WorldWideScience

Sample records for envelope glycoprotein complex

  1. HIV-1 envelope glycoprotein

    Science.gov (United States)

    Caulfield, Michael; Cupo, Albert; Dean, Hansi; Hoffenberg, Simon; King, C. Richter; Klasse, P. J.; Marozsan, Andre; Moore, John P.; Sanders, Rogier W.; Ward, Andrew; Wilson, Ian; Julien, Jean-Philippe

    2017-08-22

    The present application relates to novel HIV-1 envelope glycoproteins, which may be utilized as HIV-1 vaccine immunogens, and antigens for crystallization, electron microscopy and other biophysical, biochemical and immunological studies for the identification of broad neutralizing antibodies. The present invention encompasses the preparation and purification of immunogenic compositions, which are formulated into the vaccines of the present invention.

  2. Stabilization of the soluble, cleaved, trimeric form of the envelope glycoprotein complex of human immunodeficiency virus type 1

    NARCIS (Netherlands)

    Sanders, Rogier W.; Vesanen, Mika; Schuelke, Norbert; Master, Aditi; Schiffner, Linnea; Kalyanaraman, Roopa; Paluch, Maciej; Berkhout, Ben; Maddon, Paul J.; Olson, William C.; Lu, Min; Moore, John P.

    2002-01-01

    The envelope glycoprotein (Env) complex of human immunodeficiency virus type I has evolved a structure that is minimally immunogenic while retaining its natural function of receptor-mediated virus-cell fusion. The Env complex is trimeric; its six individual subunits (three gp120 and three gp41

  3. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody

    OpenAIRE

    Kwong, Peter D.; Wyatt, Richard; Robinson, James; Sweet, Raymond W.; Sodroski, Joseph; Hendrickson, Wayne A.

    1998-01-01

    The entry of human immunodeficiency virus (HIV) into cells requires the sequential interaction of the viral exterior envelope glycoprotein, gp120, with the CD4 glycoprotein and a chemokine receptor on the cell surface. These interactions initiate a fusion of the viral and cellular membranes. Although gpl20 can elicit virus-neutralizing antibodies, HIV eludes the immune system. We have solved the X-ray crystal structure at 2.5 Å resolution of an HIV-1 gp120 core complexed with a two-domain fra...

  4. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody.

    Science.gov (United States)

    Kwong, P D; Wyatt, R; Robinson, J; Sweet, R W; Sodroski, J; Hendrickson, W A

    1998-06-18

    The entry of human immunodeficiency virus (HIV) into cells requires the sequential interaction of the viral exterior envelope glycoprotein, gp120, with the CD4 glycoprotein and a chemokine receptor on the cell surface. These interactions initiate a fusion of the viral and cellular membranes. Although gp120 can elicit virus-neutralizing antibodies, HIV eludes the immune system. We have solved the X-ray crystal structure at 2.5 A resolution of an HIV-1 gp120 core complexed with a two-domain fragment of human CD4 and an antigen-binding fragment of a neutralizing antibody that blocks chemokine-receptor binding. The structure reveals a cavity-laden CD4-gp120 interface, a conserved binding site for the chemokine receptor, evidence for a conformational change upon CD4 binding, the nature of a CD4-induced antibody epitope, and specific mechanisms for immune evasion. Our results provide a framework for understanding the complex biology of HIV entry into cells and should guide efforts to intervene.

  5. HIV-1 Envelope Glycoprotein Biosynthesis, Trafficking, and Incorporation

    Science.gov (United States)

    Checkley, Mary Ann; Luttge, Benjamin G.; Freed, Eric O.

    2011-01-01

    The HIV-1 envelope (Env) glycoproteins play an essential role in the virus replication cycle by mediating the fusion between viral and cellular membranes during the entry process. The Env glycoproteins are synthesized as a polyprotein precursor, gp160, that is cleaved by cellular proteases to the mature surface glycoprotein gp120 and the transmembrane glycoprotein gp41. During virus assembly the gp120/gp41 complex is incorporated as heterotrimeric spikes into the lipid bilayer of nascent virions. These gp120/gp41 complexes then initiate the infection process by binding receptor and co-receptor on the surface of target cells. Much is currently known about the HIV-1 Env glycoprotein trafficking pathway and the structure of gp120 and the extracellular domain of gp41. However, the mechanism by which the Env glycoprotein complex is incorporated into virus particles remains incompletely understood. Genetic data support a major role for the cytoplasmic tail of gp41 and the matrix domain of Gag in Env glycoprotein incorporation. Still to be defined are the identities of host cell factors that may promote Env incorporation, and the role of specific membrane microdomains in this process. Here we review our current understanding of HIV-1 Env glycoprotein trafficking and incorporation into virions. PMID:21762802

  6. Epistastic Interactions within the Junín Virus Envelope Glycoprotein Complex Provide an Evolutionary Barrier to Reversion in the Live-Attenuated Candid#1 Vaccine.

    Science.gov (United States)

    York, Joanne; Nunberg, Jack H

    2018-01-01

    The Candid#1 strain of Junín virus was developed using a conventional attenuation strategy of serial passage in nonhost animals and cultured cells. The live-attenuated Candid#1 vaccine is used in Argentina to protect at-risk individuals against Argentine hemorrhagic fever, but it has not been licensed in the United States. Recent studies have revealed that Candid#1 attenuation is entirely dependent on a phenylalanine-to-isoleucine substitution at position 427 in the fusion subunit (GP2) of the viral envelope glycoprotein complex (GPC), thereby raising concerns regarding the potential for reversion to virulence. In this study, we report the identification and characterization of an intragenic epistatic interaction between the attenuating F427I mutation in GP2 and a lysine-to-serine mutation at position 33 in the stable signal peptide (SSP) subunit of GPC, and we demonstrate the utility of this interaction in creating an evolutionary barrier against reversion to the pathogenic genotype. In the presence of the wild-type F427 residue, the K33S mutation abrogates the ability of ectopically expressed GPC to mediate membrane fusion at endosomal pH. This defect is rescued by the attenuating F427I mutation. We show that the recombinant Candid#1 (rCan) virus bearing K33S GPC is viable and retains its attenuated genotype under cell culture conditions that readily select for reversion in the parental rCan virus. If back-mutation to F427 offers an accessible pathway to increase fitness in rCan, reversion in K33S-GPC rCan is likely to be lethal. The epistatic interaction between K33S and F427I thus may minimize the likelihood of reversion and enhance safety in a second-generation Candid#1 vaccine. IMPORTANCE The live-attenuated Candid#1 vaccine strain of Junín virus is used to protect against Argentine hemorrhagic fever. Recent findings that a single missense mutation in the viral envelope glycoprotein complex (GPC) is responsible for attenuation raise the prospect of facile

  7. Bioinformatics Analysis of Envelope Glycoprotein E epitopes of ...

    African Journals Online (AJOL)

    The E glycoprotein of dengue virus is responsible for the viral binding to the receptor. The crystal structure of envelope glycoprotein has already been determined. However, where the well-defined Bcell and T-cell epitopes are located is still a question. Because of the large variations among the four dengue genotypes, it is ...

  8. Insights into the trimeric HIV-1 envelope glycoprotein structure.

    Science.gov (United States)

    Ward, Andrew B; Wilson, Ian A

    2015-02-01

    The HIV-1 envelope glycoprotein (Env) trimer is responsible for receptor recognition and viral fusion with CD4(+) T cells, and is the sole target for neutralizing antibodies. Thus, understanding its molecular architecture is of significant interest. However, the Env trimer has proved to be a challenging target for 3D structure determination. Recent electron microscopy (EM) and X-ray structures have at last enabled us to decipher the structural complexity and unique features of the Env trimer, and how it is recognized by an ever-expanding arsenal of potent broadly neutralizing antibodies. We describe our current knowledge of the Env trimer structure in the context of exciting recent developments in the identification and characterization of HIV broadly neutralizing antibodies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Proteolytic Processing of the Human Immunodeficiency Virus Envelope Glycoprotein Precursor Decreases Conformational Flexibility

    OpenAIRE

    Haim, Hillel; Salas, Ignacio; Sodroski, Joseph

    2013-01-01

    The mature envelope glycoprotein (Env) spike on the surface of human immunodeficiency virus type 1 (HIV-1) virions is derived by proteolytic cleavage of a trimeric gp160 glycoprotein precursor. Remarkably, proteolytic processing of the HIV-1 Env precursor results in changes in Env antigenicity that resemble those associated with glutaraldehyde fixation. Apparently, proteolytic processing of the HIV-1 Env precursor decreases conformational flexibility of the Env trimeric complex, differentiall...

  10. Targeting HIV-1 Envelope Glycoprotein Trimers to B Cells by Using APRIL Improves Antibody Responses

    NARCIS (Netherlands)

    Melchers, Mark; Bontjer, Ilja; Tong, Tommy; Chung, Nancy P. Y.; Klasse, Per Johan; Eggink, Dirk; Montefiori, David C.; Gentile, Maurizio; Cerutti, Andrea; Olson, William C.; Berkhout, Ben; Binley, James M.; Moore, John P.; Sanders, Rogier W.

    2012-01-01

    An HIV-1 vaccine remains elusive, in part because various factors limit the quantity and quality of the antibodies raised against the viral envelope glycoprotein complex (Env). We hypothesized that targeting Env vaccines directly to B cells, by fusing them to molecules that bind and activate these

  11. Characterization of human immunodeficiency virus type 2 envelope glycoproteins: Dimerization of the glycoprotein precursor during processing

    International Nuclear Information System (INIS)

    Rey, M.A.; Krust, B.; Laurent, A.G.; Montagnier, L.; Hovanessian, A.G.

    1989-01-01

    For glycoproteins with apparent molecular weights of 300,000, 140,000, 125,000, and 36,000 (gp300, gp140, gp125, and gp36) were detectable in human immunodeficiency virus type 2 (HIV-2)-infected cells. They have identical isoelectric points, suggesting that gp300 might be a dimeric form of the immature precursor, gp140. The purified gp300 can be dissociated in a slightly acidic buffer to give rise to monomers of 140,000 molecular weight. Such dissociated monomers and the purified gp140 showed identical patterns of polypeptides after partial proteolysis with Staphylococcus aureus V8 protease. Pulse-chase experiments indicated that gp300 is formed after synthesis of gp140 and before the detection of the mature external envelope glycoprotein, gp125. These results were confirmed by using various inhibitors of glycosylation and inhibitors of trimming enzymes. Dimer formation of the envelope glycoprotein precursor was also observed in cells infected with simian immunodeficiency virus (SIV), a virus closely related to HIV-2. On the other hand, the envelope glycoprotein precursor of HIV-1 did not form a dimer during its processing. Therefore, dimer formation seems to be a specific property of HIV-2 and SIV envelope gene expression. Such transient dimerization of the glycoprotein precursor might be required for its efficient transport to the Golgi apparatus and for its processing

  12. Use of synthetic peptides to represent surface-exposed epitopes defined by neutralizing dengue complex- and flavivirus group-reactive monoclonal antibodies on the native dengue type-2 virus envelope glycoprotein.

    Science.gov (United States)

    Falconar, Andrew K I

    2008-07-01

    The reactions of neutralizing monoclonal antibodies (mAbs) that defined dengue virus (DENV) complex, flavivirus subgroup or group neutralizing epitopes were tested against synthetic peptide sequences from domains I, II and III of the envelope (E) glycoproteins of different DENV-2 genotypes/strains. The DENV complex-reactive mAb identified the surface-exposed 304-GKFKV/IVKEIA-313 peptides and the DENV complex-conserved 393-KKGSSIGQ/KM-401 peptides in domain III, which were located adjacently in the native glycoprotein. Both flavivirus group-reactive mAbs reacted most strongly with fusion sequence peptides from domain II when they contained a cysteine (C) by glycine (G) substitution (underlined) (101-WGNGGGLFG-109) to represent the native rotated C side chain. The 393-401 sequence represents a newly identified epitope, present as a highly flexible coil located between the 385 and 393 cell-binding sequence and the 401 and 413 sequence involved in the E glycoprotein homo-trimer formation. The 101-109 sequence containing 105-C by G substitution and the 393-401 sequence are good candidates for diagnostic assays and cross-protection experiments.

  13. A Functional Henipavirus Envelope Glycoprotein Pseudotyped Lentivirus Assay System

    Directory of Open Access Journals (Sweden)

    Broder Christopher C

    2010-11-01

    Full Text Available Abstract Background Hendra virus (HeV and Nipah virus (NiV are newly emerged zoonotic paramyxoviruses discovered during outbreaks in Queensland, Australia in 1994 and peninsular Malaysia in 1998/9 respectively and classified within the new Henipavirus genus. Both viruses can infect a broad range of mammalian species causing severe and often-lethal disease in humans and animals, and repeated outbreaks continue to occur. Extensive laboratory studies on the host cell infection stage of HeV and NiV and the roles of their envelope glycoproteins have been hampered by their highly pathogenic nature and restriction to biosafety level-4 (BSL-4 containment. To circumvent this problem, we have developed a henipavirus envelope glycoprotein pseudotyped lentivirus assay system using either a luciferase gene or green fluorescent protein (GFP gene encoding human immunodeficiency virus type-1 (HIV-1 genome in conjunction with the HeV and NiV fusion (F and attachment (G glycoproteins. Results Functional retrovirus particles pseudotyped with henipavirus F and G glycoproteins displayed proper target cell tropism and entry and infection was dependent on the presence of the HeV and NiV receptors ephrinB2 or B3 on target cells. The functional specificity of the assay was confirmed by the lack of reporter-gene signals when particles bearing either only the F or only G glycoprotein were prepared and assayed. Virus entry could be specifically blocked when infection was carried out in the presence of a fusion inhibiting C-terminal heptad (HR-2 peptide, a well-characterized, cross-reactive, neutralizing human mAb specific for the henipavirus G glycoprotein, and soluble ephrinB2 and B3 receptors. In addition, the utility of the assay was also demonstrated by an examination of the influence of the cytoplasmic tail of F in its fusion activity and incorporation into pseudotyped virus particles by generating and testing a panel of truncation mutants of NiV and HeV F

  14. Secretion of hepatitis C virus envelope glycoproteins depends on assembly of apolipoprotein B positive lipoproteins.

    Directory of Open Access Journals (Sweden)

    Vinca Icard

    Full Text Available The density of circulating hepatitis C virus (HCV particles in the blood of chronically infected patients is very heterogeneous. The very low density of some particles has been attributed to an association of the virus with apolipoprotein B (apoB positive and triglyceride rich lipoproteins (TRL likely resulting in hybrid lipoproteins known as lipo-viro-particles (LVP containing the viral envelope glycoproteins E1 and E2, capsid and viral RNA. The specific infectivity of these particles has been shown to be higher than the infectivity of particles of higher density. The nature of the association of HCV particles with lipoproteins remains elusive and the role of apolipoproteins in the synthesis and assembly of the viral particles is unknown. The human intestinal Caco-2 cell line differentiates in vitro into polarized and apoB secreting cells during asymmetric culture on porous filters. By using this cell culture system, cells stably expressing E1 and E2 secreted the glycoproteins into the basal culture medium after one week of differentiation concomitantly with TRL secretion. Secreted glycoproteins were only detected in apoB containing density fractions. The E1-E2 and apoB containing particles were unique complexes bearing the envelope glycoproteins at their surface since apoB could be co-immunoprecipitated with E2-specific antibodies. Envelope protein secretion was reduced by inhibiting the lipidation of apoB with an inhibitor of the microsomal triglyceride transfer protein. HCV glycoproteins were similarly secreted in association with TRL from the human liver cell line HepG2 but not by Huh-7 and Huh-7.5 hepatoma cells that proved deficient for lipoprotein assembly. These data indicate that HCV envelope glycoproteins have the intrinsic capacity to utilize apoB synthesis and lipoprotein assembly machinery even in the absence of the other HCV proteins. A model for LVP assembly is proposed.

  15. A Cell-Cell Fusion Assay to Assess Arenavirus Envelope Glycoprotein Membrane-Fusion Activity.

    Science.gov (United States)

    York, Joanne; Nunberg, Jack H

    2018-01-01

    For many viruses that enter their target cells through pH-dependent fusion of the viral and endosomal membranes, cell-cell fusion assays can provide an experimental platform for investigating the structure-function relationships that promote envelope glycoprotein membrane-fusion activity. Typically, these assays employ effector cells expressing the recombinant envelope glycoprotein on the cell surface and target cells engineered to quantitatively report fusion with the effector cell. In the protocol described here, Vero cells are transfected with a plasmid encoding the arenavirus envelope glycoprotein complex GPC and infected with the vTF7-3 vaccinia virus expressing the bacteriophage T7 RNA polymerase. These effector cells are mixed with target cells infected with the vCB21R-lacZ vaccinia virus encoding a β-galactosidase reporter under the control of the T7 promoter. Cell-cell fusion is induced upon exposure to low-pH medium (pH 5.0), and the resultant expression of the β-galactosidase reporter is quantitated using a chemiluminescent substrate. We have utilized this robust microplate cell-cell fusion assay extensively to study arenavirus entry and its inhibition by small-molecule fusion inhibitors.

  16. Hepatitis C Virus E2 Envelope Glycoprotein Core Structure

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Leopold; Giang, Erick; Nieusma, Travis; Kadam, Rameshwar U.; Cogburn, Kristin E.; Hua, Yuanzi; Dai, Xiaoping; Stanfield, Robyn L.; Burton, Dennis R.; Ward, Andrew B.; Wilson, Ian A.; Law, Mansun

    2014-08-26

    Hepatitis C virus (HCV), a Hepacivirus, is a major cause of viral hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV envelope glycoproteins E1 and E2 mediate fusion and entry into host cells and are the primary targets of the humoral immune response. The crystal structure of the E2 core bound to broadly neutralizing antibody AR3C at 2.65 angstroms reveals a compact architecture composed of a central immunoglobulin-fold β sandwich flanked by two additional protein layers. The CD81 receptor binding site was identified by electron microscopy and site-directed mutagenesis and overlaps with the AR3C epitope. The x-ray and electron microscopy E2 structures differ markedly from predictions of an extended, three-domain, class II fusion protein fold and therefore provide valuable information for HCV drug and vaccine design.

  17. Structural mimicry of the dengue virus envelope glycoprotein revealed by the crystallographic study of an idiotype-anti-idiotype Fab complex.

    Science.gov (United States)

    Wong, Yee Hwa; Goh, Boon Chong; Lim, She Yah; Teo, En Wei; Lim, Angeline P C; Dedon, Pete C; Hanson, Brendon J; MacAry, Paul A; Lescar, Julien

    2017-06-21

    A detailed understanding of the fine specificity of serotype-specific human antibodies is vital for the development and evaluation of new vaccines for pathogenic Flaviviruses such as Dengue virus (DENV) and Zika virus. In this study, we thoroughly characterize the structural footprint of an anti-idiotype antibody (E1) specific for a potent, fully human DENV serotype 1-specific antibody termed HM14c10, derived from a recovered patient. The crystal structure at a resolution of 2.5 Å of a complex between the Fab fragments of E1 and HM14c10 provides the first detailed molecular comparison of an anti-idiotype paratope specific for a human antibody with its analogous epitope- a discontinuous quaternary structure located at the surface of the viral particle that spans adjacent envelope (E) proteins. This comparison reveals that the footprints left by E1 and E on HM14c10 largely overlap, explaining why formation of the binary complexes are mutually exclusive. Structural mimicry of the DENV E epitope by the E1 combining site is achieved via the formation of numerous interactions with heavy chain CDRs of HM14c10, while fewer interactions are observed with its light chain, compared to the E protein. We show that E1 can be utilized to detect HM14c10-like antibodies in sera from patients recovered from a DENV-1 infection suggesting that this is a public (common) idiotype. These data demonstrate the utility of employing an anti-idiotype antibody to monitor a patient's specific immune responses and suggest routes for improvement of E 'mimicry' by E1 through increasing its recognition of the FabHM14c10 light chain CDRs. IMPORTANCE A chimeric yellow fever/dengue live-attenuated tetravalent vaccine is now marketed. Dengue remains a significant public health problem, because protection conferred by this vaccine is uneven against the four circulating serotypes. Reliable tools must be developed to measure the immune response of individuals exposed to DENV, either via viral infection

  18. Membrane topology analysis of HIV-1 envelope glycoprotein gp41

    Directory of Open Access Journals (Sweden)

    Xiao Dan

    2010-11-01

    Full Text Available Abstract Background The gp41 subunit of the HIV-1 envelope glycoprotein (Env has been widely regarded as a type I transmembrane protein with a single membrane-spanning domain (MSD. An alternative topology model suggested multiple MSDs. The major discrepancy between the two models is that the cytoplasmic Kennedy sequence in the single MSD model is assigned as the extracellular loop accessible to neutralizing antibodies in the other model. We examined the membrane topology of the gp41 subunit in both prokaryotic and mammalian systems. We attached topological markers to the C-termini of serially truncated gp41. In the prokaryotic system, we utilized a green fluorescent protein (GFP that is only active in the cytoplasm. The tag protein (HaloTag and a membrane-impermeable ligand specific to HaloTag was used in the mammalian system. Results In the absence of membrane fusion, both the prokaryotic and mammalian systems (293FT cells supported the single MSD model. In the presence of membrane fusion in mammalian cells (293CD4 cells, the data obtained seem to support the multiple MSD model. However, the region predicted to be a potential MSD is the highly hydrophilic Kennedy sequence and is least likely to become a MSD based on several algorithms. Further analysis revealed the induction of membrane permeability during membrane fusion, allowing the membrane-impermeable ligand and antibodies to cross the membrane. Therefore, we cannot completely rule out the possible artifacts. Addition of membrane fusion inhibitors or alterations of the MSD sequence decreased the induction of membrane permeability. Conclusions It is likely that a single MSD model for HIV-1 gp41 holds true even in the presence of membrane fusion. The degree of the augmentation of membrane permeability we observed was dependent on the membrane fusion and sequence of the MSD.

  19. Enhancement of feline immunodeficiency virus infection after immunization with envelope glycoprotein subunit vaccines.

    NARCIS (Netherlands)

    C.H.J. Siebelink (Kees); E.J. Tijhaar (Edwin); R.C. Huisman (Robin); W. Huisman (Willem); A. de Ronde; I.H. Darby; M.J. Francis; G.F. Rimmelzwaan (Guus); A.D.M.E. Osterhaus (Albert)

    1995-01-01

    textabstractCats were immunized three times with different recombinant feline immunodeficiency virus (FIV) candidate vaccines. Recombinant vaccinia virus (rVV)-expressed envelope glycoprotein with (vGR657) or without (vGR657 x 15) the cleavage site and an FIV envelope bacterial fusion protein

  20. Structures of HIV-1 gp120 envelope glycoproteins from laboratory-adapted and primary isolates.

    Science.gov (United States)

    Kwong, P D; Wyatt, R; Majeed, S; Robinson, J; Sweet, R W; Sodroski, J; Hendrickson, W A

    2000-12-15

    The gp120 exterior envelope glycoprotein of HIV-1 binds sequentially to CD4 and chemokine receptors on cells to initiate virus entry. During natural infection, gp120 is a primary target of the humoral immune response, and it has evolved to resist antibody-mediated neutralization. We previously reported the structure at 2.5 A of a gp120 core from the HXBc2 laboratory-adapted isolate in complex with a 2 domain fragment of CD4 and the antigen binding fragment of a human antibody. This revealed atomic details of gp120-receptor interactions and suggested multiple mechanisms of immune evasion. We have now extended the HXBc2 structure in P222, crystals to 2.2 A. The enhanced resolution enabled a more accurate modeling of less-well-ordered regions and provided conclusive identification of the density in the central cavity at the crux of the gp120-CD4 interaction as isopropanol from the crystallization medium. We have also determined the structure of a gp120 core from the primary clinical HIV-1 isolate, YU2, in the same ternary complex but in a C2 crystal lattice. Comparisons of HXBc2 and YU2 showed that while CD4 binding was rigid, portions of the gp120 core were conformationally flexible; overall differences were minor, with sequence changes concentrated on a surface expected to be exposed on the envelope oligomer. Despite dramatic antigenic differences between primary and laboratory-adapted HIV-1, the gp120 cores from these isolates are remarkably similar. Taken together with chimeric substitution and sequence analysis, this indicates that neutralization resistance is specified by quaternary interactions involving the major variable loops and thus affords a mechanism for viral adaptation. Conservation of the central cavity suggests the possibility of therapeutic inhibitors. The structures reported here extend in detail and generality our understanding of the biology of the gp120 envelope glycoprotein.

  1. An alternative conformation of the gp41 heptad repeat 1 region coiled coil exists in the human immunodeficiency virus (HIV-1) envelope glycoprotein precursor

    International Nuclear Information System (INIS)

    Mische, Claudia C.; Yuan Wen; Strack, Bettina; Craig, Stewart; Farzan, Michael; Sodroski, Joseph

    2005-01-01

    The human immunodeficiency virus (HIV-1) transmembrane envelope glycoprotein, gp41, which mediates virus-cell fusion, exists in at least three different conformations within the trimeric envelope glycoprotein complex. The structures of the prefusogenic and intermediate states are unknown; structures representing the postfusion state have been solved. In the postfusion conformation, three helical heptad repeat 2 (HR2) regions pack in an antiparallel fashion into the hydrophobic grooves on the surface of a triple-helical coiled coil formed by the heptad repeat 1 (HR1) regions. We studied the prefusogenic conformation of gp41 by mutagenic alteration of membrane-anchored and soluble forms of the HIV-1 envelope glycoproteins. Our results indicate that, in the HIV-1 envelope glycoprotein precursor, the gp41 HR1 region is in a conformation distinct from that of a trimeric coiled coil. Thus, the central gp41 coiled coil is formed during the transition of the HIV-1 envelope glycoproteins from the precursor state to the receptor-bound intermediate

  2. The HIV-1 envelope glycoprotein structure: nailing down a moving target.

    Science.gov (United States)

    Ward, Andrew B; Wilson, Ian A

    2017-01-01

    Structure determination of the HIV-1 envelope glycoprotein (Env) presented a number of challenges, but several high-resolution structures have now become available. In 2013, cryo-EM and x-ray structures of soluble, cleaved SOSIP Env trimers from the clade A BG505 strain provided the first glimpses into the Env trimer fold as well as more the variable regions. A recent cryo-EM structure of a native full-length trimer without any stabilizing mutations had the same core structure, but revealed new insights and features. A more comprehensive and higher resolution understanding of the glycan shield has also emerged, enabling a more complete representation of the Env glycoprotein structure. Complexes of Env trimers with broadly neutralizing antibodies have surprisingly illustrated that most of the Env surface can be targeted in natural infection and that the neutralizing epitopes are almost all composed of both peptide and glycan components. These structures have also provided further evidence of the inherent plasticity of Env and how antibodies can exploit this flexibility by perturbing or even stabilizing the trimer to facilitate neutralization. These breakthroughs have stimulated further design and stabilization of Env trimers as well as other platforms to generate trimers that now span multiple subtypes. These Env trimers when used as immunogens, have led to the first vaccine-induced neutralizing antibodies for structural and functional analyses. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Structure of the transmembrane domain of HIV-1 envelope glycoprotein.

    Science.gov (United States)

    Chen, Bing; Chou, James J

    2017-04-01

    HIV-1 envelope spike (Env) is a heavily glycosylated, type I membrane protein that mediates fusion of viral and cell membranes to initiate infection. It is also a primary target of neutralizing antibodies and thus an important candidate for vaccine development. We have recently reported a nuclear magnetic resonance structure of the transmembrane (TM) domain of HIV-1 Env reconstituted in a membrane-like environment. Taking HIV-1 as an example, we discuss here how a TM domain can anchor, stabilize, and modulate a viral envelope spike and how its high-resolution structure can contribute to understanding viral membrane fusion and to immunogen design. © 2016 Federation of European Biochemical Societies.

  4. What Do Chaotrope-Based Avidity Assays for Antibodies to HIV-1 Envelope Glycoproteins Measure?

    NARCIS (Netherlands)

    Alexander, Marina R.; Ringe, Rajesh; Sanders, Rogier W.; Voss, James E.; Moore, John P.; Klasse, Per Johan

    2015-01-01

    When HIV-1 vaccine candidates that include soluble envelope glycoproteins (Env) are tested in humans and other species, the resulting antibody responses to Env are sifted for correlates of protection or risk. One frequently used assay measures the reduction in antibody binding to Env antigens by an

  5. Cleavage strongly influences whether soluble HIV-1 envelope glycoprotein trimers adopt a native-like conformation

    NARCIS (Netherlands)

    Ringe, Rajesh P.; Sanders, Rogier W.; Yasmeen, Anila; Kim, Helen J.; Lee, Jeong Hyun; Cupo, Albert; Korzun, Jacob; Derking, Ronald; van Montfort, Thijs; Julien, Jean-Philippe; Wilson, Ian A.; Klasse, Per Johan; Ward, Andrew B.; Moore, John P.

    2013-01-01

    We compare the antigenicity and conformation of soluble, cleaved vs. uncleaved envelope glycoprotein (Env gp) 140 trimers from the subtype A HIV type 1 (HIV-1) strain BG505. The impact of gp120-gp41 cleavage on trimer structure, in the presence or absence of trimer-stabilizing modifications (i.e., a

  6. Structure of a Pestivirus Envelope Glycoprotein E2 Clarifies Its Role in Cell Entry

    Directory of Open Access Journals (Sweden)

    Kamel El Omari

    2013-01-01

    Full Text Available Enveloped viruses have developed various adroit mechanisms to invade their host cells. This process requires one or more viral envelope glycoprotein to achieve cell attachment and membrane fusion. Members of the Flaviviridae such as flaviviruses possess only one envelope glycoprotein, E, whereas pestiviruses and hepacivirus encode two glycoproteins, E1 and E2. Although E2 is involved in cell attachment, it has been unclear which protein is responsible for membrane fusion. We report the crystal structures of the homodimeric glycoprotein E2 from the pestivirus bovine viral diarrhea virus 1 (BVDV1 at both neutral and low pH. Unexpectedly, BVDV1 E2 does not have a class II fusion protein fold, and at low pH the N-terminal domain is disordered, similarly to the intermediate postfusion state of E2 from sindbis virus, an alphavirus. Our results suggest that the pestivirus and possibly the hepacivirus fusion machinery are unlike any previously observed.

  7. Structure of a Pestivirus Envelope Glycoprotein E2 Clarifies Its Role in Cell Entry

    Science.gov (United States)

    El Omari, Kamel; Iourin, Oleg; Harlos, Karl; Grimes, Jonathan M.; Stuart, David I.

    2013-01-01

    Summary Enveloped viruses have developed various adroit mechanisms to invade their host cells. This process requires one or more viral envelope glycoprotein to achieve cell attachment and membrane fusion. Members of the Flaviviridae such as flaviviruses possess only one envelope glycoprotein, E, whereas pestiviruses and hepacivirus encode two glycoproteins, E1 and E2. Although E2 is involved in cell attachment, it has been unclear which protein is responsible for membrane fusion. We report the crystal structures of the homodimeric glycoprotein E2 from the pestivirus bovine viral diarrhea virus 1 (BVDV1) at both neutral and low pH. Unexpectedly, BVDV1 E2 does not have a class II fusion protein fold, and at low pH the N-terminal domain is disordered, similarly to the intermediate postfusion state of E2 from sindbis virus, an alphavirus. Our results suggest that the pestivirus and possibly the hepacivirus fusion machinery are unlike any previously observed. PMID:23273918

  8. Glycosylation in HIV-1 envelope glycoprotein and its biological implications

    KAUST Repository

    Ho, Yung Shwen

    2013-08-01

    Glycosylation of HIV-1 envelope proteins (Env gp120/gp41) plays a vital role in viral evasion from the host immune response, which occurs through the masking of key neutralization epitopes and the presentation of the Env glycosylation as \\'self\\' to the host immune system. Env glycosylation is generally conserved, yet its continual evolution plays an important role in modulating viral infectivity and Env immunogenicity. Thus, it is believed that Env glycosylation, which is a vital part of the HIV-1 architecture, also controls intra- and inter-clade genetic variations. Discerning intra- and inter-clade glycosylation variations could therefore yield important information for understanding the molecular and biological differences between HIV clades and may assist in effectively designing Env-based immunogens and in clearly understanding HIV vaccines. This review provides an in-depth perspective of various aspects of Env glycosylation in the context of HIV-1 pathogenesis. © 2013 Future Medicine Ltd.

  9. Activation and Inactivation of Primary Human Immunodeficiency Virus Envelope Glycoprotein Trimers by CD4-Mimetic Compounds

    Science.gov (United States)

    Madani, Navid; Princiotto, Amy M.; Zhao, Connie; Jahanbakhshsefidi, Fatemeh; Mertens, Max; Herschhorn, Alon; Melillo, Bruno; Smith, Amos B.

    2016-01-01

    ABSTRACT Human immunodeficiency virus type 1 (HIV-1) entry into cells is mediated by the viral envelope glycoproteins (Env), a trimer of three gp120 exterior glycoproteins, and three gp41 transmembrane glycoproteins. The metastable Env is triggered to undergo entry-related conformational changes when gp120 binds sequentially to the receptors, CD4 and CCR5, on the target cell. Small-molecule CD4-mimetic compounds (CD4mc) bind gp120 and act as competitive inhibitors of gp120-CD4 engagement. Some CD4mc have been shown to trigger Env prematurely, initially activating Env function, followed by rapid and irreversible inactivation. Here, we study CD4mc with a wide range of anti-HIV-1 potencies and demonstrate that all tested CD4mc are capable of activating as well as inactivating Env function. Biphasic dose-response curves indicated that the occupancy of the protomers in the Env trimer governs viral activation versus inactivation. One CD4mc bound per Env trimer activated HIV-1 infection. Envs with two CD4mc bound were activated for infection of CD4-negative, CCR5-positive cells, but the infection of CD4-positive, CCR5-positive cells was inhibited. Virus was inactivated when all three Env protomers were occupied by the CD4mc, and gp120 shedding from the Env trimer was increased in the presence of some CD4mc. Env reactivity and the on rates of CD4mc binding to the Env trimer were found to be important determinants of the potency of activation and entry inhibition. Cross-sensitization of Env protomers that do not bind the CD4mc to neutralization by an anti-V3 antibody was not evident. These insights into the mechanism of antiviral activity of CD4mc should assist efforts to optimize their potency and utility. IMPORTANCE The trimeric envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) mediate virus entry into host cells. Binding to the host cell receptors, CD4 and CCR5, triggers changes in the conformation of the HIV-1 envelope glycoprotein trimer important

  10. Conglutinin binds the HIV-1 envelope glycoprotein gp 160 and inhibits its interaction with cell membrane CD4

    DEFF Research Database (Denmark)

    Andersen, Ove; Sørensen, A M; Svehag, S E

    1991-01-01

    The highly glycosylated envelope glycoprotein (gp 160) of human immunodeficiency virus (HIV) interacts with the CD4 molecule present on the membrane of CD4+ cells and is involved in the pathobiology of HIV infection. Lectins bind glycoproteins through non-covalent interactions with specific hexose...

  11. Guidelines for cloning, expression, purification and functional characterization of primary HIV-1 envelope glycoproteins.

    Science.gov (United States)

    Benureau, Yann; Colin, Philippe; Staropoli, Isabelle; Gonzalez, Nuria; Garcia-Perez, Javier; Alcami, Jose; Arenzana-Seisdedos, Fernando; Lagane, Bernard

    2016-10-01

    The trimeric HIV-1 envelope (Env) glycoproteins gp120 and gp41 mediate virus entry into target cells by engaging CD4 and the coreceptors CCR5 or CXCR4 at the cell surface and driving membrane fusion. Receptor/gp120 interactions regulate the virus life cycle, HIV infection transmission and pathogenesis. Env is also the target of neutralizing antibodies. Efforts have thus been made to produce soluble HIV-1 glycoproteins to develop vaccines and study the role and mechanisms of HIV/receptor interactions. However, production and purification of Env glycoproteins and their functional assessment has to cope with multiple obstacles. These include difficulties in amplifying and cloning env sequences and setting up receptor binding assays that are suitable for studies on large collections of glycoproteins, flexible enough to adapt to Env and receptor structural heterogeneities, and allow recapitulating the receptor binding properties of virion-associated Env trimers. Here we identify these difficulties and present protocols to produce primary gp120 and determination of their binding properties to receptors. The receptor binding assays confirmed that the produced glycoproteins are competent for binding CD4 and undergo proper CD4-induced conformational changes required for interaction with CCR5. These assays may help elucidate the role of gp120/receptor interactions in the pathophysiology of HIV infection and develop HIV-1 entry inhibitors. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Conglutinin binds the HIV-1 envelope glycoprotein gp 160 and inhibits its interaction with cell membrane CD4

    DEFF Research Database (Denmark)

    Andersen, Ove; Sørensen, A M; Svehag, S E

    1991-01-01

    The highly glycosylated envelope glycoprotein (gp 160) of human immunodeficiency virus (HIV) interacts with the CD4 molecule present on the membrane of CD4+ cells and is involved in the pathobiology of HIV infection. Lectins bind glycoproteins through non-covalent interactions with specific hexose...... of the binding of rgp160 to the CD4 receptor on CEM 13 cells, as demonstrated by FACS analyses. These results indicate that conglutinin may inhibit the infection with HIV-1 through its interaction with the viral envelope glycoprotein....

  13. Understanding the Process of Envelope Glycoprotein Incorporation into Virions in Simian and Feline Immunodeficiency Viruses

    Directory of Open Access Journals (Sweden)

    José L. Affranchino

    2014-01-01

    Full Text Available The lentiviral envelope glycoproteins (Env mediate virus entry by interacting with specific receptors present at the cell surface, thereby determining viral tropism and pathogenesis. Therefore, Env incorporation into the virions formed by assembly of the viral Gag polyprotein at the plasma membrane of the infected cells is a key step in the replication cycle of lentiviruses. Besides being useful models of human immunodeficiency virus (HIV infections in humans and valuable tools for developing AIDS therapies and vaccines, simian and feline immunodeficiency viruses (SIV and FIV, respectively are relevant animal retroviruses; the study of which provides important information on how lentiviral replication strategies have evolved. In this review, we discuss the molecular mechanisms underlying the incorporation of the SIV and FIV Env glycoproteins into viral particles.

  14. Reduction of cerebral glucose utilization by the HIV envelope glycoprotein Gp-120

    International Nuclear Information System (INIS)

    Kimes, A.S.; London, E.D.; Szabo, G.; Raymon, L.; Tabakoff, B.

    1991-01-01

    Gp-120 is a glycoprotein constituent of the human immunodeficiency virus (HIV) envelope. The effects of gp-120 on cerebral glucose utilization in rats were studied by the quantitative 2-deoxy-D-[1-14C] glucose method. Intracerebroventricular injection of gp-120 significantly reduced glucose utilization in the lateral habenula and the suprachiasmatic nucleus and decreased the global cerebral metabolic rate for glucose. The findings suggest that gp-120 and closely related peptides can alter neuronal function, thereby contributing to the sequelae of HIV infection

  15. HIV envelope glycoprotein imaged at high resolution | Center for Cancer Research

    Science.gov (United States)

    The outer surface of the human immunodeficiency virus (HIV) is surrounded by an envelope studded with spike-shaped glycoproteins called Env that help the deadly virus identify, bind, and infect cells. When unbound, Env exists in a “closed” conformational state. Upon binding with target cells, such as CD4+ T cells, the protein transitions to an “open” configuration. Given that Env is the only viral protein expressed on HIV’s surface, knowing its detailed structure—especially in the unbound state—may be critical for designing antibodies and vaccines against HIV.

  16. Humoral immune response to the entire human immunodeficiency virus envelope glycoprotein made in insect cells

    Energy Technology Data Exchange (ETDEWEB)

    Rusche, J.R.; Lynn, D.L.; Robert-Guroff, M.; Langlois, A.J.; Lyerly, H.K.; Carson, H.; Krohn, K.; Ranki, A.; Gallo, R.C.; Bolognesi, D.P.; Putney, S.D.

    1987-10-01

    The human immunodeficiency virus envelope gene was expressed in insect cells by using a Baculovirus expression vector. The protein has an apparent molecular mass of 160 kDa, appears on the surface of infected insect cells, and does not appear to be cleaved to glycoproteins gp120 and gp41. Goats immunized with the 160-kDa protein have high titers of antibody that neutralizes virus infection as measured by viral gene expression or cell cytolysis. In addition, immune sera can block fusion of human immunodeficiency virus-infected cells in culture. Both neutralization and fusion-blocking activities are bound to and eluted from immobilized gp120.

  17. Codon Optimization Leads to Functional Impairment of RD114-TR Envelope Glycoprotein

    Directory of Open Access Journals (Sweden)

    Eleonora Zucchelli

    2017-03-01

    Full Text Available Lentiviral vectors (LVs are a highly valuable tool for gene transfer currently exploited in basic, applied, and clinical studies. Their optimization is therefore very important for the field of vectorology and gene therapy. A key molecule for LV function is the envelope because it guides cell entry. The most commonly used in transiently produced LVs is the vesicular stomatitis virus glycoprotein (VSV-G envelope, whose continuous expression is, however, toxic for stable LV producer cells. In contrast, the feline endogenous retroviral RD114-TR envelope is suitable for stable LV manufacturing, being well tolerated by producer cells under constitutive expression. We have previously reported successful, transient and stable production of LVs pseudotyped with RD114-TR for good transduction of T lymphocytes and CD34+ cells. To further improve RD114-TR-pseudotyped LV cell entry by increasing envelope expression, we codon-optimized the RD114-TR open reading frame (ORF. Here we show that, despite the RD114-TRco precursor being produced at a higher level than the wild-type counterpart, it is unexpectedly not duly glycosylated, exported to the cytosol, and processed. Correct cleavage of the precursor in the functional surface and transmembrane subunits is prevented in vivo, and, consequently, the unprocessed precursor is incorporated into LVs, making them inactive.

  18. Feline immunodeficiency virus envelope glycoproteins antagonize tetherin through a distinctive mechanism that requires virion incorporation.

    Science.gov (United States)

    Morrison, James H; Guevara, Rebekah B; Marcano, Adriana C; Saenz, Dyana T; Fadel, Hind J; Rogstad, Daniel K; Poeschla, Eric M

    2014-03-01

    BST2/tetherin inhibits the release of enveloped viruses from cells. Primate lentiviruses have evolved specific antagonists (Vpu, Nef, and Env). Here we characterized tetherin proteins of species representing both branches of the order Carnivora. Comparison of tiger and cat (Feliformia) to dog and ferret (Caniformia) genes demonstrated that the tiger and cat share a start codon mutation that truncated most of the tetherin cytoplasmic tail early in the Feliformia lineage (19 of 27 amino acids, including the dual tyrosine motif). Alpha interferon (IFN-α) induced tetherin and blocked feline immunodeficiency virus (FIV) replication in lymphoid and nonlymphoid feline cells. Budding of bald FIV and HIV particles was blocked by carnivore tetherins. However, infectious FIV particles were resistant, and spreading FIV replication was uninhibited. Antagonism mapped to the envelope glycoprotein (Env), which rescued FIV from carnivore tetherin restriction when expressed in trans but, in contrast to known antagonists, did not rescue noncognate particles. Also unlike the primate lentiviral antagonists, but similar to the Ebola virus glycoprotein, FIV Env did not reduce intracellular or cell surface tetherin levels. Furthermore, FIV-enveloped FIV particles actually required tetherin for optimal release from cells. The results show that FIV Envs mediate a distinctive tetherin evasion. Well adapted to a phylogenetically ancient tetherin tail truncation in the Felidae, it requires functional virion incorporation of Env, and it shields the budding particle without downregulating plasma membrane tetherin. Moreover, FIV has evolved dependence on this protein: particles containing FIV Env need tetherin for optimal release from the cell, while Env(-) particles do not. HIV-1 antagonizes the restriction factor tetherin with the accessory protein Vpu, while HIV-2 and the filovirus Ebola use their envelope (Env) glycoproteins for this purpose. It turns out that the FIV tetherin antagonist is

  19. HIV-1 Envelope Glycoprotein Trafficking through the Endosomal Recycling Compartment Is Required for Particle Incorporation.

    Science.gov (United States)

    Kirschman, Junghwa; Qi, Mingli; Ding, Lingmei; Hammonds, Jason; Dienger-Stambaugh, Krista; Wang, Jaang-Jiun; Lapierre, Lynne A; Goldenring, James R; Spearman, Paul

    2018-03-01

    The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) encodes specific trafficking signals within its long cytoplasmic tail (CT) that regulate incorporation into HIV-1 particles. Rab11-family interacting protein 1C (FIP1C) and Rab14 are host trafficking factors required for Env particle incorporation, suggesting that Env undergoes sorting from the endosomal recycling compartment (ERC) to the site of particle assembly on the plasma membrane. We disrupted outward sorting from the ERC by expressing a C-terminal fragment of FIP1C (FIP1C 560-649 ) and examined the consequences on Env trafficking and incorporation into particles. FIP1C 560-649 reduced cell surface levels of Env and prevented its incorporation into HIV-1 particles. Remarkably, Env was trapped in an exaggerated perinuclear ERC in a CT-dependent manner. Mutation of either the Yxxϕ endocytic motif or the YW 795 motif in the CT prevented Env trapping in the ERC and restored incorporation into particles. In contrast, simian immunodeficiency virus SIVmac239 Env was not retained in the ERC, while substitution of the HIV-1 CT for the SIV CT resulted in SIV Env retention in this compartment. These results provide the first direct evidence that Env traffics through the ERC and support a model whereby HIV-1 Env is specifically targeted to the ERC prior to FIP1C- and CT-dependent outward sorting to the particle assembly site on the plasma membrane. IMPORTANCE The HIV envelope protein is an essential component of the viral particle. While many aspects of envelope protein structure and function have been established, the pathway it follows in the cell prior to reaching the site of particle assembly is not well understood. The envelope protein has a very long cytoplasmic tail that interacts with the host cell trafficking machinery. Here, we utilized a truncated form of the trafficking adaptor FIP1C protein to arrest the intracellular transport of the envelope protein, demonstrating that it becomes

  20. Genetic signatures in the envelope glycoproteins of HIV-1 that associate with broadly neutralizing antibodies.

    Directory of Open Access Journals (Sweden)

    S Gnanakaran

    Full Text Available A steady increase in knowledge of the molecular and antigenic structure of the gp120 and gp41 HIV-1 envelope glycoproteins (Env is yielding important new insights for vaccine design, but it has been difficult to translate this information to an immunogen that elicits broadly neutralizing antibodies. To help bridge this gap, we used phylogenetically corrected statistical methods to identify amino acid signature patterns in Envs derived from people who have made potently neutralizing antibodies, with the hypothesis that these Envs may share common features that would be useful for incorporation in a vaccine immunogen. Before attempting this, essentially as a control, we explored the utility of our computational methods for defining signatures of complex neutralization phenotypes by analyzing Env sequences from 251 clonal viruses that were differentially sensitive to neutralization by the well-characterized gp120-specific monoclonal antibody, b12. We identified ten b12-neutralization signatures, including seven either in the b12-binding surface of gp120 or in the V2 region of gp120 that have been previously shown to impact b12 sensitivity. A simple algorithm based on the b12 signature pattern was predictive of b12 sensitivity/resistance in an additional blinded panel of 57 viruses. Upon obtaining these reassuring outcomes, we went on to apply these same computational methods to define signature patterns in Env from HIV-1 infected individuals who had potent, broadly neutralizing responses. We analyzed a checkerboard-style neutralization dataset with sera from 69 HIV-1-infected individuals tested against a panel of 25 different Envs. Distinct clusters of sera with high and low neutralization potencies were identified. Six signature positions in Env sequences obtained from the 69 samples were found to be strongly associated with either the high or low potency responses. Five sites were in the CD4-induced coreceptor binding site of gp120, suggesting an

  1. Restricted genetic diversity of HIV-1 subtype C envelope glycoprotein from perinatally infected Zambian infants.

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    Full Text Available BACKGROUND: Mother-to-child transmission of HIV-1 remains a significant problem in the resource-constrained settings where anti-retroviral therapy is still not widely available. Understanding the earliest events during HIV-1 transmission and characterizing the newly transmitted or founder virus is central to intervention efforts. In this study, we analyzed the viral env quasispecies of six mother-infant transmission pairs (MIPs and characterized the genetic features of envelope glycoprotein that could influence HIV-1 subtype C perinatal transmission. METHODOLOGY AND FINDINGS: The V1-V5 region of env was amplified from 6 MIPs baseline samples and 334 DNA sequences in total were analyzed. A comparison of the viral population derived from the mother and infant revealed a severe genetic bottleneck occurring during perinatal transmission, which was characterized by low sequence diversity in the infant. Phylogenetic analysis indicates that most likely in all our infant subjects a single founder virus was responsible for establishing infection. Furthermore, the newly transmitted viruses from the infant had significantly fewer potential N-linked glycosylation sites in Env V1-V5 region and showed a propensity to encode shorter variable loops compared to the nontransmitted viruses. In addition, a similar intensity of selection was seen between mothers and infants with a higher rate of synonymous (dS compared to nonsynonymous (dN substitutions evident (dN/dS<1. CONCLUSIONS: Our results indicate that a strong genetic bottleneck occurs during perinatal transmission of HIV-1 subtype C. This is evident through population diversity and phylogenetic patterns where a single viral variant appears to be responsible for infection in the infants. As a result the newly transmitted viruses are less diverse and harbored significantly less glycosylated envelope. This suggests that viruses with the restricted glycosylation in envelope glycoprotein appeared to be

  2. A single amino acid substitution in the transmembrane envelope glycoprotein of feline immunodeficiency virus alters cellular tropism

    NARCIS (Netherlands)

    Horzinek, M.C.; Vahlenkamp, T.W.; Verschoor, E.J.; Schuurman, N.M.P.; Vliet, A.L.W. van; Egberink, H.F.; Ronde, A. de

    1997-01-01

    The cellular tropism of the feline immunodeficiency virus (FIV) is affected by changes in variable region 3 (V3) of the surface (SU) envelope glycoprotein (Verschoor, E. J., et al., J. Virol. 69:4752- 4757, 1995). By using high-dose DNA transfection, an FIV molecular clone with a non-CRFK-tropic V3

  3. Functional Hierarchy of Herpes Simplex Virus 1 Viral Glycoproteins in Cytoplasmic Virion Envelopment and Egress

    Science.gov (United States)

    Chouljenko, Dmitry V.; Kim, In-Joong; Chouljenko, Vladimir N.; Subramanian, Ramesh; Walker, Jason D.

    2012-01-01

    Herpes simplex virus 1 (HSV-1) viral glycoproteins gD (carboxyl terminus), gE, gK, and gM, the membrane protein UL20, and membrane-associated protein UL11 play important roles in cytoplasmic virion envelopment and egress from infected cells. We showed previously that a recombinant virus carrying a deletion of the carboxyl-terminal 29 amino acids of gD (gDΔct) and the entire gE gene (ΔgE) did not exhibit substantial defects in cytoplasmic virion envelopment and egress (H. C. Lee et al., J. Virol. 83:6115–6124, 2009). The recombinant virus ΔgM2, engineered not to express gM, produced a 3- to 4-fold decrease in viral titers and a 50% reduction in average plaque sizes in comparison to the HSV-1(F) parental virus. The recombinant virus containing all three mutations, gDΔct-ΔgM2-ΔgE, replicated approximately 1 log unit less efficiently than the HSV-1(F) parental virus and produced viral plaques which were on average one-third the size of those of HSV-1(F). The recombinant virus ΔUL11-ΔgM2, engineered not to express either UL11 or gM, replicated more than 1 log unit less efficiently and produced significantly smaller plaques than UL11-null or gM-null viruses alone, in agreement with the results of Leege et al. (T. Leege et al., J. Virol. 83:896-907, 2009). Analyses of particle-to-PFU ratios, relative plaque size, and kinetics of virus growth and ultrastructural visualization of glycoprotein-deficient mutant and wild-type virions indicate that gDΔct, gE, and gM function in a cooperative but not redundant manner in infectious virion morphogenesis. Overall, comparisons of single, double, and triple mutant viruses generated in the same HSV-1(F) genetic background indicated that lack of either UL20 or gK expression caused the most severe defects in cytoplasmic envelopment, egress, and infectious virus production, followed by the double deletion of UL11 and gM. PMID:22318149

  4. Distinct requirements for signal peptidase processing and function in the stable signal peptide subunit of the Junin virus envelope glycoprotein

    International Nuclear Information System (INIS)

    York, Joanne; Nunberg, Jack H.

    2007-01-01

    The arenavirus envelope glycoprotein (GP-C) retains a cleaved and stable signal peptide (SSP) as an essential subunit of the mature complex. This 58-amino-acid residue peptide serves as a signal sequence and is additionally required to enable transit of the assembled GP-C complex to the Golgi, and for pH-dependent membrane fusion activity. We have investigated the C-terminal region of the Junin virus SSP to study the role of the cellular signal peptidase (SPase) in generating SSP. Site-directed mutagenesis at the cleavage site (positions - 1 and - 3) reveals a pattern of side-chain preferences consistent with those of SPase. Although position - 2 is degenerate for SPase cleavage, this residue in the arenavirus SSP is invariably a cysteine. In the Junin virus, this cysteine is not involved in disulfide bonding. We show that replacement with alanine or serine is tolerated for SPase cleavage but prevents the mutant SSP from associating with GP-C and enabling transport to the cell surface. Conversely, an arginine mutation at position - 1 that prevents SPase cleavage is fully compatible with GP-C-mediated membrane fusion activity when the mutant SSP is provided in trans. These results point to distinct roles of SSP sequences in SPase cleavage and GP-C biogenesis. Further studies of the unique structural organization of the GP-C complex will be important in identifying novel opportunities for antiviral intervention against arenaviral hemorrhagic disease

  5. Herpes simplex virus glycoproteins gB and gD function in a redundant fashion to promote secondary envelopment.

    Science.gov (United States)

    Johnson, David C; Wisner, Todd W; Wright, Catherine C

    2011-05-01

    Egress of herpes simplex virus (HSV) and other herpesviruses from cells involves extensive modification of cellular membranes and sequential envelopment and deenvelopment steps. HSV glycoproteins are important in these processes, and frequently two or more glycoproteins can largely suffice in any step. Capsids in the nucleus undergo primary envelopment at the inner nuclear membrane (INM), and then enveloped virus particles undergo deenvelopment by fusing with the outer nuclear membrane (ONM). Capsids delivered into the cytoplasm then undergo secondary envelopment, involving trans-Golgi network (TGN) membranes. The deenvelopment step involves HSV glycoproteins gB and gH/gL acting in a redundant fashion. This fusion has features common to the fusion that occurs between the virion envelope and cellular membranes when HSV enters cells, a process requiring gB, gD, and gH/gL. Whether HSV gD also participates (in a redundant fashion with gB or gH/gL) in deenvelopment has not been characterized. Secondary envelopment in the cytoplasm is known to involve HSV gD and gE/gI, also acting in a redundant fashion. Whether gB might also contribute to secondary envelopment, collaborating with gD and gE/gI, is also not clear. To address these questions, we constructed an HSV double mutant lacking gB and gD. The HSV gB(-)/gD(-) mutant exhibited no substantial defects in nuclear egress. In contrast, secondary envelopment was markedly reduced, and there were numerous unenveloped capsids that accumulated in the cytoplasm, as well as increased numbers of partially enveloped capsids and morphologically aberrant enveloped particles with thicker, oblong tegument layers. These defects were different from those observed with HSV gD(-)/gE(-)/gI(-) mutants, which accumulated capsids in large, aggregated masses in the cytoplasm. Our results suggest that HSV gB functions in secondary envelopment, apparently acting downstream of gE/gI.

  6. Glycosylation Benchmark Profile for HIV-1 Envelope Glycoprotein Production Based on Eleven Env Trimers.

    Science.gov (United States)

    Go, Eden P; Ding, Haitao; Zhang, Shijian; Ringe, Rajesh P; Nicely, Nathan; Hua, David; Steinbock, Robert T; Golabek, Michael; Alin, James; Alam, S Munir; Cupo, Albert; Haynes, Barton F; Kappes, John C; Moore, John P; Sodroski, Joseph G; Desaire, Heather

    2017-05-01

    HIV-1 envelope glycoprotein (Env) glycosylation is important because individual glycans are components of multiple broadly neutralizing antibody epitopes, while shielding other sites that might otherwise be immunogenic. The glycosylation on Env is influenced by a variety of factors, including the genotype of the protein, the cell line used for its expression, and the details of the construct design. Here, we used a mass spectrometry (MS)-based approach to map the complete glycosylation profile at every site in multiple HIV-1 Env trimers, accomplishing two goals. (i) We determined which glycosylation sites contain conserved glycan profiles across many trimeric Envs. (ii) We identified the variables that impact Env's glycosylation profile at sites with divergent glycosylation. Over half of the gp120 glycosylation sites on 11 different trimeric Envs have a conserved glycan profile, indicating that a native consensus glycosylation profile does indeed exist among trimers. We showed that some soluble gp120s and gp140s exhibit highly divergent glycosylation profiles compared to trimeric Env. We also assessed the impact of several variables on Env glycosylation: truncating the full-length Env; producing Env, instead of the more virologically relevant T lymphocytes, in CHO cells; and purifying Env with different chromatographic platforms, including nickel-nitrilotriacetic acid (Ni-NTA), 2G12, and PGT151 affinity. This report provides the first consensus glycosylation profile of Env trimers, which should serve as a useful benchmark for HIV-1 vaccine developers. This report also defines the sites where glycosylation may be impacted when Env trimers are truncated or produced in CHO cells. IMPORTANCE A protective HIV-1 vaccine will likely include a recombinant version of the viral envelope glycoprotein (Env). Env is highly glycosylated, and yet vaccine developers have lacked guidance on how to assess whether their immunogens have optimal glycosylation. The following important

  7. Mutations altering the gammaretrovirus endoproteolytic motif affect glycosylation of the envelope glycoprotein and early events of the virus life cycle

    Energy Technology Data Exchange (ETDEWEB)

    Argaw, Takele; Wilson, Carolyn A., E-mail: carolyn.wilson@fda.hhs.gov

    2015-01-15

    Previously, we found that mutation of glutamine to proline in the endoproteolytic cleavage signal of the PERV-C envelope (RQKK to RPKK) resulted in non-infectious vectors. Here, we show that RPKK results in a non-infectious vector when placed in not only a PERV envelope, but also the envelope of a related gammaretrovirus, FeLV-B. The amino acid substitutions do not prevent envelope precursor cleavage, viral core and genome assembly, or receptor binding. Rather, the mutations result in the formation of hyperglycosylated glycoprotein and a reduction in the reverse transcribed minus strand synthesis and undetectable 2-LTR circular DNA in cells exposed to vectors with these mutated envelopes. Our findings suggest novel functions associated with the cleavage signal sequence that may affect trafficking through the glycosylation machinery of the cell. Further, the glycosylation status of the envelope appears to impact post-binding events of the viral life cycle, either membrane fusion, internalization, or reverse transcription. - Highlights: • Env cleavage signal impacts infectivity of gammaretroviruses. • Non-infectious mutants have hyper-glycosylated envelope that bind target cells. • Non-infectious mutants have defects in the formation of the double-stranded DNA. • Env cleavage motif has functions beyond cleavage of the env precursor.

  8. Mutations altering the gammaretrovirus endoproteolytic motif affect glycosylation of the envelope glycoprotein and early events of the virus life cycle

    International Nuclear Information System (INIS)

    Argaw, Takele; Wilson, Carolyn A.

    2015-01-01

    Previously, we found that mutation of glutamine to proline in the endoproteolytic cleavage signal of the PERV-C envelope (RQKK to RPKK) resulted in non-infectious vectors. Here, we show that RPKK results in a non-infectious vector when placed in not only a PERV envelope, but also the envelope of a related gammaretrovirus, FeLV-B. The amino acid substitutions do not prevent envelope precursor cleavage, viral core and genome assembly, or receptor binding. Rather, the mutations result in the formation of hyperglycosylated glycoprotein and a reduction in the reverse transcribed minus strand synthesis and undetectable 2-LTR circular DNA in cells exposed to vectors with these mutated envelopes. Our findings suggest novel functions associated with the cleavage signal sequence that may affect trafficking through the glycosylation machinery of the cell. Further, the glycosylation status of the envelope appears to impact post-binding events of the viral life cycle, either membrane fusion, internalization, or reverse transcription. - Highlights: • Env cleavage signal impacts infectivity of gammaretroviruses. • Non-infectious mutants have hyper-glycosylated envelope that bind target cells. • Non-infectious mutants have defects in the formation of the double-stranded DNA. • Env cleavage motif has functions beyond cleavage of the env precursor

  9. Elite suppressor-derived HIV-1 envelope glycoproteins exhibit reduced entry efficiency and kinetics.

    Directory of Open Access Journals (Sweden)

    Kara G Lassen

    2009-04-01

    Full Text Available Elite suppressors (ES are a rare subset of HIV-1-infected individuals who are able to maintain HIV-1 viral loads below the limit of detection by ultra-sensitive clinical assays in the absence of antiretroviral therapy. Mechanism(s responsible for this elite control are poorly understood but likely involve both host and viral factors. This study assesses ES plasma-derived envelope glycoprotein (env fitness as a function of entry efficiency as a possible contributor to viral suppression. Fitness of virus entry was first evaluated using a novel inducible cell line with controlled surface expression levels of CD4 (receptor and CCR5 (co-receptor. In the context of physiologic CCR5 and CD4 surface densities, ES envs exhibited significantly decreased entry efficiency relative to chronically infected viremic progressors. ES envs also demonstrated slow entry kinetics indicating the presence of virus with reduced entry fitness. Overall, ES env clones were less efficient at mediating entry than chronic progressor envs. Interestingly, acute infection envs exhibited an intermediate phenotypic pattern not distinctly different from ES or chronic progressor envs. These results imply that lower env fitness may be established early and may directly contribute to viral suppression in ES individuals.

  10. Global rescue of defects in HIV-1 envelope glycoprotein incorporation: implications for matrix structure.

    Directory of Open Access Journals (Sweden)

    Philip R Tedbury

    Full Text Available The matrix (MA domain of HIV-1 Gag plays key roles in membrane targeting of Gag, and envelope (Env glycoprotein incorporation into virions. Although a trimeric MA structure has been available since 1996, evidence for functional MA trimers has been elusive. The mechanism of HIV-1 Env recruitment into virions likewise remains unclear. Here, we identify a point mutation in MA that rescues the Env incorporation defects imposed by an extensive panel of MA and Env mutations. Mapping the mutations onto the putative MA trimer reveals that the incorporation-defective mutations cluster at the tips of the trimer, around the perimeter of a putative gap in the MA lattice into which the cytoplasmic tail of gp41 could insert. By contrast, the rescue mutation is located at the trimer interface, suggesting that it may confer rescue of Env incorporation via modification of MA trimer interactions, a hypothesis consistent with additional mutational analysis. These data strongly support the existence of MA trimers in the immature Gag lattice and demonstrate that rescue of Env incorporation defects is mediated by modified interactions at the MA trimer interface. The data support the hypothesis that mutations in MA that block Env incorporation do so by imposing a steric clash with the gp41 cytoplasmic tail, rather than by disrupting a specific MA-gp41 interaction. The importance of the trimer interface in rescuing Env incorporation suggests that the trimeric arrangement of MA may be a critical factor in permitting incorporation of Env into the Gag lattice.

  11. IFITM Proteins Restrict HIV-1 Infection by Antagonizing the Envelope Glycoprotein

    Directory of Open Access Journals (Sweden)

    Jingyou Yu

    2015-10-01

    Full Text Available The interferon-induced transmembrane (IFITM proteins have been recently shown to restrict HIV-1 and other viruses. Here, we provide evidence that IFITM proteins, particularly IFITM2 and IFITM3, specifically antagonize the HIV-1 envelope glycoprotein (Env, thereby inhibiting viral infection. IFITM proteins interact with HIV-1 Env in viral producer cells, leading to impaired Env processing and virion incorporation. Notably, the level of IFITM incorporation into HIV-1 virions does not strictly correlate with the extent of inhibition. Prolonged passage of HIV-1 in IFITM-expressing T lymphocytes leads to emergence of Env mutants that overcome IFITM restriction. The ability of IFITMs to inhibit cell-to-cell infection can be extended to HIV-1 primary isolates, HIV-2 and SIVs; however, the extent of inhibition appears to be virus-strain dependent. Overall, our study uncovers a mechanism by which IFITM proteins specifically antagonize HIV-1 Env to restrict HIV-1 infection and provides insight into the specialized role of IFITMs in HIV infection.

  12. Bloch spin waves and emergent structure in protein folding with HIV envelope glycoprotein as an example

    Science.gov (United States)

    Dai, Jin; Niemi, Antti J.; He, Jianfeng; Sieradzan, Adam; Ilieva, Nevena

    2016-03-01

    We inquire how structure emerges during the process of protein folding. For this we scrutinize collective many-atom motions during all-atom molecular dynamics simulations. We introduce, develop, and employ various topological techniques, in combination with analytic tools that we deduce from the concept of integrable models and structure of discrete nonlinear Schrödinger equation. The example we consider is an α -helical subunit of the HIV envelope glycoprotein gp41. The helical structure is stable when the subunit is part of the biological oligomer. But in isolation, the helix becomes unstable, and the monomer starts deforming. We follow the process computationally. We interpret the evolving structure both in terms of a backbone based Heisenberg spin chain and in terms of a side chain based XY spin chain. We find that in both cases the formation of protein supersecondary structure is akin the formation of a topological Bloch domain wall along a spin chain. During the process we identify three individual Bloch walls and we show that each of them can be modelled with a precision of tenths to several angstroms in terms of a soliton solution to a discrete nonlinear Schrödinger equation.

  13. Composition and Antigenic Effects of Individual Glycan Sites of a Trimeric HIV-1 Envelope Glycoprotein

    Directory of Open Access Journals (Sweden)

    Anna-Janina Behrens

    2016-03-01

    Full Text Available The HIV-1 envelope glycoprotein trimer is covered by an array of N-linked glycans that shield it from immune surveillance. The high density of glycans on the trimer surface imposes steric constraints limiting the actions of glycan-processing enzymes, so that multiple under-processed structures remain on specific areas. These oligomannose glycans are recognized by broadly neutralizing antibodies (bNAbs that are not thwarted by the glycan shield but, paradoxically, target it. Our site-specific glycosylation analysis of a soluble, recombinant trimer (BG505 SOSIP.664 maps the extremes of simplicity and diversity of glycan processing at individual sites and reveals a mosaic of dense clusters of oligomannose glycans on the outer domain. Although individual sites usually minimally affect the global integrity of the glycan shield, we identify examples of how deleting some glycans can subtly influence neutralization by bNAbs that bind at distant sites. The network of bNAb-targeted glycans should be preserved on vaccine antigens.

  14. Crystal Structure of West Nile Virus Envelope Glycoprotein Reveals Viral Surface Epitopes

    Energy Technology Data Exchange (ETDEWEB)

    Kanai,R.; Kar, K.; Anthony, K.; Gould, L.; Ledizet, M.; Fikrig, E.; Marasco, W.; Koski, R.; Modis, Y.

    2006-01-01

    West Nile virus, a member of the Flavivirus genus, causes fever that can progress to life-threatening encephalitis. The major envelope glycoprotein, E, of these viruses mediates viral attachment and entry by membrane fusion. We have determined the crystal structure of a soluble fragment of West Nile virus E. The structure adopts the same overall fold as that of the E proteins from dengue and tick-borne encephalitis viruses. The conformation of domain II is different from that in other prefusion E structures, however, and resembles the conformation of domain II in postfusion E structures. The epitopes of neutralizing West Nile virus-specific antibodies map to a region of domain III that is exposed on the viral surface and has been implicated in receptor binding. In contrast, we show that certain recombinant therapeutic antibodies, which cross-neutralize West Nile and dengue viruses, bind a peptide from domain I that is exposed only during the membrane fusion transition. By revealing the details of the molecular landscape of the West Nile virus surface, our structure will assist the design of antiviral vaccines and therapeutics.

  15. Humoral immune response to hypervariable region 1 of the putative envelope glycoprotein (gp70) of hepatitis C virus.

    OpenAIRE

    Kato, N; Sekiya, H; Ootsuyama, Y; Nakazawa, T; Hijikata, M; Ohkoshi, S; Shimotohno, K

    1993-01-01

    We recently found that alterations of amino acids in hypervariable region 1 (HVR1) of the putative envelope glycoprotein (gp70) of hepatitis C virus (HCV) occurred sequentially in the chronic phase of hepatitis at intervals of several months. This finding suggests that mutations in HVR1 are involved in the mechanism of persistent chronic HCV infection involving escape from the immunosurveillance system. To explore this possibility, we examined the humoral immune response to HVR1 with our assa...

  16. Prediction of exposed domains of envelope glycoprotein in Indian HIV-1 isolates and experimental confirmation of their immunogenicity in humans

    Directory of Open Access Journals (Sweden)

    Mohabatkar H.

    2004-01-01

    Full Text Available We describe the impact of subtype differences on the seroreactivity of linear antigenic epitopes in envelope glycoprotein of HIV-1 isolates from different geographical locations. By computer analysis, we predicted potential antigenic sites of envelope glycoprotein (gp120 and gp4l of this virus. For this purpose, after fetching sequences of proteins of interest from data banks, values of hydrophilicity, flexibility, accessibility, inverted hydrophobicity, and secondary structure were considered. We identified several potential antigenic epitopes in a B subtype strain of envelope glycoprotein of HIV-1 (IIIB. Solid- phase peptide synthesis methods of Merrifield and Fmoc chemistry were used for synthesizing peptides. These synthetic peptides corresponded mainly to the C2, V3 and CD4 binding sites of gp120 and some parts of the ectodomain of gp41. The reactivity of these peptides was tested by ELISA against different HIV-1-positive sera from different locations in India. For two of these predicted epitopes, the corresponding Indian consensus sequences (LAIERYLKQQLLGWG and DIIGDIRQAHCNISEDKWNET (subtype C were also synthesized and their reactivity was tested by ELISA. These peptides also distinguished HIV-1-positive sera of Indians with C subtype infections from sera from HIV-negative subjects.

  17. Antigenicity of peptides comprising the immunosuppressive domain of the retroviral envelope glycoprotein [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Bryony Jenkins

    2016-12-01

    Full Text Available To achieve persistent infection of the host, viruses often subvert or suppress host immunity through mechanisms that are not entirely understood. The envelope glycoprotein of several retroviruses is thought to possess potent immunosuppressive activity, mapped to a 17-amino acid residue conserved domain. Synthetic peptides corresponding to this immunosuppressive domain can inhibit lymphocyte activation, whereas mutation of key domain residues can increase the lymphocyte response to linked antigenic epitopes. Using three T cell receptors (TCRs of defined specificity, we examine the effect of the immunosuppressive domain on the T cell response to their respective antigenic peptides. We find that fusion of a T cell epitope to the immunosuppressive domain can greatly modulate its potency. However, the effects heavily depend on the particular combination of TCR and peptide-major histocompatibility complex class II (pMHC II, and are mimicked by sequence-scrambled peptides of similar length, suggesting they operate at the level of TCR-pMHC interaction. These results offer an alternative explanation for the immunogenicity of T cell epitopes comprising the putative immunosuppressive domain, which is more consistent with an effect on peptide antigenicity than true immunosuppressive activity.

  18. Antigenicity of peptides comprising the immunosuppressive domain of the retroviral envelope glycoprotein [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Bryony Jenkins

    2017-02-01

    Full Text Available To achieve persistent infection of the host, viruses often subvert or suppress host immunity through mechanisms that are not entirely understood. The envelope glycoprotein of several retroviruses is thought to possess potent immunosuppressive activity, mapped to a 17-amino acid residue conserved domain. Synthetic peptides corresponding to this immunosuppressive domain can inhibit lymphocyte activation, whereas mutation of key domain residues can increase the lymphocyte response to linked antigenic epitopes. Using three T cell receptors (TCRs of defined specificity, we examine the effect of the immunosuppressive domain on the T cell response to their respective antigenic peptides. We find that fusion of a T cell epitope to the immunosuppressive domain can greatly modulate its potency. However, the effects heavily depend on the particular combination of TCR and peptide-major histocompatibility complex class II (pMHC II, and are mimicked by sequence-scrambled peptides of similar length, suggesting they operate at the level of pMHC formation or TCR-pMHC interaction. These results offer an alternative explanation for the immunogenicity of T cell epitopes comprising the putative immunosuppressive domain, which is more consistent with an effect on peptide antigenicity than true immunosuppressive activity.

  19. A mechanistic understanding of allosteric immune escape pathways in the HIV-1 envelope glycoprotein.

    Directory of Open Access Journals (Sweden)

    Anurag Sethi

    Full Text Available The HIV-1 envelope (Env spike, which consists of a compact, heterodimeric trimer of the glycoproteins gp120 and gp41, is the target of neutralizing antibodies. However, the high mutation rate of HIV-1 and plasticity of Env facilitates viral evasion from neutralizing antibodies through various mechanisms. Mutations that are distant from the antibody binding site can lead to escape, probably by changing the conformation or dynamics of Env; however, these changes are difficult to identify and define mechanistically. Here we describe a network analysis-based approach to identify potential allosteric immune evasion mechanisms using three known HIV-1 Env gp120 protein structures from two different clades, B and C. First, correlation and principal component analyses of molecular dynamics (MD simulations identified a high degree of long-distance coupled motions that exist between functionally distant regions within the intrinsic dynamics of the gp120 core, supporting the presence of long-distance communication in the protein. Then, by integrating MD simulations with network theory, we identified the optimal and suboptimal communication pathways and modules within the gp120 core. The results unveil both strain-dependent and -independent characteristics of the communication pathways in gp120. We show that within the context of three structurally homologous gp120 cores, the optimal pathway for communication is sequence sensitive, i.e. a suboptimal pathway in one strain becomes the optimal pathway in another strain. Yet the identification of conserved elements within these communication pathways, termed inter-modular hotspots, could present a new opportunity for immunogen design, as this could be an additional mechanism that HIV-1 uses to shield vulnerable antibody targets in Env that induce neutralizing antibody breadth.

  20. Genetic Diversity Underlying the Envelope Glycoproteins of Hepatitis C Virus: Structural and Functional Consequences and the Implications for Vaccine Design

    Directory of Open Access Journals (Sweden)

    Alexander W. Tarr

    2015-07-01

    Full Text Available In the 26 years since the discovery of Hepatitis C virus (HCV a major global research effort has illuminated many aspects of the viral life cycle, facilitating the development of targeted antivirals. Recently, effective direct-acting antiviral (DAA regimens with >90% cure rates have become available for treatment of chronic HCV infection in developed nations, representing a significant advance towards global eradication. However, the high cost of these treatments results in highly restricted access in developing nations, where the disease burden is greatest. Additionally, the largely asymptomatic nature of infection facilitates continued transmission in at risk groups and resource constrained settings due to limited surveillance. Consequently a prophylactic vaccine is much needed. The HCV envelope glycoproteins E1 and E2 are located on the surface of viral lipid envelope, facilitate viral entry and are the targets for host immunity, in addition to other functions. Unfortunately, the extreme global genetic and antigenic diversity exhibited by the HCV glycoproteins represents a significant obstacle to vaccine development. Here we review current knowledge of HCV envelope protein structure, integrating knowledge of genetic, antigenic and functional diversity to inform rational immunogen design.

