WorldWideScience

Sample records for entropy-based automated classification

  1. Entropy-based automated classification of independent components separated from fMCG

    International Nuclear Information System (INIS)

    Comani, S; Srinivasan, V; Alleva, G; Romani, G L

    2007-01-01

    Fetal magnetocardiography (fMCG) is a noninvasive technique suitable for the prenatal diagnosis of the fetal heart function. Reliable fetal cardiac signals can be reconstructed from multi-channel fMCG recordings by means of independent component analysis (ICA). However, the identification of the separated components is usually accomplished by visual inspection. This paper discusses a novel automated system based on entropy estimators, namely approximate entropy (ApEn) and sample entropy (SampEn), for the classification of independent components (ICs). The system was validated on 40 fMCG datasets of normal fetuses with the gestational age ranging from 22 to 37 weeks. Both ApEn and SampEn were able to measure the stability and predictability of the physiological signals separated with ICA, and the entropy values of the three categories were significantly different at p <0.01. The system performances were compared with those of a method based on the analysis of the time and frequency content of the components. The outcomes of this study showed a superior performance of the entropy-based system, in particular for early gestation, with an overall ICs detection rate of 98.75% and 97.92% for ApEn and SampEn respectively, as against a value of 94.50% obtained with the time-frequency-based system. (note)

  2. Land Cover and Land Use Classification with TWOPAC: towards Automated Processing for Pixel- and Object-Based Image Classification

    Directory of Open Access Journals (Sweden)

    Stefan Dech

    2012-09-01

    Full Text Available We present a novel and innovative automated processing environment for the derivation of land cover (LC and land use (LU information. This processing framework named TWOPAC (TWinned Object and Pixel based Automated classification Chain enables the standardized, independent, user-friendly, and comparable derivation of LC and LU information, with minimized manual classification labor. TWOPAC allows classification of multi-spectral and multi-temporal remote sensing imagery from different sensor types. TWOPAC enables not only pixel-based classification, but also allows classification based on object-based characteristics. Classification is based on a Decision Tree approach (DT for which the well-known C5.0 code has been implemented, which builds decision trees based on the concept of information entropy. TWOPAC enables automatic generation of the decision tree classifier based on a C5.0-retrieved ascii-file, as well as fully automatic validation of the classification output via sample based accuracy assessment.Envisaging the automated generation of standardized land cover products, as well as area-wide classification of large amounts of data in preferably a short processing time, standardized interfaces for process control, Web Processing Services (WPS, as introduced by the Open Geospatial Consortium (OGC, are utilized. TWOPAC’s functionality to process geospatial raster or vector data via web resources (server, network enables TWOPAC’s usability independent of any commercial client or desktop software and allows for large scale data processing on servers. Furthermore, the components of TWOPAC were built-up using open source code components and are implemented as a plug-in for Quantum GIS software for easy handling of the classification process from the user’s perspective.

  3. Automated Classification of Radiology Reports for Acute Lung Injury: Comparison of Keyword and Machine Learning Based Natural Language Processing Approaches.

    Science.gov (United States)

    Solti, Imre; Cooke, Colin R; Xia, Fei; Wurfel, Mark M

    2009-11-01

    This paper compares the performance of keyword and machine learning-based chest x-ray report classification for Acute Lung Injury (ALI). ALI mortality is approximately 30 percent. High mortality is, in part, a consequence of delayed manual chest x-ray classification. An automated system could reduce the time to recognize ALI and lead to reductions in mortality. For our study, 96 and 857 chest x-ray reports in two corpora were labeled by domain experts for ALI. We developed a keyword and a Maximum Entropy-based classification system. Word unigram and character n-grams provided the features for the machine learning system. The Maximum Entropy algorithm with character 6-gram achieved the highest performance (Recall=0.91, Precision=0.90 and F-measure=0.91) on the 857-report corpus. This study has shown that for the classification of ALI chest x-ray reports, the machine learning approach is superior to the keyword based system and achieves comparable results to highest performing physician annotators.

  4. Video and accelerometer-based motion analysis for automated surgical skills assessment.

    Science.gov (United States)

    Zia, Aneeq; Sharma, Yachna; Bettadapura, Vinay; Sarin, Eric L; Essa, Irfan

    2018-03-01

    Basic surgical skills of suturing and knot tying are an essential part of medical training. Having an automated system for surgical skills assessment could help save experts time and improve training efficiency. There have been some recent attempts at automated surgical skills assessment using either video analysis or acceleration data. In this paper, we present a novel approach for automated assessment of OSATS-like surgical skills and provide an analysis of different features on multi-modal data (video and accelerometer data). We conduct a large study for basic surgical skill assessment on a dataset that contained video and accelerometer data for suturing and knot-tying tasks. We introduce "entropy-based" features-approximate entropy and cross-approximate entropy, which quantify the amount of predictability and regularity of fluctuations in time series data. The proposed features are compared to existing methods of Sequential Motion Texture, Discrete Cosine Transform and Discrete Fourier Transform, for surgical skills assessment. We report average performance of different features across all applicable OSATS-like criteria for suturing and knot-tying tasks. Our analysis shows that the proposed entropy-based features outperform previous state-of-the-art methods using video data, achieving average classification accuracies of 95.1 and 92.2% for suturing and knot tying, respectively. For accelerometer data, our method performs better for suturing achieving 86.8% average accuracy. We also show that fusion of video and acceleration features can improve overall performance for skill assessment. Automated surgical skills assessment can be achieved with high accuracy using the proposed entropy features. Such a system can significantly improve the efficiency of surgical training in medical schools and teaching hospitals.

  5. Minimum Error Entropy Classification

    CERN Document Server

    Marques de Sá, Joaquim P; Santos, Jorge M F; Alexandre, Luís A

    2013-01-01

    This book explains the minimum error entropy (MEE) concept applied to data classification machines. Theoretical results on the inner workings of the MEE concept, in its application to solving a variety of classification problems, are presented in the wider realm of risk functionals. Researchers and practitioners also find in the book a detailed presentation of practical data classifiers using MEE. These include multi‐layer perceptrons, recurrent neural networks, complexvalued neural networks, modular neural networks, and decision trees. A clustering algorithm using a MEE‐like concept is also presented. Examples, tests, evaluation experiments and comparison with similar machines using classic approaches, complement the descriptions.

  6. Classification of epileptic seizures using wavelet packet log energy and norm entropies with recurrent Elman neural network classifier.

    Science.gov (United States)

    Raghu, S; Sriraam, N; Kumar, G Pradeep

    2017-02-01

    Electroencephalogram shortly termed as EEG is considered as the fundamental segment for the assessment of the neural activities in the brain. In cognitive neuroscience domain, EEG-based assessment method is found to be superior due to its non-invasive ability to detect deep brain structure while exhibiting superior spatial resolutions. Especially for studying the neurodynamic behavior of epileptic seizures, EEG recordings reflect the neuronal activity of the brain and thus provide required clinical diagnostic information for the neurologist. This specific proposed study makes use of wavelet packet based log and norm entropies with a recurrent Elman neural network (REN) for the automated detection of epileptic seizures. Three conditions, normal, pre-ictal and epileptic EEG recordings were considered for the proposed study. An adaptive Weiner filter was initially applied to remove the power line noise of 50 Hz from raw EEG recordings. Raw EEGs were segmented into 1 s patterns to ensure stationarity of the signal. Then wavelet packet using Haar wavelet with a five level decomposition was introduced and two entropies, log and norm were estimated and were applied to REN classifier to perform binary classification. The non-linear Wilcoxon statistical test was applied to observe the variation in the features under these conditions. The effect of log energy entropy (without wavelets) was also studied. It was found from the simulation results that the wavelet packet log entropy with REN classifier yielded a classification accuracy of 99.70 % for normal-pre-ictal, 99.70 % for normal-epileptic and 99.85 % for pre-ictal-epileptic.

  7. Autonomous entropy-based intelligent experimental design

    Science.gov (United States)

    Malakar, Nabin Kumar

    2011-07-01

    The aim of this thesis is to explore the application of probability and information theory in experimental design, and to do so in a way that combines what we know about inference and inquiry in a comprehensive and consistent manner. Present day scientific frontiers involve data collection at an ever-increasing rate. This requires that we find a way to collect the most relevant data in an automated fashion. By following the logic of the scientific method, we couple an inference engine with an inquiry engine to automate the iterative process of scientific learning. The inference engine involves Bayesian machine learning techniques to estimate model parameters based upon both prior information and previously collected data, while the inquiry engine implements data-driven exploration. By choosing an experiment whose distribution of expected results has the maximum entropy, the inquiry engine selects the experiment that maximizes the expected information gain. The coupled inference and inquiry engines constitute an autonomous learning method for scientific exploration. We apply it to a robotic arm to demonstrate the efficacy of the method. Optimizing inquiry involves searching for an experiment that promises, on average, to be maximally informative. If the set of potential experiments is described by many parameters, the search involves a high-dimensional entropy space. In such cases, a brute force search method will be slow and computationally expensive. We develop an entropy-based search algorithm, called nested entropy sampling, to select the most informative experiment. This helps to reduce the number of computations necessary to find the optimal experiment. We also extended the method of maximizing entropy, and developed a method of maximizing joint entropy so that it could be used as a principle of collaboration between two robots. This is a major achievement of this thesis, as it allows the information-based collaboration between two robotic units towards a same

  8. Style-based classification of Chinese ink and wash paintings

    Science.gov (United States)

    Sheng, Jiachuan; Jiang, Jianmin

    2013-09-01

    Following the fact that a large collection of ink and wash paintings (IWP) is being digitized and made available on the Internet, their automated content description, analysis, and management are attracting attention across research communities. While existing research in relevant areas is primarily focused on image processing approaches, a style-based algorithm is proposed to classify IWPs automatically by their authors. As IWPs do not have colors or even tones, the proposed algorithm applies edge detection to locate the local region and detect painting strokes to enable histogram-based feature extraction and capture of important cues to reflect the styles of different artists. Such features are then applied to drive a number of neural networks in parallel to complete the classification, and an information entropy balanced fusion is proposed to make an integrated decision for the multiple neural network classification results in which the entropy is used as a pointer to combine the global and local features. Evaluations via experiments support that the proposed algorithm achieves good performances, providing excellent potential for computerized analysis and management of IWPs.

  9. Automated lung nodule classification following automated nodule detection on CT: A serial approach

    International Nuclear Information System (INIS)

    Armato, Samuel G. III; Altman, Michael B.; Wilkie, Joel; Sone, Shusuke; Li, Feng; Doi, Kunio; Roy, Arunabha S.

    2003-01-01

    We have evaluated the performance of an automated classifier applied to the task of differentiating malignant and benign lung nodules in low-dose helical computed tomography (CT) scans acquired as part of a lung cancer screening program. The nodules classified in this manner were initially identified by our automated lung nodule detection method, so that the output of automated lung nodule detection was used as input to automated lung nodule classification. This study begins to narrow the distinction between the 'detection task' and the 'classification task'. Automated lung nodule detection is based on two- and three-dimensional analyses of the CT image data. Gray-level-thresholding techniques are used to identify initial lung nodule candidates, for which morphological and gray-level features are computed. A rule-based approach is applied to reduce the number of nodule candidates that correspond to non-nodules, and the features of remaining candidates are merged through linear discriminant analysis to obtain final detection results. Automated lung nodule classification merges the features of the lung nodule candidates identified by the detection algorithm that correspond to actual nodules through another linear discriminant classifier to distinguish between malignant and benign nodules. The automated classification method was applied to the computerized detection results obtained from a database of 393 low-dose thoracic CT scans containing 470 confirmed lung nodules (69 malignant and 401 benign nodules). Receiver operating characteristic (ROC) analysis was used to evaluate the ability of the classifier to differentiate between nodule candidates that correspond to malignant nodules and nodule candidates that correspond to benign lesions. The area under the ROC curve for this classification task attained a value of 0.79 during a leave-one-out evaluation

  10. Epoch-based Entropy for Early Screening of Alzheimer's Disease.

    Science.gov (United States)

    Houmani, N; Dreyfus, G; Vialatte, F B

    2015-12-01

    In this paper, we introduce a novel entropy measure, termed epoch-based entropy. This measure quantifies disorder of EEG signals both at the time level and spatial level, using local density estimation by a Hidden Markov Model on inter-channel stationary epochs. The investigation is led on a multi-centric EEG database recorded from patients at an early stage of Alzheimer's disease (AD) and age-matched healthy subjects. We investigate the classification performances of this method, its robustness to noise, and its sensitivity to sampling frequency and to variations of hyperparameters. The measure is compared to two alternative complexity measures, Shannon's entropy and correlation dimension. The classification accuracies for the discrimination of AD patients from healthy subjects were estimated using a linear classifier designed on a development dataset, and subsequently tested on an independent test set. Epoch-based entropy reached a classification accuracy of 83% on the test dataset (specificity = 83.3%, sensitivity = 82.3%), outperforming the two other complexity measures. Furthermore, it was shown to be more stable to hyperparameter variations, and less sensitive to noise and sampling frequency disturbances than the other two complexity measures.

  11. Driver Fatigue Detection System Using Electroencephalography Signals Based on Combined Entropy Features

    Directory of Open Access Journals (Sweden)

    Zhendong Mu

    2017-02-01

    Full Text Available Driver fatigue has become one of the major causes of traffic accidents, and is a complicated physiological process. However, there is no effective method to detect driving fatigue. Electroencephalography (EEG signals are complex, unstable, and non-linear; non-linear analysis methods, such as entropy, maybe more appropriate. This study evaluates a combined entropy-based processing method of EEG data to detect driver fatigue. In this paper, 12 subjects were selected to take part in an experiment, obeying driving training in a virtual environment under the instruction of the operator. Four types of enthrones (spectrum entropy, approximate entropy, sample entropy and fuzzy entropy were used to extract features for the purpose of driver fatigue detection. Electrode selection process and a support vector machine (SVM classification algorithm were also proposed. The average recognition accuracy was 98.75%. Retrospective analysis of the EEG showed that the extracted features from electrodes T5, TP7, TP8 and FP1 may yield better performance. SVM classification algorithm using radial basis function as kernel function obtained better results. A combined entropy-based method demonstrates good classification performance for studying driver fatigue detection.

  12. Automated Glioblastoma Segmentation Based on a Multiparametric Structured Unsupervised Classification

    Science.gov (United States)

    Juan-Albarracín, Javier; Fuster-Garcia, Elies; Manjón, José V.; Robles, Montserrat; Aparici, F.; Martí-Bonmatí, L.; García-Gómez, Juan M.

    2015-01-01

    Automatic brain tumour segmentation has become a key component for the future of brain tumour treatment. Currently, most of brain tumour segmentation approaches arise from the supervised learning standpoint, which requires a labelled training dataset from which to infer the models of the classes. The performance of these models is directly determined by the size and quality of the training corpus, whose retrieval becomes a tedious and time-consuming task. On the other hand, unsupervised approaches avoid these limitations but often do not reach comparable results than the supervised methods. In this sense, we propose an automated unsupervised method for brain tumour segmentation based on anatomical Magnetic Resonance (MR) images. Four unsupervised classification algorithms, grouped by their structured or non-structured condition, were evaluated within our pipeline. Considering the non-structured algorithms, we evaluated K-means, Fuzzy K-means and Gaussian Mixture Model (GMM), whereas as structured classification algorithms we evaluated Gaussian Hidden Markov Random Field (GHMRF). An automated postprocess based on a statistical approach supported by tissue probability maps is proposed to automatically identify the tumour classes after the segmentations. We evaluated our brain tumour segmentation method with the public BRAin Tumor Segmentation (BRATS) 2013 Test and Leaderboard datasets. Our approach based on the GMM model improves the results obtained by most of the supervised methods evaluated with the Leaderboard set and reaches the second position in the ranking. Our variant based on the GHMRF achieves the first position in the Test ranking of the unsupervised approaches and the seventh position in the general Test ranking, which confirms the method as a viable alternative for brain tumour segmentation. PMID:25978453

  13. Towards an information geometric characterization/classification of complex systems. I. Use of generalized entropies

    Science.gov (United States)

    Ghikas, Demetris P. K.; Oikonomou, Fotios D.

    2018-04-01

    Using the generalized entropies which depend on two parameters we propose a set of quantitative characteristics derived from the Information Geometry based on these entropies. Our aim, at this stage, is to construct first some fundamental geometric objects which will be used in the development of our geometrical framework. We first establish the existence of a two-parameter family of probability distributions. Then using this family we derive the associated metric and we state a generalized Cramer-Rao Inequality. This gives a first two-parameter classification of complex systems. Finally computing the scalar curvature of the information manifold we obtain a further discrimination of the corresponding classes. Our analysis is based on the two-parameter family of generalized entropies of Hanel and Thurner (2011).

  14. Automated classification of Acid Rock Drainage potential from Corescan drill core imagery

    Science.gov (United States)

    Cracknell, M. J.; Jackson, L.; Parbhakar-Fox, A.; Savinova, K.

    2017-12-01

    Classification of the acid forming potential of waste rock is important for managing environmental hazards associated with mining operations. Current methods for the classification of acid rock drainage (ARD) potential usually involve labour intensive and subjective assessment of drill core and/or hand specimens. Manual methods are subject to operator bias, human error and the amount of material that can be assessed within a given time frame is limited. The automated classification of ARD potential documented here is based on the ARD Index developed by Parbhakar-Fox et al. (2011). This ARD Index involves the combination of five indicators: A - sulphide content; B - sulphide alteration; C - sulphide morphology; D - primary neutraliser content; and E - sulphide mineral association. Several components of the ARD Index require accurate identification of sulphide minerals. This is achieved by classifying Corescan Red-Green-Blue true colour images into the presence or absence of sulphide minerals using supervised classification. Subsequently, sulphide classification images are processed and combined with Corescan SWIR-based mineral classifications to obtain information on sulphide content, indices representing sulphide textures (disseminated versus massive and degree of veining), and spatially associated minerals. This information is combined to calculate ARD Index indicator values that feed into the classification of ARD potential. Automated ARD potential classifications of drill core samples associated with a porphyry Cu-Au deposit are compared to manually derived classifications and those obtained by standard static geochemical testing and X-ray diffractometry analyses. Results indicate a high degree of similarity between automated and manual ARD potential classifications. Major differences between approaches are observed in sulphide and neutraliser mineral percentages, likely due to the subjective nature of manual estimates of mineral content. The automated approach

  15. An Entropy-based gene selection method for cancer classification using microarray data

    Directory of Open Access Journals (Sweden)

    Krishnan Arun

    2005-03-01

    Full Text Available Abstract Background Accurate diagnosis of cancer subtypes remains a challenging problem. Building classifiers based on gene expression data is a promising approach; yet the selection of non-redundant but relevant genes is difficult. The selected gene set should be small enough to allow diagnosis even in regular clinical laboratories and ideally identify genes involved in cancer-specific regulatory pathways. Here an entropy-based method is proposed that selects genes related to the different cancer classes while at the same time reducing the redundancy among the genes. Results The present study identifies a subset of features by maximizing the relevance and minimizing the redundancy of the selected genes. A merit called normalized mutual information is employed to measure the relevance and the redundancy of the genes. In order to find a more representative subset of features, an iterative procedure is adopted that incorporates an initial clustering followed by data partitioning and the application of the algorithm to each of the partitions. A leave-one-out approach then selects the most commonly selected genes across all the different runs and the gene selection algorithm is applied again to pare down the list of selected genes until a minimal subset is obtained that gives a satisfactory accuracy of classification. The algorithm was applied to three different data sets and the results obtained were compared to work done by others using the same data sets Conclusion This study presents an entropy-based iterative algorithm for selecting genes from microarray data that are able to classify various cancer sub-types with high accuracy. In addition, the feature set obtained is very compact, that is, the redundancy between genes is reduced to a large extent. This implies that classifiers can be built with a smaller subset of genes.

