integrity of the envelope. Although their individual regulons overlap, σ(W) is most closely associated with membrane-active agents, σ(X) with cationic antimicrobial peptide resistance, and σ(V) with resistance to lysozyme. Here, I highlight the role of the σ(M) regulon, which is strongly induced by conditions that impair peptidoglycan synthesis and includes the core pathways of envelope synthesis and cell division, as well as stress-inducible alternative enzymes. Studies of these cell envelope stress responses provide insights into how bacteria acclimate to the presence of antibiotics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Effects of rotation on the evolution of primordial stars

    Science.gov (United States)

    Ekström, S.; Meynet, G.; Chiappini, C.; Hirschi, R.; Maeder, A.

    2008-10-01

    Context: Although still beyond our observational abilities, Population III stars are interesting objects from many perspectives. They are responsible for the re-ionisation of the inter-galactic medium. They also left their chemical imprint in the early Universe, which can be deciphered in the most metal-poor stars in the halo of our Galaxy. Aims: Rotation has been shown to play a determinant role at very low metallicity, bringing heavy mass loss where almost none was expected. Is this still true when the metallicity strictly equals zero? The aim of our study is to answer this question, and to determine how rotation changes the evolution and the chemical signature of the primordial stars. Methods: We have calculated seven differentially-rotating stellar models at zero metallicity, with masses between 9 and 200 M⊙. For each mass, we also calculated a corresponding model without rotation. The evolution is followed up to the pre-supernova stage. Results: We find that Z=0 models rotate with an internal profile Ω(r) close to local angular momentum conservation, because of a very weak core-envelope coupling. Rotational mixing drives an H-shell boost due to a sudden onset of the CNO cycle in the shell. This boost leads to a high 14N production, which can be as much as 106 times higher than the production of the non-rotating models. Generally, the rotating models produce much more metal than their non-rotating counterparts. The mass loss is very low, even for the models that reach critical velocity during the main sequence. It may however have an impact on the chemical enrichment of the Universe, because some of the stars are supposed to collapse directly into black holes. They would contribute to the enrichment only through their winds. While in that case non-rotating stars would not contribute at all, rotating stars may leave an imprint on their surrounding. Due to the low mass loss and the weak coupling, the core retains a high angular momentum at the end of the

  20. Evolution of the cosmological horizons in a concordance universe

    Energy Technology Data Exchange (ETDEWEB)

    Margalef-Bentabol, Berta; Cepa, Jordi [Departamento de Astrofísica, Universidad de la Laguna, E-38205 La Laguna, Tenerife (Spain); Margalef-Bentabol, Juan, E-mail: bmb@cca.iac.es, E-mail: juanmargalef@estumail.ucm.es, E-mail: jcn@iac.es [Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Madrid (Spain)

    2012-12-01

    The particle and event horizons are widely known and studied concepts, but the study of their properties, in particular their evolution, have only been done so far considering a single state equation in a decelerating universe. This paper is the first of two where we study this problem from a general point of view. Specifically, this paper is devoted to the study of the evolution of these cosmological horizons in an accelerated universe with two state equations, cosmological constant and dust. We have obtained simple expressions in terms of their respective recession velocities that generalize the previous results for one state equation only. With the equations of state considered, it is proved that both velocities remain always positive.

  1. Functional envelope of a non-autonomous discrete system

    Directory of Open Access Journals (Sweden)

    Barzanouni Ali

    2017-11-01

    Full Text Available Let (X, F = {fn}n =0∞ be a non-autonomous discrete system by a compact metric space X and continuous maps fn : X → X, n = 0, 1, ....We introduce functional envelope (S(X, G = {Gn}n =0∞, of (X, F = {fn}n =0∞, where S(X is the space of all continuous self maps of X and the map Gn : S(X → S(X is defined by Gn(ϕ = Fn ∘ ϕ, Fn = fn ∘ fn-1 ∘ . . . ∘ f1 ∘ f0. The paper mainly deals with the connection between the properties of a system and the properties of its functional envelope.

  2. INTERACTION OF CLOSE-IN PLANETS WITH THE MAGNETOSPHERE OF THEIR HOST STARS. II. SUPER-EARTHS AS UNIPOLAR INDUCTORS AND THEIR ORBITAL EVOLUTION

    International Nuclear Information System (INIS)

    Laine, Randy O.; Lin, Douglas N. C.

    2012-01-01

    Planets with several Earth masses and orbital periods of a few days have been discovered through radial velocity and transit surveys. Regardless of their formation mechanism, an important evolution issue is the efficiency of their retention in the proximity of their host stars. If these 'super-Earths' attained their present-day orbits during or shortly after the T Tauri phase of their host stars, a large fraction of these planets would have encountered an intense stellar magnetic field. These rocky planets have a higher conductivity than the atmosphere of their host stars and, therefore, the magnetic flux tube connecting them would slip though the envelope of the host stars faster than across the planets. The induced electromotive force across the planet's diameter leads to a potential drop which propagates along a flux tube away from the planet with an Alfvén speed. The foot of the flux tube would sweep across the stellar surface and the potential drop across the field lines drives a DC current analogous to that proposed for the electrodynamics of the Io-Jupiter system. The ohmic dissipation of this current produces potentially observable hot spots in the star envelope. It also heats the planet and leads to a torque which drives the planet's orbit to evolve toward both circularization and a state of synchronization with the spin of the star. The net effect is the damping of the planet's orbital eccentricity. Around slowly (or rapidly) spinning stars, this process also causes rocky planets with periods less than a few days to undergo orbital decay (or expansion/stagnation) within a few Myr. In principle, this effect can determine the retention efficiency of short-period hot Earths. We also estimate the ohmic dissipation interior to these planets and show that it can lead to severe structure evolution and potential loss of volatile material in them. However, these effects may be significantly weakened by the reconnection of the induced field.

  3. Safety analysis to support a safe operating envelope for fuel

    International Nuclear Information System (INIS)

    Gibb, R.A.; Reid, P.J.

    1998-01-01

    This paper presents an approach for defining a safe operating envelope for fuel. 'Safe operating envelope' is defined as an envelope of fuel parameters defined for application in safety analysis that can be related to, or used to define, the acceptable range of fuel conditions due to operational transients or deviations in fuel manufacturing processes. The paper describes the motivation for developing such a methodology. The methodology involved four steps: the update of fission product inventories, the review of sheath failure criteria, a review of input parameters to be used in fuel modelling codes, and the development of an improved fission product release code. This paper discusses the aspects of fuel sheath failure criteria that pertain to operating or manufacturing conditions and to the evaluation and selection of modelling input data. The other steps are not addressed in this paper since they have been presented elsewhere. (author)

  4. Adaptive Flight Envelope Estimation and Protection, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Impact Technologies, in collaboration with the Georgia Institute of Technology, proposes to develop and demonstrate an innovative flight envelope estimation and...

  5. Removal of envelope protein-free retroviral vectors by anion-exchange chromatography to improve product quality.

    Science.gov (United States)

    Rodrigues, Teresa; Alves, Ana; Lopes, António; Carrondo, Manuel J T; Alves, Paula M; Cruz, Pedro E

    2008-10-01

    We have investigated the role of the retroviral lipid bilayer and envelope proteins in the adsorption of retroviral vectors (RVs) to a Fractogel DEAE matrix. Intact RVs and their degradation components (envelope protein-free vectors and solubilized vector components) were adsorbed to this matrix and eluted using a linear gradient. Envelope protein-free RVs (Env(-)) and soluble envelope proteins (gp70) eluted in a significantly lower range of conductivities than intact RVs (Env(+)) (13.7-30 mS/cm for Env(-) and gp70 proteins vs. 47-80 mS/cm for Env(+)). The zeta (zeta)-potential of Env(+) and Env(-) vectors was evaluated showing that envelope proteins define the pI of the viral particles (pI (Env(+)) improvement to the quality of retroviral preparations for gene therapy applications.

  6. 78 FR 31838 - Special Conditions: Embraer S.A., Model EMB-550 Airplanes; Flight Envelope Protection: General...

    Science.gov (United States)

    2013-05-28

    .... When failure states occur in the electronic flight control system, flight envelope protection features... any change in envelope limiting or maneuverability is produced by single or multiple failures of the...; Flight Envelope Protection: General Limiting Requirements AGENCY: Federal Aviation Administration (FAA...

  7. 78 FR 5148 - Special Conditions: Embraer S.A., Model EMB-550 Airplanes; Flight Envelope Protection: General...

    Science.gov (United States)

    2013-01-24

    ... failure states occur in the electronic flight control system, flight envelope protection features can... Envelope Protection: General Limiting Requirements AGENCY: Federal Aviation Administration (FAA), DOT...), specifically new control architecture and a full digital flight control system which provides flight envelope...

  8. Tides in differentially rotating convective envelopes. II. The tidal coupling

    International Nuclear Information System (INIS)

    Scharlemann, E.T.

    1982-01-01

    The tidal coupling between a star with an extended, differentially rotating convective envelope, and its companion in a close binary system, is calculated from the tidal velocity field derived in Paper I. The derived coupling torque can be tested using observations of RS Canum Venaticorum systems, for which a photometric wave in the light curve provides an accurate stellar rotation rate, and for which observed orbital period changes require the stars in the systems to be coupled. The coupling torque is sufficient to explain the nearly synchronous rotation of the active star in RS CVn systems, despite the observed orbital period changes, but may not be able to explain the extreme tightness of the coupling implied by the very long periods for the migration of the photometric waves in the systems. This conclusion depends on the origin of the orbital period changes, but not on the nature of the wave or the wave migration. When the coupling torque vanishes, a specific latitude at the surface of the convective star will exactly corotate with the binary system: this corotation latitude is calculated. Finally, it is shown that the additional viscous terms introduced by tides should not suppress differential rotation in binary systems with RS Cvn parameters

  9. Infection control in digital intraoral radiography: evaluation of microbiological contamination of photostimulable phosphor plates in barrier envelopes.

    Science.gov (United States)

    MacDonald, David S; Waterfield, J Douglas

    2011-01-01

    The detectors (both solid-state sensors and photostimulable phosphor [PSP] plates) used for digital intraoral radiography cannot be autoclaved, and barriers are typically used to prevent the spread of infection. The aim of this study was to determine the effectiveness of a barrier envelope system for PSP plates. Disinfected PSP plates were aseptically inserted into barrier envelopes and placed in a periapical location. One PSP plate was placed in each of 28 patients, and 12 plates in each of 2 volunteers (D.S.M., J.D.W.). After retrieval, each PSP plate was removed from its barrier envelope, immersed in trypticase soy broth and aliquots were plated on trypticase soy agar. Bacterial colonies were counted 2 days later. Fifty-two PSP plates in barrier envelopes were evaluated for contamination. Quality assurance of the PSP plates before clinical placement revealed defects in the integrity of 4 barrier envelopes, caused by forceps-related damage or failure to achieve a uniform seal. These defects allowed substantial contamination. Contamination also occurred as a result of failure to extract the PSP plate from the barrier envelope cleanly. Of the 44 barriers with no obvious defects that were placed by either final-year dental students or a radiologist, only 3 allowed bacterial contamination of the PSP plate. Detectors contained in barrier envelopes remain a potential source of contamination. PSP plates must be disinfected between removal from a contaminated barrier envelope and placement in a new barrier envelope. In addition, placement into the barrier envelope should ideally be carried out under aseptic conditions. Finally, the integrity of each sealed barrier envelope must be verified visually before release to the clinic.

  10. Turbulent structure of thermal plume. Velocity field

    International Nuclear Information System (INIS)

    Guillou, B.; Brahimi, M.; Doan-kim-son

    1986-01-01

    An experimental investigation and a numerical study of the dynamics of a turbulent plume rising from a strongly heated source are described. This type of flow is met in thermal effluents (air, vapor) from, e.g., cooling towers of thermal power plants. The mean and fluctuating values of the vertical component of the velocity were determined using a Laser-Doppler anemometer. The measurements allow us to distinguish three regions in the plume-a developing region near the source, an intermediate region, and a self-preserving region. The characteristics of each zone have been determined. In the self-preserving zone, especially, the turbulence level on the axis and the entrainment coefficient are almost twice of the values observed in jets. The numerical model proposed takes into account an important phenomenon, the intermittency, observed in the plume. This model, established with the self-preserving hypothesis, brings out analytical laws. These laws and the predicted velocity profile are in agreement with the experimental evolutions [fr

  11. Modeling of heat and mass transfer in lateritic building envelopes

    International Nuclear Information System (INIS)

    Meukam, Pierre

    2004-10-01

    The aim of the present work is to investigate the behavior of building envelopes made of local lateritic soil bricks subjected to different climatic conditions. The analysis is developed for the prediction of the temperature, relative humidity and water content behavior within the walls. The building envelopes studied in this work consist of lateritic soil bricks with incorporation of natural pozzolan or sawdust in order to obtain small thermal conductivity and low-density materials, and limit the heat transfer between the atmospheric climate and the inside environment. In order to describe coupled heat and moisture transfer in wet porous materials, the coupled equations were solved by the introduction of diffusion coefficients. A numerical model HMtrans, developed for prediction of beat and moisture transfer in multi-layered building components, was used to simulate the temperature, water content and relative humidity profiles within the building envelopes. The results allow the prediction of the duration of the exposed building walls to the local weather conditions. They show that for any of three climatic conditions considered, relative humidity and water content do not exceed 87% and 5% respectively. There is therefore minimum possibility of water condensation in the materials studied. The durability of building envelopes made of lateritic soil bricks with incorporation of natural pozzolan or sawdust is not strongly affected by the climatic conditions in tropical and equatorial regions. (author)

  12. Cessna Citation X Business Aircraft Eigenvalue Stability – Part2: Flight Envelope Analysis

    Directory of Open Access Journals (Sweden)

    Yamina BOUGHARI

    2017-12-01

    Full Text Available Civil aircraft flight control clearance is a time consuming, thus an expensive process in the aerospace industry. This process has to be investigated and proved to be safe for thousands of combinations in terms of speeds, altitudes, gross weights, Xcg / weight configurations and angles of attack. Even in this case, a worst-case condition that could lead to a critical situation might be missed. To address this problem, models that are able to describe an aircraft’s dynamics by taking into account all uncertainties over a region within a flight envelope have been developed using Linear Fractional Representation. In order to investigate the Cessna Citation X aircraft Eigenvalue Stability envelope, the Linear Fractional Representation models are implemented using the speeds and the altitudes as varying parameters. In this paper Part 2, the aircraft longitudinal eigenvalue stability is analyzed in a continuous range of flight envelope with varying parameter of True airspeed and altitude, instead of a single point, like classical methods. This is known as the aeroelastic stability envelope, required for civil aircraft certification as given by the Circular Advisory “Aeroelastic Stability Substantiation of Transport Category Airplanes AC No: 25.629-18”. In this new methodology the analysis is performed in time domain based on Lyapunov stability and solved by convex optimization algorithms by using the linear matrix inequalities to evaluate the eigenvalue stability, which is reduced to search for the negative eigenvalues in a region of flight envelope. It can also be used to study the stability of a system during an arbitrary motion from one point to another in the flight envelope. A whole aircraft analysis results’ for its entire envelope are presented in the form of graphs, thus offering good readability, and making them easily exploitable.

  13. Uncertain data envelopment analysis

    CERN Document Server

    Wen, Meilin

    2014-01-01

    This book is intended to present the milestones in the progression of uncertain Data envelopment analysis (DEA). Chapter 1 gives some basic introduction to uncertain theories, including probability theory, credibility theory, uncertainty theory and chance theory. Chapter 2 presents a comprehensive review and discussion of basic DEA models. The stochastic DEA is introduced in Chapter 3, in which the inputs and outputs are assumed to be random variables. To obtain the probability distribution of a random variable, a lot of samples are needed to apply the statistics inference approach. Chapter 4

  14. Testing to expand the rotary-mode core sampling system operating envelope

    International Nuclear Information System (INIS)

    Witwer, K.S.

    1998-01-01

    Rotary sampling using the Rotary Mode Core Sampling System (RMCSS) is constrained by what is referred to as the ''Operating Envelope''. The Operating Envelop defines the maximum downward force, maximum rotational speed and minimum purge gas flow allowed during operation of the RMCSS. The original values of 1170 lb. down force, 55 RPM rotational speed, and 30 SCFM nitrogen purge gas were determined during original envelope testing. This envelope was determined by observing the temperature rise on the bitface while drilling into waste simulants. The maximum temperature in single-shell tanks (SSTS) is considered to be approximately 9O C and the critical drill bit temperature, which is the temperature at which an exothermic reaction could be initiated in the tank waste, was previously determined to be 150 C. Thus, the drill bit temperature increase was limited to 60 C. Thermal properties of these simulants approximated typical properties of waste tank saltcake. Later, more detailed envelope testing which used a pumice block simulant, showed a notably higher temperature rise while drilling. This pumice material, which simulated a ''worst case'' foreign object embedded in the waste, has lower thermal conductivity and lower thermal diffusivity than earlier simulants. These properties caused a slower heat transfer in the pumice than in the previous simulants and consequently a higher temperature rise. The maximum downward force was subsequently reduced to 750 lb (at a maximum 55 RPM and minimum 30 SCFM purge gas flow) which was the maximum value at which the drill bit could be operated and still remain below the 60 C temperature rise

  15. Multiobjective optimization design of green building envelope material using a non-dominated sorting genetic algorithm

    International Nuclear Information System (INIS)

    Yang, Ming-Der; Lin, Min-Der; Lin, Yu-Hao; Tsai, Kang-Ting

    2017-01-01

    Highlights: • An effective envelope energy performance model (BEM) was developed. • We integrated NSGA-II with the BEM to optimize the green building envelope. • A tradeoff plan of green building design for three conflict objectives was obtained. • The optimal envelope design efficiently reduced the construction cost of green building. - Abstract: To realize the goal of environmental sustainability, improving energy efficiency in buildings is a major priority worldwide. However, the practical design of green building envelopes for energy conservation is a highly complex optimization problem, and architects must make multiobjective decisions. In practice, methods such as multicriteria analyses that entail capitalizing on possibly many (but in nearly any case limited) alternatives are commonly employed. This study investigated the feasibility of applying a multiobjective optimal model on building envelope design (MOPBEM), which involved integrating a building envelope energy performance model with a multiobjective optimizer. The MOPBEM was established to provide a reference for green designs. A nondominated sorting genetic algorithm-II (NSGA-II) was used to achieve a tradeoff design set between three conflicting objectives, namely minimizing the envelope construction cost (ENVCOST), minimizing the envelope energy performance (ENVLOAD), and maximizing the window opening rate (WOPR). A real office building case was designed using the MOPBEM to identify the potential strengths and weaknesses of the proposed MOPBEM. The results showed that a high ENVCOST was expended in simultaneously satisfying the low ENVLOAD and high WOPR. Various designs exhibited obvious cost reductions compared with the original architects' manual design, demonstrating the practicability of the MOPBEM.

  16. Transport upscaling from pore- to Darcy-scale: Incorporating pore-scale Berea sandstone Lagrangian velocity statistics into a Darcy-scale transport CTRW model

    Science.gov (United States)

    Puyguiraud, Alexandre; Dentz, Marco; Gouze, Philippe

    2017-04-01

    For the past several years a lot of attention has been given to pore-scale flow in order to understand and model transport, mixing and reaction in porous media. Nevertheless we believe that an accurate study of spatial and temporal evolution of velocities could bring important additional information for the upscaling from pore to higher scales. To gather these pieces of information, we perform Stokes flow simulations on pore-scale digitized images of a Berea sandstone core. First, micro-tomography (XRMT) imaging and segmentation processes allow us to obtain 3D black and white images of the sample [1]. Then we used an OpenFoam solver to perform the Stokes flow simulations mentioned above, which gives us the velocities at the interfaces of a cubic mesh. Subsequently, we use a particle streamline reconstruction technique which uses the Eulerian velocity field previously obtained. This technique, based on a modified Pollock algorithm [2], enables us to make particle tracking simulations on the digitized sample. In order to build a stochastic pore-scale transport model, we analyze the Lagrangian velocity series in two different ways. First we investigate the velocity evolution by sampling isochronically (t-Lagrangian), and by studying its statistical properties in terms of one- and two-points statistics. Intermittent patterns can be observed. These are due to the persistance of low velocities over a characteristic space length. Other results are investigated, such as correlation functions and velocity PDFs, which permit us to study more deeply this persistence in the velocities and to compute the correlation times. However, with the second approach, doing these same analysis in space by computing the velocities equidistantly, enables us to remove the intermittency shown in the temporal evolution and to model these velocity series as a Markov process. This renders the stochastic particle dynamics into a CTRW [3]. [1] Gjetvaj, F., A. Russian, P. Gouze, and M. Dentz (2015

  17. A RADIAL VELOCITY STUDY OF COMPOSITE-SPECTRA HOT SUBDWARF STARS WITH THE HOBBY-EBERLY TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, Brad N.; Wade, Richard A.; Liss, Sandra E. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Ostensen, Roy H.; Van Winckel, Hans [Instituut voor Sterrenkunde, K.U. Leuven, B-3001 Leuven (Belgium)

    2012-10-10

    Many hot subdwarf stars show composite spectral energy distributions indicative of cool main-sequence (MS) companions. Binary population synthesis (BPS) models demonstrate such systems can be formed via Roche lobe overflow or common envelope evolution but disagree on whether the resulting orbital periods will be long (years) or short (days). Few studies have been carried out to assess the orbital parameters of these spectroscopic composite binaries; current observations suggest the periods are long. To help address this problem, we selected 15 moderately bright (V {approx} 13) hot subdwarfs with F-K dwarf companions and monitored their radial velocities from 2005 January to 2008 July using the bench-mounted Medium Resolution Spectrograph on the Hobby-Eberly Telescope (HET). Here we describe the details of our observing, reduction, and analysis techniques, and present preliminary results for all targets. By combining the HET data with recent observations from the Mercator Telescope, we are able to calculate precise orbital solutions for three systems using more than six years of observations. We also present an up-to-date period histogram for all known hot subdwarf binaries, which suggests those with F-K MS companions tend to have orbital periods on the order of several years. Such long periods challenge the predictions of conventional BPS models, although a larger sample is needed for a thorough assessment of the models' predictive success. Lastly, one of our targets has an eccentric orbit, implying some composite-spectrum systems might have formerly been hierarchical triple systems, in which the inner binary merged to create the hot subdwarf.