  1. What Do Chaotrope-Based Avidity Assays for Antibodies to HIV-1 Envelope Glycoproteins Measure?

    Science.gov (United States)

    Alexander, Marina R; Ringe, Rajesh; Sanders, Rogier W; Voss, James E; Moore, John P; Klasse, Per Johan

    2015-06-01

    When HIV-1 vaccine candidates that include soluble envelope glycoproteins (Env) are tested in humans and other species, the resulting antibody responses to Env are sifted for correlates of protection or risk. One frequently used assay measures the reduction in antibody binding to Env antigens by an added chaotrope (such as thiocyanate). Based on that assay, an avidity index was devised for assessing the affinity maturation of antibodies of unknown concentration in polyclonal sera. Since a high avidity index was linked to protection in animal models of HIV-1 infection, it has become a criterion for evaluating antibody responses to vaccine candidates. But what does the assay measure and what does an avidity index mean? Here, we have used a panel of monoclonal antibodies to well-defined epitopes on Env (gp120, gp41, and SOSIP.664 trimers) to explore how the chaotrope acts. We conclude that the chaotrope sensitivity of antibody binding to Env depends on several properties of the epitopes (continuity versus tertiary- and quaternary-structural dependence) and that the avidity index has no simple relationship to antibody affinity for functional Env spikes on virions. We show that the binding of broadly neutralizing antibodies against quaternary-structural epitopes is particularly sensitive to chaotrope treatment, whereas antibody binding to epitopes in variable loops and to nonneutralization epitopes in gp41 is generally resistant. As a result of such biases, the avidity index may at best be a mere surrogate for undefined antibody or other immune responses that correlate weakly with protection. An effective HIV-1 vaccine is an important goal. Such a vaccine will probably need to induce antibodies that neutralize typically transmitted variants of HIV-1, preventing them from infecting target cells. Vaccine candidates have so far failed to induce such antibody responses, although some do protect weakly against infection in animals and, possibly, humans. In the search for

  2. Dimers of beta 2-glycoprotein I mimic the in vitro effects of beta 2-glycoprotein I-anti-beta 2-glycoprotein I antibody complexes

    NARCIS (Netherlands)

    Lutters, B. C.; Meijers, J. C.; Derksen, R. H.; Arnout, J.; de Groot, P. G.

    2001-01-01

    Anti-beta(2)-glycoprotein I antibodies are thought to cause lupus anticoagulant activity by forming bivalent complexes with beta(2)-glycoprotein I (beta(2)GPI). To test this hypothesis, chimeric fusion proteins were constructed of the dimerization domain (apple 4) of factor XI and beta(2)GPI. Both a

  3. Elicitation of neutralizing antibodies directed against CD4-induced epitope(s using a CD4 mimetic cross-linked to a HIV-1 envelope glycoprotein.

    Directory of Open Access Journals (Sweden)

    Antu K Dey

    Full Text Available The identification of HIV-1 envelope glycoprotein (Env structures that can generate broadly neutralizing antibodies (BNAbs is pivotal to the development of a successful vaccine against HIV-1 aimed at eliciting effective humoral immune responses. To that end, the production of novel Env structure(s that might induce BNAbs by presentation of conserved epitopes, which are otherwise occluded, is critical. Here, we focus on a structure that stabilizes Env in a conformation representative of its primary (CD4 receptor-bound state, thereby exposing highly conserved "CD4 induced" (CD4i epitope(s known to be important for co-receptor binding and subsequent virus infection. A CD4-mimetic miniprotein, miniCD4 (M64U1-SH, was produced and covalently complexed to recombinant, trimeric gp140 envelope glycoprotein (gp140 using site-specific disulfide linkages. The resulting gp140-miniCD4 (gp140-S-S-M64U1 complex was recognized by CD4i antibodies and the HIV-1 co-receptor, CCR5. The gp140-miniCD4 complex elicited the highest titers of CD4i binding antibodies as well as enhanced neutralizing antibodies against Tier 1 viruses as compared to gp140 protein alone following immunization of rabbits. Neutralization against HIV-2(7312/V434M and additional serum mapping confirm the specific elicitation of antibodies directed to the CD4i epitope(s. These results demonstrate the utility of structure-based approach in improving immunogenic response against specific region, such as the CD4i epitope(s here, and its potential role in vaccine application.

  4. Effect of trimerization motifs on quaternary structure, antigenicity, and immunogenicity of a noncleavable HIV-1 gp140 envelope glycoprotein

    International Nuclear Information System (INIS)

    Du, Sean X.; Idiart, Rebecca J.; Mariano, Ellaine B.; Chen, Helen; Jiang Peifeng; Xu Li; Ostrow, Kristin M.; Wrin, Terri; Phung, Pham; Binley, James M.; Petropoulos, Christos J.; Ballantyne, John A.; Whalen, Robert G.

    2009-01-01

    The external domains of the HIV-1 envelope glycoprotein (gp120 and the gp41 ectodomain, collectively known as gp140) contain all known viral neutralization epitopes. Various strategies have been used to create soluble trimers of the envelope to mimic the structure of the native viral protein, including mutation of the gp120-gp41 cleavage site, introduction of disulfide bonds, and fusion to heterologous trimerization motifs. We compared the effects on quaternary structure, antigenicity, and immunogenicity of three such motifs: T4 fibritin, a GCN4 variant, and the Escherichia coli aspartate transcarbamoylase catalytic subunit. Fusion of each motif to the C-terminus of a noncleavable JRCSF gp140(-) envelope protein led to enhanced trimerization but had limited effects on the antigenic profile and CD4-binding ability of the trimers. Immunization of rabbits provided no evidence that the trimerized gp140(-) constructs induced significantly improved neutralizing antibodies to several HIV-1 pseudoviruses, compared to gp140 lacking a trimerization motif. However, modest differences in both binding specificity and neutralizing antibody responses were observed among the various immunogens.

  5. Inhibition of human immunodeficiency virus (HIV) infection in vitro by anticarbohydrate monoclonal antibodies: peripheral glycosylation of HIV envelope glycoprotein gp120 may be a target for virus neutralization

    DEFF Research Database (Denmark)

    Hansen, J E; Clausen, H; Nielsen, C

    1990-01-01

    Carbohydrate structures are often involved in the initial adhesion of pathogens to target cells. In the present study, a panel of anticarbohydrate monoclonal antibodies (MAbs) was tested for their ability to inhibit in vitro human immunodeficiency virus infectivity. MAbs against three different N...... carbohydrate structures expressed by the viral envelope glycoprotein gp120, indicating that glycans of the viral envelope are possible targets for immunotherapy or vaccine development or both....

  6. Determinants of the Bovine Leukemia Virus Envelope Glycoproteins Involved in Infectivity, Replication and Pathogenesis

    Directory of Open Access Journals (Sweden)

    Alix de Brogniez

    2016-03-01

    Full Text Available Interaction of viral envelope proteins with host cell membranes has been extensively investigated in a number of systems. However, the biological relevance of these interactions in vivo has been hampered by the absence of adequate animal models. Reverse genetics using the bovine leukemia virus (BLV genome highlighted important functional domains of the envelope protein involved in the viral life cycle. For example, immunoreceptor tyrosine-based activation motifs (ITAM of the envelope transmembrane protein (TM are essential determinants of infection. Although cell fusion directed by the aminoterminal end of TM is postulated to be essential, some proviruses expressing fusion-deficient envelope proteins unexpectedly replicate at wild-type levels. Surprisingly also, a conserved N-linked glycosylation site of the extracellular envelope protein (SU inhibits cell-to-cell transmission suggesting that infectious potential has been limited during evolution. In this review, we summarize the knowledge pertaining to the BLV envelope protein in the context of viral infection, replication and pathogenesis.

  7. Determinants of the Bovine Leukemia Virus Envelope Glycoproteins Involved in Infectivity, Replication and Pathogenesis

    Science.gov (United States)

    de Brogniez, Alix; Mast, Jan; Willems, Luc

    2016-01-01

    Interaction of viral envelope proteins with host cell membranes has been extensively investigated in a number of systems. However, the biological relevance of these interactions in vivo has been hampered by the absence of adequate animal models. Reverse genetics using the bovine leukemia virus (BLV) genome highlighted important functional domains of the envelope protein involved in the viral life cycle. For example, immunoreceptor tyrosine-based activation motifs (ITAM) of the envelope transmembrane protein (TM) are essential determinants of infection. Although cell fusion directed by the aminoterminal end of TM is postulated to be essential, some proviruses expressing fusion-deficient envelope proteins unexpectedly replicate at wild-type levels. Surprisingly also, a conserved N-linked glycosylation site of the extracellular envelope protein (SU) inhibits cell-to-cell transmission suggesting that infectious potential has been limited during evolution. In this review, we summarize the knowledge pertaining to the BLV envelope protein in the context of viral infection, replication and pathogenesis. PMID:27023592

  8. Residues in the gp41 Ectodomain Regulate HIV-1 Envelope Glycoprotein Conformational Transitions Induced by gp120-Directed Inhibitors

    Science.gov (United States)

    Pacheco, Beatriz; Alsahafi, Nirmin; Debbeche, Olfa; Prévost, Jérémie; Ding, Shilei; Chapleau, Jean-Philippe; Herschhorn, Alon; Madani, Navid; Princiotto, Amy; Melillo, Bruno; Gu, Christopher; Zeng, Xin; Mao, Youdong; Smith, Amos B.

    2016-01-01

    ABSTRACT Interactions between the gp120 and gp41 subunits of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer maintain the metastable unliganded form of the viral spike. Binding of gp120 to the receptor, CD4, changes the Env conformation to promote gp120 interaction with the second receptor, CCR5 or CXCR4. CD4 binding also induces the transformation of Env into the prehairpin intermediate, in which the gp41 heptad repeat 1 (HR1) coiled coil is assembled at the trimer axis. In nature, HIV-1 Envs must balance the requirements to maintain the noncovalent association of gp120 with gp41 and to evade the host antibody response with the need to respond to CD4 binding. Here we show that the gp41 HR1 region contributes to gp120 association with the unliganded Env trimer. Changes in particular amino acid residues in the gp41 HR1 region decreased the efficiency with which Env moved from the unliganded state. Thus, these gp41 changes decreased the sensitivity of HIV-1 to cold inactivation and ligands that require Env conformational changes to bind efficiently. Conversely, these gp41 changes increased HIV-1 sensitivity to small-molecule entry inhibitors that block Env conformational changes induced by CD4. Changes in particular gp41 HR1 amino acid residues can apparently affect the relative stability of the unliganded state and CD4-induced conformations. Thus, the gp41 HR1 region contributes to the association with gp120 and regulates Env transitions from the unliganded state to downstream conformations. IMPORTANCE The development of an efficient vaccine able to prevent HIV infection is a worldwide priority. Knowledge of the envelope glycoprotein structure and the conformational changes that occur after receptor engagement will help researchers to develop an immunogen able to elicit antibodies that block HIV-1 transmission. Here we identify residues in the HIV-1 transmembrane envelope glycoprotein that stabilize the unliganded state by

  9. Refining the Mechanisms of Heniparvirus-Mediated Membrane Fusion Through Mutagenesis of Hendra virus Envelope Glycoproteins

    Science.gov (United States)

    2007-09-06

    glycoprotein single point mutants…..67 Figure 9: Effects of multiple point mutations on fusion activity of HeV F……….……..69 Figure 10: Effects of multiple ...relapsing encephalitis (28). How or whether this latter manifestation of disease is at all analogous to Subacute Sclerosing Panencephalitis (SSPE), a...total DNA per T-25cm2 flask overnight followed by infection with wild-type vaccinia virus (strain WR) at a multiplicity of infection (MOI) of 10. At

  10. Broader HIV-1 neutralizing antibody responses induced by envelope glycoprotein mutants based on the EIAV attenuated vaccine

    Directory of Open Access Journals (Sweden)

    Liu Lianxing

    2010-09-01

    Full Text Available Abstract Background In order to induce a potent and cross-reactive neutralizing antibody (nAb, an effective envelope immunogen is crucial for many viral vaccines, including the vaccine for the human immunodeficiency virus (HIV. The Chinese equine infectious anemia virus (EIAV attenuated vaccine has controlled the epidemic of this virus after its vaccination in over 70 million equine animals during the last 3 decades in China. Data from our past studies demonstrate that the Env protein of this vaccine plays a pivotal role in protecting horses from both homologous and heterogeneous EIAV challenges. Therefore, the amino acid sequence information from the Chinese EIAV attenuated vaccine, in comparison with the parental wild-type EIAV strains, was applied to modify the corresponding region of the envelope glycoprotein of HIV-1 CN54. The direction of the mutations was made towards the amino acids conserved in the two EIAV vaccine strains, distinguishing them from the two wild-type strains. The purpose of the modification was to enhance the immunogenicity of the HIV Env. Results The induced nAb by the modified HIV Env neutralized HIV-1 B and B'/C viruses at the highest titer of 1:270. Further studies showed that a single amino acid change in the C1 region accounts for the substantial enhancement in induction of anti-HIV-1 neutralizing antibodies. Conclusions This study shows that an HIV envelope modified by the information of another lentivirus vaccine induces effective broadly neutralizing antibodies. A single amino acid mutation was found to increase the immunogenicity of the HIV Env.

  11. A Molecular Sensor To Characterize Arenavirus Envelope Glycoprotein Cleavage by Subtilisin Kexin Isozyme 1/Site 1 Protease.

    Science.gov (United States)

    Oppliger, Joel; da Palma, Joel Ramos; Burri, Dominique J; Bergeron, Eric; Khatib, Abdel-Majid; Spiropoulou, Christina F; Pasquato, Antonella; Kunz, Stefan

    2016-01-15

    Arenaviruses are emerging viruses including several causative agents of severe hemorrhagic fevers in humans. The advent of next-generation sequencing technology has greatly accelerated the discovery of novel arenavirus species. However, for many of these viruses, only genetic information is available, and their zoonotic disease potential remains unknown. During the arenavirus life cycle, processing of the viral envelope glycoprotein precursor (GPC) by the cellular subtilisin kexin isozyme 1 (SKI-1)/site 1 protease (S1P) is crucial for productive infection. The ability of newly emerging arenaviruses to hijack human SKI-1/S1P appears, therefore, to be a requirement for efficient zoonotic transmission and human disease potential. Here we implement a newly developed cell-based molecular sensor for SKI-1/S1P to characterize the processing of arenavirus GPC-derived target sequences by human SKI-1/S1P in a quantitative manner. We show that only nine amino acids flanking the putative cleavage site are necessary and sufficient to accurately recapitulate the efficiency and subcellular location of arenavirus GPC processing. In a proof of concept, our sensor correctly predicts efficient processing of the GPC of the newly emergent pathogenic Lujo virus by human SKI-1/S1P and defines the exact cleavage site. Lastly, we employed our sensor to show efficient GPC processing of a panel of pathogenic and nonpathogenic New World arenaviruses, suggesting that GPC cleavage represents no barrier for zoonotic transmission of these pathogens. Our SKI-1/S1P sensor thus represents a rapid and robust test system for assessment of the processing of putative cleavage sites derived from the GPCs of newly discovered arenavirus by the SKI-1/S1P of humans or any other species, based solely on sequence information. Arenaviruses are important emerging human pathogens that can cause severe hemorrhagic fevers with high mortality in humans. A crucial step in productive arenavirus infection of human

  12. Structural models of the membrane anchors of envelope glycoproteins E1 and E2 from pestiviruses

    International Nuclear Information System (INIS)

    Wang, Jimin; Li, Yue; Modis, Yorgo

    2014-01-01

    The membrane anchors of viral envelope proteins play essential roles in cell entry. Recent crystal structures of the ectodomain of envelope protein E2 from a pestivirus suggest that E2 belongs to a novel structural class of membrane fusion machinery. Based on geometric constraints from the E2 structures, we generated atomic models of the E1 and E2 membrane anchors using computational approaches. The E1 anchor contains two amphipathic perimembrane helices and one transmembrane helix; the E2 anchor contains a short helical hairpin stabilized in the membrane by an arginine residue, similar to flaviviruses. A pair of histidine residues in the E2 ectodomain may participate in pH sensing. The proposed atomic models point to Cys987 in E2 as the site of disulfide bond linkage with E1 to form E1–E2 heterodimers. The membrane anchor models provide structural constraints for the disulfide bonding pattern and overall backbone conformation of the E1 ectodomain. - Highlights: • Structures of pestivirus E2 proteins impose constraints on E1, E2 membrane anchors. • Atomic models of the E1 and E2 membrane anchors were generated in silico. • A “snorkeling” arginine completes the short helical hairpin in the E2 membrane anchor. • Roles in pH sensing and E1–E2 disulfide bond formation are proposed for E1 residues. • Implications for E1 ectodomain structure and disulfide bonding pattern are discussed

  13. Structural models of the membrane anchors of envelope glycoproteins E1 and E2 from pestiviruses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jimin, E-mail: jimin.wang@yale.edu; Li, Yue; Modis, Yorgo, E-mail: yorgo.modis@yale.edu

    2014-04-15

    The membrane anchors of viral envelope proteins play essential roles in cell entry. Recent crystal structures of the ectodomain of envelope protein E2 from a pestivirus suggest that E2 belongs to a novel structural class of membrane fusion machinery. Based on geometric constraints from the E2 structures, we generated atomic models of the E1 and E2 membrane anchors using computational approaches. The E1 anchor contains two amphipathic perimembrane helices and one transmembrane helix; the E2 anchor contains a short helical hairpin stabilized in the membrane by an arginine residue, similar to flaviviruses. A pair of histidine residues in the E2 ectodomain may participate in pH sensing. The proposed atomic models point to Cys987 in E2 as the site of disulfide bond linkage with E1 to form E1–E2 heterodimers. The membrane anchor models provide structural constraints for the disulfide bonding pattern and overall backbone conformation of the E1 ectodomain. - Highlights: • Structures of pestivirus E2 proteins impose constraints on E1, E2 membrane anchors. • Atomic models of the E1 and E2 membrane anchors were generated in silico. • A “snorkeling” arginine completes the short helical hairpin in the E2 membrane anchor. • Roles in pH sensing and E1–E2 disulfide bond formation are proposed for E1 residues. • Implications for E1 ectodomain structure and disulfide bonding pattern are discussed.

  14. Structural models of the membrane anchors of envelope glycoproteins E1 and E2 from pestiviruses

    Science.gov (United States)

    Wang, Jimin; Li, Yue; Modis, Yorgo

    2014-01-01

    The membrane anchors of viral envelope proteins play essential roles in cell entry. Recent crystal structures of the ectodomain of envelope protein E2 from a pestivirus suggest that E2 belongs to a novel structural class of membrane fusion machinery. Based on geometric constraints from the E2 structures, we generated atomic models of the E1 and E2 membrane anchors using computational approaches. The E1 anchor contains two amphipathic perimembrane helices and one transmembrane helix; the E2 anchor contains a short helical hairpin stabilized in the membrane by an arginine residue, similar to flaviviruses. A pair of histidine residues in the E2 ectodomain may participate in pH sensing. The proposed atomic models point to Cys987 in E2 as the site of disulfide bond linkage with E1 to form E1–E2 heterodimers. The membrane anchor models provide structural constraints for the disulfide bonding pattern and overall backbone conformation of the E1 ectodomain. PMID:24725935

  15. Identification of continuous human B-cell epitopes in the envelope glycoprotein of dengue virus type 3 (DENV-3).

    Science.gov (United States)

    da Silva, Andréa N M Rangel; Nascimento, Eduardo J M; Cordeiro, Marli Tenório; Gil, Laura H V G; Abath, Frederico G C; Montenegro, Silvia M L; Marques, Ernesto T A

    2009-10-13

    Dengue virus infection is a growing global public health concern in tropical and subtropical regions of the world. Dengue vaccine development has been hampered by concerns that cross-reactive immunological memory elicited by a candidate vaccine could increase the risk of development of more severe clinical forms. One possible strategy to reduce risks associated with a dengue vaccine is the development of a vaccine composed of selected critical epitopes of each of the serotypes. Synthetic peptides were used to identify B-cell epitopes in the envelope (E) glycoprotein of dengue virus type 3 (DENV-3). Eleven linear, immunodominant epitopes distributed in five regions at amino acid (aa) positions: 51-65, 71-90, 131-170, 196-210 and 246-260 were identified by employing an enzyme- linked immunosorbent assay (ELISA), using a pool of human sera from dengue type 3 infected individuals. Peptides 11 (aa51-65), 27 and 28 (aa131-150) also reacted with dengue 1 (DENV-1) and dengue 2 (DENV-2) patient sera as analyzed through the ROC curves generated for each peptide by ELISA and might have serotype specific diagnostic potential. Mice immunized against each one of the five immunogenic regions showed epitopes 51-65, 131-170, 196-210 and 246-260 elicited the highest antibody response and epitopes131-170, 196-210 and 246-260, elicited IFN-gamma production and T CD4+ cell response, as evaluated by ELISA and ELISPOT assays respectively. Our study identified several useful immunodominant IgG-specific epitopes on the envelope of DENV-3. They are important tools for understanding the mechanisms involved in antibody dependent enhancement and immunity. If proven protective and safe, in conjunction with others well-documented epitopes, they might be included into a candidate epitope-based vaccine.

  16. Venezuelan equine encephalitis emergence: Enhanced vector infection from a single amino acid substitution in the envelope glycoprotein

    Science.gov (United States)

    Brault, Aaron C.; Powers, Ann M.; Ortiz, Diana; Estrada-Franco, Jose G.; Navarro-Lopez, Roberto; Weaver, Scott C.

    2004-01-01

    In 1993 and 1996, subtype IE Venezuelan equine encephalitis (VEE) virus caused epizootics in the Mexican states of Chiapas and Oaxaca. Previously, only subtype IAB and IC VEE virus strains had been associated with major outbreaks of equine and human disease. The IAB and IC epizootics are believed to emerge via adaptation of enzootic (sylvatic, equine-avirulent) strains for high titer equine viremia that results in efficient infection of mosquito vectors. However, experimental equine infections with subtype IE equine isolates from the Mexican outbreaks demonstrated neuro-virulence but little viremia, inconsistent with typical VEE emergence mechanisms. Therefore, we hypothesized that changes in the mosquito vector host range might have contributed to the Mexican emergence. To test this hypothesis, we evaluated the susceptibility of the most abundant mosquito in the deforested Pacific coastal locations of the VEE outbreaks and a proven epizootic vector, Ochlerotatus taeniorhynchus. The Mexican epizootic equine isolates exhibited significantly greater infectivity compared with closely related enzootic strains, supporting the hypothesis that adaptation to an efficient epizootic vector contributed to disease emergence. Reverse genetic studies implicated a Ser → Asn substitution in the E2 envelope glycoprotein as the major determinant of the increased vector infectivity phenotype. Our findings underscore the capacity of RNA viruses to alter their vector host range through minor genetic changes, resulting in the potential for disease emergence. PMID:15277679

  17. Residues in the membrane-spanning domain core modulate conformation and fusogenicity of the HIV-1 envelope glycoprotein

    International Nuclear Information System (INIS)

    Shang Liang; Hunter, Eric

    2010-01-01

    The membrane-spanning domain (MSD) of human immunodeficiency virus type I (HIV-1) envelope glycoprotein (Env) is critical for its biological activity. Initial studies have defined an almost invariant 'core' structure in the MSD and demonstrated that it is crucial for anchoring Env in the membrane and virus entry. We show here that amino acid substitutions in the MSD 'core' do not influence specific virus-cell attachment, nor CD4 receptor and CXCR4 coreceptor recognition by Env. However, substitutions within the MSD 'core' delayed the kinetics and reduced the efficiency of cell-cell fusion mediated by Env. Although we observed no evidence that membrane fusion mediated by the MSD core mutants was arrested at a hemifusion stage, impaired Env fusogenicity was correlated with minor conformational changes in the V2, C1, and C5 regions in gp120 and the immunodominant loop in gp41. These changes could delay initiation of the conformational changes required in the fusion process.

  18. Comprehensive analysis of the codon usage patterns in the envelope glycoprotein E2 gene of the classical swine fever virus.

    Directory of Open Access Journals (Sweden)

    Ye Chen

    Full Text Available The classical swine fever virus (CSFV, circulating worldwide, is a highly contagious virus. Since the emergence of CSFV, it has caused great economic loss in swine industry. The envelope glycoprotein E2 gene of the CSFV is an immunoprotective antigen that induces the immune system to produce neutralizing antibodies. Therefore, it is essential to study the codon usage of the E2 gene of the CSFV. In this study, 140 coding sequences of the E2 gene were analyzed. The value of effective number of codons (ENC showed low codon usage bias in the E2 gene. Our study showed that codon usage could be described mainly by mutation pressure ENC plot analysis combined with principal component analysis (PCA and translational selection-correlation analysis between the general average hydropathicity (Gravy and aromaticity (Aroma, and nucleotides at the third position of codons (A3s, T3s, G3s, C3s and GC3s. Furthermore, the neutrality analysis, which explained the relationship between GC12s and GC3s, revealed that natural selection had a key role compared with mutational bias during the evolution of the E2 gene. These results lay a foundation for further research on the molecular evolution of CSFV.

  19. Crystal structure of the pestivirus envelope glycoprotein E(rns) and mechanistic analysis of its ribonuclease activity.

    Science.gov (United States)

    Krey, Thomas; Bontems, Francois; Vonrhein, Clemens; Vaney, Marie-Christine; Bricogne, Gerard; Rümenapf, Till; Rey, Félix A

    2012-05-09

    Pestiviruses, which belong to the Flaviviridae family of RNA viruses, are important agents of veterinary diseases causing substantial economical losses in animal farming worldwide. Pestivirus particles display three envelope glycoproteins at their surface: E(rns), E1, and E2. We report here the crystal structure of the catalytic domain of E(rns), the ribonucleolytic activity of which is believed to counteract the innate immunity of the host. The structure reveals a three-dimensional fold corresponding to T2 ribonucleases from plants and fungi. Cocrystallization experiments with mono- and oligonucleotides revealed the structural basis for substrate recognition at two binding sites previously identified for T2 RNases. A detailed analysis of poly-U cleavage products using (31)P-NMR and size exclusion chromatography, together with molecular docking studies, provides a comprehensive mechanistic picture of E(rns) activity on its substrates and reveals the presence of at least one additional nucleotide binding site. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Modeling data irregularities and structural complexities in data envelopment analysis

    CERN Document Server

    Zhu, Joe

    2007-01-01

    In a relatively short period of time, Data Envelopment Analysis (DEA) has grown into a powerful quantitative, analytical tool for measuring and evaluating performance. It has been successfully applied to a whole variety of problems in many different contexts worldwide. This book deals with the micro aspects of handling and modeling data issues in modeling DEA problems. DEA's use has grown with its capability of dealing with complex "service industry" and the "public service domain" types of problems that require modeling of both qualitative and quantitative data. This handbook treatment deals with specific data problems including: imprecise or inaccurate data; missing data; qualitative data; outliers; undesirable outputs; quality data; statistical analysis; software and other data aspects of modeling complex DEA problems. In addition, the book will demonstrate how to visualize DEA results when the data is more than 3-dimensional, and how to identify efficiency units quickly and accurately.

  1. Complex envelope control of pulsed accelerating fields in superconducting cavities

    CERN Document Server

    Czarski, T

    2010-01-01

    A digital control system for superconducting cavities of a linear accelerator is presented in this work. FPGA (Field Programmable Gate Arrays) based controller, managed by MATLAB, was developed to investigate a novel firmware implementation. The LLRF - Low Level Radio Frequency system for FLASH project in DESY is introduced. Essential modeling of a cavity resonator with signal and power analysis is considered as a key approach to the control methods. An electrical model is represented by the non-stationary state space equation for the complex envelope of the cavity voltage driven by the current generator and the beam loading. The electromechanical model of the superconducting cavity resonator including the Lorentz force detuning has been developed for a simulation purpose. The digital signal processing is proposed for the field vector detection. The field vector sum control is considered for multiple cavities driven by one klystron. An algebraic, complex domain model is proposed for the system analysis. The c...

  2. Nuclear envelopathies: a complex LINC between nuclear envelope and pathology.

    Science.gov (United States)

    Janin, Alexandre; Bauer, Delphine; Ratti, Francesca; Millat, Gilles; Méjat, Alexandre

    2017-08-30

    Since the identification of the first disease causing mutation in the gene coding for emerin, a transmembrane protein of the inner nuclear membrane, hundreds of mutations and variants have been found in genes encoding for nuclear envelope components. These proteins can be part of the inner nuclear membrane (INM), such as emerin or SUN proteins, outer nuclear membrane (ONM), such as Nesprins, or the nuclear lamina, such as lamins A and C. However, they physically interact with each other to insure the nuclear envelope integrity and mediate the interactions of the nuclear envelope with both the genome, on the inner side, and the cytoskeleton, on the outer side. The core of this complex, called LINC (LInker of Nucleoskeleton to Cytoskeleton) is composed of KASH and SUN homology domain proteins. SUN proteins are INM proteins which interact with lamins by their N-terminal domain and with the KASH domain of nesprins located in the ONM by their C-terminal domain.Although most of these proteins are ubiquitously expressed, their mutations have been associated with a large number of clinically unrelated pathologies affecting specific tissues. Moreover, variants in SUN proteins have been found to modulate the severity of diseases induced by mutations in other LINC components or interactors. For these reasons, the diagnosis and the identification of the molecular explanation of "nuclear envelopathies" is currently challenging.The aim of this review is to summarize the human diseases caused by mutations in genes coding for INM proteins, nuclear lamina, and ONM proteins, and to discuss their potential physiopathological mechanisms that could explain the large spectrum of observed symptoms.

  3. Feline tetherin is characterized by a short N-terminal region and is counteracted by the feline immunodeficiency virus envelope glycoprotein.

    Science.gov (United States)

    Celestino, Michele; Calistri, Arianna; Del Vecchio, Claudia; Salata, Cristiano; Chiuppesi, Flavia; Pistello, Mauro; Borsetti, Alessandra; Palù, Giorgio; Parolin, Cristina

    2012-06-01

    Tetherin (BST2) is the host cell factor that blocks the particle release of some enveloped viruses. Two putative feline tetherin proteins differing at the level of the N-terminal coding region have recently been described and tested for their antiviral activity. By cloning and comparing the two reported feline tetherins (called here cBST2(504) and cBST2*) and generating specific derivative mutants, this study provides evidence that feline tetherin has a shorter intracytoplasmic domain than those of other known homologues. The minimal tetherin promoter was identified and assayed for its ability to drive tetherin expression in an alpha interferon-inducible manner. We also demonstrated that cBST2(504) is able to dimerize, is localized at the cellular membrane, and impairs human immunodeficiency virus type 1 (HIV-1) particle release, regardless of the presence of the Vpu antagonist accessory protein. While cBST2(504) failed to restrict wild-type feline immunodeficiency virus (FIV) egress, FIV mutants, bearing a frameshift at the level of the envelope-encoding region, were potently blocked. The transient expression of the FIV envelope glycoprotein was able to rescue mutant particle release from feline tetherin-positive cells but did not antagonize human BST2 activity. Moreover, cBST2(504) was capable of specifically immunoprecipitating the FIV envelope glycoprotein. Finally, cBST2(504) also exerted its function on HIV-2 ROD10 and on the simian immunodeficiency virus SIVmac239. Taken together, these results show that feline tetherin does indeed have a short N-terminal region and that the FIV envelope glycoprotein is the predominant factor counteracting tetherin restriction.

  4. The impact of envelope glycoprotein cleavage on the antigenicity, infectivity, and neutralization sensitivity of Env-pseudotyped human immunodeficiency virus type 1 particles

    International Nuclear Information System (INIS)

    Herrera, Carolina; Klasse, Per Johan; Michael, Elizabeth; Kake, Shivani; Barnes, Kelly; Kibler, Christopher W.; Campbell-Gardener, Lila; Si, Zhihai; Sodroski, Joseph; Moore, John P.; Beddows, Simon

    2005-01-01

    Endoproteolytic processing of the human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoproteins is an obligate part of the biosynthetic pathway that generates functional, fusion-competent Env complexes, which are then incorporated into infectious virions. We have examined the influence of cleavage on Env-specific antibody reactivity, Env incorporation into pseudovirions, and the infectivity and neutralization sensitivity of Env-pseudotyped viruses. To do so, we have used both incompletely processed wild-type (Wt) Env and engineered, cleavage-defective Env mutants. We find that there is no simple association between antibody reactivity to cell surface-expressed Env, and the ability of the same antibody to neutralize virus pseudotyped with the same Env proteins. One explanation for the absence of such an association is the diverse array of Env species present on the surface of transiently transfected cells. We also confirm that cleavage-defective mutants are antigenically different from Wt Env. These findings have implications for the use of Env binding assays as predictors of neutralizing activity, and for the development of cleavage-defective Env trimers for use as subunit immunogens

  5. A sensitive radioimmunoprecipitation assay for the detection and quantitation of antibodies to the envelope glycoprotein gp120 of the human immunodeficiency virus (HIV-1)

    International Nuclear Information System (INIS)

    Lucas, C.; Peterson, M.L.; Bennett, G.L.; Frie, S.W.; Berman, P.W.; Chen, A.B.

    1990-01-01

    A radioimmunoprecipitation (RIP) assay was developed to detect antibodies to the envelope glycoprotein gp120 of the human immunodeficiency virus (HIV-1). The assay, which utilized recombinant gp120 (rgp120), was quantitative, reproducible, and specific for antibodies to rgp120 or antibodies to native gp120 resulting from natural infection with HIV. Polyethylene glycol-8000 (PEG), used in the assay at a final concentration of 10% to precipitate immune complexes, was demonstrated to be effective in titering sera from different animal species. Provided samples were diluted at least 1:100, antibody titers could be determined either by the classical dilution method or by interpolation from a calibration curve prepared with a positive serum. The humoral response of animals immunized with rgp120 was monitored and a positive correlation was found between titers determined in the RIP assay and the ability of the sera to neutralize. In addition, RIP titers of HIV-positive human sera correlated very well with reactivity obtained in a commercial HIV immunoblot assay. The assay has the advantage of quantitation, fast turnaround time, and versatility

  6. Dystrophin-glycoprotein complex sequesters Yap to inhibit cardiomyocyte proliferation.

    Science.gov (United States)

    Morikawa, Yuka; Heallen, Todd; Leach, John; Xiao, Yang; Martin, James F

    2017-07-13

    The regenerative capacity of the adult mammalian heart is limited, because of the reduced ability of cardiomyocytes to progress through mitosis. Endogenous cardiomyocytes have regenerative capacity at birth but this capacity is lost postnatally, with subsequent organ growth occurring through cardiomyocyte hypertrophy. The Hippo pathway, a conserved kinase cascade, inhibits cardiomyocyte proliferation in the developing heart to control heart size and prevents regeneration in the adult heart. The dystrophin-glycoprotein complex (DGC), a multicomponent transmembrane complex linking the actin cytoskeleton to extracellular matrix, is essential for cardiomyocyte homeostasis. DGC deficiency in humans results in muscular dystrophy, including the lethal Duchenne muscular dystrophy. Here we show that the DGC component dystroglycan 1 (Dag1) directly binds to the Hippo pathway effector Yap to inhibit cardiomyocyte proliferation in mice. The Yap-Dag1 interaction was enhanced by Hippo-induced Yap phosphorylation, revealing a connection between Hippo pathway function and the DGC. After injury, Hippo-deficient postnatal mouse hearts maintained organ size control by repairing the defect with correct dimensions, whereas postnatal hearts deficient in both Hippo and the DGC showed cardiomyocyte overproliferation at the injury site. In the hearts of mature Mdx mice (which have a point mutation in Dmd)-a model of Duchenne muscular dystrophy-Hippo deficiency protected against overload-induced heart failure.

  7. Herpes simplex virus glycoproteins gB and gH function in fusion between the virion envelope and the outer nuclear membrane.

    Science.gov (United States)

    Farnsworth, Aaron; Wisner, Todd W; Webb, Michael; Roller, Richard; Cohen, Gary; Eisenberg, Roselyn; Johnson, David C

    2007-06-12

    Herpesviruses must traverse the nuclear envelope to gain access to the cytoplasm and, ultimately, to exit cells. It is believed that herpesvirus nucleocapsids enter the perinuclear space by budding through the inner nuclear membrane (NM). To reach the cytoplasm these enveloped particles must fuse with the outer NM and the unenveloped capsids then acquire a second envelope in the trans-Golgi network. Little is known about the process by which herpesviruses virions fuse with the outer NM. Here we show that a herpes simplex virus (HSV) mutant lacking both the two putative fusion glycoproteins gB and gH failed to cross the nuclear envelope. Enveloped virions accumulated in the perinuclear space or in membrane vesicles that bulged into the nucleoplasm (herniations). By contrast, mutants lacking just gB or gH showed only minor or no defects in nuclear egress. We concluded that either HSV gB or gH can promote fusion between the virion envelope and the outer NM. It is noteworthy that fusion associated with HSV entry requires the cooperative action of both gB and gH, suggesting that the two types of fusion (egress versus entry) are dissimilar processes.

  8. Functional stability of unliganded envelope glycoprotein spikes among isolates of human immunodeficiency virus type 1 (HIV-1.

    Directory of Open Access Journals (Sweden)

    Nitish Agrawal

    Full Text Available The HIV-1 envelope glycoprotein (Env spike is challenging to study at the molecular level, due in part to its genetic variability, structural heterogeneity and lability. However, the extent of lability in Env function, particularly for primary isolates across clades, has not been explored. Here, we probe stability of function for variant Envs of a range of isolates from chronic and acute infection, and from clades A, B and C, all on a constant virus backbone. Stability is elucidated in terms of the sensitivity of isolate infectivity to destabilizing conditions. A heat-gradient assay was used to determine T(90 values, the temperature at which HIV-1 infectivity is decreased by 90% in 1 h, which ranged between ∼40 to 49°C (n = 34. For select Envs (n = 10, the half-lives of infectivity decay at 37°C were also determined and these correlated significantly with the T(90 (p = 0.029, though two 'outliers' were identified. Specificity in functional Env stability was also evident. For example, Env variant HIV-1(ADA was found to be labile to heat, 37°C decay, and guanidinium hydrochloride but not to urea or extremes of pH, when compared to its thermostable counterpart, HIV-1(JR-CSF. Blue native PAGE analyses revealed that Env-dependent viral inactivation preceded complete dissociation of Env trimers. The viral membrane and membrane-proximal external region (MPER of gp41 were also shown to be important for maintaining trimer stability at physiological temperature. Overall, our results indicate that primary HIV-1 Envs can have diverse sensitivities to functional inactivation in vitro, including at physiological temperature, and suggest that parameters of functional Env stability may be helpful in the study and optimization of native Env mimetics and vaccines.

  9. Neutralizing antibody responses in macaques induced by human immunodeficiency virus type 1 monovalent or trivalent envelope glycoproteins.

    Directory of Open Access Journals (Sweden)

    Gerald V Quinnan

    Full Text Available A major goal of efforts to develop a vaccine to prevent HIV-1 infection is induction of broadly cross-reactive neutralizing antibodies (bcnAb. In previous studies we have demonstrated induction of neutralizing antibodies that did cross-react among multiple primary and laboratory strains of HIV-1, but neutralized with limited potency. In the present study we tested the hypothesis that immunization with multiple HIV-1 envelope glycoproteins (Envs would result in a more potent and cross-reactive neutralizing response. One Env, CM243(N610Q, was selected on the basis of studies of the effects of single and multiple mutations of the four gp41 glycosylation sites. The other two Envs included R2 (subtype B and 14/00/4 (subtype F, both of which were obtained from donors with bcnAb. Rhesus monkeys were immunized using a prime boost regimen as in previous studies. Individual groups of monkeys were immunized with either one of the three Envs or all three. The single N610Q and N615Q mutations of CM243 Env did not disrupt protein secretion, processing into, or reactivity with mAbs, unlike other single or multiple deglycosylation mutations. In rabbit studies the N610Q mutation alone or in combination was associated with an enhanced neutralizing response against homologous and heterologous subtype E viruses. In the subsequent monkey study the response induced by the R2 Env regimen was equivalent to the trivalent regimen and superior to the other monovalent regimens against the virus panel used for testing. The 14/00/4 Env induced responses superior to CM243(N610Q. The results indicate that elimination of the glycosylation site near the gp41 loop results in enhanced immunogenicity, but that immunization of monkeys with these three distinct Envs was not more immunogenic than with one.

  10. Advancing the manufacture of complex geometry GFRC for today's building envelopes

    Directory of Open Access Journals (Sweden)

    Thomas Henriksen

    2017-06-01

    With this research the current architectural knowledge base has been advanced in terms of complex geometry thin-walled GFRC for building envelopes. The identified solutions should allow building with complex geometries to be realised using thin-walled GFRC as the envelope cladding.

  11. Cross-Reactive Human IgM-Derived Monoclonal Antibodies that Bind to HIV-1 Envelope Glycoproteins

    Directory of Open Access Journals (Sweden)

    Barton F. Haynes

    2010-02-01

    Full Text Available Elicitation of antibodies with potent and broad neutralizing activity against HIV by immunization remains a challenge. Several monoclonal antibodies (mAbs isolated from humans with HIV-1 infection exhibit such activity but vaccine immunogens based on structures containing their epitopes have not been successful for their elicitation. All known broadly neutralizing mAbs (bnmAbs are immunoglobulin (Ig Gs (IgGs and highly somatically hypermutated which could impede their elicitation. Ig Ms (IgMs are on average significantly less divergent from germline antibodies and are relevant for the development of vaccine immunogens but are underexplored compared to IgGs. Here we describe the identification and characterization of several human IgM-derived mAbs against HIV-1 which were selected from a large phage-displayed naive human antibody library constructed from blood, lymph nodes and spleens of 59 healthy donors. These antibodies bound with high affinity to recombinant envelope glycoproteins (gp140s, Envs of HIV-1 isolates from different clades. They enhanced or did not neutralize infection by some of the HIV-1 primary isolates using CCR5 as a coreceptor but neutralized all CXCR4 isolates tested although weakly. One of these antibodies with relatively low degree of somatic hypermutation was more extensively characterized. It bound to a highly conserved region partially overlapping with the coreceptor binding site and close to but not overlapping with the CD4 binding site. These results suggest the existence of conserved structures that could direct the immune response to non-neutralizing or even enhancing antibodies which may represent a strategy used by the virus to escape neutralizing immune responses. Further studies will show whether such a strategy plays a role in HIV infection of humans, how important that role could be, and what the mechanisms of infection enhancement are. The newly identified mAbs could be used as reagents to further

  12. The role of cholesterol and sphingolipids in chemokine receptor function and HIV-1 envelope glycoprotein-mediated fusion

    Directory of Open Access Journals (Sweden)

    Puri Anu

    2006-12-01

    Full Text Available Abstract Background HIV-1 entry into cells is a multifaceted process involving target cell CD4 and the chemokine receptors, CXCR4 or CCR5. The lipid composition of the host cell plays a significant role in the HIV fusion process as it orchestrates the appropriate disposition of CD4 and co-receptors required for HIV-1 envelope glycoprotein (Env-mediated fusion. The cell membrane is primarily composed of sphingolipids and cholesterol. The effects of lipid modulation on CD4 disposition in the membrane and their role in HIV-1 entry have extensively been studied. To focus on the role of lipid composition on chemokine receptor function, we have by-passed the CD4 requirement for HIV-1 Env-mediated fusion by using a CD4-independent strain of HIV-1 Env. Results Cell fusion mediated by a CD4-independent strain of HIV-1 Env was monitored by observing dye transfer between Env-expressing cells and NIH3T3 cells bearing CXCR4 or CCR5 in the presence or absence of CD4. Chemokine receptor signaling was assessed by monitoring changes in intracellular [Ca2+] mobilization induced by CCR5 or CXCR4 ligand. To modulate target membrane cholesterol or sphingolipids we used Methyl-β-cyclodextrin (MβCD or 1-phenyl-2-hexadecanoylamino-3-morpholino-1-propanol (PPMP, respectively. Treatment of the target cells with these agents did not change the levels of CD4 or CXCR4, but reduced levels of CCR5 on the cell surface. Chemokine receptor signalling was inhibited by cholesterol removal but not by treatment with PPMP. HIV-1 Env mediated fusion was inhibited by >50% by cholesterol removal. Overall, PPMP treatment appeared to slow down the rates of CD4-independent HIV-1 Env-mediated Fusion. However, in the case of CXCR4-dependent fusion, the differences between untreated and PPMP-treated cells did not appear to be significant. Conclusion Although modulation of cholesterol and sphingolipids has similar effects on CD4 -dependent HIV-1 Env-mediated fusion, sphingolipid modulation

  13. Antigenic properties of the human immunodeficiency virus envelope glycoprotein gp120 on virions bound to target cells.

    Directory of Open Access Journals (Sweden)

    Meron Mengistu

    2015-03-01

    Full Text Available The HIV-1 envelope glycoprotein, gp120, undergoes multiple molecular interactions and structural rearrangements during the course of host cell attachment and viral entry, which are being increasingly defined at the atomic level using isolated proteins. In comparison, antigenic markers of these dynamic changes are essentially unknown for single HIV-1 particles bound to target cells. Such markers should indicate how neutralizing and/or non-neutralizing antibodies might interdict infection by either blocking infection or sensitizing host cells for elimination by Fc-mediated effector function. Here we address this deficit by imaging fluorescently labeled CCR5-tropic HIV-1 pseudoviruses using confocal and superresolution microscopy to track the exposure of neutralizing and non-neutralizing epitopes as they appear on single HIV-1 particles bound to target cells. Epitope exposure was followed under conditions permissive or non-permissive for viral entry to delimit changes associated with virion binding from those associated with post-attachment events. We find that a previously unexpected array of gp120 epitopes is exposed rapidly upon target cell binding. This array comprises both neutralizing and non-neutralizing epitopes, the latter being hidden on free virions yet capable of serving as potent targets for Fc-mediated effector function. Under non-permissive conditions for viral entry, both neutralizing and non-neutralizing epitope exposures were relatively static over time for the majority of bound virions. Under entry-permissive conditions, epitope exposure patterns changed over time on subsets of virions that exhibited concurrent variations in virion contents. These studies reveal that bound virions are distinguished by a broad array of both neutralizing and non-neutralizing gp120 epitopes that potentially sensitize a freshly engaged target cell for destruction by Fc-mediated effector function and/or for direct neutralization at a post-binding step

  14. Antibodies Elicited by Multiple Envelope Glycoprotein Immunogens in Primates Neutralize Primary Human Immunodeficiency Viruses (HIV-1) Sensitized by CD4-Mimetic Compounds.

    Science.gov (United States)

    Madani, Navid; Princiotto, Amy M; Easterhoff, David; Bradley, Todd; Luo, Kan; Williams, Wilton B; Liao, Hua-Xin; Moody, M Anthony; Phad, Ganesh E; Vázquez Bernat, Néstor; Melillo, Bruno; Santra, Sampa; Smith, Amos B; Karlsson Hedestam, Gunilla B; Haynes, Barton; Sodroski, Joseph

    2016-05-15

    The human immunodeficiency virus (HIV-1) envelope glycoproteins (Env) mediate virus entry through a series of complex conformational changes triggered by binding to the receptors CD4 and CCR5/CXCR4. Broadly neutralizing antibodies that recognize conserved Env epitopes are thought to be an important component of a protective immune response. However, to date, HIV-1 Env immunogens that elicit broadly neutralizing antibodies have not been identified, creating hurdles for vaccine development. Small-molecule CD4-mimetic compounds engage the CD4-binding pocket on the gp120 exterior Env and induce Env conformations that are highly sensitive to neutralization by antibodies, including antibodies directed against the conserved Env region that interacts with CCR5/CXCR4. Here, we show that CD4-mimetic compounds sensitize primary HIV-1 to neutralization by antibodies that can be elicited in monkeys and humans within 6 months by several Env vaccine candidates, including gp120 monomers. Monoclonal antibodies directed against the gp120 V2 and V3 variable regions were isolated from the immunized monkeys and humans; these monoclonal antibodies neutralized a primary HIV-1 only when the virus was sensitized by a CD4-mimetic compound. Thus, in addition to their direct antiviral effect, CD4-mimetic compounds dramatically enhance the HIV-1-neutralizing activity of antibodies that can be elicited with currently available immunogens. Used as components of microbicides, the CD4-mimetic compounds might increase the protective efficacy of HIV-1 vaccines. Preventing HIV-1 transmission is a high priority for global health. Eliciting antibodies that can neutralize transmitted strains of HIV-1 is difficult, creating problems for the development of an effective vaccine. We found that small-molecule CD4-mimetic compounds sensitize HIV-1 to antibodies that can be elicited in vaccinated humans and monkeys. These results suggest an approach to prevent HIV-1 sexual transmission in which a virus

  15. Antibodies Elicited by Multiple Envelope Glycoprotein Immunogens in Primates Neutralize Primary Human Immunodeficiency Viruses (HIV-1) Sensitized by CD4-Mimetic Compounds

    Science.gov (United States)

    Madani, Navid; Princiotto, Amy M.; Easterhoff, David; Bradley, Todd; Luo, Kan; Williams, Wilton B.; Liao, Hua-Xin; Moody, M. Anthony; Phad, Ganesh E.; Vázquez Bernat, Néstor; Melillo, Bruno; Santra, Sampa; Smith, Amos B.; Karlsson Hedestam, Gunilla B.; Haynes, Barton

    2016-01-01

    ABSTRACT The human immunodeficiency virus (HIV-1) envelope glycoproteins (Env) mediate virus entry through a series of complex conformational changes triggered by binding to the receptors CD4 and CCR5/CXCR4. Broadly neutralizing antibodies that recognize conserved Env epitopes are thought to be an important component of a protective immune response. However, to date, HIV-1 Env immunogens that elicit broadly neutralizing antibodies have not been identified, creating hurdles for vaccine development. Small-molecule CD4-mimetic compounds engage the CD4-binding pocket on the gp120 exterior Env and induce Env conformations that are highly sensitive to neutralization by antibodies, including antibodies directed against the conserved Env region that interacts with CCR5/CXCR4. Here, we show that CD4-mimetic compounds sensitize primary HIV-1 to neutralization by antibodies that can be elicited in monkeys and humans within 6 months by several Env vaccine candidates, including gp120 monomers. Monoclonal antibodies directed against the gp120 V2 and V3 variable regions were isolated from the immunized monkeys and humans; these monoclonal antibodies neutralized a primary HIV-1 only when the virus was sensitized by a CD4-mimetic compound. Thus, in addition to their direct antiviral effect, CD4-mimetic compounds dramatically enhance the HIV-1-neutralizing activity of antibodies that can be elicited with currently available immunogens. Used as components of microbicides, the CD4-mimetic compounds might increase the protective efficacy of HIV-1 vaccines. IMPORTANCE Preventing HIV-1 transmission is a high priority for global health. Eliciting antibodies that can neutralize transmitted strains of HIV-1 is difficult, creating problems for the development of an effective vaccine. We found that small-molecule CD4-mimetic compounds sensitize HIV-1 to antibodies that can be elicited in vaccinated humans and monkeys. These results suggest an approach to prevent HIV-1 sexual transmission in

  16. A single site for N-linked glycosylation in the envelope glycoprotein of feline immunodeficiency virus modulates the virus-receptor interaction

    Directory of Open Access Journals (Sweden)

    Samman Ayman

    2008-08-01

    Full Text Available Abstract Feline immunodeficiency virus (FIV targets helper T cells by attachment of the envelope glycoprotein (Env to CD134, a subsequent interaction with CXCR4 then facilitating the process of viral entry. As the CXCR4 binding site is not exposed until CD134-binding has occurred then the virus is protected from neutralising antibodies targeting the CXCR4-binding site on Env. Prototypic FIV vaccines based on the FL4 strain of FIV contain a cell culture-adapted strain of FIV Petaluma, a CD134-independent strain of FIV that interacts directly with CXCR4. In addition to a characteristic increase in charge in the V3 loop homologue of FIVFL4, we identified two mutations in potential sites for N-linked glycosylation in the region of FIV Env analogous to the V1–V2 region of HIV and SIV Env, T271I and N342Y. When these mutations were introduced into the primary GL8 and CPG41 strains of FIV, the T271I mutation was found to alter the nature of the virus-CD134 interaction; primary viruses carrying the T271I mutation no longer required determinants in cysteine-rich domain (CRD 2 of CD134 for viral entry. The T271I mutation did not confer CD134-independent infection upon GL8 or CPG41, nor did it increase the affinity of the CXCR4 interaction, suggesting that the principal effect was targeted at reducing the complexity of the Env-CD134 interaction.

  17. Learning the Relationship between the Primary Structure of HIV Envelope Glycoproteins and Neutralization Activity of Particular Antibodies by Using Artificial Neural Networks

    Science.gov (United States)

    Buiu, Cătălin; Putz, Mihai V.; Avram, Speranta

    2016-01-01

    The dependency between the primary structure of HIV envelope glycoproteins (ENV) and the neutralization data for given antibodies is very complicated and depends on a large number of factors, such as the binding affinity of a given antibody for a given ENV protein, and the intrinsic infection kinetics of the viral strain. This paper presents a first approach to learning these dependencies using an artificial feedforward neural network which is trained to learn from experimental data. The results presented here demonstrate that the trained neural network is able to generalize on new viral strains and to predict reliable values of neutralizing activities of given antibodies against HIV-1. PMID:27727189

  18. Learning the Relationship between the Primary Structure of HIV Envelope Glycoproteins and Neutralization Activity of Particular Antibodies by Using Artificial Neural Networks.

    Science.gov (United States)

    Buiu, Cătălin; Putz, Mihai V; Avram, Speranta

    2016-10-11

    The dependency between the primary structure of HIV envelope glycoproteins (ENV) and the neutralization data for given antibodies is very complicated and depends on a large number of factors, such as the binding affinity of a given antibody for a given ENV protein, and the intrinsic infection kinetics of the viral strain. This paper presents a first approach to learning these dependencies using an artificial feedforward neural network which is trained to learn from experimental data. The results presented here demonstrate that the trained neural network is able to generalize on new viral strains and to predict reliable values of neutralizing activities of given antibodies against HIV-1.

  19. Effect of partial and complete variable loop deletions of the human immunodeficiency virus type 1 envelope glycoprotein on the breadth of gp160-specific immune responses

    International Nuclear Information System (INIS)

    Gzyl, Jaroslaw; Bolesta, Elizabeth; Wierzbicki, Andrew; Kmieciak, Dariusz; Naito, Toshio; Honda, Mitsuo; Komuro, Katsutoshi; Kaneko, Yutaro; Kozbor, Danuta

    2004-01-01

    Induction of cross-reactive cellular and humoral responses to the HIV-1 envelope (env) glycoprotein was examined after DNA immunization of BALB/c mice with gp140 89.6 -derived constructs exhibiting partial or complete deletions of the V1, V2, and V3 domains. It was demonstrated that specific modification of the V3 loop (mV3) in combination with the V2-modified (mV2) or V1/V2-deleted (ΔV1/V2) region elicited increased levels of cross-reactive CD8 + T cell responses. Mice immunized with the mV2/mV3 or ΔV1/V2/mV3 gp140 89.6 plasmid DNA were greater than 50-fold more resistant to challenge with recombinant vaccinia virus (rVV) expressing heterologous env gene products than animals immunized with the wild-type (WT) counterpart. Sera from mV2/mV3- and ΔV1/V2/mV3-immunized mice exhibited the highest cross-neutralizing activity and displayed intermediate antibody avidity values which were further enhanced by challenge with rVV expressing the homologous gp160 glycoprotein. In contrast, complete deletion of the variable regions had little or no effect on the cross-reactive antibody responses. The results of these experiments indicate that the breadth of antibody responses to the HIV-1 env glycoprotein may not be increased by removal of the variable domains. Instead, partial deletions within these regions may redirect specific responses toward conserved epitopes and facilitate approaches for boosting cross-reactive cellular and antibody responses to the env glycoprotein

  20. Isolation and characterization of an HIV-1 envelope glycoprotein-specific B-cell from an immortalized human naïve B-cell library.

    Science.gov (United States)

    Sun, Zehua; Lu, Shiqiang; Yang, Zheng; Li, Jingjing; Zhang, Meiyun

    2017-04-01

    With the recent development of single B-cell cloning techniques, an increasing number of human immunodeficiency virus type 1 (HIV-1)-specific broadly neutralizing antibodies have been isolated since 2009. However, knowledge regarding HIV-1-specific B cells in vivo is limited. In this study, an HIV-1-specific B-cell line was established using healthy PBMC donors by the highly efficient Epstein-Barr virus transformation method to generate immortalized human naïve B-cell libraries. The enrichment of HIV-1 envelope-specific B cells was observed after four rounds of cell panning with the HIV-1 envelope glycoprotein. An HIV-1 envelope-specific stable B-cell line (LCL-P4) was generated. Although this cell line acquired a lymphoblastic phenotype, no expression was observed for activation-induced cytidine deaminase, an enzyme responsible for initiating somatic hypermutation and class switch recombination in B cells. This study describes a method that enables fast isolation of HIV-1-specific B cells, and this approach may extend to isolating other B-cell-specific antigens for further experiments.

  1. Effects of the I559P gp41 Change on the Conformation and Function of the Human Immunodeficiency Virus (HIV-1) Membrane Envelope Glycoprotein Trimer

    Science.gov (United States)

    Sodroski, Joseph; Finzi, Andrés

    2015-01-01

    The mature human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer is produced by proteolytic cleavage of a precursor and consists of three gp120 exterior and three gp41 transmembrane subunits. The metastable Env complex is induced to undergo conformational changes required for virus entry by the binding of gp120 to the receptors, CD4 and CCR5/CXCR4. An isoleucine-to-proline change (I559P) in the gp41 ectodomain has been used to stabilize soluble forms of HIV-1 Env trimers for structural characterization and for use as immunogens. In the native membrane-anchored HIV-1BG505 Env, the I559P change modestly decreased proteolytic maturation, increased the non-covalent association of gp120 with the Env trimer, and resulted in an Env conformation distinctly different from that of the wild-type HIV-1BG505 Env. Compared with the wild-type Env, the I559P Env was recognized inefficiently by polyclonal sera from HIV-1-infected individuals, by several gp41-directed antibodies, by some antibodies against the CD4-binding site of gp120, and by antibodies that preferentially recognize the CD4-bound Env. Some of the gp120-associated antigenic differences between the wild-type HIV-1BG505 Env and the I559P mutant were compensated by the SOS disulfide bond between gp120 and gp41, which has been used to stabilize cleaved soluble Env trimers. Nonetheless, regardless of the presence of the SOS changes, Envs with proline 559 were recognized less efficiently than Envs with isoleucine 559 by the VRC01 neutralizing antibody, which binds the CD4-binding site of gp120, and the PGT151 neutralizing antibody, which binds a hybrid gp120-gp41 epitope. The I559P change completely eliminated the ability of the HIV-1BG505 Env to mediate cell-cell fusion and virus entry, and abolished the capacity of the SOS Env to support virus infection in the presence of a reducing agent. These results suggest that differences exist between the quaternary structures of functional Env spikes and I559P

  2. Effects of the I559P gp41 change on the conformation and function of the human immunodeficiency virus (HIV-1 membrane envelope glycoprotein trimer.

    Directory of Open Access Journals (Sweden)

    Nirmin Alsahafi

    Full Text Available The mature human immunodeficiency virus (HIV-1 envelope glycoprotein (Env trimer is produced by proteolytic cleavage of a precursor and consists of three gp120 exterior and three gp41 transmembrane subunits. The metastable Env complex is induced to undergo conformational changes required for virus entry by the binding of gp120 to the receptors, CD4 and CCR5/CXCR4. An isoleucine-to-proline change (I559P in the gp41 ectodomain has been used to stabilize soluble forms of HIV-1 Env trimers for structural characterization and for use as immunogens. In the native membrane-anchored HIV-1BG505 Env, the I559P change modestly decreased proteolytic maturation, increased the non-covalent association of gp120 with the Env trimer, and resulted in an Env conformation distinctly different from that of the wild-type HIV-1BG505 Env. Compared with the wild-type Env, the I559P Env was recognized inefficiently by polyclonal sera from HIV-1-infected individuals, by several gp41-directed antibodies, by some antibodies against the CD4-binding site of gp120, and by antibodies that preferentially recognize the CD4-bound Env. Some of the gp120-associated antigenic differences between the wild-type HIV-1BG505 Env and the I559P mutant were compensated by the SOS disulfide bond between gp120 and gp41, which has been used to stabilize cleaved soluble Env trimers. Nonetheless, regardless of the presence of the SOS changes, Envs with proline 559 were recognized less efficiently than Envs with isoleucine 559 by the VRC01 neutralizing antibody, which binds the CD4-binding site of gp120, and the PGT151 neutralizing antibody, which binds a hybrid gp120-gp41 epitope. The I559P change completely eliminated the ability of the HIV-1BG505 Env to mediate cell-cell fusion and virus entry, and abolished the capacity of the SOS Env to support virus infection in the presence of a reducing agent. These results suggest that differences exist between the quaternary structures of functional Env

  3. Host cell recognition by the henipaviruses: Crystal structures of the Nipah G attachment glycoprotein and its complex with ephrin-B3

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kai; Rajashankar, Kanagalaghatta R.; Chan, Yee-Peng; Himanen, Juha P.; Broder, Christopher C.; Nikolov, Dimitar B. (USUHS); (Cornell); (MSKCC)

    2008-07-28

    Nipah virus (NiV) and Hendra virus are the type species of the highly pathogenic paramyxovirus genus Henipavirus, which can cause severe respiratory disease and fatal encephalitis infections in humans, with case fatality rates approaching 75%. NiV contains two envelope glycoproteins, the receptor-binding G glycoprotein (NiV-G) that facilitates attachment to host cells and the fusion (F) glycoprotein that mediates membrane merger. The henipavirus G glycoproteins lack both hemagglutinating and neuraminidase activities and, instead, engage the highly conserved ephrin-B2 and ephrin-B3 cell surface proteins as their entry receptors. Here, we report the crystal structures of the NiV-G both in its receptor-unbound state and in complex with ephrin-B3, providing, to our knowledge, the first view of a paramyxovirus attachment complex in which a cellular protein is used as the virus receptor. Complex formation generates an extensive protein-protein interface around a protruding ephrin loop, which is inserted in the central cavity of the NiV-G {beta}-propeller. Analysis of the structural data reveals the molecular basis for the highly specific interactions of the henipavirus G glycoproteins with only two members (ephrin-B2 and ephrin-B3) of the very large ephrin family and suggests how they mediate in a unique fashion both cell attachment and the initiation of membrane fusion during the virus infection processes. The structures further suggest that the NiV-G/ephrin interactions can be effectively targeted to disrupt viral entry and provide the foundation for structure-based antiviral drug design.

  4. Use of a polyanionic carbomer, Carbopol971P, in combination with MF59, improves antibody responses to HIV-1 envelope glycoprotein

    Science.gov (United States)

    Dey, Antu K.; Burke, Brian; Sun, Yide; Hartog, Karin; Heeney, Jonathan L.; Montefiori, David; Srivastava, Indresh K.; Barnett, Susan W.

    2012-01-01

    Identification of optimal antigen(s) and adjuvant combination(s) to elicit potent, protective, and long-lasting immunity has been a major challenge for the development of effective vaccines against chronic viral pathogens, such as HIV-1, for which there are not yet any licensed vaccines. Here we describe the use of a novel adjuvant approach employing Carbopol 971P® NF (hereafter referred to as Carbopol971P), a cross-linked polyanionic carbomer, in combination with the Novartis proprietary oil-in-water adjuvant, MF59, as a potentially safe and effective adjuvant to augment humoral immune responses to the HIV-1 envelope glycoprotein (Env). Intramuscular immunization of small animals with recombinant Env glycoprotein (gp140) formulated in Carbopol971P plus MF59 gave significantly higher titers of binding and virus neutralizing antibodies as compared to immunization using gp140 with either MF59 or Carbopol971P alone. In addition, the antibodies generated were of higher avidity. Importantly, the use of Carbopol971P plus MF59 did not cause any serious adverse reactions or any obvious health problems in animals upon intramuscular administration. Hence, the Carbopol971P plus MF59 adjuvant formulation may provide a benefit for future vaccine applications. PMID:22366638

  5. Several N-Glycans on the HIV Envelope Glycoprotein gp120 Preferentially Locate Near Disulphide Bridges and Are Required for Efficient Infectivity and Virus Transmission.

    Directory of Open Access Journals (Sweden)

    Leen Mathys

    Full Text Available The HIV envelope glycoprotein gp120 contains nine disulphide bridges and is highly glycosylated, carrying on average 24 N-linked glycans. Using a probability calculation, we here demonstrate that there is a co-localization of disulphide bridges and N-linked glycans in HIV-1 gp120, with a predominance of N-linked glycans in close proximity to disulphide bridges, at the C-terminal side of the involved cysteines. Also, N-glycans are frequently found immediately adjacent to disulphide bridges in gp120 at the N-terminal side of the involved cysteines. In contrast, N-glycans at positions close to, but not immediately neighboring disulphide bridges seem to be disfavored at the N-terminal side of the involved cysteines. Such a pronounced co-localization of disulphide bridges and N-glycans was also found for the N-glycans on glycoprotein E1 of the hepatitis C virus (HCV but not for other heavily glycosylated proteins such as E2 from HCV and the surface GP from Ebola virus. The potential functional role of the presence of N-glycans near disulphide bridges in HIV-1 gp120 was studied using site-directed mutagenesis, either by deleting conserved N-glycans or by inserting new N-glycosylation sites near disulphide bridges. The generated HIV-1NL4.3 mutants were subjected to an array of assays, determining the envelope glycoprotein levels in mutant viral particles, their infectivity and the capture and transmission efficiencies of mutant virus particles by DC-SIGN. Three N-glycans located nearby disulphide bridges were found to be crucial for the preservation of several of these functions of gp120. In addition, introduction of new N-glycans upstream of several disulphide bridges, at locations where there was a significant absence of N-glycans in a broad variety of virus strains, was found to result in a complete loss of viral infectivity. It was shown that the N-glycan environment around well-defined disulphide bridges of gp120 is highly critical to allow

  6. Computational Prediction of the Heterodimeric and Higher-Order Structure of gpE1/gpE2 Envelope Glycoproteins Encoded by Hepatitis C Virus.

    Science.gov (United States)

    Freedman, Holly; Logan, Michael R; Hockman, Darren; Koehler Leman, Julia; Law, John Lok Man; Houghton, Michael

    2017-04-15

    Despite the recent success of newly developed direct-acting antivirals against hepatitis C, the disease continues to be a global health threat due to the lack of diagnosis of most carriers and the high cost of treatment. The heterodimer formed by glycoproteins E1 and E2 within the hepatitis C virus (HCV) lipid envelope is a potential vaccine candidate and antiviral target. While the structure of E1/E2 has not yet been resolved, partial crystal structures of the E1 and E2 ectodomains have been determined. The unresolved parts of the structure are within the realm of what can be modeled with current computational modeling tools. Furthermore, a variety of additional experimental data is available to support computational predictions of E1/E2 structure, such as data from antibody binding studies, cryo-electron microscopy (cryo-EM), mutational analyses, peptide binding analysis, linker-scanning mutagenesis, and nuclear magnetic resonance (NMR) studies. In accordance with these rich experimental data, we have built an in silico model of the full-length E1/E2 heterodimer. Our model supports that E1/E2 assembles into a trimer, which was previously suggested from a study by Falson and coworkers (P. Falson, B. Bartosch, K. Alsaleh, B. A. Tews, A. Loquet, Y. Ciczora, L. Riva, C. Montigny, C. Montpellier, G. Duverlie, E. I. Pecheur, M. le Maire, F. L. Cosset, J. Dubuisson, and F. Penin, J. Virol. 89:10333-10346, 2015, https://doi.org/10.1128/JVI.00991-15). Size exclusion chromatography and Western blotting data obtained by using purified recombinant E1/E2 support our hypothesis. Our model suggests that during virus assembly, the trimer of E1/E2 may be further assembled into a pentamer, with 12 pentamers comprising a single HCV virion. We anticipate that this new model will provide a useful framework for HCV envelope structure and the development of antiviral strategies. IMPORTANCE One hundred fifty million people have been estimated to be infected with hepatitis C virus, and

  7. Induction of antibodies against epitopes inaccessible on the HIV type 1 envelope oligomer by immunization with recombinant monomeric glycoprotein 120

    DEFF Research Database (Denmark)

    Schønning, Kristian; Bolmstedt, A; Novotny, J

    1998-01-01

    An N-glycan (N306) at the base of the V3 loop of HIV-BRU gp120 is shielding a linear neutralization epitope at the tip of the V3 loop on oligomeric Env. In contrast, this epitope is readily antigenic on monomeric gp120. Immunization with recombinant monomeric HIV-BRU gp120 may thus be expected to...... immunogenic structures inaccessible on the envelope oligomer. The limited ability of recombinant gp120 vaccines to induce neutralizing antibodies against primary isolates may thus not exclusively reflect genetic variation.......An N-glycan (N306) at the base of the V3 loop of HIV-BRU gp120 is shielding a linear neutralization epitope at the tip of the V3 loop on oligomeric Env. In contrast, this epitope is readily antigenic on monomeric gp120. Immunization with recombinant monomeric HIV-BRU gp120 may thus be expected...

  8. Single Amino Acid Substitution N659D in HIV-2 Envelope Glycoprotein (Env) Impairs Viral Release and Hampers BST-2 Antagonism.

    Science.gov (United States)

    Dufrasne, François E; Lombard, Catherine; Goubau, Patrick; Ruelle, Jean

    2016-10-14

    BST-2 or tetherin is a host cell restriction factor that prevents the budding of enveloped viruses at the cell surface, thus impairing the viral spread. Several countermeasures to evade this antiviral factor have been positively selected in retroviruses: the human immunodeficiency virus type 2 (HIV-2) relies on the envelope glycoprotein (Env) to overcome BST-2 restriction. The Env gp36 ectodomain seems involved in this anti-tetherin activity, however residues and regions interacting with BST-2 are not clearly defined. Among 32 HIV-2 ROD Env mutants tested, we demonstrated that the asparagine residue at position 659 located in the gp36 ectodomain is mandatory to exert the anti-tetherin function. Viral release assays in cell lines expressing BST-2 showed a loss of viral release ability for the HIV-2 N659D mutant virus compared to the HIV-2 wild type virus. In bst-2 inactivated H9 cells, those differences were lost. Subtilisin treatment of infected cells demonstrated that the N659D mutant was more tethered at the cell surface. Förster resonance energy transfer (FRET) experiments confirmed a direct molecular link between Env and BST-2 and highlighted an inability of the mutant to bind BST-2. We also tested a virus presenting a truncation of 109 amino acids at the C-terminal part of Env, a cytoplasmic tail partial deletion that is spontaneously selected in vitro. Interestingly, viral release assays and FRET experiments indicated that a full Env cytoplasmic tail was essential in BST-2 antagonism. In HIV-2 infected cells, an efficient Env-mediated antagonism of BST-2 is operated through an intermolecular link involving the asparagine 659 residue as well as the C-terminal part of the cytoplasmic tail.

  9. Prediction of HIV-associated neurocognitive disorder (HAND) from three genetic features of envelope gp120 glycoprotein.

    Science.gov (United States)

    Ogishi, Masato; Yotsuyanagi, Hiroshi

    2018-01-27

    HIV-associated neurocognitive disorder (HAND) remains an important and yet potentially underdiagnosed manifestation despite the fact that the modern combination antiretroviral therapy (cART) has achieved effective viral suppression and greatly reduced the incidence of life-threatening events. Although HIV neurotoxicity is thought to play a central role, the potential of viral genetic signature as diagnostic and/or prognostic biomarker has yet to be fully explored. Using a manually curated sequence metadataset (80 specimens, 2349 sequences), we demonstrated that only three genetic features are sufficient to predict HAND status regardless of sampling tissues; the accuracy reached 100 and 94% in the hold-out testing subdataset and the entire dataset, respectively. The three genetic features stratified HAND into four distinct clusters. Extrapolating the classification to the 1619 specimens registered in the Los Alamos HIV Sequence Database, the global HAND prevalence was estimated to be 46%, with significant regional variations (30-71%). The R package HANDPrediction was implemented to ensure public availability of key codes. Our analysis revealed three amino acid positions in gp120 glycoprotein, providing the basis of the development of novel cART regimens specifically optimized for HAND-associated quasispecies. Moreover, the classifier can readily be translated into a diagnostic biomarker, warranting prospective validation.

  10. Human broadly neutralizing antibodies to the envelope glycoprotein complex of hepatitis C virus

    DEFF Research Database (Denmark)

    Giang, Erick; Dorner, Marcus; Prentoe, Jannick C

    2012-01-01

    Hepatitis C virus (HCV) infects ∼2% of the world's population. It is estimated that there are more than 500,000 new infections annually in Egypt, the country with the highest HCV prevalence. An effective vaccine would help control this expanding global health burden. HCV is highly variable, and a...

  11. Co-expression of foreign proteins tethered to HIV-1 envelope glycoprotein on the cell surface by introducing an intervening second membrane-spanning domain.

    Directory of Open Access Journals (Sweden)

    Hongyun Wang

    Full Text Available The envelope glycoprotein (Env of human immunodeficiency virus type I (HIV-1 mediates membrane fusion. To analyze the mechanism of HIV-1 Env-mediated membrane fusion, it is desirable to determine the expression level of Env on the cell surface. However, the quantification of Env by immunological staining is often hampered by the diversity of HIV-1 Env and limited availability of universal antibodies that recognize different Envs with equal efficiency. To overcome this problem, here we linked a tag protein called HaloTag at the C-terminus of HIV-1 Env. To relocate HaloTag to the cell surface, we introduced a second membrane-spanning domain (MSD between Env and HaloTag. The MSD of transmembrane protease serine 11D, a type II transmembrane protein, successfully relocated HaloTag to the cell surface. The surface level of Env can be estimated indirectly by staining HaloTag with a specific membrane-impermeable fluorescent ligand. This tagging did not compromise the fusogenicity of Env drastically. Furthermore, fusogenicity of Env was preserved even after the labeling with the ligands. We have also found that an additional foreign peptide or protein such as C34 or neutralizing single-chain variable fragment (scFv can be linked to the C-terminus of the HaloTag protein. Using these constructs, we were able to determine the required length of C34 and critical residues of neutralizing scFv for blocking membrane fusion, respectively.

  12. Identification of glycosylation sites in the SU component of the Avian Sarcoma/Leukosis virus Envelope Glycoprotein (Subgroup A) by mass spectrometry

    International Nuclear Information System (INIS)

    Kvaratskhelia, Mamuka; Clark, Patrick K.; Hess, Sonja; Melder, Deborah C.; Federspiel, Mark J.; Hughes, Stephen H.

    2004-01-01

    We used enzymatic digestion and mass spectrometry to identify the sites of glycosylation on the SU component of the Avian Sarcoma/Leukosis virus (ASLV) Envelope Glycoprotein (Subgroup A). The analysis was done with an SU(A)-rIgG fusion protein that binds the cognate receptor (Tva) specifically. PNGase F removed all the carbohydrate from the SU(A)-rIgG fusion. PNGase F is specific for N-linked carbohydrates; this shows that all the carbohydrate on SU(A) is N-linked. There are 10 modified aspargines in SU(A) (N17, N59, N80, N97, N117, N196, N230, N246, N254, and N330). All conform to the consensus site for N-linked glycosylation NXS/T. There is one potential glycosylation site (N236) that is not modified. Removing most of the carbohydrate from the mature SU(A)-rIgG by PNGase F treatment greatly reduces the ability of the protein to bind Tva, suggesting that carbohydrate may play a direct role in receptor binding

  13. Enhanced CD4+ cellular apoptosis by CCR5-restricted HIV-1 envelope glycoprotein variants from patients with progressive HIV-1 infection

    International Nuclear Information System (INIS)

    Wade, Jessica; Sterjovski, Jasminka; Gray, Lachlan; Roche, Michael; Chiavaroli, Lisa; Ellett, Anne; Jakobsen, Martin R.; Cowley, Daniel; Fonseca Pereira, Candida da; Saksena, Nitin; Wang, Bin; Purcell, Damian F.J.; Karlsson, Ingrid; Fenyoe, Eva-Maria; Churchill, Melissa; Gorry, Paul R.