  16. A STUDY OF WAVELET ENTROPY MEASURE DEFINITION AND ITS APPLICATION FOR FAULT FEATURE PICK-UP AND CLASSIFICATION

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Shannon entropy in time domain is a measure of signal or system uncertainty. When based on spectrum entropy, Shannon entropy can be taken as a measure of signal or system complexity.Therefore, wavelet analysis based on wavelet entropy measure can signify the complexity of non-steady signal or system in both time and frequency domain. In this paper, in order to meet the requirements of post-analysis on abundant wavelet transform result data and the need of information mergence, the basic definition of wavelet entropy measure is proposed, corresponding algorithms of several wavelet entropies, such as wavelet average entropy, wavelet time-frequency entropy, wavelet distance entropy,etc. are put forward, and the physical meanings of these entropies are analyzed as well. The application principle of wavelet entropy measure in ElectroEncephaloGraphy (EEG) signal analysis, mechanical fault diagnosis, fault detection and classification in power system are analyzed. Finally, take the transmission line fault detection in power system for example, simulations in two different systems, a 10kV automatic blocking and continuous power transmission line and a 500kV Extra High Voltage (EHV) transmission line, are carried out, and the two methods, wavelet entropy and wavelet modulus maxima, are compared, the results show feasibility and application prospect of the six wavelet entropies.

  17. Automated classification of cell morphology by coherence-controlled holographic microscopy

    Science.gov (United States)

    Strbkova, Lenka; Zicha, Daniel; Vesely, Pavel; Chmelik, Radim

    2017-08-01

    In the last few years, classification of cells by machine learning has become frequently used in biology. However, most of the approaches are based on morphometric (MO) features, which are not quantitative in terms of cell mass. This may result in poor classification accuracy. Here, we study the potential contribution of coherence-controlled holographic microscopy enabling quantitative phase imaging for the classification of cell morphologies. We compare our approach with the commonly used method based on MO features. We tested both classification approaches in an experiment with nutritionally deprived cancer tissue cells, while employing several supervised machine learning algorithms. Most of the classifiers provided higher performance when quantitative phase features were employed. Based on the results, it can be concluded that the quantitative phase features played an important role in improving the performance of the classification. The methodology could be valuable help in refining the monitoring of live cells in an automated fashion. We believe that coherence-controlled holographic microscopy, as a tool for quantitative phase imaging, offers all preconditions for the accurate automated analysis of live cell behavior while enabling noninvasive label-free imaging with sufficient contrast and high-spatiotemporal phase sensitivity.

  18. Noisy EEG signals classification based on entropy metrics. Performance assessment using first and second generation statistics.

    Science.gov (United States)

    Cuesta-Frau, David; Miró-Martínez, Pau; Jordán Núñez, Jorge; Oltra-Crespo, Sandra; Molina Picó, Antonio

    2017-08-01

    This paper evaluates the performance of first generation entropy metrics, featured by the well known and widely used Approximate Entropy (ApEn) and Sample Entropy (SampEn) metrics, and what can be considered an evolution from these, Fuzzy Entropy (FuzzyEn), in the Electroencephalogram (EEG) signal classification context. The study uses the commonest artifacts found in real EEGs, such as white noise, and muscular, cardiac, and ocular artifacts. Using two different sets of publicly available EEG records, and a realistic range of amplitudes for interfering artifacts, this work optimises and assesses the robustness of these metrics against artifacts in class segmentation terms probability. The results show that the qualitative behaviour of the two datasets is similar, with SampEn and FuzzyEn performing the best, and the noise and muscular artifacts are the most confounding factors. On the contrary, there is a wide variability as regards initialization parameters. The poor performance achieved by ApEn suggests that this metric should not be used in these contexts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Entropy-based gene ranking without selection bias for the predictive classification of microarray data

    Directory of Open Access Journals (Sweden)

    Serafini Maria

    2003-11-01

    Full Text Available Abstract Background We describe the E-RFE method for gene ranking, which is useful for the identification of markers in the predictive classification of array data. The method supports a practical modeling scheme designed to avoid the construction of classification rules based on the selection of too small gene subsets (an effect known as the selection bias, in which the estimated predictive errors are too optimistic due to testing on samples already considered in the feature selection process. Results With E-RFE, we speed up the recursive feature elimination (RFE with SVM classifiers by eliminating chunks of uninteresting genes using an entropy measure of the SVM weights distribution. An optimal subset of genes is selected according to a two-strata model evaluation procedure: modeling is replicated by an external stratified-partition resampling scheme, and, within each run, an internal K-fold cross-validation is used for E-RFE ranking. Also, the optimal number of genes can be estimated according to the saturation of Zipf's law profiles. Conclusions Without a decrease of classification accuracy, E-RFE allows a speed-up factor of 100 with respect to standard RFE, while improving on alternative parametric RFE reduction strategies. Thus, a process for gene selection and error estimation is made practical, ensuring control of the selection bias, and providing additional diagnostic indicators of gene importance.

  20. A Classification Detection Algorithm Based on Joint Entropy Vector against Application-Layer DDoS Attack

    Directory of Open Access Journals (Sweden)

    Yuntao Zhao

    2018-01-01

    Full Text Available The application-layer distributed denial of service (AL-DDoS attack makes a great threat against cyberspace security. The attack detection is an important part of the security protection, which provides effective support for defense system through the rapid and accurate identification of attacks. According to the attacker’s different URL of the Web service, the AL-DDoS attack is divided into three categories, including a random URL attack and a fixed and a traverse one. In order to realize identification of attacks, a mapping matrix of the joint entropy vector is constructed. By defining and computing the value of EUPI and jEIPU, a visual coordinate discrimination diagram of entropy vector is proposed, which also realizes data dimension reduction from N to two. In terms of boundary discrimination and the region where the entropy vectors fall in, the class of AL-DDoS attack can be distinguished. Through the study of training data set and classification, the results show that the novel algorithm can effectively distinguish the web server DDoS attack from normal burst traffic.

  1. Automated classification of cell morphology by coherence-controlled holographic microscopy.

    Science.gov (United States)

    Strbkova, Lenka; Zicha, Daniel; Vesely, Pavel; Chmelik, Radim

    2017-08-01

    In the last few years, classification of cells by machine learning has become frequently used in biology. However, most of the approaches are based on morphometric (MO) features, which are not quantitative in terms of cell mass. This may result in poor classification accuracy. Here, we study the potential contribution of coherence-controlled holographic microscopy enabling quantitative phase imaging for the classification of cell morphologies. We compare our approach with the commonly used method based on MO features. We tested both classification approaches in an experiment with nutritionally deprived cancer tissue cells, while employing several supervised machine learning algorithms. Most of the classifiers provided higher performance when quantitative phase features were employed. Based on the results, it can be concluded that the quantitative phase features played an important role in improving the performance of the classification. The methodology could be valuable help in refining the monitoring of live cells in an automated fashion. We believe that coherence-controlled holographic microscopy, as a tool for quantitative phase imaging, offers all preconditions for the accurate automated analysis of live cell behavior while enabling noninvasive label-free imaging with sufficient contrast and high-spatiotemporal phase sensitivity. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  2. Model-based classification of CPT data and automated lithostratigraphic mapping for high-resolution characterization of a heterogeneous sedimentary aquifer.

    Science.gov (United States)

    Rogiers, Bart; Mallants, Dirk; Batelaan, Okke; Gedeon, Matej; Huysmans, Marijke; Dassargues, Alain

    2017-01-01

    Cone penetration testing (CPT) is one of the most efficient and versatile methods currently available for geotechnical, lithostratigraphic and hydrogeological site characterization. Currently available methods for soil behaviour type classification (SBT) of CPT data however have severe limitations, often restricting their application to a local scale. For parameterization of regional groundwater flow or geotechnical models, and delineation of regional hydro- or lithostratigraphy, regional SBT classification would be very useful. This paper investigates the use of model-based clustering for SBT classification, and the influence of different clustering approaches on the properties and spatial distribution of the obtained soil classes. We additionally propose a methodology for automated lithostratigraphic mapping of regionally occurring sedimentary units using SBT classification. The methodology is applied to a large CPT dataset, covering a groundwater basin of ~60 km2 with predominantly unconsolidated sandy sediments in northern Belgium. Results show that the model-based approach is superior in detecting the true lithological classes when compared to more frequently applied unsupervised classification approaches or literature classification diagrams. We demonstrate that automated mapping of lithostratigraphic units using advanced SBT classification techniques can provide a large gain in efficiency, compared to more time-consuming manual approaches and yields at least equally accurate results.

  3. Model-based classification of CPT data and automated lithostratigraphic mapping for high-resolution characterization of a heterogeneous sedimentary aquifer.

    Directory of Open Access Journals (Sweden)

    Bart Rogiers

    Full Text Available Cone penetration testing (CPT is one of the most efficient and versatile methods currently available for geotechnical, lithostratigraphic and hydrogeological site characterization. Currently available methods for soil behaviour type classification (SBT of CPT data however have severe limitations, often restricting their application to a local scale. For parameterization of regional groundwater flow or geotechnical models, and delineation of regional hydro- or lithostratigraphy, regional SBT classification would be very useful. This paper investigates the use of model-based clustering for SBT classification, and the influence of different clustering approaches on the properties and spatial distribution of the obtained soil classes. We additionally propose a methodology for automated lithostratigraphic mapping of regionally occurring sedimentary units using SBT classification. The methodology is applied to a large CPT dataset, covering a groundwater basin of ~60 km2 with predominantly unconsolidated sandy sediments in northern Belgium. Results show that the model-based approach is superior in detecting the true lithological classes when compared to more frequently applied unsupervised classification approaches or literature classification diagrams. We demonstrate that automated mapping of lithostratigraphic units using advanced SBT classification techniques can provide a large gain in efficiency, compared to more time-consuming manual approaches and yields at least equally accurate results.

  4. Fruit Classification by Wavelet-Entropy and Feedforward Neural Network Trained by Fitness-Scaled Chaotic ABC and Biogeography-Based Optimization

    Directory of Open Access Journals (Sweden)

    Shuihua Wang

    2015-08-01

    Full Text Available Fruit classification is quite difficult because of the various categories and similar shapes and features of fruit. In this work, we proposed two novel machine-learning based classification methods. The developed system consists of wavelet entropy (WE, principal component analysis (PCA, feedforward neural network (FNN trained by fitness-scaled chaotic artificial bee colony (FSCABC and biogeography-based optimization (BBO, respectively. The K-fold stratified cross validation (SCV was utilized for statistical analysis. The classification performance for 1653 fruit images from 18 categories showed that the proposed “WE + PCA + FSCABC-FNN” and “WE + PCA + BBO-FNN” methods achieve the same accuracy of 89.5%, higher than state-of-the-art approaches: “(CH + MP + US + PCA + GA-FNN ” of 84.8%, “(CH + MP + US + PCA + PSO-FNN” of 87.9%, “(CH + MP + US + PCA + ABC-FNN” of 85.4%, “(CH + MP + US + PCA + kSVM” of 88.2%, and “(CH + MP + US + PCA + FSCABC-FNN” of 89.1%. Besides, our methods used only 12 features, less than the number of features used by other methods. Therefore, the proposed methods are effective for fruit classification.

  5. Clever Toolbox - the Art of Automated Genre Classification

    DEFF Research Database (Denmark)

    2005-01-01

    Automatic musical genre classification can be defined as the science of finding computer algorithms that a digitized sound clip as input and yield a musical genre as output. The goal of automated genre classification is, of course, that the musical genre should agree with the human classificasion....... This demo illustrates an approach to the problem that first extract frequency-based sound features followed by a "linear regression" classifier. The basic features are the so-called mel-frequency cepstral coefficients (MFCCs), which are extracted on a time-scale of 30 msec. From these MFCC features, auto......) is subsequently used for classification. This classifier is rather simple; current research investigates more advanced methods of classification....

  6. Quantum Cascade Laser-Based Infrared Microscopy for Label-Free and Automated Cancer Classification in Tissue Sections.

    Science.gov (United States)

    Kuepper, Claus; Kallenbach-Thieltges, Angela; Juette, Hendrik; Tannapfel, Andrea; Großerueschkamp, Frederik; Gerwert, Klaus

    2018-05-16

    A feasibility study using a quantum cascade laser-based infrared microscope for the rapid and label-free classification of colorectal cancer tissues is presented. Infrared imaging is a reliable, robust, automated, and operator-independent tissue classification method that has been used for differential classification of tissue thin sections identifying tumorous regions. However, long acquisition time by the so far used FT-IR-based microscopes hampered the clinical translation of this technique. Here, the used quantum cascade laser-based microscope provides now infrared images for precise tissue classification within few minutes. We analyzed 110 patients with UICC-Stage II and III colorectal cancer, showing 96% sensitivity and 100% specificity of this label-free method as compared to histopathology, the gold standard in routine clinical diagnostics. The main hurdle for the clinical translation of IR-Imaging is overcome now by the short acquisition time for high quality diagnostic images, which is in the same time range as frozen sections by pathologists.

  7. “The Naming of Cats”: Automated Genre Classification

    Directory of Open Access Journals (Sweden)

    Yunhyong Kim

    2007-07-01

    Full Text Available This paper builds on the work presented at the ECDL 2006 in automated genre classification as a step toward automating metadata extraction from digital documents for ingest into digital repositories such as those run by archives, libraries and eprint services (Kim & Ross, 2006b. We have previously proposed dividing features of a document into five types (features for visual layout, language model features, stylometric features, features for semantic structure, and contextual features as an object linked to previously classified objects and other external sources and have examined visual and language model features. The current paper compares results from testing classifiers based on image and stylometric features in a binary classification to show that certain genres have strong image features which enable effective separation of documents belonging to the genre from a large pool of other documents.

  8. Estimation of Lithological Classification in Taipei Basin: A Bayesian Maximum Entropy Method

    Science.gov (United States)

    Wu, Meng-Ting; Lin, Yuan-Chien; Yu, Hwa-Lung

    2015-04-01

    In environmental or other scientific applications, we must have a certain understanding of geological lithological composition. Because of restrictions of real conditions, only limited amount of data can be acquired. To find out the lithological distribution in the study area, many spatial statistical methods used to estimate the lithological composition on unsampled points or grids. This study applied the Bayesian Maximum Entropy (BME method), which is an emerging method of the geological spatiotemporal statistics field. The BME method can identify the spatiotemporal correlation of the data, and combine not only the hard data but the soft data to improve estimation. The data of lithological classification is discrete categorical data. Therefore, this research applied Categorical BME to establish a complete three-dimensional Lithological estimation model. Apply the limited hard data from the cores and the soft data generated from the geological dating data and the virtual wells to estimate the three-dimensional lithological classification in Taipei Basin. Keywords: Categorical Bayesian Maximum Entropy method, Lithological Classification, Hydrogeological Setting

  9. Comparison of an automated classification system with an empirical classification of circulation patterns over the Pannonian basin, Central Europe

    Science.gov (United States)

    Maheras, Panagiotis; Tolika, Konstantia; Tegoulias, Ioannis; Anagnostopoulou, Christina; Szpirosz, Klicász; Károssy, Csaba; Makra, László

    2018-04-01

    The aim of the study is to compare the performance of the two classification methods, based on the atmospheric circulation types over the Pannonian basin in Central Europe. Moreover, relationships including seasonal occurrences and correlation coefficients, as well as comparative diagrams of the seasonal occurrences of the circulation types of the two classification systems are presented. When comparing of the automated (objective) and empirical (subjective) classification methods, it was found that the frequency of the empirical anticyclonic (cyclonic) types is much higher (lower) than that of the automated anticyclonic (cyclonic) types both on an annual and seasonal basis. The highest and statistically significant correlations between the circulation types of the two classification systems, as well as those between the cumulated seasonal anticyclonic and cyclonic types occur in winter for both classifications, since the weather-influencing effect of the atmospheric circulation in this season is the most prevalent. Precipitation amounts in Budapest display a decreasing trend in accordance with the decrease in the occurrence of the automated cyclonic types. In contrast, the occurrence of the empirical cyclonic types displays an increasing trend. There occur types in a given classification that are usually accompanied by high ratios of certain types in the other classification.

  10. Deep learning for classification of islanding and grid disturbance based on multi-resolution singular spectrum entropy

    Science.gov (United States)

    Li, Tie; He, Xiaoyang; Tang, Junci; Zeng, Hui; Zhou, Chunying; Zhang, Nan; Liu, Hui; Lu, Zhuoxin; Kong, Xiangrui; Yan, Zheng

    2018-02-01

    Forasmuch as the distinguishment of islanding is easy to be interfered by grid disturbance, island detection device may make misjudgment thus causing the consequence of photovoltaic out of service. The detection device must provide with the ability to differ islanding from grid disturbance. In this paper, the concept of deep learning is introduced into classification of islanding and grid disturbance for the first time. A novel deep learning framework is proposed to detect and classify islanding or grid disturbance. The framework is a hybrid of wavelet transformation, multi-resolution singular spectrum entropy, and deep learning architecture. As a signal processing method after wavelet transformation, multi-resolution singular spectrum entropy combines multi-resolution analysis and spectrum analysis with entropy as output, from which we can extract the intrinsic different features between islanding and grid disturbance. With the features extracted, deep learning is utilized to classify islanding and grid disturbance. Simulation results indicate that the method can achieve its goal while being highly accurate, so the photovoltaic system mistakenly withdrawing from power grids can be avoided.

  11. Automated classification of mouse pup isolation syllables: from cluster analysis to an Excel based ‘mouse pup syllable classification calculator’

    Directory of Open Access Journals (Sweden)

    Jasmine eGrimsley

    2013-01-01

    Full Text Available Mouse pups vocalize at high rates when they are cold or isolated from the nest. The proportions of each syllable type produced carry information about disease state and are being used as behavioral markers for the internal state of animals. Manual classifications of these vocalizations identified ten syllable types based on their spectro-temporal features. However, manual classification of mouse syllables is time consuming and vulnerable to experimenter bias. This study uses an automated cluster analysis to identify acoustically distinct syllable types produced by CBA/CaJ mouse pups, and then compares the results to prior manual classification methods. The cluster analysis identified two syllable types, based on their frequency bands, that have continuous frequency-time structure, and two syllable types featuring abrupt frequency transitions. Although cluster analysis computed fewer syllable types than manual classification, the clusters represented well the probability distributions of the acoustic features within syllables. These probability distributions indicate that some of the manually classified syllable types are not statistically distinct. The characteristics of the four classified clusters were used to generate a Microsoft Excel-based mouse syllable classifier that rapidly categorizes syllables, with over a 90% match, into the syllable types determined by cluster analysis.