  18. Representations of braid group obtained from quantum sl(3) enveloping algebra

    International Nuclear Information System (INIS)

    Ma Zhongqi.

    1989-07-01

    The quantum Clebsch-Gordan coefficients for the coproduct 6x6 of the quantum sl(3) enveloping algebra are computed. Based on the representation 6, the representation of the braid group and the corresponding link polynomial are obtained. The link polynomials based on the representations of the quantum sl(3) enveloping algebra with one row Young tableau are discussed. (author). 11 refs, 3 tabs

  19. Cold CO Gas in the Envelopes of FU Orionis-type Young Eruptive Stars

    Energy Technology Data Exchange (ETDEWEB)

    Kóspál, Á.; Ábrahám, P.; Moór, A. [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Konkoly-Thege Miklós út 15-17, 1121 Budapest (Hungary); Csengeri, T.; Güsten, R. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Henning, Th. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany)

    2017-02-20

    FU Orionis-type objects (FUors) are young stellar objects experiencing large optical outbursts due to highly enhanced accretion from the circumstellar disk onto the star. FUors are often surrounded by massive envelopes, which play a significant role in the outburst mechanism. Conversely, the subsequent eruptions might gradually clear up the obscuring envelope material and drive the protostar on its way to become a disk-only T Tauri star. Here we present an APEX {sup 12}CO and {sup 13}CO survey of eight southern and equatorial FUors. We measure the mass of the gaseous material surrounding our targets, locate the source of the CO emission, and derive physical parameters for the envelopes and outflows, where detected. Our results support the evolutionary scenario where FUors represent a transition phase from envelope-surrounded protostars to classical T Tauri stars.

  20. Shear-Velocity Structure and Azimuthal and Radial Anisotropy Beneath the Kaapvaal Craton From Bayesian Inversion of Surface-Wave Data: Inferences for the Architecture and Early Evolution of Cratons

    Science.gov (United States)

    Lebedev, S.; Ravenna, M.; Adam, J.

    2017-12-01

    Seismic anisotropy provides essential information on the deformation of the lithosphere. Knowledge of anisotropy also allows us to isolate the isotropic-average seismic velocities, relatable to the lithospheric temperature and composition. We use Rayleigh and Love-wave phase velocities and their azimuthal anisotropy measured in broad period ranges across the footprint of the Southern Africa Seismic Experiment (SASE), from the Kaapvaal Craton to the Limpopo Belt. We invert the data using our recently developed, fully non-linear Markov Chain Monte Carlo method and determine, for the first time, both the isotropic-average S velocity and its radial and azimuthal anisotropy as a function of depth from the upper crust down to the asthenosphere. The probabilistic inversion provides a way to quantify non-uniqueness, using direct parameter-space sampling, and assess model uncertainties. The high-velocity anomaly indicative of the cold cratonic lithosphere bottoms at 200-250 km beneath the central and western Kaapvaal Craton, underlain by a low-velocity zone. Beneath northern Kaapvaal and Limpopo, by contrast, high velocities extend down to 300-350 km. Although this does not require a lithosphere that has maintained this thickness over a geologically long time, the data does require the mantle to be anomalously cold down to 300-350 km. Interestingly, topography correlates with the thickness of this high-velocity layer, with lower elevations where the lid is thicker. Radial shear-wave anisotropy is in the 2-5 percent range (Vsh > Vsv) from the lower crust down to 200 km, below which depth it decreases gradually. Radial variations in the amplitude of radial anisotropy show no clear relationship with those in the amplitude of azimuthal anisotropy or isotropic-average Vs anomalies. Azimuthal anisotropy changes the fast-propagation direction near the base of the lithosphere (200-300 km depth), from the laterally varying fast azimuths in the lower lithosphere to a spatially

  1. Strength evolution of simulated carbonate-bearing faults: The role of normal stress and slip velocity

    Science.gov (United States)

    Mercuri, Marco; Scuderi, Marco Maria; Tesei, Telemaco; Carminati, Eugenio; Collettini, Cristiano

    2018-04-01

    A great number of earthquakes occur within thick carbonate sequences in the shallow crust. At the same time, carbonate fault rocks exhumed from a depth plasticity). We performed friction experiments on water-saturated simulated carbonate-bearing faults for a wide range of normal stresses (from 5 to 120 MPa) and slip velocities (from 0.3 to 100 μm/s). At high normal stresses (σn > 20 MPa) fault gouges undergo strain-weakening, that is more pronounced at slow slip velocities, and causes a significant reduction of frictional strength, from μ = 0.7 to μ = 0.47. Microstructural analysis show that fault gouge weakening is driven by deformation accommodated by cataclasis and pressure-insensitive deformation processes (pressure solution and granular plasticity) that become more efficient at slow slip velocity. The reduction in frictional strength caused by strain weakening behaviour promoted by the activation of pressure-insensitive deformation might play a significant role in carbonate-bearing faults mechanics.

  2. Performative building envelope design correlated to solar radiation and cooling energy consumption

    Science.gov (United States)

    Jacky, Thiodore; Santoni

    2017-11-01

    Climate change as an ongoing anthropogenic environmental challenge is predominantly caused by an amplification in the amount of greenhouse gases (GHGs), notably carbon dioxide (CO2) in building sector. Global CO2 emissions are emitted from HVAC (Heating, Ventilation, and Air Conditioning) occupation to provide thermal comfort in building. In fact, the amount of energy used for cooling or heating building is implication of building envelope design. Building envelope acts as interface layer of heat transfer between outdoor environment and the interior of a building. It appears as wall, window, roof and external shading device. This paper examines performance of various design strategy on building envelope to limit solar radiation and reduce cooling loads in tropical climate. The design strategies are considering orientation, window to wall ratio, material properties, and external shading device. This research applied simulation method using Autodesk Ecotect to investigate simultaneously between variations of wall and window ratio, shading device composition and the implication to the amount of solar radiation, cooling energy consumption. Comparative analysis on the data will determine logical variation between opening and shading device composition and cooling energy consumption. Optimizing the building envelope design is crucial strategy for reducing CO2 emissions and long-term energy reduction in building sector. Simulation technology as feedback loop will lead to better performative building envelope.

  3. Time evolution of the wave equation using rapid expansion method

    KAUST Repository

    Pestana, Reynam C.; Stoffa, Paul L.

    2010-01-01

    Forward modeling of seismic data and reverse time migration are based on the time evolution of wavefields. For the case of spatially varying velocity, we have worked on two approaches to evaluate the time evolution of seismic wavefields. An exact solution for the constant-velocity acoustic wave equation can be used to simulate the pressure response at any time. For a spatially varying velocity, a one-step method can be developed where no intermediate time responses are required. Using this approach, we have solved for the pressure response at intermediate times and have developed a recursive solution. The solution has a very high degree of accuracy and can be reduced to various finite-difference time-derivative methods, depending on the approximations used. Although the two approaches are closely related, each has advantages, depending on the problem being solved. © 2010 Society of Exploration Geophysicists.

  4. Time evolution of the wave equation using rapid expansion method

    KAUST Repository

    Pestana, Reynam C.

    2010-07-01

    Forward modeling of seismic data and reverse time migration are based on the time evolution of wavefields. For the case of spatially varying velocity, we have worked on two approaches to evaluate the time evolution of seismic wavefields. An exact solution for the constant-velocity acoustic wave equation can be used to simulate the pressure response at any time. For a spatially varying velocity, a one-step method can be developed where no intermediate time responses are required. Using this approach, we have solved for the pressure response at intermediate times and have developed a recursive solution. The solution has a very high degree of accuracy and can be reduced to various finite-difference time-derivative methods, depending on the approximations used. Although the two approaches are closely related, each has advantages, depending on the problem being solved. © 2010 Society of Exploration Geophysicists.

  5. Cost Allocation and Convex Data Envelopment

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Tind, Jørgen

    such as Data Envelopment Analysis (DEA). The convexity constraint of the BCC model introduces a non-zero slack in the objective function of the multiplier problem and we show that the cost allocation rules discussed in this paper can be used as candidates to allocate this slack value on to the input (or output...

  6. Dynamical evolution of galaxies in clusters

    International Nuclear Information System (INIS)

    Ostriker, J.P.

    1977-01-01

    In addition to the processes involved in the evolution of star clusters, there are three kinds of processes that are peculiar to, or far more important in, galaxy clusters than in star clusters: galaxy interactions with gas, high-velocity tidal interactions, and accretion and cannibalism. The latter is discussed at some length; analytical calculations for the apparent luminosity evolution of the first brightest galaxy and the apparent luminosity evolution of M 12 are described, along with the numerical simulation of cluster evolution. It appears that many of the notable features of centrally condensed clusters of galaxies, particularly the presence of very luminous but low-surface-brightness central cD systems, can be understood in terms of a straightforward dynamical theory of galactic cannibalism. It is possible to maintain the hypothesis that dynamical evolution gradually transforms Bautz--Morgan III clusters to type II systems or type I systems. 36 references, 5 figures

  7. Solution of K-V envelope equations

    International Nuclear Information System (INIS)

    Anderson, O.A.

    1995-04-01

    The envelope equations for a KV beam with space charge have been analyzed systematically by an e expansion followed by integrations. The focusing profile as a function of axial length is assumed to be symmetric but otherwise arbitrary. Given the bean current, emittance, and peak focusing field, we find the envelopes a(s) and b(s) and obtain , a max , σ, and σ 0 . Explicit results are presented for various truncations of the expansion. The zeroth order results correspond to those from the well-known smooth approximation; the same convenient format is retained for the higher order cases. The first order results, involving single correction terms, give 3--10 times better accuracy and are good to ∼1% at σ 0 = 70 degree. Third order gives a factor of 10--30 improvement over the smooth approximation and derived quantities accurate to ∼1% at σ 0 = 112 degree. The first order expressions are convenient design tools. They lend themselves to variable energy problems and have been applied to the design, construction, and testing of ESQ accelerators at LBL

  8. The multi-order envelope periodic solutions to the nonlinear Schrodinger equation and cubic nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Xiao Yafeng; Xue Haili; Zhang Hongqing

    2011-01-01

    Based on Jacobi elliptic function and the Lame equation, the perturbation method is applied to get the multi-order envelope periodic solutions of the nonlinear Schrodinger equation and cubic nonlinear Schrodinger equation. These multi-order envelope periodic solutions can degenerate into the different envelope solitary solutions. (authors)

  9. The influence of continuous historical velocity difference information on micro-cooperative driving stability

    Science.gov (United States)

    Yang, Liang-Yi; Sun, Di-Hua; Zhao, Min; Cheng, Sen-Lin; Zhang, Geng; Liu, Hui

    2018-03-01

    In this paper, a new micro-cooperative driving car-following model is proposed to investigate the effect of continuous historical velocity difference information on traffic stability. The linear stability criterion of the new model is derived with linear stability theory and the results show that the unstable region in the headway-sensitivity space will be shrunk by taking the continuous historical velocity difference information into account. Through nonlinear analysis, the mKdV equation is derived to describe the traffic evolution behavior of the new model near the critical point. Via numerical simulations, the theoretical analysis results are verified and the results indicate that the continuous historical velocity difference information can enhance the stability of traffic flow in the micro-cooperative driving process.

  10. Quantifying seasonal velocity at Khumbu Glacier, Nepal

    Science.gov (United States)

    Miles, E.; Quincey, D. J.; Miles, K.; Hubbard, B. P.; Rowan, A. V.

    2017-12-01

    While the low-gradient debris-covered tongues of many Himalayan glaciers exhibit low surface velocities, quantifying ice flow and its variation through time remains a key challenge for studies aimed at determining the long-term evolution of these glaciers. Recent work has suggested that glaciers in the Everest region of Nepal may show seasonal variability in surface velocity, with ice flow peaking during the summer as monsoon precipitation provides hydrological inputs and thus drives changes in subglacial drainage efficiency. However, satellite and aerial observations of glacier velocity during the monsoon are greatly limited due to cloud cover. Those that do exist do not span the period over which the most dynamic changes occur, and consequently short-term (i.e. daily) changes in flow, as well as the evolution of ice dynamics through the monsoon period, remain poorly understood. In this study, we combine field and remote (satellite image) observations to create a multi-temporal, 3D synthesis of ice deformation rates at Khumbu Glacier, Nepal, focused on the 2017 monsoon period. We first determine net annual and seasonal surface displacements for the whole glacier based on Landsat-8 (OLI) panchromatic data (15m) processed with ImGRAFT. We integrate inclinometer observations from three boreholes drilled by the EverDrill project to determine cumulative deformation at depth, providing a 3D perspective and enabling us to assess the role of basal sliding at each site. We additionally analyze high-frequency on-glacier L1 GNSS data from three sites to characterize variability within surface deformation at sub-seasonal timescales. Finally, each dataset is validated against repeat-dGPS observations at gridded points in the vicinity of the boreholes and GNSS dataloggers. These datasets complement one another to infer thermal regime across the debris-covered ablation area of the glacier, and emphasize the seasonal and spatial variability of ice deformation for glaciers in High

  11. Virulence properties of the Legionella pneumophila cell envelope

    Directory of Open Access Journals (Sweden)

    Olga eShevchuk

    2011-04-01

    Full Text Available The bacterial envelope plays a crucial role in the pathogenesis of infectious diseases. In this review, we summarize the current knowledge of the structure and molecular composition of the Legionella pneumophila cell envelope. We describe LPS biosynthesis and the biological activities of membrane and periplasmic proteins and discuss their decisive functions during the pathogen-host interaction. In addition to adherence, invasion and intracellular survival of L. pneumophila, special emphasis is laid on iron acquisition, detoxification, key elicitors of the immune response and the diverse functions of outer membrane vesicles. The critical analysis of the literature reveals that the dynamics and phenotypic plasticity of the Legionella cell surface during the different metabolic stages requires more attention in the future.

  12. A deformation (strain) envelope for cyclic disturbed sand

    DEFF Research Database (Denmark)

    Sabaliauskas, Tomas; Ibsen, Lars Bo

    2018-01-01

    Recent advances in triaxial testing procedures revealed new properties governing disturbed sand stiffness. This paper summarizes the new observations into an original, proof of concept. The novel concept interpolates effective stress within a strain (deformation) envelope. Coulomb stress limits...... are still satisfied, but the stresses are interpolated using a deformation (strain) envelope. The method is not part of a constitutive formulation, but is remarkably functional in triaxial testing practice. The practicality is proven by plotting simulations on top of empirically measured stiffness history...... - the fitting is remarkably good even during tests of extreme complexity. The novelty has substantial interdisciplinary potential: offshore anchors and foundations, earthquakes and industrial processes - wherever dynamic loads and disturbed sand are encountered. It opens the door to a new branch of numerical...

  13. Enveloped Lives: Practicing Health and Care in Lithuania.

    Science.gov (United States)

    Praspaliauskiene, Rima

    2016-12-01

    This article analyzes informal medical payments that the majority of Lithuanians give or feel compelled to give to doctors before or after treatment. It focuses on how patients and their caretakers encounter, practice, and enact informal payments in health care and how these payments create a reality of health care that is not limited to an economic rationality. Within such a frame, rather than being considered a gift or bribe, it conceptualizes these little white envelopes as a practice of health and care. The article shows how an envelope of money given to a doctor transcends the material patient-doctor transaction and emerges as a productive force for coping with illness, medical encounters, and misfortunes. © 2016 by the American Anthropological Association.

  14. DOUBLE COMPACT OBJECTS. I. THE SIGNIFICANCE OF THE COMMON ENVELOPE ON MERGER RATES

    International Nuclear Information System (INIS)

    Dominik, Michal; Belczynski, Krzysztof; Bulik, Tomasz; Fryer, Christopher; Holz, Daniel E.; Berti, Emanuele; Mandel, Ilya; O'Shaughnessy, Richard

    2012-01-01

    The last decade of observational and theoretical developments in stellar and binary evolution provides an opportunity to incorporate major improvements to the predictions from population synthesis models. We compute the Galactic merger rates for NS-NS, BH-NS, and BH-BH mergers with the StarTrack code. The most important revisions include updated wind mass-loss rates (allowing for stellar-mass black holes up to 80 M ☉ ), a realistic treatment of the common envelope phase (a process that can affect merger rates by 2-3 orders of magnitude), and a qualitatively new neutron star/black hole mass distribution (consistent with the observed m ass gap ) . Our findings include the following. (1) The binding energy of the envelope plays a pivotal role in determining whether a binary merges within a Hubble time. (2) Our description of natal kicks from supernovae plays an important role, especially for the formation of BH-BH systems. (3) The masses of BH-BH systems can be substantially increased in the case of low metallicities or weak winds. (4) Certain combinations of parameters underpredict the Galactic NS-NS merger rate and can be ruled out. (5) Models incorporating delayed supernovae do not agree with the observed NS/BH 'mass gap', in accordance with our previous work. This is the first in a series of three papers. The second paper will study the merger rates of double compact objects as a function of redshift, star formation rate, and metallicity. In the third paper, we will present the detection rates for gravitational-wave observatories, using up-to-date signal waveforms and sensitivity curves.

  15. Combined centroid-envelope dynamics of intense, magnetically focused charged beams surrounded by conducting walls

    International Nuclear Information System (INIS)

    Fiuza, K.; Rizzato, F.B.; Pakter, R.

    2006-01-01

    In this paper we analyze the combined envelope-centroid dynamics of magnetically focused high-intensity charged beams surrounded by conducting walls. Similar to the case where conducting walls are absent, it is shown that the envelope and centroid dynamics decouple from each other. Mismatched envelopes still decay into equilibrium with simultaneous emittance growth, but the centroid keeps oscillating with no appreciable energy loss. Some estimates are performed to analytically obtain characteristics of halo formation seen in the full simulations

  16. SUBARCSECOND ANALYSIS OF THE INFALLING–ROTATING ENVELOPE AROUND THE CLASS I PROTOSTAR IRAS 04365+2535

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Nami [The Institute of Physical and Chemical Research (RIKEN), 2-1, Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Oya, Yoko; López-Sepulcre, Ana; Watanabe, Yoshimasa; Yamamoto, Satoshi [Department of Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Sakai, Takeshi [Department of Communication Engineering and Informatics, Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofugaoka, Chofu, Tokyo 182-8585 (Japan); Hirota, Tomoya [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan); Aikawa, Yuri [Center for Computational Science, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Ceccarelli, Cecilia; Lefloch, Bertrand; Kahane, Claudine [Universite de Grenoble Alpes, IPAG, F-38000 Grenoble (France); Caux, Emmanuel; Vastel, Charlotte [Universite de Toulouse, UPS-OMP, IRAP, Toulouse (France)

    2016-04-01

    Subarcsecond images of the rotational line emission of CS and SO have been obtained toward the Class I protostar IRAS 04365+2535 in TMC-1A with ALMA. A compact component around the protostar is clearly detected in the CS and SO emission. The velocity structure of the compact component of CS reveals infalling–rotating motion conserving the angular momentum. It is well explained by a ballistic model of an infalling–rotating envelope with the radius of the centrifugal barrier (one-half of the centrifugal radius) of 50 au, although the distribution of the infalling gas is asymmetric around the protostar. The distribution of SO is mostly concentrated around the radius of the centrifugal barrier of the simple model. Thus, a drastic change in chemical composition of the gas infalling onto the protostar is found to occur at a 50 au scale probably due to accretion shocks, demonstrating that the infalling material is significantly processed before being delivered into the disk.

  17. Development and Implementation of a Model-Driven Envelope Protection System for In-Flight Ice Contamination

    Science.gov (United States)

    Gingras, David R.; Barnhart, Billy P.; Martos, Borja; Ratvasky, Thomas P.; Morelli, Eugene

    2011-01-01

    Fatal loss-of-control (LOC) accidents have been directly related to in-flight airframe icing. The prototype system presented in this paper directly addresses the need for real-time onboard envelope protection in icing conditions. The combinations of a-priori information and realtime aerodynamic estimations are shown to provide sufficient input for determining safe limits of the flight envelope during in-flight icing encounters. The Icing Contamination Envelope Protection (ICEPro) system has been designed and implemented to identify degradations in airplane performance and flying qualities resulting from ice contamination and provide safe flight-envelope cues to the pilot. Components of ICEPro are described and results from preliminary tests are presented.

  18. Integrated Energy Design of the Building Envelope

    DEFF Research Database (Denmark)

    Nielsen, Martin Vraa

    This thesis describes the outcome of the PhD project Integrated energy design of the building envelope carried out through a combination of scientific dissemination reported through peer-reviewed journals and a wide range of affiliated projects involved in at an architectural firm. The research...

  19. Enhancement of feline immunodeficiency virus infection after immunization with envelope glycoprotein subunit vaccines.

    NARCIS (Netherlands)

    C.H.J. Siebelink (Kees); E.J. Tijhaar (Edwin); R.C. Huisman (Robin); W. Huisman (Willem); A. de Ronde; I.H. Darby; M.J. Francis; G.F. Rimmelzwaan (Guus); A.D.M.E. Osterhaus (Albert)

    1995-01-01

    textabstractCats were immunized three times with different recombinant feline immunodeficiency virus (FIV) candidate vaccines. Recombinant vaccinia virus (rVV)-expressed envelope glycoprotein with (vGR657) or without (vGR657 x 15) the cleavage site and an FIV envelope bacterial fusion protein

  20. 47 CFR 25.218 - Off-axis EIRP envelopes for FSS earth station operations.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Off-axis EIRP envelopes for FSS earth station operations. 25.218 Section 25.218 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.218 Off-axis EIRP envelopes for FSS...

  1. Low velocity encounters of minor bodies with the outer planets

    International Nuclear Information System (INIS)

    Carusi, A.; Perozzi, E.; Valsecchi, G.B.

    1983-01-01

    Previous studies of close encounters of minor bodies with Jupiter have shown that the perturbations are stronger either if the encounter is very deep or if the velocity of the minor body relative to the planet is low. In the present research the author investigates the effects of low velocity encounters between fictitious minor bodies and the four outer planets. Two possible outcomes of this type of encounter are the temporary satellite capture of the minor body by the planet, and the exchange of perihelion with aphelion of the minor body orbit. Different occurrence rates of these processes are found for different planets, and the implications for the orbital evolution of minor bodies in the outer Solar System are discussed. (Auth.)