    2010-01-01

    CCR5-using (R5) human immunodeficiency virus type 1 (HIV-1) strains cause CD4+ T-cell loss in most infected individuals, but mechanisms underlying cytopathicity of R5 viruses are poorly understood. We investigated mechanisms contributing to R5 envelope glycoprotein (Env)-mediated cellular apoptosis by constructing a panel of retroviral vectors engineered to co-express GFP and R5 Envs derived from two HIV-1-infected subjects spanning asymptomatic (Early, E-R5 Envs) to late stages of infection (Late, L-R5 Envs). The L-R5 Envs induced significantly more cellular apoptosis than E-R5 Envs, but only in Env-expressing (GFP-positive) cells, and only in cells where CD4 and CCR5 levels were limiting. Studies with fusion-defective Env mutants showed induction of apoptosis required membrane-fusing events. Our results provide evidence for an intracellular mechanism of R5 Env-induced apoptosis of CD4+ cells that requires membrane fusion. Furthermore, they contribute to a better understanding of mechanisms involved in CD4+ T-cell loss in subjects experiencing progressive R5 HIV-1 infection.

  14. Computational prediction and analysis of envelop glycoprotein epitopes of DENV-2 and DENV-3 Pakistani isolates: a first step towards Dengue vaccine development.

    Directory of Open Access Journals (Sweden)

    Hafsa Amat-ur-Rasool

    Full Text Available Dengue fever of tropics is a mosquito transmitted devastating disease caused by dengue virus (DENV. There is no effective vaccine available, so far, against any of its four serotypes (DENV-1, DENV-2, DENV-3, and DENV-4. There is a need for the development of preventive and therapeutic vaccines against DENV to decrease the prevalence of dengue fever, especially in Pakistan. In this research, linear and conformational B-cell epitopes of envelope glycoprotein of DENV-2 and DENV-3 (the most prevalent serotypes in Pakistan were predicted. We used Kolaskar and Tongaonkar method for linear epitope prediction, Emini's method for surface accessibility prediction and Karplus and Schulz's algorithm for flexibility determination. To propose three dimensional epitopes, the E proteins for both serotypes were homology modeled by using Phyre2 V 2.0 server, and ElliPro was used for the prediction of surface epitopes on their globular structure. Total 21 and 19 linear epitopes were predicted for DENV-2 and DENV-3 Pakistani isolates respectively. Whereas, 5 and 4 discontinuous epitopes were proposed for DENV-2 and DENV-3 Pakistani isolates respectively. Moreover, the values of surface accessibility, flexibility and solvent-accessibility can be helpful in analyzing vaccines against DENV-2 and DENV-3. In conclusion, the proposed continuous and discontinuous antigenic peptides can be valuable candidates for diagnostic and therapeutics of DENV.

  15. Phage-Displayed Peptides Selected to Bind Envelope Glycoprotein Show Antiviral Activity against Dengue Virus Serotype 2

    Directory of Open Access Journals (Sweden)

    Carolina de la Guardia

    2017-01-01

    Full Text Available Dengue virus is a growing public health threat that affects hundreds of million peoples every year and leave huge economic and social damage. The virus is transmitted by mosquitoes and the incidence of the disease is increasing, among other causes, due to the geographical expansion of the vector’s range and the lack of effectiveness in public health interventions in most prevalent countries. So far, no highly effective vaccine or antiviral has been developed for this virus. Here we employed phage display technology to identify peptides able to block the DENV2. A random peptide library presented in M13 phages was screened with recombinant dengue envelope and its fragment domain III. After four rounds of panning, several binding peptides were identified, synthesized, and tested against the virus. Three peptides were able to block the infectivity of the virus while not being toxic to the target cells. Blind docking simulations were done to investigate the possible mode of binding, showing that all peptides appear to bind domain III of the protein and may be mostly stabilized by hydrophobic interactions. These results are relevant to the development of novel therapeutics against this important virus.

  16. Stoichiometry of mercury-thiol complexes on bacterial cell envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Bhoopesh; Shoenfelt, Elizabeth; Yu, Qiang; Yee, Nathan; Fein, Jeremy B.; Myneni, Satish C. B.

    2017-08-01

    We have examined the speciation of Hg(II) complexed with intact cell suspensions (1013 cells L- 1) of Bacillus subtilis, a common gram-positive soil bacterium, Shewanella oneidensis MR-1, a facultative gram-negative aquatic organism, and Geobacter sulfurreducens, a gram-negative anaerobic bacterium capable of Hg-methylation at Hg(II) loadings spanning four orders of magnitude (120 nM to 350 μM) at pH 5.5 (± 0.2). The coordination environments of Hg on bacterial cells were analyzed using synchrotron based X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy at the Hg LIII edge. The abundance of thiols on intact cells was determined by a fluorescence-spectroscopy based method using a soluble bromobimane, monobromo(trimethylammonio)bimane (qBBr) to block thiol sites, and potentiometric titrations of biomass with and without qBBr treatment. The chemical forms of S on intact bacterial cells were determined using S k-edge XANES spectroscopy.

  17. Specific interaction of CXCR4 with CD4 and CD8α: Functional analysis of the CD4/CXCR4 interaction in the context of HIV-1 envelope glycoprotein-mediated membrane fusion

    International Nuclear Information System (INIS)

    Basmaciogullari, Stephane; Pacheco, Beatriz; Bour, Stephan; Sodroski, Joseph

    2006-01-01

    We investigated possible interactions between HIV-1 receptor (CD4) and the main coreceptors CXCR4 and CCR5. We found that CD4 and CXCR4 coexpressed in 293T cells form a complex that can be immunoprecipitated with antibodies directed against the extracellular domain of either protein. Mutagenesis revealed that the CD4/CXCR4 interaction maps to two previously uncharacterized basic motifs in the cytoplasmic domain of CD4. HIV-1 envelope glycoprotein-mediated membrane fusion was found to be independent of the ability of CD4 and CXCR4 to interact, whether fusion was studied in a virus-cell or a cell-cell model. However, this interaction might explain the adaptation of HIV-1 to CXCR4 as an alternative to CCR5. We found that CXCR4 also interacts with the cytoplasmic domain of CD8α in a way that is similar to the CD4/CXCR4 interaction. The CD4/CXCR4 and CD8α/CXCR4 interactions may thus be involved in cellular signaling pathways shared by the CD4 and CD8α molecules

  18. Recurrent signature patterns in HIV-1 B clade envelope glycoproteins associated with either early or chronic infections.

    Directory of Open Access Journals (Sweden)

    S Gnanakaran

    2011-09-01

    Full Text Available Here we have identified HIV-1 B clade Envelope (Env amino acid signatures from early in infection that may be favored at transmission, as well as patterns of recurrent mutation in chronic infection that may reflect common pathways of immune evasion. To accomplish this, we compared thousands of sequences derived by single genome amplification from several hundred individuals that were sampled either early in infection or were chronically infected. Samples were divided at the outset into hypothesis-forming and validation sets, and we used phylogenetically corrected statistical strategies to identify signatures, systematically scanning all of Env. Signatures included single amino acids, glycosylation motifs, and multi-site patterns based on functional or structural groupings of amino acids. We identified signatures near the CCR5 co-receptor-binding region, near the CD4 binding site, and in the signal peptide and cytoplasmic domain, which may influence Env expression and processing. Two signatures patterns associated with transmission were particularly interesting. The first was the most statistically robust signature, located in position 12 in the signal peptide. The second was the loss of an N-linked glycosylation site at positions 413-415; the presence of this site has been recently found to be associated with escape from potent and broad neutralizing antibodies, consistent with enabling a common pathway for immune escape during chronic infection. Its recurrent loss in early infection suggests it may impact fitness at the time of transmission or during early viral expansion. The signature patterns we identified implicate Env expression levels in selection at viral transmission or in early expansion, and suggest that immune evasion patterns that recur in many individuals during chronic infection when antibodies are present can be selected against when the infection is being established prior to the adaptive immune response.

  19. Characterization of a stable HIV-1 B/C recombinant, soluble, and trimeric envelope glycoprotein (Env) highly resistant to CD4-induced conformational changes.

    Science.gov (United States)

    Kumar, Rajesh; Ozorowski, Gabriel; Kumar, Vivek; Holden, Lauren G; Shrivastava, Tripti; Patil, Shilpa; Deshpande, Suprit; Ward, Andrew B; Bhattacharya, Jayanta

    2017-09-22

    The HIV-1 envelope (Env) is a glycoprotein consisting of a trimer of heterodimers containing gp120 and gp41 subunits that mediates virus entry and is a major target of broadly neutralizing antibodies (bnAbs) developed during infection in some individuals. The engagement of the HIV-1 gp120 glycoprotein to the host CD4 protein triggers conformational changes in gp120 that allow its binding to co-receptors and is necessary for virus entry to establish infection. Native-like HIV-1 Env immunogens representing distinct clades have been proposed to improve immunogenicity. In the present study, we examined the basis of resistance of an HIV-1 B/C recombinant Env (LT5.J4b12C) to non-neutralizing antibodies targeting CD4-induced Env epitopes in the presence of soluble CD4 (sCD4). Using native polyacrylamide gel shift assay and negative-stain EM, we found that the prefusion conformational state of LT5.J4b12C trimeric Env was largely unaffected in the presence of excess sCD4 with most Env trimers appearing to be in a ligand-free state. This resistance to CD4-induced conformational changes was associated with a lower affinity for CD4. Moreover, the LT5.J4b12C trimeric Env preferentially bound to the neutralizing antibodies compared with non-neutralizing antibodies. Taken together, we report on an HIV-1 B/C recombinant, native-like trimeric Env protein that is highly resistant to CD4-induced conformational changes but displays epitopes recognized by a diverse array of bnAbs. Such features make this B/C recombinant trimeric Env a useful addition to the pool of other recently identified native-like HIV-1 Env trimers suitable for use as antigenic bait for bnAb isolation, structural studies, and use as potential immunogens. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Unique Phenotypic Characteristics of Recently Transmitted HIV-1 Subtype C Envelope Glycoprotein gp120: Use of CXCR6 Coreceptor by Transmitted Founder Viruses.

    Science.gov (United States)

    Ashokkumar, Manickam; Aralaguppe, Shambhu G; Tripathy, Srikanth P; Hanna, Luke Elizabeth; Neogi, Ujjwal

    2018-05-01

    Adequate information on the precise molecular and biological composition of the viral strains that establish HIV infection in the human host will provide effective means of immunization against HIV infection. In an attempt to identify the transmitted founder (TF) virus and differentiate the biological properties and infectious potential of the TF virus from those of the population of the early transmitted viruses, 250 patient-derived gp120 envelope glycoproteins were cloned in pMN-K7-Luc-IRESs-NefΔgp120 to obtain chimeric viruses. Samples were obtained from eight infants who had recently become infected with HIV through mother-to-child transmission (MTCT) and two adults who acquired infection through the heterosexual route and were in the chronic stage of infection. Among the 250 clones tested, 65 chimeric viruses were infectious, and all belonged to HIV-1 subtype C. The 65 clones were analyzed for molecular features of the envelope, per-infectious-particle infectivity, coreceptor tropism, drug sensitivity, and sensitivity to broadly neutralizing antibodies. Based on genotypic and phenotypic analysis of the viral clones, we identified 10 TF viruses from the eight infants. The TF viruses were characterized by shorter V1V2 regions, a reduced number of potential N-linked glycosylation sites, and a higher infectivity titer compared to the virus variants from the adults in the chronic stage of infection. CXCR6 coreceptor usage, in addition to that of the CCR5 coreceptor, which was used by all 65 chimeric viruses, was identified in 13 viruses. The sensitivity of the TF variants to maraviroc and a standard panel of neutralizing monoclonal antibodies (VRC01, PG09, PG16, and PGT121) was found to be much lower than that of the virus variants from the adults in the chronic stage of infection. IMPORTANCE Tremendous progress has been made during the last three and half decades of HIV research, but some significant gaps continue to exist. One of the frontier areas of HIV

  1. The envelope glycoprotein of human endogenous retrovirus type W uses a divergent family of amino acid transporters/cell surface receptors.

    Science.gov (United States)

    Lavillette, Dimitri; Marin, Mariana; Ruggieri, Alessia; Mallet, François; Cosset, François-Loïc; Kabat, David

    2002-07-01

    The human endogenous retrovirus type W (HERV-W) family includes proviruses with intact protein-coding regions that appear to be under selection pressure, suggesting that some HERV-W proviruses may remain active in higher primates. The envelope glycoprotein (Env) encoded by HERV-W is highly fusogenic, is naturally expressed in human placental syncytiatrophoblasts, and has been reported to function as a superantigen in lymphocyte cultures. Recent evidence suggested that HERV-W Env can mediate syncytium formation by interacting with the human sodium-dependent neutral amino acid transporter type 2 (hASCT2; gene name, SLC1A5) (J.-L. Blond, D. Lavillette, V. Cheynet, O. Bouton, G. Oriol, S. Chapel-Fernandez, B. Mandrand, F. Mallet, and F.-L. Cosset, J. Virol. 74:3321-3329, 2000) and that it can pseudotype human immunodeficiency virus cores (D. S. An, Y. Xie, and I. S. Y. Chen, J. Virol. 75:3488-3489, 2001). By using cell-cell fusion and pseudotype virion infection assays, we found that HERV-W Env efficiently uses both hASCT2 and the related transporter hASCT1 (gene name, SLC1A4) as receptors. In addition, although HERV-W Env mediates only slight syncytium formation or infection of mouse cells, it utilizes the mouse transporters mASCT1 and mASCT2 when their sites for N-linked glycosylation are eliminated by mutagenesis. Consistent with their role as a battlefield in host-virus coevolution, the viral recognition regions in ASCT1 and ASCT2 of humans and mice are highly divergent compared with other regions of these proteins, and their ratios of nonsynonymous to synonymous nucleotide sequence changes are extremely large. The recognition of ASCT1 and ASCT2 despite this divergence of their sequences strongly suggests that the use of both receptors has been highly advantageous for survival and evolution of the HERV-W family of retroviruses.

  2. Differential Recognition of Old World and New World Arenavirus Envelope Glycoproteins by Subtilisin Kexin Isozyme 1 (SKI-1)/Site 1 Protease (S1P)

    Science.gov (United States)

    Burri, Dominique J.; Ramos da Palma, Joel; Seidah, Nabil G.; Zanotti, Giuseppe; Cendron, Laura

    2013-01-01

    The arenaviruses are an important family of emerging viruses that includes several causative agents of severe hemorrhagic fevers in humans that represent serious public health problems. A crucial step of the arenavirus life cycle is maturation of the envelope glycoprotein precursor (GPC) by the cellular subtilisin kexin isozyme 1 (SKI-1)/site 1 protease (S1P). Comparison of the currently known sequences of arenavirus GPCs revealed the presence of a highly conserved aromatic residue at position P7 relative to the SKI-1/S1P cleavage side in Old World and clade C New World arenaviruses but not in New World viruses of clades A and B or cellular substrates of SKI-1/S1P. Using a combination of molecular modeling and structure-function analysis, we found that residueY285 of SKI-1/S1P, distal from the catalytic triad, is implicated in the molecular recognition of the aromatic “signature residue” at P7 in the GPC of Old World Lassa virus. Using a quantitative biochemical approach, we show that Y285 of SKI-1/S1P is crucial for the efficient processing of peptides derived from Old World and clade C New World arenavirus GPCs but not of those from clade A and B New World arenavirus GPCs. The data suggest that during coevolution with their mammalian hosts, GPCs of Old World and clade C New World viruses expanded the molecular contacts with SKI-1/S1P beyond the classical four-amino-acid recognition sequences and currently occupy an extended binding pocket. PMID:23536681

  3. Vaccinia and other viruses with available vaccines show marked homology with the HIV-1 envelope glycoprotein: the prospect of using existing vaccines to stem the AIDS pandemic.

    Science.gov (United States)

    Carter, C J Chris

    2012-04-01

    Cross-reactive immunity occurs when infection with or vaccination against one virus protects against another related family member. A search for homologues of the HIV-1 envelope glycoprotein revealed that it is composed of thousands of intercalating and overlapping viral matches of pentapeptide or longer gapped consensi, belonging to over 70% of the currently sequenced virome, infecting all kingdoms from bacteria to man. It was also highly homologous to proteins from the Visna/Maedi and other ovine viruses, while other proteins (nef/tat/gag/pol) were homologous to proteins from the equine infectious anaemia virus and HTLV-2/HTLV-3 viruses. This phenomenon suggests that horizontal gene transfer from coinfecting RNA and DNA viruses to retroviruses is extensive, providing a route for the subsequent insertion of non-retroviral genes into human and other genomes via retroviral integration. This homology includes all viruses for which vaccines already exist. Cross-reactive immunity may be operative in AIDS, as Vaccinia vaccination decreases viral replication in HIV-1 infected patients' cells, for the CCR5 tropic form. Measles, Dengue virus, or GB virus C infections also decrease the HIV-1 viral load. A resumption of Vaccinia/smallpox vaccination might be expected to have a significant effect on the AIDS pandemic, and a careful study of the potential uses of other existing viral and bacterial vaccines merits close attention. This phenomenon may also be relevant to other recalcitrant viruses, bacteria, and parasites for which no vaccine exists and the armory of existing vaccines may have a role to play in diseases other than those for which they were designed.

  4. Fusion proteins of HIV-1 envelope glycoprotein gp120 with CD4-induced antibodies showed enhanced binding to CD4 and CD4 binding site antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Weizao, E-mail: chenw3@mail.nih.gov [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); Feng, Yang [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); Wang, Yanping [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); The Basic Research Program, Science Applications International Corporation-Frederick, Inc., National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); Zhu, Zhongyu; Dimitrov, Dimiter S. [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Some recombinant HIV-1 gp120s do not preserve their conformations on gp140s. Black-Right-Pointing-Pointer We hypothesize that CD4i antibodies could induce conformational changes in gp120. Black-Right-Pointing-Pointer CD4i antibodies enhance binding of CD4 and CD4bs antibodies to gp120. Black-Right-Pointing-Pointer CD4i antibody-gp120 fusion proteins could have potential as vaccine immunogens. -- Abstract: Development of successful AIDS vaccine immunogens continues to be a major challenge. One of the mechanisms by which HIV-1 evades antibody-mediated neutralizing responses is the remarkable conformational flexibility of its envelope glycoprotein (Env) gp120. Some recombinant gp120s do not preserve their conformations on gp140s and functional viral spikes, and exhibit decreased recognition by CD4 and neutralizing antibodies. CD4 binding induces conformational changes in gp120 leading to exposure of the coreceptor-binding site (CoRbs). In this study, we test our hypothesis that CD4-induced (CD4i) antibodies, which target the CoRbs, could also induce conformational changes in gp120 leading to better exposed conserved neutralizing antibody epitopes including the CD4-binding site (CD4bs). We found that a mixture of CD4i antibodies with gp120 only weakly enhanced CD4 binding. However, such interactions in single-chain fusion proteins resulted in gp120 conformations which bound to CD4 and CD4bs antibodies better than the original or mutagenically stabilized gp120s. Moreover, the two molecules in the fusion proteins synergized with each other in neutralizing HIV-1. Therefore, fusion proteins of gp120 with CD4i antibodies could have potential as components of HIV-1 vaccines and inhibitors of HIV-1 entry, and could be used as reagents to explore the conformational flexibility of gp120 and mechanisms of entry and immune evasion.

  5. Fusion proteins of HIV-1 envelope glycoprotein gp120 with CD4-induced antibodies showed enhanced binding to CD4 and CD4 binding site antibodies

    International Nuclear Information System (INIS)

    Chen, Weizao; Feng, Yang; Wang, Yanping; Zhu, Zhongyu; Dimitrov, Dimiter S.

    2012-01-01

    Highlights: ► Some recombinant HIV-1 gp120s do not preserve their conformations on gp140s. ► We hypothesize that CD4i antibodies could induce conformational changes in gp120. ► CD4i antibodies enhance binding of CD4 and CD4bs antibodies to gp120. ► CD4i antibody-gp120 fusion proteins could have potential as vaccine immunogens. -- Abstract: Development of successful AIDS vaccine immunogens continues to be a major challenge. One of the mechanisms by which HIV-1 evades antibody-mediated neutralizing responses is the remarkable conformational flexibility of its envelope glycoprotein (Env) gp120. Some recombinant gp120s do not preserve their conformations on gp140s and functional viral spikes, and exhibit decreased recognition by CD4 and neutralizing antibodies. CD4 binding induces conformational changes in gp120 leading to exposure of the coreceptor-binding site (CoRbs). In this study, we test our hypothesis that CD4-induced (CD4i) antibodies, which target the CoRbs, could also induce conformational changes in gp120 leading to better exposed conserved neutralizing antibody epitopes including the CD4-binding site (CD4bs). We found that a mixture of CD4i antibodies with gp120 only weakly enhanced CD4 binding. However, such interactions in single-chain fusion proteins resulted in gp120 conformations which bound to CD4 and CD4bs antibodies better than the original or mutagenically stabilized gp120s. Moreover, the two molecules in the fusion proteins synergized with each other in neutralizing HIV-1. Therefore, fusion proteins of gp120 with CD4i antibodies could have potential as components of HIV-1 vaccines and inhibitors of HIV-1 entry, and could be used as reagents to explore the conformational flexibility of gp120 and mechanisms of entry and immune evasion.

  6. Dystrobrevin increases dystrophin's binding to the dystrophin-glycoprotein complex and provides protection during cardiac stress.

    Science.gov (United States)

    Strakova, Jana; Dean, Jon D; Sharpe, Katharine M; Meyers, Tatyana A; Odom, Guy L; Townsend, DeWayne

    2014-11-01

    Duchenne muscular dystrophy is a fatal progressive disease of both cardiac and skeletal muscle resulting from the mutations in the DMD gene and loss of the protein dystrophin. Alpha-dystrobrevin (α-DB) tightly associates with dystrophin but the significance of this interaction within cardiac myocytes is poorly understood. In the current study, the functional role of α-DB in cardiomyocytes and its implications for dystrophin function are examined. Cardiac stress testing demonstrated significant heart disease in α-DB null (adbn(-/-)) mice, which displayed mortality and lesion sizes that were equivalent to those seen in dystrophin-deficient mdx mice. Despite normal expression and subcellular localization of dystrophin in the adbn(-/-) heart, there is a significant decrease in the strength of dystrophin's interaction with the membrane-bound dystrophin-associated glycoprotein complex (DGC). A similar weakening of the dystrophin-membrane interface was observed in mice lacking the sarcoglycan complex. Cardiomyocytes from adbn(-/-) mice were smaller and responded less to adrenergic receptor induced hypertrophy. The basal decrease in size could not be attributed to aberrant Akt activation. In addition, the organization of the microtubule network was significantly altered in adbn(-/-) cardiac myocytes, while the total expression of tubulin was unchanged in adbn(-/-) hearts. These studies demonstrate that α-DB is a multifunctional protein that increases dystrophin's binding to the dystrophin-glycoprotein complex, and is critical for the full functionality of dystrophin. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. The role of proteolytic processing and the stable signal peptide in expression of the Old World arenavirus envelope glycoprotein ectodomain

    Energy Technology Data Exchange (ETDEWEB)

    Burri, Dominique J.; Pasquato, Antonella; Ramos da Palma, Joel [Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne CH-1011 (Switzerland); Igonet, Sebastien; Oldstone, Michael B.A. [Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037 (United States); Kunz, Stefan, E-mail: Stefan.Kunz@chuv.ch [Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne CH-1011 (Switzerland)

    2013-02-05

    Maturation of the arenavirus GP precursor (GPC) involves proteolytic processing by cellular signal peptidase and the proprotein convertase subtilisin kexin isozyme 1 (SKI-1)/site 1 protease (S1P), yielding a tripartite complex comprised of a stable signal peptide (SSP), the receptor-binding GP1, and the fusion-active transmembrane GP2. Here we investigated the roles of SKI-1/S1P processing and SSP in the biosynthesis of the recombinant GP ectodomains of lymphocytic choriomeningitis virus (LCMV) and Lassa virus (LASV). When expressed in mammalian cells, the LCMV and LASV GP ectodomains underwent processing by SKI-1/S1P, followed by dissociation of GP1 from GP2. The GP2 ectodomain spontaneously formed trimers as revealed by chemical cross-linking. The endogenous SSP, known to be crucial for maturation and transport of full-length arenavirus GPC was dispensable for processing and secretion of the soluble GP ectodomain, suggesting a specific role of SSP in the stable prefusion conformation and transport of full-length GPC.

  8. The M/GP(5 glycoprotein complex of porcine reproductive and respiratory syndrome virus binds the sialoadhesin receptor in a sialic acid-dependent manner.

    Directory of Open Access Journals (Sweden)

    Wander Van Breedam

    2010-01-01

    Full Text Available The porcine reproductive and respiratory syndrome virus (PRRSV is a major threat to swine health worldwide and is considered the most significant viral disease in the swine industry today. In past years, studies on the entry of the virus into its host cell have led to the identification of a number of essential virus receptors and entry mediators. However, viral counterparts for these molecules have remained elusive and this has made rational development of new generation vaccines impossible. The main objective of this study was to identify the viral counterparts for sialoadhesin, a crucial PRRSV receptor on macrophages. For this purpose, a soluble form of sialoadhesin was constructed and validated. The soluble sialoadhesin could bind PRRSV in a sialic acid-dependent manner and could neutralize PRRSV infection of macrophages, thereby confirming the role of sialoadhesin as an essential PRRSV receptor on macrophages. Although sialic acids are present on the GP(3, GP(4 and GP(5 envelope glycoproteins, only the M/GP(5 glycoprotein complex of PRRSV was identified as a ligand for sialoadhesin. The interaction was found to be dependent on the sialic acid binding capacity of sialoadhesin and on the presence of sialic acids on GP(5. These findings not only contribute to a better understanding of PRRSV biology, but the knowledge and tools generated in this study also hold the key to the development of a new generation of PRRSV vaccines.

  9. The Dystrophin-Glycoprotein Complex in the Prevention of Muscle Damage

    Directory of Open Access Journals (Sweden)

    Jessica D. Gumerson

    2011-01-01

    Full Text Available Muscular dystrophies are genetically diverse but share common phenotypic features of muscle weakness, degeneration, and progressive decline in muscle function. Previous work has focused on understanding how disruptions in the dystrophin-glycoprotein complex result in muscular dystrophy, supporting a hypothesis that the muscle sarcolemma is fragile and susceptible to contraction-induced injury in multiple forms of dystrophy. Although benign in healthy muscle, contractions in dystrophic muscle may contribute to a higher degree of muscle damage which eventually overwhelms muscle regeneration capacity. While increased susceptibility of muscle to mechanical injury is thought to be an important contributor to disease pathology, it is becoming clear that not all DGC-associated diseases share this supposed hallmark feature. This paper outlines experimental support for a function of the DGC in preventing muscle damage and examines the evidence that supports novel functions for this complex in muscle that when impaired, may contribute to the pathogenesis of muscular dystrophy.

  10. Asn 362 in gp120 contributes to enhanced fusogenicity by CCR5-restricted HIV-1 envelope glycoprotein variants from patients with AIDS

    Directory of Open Access Journals (Sweden)

    Wang Bin

    2007-12-01

    Full Text Available Abstract Background CCR5-restricted (R5 human immunodeficiency virus type 1 (HIV-1 variants cause CD4+ T-cell loss in the majority of individuals who progress to AIDS, but mechanisms underlying the pathogenicity of R5 strains are poorly understood. To better understand envelope glycoprotein (Env determinants contributing to pathogenicity of R5 viruses, we characterized 37 full-length R5 Envs from cross-sectional and longitudinal R5 viruses isolated from blood of patients with asymptomatic infection or AIDS, referred to as pre-AIDS (PA and AIDS (A R5 Envs, respectively. Results Compared to PA-R5 Envs, A-R5 Envs had enhanced fusogenicity in quantitative cell-cell fusion assays, and reduced sensitivity to inhibition by the fusion inhibitor T-20. Sequence analysis identified the presence of Asn 362 (N362, a potential N-linked glycosylation site immediately N-terminal to CD4-binding site (CD4bs residues in the C3 region of gp120, more frequently in A-R5 Envs than PA-R5 Envs. N362 was associated with enhanced fusogenicity, faster entry kinetics, and increased sensitivity of Env-pseudotyped reporter viruses to neutralization by the CD4bs-directed Env mAb IgG1b12. Mutagenesis studies showed N362 contributes to enhanced fusogenicity of most A-R5 Envs. Molecular models indicate N362 is located adjacent to the CD4 binding loop of gp120, and suggest N362 may enhance fusogenicity by promoting greater exposure of the CD4bs and/or stabilizing the CD4-bound Env structure. Conclusion Enhanced fusogenicity is a phenotype of the A-R5 Envs studied, which was associated with the presence of N362, enhanced HIV-1 entry kinetics and increased CD4bs exposure in gp120. N362 contributes to fusogenicity of R5 Envs in a strain dependent manner. Our studies suggest enhanced fusogenicity of A-R5 Envs may contribute to CD4+ T-cell loss in subjects who progress to AIDS whilst harbouring R5 HIV-1 variants. N362 may contribute to this effect in some individuals.

  11. Immunization of rabbits with highly purified, soluble, trimeric human immunodeficiency virus type 1 envelope glycoprotein induces a vigorous B cell response and broadly cross-reactive neutralization.

    Directory of Open Access Journals (Sweden)

    Gerald V Quinnan

    Full Text Available Previously we described induction of cross-reactive HIV-1 neutralizing antibody responses in rabbits using a soluble HIV-1 gp140 envelope glycoprotein (Env in an adjuvant containing monophosphoryl lipid A (MPL and QS21 (AS02A. Here, we compared different forms of the same HIV-1 strain R2 Env for antigenic and biophysical characteristics, and in rabbits characterized the extent of B cell induction for specific antibody expression and secretion and neutralizing responses. The forms of this Env that were produced in and purified from stably transformed 293T cells included a primarily dimeric gp140, a trimeric gp140 appended to a GCN4 trimerization domain (gp140-GCN4, gp140-GCN4 with a 15 amino acid flexible linker between the gp120 and gp41 ectodomain (gp140-GCN4-L, also trimeric, and a gp140 with the flexible linker purified from cell culture supernatants as either dimer (gp140-L(D or monomer (gp140-L(M. Multimeric states of the Env proteins were assessed by native gel electrophoresis and analytical ultracentrifugation. The different forms of gp140 bound broadly cross-reactive neutralizing (BCN human monoclonal antibodies (mAbs similarly in ELISA and immunoprecipitation assays. All Envs bound CD4i mAbs in the presence and absence of sCD4, as reported for the R2 Env. Weak neutralization of some strains of HIV-1 was seen after two additional doses in AS02A. Rabbits that were given a seventh dose of gp140-GCN4-L developed BCN responses that were weak to moderate, similar to our previous report. The specificity of these responses did not appear similar to that of any of the known BCN human mAbs. Induction of spleen B cell and plasma cells producing immunoglobulins that bound trimeric gp140-GCN4-L was vigorous, based on ELISpot and flow cytometry analyses. The results demonstrate that highly purified gp140-GCN4-L trimer in adjuvant elicits BCN responses in rabbits accompanied by vigorous B cell induction.

  12. A multigene family encodes the human cytomegalovirus glycoprotein complex gcII (gp47-52 complex)

    International Nuclear Information System (INIS)

    Gretch, D.R.; Stinski, M.F.; Kari, B.; Gehrz, R.C.

    1988-01-01

    The HXLF (HindIII-X left reading frame) gene family is a group of five genes that share one or two regions of homology and are arranged in tandem within the short unique component of the human cytomegalovirus genome. These genes were cloned into an SP6 expression vector in both the sense and antisense orientations. An abundant 1.62-kilobase (kb) bicistronic mRNA, predicted to originate from HXLF1 and HXLF2, was detected in the cytoplasm of infected human fibroblast cells by Northern (RNA) blot analysis. Less abundant RNAs of 1.0 and 0.8 kb, predicted to originate from the HXLF5 and HXLF2 genes, respectively, were also detected. Monocistronic, bicistronic, and polycistronic RNAs synthesized in vitro by using SP6 polymerase were translated in rabbit reticulocyte lysates with or without canine pancreatic microsomal membranes. The HXLF1 or the HXLF1 and HXLF2 translation products were detected when the above mRNAs were used. The HXLF3, HXLF4, and HXLF5 gene products were not detected by in vitro translation of the SP6-derived polycistronic mRNA. The amino acid composition of gp47-52 purified from virion envelopes has the highest similarity to the predicted amino acid composition of the HXLF1 plus HXLF2 open reading frames, but it is more similar to HXLF2 than to HXLF1. The Northern blot results imply that gp47-52 is synthesized predominantly from the abundant 1.62-kb bicistronic mRNA encoded by the HXLF1 and HXLF2 genes. However, the glycoprotein could also be synthesized by the monocistronic 0.8-kb mRNA encoded by the HXLF2 gene as well as by the mRNAs predicted from the other HXLF genes

  13. Biomimetic Envelopes

    OpenAIRE

    Ilaria Mazzoleni

    2010-01-01

    How to translate the lessons learned from the analysis and observation of the animal world is the design learning experience presented in this article. Skin is a complex and incredibly sophisticated organ that performs various functions, including protection, sensation and heat and water regulation. In a similar way building envelopes serve multiple roles, as they are the interface between the building inhabitants and environmental elements. The resulting architectural building envelopes prot...

  14. Dilation of the Human Immunodeficiency Virus–1 Envelope Glycoprotein Fusion Pore Revealed by the Inhibitory Action of a Synthetic Peptide from gp41

    Science.gov (United States)

    Muñoz-Barroso, Isabel; Durell, Stewart; Sakaguchi, Kazuyasu; Appella, Ettore; Blumenthal, Robert

    1998-01-01

    We have monitored fusion between cell pairs consisting of a single human immunodeficiency virus–1 (HIV-1) envelope glycoprotein–expressing cell and a CD4+ target cell, which had been labeled with both a fluorescent lipid in the membrane and a fluorescent solute in the cytosol. We developed a new three-color assay to keep track of the cell into which fluorescent lipids and/or solutes are redistributed. Lipid and solute redistribution occur as a result of opening a lipid-permissive fusion pore and a solute-permissive fusion pore (FPS), respectively. A synthetic peptide (DP178) corresponding to residues 643–678 of the HIV-1LAI gp120-gp41 sequence (Wild, C.T., D.C. Shugars, T.K. Greenwell, C.B. McDanal, and T.J. Matthews. 1994. Proc. Natl. Acad. Sci. USA. 91:12676–12680) completely inhibited FPS at 50 ng/ml, whereas at that concentration there was 20–30% fusion activity measured by the lipid redistribution. The differences detected in lipid mixing versus contents mixing are maintained up to 6 h of coculture of gp120-41–expressing cells with target cells, indicating that DP178 can “clamp” the fusion complex in the lipid mixing intermediate for very long time periods. A peptide from the NH2-terminal of gp41, DP107, inhibited HIV-1LAI gp120-gp41–mediated cell fusion at higher concentrations, but with no differences between lipid and aqueous dye redistribution at the different inhibitor concentrations. The inhibition of solute redistribution by DP178 was complete when the peptide was added to the fusion reaction mixture during the first 15 min of coculture. We have analyzed the inhibition data in terms of a fusion pore dilation model that incorporates the recently determined high resolution structure of the gp41 core. PMID:9442107

  15. Dystrophin-glycoprotein complex regulates muscle nitric oxide production through mechanoregulation of AMPK signaling.

    Science.gov (United States)

    Garbincius, Joanne F; Michele, Daniel E

    2015-11-03

    Patients deficient in dystrophin, a protein that links the cytoskeleton to the extracellular matrix via the dystrophin-glycoprotein complex (DGC), exhibit muscular dystrophy, cardiomyopathy, and impaired muscle nitric oxide (NO) production. We used live-cell NO imaging and in vitro cyclic stretch of isolated adult mouse cardiomyocytes as a model system to investigate if and how the DGC directly regulates the mechanical activation of muscle NO signaling. Acute activation of NO synthesis by mechanical stretch was impaired in dystrophin-deficient mdx cardiomyocytes, accompanied by loss of stretch-induced neuronal NO synthase (nNOS) S1412 phosphorylation. Intriguingly, stretch induced the acute activation of AMP-activated protein kinase (AMPK) in normal cardiomyocytes but not in mdx cardiomyocytes, and specific inhibition of AMPK was sufficient to attenuate mechanoactivation of NO production. Therefore, we tested whether direct pharmacologic activation of AMPK could bypass defective mechanical signaling to restore nNOS activity in dystrophin-deficient cardiomyocytes. Indeed, activation of AMPK with 5-aminoimidazole-4-carboxamide riboside or salicylate increased nNOS S1412 phosphorylation and was sufficient to enhance NO production in mdx cardiomyocytes. We conclude that the DGC promotes the mechanical activation of cardiac nNOS by acting as a mechanosensor to regulate AMPK activity, and that pharmacologic AMPK activation may be a suitable therapeutic strategy for restoring nNOS activity in dystrophin-deficient hearts and muscle.

  16. Monoclonal antibodies that bind to common epitopes on the dengue virus type 2 nonstructural-1 and envelope glycoproteins display weak neutralizing activity and differentiated responses to virulent strains: implications for pathogenesis and vaccines.

    Science.gov (United States)

    Falconar, Andrew K I

    2008-03-01

    The abilities of monoclonal antibodies (MAbs) that bind to defined sequential epitopes on the dengue virus (DENV) nonstructural-1 (NS1) glycoproteins to cross-react with epitopes on the DENV envelope (E) glycoproteins were investigated. In this study, some of these MAbs cross-reacted with the DENV type 2 (DENV-2) E glycoprotein and with synthetic peptides representing X-ray crystallographically confirmed surface-exposed regions on this glycoprotein. MAb 1G5.3 cross-reacted with the flavivirus-conserved 101-WGNGCGLFG-109 fusion sequence, the 273-SSGNL-277 DENV-2 hinge region sequence, and the 156-GKHGKEIKIT-165 sequence of virulent DENV-2 strains. MAb 1G5.4-A1-C3 cross-reacted with the 67-NTTTESRCPT-76 and 156-GKHGKEIKIT-165 sequences of virulent DENV-2 strains, the 338-EIMDLDNRHV-347 sequence from a highly virulent DENV-2 (M2) strain, and two epitopes on a virulent DENV-3 strain (288-KMDKLELKG-296 and 323-RVEYRGEDAP-332), which all contained target ELK/KLE-type motifs (underlined). These MAbs showed reduced cross-reactions with the corresponding sequences from weakly pathogenic strains of all four DENV serotypes and had either no (MAb 1G5.4-A1-C3) or weak (MAb 1G5.3) neutralizing activity against them. MAb 1G5.3 more strongly neutralized DENV-2 strains with higher pathogenic capacities, while MAb 1G5.4-A1-C3 showed increasing neutralizing titers against the virulent DENV-3 strain and the moderately virulent and highly virulent (M2) DENV-2 strains. These cross-reactions with the E glycoprotein accord with the observation that MAb 1G5.3 caused dramatic and lethal antibody-enhanced replication (AER) of a DENV-2 strain in vivo. Together with in vivo AER studies of these DENV strains using MAb 1G5.4-A1-C3, these results may account for the increased pathogenic capacities of such strains, which is likely to have important implications for pathogenesis and vaccines.

  17. The herpes simplex virus 1-encoded envelope glycoprotein B activates NF-κB through the Toll-like receptor 2 and MyD88/TRAF6-dependent signaling pathway.

    Directory of Open Access Journals (Sweden)

    Mingsheng Cai

    Full Text Available The innate immune response plays a critical role in the host defense against invading pathogens, and TLR2, a member of the Toll-like receptor (TLR family, has been implicated in the immune response and initiation of inflammatory cytokine secretion against several human viruses. Previous studies have demonstrated that infectious and ultraviolet-inactivated herpes simplex virus 1 (HSV-1 virions lead to the activation of nuclear factor kappa B (NF-κB and secretion of proinflammatory cytokines via TLR2. However, except for the envelope glycoprotein gH and gL, whether there are other determinants of HSV-1 responsible for TLR2 mediated biological effects is not known yet. Here, we demonstrated that the HSV-1-encoded envelope glycoprotein gB displays as molecular target recognized by TLR2. gB coimmunoprecipitated with TLR2, TLR1 and TLR6 in transfected and infected human embryonic kidney (HEK 293T cells. Treatment of TLR2-transfected HEK293T (HEK293T-TLR2 cells with purified gB results in the activation of NF-κB reporter, and this activation requires the recruitment of the adaptor molecules myeloid differentiation primary-response protein 88 (MyD88 and tumor necrosis factor receptor-associated factor 6 (TRAF6 but not CD14. Furthermore, activation of NF-κB was abrogated by anti-gB and anti-TLR2 blocking antibodies. In addition, the expression of interleukin-8 induced by gB was abrogated by the treatment of the human monocytic cell line THP-1 with anti-TLR2 blocking antibody or by the incubation of gB with anti-gB antibody. Taken together, these results indicate the importance and potency of HSV-1 gB as one of pathogen-associated molecular patterns (PAMPs molecule recognized by TLR2 with immediate kinetics.

  18. Processing, fusogenicity, virion incorporation and CXCR4-binding activity of a feline immunodeficiency virus envelope glycoprotein lacking the two conserved N-glycosylation sites at the C-terminus of the V3 domain.

    Science.gov (United States)

    González, Silvia A; Affranchino, José L

    2016-07-01

    The process of feline immunodeficiency virus (FIV) entry into its target cells is initiated by the association of the surface (SU) subunit of the viral envelope glycoprotein (Env) with the cellular receptors CD134 and CXCR4. This event is followed by the fusion of the viral and cellular membranes, which is mediated by the transmembrane (TM) subunit of Env. We and others have previously demonstrated that the V3 domain of the SU subunit of Env is essential for CXCR4 binding. Of note, there are two contiguous and highly conserved potential N-glycosylation sites ((418)NST(420) and (422)NLT(424)) located at the C-terminal side of the V3 domain. We therefore decided to study the relevance for Env functions of these N-glycosylation motifs and found that disruption of both of them by introducing the N418Q/N422Q double amino acid substitution drastically impairs Env processing into the SU and TM subunits. Moreover, the simultaneous mutation of these N-glycosylation sites prevents Env incorporation into virions and Env-mediated cell-to-cell fusion. Notably, a recombinant soluble version of the SU glycoprotein carrying the double amino acid replacement N418Q/N422Q at the V3 C-terminal side binds to CXCR4 with an efficiency similar to that of wild-type SU.

  19. HIV-1 envelope glycoprotein resistance to monoclonal antibody 2G12 is subject-specific and context-dependent in macaques and humans

    NARCIS (Netherlands)

    Malherbe, Delphine C.; Sanders, Rogier W.; van Gils, Marit J.; Park, Byung; Gomes, Michelle M.; Schuitemaker, Hanneke; Barnett, Susan; Haigwood, Nancy L.

    2013-01-01

    HIV-1 Envelope (Env) protein is the sole target of neutralizing antibodies (NAbs) that arise during infection to neutralize autologous variants. Under this immune pressure, HIV escape variants are continuously selected and over the course of infection Env becomes more neutralization resistant. Many

  20. Functional and structural analysis of GP64, the major envelope glycoprotein of the Budded Virus phenotype of Autographa californica and Orgyia pseudotsugata Multicapsid Nucleopolyhedroviruses

    NARCIS (Netherlands)

    Oomens, A.G.P.

    1999-01-01

    The Baculoviridae are a family of large, enveloped, double-stranded DNA viruses, that cause severe disease in the larvae of mostly lepidopteran insects. Baculoviruses have been studied with the aim of developing alternatives to chemical pest control, and later for their potential as systems

  1. Nuclear Envelope Retention of LINC Complexes Is Promoted by SUN-1 Oligomerization in the Caenorhabditis elegans Germ Line.

    Science.gov (United States)

    Daryabeigi, Anahita; Woglar, Alexander; Baudrimont, Antoine; Silva, Nicola; Paouneskou, Dimitra; Vesely, Cornelia; Rauter, Manuel; Penkner, Alexandra; Jantsch, Michael; Jantsch, Verena

    2016-06-01

    SUN (Sad1 and UNC-84) and KASH (Klarsicht, ANC-1, and Syne homology) proteins are constituents of the inner and outer nuclear membranes. They interact in the perinuclear space via C-terminal SUN-KASH domains to form the linker of nucleoskeleton and cytoskeleton (LINC) complex thereby bridging the nuclear envelope. LINC complexes mediate numerous biological processes by connecting chromatin with the cytoplasmic force-generating machinery. Here we show that the coiled-coil domains of SUN-1 are required for oligomerization and retention of the protein in the nuclear envelope, especially at later stages of female gametogenesis. Consistently, deletion of the coiled-coil domain makes SUN-1 sensitive to unilateral force exposure across the nuclear membrane. Premature loss of SUN-1 from the nuclear envelope leads to embryonic death due to loss of centrosome-nuclear envelope attachment. However, in contrast to previous notions we can show that the coiled-coil domain is dispensable for functional LINC complex formation, exemplified by successful chromosome sorting and synapsis in meiotic prophase I in its absence. Copyright © 2016 by the Genetics Society of America.

  2. N-Glycans on the Rift Valley Fever Virus Envelope Glycoproteins Gn and Gc Redundantly Support Viral Infection via DC-SIGN

    Science.gov (United States)

    Phoenix, Inaia; Nishiyama, Shoko; Lokugamage, Nandadeva; Hill, Terence E.; Huante, Matthew B.; Slack, Olga A.L.; Carpio, Victor H.; Freiberg, Alexander N.; Ikegami, Tetsuro

    2016-01-01

    Rift Valley fever is a mosquito-transmitted, zoonotic disease that infects humans and ruminants. Dendritic cell specific intercellular adhesion molecule 3 (ICAM-3) grabbing non-integrin (DC-SIGN) acts as a receptor for members of the phlebovirus genus. The Rift Valley fever virus (RVFV) glycoproteins (Gn/Gc) encode five putative N-glycan sequons (asparagine (N)–any amino acid (X)–serine (S)/threonine (T)) at positions: N438 (Gn), and N794, N829, N1035, and N1077 (Gc). The N-glycosylation profile and significance in viral infection via DC-SIGN have not been elucidated. Gc N-glycosylation was first evaluated by using Gc asparagine (N) to glutamine (Q) mutants. Subsequently, we generated a series of recombinant RVFV MP-12 strain mutants, which encode N-to-Q mutations, and the infectivity of each mutant in Jurkat cells stably expressing DC-SIGN was evaluated. Results showed that Gc N794, N1035, and N1077 were N-glycosylated but N829 was not. Gc N1077 was heterogeneously N-glycosylated. RVFV Gc made two distinct N-glycoforms: “Gc-large” and “Gc-small”, and N1077 was responsible for “Gc-large” band. RVFV showed increased infection of cells expressing DC-SIGN compared to cells lacking DC-SIGN. Infection via DC-SIGN was increased in the presence of either Gn N438 or Gc N1077. Our study showed that N-glycans on the Gc and Gn surface glycoproteins redundantly support RVFV infection via DC-SIGN. PMID:27223297

  3. The C-terminal tail of the gp41 transmembrane envelope glycoprotein of HIV-1 clades A, B, C, and D may exist in two conformations: an analysis of sequence, structure, and function

    International Nuclear Information System (INIS)

    Hollier, Mark J.; Dimmock, Nigel J.

    2005-01-01

    In addition to the major ectodomain, the gp41 transmembrane glycoprotein of HIV-1 is now known to have a minor ectodomain that is part of the long C-terminal tail. Both ectodomains are highly antigenic, carry neutralizing and non-neutralizing epitopes, and are involved in virus-mediated fusion activity. However, data have so far been biologically based, and derived solely from T cell line-adapted (TCLA), B clade viruses. Here we have carried out sequence and theoretically based structural analyses of 357 gp41 C-terminal sequences of mainly primary isolates of HIV-1 clades A, B, C, and D. Data show that all these viruses have the potential to form a tail loop structure (the minor ectodomain) supported by three, β-sheet, membrane-spanning domains (MSDs). This means that the first (N-terminal) tyrosine-based sorting signal of the gp41 tail is situated outside the cell membrane and is non-functional, and that gp41 that reaches the cell surface may be recycled back into the cytoplasm through the activity of the second tyrosine-sorting signal. However, we suggest that only a minority of cell-associated gp41 molecules - those destined for incorporation into virions - has 3 MSDs and the minor ectodomain. Most intracellular gp41 has the conventional single MSD, no minor ectodomain, a functional first tyrosine-based sorting signal, and in line with current thinking is degraded intracellularly. The gp41 structural diversity suggested here can be viewed as an evolutionary strategy to minimize HIV-1 envelope glycoprotein expression on the cell surface, and hence possible cytotoxicity and immune attack on the infected cell

  4. High-Mannose Specific Lectin and Its Recombinants from a Carrageenophyta Kappaphycus alvarezii Represent a Potent Anti-HIV Activity Through High-Affinity Binding to the Viral Envelope Glycoprotein gp120.

    Science.gov (United States)

    Hirayama, Makoto; Shibata, Hiromi; Imamura, Koji; Sakaguchi, Takemasa; Hori, Kanji

    2016-02-01

    We previously reported that a high-mannose binding lectin KAA-2 from the red alga Kappaphycus alvarezii, which is an economically important species and widely cultivated as a source of carrageenans, had a potent anti-influenza virus activity. In this study, the full-length sequences of two KAA isoforms, KAA-1 and KAA-2, were elucidated by a combination of peptide mapping and complementary DNA (cDNA) cloning. They consisted of four internal tandem-repeated domains, which are conserved in high-mannose specific lectins from lower organisms, including a cyanobacterium Oscillatoria agardhii and a red alga Eucheuma serra. Using an Escherichia coli expression system, an active recombinant form of KAA-1 (His-tagged rKAA-1) was successfully generated in the yield of 115 mg per liter of culture. In a detailed oligosaccharide binding analysis by a centrifugal ultrafiltration-HPLC method with 27 pyridylaminated oligosaccharides, His-tagged rKAA-1 and rKAA-1 specifically bound to high-mannose N-glycans with an exposed α1-3 mannose in the D2 arm as the native lectin did. Predicted from oligosaccharide binding specificity, a surface plasmon resonance analysis revealed that the recombinants exhibit strong interaction with gp120, a heavily glycosylated envelope glycoprotein of HIV with high association constants (1.48 - 1.61 × 10(9) M(-1)). Native KAAs and the recombinants inhibited the HIV-1 entry at IC50s of low nanomolar levels (7.3-12.9 nM). Thus, the recombinant proteins would be useful as antiviral reagents targeting the viral surface glycoproteins with high-mannose N-glycans, and the cultivated alga K. alvarezii could also be a good source of not only carrageenans but also this functional lectin(s).

  5. Advancing the manufacture of complex geometry GFRC for today's building envelopes

    NARCIS (Netherlands)

    Henriksen, T.N.

    2017-01-01

    Thin-walled glass fibre reinforced concrete (GFRC) panels are being used as the primary cladding material on many landmark buildings especially in the last decade. GFRC is an ideal material for building envelopes because it is durable, it can resist fire and the environmental impact is low compared

  6. Identification and nucleotide sequence of a gene in equine herpesvirus 1 analogous to the herpes simplex virus gene encoding the major envelope glycoprotein gB.

    Science.gov (United States)

    Whalley, J M; Robertson, G R; Scott, N A; Hudson, G C; Bell, C W; Woodworth, L M

    1989-02-01

    A gene in equine herpesvirus 1 (EHV-1; equine abortion virus) equivalent to the gB glycoprotein gene of herpes simplex virus (HSV) has been identified by DNA hybridization and nucleotide sequencing. A 4.3 kbp EHV-1 PstI-ClaI sequence (0.40 to 0.43 map units) contained an open reading frame flanked by appropriate control elements and was capable of encoding a polypeptide of 980 amino acids. This had 50 to 60% identity over a 617 amino acid conserved region with the gB gene products of HSV and three other alphaherpesviruses, and 20 to 30% identity with those of human cytomegalovirus and Epstein-Barr virus. Analysis of the amino acid sequence predicts a long signal peptide, hydrophobic and hydrophilic domains and N-glycosylation sites, and has identified a probable internal proteolytic cleavage site. The EHV-1 gB open reading frame appears to be overlapped at its 5' end by 135 nucleotides of the 3' end of an upstream open reading frame the potential translation product of which has approximately 50% identity with HSV gene ICP 18.5 and VZV gene 30 products.

  7. Absence of cytotoxic antibody to human immunodeficiency virus-infected cells in humans and its induction in animals after infection or immunization with purified envelope glycoprotein gp120

    International Nuclear Information System (INIS)

    Nara, P.L.; Robey, W.G.; Gonda, M.A.; Carter, S.G.; Fischinger, P.J.

    1987-01-01

    The presence of antibody-dependent complement-mediated cytotoxicity (ACC) was assessed in humans and chimpanzees, which are capable of infection with human immunodeficiency virus isolate HTLV-IIIb, and examined in the goat after immunization with the major viral glycoprotein (gp120) of HTLV-IIIb. In infected humans no antibody mediating ACC was observed regardless of the status of disease. Even healthy individuals with high-titer, broadly reactive, neutralizing antibodies has no ACC. In contrast, chimpanzees infected with HTLV-IIIb, from whom virus could be isolated, not only had neutralizing antibody but also antibodies broadly reactive in ACC, even against distantly related human immunodeficiency virus isolates, as well as against their own reisolated virus. In the goat, the gp120 of HTLV-IIIb induced a highly type-specific response as measured by both ACC and flow cytofluorometry of live infected H9 cells. Normal human cells were not subject to ACC by animal anti-HTLV-III gp120-specific sera. Induction of ACC and neutralizing antibody were closely correlated in the animal experimental models but not in humans. The presence of ACC in gp120-inoculated goats and HTLV-III-infected chimpanzees represent a qualitative difference that may be important in the quest for the elicitation of a protective immunity in humans

  8. Absence of cytotoxic antibody to human immunodeficiency virus-infected cells in humans and its induction in animals after infection or immunization with purified envelope glycoprotein gp120

    Energy Technology Data Exchange (ETDEWEB)

    Nara, P.L.; Robey, W.G.; Gonda, M.A.; Carter, S.G.; Fischinger, P.J.

    1987-06-01

    The presence of antibody-dependent complement-mediated cytotoxicity (ACC) was assessed in humans and chimpanzees, which are capable of infection with human immunodeficiency virus isolate HTLV-IIIb, and examined in the goat after immunization with the major viral glycoprotein (gp120) of HTLV-IIIb. In infected humans no antibody mediating ACC was observed regardless of the status of disease. Even healthy individuals with high-titer, broadly reactive, neutralizing antibodies has no ACC. In contrast, chimpanzees infected with HTLV-IIIb, from whom virus could be isolated, not only had neutralizing antibody but also antibodies broadly reactive in ACC, even against distantly related human immunodeficiency virus isolates, as well as against their own reisolated virus. In the goat, the gp120 of HTLV-IIIb induced a highly type-specific response as measured by both ACC and flow cytofluorometry of live infected H9 cells. Normal human cells were not subject to ACC by animal anti-HTLV-III gp120-specific sera. Induction of ACC and neutralizing antibody were closely correlated in the animal experimental models but not in humans. The presence of ACC in gp120-inoculated goats and HTLV-III-infected chimpanzees represent a qualitative difference that may be important in the quest for the elicitation of a protective immunity in humans.

  9. Mutations in the feline immunodeficiency virus envelope glycoprotein confer resistance to a dominant-negative fragment of Tsg101 by enhancing infectivity and cell-to-cell virus transmission.

    Science.gov (United States)

    Luttge, Benjamin G; Panchal, Prashant; Puri, Vinita; Checkley, Mary Ann; Freed, Eric O

    2014-04-01

    The Pro-Ser-Ala-Pro (PSAP) motif in the p2 domain of feline immunodeficiency virus (FIV) Gag is required for efficient virus release, virus replication, and Gag binding to the ubiquitin-E2-variant (UEV) domain of Tsg101. As a result of this direct interaction, expression of an N-terminal fragment of Tsg101 containing the UEV domain (referred to as TSG-5') inhibits FIV release. In these respects, the FIV p2(Gag) PSAP motif is analogous to the PTAP motif of HIV-1 p6(Gag). To evaluate the feasibility of a late domain-targeted inhibition of virus replication, we created an enriched Crandell-Rees feline kidney (CRFK) cell line (T5'(hi)) that stably expresses high levels of TSG-5'. Here we show that mutations in either the V3 loop or the second heptad repeat (HR2) domain of the FIV envelope glycoprotein (Env) rescue FIV replication in T5'(hi) cells without increasing FIV release efficiency. TSG-5'-resistance mutations in Env enhance virion infectivity and the cell-cell spread of FIV when diffusion is limited using a semi-solid growth medium. These findings show that mutations in functional domains of Env confer TSG-5'-resistance, which we propose enhances specific infectivity and the cell-cell transmission of virus to counteract inefficient virus release. This article is part of a Special Issue entitled: Viral Membrane Proteins-Channels for Cellular Networking. © 2013.

  10. The Complexity of Antibody Responses Elicited against the Respiratory Syncytial Virus Glycoproteins in Hospitalized Children Younger than 2 Years

    Directory of Open Access Journals (Sweden)

    Alfonsina Trento

    2017-11-01

    Full Text Available The influence of age and maternal antibodies on the antibody responses to human respiratory syncytial virus (hRSV glycoproteins in very young children has been a matter of controversy. Both, immaturity of the immune system at very early age and suppression of the host immune response by high level of maternal antibodies have been claimed to limit the host antibody response to virus infection and to jeopardize the use of hRSV vaccines under development in that age group. Hence, the antibody responses to the two major hRSV glycoproteins (F and G were evaluated in children younger than 2 years, hospitalized with laboratory confirmed hRSV bronchiolitis. A strong negative correlation was found between the titre of circulating ELISA antibodies directed against either prefusion or postfusion F in the acute phase, but not age, and their fold change at convalescence. These changes correlated also with the level of circulating neutralizing antibodies in sera. As reported in adults, most neutralizing antibodies in a subset of tested sera could not be depleted with postfusion F, suggesting that they were mostly directed against prefusion-specific epitopes. In contrast, a weak negative association was found for group-specific anti-G antibodies in the acute phase and their fold change at convalescence only after correcting for the antigenic group of the infecting virus. In addition, large discrepancies were observed in some individuals between the antibody responses specific for F and G glycoproteins. These results illustrate the complexity of the anti-hRSV antibody responses in children experiencing a primary severe infection and the influence of preexisting maternal antibodies on the host response, factors that should influence hRSV serological studies as well as vaccine development.

  11. The Structure of Herpesvirus Fusion Glycoprotein B-Bilayer Complex Reveals the Protein-Membrane and Lateral Protein-Protein Interaction

    NARCIS (Netherlands)

    Maurer, Ulrike E.; Zeev-Ben-Mordehai, Tzviya; Pandurangan, Arun Prasad; Cairns, Tina M.; Hannah, Brian P.; Whitbeck, J. Charles; Eisenberg, Roselyn J.; Cohen, Gary H.; Topf, Maya; Huiskonen, Juha T.; Gruenewald, Kay

    2013-01-01

    Glycoprotein B (gB) is a key component of the complex herpesvirus fusion machinery. We studied membrane interaction of two gB ectodomain forms and present an electron cryotomography structure of the gB-bilayer complex. The two forms differed in presence or absence of the membrane proximal region

  12. Characterization of retrovirus-based reporter viruses pseudotyped with the precursor membrane and envelope glycoproteins of four serotypes of dengue viruses

    International Nuclear Information System (INIS)

    Hu, H.-P.; Hsieh, S.-C.; King, C.-C.; Wang, W.-K.

    2007-01-01

    In this study, we successfully established retrovirus-based reporter viruses pseudotyped with the precursor membrane and envelope (PrM/E) proteins of each of the four serotypes of dengue viruses, which caused the most important arboviral diseases in this century. Co-sedimentation of the dengue E protein and HIV-1 core proteins by sucrose gradient analysis of the pseudotype reporter virus of dengue virus type 2, D2(HIVluc), and detection of HIV-1 core proteins by immunoprecipitation with anti-E monoclonal antibody suggested that dengue viral proteins were incorporated into the pseudotype viral particles. The infectivity in target cells, as assessed by the luciferase activity, can be inhibited by the lysosomotropic agents, suggesting a pH-dependent mechanism of entry. Amino acid substitutions of the leucine at position 107, a critical residue at the fusion loop of E protein, with lysine resulted in severe impairment in infectivity, suggesting that entry of the pseudotype reporter virus is mediated through the fusogenic properties of E protein. With more and more dengue viral sequences available from different outbreaks worldwide, this sensitive and convenient tool has the potential to facilitate molecular characterization of the PrM/E proteins of dengue field isolates

  13. Second site escape of a T20-dependent HIV-1 variant by a single amino acid change in the CD4 binding region of the envelope glycoprotein

    Directory of Open Access Journals (Sweden)

    Berkhout Ben

    2006-11-01

    Full Text Available Abstract Background We previously described the selection of a T20-dependent human immunodeficiency virus type-1 (HIV-1 variant in a patient on T20 therapy. The fusion inhibitor T20 targets the viral envelope (Env protein by blocking a conformational switch that is critical for viral entry into the host cell. T20-dependent viral entry is the result of 2 mutations in Env (GIA-SKY, creating a protein that undergoes a premature conformational switch, and the presence of T20 prevents this premature switch and rescues viral entry. In the present study, we performed 6 independent evolution experiments with the T20-dependent HIV-1 variant in the absence of T20, with the aim to identify second site compensatory changes, which may provide new mechanistic insights into Env function and the T20-dependence mechanism. Results Escape variants with improved replication capacity appeared within 42 days in 5 evolution cultures. Strikingly, 3 cultures revealed the same single amino acid change in the CD4 binding region of Env (glycine at position 431 substituted for arginine: G431R. This mutation was sufficient to abolish the T20-dependence phenotype and restore viral replication in the absence of T20. The GIA-SKY-G431R escape variant produces an Env protein that exhibits reduced syncytia formation and reduced cell-cell fusion activity. The escape variant was more sensitive to an antibody acting on an early gp41 intermediate, suggesting that the G431R mutation helps preserve a pre-fusion Env conformation, similar to T20 action. The escape variant was also less sensitive to soluble CD4, suggesting a reduced CD4 receptor affinity. Conclusion The forced evolution experiments indicate that the premature conformational switch of the T20-dependent HIV-1 Env variant (GIA-SKY can be corrected by a second site mutation in Env (GIA-SKY-G431R that affects the interaction with the CD4 receptor.

  14. HIV-1 envelope glycoprotein resistance to monoclonal antibody 2G12 is subject-specific and context-dependent in macaques and humans.

    Directory of Open Access Journals (Sweden)

    Delphine C Malherbe

    Full Text Available HIV-1 Envelope (Env protein is the sole target of neutralizing antibodies (NAbs that arise during infection to neutralize autologous variants. Under this immune pressure, HIV escape variants are continuously selected and over the course of infection Env becomes more neutralization resistant. Many common alterations are known to affect sensitivity to NAbs, including residues encoding potential N-linked glycosylation sites (PNGS. Knowledge of Env motifs associated with neutralization resistance is valuable for the design of an effective Env-based vaccine so we characterized Envs isolated longitudinally from a SHIV(SF162P4 infected macaque for sensitivity to neutralizing monoclonal antibodies (MAbs B12, 2G12, 4E10 and 2F5. The early Env, isolated from plasma at day 56 after infection, was the most sensitive and the late Env, from day 670, was the most resistant to MAbs. We identified four PNGS in these Envs that accumulated over time at positions 130, 139, 160 and 397. We determined that removal of these PNGS significantly increased neutralization sensitivity to 2G12, and conversely, we identified mutations by in silico analyses that contributed resistance to 2G12 neutralization. In order to expand our understanding of these PNGS, we analyzed Envs from clade B HIV-infected human subjects and identified additional glycan and amino acid changes that could affect neutralization by 2G12 in a context-dependent manner. Taken together, these in vitro and in silico analyses of clade B Envs revealed that 2G12 resistance is achieved by previously unrecognized PNGS substitutions in a context-dependent manner and by subject-specific pathways.

  15. Albumin is synthesized in epididymis and aggregates in a high molecular mass glycoprotein complex involved in sperm-egg fertilization.

    Directory of Open Access Journals (Sweden)

    Kélen Fabíola Arroteia

    Full Text Available The epididymis has an important role in the maturation of sperm for fertilization, but little is known about the epididymal molecules involved in sperm modifications during this process. We have previously described the expression pattern for an antigen in epididymal epithelial cells that reacts with the monoclonal antibody (mAb TRA 54. Immunohistochemical and immunoblotting analyses suggest that the epitope of the epididymal antigen probably involves a sugar moiety that is released into the epididymal lumen in an androgen-dependent manner and subsequently binds to luminal sperm. Using column chromatography, SDS-PAGE with in situ digestion and mass spectrometry, we have identified the protein recognized by mAb TRA 54 in mouse epididymal epithelial cells. The ∼65 kDa protein is part of a high molecular mass complex (∼260 kDa that is also present in the sperm acrosomal vesicle and is completely released after the acrosomal reaction. The amino acid sequence of the protein corresponded to that of albumin. Immunoprecipitates with anti-albumin antibody contained the antigen recognized by mAb TRA 54, indicating that the epididymal molecule recognized by mAb TRA 54 is albumin. RT-PCR detected albumin mRNA in the epididymis and fertilization assays in vitro showed that the glycoprotein complex containing albumin was involved in the ability of sperm to recognize and penetrate the egg zona pellucida. Together, these results indicate that epididymal-derived albumin participates in the formation of a high molecular mass glycoprotein complex that has an important role in egg fertilization.

  16. Albumin is synthesized in epididymis and aggregates in a high molecular mass glycoprotein complex involved in sperm-egg fertilization.

    Science.gov (United States)

    Arroteia, Kélen Fabíola; Barbieri, Mainara Ferreira; Souza, Gustavo Henrique Martins Ferreira; Tanaka, Hiromitsu; Eberlin, Marcos Nogueira; Hyslop, Stephen; Alvares, Lúcia Elvira; Pereira, Luís Antonio Violin Dias

    2014-01-01

    The epididymis has an important role in the maturation of sperm for fertilization, but little is known about the epididymal molecules involved in sperm modifications during this process. We have previously described the expression pattern for an antigen in epididymal epithelial cells that reacts with the monoclonal antibody (mAb) TRA 54. Immunohistochemical and immunoblotting analyses suggest that the epitope of the epididymal antigen probably involves a sugar moiety that is released into the epididymal lumen in an androgen-dependent manner and subsequently binds to luminal sperm. Using column chromatography, SDS-PAGE with in situ digestion and mass spectrometry, we have identified the protein recognized by mAb TRA 54 in mouse epididymal epithelial cells. The ∼65 kDa protein is part of a high molecular mass complex (∼260 kDa) that is also present in the sperm acrosomal vesicle and is completely released after the acrosomal reaction. The amino acid sequence of the protein corresponded to that of albumin. Immunoprecipitates with anti-albumin antibody contained the antigen recognized by mAb TRA 54, indicating that the epididymal molecule recognized by mAb TRA 54 is albumin. RT-PCR detected albumin mRNA in the epididymis and fertilization assays in vitro showed that the glycoprotein complex containing albumin was involved in the ability of sperm to recognize and penetrate the egg zona pellucida. Together, these results indicate that epididymal-derived albumin participates in the formation of a high molecular mass glycoprotein complex that has an important role in egg fertilization.

  17. New insights into the Hendra virus attachment and entry process from structures of the virus G glycoprotein and its complex with Ephrin-B2.

    Directory of Open Access Journals (Sweden)

    Kai Xu

    Full Text Available Hendra virus and Nipah virus, comprising the genus Henipavirus, are recently emerged, highly pathogenic and often lethal zoonotic agents against which there are no approved therapeutics. Two surface glycoproteins, the attachment (G and fusion (F, mediate host cell entry. The crystal structures of the Hendra G glycoprotein alone and in complex with the ephrin-B2 receptor reveal that henipavirus uses Tryptophan 122 on ephrin-B2/B3 as a "latch" to facilitate the G-receptor association. Structural-based mutagenesis of residues in the Hendra G glycoprotein at the receptor binding interface document their importance for viral attachments and entry, and suggest that the stability of the Hendra-G-ephrin attachment complex does not strongly correlate with the efficiency of viral entry. In addition, our data indicates that conformational rearrangements of the G glycoprotein head domain upon receptor binding may be the trigger leading to the activation of the viral F fusion glycoprotein during virus infection.

  18. Correlation between carbohydrate structures on the envelope glycoprotein gp120 of HIV-1 and HIV-2 and syncytium inhibition with lectins

    DEFF Research Database (Denmark)

    Hansen, J E; Nielsen, C M; Nielsen, C

    1989-01-01

    The binding of 13 different lectins to gp120 partially purified from two HIV-1 isolates and one HIV-2 isolate was studied by in situ staining on electrophoretically separated and electroblotted HIV antigens. The lectins concanavalin A, wheat germ agglutinin, Lens culinaris agglutinin, Vicia faba...... complex type glycan and a triantennary bisected complex type glycan. Only lectins which bound at least one of the four types of glycans were capable of inhibiting fusion of HIV-infected cells with CD4 cells by a carbohydrate-specific interaction with the HIV-infected cells. Thus, several different glycan...... structures may be implicated in CD4-gp120 binding....

  19. Characterization of germline antibody libraries from human umbilical cord blood and selection of monoclonal antibodies to viral envelope glycoproteins: Implications for mechanisms of immune evasion and design of vaccine immunogens.

    Science.gov (United States)

    Chen, Weizao; Streaker, Emily D; Russ, Daniel E; Feng, Yang; Prabakaran, Ponraj; Dimitrov, Dimiter S

    2012-01-27

    We have previously observed that all known HIV-1 broadly neutralizing antibodies (bnAbs) are highly divergent from germline antibodies in contrast to bnAbs against Hendra virus, Nipah virus and SARS coronavirus (SARS CoV). We have hypothesized that because the germline antibodies are so different from the mature HIV-1-specific bnAbs they may not bind the epitopes of the mature antibodies and provided the first evidence to support this hypothesis by using individual putative germline-like predecessor antibodies. To further validate the hypothesis and understand initial immune responses to different viruses, two phage-displayed human cord blood-derived IgM libraries were constructed which contained mostly germline antibodies or antibodies with very low level of somatic hypermutations. They were panned against different HIV-1 envelope glycoproteins (Envs), SARS CoV protein receptor-binding domain (RBD), and soluble Hendra virus G protein (sG). Despite a high sequence and combinatorial diversity observed in the cord blood-derived IgM antibody repertoire, no enrichment for binders of Envs was observed in contrast to considerable specific enrichments produced with panning against RBD and sG; one of the selected monoclonal antibodies (against the RBD) was of high (nM) affinity with only few somatic mutations. These results further support and expand our initial hypothesis for fundamental differences in immune responses leading to elicitation of bnAbs against HIV-1 compared to SARS CoV and Hendra virus. HIV-1 uses a strategy to minimize or eliminate strong binding of germline antibodies to its Env; in contrast, SARS CoV and Hendra virus, and perhaps other viruses causing acute infections, can bind germline antibody or minimally somatically mutated antibodies with relatively high affinity which could be one of the reasons for the success of sG and RBD as vaccine immunogens. Published by Elsevier Inc.

  20. Glycoprotein on cell surfaces

    International Nuclear Information System (INIS)

    Muramatsu, T.

    1975-01-01

    There are conjugated polysaccharides in cell membranes and outside of animal cells, and they play important role in the control of cell behavior. In this paper, the studies on the glycoprotein on cell surfaces are reported. It was found that the glycoprotein on cell surfaces have both N-glycoside type and O-glycoside type saccharic chains. Therefore it can be concluded that the basic structure of the saccharic chains in the glycoprotein on cell surfaces is similar to that of blood serum and body fluid. The main glycoprotein in the membranes of red blood corpuscles has been studied most in detail, and it also has both types of saccharic chains. The glycoprotein in liver cell membranes was found to have only the saccharic chains of acid type and to be in different pattern from that in endoplasmic reticula and nuclear membranes, which also has the saccharic chains of neutral type. The structure of the saccharic chains of H-2 antigen, i.e. the peculiar glycoprotein on the surfaces of lymph system cells, has been studied, and it is similar to the saccharic chains of glycoprotein in blood serum. The saccharic chain structures of H-2 antigen and TL antigen are different. TL, H-2 (D), Lna and H-2 (K) are the glycoprotein on cell surfaces, and are independent molecules. The analysis of the saccharic chain patterns on cell surfaces was carried out, and it was shown that the acid type saccharic chains were similar to those of ordinary glycoprotein, because the enzyme of pneumococci hydrolyzed most of the acid type saccharic chains. The change of the saccharic chain patterns of glycoprotein on cell surfaces owing to canceration and multiplication is complex matter. (Kako, I.)

  1. Correlation between carbohydrate structures on the envelope glycoprotein gp120 of HIV-1 and HIV-2 and syncytium inhibition with lectins

    DEFF Research Database (Denmark)

    Hansen, J E; Nielsen, C M; Nielsen, C

    1989-01-01

    The binding of 13 different lectins to gp120 partially purified from two HIV-1 isolates and one HIV-2 isolate was studied by in situ staining on electrophoretically separated and electroblotted HIV antigens. The lectins concanavalin A, wheat germ agglutinin, Lens culinaris agglutinin, Vicia faba...... agglutinin, Pisum sativum agglutinin and phytohaem(erythro)agglutinin bound to gp120 of all three isolates. The carbohydrate of gp120 recognized by lectins was thus arranged in at least four types of glycans: a high mannose type glycan, a bisected hybrid or complex type glycan, a biantennary fucosylated...

  2. The conserved dileucine- and tyrosine-based motifs in MLV and MPMV envelope glycoproteins are both important to regulate a common Env intracellular trafficking

    Directory of Open Access Journals (Sweden)

    Lopez-Vergès Sandra

    2006-09-01

    Full Text Available Abstract Background Retrovirus particles emerge from the assembly of two structural protein components, Gag that is translated as a soluble protein in the cytoplasm of the host cells, and Env, a type I transmembrane protein. Because both components are translated in different intracellular compartments, elucidating the mechanisms of retrovirus assembly thus requires the study of their intracellular trafficking. Results We used a CD25 (Tac chimera-based approach to study the trafficking of Moloney murine leukemia virus and Mason-Pfizer monkey virus Env proteins. We found that the cytoplasmic tails (CTs of both Env conserved two major signals that control a complex intracellular trafficking. A dileucine-based motif controls the sorting of the chimeras from the trans-Golgi network (TGN toward endosomal compartments. Env proteins then follow a retrograde transport to the TGN due to the action of a tyrosine-based motif. Mutation of either motif induces the mis-localization of the chimeric proteins and both motifs are found to mediate interactions of the viral CTs with clathrin adaptors. Conclusion This data reveals the unexpected complexity of the intracellular trafficking of retrovirus Env proteins that cycle between the TGN and endosomes. Given that Gag proteins hijack endosomal host proteins, our work suggests that the endosomal pathway may be used by retroviruses to ensure proper encountering of viral structural Gag and Env proteins in cells, an essential step of virus assembly.

  3. Role of Conserved Oligomeric Golgi Complex in the Abnormalities of Glycoprotein Processing in Breast Cancer Cells

    National Research Council Canada - National Science Library

    Zolov, Sergey N

    2006-01-01

    ...: protein glycosylation and its sorting. For analysis of COG complex function we utilized RNA interference assay to knockdown COG3p subunit of COG complex in normal and breast cancer cells and other tumor cell lines...

  4. Researching Complex Heat, Air and Moisture Interactions for a Wide-Range of Building Envelope Systems and Environmental Loads

    Energy Technology Data Exchange (ETDEWEB)

    Karagiozis, A.N.

    2007-05-15

    This document serves as the final report documenting work completed by Oak Ridge National Laboratory (ORNL) and the Fraunhofer Institute in Building Physics (Holzkirchen, Germany) under an international CRADA No. 0575 with Fraunhofer Institute of Bauphysics of the Federal Republic of Germany for Researching Complex Heat, Air and Moisture Interactions for a Wide Range of Building Envelope Systems and Environmental Loads. This CRADA required a multi-faceted approach to building envelope research that included a moisture engineering approach by blending extensive material property analysis, laboratory system and sub-system thermal and moisture testing, and advanced moisture analysis prediction performance. The Participant's Institute for Building physics (IBP) and the Contractor's Buildings Technology Center (BTC) identified potential research projects and activities capable of accelerating and advancing the development of innovative, low energy and durable building envelope systems in diverse climates. This allowed a major leverage of the limited resources available to ORNL to execute the required Department of Energy (DOE) directives in the area of moisture engineering. A joint working group (ORNL and Fraunhofer IBP) was assembled and a research plan was executed from May 2000 to May 2005. A number of key deliverables were produced such as adoption of North American loading into the WUFI-software. in addition the ORNL Weather File Analyzer was created and this has been used to address environmental loading for a variety of US climates. At least 4 papers have been co-written with the CRADA partners, and a chapter in the ASTM Manual 40 on Moisture Analysis and Condensation Control. All deliverables and goals were met and exceeded making this collaboration a success to all parties involves.