  12. Semi-Automated Classification of Seafloor Data Collected on the Delmarva Inner Shelf

    Science.gov (United States)

    Sweeney, E. M.; Pendleton, E. A.; Brothers, L. L.; Mahmud, A.; Thieler, E. R.

    2017-12-01

    We tested automated classification methods on acoustic bathymetry and backscatter data collected by the U.S. Geological Survey (USGS) and National Oceanic and Atmospheric Administration (NOAA) on the Delmarva inner continental shelf to efficiently and objectively identify sediment texture and geomorphology. Automated classification techniques are generally less subjective and take significantly less time than manual classification methods. We used a semi-automated process combining unsupervised and supervised classification techniques to characterize seafloor based on bathymetric slope and relative backscatter intensity. Statistical comparison of our automated classification results with those of a manual classification conducted on a subset of the acoustic imagery indicates that our automated method was highly accurate (95% total accuracy and 93% Kappa). Our methods resolve sediment ridges, zones of flat seafloor and areas of high and low backscatter. We compared our classification scheme with mean grain size statistics of samples collected in the study area and found that strong correlations between backscatter intensity and sediment texture exist. High backscatter zones are associated with the presence of gravel and shells mixed with sand, and low backscatter areas are primarily clean sand or sand mixed with mud. Slope classes further elucidate textural and geomorphologic differences in the seafloor, such that steep slopes (>0.35°) with high backscatter are most often associated with the updrift side of sand ridges and bedforms, whereas low slope with high backscatter correspond to coarse lag or shell deposits. Low backscatter and high slopes are most often found on the downdrift side of ridges and bedforms, and low backscatter and low slopes identify swale areas and sand sheets. We found that poor acoustic data quality was the most significant cause of inaccurate classification results, which required additional user input to mitigate. Our method worked well

  13. Automated EEG entropy measurements in coma, vegetative state/unresponsive wakefulness syndrome and minimally conscious state

    Science.gov (United States)

    Gosseries, Olivia; Schnakers, Caroline; Ledoux, Didier; Vanhaudenhuyse, Audrey; Bruno, Marie-Aurélie; Demertzi, Athéna; Noirhomme, Quentin; Lehembre, Rémy; Damas, Pierre; Goldman, Serge; Peeters, Erika; Moonen, Gustave; Laureys, Steven

    Summary Monitoring the level of consciousness in brain-injured patients with disorders of consciousness is crucial as it provides diagnostic and prognostic information. Behavioral assessment remains the gold standard for assessing consciousness but previous studies have shown a high rate of misdiagnosis. This study aimed to investigate the usefulness of electroencephalography (EEG) entropy measurements in differentiating unconscious (coma or vegetative) from minimally conscious patients. Left fronto-temporal EEG recordings (10-minute resting state epochs) were prospectively obtained in 56 patients and 16 age-matched healthy volunteers. Patients were assessed in the acute (≤1 month post-injury; n=29) or chronic (>1 month post-injury; n=27) stage. The etiology was traumatic in 23 patients. Automated online EEG entropy calculations (providing an arbitrary value ranging from 0 to 91) were compared with behavioral assessments (Coma Recovery Scale-Revised) and outcome. EEG entropy correlated with Coma Recovery Scale total scores (r=0.49). Mean EEG entropy values were higher in minimally conscious (73±19; mean and standard deviation) than in vegetative/unresponsive wakefulness syndrome patients (45±28). Receiver operating characteristic analysis revealed an entropy cut-off value of 52 differentiating acute unconscious from minimally conscious patients (sensitivity 89% and specificity 90%). In chronic patients, entropy measurements offered no reliable diagnostic information. EEG entropy measurements did not allow prediction of outcome. User-independent time-frequency balanced spectral EEG entropy measurements seem to constitute an interesting diagnostic – albeit not prognostic – tool for assessing neural network complexity in disorders of consciousness in the acute setting. Future studies are needed before using this tool in routine clinical practice, and these should seek to improve automated EEG quantification paradigms in order to reduce the remaining false

  14. An entropy-based improved k-top scoring pairs (TSP) method for ...

    African Journals Online (AJOL)

    An entropy-based improved k-top scoring pairs (TSP) (Ik-TSP) method was presented in this study for the classification and prediction of human cancers based on gene-expression data. We compared Ik-TSP classifiers with 5 different machine learning methods and the k-TSP method based on 3 different feature selection ...

  15. An automated classification system for the differentiation of obstructive lung diseases based on the textural analysis of HRCT images

    International Nuclear Information System (INIS)

    Park, Seong Hoon; Seo, Joon Beom; Kim, Nam Kug; Lee, Young Kyung; Kim, Song Soo; Chae, Eun Jin; Lee, June Goo

    2007-01-01

    To develop an automated classification system for the differentiation of obstructive lung diseases based on the textural analysis of HRCT images, and to evaluate the accuracy and usefulness of the system. For textural analysis, histogram features, gradient features, run length encoding, and a co-occurrence matrix were employed. A Bayesian classifier was used for automated classification. The images (image number n = 256) were selected from the HRCT images obtained from 17 healthy subjects (n = 67), 26 patients with bronchiolitis obliterans (n = 70), 28 patients with mild centrilobular emphysema (n = 65), and 21 patients with panlobular emphysema or severe centrilobular emphysema (n = 63). An five-fold cross-validation method was used to assess the performance of the system. Class-specific sensitivities were analyzed and the overall accuracy of the system was assessed with kappa statistics. The sensitivity of the system for each class was as follows: normal lung 84.9%, bronchiolitis obliterans 83.8%, mild centrilobular emphysema 77.0%, and panlobular emphysema or severe centrilobular emphysema 95.8%. The overall performance for differentiating each disease and the normal lung was satisfactory with a kappa value of 0.779. An automated classification system for the differentiation between obstructive lung diseases based on the textural analysis of HRCT images was developed. The proposed system discriminates well between the various obstructive lung diseases and the normal lung

  16. Automating the expert consensus paradigm for robust lung tissue classification

    Science.gov (United States)

    Rajagopalan, Srinivasan; Karwoski, Ronald A.; Raghunath, Sushravya; Bartholmai, Brian J.; Robb, Richard A.

    2012-03-01

    Clinicians confirm the efficacy of dynamic multidisciplinary interactions in diagnosing Lung disease/wellness from CT scans. However, routine clinical practice cannot readily accomodate such interactions. Current schemes for automating lung tissue classification are based on a single elusive disease differentiating metric; this undermines their reliability in routine diagnosis. We propose a computational workflow that uses a collection (#: 15) of probability density functions (pdf)-based similarity metrics to automatically cluster pattern-specific (#patterns: 5) volumes of interest (#VOI: 976) extracted from the lung CT scans of 14 patients. The resultant clusters are refined for intra-partition compactness and subsequently aggregated into a super cluster using a cluster ensemble technique. The super clusters were validated against the consensus agreement of four clinical experts. The aggregations correlated strongly with expert consensus. By effectively mimicking the expertise of physicians, the proposed workflow could make automation of lung tissue classification a clinical reality.

  17. Operational experiences with automated acoustic burst classification by neural networks

    International Nuclear Information System (INIS)

    Olma, B.; Ding, Y.; Enders, R.

    1996-01-01

    Monitoring of Loose Parts Monitoring System sensors for signal bursts associated with metallic impacts of loose parts has proved as an useful methodology for on-line assessing the mechanical integrity of components in the primary circuit of nuclear power plants. With the availability of neural networks new powerful possibilities for classification and diagnosis of burst signals can be realized for acoustic monitoring with the online system RAMSES. In order to look for relevant burst signals an automated classification is needed, that means acoustic signature analysis and assessment has to be performed automatically on-line. A back propagation neural network based on five pre-calculated signal parameter values has been set up for identification of different signal types. During a three-month monitoring program of medium-operated check valves burst signals have been measured and classified separately according to their cause. The successful results of the three measurement campaigns with an automated burst type classification are presented. (author)

  18. Automated radial basis function neural network based image classification system for diabetic retinopathy detection in retinal images

    Science.gov (United States)

    Anitha, J.; Vijila, C. Kezi Selva; Hemanth, D. Jude

    2010-02-01

    Diabetic retinopathy (DR) is a chronic eye disease for which early detection is highly essential to avoid any fatal results. Image processing of retinal images emerge as a feasible tool for this early diagnosis. Digital image processing techniques involve image classification which is a significant technique to detect the abnormality in the eye. Various automated classification systems have been developed in the recent years but most of them lack high classification accuracy. Artificial neural networks are the widely preferred artificial intelligence technique since it yields superior results in terms of classification accuracy. In this work, Radial Basis function (RBF) neural network based bi-level classification system is proposed to differentiate abnormal DR Images and normal retinal images. The results are analyzed in terms of classification accuracy, sensitivity and specificity. A comparative analysis is performed with the results of the probabilistic classifier namely Bayesian classifier to show the superior nature of neural classifier. Experimental results show promising results for the neural classifier in terms of the performance measures.

  19. Automated Classification of Consumer Health Information Needs in Patient Portal Messages.

    Science.gov (United States)

    Cronin, Robert M; Fabbri, Daniel; Denny, Joshua C; Jackson, Gretchen Purcell

    2015-01-01

    Patients have diverse health information needs, and secure messaging through patient portals is an emerging means by which such needs are expressed and met. As patient portal adoption increases, growing volumes of secure messages may burden healthcare providers. Automated classification could expedite portal message triage and answering. We created four automated classifiers based on word content and natural language processing techniques to identify health information needs in 1000 patient-generated portal messages. Logistic regression and random forest classifiers detected single information needs well, with area under the curves of 0.804-0.914. A logistic regression classifier accurately found the set of needs within a message, with a Jaccard index of 0.859 (95% Confidence Interval: (0.847, 0.871)). Automated classification of consumer health information needs expressed in patient portal messages is feasible and may allow direct linking to relevant resources or creation of institutional resources for commonly expressed needs.

  20. Epileptic seizure detection using DWT-based approximate entropy, Shannon entropy and support vector machine: a case study.

    Science.gov (United States)

    Sharmila, A; Aman Raj, Suman; Shashank, Pandey; Mahalakshmi, P

    2018-01-01

    In this work, we have used a time-frequency domain analysis method called discrete wavelet transform (DWT) technique. This method stand out compared to other proposed methods because of its algorithmic elegance and accuracy. A wavelet is a mathematical function based on time-frequency analysis in signal processing. It is useful particularly because it allows a weak signal to be recovered from a noisy signal without much distortion. A wavelet analysis works by analysing the image and converting it to mathematical function which is decoded by the receiver. Furthermore, we have used Shannon entropy and approximate entropy (ApEn) for extracting the complexities associated with electroencephalographic (EEG) signals. The ApEn is a suitable feature to characterise the EEGs because its value drops suddenly due to excessive synchronous discharge of neurons in the brain during epileptic activity in this study. EEG signals are decomposed into six EEG sub-bands namely D1-D5 and A5 using DWT technique. Non-linear features such as ApEn and Shannon entropy are calculated from these sub-bands and support vector machine classifiers are used for classification purpose. This scheme is tested using EEG data recorded from five healthy subjects and five epileptic patients during the inter-ictal and ictal periods. The data are acquired from University of Bonn, Germany. The proposed method is evaluated through 15 classification problems, and obtained high classification accuracy of 100% for two cases and it indicates the good classifying performance of the proposed method.

  1. Automated Classification of Consumer Health Information Needs in Patient Portal Messages

    Science.gov (United States)

    Cronin, Robert M.; Fabbri, Daniel; Denny, Joshua C.; Jackson, Gretchen Purcell

    2015-01-01

    Patients have diverse health information needs, and secure messaging through patient portals is an emerging means by which such needs are expressed and met. As patient portal adoption increases, growing volumes of secure messages may burden healthcare providers. Automated classification could expedite portal message triage and answering. We created four automated classifiers based on word content and natural language processing techniques to identify health information needs in 1000 patient-generated portal messages. Logistic regression and random forest classifiers detected single information needs well, with area under the curves of 0.804–0.914. A logistic regression classifier accurately found the set of needs within a message, with a Jaccard index of 0.859 (95% Confidence Interval: (0.847, 0.871)). Automated classification of consumer health information needs expressed in patient portal messages is feasible and may allow direct linking to relevant resources or creation of institutional resources for commonly expressed needs. PMID:26958285

  2. Automated Decision Tree Classification of Corneal Shape

    Science.gov (United States)

    Twa, Michael D.; Parthasarathy, Srinivasan; Roberts, Cynthia; Mahmoud, Ashraf M.; Raasch, Thomas W.; Bullimore, Mark A.

    2011-01-01

    Purpose The volume and complexity of data produced during videokeratography examinations present a challenge of interpretation. As a consequence, results are often analyzed qualitatively by subjective pattern recognition or reduced to comparisons of summary indices. We describe the application of decision tree induction, an automated machine learning classification method, to discriminate between normal and keratoconic corneal shapes in an objective and quantitative way. We then compared this method with other known classification methods. Methods The corneal surface was modeled with a seventh-order Zernike polynomial for 132 normal eyes of 92 subjects and 112 eyes of 71 subjects diagnosed with keratoconus. A decision tree classifier was induced using the C4.5 algorithm, and its classification performance was compared with the modified Rabinowitz–McDonnell index, Schwiegerling’s Z3 index (Z3), Keratoconus Prediction Index (KPI), KISA%, and Cone Location and Magnitude Index using recommended classification thresholds for each method. We also evaluated the area under the receiver operator characteristic (ROC) curve for each classification method. Results Our decision tree classifier performed equal to or better than the other classifiers tested: accuracy was 92% and the area under the ROC curve was 0.97. Our decision tree classifier reduced the information needed to distinguish between normal and keratoconus eyes using four of 36 Zernike polynomial coefficients. The four surface features selected as classification attributes by the decision tree method were inferior elevation, greater sagittal depth, oblique toricity, and trefoil. Conclusions Automated decision tree classification of corneal shape through Zernike polynomials is an accurate quantitative method of classification that is interpretable and can be generated from any instrument platform capable of raw elevation data output. This method of pattern classification is extendable to other classification

  3. A systematic literature review of automated clinical coding and classification systems.

    Science.gov (United States)

    Stanfill, Mary H; Williams, Margaret; Fenton, Susan H; Jenders, Robert A; Hersh, William R

    2010-01-01

    Clinical coding and classification processes transform natural language descriptions in clinical text into data that can subsequently be used for clinical care, research, and other purposes. This systematic literature review examined studies that evaluated all types of automated coding and classification systems to determine the performance of such systems. Studies indexed in Medline or other relevant databases prior to March 2009 were considered. The 113 studies included in this review show that automated tools exist for a variety of coding and classification purposes, focus on various healthcare specialties, and handle a wide variety of clinical document types. Automated coding and classification systems themselves are not generalizable, nor are the results of the studies evaluating them. Published research shows these systems hold promise, but these data must be considered in context, with performance relative to the complexity of the task and the desired outcome.

  4. Automated artery-venous classification of retinal blood vessels based on structural mapping method

    Science.gov (United States)

    Joshi, Vinayak S.; Garvin, Mona K.; Reinhardt, Joseph M.; Abramoff, Michael D.

    2012-03-01

    Retinal blood vessels show morphologic modifications in response to various retinopathies. However, the specific responses exhibited by arteries and veins may provide a precise diagnostic information, i.e., a diabetic retinopathy may be detected more accurately with the venous dilatation instead of average vessel dilatation. In order to analyze the vessel type specific morphologic modifications, the classification of a vessel network into arteries and veins is required. We previously described a method for identification and separation of retinal vessel trees; i.e. structural mapping. Therefore, we propose the artery-venous classification based on structural mapping and identification of color properties prominent to the vessel types. The mean and standard deviation of each of green channel intensity and hue channel intensity are analyzed in a region of interest around each centerline pixel of a vessel. Using the vector of color properties extracted from each centerline pixel, it is classified into one of the two clusters (artery and vein), obtained by the fuzzy-C-means clustering. According to the proportion of clustered centerline pixels in a particular vessel, and utilizing the artery-venous crossing property of retinal vessels, each vessel is assigned a label of an artery or a vein. The classification results are compared with the manually annotated ground truth (gold standard). We applied the proposed method to a dataset of 15 retinal color fundus images resulting in an accuracy of 88.28% correctly classified vessel pixels. The automated classification results match well with the gold standard suggesting its potential in artery-venous classification and the respective morphology analysis.

  5. AN OBJECT-BASED METHOD FOR CHINESE LANDFORM TYPES CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    H. Ding

    2016-06-01

    Full Text Available Landform classification is a necessary task for various fields of landscape and regional planning, for example for landscape evaluation, erosion studies, hazard prediction, et al. This study proposes an improved object-based classification for Chinese landform types using the factor importance analysis of random forest and the gray-level co-occurrence matrix (GLCM. In this research, based on 1km DEM of China, the combination of the terrain factors extracted from DEM are selected by correlation analysis and Sheffield's entropy method. Random forest classification tree is applied to evaluate the importance of the terrain factors, which are used as multi-scale segmentation thresholds. Then the GLCM is conducted for the knowledge base of classification. The classification result was checked by using the 1:4,000,000 Chinese Geomorphological Map as reference. And the overall classification accuracy of the proposed method is 5.7% higher than ISODATA unsupervised classification, and 15.7% higher than the traditional object-based classification method.

  6. Page Layout Analysis of the Document Image Based on the Region Classification in a Decision Hierarchical Structure

    Directory of Open Access Journals (Sweden)

    Hossein Pourghassem

    2010-10-01

    Full Text Available The conversion of document image to its electronic version is a very important problem in the saving, searching and retrieval application in the official automation system. For this purpose, analysis of the document image is necessary. In this paper, a hierarchical classification structure based on a two-stage segmentation algorithm is proposed. In this structure, image is segmented using the proposed two-stage segmentation algorithm. Then, the type of the image regions such as document and non-document image is determined using multiple classifiers in the hierarchical classification structure. The proposed segmentation algorithm uses two algorithms based on wavelet transform and thresholding. Texture features such as correlation, homogeneity and entropy that extracted from co-occurrenc matrix and also two new features based on wavelet transform are used to classifiy and lable the regions of the image. The hierarchical classifier is consisted of two Multilayer Perceptron (MLP classifiers and a Support Vector Machine (SVM classifier. The proposed algorithm is evaluated on a database consisting of document and non-document images that provides from Internet. The experimental results show the efficiency of the proposed approach in the region segmentation and classification. The proposed algorithm provides accuracy rate of 97.5% on classification of the regions.

  7. How automated image analysis techniques help scientists in species identification and classification?

    Science.gov (United States)

    Yousef Kalafi, Elham; Town, Christopher; Kaur Dhillon, Sarinder

    2017-09-04

    Identification of taxonomy at a specific level is time consuming and reliant upon expert ecologists. Hence the demand for automated species identification increased over the last two decades. Automation of data classification is primarily focussed on images, incorporating and analysing image data has recently become easier due to developments in computational technology. Research efforts in identification of species include specimens' image processing, extraction of identical features, followed by classifying them into correct categories. In this paper, we discuss recent automated species identification systems, categorizing and evaluating their methods. We reviewed and compared different methods in step by step scheme of automated identification and classification systems of species images. The selection of methods is influenced by many variables such as level of classification, number of training data and complexity of images. The aim of writing this paper is to provide researchers and scientists an extensive background study on work related to automated species identification, focusing on pattern recognition techniques in building such systems for biodiversity studies.