  2. Symmetries and Invariants of the Time-dependent Oscillator Equation and the Envelope Equation

    CERN Document Server

    Qin, Hong

    2005-01-01

    Single-particle dynamics in a time-dependent focusing field is examined. The existence of the Courant-Snyder invariant* is fundamentally the result of the corresponding symmetry admitted by the oscillator equation with time-dependent frequency.** A careful analysis of the admitted symmetries reveals a deeper connection between the nonlinear envelope equation and the oscillator equation. A general theorem regarding the symmetries and invariants of the envelope equation, which includes the existence of the Courant-Snyder invariant as a special case, is demonstrated. The symmetries of the envelope equation enable a fast algorithm for finding matched solutions without using the conventional iterative shooting method.

  3. Nuclear envelope breakdown induced by herpes simplex virus type 1 involves the activity of viral fusion proteins

    Energy Technology Data Exchange (ETDEWEB)

    Maric, Martina; Haugo, Alison C. [Department of Microbiology, University of Iowa, Iowa City, IA 52242 (United States); Dauer, William [Department of Neurology, University of Michigan, Ann Arbor, MI 48109 (United States); Johnson, David [Department of Microbiology and Immunology, Oregon Health Sciences University, Portland, OR 97201 (United States); Roller, Richard J., E-mail: richard-roller@uiowa.edu [Department of Microbiology, University of Iowa, Iowa City, IA 52242 (United States)

    2014-07-15

    Herpesvirus infection reorganizes components of the nuclear lamina usually without loss of integrity of the nuclear membranes. We report that wild-type HSV infection can cause dissolution of the nuclear envelope in transformed mouse embryonic fibroblasts that do not express torsinA. Nuclear envelope breakdown is accompanied by an eight-fold inhibition of virus replication. Breakdown of the membrane is much more limited during infection with viruses that lack the gB and gH genes, suggesting that breakdown involves factors that promote fusion at the nuclear membrane. Nuclear envelope breakdown is also inhibited during infection with virus that does not express UL34, but is enhanced when the US3 gene is deleted, suggesting that envelope breakdown may be enhanced by nuclear lamina disruption. Nuclear envelope breakdown cannot compensate for deletion of the UL34 gene suggesting that mixing of nuclear and cytoplasmic contents is insufficient to bypass loss of the normal nuclear egress pathway. - Highlights: • We show that wild-type HSV can induce breakdown of the nuclear envelope in a specific cell system. • The viral fusion proteins gB and gH are required for induction of nuclear envelope breakdown. • Nuclear envelope breakdown cannot compensate for deletion of the HSV UL34 gene.

  4. An additional simple denitrification bioreactor using packed gel envelopes applicable to industrial wastewater treatment.

    Science.gov (United States)

    Morita, Masahiko; Uemoto, Hiroaki; Watanabe, Atsushi

    2007-08-15

    A simple denitrification bioreactor for nitrate-containing wastewater without organic compounds was developed. This bioreactor consisted of packed gel envelopes in a single tank. Each envelope comprised two plates of gels containing Paracoccus denitrificans cells with an internal space between the plates. As an electron donor for denitrification, ethanol was injected into the internal space and not directly into the wastewater. P. denitrificans cells in the gel reduced nitrate to nitrogen gas by using the injected ethanol. Nitrate-containing desulfurization wastewater derived from a coal-fired thermal power plant was continuously treated with 20 packed gel envelopes (size, 1,000 x 900 x 12 mm; surface area, 1.44 m(2)) in a reactor tank (volume 1.5 m(3)). When the total nitrogen concentration in the inflow was around 150 mg-N x L(-1), the envelopes removed approximately 60-80% of the total nitrogen, and the maximum nitrogen removal rate was 5.0 g-N x day(-1) per square meter of the gel surface. This value corresponded to the volumetric nitrogen removal performance of 0.109 kg-N x m(-3) x day(-1). In each envelope, a high utilization efficiency of the electron donor was attained, although more than the double amount of the electron donor was empirically injected in the present activated sludge system to achieve denitrification when compared with the theoretical value. The bioreactor using the envelopes would be extremely effective as an additional denitrification system because these envelopes can be easily installed in the vacant spaces of preinstalled water treatment systems, without requiring additional facilities for removing surplus ethanol and sludge. (c) 2007 Wiley Periodicals, Inc.

  5. Carrier-envelope phase-stabilized attosecond pulses from asymmetric molecules

    International Nuclear Information System (INIS)

    Lan Pengfei; Lu Peixiang; Cao Wei; Li Yuhua; Wang Xinlin

    2007-01-01

    High-order harmonic generation from asymmetric molecules is investigated, and the concept of phase-stabilized infrared ultrashort laser pulses is extended to the extreme ultraviolet regime. It is shown that the ionization symmetry in consecutive half optical cycles is broken for asymmetric molecules, and both even and odd harmonics with comparable intensity are produced. In the time domain, only one attosecond pulse is generated in each cycle of the driving field, and the carrier-envelope phases of the attosecond pulses are equal. Consequently, a clean attosecond pulse train with the same carrier-envelope phase from pulse to pulse is obtained in the extreme ultraviolet regime

  6. Constant envelope OFDM scheme for 6PolSK-QPSK

    Science.gov (United States)

    Li, Yupeng; Ding, Ding

    2018-03-01

    A constant envelope OFDM scheme with phase modulator (PM-CE-OFDM) for 6PolSK-QPSK modulation was demonstrated. Performance under large fiber launch power is measured to check its advantages in counteracting fiber nonlinear impairments. In our simulation, PM-CE-OFDM, RF-assisted constant envelope OFDM (RF-CE-OFDM) and conventional OFDM (Con-OFDM) are transmitted through 80 km standard single mode fiber (SSMF) single channel and WDM system. Simulation results confirm that PM-CE-OFDM has best performance in resisting fiber nonlinearity. In addition, benefiting from the simple system structure, the complexity and cost of PM-CE-OFDM system could be reduced effectively.

  7. The role of high-frequency envelope fluctuations for speech masking release

    DEFF Research Database (Denmark)

    Jørgensen, Søren; Dau, Torsten

    2013-01-01

    The speech-based envelope power spectrum model (sEPSM; Jørgensen and Dau, 2011; Jørgensen et al., 2013) was shown to successfully predict speech intelligibility in conditions with stationary and fluctuating interferers, reverberation, and spectral subtraction. The key element in the model...... was the multi-resolution estimation of the signal-to-noise ratio in the envelope domain (SNRenv) at the output of a modulation filterbank. The simulations suggested that mainly modulation filters centered in the range from 1-8 Hz contribute to speech intelligibility in the case of stationary maskers whereas...... modulation filters tuned to frequencies above 16 Hz might be important in the case of fluctuating maskers. In the present study, the role of high-frequency envelope fluctuations for speech masking release was further investigated in conditions of speech-on-speech masking. Simulations were compared to various...

  8. The role of high-frequency envelope fluctuations for speech masking release

    DEFF Research Database (Denmark)

    Jørgensen, Søren; Dau, Torsten

    2013-01-01

    The speech-based envelope power spectrum model [sEPSM; Jørgensen and Dau (2011), Jørgensen et al. (2013)] was shown to successfully predict speech intelligibility in conditions with stationary and fluctuating interferers, reverberation, and spectral subtraction. The key element in the model...... was the multi-resolution estimation of the signal-to-noise ratio in the envelope domain (SNRenv) at the output of a modulation filterbank. The simulations suggested that mainly modulation filters centered in the range from 1 to 8 Hz contribute to speech intelligibility in the case of stationary maskers whereas...... modulation filters tuned to frequencies above 16 Hz might be important in the case of fluctuating maskers. In the present study, the role of high-frequency envelope fluctuations for speech masking release was further investigated in conditions of speech-on-speech masking. Simulations were compared to various...

  9. Influence of apparent wave velocity on seismic performance of a super-long-span triple-tower suspension bridge

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2015-06-01

    Full Text Available As one of the main characteristics of seismic waves, apparent wave velocity has great influence on seismic responses of long-span suspension bridges. Understanding these influences is important for seismic design. In this article, the critical issues concerning the traveling wave effect analysis are first reviewed. Taizhou Bridge, the longest triple-tower suspension bridge in the world, is then taken as an example for this investigation. A three-dimensional finite element model of the bridge is established in ABAQUS, and the LANCZOS eigenvalue solver is employed to calculate the structural dynamic characteristics. Traveling wave effect on seismic responses of these long-span triple-tower suspension bridges is investigated. Envelopes of seismic shear force and moment in the longitudinal direction along the three towers, relative displacements between the towers and the girder, and reaction forces at the bottoms of the three towers under different apparent wave velocities are calculated and presented in detail. The results show that the effect of apparent wave velocity on the seismic responses of triple-tower suspension bridge fluctuates when the velocity is lower than 2000 m/s, and the effects turn stable when the velocity becomes larger. In addition, the effects of traveling wave are closely related to spectral characteristics and propagation direction of the seismic wave, and seismic responses of components closer to the source are relatively larger. Therefore, reliable estimation of the seismic input and apparent wave velocity according to the characteristics of the bridge site are significant for accurate prediction of seismic responses. This study provides critical reference for seismic analysis and design of long-span triple-tower suspension bridges.

  10. Astrophysics and the evolution of the universe

    CERN Document Server

    Kisslinger, Leonard S

    2014-01-01

    The aim of this book is to teach undergraduate college or university students the basic physics concepts needed to understand the mathematics which describes the evolution of the universe, and based on this to teach the astrophysical theories behind evolution from very early times to the present. The book does not require students to have extensive knowledge of mathematics, like calculus, and includes material that explains concepts such as velocity, acceleration, and force. Based on this, fascinating topics such as Dark Matter, measuring Dark Energy via supernovae velocities, and the creation of mass via the Higgs mechanism are explained. All college students with an interest in science, especially astronomy, without extensive mathematical backgrounds should be able to use and learn from this book. Adults interested in topics like dark energy and the Higgs boson, which are in the news, can make use of this book as well.

  11. AM Envelope. The potential of Additive Manufacturing for facade constructions

    Directory of Open Access Journals (Sweden)

    Holger Strauss

    2017-11-01

    Full Text Available This dissertation shows the potential of Additive Manufacturing (AM for the development of building envelopes: AM will change the way of designing facades, how we engineer and produce them. To achieve today’s demands from those future envelopes, we have to find new solutions. New technologies offer one possible way to do so. They open new approaches in designing, producing and processing building construction and facades. Finding the one capable of having big impact is difficult – Additive Manufacturing is one possible answer. The term ‘AM Envelope’ (Additive Manufacturing Envelope describes the transfer of this technology to the building envelope. Additive Fabrication is a building block that aids in developing the building envelope from a mere space enclosure to a dynamic building envelope. First beginnings of AM facade construction show up when dealing with relevant aspects like material consumption, mounting or part’s performance. From those starting points several parts of an existing post-and-beam façade system were optimized, aiming toward the implementation of AM into the production chain. Enhancements on all different levels of production were achieved: storing, producing, mounting and performance. AM offers the opportunity to manufacture facades ‘just in time’. It is no longer necessary to store or produce large numbers of parts in advance. Initial investment for tooling can be avoided, as design improvements can be realized within the dataset of the AM part. AM is based on ‘tool-less’ production, all parts can be further developed with every new generation. Producing tool-less also allows for new shapes and functional parts in small batch sizes – down to batch size one. The parts performance can be re-interpreted based on the demands within the system, not based on the limitations of conventional manufacturing. AM offers new ways of materializing the physical part around its function. It leads toward customized

  12. Optimizing velocities and transports for complex coastal regions and archipelagos

    Science.gov (United States)

    Haley, Patrick J.; Agarwal, Arpit; Lermusiaux, Pierre F. J.

    2015-05-01

    We derive and apply a methodology for the initialization of velocity and transport fields in complex multiply-connected regions with multiscale dynamics. The result is initial fields that are consistent with observations, complex geometry and dynamics, and that can simulate the evolution of ocean processes without large spurious initial transients. A class of constrained weighted least squares optimizations is defined to best fit first-guess velocities while satisfying the complex bathymetry, coastline and divergence strong constraints. A weak constraint towards the minimum inter-island transports that are in accord with the first-guess velocities provides important velocity corrections in complex archipelagos. In the optimization weights, the minimum distance and vertical area between pairs of coasts are computed using a Fast Marching Method. Additional information on velocity and transports are included as strong or weak constraints. We apply our methodology around the Hawaiian islands of Kauai/Niihau, in the Taiwan/Kuroshio region and in the Philippines Archipelago. Comparisons with other common initialization strategies, among hindcasts from these initial conditions (ICs), and with independent in situ observations show that our optimization corrects transports, satisfies boundary conditions and redirects currents. Differences between the hindcasts from these different ICs are found to grow for at least 2-3 weeks. When compared to independent in situ observations, simulations from our optimized ICs are shown to have the smallest errors.

  13. Genetic signatures coupled with lineage shift characterise endemic evolution of Dengue virus serotype 2 during 2015 outbreak in Delhi, India.

    Science.gov (United States)

    Choudhary, Manish Chandra; Gupta, Ekta; Sharma, Shvetank; Hasnain, Nadeem; Agarwala, Pragya

    2017-07-01

    In 2015, New Delhi witnessed a massive outbreak of Dengue virus (DENV) resulting in high morbidity and mortality. We report the molecular characterisation of the dominant circulating DENV strain to understand its evolution and dispersal. DENV infections were diagnosed by detection of IgM/NS1 antigen, and serotyping was performed by C-PrM PCR. Envelope gene was amplified, and variation(s) in envelope gene were analysed. Phylogenetic tree construction, time-based phylogeny and origin of DENV were analysed. Site-specific selection pressure of envelope gene variants was analysed. Confirmed DENV infection was observed in 11.34% (32 of 282) cases, while PCR positivity for C-PrM region was observed in 54.16% (13 of 24) of NS1 antigen-positive cases. All samples belonged to serotype 2 and cosmopolitan genotype. Phylogenetic analysis using envelope gene revealed segregation of cosmopolitan genotype strains into specific lineages. The Indian strains clustered separately forming a distinct monophyletic lineage (lineage III) with a signature amino acid substitution viz., I162V and R288K. Selection pressure analysis revealed that 215D, 288R and 304K were positively selected sites. The rate of nucleotide substitution was 6.93 × 10 -4 substitutions site-1 year-1 with time to most common ancestor was around 10 years with JX475906 (Hyderabad strain) and JN030345 (Singapore strain) as its most probable ancestor. We observed evolution of a distinct lineage of DENV-2 strains on the Indian subcontinent with possible changes in endemic circulating dengue strains that might give rise to more pathogenic strains. © 2017 John Wiley & Sons Ltd.

  14. Remote determination of the velocity index and mean streamwise velocity profiles

    Science.gov (United States)

    Johnson, E. D.; Cowen, E. A.

    2017-09-01

    When determining volumetric discharge from surface measurements of currents in a river or open channel, the velocity index is typically used to convert surface velocities to depth-averaged velocities. The velocity index is given by, k=Ub/Usurf, where Ub is the depth-averaged velocity and Usurf is the local surface velocity. The USGS (United States Geological Survey) standard value for this coefficient, k = 0.85, was determined from a series of laboratory experiments and has been widely used in the field and in laboratory measurements of volumetric discharge despite evidence that the velocity index is site-specific. Numerous studies have documented that the velocity index varies with Reynolds number, flow depth, and relative bed roughness and with the presence of secondary flows. A remote method of determining depth-averaged velocity and hence the velocity index is developed here. The technique leverages the findings of Johnson and Cowen (2017) and permits remote determination of the velocity power-law exponent thereby, enabling remote prediction of the vertical structure of the mean streamwise velocity, the depth-averaged velocity, and the velocity index.

  15. On the force-velocity relationship of a bundle of rigid bio-filaments

    Science.gov (United States)

    Perilli, Alessia; Pierleoni, Carlo; Ciccotti, Giovanni; Ryckaert, Jean-Paul

    2018-03-01

    In various cellular processes, bio-filaments like F-actin and F-tubulin are able to exploit chemical energy associated with polymerization to perform mechanical work against an obstacle loaded with an external force. The force-velocity relationship quantitatively summarizes the nature of this process. By a stochastic dynamical model, we give, together with the evolution of a staggered bundle of Nf rigid living filaments facing a loaded wall, the corresponding force-velocity relationship. We compute the evolution of the model in the infinite wall diffusion limit and in supercritical conditions (monomer density reduced by critical density ρ^ 1>1 ), and we show that this solution remains valid for moderate non-zero values of the ratio between the wall diffusion and the chemical time scales. We consider two classical protocols: the bundle is opposed either to a constant load or to an optical trap setup, characterized by a harmonic restoring force. The constant load case leads, for each F value, to a stationary velocity Vs t a t(F ;Nf,ρ^ 1 ) after a relaxation with characteristic time τmicro(F). When the bundle (initially taken as an assembly of filament seeds) is subjected to a harmonic restoring force (optical trap load), the bundle elongates and the load increases up to stalling over a characteristic time τOT. Extracted from this single experiment, the force-velocity VO T(F ;Nf,ρ^ 1 ) curve is found to coincide with Vs t a t(F ;Nf,ρ^ 1 ) , except at low loads. We show that this result follows from the adiabatic separation between τmicro and τOT, i.e., τmicro ≪ τOT.

  16. Role of HIV-2 envelope in Lv2-mediated restriction

    International Nuclear Information System (INIS)

    Reuter, Sandra; Kaumanns, Patrick; Buschhorn, Sabine B.; Dittmar, Matthias T.

    2005-01-01

    We have characterized envelope protein pseudotyped HIV-2 particles derived from two HIV-2 isolates termed prCBL23 and CBL23 in order to define the role of the envelope protein for the Lv2-mediated restriction to infection. Previously, it has been described that the primary isolate prCBL23 is restricted to infection of several human cell types, whereas the T cell line adapted isolate CBL23 is not restricted in these cell types. Molecular cloning of the two isolates revealed that the env and the gag gene are responsible for the observed phenotype and that this restriction is mediated by Lv2, which is distinct from Ref1/Lv1 (Schmitz, C., Marchant, D., Neil, S.J., Aubin, K., Reuter, S., Dittmar, M.T., McKnight, A., Kizhatil, K., Albritton, L.M., 2004. Lv2, a novel postentry restriction, is mediated by both capsid and envelope. J. Virol. 78 (4), 2006-2016). We generated pseudotyped viruses consisting of HIV-2 (ROD-AΔenv-GFP, ROD-AΔenv-RFP, or ROD-AΔenv-REN) and the prCBL23 or CBL23 envelope proteins as well as chimeric proteins between these envelopes. We demonstrate that a single amino acid exchange at position 74 in the surface unit of CBL23-Env confers restriction to infection. This single point mutation causes tighter CD4 binding, resulting in a less efficient fusion into the cytosol of the restricted cell line. Prevention of endosome formation and prevention of endosome acidification enhance infectivity of the restricted particles for GHOST/X4 cells indicating a degradative lysosomal pathway as a cause for the reduced cytosolic entry. The described restriction to infection of the primary isolate prCBL23 is therefore largely caused by an entry defect. A remaining restriction to infection (19-fold) is preserved when endosomal acidification is prevented. This restriction to infection is also dependent on the presence of the point mutation at position 74 (G74E)

  17. Interior thermal insulation systems for historical building envelopes

    Science.gov (United States)

    Jerman, Miloš; Solař, Miloš; Černý, Robert

    2017-11-01

    The design specifics of interior thermal insulation systems applied for historical building envelopes are described. The vapor-tight systems and systems based on capillary thermal insulation materials are taken into account as two basic options differing in building-physical considerations. The possibilities of hygrothermal analysis of renovated historical envelopes including laboratory methods, computer simulation techniques, and in-situ tests are discussed. It is concluded that the application of computational models for hygrothermal assessment of interior thermal insulation systems should always be performed with a particular care. On one hand, they present a very effective tool for both service life assessment and possible planning of subsequent reconstructions. On the other, the hygrothermal analysis of any historical building can involve quite a few potential uncertainties which may affect negatively the accuracy of obtained results.

  18. Speech rhythm analysis with decomposition of the amplitude envelope: characterizing rhythmic patterns within and across languages.

    Science.gov (United States)

    Tilsen, Sam; Arvaniti, Amalia

    2013-07-01

    This study presents a method for analyzing speech rhythm using empirical mode decomposition of the speech amplitude envelope, which allows for extraction and quantification of syllabic- and supra-syllabic time-scale components of the envelope. The method of empirical mode decomposition of a vocalic energy amplitude envelope is illustrated in detail, and several types of rhythm metrics derived from this method are presented. Spontaneous speech extracted from the Buckeye Corpus is used to assess the effect of utterance length on metrics, and it is shown how metrics representing variability in the supra-syllabic time-scale components of the envelope can be used to identify stretches of speech with targeted rhythmic characteristics. Furthermore, the envelope-based metrics are used to characterize cross-linguistic differences in speech rhythm in the UC San Diego Speech Lab corpus of English, German, Greek, Italian, Korean, and Spanish speech elicited in read sentences, read passages, and spontaneous speech. The envelope-based metrics exhibit significant effects of language and elicitation method that argue for a nuanced view of cross-linguistic rhythm patterns.

  19. Prediction of Intelligibility of Noisy and Time-Frequency Weighted Speech based on Mutual Information Between Amplitude Envelopes

    DEFF Research Database (Denmark)

    Jensen, Jesper; Taal, C.H.

    2013-01-01

    of Shannon information the critical-band amplitude envelopes of the noisy/processed signal convey about the corresponding clean signal envelopes. The resulting intelligibility predictor turns out to be a simple function of the correlation between noisy/processed and clean amplitude envelopes. The proposed...

  20. Crustal evolution derived from the Izu-Bonin-Mariana arc velocity images

    Science.gov (United States)

    Takahashi, N.; Kodaira, S.; Tatsumi, Y.; Miura, S.; Sato, T.; Yamashita, M.; No, T.; Takahashi, T.; Noguchi, N.; Takizawa, K.; Kaiho, Y.; Kaneda, Y.