  5. Channel Nucleoporins Recruit PLK-1 to Nuclear Pore Complexes to Direct Nuclear Envelope Breakdown in C. elegans.

    Science.gov (United States)

    Martino, Lisa; Morchoisne-Bolhy, Stéphanie; Cheerambathur, Dhanya K; Van Hove, Lucie; Dumont, Julien; Joly, Nicolas; Desai, Arshad; Doye, Valérie; Pintard, Lionel

    2017-10-23

    In animal cells, nuclear envelope breakdown (NEBD) is required for proper chromosome segregation. Whereas mitotic kinases have been implicated in NEBD, how they coordinate their activity to trigger this event is unclear. Here, we show that both in human cells and Caenorhabditis elegans, the Polo-like kinase 1 (PLK-1) is recruited to the nuclear pore complexes, just prior to NEBD, through its Polo-box domain (PBD). We provide evidence that PLK-1 localization to the nuclear envelope (NE) is required for efficient NEBD. We identify the central channel nucleoporins NPP-1/Nup58, NPP-4/Nup54, and NPP-11/Nup62 as the critical factors anchoring PLK-1 to the NE in C. elegans. In particular, NPP-1, NPP-4, and NPP-11 primed at multiple Polo-docking sites by Cdk1 and PLK-1 itself physically interact with the PLK-1 PBD. We conclude that nucleoporins play an unanticipated regulatory role in NEBD, by recruiting PLK-1 to the NE thereby facilitating phosphorylation of critical downstream targets. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Isotopica: a tool for the calculation and viewing of complex isotopic envelopes.

    Science.gov (United States)

    Fernandez-de-Cossio, Jorge; Gonzalez, Luis Javier; Satomi, Yoshinori; Betancourt, Lazaro; Ramos, Yassel; Huerta, Vivian; Amaro, Abel; Besada, Vladimir; Padron, Gabriel; Minamino, Naoto; Takao, Toshifumi

    2004-07-01

    The web application Isotopica has been developed as an aid to the interpretation of ions that contain naturally occurring isotopes in a mass spectrum. It allows the calculation of mass values and isotopic distributions based on molecular formulas, peptides/proteins, DNA/RNA, carbohydrate sequences or combinations thereof. In addition, Isotopica takes modifications of the input molecule into consideration using a simple and flexible language as a straightforward extension of the molecular formula syntax. This function is especially useful for biomolecules, which are often subjected to additional modifications other than normal constituents, such as the frequently occurring post-translational modification in proteins. The isotopic distribution of any molecule thus defined can be calculated by considering full widths at half maximum or mass resolution. The combined envelope of several overlapping isotopic distributions of a mixture of molecules can be determined after specifying each molecule's relative abundance. The results can be displayed graphically on a local PC using the Isotopica viewer, a standalone application that is downloadable from the sites below, as a complement to the client browser. The m/z and intensity values can also be obtained in the form of a plain ASCII text file. The software has proved to be useful for peptide mass fingerprinting and validating an observed isotopic ion distribution with reference to the theoretical one, even from a multi-component sample. The web server can be accessed at http://bioinformatica.cigb.edu.cu/isotopica and http://coco.protein.osaka-u.ac.jp/isotopica [correction].

  7. Herpesvirus envelopment.

    Science.gov (United States)

    Darlington, R W; Moss, L H

    1968-01-01

    The growth and envelopment processes of three representative herpesviruses, equine abortion, pseudorabies, and herpes simplex, were examined in baby hamster kidney (BHK 21/13) cells by bioassay (plaque-forming units) and electron microscopy. The envelopment process was identical for all three viruses. After assembly in the nucleus, the nucleocapsid acquired an envelope by budding from the inner nuclear membrane. This membrane was reduplicated as the enveloped particle was released so that the budding process did not result in disruption of the continuity of the nuclear membrane. That portion of the nuclear membrane which comprised the viral envelope was appreciably thicker than the remainder of the membrane and exhibited numerous projections on its surface. Once enveloped, the viral particles were seen in vesicles and vacuoles in the cell cytoplasm. These appeared to open at the cytoplasmic membrane, releasing the virus from the cell. There was no detectable difference in the size or appearance of enveloped particles in intra- or extracellular locations.

  8. The potassium channel Kir4.1 associates with the dystrophin-glycoprotein complex via alpha-syntrophin in glia.

    Science.gov (United States)

    Connors, Nathan C; Adams, Marvin E; Froehner, Stanley C; Kofuji, Paulo

    2004-07-02

    One of the major physiological roles of potassium channels in glial cells is to promote "potassium spatial buffering" in the central nervous system, a process necessary to maintain an optimal potassium concentration in the extracellular environment. This process requires the precise distribution of potassium channels accumulated at high density in discrete subdomains of glial cell membranes. To obtain a better understanding of how glial cells selectively target potassium channels to discrete membrane subdomains, we addressed the question of whether the glial inwardly rectifying potassium channel Kir4.1 associates with the dystrophin-glycoprotein complex (DGC). Immunoprecipitation experiments revealed that Kir4.1 is associated with the DGC in mouse brain and cultured cortical astrocytes. In vitro immunoprecipitation and pull-down assays demonstrated that Kir4.1 can bind directly to alpha-syntrophin, requiring the presence of the last three amino acids of the channel (SNV), a consensus PDZ domain-binding motif. Furthermore, Kir4.1 failed to associate with the DGC in brains from alpha-syntrophin knockout mice. These results suggest that Kir4.1 is localized in glial cells by its association with the DGC through a PDZ domain-mediated interaction with alpha-syntrophin and suggest an important role for the DGC in central nervous system physiology.

  9. Age-related dystrophin-glycoprotein complex structure and function in the rat extensor digitorum longus and soleus muscle.

    Science.gov (United States)

    Rice, Kevin M; Preston, Deborah L; Neff, David; Norton, Michael; Blough, Eric R

    2006-11-01

    This study tested the hypothesis that age-related changes in the dystrophin-glycoprotein complex (DGC) may precede age-associated alterations in muscle morphology and function. Compared to those in adult (6 month) rats, extensor digitorum longus (EDL) and soleus muscle mass was decreased in old (30 month) and very old (36 month) Fischer 344/NNiaHSD x Brown Norway/BiNia rats. The amount of dystrophin, beta-dystroglycan, and alpha-sarcoglycan increased with aging in the EDL and decreased with aging in the soleus. alpha-Dystroglycan levels were increased with aging in both muscles and displayed evidence of altered glycosylation. Immunostaining for the presence of antibody infiltration and dystrophin following increased muscle stretch suggested that the aging in the soleus was characterized by diminished membrane integrity. Together, these data suggest that aging is associated with alterations in EDL and soleus DGC protein content and localization. These results may implicate the DGC as playing a role in age-associated skeletal muscle remodeling.

  10. Myelin-oligodendrocyte glycoprotein is a member of a subset of the immunoglobulin superfamily encoded within the major histocompatibility complex

    Energy Technology Data Exchange (ETDEWEB)

    Pham-Dinh, D.; Dautigny, A. (Institut des Neurosciences, Paris (France)); Mattei, M.G.; Roeckel, N. (Institut National de la Sante et de la Recherche Medicale Unite, Marseille (France)); Nussbaum, J.H.; Roussel, G. (Centre National de la Recherche Scientifique Unite, Strasbourg (France)); Pontarotti, P. (Centre Natinal de la Recherche Scientifique Unite, Toulouse (France)); Mather, I.H. (Univ. of Maryland, College Park, MD (United States)); Artzt, K. (Univ. of Texas, Austin, TX (United States)); Lindahl, K.F. (Univ. of Texas Southwestern Medical Center, Dallas, TX (United States))

    1993-09-01

    Myelin/oligodendrocyte glycoprotein (MOG) is found on the surface of myelinating oligodendrocytes and external lamellae of myelin sheaths in the central nervous system, and it is target antigen in experimental autoimmune encephalomyelitis and multiple sclerosis. The authors have isolated bovine, mouse, and rat MOG cDNA clones and shown that the developmental pattern of MOG expression in the rat central nervous system coincides with the late stages of myelination. The amino-terminal, extracellular domain of MOG has characteristics of an immunoglobulin variable domain and is 46% and 41% identical with the amino terminus of bovine butyrophilin (expressed in the lactating mammary gland) and B-G antigens of the chicken major histocompatibility complex (MHC), respectively; these proteins thus form a subset of the immunoglobulin superfamily. The homology between MOG and B-G extends beyond their structure and genetic mapping to their ability to induce strong antibody responses and has implications for the role of MOG in pathological, autoimmune conditions. The authors colocalized the MOG and BT genes to the human MHC on chromosome 6p21.3-p22. The mouse MOG gene was mapped to the homologous band C of chromosome 17, within the M region of the mouse MHC. 38 refs., 6 figs.

  11. The PSA-2 glycoprotein complex of Leishmania major is a glycosylphosphatidylinositol-linked promastigote surface antigen.

    Science.gov (United States)

    Murray, P J; Spithill, T W; Handman, E

    1989-12-15

    Polyclonal rabbit antiserum to the Triton X-114 phase material of Leishmania major, which comprises the surface and internal integral membrane proteins of the parasite, was used to screen a lambda gt11 genomic expression library. A recombinant clone producing a Mr 123,000 beta-galactosidase fusion protein was isolated. Antibodies affinity-purified on this fusion protein recognized a complex of three surface-oriented proteins of promastigotes of L. major of Mr 94,000, 90,000, and 80,000 that we have termed the promastigote surface Ag 2 (PSA-2) complex. The DNA sequence of the insert in this clone predicted the 3' end of an open reading frame encoding a hydrophobic C-terminus. The inferred C-terminal sequence was suggestive of a glycosylphosphatidyl-inositol membrane anchoring mechanism. Phosphatidylinositol-specific phospholipase C treatment of the native PSA-2 proteins caused a shift in their electrophoretic mobility with an apparent reduction in the molecular weight of the PSA-2 complex. After phospholipase C treatment these proteins also displayed the cryptic cross-reacting determinant recognized by antibodies to the Trypanosoma brucei variant surface Ag. Moreover, PSA-2, which previously partitioned in the detergent phase after Triton X-114 phase separation, became water-soluble after phospholipase C treatment. Immunoprecipitation of the PSA-2 proteins with sera directed to lectin-binding proteins indicated that these polypeptides may be differentially glycosylated. Finally, these PSA-2 proteins were recognized by sera from some patients with cutaneous leishmaniasis.

  12. The kinase inhibitor SFV785 dislocates dengue virus envelope protein from the replication complex and blocks virus assembly.

    Directory of Open Access Journals (Sweden)

    Azlinda Anwar

    Full Text Available Dengue virus (DENV is the etiologic agent for dengue fever, for which there is no approved vaccine or specific anti-viral drug. As a remedy for this, we explored the use of compounds that interfere with the action of required host factors and describe here the characterization of a kinase inhibitor (SFV785, which has selective effects on NTRK1 and MAPKAPK5 kinase activity, and anti-viral activity on Hepatitis C, DENV and yellow fever viruses. SFV785 inhibited DENV propagation without inhibiting DENV RNA synthesis or translation. The compound did not cause any changes in the cellular distribution of non-structural 3, a protein critical for DENV RNA synthesis, but altered the distribution of the structural envelope protein from a reticulate network to enlarged discrete vesicles, which altered the co-localization with the DENV replication complex. Ultrastructural electron microscopy analyses of DENV-infected SFV785-treated cells showed the presence of viral particles that were distinctly different from viable enveloped virions within enlarged ER cisternae. These viral particles were devoid of the dense nucleocapsid. The secretion of the viral particles was not inhibited by SFV785, however a reduction in the amount of secreted infectious virions, DENV RNA and capsid were observed. Collectively, these observations suggest that SFV785 inhibited the recruitment and assembly of the nucleocapsid in specific ER compartments during the DENV assembly process and hence the production of infectious DENV. SFV785 and derivative compounds could be useful biochemical probes to explore the DENV lifecycle and could also represent a new class of anti-virals.

  13. Targeting and Assembly of Components of the TOC Protein Import Complex at the Chloroplast Outer Envelope Membrane

    Directory of Open Access Journals (Sweden)

    Lynn G.L. Richardson

    2014-06-01

    Full Text Available The translocon at the outer envelope membrane of chloroplasts (TOC initiates the import of thousands of nuclear encoded preproteins required for chloroplast biogenesis and function. The multimeric TOC complex contains two GTP-regulated receptors, Toc34 and Toc159, which recognize the transit peptides of preproteins and initiate protein import through a β–barrel membrane channel, Toc75. Different isoforms of Toc34 and Toc159 assemble with Toc75 to form structurally and functionally diverse translocons, and the composition and levels of TOC translocons is required for the import of specific subsets of coordinately expressed proteins during plant growth and development. Consequently, the proper assembly of the TOC complexes is key to ensuring organelle homeostasis. This review will focus on our current knowledge of the targeting and assembly of TOC components to form functional translocons at the outer membrane. Our analyses reveal that the targeting of TOC components involves elements common to the targeting of other outer membrane proteins, but also include unique features that appear to have evolved to specifically facilitate assembly of the import apparatus.

  14. Targeting and assembly of components of the TOC protein import complex at the chloroplast outer envelope membrane.

    Science.gov (United States)

    Richardson, Lynn G L; Paila, Yamuna D; Siman, Steven R; Chen, Yi; Smith, Matthew D; Schnell, Danny J

    2014-01-01

    The translocon at the outer envelope membrane of chloroplasts (TOC) initiates the import of thousands of nuclear encoded preproteins required for chloroplast biogenesis and function. The multimeric TOC complex contains two GTP-regulated receptors, Toc34 and Toc159, which recognize the transit peptides of preproteins and initiate protein import through a β-barrel membrane channel, Toc75. Different isoforms of Toc34 and Toc159 assemble with Toc75 to form structurally and functionally diverse translocons, and the composition and levels of TOC translocons is required for the import of specific subsets of coordinately expressed proteins during plant growth and development. Consequently, the proper assembly of the TOC complexes is key to ensuring organelle homeostasis. This review will focus on our current knowledge of the targeting and assembly of TOC components to form functional translocons at the outer membrane. Our analyses reveal that the targeting of TOC components involves elements common to the targeting of other outer membrane proteins, but also include unique features that appear to have evolved to specifically facilitate assembly of the import apparatus.

  15. Microfilament association of ASGP-2, the concanavalin A-binding glycoprotein of the cell-surface sialomucin complex of 13762 rat mammary ascites tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Vanderpuye, L.A.; Carraway, C.A.C.; Carraway, K.L. (Univ. of Miami School of Medicine, FL (USA))

    1988-10-01

    Microfilament-associated proteins and membrane-microfilament interactions are being investigated in microvilli isolated from 13762 rat mammary ascites tumor cells. Phalloidin shift analyses on velocity sedimentation gradients of Triton X-100 extracts of ({sup 3}H)-glucosamine-labeled microvilli identified a 120-kDa cell-surface glycoprotein associated with the microvillar microfilament core. The identification was verified by concanavalin A (Con A) blots of one- and two-dimensional (2D) electrophoresis gels of sedimented microfilament cores. By 2D-electrophoresis and lectin analyses the 120-kDa protein appeared to be a fraction of ASGP-2, the major Con A-binding glycoprotein of the sialomucin complex of the 13762 cells. This identity was confirmed by immunoblot analyses using immunoblot-purified anti-ASGP-2 from anti-membrane serum prepared against microvillar membranes. Proteolysis of the microvilli with subtilisin or trypsin resulted in an increase in the amount of ASGP-2 associated with the microfilament cores. Proteolysis of isolated microvillar membranes, which contain actin but not microfilaments, also increased the association of ASGP-2 with a Triton-insoluble, actin-containing membrane fraction. Since the Triton-insoluble membrane residue is enriched in actin-containing transmembrane complex, which contains a different glycoprotein, the authors suggest that the ASGP-2 is binding indirectly via this complex to the microfilament core in the intact microvilli.

  16. Building envelope

    CSIR Research Space (South Africa)

    Gibberd, Jeremy T

    2009-01-01

    Full Text Available have controllable internal blinds and external solar shading which can be used to maximise internal daylight quality and avoid glare and solar gain. • Ecological: Green building envelopes aim to support the development of ecosystems and plant... problems such as large solar heat gains which can only be solved through mechanical plant. • Large sections: 1:10 sections of building envelopes are very useful in understanding the design of a building envelope and should be developed early...

  17. Energy optimization and prediction of complex petrochemical industries using an improved artificial neural network approach integrating data envelopment analysis

    International Nuclear Information System (INIS)

    Han, Yong-Ming; Geng, Zhi-Qiang; Zhu, Qun-Xiong

    2016-01-01

    Graphical abstract: This paper proposed an energy optimization and prediction of complex petrochemical industries based on a DEA-integrated ANN approach (DEA-ANN). The proposed approach utilizes the DEA model with slack variables for sensitivity analysis to determine the effective decision making units (DMUs) and indicate the optimized direction of the ineffective DMUs. Compared with the traditional ANN approach, the DEA-ANN prediction model is effectively verified by executing a linear comparison between all DMUs and the effective DMUs through the standard data source from the UCI (University of California at Irvine) repository. Finally, the proposed model is validated through an application in a complex ethylene production system of China petrochemical industry. Meanwhile, the optimization result and the prediction value are obtained to reduce energy consumption of the ethylene production system, guide ethylene production and improve energy efficiency. - Highlights: • The DEA-integrated ANN approach is proposed. • The DEA-ANN prediction model is effectively verified through the standard data source from the UCI repository. • The energy optimization and prediction framework of complex petrochemical industries based on the proposed method is obtained. • The proposed method is valid and efficient in improvement of energy efficiency in complex petrochemical plants. - Abstract: Since the complex petrochemical data have characteristics of multi-dimension, uncertainty and noise, it is difficult to accurately optimize and predict the energy usage of complex petrochemical systems. Therefore, this paper proposes a data envelopment analysis (DEA) integrated artificial neural network (ANN) approach (DEA-ANN). The proposed approach utilizes the DEA model with slack variables for sensitivity analysis to determine the effective decision making units (DMUs) and indicate the optimized direction of the ineffective DMUs. Compared with the traditional ANN approach, the DEA

  18. Development of the vitrification compositional envelope to support complex-wide application of MAWS technology

    Energy Technology Data Exchange (ETDEWEB)

    Mazer, J.J. [ed.] [Argonne National Lab., IL (United States); Muller, I.S.; Gan, H.; Buechele, A.C.; Lai, S.T.; Pegg, I.L. [Catholic Univ. of America, Washington, DC (United States). Vitreous State Lab.]|[GTS Duratek, Inc., Columbia, MD (United States)

    1996-09-01

    This report presents the results from a study of the application of the Minimum Additive Waste Stabilization (MAWS) approach using vitrification as a treatment technology to a variety of waste streams across the DOE complex. This work has involved both experimental vitrification work using actual mixed wastes and surrogate waste streams from several DOE sites (Hanford, Idaho, and Oak Ridge) as well as the development of a computer-based, integrated glass property-composition database. The long-term objective is that this data base will assist glass formulation studies with single waste streams or combinations of waste streams subject to a variety of user-imposed constraints including waste stream usage priorities, process related constraints (e.g., melt viscosity, electrical conductivity, etc.), and waste form performance related constraints (e.g., TCLP and PCT leaching results). 79 refs., 143 figs., 65 tabs.

  19. Development of the vitrification compositional envelope to support complex-wide application of MAWS technology

    International Nuclear Information System (INIS)

    Mazer, J.J.; Muller, I.S.; Gan, H.; Buechele, A.C.; Lai, S.T.; Pegg, I.L.

    1996-09-01

    This report presents the results from a study of the application of the Minimum Additive Waste Stabilization (MAWS) approach using vitrification as a treatment technology to a variety of waste streams across the DOE complex. This work has involved both experimental vitrification work using actual mixed wastes and surrogate waste streams from several DOE sites (Hanford, Idaho, and Oak Ridge) as well as the development of a computer-based, integrated glass property-composition database. The long-term objective is that this data base will assist glass formulation studies with single waste streams or combinations of waste streams subject to a variety of user-imposed constraints including waste stream usage priorities, process related constraints (e.g., melt viscosity, electrical conductivity, etc.), and waste form performance related constraints (e.g., TCLP and PCT leaching results). 79 refs., 143 figs., 65 tabs

  20. Complex interplay between the P-glycoprotein multidrug efflux pump and the membrane: its role in modulating protein function

    Directory of Open Access Journals (Sweden)

    Frances Jane Sharom

    2014-03-01

    Full Text Available Multidrug resistance in cancer is linked to expression of the P-glycoprotein multidrug transporter (Pgp, ABCB1, which exports many structurally diverse compounds from cells. Substrates first partition into the bilayer and then interact with a large flexible binding pocket within the transporter’s transmembrane regions. Pgp has been described as a hydrophobic vacuum cleaner or an outwardly-directed drug/lipid flippase. Recent X-ray crystal structures have shed some light on the nature of the drug-binding pocket and suggested routes by which substrates can enter it from the membrane. Detergents have profound effects on Pgp function, and several appear to be substrates. Biochemical and biophysical studies in vitro, some using purified reconstituted protein, have explored the effects of the membrane environment. They have demonstrated that Pgp is involved in a complex relationship with its lipid environment, which modulates the behaviour of its substrates, as well as various functions of the protein, including ATP hydrolysis, drug binding and drug transport. Membrane lipid composition and fluidity, phospholipid headgroup and acyl chain length all influence Pgp function. Recent studies focusing on thermodynamics and kinetics have revealed some important principles governing Pgp-lipid and substrate-lipid interactions, and how these affect drug binding and transport. In some cells, Pgp is associated with cholesterol-rich microdomains which may modulate its functions. The relationship between Pgp and cholesterol remains an open question; however it clearly affects several aspects of its function in addition to substrate-membrane partitioning. The action of Pgp modulators appears to depend on their membrane permeability, and membrane fluidizers and surfactants reverse drug resistance, likely via an indirect mechanism. A detailed understanding of how the membrane affects Pgp substrates and Pgp’s catalytic cycle may lead to new strategies to combat

  1. Degradation of rubella virus envelope components

    International Nuclear Information System (INIS)

    Ho-Terry, Linda; Cohen, A.

    1980-01-01

    Tween-ether treatment of rubella virus, which has no effect on the antigenic and electrophoretic properties of the two envelope glycoproteins, destroys infectivity and enhances haemagglutinating activity. Trypsin treatment alters the electrophoretic pattern of the envelope glycoproteins so that the VPI peak is no longer evident and the VPII peak is reduced. At the same time, both the properties of haemagglutination and infectivity are inactivated but the capacity to combine with neutralizing antibody is retained, which suggests that VPII may be responsible for inducing the production of neutralizing antibody. (author)

  2. Characterization of the TolB-Pal trans-envelope complex from Xylella fastidiosa reveals a dynamic and coordinated protein expression profile during the biofilm development process.

    Science.gov (United States)

    Santos, Clelton A; Janissen, Richard; Toledo, Marcelo A S; Beloti, Lilian L; Azzoni, Adriano R; Cotta, Monica A; Souza, Anete P

    2015-10-01

    The intriguing roles of the bacterial Tol-Pal trans-envelope protein complex range from maintenance of cell envelope integrity to potential participation in the process of cell division. In this study, we report the characterization of the XfTolB and XfPal proteins of the Tol-Pal complex of Xylella fastidiosa. X. fastidiosa is a major plant pathogen that forms biofilms inside xylem vessels, triggering the development of diseases in important cultivable plants around the word. Based on functional complementation experiments in Escherichia coli tolB and pal mutant strains, we confirmed the role of xftolB and xfpal in outer membrane integrity. In addition, we observed a dynamic and coordinated protein expression profile during the X. fastidiosa biofilm development process. Using small-angle X-ray scattering (SAXS), the low-resolution structure of the isolated XfTolB-XfPal complex in solution was solved for the first time. Finally, the localization of the XfTolB and XfPal polar ends was visualized via immunofluorescence labeling in vivo during bacterial cell growth. Our results highlight the major role of the components of the cell envelope, particularly the TolB-Pal complex, during the different phases of bacterial biofilm development. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Simultaneous Pathoproteomic Evaluation of the Dystrophin-Glycoprotein Complex and Secondary Changes in the mdx-4cv Mouse Model of Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Sandra Murphy

    2015-06-01

    Full Text Available In skeletal muscle, the dystrophin-glycoprotein complex forms a membrane-associated assembly of relatively low abundance, making its detailed proteomic characterization in normal versus dystrophic tissues technically challenging. To overcome this analytical problem, we have enriched the muscle membrane fraction by a minimal differential centrifugation step followed by the comprehensive label-free mass spectrometric analysis of microsomal membrane preparations. This organelle proteomic approach successfully identified dystrophin and its binding partners in normal versus dystrophic hind limb muscles. The introduction of a simple pre-fractionation step enabled the simultaneous proteomic comparison of the reduction in the dystrophin-glycoprotein complex and secondary changes in the mdx-4cv mouse model of dystrophinopathy in a single analytical run. The proteomic screening of the microsomal fraction from dystrophic hind limb muscle identified the full-length dystrophin isoform Dp427 as the most drastically reduced protein in dystrophinopathy, demonstrating the remarkable analytical power of comparative muscle proteomics. Secondary pathoproteomic expression patterns were established for 281 proteins, including dystrophin-associated proteins and components involved in metabolism, signalling, contraction, ion-regulation, protein folding, the extracellular matrix and the cytoskeleton. Key findings were verified by immunoblotting. Increased levels of the sarcolemmal Na+/K+-ATPase in dystrophic leg muscles were also confirmed by immunofluorescence microscopy. Thus, the reduction of sample complexity in organelle-focused proteomics can be advantageous for the profiling of supramolecular protein complexes in highly intricate systems, such as skeletal muscle tissue.

  4. Immunogenicity of a Prefusion HIV-1 Envelope Trimer in Complex with a Quaternary-Structure-Specific Antibody.

    Science.gov (United States)

    Cheng, Cheng; Pancera, Marie; Bossert, Adam; Schmidt, Stephen D; Chen, Rita E; Chen, Xuejun; Druz, Aliaksandr; Narpala, Sandeep; Doria-Rose, Nicole A; McDermott, Adrian B; Kwong, Peter D; Mascola, John R

    2015-12-30

    The HIV-1 envelope trimer (Env) is the target of broadly neutralizing antibodies and is being explored as a vaccine candidate to elicit protective antibodies. One of the most promising antigenic and structural mimics of HIV-1 Env is the SOSIP.664-stabilized soluble trimer from the clade A strain BG505, which is preferentially recognized by broadly neutralizing antibodies. Trimer immunization elicits high-titer neutralization of the autologous tier 2 BG505 strain; however, breadth is limited, and substantial interest has focused on understanding and improving trimer immunogenicity. We sought to improve the antigenic specificity of BG505 SOSIP.664 by reducing recognition of the variable loop 3 (V3) region, which elicits only weakly neutralizing antibodies. To stabilize the trimer in its prefusion closed conformation, we complexed trimeric BG505 SOSIP.664 with the antigen-binding fragment (Fab) of PGT145, a broadly neutralizing quaternary-structure-specific antibody. Compared to the ligand-free trimer, the PGT145 Fab-BG505 SOSIP.664 complex displayed increased melting temperature stability and reduced V3 recognition. In guinea pigs, immunization with the PGT145 Fab-BG505 SOSIP.664 complex elicited ∼100-fold lower V3-directed binding and neutralization titers than those obtained with ligand-free BG505 SOSIP.664. Both complexed and ligand-free BG505 SOSIP.664 elicited comparable neutralization of the autologous BG505 virus, and in both cases, BG505 neutralization mapped to the outer domain of gp120 for some guinea pigs. Our results indicate that it is possible to reduce immune recognition of the V3 region of the trimer while maintaining the antigenic profile needed to induce autologous neutralizing antibodies. These data suggest that appropriate modifications of trimer immunogens could further focus the immune response on key neutralization epitopes. HIV-1 Env trimers have been proposed as preferred HIV-1 vaccine immunogens. One version, BG505 SOSIP.664, a soluble

  5. Structure of a trimeric variant of the Epstein-Barr virus glycoprotein B

    Energy Technology Data Exchange (ETDEWEB)

    Backovic, Marija [Northwestern Univ., Evanston, IL (United States); Longnecker, Richard [Northwestern Univ., Chicago, IL (United States); Jardetzky, Theodore S [Northwestern Univ., Evanston, IL (United States)

    2009-03-16

    Epstein-Barr virus (EBV) is a herpesvirus that is associated with development of malignancies of lymphoid tissue. EBV infections are life-long and occur in >90% of the population. Herpesviruses enter host cells in a process that involves fusion of viral and cellular membranes. The fusion apparatus is comprised of envelope glycoprotein B (gB) and a heterodimeric complex made of glycoproteins H and L. Glycoprotein B is the most conserved envelope glycoprotein in human herpesviruses, and the structure of gB from Herpes simplex virus 1 (HSV-1) is available. Here, we report the crystal structure of the secreted EBV gB ectodomain, which forms 16-nm long spike-like trimers, structurally homologous to the postfusion trimers of the fusion protein G of vesicular stomatitis virus (VSV). Comparative structural analyses of EBV gB and VSV G, which has been solved in its pre and postfusion states, shed light on gB residues that may be involved in conformational changes and membrane fusion. Also, the EBV gB structure reveals that, despite the high sequence conservation of gB in herpesviruses, the relative orientations of individual domains, the surface charge distributions, and the structural details of EBV gB differ from the HSV-1 protein, indicating regions and residues that may have important roles in virus-specific entry.

  6. Molecular envelope and atomic model of an anti-terminated glyQS T-box regulator in complex with tRNAGly.

    Science.gov (United States)

    Chetnani, Bhaskar; Mondragón, Alfonso

    2017-07-27

    A T-box regulator or riboswitch actively monitors the levels of charged/uncharged tRNA and participates in amino acid homeostasis by regulating genes involved in their utilization or biosynthesis. It has an aptamer domain for cognate tRNA recognition and an expression platform to sense the charge state and modulate gene expression. These two conserved domains are connected by a variable linker that harbors additional secondary structural elements, such as Stem III. The structural basis for specific tRNA binding is known, but the structural basis for charge sensing and the role of other elements remains elusive. To gain new structural insights on the T-box mechanism, a molecular envelope was calculated from small angle X-ray scattering data for the Bacillus subtilis glyQS T-box riboswitch in complex with an uncharged tRNAGly. A structural model of an anti-terminated glyQS T-box in complex with its cognate tRNAGly was derived based on the molecular envelope. It shows the location and relative orientation of various secondary structural elements. The model was validated by comparing the envelopes of the wild-type complex and two variants. The structural model suggests that in addition to a possible regulatory role, Stem III could aid in preferential stabilization of the T-box anti-terminated state allowing read-through of regulated genes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. B-type nuclear lamin and the nuclear pore complex Nup107-160 influences maintenance of the spindle envelope required for cytokinesis in Drosophila male meiosis

    Directory of Open Access Journals (Sweden)

    Daisuke Hayashi

    2016-08-01

    Full Text Available In higher eukaryotes, nuclear envelope (NE disassembly allows chromatin to condense and spindle microtubules to access kinetochores. The nuclear lamina, which strengthens the NE, is composed of a polymer meshwork made of A- and B-type lamins. We found that the B-type lamin (Lam is not fully disassembled and continues to localize along the spindle envelope structure during Drosophila male meiosis I, while the A-type lamin (LamC is completely dispersed throughout the cytoplasm. Among the nuclear pore complex proteins, Nup107 co-localized with Lam during this meiotic division. Surprisingly, Lam depletion resulted in a higher frequency of cytokinesis failure in male meiosis. We also observed the similar meiotic phenotype in Nup107-depleted cells. Abnormal localization of Lam was found in the Nup-depleted cells at premeiotic and meiotic stages. The central spindle microtubules became abnormal and recruitment of a contractile ring component to the cleavage sites was disrupted in Lam-depleted cells and Nup107-depleted cells. Therefore, we speculate that both proteins are required for a reinforcement of the spindle envelope, which supports the formation of central spindle microtubules essential for cytokinesis in Drosophila male meiosis.

  8. Virion Glycoprotein-Mediated Immune Evasion by Human Cytomegalovirus: a Sticky Virus Makes a Slick Getaway

    Science.gov (United States)

    Gardner, Thomas J.

    2016-01-01

    SUMMARY The prototypic herpesvirus human cytomegalovirus (CMV) exhibits the extraordinary ability to establish latency and maintain a chronic infection throughout the life of its human host. This is even more remarkable considering the robust adaptive immune response elicited by infection and reactivation from latency. In addition to the ability of CMV to exist in a quiescent latent state, its persistence is enabled by a large repertoire of viral proteins that subvert immune defense mechanisms, such as NK cell activation and major histocompatibility complex antigen presentation, within the cell. However, dissemination outside the cell presents a unique existential challenge to the CMV virion, which is studded with antigenic glycoprotein complexes targeted by a potent neutralizing antibody response. The CMV virion envelope proteins, which are critical mediators of cell attachment and entry, possess various characteristics that can mitigate the humoral immune response and prevent viral clearance. Here we review the CMV glycoprotein complexes crucial for cell attachment and entry and propose inherent properties of these proteins involved in evading the CMV humoral immune response. These include viral glycoprotein polymorphism, epitope competition, Fc receptor-mediated endocytosis, glycan shielding, and cell-to-cell spread. The consequences of CMV virion glycoprotein-mediated immune evasion have a major impact on persistence of the virus in the population, and a comprehensive understanding of these evasion strategies will assist in designing effective CMV biologics and vaccines to limit CMV-associated disease. PMID:27307580

  9. Virion Glycoprotein-Mediated Immune Evasion by Human Cytomegalovirus: a Sticky Virus Makes a Slick Getaway.

    Science.gov (United States)

    Gardner, Thomas J; Tortorella, Domenico

    2016-09-01

    The prototypic herpesvirus human cytomegalovirus (CMV) exhibits the extraordinary ability to establish latency and maintain a chronic infection throughout the life of its human host. This is even more remarkable considering the robust adaptive immune response elicited by infection and reactivation from latency. In addition to the ability of CMV to exist in a quiescent latent state, its persistence is enabled by a large repertoire of viral proteins that subvert immune defense mechanisms, such as NK cell activation and major histocompatibility complex antigen presentation, within the cell. However, dissemination outside the cell presents a unique existential challenge to the CMV virion, which is studded with antigenic glycoprotein complexes targeted by a potent neutralizing antibody response. The CMV virion envelope proteins, which are critical mediators of cell attachment and entry, possess various characteristics that can mitigate the humoral immune response and prevent viral clearance. Here we review the CMV glycoprotein complexes crucial for cell attachment and entry and propose inherent properties of these proteins involved in evading the CMV humoral immune response. These include viral glycoprotein polymorphism, epitope competition, Fc receptor-mediated endocytosis, glycan shielding, and cell-to-cell spread. The consequences of CMV virion glycoprotein-mediated immune evasion have a major impact on persistence of the virus in the population, and a comprehensive understanding of these evasion strategies will assist in designing effective CMV biologics and vaccines to limit CMV-associated disease. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  10. The complexity of roles of P-glycoprotein in refractory epilepsy: Pharmacoresistance, epileptogenesis, SUDEP and relapsing marker after surgical treatment

    Directory of Open Access Journals (Sweden)

    Alberto Lazarowski

    2015-07-01

    Full Text Available As described initially from clinical and experimental studies, P-glycoprotein (P-gp plays a central role in the pharmacoresistance of epilepsy, acting by efflux of AEDs mainly at blood brain barrier (BBB level. However, repetitive seizures can produce both brain and heart P-gp overexpression. Because P-gp activity induces membrane depolarization, its neuronal expression could be acting in the intrinsic mechanism of epileptogenesis, and its heart expression, can be a high risk factor of death, after severe-continuo convulsive stresses as in  fatal status epilepticus or in SUDEP. Additionally, because P-gp is also a stem cell marker, we suggests that its constitutive overexpression in dysplastic neurons from brain epileptogenic areas observed in patients with refractory epilepsies, should be addressed as a risk factor of seizures relapse after surgical treatment. Here we discuss these concepts, based on our own clinical and experimental experiences, and reviewing the current literature on these subjects.

  11. The TIC complex uncovered: The alternative view on the molecular mechanism of protein translocation across the inner envelope membrane of chloroplasts.

    Science.gov (United States)

    Nakai, Masato

    2015-09-01

    Chloroplasts must import thousands of nuclear-encoded preproteins synthesized in the cytosol through two successive protein translocons at the outer and inner envelope membranes, termed TOC and TIC, respectively, to fulfill their complex physiological roles. The molecular identity of the TIC translocon had long remained controversial; two proteins, namely Tic20 and Tic110, had been proposed to be central to protein translocation across the inner envelope membrane. Tic40 also had long been considered to be another central player in this process. However, recently, a novel 1-megadalton complex consisting of Tic20, Tic56, Tic100, and Tic214 was identified at the chloroplast inner membrane of Arabidopsis and was demonstrated to constitute a general TIC translocon which functions in concert with the well-characterized TOC translocon. On the other hand, direct interaction between this novel TIC transport system and Tic110 or Tic40 was hardly observed. Consequently, the molecular model for protein translocation across the inner envelope membrane of chloroplasts might need to be extensively revised. In this review article, I intend to propose such alternative view regarding the TIC transport system in contradistinction to the classical view. I also would emphasize importance of reevaluation of previous works in terms of with what methods these classical Tic proteins such as Tic110 or Tic40 were picked up as TIC constituents at the very beginning as well as what actual evidence there were to support their direct and specific involvement in chloroplast protein import. This article is part of a Special Issue entitled: Chloroplast Biogenesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. A hepatitis C virus (HCV) vaccine comprising envelope glycoproteins gpE1/gpE2 derived from a single isolate elicits broad cross-genotype neutralizing antibodies in humans

    DEFF Research Database (Denmark)

    Law, John Lok Man; Chen, Chao; Wong, Jason

    2013-01-01

    Although a cure for HCV is on the near horizon, emerging drug cocktails will be expensive, associated with side-effects and resistance making a global vaccine an urgent priority given the estimated high incidence of infection around the world. Due to the highly heterogeneous nature of HCV...... genotypes. Although observed in only a minority of vaccinees, our results prove the key concept that a vaccine derived from a single strain of HCV can elicit broad cross-neutralizing antibodies against all known major genotypes of HCV and provide considerable encouragement for the further development......, an effective HCV vaccine which could elicit broadly cross-neutralizing antibodies has represented a major challenge. In this study, we tested for the presence of cross-neutralizing antibodies in human volunteers who were immunized with recombinant glycoproteins gpE1/gpE2 derived from a single HCV strain (HCV1...

  13. NSF- and SNARE-mediated membrane fusion is required for nuclear envelope formation and completion of nuclear pore complex assembly in Xenopus laevis egg extracts.

    Science.gov (United States)

    Baur, Tina; Ramadan, Kristijan; Schlundt, Andreas; Kartenbeck, Jürgen; Meyer, Hemmo H

    2007-08-15

    Despite the progress in understanding nuclear envelope (NE) reformation after mitosis, it has remained unclear what drives the required membrane fusion and how exactly this is coordinated with nuclear pore complex (NPC) assembly. Here, we show that, like other intracellular fusion reactions, NE fusion in Xenopus laevis egg extracts is mediated by SNARE proteins that require activation by NSF. Antibodies against Xenopus NSF, depletion of NSF or the dominant-negative NSF(E329Q) variant specifically inhibited NE formation. Staging experiments further revealed that NSF was required until sealing of the envelope was completed. Moreover, excess exogenous alpha-SNAP that blocks SNARE function prevented membrane fusion and caused accumulation of non-flattened vesicles on the chromatin surface. Under these conditions, the nucleoporins Nup107 and gp210 were fully recruited, whereas assembly of FxFG-repeat-containing nucleoporins was blocked. Together, we define NSF- and SNARE-mediated membrane fusion events as essential steps during NE formation downstream of Nup107 recruitment, and upstream of membrane flattening and completion of NPC assembly.

  14. Evaluation of envelope glycoprotein E(rns) of an atypical bovine pestivirus as antigen in a microsphere immunoassay for the detection of antibodies against bovine viral diarrhea virus 1 and atypical bovine pestivirus.

    Science.gov (United States)

    Vijayaraghavan, Balaje; Xia, Hongyan; Harimoorthy, Rajiv; Liu, Lihong; Belák, Sándor

    2012-11-01

    Atypical bovine pestiviruses are related antigenically and phylogenetically to bovine viral diarrhea viruses (BVDV-1 and BVDV-2), and may cause the same clinical manifestations in animals. Glycoprotein E(rns) of an atypical bovine pestivirus Th/04_KhonKaen was produced in a baculovirus expression system and was purified by affinity chromatography. The recombinant E(rns) protein was used as an antigen in a microsphere immunoassay for the detection of antibodies against BVDV-1 and atypical bovine pestivirus. The diagnostic performance of the new method was evaluated by testing a total of 596 serum samples, and the assay was compared with enzyme-linked immunosorbent assay (ELISA). Based on the negative/positive cut-off median fluorescence intensity (MFI) value of 2800, the microsphere immunoassay had a sensitivity of 100% and specificity of 100% compared to ELISA. The immunoassay was able to detect antibodies against both BVDV-1 and the atypical pestivirus. This novel microsphere immunoassay has the potential to be multiplexed for simultaneous detection of antibodies against different bovine pathogens in a high-throughput and economical way. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Prediction of conserved sites and domains in glycoproteins B, C and D of herpes viruses.

    Science.gov (United States)

    Rasheed, Muhammad Asif; Ansari, Abdur Rahman; Ihsan, Awais; Navid, Muhammad Tariq; Ur-Rehman, Shahid; Raza, Sohail

    2018-03-01

    Glycoprotein B (gB), C (gC) and D (gD) of herpes simplex virus are implicated in virus adsorption and penetration. The gB, gC and gD are glycoproteins for different processes of virus binding and attachment to the host cells. Moreover, their expression is necessary and sufficient to induce cell fusion in the absence of other glycoproteins. Egress of herpes simplex virus (HSV) and other herpes viruses from cells involves extensive modification of cellular membranes and sequential envelopment, de-envelopment and re-envelopment steps. Viral glycoproteins are important in these processes, and frequently two or more glycoproteins can largely suffice in any step. Hence, we target the 3 important glycoproteins (B, C and D) of eight different herpes viruses of different species. These species include human (HSV1 and 2), bovine (BHV1), equine (EHV1 and 4), chicken (ILT1 and MDV2) and pig (PRV1). By applying different bioinformatics tools, we highlighted the conserved sites in these glycoproteins which might be most significant regarding attachment and infection of the viruses. Moreover the conserved domains in these glycoproteins are also highlighted. From this study, we will able to analyze the role of different viral glycoproteins of different species during herpes virus adsorption and penetration. Moreover, this study will help to construct the antivirals that target the glycoproteins of different herpes viruses. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Antibodies Against β2-Glycoprotein I Complexed With an Oxidised Lipoprotein Relate to Intima Thickening of Carotid Arteries in Primary Antiphospholipid Syndrome

    Directory of Open Access Journals (Sweden)

    P. R. J. Ames

    2006-01-01

    Full Text Available To explore whether antibodies against β2-glycoprotein I (β2GPI complexed to 7-ketocholesteryl-9-carboxynonanoate (oxLig-1 and to oxidised low-density lipoproteins (oxLDL relate to paraoxonase activity (PONa and/or intima media thickness (IMT of carotid arteries in primary antiphospholipid syndrome (PAPS. As many as 29 thrombotic patients with PAPS, 10 subjects with idiopathic antiphospholipid antibodies (aPL without thrombosis, 17 thrombotic patients with inherited thrombophilia and 23 healthy controls were investigated. The following were measured in all participants: β2GPI−oxLDL complexes, IgG anti-β2GPI−oxLig-1, IgG anti-β2GPI−oxLDL antibodies (ELISA, PONa, (para-nitrophenol method, IMT of common carotid (CC artery, carotid bifurcation (B, internal carotid (IC by high resolution sonography. β2GPI−oxLDL complex was highest in the control group (p < 0.01, whereas, IgG anti-β2GPI−oxLig1 and IgG anti-β2GPI−oxLDL were highest in PAPS (p < 0.0001. In healthy controls, β2GPI−oxLDL complexes positively correlated to IMT of the IC (p = 0.007 and negatively to PONa after correction for age (p < 0.03. PONa inversely correlated with age (p = 0.008. In PAPS, IgG anti-2GPI−oxLig-1 independently predicted PONa (p = 0.02 and IMT of B (p = 0.003, CC, (p = 0.03 and of IC (p = 0.04. In PAPS, PONa inversely correlated to the IMT of B, CC and IC (p = 0.01, 0.02 and 0.003, respectively. IgG anti-2GPI−oxLig-1 may be involved in PAPS related atherogenesis via decreased PON activity.

  17. Herpes simplex virus immunoglobulin G Fc receptor activity depends on a complex of two viral glycoproteins, gE and gI

    International Nuclear Information System (INIS)

    Johnson, D.C.; Ligas, M.W.; Frame, M.C.; Cross, A.M.; Stow, N.D.

    1988-01-01

    Evidence was recently presented that herpes simplex virus type 1 (HSV-1) immunoglobulin G (IgG) Fc receptors are composed of a complex containing a previously described glycoprotein, gE, and a novel virus-induced polypeptide, provisionally named g70. Using a monoclonal antibody designated 3104, which recognizes g70, in conjunction with antipeptide sera and virus mutants unable to express g70 or gE, the authors have mapped the gene encoding g70 to the US7 open reading frame of HSV-1 adjacent to the gE gene. Therefore, g70 appears to be identical to a recently described polypeptide which was named gI. Under mildly denaturing conditions, monoclonal antibody 3104 precipitated both gI and gE from extracts of HSV-1-infected cells. In addition, rabbit IgG precipitated the gE-gI complex from extracts of cells transfected with a fragment of HSV-1 DNA containing the gI, gE, and US9 genes. Cells infected with mutant viruses which were unable to express gE or gI did not bind radiolabeled IgG; however, cells coinfected with two viruses, one unable to express gE and the other unable to express gI, bound levels of IgG approaching those observed with wild-type viruses. These results further support the hypothesis that gE and gI form a complex which binds IgG by the Fc domain and that neither polypeptide alone can bind IgG

  18. HCMV Infection of Human Trophoblast Progenitor Cells of the Placenta Is Neutralized by a Human Monoclonal Antibody to Glycoprotein B and Not by Antibodies to the Pentamer Complex

    Directory of Open Access Journals (Sweden)

    Martin Zydek

    2014-03-01

    Full Text Available Human cytomegalovirus (HCMV is the major viral cause of congenital infection and birth defects. Primary maternal infection often results in virus transmission, and symptomatic babies can have permanent neurological deficiencies and deafness. Congenital infection can also lead to intrauterine growth restriction, a defect in placental transport. HCMV replicates in primary cytotrophoblasts (CTBs, the specialized cells of the placenta, and inhibits differentiation/invasion. Human trophoblast progenitor cells (TBPCs give rise to the mature cell types of the chorionic villi, CTBs and multi-nucleated syncytiotrophoblasts (STBs. Here we report that TBPCs are fully permissive for pathogenic and attenuated HCMV strains. Studies with a mutant virus lacking a functional pentamer complex (gH/gL/pUL128-131A showed that virion entry into TBPCs is independent of the pentamer. In addition, infection is blocked by a potent human neutralizing monoclonal antibody (mAb, TRL345, reactive with glycoprotein B (gB, but not mAbs to the pentamer proteins pUL130/pUL131A. Functional studies revealed that neutralization of infection preserved the capacity of TBPCs to differentiate and assemble into trophospheres composed of CTBs and STBs in vitro. Our results indicate that mAbs to gB protect trophoblast progenitors of the placenta and could be included in antibody treatments developed to suppress congenital infection and prevent disease.

  19. Use of whole genome deep sequencing to define emerging minority variants in virus envelope genes in herpesvirus treated with novel antimicrobial K21.

    Science.gov (United States)

    Tweedy, Joshua G; Prusty, Bhupesh K; Gompels, Ursula A

    2017-10-01

    New antivirals are required to prevent rising antimicrobial resistance from replication inhibitors. The aim of this study was to analyse the range of emerging mutations in herpesvirus by whole genome deep sequencing. We tested human herpesvirus 6 treatment with novel antiviral K21, where evidence indicated distinct effects on virus envelope proteins. We treated BACmid cloned virus in order to analyse mechanisms and candidate targets for resistance. Illumina based next generation sequencing technology enabled analyses of mutations in 85 genes to depths of 10,000 per base detecting low prevalent minority variants (<1%). After four passages in tissue culture the untreated virus accumulated mutations in infected cells giving an emerging mixed population (45-73%) of non-synonymous SNPs in six genes including two envelope glycoproteins. Strikingly, treatment with K21 did not accumulate the passage mutations; instead a high frequency mutation was selected in envelope protein gQ2, part of the gH/gL complex essential for herpesvirus infection. This introduced a stop codon encoding a truncation mutation previously observed in increased virion production. There was reduced detection of the glycoprotein complex in infected cells. This supports a novel pathway for K21 targeting virion envelopes distinct from replication inhibition. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. β2-Glycoprotein I/IgA Immune Complexes: A Marker to Predict Thrombosis After Renal Transplantation in Patients With Antiphospholipid Antibodies.

    Science.gov (United States)

    Serrano, Manuel; Martínez-Flores, José A; Pérez, Dolores; García, Florencio; Cabrera, Oscar; Pleguezuelo, Daniel; Paz-Artal, Estela; Morales, José M; González, Esther; Serrano, Antonio

    2017-05-16

    Antiphospholipid syndrome is characterized by recurrent thrombosis and gestational morbidity in patients with antiphospholipid autoantibodies (aPLs). Predictive value of the presence of aPLs is low, and new markers are necessary to identify aPL carriers at higher risk and take preventive measures on them. The presence of circulating immune complexes of IgA bound to β 2 -glycoprotein I (B2A-CIC) has been associated with occurrence of acute thrombotic events. In this work we study its possible predictive value for the appearance of acute thrombotic events in patients who are going to undergo transplant surgery, a well-known trigger of acute thrombotic events in aPL carriers. We performed a follow-up study based on the Magnum 12+12 Cohort of patients who received a kidney transplant (n=1339). Three groups were established: group 1 patients who were positive for IgA anti-β 2 -glycoprotein I (aB2GP1) and B2A-CIC (n=125); group 2 patients who were positive only for IgA aB2GP1 (n=240); and control group, patients who were negative for IgA aB2GP1 (n=974). Levels of autoantibodies and B2A-CIC were quantified immediately before the transplant surgery and patients were followed up for 6 months. In group 1, 46.4% of patients experienced any type of thrombosis versus 10.4% in group 2 ( P thrombosis in group 1 (31.2%) was significantly higher than that observed in group 2 (3.3%, P thrombosis (hazard ratio, 6.72; 95% confidence interval, 4.81-9.37) and, prominently, for graft thrombosis (hazard ratio, 14.75; 95% confidence interval, 9.11-23.89). No significant differences were found between B2A-CIC-negative and control group patients. The presence of B2A-CIC is a predictor of acute thrombotic events. Patients who were positive for IgA aB2GP1 only are at risk of experiencing thrombosis if they are B2A-CIC positive. If they are B2A-CIC-negative patients, they have the same risk as the control group. Treatments to prevent acute thrombotic events should focus on B2A

  1. The human cytomegalovirus nuclear egress complex unites multiple functions: Recruitment of effectors, nuclear envelope rearrangement, and docking to nuclear capsids.

    Science.gov (United States)

    Marschall, Manfred; Muller, Yves A; Diewald, Benedikt; Sticht, Heinrich; Milbradt, Jens

    2017-07-01

    Nuclear replication represents a common hallmark of herpesviruses achieved by a number of sequentially unrolled regulatory processes. A rate-limiting step is provided by nucleo-cytoplasmic capsid export, for which a defined multiregulatory protein complex, namely, the nuclear egress complex (NEC), is assembled comprising both viral and cellular components. The NEC regulates at least 3 aspects of herpesviral nuclear replication: (1) multimeric recruitment of NEC-associated effector proteins, (2) reorganization of the nuclear lamina and membranes, and (3) the docking to nuclear capsids. Here, we review published data and own experimental work that characterizes the NEC of HCMV and other herpesviruses. A systematic review of information on nuclear egress of HCMV compared to selected alpha-, beta-, and gamma-herpesviruses: proteomics-based approaches, high-resolution imaging techniques, and functional investigations. A large number of reports on herpesviral NECs have been published during the last two decades, focusing on protein-protein interactions, nuclear localization, regulatory phosphorylation, and functional validation. The emerging picture provides an illustrated example of well-balanced and sophisticated protein networking in virus-host interaction. Current evidence refined the view about herpesviral NECs. Datasets published for HCMV, murine CMV, herpes simplex virus, and Epstein-Barr virus illustrate the marked functional consistency in the way herpesviruses achieve nuclear egress. However, this compares with only limited sequence conservation of core NEC proteins and a structural conservation restricted to individual domains. The translational use of this information might help to define a novel antiviral strategy on the basis of NEC-directed small molecules. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Characterization of a Novel 99mTc-Carbonyl Complex as a Functional Probe of MDR1 P-Glycoprotein Transport Activity

    Directory of Open Access Journals (Sweden)

    Mary Dyszlewski

    2002-01-01

    Full Text Available Multidrug resistance (MDR mediated by overexpression of MDR1 P-glycoprotein (Pgp is one of the best characterized barriers to chemotherapy in cancer patients. Furthermore, the protective function of Pgp-mediated efflux of xenobiotics in various organs has a profound effect on the bioavailability of drugs in general. Thus, there is an expanding requirement to noninvasively interrogate Pgp transport activity in vivo. We herein report the Pgp recognition properties of a novel 99mTc(I-tricarbonyl complex, [99mTc(CO3(MIBI3] + (Tc-CO-MIBI. Tc-CO-MIBI showed 60-fold higher accumulation in drug-sensitive KB 3–1 cells compared to colchicine-selected drug-resistant KB 8-5 cells. In KB 8-5 cells, tracer enhancement was observed with the potent MDR modulator LY335979 (EC50 = 62 nM. Similar behavior was observed using drug-sensitive MCF-7 breast adenocarcinoma cells and MCF-7/MDR1 stable transfectants, confirming that Tc-CO-MIBI is specifically excluded by overexpression of MDR1 Pgp. By comparison, net accumulation in control H69 lung tumor cells was 9-fold higher than in MDR-associated protein (MRP1-expressing H69AR cells, indicating only modest transport by MRP1. Biodistribution analysis following tail vein injection of Tc-CO-MIBI showed delayed liver clearance as well as enhanced brain uptake and retention in mdr1a/1b(−/− gene deleted mice versus wild-type mice, directly demonstrating that Tc-CO-MIBI is a functional probe of Pgp transport activity in vivo.

  3. Localization of MHC class II/human cartilage glycoprotein-39 complexes in synovia of rheumatoid arthritis patients using complex-specific monoclonal antibodies

    NARCIS (Netherlands)

    Steenbakkers, Peter G. A.; Baeten, Dominique; Rovers, Eric; Veys, Eric M.; Rijnders, Antonius W. M.; Meijerink, Jan; de Keyser, Filip; Boots, Annemieke M. H.

    2003-01-01

    Recently human cartilage gp-39 (HC gp-39) was identified as a candidate autoantigen in rheumatoid arthritis (RA). To further investigate the relevance of this Ag in RA, we have generated a set of five mAbs to a combination epitope of complexes of HC gp-39(263-275) and the RA-associated DR alpha beta

  4. Autoantibodies induced by chimeric cytokine-HIV envelope glycoprotein immunogens

    NARCIS (Netherlands)

    Isik, Gözde; van Montfort, Thijs; Chung, Nancy P. Y.; Moore, John P.; Sanders, Rogier W.

    2014-01-01

    Cytokines are often used as adjuvants to increase the immunogenicity of vaccines because they can improve the immune response and/or direct it into a desired direction. As an alternative to codelivering Ags and cytokines separately, they can be fused into a composite protein, with the advantage that

  5. HIV-1 envelope glycoprotein immunogens to induce broadly neutralizing antibodies

    NARCIS (Netherlands)

    Sliepen, Kwinten; Sanders, Rogier W.

    2016-01-01

    The long pursuit for a vaccine against human immunodeficiency virus 1 (HIV-1) has recently been boosted by a number of exciting developments. An HIV-1 subunit vaccine ideally should elicit potent broadly neutralizing antibodies (bNAbs), but raising bNAbs by vaccination has proved extremely difficult

  6. Bioinformatics Analysis of Envelope Glycoprotein E epitopes of ...

    African Journals Online (AJOL)

    User

    2011-05-02

    May 2, 2011 ... A virus-neutralizing antibody by a virus-specific synthetic peptide. J. Virol. 55(3): 836-839. Geourjon C, Deléage G (1995). SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Bioinformatics, 11(6): 681-684. Guex N, Peitsch MC ...

  7. The COMPLEXity in herpesvirus entry.

    Science.gov (United States)

    Sathiyamoorthy, Karthik; Chen, Jia; Longnecker, Richard; Jardetzky, Theodore S

    2017-06-01

    Enveloped viruses have evolved diverse transmembrane proteins and protein complexes to enable host cell entry by regulating and activating membrane fusion in a target cell-specific manner. In general terms, the entry process requires a receptor binding step, an activation step and a membrane fusion step, which can be encoded within a single viral protein or distributed among multiple viral proteins. HIV and influenza virus, for example, encode all of these functions in a single trimeric glycoprotein, HIV env or influenza virus hemagglutinin (HA). In contrast, herpesviruses have the host receptor binding, activation and fusogenic roles distributed among multiple envelope glycoproteins (ranging from three to six), which must coordinate their functions at the site of fusion. Despite the apparent complexity in the number of viral entry proteins, herpesvirus entry is fundamentally built around two core glycoprotein entities: the gHgL complex, which appears to act as an 'activator' of entry, and the gB protein, which is thought to act as the membrane 'fusogen'. Both are required for all herpesvirus fusion and entry. In many herpesviruses, gHgL either binds host receptors directly or assembles into larger complexes with additional viral proteins that bind host receptors, conferring specificity to the cells that are targeted for infection. These gHgL entry complexes (ECs) are centrally important to activating gB-mediated membrane fusion and establishing viral tropism, forming membrane bridging intermediates before gB triggering. Here we review recent structural and functional studies of Epstein-Barr virus (EBV) and Cytomegalovirus (CMV) gHgL complexes that provide a framework for understanding the role of gHgL in herpesvirus entry. Furthermore, a recently determined EM model of Herpes Simplex virus (HSV) gB embedded in exosomes highlights how gB conformational changes may promote viral and cellular membrane fusion. Copyright © 2017. Published by Elsevier B.V.

  8. Tegument Assembly and Secondary Envelopment of Alphaherpesviruses

    Directory of Open Access Journals (Sweden)

    Danielle J. Owen

    2015-09-01

    Full Text Available Alphaherpesviruses like herpes simplex virus are large DNA viruses characterized by their ability to establish lifelong latent infection in neurons. As for all herpesviruses, alphaherpesvirus virions contain a protein-rich layer called “tegument” that links the DNA-containing capsid to the glycoprotein-studded membrane envelope. Tegument proteins mediate a diverse range of functions during the virus lifecycle, including modulation of the host-cell environment immediately after entry, transport of virus capsids to the nucleus during infection, and wrapping of cytoplasmic capsids with membranes (secondary envelopment during virion assembly. Eleven tegument proteins that are conserved across alphaherpesviruses have been implicated in the formation of the tegument layer or in secondary envelopment. Tegument is assembled via a dense network of interactions between tegument proteins, with the redundancy of these interactions making it challenging to determine the precise function of any specific tegument protein. However, recent studies have made great headway in defining the interactions between tegument proteins, conserved across alphaherpesviruses, which facilitate tegument assembly and secondary envelopment. We summarize these recent advances and review what remains to be learned about the molecular interactions required to assemble mature alphaherpesvirus virions following the release of capsids from infected cell nuclei.

  9. The Primary Enveloped Virion of Herpes Simplex Virus 1: Its Role in Nuclear Egress.

    Science.gov (United States)

    Newcomb, William W; Fontana, Juan; Winkler, Dennis C; Cheng, Naiqian; Heymann, J Bernard; Steven, Alasdair C

    2017-06-13

    Many viruses migrate between different cellular compartments for successive stages of assembly. The HSV-1 capsid assembles in the nucleus and then transfers into the cytoplasm. First, the capsid buds through the inner nuclear membrane, becoming coated with nuclear egress complex (NEC) protein. This yields a primary enveloped virion (PEV) whose envelope fuses with the outer nuclear membrane, releasing the capsid into the cytoplasm. We investigated the associated molecular mechanisms by isolating PEVs from US3-null-infected cells and imaging them by cryo-electron microscopy and tomography. (pUS3 is a viral protein kinase in whose absence PEVs accumulate in the perinuclear space.) Unlike mature extracellular virions, PEVs have very few glycoprotein spikes. PEVs are ~20% smaller than mature virions, and the little space available between the capsid and the NEC layer suggests that most tegument proteins are acquired later in the egress pathway. Previous studies have proposed that NEC is organized as hexamers in honeycomb arrays in PEVs, but we find arrays of heptameric rings in extracts from US3-null-infected cells. In a PEV, NEC contacts the capsid predominantly via the pUL17/pUL25 complexes which are located close to the capsid vertices. Finally, the NEC layer dissociates from the capsid as it leaves the nucleus, possibly in response to pUS3-mediated phosphorylation. Overall, nuclear egress emerges as a process driven by a program of multiple weak interactions. IMPORTANCE On its maturation pathway, the newly formed HSV-1 nucleocapsid must traverse the nuclear envelope, while respecting the integrity of that barrier. Nucleocapsids (125 nm in diameter) are too large to pass through the nuclear pore complexes that conduct most nucleocytoplasmic traffic. It is now widely accepted that the process involves envelopment/de-envelopment of a key intermediate-the primary enveloped virion. In wild-type infections, PEVs are short-lived, which has impeded study. Using a mutant

  10. Moisture Dynamics in Building Envelopes

    DEFF Research Database (Denmark)

    Peuhkuri, Ruut Hannele

    2003-01-01

    The overall scope of this Thesis "Moisture dynamics in building envelopes" has been to characterise how the various porous insulation materials investigated performed hygrothermally under conditions similar to those in a typical building envelope. As a result of the changing temperature and moist......The overall scope of this Thesis "Moisture dynamics in building envelopes" has been to characterise how the various porous insulation materials investigated performed hygrothermally under conditions similar to those in a typical building envelope. As a result of the changing temperature...... and moisture conditions in the exterior weather and indoor climate the materials dynamically absorb and release moisture. The complexity of the impact of these conditions on the resulting moisture transport and content of the materials has been studied in this Thesis with controlled laboratory tests. The first...... part of the Thesis consists of a theory and literature review on the moisture storage and transport processes (Chapter 2), on the non-Fickian moisture transport (Chapter 3)and on the methods for determining the moisture properties (Chapter 4). In the second part, the conducted experimental work...

  11. A Strategy for O-Glycoproteomics of Enveloped Viruses-the O-Glycoproteome of Herpes Simplex Virus Type 1

    DEFF Research Database (Denmark)

    Bagdonaite, Ieva; Nordén, Rickard; Joshi, Hiren J

    2015-01-01

    present a novel proteome-wide discovery strategy for O-glycosylation sites on viral envelope proteins using herpes simplex virus type 1 (HSV-1) as a model. We identified 74 O-linked glycosylation sites on 8 out of the 12 HSV-1 envelope proteins. Two of the identified glycosites found in glycoprotein B...

  12. Envelope gene sequences encoding variable regions 3 and 4 are involved in macrophage tropism of feline immunodeficiency virus

    NARCIS (Netherlands)

    Horzinek, M.C.; Vahlenkamp, T.W.; Ronde, A. de; Schuurman, N.M.P.; Vliet, A.L.W. van; Drunen, J. van; Egberink, H.F.

    1999-01-01

    The envelope is of cardinal importance for the entry of feline immunodeficiency virus (FIV) into its host cells, which consist of cells of the immune system including macrophages. To characterize the envelope glycoprotein determinants involved in macrophage tropism, chimeric infectious molecular

  13. Mechanism for maturation-related reorganization of flavivirus glycoproteins.

    Science.gov (United States)

    Plevka, Pavel; Battisti, Anthony J; Sheng, Ju; Rossmann, Michael G

    2014-01-01

    Flaviviruses, such as dengue, West Nile, and yellow fever viruses, assemble as fusion-incompetent particles and subsequently undergo a large reorganization of their glycoprotein envelope resulting in formation of mature infectious virions. Here we used a combination of three-dimensional cryo-electron tomography and two-dimensional image analysis to study pleomorphic maturation intermediates of dengue virus 2. Icosahedral symmetries of immature and mature regions within one particle were mismatched relative to each other. Furthermore, the orientation of the two regions relative to each other differed among particles. Therefore, there cannot be a specific pathway determining the maturation of all particles. Instead, the region with mature structure expands when glycoproteins on its boundary acquire suitable orientation and conformation to allow them to become a stable part of the mature region. This type of maturation is possible because the envelope glycoproteins are anchored to the phospholipid bilayer that is a part of flavivirus virions and are thus restricted to movement on the two-dimensional surface of the particle. Therefore, compounds that limit movement of the glycoproteins within the virus membrane might be used as inhibitors of flavivirus maturation. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. The pestivirus Erns glycoprotein interacts with E2 in both infected cells and mature virions

    International Nuclear Information System (INIS)

    Lazar, Catalin; Zitzmann, Nicole; Dwek, Raymond A.; Branza-Nichita, Norica

    2003-01-01

    E rns is a pestivirus envelope glycoprotein indispensable for virus attachment and infection of target cells. Unlike the other two envelope proteins E1 and E2, E rns lacks a transmembrane domain and a vast quantity is secreted into the medium of infected cells. The protein is also present in fractions of pure pestivirus virions, raising the important and intriguing question regarding the mechanism of its attachment to the pestivirus envelope. In this study a direct interaction between E rns and E2 glycoproteins was demonstrated in both pestivirus-infected cells and mature virions. By co- and sequential immunoprecipitation we showed that an E rns -E2 heterodimer is assembled very early after translation of the viral polyprotein and before its processing is completed. Our results suggest that E rns is attached to the pestivirus envelope via a direct interaction with E2 and explain the role of E rns in the initial virus-target cell interaction

  15. Organization of the vitelline envelope in ovarian follicles of Torpedo marmorata Risso, 1810 (Elasmobranchii: Torpediniformes).

    Science.gov (United States)

    Prisco, Marina; Del Giudice, Giuseppina; Agnese, Marisa; Ricchiari, Loredana; Campanella, Chiara; Andreuccetti, Piero

    2009-11-15

    In Torpedo marmorata, the vitelline envelope (VE), an extracellular envelope surrounding the growing oocyte, consists of fibrils and amorphous materials that are deposited in the perivitelline space starting from the initial steps of oocyte growth. SDS-PAGE analysis of the isolated and purified VE reveals that it consists of different glycoproteins. Furthermore, our investigations showed that the 120 and 66 kDa glycoproteins are positive to an antibody directed against gp69/64 of the Xenopus laevis VE and are synthesized under the control of 17beta-estradiol in the liver, that, together follicle cells and the oocyte, is the biosynthetic site of VE components.

  16. Multifamily Envelope Leakage Model

    Energy Technology Data Exchange (ETDEWEB)

    Faakye, Omari [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Griffiths, Dianne [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2015-05-08

    “The cost for blower testing is high, because it is labor intensive, and it may disrupt occupants in multiple units. This high cost and disruption deter program participants, and dissuade them from pursuing energy improvements that would trigger air leakage testing, such as improvements to the building envelope.” This statement found in a 2012 report by Heschong Mahone Group for several California interests emphasizes the importance of reducing the cost and complexity of blower testing in multifamily buildings. Energy efficiency opportunities are being bypassed. The cost of single blower testing is on the order of $300. The cost for guarded blower door testing—the more appropriate test for assessing energy savings opportunities—could easily be six times that, and that’s only if you have the equipment and simultaneous access to multiple apartments. Thus, the proper test is simply not performed. This research seeks to provide an algorithm for predicting the guarded blower door test result based upon a single, total blower door test.

  17. Glycoprotein and proteoglycan techniques

    International Nuclear Information System (INIS)

    Beeley, J.G.

    1985-01-01

    The aim of this book is to describe techniques which can be used to answer some of the basic questions about glycosylated proteins. Methods are discussed for isolation, compositional analysis, and for determination of the primary structure of carbohydrate units and the nature of protein-carbohydrate linkages of glycoproteins and proteoglycans. High resolution NMR is considered, as well as radioactive labelling techniques. (Auth.)

  18. Structures and Functions of Pestivirus Glycoproteins: Not Simply Surface Matters.

    Science.gov (United States)

    Wang, Fun-In; Deng, Ming-Chung; Huang, Yu-Liang; Chang, Chia-Yi

    2015-06-29

    Pestiviruses, which include economically important animal pathogens such as bovine viral diarrhea virus and classical swine fever virus, possess three envelope glycoproteins, namely Erns, E1, and E2. This article discusses the structures and functions of these glycoproteins and their effects on viral pathogenicity in cells in culture and in animal hosts. E2 is the most important structural protein as it interacts with cell surface receptors that determine cell tropism and induces neutralizing antibody and cytotoxic T-lymphocyte responses. All three glycoproteins are involved in virus attachment and entry into target cells. E1-E2 heterodimers are essential for viral entry and infectivity. Erns is unique because it possesses intrinsic ribonuclease (RNase) activity that can inhibit the production of type I interferons and assist in the development of persistent infections. These glycoproteins are localized to the virion surface; however, variations in amino acids and antigenic structures, disulfide bond formation, glycosylation, and RNase activity can ultimately affect the virulence of pestiviruses in animals. Along with mutations that are driven by selection pressure, antigenic differences in glycoproteins influence the efficacy of vaccines and determine the appropriateness of the vaccines that are currently being used in the field.

  19. Structures and Functions of Pestivirus Glycoproteins: Not Simply Surface Matters

    Directory of Open Access Journals (Sweden)

    Fun-In Wang

    2015-06-01

    Full Text Available Pestiviruses, which include economically important animal pathogens such as bovine viral diarrhea virus and classical swine fever virus, possess three envelope glycoproteins, namely Erns, E1, and E2. This article discusses the structures and functions of these glycoproteins and their effects on viral pathogenicity in cells in culture and in animal hosts. E2 is the most important structural protein as it interacts with cell surface receptors that determine cell tropism and induces neutralizing antibody and cytotoxic T-lymphocyte responses. All three glycoproteins are involved in virus attachment and entry into target cells. E1-E2 heterodimers are essential for viral entry and infectivity. Erns is unique because it possesses intrinsic ribonuclease (RNase activity that can inhibit the production of type I interferons and assist in the development of persistent infections. These glycoproteins are localized to the virion surface; however, variations in amino acids and antigenic structures, disulfide bond formation, glycosylation, and RNase activity can ultimately affect the virulence of pestiviruses in animals. Along with mutations that are driven by selection pressure, antigenic differences in glycoproteins influence the efficacy of vaccines and determine the appropriateness of the vaccines that are currently being used in the field.

  20. Improving the Immunogenicity of Native-like HIV-1 Envelope Trimers by Hyperstabilization

    Directory of Open Access Journals (Sweden)

    Alba Torrents de la Peña

    2017-08-01

    Full Text Available The production of native-like recombinant versions of the HIV-1 envelope glycoprotein (Env trimer requires overcoming the natural flexibility and instability of the complex. The engineered BG505 SOSIP.664 trimer mimics the structure and antigenicity of native Env. Here, we describe how the introduction of new disulfide bonds between the glycoprotein (gp120 and gp41 subunits of SOSIP trimers of the BG505 and other genotypes improves their stability and antigenicity, reduces their conformational flexibility, and helps maintain them in the unliganded conformation. The resulting next-generation SOSIP.v5 trimers induce strong autologous tier-2 neutralizing antibody (NAb responses in rabbits. In addition, the BG505 SOSIP.v6 trimers induced weak heterologous NAb responses against a subset of tier-2 viruses that were not elicited by the prototype BG505 SOSIP.664. These stabilization methods can be applied to trimers from multiple genotypes as components of multivalent vaccines aimed at inducing broadly NAbs (bNAbs.

  1. Diverse IgG serum response to novel glycopeptide epitopes detected within immunodominant stretches of Epstein-Barr virus glycoprotein 350/220

    DEFF Research Database (Denmark)

    D'Arrigo, Isotta; Cló, Emiliano; Bergström, Tomas

    2013-01-01

    The Epstein-Barr virus (EBV) envelope glycoprotein 350/220 (gp350/220) is the most abundant molecule on the viral surface and it is responsible for the initial viral attachment to cell surface of the host. As many other viral envelope proteins, it is highly glycosylated, not least with O...

  2. Glycan shield and fusion activation of a deltacoronavirus spike glycoprotein fine-tuned for enteric infections

    NARCIS (Netherlands)

    Xiong, Xiaoli; Tortorici, M Alejandra; Snijder, Joost|info:eu-repo/dai/nl/338018328; Yoshioka, Craig; Walls, Alexandra C; Li, Wentao|info:eu-repo/dai/nl/411296272; McGuire, Andrew T; Rey, Félix A; Bosch, Berend-Jan|info:eu-repo/dai/nl/273306049; Veesler, David

    2017-01-01

    Coronaviruses recently emerged as major human pathogens causing outbreaks of severe acute respiratory syndrome and Middle-East respiratory syndrome. They utilize the spike (S) glycoprotein anchored in the viral envelope to mediate host attachment and fusion of the viral and cellular membranes to

  3. Enhanced immunogenicity of HIV-1 envelope gp140 proteins fused to APRIL

    NARCIS (Netherlands)

    Isik, Gözde; Sliepen, Kwinten; van Montfort, Thijs; Sanders, Rogier W.

    2014-01-01

    Current HIV-1 vaccines based on the HIV-1 envelope glycoprotein spike (Env), the only relevant target for broadly neutralizing antibodies, are unable to induce protective immunity. Env immunogenicity can be enhanced by fusion to costimulatory molecules involved in B cell activation, such as APRIL

  4. FRACTIONAL CRYSTALLIZATION FEED ENVELOPE

    International Nuclear Information System (INIS)

    HERTING DL

    2008-01-01

    Laboratory work was completed on a set of evaporation tests designed to establish a feed envelope for the fractional crystallization process. The feed envelope defines chemical concentration limits within which the process can be operated successfully. All 38 runs in the half-factorial design matrix were completed successfully, based on the qualitative definition of success. There is no feed composition likely to be derived from saltcake dissolution that would cause the fractional crystallization process to not meet acceptable performance requirements. However, some compositions clearly would provide more successful operation than other compositions

  5. The metastable state of nucleocapsids of enveloped viruses as probed by high hydrostatic pressure.

    Science.gov (United States)

    Gaspar, L P; Terezan, A F; Pinheiro, A S; Foguel, D; Rebello, M A; Silva, J L

    2001-03-09

    Enveloped viruses fuse their membranes with cellular membranes to transfer their genomes into cells at the beginning of infection. What is not clear, however, is the role of the envelope (lipid bilayer and glycoproteins) in the stability of the viral particle. To address this question, we compared the stability between enveloped and nucleocapsid particles of the alphavirus Mayaro using hydrostatic pressure and urea. The effects were monitored by intrinsic fluorescence, light scattering, and binding of fluorescent dyes, including bis(8-anilinonaphthalene-1-sulfonate) and ethidium bromide. Pressure caused a drastic dissociation of the nucleocapsids as determined by tryptophan fluorescence, light scattering, and gel filtration chromatography. Pressure-induced dissociation of the nucleocapsids was poorly reversible. In contrast, when the envelope was present, pressure effects were much less marked and were highly reversible. Binding of ethidium bromide occurred when nucleocapsids were dissociated under pressure, indicating exposure of the nucleic acid, whereas enveloped particles underwent no changes. Overall, our results demonstrate that removal of the envelope with the glycoproteins leads the particle to a metastable state and, during infection, may serve as the trigger for disassembly and delivery of the genome. The envelope acts as a "Trojan horse," gaining entry into the host cell to allow release of a metastable nucleocapsid prone to disassembly.