  8. Prototype semantic infrastructure for automated small molecule classification and annotation in lipidomics.

    Science.gov (United States)

    Chepelev, Leonid L; Riazanov, Alexandre; Kouznetsov, Alexandre; Low, Hong Sang; Dumontier, Michel; Baker, Christopher J O

    2011-07-26

    The development of high-throughput experimentation has led to astronomical growth in biologically relevant lipids and lipid derivatives identified, screened, and deposited in numerous online databases. Unfortunately, efforts to annotate, classify, and analyze these chemical entities have largely remained in the hands of human curators using manual or semi-automated protocols, leaving many novel entities unclassified. Since chemical function is often closely linked to structure, accurate structure-based classification and annotation of chemical entities is imperative to understanding their functionality. As part of an exploratory study, we have investigated the utility of semantic web technologies in automated chemical classification and annotation of lipids. Our prototype framework consists of two components: an ontology and a set of federated web services that operate upon it. The formal lipid ontology we use here extends a part of the LiPrO ontology and draws on the lipid hierarchy in the LIPID MAPS database, as well as literature-derived knowledge. The federated semantic web services that operate upon this ontology are deployed within the Semantic Annotation, Discovery, and Integration (SADI) framework. Structure-based lipid classification is enacted by two core services. Firstly, a structural annotation service detects and enumerates relevant functional groups for a specified chemical structure. A second service reasons over lipid ontology class descriptions using the attributes obtained from the annotation service and identifies the appropriate lipid classification. We extend the utility of these core services by combining them with additional SADI services that retrieve associations between lipids and proteins and identify publications related to specified lipid types. We analyze the performance of SADI-enabled eicosanoid classification relative to the LIPID MAPS classification and reflect on the contribution of our integrative methodology in the context of

  9. Prototype semantic infrastructure for automated small molecule classification and annotation in lipidomics

    Directory of Open Access Journals (Sweden)

    Dumontier Michel

    2011-07-01

    Full Text Available Abstract Background The development of high-throughput experimentation has led to astronomical growth in biologically relevant lipids and lipid derivatives identified, screened, and deposited in numerous online databases. Unfortunately, efforts to annotate, classify, and analyze these chemical entities have largely remained in the hands of human curators using manual or semi-automated protocols, leaving many novel entities unclassified. Since chemical function is often closely linked to structure, accurate structure-based classification and annotation of chemical entities is imperative to understanding their functionality. Results As part of an exploratory study, we have investigated the utility of semantic web technologies in automated chemical classification and annotation of lipids. Our prototype framework consists of two components: an ontology and a set of federated web services that operate upon it. The formal lipid ontology we use here extends a part of the LiPrO ontology and draws on the lipid hierarchy in the LIPID MAPS database, as well as literature-derived knowledge. The federated semantic web services that operate upon this ontology are deployed within the Semantic Annotation, Discovery, and Integration (SADI framework. Structure-based lipid classification is enacted by two core services. Firstly, a structural annotation service detects and enumerates relevant functional groups for a specified chemical structure. A second service reasons over lipid ontology class descriptions using the attributes obtained from the annotation service and identifies the appropriate lipid classification. We extend the utility of these core services by combining them with additional SADI services that retrieve associations between lipids and proteins and identify publications related to specified lipid types. We analyze the performance of SADI-enabled eicosanoid classification relative to the LIPID MAPS classification and reflect on the contribution of

  10. Using Generalized Entropies and OC-SVM with Mahalanobis Kernel for Detection and Classification of Anomalies in Network Traffic

    Directory of Open Access Journals (Sweden)

    Jayro Santiago-Paz

    2015-09-01

    Full Text Available Network anomaly detection and classification is an important open issue in network security. Several approaches and systems based on different mathematical tools have been studied and developed, among them, the Anomaly-Network Intrusion Detection System (A-NIDS, which monitors network traffic and compares it against an established baseline of a “normal” traffic profile. Then, it is necessary to characterize the “normal” Internet traffic. This paper presents an approach for anomaly detection and classification based on Shannon, Rényi and Tsallis entropies of selected features, and the construction of regions from entropy data employing the Mahalanobis distance (MD, and One Class Support Vector Machine (OC-SVM with different kernels (Radial Basis Function (RBF and Mahalanobis Kernel (MK for “normal” and abnormal traffic. Regular and non-regular regions built from “normal” traffic profiles allow anomaly detection, while the classification is performed under the assumption that regions corresponding to the attack classes have been previously characterized. Although this approach allows the use of as many features as required, only four well-known significant features were selected in our case. In order to evaluate our approach, two different data sets were used: one set of real traffic obtained from an Academic Local Area Network (LAN, and the other a subset of the 1998 MIT-DARPA set. For these data sets, a True positive rate up to 99.35%, a True negative rate up to 99.83% and a False negative rate at about 0.16% were yielded. Experimental results show that certain q-values of the generalized entropies and the use of OC-SVM with RBF kernel improve the detection rate in the detection stage, while the novel inclusion of MK kernel in OC-SVM and k-temporal nearest neighbors improve accuracy in classification. In addition, the results show that using the Box-Cox transformation, the Mahalanobis distance yielded high detection rates with

  11. Characterization of complexity in the electroencephalograph activity of Alzheimer's disease based on fuzzy entropy.

    Science.gov (United States)

    Cao, Yuzhen; Cai, Lihui; Wang, Jiang; Wang, Ruofan; Yu, Haitao; Cao, Yibin; Liu, Jing

    2015-08-01

    In this paper, experimental neurophysiologic recording and statistical analysis are combined to investigate the nonlinear characteristic and the cognitive function of the brain. Fuzzy approximate entropy and fuzzy sample entropy are applied to characterize the model-based simulated series and electroencephalograph (EEG) series of Alzheimer's disease (AD). The effectiveness and advantages of these two kinds of fuzzy entropy are first verified through the simulated EEG series generated by the alpha rhythm model, including stronger relative consistency and robustness. Furthermore, in order to detect the abnormality of irregularity and chaotic behavior in the AD brain, the complexity features based on these two fuzzy entropies are extracted in the delta, theta, alpha, and beta bands. It is demonstrated that, due to the introduction of fuzzy set theory, the fuzzy entropies could better distinguish EEG signals of AD from that of the normal than the approximate entropy and sample entropy. Moreover, the entropy values of AD are significantly decreased in the alpha band, particularly in the temporal brain region, such as electrode T3 and T4. In addition, fuzzy sample entropy could achieve higher group differences in different brain regions and higher average classification accuracy of 88.1% by support vector machine classifier. The obtained results prove that fuzzy sample entropy may be a powerful tool to characterize the complexity abnormalities of AD, which could be helpful in further understanding of the disease.

  12. Entropy-Based Video Steganalysis of Motion Vectors

    Directory of Open Access Journals (Sweden)

    Elaheh Sadat Sadat

    2018-04-01

    Full Text Available In this paper, a new method is proposed for motion vector steganalysis using the entropy value and its combination with the features of the optimized motion vector. In this method, the entropy of blocks is calculated to determine their texture and the precision of their motion vectors. Then, by using a fuzzy cluster, the blocks are clustered into the blocks with high and low texture, while the membership function of each block to a high texture class indicates the texture of that block. These membership functions are used to weight the effective features that are extracted by reconstructing the motion estimation equations. Characteristics of the results indicate that the use of entropy and the irregularity of each block increases the precision of the final video classification into cover and stego classes.

  13. Multichannel interictal spike activity detection using time-frequency entropy measure.

    Science.gov (United States)

    Thanaraj, Palani; Parvathavarthini, B

    2017-06-01

    Localization of interictal spikes is an important clinical step in the pre-surgical assessment of pharmacoresistant epileptic patients. The manual selection of interictal spike periods is cumbersome and involves a considerable amount of analysis workload for the physician. The primary focus of this paper is to automate the detection of interictal spikes for clinical applications in epilepsy localization. The epilepsy localization procedure involves detection of spikes in a multichannel EEG epoch. Therefore, a multichannel Time-Frequency (T-F) entropy measure is proposed to extract features related to the interictal spike activity. Least squares support vector machine is used to train the proposed feature to classify the EEG epochs as either normal or interictal spike period. The proposed T-F entropy measure, when validated with epilepsy dataset of 15 patients, shows an interictal spike classification accuracy of 91.20%, sensitivity of 100% and specificity of 84.23%. Moreover, the area under the curve of Receiver Operating Characteristics plot of 0.9339 shows the superior classification performance of the proposed T-F entropy measure. The results of this paper show a good spike detection accuracy without any prior information about the spike morphology.

  14. Automated Classification of Asteroids into Families at Work

    Science.gov (United States)

    Knežević, Zoran; Milani, Andrea; Cellino, Alberto; Novaković, Bojan; Spoto, Federica; Paolicchi, Paolo

    2014-07-01

    We have recently proposed a new approach to the asteroid family classification by combining the classical HCM method with an automated procedure to add newly discovered members to existing families. This approach is specifically intended to cope with ever increasing asteroid data sets, and consists of several steps to segment the problem and handle the very large amount of data in an efficient and accurate manner. We briefly present all these steps and show the results from three subsequent updates making use of only the automated step of attributing the newly numbered asteroids to the known families. We describe the changes of the individual families membership, as well as the evolution of the classification due to the newly added intersections between the families, resolved candidate family mergers, and emergence of the new candidates for the mergers. We thus demonstrate how by the new approach the asteroid family classification becomes stable in general terms (converging towards a permanent list of confirmed families), and in the same time evolving in details (to account for the newly discovered asteroids) at each update.

  15. Multiscale Permutation Entropy Based Rolling Bearing Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Jinde Zheng

    2014-01-01

    Full Text Available A new rolling bearing fault diagnosis approach based on multiscale permutation entropy (MPE, Laplacian score (LS, and support vector machines (SVMs is proposed in this paper. Permutation entropy (PE was recently proposed and defined to measure the randomicity and detect dynamical changes of time series. However, for the complexity of mechanical systems, the randomicity and dynamic changes of the vibration signal will exist in different scales. Thus, the definition of MPE is introduced and employed to extract the nonlinear fault characteristics from the bearing vibration signal in different scales. Besides, the SVM is utilized to accomplish the fault feature classification to fulfill diagnostic procedure automatically. Meanwhile, in order to avoid a high dimension of features, the Laplacian score (LS is used to refine the feature vector by ranking the features according to their importance and correlations with the main fault information. Finally, the rolling bearing fault diagnosis method based on MPE, LS, and SVM is proposed and applied to the experimental data. The experimental data analysis results indicate that the proposed method could identify the fault categories effectively.

  16. Automated recognition system for ELM classification in JET

    International Nuclear Information System (INIS)

    Duro, N.; Dormido, R.; Vega, J.; Dormido-Canto, S.; Farias, G.; Sanchez, J.; Vargas, H.; Murari, A.

    2009-01-01

    Edge localized modes (ELMs) are instabilities occurring in the edge of H-mode plasmas. Considerable efforts are being devoted to understanding the physics behind this non-linear phenomenon. A first characterization of ELMs is usually their identification as type I or type III. An automated pattern recognition system has been developed in JET for off-line ELM recognition and classification. The empirical method presented in this paper analyzes each individual ELM instead of starting from a temporal segment containing many ELM bursts. The ELM recognition and isolation is carried out using three signals: Dα, line integrated electron density and stored diamagnetic energy. A reduced set of characteristics (such as diamagnetic energy drop, ELM period or Dα shape) has been extracted to build supervised and unsupervised learning systems for classification purposes. The former are based on support vector machines (SVM). The latter have been developed with hierarchical and K-means clustering methods. The success rate of the classification systems is about 98% for a database of almost 300 ELMs.

  17. Supervised learning for the automated transcription of spacer classification from spoligotype films

    Directory of Open Access Journals (Sweden)

    Abernethy Neil

    2009-08-01

    Full Text Available Abstract Background Molecular genotyping of bacteria has revolutionized the study of tuberculosis epidemiology, yet these established laboratory techniques typically require subjective and laborious interpretation by trained professionals. In the context of a Tuberculosis Case Contact study in The Gambia we used a reverse hybridization laboratory assay called spoligotype analysis. To facilitate processing of spoligotype images we have developed tools and algorithms to automate the classification and transcription of these data directly to a database while allowing for manual editing. Results Features extracted from each of the 1849 spots on a spoligo film were classified using two supervised learning algorithms. A graphical user interface allows manual editing of the classification, before export to a database. The application was tested on ten films of differing quality and the results of the best classifier were compared to expert manual classification, giving a median correct classification rate of 98.1% (inter quartile range: 97.1% to 99.2%, with an automated processing time of less than 1 minute per film. Conclusion The software implementation offers considerable time savings over manual processing whilst allowing expert editing of the automated classification. The automatic upload of the classification to a database reduces the chances of transcription errors.

  18. Automated otolith image classification with multiple views: an evaluation on Sciaenidae.

    Science.gov (United States)

    Wong, J Y; Chu, C; Chong, V C; Dhillon, S K; Loh, K H

    2016-08-01

    Combined multiple 2D views (proximal, anterior and ventral aspects) of the sagittal otolith are proposed here as a method to capture shape information for fish classification. Classification performance of single view compared with combined 2D views show improved classification accuracy of the latter, for nine species of Sciaenidae. The effects of shape description methods (shape indices, Procrustes analysis and elliptical Fourier analysis) on classification performance were evaluated. Procrustes analysis and elliptical Fourier analysis perform better than shape indices when single view is considered, but all perform equally well with combined views. A generic content-based image retrieval (CBIR) system that ranks dissimilarity (Procrustes distance) of otolith images was built to search query images without the need for detailed information of side (left or right), aspect (proximal or distal) and direction (positive or negative) of the otolith. Methods for the development of this automated classification system are discussed. © 2016 The Fisheries Society of the British Isles.

  19. Superpixel-based and boundary-sensitive convolutional neural network for automated liver segmentation

    Science.gov (United States)

    Qin, Wenjian; Wu, Jia; Han, Fei; Yuan, Yixuan; Zhao, Wei; Ibragimov, Bulat; Gu, Jia; Xing, Lei

    2018-05-01

    Segmentation of liver in abdominal computed tomography (CT) is an important step for radiation therapy planning of hepatocellular carcinoma. Practically, a fully automatic segmentation of liver remains challenging because of low soft tissue contrast between liver and its surrounding organs, and its highly deformable shape. The purpose of this work is to develop a novel superpixel-based and boundary sensitive convolutional neural network (SBBS-CNN) pipeline for automated liver segmentation. The entire CT images were first partitioned into superpixel regions, where nearby pixels with similar CT number were aggregated. Secondly, we converted the conventional binary segmentation into a multinomial classification by labeling the superpixels into three classes: interior liver, liver boundary, and non-liver background. By doing this, the boundary region of the liver was explicitly identified and highlighted for the subsequent classification. Thirdly, we computed an entropy-based saliency map for each CT volume, and leveraged this map to guide the sampling of image patches over the superpixels. In this way, more patches were extracted from informative regions (e.g. the liver boundary with irregular changes) and fewer patches were extracted from homogeneous regions. Finally, deep CNN pipeline was built and trained to predict the probability map of the liver boundary. We tested the proposed algorithm in a cohort of 100 patients. With 10-fold cross validation, the SBBS-CNN achieved mean Dice similarity coefficients of 97.31  ±  0.36% and average symmetric surface distance of 1.77  ±  0.49 mm. Moreover, it showed superior performance in comparison with state-of-art methods, including U-Net, pixel-based CNN, active contour, level-sets and graph-cut algorithms. SBBS-CNN provides an accurate and effective tool for automated liver segmentation. It is also envisioned that the proposed framework is directly applicable in other medical image segmentation scenarios.

  20. Genetic algorithm based feature selection combined with dual classification for the automated detection of proliferative diabetic retinopathy.

    Science.gov (United States)

    Welikala, R A; Fraz, M M; Dehmeshki, J; Hoppe, A; Tah, V; Mann, S; Williamson, T H; Barman, S A

    2015-07-01

    Proliferative diabetic retinopathy (PDR) is a condition that carries a high risk of severe visual impairment. The hallmark of PDR is the growth of abnormal new vessels. In this paper, an automated method for the detection of new vessels from retinal images is presented. This method is based on a dual classification approach. Two vessel segmentation approaches are applied to create two separate binary vessel map which each hold vital information. Local morphology features are measured from each binary vessel map to produce two separate 4-D feature vectors. Independent classification is performed for each feature vector using a support vector machine (SVM) classifier. The system then combines these individual outcomes to produce a final decision. This is followed by the creation of additional features to generate 21-D feature vectors, which feed into a genetic algorithm based feature selection approach with the objective of finding feature subsets that improve the performance of the classification. Sensitivity and specificity results using a dataset of 60 images are 0.9138 and 0.9600, respectively, on a per patch basis and 1.000 and 0.975, respectively, on a per image basis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Prediction Model of Collapse Risk Based on Information Entropy and Distance Discriminant Analysis Method

    Directory of Open Access Journals (Sweden)

    Hujun He

    2017-01-01

    Full Text Available The prediction and risk classification of collapse is an important issue in the process of highway construction in mountainous regions. Based on the principles of information entropy and Mahalanobis distance discriminant analysis, we have produced a collapse hazard prediction model. We used the entropy measure method to reduce the influence indexes of the collapse activity and extracted the nine main indexes affecting collapse activity as the discriminant factors of the distance discriminant analysis model (i.e., slope shape, aspect, gradient, and height, along with exposure of the structural face, stratum lithology, relationship between weakness face and free face, vegetation cover rate, and degree of rock weathering. We employ postearthquake collapse data in relation to construction of the Yingxiu-Wolong highway, Hanchuan County, China, as training samples for analysis. The results were analyzed using the back substitution estimation method, showing high accuracy and no errors, and were the same as the prediction result of uncertainty measure. Results show that the classification model based on information entropy and distance discriminant analysis achieves the purpose of index optimization and has excellent performance, high prediction accuracy, and a zero false-positive rate. The model can be used as a tool for future evaluation of collapse risk.

  2. Automated authorship attribution using advanced signal classification techniques.

    Directory of Open Access Journals (Sweden)

    Maryam Ebrahimpour

    Full Text Available In this paper, we develop two automated authorship attribution schemes, one based on Multiple Discriminant Analysis (MDA and the other based on a Support Vector Machine (SVM. The classification features we exploit are based on word frequencies in the text. We adopt an approach of preprocessing each text by stripping it of all characters except a-z and space. This is in order to increase the portability of the software to different types of texts. We test the methodology on a corpus of undisputed English texts, and use leave-one-out cross validation to demonstrate classification accuracies in excess of 90%. We further test our methods on the Federalist Papers, which have a partly disputed authorship and a fair degree of scholarly consensus. And finally, we apply our methodology to the question of the authorship of the Letter to the Hebrews by comparing it against a number of original Greek texts of known authorship. These tests identify where some of the limitations lie, motivating a number of open questions for future work. An open source implementation of our methodology is freely available for use at https://github.com/matthewberryman/author-detection.