    2010-12-01

    The Izu-Bonin-Mariana arc is known as one of typical oceanic island arcs, which has developed by subduction between oceanic crusts producing continental materials. Japan Agency for Marine-Earth Science and Technology has carried out seismic surveys using a multi-channel reflection survey system (MCS) and ocean bottom seismographs (OBSs) in the Izu-Bonin-Mariana (IBM) arc since 2002, and reported these crustal images. As the results, we identified the structural characteristics of whole Izu-Bonin-Mariana arc. Rough structural characteristics are, 1) middle crust with Vp of 6 km/s, 2) upper part of the lower crust with Vp of 6.5-6.8 km/s, 3) lower part of the lower crust with Vp of 6.8-7.5 km/s, and 4) lower mantle velocity beneath the arc crusts. In addition, structural variation along the volcanic front, for example, thickness variation of andesitic layers was imaged and the distributions is consistent with those of rhyolite volcanoes, that is, it suggested that the cause the structural variation is various degree of crustal growth (Kodaira et al., 2007). Moreover, crustal thinning with high velocity lower crust across arc was also imaged, and it is interpreted that such crust has been influenced backarc opening (Takahashi et al., 2009). According to Tatsumi et al. (2008), andesitic middle crust is produced by differentiation of basaltic lower crust and a part of the restites are transformed to the upper mantle. This means that region showing much crustal differentiation has large volume of transformation of dense crustal materials to the mantle. We calculated volume profiles of the lower crust along all seismic lines based on the petrologic model, and compared them with observed real volumes obtained by seismic images. If the real volume of the lower crust is large, it means that the underplating of dense materials to the crustal bottom is dominant rather than transformation of dense materials to the upper mantle. According to obtained profiles to judge if the

  1. Moisture condensation on building envelopes in differential ventilated spaces in the tropics: quantitative assessment of influencing factors

    Directory of Open Access Journals (Sweden)

    Ali Maisarah

    2016-01-01

    Full Text Available Ventilation systems play a significant role in maintaining the indoor thermal and hygric balance. Nevertheless, the systems had been implicated to result in many problems. In the tropical climate, especially for energy efficiency purposes, building spaces are operated with differential ventilation. Such spaces operate on 24-hrs basis, some on 8-hrs while others are either naturally ventilated or served with mechanical supply-exhaust fan systems with non-conditioned outdoor air. This practice had been found to result in condensation problems. This study involves a quantitative appraisal of the effect of operative conditions and hygrothermal quality of building envelopes on condensation risk. The in-situ experiment is combined with an analytical approach to assessing the hygrothermal quality of building envelopes in a tropical climate building under differential ventilation between adjacent spaces. The case-studied building is with a known history of condensation and associated damages including mould growth. The microclimate measurement and hygrothermal performance of the wall and floor against condensation and mould growth risks had been previously reported elsewhere. As a step further, the present study evaluates the effects of various envelope insulation types and configurations together with the HVAC cooling set-points on envelope hygrothermal performance. The results revealed that overcooling the air-conditioned side increases condensation risk on the non-air-conditioned side of the envelopes. The envelopes failed criteria for surface condensation at existing operative conditions irrespective of envelope hygrothermal quality improvements. However, the envelope performed well at improved cooling operative conditions even at existing envelope hygrothermal quality. It is, therefore, important to ascertain the envelope hygrothermal quality as well the cooling operative conditions while embarking on energy efficiency operations in mechanical

  2. [Realization of Heart Sound Envelope Extraction Implemented on LabVIEW Based on Hilbert-Huang Transform].

    Science.gov (United States)

    Tan, Zhixiang; Zhang, Yi; Zeng, Deping; Wang, Hua

    2015-04-01

    We proposed a research of a heart sound envelope extraction system in this paper. The system was implemented on LabVIEW based on the Hilbert-Huang transform (HHT). We firstly used the sound card to collect the heart sound, and then implemented the complete system program of signal acquisition, pretreatment and envelope extraction on LabVIEW based on the theory of HHT. Finally, we used a case to prove that the system could collect heart sound, preprocess and extract the envelope easily. The system was better to retain and show the characteristics of heart sound envelope, and its program and methods were important to other researches, such as those on the vibration and voice, etc.

  3. Protamine-induced permeabilization of cell envelopes of gram-positive and gram-negative bacteria

    DEFF Research Database (Denmark)

    Johansen, Charlotte; Verheul, A.; Gram, Lone

    1997-01-01

    carboxyfluorescein and ATP after 2 to 5 min. Maximum antibacterial activity was reached at alkaline pH and in the absence of divalent cations. The efficient permeabilization of cell envelopes of both gram-positive and gram-negative bacteria suggests that protamine causes a general disruption of the cell envelope...

  4. White dwarf evolution - Cradle-to-grave constraints via pulsation

    Science.gov (United States)

    Kawaler, Steven D.

    1990-01-01

    White dwarf evolution, particularly in the early phases, is not very strongly constrained by observation. Fortunately, white dwarfs undergo nonradial pulsation in three distinct regions of the H-R diagram. These pulsations provide accurate masses, surface compositional structure and rotation velocities, and help constrain other important physical properties. We demonstrate the application of the tools of stellar seismology to white dwarf evolution using the hot white dwarf star PG 1159-035 and the cool DAV (or ZZ Ceti) stars as examples. From pulsation studies, significant challenges to the theory of white dwarf evolution emerge.

  5. Photoperiodic envelope: application of the generative design based on the performance of architectural envelopes, the exploring its shape and performance optimization

    International Nuclear Information System (INIS)

    Viquez Alas, Ernesto Alonso

    2013-01-01

    An alternative method of design is demonstrated to be used in the creation of an architectural envelope, through the application of tools and techniques such as algorithms, optimization, parametrization and simulation. The aesthetic criteria of the form are enriched to achieve the decrease in solar radiation rates. The methods and techniques of optimization, simulation, analysis and synthesis are habituated through the study of the contemporary paradigm of generative design and design by performance. Some of the applying of potential benefits an alternative design method and conditions to be met are designed to facilitate its application in the design of envelopes. A study of application and testing is demonstrated to explore the surround topology. The optimization results in relation to reducing the solar incidence are examined in a simulated environment [es

  6. Extended Cann Model for Behavioral Modeling of Envelope Tracking Power Amplifiers

    DEFF Research Database (Denmark)

    Tafuri, Felice Francesco; Larsen, Torben

    2013-01-01

    This paper deals with behavioral modeling of power amplifiers (PAs) for envelope tracking (ET) applications. In such a scenario, the power supply modulation brings in several additional challenges for the system design and, similarly, it becomes more difficult to obtain an accurate and general PA...... by the ET operation. The model performance is tested modeling data-sets acquired from an ET test bench including a commercial RFMD PA and an envelope modulator designed using a commercial IC from TI....

  7. Wall envelopes in office buildings: design trend and implications on cooling load of buildings

    International Nuclear Information System (INIS)

    Ibrahim, N.; Ahmed, A.Z.; Ahmed, S.S.

    2006-01-01

    The wall envelope is a vital element of a building especially to a high rise building where its wall to building volume ratio is higher compared to other building forms. As well as a means of architectural expression, the wall envelope protects and regulates the indoor environment. In recent years there have been many applications of glass products and cladding systems in high-rise buildings built in Kuala Lumpur. This paper describes a recent research and survey on wall envelope designs adopted in 33 high-rise office buildings built in the central business district of Kuala Lumpur since 1990. This research adopts component design analysis to identify dominant trends on wall envelope design for the surveyed buildings. The paper seeks to discourse the implications of this design trend on energy consumption of high-rise office buildings in the country

  8. CCR5 Signal Transduction in Macrophages by Human Immunodeficiency Virus and Simian Immunodeficiency Virus Envelopes

    OpenAIRE

    Arthos, James; Rubbert, Andrea; Rabin, Ronald L.; Cicala, Claudia; Machado, Elizabeth; Wildt, Kathryne; Hanbach, Meredith; Steenbeke, Tavis D.; Swofford, Ruth; Farber, Joshua M.; Fauci, Anthony S.

    2000-01-01

    The capacity of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) envelopes to transduce signals through chemokine coreceptors on macrophages was examined by measuring the ability of recombinant envelope proteins to mobilize intracellular calcium stores. Both HIV and SIV envelopes mobilized calcium via interactions with CCR5. The kinetics of these responses were similar to those observed when macrophages were treated with MIP-1β. Distinct differences in the capacity o...

  9. Abnormal nuclear envelopes in the striatum and motor deficits in DYT11 myoclonus-dystonia mouse models.

    Science.gov (United States)

    Yokoi, Fumiaki; Dang, Mai T; Zhou, Tong; Li, Yuqing

    2012-02-15

    DYT11 myoclonus-dystonia (M-D) is a movement disorder characterized by myoclonic jerks with dystonic symptoms and caused by mutations in paternally expressed SGCE, which codes for ε-sarcoglycan. Paternally inherited Sgce heterozygous knock-out (KO) mice exhibit motor deficits and spontaneous myoclonus. Abnormal nuclear envelopes have been reported in cellular and mouse models of early-onset DYT1 generalized torsion dystonia; however, the relationship between the abnormal nuclear envelopes and motor symptoms are not clear. Furthermore, it is not known whether abnormal nuclear envelope exists in non-DYT1 dystonia. In the present study, abnormal nuclear envelopes in the striatal medium spiny neurons (MSNs) were found in Sgce KO mice. To analyze whether the loss of ε-sarcoglycan in the striatum alone causes abnormal nuclear envelopes, motor deficits or myoclonus, we produced paternally inherited striatum-specific Sgce conditional KO (Sgce sKO) mice and analyzed their phenotypes. Sgce sKO mice exhibited motor deficits in both beam-walking and accelerated rotarod tests, while they did not exhibit abnormal nuclear envelopes, alteration in locomotion, or myoclonus. The results suggest that the loss of ε-sarcoglycan in the striatum contributes to motor deficits, while it alone does not produce abnormal nuclear envelopes or myoclonus. Development of therapies targeting the striatum to compensate for the loss of ε-sarcoglycan function may rescue the motor deficits in DYT11 M-D patients.

  10. Expanded envelope concepts for aircraft control-element failure detection and identification

    Science.gov (United States)

    Weiss, Jerold L.; Hsu, John Y.

    1988-01-01

    The purpose of this effort was to develop and demonstrate concepts for expanding the envelope of failure detection and isolation (FDI) algorithms for aircraft-path failures. An algorithm which uses analytic-redundancy in the form of aerodynamic force and moment balance equations was used. Because aircraft-path FDI uses analytical models, there is a tradeoff between accuracy and the ability to detect and isolate failures. For single flight condition operation, design and analysis methods are developed to deal with this robustness problem. When the departure from the single flight condition is significant, algorithm adaptation is necessary. Adaptation requirements for the residual generation portion of the FDI algorithm are interpreted as the need for accurate, large-motion aero-models, over a broad range of velocity and altitude conditions. For the decision-making part of the algorithm, adaptation may require modifications to filtering operations, thresholds, and projection vectors that define the various hypothesis tests performed in the decision mechanism. Methods of obtaining and evaluating adequate residual generation and decision-making designs have been developed. The application of the residual generation ideas to a high-performance fighter is demonstrated by developing adaptive residuals for the AFTI-F-16 and simulating their behavior under a variety of maneuvers using the results of a NASA F-16 simulation.

  11. Maximum Torque and Momentum Envelopes for Reaction Wheel Arrays

    Science.gov (United States)

    Markley, F. Landis; Reynolds, Reid G.; Liu, Frank X.; Lebsock, Kenneth L.

    2009-01-01

    Spacecraft reaction wheel maneuvers are limited by the maximum torque and/or angular momentum that the wheels can provide. For an n-wheel configuration, the torque or momentum envelope can be obtained by projecting the n-dimensional hypercube, representing the domain boundary of individual wheel torques or momenta, into three dimensional space via the 3xn matrix of wheel axes. In this paper, the properties of the projected hypercube are discussed, and algorithms are proposed for determining this maximal torque or momentum envelope for general wheel configurations. Practical strategies for distributing a prescribed torque or momentum among the n wheels are presented, with special emphasis on configurations of four, five, and six wheels.

  12. Serial femtosecond X-ray diffraction of enveloped virus microcrystals

    Directory of Open Access Journals (Sweden)

    Robert M. Lawrence

    2015-07-01

    Full Text Available Serial femtosecond crystallography (SFX using X-ray free-electron lasers has produced high-resolution, room temperature, time-resolved protein structures. We report preliminary SFX of Sindbis virus, an enveloped icosahedral RNA virus with ∼700 Å diameter. Microcrystals delivered in viscous agarose medium diffracted to ∼40 Å resolution. Small-angle diffuse X-ray scattering overlaid Bragg peaks and analysis suggests this results from molecular transforms of individual particles. Viral proteins undergo structural changes during entry and infection, which could, in principle, be studied with SFX. This is an important step toward determining room temperature structures from virus microcrystals that may enable time-resolved studies of enveloped viruses.

  13. Infrared spectrophotometry and radiative transfer in optically thick circumstellar dust envelopes

    International Nuclear Information System (INIS)

    Merrill, K.M.

    1976-01-01

    The Two-Micron Sky Survey of Neugebauer and Leighton and, more recently, the AFCRL Infrared Sky Survey of Walker and Price have detected numerous compact, isolated, bright infrared sources which are not identified with previously cataloged stars. Observations of many such objects suggest that extensive circumstellar dust envelopes modify the flux from a central source. The present investigations employ broad bandpass photometry at lambda lambda 1.65 μm to 12.5 μm and narrow bandpass spectrophotometry (Δ lambda/lambda approximately 0.015) at lambda lambda 2-4 μm and lambda lambda 8-13 μm to determine the properties of a large sample of such infrared sources. Infrared spectrophotometry can clearly differentiate between normal stars of spectral types M(''oxygen-rich'') and C (''carbon-rich'') on the basis of characteristic absorption bands arising in cool stellar atmospheres. Most of the 2 μ Sky Survey and many of the AFCRL Sky Survey sources appear to be stars of spectral types M and C which are differentiated from normal cool comparison stars only by the presence of extensive circumstellar dust envelopes. Due to the large optical depth of the envelopes, the flux from the star and from the dust cannot be simply separated. Hence solutions of radiative transfer through spherically symmetric envelopes of arbitrary optical depth were generated by a generalized computer code which employed opacities of real dust

  14. Role of the Phosphatidylserine Receptor TIM-1 in Enveloped-Virus Entry

    Science.gov (United States)

    Moller-Tank, Sven; Kondratowicz, Andrew S.; Davey, Robert A.; Rennert, Paul D.

    2013-01-01

    The cell surface receptor T cell immunoglobulin mucin domain 1 (TIM-1) dramatically enhances filovirus infection of epithelial cells. Here, we showed that key phosphatidylserine (PtdSer) binding residues of the TIM-1 IgV domain are critical for Ebola virus (EBOV) entry through direct interaction with PtdSer on the viral envelope. PtdSer liposomes but not phosphatidylcholine liposomes competed with TIM-1 for EBOV pseudovirion binding and transduction. Further, annexin V (AnxV) substituted for the TIM-1 IgV domain, supporting a PtdSer-dependent mechanism. Our findings suggest that TIM-1-dependent uptake of EBOV occurs by apoptotic mimicry. Additionally, TIM-1 enhanced infection of a wide range of enveloped viruses, including alphaviruses and a baculovirus. As further evidence of the critical role of enveloped-virion-associated PtdSer in TIM-1-mediated uptake, TIM-1 enhanced internalization of pseudovirions and virus-like proteins (VLPs) lacking a glycoprotein, providing evidence that TIM-1 and PtdSer-binding receptors can mediate virus uptake independent of a glycoprotein. These results provide evidence for a broad role of TIM-1 as a PtdSer-binding receptor that mediates enveloped-virus uptake. Utilization of PtdSer-binding receptors may explain the wide tropism of many of these viruses and provide new avenues for controlling their virulence. PMID:23698310

  15. ANALYZING THE VELOCITY OF URBAN DYNAMIC OVER NORTHEASTERN CHINA USING DMSP-OLS NIGHT-TIME LIGHTS

    Directory of Open Access Journals (Sweden)

    Y. Zhou

    2017-09-01

    Full Text Available Stable night-time lights (NTL data from the Defense Meteorological Satellite Program Operational Line-scan System (DMSPOLS can serve as a good proxy for anthropogenic development. Here DMSP-OLS NTL data was used to detect the urban development status in northeastern China. The spatial and temporal gradients are combined to depict the velocity of urban expanding process. This velocity index represents the instantaneous local velocity along the Earth’s surface needed to maintain constant NTL condition, and has a mean of 0.36 km/yr for northeastern China. The velocity change of NTL is lower in the urban center and its near regions, and the suburbs show a relatively high value. The connecting zones between satellite cities and metropolis have also a rapid rate of NTL evolution. The dynamic process of urbanization over the study area is mainly in a manner of spreading from urban cores to edges. The rank size of the velocity for the prefectures is analyzed and a long tail distribution is found. The velocity index can provide insights for the future pattern of urban sprawl.

  16. Analyzing the Velocity of Urban Dynamic Over Northeastern China Using Dmsp-Ols Night-Time Lights

    Science.gov (United States)

    Zhou, Y.

    2017-09-01

    Stable night-time lights (NTL) data from the Defense Meteorological Satellite Program Operational Line-scan System (DMSPOLS) can serve as a good proxy for anthropogenic development. Here DMSP-OLS NTL data was used to detect the urban development status in northeastern China. The spatial and temporal gradients are combined to depict the velocity of urban expanding process. This velocity index represents the instantaneous local velocity along the Earth's surface needed to maintain constant NTL condition, and has a mean of 0.36 km/yr for northeastern China. The velocity change of NTL is lower in the urban center and its near regions, and the suburbs show a relatively high value. The connecting zones between satellite cities and metropolis have also a rapid rate of NTL evolution. The dynamic process of urbanization over the study area is mainly in a manner of spreading from urban cores to edges. The rank size of the velocity for the prefectures is analyzed and a long tail distribution is found. The velocity index can provide insights for the future pattern of urban sprawl.

  17. Experiences when employing different alternatives for envelope upgrading

    Directory of Open Access Journals (Sweden)

    Peru Elguezabal Esnarrizaga

    2015-06-01

    Full Text Available The challenges of achieving the 2020 goals in terms of energy savings and improving efficiency are guiding numerous research initiatives looking for more insulated envelopes, dealing with thermal performance of insulation materials and envelope systems. Nevertheless, the envelope integrates within the building and this improvement on the insulation performance has to be properly adopted, taking into account the interrelation of main elements composing the overall system (facade, frame, slabs, openings, partitions etc., as well as side effects originated not only for new erected buildings, but specifically in renovation and retrofitting works. This paper describes real experiences when considering various options for upgrading the facade through the increase of the insulation capacity, starting from external overcladding prefabricated panels and ventilated facades, advancing to more sustainable low carbon systems and ending with even more highly insulated solutions employing aerogels. Lessons from these cases, where energy and hygrothermal assessments have being carried out, demonstrate the influence of the design and construction phases and the relevance of disregarded effects such as minor thermal bridges, uncontrolled craftsmanship on site, and moisture transfer for the different technologies considered. Finally, possible alternatives are provided to overcome some of the detected difficulties, such as combination with non-metallic structural components and building membranes, and being prepared for future challenges and new developments when these isolative elements are combined with other technologies, as for example, renewable energy harvesting devices.  

  18. Flight envelope protection system for unmanned aerial vehicles

    KAUST Repository

    Claudel, Christian G.; Shaqura, Mohammad

    2016-01-01

    Systems and methods to protect the flight envelope in both manual flight and flight by a commercial autopilot are provided. A system can comprise: an inertial measurement unit (IMU); a computing device in data communication with the IMU

  19. Velocity locking and pulsed invasions of fragmented habitats with seasonal growth

    Science.gov (United States)

    Korolev, Kirill; Wang, Ching-Hao

    From crystal growth to epidemics, spatial spreading is a common mechanism of change in nature. Typically, spreading results from two processes: growth and dispersal in ecology or chemical reactions and diffusion in physics. These two processes combine to produce a reaction-diffusion wave, an invasion front advancing at a constant velocity. We show that the properties of these waves are remarkably different depending whether space and time are continuous, as they are for a chemical reaction, or discrete, as they are for a pest invading a patchy habitat in seasonal climates. For discrete space and time, we report a new type of expansions with velocities that can lock into specific values and become insensitive to changes in dispersal and growth, i.e. the dependence of the velocity on model parameters exhibits plateaus or pauses. As a result, the evolution and response to perturbations in locked expansions can be markedly different compared to the expectations based on continuous models. The phenomenon of velocity locking requires cooperative growth and does not occur when per capita growth rate decline monotonically with population density. We obtain both numerical and analytical results describing highly non-analytic properties of locked expansions.

  20. Center manifolds for a class of degenerate evolution equations and existence of small-amplitude kinetic shocks

    Science.gov (United States)

    Pogan, Alin; Zumbrun, Kevin

    2018-06-01

    We construct center manifolds for a class of degenerate evolution equations including the steady Boltzmann equation and related kinetic models, establishing in the process existence and behavior of small-amplitude kinetic shock and boundary layers. Notably, for Boltzmann's equation, we show that elements of the center manifold decay in velocity at near-Maxwellian rate, in accord with the formal Chapman-Enskog picture of near-equilibrium flow as evolution along the manifold of Maxwellian states, or Grad moment approximation via Hermite polynomials in velocity. Our analysis is from a classical dynamical systems point of view, with a number of interesting modifications to accommodate ill-posedness of the underlying evolution equation.