  6. Detection of circulating immune complexes of human IgA and beta 2 glycoprotein I in patients with antiphospholipid syndrome symptomatology.

    Science.gov (United States)

    Martínez-Flores, José A; Serrano, Manuel; Pérez, Dolores; Lora, David; Paz-Artal, Estela; Morales, José M; Serrano, Antonio

    2015-07-01

    Patients with antiphospholipid syndrome (APS) have a hypercoagulable condition associated with the presence of antiphospholipid autoantibodies (aPL). Consensus antibodies for diagnosis are lupus anticoagulant, anti-beta2 glycoprotein I (B2GPI) and anticardiolipin (IgG or IgM). Circulating immunocomplexes (CIC) of B2GPI associated with IgM or IgG were reported. Isolated IgA aB2GPI antibodies have achieved high diagnostic value although specific CIC of B2GPI bounded to IgA (B2A-CIC) has still not been described. CIC detection assays are mainly based on interaction with complement and are not appropriate to detect B2A-CIC because IgA does not fix complement using the classical pathway. Sera from healthy blood donors (N= 247) and from patients with thrombosis background and isolate positive for IgA aB2GPI (N = 68) were studied in a case-control study. Two methods were applied, these being a capture ELISA to quantify specific B2A-CIC and quantification of total IgA anti-B2GPI after dissociating CIC. B2A-CIC values in APS-patients were 19.27 ± 2.6 AU vs 6.1 ± 0.4 AU in blood donors (p < 0.001). There were 36.4% B2A-CIC positive patients (cutoff 21 AU) versus 5.5% in blood donors (p < 0.001). Dissociated IgA aB2GPI levels (total IgA aB2GPI) were 146.8 ± 10.8 IU/mL in patients vs. 22.4 IU/mL in controls (p < 0.001). B2A-CIC was independent of B2GPI and autoantibodies IgA aB2GPI serum levels. B2A-CIC can be identified and quantified in an easy and reproducible manner using two complement-independent methods. The use of these tests in prospective studies will allow better understanding of the prognosis and outcome of patients. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Why Enveloped Viruses Need Cores—The Contribution of a Nucleocapsid Core to Viral Budding

    Science.gov (United States)

    Lázaro, Guillermo R.; Mukhopadhyay, Suchetana; Hagan, Michael F.

    2018-02-01

    During the alphavirus lifecycle, a nucleocapsid core buds through the cell membrane to acquire an outer envelope of lipid membrane and viral glycoproteins. However, the presence of a nucleocapsid core is not required for assembly of infectious particles. To determine the role of the nucleocapsid core, we develop a coarse-grained computational model with which we investigate budding dynamics as a function of glycoprotein and nucleocapsid interactions, as well as budding in the absence of a nucleocapsid. We find that there is a transition between glycoprotein-directed budding and nucleocapsid-directed budding which occurs above a threshold strength of nucleocapsid interactions. The simulations predict that glycoprotein-directed budding leads to significantly increased size polydispersity and particle polymorphism. This polydispersity can be qualitatively explained by a theoretical model accounting for the competition between bending energy of the membrane and the glycoprotein shell. The simulations also show that the geometry of a budding particle leads to a barrier to subunit diffusion, which can result in a stalled, partially budded state. We present a phase diagram for this and other morphologies of budded particles. Comparison of these structures against experiments could establish bounds on whether budding is directed by glycoprotein or nucleocapsid interactions. Although our model is motivated by alphaviruses, we discuss implications of our results for other enveloped viruses.

  8. Common envelope evolution

    NARCIS (Netherlands)

    Taam, Ronald E.; Ricker, Paul M.

    2010-01-01

    The common envelope phase of binary star evolution plays a central role in many evolutionary pathways leading to the formation of compact objects in short period systems. Using three dimensional hydrodynamical computations, we review the major features of this evolutionary phase, focusing on the

  9. Thermal Activated Envelope

    DEFF Research Database (Denmark)

    Foged, Isak Worre; Pasold, Anke

    2015-01-01

    search procedure, the combination of materials and their bonding temperature is found in relation to the envelope effect on a thermal environment inside a defined space. This allows the designer to articulate dynamic composites with time-based thermal functionality, related to the material dynamics...

  10. Jacketed lamp bulb envelope

    Science.gov (United States)

    MacLennan, Donald A.; Turner, Brian P.; Gitsevich, Aleksandr; Bass, Gary K.; Dolan, James T.; Kipling, Kent; Kirkpatrick, Douglas A.; Leng, Yongzhang; Levin, Izrail; Roy, Robert J.; Shanks, Bruce; Smith, Malcolm; Trimble, William C.; Tsai, Peter

    2001-01-01

    A jacketed lamp bulb envelope includes a ceramic cup having an open end and a partially closed end, the partially closed end defining an aperture, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material at least partially covering a portion of the bulb not abutting the aperture. The reflective ceramic material may substantially fill an interior volume of the ceramic cup not occupied by the bulb. The ceramic cup may include a structural feature for aiding in alignment of the jacketed lamp bulb envelope in a lamp. The ceramic cup may include an external flange about a periphery thereof. One example of a jacketed lamp bulb envelope includes a ceramic cup having an open end and a closed end, a ceramic washer covering the open end of the ceramic cup, the washer defining an aperture therethrough, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material filling an interior volume of the ceramic cup not occupied by the bulb. A method of packing a jacketed lamp bulb envelope of the type comprising a ceramic cup with a lamp bulb disposed therein includes the steps of filling the ceramic cup with a flowable slurry of reflective material, and applying centrifugal force to the cup to pack the reflective material therein.

  11. Replacement of the V3 domain in the surface subunit of the feline immunodeficiency virus envelope glycoprotein with the equivalent region of a T cell-tropic human immunodeficiency virus type 1 results in a chimeric surface protein that efficiently binds to CXCR4.

    Science.gov (United States)

    González, Silvia A; Falcón, Juan I; Affranchino, José L

    2014-03-01

    Feline immunodeficiency virus (FIV) and the T cell-tropic strains of human immunodeficiency virus type 1 (HIV-1) share the use of the chemokine receptor CXCR4 for cell entry. To study this process further we developed a cell surface binding assay based on the expression of a soluble version of the FIV SU C-terminally tagged with the influenza virus hemagglutinin epitope (HA). The specificity of the assay was demonstrated by the following evidence: (1) the SU-HA protein bound to HeLa cells that express CXCR4 but not to MDCK cells that lack this chemokine receptor; and (2) binding of the SU-HA to HeLa cells was blocked by incubation with the CXCR4 antagonist AMD3100 as well as with the anti-CXCR4 monoclonal antibody (MAb) 12G5. Deletion of the V3 region from the FIV SU glycoprotein abolished its ability to bind CXCR4-expressing cells. Remarkably, substitution of the V3 domain of the FIV SU by the equivalent region of the HIV-1 NL4-3 isolate resulted in efficient cell surface binding of the chimeric SU protein to CXCR4. Moreover, transfection of MDCK cells with a plasmid encoding human CXCR4 allowed the association of the chimeric SU-HA glycoprotein to the transfected cells. Interestingly, while cell binding of the chimeric FIV-HIV SU was inhibited by an anti-HIV-1 V3 MAb, its association with CXCR4 was found to be resistant to AMD3100. Of note, the chimeric FIV-HIV Env glycoprotein was capable of promoting CXCR4-dependent cell-to-cell fusion.

  12. BALB/c mice immunized with a combination of virus-like particles incorporating Kaposi sarcoma-associated herpesvirus (KSHV) envelope glycoproteins gpK8.1, gB, and gH/gL induced comparable serum neutralizing antibody activity to UV-inactivated KSHV.

    Science.gov (United States)

    Barasa, Anne K; Ye, Peng; Phelps, Meredith; Arivudainambi, Ganapathiram T; Tison, Timelia; Ogembo, Javier Gordon

    2017-05-23

    Infection with Kaposi sarcoma-associated herpesvirus (KSHV) is estimated to account for over 44,000 new cases of Kaposi sarcoma annually, with 84% occurring in Africa, where the virus is endemic. To date, there is no prophylactic vaccine against KSHV. KSHV gpK8.1, gB, and gH/gL glycoproteins, implicated in the virus entry into host cells, are attractive vaccine targets for eliciting potent neutralizing antibodies (nAbs) against virus infection. We incorporated gpK8.1, gB, or gH/gL on the surface of virus-like particles (VLPs) and characterized these VLPs for their composition, size, and functionality. To determine which viral glycoprotein(s) elicit the most effective serum-nAbs, we immunized BALB/c mice with gpK8.1, gB, or gH/gL VLPs individually or in combination. Neutralizing antibody assay revealed that sera from mice immunized with the VLPs inhibited KSHV infection of HEK-293 cells in a dose-dependent manner. As a single immunogen, gpK8.1 VLPs stimulated comparable nAb activity to that of UV-inactivated KSHV (UV-KSHV). In contrast, UV-KSHV stimulated higher titers of nAb compared to gB (p = 0.0316) or gH/gL (p = 0.0486). Mice immunized with the combination of gB and gH/gL VLPs had a better nAb response than those immunized with either gB (p = 0.0268), or gH/gL (p = 0.0397) as single VLP immunogens. Immunization with any VLP combination stimulated comparable nAb activity to UV-KSHV serum. Our data provide the first evidence that KSHV gpK8.1, gB, and gH/gL glycoproteins can be incorporated onto the surface of VLPs and used as prophylactic vaccine candidates, with potential to prevent KSHV infection.

  13. Characterization of Vesicular Stomatitis Virus Pseudotypes Bearing Essential Entry Glycoproteins gB, gD, gH, and gL of Herpes Simplex Virus 1.

    Science.gov (United States)

    Rogalin, Henry B; Heldwein, Ekaterina E

    2016-11-15

    Herpes simplex viruses (HSVs) are unusual in that unlike most enveloped viruses, they require at least four entry glycoproteins, gB, gD, gH, and gL, for entry into target cells in addition to a cellular receptor for gD. The dissection of the herpes simplex virus 1 (HSV-1) entry mechanism is complicated by the presence of more than a dozen proteins on the viral envelope. To investigate HSV-1 entry requirements in a simplified system, we generated vesicular stomatitis virus (VSV) virions pseudotyped with HSV-1 essential entry glycoproteins gB, gD, gH, and gL but lacking the native VSV fusogen G. These virions, referred to here as VSVΔG-BHLD virions, infected a cell line expressing a gD receptor, demonstrating for the first time that the four essential entry glycoproteins of HSV-1 are not only required but also sufficient for cell entry. To our knowledge, this is the first time the VSV pseudotyping system has been successfully extended beyond two proteins. Entry of pseudotyped virions required a gD receptor and was inhibited by HSV-1 specific anti-gB or anti-gH/gL neutralizing antibodies, which suggests that membrane fusion during the entry of the pseudotyped virions shares common requirements with the membrane fusion involved in HSV-1 entry and HSV-1-mediated syncytium formation. The HSV pseudotyping system established in this study presents a novel tool for systematic exploration of the HSV entry and membrane fusion mechanisms. Herpes simplex viruses (HSVs) are human pathogens that can cause cold sores, genital herpes, and blindness. No vaccines or preventatives are available. HSV entry into cells-a prerequisite for a successful infection-is a complex process that involves multiple viral and host proteins and occurs by different routes. Detailed mechanistic knowledge of the HSV entry is important for understanding its pathogenesis and would benefit antiviral and vaccine development, yet the presence of more than a dozen proteins on the viral envelope complicates

  14. URGENT - Internal Mail Envelopes

    CERN Multimedia

    2007-01-01

    Internal mail envelopes often finish up in large piles in certain offices, thus creating a shortage for other users of the mail service, who would be grateful if everyone with an unused stock could deposit them in their mail box, after attaching them together with an elastic band or piece of string. The messengers will then collect them so that the Mail Office can put them back in circulation. Thank you for your understanding and collaboration. Mail Office

  15. URGENT - Internal Mail Envelopes

    CERN Multimedia

    Mail Office

    2004-01-01

    Internal mail envelopes often finish up in large piles in certain offices, thus creating a shortage for other users of the mail service, who would be grateful if everyone with an unused stock could deposit them in their mail box, after attaching them together with an elastic band or piece of string. The messengers will then collect them so that the Mail Office can put them back in circulation. Thank you for your understanding and collaboration. Mail Office

  16. AFM visualization of sub-50nm polyplex disposition to the nuclear pore complex without compromising the integrity of the nuclear envelope

    DEFF Research Database (Denmark)

    Andersen, Helene; Parhamifar, Ladan; Hunter, A Christy

    2016-01-01

    that were microinjected into the oocytes of Xenopus laevis, as an example of a non-dividing cell, is exclusive to the nuclear pore complex (NPC). AFM images show NPCs clogged only with sub-50nm polyplexes. This mode of disposition neither altered the morphology/integrity of the nuclear membrane nor the NPC...

  17. Characterization of the Outer Domain of the gp120 Glycoprotein from Human Immunodeficiency Virus Type 1

    Science.gov (United States)

    Yang, Xinzhen; Tomov, Vesko; Kurteva, Svetla; Wang, Liping; Ren, Xinping; Gorny, Miroslaw K.; Zolla-Pazner, Susan; Sodroski, Joseph

    2004-01-01

    The core of the gp120 glycoprotein from human immunodeficiency virus type 1 (HIV-1) is comprised of three major structural domains: the outer domain, the inner domain, and the bridging sheet. The outer domain is exposed on the HIV-1 envelope glycoprotein trimer and contains binding surfaces for neutralizing antibodies such as 2G12, immunoglobulin G1b12, and anti-V3 antibodies. We expressed the outer domain of HIV-1YU2 gp120 as an independent protein, termed OD1. OD1 efficiently bound 2G12 and a large number of anti-V3 antibodies, indicating its structural integrity. Immunochemical studies with OD1 indicated that antibody responses against the outer domain of the HIV-1 gp120 envelope glycoprotein are rare in HIV-1-infected human sera that potently neutralize the virus. Surprisingly, such outer-domain-directed antibody responses are commonly elicited by immunization with recombinant monomeric gp120. Immunization with soluble, stabilized HIV-1 envelope glycoprotein trimers elicited antibody responses that more closely resembled those in the sera of HIV-1-infected individuals. These results underscore the qualitatively different humoral immune responses elicited during natural infection and after gp120 vaccination and help to explain the failure of gp120 as an effective vaccine. PMID:15542649

  18. Crystal structure of the Hendra virus attachment G glycoprotein bound to a potent cross-reactive neutralizing human monoclonal antibody.

    Science.gov (United States)

    Xu, Kai; Rockx, Barry; Xie, Yihu; DeBuysscher, Blair L; Fusco, Deborah L; Zhu, Zhongyu; Chan, Yee-Peng; Xu, Yan; Luu, Truong; Cer, Regina Z; Feldmann, Heinz; Mokashi, Vishwesh; Dimitrov, Dimiter S; Bishop-Lilly, Kimberly A; Broder, Christopher C; Nikolov, Dimitar B

    2013-01-01

    The henipaviruses, represented by Hendra (HeV) and Nipah (NiV) viruses are highly pathogenic zoonotic paramyxoviruses with uniquely broad host tropisms responsible for repeated outbreaks in Australia, Southeast Asia, India and Bangladesh. The high morbidity and mortality rates associated with infection and lack of licensed antiviral therapies make the henipaviruses a potential biological threat to humans and livestock. Henipavirus entry is initiated by the attachment of the G envelope glycoprotein to host cell membrane receptors. Previously, henipavirus-neutralizing human monoclonal antibodies (hmAb) have been isolated using the HeV-G glycoprotein and a human naïve antibody library. One cross-reactive and receptor-blocking hmAb (m102.4) was recently demonstrated to be an effective post-exposure therapy in two animal models of NiV and HeV infection, has been used in several people on a compassionate use basis, and is currently in development for use in humans. Here, we report the crystal structure of the complex of HeV-G with m102.3, an m102.4 derivative, and describe NiV and HeV escape mutants. This structure provides detailed insight into the mechanism of HeV and NiV neutralization by m102.4, and serves as a blueprint for further optimization of m102.4 as a therapeutic agent and for the development of entry inhibitors and vaccines.

  19. Crystal structure of the Hendra virus attachment G glycoprotein bound to a potent cross-reactive neutralizing human monoclonal antibody.

    Directory of Open Access Journals (Sweden)

    Kai Xu

    Full Text Available The henipaviruses, represented by Hendra (HeV and Nipah (NiV viruses are highly pathogenic zoonotic paramyxoviruses with uniquely broad host tropisms responsible for repeated outbreaks in Australia, Southeast Asia, India and Bangladesh. The high morbidity and mortality rates associated with infection and lack of licensed antiviral therapies make the henipaviruses a potential biological threat to humans and livestock. Henipavirus entry is initiated by the attachment of the G envelope glycoprotein to host cell membrane receptors. Previously, henipavirus-neutralizing human monoclonal antibodies (hmAb have been isolated using the HeV-G glycoprotein and a human naïve antibody library. One cross-reactive and receptor-blocking hmAb (m102.4 was recently demonstrated to be an effective post-exposure therapy in two animal models of NiV and HeV infection, has been used in several people on a compassionate use basis, and is currently in development for use in humans. Here, we report the crystal structure of the complex of HeV-G with m102.3, an m102.4 derivative, and describe NiV and HeV escape mutants. This structure provides detailed insight into the mechanism of HeV and NiV neutralization by m102.4, and serves as a blueprint for further optimization of m102.4 as a therapeutic agent and for the development of entry inhibitors and vaccines.

  20. Epstein–Barr virus glycoprotein gM can interact with the cellular protein p32 and knockdown of p32 impairs virus

    Energy Technology Data Exchange (ETDEWEB)

    Changotra, Harish; Turk, Susan M. [Department of Microbiology and Immunology, Center for Molecular and Tumor Virology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA (United States); Artigues, Antonio [Department of Biochemistry, University of Kansas Medical Center, Kansas City, KS (United States); Thakur, Nagendra; Gore, Mindy; Muggeridge, Martin I. [Department of Microbiology and Immunology, Center for Molecular and Tumor Virology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA (United States); Hutt-Fletcher, Lindsey M., E-mail: lhuttf@lsuhsc.edu [Department of Microbiology and Immunology, Center for Molecular and Tumor Virology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA (United States)

    2016-02-15

    The Epstein–Barr virus glycoprotein complex gMgN has been implicated in assembly and release of fully enveloped virus, although the precise role that it plays has not been elucidated. We report here that the long predicted cytoplasmic tail of gM is not required for complex formation and that it interacts with the cellular protein p32, which has been reported to be involved in nuclear egress of human cytomegalovirus and herpes simplex virus. Although redistribution of p32 and colocalization with gM was not observed in virus infected cells, knockdown of p32 expression by siRNA or lentivirus-delivered shRNA recapitulated the phenotype of a virus lacking expression of gNgM. A proportion of virus released from cells sedimented with characteristics of virus lacking an intact envelope and there was an increase in virus trapped in nuclear condensed chromatin. The observations suggest the possibility that p32 may also be involved in nuclear egress of Epstein–Barr virus. - Highlights: • The predicted cytoplasmic tail of gM is not required to complex with gN. • Cellular p32 can interact with the predicted cytoplasmic tail of EBV gM. • Knockdown of p32 recapitulates the phenotype of virus lacking the gNgM complex.

  1. Epstein–Barr virus glycoprotein gM can interact with the cellular protein p32 and knockdown of p32 impairs virus

    International Nuclear Information System (INIS)

    Changotra, Harish; Turk, Susan M.; Artigues, Antonio; Thakur, Nagendra; Gore, Mindy; Muggeridge, Martin I.; Hutt-Fletcher, Lindsey M.

    2016-01-01

    The Epstein–Barr virus glycoprotein complex gMgN has been implicated in assembly and release of fully enveloped virus, although the precise role that it plays has not been elucidated. We report here that the long predicted cytoplasmic tail of gM is not required for complex formation and that it interacts with the cellular protein p32, which has been reported to be involved in nuclear egress of human cytomegalovirus and herpes simplex virus. Although redistribution of p32 and colocalization with gM was not observed in virus infected cells, knockdown of p32 expression by siRNA or lentivirus-delivered shRNA recapitulated the phenotype of a virus lacking expression of gNgM. A proportion of virus released from cells sedimented with characteristics of virus lacking an intact envelope and there was an increase in virus trapped in nuclear condensed chromatin. The observations suggest the possibility that p32 may also be involved in nuclear egress of Epstein–Barr virus. - Highlights: • The predicted cytoplasmic tail of gM is not required to complex with gN. • Cellular p32 can interact with the predicted cytoplasmic tail of EBV gM. • Knockdown of p32 recapitulates the phenotype of virus lacking the gNgM complex.

  2. Uncertain data envelopment analysis

    CERN Document Server

    Wen, Meilin

    2014-01-01

    This book is intended to present the milestones in the progression of uncertain Data envelopment analysis (DEA). Chapter 1 gives some basic introduction to uncertain theories, including probability theory, credibility theory, uncertainty theory and chance theory. Chapter 2 presents a comprehensive review and discussion of basic DEA models. The stochastic DEA is introduced in Chapter 3, in which the inputs and outputs are assumed to be random variables. To obtain the probability distribution of a random variable, a lot of samples are needed to apply the statistics inference approach. Chapter 4

  3. Functional Role of N-Linked Glycosylation in Pseudorabies Virus Glycoprotein gH.

    Science.gov (United States)

    Vallbracht, Melina; Rehwaldt, Sascha; Klupp, Barbara G; Mettenleiter, Thomas C; Fuchs, Walter

    2018-05-01

    Many viral envelope proteins are modified by asparagine (N)-linked glycosylation, which can influence their structure, physicochemical properties, intracellular transport, and function. Here, we systematically analyzed the functional relevance of N-linked glycans in the alphaherpesvirus pseudorabies virus (PrV) glycoprotein H (gH), which is an essential component of the conserved core herpesvirus fusion machinery. Upon gD-mediated receptor binding, the heterodimeric complex of gH and gL activates gB to mediate fusion of the viral envelope with the host cell membrane for viral entry. gH contains five potential N-linked glycosylation sites at positions 77, 162, 542, 604, and 627, which were inactivated by conservative mutations (asparagine to glutamine) singly or in combination. The mutated proteins were tested for correct expression and fusion activity. Additionally, the mutated gH genes were inserted into the PrV genome for analysis of function during virus infection. Our results demonstrate that all five sites are glycosylated. Inactivation of the PrV-specific N77 or the conserved N627 resulted in significantly reduced in vitro fusion activity, delayed penetration kinetics, and smaller virus plaques. Moreover, substitution of N627 greatly affected transport of gH in transfected cells, resulting in endoplasmic reticulum (ER) retention and reduced surface expression. In contrast, mutation of N604, which is conserved in the Varicellovirus genus, resulted in enhanced in vitro fusion activity and viral cell-to-cell spread. These results demonstrate a role of the N-glycans in proper localization and function of PrV gH. However, even simultaneous inactivation of all five N-glycosylation sites of gH did not severely inhibit formation of infectious virus particles. IMPORTANCE Herpesvirus infection requires fusion of the viral envelope with cellular membranes, which involves the conserved fusion machinery consisting of gB and the heterodimeric gH/gL complex. The bona fide

  4. Human periodontal ligament stem cells suppress T-cell proliferation via down-regulation of non-classical major histocompatibility complex-like glycoprotein CD1b on dendritic cells.

    Science.gov (United States)

    Shin, C; Kim, M; Han, J-A; Choi, B; Hwang, D; Do, Y; Yun, J-H

    2017-02-01

    Periodontal ligament stem cells (PDLSCs) from the periodontal ligament tissue were recently identified as mesenchymal stem cells (MSCs). The capabilities of PDLSCs in periodontal tissue or bone regeneration have been reported, but their immunomodulatory role in T-cell immune responses via dendritic cells (DCs), known as the most potent antigen-presenting cell, has not been studied. The aim of this study is to understand the immunological function of homogeneous human STRO-1 + CD146 + PDLSCs in DC-mediated T-cell immune responses to modulate the periodontal disease process. We utilized highly purified (> 95%) human STRO-1 + CD146 + PDLSCs and human bone marrow mesenchymal stem cells (BMSCs). Each stem cell was co-cultured with human monocyte-derived DCs in the presence of lipopolysaccharide isolated from Porphyromonas gingivalis, a major pathogenic bacterium responsible for periodontal disease, in vitro to examine the immunological effect of each stem cell on DCs and DC-mediated T-cell proliferation. We discovered that STRO-1 + CD146 + PDLSCs, as well as BMSCs, significantly decreased the level of non-classical major histocompatibility complex glycoprotein CD1b on DCs, resulting in defective T-cell proliferation, whereas most human leukocyte antigens and the co-stimulatory molecules CD80 and CD86 in/on DCs were not significantly affected by the presence of BMSCs or STRO-1 + CD146 + PDLSCs. This study unveiled an immunomodulatory role of STRO-1 + CD146 + PDLSCs in negatively regulating DC-mediated T-cell immune responses, demonstrating their potential to be utilized in promising new stem cell therapies. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Equivariant calculus in the differential envelope

    International Nuclear Information System (INIS)

    Kastler, D.

    1991-01-01

    The author shows how Z/2-graded cyclic cohomology is related to the equivariant calculus of S. Klimek, W. Kondracki, and A. Lesniewski (HUTMP 90/B247 (1990)). He uses the differential envelope of a complex unital differential algebra. After a presentation of fiber-preserved operators on equivariant functions valued in this algebra on a group he considers certain operators on this algebra. Finally he discusses explicitly the case G=Z/2. (HSI)

  6. Processing of virus-specific glycoproteins of varicella zoster virus

    Energy Technology Data Exchange (ETDEWEB)

    Namazue, J.; Campo-Vera, H.; Kitamura, K.; Okuno, T.; Yamanishi, K.

    1985-05-01

    Monoclonal antibodies to varicella zoster virus (VZV) glycoproteins were used to study the processing of three glycoproteins with molecular weights of 83K-94K (gp 2), 64K (gp 3), and 55K (gp 5). Immunoprecipitation experiments performed with VZV-infected cells, pulse labeled with (/sup 3/H)glucosamine in the presence of tunicamycin, suggest that O-linked oligosaccharide is present on the glycoprotein of gp 2. Use of the enzyme endo-beta-N-acetylglucosaminidase H revealed that the fully processed form of gp 3 had high-mannose type and that of gp 5 had only complex type of N-linked oligosaccharides. Experiments with monensin suggest that the precursor form (116K) of gp 3 is cleaved during the processing from Golgi apparatus to cell surface membrane. The extension of O-linked oligosaccharide chain and the complex type of N-linked oligosaccharide chains also occurs during this processing.

  7. Processing of virus-specific glycoproteins of varicella zoster virus

    International Nuclear Information System (INIS)

    Namazue, J.; Campo-Vera, H.; Kitamura, K.; Okuno, T.; Yamanishi, K.

    1985-01-01

    Monoclonal antibodies to varicella zoster virus (VZV) glycoproteins were used to study the processing of three glycoproteins with molecular weights of 83K-94K (gp 2), 64K (gp 3), and 55K (gp 5). Immunoprecipitation experiments performed with VZV-infected cells, pulse labeled with [ 3 H]glucosamine in the presence of tunicamycin, suggest that O-linked oligosaccharide is present on the glycoprotein of gp 2. Use of the enzyme endo-beta-N-acetylglucosaminidase H revealed that the fully processed form of gp 3 had high-mannose type and that of gp 5 had only complex type of N-linked oligosaccharides. Experiments with monensin suggest that the precursor form (116K) of gp 3 is cleaved during the processing from Golgi apparatus to cell surface membrane. The extension of O-linked oligosaccharide chain and the complex type of N-linked oligosaccharide chains also occurs during this processing

  8. Inhibition of HIV-1 subtype C by 2’F-RNA aptamers isolated against enveloped pseudovirus

    CSIR Research Space (South Africa)

    London, GG

    2012-09-01

    Full Text Available Human immunodeficiency virus type-I (HIV-1) envelope glycoprotein (Env) mediates the first step of entry and represents an attractive target . However, the genetic diversity of Env among HIV-1 subtypes poses a challenge. Although evidence suggest...

  9. X-ray and EM structures of a natively glycosylated HIV-1 envelope trimer.

    Science.gov (United States)

    Gristick, Harry B; Wang, Haoqing; Bjorkman, Pamela J

    2017-10-01

    The structural and biochemical characterization of broadly neutralizing anti-HIV-1 antibodies (bNAbs) has been essential in guiding the design of potential vaccines to prevent infection by HIV-1. While these studies have revealed critical mechanisms by which bNAbs recognize and/or accommodate N-glycans on the trimeric envelope glycoprotein (Env), they have been limited to the visualization of high-mannose glycan forms only, since heterogeneity introduced from the presence of complex glycans makes it difficult to obtain high-resolution structures. 3.5 and 3.9 Å resolution crystal structures of the HIV-1 Env trimer with fully processed and native glycosylation were solved, revealing a glycan shield of high-mannose and complex-type N-glycans that were used to define the complete epitopes of two bNAbs. Here, the refinement of the N-glycans in the crystal structures is discussed and comparisons are made with glycan densities in glycosylated Env structures derived by single-particle cryo-electron microscopy.

  10. Properties of Manganese(III Ferrocenyl-β-Diketonato Complexes Revealed by Charge Transfer and Multiplet Splitting in the Mn 2p and Fe 2p X-Ray Photoelectron Envelopes

    Directory of Open Access Journals (Sweden)

    Blenerhassitt E. Buitendach

    2016-10-01

    Full Text Available A series of ferrocenyl-functionalized β-diketonato manganese(III complexes, [Mn(FcCOCHCOR3] with R = CF3, CH3, Ph (phenyl and Fc (ferrocenyl was subjected to a systematic XPS study of the Mn 2p3/2 and Fe 2p3/2 core-level photoelectron lines and their satellite structures. A charge-transfer process from the β-diketonato ligand to the Mn(III metal center is responsible for the prominent shake-up satellite peaks of the Mn 2p photoelectron lines and the shake-down satellite peaks of the Fe 2p photoelectron lines. Multiplet splitting simulations of the photoelectron lines of the Mn(III center of [Mn(FcCOCHCOR3] resemble the calculated Mn 2p3/2 envelope of Mn3+ ions well, indicating the Mn(III centers are in the high spin state. XPS spectra of complexes with unsymmetrical β-diketonato ligands (i.e., R not Fc were described with two sets of multiplet splitting peaks representing fac and the more stable mer isomers respectively. Stronger electron-donating ligands stabilize fac more than mer isomers. The sum of group electronegativities, ΣχR, of the β-diketonato pendant side groups influences the binding energies of the multiplet splitting and charge transfer peaks in both Mn and Fe 2p3/2 photoelectron lines, the ratio of satellite to main peak intensities, and the degree of covalence of the Mn–O bond.

  11. The nuclear envelope environment and its cancer connections

    Science.gov (United States)

    Chow, Kin-Hoe; Factor, Rachel E.; Ullman, Katharine S.

    2014-01-01

    Because of the association between aberrant nuclear structure and tumour grade, nuclear morphology is an indispensible criterion in the current pathological assessment of cancer. Components of the nuclear envelope environment have central roles in many aspects of cell function that affect tumour development and progression. As the roles of the nuclear envelope components, including nuclear pore complexes and nuclear lamina, are being deciphered in molecular detail there are opportunities to harness this knowledge for cancer therapeutics and biomarker development. In this Review, we summarize the progress that has been made in our understanding of the nuclear envelope and the implications of changes in this environment for cancer biology. PMID:22337151

  12. Adaptive Architectural Envelope

    DEFF Research Database (Denmark)

    Foged, Isak Worre; Kirkegaard, Poul Henning

    2010-01-01

    Recent years have seen an increasing variety of applications of adaptive architectural structures for improvement of structural performance by recognizing changes in their environments and loads, adapting to meet goals, and using past events to improve future performance or maintain serviceability....... The general scopes of this paper are to develop a new adaptive kinetic architectural structure, particularly a reconfigurable architectural structure which can transform body shape from planar geometries to hyper-surfaces using different control strategies, i.e. a transformation into more than one or two...... different shape alternatives. The adaptive structure is a proposal for a responsive building envelope which is an idea of a first level operational framework for present and future investigations towards performance based responsive architectures through a set of responsive typologies. A mock- up concept...

  13. Thermal Responsive Envelope

    DEFF Research Database (Denmark)

    Foged, Isak Worre; Pasold, Anke

    2015-01-01

    The paper presents an architectural computational method and model, which, through additive and subtractive processes, create composite elements with bending behaviour based on thermal variations in the surrounding climatic environment. The present effort is focused on the manipulation of assembly...... composite layers and their relative layer lengths thereby embedding the merged material effect to create a responsive behavioural architectural envelope. Copper and polypropylene are used as base materials for the composite structure due to their high differences in thermal expansion, surface emissivity...... alterations, their respective durability and copper’s architectural (visual and transformative) aesthetic qualities. Through the use of an evolutionary solver, the composite structure of the elements are organised to find the bending behaviour specified by and for the thermal environments. The entire model...

  14. Cell envelope associations of Aquaspirillum serpens flagella.

    Science.gov (United States)

    Coulton, J W; Murray, R G

    1978-12-01

    Specific regions of the cell envelope associated with the flagellar basal complex of the gram-negative bacterium Aquaspirillum (Spirillum) serpens were identified by studying each of the envelope layers: outer membrane, mucopeptide, and plasma membrane. The outer membrane around the flagella insertion site was differentiated by concentric membrane rings and central perforations surrounded by a closely set collar. The perforations in both the outer membrane and the isolated mucopeptide layer were of a size accomodating the central rod of the basal complex but smaller than either the L or the P disks. The P disk of the complex may lie between the mucopeptide and the outer membrane. Electron microscopy of intact, spheroplasted, or autolyzed preparations did not adequately resolve the location of the inner pair of disks of the basal complex. Freeze-etching, however, revealed differentiation within the plasma membrane that appeared to be related to the basal complex. The convex fracture face showed depressions which are interpreted as impressions of a disk surrounded by a set of evenly spaced macromolecular studs and containing a central "plug" interpreted as the central rod. In thin sections, blebs, which appear to be associated with the flagellar apparatus, were seen on the cytoplasmic side of the plasma membrane. Superimposing the dimensions of the flagellar basal complex and the spacings of the cell envelope layers and using the position of the L disk within the outer membrane for reference, showed that the S disk might be within and the M disk beneath the plasma membrane. A tentative model was developed for comparison with that based on the structure of the Escherichia coli basal complex.

  15. A chimeric measles virus with a lentiviral envelope replicates exclusively in CD4+/CCR5+ cells

    International Nuclear Information System (INIS)

    Mourez, Thomas; Mesel-Lemoine, Mariana; Combredet, Chantal; Najburg, Valerie; Cayet, Nadege; Tangy, Frederic

    2011-01-01

    We generated a replicating chimeric measles virus in which the hemagglutinin and fusion surface glycoproteins were replaced with the gp160 envelope glycoprotein of simian immunodeficiency virus (SIVmac239). Based on a previously cloned live-attenuated Schwarz vaccine strain of measles virus (MV), this chimera was rescued at high titers using reverse genetics in CD4+ target cells. Cytopathic effect consisted in the presence of large cell aggregates evolving to form syncytia, as observed during SIV infection. The morphology of the chimeric virus was identical to that of the parent MV particles. The presence of SIV gp160 as the only envelope protein on chimeric particles surface altered the cell tropism of the new virus from CD46+ to CD4+ cells. Used as an HIV candidate vaccine, this MV/SIVenv chimeric virus would mimic transient HIV-like infection, benefiting both from HIV-like tropism and the capacity of MV to replicate in dendritic cells, macrophages and lymphocytes.

  16. Chimeric Bovine Respiratory Syncytial Virus with Attachment and Fusion Glycoproteins Replaced by Bovine Parainfluenza Virus Type 3 Hemagglutinin-Neuraminidase and Fusion Proteins

    Science.gov (United States)

    Stope, Matthias B.; Karger, Axel; Schmidt, Ulrike; Buchholz, Ursula J.

    2001-01-01

    Chimeric bovine respiratory syncytial viruses (BRSV) expressing glycoproteins of bovine parainfluenza virus type 3 (BPIV-3) instead of BRSV glycoproteins were generated from cDNA. In the BRSV antigenome cDNA, the open reading frames of the major BRSV glycoproteins, attachment protein G and fusion protein F, were replaced individually or together by those of the BPIV-3 hemagglutinin-neuraminidase (HN) and/or fusion (F) glycoproteins. Recombinant virus could not be recovered from cDNA when the BRSV F open reading frame was replaced by the BPIV-3 F open reading frame. However, cDNA recovery of the chimeric virus rBRSV-HNF, with both glycoproteins replaced simultaneously, and of the chimeric virus rBRSV-HN, with the BRSV G protein replaced by BPIV-3 HN, was successful. The replication rates of both chimeras were similar to that of standard rBRSV. Moreover, rBRSV-HNF was neutralized by antibodies specific for BPIV-3, but not by antibodies specific to BRSV, demonstrating that the BRSV glycoproteins can be functionally replaced by BPIV-3 glycoproteins. In contrast, rBRSV-HN was neutralized by BRSV-specific antisera, but not by BPIV-3 specific sera, showing that infection of rBRSV-HN is mediated by BRSV F. Hemadsorption of cells infected with rBRSV-HNF and rBRSV-HN proved that BPIV-3 HN protein expressed by rBRSV is functional. Colocalization of the BPIV-3 glycoproteins with BRSV M protein was demonstrated by confocal laser scan microscopy. Moreover, protein analysis revealed that the BPIV-3 glycoproteins were present in chimeric virions. Taken together, these data indicate that the heterologous glycoproteins were not only expressed but were incorporated into the envelope of recombinant BRSV. Thus, the envelope glycoproteins derived from a member of the Respirovirus genus can together functionally replace their homologs in a Pneumovirus background. PMID:11533200

  17. Local expression and exocytosis of viral glycoproteins in multinucleated muscle cells

    OpenAIRE

    1992-01-01

    We have analyzed the distribution of enveloped viral infections in multinucleated L6 muscle cells. A temperature-sensitive vesicular stomatitis virus (mutant VSV ts045) was utilized at the nonpermissive temperature (39 degrees C). As expected, the glycoprotein (G protein) of this mutant was restricted to the ER when the multinucleated cells were maintained at 39 degrees C. We demonstrate that this G protein remained localized when the infection was performed at low dose. By 4 h after infectio...

  18. Cancer Biomarker Discovery: Lectin-Based Strategies Targeting Glycoproteins

    Directory of Open Access Journals (Sweden)

    David Clark

    2012-01-01

    Full Text Available Biomarker discovery can identify molecular markers in various cancers that can be used for detection, screening, diagnosis, and monitoring of disease progression. Lectin-affinity is a technique that can be used for the enrichment of glycoproteins from a complex sample, facilitating the discovery of novel cancer biomarkers associated with a disease state.

  19. Direct chemical modification and voltammetric detection of glycans in glycoproteins

    Czech Academy of Sciences Publication Activity Database

    Trefulka, Mojmír; Paleček, Emil

    2014-01-01

    Roč. 48, NOV2014 (2014), s. 52-55 ISSN 1388-2481 R&D Projects: GA ČR(CZ) GAP301/11/2055 Institutional support: RVO:68081707 Keywords : Glycoproteins * Chemical modification * Os(VI)L complexes Subject RIV: BO - Biophysics Impact factor: 4.847, year: 2014

  20. Epitope-Independent Purification of Native-Like Envelope Trimers from Diverse HIV-1 Isolates

    OpenAIRE

    Verkerke, Hans P.; Williams, James A.; Guttman, Miklos; Simonich, Cassandra A.; Liang, Yu; Filipavicius, Modestas; Hu, Shiu-Lok; Overbaugh, Julie; Lee, Kelly K.

    2016-01-01

    Soluble forms of trimeric HIV-1 envelope glycoprotein (Env) have long been sought as immunogens and as reagents for analysis of Env structure and function. Isolation of trimers that mimic native Env, derived from diverse viruses, however, represents a major challenge. Thus far, the most promising native-like (NL) structures have been obtained by engineering trimer-stabilizing mutations, termed SOSIP, into truncated Env sequences. However, the abundances of NL trimeric conformers vary among En...

  1. Alterations of HIV-1 envelope phenotype and antibody-mediated neutralization by signal peptide mutations

    OpenAIRE

    Upadhyay, Chitra; Feyznezhad, Roya; Yang, Weiming; Zhang, Hui; Zolla-Pazner, Susan; Hioe, Catarina E.

    2018-01-01

    HIV-1 envelope glycoprotein (Env) mediates virus attachment and entry into the host cells. Like other membrane-bound and secreted proteins, HIV-1 Env contains at its N terminus a signal peptide (SP) that directs the nascent Env to the endoplasmic reticulum (ER) where Env synthesis and post-translational modifications take place. SP is cleaved during Env biosynthesis but potentially influences the phenotypic traits of the Env protein. The Env SP sequences of HIV-1 isolates display high sequenc...

  2. The glycoprotein of measles virus

    International Nuclear Information System (INIS)

    Anttonen, O.; Jokinen, M.; Salmi, A.; Vainionpaeae, R.; Gahmberg, C.G.

    1980-01-01

    Measles virus was propagated in VERO cells and purified from the culture supernatants by two successive tartrate-density-gradient centrifugations. Surface carbohydrates were labelled both in vitro and in vivo with 3 H after treatment with galactose oxidase/NaB 3 H 4 or with [ 3 H]glucosamine. The major labelled glycoprotein in measles virions had a mol.wt. of 79000. After labelling with periodate/NaB 3 H 4 , which would result in specific labelling of sialic acid residues, the 79000-mol.wt. glycoprotein was very weakly labelled. This suggested that there is no or a very low amount of sialic acid in the virions. Further analysis of the glycoprotein showed that galactose is the terminal carbohydrate unit in the oligosaccharide, and the molecular weight of the glycopeptide obtained after Pronase digestion is about 3000. The oligosaccharide is attached to the polypeptide through an alkali-stable bond, indicating a N-glycosidic asparagine linkage. (author)

  3. Structures of phlebovirus glycoprotein Gn and identification of a neutralizing antibody epitope.

    Science.gov (United States)

    Wu, Yan; Zhu, Yaohua; Gao, Feng; Jiao, Yongjun; Oladejo, Babayemi O; Chai, Yan; Bi, Yuhai; Lu, Shan; Dong, Mengqiu; Zhang, Chang; Huang, Guangmei; Wong, Gary; Li, Na; Zhang, Yanfang; Li, Yan; Feng, Wen-Hai; Shi, Yi; Liang, Mifang; Zhang, Rongguang; Qi, Jianxun; Gao, George F

    2017-09-05

    Severe fever with thrombocytopenia syndrome virus (SFTSV) and Rift Valley fever virus (RVFV) are two arthropod-borne phleboviruses in the Bunyaviridae family, which cause severe illness in humans and animals. Glycoprotein N (Gn) is one of the envelope proteins on the virus surface and is a major antigenic component. Despite its importance for virus entry and fusion, the molecular features of the phleboviruse Gn were unknown. Here, we present the crystal structures of the Gn head domain from both SFTSV and RVFV, which display a similar compact triangular shape overall, while the three subdomains (domains I, II, and III) making up the Gn head display different arrangements. Ten cysteines in the Gn stem region are conserved among phleboviruses, four of which are responsible for Gn dimerization, as revealed in this study, and they are highly conserved for all members in Bunyaviridae Therefore, we propose an anchoring mode on the viral surface. The complex structure of the SFTSV Gn head and human neutralizing antibody MAb 4-5 reveals that helices α6 in subdomain III is the key component for neutralization. Importantly, the structure indicates that domain III is an ideal region recognized by specific neutralizing antibodies, while domain II is probably recognized by broadly neutralizing antibodies. Collectively, Gn is a desirable vaccine target, and our data provide a molecular basis for the rational design of vaccines against the diseases caused by phleboviruses and a model for bunyavirus Gn embedding on the viral surface.

  4. Cryo-EM structure of a native, fully glycosylated, cleaved HIV-1 envelope trimer.

    Science.gov (United States)

    Lee, Jeong Hyun; Ozorowski, Gabriel; Ward, Andrew B

    2016-03-04

    The envelope glycoprotein trimer (Env) on the surface of HIV-1 recognizes CD4(+) T cells and mediates viral entry. During this process, Env undergoes substantial conformational rearrangements, making it difficult to study in its native state. Soluble stabilized trimers have provided valuable insights into the Env structure, but they lack the hydrophobic membrane proximal external region (MPER, an important target of broadly neutralizing antibodies), the transmembrane domain, and the cytoplasmic tail. Here we present (i) a cryogenic electron microscopy (cryo-EM) structure of a clade B virus Env, which lacks only the cytoplasmic tail and is stabilized by the broadly neutralizing antibody PGT151, at a resolution of 4.2 angstroms and (ii) a reconstruction of this form of Env in complex with PGT151 and MPER-targeting antibody 10E8 at a resolution of 8.8 angstroms. These structures provide new insights into the wild-type Env structure. Copyright © 2016, American Association for the Advancement of Science.

  5. Full waveform inversion using envelope-based global correlation norm

    Science.gov (United States)

    Oh, Ju-Won; Alkhalifah, Tariq

    2018-01-01

    To increase the feasibility of full waveform inversion on real data, we suggest a new objective function, which is defined as the global correlation of the envelopes of modeled and observed data. The envelope-based global correlation norm has the advantage of the envelope inversion that generates artificial low-frequency information, which provides the possibility to recover long-wavelength structure in an early stage. In addition, the envelope-based global correlation norm maintains the advantage of the global correlation norm, which reduces the sensitivity of the misfit to amplitude errors so that the performance of inversion on real data can be enhanced when the exact source wavelet is not available and more complex physics are ignored.

  6. The cell envelope glycoconjugates of Mycobacterium tuberculosis

    Science.gov (United States)

    Angala, Shiva Kumar; Belardinelli, Juan Manuel; Huc-Claustre, Emilie; Wheat, William H.; Jackson, Mary

    2015-01-01

    Tuberculosis (TB) remains the second most common cause of death due to a single infectious agent. The cell envelope of Mycobacterium tuberculosis (Mtb), the causative agent of the disease in humans, is a source of unique glycoconjugates and the most distinctive feature of the biology of this organism. It is the basis of much of Mtb pathogenesis and one of the major causes of its intrinsic resistance to chemotherapeutic agents. At the same time, the unique structures of Mtb cell envelope glycoconjugates, their antigenicity and essentiality for mycobacterial growth provide opportunities for drug, vaccine, diagnostic and biomarker development, as clearly illustrated by recent advances in all of these translational aspects. This review focuses on our current understanding of the structure and biogenesis of Mtb glycoconjugates with particular emphasis on one of most intriguing and least understood aspect of the physiology of mycobacteria: the translocation of these complex macromolecules across the different layers of the cell envelope. It further reviews the rather impressive progress made in the last ten years in the discovery and development of novel inhibitors targeting their biogenesis. PMID:24915502

  7. The LHC in an envelope

    CERN Document Server

    2007-01-01

    The series of envelopes featuring CERN issued this summer was a huge success. The French postal services of the Pays de Gex will shortly be launching the second set of pre-paid envelopes issued in collaboration with the Laboratory this year, this time highlighting the LHC. Five thousand envelopes describing the accelerator’s capabilities will go on sale on 12 November, and some of the packs will even contain a small sample of the cables from the heart of the LHC magnets. The sets of ten pre-paid envelopes will tell you everything about CERN’s flagship accelerator, from its astounding technical capabilities to its spin-offs in the fields of technology and human resources. Each envelope will feature a different attribute or spin-off of the LHC. People will be invited to consult CERN’s public website for more detailed explanations if they want to know more. The new envelopes will be available from five post offices in the Pays de Gex (Ferney-Voltaire, Prévessin...

  8. The LHC on an envelope

    CERN Multimedia

    2007-01-01

    The series of envelopes featuring CERN issued this summer was a huge success. The French postal services of the Pays de Gex will shortly be launching the second set of pre-paid envelopes issued in collaboration with the Laboratory this year, this time highlighting the LHC. Five thousand envelopes describing the accelerator’s capabilities will go on sale on 12 November, and some of the packs will even contain a small sample of the cables from the heart of the LHC magnets. The sets of ten pre-paid envelopes will tell you everything about CERN’s flagship accelerator, from its astounding technical capabilities to its spin-offs in the fields of technology and human resources. Each envelope will feature a different attribute or spin-off of the LHC. People will be invited to consult CERN’s public website for more detailed explanations if they want to know more. The new envelopes will be available from five post offices in the Pays ...

  9. Herpes Simplex Virus 1 Glycoprotein M and the Membrane-Associated Protein UL11 Are Required for Virus-Induced Cell Fusion and Efficient Virus Entry

    Science.gov (United States)

    Kim, In-Joong; Chouljenko, Vladimir N.; Walker, Jason D.

    2013-01-01

    Herpes simplex virus 1 (HSV-1) facilitates virus entry into cells and cell-to-cell spread by mediating fusion of the viral envelope with cellular membranes and fusion of adjacent cellular membranes. Although virus strains isolated from herpetic lesions cause limited cell fusion in cell culture, clinical herpetic lesions typically contain large syncytia, underscoring the importance of cell-to-cell fusion in virus spread in infected tissues. Certain mutations in glycoprotein B (gB), gK, UL20, and other viral genes drastically enhance virus-induced cell fusion in vitro and in vivo. Recent work has suggested that gB is the sole fusogenic glycoprotein, regulated by interactions with the viral glycoproteins gD, gH/gL, and gK, membrane protein UL20, and cellular receptors. Recombinant viruses were constructed to abolish either gM or UL11 expression in the presence of strong syncytial mutations in either gB or gK. Virus-induced cell fusion caused by deletion of the carboxyl-terminal 28 amino acids of gB or the dominant syncytial mutation in gK (Ala to Val at amino acid 40) was drastically reduced in the absence of gM. Similarly, syncytial mutations in either gB or gK did not cause cell fusion in the absence of UL11. Neither the gM nor UL11 gene deletion substantially affected gB, gC, gD, gE, and gH glycoprotein synthesis and expression on infected cell surfaces. Two-way immunoprecipitation experiments revealed that the membrane protein UL20, which is found as a protein complex with gK, interacted with gM while gM did not interact with other viral glycoproteins. Viruses produced in the absence of gM or UL11 entered into cells more slowly than their parental wild-type virus strain. Collectively, these results indicate that gM and UL11 are required for efficient membrane fusion events during virus entry and virus spread. PMID:23678175

  10. Recent Progress in Electrochemical Biosensors for Glycoproteins

    Directory of Open Access Journals (Sweden)

    Uichi Akiba

    2016-12-01

    Full Text Available This review provides an overview of recent progress in the development of electrochemical biosensors for glycoproteins. Electrochemical glycoprotein sensors are constructed by combining metal and carbon electrodes with glycoprotein-selective binding elements including antibodies, lectin, phenylboronic acid and molecularly imprinted polymers. A recent trend in the preparation of glycoprotein sensors is the successful use of nanomaterials such as graphene, carbon nanotube, and metal nanoparticles. These nanomaterials are extremely useful for improving the sensitivity of glycoprotein sensors. This review focuses mainly on the protocols for the preparation of glycoprotein sensors and the materials used. Recent improvements in glycoprotein sensors are discussed by grouping the sensors into several categories based on the materials used as recognition elements.

  11. Preserving Envelope Efficiency in Performance Based Code Compliance

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Brian A. [Thornton Energy Consulting (United States); Sullivan, Greg P. [Efficiency Solutions (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baechler, Michael C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-06-20

    The City of Seattle 2012 Energy Code (Seattle 2014), one of the most progressive in the country, is under revision for its 2015 edition. Additionally, city personnel participate in the development of the next generation of the Washington State Energy Code and the International Energy Code. Seattle has pledged carbon neutrality by 2050 including buildings, transportation and other sectors. The United States Department of Energy (DOE), through Pacific Northwest National Laboratory (PNNL) provided technical assistance to Seattle in order to understand the implications of one potential direction for its code development, limiting trade-offs of long-lived building envelope components less stringent than the prescriptive code envelope requirements by using better-than-code but shorter-lived lighting and heating, ventilation, and air-conditioning (HVAC) components through the total building performance modeled energy compliance path. Weaker building envelopes can permanently limit building energy performance even as lighting and HVAC components are upgraded over time, because retrofitting the envelope is less likely and more expensive. Weaker building envelopes may also increase the required size, cost and complexity of HVAC systems and may adversely affect occupant comfort. This report presents the results of this technical assistance. The use of modeled energy code compliance to trade-off envelope components with shorter-lived building components is not unique to Seattle and the lessons and possible solutions described in this report have implications for other jurisdictions and energy codes.

  12. Mining the O-mannose glycoproteome reveals cadherins as major O-mannosylated glycoproteins

    DEFF Research Database (Denmark)

    Vester-Christensen, Malene B; Halim, Adnan; Joshi, Hiren Jitendra

    2013-01-01

    The metazoan O-mannose (O-Man) glycoproteome is largely unknown. It has been shown that up to 30% of brain O-glycans are of the O-Man type, but essentially only alpha-dystroglycan (α-DG) of the dystrophin-glycoprotein complex is well characterized as an O-Man glycoprotein. Defects in O-Man glycos......The metazoan O-mannose (O-Man) glycoproteome is largely unknown. It has been shown that up to 30% of brain O-glycans are of the O-Man type, but essentially only alpha-dystroglycan (α-DG) of the dystrophin-glycoprotein complex is well characterized as an O-Man glycoprotein. Defects in O...

  13. Glycoprotein Ib and glycoprotein IX in human platelets are acylated with palmitic acid through thioester linkages

    International Nuclear Information System (INIS)

    Muszbek, L.; Laposata, M.

    1989-01-01

    The glycoprotein (GP) Ib-IX complex is a major component of the platelet membrane which mediates adhesion of platelets to exposed subendothelium. GP Ib is a heterodimer with a large alpha chain (Mr = 135,000-145,000) and small beta chain (Mr = 22,000-27,000) linked by a disulfide bond(s). GP Ib is bound in a noncovalent 1:1 complex with GP IX (Mr = 17,000-22,000). We labeled isolated human platelets with [3H] palmitate or surface-labeled platelet membrane glycoproteins with sodium periodate-[3H]sodium borohydride and immunoprecipitated the GP Ib-IX complex from radiolabeled platelet lysates using a mouse monoclonal antibody (SZ.1) which recognizes the intact complex. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of immunoprecipitates from [3H]palmitate-labeled platelets revealed two radiolabeled bands under reducing conditions at 24 and 19 kDa and two bands under nonreducing conditions at 170 and 19 kDa. As demonstrated by the parallel analysis of immunoprecipitates from periodate-[3H]sodium borohydride-labeled platelets, the [3H]palmitate-labeled bands obtained under reducing conditions corresponded to GP Ib beta and GP IX and the ones obtained under nonreducing conditions to intact GP Ib and GP IX, respectively. Using alkaline methanolysis followed by high pressure liquid chromatography analysis of the methanolysis products, we demonstrated that the radioactivity associated with the GP Ib-IX complex from [3H]palmitate-labeled platelets was, in fact, covalently bound [3H]palmitate in ester linkage to protein. The protein-fatty acid linkage was also disrupted by hydroxylamine at neutral pH. Thus, this study demonstrates that GP Ib beta and GP IX in human platelets are both fatty acid-acylated with palmitate through thioester linkages

  14. Enveloped virus-like particles as vaccines against pathogenic arboviruses

    NARCIS (Netherlands)

    Pijlman, G.P.

    2015-01-01

    Arthropod-borne arboviruses form a continuous threat to human and animal health, but few arboviral vaccines are currently available. Advances in expression technology for complex, enveloped virus-like particles (eVLPs) create new opportunities to develop potent vaccines against pathogenic

  15. A data envelopment analysis approa

    African Journals Online (AJOL)

    Available on website http://www.wrc.org.za. ISSN 1816-7950 (On-line) = Water SA Vol. 42 No. 1 January 2016. Published under a Creative Commons Attribution Licence. Efficiency evaluation of urban and rural municipal water service authorities in South Africa: A data envelopment analysis approach. Warren Brettenny1* ...

  16. Handbook on data envelopment analysis

    CERN Document Server

    Cooper, William W; Zhu, Joe

    2011-01-01

    Focusing on extensively used Data Envelopment Analysis topics, this volume aims to both describe the state of the field and extend the frontier of DEA research. New chapters include DEA models for DMUs, network DEA, models for supply chain operations and applications, and new developments.

  17. Rabies virus glycoprotein as a carrier for anthrax protective antigen

    International Nuclear Information System (INIS)

    Live viral vectors expressing foreign antigens have shown great promise as vaccines against viral diseases. However, safety concerns remain a major problem regarding the use of even highly attenuated viral vectors. Using the rabies virus (RV) envelope protein as a carrier molecule, we show here that inactivated RV particles can be utilized to present Bacillus anthracis protective antigen (PA) domain-4 in the viral membrane. In addition to the RV glycoprotein (G) transmembrane and cytoplasmic domains, a portion of the RV G ectodomain was required to express the chimeric RV G anthrax PA on the cell surface. The novel antigen was also efficiently incorporated into RV virions. Mice immunized with the inactivated recombinant RV virions exhibited seroconversion against both RV G and anthrax PA, and a second inoculation greatly increased these responses. These data demonstrate that a viral envelope protein can carry a bacterial protein and that a viral carrier can display whole polypeptides compared to the limited epitope presentation of previous viral systems

  18. Constant envelope OFDM scheme for 6PolSK-QPSK

    Science.gov (United States)

    Li, Yupeng; Ding, Ding

    2018-03-01

    A constant envelope OFDM scheme with phase modulator (PM-CE-OFDM) for 6PolSK-QPSK modulation was demonstrated. Performance under large fiber launch power is measured to check its advantages in counteracting fiber nonlinear impairments. In our simulation, PM-CE-OFDM, RF-assisted constant envelope OFDM (RF-CE-OFDM) and conventional OFDM (Con-OFDM) are transmitted through 80 km standard single mode fiber (SSMF) single channel and WDM system. Simulation results confirm that PM-CE-OFDM has best performance in resisting fiber nonlinearity. In addition, benefiting from the simple system structure, the complexity and cost of PM-CE-OFDM system could be reduced effectively.

  19. Ignition of detonation in accreted helium envelopes

    Science.gov (United States)

    Ami Glasner, S.; Livne, E.; Steinberg, E.; Yalinewich, A.; Truran, James W.

    2018-02-01

    Sub Chandrasekhar CO white dwarfs accreting helium have been considered as candidates for SNIa progenitors since the early 1980's (helium shell mass >0.1M⊙). These models, once detonated did not fit the observed spectra and light curve of typical SNIa observations. New theoretical work examined detonations on much less massive (<0.05M⊙) envelopes. They find stable detonations that lead to light curves, spectra and abundances that compare relatively well with the observational data. The exact mechanism leading to the ignition of helium detonation is a key issue, since it is a mandatory first step for the whole scenario. As the flow of the accreted envelope is unstable to convection long before any hydrodynamic phenomena develops, a multidimensional approach is needed in order to study the ignition process. The complex convective reactive flow is challenging to any hydrodynamical solver. According to our best knowledge all previous 2D studies ignited the detonation artificially. We present here, for the first time, fully consistent results from two hydrodynamical 2D solvers that adopt two independent accurate schemes. For both solvers an effort was made to overcome the problematics raised by the finite resolution and numerical diffusion by the advective terms. Our best models lead to the ignition of a detonation in a convective cell. Our results are robust and the agreement between the two different numerical approaches is very good.

  20. Structure of Epstein-Barr Virus Glycoprotein 42 Suggests a Mechanism for Triggering Receptor-Activated Virus Entry

    Energy Technology Data Exchange (ETDEWEB)

    Kirschner, Austin N.; Sorem, Jessica; Longnecker, Richard; Jardetzky, Theodore S.; (NWU); (Stanford-MED)

    2009-05-26

    Epstein-Barr virus requires glycoproteins gH/gL, gB, and gp42 to fuse its lipid envelope with B cells. Gp42 is a type II membrane protein consisting of a flexible N-terminal region, which binds gH/gL, and a C-terminal lectin-like domain that binds to the B-cell entry receptor human leukocyte antigen (HLA) class II. Gp42 triggers membrane fusion after HLA binding, a process that requires simultaneous binding to gH/gL and a functional hydrophobic pocket in the lectin domain adjacent to the HLA binding site. Here we present the structure of gp42 in its unbound form. Comparisons to the previously determined structure of a gp42:HLA complex reveals additional N-terminal residues forming part of the gH/gL binding site and structural changes in the receptor binding domain. Although the core of the lectin domain remains similar, significant shifts in two loops and an {alpha} helix bordering the essential hydrophobic pocket suggest a structural mechanism for triggering fusion.

  1. Fbs1 protects the malfolded glycoproteins from the attack of peptide:N-glycanase

    International Nuclear Information System (INIS)

    Yamaguchi, Yoshiki; Hirao, Takeshi; Sakata, Eri; Kamiya, Yukiko; Kurimoto, Eiji; Yoshida, Yukiko; Suzuki, Tadashi; Tanaka, Keiji; Kato, Koichi

    2007-01-01

    Fbs1 is a cytosolic lectin putatively operating as a chaperone as well as a substrate-recognition subunit of the SCF Fbs1 ubiquitin ligase complex. To provide structural and functional basis of preferential binding of Fbs1 to unfolded glycoproteins, we herein characterize the interaction of Fbs1 with a heptapeptide carrying Man 3 GlcNAc 2 by nuclear magnetic resonance (NMR) spectroscopy and other biochemical methods. Inspection of the NMR data obtained by use of the isotopically labeled glycopeptide indicated that Fbs1 interacts with sugar-peptide junctions, which are shielded in native glycoprotein, in many cases, but become accessible to Fbs1 in unfolded glycoproteins. Furthermore, Fbs1 was shown to inhibit deglycosylation of denatured ribonuclease B by a cytosolic peptide:N-glycanase (PNGase). On the basis of these data, we suggest that Fbs1 captures malfolded glycoproteins, protecting them from the attack of PNGase, during the chaperoning or ubiquitinating operation in the cytosol

  2. Heterogeneity in glycan composition on the surface of HIV-1 envelope determines virus sensitivity to lectins

    Science.gov (United States)

    Jan, Muzafar; Upadhyay, Chitra; Alcami Pertejo, José; Hioe, Catarina E.

    2018-01-01

    Lectins that target N-glycans on the surface of HIV-1 envelope (Env) glycoprotein have the potential for use as antiviral agents. Although progress has been made in deciphering the molecular details of lectin and Env glycan interaction, further studies are needed to better understand Env glycan heterogeneity among HIV-1 isolates and its influence on virus-neutralization sensitivity to lectins. This study evaluated a panel of lectins with fine specificity for distinct oligosaccharides and assessed their ability to inhibit infection of HIV-1 viruses known to have differing sensitivity to anti-HIV Env antibodies. The results showed that HIV-1 isolates have different sensitivity to lectins specific for α1-3Man, α1-6Man, and α1-2Man binding lectins. Considering that lectins exclusively recognize the oligosaccharide components of virus Env, these data suggest that glycan heterogeneity among HIV-1 isolates may explain this differential sensitivity. To evaluate this further, chronic and acute viruses were produced in the presence of different glycosidase inhibitors to express more homogenous glycans. Viruses enriched for α1-2Man terminating Man5-9GlcNAc2 glycans became similarly sensitive to α1-2Man-binding lectins. The α1-3Man- and α1-6Man-binding lectins also were more potent against viruses expressing predominantly Man5GlcNAc2 and hybrid type glycans with terminal α1-3Man and α1-6Man. Furthermore, lectin-mediated inhibition was competitively alleviated by mannan and this effect was augmented by enrichment of mannose-type glycans on the virus. In addition, while Env of viruses enriched with mannose-type glycans were sensitive to Endo-H deglycosylation, Env of untreated viruses were partially resistant, indicating that HIV-1 Env glycans are heterogeneously comprised of complex, hybrid, and mannose types. Overall, our data demonstrate that HIV-1 isolates display differential sensitivity to lectins, in part due to the microheterogeneity of N-linked glycans

  3. Isolation of glycoproteins from brown algae.

    OpenAIRE

    Surendraraj, Alagarsamy; Farvin Koduvayur Habeebullah , Sabeena; Jacobsen, Charlotte

    2015-01-01

    The present invention relates to a novel process for the isolation of unique anti-oxidative glycoproteins from the pH precipitated fractions of enzymatic extracts of brown algae. Two brown seaweeds viz, Fucus serratus and Fucus vesiculosus were hydrolysed by using 3 enzymes viz, Alcalase, Viscozyme and Termamyl and the glycoproteins were isolated from these enzyme extracts.

  4. The zebrafish galectins Drgal1-L2 and Drgal3-L1 bind in vitro to the infectious hematopoietic necrosis virus (IHNV) glycoprotein and reduce viral adhesion to fish epithelial cells

    Digital Repository Service at National Institute of Oceanography (India)

    Nita-Lazar, M.; Mancini, J.; Feng, C.; Gonzalez-Montalban, N.; Ravindran, C.; Jackson, S.; Heras-Sanchez, A.D.L.; Giomarelli, B.; Ahmed, H.; Haslam, S.M.; Wu, G.; Dell, A.; Ammayappan, A.; Vakharia, V.N.; Vasta, G.R.

    of the key roles played by protein-carbohydrate interactions between host lectins and virion envelope glycoproteins in modulating viral adhesion and infectivity. Galectins, which constitute a conserved and ubiquitous lectin family defined by a unique amino... have been defined based on their envelope protein sequence similarity, designated as the U, M, and L genogroups. The M genogroup is endemic in the rainbow trout farming region in Idaho, where phylogenetically distinct sub-groups, designated MA...

  5. Safeguards Envelope Progress FY08

    Energy Technology Data Exchange (ETDEWEB)

    Robert Bean; Richard Metcalf; Aaron Bevill

    2008-09-01

    The Safeguards Envelope Project met its milestones by creating a rudimentary safeguards envelope, proving the value of the approach on a small scale, and determining the most appropriate path forward. The Idaho Chemical Processing Plant’s large cache of reprocessing process monitoring data, dubbed UBER Data, was recovered and used in the analysis. A probabilistic Z test was used on a Markov Monte Carlo simulation of expected diversion data when compared with normal operating data. The data regarding a fully transient event in a tank was used to create a simple requirement, representative of a safeguards envelope, whose impact was a decrease in operating efficiency by 1.3% but an increase in material balance period of 26%. This approach is operator, state, and international safeguards friendly and should be applied to future reprocessing plants. Future requirements include tank-to-tank correlations in reprocessing facilities, detailed operations impact studies, simulation inclusion, automated optimization, advanced statistics analysis, and multi-attribute utility analysis.

  6. Neutralizing activities of caprine antibodies towards conserved regions of the HCV envelope glycoprotein E2

    Directory of Open Access Journals (Sweden)

    El-Shenawy Reem

    2011-08-01

    Full Text Available Abstract Anti HCV vaccine is not currently available and the present antiviral therapies fail to cure approximately half of the treated HCV patients. This study was designed to assess the immunogenic properties of genetically conserved peptides derived from the C-terminal region of HVR-1 and test their neutralizing activities in a step towards developing therapeutic and/or prophylactic immunogens against HCV infection. Antibodies were generated by vaccination of goats with synthetic peptides derived from HCV E2. Viral neutralizing capacity of the generated anti E2 antibodies was tested using in vitro assays. Goats immunized with E2 synthetic peptides termed p412 [a.a 412-419], p430 [a.a 430-447] and p517 [a.a 517-531] generated high titers of antibody responses 2 to 4.5 fold higher than comparable titers of antibodies to the same epitopes in chronic HCV patients. In post infection experiments of native HCV into cultured Huh7.5 cells anti p412 and anti p 517 were proven to be neutralizing to HCV genotype 4a from patients' sera (87.5% and 75% respectively. On the contrary anti p430 exhibited weak viral neutralization capacity on the same samples (31.25%. Furthermore Ab mixes containing anti p430 exhibited reduced viral neutralization properties. From these experiments one could predict that neutralization by Abs towards different E2-epitopes varies considerably and success in the enrichment of neutralization epitope-specific antibodies may be accompanied by favorable results in combating HCV infection. Also, E2 conserved peptides p517 and p412 represent potential components of a candidate peptide vaccine against HCV infection.

  7. Human Immunodeficiency Virus type 1 group M consensus and mosaic envelope glycoproteins

    Energy Technology Data Exchange (ETDEWEB)

    Korber, Bette T.; Fischer, William; Liao, Hua-Xin; Haynes, Barton F.; Letvin, Norman; Hahn, Beatrice H.

    2017-11-21

    The disclosure relates to nucleic acids mosaic clade M HIV-1 Env polypeptides and to compositions and vectors comprising same. The nucleic acids are suitable for use in inducing an immune response to HIV-1 in a human.

  8. Role of the envelope glycoproteins in the infection cycle of tomato spotted wilt virus

    NARCIS (Netherlands)

    Kikkert, M.

    1999-01-01

    Tomato spotted wilt virus (TSWV) forms the type member of the genus Tospovirus , which today harbors more than twelve different species. TSWV is able to infect an enormous variety of different plants, to which it often causes devastating effects,

  9. Nucleic acids encoding modified human immunodeficiency virus type 1 (HIV-1) group M consensus envelope glycoproteins

    Science.gov (United States)

    Haynes, Barton F [Durham, NC; Gao, Feng [Durham, NC; Korber, Bette T [Los Alamos, NM; Hahn, Beatrice H [Birmingham, AL; Shaw, George M [Birmingham, AL; Kothe, Denise [Birmingham, AL; Li, Ying Ying [Hoover, AL; Decker, Julie [Alabaster, AL; Liao, Hua-Xin [Chapel Hill, NC

    2011-12-06

    The present invention relates, in general, to an immunogen and, in particular, to an immunogen for inducing antibodies that neutralizes a wide spectrum of HIV primary isolates and/or to an immunogen that induces a T cell immune response. The invention also relates to a method of inducing anti-HIV antibodies, and/or to a method of inducing a T cell immune response, using such an immunogen. The invention further relates to nucleic acid sequences encoding the present immunogens.

  10. Host Cell Virus Entry Mediated by Australian Bat Lyssavirus Envelope G glycoprotein

    Science.gov (United States)

    2013-10-24

    intracellular vesicular trafficking pathways as physiological ligands and membrane components, such as hormones , growth factors, and plasma membrane factors...been a cause of considerable concern to wildlife, veterinary , and health-care workers. There are two genetically distinct variants of ABLV, one which...entry. It was surprising that the 293F cells, which are a derivative of HEK293 cells that have been adapted for growth in serum-free medium as

  11. A synthetic peptide derived from domain III envelope glycoprotein of Dengue virus induces neutralizing antibody.

    Science.gov (United States)

    Mary, J Asnet; Jittmittraphap, Akanitt; Chattanadee, Siriporn; Leaungwutiwong, Pornsawan; Shenbagarathai, R

    2018-02-01

    Dengue virus (DENV) is an arthropod-borne human pathogen that represents a severe public health threat in both endemic and non-endemic regions. So far, there is no licensed vaccine or specific drugs available for dengue fever. A fifteen-amino-acid-long peptide that includes the NGR motif was chemically synthesized and conjugated with keyhole limpet hemocyanin. A standard immunization protocol was followed for the production of polyclonal antibodies by immunizing rabbits against the synthetic peptide. The immune response elicited high-titer polyclonal antibodies with the reactivity of the anti-peptide antibody against both synthetic peptide and four serotypes of DENV confirmed by DOT-ELISA. Neutralizing activity of anti-peptide antibody was found to be cross-reactive and effective resulting in 60% reduction of infectivity at 1:200 dilution in all four serotypes of DENV. Our findings have the potential to further improve our understanding of virus-host interactions and provide new insights into neutralizing antibodies and could also be used as a drug target.

  12. Supersite of immune vulnerability on the glycosylated face of HIV-1 envelope glycoprotein gp120

    NARCIS (Netherlands)

    Kong, Leopold; Lee, Jeong Hyun; Doores, Katie J.; Murin, Charles D.; Julien, Jean-Philippe; McBride, Ryan; Liu, Yan; Marozsan, Andre; Cupo, Albert; Klasse, Per-Johan; Hoffenberg, Simon; Caulfield, Michael; King, C. Richter; Hua, Yuanzi; Le, Khoa M.; Khayat, Reza; Deller, Marc C.; Clayton, Thomas; Tien, Henry; Feizi, Ten; Sanders, Rogier W.; Paulson, James C.; Moore, John P.; Stanfield, Robyn L.; Burton, Dennis R.; Ward, Andrew B.; Wilson, Ian A.

    2013-01-01

    A substantial proportion of the broadly neutralizing antibodies (bnAbs) identified in certain HIV-infected donors recognize glycan-dependent epitopes on HIV-1 gp120. Here we elucidate how the bnAb PGT 135 binds its Asn332 glycan-dependent epitope from its 3.1-angstrom crystal structure with gp120,

  13. A Strategy for O-Glycoproteomics of Enveloped Viruses—the O-Glycoproteome of Herpes Simplex Virus Type 1

    Science.gov (United States)

    Bagdonaite, Ieva; Nordén, Rickard; Joshi, Hiren J.; Dabelsteen, Sally; Nyström, Kristina; Vakhrushev, Sergey Y.; Olofsson, Sigvard; Wandall, Hans H.

    2015-01-01

    Glycosylation of viral envelope proteins is important for infectivity and interaction with host immunity, however, our current knowledge of the functions of glycosylation is largely limited to N-glycosylation because it is difficult to predict and identify site-specific O-glycosylation. Here, we present a novel proteome-wide discovery strategy for O-glycosylation sites on viral envelope proteins using herpes simplex virus type 1 (HSV-1) as a model. We identified 74 O-linked glycosylation sites on 8 out of the 12 HSV-1 envelope proteins. Two of the identified glycosites found in glycoprotein B were previously implicated in virus attachment to immune cells. We show that HSV-1 infection distorts the secretory pathway and that infected cells accumulate glycoproteins with truncated O-glycans, nonetheless retaining the ability to elongate most of the surface glycans. With the use of precise gene editing, we further demonstrate that elongated O-glycans are essential for HSV-1 in human HaCaT keratinocytes, where HSV-1 produced markedly lower viral titers in HaCaT with abrogated O-glycans compared to the isogenic counterpart with normal O-glycans. The roles of O-linked glycosylation for viral entry, formation, secretion, and immune recognition are poorly understood, and the O-glycoproteomics strategy presented here now opens for unbiased discovery on all enveloped viruses. PMID:25830354

  14. Crystal Structure of the Human Cytomegalovirus Glycoprotein B.

    Directory of Open Access Journals (Sweden)

    Heidi G Burke

    2015-10-01

    Full Text Available Human cytomegalovirus (HCMV, a dsDNA, enveloped virus, is a ubiquitous pathogen that establishes lifelong latent infections and caused disease in persons with compromised immune systems, e.g., organ transplant recipients or AIDS patients. HCMV is also a leading cause of congenital viral infections in newborns. Entry of HCMV into cells requires the conserved glycoprotein B (gB, thought to function as a fusogen and reported to bind signaling receptors. gB also elicits a strong immune response in humans and induces the production of neutralizing antibodies although most anti-gB Abs are non-neutralizing. Here, we report the crystal structure of the HCMV gB ectodomain determined to 3.6-Å resolution, which is the first atomic-level structure of any betaherpesvirus glycoprotein. The structure of HCMV gB resembles the postfusion structures of HSV-1 and EBV homologs, establishing it as a new member of the class III viral fusogens. Despite structural similarities, each gB has a unique domain arrangement, demonstrating structural plasticity of gB that may accommodate virus-specific functional requirements. The structure illustrates how extensive glycosylation of the gB ectodomain influences antibody recognition. Antigenic sites that elicit neutralizing antibodies are more heavily glycosylated than those that elicit non-neutralizing antibodies, which suggest that HCMV gB uses glycans to shield neutralizing epitopes while exposing non-neutralizing epitopes. This glycosylation pattern may have evolved to direct the immune response towards generation of non-neutralizing antibodies thus helping HCMV to avoid clearance. HCMV gB structure provides a starting point for elucidation of its antigenic and immunogenic properties and aid in the design of recombinant vaccines and monoclonal antibody therapies.