  3. Distinguishing Stationary/Nonstationary Scaling Processes Using Wavelet Tsallis q-Entropies

    Directory of Open Access Journals (Sweden)

    Julio Ramirez Pacheco

    2012-01-01

    Full Text Available Classification of processes as stationary or nonstationary has been recognized as an important and unresolved problem in the analysis of scaling signals. Stationarity or nonstationarity determines not only the form of autocorrelations and moments but also the selection of estimators. In this paper, a methodology for classifying scaling processes as stationary or nonstationary is proposed. The method is based on wavelet Tsallis q-entropies and particularly on the behaviour of these entropies for scaling signals. It is demonstrated that the observed wavelet Tsallis q-entropies of 1/f signals can be modeled by sum-cosh apodizing functions which allocates constant entropies to a set of scaling signals and varying entropies to the rest and that this allocation is controlled by q. The proposed methodology, therefore, differentiates stationary signals from non-stationary ones based on the observed wavelet Tsallis entropies for 1/f signals. Experimental studies using synthesized signals confirm that the proposed method not only achieves satisfactorily classifications but also outperforms current methods proposed in the literature.

  4. Automated retinal vessel type classification in color fundus images

    Science.gov (United States)

    Yu, H.; Barriga, S.; Agurto, C.; Nemeth, S.; Bauman, W.; Soliz, P.

    2013-02-01

    Automated retinal vessel type classification is an essential first step toward machine-based quantitative measurement of various vessel topological parameters and identifying vessel abnormalities and alternations in cardiovascular disease risk analysis. This paper presents a new and accurate automatic artery and vein classification method developed for arteriolar-to-venular width ratio (AVR) and artery and vein tortuosity measurements in regions of interest (ROI) of 1.5 and 2.5 optic disc diameters from the disc center, respectively. This method includes illumination normalization, automatic optic disc detection and retinal vessel segmentation, feature extraction, and a partial least squares (PLS) classification. Normalized multi-color information, color variation, and multi-scale morphological features are extracted on each vessel segment. We trained the algorithm on a set of 51 color fundus images using manually marked arteries and veins. We tested the proposed method in a previously unseen test data set consisting of 42 images. We obtained an area under the ROC curve (AUC) of 93.7% in the ROI of AVR measurement and 91.5% of AUC in the ROI of tortuosity measurement. The proposed AV classification method has the potential to assist automatic cardiovascular disease early detection and risk analysis.

  5. Improving the Computational Performance of Ontology-Based Classification Using Graph Databases

    Directory of Open Access Journals (Sweden)

    Thomas J. Lampoltshammer

    2015-07-01

    Full Text Available The increasing availability of very high-resolution remote sensing imagery (i.e., from satellites, airborne laser scanning, or aerial photography represents both a blessing and a curse for researchers. The manual classification of these images, or other similar geo-sensor data, is time-consuming and leads to subjective and non-deterministic results. Due to this fact, (semi- automated classification approaches are in high demand in affected research areas. Ontologies provide a proper way of automated classification for various kinds of sensor data, including remotely sensed data. However, the processing of data entities—so-called individuals—is one of the most cost-intensive computational operations within ontology reasoning. Therefore, an approach based on graph databases is proposed to overcome the issue of a high time consumption regarding the classification task. The introduced approach shifts the classification task from the classical Protégé environment and its common reasoners to the proposed graph-based approaches. For the validation, the authors tested the approach on a simulation scenario based on a real-world example. The results demonstrate a quite promising improvement of classification speed—up to 80,000 times faster than the Protégé-based approach.

  6. Monitoring of Oil Exploitation Infrastructure by Combining Unsupervised Pixel-Based Classification of Polarimetric SAR and Object-Based Image Analysis

    Directory of Open Access Journals (Sweden)

    Simon Plank

    2014-12-01

    Full Text Available In developing countries, there is a high correlation between the dependence of oil exports and violent conflicts. Furthermore, even in countries which experienced a peaceful development of their oil industry, land use and environmental issues occur. Therefore, independent monitoring of oil field infrastructure may support problem solving. Earth observation data enables fast monitoring of large areas which allows comparing the real amount of land used by the oil exploitation and the companies’ contractual obligations. The target feature of this monitoring is the infrastructure of the oil exploitation, oil well pads—rectangular features of bare land covering an area of approximately 50–60 m × 100 m. This article presents an automated feature extraction procedure based on the combination of a pixel-based unsupervised classification of polarimetric synthetic aperture radar data (PolSAR and an object-based post-classification. The method is developed and tested using dual-polarimetric TerraSAR-X imagery acquired over the Doba basin in south Chad. The advantages of PolSAR are independence of the cloud coverage (vs. optical imagery and the possibility of detailed land use classification (vs. single-pol SAR. The PolSAR classification uses the polarimetric Wishart probability density function based on the anisotropy/entropy/alpha decomposition. The object-based post-classification refinement, based on properties of the feature targets such as shape and area, increases the user’s accuracy of the methodology by an order of a magnitude. The final achieved user’s and producer’s accuracy is 59%–71% in each case (area based accuracy assessment. Considering only the numbers of correctly/falsely detected oil well pads, the user’s and producer’s accuracies increase to even 74%–89%. In an iterative training procedure the best suited polarimetric speckle filter and processing parameters of the developed feature extraction procedure are

  7. Automated cell type discovery and classification through knowledge transfer

    Science.gov (United States)

    Lee, Hao-Chih; Kosoy, Roman; Becker, Christine E.

    2017-01-01

    Abstract Motivation: Recent advances in mass cytometry allow simultaneous measurements of up to 50 markers at single-cell resolution. However, the high dimensionality of mass cytometry data introduces computational challenges for automated data analysis and hinders translation of new biological understanding into clinical applications. Previous studies have applied machine learning to facilitate processing of mass cytometry data. However, manual inspection is still inevitable and becoming the barrier to reliable large-scale analysis. Results: We present a new algorithm called Automated Cell-type Discovery and Classification (ACDC) that fully automates the classification of canonical cell populations and highlights novel cell types in mass cytometry data. Evaluations on real-world data show ACDC provides accurate and reliable estimations compared to manual gating results. Additionally, ACDC automatically classifies previously ambiguous cell types to facilitate discovery. Our findings suggest that ACDC substantially improves both reliability and interpretability of results obtained from high-dimensional mass cytometry profiling data. Availability and Implementation: A Python package (Python 3) and analysis scripts for reproducing the results are availability on https://bitbucket.org/dudleylab/acdc. Contact: brian.kidd@mssm.edu or joel.dudley@mssm.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28158442

  8. ClassyFire: automated chemical classification with a comprehensive, computable taxonomy.

    Science.gov (United States)

    Djoumbou Feunang, Yannick; Eisner, Roman; Knox, Craig; Chepelev, Leonid; Hastings, Janna; Owen, Gareth; Fahy, Eoin; Steinbeck, Christoph; Subramanian, Shankar; Bolton, Evan; Greiner, Russell; Wishart, David S

    2016-01-01

    Scientists have long been driven by the desire to describe, organize, classify, and compare objects using taxonomies and/or ontologies. In contrast to biology, geology, and many other scientific disciplines, the world of chemistry still lacks a standardized chemical ontology or taxonomy. Several attempts at chemical classification have been made; but they have mostly been limited to either manual, or semi-automated proof-of-principle applications. This is regrettable as comprehensive chemical classification and description tools could not only improve our understanding of chemistry but also improve the linkage between chemistry and many other fields. For instance, the chemical classification of a compound could help predict its metabolic fate in humans, its druggability or potential hazards associated with it, among others. However, the sheer number (tens of millions of compounds) and complexity of chemical structures is such that any manual classification effort would prove to be near impossible. We have developed a comprehensive, flexible, and computable, purely structure-based chemical taxonomy (ChemOnt), along with a computer program (ClassyFire) that uses only chemical structures and structural features to automatically assign all known chemical compounds to a taxonomy consisting of >4800 different categories. This new chemical taxonomy consists of up to 11 different levels (Kingdom, SuperClass, Class, SubClass, etc.) with each of the categories defined by unambiguous, computable structural rules. Furthermore each category is named using a consensus-based nomenclature and described (in English) based on the characteristic common structural properties of the compounds it contains. The ClassyFire webserver is freely accessible at http://classyfire.wishartlab.com/. Moreover, a Ruby API version is available at https://bitbucket.org/wishartlab/classyfire_api, which provides programmatic access to the ClassyFire server and database. ClassyFire has been used to

  9. Vision-Based Perception and Classification of Mosquitoes Using Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Masataka Fuchida

    2017-01-01

    Full Text Available The need for a novel automated mosquito perception and classification method is becoming increasingly essential in recent years, with steeply increasing number of mosquito-borne diseases and associated casualties. There exist remote sensing and GIS-based methods for mapping potential mosquito inhabitants and locations that are prone to mosquito-borne diseases, but these methods generally do not account for species-wise identification of mosquitoes in closed-perimeter regions. Traditional methods for mosquito classification involve highly manual processes requiring tedious sample collection and supervised laboratory analysis. In this research work, we present the design and experimental validation of an automated vision-based mosquito classification module that can deploy in closed-perimeter mosquito inhabitants. The module is capable of identifying mosquitoes from other bugs such as bees and flies by extracting the morphological features, followed by support vector machine-based classification. In addition, this paper presents the results of three variants of support vector machine classifier in the context of mosquito classification problem. This vision-based approach to the mosquito classification problem presents an efficient alternative to the conventional methods for mosquito surveillance, mapping and sample image collection. Experimental results involving classification between mosquitoes and a predefined set of other bugs using multiple classification strategies demonstrate the efficacy and validity of the proposed approach with a maximum recall of 98%.

  10. Using support vector machines with tract-based spatial statistics for automated classification of Tourette syndrome children

    Science.gov (United States)

    Wen, Hongwei; Liu, Yue; Wang, Jieqiong; Zhang, Jishui; Peng, Yun; He, Huiguang

    2016-03-01

    Tourette syndrome (TS) is a developmental neuropsychiatric disorder with the cardinal symptoms of motor and vocal tics which emerges in early childhood and fluctuates in severity in later years. To date, the neural basis of TS is not fully understood yet and TS has a long-term prognosis that is difficult to accurately estimate. Few studies have looked at the potential of using diffusion tensor imaging (DTI) in conjunction with machine learning algorithms in order to automate the classification of healthy children and TS children. Here we apply Tract-Based Spatial Statistics (TBSS) method to 44 TS children and 48 age and gender matched healthy children in order to extract the diffusion values from each voxel in the white matter (WM) skeleton, and a feature selection algorithm (ReliefF) was used to select the most salient voxels for subsequent classification with support vector machine (SVM). We use a nested cross validation to yield an unbiased assessment of the classification method and prevent overestimation. The accuracy (88.04%), sensitivity (88.64%) and specificity (87.50%) were achieved in our method as peak performance of the SVM classifier was achieved using the axial diffusion (AD) metric, demonstrating the potential of a joint TBSS and SVM pipeline for fast, objective classification of healthy and TS children. These results support that our methods may be useful for the early identification of subjects with TS, and hold promise for predicting prognosis and treatment outcome for individuals with TS.

  11. Harmonic analysis of electric locomotive and traction power system based on wavelet singular entropy

    Science.gov (United States)

    Dun, Xiaohong

    2018-05-01

    With the rapid development of high-speed railway and heavy-haul transport, the locomotive and traction power system has become the main harmonic source of China's power grid. In response to this phenomenon, the system's power quality issues need timely monitoring, assessment and governance. Wavelet singular entropy is an organic combination of wavelet transform, singular value decomposition and information entropy theory, which combines the unique advantages of the three in signal processing: the time-frequency local characteristics of wavelet transform, singular value decomposition explores the basic modal characteristics of data, and information entropy quantifies the feature data. Based on the theory of singular value decomposition, the wavelet coefficient matrix after wavelet transform is decomposed into a series of singular values that can reflect the basic characteristics of the original coefficient matrix. Then the statistical properties of information entropy are used to analyze the uncertainty of the singular value set, so as to give a definite measurement of the complexity of the original signal. It can be said that wavelet entropy has a good application prospect in fault detection, classification and protection. The mat lab simulation shows that the use of wavelet singular entropy on the locomotive and traction power system harmonic analysis is effective.

  12. Automated classification of Permanent Scatterers time-series based on statistical characterization tests

    Science.gov (United States)

    Berti, Matteo; Corsini, Alessandro; Franceschini, Silvia; Iannacone, Jean Pascal

    2013-04-01

    time series are typically affected by a significant noise to signal ratio. The results of the analysis show that even with such a rough-quality dataset, our automated classification procedure can greatly improve radar interpretation of mass movements. In general, uncorrelated PS (type 0) are concentrated in flat areas such as fluvial terraces and valley bottoms, and along stable watershed divides; linear PS (type 1) are mainly located on slopes (both inside or outside mapped landslides) or near the edge of scarps or steep slopes; non-linear PS (types 2 to 5) typically fall inside landslide deposits or in the surrounding areas. The spatial distribution of classified PS allows to detect deformation phenomena not visible by considering the average velocity alone, and provide important information on the temporal evolution of the phenomena such as acceleration, deceleration, seasonal fluctuations, abrupt or continuous changes of the displacement rate. Based on these encouraging results we integrated all the classification algorithms into a Graphical User Interface (called PSTime) which is freely available as a standalone application.

  13. Automated Tissue Classification Framework for Reproducible Chronic Wound Assessment

    Directory of Open Access Journals (Sweden)

    Rashmi Mukherjee

    2014-01-01

    Full Text Available The aim of this paper was to develop a computer assisted tissue classification (granulation, necrotic, and slough scheme for chronic wound (CW evaluation using medical image processing and statistical machine learning techniques. The red-green-blue (RGB wound images grabbed by normal digital camera were first transformed into HSI (hue, saturation, and intensity color space and subsequently the “S” component of HSI color channels was selected as it provided higher contrast. Wound areas from 6 different types of CW were segmented from whole images using fuzzy divergence based thresholding by minimizing edge ambiguity. A set of color and textural features describing granulation, necrotic, and slough tissues in the segmented wound area were extracted using various mathematical techniques. Finally, statistical learning algorithms, namely, Bayesian classification and support vector machine (SVM, were trained and tested for wound tissue classification in different CW images. The performance of the wound area segmentation protocol was further validated by ground truth images labeled by clinical experts. It was observed that SVM with 3rd order polynomial kernel provided the highest accuracies, that is, 86.94%, 90.47%, and 75.53%, for classifying granulation, slough, and necrotic tissues, respectively. The proposed automated tissue classification technique achieved the highest overall accuracy, that is, 87.61%, with highest kappa statistic value (0.793.

  14. An entropy-based improved k-top scoring pairs (TSP) method for ...

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    2012-06-05

    Jun 5, 2012 ... Key words: Cancer classification, gene expression, k-TSP, information entropy, gene selection. INTRODUCTION ..... The 88 kDa precursor protein, progranulin, is also ... TCF3 is in acute myeloid leukemia pathway, so it is.

  15. Cascade classification of endocytoscopic images of colorectal lesions for automated pathological diagnosis

    Science.gov (United States)

    Itoh, Hayato; Mori, Yuichi; Misawa, Masashi; Oda, Masahiro; Kudo, Shin-ei; Mori, Kensaku

    2018-02-01

    This paper presents a new classification method for endocytoscopic images. Endocytoscopy is a new endoscope that enables us to perform conventional endoscopic observation and ultramagnified observation of cell level. This ultramagnified views (endocytoscopic images) make possible to perform pathological diagnosis only on endo-scopic views of polyps during colonoscopy. However, endocytoscopic image diagnosis requires higher experiences for physicians. An automated pathological diagnosis system is required to prevent the overlooking of neoplastic lesions in endocytoscopy. For this purpose, we propose a new automated endocytoscopic image classification method that classifies neoplastic and non-neoplastic endocytoscopic images. This method consists of two classification steps. At the first step, we classify an input image by support vector machine. We forward the image to the second step if the confidence of the first classification is low. At the second step, we classify the forwarded image by convolutional neural network. We reject the input image if the confidence of the second classification is also low. We experimentally evaluate the classification performance of the proposed method. In this experiment, we use about 16,000 and 4,000 colorectal endocytoscopic images as training and test data, respectively. The results show that the proposed method achieves high sensitivity 93.4% with small rejection rate 9.3% even for difficult test data.

  16. A Framework to Support Automated Classification and Labeling of Brain Electromagnetic Patterns

    Directory of Open Access Journals (Sweden)

    Gwen A. Frishkoff

    2007-01-01

    Full Text Available This paper describes a framework for automated classification and labeling of patterns in electroencephalographic (EEG and magnetoencephalographic (MEG data. We describe recent progress on four goals: 1 specification of rules and concepts that capture expert knowledge of event-related potentials (ERP patterns in visual word recognition; 2 implementation of rules in an automated data processing and labeling stream; 3 data mining techniques that lead to refinement of rules; and 4 iterative steps towards system evaluation and optimization. This process combines top-down, or knowledge-driven, methods with bottom-up, or data-driven, methods. As illustrated here, these methods are complementary and can lead to development of tools for pattern classification and labeling that are robust and conceptually transparent to researchers. The present application focuses on patterns in averaged EEG (ERP data. We also describe efforts to extend our methods to represent patterns in MEG data, as well as EM patterns in source (anatomical space. The broader aim of this work is to design an ontology-based system to support cross-laboratory, cross-paradigm, and cross-modal integration of brain functional data. Tools developed for this project are implemented in MATLAB and are freely available on request.

  17. Predicting the Outcome of NBA Playoffs Based on the Maximum Entropy Principle

    OpenAIRE

    Ge Cheng; Zhenyu Zhang; Moses Ntanda Kyebambe; Nasser Kimbugwe

    2016-01-01

    Predicting the outcome of National Basketball Association (NBA) matches poses a challenging problem of interest to the research community as well as the general public. In this article, we formalize the problem of predicting NBA game results as a classification problem and apply the principle of Maximum Entropy to construct an NBA Maximum Entropy (NBAME) model that fits to discrete statistics for NBA games, and then predict the outcomes of NBA playoffs using the model. Our results reveal that...

  18. Entropy Minimizing Curves with Application to Flight Path Design and Clustering

    Directory of Open Access Journals (Sweden)

    Stéphane Puechmorel

    2016-09-01

    Full Text Available Air traffic management (ATM aims at providing companies with a safe and ideally optimal aircraft trajectory planning. Air traffic controllers act on flight paths in such a way that no pair of aircraft come closer than the regulatory separation norms. With the increase of traffic, it is expected that the system will reach its limits in the near future: a paradigm change in ATM is planned with the introduction of trajectory-based operations. In this context, sets of well-separated flight paths are computed in advance, tremendously reducing the number of unsafe situations that must be dealt with by controllers. Unfortunately, automated tools used to generate such planning generally issue trajectories not complying with operational practices or even flight dynamics. In this paper, a means of producing realistic air routes from the output of an automated trajectory design tool is investigated. For that purpose, the entropy of a system of curves is first defined, and a mean of iteratively minimizing it is presented. The resulting curves form a route network that is suitable for use in a semi-automated ATM system with human in the loop. The tool introduced in this work is quite versatile and may be applied also to unsupervised classification of curves: an example is given for French traffic.