  1. Evolution of R5 and X4 human immunodeficiency virus type 1 gag sequences in vivo: evidence for recombination

    International Nuclear Information System (INIS)

    Rij, Ronald P. van; Worobey, Michael; Visser, Janny A.; Schuitemaker, Hanneke

    2003-01-01

    Human immunodeficiency virus type 1 (HIV-1) infection is in general established by CCR5-utilizing (R5) virus variants, which persist throughout the course of infection. R5 HIV-1 variants evolve into CXCR4-utilizing (X4) HIV-1 variants in approximately half of the infected individuals. We have previously observed an ongoing genetic evolution with a continuous divergence of envelope gp120 sequences of coexisting R5 and X4 virus variants over time. Here, we studied evolution of gag p17 sequences in two patients who developed X4 variants in the course of infection. In contrast to the envelope gp120 sequences, gag p17 sequences of R5 and X4 virus populations intermingled in phylogenetic trees and did not diverge from each other over time. Statistical evaluation using the Shimodaira-Hasegawa test indicated that the different genomic regions evolved along different topologies, supporting the hypothesis of recombination. Therefore, our data imply that recombination between R5 and X4 HIV-1 variants occurs in vivo

  2. Development of an optimal velocity selection method with velocity obstacle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Geuk; Oh, Jun Ho [KAIST, Daejeon (Korea, Republic of)

    2015-08-15

    The Velocity obstacle (VO) method is one of the most well-known methods for local path planning, allowing consideration of dynamic obstacles and unexpected obstacles. Typical VO methods separate a velocity map into a collision area and a collision-free area. A robot can avoid collisions by selecting its velocity from within the collision-free area. However, if there are numerous obstacles near a robot, the robot will have very few velocity candidates. In this paper, a method for choosing optimal velocity components using the concept of pass-time and vertical clearance is proposed for the efficient movement of a robot. The pass-time is the time required for a robot to pass by an obstacle. By generating a latticized available velocity map for a robot, each velocity component can be evaluated using a cost function that considers the pass-time and other aspects. From the output of the cost function, even a velocity component that will cause a collision in the future can be chosen as a final velocity if the pass-time is sufficiently long enough.

  3. The laboratory investigation of surface envelope solitons: reflection from a vertical wall and collisions of solitons

    Science.gov (United States)

    Slunyaev, Alexey; Klein, Marco; Clauss, Günther F.

    2016-04-01

    Envelope soliton solutions are key elements governing the nonlinear wave dynamics within a simplified theory for unidirectional weakly modulated weakly nonlinear wave groups on the water surface. Within integrable models the solitons preserve their structure in collisions with other waves; they do not disperse and can carry energy infinitively long. Steep and short soliton-like wave groups have been shown to exist in laboratory tests [1] and, even earlier, in numerical simulations [2, 3]. Thus, long-living wave groups may play important role in the dynamics of intense sea waves and wave-structure interactions. The solitary wave groups may change the wave statistics and can be taken into account when developing approaches for the deterministic forecasting of dangerous waves, including so-called rogue waves. An experimental campaign has been conducted in the wave basin of the Technical University of Berlin on simulations of intense solitary wave groups. The first successful experimental observation of intense envelope solitons took place in this facility [1]. The new experiments aimed at following main goals: 1) to reproduce intense envelope solitons with different carrier wave lengths; 2) to estimate the rate of envelope soliton dissipation; 3) to consider the reflection of envelope solitons on a vertical wall; 4) to consider head-on collisions of envelope solitons, and 5) to consider overtaking interactions of envelope solitons. Up to 9 wave gauges were used in each experimental run, which enabled registration of the surface movement at different distances from the wavemaker, at different locations across the wave flume and near the wall. Besides surface displacements, the group envelope shapes were directly recorded, with use of phase shifts applied to the modulated waves generated by the wavemaker. [1] A. Slunyaev, G.F. Clauss, M. Klein, M. Onorato, Simulations and experiments of short intense envelope solitons of surface water waves. Phys. Fluids 25, 067105

  4. Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus

    Science.gov (United States)

    Liao, Hua-Xin; Lynch, Rebecca; Zhou, Tongqing; Gao, Feng; Alam, S. Munir; Boyd, Scott D.; Fire, Andrew Z.; Roskin, Krishna M.; Schramm, Chaim A.; Zhang, Zhenhai; Zhu, Jiang; Shapiro, Lawrence; Mullikin, James C.; Gnanakaran, S.; Hraber, Peter; Wiehe, Kevin; Kelsoe, Garnett; Yang, Guang; Xia, Shi-Mao; Montefiori, David C.; Parks, Robert; Lloyd, Krissey E.; Scearce, Richard M.; Soderberg, Kelly A.; Cohen, Myron; Kaminga, Gift; Louder, Mark K.; Tran, Lillan M.; Chen, Yue; Cai, Fangping; Chen, Sheri; Moquin, Stephanie; Du, Xiulian; Joyce, Gordon M.; Srivatsan, Sanjay; Zhang, Baoshan; Zheng, Anqi; Shaw, George M.; Hahn, Beatrice H.; Kepler, Thomas B.; Korber, Bette T.M.; Kwong, Peter D.; Mascola, John R.; Haynes, Barton F.

    2013-01-01

    Current HIV-1 vaccines elicit strain-specific neutralizing antibodies. However, cross-reactive neutralizing antibodies arise in ~20% of HIV-1-infected individuals, and details of their generation could provide a roadmap for effective vaccination. Here we report the isolation, evolution and structure of a broadly neutralizing antibody from an African donor followed from time of infection. The mature antibody, CH103, neutralized ~55% of HIV-1 isolates, and its co-crystal structure with gp120 revealed a novel loop-based mechanism of CD4-binding site recognition. Virus and antibody gene sequencing revealed concomitant virus evolution and antibody maturation. Notably, the CH103-lineage unmutated common ancestor avidly bound the transmitted/founder HIV-1 envelope glycoprotein, and evolution of antibody neutralization breadth was preceded by extensive viral diversification in and near the CH103 epitope. These data elucidate the viral and antibody evolution leading to induction of a lineage of HIV-1 broadly neutralizing antibodies and provide insights into strategies to elicit similar antibodies via vaccination. PMID:23552890

  5. Evaluation of ISO CRS Envelopes Relative to U.S. Vehicles and Child Restraint Systems.

    Science.gov (United States)

    Hu, Jingwen; Manary, Miriam A; Klinich, Kathleen D; Reed, Matthew P

    2015-01-01

    The objectives of this study are to use computer simulation to evaluate the International Organization for Standardization (ISO) 13216-3:2006(E) child restraint system (CRS) envelopes relative to rear seat compartments from vehicles and CRSs in the U.S. market, investigate the potential compatibility issues of U.S. vehicles and CRSs, and demonstrate whether necessary modifications can be made to introduce such a system into compatibility evaluations between U.S. vehicles and CRSs. Three-dimensional geometry models for 26 vehicles and 16 convertible CRS designs developed previously were used. Geometry models of 3 forward-facing and 3 rear-facing CRS envelopes provided by the ISO were built in the current study. The virtual fit process closely followed the physical procedures described in the ISO standards. The results showed that the current ISO rear-facing envelopes can provide reasonable classifications for CRSs and vehicles, but the forward-facing envelopes do not represent products currently in the U.S. market. In particular, all of the selected vehicles could accommodate the largest forward-facing CRS envelope at the second-row seat location behind the driver seat. In contrast, half of the selected CRSs could not fit within any of the forward-facing ISO CRS envelopes, mainly due to protrusion at the rear-top corner of the envelope. The results also indicate that the rear seat compartment in U.S. vehicles often cannot accommodate a large portion of convertible CRSs in the rear-facing position. The increased demand for vehicle fuel economy and the recommendation to keep children rear-facing longer may lead to smaller cars and larger CRSs, which may increase the potential for fit problems. The virtual classifications indicated that contact between the forward-facing CRSs and the head restraints in the rear seats as well as that between the rear-facing CRSs and the back of the front seats is a main concern regarding the compatibility between the vehicles and the

  6. Efficiency Enhancement of an Envelope Tracking Power Amplifier Combining Supply Shaping and Dynamic Biasing

    DEFF Research Database (Denmark)

    Tafuri, Felice Francesco; Sira, Daniel; Jensen, Ole Kiel

    2013-01-01

    This paper presents a new method to improve the performance of envelope tracking (ET) power amplifiers (PAs). The method consists of combining the supply modulation that characterizes the envelope tracking architecture with supply shaping and dynamic biasing. The inclusion of dynamic biasing allo...

  7. Incipient failure detection of space shuttle main engine turbopump bearings using vibration envelope detection

    Science.gov (United States)

    Hopson, Charles B.

    1987-01-01

    The results of an analysis performed on seven successive Space Shuttle Main Engine (SSME) static test firings, utilizing envelope detection of external accelerometer data are discussed. The results clearly show the great potential for using envelope detection techniques in SSME incipient failure detection.

  8. Geometric optimal design of a magneto-rheological brake considering different shapes for the brake envelope

    International Nuclear Information System (INIS)

    Nguyen, Q H; Lang, V T; Nguyen, N D; Choi, S B

    2014-01-01

    When designing a magneto-rheological brake (MRB), it is well known that the shape of the brake envelope significantly affects the performance characteristics of the brake. In this study, different shapes for the MR brake envelope, such as rectangular, polygonal or spline shape, are considered and the most suitable shape identified. MRBs with different envelope shapes are introduced followed by the derivation of the braking torque based on Bingham-plastic behavior of the magneto-rheological fluid (MRF). Optimization of the design of the MRB with different envelope shapes is then done. The optimization problem is to find the optimal value for the significant geometric dimensions of the MRB that can produce a certain required braking torque while the brake mass is minimized. A finite element analysis integrated with an optimization tool is employed to obtain optimal solutions for the MRBs. From the results, the most suitable shape for the brake envelope is identified and discussed with the reduction of mass. In addition, the results of the analysis are compared with the experimental results to verify the proposed optimal design characteristics. (paper)

  9. Geometric optimal design of a magneto-rheological brake considering different shapes for the brake envelope

    Science.gov (United States)

    Nguyen, Q. H.; Lang, V. T.; Nguyen, N. D.; Choi, S. B.

    2014-01-01

    When designing a magneto-rheological brake (MRB), it is well known that the shape of the brake envelope significantly affects the performance characteristics of the brake. In this study, different shapes for the MR brake envelope, such as rectangular, polygonal or spline shape, are considered and the most suitable shape identified. MRBs with different envelope shapes are introduced followed by the derivation of the braking torque based on Bingham-plastic behavior of the magneto-rheological fluid (MRF). Optimization of the design of the MRB with different envelope shapes is then done. The optimization problem is to find the optimal value for the significant geometric dimensions of the MRB that can produce a certain required braking torque while the brake mass is minimized. A finite element analysis integrated with an optimization tool is employed to obtain optimal solutions for the MRBs. From the results, the most suitable shape for the brake envelope is identified and discussed with the reduction of mass. In addition, the results of the analysis are compared with the experimental results to verify the proposed optimal design characteristics.

  10. Envelope statistics of self-motion signals experienced by human subjects during everyday activities: Implications for vestibular processing.

    Science.gov (United States)

    Carriot, Jérome; Jamali, Mohsen; Cullen, Kathleen E; Chacron, Maurice J

    2017-01-01

    There is accumulating evidence that the brain's neural coding strategies are constrained by natural stimulus statistics. Here we investigated the statistics of the time varying envelope (i.e. a second-order stimulus attribute that is related to variance) of rotational and translational self-motion signals experienced by human subjects during everyday activities. We found that envelopes can reach large values across all six motion dimensions (~450 deg/s for rotations and ~4 G for translations). Unlike results obtained in other sensory modalities, the spectral power of envelope signals decreased slowly for low (2 Hz) temporal frequencies and thus was not well-fit by a power law. We next compared the spectral properties of envelope signals resulting from active and passive self-motion, as well as those resulting from signals obtained when the subject is absent (i.e. external stimuli). Our data suggest that different mechanisms underlie deviation from scale invariance in rotational and translational self-motion envelopes. Specifically, active self-motion and filtering by the human body cause deviation from scale invariance primarily for translational and rotational envelope signals, respectively. Finally, we used well-established models in order to predict the responses of peripheral vestibular afferents to natural envelope stimuli. We found that irregular afferents responded more strongly to envelopes than their regular counterparts. Our findings have important consequences for understanding the coding strategies used by the vestibular system to process natural second-order self-motion signals.

  11. HOPS 136: An edge-on orion protostar near the end of envelope infall

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, William J.; Megeath, S. Thomas [Department of Physics and Astronomy, University of Toledo, Toledo, OH (United States); Tobin, John J. [National Radio Astronomy Observatory, Charlottesville, VA (United States); Hartmann, Lee; Kounkel, Marina [Department of Astronomy, University of Michigan, Ann Arbor, MI (United States); Stutz, Amelia M. [Max-Planck-Institut für Astronomie, Heidelberg (Germany); Poteet, Charles A. [New York Center for Astrobiology, Rensselaer Polytechnic Institute, Troy, NY (United States); Ali, Babar [NHSC/IPAC/Caltech, Pasadena, CA (United States); Osorio, Mayra [Instituto de Astrofísica de Andalucía, CSIC, Granada (Spain); Manoj, P. [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Mumbai (India); Remming, Ian [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL (United States); Stanke, Thomas [ESO, Garching bei München (Germany); Watson, Dan M., E-mail: wjfischer@gmail.com [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States)

    2014-02-01

    Edge-on protostars are valuable for understanding the disk and envelope properties of embedded young stellar objects, since the disk, envelope, and envelope cavities are all distinctly visible in resolved images and well constrained in modeling. Comparing Two Micron All Sky Survey, Wide-field Infrared Survey Explorer, Spitzer, Herschel, and APEX photometry and an IRAM limit from 1.2 to 1200 μm, Spitzer spectroscopy from 5 to 40 μm, and high-resolution Hubble imaging at 1.60 and 2.05 μm to radiative transfer modeling, we determine envelope and disk properties for the Class I protostar HOPS 136, an edge-on source in Orion's Lynds 1641 region. The source has a bolometric luminosity of 0.8 L {sub ☉}, a bolometric temperature of 170 K, and a ratio of submillimeter to bolometric luminosity of 0.8%. Via modeling, we find a total luminosity of 4.7 L {sub ☉} (larger than the observed luminosity due to extinction by the disk), an envelope mass of 0.06 M {sub ☉}, and a disk radius and mass of 450 AU and 0.002 M {sub ☉}. The stellar mass is highly uncertain but is estimated to fall between 0.4 and 0.5 M {sub ☉}. To reproduce the flux and wavelength of the near-infrared scattered-light peak in the spectral energy distribution, we require 5.4 × 10{sup –5} M {sub ☉} of gas and dust in each cavity. The disk has a large radius and a mass typical of more evolved T Tauri disks in spite of the significant remaining envelope. HOPS 136 appears to be a key link between the protostellar and optically revealed stages of star formation.

  12. Evolution of ion-acoustic potential well in a current-carrying plasma

    International Nuclear Information System (INIS)

    Maslov, V.I.

    1990-01-01

    Properties and evolution of nonlinear correlated collective disturbance of potential well in current-carrying limited plasma are described. Study shows, that potential well intensifies while exchanging energy with resonance electrons reflecting from it with distribution unstable function. In this case, electron deficiency occurs ahead of the well and electron excess - behined it due to asymmetry, relatively to well velocity, of distribution function of electrons injected at boundaries, in velocity space and due to their reflection from well. Quasineutrality is reduced by self-congruent formation of potential jump within well range. With amplitude growth at its essential values the well is braked. Similar pattern of localized disturbance evolution was observed during numerical and laboratory experiments

  13. Trajectory and velocity measurement of a particle in spray by digital holography

    Energy Technology Data Exchange (ETDEWEB)

    Lue Qieni; Chen Yiliang; Yuan Rui; Ge Baozhen; Gao Yan; Zhang Yimo

    2009-12-20

    We present a method for the trajectory and the velocity measurement of a particle in spray by digital holography. Based on multiple exposure digital in-line holography, a sequence of digital holograms of a dynamic spray particle field at different times are recorded with a CW laser and a high-speed CCD. The time evolution of the serial positions of particles, i.e., the motion trajectories of the particles, is obtained by numerically reconstructing the synthetic hologram of a sequence of digital holograms. The center coordinate (x,y) of each particle image can be extracted using a Hough transform and subpixel precision computing, and the velocity of an individual particle can also be obtained, which is then applied to measuring the velocity of diesel spray and alcohol spray. The research shows that the method presented in this paper for measuring spray field is feasible.

  14. Evolution of wear and friction along experimental faults

    Science.gov (United States)

    Boneh, Yeval; Chang, Jefferson C.; Lockner, David A.; Reches, Zeev

    2014-01-01

    We investigate the evolution of wear and friction along experimental faults composed of solid rock blocks. This evolution is analyzed through shear experiments along five rock types, and the experiments were conducted in a rotary apparatus at slip velocities of 0.002–0.97 m/s, slip distances from a few millimeters to tens of meters, and normal stress of 0.25–6.9 MPa. The wear and friction measurements and fault surface observations revealed three evolution phases: A) An initial stage (slip distances evolution stages are clearly recognizable for experimental faults made from bare rock blocks, our analysis suggests that natural faults “bypass” the first two stages and slip at gouge-controlled steady-state conditions.

  15. Print and supply of envelopes and file covers

    Indian Academy of Sciences (India)

    “Tender for Supply of Printed Envelopes and File Covers". Tender ... Twenty Five Thousand Only) in the form of Demand Draft drawn on any Nationalized. Bank and .... m) The finalized contract shall be interpreted under Indian Laws. In case of ...

  16. Abnormal nuclear envelopes in the striatum and motor deficits in DYT11 myoclonus-dystonia mouse models

    Science.gov (United States)

    Yokoi, Fumiaki; Dang, Mai T.; Zhou, Tong; Li, Yuqing

    2012-01-01

    DYT11 myoclonus-dystonia (M-D) is a movement disorder characterized by myoclonic jerks with dystonic symptoms and caused by mutations in paternally expressed SGCE, which codes for ɛ-sarcoglycan. Paternally inherited Sgce heterozygous knock-out (KO) mice exhibit motor deficits and spontaneous myoclonus. Abnormal nuclear envelopes have been reported in cellular and mouse models of early-onset DYT1 generalized torsion dystonia; however, the relationship between the abnormal nuclear envelopes and motor symptoms are not clear. Furthermore, it is not known whether abnormal nuclear envelope exists in non-DYT1 dystonia. In the present study, abnormal nuclear envelopes in the striatal medium spiny neurons (MSNs) were found in Sgce KO mice. To analyze whether the loss of ɛ-sarcoglycan in the striatum alone causes abnormal nuclear envelopes, motor deficits or myoclonus, we produced paternally inherited striatum-specific Sgce conditional KO (Sgce sKO) mice and analyzed their phenotypes. Sgce sKO mice exhibited motor deficits in both beam-walking and accelerated rotarod tests, while they did not exhibit abnormal nuclear envelopes, alteration in locomotion, or myoclonus. The results suggest that the loss of ɛ-sarcoglycan in the striatum contributes to motor deficits, while it alone does not produce abnormal nuclear envelopes or myoclonus. Development of therapies targeting the striatum to compensate for the loss of ɛ-sarcoglycan function may rescue the motor deficits in DYT11 M-D patients. PMID:22080833

  17. Rapidly evolving zona pellucida domain proteins are a major component of the vitelline envelope of abalone eggs

    Science.gov (United States)

    Aagaard, Jan E.; Yi, Xianhua; MacCoss, Michael J.; Swanson, Willie J.

    2006-01-01

    Proteins harboring a zona pellucida (ZP) domain are prominent components of vertebrate egg coats. Although less well characterized, the egg coat of the non-vertebrate marine gastropod abalone (Haliotis spp.) is also known to contain a ZP domain protein, raising the possibility of a common molecular basis of metazoan egg coat structures. Egg coat proteins from vertebrate as well as non-vertebrate taxa have been shown to evolve under positive selection. Studied most extensively in the abalone system, coevolution between adaptively diverging egg coat and sperm proteins may contribute to the rapid development of reproductive isolation. Thus, identifying the pattern of evolution among egg coat proteins is important in understanding the role these genes may play in the speciation process. The purpose of the present study is to characterize the constituent proteins of the egg coat [vitelline envelope (VE)] of abalone eggs and to provide preliminary evidence regarding how selection has acted on VE proteins during abalone evolution. A proteomic approach is used to match tandem mass spectra of peptides from purified VE proteins with abalone ovary EST sequences, identifying 9 of 10 ZP domain proteins as components of the VE. Maximum likelihood models of codon evolution suggest positive selection has acted among a subset of amino acids for 6 of these genes. This work provides further evidence of the prominence of ZP proteins as constituents of the egg coat, as well as the prominent role of positive selection in diversification of these reproductive proteins. PMID:17085584

  18. Diaspora, a large family of Ty3-gypsy retrotransposons in Glycine max, is an envelope-less member of an endogenous plant retrovirus lineage.

    Science.gov (United States)

    Yano, Sho T; Panbehi, Bahman; Das, Arpita; Laten, Howard M

    2005-05-05

    The chromosomes of higher plants are littered with retrotransposons that, in many cases, constitute as much as 80% of plant genomes. Long terminal repeat retrotransposons have been especially successful colonizers of the chromosomes of higher plants and examinations of their function, evolution, and dispersal are essential to understanding the evolution of eukaryotic genomes. In soybean, several families of retrotransposons have been identified, including at least two that, by virtue of the presence of an envelope-like gene, may constitute endogenous retroviruses. However, most elements are highly degenerate and are often sequestered in regions of the genome that sequencing projects initially shun. In addition, finding potentially functional copies from genomic DNA is rare. This study provides a mechanism to surmount these issues to generate a consensus sequence that can then be functionally and phylogenetically evaluated. Diaspora is a multicopy member of the Ty3-gypsy-like family of LTR retrotransposons and comprises at least 0.5% of the soybean genome. Although the Diaspora family is highly degenerate, and with the exception of this report, is not represented in the Genbank nr database, a full-length consensus sequence was generated from short overlapping sequences using a combination of experimental and in silico methods. Diaspora is 11,737 bp in length and contains a single 1892-codon ORF that encodes a gag-pol polyprotein. Phylogenetic analysis indicates that it is closely related to Athila and Calypso retroelements from Arabidopsis and soybean, respectively. These in turn form the framework of an endogenous retrovirus lineage whose members possess an envelope-like gene. Diaspora appears to lack any trace of this coding region. A combination of empirical sequencing and retrieval of unannotated Genome Survey Sequence database entries was successfully used to construct a full-length representative of the Diaspora family in Glycine max. Diaspora is presently the

  19. Radiative transfer in gray circumstellar dust envelopes: VY Canis Majoris revisited

    International Nuclear Information System (INIS)

    Schwartz, R.D.