  15. A Tyrosine-Based Trafficking Motif of the Tegument Protein pUL71 Is Crucial for Human Cytomegalovirus Secondary Envelopment.

    Science.gov (United States)

    Dietz, Andrea N; Villinger, Clarissa; Becker, Stefan; Frick, Manfred; von Einem, Jens

    2018-01-01

    lead to life-threatening infections in immunocompromised hosts. Current antiviral treatments target viral genome replication and are increasingly overcome by viral mutations. Therefore, identifying new targets for antiviral therapy is important for future development of novel treatment options. A detailed molecular understanding of the complex virus morphogenesis will identify potential viral as well as cellular targets for antiviral intervention. Secondary envelopment is an important viral process through which infectious virus particles are generated and which involves the action of several viral proteins, such as tegument protein pUL71. Targeting of pUL71 to the site of secondary envelopment appears to be crucial for its function during this process and is regulated by utilizing host trafficking mechanisms that are commonly exploited by viral glycoproteins. Thus, intracellular trafficking, if targeted, might present a novel target for antiviral therapy. Copyright © 2017 American Society for Microbiology.

  16. H I, CO, and Planck/IRAS dust properties in the high latitude cloud complex, MBM 53, 54, 55 and HLCG 92 – 35. Possible evidence for an optically thick H I envelope around the CO clouds

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Yasuo; Okamoto, Ryuji; Kaji, Ryohei; Yamamoto, Hiroaki; Torii, Kazufumi; Hayakawa, Takahiro; Tachihara, Kengo; Okuda, Takeshi; Ohama, Akio; Kuroda, Yutaka; Kuwahara, Toshihisa [Department of Physics, Nagoya University, Chikusa-ku, Nagoya 464-8602 (Japan); Dickey, John M., E-mail: fukui@a.phys.nagoya-u.ac.jp [University of Tasmania, School of Maths and Physics, Private Bag 37, Hobart, TAS 7001 (Australia)

    2014-11-20

    We present an analysis of the H I and CO gas in conjunction with the Planck/IRAS submillimeter/far-infrared dust properties toward the most outstanding high latitude clouds MBM 53, 54, 55 and HLCG 92 – 35 at b = –30° to – 45°. The CO emission, dust opacity at 353 GHz (τ{sub 353}), and dust temperature (T {sub d}) show generally good spatial correspondence. On the other hand, the correspondence between the H I emission and the dust properties is less clear than in CO. The integrated H I intensity W{sub H} {sub I} and τ{sub 353} show a large scatter with a correlation coefficient of ∼0.6 for a T {sub d} range from 16 K to 22 K. We find, however, that W{sub H} {sub I} and τ{sub 353} show better correlation for smaller ranges of T {sub d} every 0.5 K, generally with a correlation coefficient of 0.7-0.9. We set up a hypothesis that the H I gas associated with the highest T {sub d} ≥ 21.5 K is optically thin, whereas the H I emission is generally optically thick for T {sub d} lower than 21.5 K. We have determined a relationship for the optically thin H I gas between atomic hydrogen column density and τ{sub 353}, N{sub H} {sub I} (cm{sup −2})=(1.5×10{sup 26})⋅τ{sub 353}, under the assumption that the dust properties are uniform and we have applied this to estimate N{sub H} {sub I} from τ{sub 353} for the whole cloud. N{sub H} {sub I} was then used to solve for T {sub s} and τ{sub H} {sub I} over the region. The result shows that the H I is dominated by optically thick gas having a low spin temperature of 20-40 K and a density of 40-160 cm{sup –3}. The H I envelope has a total mass of ∼1.2 × 10{sup 4} M {sub ☉}, an order of magnitude larger than that of the CO clouds. The H I envelope properties derived by this method do not rule out a mixture of H I and H{sub 2} in the dark gas, but we present indirect evidence that most of the gas mass is in the atomic state.

  17. Safeguards Envelope Progress FY10

    International Nuclear Information System (INIS)

    Metcalf, Richard

    2010-01-01

    The Safeguards Envelope is a strategy to determine a set of specific operating parameters within which nuclear facilities may operate to maximize safeguards effectiveness without sacrificing safety or plant efficiency. This paper details the additions to the advanced operating techniques that will be applied to real plant process monitoring (PM) data from the Idaho Chemical Processing Plant (ICPP). Research this year focused on combining disparate pieces of data together to maximize operating time with minimal downtime due to safeguards. A Chi-Square and Croiser's cumulative sum were both included as part of the new analysis. Because of a major issue with the original data, the implementation of the two new tests did not add to the existing set of tests, though limited one-variable optimization made a small increase in detection probability. Additional analysis was performed to determine if prior analysis would have caused a major security or safety operating envelope issue. It was determined that a safety issue would have resulted from the prior research, but that the security may have been increased under certain conditions.

  18. Nonstationary envelope process and first excursion probability.

    Science.gov (United States)

    Yang, J.-N.

    1972-01-01

    The definition of stationary random envelope proposed by Cramer and Leadbetter, is extended to the envelope of nonstationary random process possessing evolutionary power spectral densities. The density function, the joint density function, the moment function, and the crossing rate of a level of the nonstationary envelope process are derived. Based on the envelope statistics, approximate solutions to the first excursion probability of nonstationary random processes are obtained. In particular, applications of the first excursion probability to the earthquake engineering problems are demonstrated in detail.

  19. Building Construction Elements, Building Envelope and Method for Constructing a Building Envelope

    DEFF Research Database (Denmark)

    2009-01-01

    High-strength concrete building system and method of assembly for construction a buiding envelope.......High-strength concrete building system and method of assembly for construction a buiding envelope....

  20. A deformation (strain) envelope for cyclic disturbed sand

    DEFF Research Database (Denmark)

    Sabaliauskas, Tomas; Ibsen, Lars Bo

    2018-01-01

    Recent advances in triaxial testing procedures revealed new properties governing disturbed sand stiffness. This paper summarizes the new observations into an original, proof of concept. The novel concept interpolates effective stress within a strain (deformation) envelope. Coulomb stress limits...... - the fitting is remarkably good even during tests of extreme complexity. The novelty has substantial interdisciplinary potential: offshore anchors and foundations, earthquakes and industrial processes - wherever dynamic loads and disturbed sand are encountered. It opens the door to a new branch of numerical...

  1. Case Study of Envelope Sealing in Existing Multiunit Structures

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, Jordan [ARIES Collaborative, New York, NY (United States); Conlin, Francis [ARIES Collaborative, New York, NY (United States); Podorson, David [ARIES Collaborative, New York, NY (United States)

    2012-10-01

    This report describes envelope air sealing that was included in the retrofit of a 244 unit low-rise multifamily housing complex in Durham, N.C. On average, total leakage was reduced by nearly half, from 19.7 ACH50 to 9.4 ACH50. Important air leakage locations identified included plumbing and electrical penetrations, dropped ceilings/soffits, windows, ducts and wall-to-floor intersections. Specifications and a pictorial guide were developed for contractors performing the work.

  2. Platelet Glycoprotein Ib-IX and Malignancy

    Science.gov (United States)

    2010-09-01

    whether adjunct anti-GP Ib-IX therapy could benefit the breast cancer patient with malignant disease. Body Below we list the 3 Specific Aims from our...Platelet Glycoprotein Ib-IX and Malignancy PRINCIPAL INVESTIGATOR: Jerry Ware, Ph.D...AND SUBTITLE Platelet Glycoprotein Ib-IX and Malignancy 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-08-1-0576 5c

  3. Replacement of the murine leukemia virus (MLV) envelope gene with a truncated HIV envelope gene in MLV generates a virus with impaired replication capacity

    International Nuclear Information System (INIS)

    Nack, Ursula; Schnierle, Barbara S.

    2003-01-01

    Murine leukemia virus (MLV) capsid particles can be efficiently pseudotyped with a variant of the HIV-1 envelope protein (Env) containing the surface glycoprotein gp120-SU and a carboxyl-terminally truncated transmembrane (TM) protein, with only seven cytoplasmic amino acids. MLV/HIV pseudotyped vector particles acquire the natural host tropism of HIV-1 and their entry is dependent on the presence of CD4 and an appropriate co-receptor on the surface of the target cell. We describe here the construction of chimeric MLV/HIV proviruses containing the truncated HIV envelope gene. The MLV/HIV provirus was generated by direct replacement of the MLV envelope gene with HIV Env coding sequences either with or without the additional inclusion of the woodchuck hepatitis virus posttranscriptional regulatory element (WPRE). Chimeric MLV/HIV particles could be generated from transfected 293T cells and were able to infect CD4/CXCR4-positive target cells. However, the second round of infection of target cells was severely impaired, despite the fact that the WPRE element enhanced the amount of viral mRNA detected. Viral particles released from infected cells showed reduced HIV Env incorporation, indicating that additional factors required for efficient replication of MLV/HIV pseudotyped viruses are missing

  4. Mosaic HIV envelope immunogenic polypeptides

    Energy Technology Data Exchange (ETDEWEB)

    Korber, Bette T. M.; Gnanakaran, S.; Perkins, Simon; Sodroski, Joseph; Haynes, Barton

    2018-01-02

    Disclosed herein are mosaic HIV envelope (Env) polypeptides that can elicit an immune response to HIV (such as cytotoxic T cell (CTL), helper T cell, and/or humoral responses). Also disclosed are sets of the disclosed mosaic Env polypeptides, which include two or more (for example, three) of the polypeptides. Also disclosed herein are methods for treating or inhibiting HIV in a subject including administering one or more of the disclosed immunogenic polypeptides or compositions to a subject infected with HIV or at risk of HIV infection. In some embodiments, the methods include inducing an immune response to HIV in a subject comprising administering to the subject at least one (such as two, three, or more) of the immunogenic polypeptides or at least one (such as two, three, or more) nucleic acids encoding at least one of the immunogenic polypeptides disclosed herein.

  5. Glycosylation of dengue virus glycoproteins and their interactions with carbohydrate receptors: possible targets for antiviral therapy.

    Science.gov (United States)

    Idris, Fakhriedzwan; Muharram, Siti Hanna; Diah, Suwarni

    2016-07-01

    Dengue virus, an RNA virus belonging to the genus Flavivirus, affects 50 million individuals annually, and approximately 500,000-1,000,000 of these infections lead to dengue hemorrhagic fever or dengue shock syndrome. With no licensed vaccine or specific antiviral treatments available to prevent dengue infection, dengue is considered a major public health problem in subtropical and tropical regions. The virus, like other enveloped viruses, uses the host's cellular enzymes to synthesize its structural (C, E, and prM/M) and nonstructural proteins (NS1-5) and, subsequently, to glycosylate these proteins to produce complete and functional glycoproteins. The structural glycoproteins, specifically the E protein, are known to interact with the host's carbohydrate receptors through the viral proteins' N-glycosylation sites and thus mediate the viral invasion of cells. This review focuses on the involvement of dengue glycoproteins in the course of infection and the virus' exploitation of the host's glycans, especially the interactions between host receptors and carbohydrate moieties. We also discuss the recent developments in antiviral therapies that target these processes and interactions, focusing specifically on the use of carbohydrate-binding agents derived from plants, commonly known as lectins, to inhibit the progression of infection.

  6. Four glycoproteins are expressed in the cat zona pellucida.

    Science.gov (United States)

    Stetson, I; Avilés, M; Moros, C; García-Vázquez, F A; Gimeno, L; Torrecillas, A; Aliaga, C; Bernardo-Pisa, M V; Ballesta, J; Izquierdo-Rico, M J

    2015-04-15

    The mammalian oocyte is surrounded by a matrix called the zona pellucida (ZP). This envelope participates in processes such as acrosome reaction induction, sperm binding and may be involved in speciation. In cat (Felis catus), this matrix is composed of at least three glycoproteins called ZP2, ZP3, and ZP4. However, recent studies have pointed to the presence of a fourth protein in several mammals (rat, human, hamster or rabbit), meaning that a reevaluation of cat ZP is needed. For this reason, the objective of this research was to analyze the protein composition of cat ZP by means of proteomic analysis. Using ZP from ovaries and oocytes, several peptides corresponding to four proteins were detected, yielding a coverage of 33.17%, 71.50%, 50.23%, and 49.64% for ZP1, ZP2, ZP3, and ZP4, respectively. Moreover, the expression of four genes was confirmed by molecular analysis. Using total RNA isolated from cat ovaries, the complementary deoxyribonucleic acids encoding cat ZP were partially amplified by reverse-transcribed polymerase chain reaction. Furthermore, ZP1 was totally amplified for the first time in this species. As far as we are aware, this is the first study that confirms the presence of four proteins in cat ZP. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Modification-specific proteomic analysis of glycoproteins in human body fluids by mass spectrometry

    DEFF Research Database (Denmark)

    Bunkenborg, Jakob; Hägglund, Per; Jensen, Ole Nørregaard

    2007-01-01

    -glycosylated proteins in body fluids and other complex samples. An approach for identification of N-glycosylated proteins and mapping of their glycosylation sites is described. In this approach, glycoproteins are initially selectively purified by lectin chromatography. Following tryptic digestion, glycopeptides...

  8. Extracellular enveloped vaccinia virus. Entry, egress, and evasion.

    Science.gov (United States)

    Smith, G L; Vanderplasschen, A

    1998-01-01

    Vaccinia virus is a large and complex virus that produces two types of infectious virus particles, termed intracellular mature virus (IMV) and extracellular enveloped virus (EEV). EEV contains an extra lipid envelope and ten associated proteins that are absent from IMV. Although EEV represents less than 1% of infectious progeny it is very important biologically. First, it mediates virus dissemination and second, it is the virus against which protective immune responses are directed. This article reviews the genes known to encode EEV proteins and their functions, describes recent data showing that the cellular receptors for IMV and EEV are different, and demonstrates that EEV, in contrast to IMV, is resistant to neutralisation by antibody.

  9. Glycoprotein biosynthesis by human normal platelets

    International Nuclear Information System (INIS)

    Rodriguez, P.; Bello, O.; Apitz-Castro, R.

    1987-01-01

    Incorporation of radioactive Man, Gal, Fuc, Glc-N, and NANA into washed human normal platelets and endogenous glycoproteins has been found. Both parameters were time dependent. Analysis of hydrolyzed labeled glycoproteins by paper chromatography revealed that the radioactive monosaccharide incubated with the platelets had not been converted into other sugars. Acid hydrolysis demonstrates the presence of a glycosidic linkage. All the effort directed to the demonstration of the existence of a lipid-sugar intermediate in intact human platelets yielded negative results for Man and Glc-N used as precursors. The incorporation of these sugars into glycoproteins is insensitive to bacitracin, suggesting no involvement of lipid-linked saccharides in the synthesis of glycoproteins in human blood platelets. The absence of inhibition of the glycosylation process in the presence of cycloheximide suggests that the sugars are added to proteins present in the intact platelets. These results support the contention that glycoprotein biosynthesis in human blood platelets observed under our experimental conditions is effected through direct sugar nucleotide glycosylation

  10. Cryo Electron Tomography of Herpes Simplex Virus during Axonal Transport and Secondary Envelopment in Primary Neurons

    Science.gov (United States)

    Ibiricu, Iosune; Huiskonen, Juha T.; Döhner, Katinka; Bradke, Frank; Sodeik, Beate; Grünewald, Kay

    2011-01-01

    During herpes simplex virus 1 (HSV1) egress in neurons, viral particles travel from the neuronal cell body along the axon towards the synapse. Whether HSV1 particles are transported as enveloped virions as proposed by the ‘married’ model or as non-enveloped capsids suggested by the ‘separate’ model is controversial. Specific viral proteins may form a recruitment platform for microtubule motors that catalyze such transport. However, their subviral location has remained elusive. Here we established a system to analyze herpesvirus egress by cryo electron tomography. At 16 h post infection, we observed intra-axonal transport of progeny HSV1 viral particles in dissociated hippocampal neurons by live-cell fluorescence microscopy. Cryo electron tomography of frozen-hydrated neurons revealed that most egressing capsids were transported independently of the viral envelope. Unexpectedly, we found not only DNA-containing capsids (cytosolic C-capsids), but also capsids lacking DNA (cytosolic A-/B-capsids) in mid-axon regions. Subvolume averaging revealed lower amounts of tegument on cytosolic A-/B-capsids than on C-capsids. Nevertheless, all capsid types underwent active axonal transport. Therefore, even few tegument proteins on the capsid vertices seemed to suffice for transport. Secondary envelopment of capsids was observed at axon terminals. On their luminal face, the enveloping vesicles were studded with typical glycoprotein-like spikes. Furthermore, we noted an accretion of tegument density at the concave cytosolic face of the vesicle membrane in close proximity to the capsids. Three-dimensional analysis revealed that these assembly sites lacked cytoskeletal elements, but that filamentous actin surrounded them and formed an assembly compartment. Our data support the ‘separate model’ for HSV1 egress, i.e. progeny herpes viruses being transported along axons as subassemblies and not as complete virions within transport vesicles. PMID:22194682

  11. Solar envelope zoning: application to the city planning process. Los Angeles case study

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Solar envelope zoning represents a promising approach to solar access protection. A solar envelope defines the volume within which a building will not shade adjacent lots or buildings. Other solar access protection techniques, such as privately negotiated easements, continue to be tested and implemented but none offer the degree of comprehensiveness evident in this approach. Here, the City of Los Angeles, through the Mayor's Energy Office, the City Planning Department, and the City Attorney's Office, examine the feasibility of translating the concept of solar envelopes into zoning techniques. They concluded that envelope zoning is a fair and consistent method of guaranteeing solar access, but problems of complexity and uncertainty may limit its usefulness. Envelope zoning may be inappropriate for the development of high density centers and for more restrictive community plans. Aids or tools to administer envelope zoning need to be developed. Finally, some combination of approaches, including publicly recorded easements, subdivision approval and envelope zoning, need to be adopted to encourage solar use in cities. (MHR)

  12. Identification of the origin and localization of chorion (egg envelope) proteins in an ancient fish, the white sturgeon, Acipenser transmontanus.

    Science.gov (United States)

    Murata, Kenji; Conte, Fred S; McInnis, Elizabeth; Fong, Tak Hou; Cherr, Gary N

    2014-06-01

    In many modern teleost fish, chorion (egg envelope) glycoproteins are synthesized in the liver of females, and the expression of those genes is controlled by endogenous estrogen released from the ovary during maturation. However, among the classical teleosts, such as salmonid, carp, and zebrafish, the chorion glycoproteins are synthesized in the oocyte, as in higher vertebrates. Sturgeon, which are members of the subclass Chondrostei, represent an ancient lineage of ray-finned fishes that differ from other teleosts in that their sperm possess acrosomes, their eggs have numerous micropyles, and early embryo development is similar to that of amphibians. In order to understand the molecular mechanisms of chorion formation and the phylogenetic relationship between sturgeon and other teleosts, we used specific antibodies directed against the primary components of sturgeon chorion glycoproteins, using immunoblotting and immunocytochemistry approaches. The origin of each chorion glycoprotein was determined through analyses of both liver and ovary, and their localization during ovarian development was investigated. Our data indicate that the origin of the major chorion glycoproteins of sturgeon, ChG1, ChG2, and ChG4, derive not only from the oocyte itself but also from follicle cells in the ovary, as well as from hepatocytes. In the follicle cell layer, granulosa cells were found to be the primary source of ChGs during oogenesis in white sturgeon. The unique origins of chorion glycoproteins in sturgeon suggest that sturgeons are an intermediate form in the evolution of the teleost lineage. © 2014 by the Society for the Study of Reproduction, Inc.

  13. Detergent-Assisted Glycoprotein Capture: A Versatile Tool for In-Depth N-Glycoproteome Analysis.

    Science.gov (United States)

    Chen, Rui; Zou, Hanfa; Figeys, Daniel

    2016-06-03

    Large-scale N-glycoproteome studies have been hindered by poor solubility of hydrophobic membrane proteins and the complexity of proteome samples. Herein, we developed a detergent-assisted glycoprotein capture method to reduce these issues by conducting hydrazide chemistry-based glycoprotein capture in the presence of strong detergents such as sodium dodecyl sulfate and Triton X-100. The strong detergents helped to solubilize hydrophobic membrane proteins and then increased the access of hydrazide groups to oxidized glycoproteins, thus increasing the coverage of the N-glycoproteome. Compared with the conventional glycopeptide capture method, the detergent-assisted glycoprotein capture approach nearly doubled the number of N-glycosylation sites identified from HEK 293T cells with improved specificity. Application of this approach in the larger scale N-glycoproteomics analysis of the HEK 293T cell membrane led to the identification of 2253 unique N-glycosites from 953 proteins. Furthermore, the application of this approach to human serum resulted in the identification of 850 N-glycosylation sites without any immunodepletion or fractionation. Overall, the detergent-assisted glycoprotein capture method simplified the capture process, and it increased the number of sites observed on both hydrophobic membrane proteins and hydrophilic secreted proteins.

  14. Injection envelope matching in storage rings

    International Nuclear Information System (INIS)

    Minty, M.G.; Spence, W.L.

    1995-05-01

    The shape and size of the transverse phase space injected into a storage ring can be deduced from turn-by-turn measurements of the transient behavior of the beam envelope in the ring. Envelope oscillations at 2 x the β-tron frequency indicate the presence of a β-mismatch, while envelope oscillations at the β-tron frequency are the signature of a dispersion function mismatch. Experiments in injection optimization using synchrotron radiation imaging of the beam and a fast-gated camera at the SLC damping rings are reported

  15. MHTGR thermal performance envelopes: Reliability by design

    International Nuclear Information System (INIS)

    Etzel, K.T.; Howard, W.W.; Zgliczynski, J.B.

    1992-05-01

    This document discusses thermal performance envelopes which are used to specify steady-state design requirements for the systems of the Modular High Temperature Gas-Cooled Reactor to maximize plant performance reliability with optimized design. The thermal performance envelopes are constructed around the expected operating point accounting for uncertainties in actual plant as-built parameters and plant operation. The components are then designed to perform successfully at all points within the envelope. As a result, plant reliability is maximized by accounting for component thermal performance variation in the design. The design is optimized by providing a means to determine required margins in a disciplined and visible fashion

  16. Engineered CHO cells for production of diverse, homogeneous glycoproteins

    DEFF Research Database (Denmark)

    Yang, Zhang; Wang, Shengjun; Halim, Adnan

    2015-01-01

    Production of glycoprotein therapeutics in Chinese hamster ovary (CHO) cells is limited by the cells' generic capacity for N-glycosylation, and production of glycoproteins with desirable homogeneous glycoforms remains a challenge. We conducted a comprehensive knockout screen of glycosyltransferase...

  17. Constructing canonical bases of quantized enveloping algebras

    OpenAIRE

    Graaf, W.A. de

    2001-01-01

    An algorithm for computing the elements of a given weight of the canonical basis of a quantized enveloping algebra is described. Subsequently, a similar algorithm is presented for computing the canonical basis of a finite-dimensional module.

  18. Chemical Synthesis of Glycoproteins with the Specific Installation of Gradient-Enriched15N-Labeled Amino Acids for Getting Insights into Glycoprotein Behavior.

    Science.gov (United States)

    Minh Hien, Nguyen; Izumi, Masayuki; Sato, Hajime; Okamoto, Ryo; Kajihara, Yasuhiro

    2017-05-11

    Elucidating the effects of oligosaccharides on glycoprotein properties, such as local conformational changes, stability, and dynamics, has still been challenging. In this paper, a novel partial 15 N-labeling method for the amide backbone of a synthetic glycoprotein is proposed. Using solid-phase peptide synthesis (SPPS) and native chemical ligation (NCL), thirteen 15 N-labeled amino acids were inserted at specific positions of the protein backbone, while intentionally varying the enrichment of 15 N atoms. This idea discriminated even the same type of amino acid based on the intensities of 1 H- 15 N HSQC signals, combined with classic homonuclear TOCSY and NOESY methods, thus allowing for understanding the dynamics of the local conformation of a synthetic homogeneous glycoprotein. Results suggested that the attachment of an oligosaccharide of either a bi-antennary complex-type or a high-mannose-type did not disturb protein conformation. However, T 1 values suggested that the oligosaccharide influenced dynamics at the local conformation. Temperature-varied circular dichroism (CD) spectra and T 1 values clearly indicated that oligosaccharides appeared to inhibit protein fluctuation or, in other words, stabilize protein structure. This insight into oligosaccharide behavior suggests some further effects on binding affinity between a glycoprotein and its receptor. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Production of glycoprotein-deleted rabies viruses for monosynaptic tracing and high-level gene expression in neurons.

    Science.gov (United States)

    Wickersham, Ian R; Sullivan, Heather A; Seung, H Sebastian

    2010-03-01

    Recombinant rabies viruses rendered replication-deficient by the deletion of their envelope glycoprotein gene are useful tools for neuroscientists, permitting (1) extraordinarily high transgene expression levels within neurons, (2) retrograde infection of projection neurons through their axon terminals, (3) targeted infection of genetically specified neurons and (4) monosynaptic tracing of neuronal inputs. Here we present a detailed protocol for the production of high-titer and high-purity viral stocks, from initial generation of infectious virus from cDNA through amplification on complementing cell lines, pseudotyping if desired, purification by ultracentrifugation and titering. The procedure requires 3-4 weeks to complete.

  20. Acid-induced movements in the glycoprotein shell of an alphavirus turn the spikes into membrane fusion mode

    OpenAIRE

    Haag, Lars; Garoff, Henrik; Xing, Li; Hammar, Lena; Kan, Sin-Tau; Cheng, R.Holland

    2002-01-01

    In the icosahedral (T = 4) Semliki Forest virus, the envelope protomers, i.e. E1–E2 heterodimers, make one-to-one interactions with capsid proteins below the viral lipid bilayer, transverse the membrane and form an external glycoprotein shell with projections. The shell is organized by protomer domains interacting as hexamers and pentamers around shell openings at icosahedral 2- and 5-fold axes, respectively, and the projections by other domains associating as trimers at 3- and quasi 3-fold a...

  1. Creating a Lunar EVA Work Envelope

    Science.gov (United States)

    Griffin, Brand N.; Howard, Robert; Rajulu, Sudhakar; Smitherman, David

    2009-01-01

    A work envelope has been defined for weightless Extravehicular Activity (EVA) based on the Space Shuttle Extravehicular Mobility Unit (EMU), but there is no equivalent for planetary operations. The weightless work envelope is essential for planning all EVA tasks because it determines the location of removable parts, making sure they are within reach and visibility of the suited crew member. In addition, using the envelope positions the structural hard points for foot restraints that allow placing both hands on the job and provides a load path for reacting forces. EVA operations are always constrained by time. Tasks are carefully planned to ensure the crew has enough breathing oxygen, cooling water, and battery power. Planning first involves computers using a virtual work envelope to model tasks, next suited crew members in a simulated environment refine the tasks. For weightless operations, this process is well developed, but planetary EVA is different and no work envelope has been defined. The primary difference between weightless and planetary work envelopes is gravity. It influences anthropometry, horizontal and vertical mobility, and reaction load paths and introduces effort into doing "overhead" work. Additionally, the use of spacesuits other than the EMU, and their impacts on range of motion, must be taken into account. This paper presents the analysis leading to a concept for a planetary EVA work envelope with emphasis on lunar operations. There is some urgency in creating this concept because NASA has begun building and testing development hardware for the lunar surface, including rovers, habitats and cargo off-loading equipment. Just as with microgravity operations, a lunar EVA work envelope is needed to guide designers in the formative stages of the program with the objective of avoiding difficult and costly rework.

  2. Thermal performance envelopes for MHTGRs - Reliability by design

    International Nuclear Information System (INIS)

    Etzel, K.T.; Howard, W.W.; Zgliczynski, J.

    1992-01-01

    Thermal performance envelopes are used to specify steady-state design requirements for the systems of the modular high-temperature gas-cooled reactor (MHTGR) to maximize plant performance reliability with optimized design. The thermal performance envelopes are constructed around the expected operating point to account for uncertainties in actual plant as-built parameters and plant operation. The components are then designed to perform successfully at all points within the envelope. As a result, plant reliability is maximized by accounting for component thermal performance variation in the design. The design is optimized by providing a means to determine required margins in a disciplined and visible fashion. This is accomplished by coordinating these requirements with the various system and component designers in the early stages of the design, applying the principles of total quality management. The design is challenged by the more complex requirements associated with a range of operating conditions, but in return, high probability of delivering reliable performance throughout the plant life is ensured

  3. Solar active envelope module with an adjustable transmittance/absorptance

    Directory of Open Access Journals (Sweden)

    C. Villasante Villasante

    2015-06-01

    Full Text Available A solar active envelope module with a high flexibility degree is proposed in this paper. The transparent module controls the day-lighting of the room, improving the indoor environment, while absorbing the superfluous solar energy inside. That energy is used to increase the efficiency of heating, ventilation, and the air-conditioning (HVAC system of the building. This is carried out through a fine control of the absorptance of the envelope module. The active envelope module consists of three glazed chambers with advanced coatings and frames to assure a minimum thermal transmittance while allowing transparency. A fluid containing heat-absorbing nanoparticles flows inside the central chamber and is heated up due to the impinging solar energy. Unlike other systems proposed in the past, which included transparency control systems based on complex filters and chemical processes, the absorption of the module is controlled by the variation of the thickness of the central chamber with a mechanical device. That is, varying the thickness of the central chamber, it allows controlling the absorptance of the whole system and, as a result, indoor day-lighting and thermal loads. Therefore, a new system is proposed that enables to:  

  4. Equine infectious anemia virus envelope evolution in vivo during persistent infection progressively increases resistance to in vitro serum antibody neutralization as a dominant phenotype.

    Science.gov (United States)

    Howe, Laryssa; Leroux, Caroline; Issel, Charles J; Montelaro, Ronald C

    2002-11-01

    Equine infectious anemia virus (EIAV) infection of horses is characterized by well-defined waves of viremia associated with the sequential evolution of distinct viral populations displaying extensive envelope gp90 variation; however, a correlation of in vivo envelope evolution with in vitro serum neutralization phenotype remains undefined. Therefore, the goal of the present study was to utilize a previously defined panel of natural variant EIAV envelope isolates from sequential febrile episodes to characterize the effects of envelope variation during persistent infection on viral neutralization phenotypes and to define the determinants of EIAV envelope neutralization specificity. To assess the neutralization phenotypes of the sequential EIAV envelope variants, we determined the sensitivity of five variant envelopes to neutralization by a longitudinal panel of immune serum from the source infected pony. The results indicated that the evolution of the EIAV envelope sequences observed during sequential febrile episodes produced an increasingly neutralization-resistant phenotype. To further define the envelope determinants of EIAV neutralization specificity, we examined the neutralization properties of a panel of chimeric envelope constructs derived from reciprocal envelope domain exchanges between selected neutralization-sensitive and neutralization-resistant envelope variants. These results indicated that the EIAV gp90 V3 and V4 domains individually conferred serum neutralization resistance while other envelope segments in addition to V3 and V4 were evidently required for conferring total serum neutralization sensitivity. These data clearly demonstrate for the first time the influence of sequential gp90 variation during persistent infection in increasing envelope neutralization resistance, identify the gp90 V3 and V4 domains as the principal determinants of antibody neutralization resistance, and indicate distinct complex cooperative envelope domain interactions in

  5. Genetic Diversity of Koala Retroviral Envelopes

    Directory of Open Access Journals (Sweden)

    Wenqin Xu

    2015-03-01

    Full Text Available Genetic diversity, attributable to the low fidelity of reverse transcription, recombination and mutation, is an important feature of infectious retroviruses. Under selective pressure, such as that imposed by superinfection interference, gammaretroviruses commonly adapt their envelope proteins to use alternative receptors to overcome this entry block. The first characterized koala retroviruses KoRV subgroup A (KoRV-A were remarkable in their absence of envelope genetic variability. Once it was determined that KoRV-A was present in all koalas in US zoos, regardless of their disease status, we sought to isolate a KoRV variant whose presence correlated with neoplastic malignancies. More than a decade after the identification of KoRV-A, we isolated a second subgroup of KoRV, KoRV-B from koalas with lymphomas. The envelope proteins of KoRV-A and KoRV-B are sufficiently divergent to confer the ability to bind and employ distinct receptors for infection. We have now obtained a number of additional KoRV envelope variants. In the present studies we report these variants, and show that they differ from KoRV-A and KoRV-B envelopes in their host range and superinfection interference properties. Thus, there appears to be considerable variation among KoRVs envelope genes suggesting genetic diversity is a factor following the KoRV-A infection process.

  6. Genetic diversity of koala retroviral envelopes.

    Science.gov (United States)

    Xu, Wenqin; Gorman, Kristen; Santiago, Jan Clement; Kluska, Kristen; Eiden, Maribeth V

    2015-03-17

    Genetic diversity, attributable to the low fidelity of reverse transcription, recombination and mutation, is an important feature of infectious retroviruses. Under selective pressure, such as that imposed by superinfection interference, gammaretroviruses commonly adapt their envelope proteins to use alternative receptors to overcome this entry block. The first characterized koala retroviruses KoRV subgroup A (KoRV-A) were remarkable in their absence of envelope genetic variability. Once it was determined that KoRV-A was present in all koalas in US zoos, regardless of their disease status, we sought to isolate a KoRV variant whose presence correlated with neoplastic malignancies. More than a decade after the identification of KoRV-A, we isolated a second subgroup of KoRV, KoRV-B from koalas with lymphomas. The envelope proteins of KoRV-A and KoRV-B are sufficiently divergent to confer the ability to bind and employ distinct receptors for infection. We have now obtained a number of additional KoRV envelope variants. In the present studies we report these variants, and show that they differ from KoRV-A and KoRV-B envelopes in their host range and superinfection interference properties. Thus, there appears to be considerable variation among KoRVs envelope genes suggesting genetic diversity is a factor following the KoRV-A infection process.

  7. All the Universe in an envelope

    CERN Multimedia

    2007-01-01

    Do you know which force is hidden in an envelope or how many billions of years old are the atoms it contains? You will find the answers to these (curious) questions in a post office in the Pays de Gex. The French postal services of the Pays de Gex are again issuing pre-paid envelopes in collaboration with CERN (see Bulletin No. 24/2006). The new series presents some of the concepts of modern physics in an amazing way by showing what you can learn about the Universe with a single envelope. Packets of ten pre-stamped envelopes, each carrying a statement on fundamental physics, will be on sale from 7 July onwards. To learn more about the physics issues presented on the envelopes, people are invited to go to the CERN Web site where they will find the explanations. Five thousand envelopes will be put on sale in July and five thousand more during the French "Fête de la science" in October. They will be available from five post offices in the Pays de Gex (F...

  8. Genetically Intact but Functionally Impaired HIV-1 Env Glycoproteins in the T-Cell Reservoir.

    Science.gov (United States)

    de Verneuil, Anne; Migraine, Julie; Mammano, Fabrizio; Molina, Jean-Michel; Gallien, Sébastien; Mouquet, Hugo; Hance, Allan J; Clavel, François; Dutrieux, Jacques

    2018-02-15

    HIV-infected subjects under antiretroviral treatment (ART) harbor a persistent viral reservoir in resting CD4 + T cells, which accounts for the resurgence of HIV replication after ART interruption. A large majority of HIV reservoir genomes are genetically defective, but even among intact proviruses few seem able to generate infectious virus. To understand this phenomenon, we examined the function and expression of HIV envelope glycoproteins reactivated from the reservoir of four HIV-infected subjects under suppressive ART. We studied full-length genetically intact env sequences from both replicative viruses and cell-associated mRNAs. We found that these Env proteins varied extensively in fusogenicity and infectivity, with strongest functional defects found in Envs from cell-associated mRNAs. Env functional impairments were essentially explained by defects in Env protein expression. Our results support the idea that defects in HIV Env expression, preventing cytopathic or immune HIV clearance, contribute to the persistence of the HIV T-cell reservoir in vivo IMPORTANCE In most individuals, evolution of HIV infection is efficiently controlled on the long-term by combination antiviral therapies. These treatments, however, fail to eradicate HIV from the infected subjects, a failure that results both in resurgence of virus replication and in resumption of HIV pathogenicity when the treatment is stopped. HIV resurgence, in these instances, is widely assumed to emerge from a reservoir of silent virus integrated in the genomes of a small number of T lymphocytes. The silent HIV reservoir is mostly composed of heavily deleted or mutated HIV DNA. Moreover, among the seemingly intact remaining HIV, only very few are actually able to efficiently propagate in tissue culture. In this study, we find that intact HIV in the reservoir often carry strong defects in their capacity to promote fusion to neighboring cells and infection of target cells, a defect related to the function and

  9. Isolation of glycoproteins from brown algae

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a novel process for the isolation of unique anti-oxidative glycoproteins from the pH precipitated fractions of enzymatic extracts of brown algae. Two brown seaweeds viz, Fucus serratus and Fucus vesiculosus were hydrolysed by using 3 enzymes viz, Alcalase, Viscozyme...

  10. Involvement of Leishmania donovani major surface glycoprotein ...

    Indian Academy of Sciences (India)

    The major surface glycoprotein gp63 of the kinetoplastid protozoal parasite Leishmania is implicated as a ligand mediating uptake of the parasite into, and survival within, the host macrophage. By expressing gp63 antisense RNA from an episomal vector in L. donovani promastigotes, gp63-deficient transfectants were ...

  11. Anterograde glycoprotein-dependent transport of newly generated rabies virus in dorsal root ganglion neurons.

    Science.gov (United States)

    Bauer, Anja; Nolden, Tobias; Schröter, Josephine; Römer-Oberdörfer, Angela; Gluska, Shani; Perlson, Eran; Finke, Stefan

    2014-12-01

    Rabies virus (RABV) spread is widely accepted to occur only by retrograde axonal transport. However, examples of anterograde RABV spread in peripheral neurons such as dorsal root ganglion (DRG) neurons indicated a possible bidirectional transport by an uncharacterized mechanism. Here, we analyzed the axonal transport of fluorescence-labeled RABV in DRG neurons by live-cell microscopy. Both entry-related retrograde transport of RABV after infection at axon endings and postreplicative transport of newly formed virus were visualized in compartmentalized DRG neuron cultures. Whereas entry-related transport at 1.5 μm/s occurred only retrogradely, after 2 days of infection, multiple particles were observed in axons moving in both the anterograde and retrograde directions. The dynamics of postreplicative retrograde transport (1.6 μm/s) were similar to those of entry-related retrograde transport. In contrast, anterograde particle transport at 3.4 μm/s was faster, indicating active particle transport. Interestingly, RABV missing the glycoproteins did not move anterogradely within the axon. Thus, anterograde RABV particle transport depended on the RABV glycoprotein. Moreover, colocalization of green fluorescent protein (GFP)-labeled ribonucleoproteins (RNPs) and glycoprotein in distal axonal regions as well as cotransport of labeled RNPs with membrane-anchored mCherry reporter confirmed that either complete enveloped virus particles or vesicle associated RNPs were transported. Our data show that anterograde RABV movement in peripheral DRG neurons occurs by active motor protein-dependent transport. We propose two models for postreplicative long-distance transport in peripheral neurons: either transport of complete virus particles or cotransport of RNPs and G-containing vesicles through axons to release virus at distal sites of infected DRG neurons. Rabies virus retrograde axonal transport by dynein motors supports virus spread over long distances and lethal infection of

  12. Adaptive building envelopes, component development as well as implementation strategies

    Directory of Open Access Journals (Sweden)

    Tillmann Klein

    2015-11-01

    Full Text Available The papers in this issue of JFDE discuss the potential of adaptive building envelopes, component development as well as implementation strategies. The applied practice paper demonstrates decision strategies behind the adaptive sun shading system of the Al-Bahr Towers. Additivity in building envelopes is not only a strategy to fulfil the growing demands for energy efficient buildings and comfort but has great architectural implications as well. In general it asks for more complex components as well as control strategies. But complexity also means costs and risks, and we need to discuss the means and effects. This discussion in particular is very interesting because here science and practice meet. The Journal of Facade Design and Engineering JFDE will actively follow and stimulate by providing high quality contributions. Four of the paper contributions have their origins in the Conference ‘Facades 2014’, held in November 2014 in Lucerne. The contributions have been carefully selected and have been subjected to the regular double blind review process of the journal. We want to thank Prof. Dr. Andres Luible for the help in making this issue happen. We are proud that JFDE is the scientific partner for a number of conferences such as ‘The Future Envelope’ Conference on Building Envelopes held yearly in Delft (NL or Bath (UK, the ICAE International Congress on Architectural Envelopes in San Sebastian (ES and the above mentioned conference ‘Facades’ in Lucerne (CH and Detmold (D. Our latest partner is the ICBEST 2017 - International Conference on Building Envelope Systems and Technologies in Istanbul. The growing number of partners indicates the relevance of JFDE for our growing discipline and will assure the continuity of the journal. Facade Design and Engineering is a peer reviewed, open access journal, funded by The Netherlands Organisation for Scientific Research NWO (www.nwo.nl. We see ‘open access’ as the future publishing model

  13. Solitary Alfven wave envelopes and the modulational instability

    International Nuclear Information System (INIS)

    Kennel, C.F.

    1987-06-01

    The derivative nonlinear Schroedinger equation describes the modulational instability of circularly polarized dispersive Alfven wave envelopes. It also may be used to determine the properties of finite amplitude localized stationary wave envelopes. Such envelope solitons exist only in conditions of modulational stability. This leaves open the question of whether, and if so, how, the modulational instability produces envelope solitons. 12 refs

  14. Ubiquitination of exposed glycoproteins by SCFFBXO27 directs damaged lysosomes for autophagy

    Science.gov (United States)

    Yoshida, Yukiko; Yasuda, Sayaka; Fujita, Toshiharu; Hamasaki, Maho; Murakami, Arisa; Kawawaki, Junko; Iwai, Kazuhiro; Saeki, Yasushi; Yoshimori, Tamotsu; Matsuda, Noriyuki; Tanaka, Keiji

    2017-01-01

    Ubiquitination functions as a signal to recruit autophagic machinery to damaged organelles and induce their clearance. Here, we report the characterization of FBXO27, a glycoprotein-specific F-box protein that is part of the SCF (SKP1/CUL1/F-box protein) ubiquitin ligase complex, and demonstrate that SCFFBXO27 ubiquitinates glycoproteins in damaged lysosomes to regulate autophagic machinery recruitment. Unlike F-box proteins in other SCF complexes, FBXO27 is subject to N-myristoylation, which localizes it to membranes, allowing it to accumulate rapidly around damaged lysosomes. We also screened for proteins that are ubiquitinated upon lysosomal damage, and identified two SNARE proteins, VAMP3 and VAMP7, and five lysosomal proteins, LAMP1, LAMP2, GNS, PSAP, and TMEM192. Ubiquitination of all glycoproteins identified in this screen increased upon FBXO27 overexpression. We found that the lysosomal protein LAMP2, which is ubiquitinated preferentially on lysosomal damage, enhances autophagic machinery recruitment to damaged lysosomes. Thus, we propose that SCFFBXO27 ubiquitinates glycoproteins exposed upon lysosomal damage to induce lysophagy. PMID:28743755

  15. Chemical de-O-glycosylation of glycoproteins for applications in LC-based proteomics.

    Science.gov (United States)

    Hanisch, Franz-Georg

    2011-01-01

    This paper describes a cyclic on-column procedure for the sequential degradation of complex O-glycans on proteins by periodate oxidation of sugars and cleavage of oxidation products by elimination. Glycoproteins are immobilized to alkali-stable, reversed-phase Poros 20 beads, desialylated by treatment with dilute trifluoroacetic acid, and de-O-glycosylated by two degradation cycles before the eluted apoproteins are digested with trypsin for analysis by liquid chromatography electrospray ionization-mass spectrometry. Even complex glycan moieties are removed under mild conditions with only minimal effects on structural integrity of the peptide core by fragmentation, dehydration, or racemization of lysine and arginine residues. The protocol is also applicable on gel-immobilized glycoproteins after 1D or 2D gel electrophoresis. Conversion of O-glycoproteins into their corresponding apoproteins results in facilitated accessibility of tryptic cleavage sites, increases the numbers of peptide fragments, and accordingly enhances protein coverage and identification rates within the subproteome of mucin-type O-glycoproteins. The protocol is suitable for automatization, but due to partial elution from the Poros 20 columns it is not recommended for applications on the glycopeptide level.

  16. Genetic algorithm for building envelope calibration

    International Nuclear Information System (INIS)

    Ramos Ruiz, Germán; Fernández Bandera, Carlos; Gómez-Acebo Temes, Tomás; Sánchez-Ostiz Gutierrez, Ana

    2016-01-01

    Highlights: • Calibration methodology using Multi-Objective Genetic Algorithm (NSGA-II). • Uncertainty analysis formulas implemented directly in EnergyPlus. • The methodology captures the heat dynamic of the building with a high level of accuracy. • Reduction in the number of parameters involved due to sensitivity analysis. • Cost-effective methodology using temperature sensors only. - Abstract: Buildings today represent 40% of world primary energy consumption and 24% of greenhouse gas emissions. In our society there is growing interest in knowing precisely when and how energy consumption occurs. This means that consumption measurement and verification plans are well-advanced. International agencies such as Efficiency Valuation Organization (EVO) and International Performance Measurement and Verification Protocol (IPMVP) have developed methodologies to quantify savings. This paper presents a methodology to accurately perform automated envelope calibration under option D (calibrated simulation) of IPMVP – vol. 1. This is frequently ignored because of its complexity, despite being more flexible and accurate in assessing the energy performance of a building. A detailed baseline energy model is used, and by means of a metaheuristic technique achieves a highly reliable and accurate Building Energy Simulation (BES) model suitable for detailed analysis of saving strategies. In order to find this BES model a Genetic Algorithm (NSGA-II) is used, together with a highly efficient engine to stimulate the objective, thus permitting rapid achievement of the goal. The result is a BES model that broadly captures the heat dynamic behaviour of the building. The model amply fulfils the parameters demanded by ASHRAE and EVO under option D.

  17. 3D Modeling of Accretion Disks and Circumbinary Envelopes in Close Binaries

    Science.gov (United States)

    Bisikalo, D.

    2010-12-01

    A number of observations prove the complex flow structure in close binary stars. The gas dynamic structure of the flow is governed by the stream of matter from the inner Lagrange point, the accretion disk, the circum-disk halo, and the circumbinary envelope. Observations reflect the current state of a binary system and for their interpretation one should consider the gas dynamics of flow patterns. Three-dimensional numerical gasdynamical modeling is used to study the gaseous flow structure and dynamics in close binaries. It is shown that the periodic variations of the positions of the disk and the bow shock formed when the inner parts of the circumbinary envelope flow around the disk result in variations in both the rate of angular-momentum transfer to the disk and the flow structure near the Lagrange point L3. All these factors lead to periodic ejections of matter from the accretion disk and circum-disk halo into the outer layers of the circumbinary envelope. The results of simulations are used to estimate the physical parameters of the circumbinary envelope, including 3D matter distribution in it, and the matter-flow configuration and dynamics. The envelope becomes optically thick for systems with high mass-exchange rates, M⊙=10-8 Msun/year, and has a significant influence on the binary's observed features. The uneven phase distributions of the matter and density variations due to periodic injections of matter into the envelope are important for interpretations of observations of CBSs.

  18. Epstein–Barr Virus Acquires Its Final Envelope on Intracellular Compartments With Golgi Markers

    Directory of Open Access Journals (Sweden)

    Asuka Nanbo

    2018-03-01

    Full Text Available Herpesvirus subfamilies typically acquire their final envelope in various cytoplasmic compartments such as the trans-Golgi network (TGN, and endosomes prior to their secretion into the extracellular space. However, the sites for the final envelopment of Epstein–Barr virus (EBV, a ubiquitous human gamma herpesvirus, are poorly understood. Here, we characterized the sites for the final envelopment of EBV in Burkitt’s lymphoma cell lines induced into the lytic cycle by crosslinking cell surface IgG. Electron microscopy revealed the various stages of maturation and egress of progeny virions including mature EBV in irregular cytoplasmic vesicles. Immunofluorescence staining showed that gp350/220, the major EBV glycoprotein, and the viral capsid antigen, p18, efficiently colocalized with a cis-Golgi marker, GM130. gp350/220 partly colocalized with the TGN, which was distributed in a fragmented and dispersed pattern in the cells induced into the lytic cycle. In contrast, limited colocalization was observed between gp350/220 and endosomal markers, such as a multi-vesicular bodies marker, CD63, a recycling endosome marker, Rab11, and a regulatory secretion vesicles marker, Rab27a. Finally, we observed that treatment of cells with brefeldin A, an inhibitor of vesicle trafficking between the endoplasmic reticulum and Golgi apparatus, resulted in the perinuclear accumulation of gp350/220 and inhibition of its distribution to the plasma membrane. Brefeldin A also inhibited the release of infectious EBV. Taken together, our findings support a model in which EBV acquires its final envelope in intracellular compartments containing markers of Golgi apparatus, providing new insights into how EBV matures.

  19. Enveloped and non-enveloped viral-like particles in Trypanosoma cruzi epimastigotes

    Science.gov (United States)

    Fernández-Presas, Ana María; Padilla-Noriega, Luis; Ingeborg-Becker; Robert, Lilia; Jiménez, José Agustín; Solano, Sandra; Delgado, Jose; Tato, Patricia; Molinari, José Luis

    2017-01-01

    ABSTRACT Electron microscopy is routinely used to identify viral infections in protozoan parasites. These viruses have been described as non-enveloped and icosahedral structures with a diameter of 30-60 nm. Most of them are classified within the non-segmented dsRNA Totiviridae family. We observed virus-like particles (VLPs) through transmission electron microscopy in the cytoplasm of Trypanosoma cruzi epimastigotes grown in cultures. Clusters of electrodense enveloped VLPs having a diameter of 48 nm were also observed. These clusters appear to have been released from distended Golgi cisternae. Furthermore, a paracrystalline array of electrodense, non-enveloped VLPs (with a diameter of 32 nm) were found in distended Golgi cisternae or as smaller clusters at a distance from the RE or Golgi. We cannot rule out that the 48 nm enveloped VLPs belong to the ssRNA Flaviviridae family because they are within its size range. The localization of enveloped VLPs is consistent with the replication strategy of these viruses that transit through the Golgi to be released at the cell surface. Due to the size and shape of the 32 nm non-enveloped VLPs, we propose that they belong to the dsRNA Totiviridae family. This is the first description of cytoplasmic enveloped and non-enveloped VLPs in T. cruzi epimastigotes. PMID:28793017

  20. Multiobjective optimization design of green building envelope material using a non-dominated sorting genetic algorithm

    International Nuclear Information System (INIS)

    Yang, Ming-Der; Lin, Min-Der; Lin, Yu-Hao; Tsai, Kang-Ting

    2017-01-01

    Highlights: • An effective envelope energy performance model (BEM) was developed. • We integrated NSGA-II with the BEM to optimize the green building envelope. • A tradeoff plan of green building design for three conflict objectives was obtained. • The optimal envelope design efficiently reduced the construction cost of green building. - Abstract: To realize the goal of environmental sustainability, improving energy efficiency in buildings is a major priority worldwide. However, the practical design of green building envelopes for energy conservation is a highly complex optimization problem, and architects must make multiobjective decisions. In practice, methods such as multicriteria analyses that entail capitalizing on possibly many (but in nearly any case limited) alternatives are commonly employed. This study investigated the feasibility of applying a multiobjective optimal model on building envelope design (MOPBEM), which involved integrating a building envelope energy performance model with a multiobjective optimizer. The MOPBEM was established to provide a reference for green designs. A nondominated sorting genetic algorithm-II (NSGA-II) was used to achieve a tradeoff design set between three conflicting objectives, namely minimizing the envelope construction cost (ENVCOST), minimizing the envelope energy performance (ENVLOAD), and maximizing the window opening rate (WOPR). A real office building case was designed using the MOPBEM to identify the potential strengths and weaknesses of the proposed MOPBEM. The results showed that a high ENVCOST was expended in simultaneously satisfying the low ENVLOAD and high WOPR. Various designs exhibited obvious cost reductions compared with the original architects' manual design, demonstrating the practicability of the MOPBEM.

  1. Inhibition of Enveloped Viruses Infectivity by Curcumin

    Science.gov (United States)

    Wen, Hsiao-Wei; Ou, Jun-Lin; Chiou, Shyan-Song; Chen, Jo-Mei; Wong, Min-Liang; Hsu, Wei-Li

    2013-01-01

    Curcumin, a natural compound and ingredient in curry, has antiinflammatory, antioxidant, and anticarcinogenic properties. Previously, we reported that curcumin abrogated influenza virus infectivity by inhibiting hemagglutination (HA) activity. This study demonstrates a novel mechanism by which curcumin inhibits the infectivity of enveloped viruses. In all analyzed enveloped viruses, including the influenza virus, curcumin inhibited plaque formation. In contrast, the nonenveloped enterovirus 71 remained unaffected by curcumin treatment. We evaluated the effects of curcumin on the membrane structure using fluorescent dye (sulforhodamine B; SRB)-containing liposomes that mimic the viral envelope. Curcumin treatment induced the leakage of SRB from these liposomes and the addition of the influenza virus reduced the leakage, indicating that curcumin disrupts the integrity of the membranes of viral envelopes and of liposomes. When testing liposomes of various diameters, we detected higher levels of SRB leakage from the smaller-sized liposomes than from the larger liposomes. Interestingly, the curcumin concentration required to reduce plaque formation was lower for the influenza virus (approximately 100 nm in diameter) than for the pseudorabies virus (approximately 180 nm) and the vaccinia virus (roughly 335 × 200 × 200 nm). These data provide insights on the molecular antiviral mechanisms of curcumin and its potential use as an antiviral agent for enveloped viruses. PMID:23658730

  2. Inhibition of enveloped viruses infectivity by curcumin.

    Directory of Open Access Journals (Sweden)

    Tzu-Yen Chen

    Full Text Available Curcumin, a natural compound and ingredient in curry, has antiinflammatory, antioxidant, and anticarcinogenic properties. Previously, we reported that curcumin abrogated influenza virus infectivity by inhibiting hemagglutination (HA activity. This study demonstrates a novel mechanism by which curcumin inhibits the infectivity of enveloped viruses. In all analyzed enveloped viruses, including the influenza virus, curcumin inhibited plaque formation. In contrast, the nonenveloped enterovirus 71 remained unaffected by curcumin treatment. We evaluated the effects of curcumin on the membrane structure using fluorescent dye (sulforhodamine B; SRB-containing liposomes that mimic the viral envelope. Curcumin treatment induced the leakage of SRB from these liposomes and the addition of the influenza virus reduced the leakage, indicating that curcumin disrupts the integrity of the membranes of viral envelopes and of liposomes. When testing liposomes of various diameters, we detected higher levels of SRB leakage from the smaller-sized liposomes than from the larger liposomes. Interestingly, the curcumin concentration required to reduce plaque formation was lower for the influenza virus (approximately 100 nm in diameter than for the pseudorabies virus (approximately 180 nm and the vaccinia virus (roughly 335 × 200 × 200 nm. These data provide insights on the molecular antiviral mechanisms of curcumin and its potential use as an antiviral agent for enveloped viruses.

  3. Characterization of soluble glycoprotein D-mediated herpes simplex virus type 1 infection

    International Nuclear Information System (INIS)

    Tsvitov, Marianna; Frampton, Arthur R.; Shah, Waris A.; Wendell, Steven K.; Ozuer, Ali; Kapacee, Zoher; Goins, William F.; Cohen, Justus B.; Glorioso, Joseph C.

    2007-01-01

    Herpes simplex virus type 1 (HSV-1) entry into permissive cells involves attachment to cell-surface glycosaminoglycans (GAGs) and fusion of the virus envelope with the cell membrane triggered by the binding of glycoprotein D (gD) to cognate receptors. In this study, we characterized the observation that soluble forms of the gD ectodomain (sgD) can mediate entry of gD-deficient HSV-1. We examined the efficiency and receptor specificity of this activity and used sequential incubation protocols to determine the order and stability of the initial interactions required for entry. Surprisingly, virus binding to GAGs did not increase the efficiency of sgD-mediated entry and gD-deficient virus was capable of attaching to GAG-deficient cells in the absence of sgD. These observations suggested a novel binding interaction that may play a role in normal HSV infection

  4. Oligosaccharides Released from Milk Glycoproteins Are Selective Growth Substrates for Infant-Associated Bifidobacteria

    Science.gov (United States)

    Karav, Sercan; Le Parc, Annabelle; Leite Nobrega de Moura Bell, Juliana Maria; Frese, Steven A.; Kirmiz, Nina; Block, David E.; Barile, Daniela

    2016-01-01

    ABSTRACT Milk, in addition to nourishing the neonate, provides a range of complex glycans whose construction ensures a specific enrichment of key members of the gut microbiota in the nursing infant, a consortium known as the milk-oriented microbiome. Milk glycoproteins are thought to function similarly, as specific growth substrates for bifidobacteria common to the breast-fed infant gut. Recently, a cell wall-associated endo-β-N-acetylglucosaminidase (EndoBI-1) found in various infant-borne bifidobacteria was shown to remove a range of intact N-linked glycans. We hypothesized that these released oligosaccharide structures can serve as a sole source for the selective growth of bifidobacteria. We demonstrated that EndoBI-1 released N-glycans from concentrated bovine colostrum at the pilot scale. EndoBI-1-released N-glycans supported the rapid growth of Bifidobacterium longum subsp. infantis (B. infantis), a species that grows well on human milk oligosaccharides, but did not support growth of Bifidobacterium animalis subsp. lactis (B. lactis), a species which does not. Conversely, B. infantis ATCC 15697 did not grow on the deglycosylated milk protein fraction, clearly demonstrating that the glycan portion of milk glycoproteins provided the key substrate for growth. Mass spectrometry-based profiling revealed that B. infantis consumed 73% of neutral and 92% of sialylated N-glycans, while B. lactis degraded only 11% of neutral and virtually no (milk serve as selective substrates for the enrichment of infant-associated bifidobacteria capable of carrying out the initial deglycosylation. Moreover, released N-glycans were better growth substrates than the intact milk glycoproteins, suggesting that EndoBI-1 cleavage is a key initial step in consumption of glycoproteins. Finally, the variety of N-glycans released from bovine milk glycoproteins suggests that they may serve as novel prebiotic substrates with selective properties similar to those of human milk oligosaccharides

  5. Computation of Phase Equilibrium and Phase Envelopes

    DEFF Research Database (Denmark)

    Ritschel, Tobias Kasper Skovborg; Jørgensen, John Bagterp

    In this technical report, we describe the computation of phase equilibrium and phase envelopes based on expressions for the fugacity coefficients. We derive those expressions from the residual Gibbs energy. We consider 1) ideal gases and liquids modeled with correlations from the DIPPR database...... and 2) nonideal gases and liquids modeled with cubic equations of state. Next, we derive the equilibrium conditions for an isothermal-isobaric (constant temperature, constant pressure) vapor-liquid equilibrium process (PT flash), and we present a method for the computation of phase envelopes. We...... formulate the involved equations in terms of the fugacity coefficients. We present expressions for the first-order derivatives. Such derivatives are necessary in computationally efficient gradient-based methods for solving the vapor-liquid equilibrium equations and for computing phase envelopes. Finally, we...

  6. Genetic Signatures of HIV-1 Envelope-mediated Bystander Apoptosis

    Science.gov (United States)

    Joshi, Anjali; Lee, Raphael T. C.; Mohl, Jonathan; Sedano, Melina; Khong, Wei Xin; Ng, Oon Tek; Maurer-Stroh, Sebastian; Garg, Himanshu

    2014-01-01

    The envelope (Env) glycoprotein of HIV is an important determinant of viral pathogenesis. Several lines of evidence support the role of HIV-1 Env in inducing bystander apoptosis that may be a contributing factor in CD4+ T cell loss. However, most of the studies testing this phenomenon have been conducted with laboratory-adapted HIV-1 isolates. This raises the question of whether primary Envs derived from HIV-infected patients are capable of inducing bystander apoptosis and whether specific Env signatures are associated with this phenomenon. We developed a high throughput assay to determine the bystander apoptosis inducing activity of a panel of primary Envs. We tested 38 different Envs for bystander apoptosis, virion infectivity, neutralizing antibody sensitivity, and putative N-linked glycosylation sites along with a comprehensive sequence analysis to determine if specific sequence signatures within the viral Env are associated with bystander apoptosis. Our studies show that primary Envs vary considerably in their bystander apoptosis-inducing potential, a phenomenon that correlates inversely with putative N-linked glycosylation sites and positively with virion infectivity. By use of a novel phylogenetic analysis that avoids subtype bias coupled with structural considerations, we found specific residues like Arg-476 and Asn-425 that were associated with differences in bystander apoptosis induction. A specific role of these residues was also confirmed experimentally. These data demonstrate for the first time the potential of primary R5 Envs to mediate bystander apoptosis in CD4+ T cells. Furthermore, we identify specific genetic signatures within the Env that may be associated with the bystander apoptosis-inducing phenotype. PMID:24265318

  7. Common Features of Enveloped Viruses and Implications for Immunogen Design for Next-Generation Vaccines.

    Science.gov (United States)

    Rey, Felix A; Lok, Shee-Mei

    2018-03-08

    Enveloped viruses enter cells by inducing fusion of viral and cellular membranes, a process catalyzed by a specialized membrane-fusion protein expressed on their surface. This review focuses on recent structural studies of viral fusion proteins with an emphasis on their metastable prefusion form and on interactions with neutralizing antibodies. The fusion glycoproteins have been difficult to study because they are present in a labile, metastable form at the surface of infectious virions. Such metastability is a functional requirement, allowing these proteins to refold into a lower energy conformation while transferring the difference in energy to catalyze the membrane fusion reaction. Structural studies have shown that stable immunogens presenting the same antigenic sites as the labile wild-type proteins efficiently elicit potently neutralizing antibodies, providing a framework with which to engineer the antigens for stability, as well as identifying key vulnerability sites that can be used in next-generation subunit vaccine design. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Attenuation of rabies virulence: takeover by the cytoplasmic domain of its envelope protein.

    Science.gov (United States)

    Préhaud, Christophe; Wolff, Nicolas; Terrien, Elouan; Lafage, Mireille; Mégret, Françoise; Babault, Nicolas; Cordier, Florence; Tan, Gene S; Maitrepierre, Elodie; Ménager, Pauline; Chopy, Damien; Hoos, Sylviane; England, Patrick; Delepierre, Muriel; Schnell, Matthias J; Buc, Henri; Lafon, Monique

    2010-01-19

    The capacity of a rabies virus to promote neuronal survival (a signature of virulence) or death (a marker of attenuation) depends on the cellular partners recruited by the PDZ-binding site (PDZ-BS) of its envelope glycoprotein (G). Neuronal survival requires the selective association of the PDZ-BS of G with the PDZ domains of two closely related serine-threonine kinases, MAST1 and MAST2. Here, we found that a single amino acid change in the PDZ-BS triggered the apoptotic death of infected neurons and enabled G to interact with additional PDZ partners, in particular the tyrosine phosphatase PTPN4. Knockdown of PTPN4 abrogated virus-mediated apoptosis. Thus, we propose that attenuation of rabies virus requires expansion of the set of host PDZ proteins with which G interacts, which interferes with the finely tuned homeostasis required for survival of the infected neuron.

  9. Platelet Glycoprotein lb-1X and Malignancy

    Science.gov (United States)

    2010-09-01

    therapy could benefit the breast cancer patient with malignant disease. Body Below we list the 3 Specific Aims from our original submission (blue font...Muller WJ and Pollard JW. Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human...08-1-0576 TITLE: Platelet Glycoprotein lb-1X and Malignancy PRINCIPAL INVESTIGATOR: Dr. Jerry Ware

  10. Platelet Glycoprotein lb-1X and Malignancy

    Science.gov (United States)

    2011-09-01

    independent of pregnancy makes this a useful model to study spontaneous metastasis [26]. To complete this aim, we obtained a mouse colony from Dr. Sandra...mice initiates the spontaneous development of a mammary adenocarcinoma by the age of 8- 10 weeks without pregnancy or any other stimuli. To examine if...patient with systemic lupus erythematosus. Am J Hematol 2001; 67:262-67. 20. Arthur JF, Dunkley S and Andrews RK. Platelet glycoprotein VI-related

  11. A study of some Be star envelopes

    International Nuclear Information System (INIS)

    Kitchen, C.R.

    1976-01-01

    The envelope model and emission region radius of six Be stars have been determined from 36 lines on 15 spectra taken with the Isaac Newton telescope. The results have been compared with earlier determinations to search for changes with the time. No definite evidence for such changes has been found, although there may be an indication of a change in phi Per. A re-determination of the errors involved in the method of analysis shows that these are smaller than previously estimated and range from about 9% to 35% for both envelope model and emission region radius. (Auth.)

  12. Asymmetry of the SN 1987A envelope

    International Nuclear Information System (INIS)

    Chugaj, N.N.

    1991-01-01

    The origin of the peculiar structure in the profiles of the emission lines observed in the spectrum of SN 1987A, namely, (1) redshift of maxima, and (2) fine structure of hydrogen lines, is considered. Among the three proposed hypothesis for the redshift, at least two (electron scattering in the spherically-symmetric envelope, and geometrical effects in the fragmented envelope) have serious drawbacks. More favorable is the third hypothesis which invokes asymmetric distribution of 56 Ni and of the iron-peak elements

  13. Cost Allocation and Convex Data Envelopment

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Tind, Jørgen

    This paper considers allocation rules. First, we demonstrate that costs allocated by the Aumann-Shapley and the Friedman-Moulin cost allocation rules are easy to determine in practice using convex envelopment of registered cost data and parametric programming. Second, from the linear programming...... such as Data Envelopment Analysis (DEA). The convexity constraint of the BCC model introduces a non-zero slack in the objective function of the multiplier problem and we show that the cost allocation rules discussed in this paper can be used as candidates to allocate this slack value on to the input (or output...

  14. Global Envelope Tests for Spatial Processes

    DEFF Research Database (Denmark)

    Myllymäki, Mari; Mrkvička, Tomáš; Grabarnik, Pavel

    2017-01-01

    Envelope tests are a popular tool in spatial statistics, where they are used in goodness-of-fit testing. These tests graphically compare an empirical function T(r) with its simulated counterparts from the null model. However, the type I error probability α is conventionally controlled for a fixed d......) the construction of envelopes for a deviation test. These new tests allow the a priori selection of the global α and they yield p-values. We illustrate these tests using simulated and real point pattern data....

  15. Global envelope tests for spatial processes

    DEFF Research Database (Denmark)

    Myllymäki, Mari; Mrkvička, Tomáš; Grabarnik, Pavel

    Envelope tests are a popular tool in spatial statistics, where they are used in goodness-of-fit testing. These tests graphically compare an empirical function T(r) with its simulated counterparts from the null model. However, the type I error probability α is conventionally controlled for a fixed......) the construction of envelopes for a deviation test. These new tests allow the a priori selection of the global α and they yield p-values. We illustrate these tests using simulated and real point pattern data....

  16. Radio Imaging of Envelopes of Evolved Stars

    Science.gov (United States)

    Cotton, Bill

    2018-04-01

    This talk will cover imaging of stellar envelopes using radio VLBI techniques; special attention will be paid to the technical differences between radio and optical/IR interferomery. Radio heterodyne receivers allow a straightforward way to derive spectral cubes and full polarization observations. Milliarcsecond resolution of very bright, i.e. non thermal, emission of molecular masers in the envelopes of evolved stars can be achieved using VLBI techniques with baselines of thousands of km. Emission from SiO, H2O and OH masers are commonly seen at increasing distance from the photosphere. The very narrow maser lines allow accurate measurements of the velocity field within the emitting region.

  17. Serological responses in chimpanzees inoculated with human immunodeficiency virus glycoprotein (gp120) subunit vaccine

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, L.O.; Pyle, S.W.; Nara, P.L.; Bess, J.W. Jr.; Gonda, M.A.; Kelliher, J.C.; Gilden, R.V.; Robey, W.G.; Bolognesi, D.P.; Gallo, R.C.

    1987-12-01

    The major envelope glycoprotein of a human immunodeficiency virus (HIV) has been purified and was utilized as a prototype vaccine in chimpanzees. The 120,000-dalton glycoprotein (gp120) was purified from membranes of human T-lymphotropic virus (HTLV)-IIIB-infected cells and the final preparation contained low levels to no detectable HTLV-IIIB core antigen (p24) and low levels of endotoxin. Chimpanzees inoculated with gp120 responded by developing antibodies that precipitated radiolabeled gp120 and neutralized in vitro infection of HTLV-IIIB. Antibodies to HTLV-IIIB p24 were not detected in the gp120-immunized chimpanzees. Peripheral blood leukocytes from the vaccinated animals were examined for T4/sup +/ and T8/sup +/ cells, and no decrease in the T4/T8 ratio was found, indicating that immunization with a ligand (gp120) that binds to T4 has not detectable adverse effect on the population of T4/sup +/ cells. The only current animal model that can be reproducibly infected with HIV is the chimpanzee. Immunization of chimpanzees with HIV proteins will provide an experimental system for testing the effectiveness of prototype vaccines for preventing HIV infection in vivo.

  18. Species-specific deletion of the viral attachment glycoprotein of avian metapneumovirus.

    Science.gov (United States)

    Kong, Byung-Whi; Foster, Linda K; Foster, Douglas N

    2008-03-01

    The avian metapneumovirus (AMPV) genome encodes the fusion (F), small hydrophobic (SH), and attachment glycoprotein (G) as envelope glycoproteins. The F and G proteins mainly function to allow viral entry into host cells during the early steps of the virus life cycle. The highly variable AMPV G protein is a major determinant for distinguishing virus subtypes. Sequence analysis was used to determine if any differences between avian or mammalian cell propagated subtype C AMPV could be detected for the 1.8kb G gene. As a result, the complete 1.8kb G gene was found to be present when AMPV was propagated in our immortal turkey turbinate (TT-1) cell line regardless of passage number. Surprisingly, AMPV propagated for 15 or more passages in mammalian Vero cells revealed an essentially deleted G gene in the viral genome, resulting in no G gene mRNA expression. Although the Vero cell propagated AMPV genome contained a small 122 nucleotide fragment of the G gene, no other mRNA variants were detected from either mammalian or avian propagated AMPV. The G gene truncation might be caused by cellular molecular mechanisms that are species-specific. The lack of viral gene deletions suggests that avian cell propagated AMPV will provide a better alternative host for live recombinant vaccine development based on a reverse genetics system.

  19. Serological responses in chimpanzees inoculated with human immunodeficiency virus glycoprotein (gp120) subunit vaccine

    International Nuclear Information System (INIS)

    Arthur, L.O.; Pyle, S.W.; Nara, P.L.

    1987-01-01

    The major envelope glycoprotein of a human immunodeficiency virus (HIV) has been purified and was utilized as a prototype vaccine in chimpanzees. The 120,000-dalton glycoprotein (gp120) was purified from membranes of human T-lymphotropic virus (HTLV)-IIIB-infected cells and the final preparation contained low levels to no detectable HTLV-IIIB core antigen (p24) and low levels of endotoxin. Chimpanzees inoculated with gp120 responded by developing antibodies that precipitated radiolabeled gp120 and neutralized in vitro infection of HTLV-IIIB. Antibodies to HTLV-IIIB p24 were not detected in the gp120-immunized chimpanzees. Peripheral blood leukocytes from the vaccinated animals were examined for T4 + and T8 + cells, and no decrease in the T4/T8 ratio was found, indicating that immunization with a ligand (gp120) that binds to T4 has not detectable adverse effect on the population of T4 + cells. The only current animal model that can be reproducibly infected with HIV is the chimpanzee. Immunization of chimpanzees with HIV proteins will provide an experimental system for testing the effectiveness of prototype vaccines for preventing HIV infection in vivo

  20. Molecular characterization of glycoprotein genes and phylogenetic analysis of two swine paramyxoviruses isolated from United States.

    Science.gov (United States)

    Qiao, Dan; Janke, Bruce H; Elankumaran, Subbiah

    2009-08-01

    Two swine paramyxoviruses (SPMV)-(81-19252 (Texas-81) and 92-7783 (ISU-92)-were isolated from encephalitic pigs in the United States in 1981 and 1992. Antigenic, morphologic, and biological characteristics of these two viruses were essentially similar to members of the family Paramyxoviridae. Antigenic analysis by indirect fluorescent antibody, immunoblot, and one-way cross-neutralization tests placed these viruses along with bovine parainfluenza 3 (BPIV3) viruses. Purified virions were 50-300 nm in size and morphologically indistinguishable from other paramyxoviruses. These two viruses hemagglutinated red blood cells and had neuraminidase activity. The gene junctions of fusion (F) and hemagglutinin (HN) glycoprotein genes of these viruses contained highly conserved transcription start and stop signal sequences and trinucleotide intergenic regions similar to other Paramyxoviridae. The F gene of ISU-92 was longer than Texas-81 due to insertion of a 24-nucleotide "U"-rich 3' untranslated region. Structure-based sequence alignment of glycoproteins of these two SPMVs indicated that they are essentially similar in structure and function to parainfluenzaviruses. The Texas-81 strain was closely related to BPIV3 Shipping Fever (SF) strain at nucleotide and amino acid level, while the ISU-92 strain was more closely related to BPIV3 910N strain. The envelope glycoproteins of ISU-92 had only approximately 92 and approximately 96% identity at nucleotide and amino acid levels with BPIV3-SF strain, respectively. The high sequence identities to BPIV3 indicated cross-species infection in pigs. Phylogenetic analyses based on both F protein and HN protein suggested the classification of these viruses into the subfamily Paramyxovirinae, genus Respirovirus, and genotype A of BPIV3.

  1. The cholesterol-binding motif of the HIV-1 glycoprotein gp41 regulates lateral sorting and oligomerization.

    Science.gov (United States)

    Schwarzer, Roland; Levental, Ilya; Gramatica, Andrea; Scolari, Silvia; Buschmann, Volker; Veit, Michael; Herrmann, Andreas

    2014-10-01

    Enveloped viruses often use membrane lipid rafts to assemble and bud, augment infection and spread efficiently. However, the molecular bases and functional consequences of the partitioning of viral glycoproteins into microdomains remain intriguing questions in virus biology. Here, we measured Foerster resonance energy transfer by fluorescence lifetime imaging microscopy (FLIM-FRET) to study the role of distinct membrane proximal regions of the human immunodeficiency virus glycoprotein gp41 for lipid raft partitioning in living Chinese hamster ovary cells (CHO-K1). Gp41 was labelled with a fluorescent protein at the exoplasmic face of the membrane, preventing any interference of the fluorophore with the proposed role of the transmembrane and cytoplasmic domains in lateral organization of gp41. Raft localization was deduced from interaction with an established raft marker, a fluorescently tagged glycophosphatidylinositol anchor and the cholesterol recognition amino acid consensus (CRAC) was identified as the crucial lateral sorting determinant in CHO-K1 cells. Interestingly, the raft association of gp41 indicates a substantial cell-to-cell heterogeneity of the plasma membrane microdomains. In complementary fluorescence polarization microscopy, a distinct CRAC requirement was found for the oligomerization of the gp41 variants. Our data provide further insight into the molecular basis and biological implications of the cholesterol dependent lateral sorting of viral glycoproteins for virus assembly at cellular membranes. © 2014 John Wiley & Sons Ltd.