  19. Forest Classification Based on Forest texture in Northwest Yunnan Province

    Science.gov (United States)

    Wang, Jinliang; Gao, Yan; Wang, Xiaohua; Fu, Lei

    2014-03-01

    Forest texture is an intrinsic characteristic and an important visual feature of a forest ecological system. Full utilization of forest texture will be a great help in increasing the accuracy of forest classification based on remote sensed data. Taking Shangri-La as a study area, forest classification has been based on the texture. The results show that: (1) From the texture abundance, texture boundary, entropy as well as visual interpretation, the combination of Grayscale-gradient co-occurrence matrix and wavelet transformation is much better than either one of both ways of forest texture information extraction; (2) During the forest texture information extraction, the size of the texture-suitable window determined by the semi-variogram method depends on the forest type (evergreen broadleaf forest is 3×3, deciduous broadleaf forest is 5×5, etc.). (3)While classifying forest based on forest texture information, the texture factor assembly differs among forests: Variance Heterogeneity and Correlation should be selected when the window is between 3×3 and 5×5 Mean, Correlation, and Entropy should be used when the window in the range of 7×7 to 19×19 and Correlation, Second Moment, and Variance should be used when the range is larger than 21×21.

  20. Forest Classification Based on Forest texture in Northwest Yunnan Province

    International Nuclear Information System (INIS)

    Wang, Jinliang; Gao, Yan; Fu, Lei; Wang, Xiaohua

    2014-01-01

    Forest texture is an intrinsic characteristic and an important visual feature of a forest ecological system. Full utilization of forest texture will be a great help in increasing the accuracy of forest classification based on remote sensed data. Taking Shangri-La as a study area, forest classification has been based on the texture. The results show that: (1) From the texture abundance, texture boundary, entropy as well as visual interpretation, the combination of Grayscale-gradient co-occurrence matrix and wavelet transformation is much better than either one of both ways of forest texture information extraction; (2) During the forest texture information extraction, the size of the texture-suitable window determined by the semi-variogram method depends on the forest type (evergreen broadleaf forest is 3×3, deciduous broadleaf forest is 5×5, etc.). (3)While classifying forest based on forest texture information, the texture factor assembly differs among forests: Variance Heterogeneity and Correlation should be selected when the window is between 3×3 and 5×5; Mean, Correlation, and Entropy should be used when the window in the range of 7×7 to 19×19; and Correlation, Second Moment, and Variance should be used when the range is larger than 21×21

  1. Exploratory analysis of methods for automated classification of laboratory test orders into syndromic groups in veterinary medicine.

    Directory of Open Access Journals (Sweden)

    Fernanda C Dórea

    Full Text Available BACKGROUND: Recent focus on earlier detection of pathogen introduction in human and animal populations has led to the development of surveillance systems based on automated monitoring of health data. Real- or near real-time monitoring of pre-diagnostic data requires automated classification of records into syndromes--syndromic surveillance--using algorithms that incorporate medical knowledge in a reliable and efficient way, while remaining comprehensible to end users. METHODS: This paper describes the application of two of machine learning (Naïve Bayes and Decision Trees and rule-based methods to extract syndromic information from laboratory test requests submitted to a veterinary diagnostic laboratory. RESULTS: High performance (F1-macro = 0.9995 was achieved through the use of a rule-based syndrome classifier, based on rule induction followed by manual modification during the construction phase, which also resulted in clear interpretability of the resulting classification process. An unmodified rule induction algorithm achieved an F(1-micro score of 0.979 though this fell to 0.677 when performance for individual classes was averaged in an unweighted manner (F(1-macro, due to the fact that the algorithm failed to learn 3 of the 16 classes from the training set. Decision Trees showed equal interpretability to the rule-based approaches, but achieved an F(1-micro score of 0.923 (falling to 0.311 when classes are given equal weight. A Naïve Bayes classifier learned all classes and achieved high performance (F(1-micro= 0.994 and F(1-macro = .955, however the classification process is not transparent to the domain experts. CONCLUSION: The use of a manually customised rule set allowed for the development of a system for classification of laboratory tests into syndromic groups with very high performance, and high interpretability by the domain experts. Further research is required to develop internal validation rules in order to establish

  2. Characterizing time series via complexity-entropy curves

    Science.gov (United States)

    Ribeiro, Haroldo V.; Jauregui, Max; Zunino, Luciano; Lenzi, Ervin K.

    2017-06-01

    The search for patterns in time series is a very common task when dealing with complex systems. This is usually accomplished by employing a complexity measure such as entropies and fractal dimensions. However, such measures usually only capture a single aspect of the system dynamics. Here, we propose a family of complexity measures for time series based on a generalization of the complexity-entropy causality plane. By replacing the Shannon entropy by a monoparametric entropy (Tsallis q entropy) and after considering the proper generalization of the statistical complexity (q complexity), we build up a parametric curve (the q -complexity-entropy curve) that is used for characterizing and classifying time series. Based on simple exact results and numerical simulations of stochastic processes, we show that these curves can distinguish among different long-range, short-range, and oscillating correlated behaviors. Also, we verify that simulated chaotic and stochastic time series can be distinguished based on whether these curves are open or closed. We further test this technique in experimental scenarios related to chaotic laser intensity, stock price, sunspot, and geomagnetic dynamics, confirming its usefulness. Finally, we prove that these curves enhance the automatic classification of time series with long-range correlations and interbeat intervals of healthy subjects and patients with heart disease.

  3. Automated Stellar Classification for Large Surveys with EKF and RBF Neural Networks

    Institute of Scientific and Technical Information of China (English)

    Ling Bai; Ping Guo; Zhan-Yi Hu

    2005-01-01

    An automated classification technique for large size stellar surveys is proposed. It uses the extended Kalman filter as a feature selector and pre-classifier of the data, and the radial basis function neural networks for the classification.Experiments with real data have shown that the correct classification rate can reach as high as 93%, which is quite satisfactory. When different system models are selected for the extended Kalman filter, the classification results are relatively stable. It is shown that for this particular case the result using extended Kalman filter is better than using principal component analysis.

  4. Heuristic approach to the classification of postpartum endometritis and its forms

    Directory of Open Access Journals (Sweden)

    E. A. Balashova

    2017-01-01

    Full Text Available Тhe work is dedicated to the development of a method of automated medical diagnosis based on the description of biomedical systems using two parameters: energy, reflecting the interaction of its elements, and entropy characterizing the organization of the system. The violations of the energy-entropy cycle of biomedical systems is reflected in the symptoms of the disease. Statistical link between the symptoms of the condition of the body and the nature of excitation of its elements best expressed in the heuristic description of the system state. High accuracy classification of the patient's condition is achieved by using heuristic detection methods. In the proposed approach, allowing to estimate the probability of correct diagnosis increases the accuracy of the classification, and the estimated minimum amount of training samples and the capacity of its constituent signs. Classification technique consists in averaging the characteristic values in the selected classes, the preparation of the complex of symptoms of the most important signs of the disease, to conduct a "rough" diagnostic threshold rules that allow to distinguish severe forms of the disease, then differential diagnosis the severity of the disease. The proposed method was tested for classification of the forms of puerperal endometritis (mild, moderate, severe. The training sample contained 70 case histories. Syndrome to classify the patient's condition was composed of 17 characteristics. Threshold diagnosis has allowed to establish the presence of disease and to separate heavy. Differential diagnosis was used for classification of mild and moderate severity of postpartum endometritis. The accuracy of the classification of forms of postpartum endometritis amounted to 97.1%.

  5. Progress in Preparation and Research of High Entropy Alloys

    Directory of Open Access Journals (Sweden)

    CHEN Yong-xing

    2017-11-01

    Full Text Available The current high entropy alloys' studies are most in block, powder, coating, film and other areas. There are few studies of high entropy alloys in other areas and they are lack of unified classification. According to the current high entropy alloys' research situation, The paper has focused on the classification on all kinds of high entropy alloys having been researched, introduced the selecting principle of elements, summarized the preparation methods, reviewed the research institutions, research methods and research contents of high entropy alloys, prospected the application prospect of high entropy alloys, put forward a series of scientific problems of high entropy alloys, including less research on mechanism, incomplete performance research, unsystematic thermal stability study, preparation process parameters to be optimized, lightweight high entropy alloys' design, the expansion on the research field, etc, and the solutions have been given. Those have certain guiding significance for the expansion of the application of high entropy alloys subjects in the future research direction.

  6. Improved wavelet packet classification algorithm for vibrational intrusions in distributed fiber-optic monitoring systems

    Science.gov (United States)

    Wang, Bingjie; Pi, Shaohua; Sun, Qi; Jia, Bo

    2015-05-01

    An improved classification algorithm that considers multiscale wavelet packet Shannon entropy is proposed. Decomposition coefficients at all levels are obtained to build the initial Shannon entropy feature vector. After subtracting the Shannon entropy map of the background signal, components of the strongest discriminating power in the initial feature vector are picked out to rebuild the Shannon entropy feature vector, which is transferred to radial basis function (RBF) neural network for classification. Four types of man-made vibrational intrusion signals are recorded based on a modified Sagnac interferometer. The performance of the improved classification algorithm has been evaluated by the classification experiments via RBF neural network under different diffusion coefficients. An 85% classification accuracy rate is achieved, which is higher than the other common algorithms. The classification results show that this improved classification algorithm can be used to classify vibrational intrusion signals in an automatic real-time monitoring system.

  7. Maximum entropy PDF projection: A review

    Science.gov (United States)

    Baggenstoss, Paul M.

    2017-06-01

    We review maximum entropy (MaxEnt) PDF projection, a method with wide potential applications in statistical inference. The method constructs a sampling distribution for a high-dimensional vector x based on knowing the sampling distribution p(z) of a lower-dimensional feature z = T (x). Under mild conditions, the distribution p(x) having highest possible entropy among all distributions consistent with p(z) may be readily found. Furthermore, the MaxEnt p(x) may be sampled, making the approach useful in Monte Carlo methods. We review the theorem and present a case study in model order selection and classification for handwritten character recognition.

  8. Application of support vector machine based on pattern spectrum entropy in fault diagnostics of rolling element bearings

    International Nuclear Information System (INIS)

    Hao, Rujiang; Chu, Fulei; Peng, Zhike; Feng, Zhipeng

    2011-01-01

    This paper presents a novel pattern classification approach for the fault diagnostics of rolling element bearings, which combines the morphological multi-scale analysis and the 'one to others' support vector machine (SVM) classifiers. The morphological pattern spectrum describes the shape characteristics of the inspected signal based on the morphological opening operation with multi-scale structuring elements. The pattern spectrum entropy and the barycenter scale location of the spectrum curve are extracted as the feature vectors presenting different faults of the bearing, which are more effective and representative than the kurtosis and the enveloping demodulation spectrum. The 'one to others' SVM algorithm is adopted to distinguish six kinds of fault signals which were measured in the experimental test rig under eight different working conditions. The recognition results of the SVM are ideal and more precise than those of the artificial neural network even though the training samples are few. The combination of the morphological pattern spectrum parameters and the 'one to others' multi-class SVM algorithm is suitable for the on-line automated fault diagnosis of the rolling element bearings. This application is promising and worth well exploiting

  9. The holographic entropy cone

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Ning [Institute for Quantum Information and Matter, California Institute of Technology,Pasadena, CA 91125 (United States); Walter Burke Institute for Theoretical Physics, California Institute of Technology,452-48, Pasadena, CA 91125 (United States); Nezami, Sepehr [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94305 (United States); Ooguri, Hirosi [Walter Burke Institute for Theoretical Physics, California Institute of Technology,452-48, Pasadena, CA 91125 (United States); Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo,Kashiwa 277-8583 (Japan); Stoica, Bogdan [Walter Burke Institute for Theoretical Physics, California Institute of Technology,452-48, Pasadena, CA 91125 (United States); Sully, James [Theory Group, SLAC National Accelerator Laboratory, Stanford University,Menlo Park, CA 94025 (United States); Walter, Michael [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94305 (United States)

    2015-09-21

    We initiate a systematic enumeration and classification of entropy inequalities satisfied by the Ryu-Takayanagi formula for conformal field theory states with smooth holographic dual geometries. For 2, 3, and 4 regions, we prove that the strong subadditivity and the monogamy of mutual information give the complete set of inequalities. This is in contrast to the situation for generic quantum systems, where a complete set of entropy inequalities is not known for 4 or more regions. We also find an infinite new family of inequalities applicable to 5 or more regions. The set of all holographic entropy inequalities bounds the phase space of Ryu-Takayanagi entropies, defining the holographic entropy cone. We characterize this entropy cone by reducing geometries to minimal graph models that encode the possible cutting and gluing relations of minimal surfaces. We find that, for a fixed number of regions, there are only finitely many independent entropy inequalities. To establish new holographic entropy inequalities, we introduce a combinatorial proof technique that may also be of independent interest in Riemannian geometry and graph theory.

  10. The holographic entropy cone

    International Nuclear Information System (INIS)

    Bao, Ning; Nezami, Sepehr; Ooguri, Hirosi; Stoica, Bogdan; Sully, James; Walter, Michael

    2015-01-01

    We initiate a systematic enumeration and classification of entropy inequalities satisfied by the Ryu-Takayanagi formula for conformal field theory states with smooth holographic dual geometries. For 2, 3, and 4 regions, we prove that the strong subadditivity and the monogamy of mutual information give the complete set of inequalities. This is in contrast to the situation for generic quantum systems, where a complete set of entropy inequalities is not known for 4 or more regions. We also find an infinite new family of inequalities applicable to 5 or more regions. The set of all holographic entropy inequalities bounds the phase space of Ryu-Takayanagi entropies, defining the holographic entropy cone. We characterize this entropy cone by reducing geometries to minimal graph models that encode the possible cutting and gluing relations of minimal surfaces. We find that, for a fixed number of regions, there are only finitely many independent entropy inequalities. To establish new holographic entropy inequalities, we introduce a combinatorial proof technique that may also be of independent interest in Riemannian geometry and graph theory.

  11. Heart rate variability analysis based on time–frequency representation and entropies in hypertrophic cardiomyopathy patients

    International Nuclear Information System (INIS)

    Clariá, F; Vallverdú, M; Caminal, P; Baranowski, R; Chojnowska, L

    2008-01-01

    In hypertrophic cardiomyopathy (HCM) patients there is an increased risk of premature death, which can occur with little or no warning. Furthermore, classification for sudden cardiac death on patients with HCM is very difficult. The aim of our study was to improve the prognostic value of heart rate variability (HRV) in HCM patients, giving insight into changes of the autonomic nervous system. In this way, the suitability of linear and nonlinear measures was studied to assess the HRV. These measures were based on time–frequency representation (TFR) and on Shannon and Rényi entropies, and compared with traditional HRV measures. Holter recordings of 64 patients with HCM and 55 healthy subjects were analyzed. The HCM patients consisted of two groups: 13 high risk patients, after aborted sudden cardiac death (SCD); 51 low risk patients, without SCD. Five-hour RR signals, corresponding to the sleep period of the subjects, were considered for the analysis as a comparable standard situation. These RR signals were filtered in the three frequency bands: very low frequency band (VLF, 0–0.04 Hz), low frequency band (LF, 0.04–0.15 Hz) and high frequency band (HF, 0.15–0.45 Hz). TFR variables based on instantaneous frequency and energy functions were able to classify HCM patients and healthy subjects (control group). Results revealed that measures obtained from TFR analysis of the HRV better classified the groups of subjects than traditional HRV parameters. However, results showed that nonlinear measures improved group classification. It was observed that entropies calculated in the HF band showed the highest statistically significant levels comparing the HCM group and the control group, p-value < 0.0005. The values of entropy measures calculated in the HCM group presented lower values, indicating a decreasing of complexity, than those calculated from the control group. Moreover, similar behavior was observed comparing high and low risk of premature death, the values of

  12. Development and evaluation of automated systems for detection and classification of banded chromosomes: current status and future perspectives

    International Nuclear Information System (INIS)

    Wang Xingwei; Zheng Bin; Wood, Marc; Li Shibo; Chen Wei; Liu Hong

    2005-01-01

    Automated detection and classification of banded chromosomes may help clinicians diagnose cancers and other genetic disorders at an early stage more efficiently and accurately. However, developing such an automated system (including both a high-speed microscopic image scanning device and related computer-assisted schemes) is quite a challenging and difficult task. Since the 1980s, great research efforts have been made to develop fast and more reliable methods to assist clinical technicians in performing this important and time-consuming task. A number of computer-assisted methods including classical statistical methods, artificial neural networks and knowledge-based fuzzy logic systems, have been applied and tested. Based on the initial test using limited datasets, encouraging results in algorithm and system development have been demonstrated. Despite the significant research effort and progress made over the last two decades, computer-assisted chromosome detection and classification systems have not been routinely accepted and used in clinical laboratories. Further research and development is needed

  13. Development and evaluation of automated systems for detection and classification of banded chromosomes: current status and future perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xingwei [Center for Bioengineering and School of Electrical and Computer Engineering, University of Oklahoma, OK (United States); Zheng Bin [Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Wood, Marc [Center for Bioengineering and School of Electrical and Computer Engineering, University of Oklahoma, OK (United States); Li Shibo [Department of Pediatrics, University of Oklahoma Medical Center, Oklahoma City, OK (United States); Chen Wei [Department of Physics and Engineering, University of Central Oklahoma, Edmond, OK (United States); Liu Hong [Center for Bioengineering and School of Electrical and Computer Engineering, University of Oklahoma, OK (United States)

    2005-08-07

    Automated detection and classification of banded chromosomes may help clinicians diagnose cancers and other genetic disorders at an early stage more efficiently and accurately. However, developing such an automated system (including both a high-speed microscopic image scanning device and related computer-assisted schemes) is quite a challenging and difficult task. Since the 1980s, great research efforts have been made to develop fast and more reliable methods to assist clinical technicians in performing this important and time-consuming task. A number of computer-assisted methods including classical statistical methods, artificial neural networks and knowledge-based fuzzy logic systems, have been applied and tested. Based on the initial test using limited datasets, encouraging results in algorithm and system development have been demonstrated. Despite the significant research effort and progress made over the last two decades, computer-assisted chromosome detection and classification systems have not been routinely accepted and used in clinical laboratories. Further research and development is needed.