    1975-01-01

    The circumstellar dust model for VY CMa proposed by Herbig is reinvestigated using a generalized form of Huang's theory of radiative transfer. The resultant envelope parameters and the emergent energy distribution are found to be insensitive to the choice of Eddington factor for a given envelope inner boundary temperature. Observed fluxes from 0.43 to 74 μ are incorporated into the model, and problems relating to grain emissivity for lambda>30 μ and grain survival at the indicated inner boundary temperature of 1855degreeK are discussed

  20. Neural Spike-Train Analyses of the Speech-Based Envelope Power Spectrum Model

    Science.gov (United States)

    Rallapalli, Varsha H.

    2016-01-01

    Diagnosing and treating hearing impairment is challenging because people with similar degrees of sensorineural hearing loss (SNHL) often have different speech-recognition abilities. The speech-based envelope power spectrum model (sEPSM) has demonstrated that the signal-to-noise ratio (SNRENV) from a modulation filter bank provides a robust speech-intelligibility measure across a wider range of degraded conditions than many long-standing models. In the sEPSM, noise (N) is assumed to: (a) reduce S + N envelope power by filling in dips within clean speech (S) and (b) introduce an envelope noise floor from intrinsic fluctuations in the noise itself. While the promise of SNRENV has been demonstrated for normal-hearing listeners, it has not been thoroughly extended to hearing-impaired listeners because of limited physiological knowledge of how SNHL affects speech-in-noise envelope coding relative to noise alone. Here, envelope coding to speech-in-noise stimuli was quantified from auditory-nerve model spike trains using shuffled correlograms, which were analyzed in the modulation-frequency domain to compute modulation-band estimates of neural SNRENV. Preliminary spike-train analyses show strong similarities to the sEPSM, demonstrating feasibility of neural SNRENV computations. Results suggest that individual differences can occur based on differential degrees of outer- and inner-hair-cell dysfunction in listeners currently diagnosed into the single audiological SNHL category. The predicted acoustic-SNR dependence in individual differences suggests that the SNR-dependent rate of susceptibility could be an important metric in diagnosing individual differences. Future measurements of the neural SNRENV in animal studies with various forms of SNHL will provide valuable insight for understanding individual differences in speech-in-noise intelligibility.

  1. Study of an experimental methodology for thermal properties diagnostic of building envelop

    Science.gov (United States)

    Yang, Yingying; Sempy, Alain; Vogt Wu, Tingting; Sommier, Alain; Dumoulin, Jean; Batsale, Jean Christophe

    2017-04-01

    The building envelope plays a critical role in determining levels of comfort and building efficiency. Its real thermal properties characterization is of major interest to be able to diagnose energy efficiency performance of buildings (new construction and retrofitted existing old building). Research and development on a possible methodology for energy diagnostic of the building envelop is a hot topic and necessary trend. Many kinds of sensors and instruments are used for the studies. The application of infrared (IR) thermography in non-destructive evaluation has been widely employed for qualitative evaluations for building diagnostics; meanwhile, the IR thermography technology also has a large potentiality for the evaluation of the thermal characteristics of the building envelope. Some promising recent research studies have been carried out with such contactless measurement technique. Nevertheless, research efforts are still required for in situ measurements under natural environmental conditions. In order to develop new solutions for non-intrusive evaluation of local thermal performance, enabling quantitative assessment of thermal properties of buildings and materials, experiments were carried out on a multi-layer pratical scale wall fixed on a caisson placed in a climatic chamber. Six halogen lamps (1.5 kW for each lamp) placed in front of objective wall were used to emulate sunny conditions. The radiative heat flux emitted was monitored and modulated with time according to typical weather data set encountered in France. Both steady state and transient regime heat transfer were studied during these experiments. Contact sensors (thermocouples, heat flux meters, Peltier sensors) and non-contact sensors (thermal IR camera, pyranometer) were used to measure the temperatures and heat flux density evolution. It has to be noticed that the Peltier sensors have been tuned and used with a specific processing to set them compliant for heat flux density measurements. The

  2. Genetic Interaction Maps in Escherichia coli Reveal Functional Crosstalk among Cell Envelope Biogenesis Pathways

    Science.gov (United States)

    Vlasblom, James; Gagarinova, Alla; Phanse, Sadhna; Graham, Chris; Yousif, Fouad; Ding, Huiming; Xiong, Xuejian; Nazarians-Armavil, Anaies; Alamgir, Md; Ali, Mehrab; Pogoutse, Oxana; Pe'er, Asaf; Arnold, Roland; Michaut, Magali; Parkinson, John; Golshani, Ashkan; Whitfield, Chris; Wodak, Shoshana J.; Moreno-Hagelsieb, Gabriel; Greenblatt, Jack F.; Emili, Andrew

    2011-01-01

    As the interface between a microbe and its environment, the bacterial cell envelope has broad biological and clinical significance. While numerous biosynthesis genes and pathways have been identified and studied in isolation, how these intersect functionally to ensure envelope integrity during adaptive responses to environmental challenge remains unclear. To this end, we performed high-density synthetic genetic screens to generate quantitative functional association maps encompassing virtually the entire cell envelope biosynthetic machinery of Escherichia coli under both auxotrophic (rich medium) and prototrophic (minimal medium) culture conditions. The differential patterns of genetic interactions detected among >235,000 digenic mutant combinations tested reveal unexpected condition-specific functional crosstalk and genetic backup mechanisms that ensure stress-resistant envelope assembly and maintenance. These networks also provide insights into the global systems connectivity and dynamic functional reorganization of a universal bacterial structure that is both broadly conserved among eubacteria (including pathogens) and an important target. PMID:22125496

  3. Genetic interaction maps in Escherichia coli reveal functional crosstalk among cell envelope biogenesis pathways.

    Directory of Open Access Journals (Sweden)

    Mohan Babu

    2011-11-01

    Full Text Available As the interface between a microbe and its environment, the bacterial cell envelope has broad biological and clinical significance. While numerous biosynthesis genes and pathways have been identified and studied in isolation, how these intersect functionally to ensure envelope integrity during adaptive responses to environmental challenge remains unclear. To this end, we performed high-density synthetic genetic screens to generate quantitative functional association maps encompassing virtually the entire cell envelope biosynthetic machinery of Escherichia coli under both auxotrophic (rich medium and prototrophic (minimal medium culture conditions. The differential patterns of genetic interactions detected among > 235,000 digenic mutant combinations tested reveal unexpected condition-specific functional crosstalk and genetic backup mechanisms that ensure stress-resistant envelope assembly and maintenance. These networks also provide insights into the global systems connectivity and dynamic functional reorganization of a universal bacterial structure that is both broadly conserved among eubacteria (including pathogens and an important target.

  4. Specifics of Building Envelope Air Leakage Problems and Airtightness Measurements

    Directory of Open Access Journals (Sweden)

    Borodinecs Anatolijs

    2016-01-01

    Full Text Available In addition to transmission heat loses the infiltration of outdoor air can cause significant heat losses. The external building envelope should be airtight in order to prevent uncontrolled cold air infiltration. The article analysis modern building materials and structures influence on airtightness. The practical measurements of renovated buildings’ airtightness are presented and compared to non-renovated buildings. In addition paper presents data on airtightness measurements of whole multi apartment building and single apartment in analyzed building taking inco accout properties of building materials. The airtightness of single apartment was evaluated with support pressure in neighbor apartments. The results show that the airtightness measurements of multi apartment building can be evaluated by measuring single apartment on last floor with support pressure in neighbor apartments. The practical measurement of renovated buildings had shown the air leakage rate q50 of typical Latvian construction after renovation is between 2.5 and 2.9 m3/(m2·h. Since the building envelope has to minimize the heat loses (transmission and infiltration and ventilation system either mechanical or natural has to provide necessary air exchange, the building envelope airtightness shouldn’t be dependent on type of ventilation systems.

  5. White dwarf evolution - Cradle-to-grave constraints via pulsation

    International Nuclear Information System (INIS)

    Kawaler, S.D.

    1990-01-01

    White dwarf evolution, particularly in the early phases, is not very strongly constrained by observation. Fortunately, white dwarfs undergo nonradial pulsation in three distinct regions of the H-R diagram. These pulsations provide accurate masses, surface compositional structure and rotation velocities, and help constrain other important physical properties. We demonstrate the application of the tools of stellar seismology to white dwarf evolution using the hot white dwarf star PG 1159-035 and the cool DAV (or ZZ Ceti) stars as examples. From pulsation studies, significant challenges to the theory of white dwarf evolution emerge. 44 refs

  6. Study of an experimental methodology for thermal properties diagnostic of building envelop

    OpenAIRE

    Yang , Yingying; Sempey , Alain; Vogt Wu , Tingting; Sommier , Alain; Dumoulin , Jean; Batsale , Jean ,

    2017-01-01

    International audience; The building envelope plays a critical role in determining levels of comfort and building efficiency. Its real thermal properties characterization is of major interest to be able to diagnose energy efficiency performance of buildings (new construction and retrofitted existing old building). Research and development on a possible methodology for energy diagnostic of the building envelop is a hot topic and necessary trend. Many kinds of sensors and instruments are used f...

  7. Si-BEARING MOLECULES TOWARD IRC+10216: ALMA UNVEILS THE MOLECULAR ENVELOPE OF CWLeo

    International Nuclear Information System (INIS)

    Prieto, L. Velilla; Cernicharo, J.; Quintana-Lacaci, G.; Agúndez, M.; Castro-Carrizo, A.; Guélin, M.; Fonfría, J. P.; Marcelino, N.; Zúñiga, J.; Requena, A.; Bastida, A.; Lique, F.

    2015-01-01

    We report the detection of SiS rotational lines in high-vibrational states as well as SiO and SiC 2 lines in their ground vibrational state toward IRC+10216 during the Atacama Large Millimeter Array Cycle 0. The spatial distribution of these molecules shows compact emission for SiS and a more extended emission for SiO and SiC 2 and also proves the existence of an increase in the SiC 2 emission at the outer shells of the circumstellar envelope (CSE). We analyze the excitation conditions of the vibrationally excited SiS using the population diagram technique, and we use a large velocity gradient model to compare with the observations. We found moderate discrepancies between the observations and the models that could be explained if SiS lines detected are optically thick. Additionally, the line profiles of the detected rotational lines in the high-energy vibrational states show a decreasing linewidth with increasing energy levels. This may be evidence that these lines could be excited only in the inner shells, i.e., the densest and hottest, of the CSE of IRC+10216

  8. Chemistry of Protostellar Envelopes and Disks

    Science.gov (United States)

    Flores Rivera, Lizxandra; Terebey, Susan; Willacy, Karen

    2018-06-01

    Molecule formation is dynamic during the protostar collapse phase, driven by changes in temperature, density, and UV radiation as gas and dust flows from the envelope onto the forming protoplanetary disk. In this work, we compare physical models based on two different collapse solutions. We modeled the chemistry (created by Karen Willacy) for C18O to see how its abundance changes over time using as primary input parameters the temperature and density profile that were produced by the dust Radiative Transfer (MCRT) model called HOCHUNK3D from Whitney (2003). Given this model, we produce synthetic line emission maps from L1527 IRS to simulate the Class 0/I protostar L1527 IRS using RADMC3D code and compare them with previous observations from ALMA. High concentrations of gas phase molecules of C18O are found within the 20 AU in areas in the envelope that are close to the surface of the disk. In the outermost part of the disk surface, the C18O freezes out beyond 400 AU, showing a much reduced abundance where the temperature profile drops down below 25 K. In cold regions, the radiation field plays an important role in the chemistry.

  9. Grain formation in cool stellar envelopes

    International Nuclear Information System (INIS)

    Deguchi, S.

    1980-01-01

    The nucleation and growth of dust grains in the stellar envelope are investigated for the case of oxygen-rich stars, where the mass loss occurs as a result of the radiation pressure on the dust grains. The number density of grains, the final grain sizes, and the final amount of metals remaining in gaseous states are calculated based on the grain-nucleation theory proposed by Yamamoto and Hasegawa and Draine and Salpeter. It is shown that, even if we base our calculations on the Lothe-Pound nucleation rate equation instead of the classical, homogeneous nucleation rate equation, the proposed theory gives a number density of grains quite similar to that based on the classical rate equation. The approximate solution of the flow, in this paper, brings physical insight to the problem of how the formation of grains couples the flow passing the sonic point. The metals in the outer envelope remain in gaseous state by the amount of 1--10% of the initial content for the mass-loss rate of 10 -5 M/sub sun/ yr -1 and by less than 1% for the massloss are less than 3 x 10 -6 M/sub sun/ yr -1 . Species of metals condensed onto the grains are also discussed

  10. A generalized formulation for noise-based seismic velocity change measurements

    Science.gov (United States)

    Gómez-García, C.; Brenguier, F.; Boué, P.; Shapiro, N.; Droznin, D.; Droznina, S.; Senyukov, S.; Gordeev, E.

    2017-12-01

    The observation of continuous seismic velocity changes is a powerful tool for detecting seasonal variations in crustal structure, volcanic unrest, co- and post-seismic evolution of stress in fault areas or the effects of fluid injection. The standard approach for measuring such velocity changes relies on comparison of travel times in the coda of a set of seismic signals, usually noise-based cross-correlations retrieved at different dates, and a reference trace, usually a averaged function over dates. A good stability in both space and time of the noise sources is then the main assumption for reliable measurements. Unfortunately, these conditions are often not fulfilled, as it happens when ambient-noise sources are non-stationary, such as the emissions of low-frequency volcanic tremors.We propose a generalized formulation for retrieving continuous time series of noise-based seismic velocity changes without any arbitrary reference cross-correlation function. We set up a general framework for future applications of this technique performing synthetic tests. In particular, we study the reliability of the retrieved velocity changes in case of seasonal-type trends, transient effects (similar to those produced as a result of an earthquake or a volcanic eruption) and sudden velocity drops and recoveries as the effects of transient local source emissions. Finally, we apply this approach to a real dataset of noise cross-correlations. We choose the Klyuchevskoy volcanic group (Kamchatka) as a case study where the recorded wavefield is hampered by loss of data and dominated by strongly localized volcanic tremor sources. Despite the mentioned wavefield contaminations, we retrieve clear seismic velocity drops associated with the eruptions of the Klyuchevskoy an the Tolbachik volcanoes in 2010 and 2012, respectively.

  11. The latest geodynamics in Asia: Synthesis of data on volcanic evolution, lithosphere motion, and mantle velocities in the Baikal-Mongolian region

    Directory of Open Access Journals (Sweden)

    Sergei Rasskazov

    2017-07-01

    Full Text Available From a synthesis of data on volcanic evolution, movement of the lithosphere, and mantle velocities in the Baikal-Mongolian region, we propose a comprehensive model for deep dynamics of Asia that assumes an important role of the Gobi, Baikal, and North Transbaikal transition-layer melting anomalies. This layer was distorted by lower-mantle fluxes at the beginning of the latest geodynamic stage (i.e. in the early late Cretaceous due to avalanches of slab material that were stagnated beneath the closed fragments of the Solonker, Ural-Mongolian paleoceans and Mongol-Okhotsk Gulf of Paleo-Pacific. At the latest geodynamic stage, Asia was involved in east–southeast movement, and the Pacific plate moved in the opposite direction with subduction under Asia. The weakened upper mantle region of the Gobi melting anomaly provided a counterflow connected with rollback in the Japan Sea area. These dynamics resulted in the formation of the Honshu-Korea flexure of the Pacific slab. A similar weakened upper mantle region of the North Transbaikal melting anomaly was associated with the formation of the Hokkaido-Amur flexure of the Pacific slab, formed due to progressive pull-down of the slab material into the transition layer in the direction of the Pacific plate and Asia convergence. The early–middle Miocene structural reorganization of the mantle processes in Asia resulted in the development of upper mantle low-velocity domains associated with the development of rifts and orogens. We propose that extension at the Baikal Rift was caused by deviator flowing mantle material, initiated under the moving lithosphere in the Baikal melting anomaly. Contraction at the Hangay orogen was created by facilitation of the tectonic stress transfer from the Indo-Asian interaction zone due to the low-viscosity mantle in the Gobi melting anomaly.

  12. Evaluation of SuperLig 639 Ion Exchange Resin for the Removal of Rhenium from Hanford Envelope A Simulant

    International Nuclear Information System (INIS)

    King, W.D.

    2000-01-01

    Hanford Radioactive Waste materials have been categorized into four envelopes labeled A through D as specified in the Tank Waste Remediation Contract between BNFL and DOE. 1 Envelopes A, B and C contain only solubilized species and are specified as Low-Activity Waste (LAW). Each envelope is defined based on compositional maximums of chemical and radioactive constituents. Envelopes A and B contain low concentrations of organic species and the primary form of technetium is pertechnetate (TcO4-). Envelope C contains higher levels of organic species and technetium which is primarily in the nonpertechnetate form (presumably complexed TcO2). Envelope D is sludge which has been separated from the supernate and is referred to as High Activity Waste. The current plant design utilizes SuperLig ion exchange resins to remove cesium and technetium (the primary radioactive constituents) from the Hanford LAW. The process is designed to produce a decontaminated waste stream and a concentrated eluate waste stream for vitrification into low and high activity glasses, respectively

  13. Role of the nuclear envelope in the pathogenesis of age-related bone loss and osteoporosis

    Science.gov (United States)

    Vidal, Christopher; Bermeo, Sandra; Fatkin, Diane; Duque, Gustavo

    2012-01-01

    The nuclear envelope is the most important border in the eukaryotic cell. The role of the nuclear envelope in cell differentiation and function is determined by a constant interaction between the elements of the nuclear envelope and the transcriptional regulators involved in signal transcription pathways. Among those components of the nuclear envelope, there is a growing evidence that changes in the expression of A-type lamins, which are essential components of the nuclear lamina, are associated with age-related changes in bone affecting the capacity of differentiation of mesenchymal stem cells into osteoblasts, favoring adipogenesis and affecting the function and survival of the osteocytes. Overall, as A-type lamins are considered as the 'guardians of the soma', these proteins are also essential for the integrity and quality of the bone and pivotal for the longevity of the musculoskeletal system. PMID:23951459

  14. Characterization of the fusion core in zebrafish endogenous retroviral envelope protein

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jian [State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072 (China); State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071 (China); Zhang, Huaidong [CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071 (China); Gong, Rui, E-mail: gongr@wh.iov.cn [CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071 (China); Xiao, Gengfu, E-mail: xiaogf@wh.iov.cn [State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072 (China); State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071 (China)

    2015-05-08

    Zebrafish endogenous retrovirus (ZFERV) is the unique endogenous retrovirus in zebrafish, as yet, containing intact open reading frames of its envelope protein gene in zebrafish genome. Similarly, several envelope proteins of endogenous retroviruses in human and other mammalian animal genomes (such as syncytin-1 and 2 in human, syncytin-A and B in mouse) were identified and shown to be functional in induction of cell–cell fusion involved in placental development. ZFERV envelope protein (Env) gene appears to be also functional in vivo because it is expressible. After sequence alignment, we found ZFERV Env shares similar structural profiles with syncytin and other type I viral envelopes, especially in the regions of N- and C-terminal heptad repeats (NHR and CHR) which were crucial for membrane fusion. We expressed the regions of N + C protein in the ZFERV Env (residues 459–567, including predicted NHR and CHR) to characterize the fusion core structure. We found N + C protein could form a stable coiled-coil trimer that consists of three helical NHR regions forming a central trimeric core, and three helical CHR regions packing into the grooves on the surface of the central core. The structural characterization of the fusion core revealed the possible mechanism of fusion mediated by ZFERV Env. These results gave comprehensive explanation of how the ancient virus infects the zebrafish and integrates into the genome million years ago, and showed a rational clue for discovery of physiological significance (e.g., medicate cell–cell fusion). - Highlights: • ZFERV Env shares similar structural profiles with syncytin and other type I viral envelopes. • The fusion core of ZFERV Env forms stable coiled-coil trimer including three NHRs and three CHRs. • The structural mechanism of viral entry mediated by ZFERV Env is disclosed. • The results are helpful for further discovery of physiological function of ZFERV Env in zebrafish.

  15. Modeling the evolution of channel shape: Balancing computational efficiency with hydraulic fidelity

    Science.gov (United States)

    Wobus, C.W.; Kean, J.W.; Tucker, G.E.; Anderson, R. Scott

    2008-01-01

    The cross-sectional shape of a natural river channel controls the capacity of the system to carry water off a landscape, to convey sediment derived from hillslopes, and to erode its bed and banks. Numerical models that describe the response of a landscape to changes in climate or tectonics therefore require formulations that can accommodate evolution of channel cross-sectional geometry. However, fully two-dimensional (2-D) flow models are too computationally expensive to implement in large-scale landscape evolution models, while available simple empirical relationships between width and discharge do not adequately capture the dynamics of channel adjustment. We have developed a simplified 2-D numerical model of channel evolution in a cohesive, detachment-limited substrate subject to steady, unidirectional flow. Erosion is assumed to be proportional to boundary shear stress, which is calculated using an approximation of the flow field in which log-velocity profiles are assumed to apply along vectors that are perpendicular to the local channel bed. Model predictions of the velocity structure, peak boundary shear stress, and equilibrium channel shape compare well with predictions of a more sophisticated but more computationally demanding ray-isovel model. For example, the mean velocities computed by the two models are consistent to within ???3%, and the predicted peak shear stress is consistent to within ???7%. Furthermore, the shear stress distributions predicted by our model compare favorably with available laboratory measurements for prescribed channel shapes. A modification to our simplified code in which the flow includes a high-velocity core allows the model to be extended to estimate shear stress distributions in channels with large width-to-depth ratios. Our model is efficient enough to incorporate into large-scale landscape evolution codes and can be used to examine how channels adjust both cross-sectional shape and slope in response to tectonic and climatic

  16. Equivariant calculus in the differential envelope

    Energy Technology Data Exchange (ETDEWEB)

    Kastler, D. (Centre National de la Recherche Scientifique, 13 - Marseille (France). Centre de Physique Theorique)

    1991-01-01

    The author shows how Z/2-graded cyclic cohomology is related to the equivariant calculus of S. Klimek, W. Kondracki, and A. Lesniewski (HUTMP 90/B247 (1990)). He uses the differential envelope of a complex unital differential algebra. After a presentation of fiber-preserved operators on equivariant functions valued in this algebra on a group he considers certain operators on this algebra. Finally he discusses explicitly the case G=Z/2. (HSI).