  2. African Swine Fever Virus Undergoes Outer Envelope Disruption, Capsid Disassembly and Inner Envelope Fusion before Core Release from Multivesicular Endosomes.

    Directory of Open Access Journals (Sweden)

    Bruno Hernáez

    2016-04-01

    Full Text Available African swine fever virus (ASFV is a nucleocytoplasmic large DNA virus (NCLDV that causes a highly lethal disease in domestic pigs. As other NCLDVs, the extracellular form of ASFV possesses a multilayered structure consisting of a genome-containing nucleoid successively wrapped by a thick protein core shell, an inner lipid membrane, an icosahedral protein capsid and an outer lipid envelope. This structural complexity suggests an intricate mechanism of internalization in order to deliver the virus genome into the cytoplasm. By using flow cytometry in combination with pharmacological entry inhibitors, as well as fluorescence and electron microscopy approaches, we have dissected the entry and uncoating pathway used by ASFV to infect the macrophage, its natural host cell. We found that purified extracellular ASFV is internalized by both constitutive macropinocytosis and clathrin-mediated endocytosis. Once inside the cell, ASFV particles move from early endosomes or macropinosomes to late, multivesicular endosomes where they become uncoated. Virus uncoating requires acidic pH and involves the disruption of the outer membrane as well as of the protein capsid. As a consequence, the inner viral membrane becomes exposed and fuses with the limiting endosomal membrane to release the viral core into the cytosol. Interestingly, virus fusion is dependent on virus protein pE248R, a transmembrane polypeptide of the inner envelope that shares sequence similarity with some members of the poxviral entry/fusion complex. Collective evidence supports an entry model for ASFV that might also explain the uncoating of other multienveloped icosahedral NCLDVs.

  3. Analgesic effects of glycoproteins from Panax ginseng root in mice.

    Science.gov (United States)

    Wang, Ying; Chen, Yinghong; Xu, Hong; Luo, Haoming; Jiang, Ruizhi

    2013-07-30

    The root of Panax ginseng C.A. Mey has various beneficial pharmacological effects. The present study aimed to evaluate the analgesic activities of glycoproteins from the root of Panax ginseng C.A. Mey in mice. Glycoproteins were isolated and purified from the root of Panax ginseng C.A. Mey. Physicochemical properties and molecular mass were determined by chemical assay and HPLC. Acetic acid-induced writhing and hot-plate tests were employed to study the analgesic effect of glycoproteins and compared with that of aspirin or morphine. The locomotor activity was tested in mice by using actophometer. Four glycoproteins were obtained. The glycoproteins which protein content was the highest (73.04%) displayed dose-dependent analgesic effect. In writhing test, the glycoproteins significantly inhibited writhes (Pginseng C.A. Mey exhibited significant analgesic activities and the proteins were the active site, providing evidence for its pharmacal use. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Chemical and Chemoenzymatic Synthesis of Glycoproteins for Deciphering Functions

    Science.gov (United States)

    Wang, Lai-Xi; Amin, Mohammed N.

    2014-01-01

    Summary Glycoproteins are an important class of biomolecules involved in a number of biological recognition processes. However, natural and recombinant glycoproteins are usually produced as mixtures of glycoforms that differ in the structures of the pendent glycans, which are difficult to separate in pure glycoforms. As a result, synthetic homogeneous glycopeptides and glycoproteins have become indispensable probes for detailed structural and functional studies. A number of elegant chemical and biological strategies have been developed for synthetic construction of tailor-made, full-size glycoproteins to address specific biological problems. In this review, we highlight recent advances in chemical and chemoenzymatic synthesis of homogeneous glycoproteins. Selected examples are given to demonstrate the applications of tailor-made, glycan-defined glycoproteins for deciphering glycosylation functions. PMID:24439206

  5. Universal enveloping algebras for Malcev color algebras

    OpenAIRE

    de-la-Concepción, Daniel

    2015-01-01

    In this paper we give a construction of the universal enveloping algebra of a Malcev algebra in categories of group algebra comodules with a symmetry given by a bicharacter of the group. A particular example of such categories is the category of super vector spaces.

  6. Multi-layered breathing architectural envelope

    DEFF Research Database (Denmark)

    Lund Larsen, Andreas; Foged, Isak Worre; Jensen, Rasmus Lund

    2014-01-01

    A multi layered breathing envelope is developed as a method of natural ventilation. The two main layers consist of mineral wool and air permeable concrete. The mineral wool works as a dynamic insulation and the permeable concrete as a heat recovery system with a high thermal mass for heat storage...

  7. Ozone Reductions Using Residential Building Envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain S.; Sherman, Max; Nazaroff, William W.

    2009-02-01

    Ozone is an air pollutant with that can have significant health effects and a significant source of ozone in some regions of California is outdoor air. Because people spend the vast majority of their time indoors, reduction in indoor levels of ozone could lead to improved health for many California residents. Ozone is removed from indoor air by surface reactions and can also be filtered by building envelopes. The magnitude of the envelope impact depends on the specific building materials that the air flows over and the geometry of the air flow paths through the envelope that can be changes by mechanical ventilation operation. The 2008 Residential Building Standards in California include minimum requirements for mechanical ventilation by referencing ASHRAE Standard 62.2. This study examines the changes in indoor ozone depending on the mechanical ventilation system selected to meet these requirements. This study used detailed simulations of ventilation in a house to examine the impacts of different ventilation systems on indoor ozone concentrations. The simulation results showed that staying indoors reduces exposure to ozone by 80percent to 90percent, that exhaust ventilation systems lead to lower indoor ozone concentrations, that opening of windows should be avoided at times of high outdoor ozone, and that changing the time at which mechanical ventilation occurs has the ability to halve exposure to ozone. Future work should focus on the products of ozone reactions in the building envelope and the fate of these products with respect to indoor exposures.

  8. Shape Control of Responsive Building Envelopes

    DEFF Research Database (Denmark)

    Foged, Isak Worre; Kirkegaard, Poul Henning; Christensen, Jesper Thøger

    2010-01-01

    alternatives. The adaptive structure is a proposal for a responsive building envelope which is an idea of a first level operational framework for present and future investigations towards performance based responsive architectures through a set of responsive typologies. A mock-up concept of a secondary...

  9. Discriminating Dysarthria Type from Envelope Modulation Spectra

    Science.gov (United States)

    Liss, Julie M.; LeGendre, Sue; Lotto, Andrew J.

    2010-01-01

    Purpose: Previous research demonstrated the ability of temporally based rhythm metrics to distinguish among dysarthrias with different prosodic deficit profiles (J. M. Liss et al., 2009). The authors examined whether comparable results could be obtained by an automated analysis of speech envelope modulation spectra (EMS), which quantifies the…

  10. Calcium signals can freely cross the nuclear envelope in hippocampal neurons: somatic calcium increases generate nuclear calcium transients

    OpenAIRE

    Eder, Anja; Bading, Hilmar

    2007-01-01

    Abstract Background In hippocampal neurons, nuclear calcium signaling is important for learning- and neuronal survival-associated gene expression. However, it is unknown whether calcium signals generated by neuronal activity at the cell membrane and propagated to the soma can unrestrictedly cross the nuclear envelope to invade the nucleus. The nuclear envelope, which allows ion transit via the nuclear pore complex, may represent a barrier for calcium and has been suggested to insulate the nuc...

  11. Re-configurable digital receiver for optically envelope detected half cycle BPSK and MSK radio-on-fiber signals

    DEFF Research Database (Denmark)

    Guerrero Gonzalez, Neil; Prince, Kamau; Zibar, Darko

    2011-01-01

    We present the first known integration of a digital receiver into optically envelope detection radio-on-fiber systems. We also present a re-configurable scheme for two different types of optically envelope detected wireless signals while keeping the complexity of used optical components low. Our ......-shift-keying and 104.17 Mbit/s minimum-shift-keying radio-frequency modulated signals after 30 km of fiber transmission....

  12. The Amino Terminus of Herpes Simplex Virus 1 Glycoprotein K Is Required for Virion Entry via the Paired Immunoglobulin-Like Type-2 Receptor Alpha

    Science.gov (United States)

    Chowdhury, Sona; Chouljenko, Vladimir N.; Naderi, Misagh

    2013-01-01

    The herpes simplex virus 1 (HSV-1) glycoprotein K (gK)/UL20 protein complex is incorporated into virion envelopes and cellular membranes and functions during virus entry and cell-to-cell spread. To investigate the role of gK/UL20 in the context of a highly neurovirulent virus strain, the HSV-1(McKrae) genome was cloned into a bacterial artificial chromosome plasmid (McKbac) and utilized to construct the mutant virus McK(gKΔ31-68), carrying a 37-amino-acid deletion within the gK amino terminus. The McKbac virus entered efficiently into Chinese hamster ovary (CHO) cells constitutively expressing HSV-1 human receptors, nectin-1, herpesvirus entry mediator (HVEM), or paired immunoglobulin-like type-2 receptor alpha (PILRα). In contrast, the McK(gKΔ31-68) virus failed to enter into CHO-PILRα cells, while it entered CHO cells expressing HVEM and nectin-1 more efficiently than the McKbac virus. Both McKbac and McK(gKΔ31-68) viruses entered all CHO cells expressing HSV-1 receptors via a pH-independent pathway. The HSV-1(F) gBΔ28syn mutant virus, encoding a carboxyl-terminal truncated gB, causes extensive cell fusion. Previously, we showed that the gKΔ31-68 amino acid deletion abrogated gBΔ28syn virus-induced cell fusion, indicating that the amino terminus of gK is required for gB-mediated virus-induced cell fusion (V. N. Chouljenko, A. V. Iyer, S. Chowdhury, D. V. Chouljenko, and K. G. J. Kousoulas, Virology 83:12301–12313, 2009). Surprisingly, the gKΔ31-68/gBΔ28syn virus caused extensive fusion of CHO-nectin-1 cells but limited cell fusion of CHO-PILRα cells. Coimmunoprecipitation experiments revealed that both gK and PILRα bound gB in infected cells. Collectively, these results indicate that the amino terminus of gK is functionally and physically associated with the gB-PILRα protein complex and regulates membrane fusion of the viral envelope with cellular membranes during virus entry as well as virus-induced cell-to-cell fusion. PMID:23302878

  13. Validating predictions from climate envelope models

    Science.gov (United States)

    Watling, J.; Bucklin, D.; Speroterra, C.; Brandt, L.; Cabal, C.; Romañach, Stephanie S.; Mazzotti, Frank J.

    2013-01-01

    Climate envelope models are a potentially important conservation tool, but their ability to accurately forecast species’ distributional shifts using independent survey data has not been fully evaluated. We created climate envelope models for 12 species of North American breeding birds previously shown to have experienced poleward range shifts. For each species, we evaluated three different approaches to climate envelope modeling that differed in the way they treated climate-induced range expansion and contraction, using random forests and maximum entropy modeling algorithms. All models were calibrated using occurrence data from 1967–1971 (t1) and evaluated using occurrence data from 1998–2002 (t2). Model sensitivity (the ability to correctly classify species presences) was greater using the maximum entropy algorithm than the random forest algorithm. Although sensitivity did not differ significantly among approaches, for many species, sensitivity was maximized using a hybrid approach that assumed range expansion, but not contraction, in t2. Species for which the hybrid approach resulted in the greatest improvement in sensitivity have been reported from more land cover types than species for which there was little difference in sensitivity between hybrid and dynamic approaches, suggesting that habitat generalists may be buffered somewhat against climate-induced range contractions. Specificity (the ability to correctly classify species absences) was maximized using the random forest algorithm and was lowest using the hybrid approach. Overall, our results suggest cautious optimism for the use of climate envelope models to forecast range shifts, but also underscore the importance of considering non-climate drivers of species range limits. The use of alternative climate envelope models that make different assumptions about range expansion and contraction is a new and potentially useful way to help inform our understanding of climate change effects on species.

  14. Validating predictions from climate envelope models.

    Directory of Open Access Journals (Sweden)

    James I Watling

    Full Text Available Climate envelope models are a potentially important conservation tool, but their ability to accurately forecast species' distributional shifts using independent survey data has not been fully evaluated. We created climate envelope models for 12 species of North American breeding birds previously shown to have experienced poleward range shifts. For each species, we evaluated three different approaches to climate envelope modeling that differed in the way they treated climate-induced range expansion and contraction, using random forests and maximum entropy modeling algorithms. All models were calibrated using occurrence data from 1967-1971 (t1 and evaluated using occurrence data from 1998-2002 (t2. Model sensitivity (the ability to correctly classify species presences was greater using the maximum entropy algorithm than the random forest algorithm. Although sensitivity did not differ significantly among approaches, for many species, sensitivity was maximized using a hybrid approach that assumed range expansion, but not contraction, in t2. Species for which the hybrid approach resulted in the greatest improvement in sensitivity have been reported from more land cover types than species for which there was little difference in sensitivity between hybrid and dynamic approaches, suggesting that habitat generalists may be buffered somewhat against climate-induced range contractions. Specificity (the ability to correctly classify species absences was maximized using the random forest algorithm and was lowest using the hybrid approach. Overall, our results suggest cautious optimism for the use of climate envelope models to forecast range shifts, but also underscore the importance of considering non-climate drivers of species range limits. The use of alternative climate envelope models that make different assumptions about range expansion and contraction is a new and potentially useful way to help inform our understanding of climate change effects on

  15. A combination of "thiol-ene" click chemistry and surface initiated atom transfer radical polymerization: Fabrication of boronic acid functionalized magnetic graphene oxide composite for enrichment of glycoproteins.

    Science.gov (United States)

    Su, Jie; He, Xiwen; Chen, Langxing; Zhang, Yukui

    2018-04-01

    An efficient glycoproteins enrichment platform is one of vital preprocessing steps in biomarker research and in particular glycoproteomics. In this work, a well-defined boronic acid functionalized magnetic graphene oxide nanocomposite (Fe 3 O 4 -GO@PAAPBA) was synthesized for the selective enrichment of glycoproteins from complex biological samples via a novel strategy based on the "thiol-ene" click chemistry and surface initiated atom transfer radical polymerization (SI-ATRP). The initiator of ATRP was anchored to the surface of substrate through "thiol-ene" click reaction. The product Fe 3 O 4 -GO@PAAPBA was successfully synthesized in following SI-ATRP. The Fe 3 O 4 -GO@PAAPBA nanocomposite was characterized by transmission electron microscopy (TEM), Fourier transform-infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometry (VSM) and thermogravimetric analysis. The adsorption capacity of Fe 3 O 4 -GO@PAAPBA towards ovalbumin (OVA) and transferrin (Trf) is 471mgg -1 and 450mgg -1 , respectively. The nanocomposite also featured good selectivity to glycoproteins in the mixture of glycoproteins and non-glycoproteins at alkaline (pH 9.0) and physiological conditions (pH 7.4). Furthermore, it can be applied to extract glycoproteins directly from egg white samples. These results have indicated that Fe 3 O 4 -GO@PAAPBA was a potential affinity material in glycoprotein analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Fertilization competence of the egg-coating envelope is regulated by direct interaction of dicalcin and gp41, the Xenopus laevis ZP3.

    Science.gov (United States)

    Miwa, Naofumi; Ogawa, Motoyuki; Hanaue, Mayu; Takamatsu, Ken

    2015-08-05

    Fertilization begins with species-restricted interaction of sperm and the egg-coating envelope, which includes a three-dimensional meshwork of filaments composed of glycoproteins (called ZP proteins). Growing evidence has unveiled the molecular nature of ZP proteins; however, the structural property conferring fertilization competence to the egg-coating envelope remains unknown. Here, we show the molecular mechanism that mediates direct interaction between dicalcin, a novel fertilization-suppressive ZP protein-associated protein, and gp41, a Xenopus laevis ortholog of mammalian ZP3, and subsequently demonstrate the structural basis of the envelope for fertilization competence. The interactive regions between dicalcin and gp41 comprised five and nine amino acid residues within dicalcin and twenty-three within gp41 [corrected]. Synthetic peptides corresponding to these regions dramatically affected fertilization: treatment with dicalcin- or gp41-derived peptides decreased or increased fertilization rates, respectively. Prior application of these peptides caused distinct alterations in the in vivo lectin-staining pattern of the envelope as well. Transmission electron microscopy analysis revealed that the dicalcin-derived peptide induced the formation of a well-organized meshwork, whereas the gp41-derived peptide caused the formation of a significantly disorganized meshwork. These findings indicated that the fertilization competence of the egg-coating envelope is crucially regulated by the direct interaction between dicalcin and gp41.

  17. Kinetic validation of the models for P-glycoprotein ATP hydrolysis and vanadate-induced trapping. Proposal for additional steps.

    Directory of Open Access Journals (Sweden)

    Miguel Ramón Lugo

    Full Text Available P-Glycoprotein, a member of the ATP-binding cassette (ABC superfamily, is a multidrug transporter responsible for cellular efflux of hundreds of structurally unrelated compounds, including natural products, many clinically used drugs and anti-cancer agents. Expression of P-glycoprotein has been linked to multidrug resistance in human cancers. ABC transporters are driven by ATP hydrolysis at their two cytoplasmic nucleotide-binding domains, which interact to form a closed ATP-bound sandwich dimer. Intimate knowledge of the catalytic cycle of these proteins is clearly essential for understanding their mechanism of action. P-Glycoprotein has been proposed to hydrolyse ATP by an alternating mechanism, for which there is substantial experimental evidence, including inhibition of catalytic activity by trapping of ortho-vanadate at one nucleotide-binding domain, and the observation of an asymmetric occluded state. Despite many studies of P-glycoprotein ATPase activity over the past 20 years, no comprehensive kinetic analysis has yet been carried out, and some puzzling features of its behaviour remain unexplained. In this work, we have built several progressively more complex kinetic models, and then carried out simulations and detailed analysis, to test the validity of the proposed reaction pathway employed by P-glycoprotein for ATP hydrolysis. To establish kinetic parameters for the catalytic cycle, we made use of the large amount of published data on ATP hydrolysis by hamster P-glycoprotein, both purified and in membrane vesicles. The proposed kinetic scheme(s include a high affinity priming reaction for binding of the first ATP molecule, and an independent pathway for ADP binding outside the main catalytic cycle. They can reproduce to varying degrees the observed behavior of the protein's ATPase activity and its inhibition by ortho-vanadate. The results provide new insights into the mode of action of P-glycoprotein, and some hypotheses about the

  18. Novel Real-Time Flight Envelope Monitoring System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is an aircraft flight envelope monitoring system that will provide real-time in-cockpit estimations of aircraft flight envelope boundaries....

  19. Novel Real-Time Flight Envelope Monitoring System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is an aircraft flight envelope monitoring system that will provide real-time in-cockpit estimations of aircraft flight envelope boundaries,...

  20. Different Infectivity of HIV-1 Strains Is Linked to Number of Envelope Trimers Required for Entry

    Science.gov (United States)

    Brandenberg, Oliver F.; Magnus, Carsten; Rusert, Peter; Regoes, Roland R.; Trkola, Alexandra

    2015-01-01

    HIV-1 enters target cells by virtue of envelope glycoprotein trimers that are incorporated at low density in the viral membrane. How many trimers are required to interact with target cell receptors to mediate virus entry, the HIV entry stoichiometry, still awaits clarification. Here, we provide estimates of the HIV entry stoichiometry utilizing a combined approach of experimental analyses and mathematical modeling. We demonstrate that divergent HIV strains differ in their stoichiometry of entry and require between 1 to 7 trimers, with most strains depending on 2 to 3 trimers to complete infection. Envelope modifications that perturb trimer structure lead to an increase in the entry stoichiometry, as did naturally occurring antibody or entry inhibitor escape mutations. Highlighting the physiological relevance of our findings, a high entry stoichiometry correlated with low virus infectivity and slow virus entry kinetics. The entry stoichiometry therefore directly influences HIV transmission, as trimer number requirements will dictate the infectivity of virus populations and efficacy of neutralizing antibodies. Thereby our results render consideration of stoichiometric concepts relevant for developing antibody-based vaccines and therapeutics against HIV. PMID:25569556

  1. Potential molecular mimicry between the human endogenous retrovirus W family envelope proteins and myelin proteins in multiple sclerosis.

    Science.gov (United States)

    Ramasamy, Ranjan; Joseph, Blessy; Whittall, Trevor

    2017-03-01

    Multiple sclerosis is an autoimmune disease caused by the destruction of the myelin sheath in the central nervous system. The major target molecules for the immune response are the myelin basic protein, myelin oligodendrocyte glycoprotein and proteolipid protein but the aetiology of the disease is as yet poorly understood. The HLA Class II allele DRB1*1501 in particular as well as DRB5*0101 and the expression of human endogenous retroviral envelope proteins have been linked to multiple sclerosis but the molecular mechanisms relating these remain to be elucidated. We hypothesised that cross-reactive peptide epitopes in retroviral envelope proteins and myelin proteins that can be presented by the two Class II DR molecules may play a role in initiating multiple sclerosis. Sequence homologies between retroviral envelope and myelin proteins and in silico predictions of peptides derived from them that are able to bind to the two Class II alleles were examined to test the hypothesis. The results support the hypothesis that molecular mimicry in peptide epitopes from envelope proteins of the HERV-W family of endogenous retroviruses and myelin proteins is possible and could potentially trigger multiple sclerosis. Mimicry between syncytin-1, a HERV-W envelope protein that is expressed during placentation, and myelin proteins may also explain the higher prevalence of multiple sclerosis in women. Experiments to test the ability of the identified peptide epitopes to activate T H cells are required to confirm the present findings. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  2. Communication across the bacterial cell envelope depends on the size of the periplasm.

    Science.gov (United States)

    Asmar, Abir T; Ferreira, Josie L; Cohen, Eli J; Cho, Seung-Hyun; Beeby, Morgan; Hughes, Kelly T; Collet, Jean-François

    2017-12-01

    The cell envelope of gram-negative bacteria, a structure comprising an outer (OM) and an inner (IM) membrane, is essential for life. The OM and the IM are separated by the periplasm, a compartment that contains the peptidoglycan. The OM is tethered to the peptidoglycan via the lipoprotein, Lpp. However, the importance of the envelope's multilayered architecture remains unknown. Here, when we removed physical coupling between the OM and the peptidoglycan, cells lost the ability to sense defects in envelope integrity. Further experiments revealed that the critical parameter for the transmission of stress signals from the envelope to the cytoplasm, where cellular behaviour is controlled, is the IM-to-OM distance. Augmenting this distance by increasing the length of the lipoprotein Lpp destroyed signalling, whereas simultaneously increasing the length of the stress-sensing lipoprotein RcsF restored signalling. Our results demonstrate the physiological importance of the size of the periplasm. They also reveal that strict control over the IM-to-OM distance is required for effective envelope surveillance and protection, suggesting that cellular architecture and the structure of transenvelope protein complexes have been evolutionarily co-optimised for correct function. Similar strategies are likely at play in cellular compartments surrounded by 2 concentric membranes, such as chloroplasts and mitochondria.

  3. Podoplanin - a small glycoprotein with many faces

    OpenAIRE

    Ugorski, Maciej; Dziegiel, Piotr; Suchanski, Jaroslaw

    2016-01-01

    Podoplanin is a small membrane glycoprotein with a large number of O-glycoside chains and therefore it belongs to mucin-type proteins. It can be found on the surface of many types of normal cells originating from various germ layers. It is present primarily on the endothelium of lymphatic vessels, type I pneumocytes and glomerular podocytes. Increased levels of podoplanin or its neo-expression have been found in numerous types of human carcinomas, but it is especially common in squamous cell ...

  4. Synthesis of Structures Related to Antifreeze Glycoproteins

    OpenAIRE

    Fyrner, Timmy

    2005-01-01

    In this thesis, synthesis of structures related to antifreeze glycoproteins (AFGPs) are presented. Synthetic routes to a protected carbohydrate derivative, 2,3,4,6-tetra-O-benzyl-β-galactopyranosyl-(1→3)-2-deoxy-2-azido-4,6-di-O-benzyl-β-D-thio-1-galactopyranoside, and a tBu-Ala-Thr-Ala-Fmoc tripeptide, are described. These compounds are meant to be used in the assembly of AFGPs and analogues thereof. A Gal-GlcN disaccharide was synthesized via glycosylation between the donor, bromo-2-O-benzo...

  5. Glycoprotein component of plant cell walls

    International Nuclear Information System (INIS)

    Cooper, J.B.; Chen, J.A.; Varner, J.E.

    1984-01-01

    The primary wall surrounding most dicotyledonous plant cells contains a hydroxyproline-rich glycoprotein (HRGP) component named extensin. A small group of glycopeptides solubilized from isolated cell walls by proteolysis contained a repeated pentapeptide glycosylated by tri- and tetraarabinosides linked to hydroxyproline and, by galactose, linked to serine. Recently, two complementary approaches to this problem have provided results which greatly increase the understanding of wall extensin. In this paper the authors describe what is known about the structure of soluble extensin secreted into the walls of the carrot root cells

  6. Inversion of Auditory Spectrograms, Traditional Spectrograms, and Other Envelope Representations

    DEFF Research Database (Denmark)

    Decorsière, Remi Julien Blaise; Søndergaard, Peter Lempel; MacDonald, Ewen

    2015-01-01

    Envelope representations such as the auditory or traditional spectrogram can be defined by the set of envelopes from the outputs of a filterbank. Common envelope extraction methods discard information regarding the fast fluctuations, or phase, of the signal. Thus, it is difficult to invert, or re...... to the framework is proposed, which leads to a more accurate inversion of traditional spectrograms...

  7. Analysis of Building Envelope Construction in 2003 CBECS

    Energy Technology Data Exchange (ETDEWEB)

    Winiarski, David W.; Halverson, Mark A.; Jiang, Wei

    2007-06-01

    The purpose of this analysis is to determine "typical" building envelope characteristics for buildings built after 1980. We address three envelope components in this paper - roofs, walls, and window area. These typical building envelope characteristics were used in the development of DOE’s Reference Buildings .

  8. The Purification of a Blood Group A Glycoprotein: An Affinity Chromatography Experiment.

    Science.gov (United States)

    Estelrich, J.; Pouplana, R.

    1988-01-01

    Describes a purification process through affinity chromatography necessary to obtain specific blood group glycoproteins from erythrocytic membranes. Discusses the preparation of erythrocytic membranes, extraction of glycoprotein from membranes, affinity chromatography purification, determination of glycoproteins, and results. (CW)

  9. Case Study of Envelope Sealing in Existing Multiunit Structures

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, J.; Conlin, F.; Podorson, D.

    2012-10-01

    Envelope air sealing was included in the retrofit of a 244 unit low-rise multifamily housing complex in Durham, N.C. Pre- and post-retrofit enclosure leakage tests were conducted on 51 units and detailed diagnostics were performed on 16. On average, total leakage was reduced by nearly half, from 19.7 ACH50 to 9.4 ACH50. Costs for air sealing were $0.31 per square foot of conditioned floor area, lower than estimates found in the National Residential Efficiency Measures Database (NREMD) and other sources, perhaps due in part to the large-scale production nature of the project. Modeling with BEopt software -- using an estimate of 85% of the envelope air leakage going to the outside (based on guarded tests performed at the site) -- calculated a space conditioning energy cost savings of 15% to 21% due to the air sealing retrofit. Important air leakage locations identified included plumbing and electrical penetrations, dropped ceilings/soffits, windows, ducts and wall-to-floor intersections. Previous repair activity had created significant leakage locations as well. Specifications and a pictorial guide were developed for contractors performing the work.

  10. Identification of N-linked glycoproteins in human milk by hydrophilic interaction liquid chromatography and mass spectrometry

    DEFF Research Database (Denmark)

    Picariello, Gianluca; Ferranti, Pasquale; Mamone, Gianfranco

    2008-01-01

    of glycoconjugates, also including glycoproteins. A number of approaches to describe the complexity of human milk proteome have provided only a partial characterization of restricted classes of N-linked glycoproteins. To achieve this objective, profiling N-linked glycoproteins of human milk was performed...... by Hydrophilic Interaction LC (HILIC) and MS analysis. Glycopeptides were selectively enriched from the protein tryptic digest of human milk samples. Oligosaccharide-free peptides obtained by peptide N-glycosidase F (PNGase F) treatment were characterized by a shotgun MS-based approach, allowing......Breastfeeding is now generally recognized as a critical factor in protecting newborns against infections. An important mechanism responsible for the antibacterial and antiviral effects of breast milk is the prevention of pathogen adhesion to host cell membranes mediated by a number...

  11. Flight envelope limit detection and avoidance

    Science.gov (United States)

    Horn, Joseph Francis

    1999-12-01

    New advanced algorithms, control laws, and pilot cueing methods were developed to provide flight envelope limit protection on rotorcraft and fixed-wing aircraft. The envelope limiting systems were designed to detect an approaching limit boundary and then provide force-feel cues on the control stick so that the pilot can avoid violations of structural and controllability limits. The limit detection algorithms were designed to predict the future response of a limited parameter in order to give an adequate time margin for corrective action. The dynamic trim estimation method, which uses a neural network to estimate the quasi-steady response of the aircraft based on stick position and measured flight data, was applied to provide torque and V-n envelope protection on the XV-15 tilt-rotor aircraft and demonstrated in simulations with a pilot model. This system was also applied to provide angle-of-attack and load factor protection on the V-22 tilt-rotor aircraft and demonstrated using real-time piloted simulation. The adaptive dynamic trim estimation method extended this approach by using sensor data history to adapt to model uncertainties. The peak response limiting algorithm, which is used to detect and prevent limit violations that occur in the transient response, was applied to provide longitudinal flapping limiting on the XV-15 and demonstrated in batch simulations. Simulation results showed that the dynamic trim estimation scheme has the potential to effectively expand an aircraft's flight envelope by allowing the pilot to safely fly near limit boundaries. An adaptive algorithm was used to adjust to variations in the mass properties of the aircraft, but improvements to the adaptation method are warranted. The peak response limiting system was shown to be effective in determining rate and position constraints on the stick travel to ensure that flapping limits are not violated.

  12. A kinetic description of antifreeze glycoprotein activity.

    Science.gov (United States)

    Burcham, T S; Osuga, D T; Yeh, Y; Feeney, R E

    1986-05-15

    The antifreeze glycoproteins (AFGP) of polar fish have the ability to depress the freezing temperature of water approximately 500 times the amount expected based on the number of AFGP molecules in solution; yet AFGP solutions have a purely colligative melting point depression. The difference of solution melting and freezing temperatures is the antifreeze activity of AFGP. One characteristic of AFGP activity that requires further examination is the effect of concentration on antifreeze activity, especially whether the activity saturates at high concentrations or the measured activity increases ad infinitum. This study first surveys the activity of the various antifreeze components from both Pagothenia borchgrevinki and the Arg-containing antifreeze glycoprotein from Eleginus gracilis (EgAF). It was found that all AFGP components examined have a plateau in activity at high concentration, but the actual value of the plateau activity differs between the different length AFGP components and between AFGP and EgAF. While the low molecular weight components of both AFGP and EgAF lose activity at deep supercooling, at high concentration activity is restored. The activity data is then shown to fit a reversible kinetic model of AFGP activity, and the coefficients obtained are used to compare the activity differences between AFGP components and between AFGP and EgAF. The model is also shown to describe the activity of the antifreeze protein of the fish Pseudopleuronectes americanus and the thermal hysteresis protein of the insect, Tenebrio molitor.

  13. Annotating Human P-Glycoprotein Bioassay Data.

    Science.gov (United States)

    Zdrazil, Barbara; Pinto, Marta; Vasanthanathan, Poongavanam; Williams, Antony J; Balderud, Linda Zander; Engkvist, Ola; Chichester, Christine; Hersey, Anne; Overington, John P; Ecker, Gerhard F

    2012-08-01

    Huge amounts of small compound bioactivity data have been entering the public domain as a consequence of open innovation initiatives. It is now the time to carefully analyse existing bioassay data and give it a systematic structure. Our study aims to annotate prominent in vitro assays used for the determination of bioactivities of human P-glycoprotein inhibitors and substrates as they are represented in the ChEMBL and TP-search open source databases. Furthermore, the ability of data, determined in different assays, to be combined with each other is explored. As a result of this study, it is suggested that for inhibitors of human P-glycoprotein it is possible to combine data coming from the same assay type, if the cell lines used are also identical and the fluorescent or radiolabeled substrate have overlapping binding sites. In addition, it demonstrates that there is a need for larger chemical diverse datasets that have been measured in a panel of different assays. This would certainly alleviate the search for other inter-correlations between bioactivity data yielded by different assay setups.

  14. Ammonia transport in the kidney by Rhesus glycoproteins

    Science.gov (United States)

    Verlander, Jill W.

    2014-01-01

    Renal ammonia metabolism is a fundamental element of acid-base homeostasis, comprising a major component of both basal and physiologically altered renal net acid excretion. Over the past several years, a fundamental change in our understanding of the mechanisms of renal epithelial cell ammonia transport has occurred, replacing the previous model which was based upon diffusion equilibrium for NH3 and trapping of NH4+ with a new model in which specific and regulated transport of both NH3 and NH4+ across renal epithelial cell membranes via specific membrane proteins is required for normal ammonia metabolism. A major advance has been the recognition that members of a recently recognized transporter family, the Rhesus glycoprotein family, mediate critical roles in renal and extrarenal ammonia transport. The erythroid-specific Rhesus glycoprotein, Rh A Glycoprotein (Rhag), was the first Rhesus glycoprotein recognized as an ammonia-specific transporter. Subsequently, the nonerythroid Rh glycoproteins, Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg), were cloned and identified as ammonia transporters. They are expressed in specific cell populations and membrane domains in distal renal epithelial cells, where they facilitate ammonia secretion. In this review, we discuss the distribution of Rhbg and Rhcg in the kidney, the regulation of their expression and activity in physiological disturbances, the effects of genetic deletion on renal ammonia metabolism, and the molecular mechanisms of Rh glycoprotein-mediated ammonia transport. PMID:24647713

  15. Fusion of Enveloped Viruses in Endosomes

    Science.gov (United States)

    White, Judith M.; Whittaker, Gary R.

    2016-01-01

    Ari Helenius launched the field of enveloped virus fusion in endosomes with a seminal paper in the Journal of Cell Biology in 1980. In the intervening years a great deal has been learned about the structures and mechanisms of viral membrane fusion proteins as well as about the endosomes in which different enveloped viruses fuse and the endosomal cues that trigger fusion. We now recognize three classes of viral membrane fusion proteins based on structural criteria and four mechanisms of fusion triggering. After reviewing general features of viral membrane fusion proteins and viral fusion in endosomes, we delve into three characterized mechanisms for viral fusion triggering in endosomes: by low pH, by receptor binding plus low pH, and by receptor binding plus the action of a protease. We end with a discussion of viruses that may employ novel endosomal fusion triggering mechanisms. A key take home message is that enveloped viruses that enter cells by fusing in endosomes traverse the endocytic pathway until they reach an endosome that has all of the environmental conditions (pH, proteases, ions, intracellular receptors, and lipid composition) to (if needed) prime and (in all cases) trigger the fusion protein and to support membrane fusion. PMID:26935856

  16. A new technique for quantifying temporal envelope contrasts.

    Science.gov (United States)

    Fortune, T W; Woodruff, B D; Preves, D A

    1994-02-01

    A new technique has been developed for precisely quantifying the temporal contrasts that exist between two sound samples. This technique is based on envelope subtraction, and generates an Envelope Difference Index that may be used to help clarify whether alteration of the natural speech envelope via amplification improves or degrades speech intelligibility. The Envelope Difference Index method may also be used to assess hearing aid saturation, and may have other applications as well. The technique is applicable whenever a precise quantification of the difference between two temporal envelopes is required, regardless of stimulus duration.

  17. Proteomics on the rims: insights into the biology of the nuclear envelope and flagellar pocket of trypanosomes.

    Science.gov (United States)

    Field, Mark C; Adung'a, Vincent; Obado, Samson; Chait, Brian T; Rout, Michael P

    2012-08-01

    Trypanosomatids represent the causative agents of major diseases in humans, livestock and plants, with inevitable suffering and economic hardship as a result. They are also evolutionarily highly divergent organisms, and the many unique aspects of trypanosome biology provide opportunities in terms of identification of drug targets, the challenge of exploiting these putative targets and, at the same time, significant scope for exploration of novel and divergent cell biology. We can estimate from genome sequences that the degree of divergence of trypanosomes from animals and fungi is extreme, with perhaps one third to one half of predicted trypanosome proteins having no known function based on homology or recognizable protein domains/architecture. Two highly important aspects of trypanosome biology are the flagellar pocket and the nuclear envelope, where in silico analysis clearly suggests great potential divergence in the proteome. The flagellar pocket is the sole site of endo- and exocytosis in trypanosomes and plays important roles in immune evasion via variant surface glycoprotein (VSG) trafficking and providing a location for sequestration of various invariant receptors. The trypanosome nuclear envelope has been largely unexplored but, by analogy with higher eukaryotes, roles in the regulation of chromatin and most significantly, in controlling VSG gene expression are expected. Here we discuss recent successful proteomics-based approaches towards characterization of the nuclear envelope and the endocytic apparatus, the identification of conserved and novel trypanosomatid-specific features, and the implications of these findings.

  18. An improved radioimmunoassay for urinary Tamm-Horsfall glycoprotein

    International Nuclear Information System (INIS)

    Dawnay, A.B. St. J.; Thornley, C.; Cattell, W.R.

    1982-01-01

    A rapid specific radioimmunoassay has been used to measure Tamm-Horsfall glycoprotein (TH glycoprotein) in urine, and the method described. The apparent concentration increased with increasing dilution of urine in water, reaching a plateau at 1 in 20. This increase was greater the higher the osmolality and TH glycoprotein concentration and the lower the pH of the original sample. The apparent concentration of TH glycoprotein in neat or diluted urine was not affected by freezing or by storage at 4 0 C or room temperature for at least 2 days. A physiological range for the urinary excretion rate was established as 22-56 mg/24h, (considerably higher than the amount present in serum) based on samples from 29 individuals with normal renal function, as defined by their creatinine clearance. There was no significant correlation between serum concentrations of TH glycoprotein and its urinary excretion rate, nor between urinary excretion rate and creatinine clearance. (author)

  19. Evolution of the HIV-1 Envelope Glycoprotein Genes and Neutralizing Antibody Response in an Individual with Broadly Cross Neutralizing Antibodies

    Science.gov (United States)

    2010-08-31

    FBS, L-glutamine, penicillin, streptomycin (Gibeo), tylosin (Sigma), and puromycin. All cell cultures were maintained in a humidified atmosphere...white walled, flat- bottomed tissue culture plates (Costar, Coming NY). The virus-antibody mixtures were then combined with 1-2 x 104 HOS-CD4+-CCR5...all lineages combined obtained from 1986-1993 to sCD4 and eight cross-reactive mAbs targeting distinct neutralization epitope regions. We chose

  20. Structural and Functional Studies on the Fusion and Attachment Envelope Glycoproteins of Nipah Virus and Hendra Virus

    Science.gov (United States)

    2003-01-01

    subcloned into the vaccinia virus promoter driven expression vector pMCO2 (90) and recombinant vaccinia viruses were generated using standard...characteristics and properties of these novel viruses , and may provide insights into membrane fusion mechanisms, the virus infection process, and towards...these novel viruses , and may provide insights into membrane fusion mechanisms, the virus infection process, and towards the development of therapeutics

  1. Structural and Functional Studies on the Fusion and Attachment Envelope Glycoproteins of Nipah Virus and Hendra Virus

    National Research Council Canada - National Science Library

    Bossart, Katharine

    2003-01-01

    Nipah virus (NiV) and Hendra (HeV) virus are emerging, biosafety level 4 paramyxoviruses responsible for fatal zoonotic infections of humans from pigs and horses, respectively, and are the prototypic members of a new Paramyxovirinae...

  2. Characterization and Enhanced Processing of Soluble, Oligomeric gp140 Envelope Glycoproteins Derived from Human Immunodeficiency Virus Type-1 Primary Isolates

    Science.gov (United States)

    2001-05-01

    virus, rabies virus) and DNA vaccines engineered to express HIV-1 proteins are known to elicit CTL response (18, 256, 269). Though DNA has been shown...34953. 51. Cheng-Mayer, C., D. Seto, M. Tateno, and J. A. Levy 1988. Biological features of HIV that correlate with virulence in the host Science...243-55. 157 256. Schnell, M. J., H. D. Foley, C. A. Siler, J. P. McGettigan, B. Dietzschold, and R. J. Pomerantz 2000. Recombinant rabies virus

  3. Subtle evolutionary changes in the distribution of N-glycosylation sequons in the HIV-I envelope glycoprotein 120

    DEFF Research Database (Denmark)

    Rao, R Shyama Prasad; Wollenweber, Bernd

    2010-01-01

    in the recent past, even slight changes in the distribution of sequons may potentially play crucial roles in protein interaction and viral infection. This study tracked the prevalence and distribution of NXS/T sequons in gp120 over a period of 29 years (from 1981 to 2009). The gp120 showed location specific...... domain. Related changes were also seen in the distribution probabilities of sequons in two domains. The results indicate that the gp120, chiefly in subtype B, is redistributing NXS/T sequons within the molecule with specific selection for NXS sequons. The subtle evolution of sequons in gp120 may have...

  4. Identification of continuous human B-cell epitopes in the envelope glycoprotein of dengue virus type 3 (DENV-3).

    OpenAIRE

    Andréa N M Rangel da Silva; Eduardo J M Nascimento; Marli Tenório Cordeiro; Laura H V G Gil; Frederico G C Abath; Silvia M L Montenegro; Ernesto T A Marques

    2009-01-01

    Background Dengue virus infection is a growing global public health concern in tropical and subtropical regions of the world. Dengue vaccine development has been hampered by concerns that cross-reactive immunological memory elicited by a candidate vaccine could increase the risk of development of more severe clinical forms. One possible strategy to reduce risks associated with a dengue vaccine is the development of a vaccine composed of selected critical epitopes of each of the serotypes. Met...

  5. Antiviral Activity of Graphene–Silver Nanocomposites against Non-Enveloped and Enveloped Viruses

    Directory of Open Access Journals (Sweden)

    Yi-Ning Chen

    2016-04-01

    Full Text Available The discovery of novel antiviral materials is important because many infectious diseases are caused by viruses. Silver nanoparticles have demonstrated strong antiviral activity, and graphene is a potential antimicrobial material due to its large surface area, high carrier mobility, and biocompatibility. No studies on the antiviral activity of nanomaterials on non-enveloped viruses have been reported. To investigate the antiviral activity of graphene oxide (GO sheets and GO sheets with silver particles (GO-Ag against enveloped and non-enveloped viruses, feline coronavirus (FCoV with an envelope and infectious bursal disease virus (IBDV without an envelope were chosen. The morphology and sizes of GO and GO-Ag were characterized by transmission, scanning electron microscopy, and X-ray diffraction. A virus inhibition assay was used to identify the antiviral activity of GO and GO-Ag. Go-Ag inhibited 25% of infection by FCoV and 23% by IBDV, whereas GO only inhibited 16% of infection by FCoV but showed no antiviral activity against the infection by IBDV. Further application of GO and GO-Ag can be considered for personal protection equipment to decrease the transmission of viruses.

  6. Nuclear envelope and genome interactions in cell fate

    Science.gov (United States)

    Talamas, Jessica A.; Capelson, Maya

    2015-01-01

    The eukaryotic cell nucleus houses an organism’s genome and is the location within the cell where all signaling induced and development-driven gene expression programs are ultimately specified. The genome is enclosed and separated from the cytoplasm by the nuclear envelope (NE), a double-lipid membrane bilayer, which contains a large variety of trans-membrane and associated protein complexes. In recent years, research regarding multiple aspects of the cell nucleus points to a highly dynamic and coordinated concert of efforts between chromatin and the NE in regulation of gene expression. Details of how this concert is orchestrated and how it directs cell differentiation and disease are coming to light at a rapid pace. Here we review existing and emerging concepts of how interactions between the genome and the NE may contribute to tissue specific gene expression programs to determine cell fate. PMID:25852741

  7. Cooperativity in virus neutralization by human monoclonal antibodies to two adjacent regions located at the amino terminus of hepatitis C virus E2 glycoprotein

    DEFF Research Database (Denmark)

    Keck, Zhenyong; Wang, Wenyan; Wang, Yong

    2013-01-01

    A challenge for hepatitis C virus (HCV) vaccine development is defining conserved epitopes that induce protective antibodies against this highly diverse virus. An envelope glycoprotein (E2) segment located at amino acids (aa) 412 to 423 contains highly conserved neutralizing epitopes. While...... polyclonal antibodies to aa 412 to 423 from HCV-infected individuals confirmed broad neutralization, conflicting findings have been reported on polyclonal antibodies to an adjacent region, aa 434 to 446, that may or may not interfere with neutralization by antibodies to aa 412 to 423. To define the interplay...

  8. PROTECTIVE EFFECT OF PROLACTIN INDUCED PROTEIN ON ZINC α2-GLYCOPROTEIN AGAINST VARIOUS DENATURANTS

    Directory of Open Access Journals (Sweden)

    Md. Imtaiyaz Hassan

    2012-12-01

    Full Text Available Zinc α2-glycoprotein (ZAG and Prolactin induced protein (PIP are considered as important elements for fertility and biomarker for prostate and breast carcinomas. The stabilities of ZAG alone and its naturally occurring complex with PIP were compared. A significant difference in CD signal was recorded for native ZAG and ZAG-PIP complex against pH-, GdnHCl- and temperature-induced denaturation. These finding suggests that PIP plays a protective role for ZAG against several denaturants. PIP contributes to the hydrophobic as well as electrostatic interactions on ZAG for the complex formation. Moreover, the observed changes in far-UV spectra between ZAG and ZAG-PIP complex in the presence of PEG support the hydrophobic nature of the forces governing the formation of complex. This pH dependent study provides evidence that formation of the complex is a natural event required for physiological function.

  9. Genetic immunization with codon-optimized equine infectious anemia virus (EIAV) surface unit (SU) envelope protein gene sequences stimulates immune responses in ponies.

    Science.gov (United States)

    Cook, R Frank; Cook, Sheila J; Bolin, Pamela S; Howe, Laryssa J; Zhou, Weisong; Montelaro, Ronald C; Issel, Charles J

    2005-06-15

    In the context of DNA vaccines the native equine infectious anemia virus (EIAV)-envelope gene has proven to be an extremely weak immunogen in horses probably because the RNA transcripts are poorly expressed owing to an unusual codon-usage bias, the possession of multiple RNA splice sites and potential adenosine-rich RNA instability elements. To overcome these problems a synthetic version of sequences encoding the EIAV surface unit (SU) envelope glycoprotein was produced (SYNSU) in which the codon-usage bias was modified to conform to that of highly expressed horse and human genes. In transfected COS-1 cell cultures, the steady state expression levels of SYNSU were at least 30-fold greater than equivalent native SU sequences. More importantly, EIAV-specific humoral and lymphocyte proliferation responses were induced in ponies immunized with a mammalian expression vector encoding SYNSU. However, these immunological responses were unable to confer protection against infection with a virulent EIAV strain.

  10. Pumping of drugs by P-glycoprotein

    DEFF Research Database (Denmark)

    Litman, Thomas; Skovsgaard, Torben; Stein, Wilfred D

    2003-01-01

    The apparent inhibition constant, Kapp, for the blockade of P-glycoprotein (P-gp) by four drugs, verapamil, cyclosporin A, XR9576 (tariquidar), and vinblastine, was measured by studying their ability to inhibit daunorubicin and calcein-AM efflux from four strains of Ehrlich cells with different...... levels of drug resistance and P-gp content. For daunorubicin as a transport substrate, Kapp was independent of [P-gp] for verapamil but increased strictly linearly with [P-gp] for vinblastine, cyclosporin A, and XR9576. A theoretical analysis of the kinetics of drug pumping and its reversal shows...... but rather, in serial, i.e., a drug that is pumped from the cytoplasmic phase has to pass the preemptive route upon leaving the cell. Our results are consistent with the Sauna-Ambudkar two-step model for pumping by P-gp. We suggest that the vinblastine/cyclosporin A/XR9576-binding site accepts daunorubicin...

  11. Raman optical activity of proteins and glycoproteins

    International Nuclear Information System (INIS)

    Smyth, E.

    2000-03-01

    Raman optical activity (ROA), measured in this project as a small difference in the intensity of Raman scattering from chiral molecules in right- and left-circularly polarised incident laser light, offers the potential to provide more information about the structure of biological molecules in aqueous solution than conventional spectroscopic techniques. Chapter one contains a general discussion of the relative merits of different spectroscopic techniques for structure determination of biomolecules, as well as a brief introduction to ROA. In Chapter two a theoretical analysis of ROA is developed, which extends the discussion in chapter one. The spectrometer setup and sample preparation is then discussed in chapter three. Instrument and sample conditions are monitored to ensure that the best results are obtained. As with any experimental project problems occur, which may result in a degradation of the spectra obtained. The cause of these problems was explored and remedied whenever possible. Chapter four introduces a brief account of protein, glycoprotein and carbohydrate structure and function, with a particular emphasis on the structure of proteins. In the remaining chapters experimental ROA results on proteins and glycoproteins, with some carbohydrate samples, from a wide range of sources are examined. For example, in chapter five some β-sheet proteins are examined. Structural features in these proteins are examined in the extended amide III region of their ROA spectra, revealing that ROA is sensitive to the rigidity or flexibility inherent in proteins. Chapter six concentrates on a group of proteins (usually glycoproteins) known as the serine proteinase inhibitors (serpins). Medically, the serpins are one of the most important groups of proteins of current interest, with wide-ranging implications in conditions such as Down's syndrome, Alzheimer's disease, and emphysema with associated cirrhosis of the liver. With favourable samples and conditions ROA may offer the

  12. Model Dust Envelopes Around Silicate Carbon Stars

    Directory of Open Access Journals (Sweden)

    Kyung-Won Suh

    2006-03-01

    Full Text Available We have modeled dust envelopes around silicate carbon stars using optical properties for a mixture of amorphous carbon and silicate dust grains paying close attention to the infrared observations of the stars. The 4 stars show various properties in chemistry and location of the dust shell. We expect that the objects that fit a simple detached silicate dust shell model could be in the transition phase of the stellar chemistry. For binary system objects, we find that a mixed dust chemistry model would be necessary.

  13. Regulation of glycoprotein synthesis in yeast by mating pheromones

    International Nuclear Information System (INIS)

    Tanner, W.

    1984-01-01

    In Saccharomyces cerevisiae, glycosylated proteins amount to less than 2% of the cell protein. Two intensively studied examples of yeast glycoproteins are the external cell wall - associated invertase and the vacuolar carboxypeptidase Y. Recently, it was shown that the mating pheromone, alpha factor, specifically and strongly inhibits the synthesis of N-glycosylated proteins in haploid a cells, whereas O-glycosylated proteins are not affected. In this paper, the pathways of glycoprotein biosynthesis are summarized briefly, and evidence is presented that mating pheomones have a regulatory function in glycoprotein synthesis

  14. Terminal Mannose Residues in Seminal Plasma Glycoproteins of Infertile Men Compared to Fertile Donors

    Directory of Open Access Journals (Sweden)

    Beata Olejnik

    2015-07-01

    Full Text Available The impact of seminal plasma components on the fertilization outcomes in humans is still under question. The increasing number of couples facing problems with conception raises the need for predictive biomarkers. Detailed understanding of the molecular mechanisms accompanying fertilization remains another challenge. Carbohydrate–protein recognition may be of key importance in this complex field. In this study, we analyzed the unique glycosylation pattern of seminal plasma proteins, the display of high-mannose and hybrid-type oligosaccharides, by means of their reactivity with mannose-specific Galanthus nivalis lectin. Normozoospermic infertile subjects presented decreased amounts of lectin-reactive glycoepitopes compared to fertile donors and infertile patients with abnormal semen parameters. Glycoproteins containing unveiled mannose were isolated in affinity chromatography, and 17 glycoproteins were identified in liquid chromatography-tandem mass spectrometry with electrospray ionization. The N-glycome of the isolated glycoproteins was examined in matrix-assisted laser desorption ionization mass spectrometry. Eleven out of 27 identified oligosaccharides expressed terminal mannose residues, responsible for lectin binding. We suggest that lowered content of high-mannose and hybrid type glycans in normozoospermic infertile patients may be associated with impaired sperm protection from preterm capacitation and should be considered in the search for new infertility markers.

  15. A Novel Fiber Optic Surface Plasmon Resonance Biosensors with Special Boronic Acid Derivative to Detect Glycoprotein

    Directory of Open Access Journals (Sweden)

    Yang Zhang

    2017-10-01

    Full Text Available We proposed and demonstrated a novel tilted fiber Bragg grating (TFBG-based surface plasmon resonance (SPR label-free biosensor via a special boronic acid derivative to detect glycoprotein with high sensitivity and selectivity. TFBG, as an effective sensing element for optical sensing in near-infrared wavelengths, possess the unique capability of easily exciting the SPR effect on fiber surface which coated with a nano-scale metal layer. SPR properties can be accurately detected by measuring the variation of transmitted spectra at optical communication wavelengths. In our experiment, a 10° TFBG coated with a 50 nm gold film was manufactured to stimulate SPR on a sensor surface. To detect glycoprotein selectively, the sensor was immobilized using designed phenylboronic acid as the recognition molecule, which can covalently bond with 1,2- or 1,3-diols to form five- or six-membered cyclic complexes for attaching diol-containing biomolecules and proteins. The phenylboronic acid was synthetized with long alkyl groups offering more flexible space, which was able to improve the capability of binding glycoprotein. The proposed TFBG-SPR sensors exhibit good selectivity and repeatability with a protein concentration sensitivity up to 2.867 dB/ (mg/mL and a limit of detection (LOD of 15.56 nM.

  16. 21 CFR 866.5430 - Beta-2-glycoprotein I immunological test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Beta-2-glycoprotein I immunological test system....5430 Beta-2-glycoprotein I immunological test system. (a) Identification. A beta-2-glycoprotein I... the beta-2-glycoprotein I (a serum protein) in serum and other body fluids. Measurement of beta-2...

  17. 21 CFR 866.5440 - Beta-2-glycoprotein III immunological test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Beta-2-glycoprotein III immunological test system....5440 Beta-2-glycoprotein III immunological test system. (a) Identification. A beta-2-glycoprotein III... the beta-2-glycoprotein III (a serum protein) in serum and other body fluids. Measurement of beta-2...

  18. Herpes Simplex Virus Membrane Proteins gE/gI and US9 Act Cooperatively To Promote Transport of Capsids and Glycoproteins from Neuron Cell Bodies into Initial Axon Segments

    Science.gov (United States)

    Howard, Paul W.; Howard, Tiffani L.

    2013-01-01

    Herpes simplex virus (HSV) and other alphaherpesviruses must move from sites of latency in ganglia to peripheral epithelial cells. How HSV navigates in neuronal axons is not well understood. Two HSV membrane proteins, gE/gI and US9, are key to understanding the processes by which viral glycoproteins, unenveloped capsids, and enveloped virions are transported toward axon tips. Whether gE/gI and US9 function to promote the loading of viral proteins onto microtubule motors in neuron cell bodies or to tether viral proteins onto microtubule motors within axons is not clear. One impediment to understanding how HSV gE/gI and US9 function in axonal transport relates to observations that gE−, gI−, or US9− mutants are not absolutely blocked in axonal transport. Mutants are significantly reduced in numbers of capsids and glycoproteins in distal axons, but there are less extensive effects in proximal axons. We constructed HSV recombinants lacking both gE and US9 that transported no detectable capsids and glycoproteins to distal axons and failed to spread from axon tips to adjacent cells. Live-cell imaging of a gE−/US9− double mutant that expressed fluorescent capsids and gB demonstrated >90% diminished capsids and gB in medial axons and no evidence for decreased rates of transport, stalling, or increased retrograde transport. Instead, capsids, gB, and enveloped virions failed to enter proximal axons. We concluded that gE/gI and US9 function in neuron cell bodies, in a cooperative fashion, to promote the loading of HSV capsids and vesicles containing glycoproteins and enveloped virions onto microtubule motors or their transport into proximal axons. PMID:23077321

  19. Envelope as Climate Negotiator: Evaluating adaptive building envelope's capacity to moderate indoor climate and energy

    Science.gov (United States)

    Erickson, James

    Through manipulation of adaptable opportunities available within a given environment, individuals become active participants in managing personal comfort requirements, by exercising control over their comfort without the assistance of mechanical heating and cooling systems. Similarly, continuous manipulation of a building skin's form, insulation, porosity, and transmissivity qualities exerts control over the energy exchanged between indoor and outdoor environments. This research uses four adaptive response variables in a modified software algorithm to explore an adaptive building skin's potential in reacting to environmental stimuli with the purpose of minimizing energy use without sacrificing occupant comfort. Results illustrate that significant energy savings can be realized with adaptive envelopes over static building envelopes even under extreme summer and winter climate conditions; that the magnitude of these savings are dependent on climate and orientation; and that occupant thermal comfort can be improved consistently over comfort levels achieved by optimized static building envelopes. The resulting adaptive envelope's unique climate-specific behavior could inform designers in creating an intelligent kinetic aesthetic that helps facilitate adaptability and resiliency in architecture.

  20. Herpesvirus gB-induced fusion between the virion envelope and outer nuclear membrane during virus egress is regulated by the viral US3 kinase.

    Science.gov (United States)

    Wisner, Todd W; Wright, Catherine C; Kato, Akihisa; Kawaguchi, Yasushi; Mou, Fan; Baines, Joel D; Roller, Richard J; Johnson, David C

    2009-04-01

    Herpesvirus capsids collect along the inner surface of the nuclear envelope and bud into the perinuclear space. Enveloped virions then fuse with the outer nuclear membrane (NM). We previously showed that herpes simplex virus (HSV) glycoproteins gB and gH act in a redundant fashion to promote fusion between the virion envelope and the outer NM. HSV mutants lacking both gB and gH accumulate enveloped virions in herniations, vesicles that bulge into the nucleoplasm. Earlier studies had shown that HSV mutants lacking the viral serine/threonine kinase US3 also accumulate herniations. Here, we demonstrate that HSV gB is phosphorylated in a US3-dependent manner in HSV-infected cells, especially in a crude nuclear fraction. Moreover, US3 directly phosphorylated the gB cytoplasmic (CT) domain in in vitro assays. Deletion of gB in the context of a US3-null virus did not add substantially to defects in nuclear egress. The majority of the US3-dependent phosphorylation of gB involved the CT domain and amino acid T887, a residue present in a motif similar to that recognized by US3 in other proteins. HSV recombinants lacking gH and expressing either gB substitution mutation T887A or a gB truncated at residue 886 displayed substantial defects in nuclear egress. We concluded that phosphorylation of the gB CT domain is important for gB-mediated fusion with the outer NM. This suggested a model in which the US3 kinase is incorporated into the tegument layer (between the capsid and envelope) in HSV virions present in the perinuclear space. By this packaging, US3 might be brought close to the gB CT tail, leading to phosphorylation and triggering fusion between the virion envelope and the outer NM.

  1. Glycoprotein is enough for sindbis virus-derived DNA vector to express heterogenous genes

    Directory of Open Access Journals (Sweden)

    Fu Juanjuan

    2011-07-01

    Full Text Available Abstract To investigate the necessity and potential application of structural genes for expressing heterogenous genes from Sindbis virus-derived vector, the DNA-based expression vector pVaXJ was constructed by placing the recombinant genome of sindbis-like virus XJ-160 under the control of the human cytomegalovirus (CMV promoter of the plasmid pVAX1, in which viral structural genes were replaced by a polylinker cassette to allow for insertion of heterologous genes. The defect helper plasmids pVaE or pVaC were developed by cloning the gene of glycoprotein E3E26KE1 or capsid protein of XJ-160 virus into pVAX1, respectively. The report gene cassette pVaXJ-EGFP or pV-Gluc expressing enhanced green fluorescence protein (EGFP or Gaussia luciferase (G.luc were constructed by cloning EGFP or G.luc gene into pVaXJ. EGFP or G.luc was expressed in the BHK-21 cells co-transfected with report gene cassettes and pVaE at levels that were comparable to those produced by report gene cassettes, pVaC and pVaE and were much higher than the levels produced by report gene cassette and pVaC, suggesting that glycoprotein is enough for Sindbis virus-derived DNA vector to express heterogenous genes in host cells. The method of gene expression from Sindbis virus-based DNA vector only co-transfected with envelop E gene increase the conveniency and the utility of alphavirus-based vector systems in general.

  2. Solution of K-V envelope equations

    International Nuclear Information System (INIS)

    Anderson, O.A.

    1995-04-01

    The envelope equations for a KV beam with space charge have been analyzed systematically by an e expansion followed by integrations. The focusing profile as a function of axial length is assumed to be symmetric but otherwise arbitrary. Given the bean current, emittance, and peak focusing field, we find the envelopes a(s) and b(s) and obtain , a max , σ, and σ 0 . Explicit results are presented for various truncations of the expansion. The zeroth order results correspond to those from the well-known smooth approximation; the same convenient format is retained for the higher order cases. The first order results, involving single correction terms, give 3--10 times better accuracy and are good to ∼1% at σ 0 = 70 degree. Third order gives a factor of 10--30 improvement over the smooth approximation and derived quantities accurate to ∼1% at σ 0 = 112 degree. The first order expressions are convenient design tools. They lend themselves to variable energy problems and have been applied to the design, construction, and testing of ESQ accelerators at LBL

  3. Solitons, envelope solitons in collisonless plasmas

    International Nuclear Information System (INIS)

    Ichikawa, Y.H.; Watanabe, S.

    1977-08-01

    A review is given to extensive development of theoretical, computational and experimental studies of nonlinear wave propagation in collisionless plasmas. Firstly, the historical experiment of Ikezi et al. is discussed in comparison with theoretical analysis based on the Korteweg-de Vries equation. Systematic discrepancy between the observation and the theoretical prediction suggests that it is necessary to examine such as higher order mode coupling effect and contribution of trapped particles. Secondly, effects of the nonlinear Landau damping on the envelope solution of ion plasma wave is discussed on the basis of theoretical study of Ichikawa-Taniuti, experimental observation of Watanabe and numerical analysis of Yajima et al. Finally, a new type of evolution equation derived for the Alfven wave is examined in some detail. The rigorous solution obtained for this mode represents a new kind of envelope solution, in which both of its phase and amplitude are subject to modulation of comparable spatial extension. In conclusion, the emphasis will be placed on the fact that much more intensive experimental researches are expected to be done, since the powerful methods to disentangle various nonlinear evolution equations are now available for theoretical approach. (auth.)

  4. Expression of glycoprotein VI in vascular endothelial cells.

    Science.gov (United States)

    Sun, Bing; Tao, Lian; Lin, Shihua; Calingasan, Noel Y; Li, Jess; Tandon, Narendra N; Yoshitake, Masuhiro; Kambayashi, Jun-ichi

    2003-06-01

    Glycoprotein (GP) VI, a collagen receptor, plays a important role in collagen-mediated platelet aggregation and adhesion. To date, GPVI expression has been found only in platelets and megakaryocytes. In the present studies, we have demonstrated that GPVI was also expressed in cultured human umbilical vein endothelial cells (HUVEC) at both transcript and protein levels. Using a GPVI-specific probe, a approximately 6-kb band was detected in HUVEC as well as in platelets and megakaryoblastic cell lines by Northern blotting. Using polyclonal antibodies raised against platelet GPVI peptides, the same size band (57 kDa) was labeled with convulxin (CVX) after immuo-precipitation in both HUVEC and platelet lysates. In addition, a approximately 70-kDa band was also labeled in HUVEC. Surface expression of GPVI in HUVEC was confirmed by flow cytometry with GPVI-specific IgG or by direct labeling with FITC-conjugated CVX. Since HUVEC lack FcRgamma chain that forms complex with GPVI in platelets for signaling process, the function of GPVI in vascular endothelial cells remains to be determined.

  5. Three-Dimensional Reconstruction of Nuclear Envelope Architecture Using Dual-Color Metal-Induced Energy Transfer Imaging.

    Science.gov (United States)

    Chizhik, Anna M; Ruhlandt, Daja; Pfaff, Janine; Karedla, Narain; Chizhik, Alexey I; Gregor, Ingo; Kehlenbach, Ralph H; Enderlein, Jörg

    2017-12-26

    The nuclear envelope, comprising the inner and the outer nuclear membrane, separates the nucleus from the cytoplasm and plays a key role in cellular functions. Nuclear pore complexes (NPCs), which are embedded in the nuclear envelope, control transport of macromolecules between the two compartments. Here, using dual-color metal-induced energy transfer (MIET), we determine the axial distance between Lap2β and Nup358 as markers for the inner nuclear membrane and the cytoplasmic side of the NPC, respectively. Using MIET imaging, we reconstruct the 3D profile of the nuclear envelope over the whole basal area, with an axial resolution of a few nanometers. This result demonstrates that optical microscopy can achieve nanometer axial resolution in biological samples and without recourse to complex interferometric approaches.

  6. Fast digital envelope detector based on generalized harmonic wavelet transform for BOTDR performance improvement

    International Nuclear Information System (INIS)

    Yang, Wei; Yang, Yuanhong; Yang, Mingwei

    2014-01-01

    We propose a fast digital envelope detector (DED) based on the generalized harmonic wavelet transform to improve the performance of coherent heterodyne Brillouin optical time domain reflectometry. The proposed DED can obtain undistorted envelopes due to the zero phase-shift ideal bandpass filter (BPF) characteristics of the generalized harmonic wavelet (GHW). Its envelope average ability benefits from the passband designing flexibility of the GHW, and its demodulation speed can be accelerated by using a fast algorithm that only analyses signals of interest within the passband of the GHW with reduced computational complexity. The feasibility and advantage of the proposed DED are verified by simulations and experiments. With an optimized bandwidth, Brillouin frequency shift accuracy improvements of 19.4% and 11.14%, as well as envelope demodulation speed increases of 39.1% and 24.9%, are experimentally attained by the proposed DED over Hilbert transform (HT) and Morlet wavelet transform (MWT) based DEDs, respectively. Spatial resolution by the proposed DED is undegraded, which is identical to the undegraded value by HT-DED with an allpass filter characteristic and better than the degraded value by MWT-DED with a Gaussian BPF characteristic. (paper)

  7. Phase Change Materials in Transparent Building Envelopes: A Strengths, Weakness, Opportunities and Threats (SWOT Analysis

    Directory of Open Access Journals (Sweden)

    Ilaria Vigna

    2018-01-01

    Full Text Available Building envelopes can play a crucial role in building improvement efficiency, and the adoption of Phase Change Materials (PCMs, coupled with transparent elements, may: (i allow a better control of the heat flows from/to the outdoor environment, (ii increase the exploitation of solar energy at a building scale and (iii modulate light transmission in order to prevent glare effects. Starting from a literature review, focused on experimental works, this research identifies the main possible integrations of PCMs in transparent/translucent building envelope components (in glazing, in shutters and in multilayer façade system in order to draw a global picture of the potential and limitations of these technologies. Transparent envelopes with PCMs have been classified from the simplest “zero” technology, which integrates the PCM in a double glass unit (DGU, to more complex solutions—with a different number of glass cavities (triple glazed unit TGU, different positions of the PCM layer (internal/external shutter, and in combination with other materials (TIM, aerogel, prismatic solar reflector, PCM curtain controlled by an electric pump. The results of the analysis have been summarised in a Strengths, Weakness, Opportunities and Threats (SWOT analysis table to underline the strengths and weaknesses of transparent building envelope components with PCMs, and to indicate opportunities and threats for future research and building applications.

  8. Nuclear envelope remnants: fluid membranes enriched in sterols and polyphosphoinositides.

    Directory of Open Access Journals (Sweden)

    Marie Garnier-Lhomme

    Full Text Available The cytoplasm of eukaryotic cells is a highly dynamic compartment where membranes readily undergo fission and fusion to reorganize the cytoplasmic architecture, and to import, export and transport various cargos within the cell. The double membrane of the nuclear envelope that surrounds the nucleus, segregates the chromosomes from cytoplasm and regulates nucleocytoplasmic transport through pores. Many details of its formation are still unclear. At fertilization the sperm devoid of nuclear envelope pores enters the egg. Although most of the sperm nuclear envelope disassembles, remnants of the envelope at the acrosomal and centriolar fossae do not and are subsequently incorporated into the newly forming male pronuclear envelope. Remnants are conserved from annelid to mammalian sperm.Using lipid mass spectrometry and a new application of deuterium solid-state NMR spectroscopy we have characterized the lipid composition and membrane dynamics of the sperm nuclear envelope remnants in isolated sperm nuclei.We report nuclear envelope remnants are relatively fluid membranes rich in sterols, devoid of sphingomyelin, and highly enriched in polyphosphoinositides and polyunsaturated phospholipids. The localization of the polybasic effector domain of MARCKS illustrates the non-nuclear aspect of the polyphosphoinositides. Based on their atypical biophysical characteristics and phospholipid composition, we suggest a possible role for nuclear envelope remnants in membrane fusion leading to nuclear envelope assembly.

  9. Adaptive Flight Envelope Estimation and Protection, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Impact Technologies, in collaboration with the Georgia Institute of Technology, proposes to develop and demonstrate an innovative flight envelope estimation and...

  10. An Alphavirus E2 Membrane-Proximal Domain Promotes Envelope Protein Lateral Interactions and Virus Budding

    Directory of Open Access Journals (Sweden)

    Emily A. Byrd

    2017-11-01

    Full Text Available Alphaviruses are members of a group of small enveloped RNA viruses that includes important human pathogens such as Chikungunya virus and the equine encephalitis viruses. The virus membrane is covered by a lattice composed of 80 spikes, each a trimer of heterodimers of the E2 and E1 transmembrane proteins. During virus endocytic entry, the E1 glycoprotein mediates the low-pH-dependent fusion of the virus membrane with the endosome membrane, thus initiating virus infection. While much is known about E1 structural rearrangements during membrane fusion, it is unclear how the E1/E2 dimer dissociates, a step required for the fusion reaction. A recent Alphavirus cryo-electron microscopy reconstruction revealed a previously unidentified D subdomain in the E2 ectodomain, close to the virus membrane. A loop within this region, here referred to as the D-loop, contains two highly conserved histidines, H348 and H352, which were hypothesized to play a role in dimer dissociation. We generated Semliki Forest virus mutants containing the single and double alanine substitutions H348A, H352A, and H348/352A. The three D-loop mutations caused a reduction in virus growth ranging from 1.6 to 2 log but did not significantly affect structural protein biosynthesis or transport, dimer stability, virus fusion, or specific infectivity. Instead, growth reduction was due to inhibition of a late stage of virus assembly at the plasma membrane. The virus particles that are produced show reduced thermostability compared to the wild type. We propose the E2 D-loop as a key region in establishing the E1-E2 contacts that drive glycoprotein lattice formation and promote Alphavirus budding from the plasma membrane.

  11. Herpesvirus glycoproteins undergo multiple antigenic changes before membrane fusion.

    Directory of Open Access Journals (Sweden)

    Daniel L Glauser

    Full Text Available Herpesvirus entry is a complicated process involving multiple virion glycoproteins and culminating in membrane fusion. Glycoprotein conformation changes are likely to play key roles. Studies of recombinant glycoproteins have revealed some structural features of the virion fusion machinery. However, how the virion glycoproteins change during infection remains unclear. Here using conformation-specific monoclonal antibodies we show in situ that each component of the Murid Herpesvirus-4 (MuHV-4 entry machinery--gB, gH/gL and gp150--changes in antigenicity before tegument protein release begins. Further changes then occurred upon actual membrane fusion. Thus virions revealed their final fusogenic form only in late endosomes. The substantial antigenic differences between this form and that of extracellular virions suggested that antibodies have only a limited opportunity to block virion membrane fusion.

  12. Mass spectrometry-based proteomics of fungal wall glycoproteins

    NARCIS (Netherlands)

    Yin, Q.Y.; de Groot, P.W.J.; de Koster, C.G.; Klis, F.M.

    2008-01-01

    The manifold functions of fungal wall glycoproteins include maintenance of cell wall integrity, homotypic and heterotypic adhesion, biofilm formation, acquisition of iron and sterols, protein degradation and coping with oxidative stress. Transcriptome studies indicate that the expression levels of

  13. Detection of glycoproteins in the Acanthamoeba plasma membrane

    Energy Technology Data Exchange (ETDEWEB)

    Paatero, G.I.L. (Abo Akademi (Finland)); Gahmberg, C.G. (Univ. of Helsinki (Finland))

    1988-11-01

    In the present study the authors have shown that glycoproteins are present in the plasma membrane of Acanthamoeba castellanii by utilizing different radioactive labeling techniques. Plasma membrane proteins in the amoeba were iodinated by {sup 125}I-lactoperoxidase labeling and the solubilized radiolabeled glycoproteins were separated by lectin-Sepharose affinity chromatography followed by polyacrylamide gel electrophoresis. The periodate/NaB{sup 3}H{sub 4} and galactose oxidase/NaB{sup 3}H{sub 4} labeling techniques were used for labeling of surface carbohydrates in the amoeba. Several surface-labeled glycoproteins were observed in addition to a diffusely labeled region with M{sub r} of 55,000-75,000 seen on electrophoresis, which could represent glycolipids. The presence of glycoproteins in the plasma membrane of Acanthamoeba castellanii was confirmed by metabolic labeling with ({sup 35}S)methionine followed by lectin-Sepharose affinity chromatography and polyacrylamide gel electrophoresis.

  14. Detection of glycoproteins in the Acanthamoeba plasma membrane

    International Nuclear Information System (INIS)

    Paatero, G.I.L.; Gahmberg, C.G.

    1988-01-01

    In the present study the authors have shown that glycoproteins are present in the plasma membrane of Acanthamoeba castellanii by utilizing different radioactive labeling techniques. Plasma membrane proteins in the amoeba were iodinated by 125 I-lactoperoxidase labeling and the solubilized radiolabeled glycoproteins were separated by lectin-Sepharose affinity chromatography followed by polyacrylamide gel electrophoresis. The periodate/NaB 3 H 4 and galactose oxidase/NaB 3 H 4 labeling techniques were used for labeling of surface carbohydrates in the amoeba. Several surface-labeled glycoproteins were observed in addition to a diffusely labeled region with M r of 55,000-75,000 seen on electrophoresis, which could represent glycolipids. The presence of glycoproteins in the plasma membrane of Acanthamoeba castellanii was confirmed by metabolic labeling with [ 35 S]methionine followed by lectin-Sepharose affinity chromatography and polyacrylamide gel electrophoresis

  15. Systemic alteration of cell-surface and secreted glycoprotein expression in malignant breast cancer cell lines

    OpenAIRE

    Timpe, Leslie C; Yen, Roger; Haste, Nicole V; Litsakos-Cheung, Christina; Yen, Ten-Yang; Macher, Bruce A

    2013-01-01

    Breast cancer cell lines express fewer transmembrane and secreted glycoproteins than nonmalignant ones. The objective of these experiments was to characterize the changes in the expression of several hundred glycoproteins quantitatively. Secreted and cell-surface glycoproteins were isolated using a glycoprotein capture protocol and then identified by tandem mass spectrometry. Glycoproteins expressed by a group of cell lines originating from malignant tumors of the breast were compared with th...

  16. The design and evaluation of integrated envelope and lighting control strategies for commercial buildings

    OpenAIRE

    Lee, ES; Selkowitz, SE

    2018-01-01

    This study investigates control strategies for coordinating the variable solar-optical properties of a dynamic building envelope system with a daylight controlled electric lighting system to reduce electricity consumption and increase comfort in the perimeter zone of commercial buildings. Control strategy design can be based on either simple, instantaneous measured data, or on complex, predictive algorithms that estimate the energy consumption for a selected operating state of the dynamic env...

  17. Enzymatic sulfation of mucus glycoprotein in gastric mucosa

    International Nuclear Information System (INIS)

    Liau, Y.H.; Carter, S.R.; Gwozdzinski, K.; Nadziejko, C.; Slomiany, A.; Slomiany, B.L.