  14. Automated classification of bone marrow cells in microscopic images for diagnosis of leukemia: a comparison of two classification schemes with respect to the segmentation quality

    Science.gov (United States)

    Krappe, Sebastian; Benz, Michaela; Wittenberg, Thomas; Haferlach, Torsten; Münzenmayer, Christian

    2015-03-01

    The morphological analysis of bone marrow smears is fundamental for the diagnosis of leukemia. Currently, the counting and classification of the different types of bone marrow cells is done manually with the use of bright field microscope. This is a time consuming, partly subjective and tedious process. Furthermore, repeated examinations of a slide yield intra- and inter-observer variances. For this reason an automation of morphological bone marrow analysis is pursued. This analysis comprises several steps: image acquisition and smear detection, cell localization and segmentation, feature extraction and cell classification. The automated classification of bone marrow cells is depending on the automated cell segmentation and the choice of adequate features extracted from different parts of the cell. In this work we focus on the evaluation of support vector machines (SVMs) and random forests (RFs) for the differentiation of bone marrow cells in 16 different classes, including immature and abnormal cell classes. Data sets of different segmentation quality are used to test the two approaches. Automated solutions for the morphological analysis for bone marrow smears could use such a classifier to pre-classify bone marrow cells and thereby shortening the examination duration.

  15. Support Vector Machine and Parametric Wavelet-Based Texture Classification of Stem Cell Images

    National Research Council Canada - National Science Library

    Jeffreys, Christopher

    2004-01-01

    .... Since colony texture is a major discriminating feature in determining quality, we introduce a non-invasive, semi-automated texture-based stem cell colony classification methodology to aid researchers...

  16. Seasonal cultivated and fallow cropland mapping using MODIS-based automated cropland classification algorithm

    Science.gov (United States)

    Wu, Zhuoting; Thenkabail, Prasad S.; Mueller, Rick; Zakzeski, Audra; Melton, Forrest; Johnson, Lee; Rosevelt, Carolyn; Dwyer, John; Jones, Jeanine; Verdin, James P.

    2014-01-01

    Increasing drought occurrences and growing populations demand accurate, routine, and consistent cultivated and fallow cropland products to enable water and food security analysis. The overarching goal of this research was to develop and test automated cropland classification algorithm (ACCA) that provide accurate, consistent, and repeatable information on seasonal cultivated as well as seasonal fallow cropland extents and areas based on the Moderate Resolution Imaging Spectroradiometer remote sensing data. Seasonal ACCA development process involves writing series of iterative decision tree codes to separate cultivated and fallow croplands from noncroplands, aiming to accurately mirror reliable reference data sources. A pixel-by-pixel accuracy assessment when compared with the U.S. Department of Agriculture (USDA) cropland data showed, on average, a producer's accuracy of 93% and a user's accuracy of 85% across all months. Further, ACCA-derived cropland maps agreed well with the USDA Farm Service Agency crop acreage-reported data for both cultivated and fallow croplands with R-square values over 0.7 and field surveys with an accuracy of ≥95% for cultivated croplands and ≥76% for fallow croplands. Our results demonstrated the ability of ACCA to generate cropland products, such as cultivated and fallow cropland extents and areas, accurately, automatically, and repeatedly throughout the growing season.

  17. Seasonal cultivated and fallow cropland mapping using MODIS-based automated cropland classification algorithm

    Science.gov (United States)

    Wu, Zhuoting; Thenkabail, Prasad S.; Mueller, Rick; Zakzeski, Audra; Melton, Forrest; Johnson, Lee; Rosevelt, Carolyn; Dwyer, John; Jones, Jeanine; Verdin, James P.

    2014-01-01

    Increasing drought occurrences and growing populations demand accurate, routine, and consistent cultivated and fallow cropland products to enable water and food security analysis. The overarching goal of this research was to develop and test automated cropland classification algorithm (ACCA) that provide accurate, consistent, and repeatable information on seasonal cultivated as well as seasonal fallow cropland extents and areas based on the Moderate Resolution Imaging Spectroradiometer remote sensing data. Seasonal ACCA development process involves writing series of iterative decision tree codes to separate cultivated and fallow croplands from noncroplands, aiming to accurately mirror reliable reference data sources. A pixel-by-pixel accuracy assessment when compared with the U.S. Department of Agriculture (USDA) cropland data showed, on average, a producer’s accuracy of 93% and a user’s accuracy of 85% across all months. Further, ACCA-derived cropland maps agreed well with the USDA Farm Service Agency crop acreage-reported data for both cultivated and fallow croplands with R-square values over 0.7 and field surveys with an accuracy of ≥95% for cultivated croplands and ≥76% for fallow croplands. Our results demonstrated the ability of ACCA to generate cropland products, such as cultivated and fallow cropland extents and areas, accurately, automatically, and repeatedly throughout the growing season.

  18. Rumor Identification with Maximum Entropy in MicroNet

    Directory of Open Access Journals (Sweden)

    Suisheng Yu

    2017-01-01

    Full Text Available The widely used applications of Microblog, WeChat, and other social networking platforms (that we call MicroNet shorten the period of information dissemination and expand the range of information dissemination, which allows rumors to cause greater harm and have more influence. A hot topic in the information dissemination field is how to identify and block rumors. Based on the maximum entropy model, this paper constructs the recognition mechanism of rumor information in the micronetwork environment. First, based on the information entropy theory, we obtained the characteristics of rumor information using the maximum entropy model. Next, we optimized the original classifier training set and the feature function to divide the information into rumors and nonrumors. Finally, the experimental simulation results show that the rumor identification results using this method are better than the original classifier and other related classification methods.

  19. Molecular classification of pesticides including persistent organic pollutants, phenylurea and sulphonylurea herbicides.

    Science.gov (United States)

    Torrens, Francisco; Castellano, Gloria

    2014-06-05

    Pesticide residues in wine were analyzed by liquid chromatography-tandem mass spectrometry. Retentions are modelled by structure-property relationships. Bioplastic evolution is an evolutionary perspective conjugating effect of acquired characters and evolutionary indeterminacy-morphological determination-natural selection principles; its application to design co-ordination index barely improves correlations. Fractal dimensions and partition coefficient differentiate pesticides. Classification algorithms are based on information entropy and its production. Pesticides allow a structural classification by nonplanarity, and number of O, S, N and Cl atoms and cycles; different behaviours depend on number of cycles. The novelty of the approach is that the structural parameters are related to retentions. Classification algorithms are based on information entropy. When applying procedures to moderate-sized sets, excessive results appear compatible with data suffering a combinatorial explosion. However, equipartition conjecture selects criterion resulting from classification between hierarchical trees. Information entropy permits classifying compounds agreeing with principal component analyses. Periodic classification shows that pesticides in the same group present similar properties; those also in equal period, maximum resemblance. The advantage of the classification is to predict the retentions for molecules not included in the categorization. Classification extends to phenyl/sulphonylureas and the application will be to predict their retentions.

  20. Entropy Evaluation Based on Value Validity

    Directory of Open Access Journals (Sweden)

    Tarald O. Kvålseth

    2014-09-01

    Full Text Available Besides its importance in statistical physics and information theory, the Boltzmann-Shannon entropy S has become one of the most widely used and misused summary measures of various attributes (characteristics in diverse fields of study. It has also been the subject of extensive and perhaps excessive generalizations. This paper introduces the concept and criteria for value validity as a means of determining if an entropy takes on values that reasonably reflect the attribute being measured and that permit different types of comparisons to be made for different probability distributions. While neither S nor its relative entropy equivalent S* meet the value-validity conditions, certain power functions of S and S* do to a considerable extent. No parametric generalization offers any advantage over S in this regard. A measure based on Euclidean distances between probability distributions is introduced as a potential entropy that does comply fully with the value-validity requirements and its statistical inference procedure is discussed.

  1. Decision Aggregation in Distributed Classification by a Transductive Extension of Maximum Entropy/Improved Iterative Scaling

    Directory of Open Access Journals (Sweden)

    George Kesidis

    2008-06-01

    Full Text Available In many ensemble classification paradigms, the function which combines local/base classifier decisions is learned in a supervised fashion. Such methods require common labeled training examples across the classifier ensemble. However, in some scenarios, where an ensemble solution is necessitated, common labeled data may not exist: (i legacy/proprietary classifiers, and (ii spatially distributed and/or multiple modality sensors. In such cases, it is standard to apply fixed (untrained decision aggregation such as voting, averaging, or naive Bayes rules. In recent work, an alternative transductive learning strategy was proposed. There, decisions on test samples were chosen aiming to satisfy constraints measured by each local classifier. This approach was shown to reliably correct for class prior mismatch and to robustly account for classifier dependencies. Significant gains in accuracy over fixed aggregation rules were demonstrated. There are two main limitations of that work. First, feasibility of the constraints was not guaranteed. Second, heuristic learning was applied. Here, we overcome these problems via a transductive extension of maximum entropy/improved iterative scaling for aggregation in distributed classification. This method is shown to achieve improved decision accuracy over the earlier transductive approach and fixed rules on a number of UC Irvine datasets.

  2. Multiscale sample entropy and cross-sample entropy based on symbolic representation and similarity of stock markets

    Science.gov (United States)

    Wu, Yue; Shang, Pengjian; Li, Yilong

    2018-03-01

    A modified multiscale sample entropy measure based on symbolic representation and similarity (MSEBSS) is proposed in this paper to research the complexity of stock markets. The modified algorithm reduces the probability of inducing undefined entropies and is confirmed to be robust to strong noise. Considering the validity and accuracy, MSEBSS is more reliable than Multiscale entropy (MSE) for time series mingled with much noise like financial time series. We apply MSEBSS to financial markets and results show American stock markets have the lowest complexity compared with European and Asian markets. There are exceptions to the regularity that stock markets show a decreasing complexity over the time scale, indicating a periodicity at certain scales. Based on MSEBSS, we introduce the modified multiscale cross-sample entropy measure based on symbolic representation and similarity (MCSEBSS) to consider the degree of the asynchrony between distinct time series. Stock markets from the same area have higher synchrony than those from different areas. And for stock markets having relative high synchrony, the entropy values will decrease with the increasing scale factor. While for stock markets having high asynchrony, the entropy values will not decrease with the increasing scale factor sometimes they tend to increase. So both MSEBSS and MCSEBSS are able to distinguish stock markets of different areas, and they are more helpful if used together for studying other features of financial time series.

  3. An Automated Cropland Classification Algorithm (ACCA) for Tajikistan by Combining Landsat, MODIS, and Secondary Data

    OpenAIRE

    Thenkabail, Prasad S.; Wu, Zhuoting

    2012-01-01

    The overarching goal of this research was to develop and demonstrate an automated Cropland Classification Algorithm (ACCA) that will rapidly, routinely, and accurately classify agricultural cropland extent, areas, and characteristics (e.g., irrigated vs. rainfed) over large areas such as a country or a region through combination of multi-sensor remote sensing and secondary data. In this research, a rule-based ACCA was conceptualized, developed, and demonstrated for the country of Tajikistan u...

  4. Study of wavelet packet energy entropy for emotion classification in speech and glottal signals

    Science.gov (United States)

    He, Ling; Lech, Margaret; Zhang, Jing; Ren, Xiaomei; Deng, Lihua

    2013-07-01

    The automatic speech emotion recognition has important applications in human-machine communication. Majority of current research in this area is focused on finding optimal feature parameters. In recent studies, several glottal features were examined as potential cues for emotion differentiation. In this study, a new type of feature parameter is proposed, which calculates energy entropy on values within selected Wavelet Packet frequency bands. The modeling and classification tasks are conducted using the classical GMM algorithm. The experiments use two data sets: the Speech Under Simulated Emotion (SUSE) data set annotated with three different emotions (angry, neutral and soft) and Berlin Emotional Speech (BES) database annotated with seven different emotions (angry, bored, disgust, fear, happy, sad and neutral). The average classification accuracy achieved for the SUSE data (74%-76%) is significantly higher than the accuracy achieved for the BES data (51%-54%). In both cases, the accuracy was significantly higher than the respective random guessing levels (33% for SUSE and 14.3% for BES).

  5. Entropy-based financial asset pricing.

    Directory of Open Access Journals (Sweden)

    Mihály Ormos

    Full Text Available We investigate entropy as a financial risk measure. Entropy explains the equity premium of securities and portfolios in a simpler way and, at the same time, with higher explanatory power than the beta parameter of the capital asset pricing model. For asset pricing we define the continuous entropy as an alternative measure of risk. Our results show that entropy decreases in the function of the number of securities involved in a portfolio in a similar way to the standard deviation, and that efficient portfolios are situated on a hyperbola in the expected return-entropy system. For empirical investigation we use daily returns of 150 randomly selected securities for a period of 27 years. Our regression results show that entropy has a higher explanatory power for the expected return than the capital asset pricing model beta. Furthermore we show the time varying behavior of the beta along with entropy.

  6. Entropy-based financial asset pricing.

    Science.gov (United States)

    Ormos, Mihály; Zibriczky, Dávid

    2014-01-01

    We investigate entropy as a financial risk measure. Entropy explains the equity premium of securities and portfolios in a simpler way and, at the same time, with higher explanatory power than the beta parameter of the capital asset pricing model. For asset pricing we define the continuous entropy as an alternative measure of risk. Our results show that entropy decreases in the function of the number of securities involved in a portfolio in a similar way to the standard deviation, and that efficient portfolios are situated on a hyperbola in the expected return-entropy system. For empirical investigation we use daily returns of 150 randomly selected securities for a period of 27 years. Our regression results show that entropy has a higher explanatory power for the expected return than the capital asset pricing model beta. Furthermore we show the time varying behavior of the beta along with entropy.

  7. Refined multiscale fuzzy entropy based on standard deviation for biomedical signal analysis.

    Science.gov (United States)

    Azami, Hamed; Fernández, Alberto; Escudero, Javier

    2017-11-01

    Multiscale entropy (MSE) has been a prevalent algorithm to quantify the complexity of biomedical time series. Recent developments in the field have tried to alleviate the problem of undefined MSE values for short signals. Moreover, there has been a recent interest in using other statistical moments than the mean, i.e., variance, in the coarse-graining step of the MSE. Building on these trends, here we introduce the so-called refined composite multiscale fuzzy entropy based on the standard deviation (RCMFE σ ) and mean (RCMFE μ ) to quantify the dynamical properties of spread and mean, respectively, over multiple time scales. We demonstrate the dependency of the RCMFE σ and RCMFE μ , in comparison with other multiscale approaches, on several straightforward signal processing concepts using a set of synthetic signals. The results evidenced that the RCMFE σ and RCMFE μ values are more stable and reliable than the classical multiscale entropy ones. We also inspect the ability of using the standard deviation as well as the mean in the coarse-graining process using magnetoencephalograms in Alzheimer's disease and publicly available electroencephalograms recorded from focal and non-focal areas in epilepsy. Our results indicated that when the RCMFE μ cannot distinguish different types of dynamics of a particular time series at some scale factors, the RCMFE σ may do so, and vice versa. The results showed that RCMFE σ -based features lead to higher classification accuracies in comparison with the RCMFE μ -based ones. We also made freely available all the Matlab codes used in this study at http://dx.doi.org/10.7488/ds/1477 .

  8. Connections between classical and parametric network entropies.

    Directory of Open Access Journals (Sweden)

    Matthias Dehmer

    Full Text Available This paper explores relationships between classical and parametric measures of graph (or network complexity. Classical measures are based on vertex decompositions induced by equivalence relations. Parametric measures, on the other hand, are constructed by using information functions to assign probabilities to the vertices. The inequalities established in this paper relating classical and parametric measures lay a foundation for systematic classification of entropy-based measures of graph complexity.

  9. Entropy-Based Algorithm for Supply-Chain Complexity Assessment

    Directory of Open Access Journals (Sweden)

    Boris Kriheli

    2018-03-01

    Full Text Available This paper considers a graph model of hierarchical supply chains. The goal is to measure the complexity of links between different components of the chain, for instance, between the principal equipment manufacturer (a root node and its suppliers (preceding supply nodes. The information entropy is used to serve as a measure of knowledge about the complexity of shortages and pitfalls in relationship between the supply chain components under uncertainty. The concept of conditional (relative entropy is introduced which is a generalization of the conventional (non-relative entropy. An entropy-based algorithm providing efficient assessment of the supply chain complexity as a function of the SC size is developed.

  10. An automated cirrus classification

    Science.gov (United States)

    Gryspeerdt, Edward; Quaas, Johannes; Goren, Tom; Klocke, Daniel; Brueck, Matthias

    2018-05-01

    Cirrus clouds play an important role in determining the radiation budget of the earth, but many of their properties remain uncertain, particularly their response to aerosol variations and to warming. Part of the reason for this uncertainty is the dependence of cirrus cloud properties on the cloud formation mechanism, which itself is strongly dependent on the local meteorological conditions. In this work, a classification system (Identification and Classification of Cirrus or IC-CIR) is introduced to identify cirrus clouds by the cloud formation mechanism. Using reanalysis and satellite data, cirrus clouds are separated into four main types: orographic, frontal, convective and synoptic. Through a comparison to convection-permitting model simulations and back-trajectory-based analysis, it is shown that these observation-based regimes can provide extra information on the cloud-scale updraughts and the frequency of occurrence of liquid-origin ice, with the convective regime having higher updraughts and a greater occurrence of liquid-origin ice compared to the synoptic regimes. Despite having different cloud formation mechanisms, the radiative properties of the regimes are not distinct, indicating that retrieved cloud properties alone are insufficient to completely describe them. This classification is designed to be easily implemented in GCMs, helping improve future model-observation comparisons and leading to improved parametrisations of cirrus cloud processes.

  11. Upper entropy axioms and lower entropy axioms

    International Nuclear Information System (INIS)

    Guo, Jin-Li; Suo, Qi

    2015-01-01

    The paper suggests the concepts of an upper entropy and a lower entropy. We propose a new axiomatic definition, namely, upper entropy axioms, inspired by axioms of metric spaces, and also formulate lower entropy axioms. We also develop weak upper entropy axioms and weak lower entropy axioms. Their conditions are weaker than those of Shannon–Khinchin axioms and Tsallis axioms, while these conditions are stronger than those of the axiomatics based on the first three Shannon–Khinchin axioms. The subadditivity and strong subadditivity of entropy are obtained in the new axiomatics. Tsallis statistics is a special case of satisfying our axioms. Moreover, different forms of information measures, such as Shannon entropy, Daroczy entropy, Tsallis entropy and other entropies, can be unified under the same axiomatics

  12. Coherence and entanglement measures based on Rényi relative entropies

    International Nuclear Information System (INIS)

    Zhu, Huangjun; Hayashi, Masahito; Chen, Lin

    2017-01-01

    We study systematically resource measures of coherence and entanglement based on Rényi relative entropies, which include the logarithmic robustness of coherence, geometric coherence, and conventional relative entropy of coherence together with their entanglement analogues. First, we show that each Rényi relative entropy of coherence is equal to the corresponding Rényi relative entropy of entanglement for any maximally correlated state. By virtue of this observation, we establish a simple operational connection between entanglement measures and coherence measures based on Rényi relative entropies. We then prove that all these coherence measures, including the logarithmic robustness of coherence, are additive. Accordingly, all these entanglement measures are additive for maximally correlated states. In addition, we derive analytical formulas for Rényi relative entropies of entanglement of maximally correlated states and bipartite pure states, which reproduce a number of classic results on the relative entropy of entanglement and logarithmic robustness of entanglement in a unified framework. Several nontrivial bounds for Rényi relative entropies of coherence (entanglement) are further derived, which improve over results known previously. Moreover, we determine all states whose relative entropy of coherence is equal to the logarithmic robustness of coherence. As an application, we provide an upper bound for the exact coherence distillation rate, which is saturated for pure states. (paper)

  13. Entropy-Based Clutter Rejection for Intrawall Diagnostics

    Directory of Open Access Journals (Sweden)

    Raffaele Solimene

    2012-01-01

    Full Text Available The intrawall diagnostic problem of detecting localized inhomogeneities possibly present within the wall is addressed. As well known, clutter arising from masonry structure can impair detection of embedded scatterers due to high amplitude reflections that wall front face introduces. Moreover, internal multiple reflections also can make it difficult ground penetrating radar images (radargramms interpretation. To counteract these drawbacks, a clutter rejection method, properly tailored on the wall features, is mandatory. To this end, here we employ a windowing strategy based on entropy measures of temporal traces “similarity.” Accordingly, instants of time for which radargramms exhibit entropy values greater than a prescribed threshold are “silenced.” Numerical results are presented in order to show the effectiveness of the entropy-based clutter rejection algorithm. Moreover, a comparison with the standard average trace subtraction is also included.