  17. Equivariant calculus in the differential envelope

    International Nuclear Information System (INIS)

    Kastler, D.

    1991-01-01

    The author shows how Z/2-graded cyclic cohomology is related to the equivariant calculus of S. Klimek, W. Kondracki, and A. Lesniewski (HUTMP 90/B247 (1990)). He uses the differential envelope of a complex unital differential algebra. After a presentation of fiber-preserved operators on equivariant functions valued in this algebra on a group he considers certain operators on this algebra. Finally he discusses explicitly the case G=Z/2. (HSI)

  18. Replacement of the murine leukemia virus (MLV) envelope gene with a truncated HIV envelope gene in MLV generates a virus with impaired replication capacity

    International Nuclear Information System (INIS)

    Nack, Ursula; Schnierle, Barbara S.

    2003-01-01

    Murine leukemia virus (MLV) capsid particles can be efficiently pseudotyped with a variant of the HIV-1 envelope protein (Env) containing the surface glycoprotein gp120-SU and a carboxyl-terminally truncated transmembrane (TM) protein, with only seven cytoplasmic amino acids. MLV/HIV pseudotyped vector particles acquire the natural host tropism of HIV-1 and their entry is dependent on the presence of CD4 and an appropriate co-receptor on the surface of the target cell. We describe here the construction of chimeric MLV/HIV proviruses containing the truncated HIV envelope gene. The MLV/HIV provirus was generated by direct replacement of the MLV envelope gene with HIV Env coding sequences either with or without the additional inclusion of the woodchuck hepatitis virus posttranscriptional regulatory element (WPRE). Chimeric MLV/HIV particles could be generated from transfected 293T cells and were able to infect CD4/CXCR4-positive target cells. However, the second round of infection of target cells was severely impaired, despite the fact that the WPRE element enhanced the amount of viral mRNA detected. Viral particles released from infected cells showed reduced HIV Env incorporation, indicating that additional factors required for efficient replication of MLV/HIV pseudotyped viruses are missing

  19. Biliary Secretion of Quasi-Enveloped Human Hepatitis A Virus.

    Science.gov (United States)

    Hirai-Yuki, Asuka; Hensley, Lucinda; Whitmire, Jason K; Lemon, Stanley M

    2016-12-06

    Hepatitis A virus (HAV) is an unusual picornavirus that is released from cells cloaked in host-derived membranes. These quasi-enveloped virions (eHAV) are the only particle type circulating in blood during infection, whereas only nonenveloped virions are shed in feces. The reason for this is uncertain. Hepatocytes, the only cell type known to support HAV replication in vivo, are highly polarized epithelial cells with basolateral membranes facing onto hepatic (blood) sinusoids and apical membranes abutting biliary canaliculi from which bile is secreted to the gut. To assess whether eHAV and nonenveloped virus egress from cells via vectorially distinct pathways, we studied infected polarized cultures of Caco-2 and HepG2-N6 cells. Most (>99%) progeny virions were released apically from Caco-2 cells, whereas basolateral (64%) versus apical (36%) release was more balanced with HepG2-N6 cells. Both apically and basolaterally released virions were predominantly enveloped, with no suggestion of differential vectorial release of eHAV versus naked virions. Basolateral to apical transcytosis of either particle type was minimal (work reveals that it has an unusual life cycle. Virus is found in cell culture supernatant fluids in two mature, infectious forms: one wrapped in membranes (quasi-enveloped) and another that is nonenveloped. Membrane-wrapped virions circulate in blood during acute infection and are resistant to neutralizing antibodies, likely facilitating HAV dissemination within the liver. On the other hand, virus shed in feces is nonenveloped and highly stable, facilitating epidemic spread and transmission to naive hosts. Factors controlling the biogenesis of these two distinct forms of the virus in infected humans are not understood. Here we characterize vectorial release of quasi-enveloped virions from polarized epithelial cell cultures and provide evidence that bile acids strip membranes from eHAV following its secretion into the biliary tract. These results

  20. TEMPERATURE FIELDS IN THE ZONE OF CONNECTION BETWEEN WINDOW AND BUILDING ENVELOPE

    OpenAIRE

    V. V. Ivanov; A. N. Butenko; L. V. Karaseva

    2011-01-01

    Problem statement. To determine additional heat losses through window opening slopes, it is ne-cessary to calculate temperature fields of a wall in the zone of connection between window and building envelope. Two types of building envelopes are considered: solid brick wall and two-layer-wall of bricks and fiber foam concrete block interlayered with air.Results. The results obtained show the influence of a window on the temperature field of wall opening. Different types of wall structures are ...

  1. Non linear evolution of plasma waves excited to mode conversion at the vicinity of plasma resonance. Application to experiments of ionosphere modification

    International Nuclear Information System (INIS)

    Cros, Brigitte

    1989-01-01

    This research thesis reports the study of the non linear evolution of plasma waves excited by mode conversion in a non homogeneous, non collisional, and free-of-external-magnetic-field plasma. Experiments performed in the microwave domain in a plasma created by means of a multi-polar device show that the evolution of plasma waves displays a transition between a non linear quasi-steady regime and a stochastic regime when the power of incident electromagnetic waves or plasma gradient length is increased. These regimes are characterized through a numerical resolution of Zakharov equations which describe the coupled evolution of plasma wave envelope and low frequency density perturbations [fr

  2. Reuse and Upcycling of Municipal Waste for ZEB Envelope Design in European Urban Areas

    Directory of Open Access Journals (Sweden)

    Elisa Pennacchia

    2016-06-01

    Full Text Available Building energy efficiency and urban waste management are two focal issues for improving environmental status and reducing greenhouse gas emissions. The main aim of this paper is to compare economic costs of new building envelope structures designed by authors reusing and upcycling municipal waste in order to decrease energy demand from the building sector and, at the same time, improve eco-friendly waste management at the local scale. The reuse of waste for building envelope structures is one of the main principles of the Earthship buildings model, based on the use of passive solar principles in autonomous earth-sheltered homes. This Earthship principle has been analyzed in order to optimize buildings’ energy performance and reuse municipal waste for new building envelope structures in urban areas. Indeed, the elaborated structures have been designed for urban contexts, with the aim of reuse waste coming from surrounding landfills. The methods include an analysis of thermal performance of urban waste for designing new building envelope structures realized by assembling waste and isolating materials not foreseen in Earthship buildings. The reused materials are: cardboard tubes, automobile tires, wood pallets, and plastic and glass bottles. Finally, comparing economic costs of these new building envelope structures, the obtained results highlight their economic feasibility compared to a traditional structure with similar thermal transmittance.

  3. Relation between temporal envelope coding, pitch discrimination, and compression estimates in listeners with sensorineural hearing loss

    DEFF Research Database (Denmark)

    Bianchi, Federica; Santurette, Sébastien; Fereczkowski, Michal

    2015-01-01

    Recent physiological studies in animals showed that noise-induced sensorineural hearing loss (SNHL) increased the amplitude of envelope coding in single auditory-nerve fibers. The present study investigated whether SNHL in human listeners was associated with enhanced temporal envelope coding...... resolvability. For the unresolved conditions, all five HI listeners performed as good as or better than NH listeners with matching musical experience. Two HI listeners showed lower amplitude-modulation detection thresholds than NH listeners for low modulation rates, and one of these listeners also showed a loss......, whether this enhancement affected pitch discrimination performance, and whether loss of compression following SNHL was a potential factor in envelope coding enhancement. Envelope processing was assessed in normal-hearing (NH) and hearing-impaired (HI) listeners in a behavioral amplitude...

  4. Advanced Envelope Research for Factory Built Housing, Phase 3. Design Development and Prototyping

    Energy Technology Data Exchange (ETDEWEB)

    Levy, E. [ARIES Collaborative, New York, NY (United States); Kessler, B. [ARIES Collaborative, New York, NY (United States); Mullens, M. [ARIES Collaborative, New York, NY (United States); Rath, P. [ARIES Collaborative, New York, NY (United States)

    2014-01-01

    The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective alternative envelope designs. In the near term, these technologies will play a central role in meeting stringent energy code requirements. For manufactured homes, the thermal requirements, last updated by statute in 1994, will move up to the more rigorous IECC 2012 levels in 2013, the requirements of which are consistent with site built and modular housing. This places added urgency on identifying envelope technologies that the industry can implement in the short timeframe. The primary goal of this research is to develop wall designs that meet the thermal requirements based on 2012 IECC standards. Given the affordable nature of manufactured homes, impact on first cost is a major consideration in developing the new envelope technologies. This work is part of a four-phase, multi-year effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three selected methods for building high performance wall systems. Phase 2 focused on the development of viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped critique and select the most viable solution to move further in the research -- stud walls with continuous exterior insulation. Phase 3, the subject of the current report, focused on the design development of the selected wall concept and explored variations on the use of exterior foam insulation. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing.

  5. Advanced Envelope Research for Factory Built Housing, Phase 3 -- Design Development and Prototyping

    Energy Technology Data Exchange (ETDEWEB)

    Levy, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kessler, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mullens, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Rath, P. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-01-01

    The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective alternative envelope designs. In the near term, these technologies will play a central role in meeting stringent energy code requirements. For manufactured homes, the thermal requirements, last updated by statute in 1994, will move up to the more rigorous IECC 2012 levels in 2013, the requirements of which are consistent with site built and modular housing. This places added urgency on identifying envelope technologies that the industry can implement in the short timeframe. The primary goal of this research is to develop wall designs that meet the thermal requirements based on 2012 IECC standards. Given the affordable nature of manufactured homes, impact on first cost is a major consideration in developing the new envelope technologies. This work is part of a four-phase, multi-year effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three selected methods for building high performance wall systems. Phase 2 focused on the development of viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped critique and select the most viable solution to move further in the research -- stud walls with continuous exterior insulation. Phase 3, the subject of the current report, focused on the design development of the selected wall concept and explored variations on the use of exterior foam insulation. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing.

  6. Joint Processing of Envelope Alignment and Phase Compensation for Isar Imaging

    Science.gov (United States)

    Chen, Tao; Jin, Guanghu; Dong, Zhen

    2018-04-01

    Range envelope alignment and phase compensation are spilt into two isolated parts in the classical methods of translational motion compensation in Inverse Synthetic Aperture Radar (ISAR) imaging. In classic method of the rotating object imaging, the two reference points of the envelope alignment and the Phase Difference (PD) estimation are probably not the same point, making it difficult to uncouple the coupling term by conducting the correction of Migration Through Resolution Cell (MTRC). In this paper, an improved approach of joint processing which chooses certain scattering point as the sole reference point is proposed to perform with utilizing the Prominent Point Processing (PPP) method. With this end in view, we firstly get the initial image using classical methods from which a certain scattering point can be chose. The envelope alignment and phase compensation using the selected scattering point as the same reference point are subsequently conducted. The keystone transform is thus smoothly applied to further improve imaging quality. Both simulation experiments and real data processing are provided to demonstrate the performance of the proposed method compared with classical method.

  7. Innovative Danish Building Envelope Components for Passive Houses

    DEFF Research Database (Denmark)

    Tommerup, Henrik M.; Svendsen, Svend

    2006-01-01

    and in some cases very innovative envelope constructions. In this paper, two of the most interesting components are described; a prefabricated light-weight exterior wall element with a load-bearing plywood and steel frame and a foundation / slab on ground solution based on concrete and EPS insulation...

  8. that Bind Specifically to Recombinant Envelope Protein of Dengue

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research June 2015; 14 (6): 997-1003 ... Revised accepted: 30 April 2015. Abstract ... Results: The 45 KDa, 43 KDa and 30 KDa plasma membrane proteins were identified as viral envelope targets.

  9. On the persistence of unstable bump-on-tail electron velocity distributions in the earth's foreshock

    International Nuclear Information System (INIS)

    Klimas, A.J.; Fitzenreiter, R.J.

    1988-01-01

    Further evidence for the persistence of bump-on-tail unstable reduced velocity distribution in the Earth's electron foreshock is presented. This persistence contradicts our understanding of quasi-linear saturation of the bump-on-tail instability; the distributions should be stabilized through velocity space diffusion too quickly to allow an observation of their unstable form. A modified theory for the saturation of the bump-on-tail instability in the Earth's foreshock is proposed and examined using numerical simulation and quasi-linear theoretical techniques. It is argued the mechanism due to Filbert and Kellogg and to Cairns which is responsible for the creation of the bump-on-tail velocity distribution in the foreshock is still operative during the evolution of the bump-on-tail instability. The saturated state of the plasma must represent a balance between this creation mechanism and velocity space diffusion; the saturated state is not determined by velocity space diffusion alone. Thus the velocity distribution of the saturated stat may still appear bump-on-tail unstable to standard linear analysis which does not take the creation mechanism into account. The bump-on-tail velocity distributions in the foreshock would then represent the state of the plasma after saturation of the bump-on-tail instability, not before

  10. Velocity-space diffusion due to resonant wave-wave scattering of electromagnetic and electrostatic waves in a plasma

    International Nuclear Information System (INIS)

    Sugaya, Reija

    1991-01-01

    The velocity-space diffusion equation describing distortion of the velocity distribution function due to resonant wave-wave scattering of electromagnetic and electrostatic waves in an unmagnetized plasma is derived from the Vlasov-Maxwell equations by perturbation theory. The conservation laws for total energy and momentum densities of waves and particles are verified, and the time evolutions of the energy and momentum densities of particles are given in terms of the nonlinear wave-wave coupling coefficient in the kinetic wave equation. (author)

  11. Characterization of Simulant LAW Envelope A, B, and C with Glass Formers

    International Nuclear Information System (INIS)

    Hansen, E.K.

    2000-01-01

    The River Protection Project-Waste Treatment Plant (RPP-WPT) pretreatment and immobilization processes being developed by the DOE Office of River Protection will decontaminate High Level Waste (HLW) Envelopes A and B supernates using crossflow filtration followed by cesium and technetium ion exchange. Envelope C will undergo Sr/TRU precipitation prior to filtration to remove chelated actinides. The decontaminated supernates, now called low activity waste (LAW), will be concentrated through the LAW Melter Feed Evaporator. The concentrated LAW Melter Feed will be mixed with glass forming minerals and chemicals in an in the LAW Melter Feed Preparation Tank. The resulting slurry is then transferred to a Melter Feed Tank from which it is fed to one of the joule-heated, refractory-lined melters. Characterization of the melter feed slurry is required to complete the design of the RPP-WPT slurry feed systems. This report discusses the results obtained from the task, ''Bench Scale Mixing - Characterization of Simulant LAW Envelope A (AN105), B (AZ101), and C (AN107) With Glass Formers''. This task characterized the physical and chemical properties (rheology, particle size, weight percent soluble and insoluble solids, and chemical composition) of simulated LAW Melter feeds made from the different envelopes mentioned above. The goal of this task was to provide data for the design of the RPP-WPT Melter feed system

  12. Influence of the bud neck on nuclear envelope fission in Saccharomyces cerevisiae.

    Science.gov (United States)

    Melloy, Patricia G; Rose, Mark D

    2017-09-15

    Studies have shown that nuclear envelope fission (karyokinesis) in budding yeast depends on cytokinesis, but not distinguished whether this was a direct requirement, indirect, because of cell cycle arrest, or due to bud neck-localized proteins impacting both processes. To determine the requirements for karyokinesis, we examined mutants conditionally defective for bud emergence and/or nuclear migration. The common mutant phenotype was completion of the nuclear division cycle within the mother cell, but karyokinesis did not occur. In the cdc24 swe1 mutant, at the non-permissive temperature, multiple nuclei accumulated within the unbudded cell, with connected nuclear envelopes. Upon return to the permissive temperature, the cdc24 swe1 mutant initiated bud emergence, but only the nucleus spanning the neck underwent fission suggesting that the bud neck region is important for fission initiation. The neck may be critical for either mechanical reasons, as the contractile ring might facilitate fission, or for regulatory reasons, as the site of a protein network regulating nuclear envelope fission, mitotic exit, and cytokinesis. We also found that 77-85% of pairs of septin mutant nuclei completed nuclear envelope fission. In addition, 27% of myo1Δ mutant nuclei completed karyokinesis. These data suggested that fission is not dependent on mechanical contraction at the bud neck, but was instead controlled by regulatory proteins there. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Anomalous effect of ion velocity on track formation in GeS

    Energy Technology Data Exchange (ETDEWEB)

    Szenes, G., E-mail: szenesgyorgy@caesar.elte.hu [Department of Materials Physics, Eötvös University, P.O. Box 32, H-1518 Budapest (Hungary); Pécz, B. [Institute for Technical Physics and Materials Science, Hungarian Academy of Sciences, 1525 Budapest, P.O. Box 49 (Hungary)

    2016-12-15

    Systematic experiments were performed for studying the effect of the projectile velocity (velocity effect, VE) in GeS which has a highly anisotropic conductivity. The prethinned specimens were irradiated by Bi, Au, W, Xe, Ag, Kr, Ni and Fe ions of about E ≈ 1 MeV/nucleon energy. Track radii were measured by transmission electron microscopy. Compared to previous experiments performed with high velocity projectile, there is a marked VE for S{sub e} > 20 keV/nm (S{sub e} – electronic stopping power). However, the VE is gradually reduced and finally disappears as S{sub e} decreases. This effect is described for the first time. The predictions according to the Analytical Thermal Spike Model are in excellent quantitative agreement with the experiments in the range S{sub e} > 20 keV/nm. The anomalous behavior of track evolution at lower values of S{sub e} is attributed to the combination of semiconducting and insulating properties. An explanation of the VE is given based on the Coulomb explosion model.

  14. Constraining the source location of the 30 May 2015 (Mw 7.9) Bonin deep-focus earthquake using seismogram envelopes of high-frequency P waveforms: Occurrence of deep-focus earthquake at the bottom of a subducting slab

    Science.gov (United States)

    Takemura, Shunsuke; Maeda, Takuto; Furumura, Takashi; Obara, Kazushige

    2016-05-01

    In this study, the source location of the 30 May 2015 (Mw 7.9) deep-focus Bonin earthquake was constrained using P wave seismograms recorded across Japan. We focus on propagation characteristics of high-frequency P wave. Deep-focus intraslab earthquakes typically show spindle-shaped seismogram envelopes with peak delays of several seconds and subsequent long-duration coda waves; however, both the main shock and aftershock of the 2015 Bonin event exhibited pulse-like P wave propagations with high apparent velocities (~12.2 km/s). Such P wave propagation features were reproduced by finite-difference method simulations of seismic wave propagation in the case of slab-bottom source. The pulse-like P wave seismogram envelopes observed from the 2015 Bonin earthquake show that its source was located at the bottom of the Pacific slab at a depth of ~680 km, rather than within its middle or upper regions.

  15. 3+1 dimensional envelop waves and its stability in magnetized dusty plasma

    International Nuclear Information System (INIS)

    Duan Wenshan

    2006-01-01

    It is well known that there are envelope solitary waves in unmagnetized dusty plasmas which are described by a nonlinear Schrodinger equation (NLSE). A three dimension nonlinear Schrodinger equation for small but finite amplitude dust acoustic waves is first obtained for magnetized dusty plasma in this paper. It suggest that in magnetized dusty plasmas the envelope solitary waves exist. The modulational instability for three dimensional NLSE is studied as well. The regions of stability and instability are well determined in this paper

  16. Auditory velocity discrimination in the horizontal plane at very high velocities.

    Science.gov (United States)

    Frissen, Ilja; Féron, François-Xavier; Guastavino, Catherine

    2014-10-01

    We determined velocity discrimination thresholds and Weber fractions for sounds revolving around the listener at very high velocities. Sounds used were a broadband white noise and two harmonic sounds with fundamental frequencies of 330 Hz and 1760 Hz. Experiment 1 used velocities ranging between 288°/s and 720°/s in an acoustically treated room and Experiment 2 used velocities between 288°/s and 576°/s in a highly reverberant hall. A third experiment addressed potential confounds in the first two experiments. The results show that people can reliably discriminate velocity at very high velocities and that both thresholds and Weber fractions decrease as velocity increases. These results violate Weber's law but are consistent with the empirical trend observed in the literature. While thresholds for the noise and 330 Hz harmonic stimulus were similar, those for the 1760 Hz harmonic stimulus were substantially higher. There were no reliable differences in velocity discrimination between the two acoustical environments, suggesting that auditory motion perception at high velocities is robust against the effects of reverberation. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Origin of envelope proteins of a leukemia virus

    International Nuclear Information System (INIS)

    Schneider, R.P.

    1975-01-01

    The roles of avian myeloblastosis virus (AMV) and host myeloblast cells in controlling the protein composition of virus envelope and host cell membrane are being studied by examining an ATPase enzyme in the virus and cells. New culture techniques for virus producing myeloblasts have been developed. (U.S.)

  18. Purification and characterization of cell-envelope proteinase from ...

    African Journals Online (AJOL)

    user

    2012-10-18

    Oct 18, 2012 ... phenylmethylsulfonyl fluoride;. ACE, angiotensin-I-converting enzyme. Poolman, 1998). Cell-envelope proteinase (CEP) play an important role in the lactobacillus proteolytic system. CEPs are the critical enzyme in the system (Kunji et al., 1996), since it is the only enzyme that can initiate the breakdown of.

  19. Expansion of the HMX-1 Flight Envelope With the EDU-5/P Laser Eye Protection Spectacles

    National Research Council Canada - National Science Library

    Penhallegon, William

    2004-01-01

    The purpose of this testing was to determine if the day operations envelope should be expanded to include takeoffs and landings, whether the night operations envelope should he expanded in the VH-6ON...