    1986-01-01

    Among the posttranslational modifications that mucus glycoprotein undergo prior to secretion into the gastric lumen is the process of sulfation of the carbohydrate chains. These sulfate groups impart strongly negative charge to nucus glycoprotein and are thought to play a major role in the maintenance of gastric mucosal integrity. The authors report here the presence and some properties of an enzyme involved in the sulfation of gastric mucus glycoprotein. The sulfotransferase activity which catalyzes the transfer of sulfate ester group from PAPS to mucus glycoprotein was located in the detergent extracts of the microsomal fraction of rat gastric mucosa. Optimum enzymatic activity for sulfation of gastric mucin was obtained using 0.5% Triton X-100 and 25mM NaF at a pH of 6.8. ATP, ADP, MgCl 2 and MnCl 2 at concentrations examined were inhibitory. Under optimal conditions, the rate of sulfate incorporation was proportional to the microsomal enzyme protein concentration up to 50μg and remained constant with time of incubation for at least 1h. The apparent Km value of the enzyme for gastric mucus glycoprotein was 8.3 x 10 -6 M. The 35 S-labeled product of the enzyme reaction cochromatographed on Bio-Gel A-50 with gastric mucin, and gave on CsCl equilibrium density gradient centrifugation a band at the density of 1.48 in which the 35 S label coincided with the glycoprotein

  18. Primary Biliary Cirrhosis and the Nuclear Pore Complex

    Science.gov (United States)

    Duarte-Rey, Carolina; Bogdanos, Dimitrios; Yang, Chen-Yen; Roberts, Krista; Leung, Patrick S.C.; Anaya, Juan-Manuel; Worman, Howard J.; Gershwin, M. Eric

    2012-01-01

    Experimental models of autoimmune diseases have led to the conclusion that an immune response to nuclear antigens is a sentinel marker for loss of tolerance and potential tissue damage. Various proteins are targets of antinuclear antibodies in a variety of autoimmune diseases, ranging from systemic rheumatologic disorders to diseases affecting specific organs such as the liver. Autoantibodies against specific nuclear constituents have also been used as probes to understand the structure and the function of the targeted components and their relevance to disease pathogenesis. Approximately a quarter of patients with primary biliary cirrhosis (PBC) have antibodies targeting proteins of the nuclear pore complex (NPC), a multi-protein structure that mediates molecular transport across the nuclear envelope. Autoantibodies against the integral membrane glycoprotein gp210 and nucleoporin p62 appear to be highly specific for PBC, an autoimmune disease characterized by progressive destruction of intrahepatic biliary epithelial cells. This review discusses the diagnostic and clinical relevance of anti-NPC antibodies in PBC and the possibility that this autoimmune response may arise as a result of molecular mimicry. PMID:22487189

  19. Nucleic acid-binding glycoproteins which solubilize nucleic acids in dilute acid: re-examination of the Ustilago maydis glycoproteins

    Energy Technology Data Exchange (ETDEWEB)

    Unrau, P.; Champ, D.R.; Young, J.L.; Grant, C.E.

    1980-01-01

    Holloman reported the isolation from Ustilago maydis of a glycoprotein which prevented the precipitation of nucleic acids in cold 5% trichloroacetic acid. Two glycoprotein fractions from U. maydis with this nucleic acid-solubilizing activity were isolated in our laboratory using improved purification procedures. The activity was not due to nuclease contamination. The glycoproteins are distinguished by: their ability to bind to concanavalin A-Sepharose; their differential binding to double- and single-stranded deoxyribonucleic acid, and to ribonucleic acid; their molecular weights (46,000 and 69,000); and the relative amounts present in growing versus nongrowing cells. Both fractions required sulfhydryl-reducing conditions for optimal yields, specific activity, and stability. Nucleic acid binding was cooperative, the minimum number of glycoproteins required to make a native T7 DNA molecule soluble in dilute acid being estimated at 2 and 15, respectively.

  20. Alternative promoter usage of the membrane glycoprotein CD36

    Directory of Open Access Journals (Sweden)

    Whatling Carl

    2006-03-01

    Full Text Available Abstract Background CD36 is a membrane glycoprotein involved in a variety of cellular processes such as lipid transport, immune regulation, hemostasis, adhesion, angiogenesis and atherosclerosis. It is expressed in many tissues and cell types, with a tissue specific expression pattern that is a result of a complex regulation for which the molecular mechanisms are not yet fully understood. There are several alternative mRNA isoforms described for the gene. We have investigated the expression patterns of five alternative first exons of the CD36 gene in several human tissues and cell types, to better understand the molecular details behind its regulation. Results We have identified one novel alternative first exon of the CD36 gene, and confirmed the expression of four previously known alternative first exons of the gene. The alternative transcripts are all expressed in more than one human tissue and their expression patterns vary highly in skeletal muscle, heart, liver, adipose tissue, placenta, spinal cord, cerebrum and monocytes. All alternative first exons are upregulated in THP-1 macrophages in response to oxidized low density lipoproteins. The alternative promoters lack TATA-boxes and CpG islands. The upstream region of exon 1b contains several features common for house keeping gene and monocyte specific gene promoters. Conclusion Tissue-specific expression patterns of the alternative first exons of CD36 suggest that the alternative first exons of the gene are regulated individually and tissue specifically. At the same time, the fact that all first exons are upregulated in THP-1 macrophages in response to oxidized low density lipoproteins may suggest that the alternative first exons are coregulated in this cell type and environmental condition. The molecular mechanisms regulating CD36 thus appear to be unusually complex, which might reflect the multifunctional role of the gene in different tissues and cellular conditions.

  1. Antifreeze glycoprotein agents: structural requirements for activity.

    Science.gov (United States)

    Carvajal-Rondanelli, Patricio A; Marshall, Sergio H; Guzman, Fanny

    2011-11-01

    Antifreeze glycoproteins (AFGPs) are considered to be the most efficient means to reduce ice damage to cell tissues since they are able to inhibit growth and crystallization of ice. The key element of antifreeze proteins is to act in a non-colligative manner which allows them to function at concentrations 300-500 times lowers than other dissolved solutes. During the past decade, AFGPs have demonstrated tremendous potential for many pharmaceutical and food applications. Presently, the only route to obtain AFGPs involves the time consuming and expensive process of isolation and purification from deep-sea polar fishes. Unfortunately, it is not amenable to mass production and commercial applications. The lack of understanding of the mechanism through which the AFGPs inhibit ice growth has also hampered the realization of industrial and biotechnological applications. Here we report the structural motifs that are essential for antifreeze activity of AFGPs, and propose a unified mechanism based on both recent studies of short alanine peptides and structure activity relationship of synthesized AFGPs. Copyright © 2011 Society of Chemical Industry.

  2. P-glycoprotein targeted nanoscale drug carriers

    KAUST Repository

    Li, Wengang

    2013-02-01

    Multi-drug resistance (MDR) is a trend whereby tumor cells exposed to one cytotoxic agent develop cross-resistance to a range of structurally and functionally unrelated compounds. P -glycoprotein (P -gp) efflux pump is one of the mostly studied drug carrying processes that shuttle the drugs out of tumor cells. Thus, P -gp inhibitors have attracted a lot of attention as they can stop cancer drugs from being pumped out of target cells with the consumption of ATP. Using quantitive structure activity relationship (QSAR), we have successfully synthesized a series of novel P -gp inhibitors. The obtained dihydropyrroloquinoxalines series were fully characterized and then tested against bacterial and tumor assays with over-expressed P -gps. All compounds were bioactive especially compound 1c that had enhanced antibacterial activity. Furthermore, these compounds were utilized as targeting vectors to direct drug delivery vehicles such as silica nanoparticles (SNPs) to cancerous Hela cells with over expressed P -gps. Cell uptake studies showed a successful accumulation of these decorated SNPs in tumor cells compared to undecorated SNPs. The results obtained show that dihydropyrroloquinoxalines constitute a promising drug candidate for targeting cancers with MDR. Copyright © 2013 American Scientific Publishers All rights reserved.

  3. Morphology and Molecular Composition of Purified Bovine Viral Diarrhea Virus Envelope.

    Directory of Open Access Journals (Sweden)

    Nathalie Callens

    2016-03-01

    Full Text Available The family Flaviviridae includes viruses that have different virion structures and morphogenesis mechanisms. Most cellular and molecular studies have been so far performed with viruses of the Hepacivirus and Flavivirus genera. Here, we studied bovine viral diarrhea virus (BVDV, a member of the Pestivirus genus. We set up a method to purify BVDV virions and analyzed their morphology by electron microscopy and their protein and lipid composition by mass spectrometry. Cryo-electron microscopy showed near spherical viral particles displaying an electron-dense capsid surrounded by a phospholipid bilayer with no visible spikes. Most particles had a diameter of 50 nm and about 2% were larger with a diameter of up to 65 nm, suggesting some size flexibility during BVDV morphogenesis. Morphological and biochemical data suggested a low envelope glycoprotein content of BVDV particles, E1 and E2 being apparently less abundant than Erns. Lipid content of BVDV particles displayed a ~2.3 to 3.5-fold enrichment in cholesterol, sphingomyelin and hexosyl-ceramide, concomitant with a 1.5 to 5-fold reduction of all glycerophospholipid classes, as compared to lipid content of MDBK cells. Although BVDV buds in the endoplasmic reticulum, its lipid content differs from a typical endoplasmic reticulum membrane composition. This suggests that BVDV morphogenesis includes a mechanism of lipid sorting. Functional analyses confirmed the importance of cholesterol and sphingomyelin for BVDV entry. Surprisingly, despite a high cholesterol and sphingolipid content of BVDV envelope, E2 was not found in detergent-resistant membranes. Our results indicate that there are differences between the structure and molecular composition of viral particles of Flaviviruses, Pestiviruses and Hepaciviruses within the Flaviviridae family.

  4. Performance measurement with fuzzy data envelopment analysis

    CERN Document Server

    Tavana, Madjid

    2014-01-01

    The intensity of global competition and ever-increasing economic uncertainties has led organizations to search for more efficient and effective ways to manage their business operations.  Data envelopment analysis (DEA) has been widely used as a conceptually simple yet powerful tool for evaluating organizational productivity and performance. Fuzzy DEA (FDEA) is a promising extension of the conventional DEA proposed for dealing with imprecise and ambiguous data in performance measurement problems. This book is the first volume in the literature to present the state-of-the-art developments and applications of FDEA. It is designed for students, educators, researchers, consultants and practicing managers in business, industry, and government with a basic understanding of the DEA and fuzzy logic concepts.

  5. Cricket team selection using data envelopment analysis.

    Science.gov (United States)

    Amin, Gholam R; Sharma, Sujeet Kumar

    2014-01-01

    This paper suggests a new method for cricket team selection using data envelopment analysis (DEA). We propose a DEA formulation for evaluation of cricket players in different capabilities using multiple outputs. This evaluation determines efficient and inefficient cricket players and ranks them on the basis of DEA scores. The ranking can be used to choose the required number of players for a cricket team in each cricketing capability. A real dataset, Indian Premier League 4 (IPL 2011), cricket players having various capabilities is used to choose the best cricket team. The proposed method has the advantage of considering multiple factors related to the performance of players in multiple capabilities collected from IPL 4 and aggregates their scores using a linear programming DEA model. This DEA Aggregation gives the scores of players objectively instead of using subjective computations. The proposed DEA method can be used to form a national cricket team from several clubs or a team of top cricketers.

  6. Pushing the Envelope of Extreme Space Weather

    Science.gov (United States)

    Pesnell, W. D.

    2014-12-01

    Extreme Space Weather events are large solar flares or geomagnetic storms, which can cost billions of dollars to recover from. We have few examples of such events; the Carrington Event (the solar superstorm) is one of the few that had superlatives in three categories: size of solar flare, drop in Dst, and amplitude of aa. Kepler observations show that stars similar to the Sun can have flares releasing millions of times more energy than an X-class flare. These flares and the accompanying coronal mass ejections could strongly affect the atmosphere surrounding a planet. What level of solar activity would be necessary to strongly affect the atmosphere of the Earth? Can we map out the envelope of space weather along the evolution of the Sun? What would space weather look like if the Sun stopped producing a magnetic field? To what extreme should Space Weather go? These are the extremes of Space Weather explored in this talk.

  7. Integrated Energy Design of the Building Envelope

    DEFF Research Database (Denmark)

    Nielsen, Martin Vraa

    This thesis describes the outcome of the PhD project Integrated energy design of the building envelope carried out through a combination of scientific dissemination reported through peer-reviewed journals and a wide range of affiliated projects involved in at an architectural firm. The research...... place. This was done by applying the methodology of Integrated Energy Design (IED) and analysing its applicability in the design of façades. A major part of the project was an actual engagement in the architectural process to test out incorporating a consciousness about energy and comfort as part...... of a more holistic performance evaluation. The research project illustrates the great potential in taking passive properties into account through a geometrical optimisation inherent in the development of the architectural concept. It demonstrates that integration of technical knowledge at the early stages...

  8. Polarimetry and physics of Be star envelopes

    International Nuclear Information System (INIS)

    Coyne, G.V.; McLean, I.S.

    1982-01-01

    A review of the most recent developments in polarization studies of Be stars is presented. New polarization techniques for high-resolution spectropolarimetry and for near infrared polarimetry are described and a wide range of new observations are discussed. These include broad-band, intermediate-band and multichannel observations of the continuum polarization of Be stars in the wavelength interval 0.3-2.2 microns, high resolution (0.5 A) line profile polarimetry of a few stars and surveys of many stars for the purposes of statistical analyses. The physical significance of the observational material is discussed in the light of recent theoretical models. Emphasis is placed on the physical and geometrical parameters of Be star envelopes which polarimetry helps to determine. (Auth.)

  9. Cellular and biophysical evidence for interactions between adenosine triphosphate and P-glycoprotein substrates

    DEFF Research Database (Denmark)

    Abraham, E H; Shrivastav, B; Salikhova, A Y

    2001-01-01

    P-glycoprotein is involved with the removal of drugs, most of them cations, from the plasma membrane and cytoplasm. Pgp is also associated with movement of ATP, an anion, from the cytoplasm to the extracellular space. The central question of this study is whether drug and ATP transport associated...... provides a framework for understanding the role of erythrocytes in drug resistance. The erythrocyte consists of a membrane surrounding a millimolar pool of ATP. Mammalian RBCs have no nucleus or DNA drug/toxin targets. From the perspective of drug/ATP complex formation, the RBC serves as an important...

  10. Diversity in the fertilization envelopes of echinoderms

    Science.gov (United States)

    Oulhen, Nathalie; Reich, Adrian; Wong, Julian L.; Wessel, Gary M.

    2013-01-01

    Cell surface changes in an egg at fertilization are essential to begin development and for protecting the zygote. Most fertilized eggs construct a barrier around themselves by modifying their original extracellular matrix. This construction usually results from calcium induced exocytosis of cortical granules, the contents of which in sea urchins function to form the fertilization envelope (FE), an extracellular matrix of cortical granule contents built upon a vitelline layer scaffold. Here we examined the molecular mechanism of this process in sea stars, a close relative of the sea urchins, and analyze the evolutionary changes that likely occurred in the functionality of this structure between these two organisms. We find that the FE of sea stars is more permeable than in sea urchins, allowing diffusion of molecules in excess of 2 megadaltons. Through a proteomic and transcriptomic approach, we find that most, but not all of the proteins present in the sea urchin envelope are present in sea stars, including SFE9, proteoliaisin, rendezvin, and ovoperoxidase. The mRNAs encoding these FE proteins accumulated most densely in early oocytes, and then beginning with vitellogenesis, these mRNAs deceased in abundance to levels nearly undetectable in eggs. Antibodies to the SFE9 protein of sea stars showed that the cortical granules in sea star also accumulated most significantly in early oocytes, and different from sea urchins, they translocated to the cortex of the oocytes well before meiotic initiation. These results suggest that the preparation of the cell surface changes in sea urchins has been shifted to later in oogenesis and perhaps reflects the meiotic differences among the species–sea star oocytes are stored in prophase of meiosis and fertilized during the meiotic divisions, as in most animals, whereas sea urchins are one of the few taxa in which eggs have completed meiosis prior to fertilization. PMID:23331915

  11. Identification of the dynamic operating envelope of HCCI engines using class imbalance learning.

    Science.gov (United States)

    Janakiraman, Vijay Manikandan; Nguyen, XuanLong; Sterniak, Jeff; Assanis, Dennis

    2015-01-01

    Homogeneous charge compression ignition (HCCI) is a futuristic automotive engine technology that can significantly improve fuel economy and reduce emissions. HCCI engine operation is constrained by combustion instabilities, such as knock, ringing, misfires, high-variability combustion, and so on, and it becomes important to identify the operating envelope defined by these constraints for use in engine diagnostics and controller design. HCCI combustion is dominated by complex nonlinear dynamics, and a first-principle-based dynamic modeling of the operating envelope becomes intractable. In this paper, a machine learning approach is presented to identify the stable operating envelope of HCCI combustion, by learning directly from the experimental data. Stability is defined using thresholds on combustion features obtained from engine in-cylinder pressure measurements. This paper considers instabilities arising from engine misfire and high-variability combustion. A gasoline HCCI engine is used for generating stable and unstable data observations. Owing to an imbalance in class proportions in the data set, the models are developed both based on resampling the data set (by undersampling and oversampling) and based on a cost-sensitive learning method (by overweighting the minority class relative to the majority class observations). Support vector machines (SVMs) and recently developed extreme learning machines (ELM) are utilized for developing dynamic classifiers. The results compared against linear classification methods show that cost-sensitive nonlinear ELM and SVM classification algorithms are well suited for the problem. However, the SVM envelope model requires about 80% more parameters for an accuracy improvement of 3% compared with the ELM envelope model indicating that ELM models may be computationally suitable for the engine application. The proposed modeling approach shows that HCCI engine misfires and high-variability combustion can be predicted ahead of time

  12. 10 CFR 434.402 - Building envelope assemblies and materials.

    Science.gov (United States)

    2010-01-01

    ... areas but excluding vents, grilles, and pipes. 402.2Air Leakage and Moisture Mitigation. The... envelope shall be designed to limit moisture migration that leads to deterioration in insulation or... the potential for condensation within the envelope and to determine the position of the vapor retarder...

  13. Mauritius green building handbook, vol 1: Building envelope

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2010-08-01

    Full Text Available The building envelope plays a significant role in the performance of a building, especially with regard to the green building components. This chapter will focus on the external building envelope only, i.e., sub-structure, super structure, and roof...

  14. 14 CFR 27.87 - Height-speed envelope.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Height-speed envelope. 27.87 Section 27.87... STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Performance § 27.87 Height-speed envelope. (a) If there is any combination of height and forward speed (including hover) under which a safe landing cannot be made under the...

  15. 14 CFR 29.1517 - Limiting height-speed envelope.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Limiting height-speed envelope. 29.1517... Operating Limitations § 29.1517 Limiting height-speed envelope. For Category A rotorcraft, if a range of heights exists at any speed, including zero, within which it is not possible to make a safe landing...

  16. Semiparametric Power Envelopes for Tests of the Unit Root Hypothesis

    DEFF Research Database (Denmark)

    Jansson, Michael

    This paper derives asymptotic power envelopes for tests of the unit root hypothesis in a zero-mean AR(1) model. The power envelopes are derived using the limits of experiments approach and are semiparametric in the sense that the underlying error distribution is treated as an unknown...

  17. Calculation of CWKB envelope in boson and fermion productions

    Indian Academy of Sciences (India)

    Abstract. We present the calculation of envelope of boson and of both low- and high- mass fermion production at the end of inflation when the coherently oscillating inflatons decay into bosons and fermions. We consider three different models of inflation and use. CWKB technique to calculate the envelope to understand the ...

  18. Cloning and expression of the guinea pig cytomegalovirus glycoprotein B (gB) in a recombinant baculovirus: utility for vaccine studies for the prevention of experimental infection.

    Science.gov (United States)

    Schleiss, Mark R; Jensen, Nancy J

    2003-03-01

    The guinea pig cytomegalovirus (GPCMV) is unique among the cytomegaloviruses of small mammals, insofar as during pregnancy it crosses the placenta, causing infection of the fetus. Although the guinea pig model is well suited to vaccine studies, the lack of cloned, recombinant forms of immunogenic GPCMV proteins, such as envelope glycoproteins, has hindered experimental evaluations of subunit immunization for prevention of fetal disease. Since the glycoprotein B (gB) is a major target of neutralizing antibody responses, the GPCMV gB was cloned and expressed in a recombinant baculovirus. A recombinant was generated which expressed gB, truncated at codon 692, upstream of the putative transmembrane domain. Processing and expression of the recombinant protein, designated Bac-gB, was assessed, and the protein was characterized immunologically. Anti-gB antibodies were immunoreactive with Bac-gB by enzyme linked immunosorbent assay (ELISA) and immunoblot assay. Immunoprecipitation with polyclonal anti-GPCMV antisera identified protein species of 120, 80 and 30 kDa by reducing SDS-PAGE, suggesting that authentic cleavage and processing of Bac-gB occurred in insect cells. Sera from guinea pigs immunized with lectin-column purified native glycoproteins had high ELISA titers to Bac-gB. Recombinant GPCMV gB expressed in insect cells should prove useful in defining correlates of protective immunity in the GPCMV congenital infection model.

  19. Design reference year for development of photovoltaic envelope systems

    Science.gov (United States)

    Mihalka, Peter; Matiasovsky, Peter

    2017-07-01

    An application of photovoltaic cells on external surfaces of building envelope represents a development of new construction element. A mutual coupling between thermal behaviour of photovoltaic layer and the other layers of the structure, with special properties, requires a specific selection of the characteristic outdoor thermal boundary conditions, necessary for optimum design of the envelope from the aspect of structure, material composition and geometry. The main design criteria are the effectiveness and elimination of overheating of photovoltaic module and the optimisation of heat distribution in the envelope structure during particular year seasons. The paper contains the results of the analysis of time courses of climatic elements during a real year as the boundary conditions for simulation of photovoltaic integrated building envelope systems, used in simulations of thermal behaviour of photovoltaics integrated with building envelope systems.

  20. Involvement of viral envelope GP2 in Ebola virus entry into cells expressing the macrophage galactose-type C-type lectin

    International Nuclear Information System (INIS)

    Usami, Katsuaki; Matsuno, Keita; Igarashi, Manabu; Denda-Nagai, Kaori; Takada, Ayato; Irimura, Tatsuro

    2011-01-01

    Highlights: → Ebola virus infection is mediated by binding to and fusion with the target cells. → Structural feature of the viral glycoprotein determines the infectivity. → Surface C-type lectin, MGL, of macrophages and dendritic cells mediate the infection. → GP2, one of glycoprotein subunits, plays an essential role in MGL-mediated infection. → There is a critical amino acid residue involved in high infectivity. -- Abstract: Ebola virus (EBOV) infection is initiated by the interaction of the viral surface envelope glycoprotein (GP) with the binding sites on target cells. Differences in the mortality among different species of the Ebola viruses, i.e., Zaire ebolavirus (ZEBOV) and Reston ebolavirus (REBOV), correspond to the in vitro infectivity of the pseudo-typed virus constructed with the GPs in cells expressing macrophage galactose-type calcium-type lectin (MGL/CD301). Through mutagenesis of GP2, the transmembrane-anchored subunit of GP, we found that residues 502-527 of the GP2 sequence determined the different infectivity between VSV-ZEBOV GP and -REBOV GP in MGL/CD301-expressing cells and a histidine residue at position 516 of ZEBOV GP2 appeared essential in the differential infectivity. These findings may provide a clue to clarify a molecular basis of different pathogenicity among EBOV species.

  1. Involvement of viral envelope GP2 in Ebola virus entry into cells expressing the macrophage galactose-type C-type lectin

    Energy Technology Data Exchange (ETDEWEB)

    Usami, Katsuaki [Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033 (Japan); Matsuno, Keita; Igarashi, Manabu [Department of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo 001-0020 (Japan); Denda-Nagai, Kaori [Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033 (Japan); Takada, Ayato [Department of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo 001-0020 (Japan); Irimura, Tatsuro, E-mail: irimura@mol.f.u-tokyo.ac.jp [Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033 (Japan)

    2011-04-01

    Highlights: {yields} Ebola virus infection is mediated by binding to and fusion with the target cells. {yields} Structural feature of the viral glycoprotein determines the infectivity. {yields} Surface C-type lectin, MGL, of macrophages and dendritic cells mediate the infection. {yields} GP2, one of glycoprotein subunits, plays an essential role in MGL-mediated infection. {yields} There is a critical amino acid residue involved in high infectivity. -- Abstract: Ebola virus (EBOV) infection is initiated by the interaction of the viral surface envelope glycoprotein (GP) with the binding sites on target cells. Differences in the mortality among different species of the Ebola viruses, i.e., Zaire ebolavirus (ZEBOV) and Reston ebolavirus (REBOV), correspond to the in vitro infectivity of the pseudo-typed virus constructed with the GPs in cells expressing macrophage galactose-type calcium-type lectin (MGL/CD301). Through mutagenesis of GP2, the transmembrane-anchored subunit of GP, we found that residues 502-527 of the GP2 sequence determined the different infectivity between VSV-ZEBOV GP and -REBOV GP in MGL/CD301-expressing cells and a histidine residue at position 516 of ZEBOV GP2 appeared essential in the differential infectivity. These findings may provide a clue to clarify a molecular basis of different pathogenicity among EBOV species.

  2. A novel method for analysis of membrane microdomains: vesicular stomatitis virus glycoprotein microdomains change in size during infection, and those outside of budding sites resemble sites of virus budding

    International Nuclear Information System (INIS)

    Brown, Erica L.; Lyles, Douglas S.

    2003-01-01

    Membrane proteins, including viral envelope glycoproteins, may be organized into areas of locally high concentration, commonly referred to as membrane microdomains. Some viruses bud from detergent-resistant microdomains referred to as lipid rafts. However, vesicular stomatitis virus (VSV) serves as a prototype for viruses that bud from areas of plasma membrane that are not detergent resistant. We developed a new analytical method for immunoelectron microscopy data to determine whether the VSV envelope glycoprotein (G protein) is organized into plasma membrane microdomains. This method was used to quantify the distribution of the G protein in microdomains in areas of plasma membrane that did not contain budding sites. These microdomains were compared to budding virus envelopes to address the question of whether G protein-containing microdomains were formed only at the sites of budding. At early times postinfection, most of the G protein was organized into membrane microdomains outside of virus budding sites that were approximately 100-150 nm, with smaller amounts distributed into larger microdomains. In contrast to early times postinfection, the increased level of G protein in the host plasma membrane at later times postinfection led to distribution of G protein among membrane microdomains of a wider variety of sizes, rather than a higher G protein concentration in the 100- to 150-nm microdomains. VSV budding occurred in G protein-containing microdomains with a range of sizes, some of which were smaller than the virus envelope. These microdomains extended in size to a maximum of 300-400 nm from the tip of the budding virion. The data support a model for virus assembly in which G protein organizes into membrane microdomains that resemble virus envelopes prior to formation of budding sites, and these microdomains serve as the sites of assembly of internal virion components

  3. Development of a recombinant poxvirus expressing bovine herpesvirus-1 glycoprotein D

    International Nuclear Information System (INIS)

    Ruiz Saenz, Julian; Osorio, Jorge E; Vera, Victor J.

    2012-01-01

    Bovine herpesvirus-1 is a DNA virus belonging to the family herpesviridae, which affects cattle, causing a wide spectrum of clinical manifestations and economic losses. The main immunogenic component is its envelope glycoprotein d (GD), which has been characterized and used as immunogen in different expression systems. The aim of this work was to generate a recombinant poxvirus (raccoonpox [RCN]) expressing a truncated version of BHV-1 GD to be used as a vaccine. to do this, it was amplified the gene for a truncated version of GD which subsequently was cloned in transfer plasmid PTK/IRES/TPA which has homology to sites of poxvirus thymidine kinase, an internal site of ribosome entry (IRES) and a secretory signal (TPA), generating the construct PTK/GD/IRES/TPA. to generate the recombinant RCN, we took BSC-1 cells and we infected with a wild type RCN (CDC/v71-i-85a) at a multiplicity of infection of 0.05, then cells were transfected with the construct PTK/GD/IRES/TPA, generating different viral populations with and without the gene of interest. To select recombinant viruses expressing the gene of interest, we performed a selection of recombinant thymidine kinase negative and positive for GD by three rounds of plaque purification on rat-2 cells monolayers which are thymidine kinase null and using bromodeoxyuridine. Recombinant viruses were recovered and confirmed by PCR and nucleotide sequencing and so called RCN-GD.

  4. Design and evaluation of bi- and trispecific antibodies targeting multiple filovirus glycoproteins.

    Science.gov (United States)

    Nyakatura, Elisabeth K; Zak, Samantha E; Wec, Anna Z; Hofmann, Daniel; Shulenin, Sergey; Bakken, Russell R; Aman, M Javad; Chandran, Kartik; Dye, John M; Lai, Jonathan R

    2018-03-02

    Filoviruses (family Filoviridae ) include five ebolaviruses and Marburg virus. These pathogens cause a rapidly progressing and severe viral disease with high mortality rates (generally 30%-90%). Outbreaks of filovirus disease are sporadic and, until recently, were limited to less than 500 cases. However, the 2013-2016 epidemic in western Africa, caused by Ebola virus (EBOV), illustrated the potential of filovirus outbreaks to escalate to a much larger scale (over 28,000 suspected cases). Monoclonal antibodies (mAbs) against the envelope glycoprotein represent a promising therapeutic platform for managing filovirus infections. However, mAbs that exhibit neutralization or protective properties against multiple filoviruses are rare. Here, we examined a panel of engineered bi- and trispecific antibodies, whereby variable fragments of mAbs that target epitopes from multiple filoviruses were combined, for their capacity to neutralize viral infection across filovirus species. We found that bispecific combinations targeting EBOV and Sudan virus (SUDV, another ebolavirus), provide potent cross-neutralization and protection in mice. Furthermore, trispecific combinations, targeting EBOV, SUDV, and MARV, exhibited strong neutralization potential against all three viruses. These results provide important insight into multispecific antibody engineering against filoviruses and will inform future immunotherapeutic discovery. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Mechanistic understanding of N-glycosylation in Ebola virus glycoprotein maturation and function.

    Science.gov (United States)

    Wang, Bin; Wang, Yujie; Frabutt, Dylan A; Zhang, Xihe; Yao, Xiaoyu; Hu, Dan; Zhang, Zhuo; Liu, Chaonan; Zheng, Shimin; Xiang, Shi-Hua; Zheng, Yong-Hui

    2017-04-07

    The Ebola virus (EBOV) trimeric envelope glycoprotein (GP) precursors are cleaved into the receptor-binding GP 1 and the fusion-mediating GP 2 subunits and incorporated into virions to initiate infection. GP 1 and GP 2 form heterodimers that have 15 or two N -glycosylation sites (NGSs), respectively. Here we investigated the mechanism of how N -glycosylation contributes to GP expression, maturation, and function. As reported before, we found that, although GP 1 NGSs are not critical, the two GP 2 NGSs, Asn 563 and Asn 618 , are essential for GP function. Further analysis uncovered that Asn 563 and Asn 618 regulate GP processing, demannosylation, oligomerization, and conformation. Consequently, these two NGSs are required for GP incorporation into EBOV-like particles and HIV type 1 (HIV-1) pseudovirions and determine viral transduction efficiency. Using CRISPR/Cas9 technology, we knocked out the two classical endoplasmic reticulum chaperones calnexin (CNX) and/or calreticulin (CRT) and found that both CNX and CRT increase GP expression. Nevertheless, NGSs are not required for the GP interaction with CNX or CRT. Together, we conclude that, although Asn 563 and Asn 618 are not required for EBOV GP expression, they synergistically regulate its maturation, which determines its functionality. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Lipid Binding of the Amphipathic Helix Serving as Membrane Anchor of Pestivirus Glycoprotein Erns.

    Science.gov (United States)

    Aberle, Daniel; Oetter, Kay-Marcus; Meyers, Gregor

    2015-01-01

    Pestiviruses express a peculiar protein named Erns representing envelope glycoprotein and RNase, which is important for control of the innate immune response and persistent infection. The latter functions are connected with secretion of a certain amount of Erns from the infected cell. Retention/secretion of Erns is most likely controlled by its unusual membrane anchor, a long amphipathic helix attached in plane to the membrane. Here we present results of experiments conducted with a lipid vesicle sedimentation assay able to separate lipid-bound from unbound protein dissolved in the water phase. Using this technique we show that a protein composed of tag sequences and the carboxyterminal 65 residues of Erns binds specifically to membrane vesicles with a clear preference for compositions containing negatively charged lipids. Mutations disturbing the helical folding and/or amphipathic character of the anchor as well as diverse truncations and exchange of amino acids important for intracellular retention of Erns had no or only small effects on the proteins membrane binding. This result contrasts the dramatically increased secretion rates observed for Erns proteins with equivalent mutations within cells. Accordingly, the ratio of secreted versus cell retained Erns is not determined by the lipid affinity of the membrane anchor.

  7. Lipid Binding of the Amphipathic Helix Serving as Membrane Anchor of Pestivirus Glycoprotein Erns.

    Directory of Open Access Journals (Sweden)

    Daniel Aberle

    Full Text Available Pestiviruses express a peculiar protein named Erns representing envelope glycoprotein and RNase, which is important for control of the innate immune response and persistent infection. The latter functions are connected with secretion of a certain amount of Erns from the infected cell. Retention/secretion of Erns is most likely controlled by its unusual membrane anchor, a long amphipathic helix attached in plane to the membrane. Here we present results of experiments conducted with a lipid vesicle sedimentation assay able to separate lipid-bound from unbound protein dissolved in the water phase. Using this technique we show that a protein composed of tag sequences and the carboxyterminal 65 residues of Erns binds specifically to membrane vesicles with a clear preference for compositions containing negatively charged lipids. Mutations disturbing the helical folding and/or amphipathic character of the anchor as well as diverse truncations and exchange of amino acids important for intracellular retention of Erns had no or only small effects on the proteins membrane binding. This result contrasts the dramatically increased secretion rates observed for Erns proteins with equivalent mutations within cells. Accordingly, the ratio of secreted versus cell retained Erns is not determined by the lipid affinity of the membrane anchor.

  8. Amino-terminal sequence of glycoprotein D of herpes simplex virus types 1 and 2

    International Nuclear Information System (INIS)

    Eisenberg, R.J.; Long, D.; Hogue-Angeletti, R.; Cohen, G.H.

    1984-01-01

    Glycoprotein D (gD) of herpes simplex virus is a structural component of the virion envelope which stimulates production of high titers of herpes simplex virus type-common neutralizing antibody. The authors caried out automated N-terminal amino acid sequencing studies on radiolabeled preparations of gD-1 (gD of herpes simplex virus type 1) and gD-2 (gD of herpes simplex virus type 2). Although some differences were noted, particularly in the methionine and alanine profiles for gD-1 and gD-2, the amino acid sequence of a number of the first 30 residues of the amino terminus of gD-1 and gD-2 appears to be quite similar. For both proteins, the first residue is a lysine. When we compared out sequence data for gD-1 with those predicted by nucleic acid sequencing, the two sequences could be aligned (with one exception) starting at residue 26 (lysine) of the predicted sequence. Thus, the first 25 amino acids of the predicted sequence are absent from the polypeptides isolated from infected cells

  9. P-glycoprotein activity and biological response

    International Nuclear Information System (INIS)

    Vaalburg, W.; Hendrikse, N.H.; Elsinga, P.H.; Bart, J.; Waarde, A. van

    2005-01-01

    P-glycoprotein (P-gp) is a transmembrane drug efflux pump encoded by the MDR-1 gene in humans. Most likely P-gp protects organs against endogenous and exogenous toxins by extruding toxic compounds such as chemotherapeutics and other drugs. Many drugs are substrates for P-gp. Since P-gp is also expressed in the blood-brain barrier, P-gp substrates reach lower concentrations in the brain than in P-gp-negative tissues. Failure of response to chemotherapy of malignancies can be due to intrinsic or acquired drug resistance. Many tumors are multidrug resistant (MDR); resistant to several structurally unrelated chemotherapeutic agents. Several mechanisms are involved in MDR of which P-gp is studied most extensively. P-gp extrudes drugs out of tumor cells resulting in decreased intracellular drug concentrations, leading to the MDR phenotype. Furthermore, the MDR-1 gene exhibits several single nucleotide polymorphisms, some of which result in different transport capabilities. P-gp functionality and the effect of P-gp modulation on the pharmacokinetics of novel and established drugs can be studied in vivo by positron emission tomography (PET) using carbon-11 and fluorine-18-labeled P-gp substrates and modulators. PET may demonstrate the consequences of genetic differences on tissue pharmacokinetics. Inhibitors such as calcium-channel blockers (verapamil), cyclosporin A, ONT-093, and XR9576 can modulate the P-gp functionality. With PET the effect of P-gp modulation on the bioavailability of drugs can be investigated in humans in vivo. PET also allows the measurement of the efficacy of newly developed P-gp modulators

  10. Physical Properties of the Glycoprotein Mucin

    Science.gov (United States)

    Matthews, Garrett; Davis, William; Superfine, Richard; Boucher, Richard

    2003-03-01

    Epithelial cell surfaces are covered by a protective gel known as mucus. The physiological function of this gel depends on its rheological properties, and these properties are largely derived from the secreted glycoprotein mucin. The genetic disease Cystic Fibrosis (CF) is characterized by the adhesion of thick, viscous mucus on these tissues. In the lungs, this results in the interruption of mucus transport thus compromising the first line of defense against pathogens in these tissues. In order to restore the flow of tracheobronchial mucus out of the body, knowledge of the molecular and physical properties of mucin and mucin solutions would be greatly beneficial. The present model for these molecules is that of a long linear strand consisting of highly glycosylated regions linked by cystein-rich globular regions. It is thought that the globular regions may interact either through intermolecular disulfide bonds or through hydrophobic interactions. It has also been speculated that the glycosylated regions may have lectin-like interactions. In the present work, single mucin molecules were imaged at high resolution using atomic force microscopy (AFM). Phase mode imaging was used to map the interactions between functionalized AFM tips and the molecular topography. Additionally, using force-distance curves with the AFM, the adhesion between mucin bound tips and cell surface glycocalyx and glycocalyx-like model surfaces, was measured. And, finally, the viscoelastic properties of mucin solutions were measured using the recently developed technique, single particle tracking microrheology. A model is being developed that will incorporate the properties of mucins beginning at the single molecule and ending with the bulk viscoelastic properties.

  11. Active materials for adaptive architectural envelopes based on plant adaptation principles

    Directory of Open Access Journals (Sweden)

    Marlen Lopez

    2015-06-01

    Full Text Available In this paper, the authors present research into adaptive architectural envelopes that adapt to environmental changes using active materials, as a result of application of biomimetic principles from plants to architecture. Buildings use large amounts of energy in order to maintain their internal comfort, because conventional buildings are designed to provide a static design solution. Most of the current solutions for facades are not designed for optimum adaptation to contextual issues and needs, while biological solutions to adaptation are often complex, multi-functional and highly responsive. We focus on plant adaptations to the environment, as, due to their immobility, they have developed special means of protection against weather changing conditions. Furthermore, recent developments in new technologies are allowing the possibility to transfer these plant adaptation strategies to technical implementation. These technologies include: multi-material 3D printing, advances in materials science and new capabilities in simulation software. Unlike traditional mechanical activation used for dynamic systems in kinetic facades, adaptive architectural envelopes require no complex electronics, sensors, or actuators. The paper proposes a research of the relationship that can be developed between active materials and environmental issues in order to propose innovative and low-tech design strategies to achieve living envelopes according to plant adaptation principles.  

  12. Infectious Entry Pathway Mediated by the Human Endogenous Retrovirus K Envelope Protein.

    Science.gov (United States)

    Robinson, Lindsey R; Whelan, Sean P J

    2016-01-20

    Endogenous retroviruses (ERVs), the majority of which exist as degraded remnants of ancient viruses, comprise approximately 8% of the human genome. The youngest human ERVs (HERVs) belong to the HERV-K(HML-2) subgroup and were endogenized within the past 1 million years. The viral envelope protein (ENV) facilitates the earliest events of endogenization (cellular attachment and entry), and here, we characterize the requirements for HERV-K ENV to mediate infectious cell entry. Cell-cell fusion assays indicate that a minimum of two events are required for fusion, proteolytic processing by furin-like proteases and exposure to acidic pH. We generated an infectious autonomously replicating recombinant vesicular stomatitis virus (VSV) in which the glycoprotein was replaced by HERV-K ENV. HERV-K ENV imparts an endocytic entry pathway that requires dynamin-mediated membrane scission and endosomal acidification but is distinct from clathrin-dependent or macropinocytic uptake pathways. The lack of impediments to the replication of the VSV core in eukaryotic cells allowed us to broadly survey the HERV-K ENV-dictated tropism. Unlike extant betaretroviral envelopes, which impart a narrow species tropism, we found that HERV-K ENV mediates broad tropism encompassing cells from multiple mammalian and nonmammalian species. We conclude that HERV-K ENV dictates an evolutionarily conserved entry pathway and that the restriction of HERV-K to primate genomes reflects downstream stages of the viral replication cycle. Approximately 8% of the human genome is of retroviral origin. While many of those viral genomes have become inactivated, some copies of the most recently endogenized human retrovirus, HERV-K, can encode individual functional proteins. Here, we characterize the envelope protein (ENV) of the virus to define how it mediates infection of cells. We demonstrate that HERV-K ENV undergoes a proteolytic processing step and triggers membrane fusion in response to acidic pH--a strategy

  13. Old foes, new understandings: nuclear entry of small non-enveloped DNA viruses.

    Science.gov (United States)

    Fay, Nikta; Panté, Nelly

    2015-06-01

    The nuclear import of viral genomes is an important step of the infectious cycle for viruses that replicate in the nucleus of their host cells. Although most viruses use the cellular nuclear import machinery or some components of this machinery, others have developed sophisticated ways to reach the nucleus. Some of these have been known for some time; however, recent studies have changed our understanding of how some non-enveloped DNA viruses access the nucleus. For example, parvoviruses enter the nucleus through small disruptions of the nuclear membranes and nuclear lamina, and adenovirus tugs at the nuclear pore complex, using kinesin-1, to disassemble their capsids and deliver viral proteins and genomes into the nucleus. Here we review recent findings of the nuclear import strategies of three small non-enveloped DNA viruses, including adenovirus, parvovirus, and the polyomavirus simian virus 40. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Targeted entry of enveloped viruses: measles and herpes simplex virus I.

    Science.gov (United States)

    Navaratnarajah, Chanakha K; Miest, Tanner S; Carfi, Andrea; Cattaneo, Roberto

    2012-02-01

    We compare the receptor-based mechanisms that a small RNA virus and a larger DNA virus have evolved to drive the fusion of viral and cellular membranes. Both systems rely on tight control over triggering the concerted refolding of a trimeric fusion protein. While measles virus entry depends on a receptor-binding protein and a fusion protein only, the herpes simplex virus (HSV) is more complex and requires four viral proteins. Nevertheless, in both viruses a receptor-binding protein is required for triggering the membrane fusion process. Moreover, specificity domains can be appended to these receptor-binding proteins to target virus entry to cells expressing a designated receptor. We discuss how principles established with measles and HSV can be applied to targeting other enveloped viruses, and alternatively how retargeted envelopes can be fitted on foreign capsids. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Removal of N-Linked Glycosylations at Acidic pH by PNGase A Facilitates Hydrogen/Deuterium Exchange Mass Spectrometry Analysis of N-Linked Glycoproteins

    DEFF Research Database (Denmark)

    Jensen, Pernille Foged; Comamala Grau, Gerard; Trelle, Morten Beck

    2016-01-01

    and their glycans challenging for most analytical techniques. Hydrogen/deuterium exchange monitored by mass spectrometry is a sensitive technique for investigation of protein conformational dynamics of complex heterogeneous proteins in solution. N-linked glycoproteins however pose a challenge for HDX-MS. HDX...

  16. A sensitive HIV-1 envelope induced fusion assay identifies fusion enhancement of thrombin

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, De-Chun; Zhong, Guo-Cai; Su, Ju-Xiang [Department of Microbiology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang 150081 (China); Liu, Yan-Hong [Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, Heilongjiang 150081 (China); Li, Yan; Wang, Jia-Ye [Department of Microbiology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang 150081 (China); Hattori, Toshio [Department of Emerging Infectious Diseases, Division of Internal Medicine, Graduate School of Medicine, Tohoku University, Sendai 9808574 (Japan); Ling, Hong, E-mail: lingh@ems.hrbmu.edu.cn [Department of Microbiology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang 150081 (China); Department of Parasitology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang 150081 (China); Key Lab of Heilongjiang Province for Infection and Immunity, Key Lab of Heilongjiang Province Education Bureau for Etiology, Harbin, Heilongjiang 150081 (China); Zhang, Feng-Min, E-mail: fengminzhang@yahoo.com.cn [Department of Microbiology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang 150081 (China); Key Lab of Heilongjiang Province for Infection and Immunity, Key Lab of Heilongjiang Province Education Bureau for Etiology, Harbin, Heilongjiang 150081 (China)

    2010-01-22

    To evaluate the interaction between HIV-1 envelope glycoprotein (Env) and target cell receptors, various cell-cell-fusion assays have been developed. In the present study, we established a novel fusion system. In this system, the expression of the sensitive reporter gene, firefly luciferase (FL) gene, in the target cells was used to evaluate cell fusion event. Simultaneously, constitutively expressed Renilla luciferase (RL) gene was used to monitor effector cell number and viability. FL gave a wider dynamic range than other known reporters and the introduction of RL made the assay accurate and reproducible. This system is especially beneficial for investigation of potential entry-influencing agents, for its power of ruling out the false inhibition or enhancement caused by the artificial cell-number variation. As a case study, we applied this fusion system to observe the effect of a serine protease, thrombin, on HIV Env-mediated cell-cell fusion and have found the fusion enhancement activity of thrombin over two R5-tropic HIV strains.

  17. Envelope-specific antibodies and antibody-derived molecules for treating and curing HIV infection

    Science.gov (United States)

    Ferrari, Guido; Haynes, Barton F.; Koenig, Scott; Nordstrom, Jeffrey L.; Margolis, David M.; Tomaras, Georgia D.

    2017-01-01

    HIV-1 is a retrovirus that integrates into host chromatin and can remain transcriptionally quiescent in a pool of immune cells. This characteristic enables HIV-1 to evade both host immune responses and antiretroviral drugs, leading to persistent infection. Upon reactivation of proviral gene expression, HIV-1 envelope (HIV-1 Env) glycoproteins are expressed on the cell surface, transforming latently infected cells into targets for HIV-1 Env-specific monoclonal antibodies (mAbs), which can engage immune effector cells to kill productively infected CD4+ T cells and thus limit the spread of progeny virus. Recent innovations in antibody engineering have resulted in novel immunotherapeutics such as bispecific dual-affinity re-targeting (DART) molecules and other bi- and trispecific antibody designs that can recognize HIV-1 Env and recruit cytotoxic effector cells to kill CD4+ T cells latently infected with HIV‑1. Here, we review these immunotherapies, which are designed with the goal of curing HIV-1 infection. PMID:27725635

  18. K+ Stimulation of ATPase Activity Associated with the Chloroplast Inner Envelope 1

    Science.gov (United States)

    Wu, Weihua; Berkowitz, Gerald A.

    1992-01-01

    Studies were conducted to characterize ATPase activity associated with purified chloroplast inner envelope preparations from spinach (Spinacea oleracea L.) plants. Comparison of free Mg2+ and Mg·ATP complex effects on ATPase activity revealed that any Mg2+ stimulation of activity was likely a function of the use of the Mg·ATP complex as a substrate by the enzyme; free Mg2+ may be inhibitory. In contrast, a marked (one- to twofold) stimulation of ATPase activity was noted in the presence of K+. This stimulation had a pH optimum of approximately pH 8.0, the same pH optimum found for enzyme activity in the absence of K+. K+ stimulation of enzyme activity did not follow simple Michaelis-Menton kinetics. Rather, K+ effects were consistent with a negative cooperativity-type binding of the cation to the enzyme, with the Km increasing at increasing substrate. Of the total ATPase activity associated with the chloroplast inner envelope, the K+-stimulated component was most sensitive to the inhibitors oligomycin and vanadate. It was concluded that K+ effects on this chloroplast envelope ATPase were similar to this cation's effects on other transport ATPases (such as the plasmalemma H+-ATPase). Such ATPases are thought to be indirectly involved in active K+ uptake, which can be facilitated by ATPase-dependent generation of an electrical driving force. Thus, K+ effects on the chloroplast enzyme in vitro were found to be consistent with the hypothesized role of this envelope ATPase in facilitating active cation transport in vivo. ImagesFigure 3 PMID:16668922

  19. Role of the endoplasmic reticulum-associated degradation (ERAD) pathway in degradation of hepatitis C virus envelope proteins and production of virus particles.

    Science.gov (United States)

    Saeed, Mohsan; Suzuki, Ryosuke; Watanabe, Noriyuki; Masaki, Takahiro; Tomonaga, Mitsunori; Muhammad, Amir; Kato, Takanobu; Matsuura, Yoshiharu; Watanabe, Haruo; Wakita, Takaji; Suzuki, Tetsuro

    2011-10-28

    Viral infections frequently cause endoplasmic reticulum (ER) stress in host cells leading to stimulation of the ER-associated degradation (ERAD) pathway, which subsequently targets unassembled glycoproteins for ubiquitylation and proteasomal degradation. However, the role of the ERAD pathway in the viral life cycle is poorly defined. In this paper, we demonstrate that hepatitis C virus (HCV) infection activates the ERAD pathway, which in turn controls the fate of viral glycoproteins and modulates virus production. ERAD proteins, such as EDEM1 and EDEM3, were found to increase ubiquitylation of HCV envelope proteins via direct physical interaction. Knocking down of EDEM1 and EDEM3 increased the half-life of HCV E2, as well as virus production, whereas exogenous expression of these proteins reduced the production of infectious virus particles. Further investigation revealed that only EDEM1 and EDEM3 bind with SEL1L, an ER membrane adaptor protein involved in translocation of ERAD substrates from the ER to the cytoplasm. When HCV-infected cells were treated with kifunensine, a potent inhibitor of the ERAD pathway, the half-life of HCV E2 increased and so did virus production. Kifunensine inhibited the binding of EDEM1 and EDEM3 with SEL1L, thus blocking the ubiquitylation of HCV E2 protein. Chemical inhibition of the ERAD pathway neither affected production of the Japanese encephalitis virus (JEV) nor stability of the JEV envelope protein. A co-immunoprecipitation assay showed that EDEM orthologs do not bind with JEV envelope protein. These findings highlight the crucial role of the ERAD pathway in the life cycle of specific viruses.

  20. Energy transport by convection in the common envelope evolution

    Science.gov (United States)

    Sabach, Efrat; Hillel, Shlomi; Schreier, Ron; Soker, Noam

    2017-12-01

    We argue that outward transport of energy by convection and photon diffusion in a common envelope evolution (CEE) of giant stars substantially reduces the fraction of the recombination energy of hydrogen and helium that is available for envelope removal. We base our estimate on the properties of an unperturbed asymptotic giant branch spherical model, and on some simple arguments. Since during the CEE the envelope expands and energy removal by photon diffusion becomes more efficient, our arguments underestimate the escape of recombination energy. We hence strengthen earlier claims that recombination energy does not contribute much to common envelope removal. A large fraction of the energy that jets deposit to the envelope, on the other hand, might be in the form of kinetic energy of the expanding and buoyantly rising hot bubbles. These rapidly rising bubbles remove mass from the envelope. We demonstrate this process by conducting a three-dimensional hydrodynamical simulation where we deposit hot gas in the location of a secondary star that orbits inside the envelope of a giant star. Despite the fact that we do not include the large amount of gravitational energy that is released by the in-spiralling secondary star, the hot bubbles alone remove mass at a rate of about 0.1 M⊙ yr- 1, which is much above the regular mass-loss rate.

  1. Crystal structure of the human CD4 N-terminal two-domain fragment complexed to a class II MHC molecule.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.-H.; Meijers, R.; Xiong, Y.; Liu, J.-H.; Sakihama, T.; Zhang, R.-G.; Joachimiak, A.; Reinherz, E. L.; Biosciences Division; Dana-Farber Cancer Inst.; Harvard Medical School

    2001-09-11

    The structural basis of the interaction between the CD4 coreceptor and a class II major histocompatibility complex (MHC) is described. The crystal structure of a complex containing the human CD4 N-terminal two-domain fragment and the murine I-A{sup k }class II MHC molecule with associated peptide (pMHCII) shows that only the 'top corner' of the CD4 molecule directly contacts pMHCII. The CD4 Phe-43 side chain extends into a hydrophobic concavity formed by MHC residues from both {alpha}2 and {beta}2 domains. A ternary model of the CD4-pMHCII-T-cell receptor (TCR) reveals that the complex appears V-shaped with the membrane-proximal pMHCII at the apex. This configuration excludes a direct TCR-CD4 interaction and suggests how TCR and CD4 signaling is coordinated around the antigenic pMHCII complex. Human CD4 binds to HIV gp120 in a manner strikingly similar to the way in which CD4 interacts with pMHCII. Additional contacts between gp120 and CD4 give the CD4-gp120 complex a greater affinity. Thus, ligation of the viral envelope glycoprotein to CD4 occludes the pMHCII-binding site on CD4, contributing to immunodeficiency.

  2. Nuclear Envelope-Associated Chromosome Dynamics during Meiotic Prophase I

    Directory of Open Access Journals (Sweden)

    Xinhua Zeng

    2018-01-01

    Full Text Available Chromosome dynamics during meiotic prophase I are associated with a series of major events such as chromosomal reorganization and condensation, pairing/synapsis and recombination of the homologs, and chromosome movements at the nuclear envelope (NE. The NE is the barrier separating the nucleus from the cytoplasm and thus plays a central role in NE-associated chromosomal movements during meiosis. Previous studies have shown in various species that NE-linked chromosome dynamics are actually driven by the cytoskeleton. The linker of nucleoskeleton and cytoskeleton (LINC complexes are important constituents of the NE that facilitate in the transfer of cytoskeletal forces across the NE to individual chromosomes. The LINCs consist of the inner and outer NE proteins Sad1/UNC-84 (SUN, and Klarsicht/Anc-1/Syne (KASH domain proteins. Meiosis-specific adaptations of the LINC components and unique modifications of the NE are required during chromosomal movements. Nonetheless, the actual role of the NE in chromosomic dynamic movements in plants remains elusive. This review summarizes the findings of recent studies on meiosis-specific constituents and modifications of the NE and corresponding nucleoplasmic/cytoplasmic adaptors being involved in NE-associated movement of meiotic chromosomes, as well as describes the potential molecular network of transferring cytoplasm-derived forces into meiotic chromosomes in model organisms. It helps to gain a better understanding of the NE-associated meiotic chromosomal movements in plants.

  3. An extended data envelopment analysis for the decision-making

    Directory of Open Access Journals (Sweden)

    Xiao-Li Meng

    2017-10-01

    Full Text Available Abstract Based on the CCR model, we propose an extended data envelopment analysis to evaluate the efficiency of decision making units with historical input and output data. The contributions of the work are threefold. First, the input and output data of the evaluated decision making unit are variable over time, and time series method is used to analyze and predict the data. Second, there are many sample decision making units, which are divided into several ordered sample standards in terms of production strategy, and the constraint condition consists of one of the sample standards. Furthermore, the efficiency is illustrated by considering the efficiency relationship between the evaluated decision making unit and sample decision making units from constraint condition. Third, to reduce the computation complexity, we introduce an algorithm based on the binary search tree in the model to choose the sample standard that has similar behavior with the evaluated decision making unit. Finally, we provide two numerical examples to illustrate the proposed model.

  4. The eikonal equation, envelopes and contact transformations

    International Nuclear Information System (INIS)

    Frittelli, Simonetta; Kamran, Niky; Newman, Ezra T

    2003-01-01

    We begin with an arbitrary but given conformal Lorentzian metric on an open neighbourhood, U, of a four-dimensional manifold (spacetime) and study families of solutions of the eikonal equation. In particular, the families that are of interest to us are the complete solutions. Their level surfaces form a two-parameter (points of S 2 ) family of foliations of U. We show that, from such a complete solution, it is possible to derive a pair of second-order PDEs defined solely on the parameter space S 2 , i.e., they have no reference to the spacetime points. We then show that if one uses the classical envelope method for the construction of new complete solutions from any given complete solution, then the new pair of PDEs (found from the new complete solution) is related to the old pair by contact transformations in the second jet bundle over S 2 . Further, we demonstrate that the pair of second-order PDEs obtained in this manner from any complete solution lies in a subclass of all pairs of second-order PDEs defined by the vanishing of a certain function obtained from the pair and is referred to as the generalized-Wuenschmann invariant. For completeness we briefly discuss the analogous issues associated with the eikonal equation in three dimensions. Finally we point out that conformally invariant geometric structures from the Lorentzian manifold have natural counterparts in the second jet bundle over S 2 on which the pair of PDEs lives

  5. Providing a molecular mechanism for P-glycoprotein; why would I bother?

    Science.gov (United States)

    Callaghan, Richard

    2015-10-01

    It is almost 40 years since the drug efflux pump P-glycoprotein (permeability glycoprotein or P-gp) was shown to confer multi-drug resistance in cancer cells. This protein has been one of the most extensively investigated transport proteins due to its intriguing mechanism and its affect in oncology. P-gp is known to interact with over 300 compounds and the ability to achieve this has not yet been revealed. Following the binding of substrate and nucleotide, a complex series of conformational changes in the membrane and cytosolic domains translocates substrate across the membrane. Despite over 30 years of biochemical investigation, the availability of structural data and a plethora of chemical tools to modulate its function, the molecular mechanism remains a mystery. In addition, overcoming its activity in resistant cancer cells has not been achieved in the clinic, thereby garnering some degree of pessimism in the field. This review highlights the progress that has been achieved in understanding this complex protein and the value of undertaking molecular studies. © 2015 Authors; published by Portland Press Limited.

  6. Affinity selection of Nipah and Hendra virus-related vaccine candidates from a complex random peptide library displayed on bacteriophage virus-like particles

    Energy Technology Data Exchange (ETDEWEB)

    Peabody, David S.; Chackerian, Bryce; Ashley, Carlee; Carnes, Eric; Negrete, Oscar

    2017-01-24

    The invention relates to virus-like particles of bacteriophage MS2 (MS2 VLPs) displaying peptide epitopes or peptide mimics of epitopes of Nipah Virus envelope glycoprotein that elicit an immune response against Nipah Virus upon vaccination of humans or animals. Affinity selection on Nipah Virus-neutralizing monoclonal antibodies using random sequence peptide libraries on MS2 VLPs selected peptides with sequence similarity to peptide sequences found within the envelope glycoprotein of Nipah itself, thus identifying the epitopes the antibodies recognize. The selected peptide sequences themselves are not necessarily identical in all respects to a sequence within Nipah Virus glycoprotein, and therefore may be referred to as epitope mimics VLPs displaying these epitope mimics can serve as vaccine. On the other hand, display of the corresponding wild-type sequence derived from Nipah Virus and corresponding to the epitope mapped by affinity selection, may also be used as a vaccine.

  7. The absolute energy flux envelopes of B type stars.

    Science.gov (United States)

    Underhill, A. B.

    1972-01-01

    Absolute energy flux envelopes covering the region of 1100 to 6000 A for main-sequence stars of types B3, B7 and A0 derived from published, ground-based observations and from spectrum scans with OAO-II are presented. These flux envelopes are compared with the predicted flux envelopes from lightly line-blanketed model atmospheres. The line blanketing at wavelengths shorter than 3000 A is severe, about one-half the predicted light being observed at 1600 A. These results demonstrate that a model which represents well the observed visible spectrum of a star may fail seriously for representing the ultraviolet spectrum.

  8. DATA ENVELOPMENT ANALYSIS OF BANKING SECTOR IN BANGLADESH

    Directory of Open Access Journals (Sweden)

    Md. Rashedul Hoque

    2012-05-01

    Full Text Available Banking sector of Bangladesh is flourishing and contributing to its economy. In this aspect measuring efficiency is important. Data Envelopment Analysis technique is used for this purpose. The data are collected from the annual reports of twenty four different banks in Bangladesh. Data Envelopment Analysis is mainly of two types - constant returns to scale and variable returns to scale. Since this study attempts to maximize output, so the output oriented Data Envelopment Analysis is used. The most efficient bank is one that obtains the highest efficiency score.

  9. Pre-paid envelopes commemorating the 2013 Open Days

    CERN Multimedia

    2013-01-01

    The post office on CERN's Prévessin site is still selling pre-paid envelopes commemorating the 2013 Open Days. Hurry while stocks last!   The special envelopes, which are valid in France for non-priority letters weighing up to 20 grams, are ideal for your Christmas and New Year correspondence. A set of ten envelopes, each featuring a different image, costs € 8.70 or 10 CHF. The post office is located in Building 866 on the Prévessin site and is open Mondays to Thursdays from 9.30 a.m. to 12.30 p.m.

  10. Multiple genes encode the major surface glycoprotein of Pneumocystis carinii

    DEFF Research Database (Denmark)

    Kovacs, J A; Powell, F; Edman, J C

    1993-01-01

    hydrophobic region at the carboxyl terminus. The presence of multiple related msg genes encoding the major surface glycoprotein of P. carinii suggests that antigenic variation is a possible mechanism for evading host defenses. Further characterization of this family of genes should allow the development......The major surface antigen of Pneumocystis carinii, a life-threatening opportunistic pathogen in human immunodeficiency virus-infected patients, is an abundant glycoprotein that functions in host-organism interactions. A monoclonal antibody to this antigen is protective in animals, and thus...... blot studies using chromosomal or restricted DNA, the major surface glycoproteins are the products of a multicopy family of genes. The predicted protein has an M(r) of approximately 123,000, is relatively rich in cysteine residues (5.5%) that are very strongly conserved, and contains a well conserved...

  11. Australine, a pyrrolizidine alkaloid that inhibits amyloglucosidase and glycoprotein processing

    International Nuclear Information System (INIS)

    Tropea, J.E.; Molyneux, R.J.; Kaushal, G.P.; Pan, Y.T.; Mitchell, M.; Elbein, A.D.

    1989-01-01

    Australine is a polyhydroxylated pyrrolizidine alkaloid that was isolated from the seeds of the Australian tree Castanospermum australe and characterized by NMR and X-ray diffraction analysis. Since swainsonine and catanospermine are polyhydroxylated indolizidine alkaloids that inhibit specific glycosidases, the authors tested australine against a variety of exoglycosidases to determine whether it would inhibit any of these enzymes. This alkaloid proved to be a good inhibitor of the α-glucosidase amyloglucosidase (50% inhibition at 5.8 μM), but it did not inhibit β-glucosidase, α- or β-mannosidase, or α- or β-galactosidase. The inhibition of amyloglucosidase was of a competitive nature. Australine also inhibited the glycoprotein processing enzyme glucosidase I, but had only slight activity toward glucosidase II. When incubated with cultured cells, this alkaloid inhibited glycoprotein processing at the glucosidase I step and caused the accumulation of glycoproteins with Glc 3 Man 7-9 (GlcNAc) 2 -oligosaccharides

  12. Human immunodeficiency virus type 1 subtype B ancestral envelope protein is functional and elicits neutralizing antibodies in rabbits similar to those elicited by a circulating subtype B envelope.

    Science.gov (United States)

    Doria-Rose, N A; Learn, G H; Rodrigo, A G; Nickle, D C; Li, F; Mahalanabis, M; Hensel, M T; McLaughlin, S; Edmonson, P F; Montefiori, D; Barnett, S W; Haigwood, N L; Mullins, J I

    2005-09-01

    Human immunodeficiency virus type 1 (HIV-1) is a difficult target for vaccine development, in part because of its ever-expanding genetic diversity and attendant capacity to escape immunologic recognition. Vaccine efficacy might be improved by maximizing immunogen antigenic similarity to viruses likely to be encountered by vaccinees. To this end, we designed a prototype HIV-1 envelope vaccine using a deduced ancestral state for the env gene. The ancestral state reconstruction method was shown to be >95% accurate by computer simulation and 99.8% accurate when estimating the known inoculum used in an experimental infection study in rhesus macaques. Furthermore, the deduced ancestor gene differed from the set of sequences used to derive the ancestor by an average of 12.3%, while these latter sequences were an average of 17.3% different from each other. A full-length ancestral subtype B HIV-1 env gene was constructed and shown to produce a glycoprotein of 160 kDa that bound and fused with cells expressing the HIV-1 coreceptor CCR5. This Env was also functional in a virus pseudotype assay. When either gp160- or gp140-expressing plasmids and recombinant gp120 were used to immunize rabbits in a DNA prime-protein boost regimen, the artificial gene induced immunoglobulin G antibodies capable of weakly neutralizing heterologous primary HIV-1 strains. The results were similar for rabbits immunized in parallel with a natural isolate, HIV-1 SF162. Further design efforts to better present conserved neutralization determinants are warranted.

  13. Multiple genes encode the major surface glycoprotein of Pneumocystis carinii

    DEFF Research Database (Denmark)

    Kovacs, J A; Powell, F; Edman, J C

    1993-01-01

    this antigen is a good candidate for development as a vaccine to prevent or control P. carinii infection. We have cloned and sequenced seven related but unique genes encoding the major surface glycoprotein of rat P. carinii. Partial amino acid sequencing confirmed the identity of these genes. Based on Southern...... blot studies using chromosomal or restricted DNA, the major surface glycoproteins are the products of a multicopy family of genes. The predicted protein has an M(r) of approximately 123,000, is relatively rich in cysteine residues (5.5%) that are very strongly conserved, and contains a well conserved...

  14. Intestinal mucus and juice glycoproteins have a liquid crystalline structure

    International Nuclear Information System (INIS)

    Denisova, E.A.; Lazarev, P.I.; Vazina, A.A.; Zheleznaya, L.A.

    1985-01-01

    X-ray diffraction patterns have been obtained from the following components of canine gastrointestinal tract: (1) native small intestine mucus layer; (2) the precipitate of the flocks formed in the duodenal juice with decreasing pH; (3) concentrated solutions of glycoproteins isolated from the duodenal juice. The X-ray patterns consist of a large number of sharp reflections of spacings between about 100 and 4 A. Some reflections are common for all components studied. All the patterns are interpreted as arising from the glycoprotein molecules ordered into a liquid crystalline structure. (author)

  15. Multiple genes encode the major surface glycoprotein of Pneumocystis carinii

    DEFF Research Database (Denmark)

    Kovacs, J A; Powell, F; Edman, J C

    1993-01-01

    The major surface antigen of Pneumocystis carinii, a life-threatening opportunistic pathogen in human immunodeficiency virus-infected patients, is an abundant glycoprotein that functions in host-organism interactions. A monoclonal antibody to this antigen is protective in animals, and thus...... hydrophobic region at the carboxyl terminus. The presence of multiple related msg genes encoding the major surface glycoprotein of P. carinii suggests that antigenic variation is a possible mechanism for evading host defenses. Further characterization of this family of genes should allow the development...... of novel approaches to the control of this pathogen....

  16. Distinct pathways mediate the sorting of tail-anchored proteins to the plastid outer envelope.

    Directory of Open Access Journals (Sweden)

    Preetinder K Dhanoa

    Full Text Available BACKGROUND: Tail-anchored (TA proteins are a distinct class of membrane proteins that are sorted post-translationally to various organelles and function in a number of important cellular processes, including redox reactions, vesicular trafficking and protein translocation. While the molecular targeting signals and pathways responsible for sorting TA proteins to their correct intracellular destinations in yeasts and mammals have begun to be characterized, relatively little is known about TA protein biogenesis in plant cells, especially for those sorted to the plastid outer envelope. METHODOLOGY/PRINCIPAL FINDINGS: Here we investigated the biogenesis of three plastid TA proteins, including the 33-kDa and 34-kDa GTPases of the translocon at the outer envelope of chloroplasts (Toc33 and Toc34 and a novel 9-kDa protein of unknown function that we define here as an outer envelope TA protein (OEP9. Using a combination of in vivo and in vitro assays we show that OEP9 utilizes a different sorting pathway than that used by Toc33 and Toc34. For instance, while all three TA proteins interact with the cytosolic OEP chaperone/receptor, AKR2A, the plastid targeting information within OEP9 is distinct from that within Toc33 and Toc34. Toc33 and Toc34 also appear to differ from OEP9 in that their insertion is dependent on themselves and the unique lipid composition of the plastid outer envelope. By contrast, the insertion of OEP9 into the plastid outer envelope occurs in a proteinaceous-dependent, but Toc33/34-independent manner and membrane lipids appear to serve primarily to facilitate normal thermodynamic integration of this TA protein. CONCLUSIONS/SIGNIFICANCE: Collectively, the results provide evidence in support of at least two sorting pathways for plastid TA outer envelope proteins and shed light on not only the complex diversity of pathways involved in the targeting and insertion of proteins into plastids, but also the molecular mechanisms that underlie

  17. Inner nuclear envelope protein SUN1 plays a prominent role in mammalian mRNA export.

    Science.gov (United States)

    Li, Ping; Noegel, Angelika A

    2015-11-16

    Nuclear export of messenger ribonucleoproteins (mRNPs) through the nuclear pore complex (NPC) can be roughly classified into two forms: bulk and specific export, involving an nuclear RNA export factor 1 (NXF1)-dependent pathway and chromosome region maintenance 1 (CRM1)-dependent pathway, respectively. SUN proteins constitute the inner nuclear envelope component of the l I: nker of N: ucleoskeleton and C: ytoskeleton (LINC) complex. Here, we show that mammalian cells require SUN1 for efficient nuclear mRNP export. The results indicate that both SUN1 and SUN2 interact with heterogeneous nuclear ribonucleoprotein (hnRNP) F/H and hnRNP K/J. SUN1 depletion inhibits the mRNP export, with accumulations of both hnRNPs and poly(A)+RNA in the nucleus. Leptomycin B treatment indicates that SUN1 functions in mammalian mRNA export involving the NXF1-dependent pathway. SUN1 mediates mRNA export through its association with mRNP complexes via a direct interaction with NXF1. Additionally, SUN1 associates with the NPC through a direct interaction with Nup153, a nuclear pore component involved in mRNA export. Taken together, our results reveal that the inner nuclear envelope protein SUN1 has additional functions aside from being a central component of the LINC complex and that it is an integral component of the mammalian mRNA export pathway suggesting a model whereby SUN1 recruits NXF1-containing mRNP onto the nuclear envelope and hands it over to Nup153. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Dimeric architecture of the Hendra virus attachment glycoprotein: evidence for a conserved mode of assembly.

    Science.gov (United States)

    Bowden, Thomas A; Crispin, Max; Harvey, David J; Jones, E Yvonne; Stuart, David I

    2010-06-01

    Hendra virus is a negative-sense single-stranded RNA virus within the Paramyxoviridae family which, together with Nipah virus, forms the Henipavirus genus. Infection with bat-borne Hendra virus leads to a disease with high mortality rates in humans. We determined the crystal structure of the unliganded six-bladed beta-propeller domain and compared it to the previously reported structure of Hendra virus attachment glycoprotein (HeV-G) in complex with its cellular receptor, ephrin-B2. As observed for the related unliganded Nipah virus structure, there is plasticity in the Glu579-Pro590 and Lys236-Ala245 ephrin-binding loops prior to receptor engagement. These data reveal that henipaviral attachment glycoproteins undergo common structural transitions upon receptor binding and further define the structural template for antihenipaviral drug design. Our analysis also provides experimental evidence for a dimeric arrangement of HeV-G that exhibits striking similarity to those observed in crystal structures of related paramyxovirus receptor-binding glycoproteins. The biological relevance of this dimer is further supported by the positional analysis of glycosylation sites from across the paramyxoviruses. In HeV-G, the sites lie away from the putative dimer interface and remain accessible to alpha-mannosidase processing on oligomerization. We therefore propose that the overall mode of dimer assembly is conserved for all paramyxoviruses; however, while the geometry of dimerization is rather closely similar for those viruses that bind flexible glycan receptors, significant (up to 60 degrees ) and different reconfigurations of the subunit packing (associated with a significant decrease in the size of the dimer interface) have accompanied the independent switching to high-affinity protein receptor binding in Hendra and measles viruses.

  19. Fasciola hepatica Surface Tegument: Glycoproteins at the Interface of Parasite and Host.

    Science.gov (United States)

    Ravidà, Alessandra; Cwiklinski, Krystyna; Aldridge, Allison M; Clarke, Paul; Thompson, Roisin; Gerlach, Jared Q; Kilcoyne, Michelle; Hokke, Cornelis H; Dalton, John P; O'Neill, Sandra M

    2016-10-01

    Fasciola hepatica, commonly known as liver fluke, is a trematode that causes Fasciolosis in ruminants and humans. The outer tegumental coat of F. hepatica (FhTeg) is a complex metabolically active biological matrix that is continually exposed to the host immune system and therefore makes a good vaccine target. F. hepatica tegumental coat is highly glycosylated and helminth-derived immunogenic oligosaccharide motifs and glycoproteins are currently being investigated as novel vaccine candidates. This report presents the first systematic characterization of FhTeg glycosylation using lectin microarrays to characterize carbohydrates motifs present, and lectin histochemistry to localize these on the F. hepatica tegument. We discovered that FhTeg glycoproteins are predominantly oligomannose oligosaccharides that are expressed on the spines, suckers and tegumental coat of F. hepatica and lectin blot analysis confirmed the abundance of N- glycosylated proteins. Although some oligosaccharides are widely distributed on the fluke surface other subsets are restricted to distinct anatomical regions. We selectively enriched for FhTeg mannosylated glycoprotein subsets using lectin affinity chromatography and identified 369 proteins by mass spectrometric analysis. Among these proteins are a number of potential vaccine candidates with known immune modulatory properties including proteases, protease inhibitors, paramyosin, Venom Allergen-like II, Enolase and two proteins, nardilysin and TRIL, that have not been previously associated with F. hepatica Furthermore, we provide a comprehensive insight regarding the putative glycosylation of FhTeg components that could highlight the importance of further studies examining glycoconjugates in host-parasite interactions in the context of F. hepatica infection and the development of an effective vaccine. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Fasciola hepatica Surface Tegument: Glycoproteins at the Interface of Parasite and Host*

    Science.gov (United States)

    Ravidà, Alessandra; Cwiklinski, Krystyna; Aldridge, Allison M.; Clarke, Paul; Thompson, Roisin; Gerlach, Jared Q.; Kilcoyne, Michelle; Hokke, Cornelis H.; Dalton, John P.; O'Neill, Sandra M.

    2016-01-01

    Fasciola hepatica, commonly known as liver fluke, is a trematode that causes Fasciolosis in ruminants and humans. The outer tegumental coat of F. hepatica (FhTeg) is a complex metabolically active biological matrix that is continually exposed to the host immune system and therefore makes a good vaccine target. F. hepatica tegumental coat is highly glycosylated and helminth-derived immunogenic oligosaccharide motifs and glycoproteins are currently being investigated as novel vaccine candidates. This report presents the first systematic characterization of FhTeg glycosylation using lectin microarrays to characterize carbohydrates motifs present, and lectin histochemistry to localize these on the F. hepatica tegument. We discovered that FhTeg glycoproteins are predominantly oligomannose oligosaccharides that are expressed on the spines, suckers and tegumental coat of F. hepatica and lectin blot analysis confirmed the abundance of N- glycosylated proteins. Although some oligosaccharides are widely distributed on the fluke surface other subsets are restricted to distinct anatomical regions. We selectively enriched for FhTeg mannosylated glycoprotein subsets using lectin affinity chromatography and identified 369 proteins by mass spectrometric analysis. Among these proteins are a number of potential vaccine candidates with known immune modulatory properties including proteases, protease inhibitors, paramyosin, Venom Allergen-like II, Enolase and two proteins, nardilysin and TRIL, that have not been previously associated with F. hepatica. Furthermore, we provide a comprehensive insight regarding the putative glycosylation of FhTeg components that could highlight the importance of further studies examining glycoconjugates in host-parasite interactions in the context of F. hepatica infection and the development of an effective vaccine. PMID:27466253