  20. On Fock Space Representations of quantized Enveloping Algebras related to Non-Commutative Differential Geometry

    CERN Document Server

    Jurco, B; Jurco, B; Schlieker, M

    1995-01-01

    In this paper we construct explicitly natural (from the geometrical point of view) Fock space representations (contragradient Verma modules) of the quantized enveloping algebras. In order to do so, we start from the Gauss decomposition of the quantum group and introduce the differential operators on the corresponding q-deformed flag manifold (asuumed as a left comodule for the quantum group) by a projection to it of the right action of the quantized enveloping algebra on the quantum group. Finally, we express the representatives of the elements of the quantized enveloping algebra corresponding to the left-invariant vector fields on the quantum group as first-order differential operators on the q-deformed flag manifold.

  1. Nuclear envelope breakdown induced by herpes simplex virus type 1 involves the activity of viral fusion proteins.

    Science.gov (United States)

    Maric, Martina; Haugo, Alison C; Dauer, William; Johnson, David; Roller, Richard J

    2014-07-01

    Herpesvirus infection reorganizes components of the nuclear lamina usually without loss of integrity of the nuclear membranes. We report that wild-type HSV infection can cause dissolution of the nuclear envelope in transformed mouse embryonic fibroblasts that do not express torsinA. Nuclear envelope breakdown is accompanied by an eight-fold inhibition of virus replication. Breakdown of the membrane is much more limited during infection with viruses that lack the gB and gH genes, suggesting that breakdown involves factors that promote fusion at the nuclear membrane. Nuclear envelope breakdown is also inhibited during infection with virus that does not express UL34, but is enhanced when the US3 gene is deleted, suggesting that envelope breakdown may be enhanced by nuclear lamina disruption. Nuclear envelope breakdown cannot compensate for deletion of the UL34 gene suggesting that mixing of nuclear and cytoplasmic contents is insufficient to bypass loss of the normal nuclear egress pathway. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. From the Outside-In: the Francisella tularensis Envelope and Virulence

    Directory of Open Access Journals (Sweden)

    Hannah M. Rowe

    2015-12-01

    Full Text Available Francisella tularensis is a highly-infectious bacterium that causes the rapid, and often lethal disease, tularemia. Many studies have been performed to identify and characterize the virulence factors that F. tularensis uses to infect a wide variety of hosts and host cell types, evade immune defenses, and induce severe disease and death. This review focuses on the virulence factors that are present in the F. tularensis envelope, including capsule, LPS, outer membrane, periplasm, inner membrane, secretion systems, and various molecules in each of aforementioned sub-compartments. Whereas no single bacterial molecule or molecular complex single-handedly controls F. tularensis virulence, we review here how diverse bacterial systems work in conjunction to subvert the immune system, attach to and invade host cells, alter phagosome/lysosome maturation pathways, replicate in host cells without being detected, inhibit apoptosis, and induce host cell death for bacterial release and infection of adjacent cells. Given that the F. tularensis envelope is the outermost layer of the bacterium, we highlight herein how many of these molecules directly interact with the host to promote infection and disease. These and future envelope studies are important to advance our collective understanding of F. tularensis virulence mechanisms and offer targets for future vaccine development efforts.

  3. An Assessment of Envelope Measures in Mild Climate Deep Energy Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Less, Brennan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-06-01

    Energy end-uses and interior comfort conditions have been monitored in 11 Deep Energy Retrofits (DERs) in a mild marine climate. Two broad categories of DER envelope were identified: first, bringing homes up to current code levels of insulation and airtightness, and second, enhanced retrofits that go beyond these code requirements. The efficacy of envelope measures in DERs was difficult to determine, due to the intermingled effects of enclosure improvements, HVAC system upgrades and changes in interior comfort conditions. While energy reductions in these project homes could not be assigned to specific improvements, the combined effects of changes in enclosure, HVAC system and comfort led to average heating energy reductions of 76percent (12,937 kWh) in the five DERs with pre-retrofit data, or 80percent (5.9 kWh/ft2) when normalized by floor area. Overall, net-site energy reductions averaged 58percent (15,966 kWh; n=5), and DERs with code-style envelopes achieved average net-site energy reductions of 65percent (18,923 kWh; n=4). In some homes, the heating energy reductions were actually larger than the whole house reductions that were achieved, which suggests that substantial additional energy uses were added to the home during the retrofit that offset some heating savings. Heating system operation and energy use was shown to vary inconsistently with outdoor conditions, suggesting that most DERs were not thermostatically controlled and that occupants were engaged in managing the indoor environmental conditions. Indoor temperatures maintained in these DERs were highly variable, and no project home consistently provided conditions within the ASHRAE Standard 55-2010 heating season comfort zone. Thermal comfort and heating system operation had a large impact on performance and were found to depend upon the occupant activities, so DERs should be designed with the occupants needs and patterns of consumption in mind. Beyond-code building envelopes were not found to be

  4. Comparing the information conveyed by envelope modulation for speech intelligibility, speech quality, and music quality.

    Science.gov (United States)

    Kates, James M; Arehart, Kathryn H

    2015-10-01

    This paper uses mutual information to quantify the relationship between envelope modulation fidelity and perceptual responses. Data from several previous experiments that measured speech intelligibility, speech quality, and music quality are evaluated for normal-hearing and hearing-impaired listeners. A model of the auditory periphery is used to generate envelope signals, and envelope modulation fidelity is calculated using the normalized cross-covariance of the degraded signal envelope with that of a reference signal. Two procedures are used to describe the envelope modulation: (1) modulation within each auditory frequency band and (2) spectro-temporal processing that analyzes the modulation of spectral ripple components fit to successive short-time spectra. The results indicate that low modulation rates provide the highest information for intelligibility, while high modulation rates provide the highest information for speech and music quality. The low-to-mid auditory frequencies are most important for intelligibility, while mid frequencies are most important for speech quality and high frequencies are most important for music quality. Differences between the spectral ripple components used for the spectro-temporal analysis were not significant in five of the six experimental conditions evaluated. The results indicate that different modulation-rate and auditory-frequency weights may be appropriate for indices designed to predict different types of perceptual relationships.

  5. Towards Energy Demand Reduction in Social Housing Buildings: Envelope System Optimization Strategies

    Directory of Open Access Journals (Sweden)

    Paula M. Esquivias

    2012-07-01

    Full Text Available This work evaluates the potential for the reduction of energy demand in residential buildings by acting on the exterior envelope, both in newly constructed buildings and in the retrofitting of existing stock. It focuses on analysing social housing buildings in Mediterranean areas and on quantifying the scope of that reduction in the application of different envelope design strategies, with the purpose of prioritizing their application based on their energy efficiency. The analyses and quantifications were made by means of the generation of energy models with the TRNSYS tool for simple or combined solutions, identifying possible potentials for reduction of the energy demand from 20% to 25%, basically by acting on the windows. The case study was a newly built social housing building of a closed block type located in Seville (Spain. Its constructive techniques and the insulation level of its envelope are standardized for current buildings widespread across Mediterranean Europe.

  6. The excess infrared emission of Herbig Ae/Be stars - Disks or envelopes?

    Science.gov (United States)

    Hartmann, Lee; Kenyon, Scott J.; Calvet, Nuria

    1993-01-01

    It is suggested that the near-IR emission in many Herbig Ae/Be stars arises in surrounding dusty envelopes, rather than circumstellar disks. It is shown that disks around Ae/Be stars are likely to remain optically thick at the required accretion rates. It is proposed that the IR excesses of many Ae/Be stars originate in surrounding dust nebulae instead of circumstellar disks. It is suggested that the near-IR emission of the envelope is enhanced by the same processes that produce anomalous strong continuum emission at temperatures of about 1000 K in reflection nebulae surrounding hot stars. This near-IR emission could be due to small grains transiently heated by UV photons. The dust envelopes could be associated with the primary star or a nearby companion star. Some Ae/Be stars show evidence for the 3.3-6.3-micron emission features seen in reflection nebulae around hot stars, which lends further support to this suggestion.

  7. The Musca cloud: A 6 pc-long velocity-coherent, sonic filament

    Science.gov (United States)

    Hacar, A.; Kainulainen, J.; Tafalla, M.; Beuther, H.; Alves, J.

    2016-03-01

    Filaments play a central role in the molecular clouds' evolution, but their internal dynamical properties remain poorly characterized. To further explore the physical state of these structures, we have investigated the kinematic properties of the Musca cloud. We have sampled the main axis of this filamentary cloud in 13CO and C18O (2-1) lines using APEX observations. The different line profiles in Musca shows that this cloud presents a continuous and quiescent velocity field along its ~6.5 pc of length. With an internal gas kinematics dominated by thermal motions (I.e. σNT/cs ≲ 1) and large-scale velocity gradients, these results reveal Musca as the longest velocity-coherent, sonic-like object identified so far in the interstellar medium. The transonic properties of Musca present a clear departure from the predicted supersonic velocity dispersions expected in the Larson's velocity dispersion-size relationship, and constitute the first observational evidence of a filament fully decoupled from the turbulent regime over multi-parsec scales. This publication is based on data acquired with the Atacama Pathfinder Experiment (APEX). APEX is a collaboration between the Max-Planck-Institut fuer Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory (ESO programme 087.C-0583).The reduced datacubes as FITS files are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A97

  8. THE DYNAMIC EVOLUTION OF YOUNG EXTRAGALACTIC RADIO SOURCES

    International Nuclear Information System (INIS)

    An Tao; Baan, Willem A.

    2012-01-01

    The evolution of symmetric extragalactic radio sources can be characterized by four distinct growth stages of the radio luminosity versus size of the source. The interaction of the jet with the ambient medium results in the formation and evolution of sources with non-standard (flaring) morphology. In addition, cessation or restarting of the jet power and obstruction of the jet will also result in distinct morphological structures. The radio source population may thus be classified in morphological types that indicate the prevailing physical processes. Compact symmetric objects (CSOs) occupy the earliest evolutionary phase of symmetric radio sources and their dynamical behavior is fundamental for any further evolution. Analysis of CSO dynamics is presented for a sample of 24 CSOs with known redshift and hotspot separation velocity and with a large range of radio power. Observables such as radio power, separation between two hotspots, hotspot separation velocity, and kinematic age of the source are found to be generally consistent with the self-similar predictions for individual sources that reflect the varying density structure of the ambient interstellar medium. Individual sources behave different from the group as a whole. The age and size statistics confirm that a large fraction of CSOs does not evolve into extended doubles.

  9. THE DYNAMIC EVOLUTION OF YOUNG EXTRAGALACTIC RADIO SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    An Tao [Shanghai Astronomical Observatory, Chinese Academy of Sciences, 200030 Shanghai (China); Baan, Willem A., E-mail: antao@shao.ac.cn, E-mail: baan@astron.nl [ASTRON, P.O. Box 2, 7990-AA Dwingeloo (Netherlands)

    2012-11-20

    The evolution of symmetric extragalactic radio sources can be characterized by four distinct growth stages of the radio luminosity versus size of the source. The interaction of the jet with the ambient medium results in the formation and evolution of sources with non-standard (flaring) morphology. In addition, cessation or restarting of the jet power and obstruction of the jet will also result in distinct morphological structures. The radio source population may thus be classified in morphological types that indicate the prevailing physical processes. Compact symmetric objects (CSOs) occupy the earliest evolutionary phase of symmetric radio sources and their dynamical behavior is fundamental for any further evolution. Analysis of CSO dynamics is presented for a sample of 24 CSOs with known redshift and hotspot separation velocity and with a large range of radio power. Observables such as radio power, separation between two hotspots, hotspot separation velocity, and kinematic age of the source are found to be generally consistent with the self-similar predictions for individual sources that reflect the varying density structure of the ambient interstellar medium. Individual sources behave different from the group as a whole. The age and size statistics confirm that a large fraction of CSOs does not evolve into extended doubles.

  10. Bellanca building, Yellowknife : building envelope retrofit project

    Energy Technology Data Exchange (ETDEWEB)

    Rajewski, G. [A.D. Williams Engineering Inc., Edmonton, AB (Canada)

    2008-07-01

    The Bellanca building is a ten-story, commercial office building, located in Yellowknife, Northwest Territories. The owner was concerned about annual fuel consumption, relative to other buildings of similar size. Tenants reported cold drafts and some ice build-up had been reported in the past, on the exterior of the cladding. In addition, some water penetration had occurred during rainfall. This presentation provided background information on the Bellanca building and discussed a building envelope retrofit project. A.D. Williams was hired in late 2006 in order to provide an opinion on the present condition of the building envelope. This presentation described the site investigation and presented an interior and exterior review of the building. It also presented a thermographic survey in order to map thermal anomalies and establish trends. Following acceptance of the report on findings, one of five options was selected for further development. This included removal of existing cladding, exterior gypsum wallboard, fiberglass insulation and application of BASF Walltite CT foam, sheathing, rigid insulation, drainage plane and new cladding. The preliminary design was then presented. This paper also described the tender and award of the contract; construction phase; and substantial completion of the project. tabs, figs.

  11. Tyre-road contact using a particle-envelope surface model

    Science.gov (United States)

    Pinnington, Roger J.

    2013-12-01

    Determination of the contact forces is the central problem in all aspects of road-tyre interaction: i.e. noise, energy loss and friction. A procedure to find the contact forces under a rolling tyre is presented in four stages. First, the contact stiffness of a uniform peak array from indentations in the rubber tread, and also tyre carcass deflection, is described by some new simplified expressions. Second, a routine divides a single surface profile into equal search intervals, in which the highest peaks are identified. These are used to obtain the parameters for the interval, i.e. the mean envelope and the mean interval. The process is repeated at geometrically decreasing search intervals until the level of the data resolution, thereby describing the profile by a set of envelopes. The ‘strip profile’ ultimately used to describe the surface, is obtained by selecting the highest points across the profiles of one stone's width. The third stage is to combine the strip profile envelopes with the contact stiffness expressions, yielding the nonlinear stiffness-displacement, and force-displacement relationships for the chosen road-tyre combination. Finally the contact pressure distribution from a steady-state rolling tyre model is applied to the strip profile, via the force-displacement relationship, giving the local tyre displacements on the road texture. This displacement pattern is shown to be proportional to the time and space varying contact pressure, which then is incorporated into a wave equation for rolling contact.

  12. Does a voltage-sensitive outer envelope transport mechanism contributes to the chloroplast iron uptake?

    Science.gov (United States)

    Solti, Ádám; Kovács, Krisztina; Müller, Brigitta; Vázquez, Saúl; Hamar, Éva; Pham, Hong Diep; Tóth, Brigitta; Abadía, Javier; Fodor, Ferenc

    2016-12-01

    Based on the effects of inorganic salts on chloroplast Fe uptake, the presence of a voltage-dependent step is proposed to play a role in Fe uptake through the outer envelope. Although iron (Fe) plays a crucial role in chloroplast physiology, only few pieces of information are available on the mechanisms of chloroplast Fe acquisition. Here, the effect of inorganic salts on the Fe uptake of intact chloroplasts was tested, assessing Fe and transition metal uptake using bathophenantroline-based spectrophotometric detection and plasma emission-coupled mass spectrometry, respectively. The microenvironment of Fe was studied by Mössbauer spectroscopy. Transition metal cations (Cd 2+ , Zn 2+ , and Mn 2+ ) enhanced, whereas oxoanions (NO 3 - , SO 4 2- , and BO 3 3- ) reduced the chloroplast Fe uptake. The effect was insensitive to diuron (DCMU), an inhibitor of chloroplast inner envelope-associated Fe uptake. The inorganic salts affected neither Fe forms in the uptake assay buffer nor those incorporated into the chloroplasts. The significantly lower Zn and Mn uptake compared to that of Fe indicates that different mechanisms/transporters are involved in their acquisition. The enhancing effect of transition metals on chloroplast Fe uptake is likely related to outer envelope-associated processes, since divalent metal cations are known to inhibit Fe 2+ transport across the inner envelope. Thus, a voltage-dependent step is proposed to play a role in Fe uptake through the chloroplast outer envelope on the basis of the contrasting effects of transition metal cations and oxoaninons.

  13. Influenza A virus targets a cGAS-independent STING pathway that controls enveloped RNA viruses.

    Science.gov (United States)

    Holm, Christian K; Rahbek, Stine H; Gad, Hans Henrik; Bak, Rasmus O; Jakobsen, Martin R; Jiang, Zhaozaho; Hansen, Anne Louise; Jensen, Simon K; Sun, Chenglong; Thomsen, Martin K; Laustsen, Anders; Nielsen, Camilla G; Severinsen, Kasper; Xiong, Yingluo; Burdette, Dara L; Hornung, Veit; Lebbink, Robert Jan; Duch, Mogens; Fitzgerald, Katherine A; Bahrami, Shervin; Mikkelsen, Jakob Giehm; Hartmann, Rune; Paludan, Søren R

    2016-02-19

    Stimulator of interferon genes (STING) is known be involved in control of DNA viruses but has an unexplored role in control of RNA viruses. During infection with DNA viruses STING is activated downstream of cGAMP synthase (cGAS) to induce type I interferon. Here we identify a STING-dependent, cGAS-independent pathway important for full interferon production and antiviral control of enveloped RNA viruses, including influenza A virus (IAV). Further, IAV interacts with STING through its conserved hemagglutinin fusion peptide (FP). Interestingly, FP antagonizes interferon production induced by membrane fusion or IAV but not by cGAMP or DNA. Similar to the enveloped RNA viruses, membrane fusion stimulates interferon production in a STING-dependent but cGAS-independent manner. Abolishment of this pathway led to reduced interferon production and impaired control of enveloped RNA viruses. Thus, enveloped RNA viruses stimulate a cGAS-independent STING pathway, which is targeted by IAV.

  14. Evolution of a neutral-ion 2 fluid system using thermal lattice Boltzmann model

    International Nuclear Information System (INIS)

    Vahala, L.; Vahala, G.; Carter, J.; Pavlo, P.

    2000-01-01

    The 2D evolution of a 2-species system is examined using the thermal lattice Boltzmann model (TLBM). The effects of velocity shear layers on sharp heat fronts are considered for a neutral-ion system in the case where both species are turbulent. The rate at which the species velocities and temperatures equilibrate no longer follow the Morse estimate. (author)

  15. Unified model for vortex-string network evolution

    International Nuclear Information System (INIS)

    Martins, C.J.A.P.; Moore, J.N.; Shellard, E.P.S.

    2004-01-01

    We describe and numerically test the velocity-dependent one-scale string evolution model, a simple analytic approach describing a string network with the averaged correlation length and velocity. We show that it accurately reproduces the large-scale behavior (in particular the scaling laws) of numerical simulations of both Goto-Nambu and field theory string networks. We explicitly demonstrate the relation between the high-energy physics approach and the damped and nonrelativistic limits which are relevant for condensed matter physics. We also reproduce experimental results in this context and show that the vortex-string density is significantly reduced by loop production, an effect not included in the usual 'coarse-grained' approach

  16. Superconducting RF for Low-Velocity and Intermediate-Velocity Beams

    CERN Document Server

    Grimm, Terry L

    2005-01-01

    Existing superconducting radio frequency (SRF) linacs are used to accelerate ions (protons through uranium) with velocities less than about 15% the speed of light, or electrons with velocities approximately equal to the speed of light. In the last ten years, prototype SRF cavities have completely covered the remaining range of velocities. They have demonstrated that SRF linacs will be capable of accelerating electrons from rest up to the speed of light, and ions from less than 1% up to the speed of light. When the Spallation Neutron Source is operational, SRF ion linacs will have covered the full range of velocities except for v/c ~ 0.15 to v/c ~ 0.5. A number of proposed projects (RIA, EURISOL) would span the latter range of velocities. Future SRF developments will have to address the trade-offs associated with a number of issues, including high gradient operation, longitudinal and transverse acceptance, microphonics, Lorentz detuning, operating temperature, cryogenic load, number of gaps or cells per cavity...

  17. Formation and temporal evolution of the Lamb-dipole

    DEFF Research Database (Denmark)

    Nielsen, A.H.; Juul Rasmussen, J.

    1997-01-01

    of the evolving dipoles depend on the initial condition. However, the gross properties of their evolution are only weakly dependent on the detailed structure and can be well-described by the so-called Lamb-dipole solution. The viscous decay of the Lamb-dipole, leading to an expansion and a decreasing velocity...

  18. Getting physicians to open the survey: little evidence that an envelope teaser increases response rates

    Directory of Open Access Journals (Sweden)

    Ziegenfuss Jeanette Y

    2012-03-01

    Full Text Available Abstract Background Physician surveys are an important tool to assess attitudes, beliefs and self-reported behaviors of this policy relevant group. In order for a physician to respond to a mailed survey, they must first open the envelope. While there is some evidence that package elements can impact physician response rates, the impact of an envelope teaser is unknown. Here we assess this by testing the impact of adding a brightly colored "$25 incentive" sticker to the outside of an envelope on response rates and nonresponse bias in a survey of physicians. Methods In the second mailing of a survey assessing physicians' moral beliefs and views on controversial health care topics, initial nonrespondents were randomly assigned to receive a survey in an envelope with a colored "$25 incentive" sticker (teaser group or an envelope without a sticker (control group. Response rates were compared between the teaser and control groups overall and by age, gender, region of the United States, specialty and years in practice. Nonresponse bias was assessed by comparing the demographic composition of the respondents to the nonrespondents in the experimental and control condition. Results No significant differences in response rates were observed between the experimental and control conditions overall (p = 0.38 or after stratifying by age, gender, region, or practice type. Within the teaser condition, there was some variation in response rate by years since graduation. There was no independent effect of the teaser on response when simultaneously controlling for demographic characteristics (OR = 0.875, p = 0.4112. Conclusions Neither response rates nor nonresponse bias were impacted by the use of an envelope teaser in a survey of physicians in the United States.

  19. Enveloped virus-like particles as vaccines against pathogenic arboviruses

    NARCIS (Netherlands)

    Pijlman, G.P.

    2015-01-01

    Arthropod-borne arboviruses form a continuous threat to human and animal health, but few arboviral vaccines are currently available. Advances in expression technology for complex, enveloped virus-like particles (eVLPs) create new opportunities to develop potent vaccines against pathogenic

  20. Measuring Eco-efficiency of Production with Data Envelopment Analysis

    NARCIS (Netherlands)

    Kuosmanen, T.K.; Kortelainen, M.

    2005-01-01

    Aggregation of environmental pressures into a single environmental damage index is a major challenge of eco-efficiency measurement. This article examines how the data envelopment analysis (DEA) method can be adapted for this purpose. DEA accounts for substitution possibilities between different