  14. Entropy of the Mixture of Sources and Entropy Dimension

    OpenAIRE

    Smieja, Marek; Tabor, Jacek

    2011-01-01

    We investigate the problem of the entropy of the mixture of sources. There is given an estimation of the entropy and entropy dimension of convex combination of measures. The proof is based on our alternative definition of the entropy based on measures instead of partitions.

  15. An ant colony optimization based feature selection for web page classification.

    Science.gov (United States)

    Saraç, Esra; Özel, Selma Ayşe

    2014-01-01

    The increased popularity of the web has caused the inclusion of huge amount of information to the web, and as a result of this explosive information growth, automated web page classification systems are needed to improve search engines' performance. Web pages have a large number of features such as HTML/XML tags, URLs, hyperlinks, and text contents that should be considered during an automated classification process. The aim of this study is to reduce the number of features to be used to improve runtime and accuracy of the classification of web pages. In this study, we used an ant colony optimization (ACO) algorithm to select the best features, and then we applied the well-known C4.5, naive Bayes, and k nearest neighbor classifiers to assign class labels to web pages. We used the WebKB and Conference datasets in our experiments, and we showed that using the ACO for feature selection improves both accuracy and runtime performance of classification. We also showed that the proposed ACO based algorithm can select better features with respect to the well-known information gain and chi square feature selection methods.

  16. Literature classification for semi-automated updating of biological knowledgebases

    DEFF Research Database (Denmark)

    Olsen, Lars Rønn; Kudahl, Ulrich Johan; Winther, Ole

    2013-01-01

    abstracts yielded classification accuracy of 0.95, thus showing significant value in support of data extraction from the literature. Conclusion: We here propose a conceptual framework for semi-automated extraction of epitope data embedded in scientific literature using principles from text mining...... types of biological data, such as sequence data, are extensively stored in biological databases, functional annotations, such as immunological epitopes, are found primarily in semi-structured formats or free text embedded in primary scientific literature. Results: We defined and applied a machine...

  17. Pathological brain detection based on wavelet entropy and Hu moment invariants.

    Science.gov (United States)

    Zhang, Yudong; Wang, Shuihua; Sun, Ping; Phillips, Preetha

    2015-01-01

    With the aim of developing an accurate pathological brain detection system, we proposed a novel automatic computer-aided diagnosis (CAD) to detect pathological brains from normal brains obtained by magnetic resonance imaging (MRI) scanning. The problem still remained a challenge for technicians and clinicians, since MR imaging generated an exceptionally large information dataset. A new two-step approach was proposed in this study. We used wavelet entropy (WE) and Hu moment invariants (HMI) for feature extraction, and the generalized eigenvalue proximal support vector machine (GEPSVM) for classification. To further enhance classification accuracy, the popular radial basis function (RBF) kernel was employed. The 10 runs of k-fold stratified cross validation result showed that the proposed "WE + HMI + GEPSVM + RBF" method was superior to existing methods w.r.t. classification accuracy. It obtained the average classification accuracies of 100%, 100%, and 99.45% over Dataset-66, Dataset-160, and Dataset-255, respectively. The proposed method is effective and can be applied to realistic use.

  18. Predicting the Outcome of NBA Playoffs Based on the Maximum Entropy Principle

    Directory of Open Access Journals (Sweden)

    Ge Cheng

    2016-12-01

    Full Text Available Predicting the outcome of National Basketball Association (NBA matches poses a challenging problem of interest to the research community as well as the general public. In this article, we formalize the problem of predicting NBA game results as a classification problem and apply the principle of Maximum Entropy to construct an NBA Maximum Entropy (NBAME model that fits to discrete statistics for NBA games, and then predict the outcomes of NBA playoffs using the model. Our results reveal that the model is able to predict the winning team with 74.4% accuracy, outperforming other classical machine learning algorithms that could only afford a maximum prediction accuracy of 70.6% in the experiments that we performed.

  19. Leveraging Long-term Seismic Catalogs for Automated Real-time Event Classification

    Science.gov (United States)

    Linville, L.; Draelos, T.; Pankow, K. L.; Young, C. J.; Alvarez, S.

    2017-12-01

    We investigate the use of labeled event types available through reviewed seismic catalogs to produce automated event labels on new incoming data from the crustal region spanned by the cataloged events. Using events cataloged by the University of Utah Seismograph Stations between October, 2012 and June, 2017, we calculate the spectrogram for a time window that spans the duration of each event as seen on individual stations, resulting in 110k event spectrograms (50% local earthquakes examples, 50% quarry blasts examples). Using 80% of the randomized example events ( 90k), a classifier is trained to distinguish between local earthquakes and quarry blasts. We explore variations of deep learning classifiers, incorporating elements of convolutional and recurrent neural networks. Using a single-layer Long Short Term Memory recurrent neural network, we achieve 92% accuracy on the classification task on the remaining 20K test examples. Leveraging the decisions from a group of stations that detected the same event by using the median of all classifications in the group increases the model accuracy to 96%. Additional data with equivalent processing from 500 more recently cataloged events (July, 2017), achieves the same accuracy as our test data on both single-station examples and multi-station medians, suggesting that the model can maintain accurate and stable classification rates on real-time automated events local to the University of Utah Seismograph Stations, with potentially minimal levels of re-training through time.

  20. Object-based analysis of multispectral airborne laser scanner data for land cover classification and map updating

    Science.gov (United States)

    Matikainen, Leena; Karila, Kirsi; Hyyppä, Juha; Litkey, Paula; Puttonen, Eetu; Ahokas, Eero

    2017-06-01

    During the last 20 years, airborne laser scanning (ALS), often combined with passive multispectral information from aerial images, has shown its high feasibility for automated mapping processes. The main benefits have been achieved in the mapping of elevated objects such as buildings and trees. Recently, the first multispectral airborne laser scanners have been launched, and active multispectral information is for the first time available for 3D ALS point clouds from a single sensor. This article discusses the potential of this new technology in map updating, especially in automated object-based land cover classification and change detection in a suburban area. For our study, Optech Titan multispectral ALS data over a suburban area in Finland were acquired. Results from an object-based random forests analysis suggest that the multispectral ALS data are very useful for land cover classification, considering both elevated classes and ground-level classes. The overall accuracy of the land cover classification results with six classes was 96% compared with validation points. The classes under study included building, tree, asphalt, gravel, rocky area and low vegetation. Compared to classification of single-channel data, the main improvements were achieved for ground-level classes. According to feature importance analyses, multispectral intensity features based on several channels were more useful than those based on one channel. Automatic change detection for buildings and roads was also demonstrated by utilising the new multispectral ALS data in combination with old map vectors. In change detection of buildings, an old digital surface model (DSM) based on single-channel ALS data was also used. Overall, our analyses suggest that the new data have high potential for further increasing the automation level in mapping. Unlike passive aerial imaging commonly used in mapping, the multispectral ALS technology is independent of external illumination conditions, and there are

  1. Panacea : Automating attack classification for anomaly-based network intrusion detection systems

    NARCIS (Netherlands)

    Bolzoni, D.; Etalle, S.; Hartel, P.H.; Kirda, E.; Jha, S.; Balzarotti, D.

    2009-01-01

    Anomaly-based intrusion detection systems are usually criticized because they lack a classification of attacks, thus security teams have to manually inspect any raised alert to classify it. We present a new approach, Panacea, to automatically and systematically classify attacks detected by an

  2. Panacea : Automating attack classification for anomaly-based network intrusion detection systems

    NARCIS (Netherlands)

    Bolzoni, D.; Etalle, S.; Hartel, P.H.

    2009-01-01

    Anomaly-based intrusion detection systems are usually criticized because they lack a classification of attack, thus security teams have to manually inspect any raised alert to classify it. We present a new approach, Panacea, to automatically and systematically classify attacks detected by an

  3. Multiwavelet packet entropy and its application in transmission line fault recognition and classification.

    Science.gov (United States)

    Liu, Zhigang; Han, Zhiwei; Zhang, Yang; Zhang, Qiaoge

    2014-11-01

    Multiwavelets possess better properties than traditional wavelets. Multiwavelet packet transformation has more high-frequency information. Spectral entropy can be applied as an analysis index to the complexity or uncertainty of a signal. This paper tries to define four multiwavelet packet entropies to extract the features of different transmission line faults, and uses a radial basis function (RBF) neural network to recognize and classify 10 fault types of power transmission lines. First, the preprocessing and postprocessing problems of multiwavelets are presented. Shannon entropy and Tsallis entropy are introduced, and their difference is discussed. Second, multiwavelet packet energy entropy, time entropy, Shannon singular entropy, and Tsallis singular entropy are defined as the feature extraction methods of transmission line fault signals. Third, the plan of transmission line fault recognition using multiwavelet packet entropies and an RBF neural network is proposed. Finally, the experimental results show that the plan with the four multiwavelet packet energy entropies defined in this paper achieves better performance in fault recognition. The performance with SA4 (symmetric antisymmetric) multiwavelet packet Tsallis singular entropy is the best among the combinations of different multiwavelet packets and the four multiwavelet packet entropies.

  4. Automated Detection of Connective Tissue by Tissue Counter Analysis and Classification and Regression Trees

    Directory of Open Access Journals (Sweden)

    Josef Smolle

    2001-01-01

    Full Text Available Objective: To evaluate the feasibility of the CART (Classification and Regression Tree procedure for the recognition of microscopic structures in tissue counter analysis. Methods: Digital microscopic images of H&E stained slides of normal human skin and of primary malignant melanoma were overlayed with regularly distributed square measuring masks (elements and grey value, texture and colour features within each mask were recorded. In the learning set, elements were interactively labeled as representing either connective tissue of the reticular dermis, other tissue components or background. Subsequently, CART models were based on these data sets. Results: Implementation of the CART classification rules into the image analysis program showed that in an independent test set 94.1% of elements classified as connective tissue of the reticular dermis were correctly labeled. Automated measurements of the total amount of tissue and of the amount of connective tissue within a slide showed high reproducibility (r=0.97 and r=0.94, respectively; p < 0.001. Conclusions: CART procedure in tissue counter analysis yields simple and reproducible classification rules for tissue elements.

  5. Automated classification of self-grooming in mice using open-source software.

    Science.gov (United States)

    van den Boom, Bastijn J G; Pavlidi, Pavlina; Wolf, Casper J H; Mooij, Adriana H; Willuhn, Ingo

    2017-09-01

    Manual analysis of behavior is labor intensive and subject to inter-rater variability. Although considerable progress in automation of analysis has been made, complex behavior such as grooming still lacks satisfactory automated quantification. We trained a freely available, automated classifier, Janelia Automatic Animal Behavior Annotator (JAABA), to quantify self-grooming duration and number of bouts based on video recordings of SAPAP3 knockout mice (a mouse line that self-grooms excessively) and wild-type animals. We compared the JAABA classifier with human expert observers to test its ability to measure self-grooming in three scenarios: mice in an open field, mice on an elevated plus-maze, and tethered mice in an open field. In each scenario, the classifier identified both grooming and non-grooming with great accuracy and correlated highly with results obtained by human observers. Consistently, the JAABA classifier confirmed previous reports of excessive grooming in SAPAP3 knockout mice. Thus far, manual analysis was regarded as the only valid quantification method for self-grooming. We demonstrate that the JAABA classifier is a valid and reliable scoring tool, more cost-efficient than manual scoring, easy to use, requires minimal effort, provides high throughput, and prevents inter-rater variability. We introduce the JAABA classifier as an efficient analysis tool for the assessment of rodent self-grooming with expert quality. In our "how-to" instructions, we provide all information necessary to implement behavioral classification with JAABA. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A machine vision system for automated non-invasive assessment of cell viability via dark field microscopy, wavelet feature selection and classification

    Directory of Open Access Journals (Sweden)

    Friehs Karl

    2008-10-01

    Full Text Available Abstract Background Cell viability is one of the basic properties indicating the physiological state of the cell, thus, it has long been one of the major considerations in biotechnological applications. Conventional methods for extracting information about cell viability usually need reagents to be applied on the targeted cells. These reagent-based techniques are reliable and versatile, however, some of them might be invasive and even toxic to the target cells. In support of automated noninvasive assessment of cell viability, a machine vision system has been developed. Results This system is based on supervised learning technique. It learns from images of certain kinds of cell populations and trains some classifiers. These trained classifiers are then employed to evaluate the images of given cell populations obtained via dark field microscopy. Wavelet decomposition is performed on the cell images. Energy and entropy are computed for each wavelet subimage as features. A feature selection algorithm is implemented to achieve better performance. Correlation between the results from the machine vision system and commonly accepted gold standards becomes stronger if wavelet features are utilized. The best performance is achieved with a selected subset of wavelet features. Conclusion The machine vision system based on dark field microscopy in conjugation with supervised machine learning and wavelet feature selection automates the cell viability assessment, and yields comparable results to commonly accepted methods. Wavelet features are found to be suitable to describe the discriminative properties of the live and dead cells in viability classification. According to the analysis, live cells exhibit morphologically more details and are intracellularly more organized than dead ones, which display more homogeneous and diffuse gray values throughout the cells. Feature selection increases the system's performance. The reason lies in the fact that feature

  7. Entropy-Based Model for Interpreting Life Systems in Traditional Chinese Medicine

    Directory of Open Access Journals (Sweden)

    Guo-lian Kang

    2008-01-01

    Full Text Available Traditional Chinese medicine (TCM treats qi as the core of the human life systems. Starting with a hypothetical correlation between TCM qi and the entropy theory, we address in this article a holistic model for evaluating and unveiling the rule of TCM life systems. Several new concepts such as acquired life entropy (ALE, acquired life entropy flow (ALEF and acquired life entropy production (ALEP are propounded to interpret TCM life systems. Using the entropy theory, mathematical models are established for ALE, ALEF and ALEP, which reflect the evolution of life systems. Some criteria are given on physiological activities and pathological changes of the body in different stages of life. Moreover, a real data-based simulation shows life entropies of the human body with different ages, Cold and Hot constitutions and in different seasons in North China are coincided with the manifestations of qi as well as the life evolution in TCM descriptions. Especially, based on the comparative and quantitative analysis, the entropy-based model can nicely describe the evolution of life entropies in Cold and Hot individuals thereby fitting the Yin–Yang theory in TCM. Thus, this work establishes a novel approach to interpret the fundamental principles in TCM, and provides an alternative understanding for the complex life systems.

  8. Magnetic resonance imaging texture analysis classification of primary breast cancer

    International Nuclear Information System (INIS)

    Waugh, S.A.; Lerski, R.A.; Purdie, C.A.; Jordan, L.B.; Vinnicombe, S.; Martin, P.; Thompson, A.M.

    2016-01-01

    Patient-tailored treatments for breast cancer are based on histological and immunohistochemical (IHC) subtypes. Magnetic Resonance Imaging (MRI) texture analysis (TA) may be useful in non-invasive lesion subtype classification. Women with newly diagnosed primary breast cancer underwent pre-treatment dynamic contrast-enhanced breast MRI. TA was performed using co-occurrence matrix (COM) features, by creating a model on retrospective training data, then prospectively applying to a test set. Analyses were blinded to breast pathology. Subtype classifications were performed using a cross-validated k-nearest-neighbour (k = 3) technique, with accuracy relative to pathology assessed and receiver operator curve (AUROC) calculated. Mann-Whitney U and Kruskal-Wallis tests were used to assess raw entropy feature values. Histological subtype classifications were similar across training (n = 148 cancers) and test sets (n = 73 lesions) using all COM features (training: 75 %, AUROC = 0.816; test: 72.5 %, AUROC = 0.823). Entropy features were significantly different between lobular and ductal cancers (p < 0.001; Mann-Whitney U). IHC classifications using COM features were also similar for training and test data (training: 57.2 %, AUROC = 0.754; test: 57.0 %, AUROC = 0.750). Hormone receptor positive and negative cancers demonstrated significantly different entropy features. Entropy features alone were unable to create a robust classification model. Textural differences on contrast-enhanced MR images may reflect underlying lesion subtypes, which merits testing against treatment response. (orig.)

  9. Magnetic resonance imaging texture analysis classification of primary breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Waugh, S.A.; Lerski, R.A. [Ninewells Hospital and Medical School, Department of Medical Physics, Dundee (United Kingdom); Purdie, C.A.; Jordan, L.B. [Ninewells Hospital and Medical School, Department of Pathology, Dundee (United Kingdom); Vinnicombe, S. [University of Dundee, Division of Imaging and Technology, Ninewells Hospital and Medical School, Dundee (United Kingdom); Martin, P. [Ninewells Hospital and Medical School, Department of Clinical Radiology, Dundee (United Kingdom); Thompson, A.M. [University of Texas MD Anderson Cancer Center, Department of Surgical Oncology, Houston, TX (United States)

    2016-02-15

    Patient-tailored treatments for breast cancer are based on histological and immunohistochemical (IHC) subtypes. Magnetic Resonance Imaging (MRI) texture analysis (TA) may be useful in non-invasive lesion subtype classification. Women with newly diagnosed primary breast cancer underwent pre-treatment dynamic contrast-enhanced breast MRI. TA was performed using co-occurrence matrix (COM) features, by creating a model on retrospective training data, then prospectively applying to a test set. Analyses were blinded to breast pathology. Subtype classifications were performed using a cross-validated k-nearest-neighbour (k = 3) technique, with accuracy relative to pathology assessed and receiver operator curve (AUROC) calculated. Mann-Whitney U and Kruskal-Wallis tests were used to assess raw entropy feature values. Histological subtype classifications were similar across training (n = 148 cancers) and test sets (n = 73 lesions) using all COM features (training: 75 %, AUROC = 0.816; test: 72.5 %, AUROC = 0.823). Entropy features were significantly different between lobular and ductal cancers (p < 0.001; Mann-Whitney U). IHC classifications using COM features were also similar for training and test data (training: 57.2 %, AUROC = 0.754; test: 57.0 %, AUROC = 0.750). Hormone receptor positive and negative cancers demonstrated significantly different entropy features. Entropy features alone were unable to create a robust classification model. Textural differences on contrast-enhanced MR images may reflect underlying lesion subtypes, which merits testing against treatment response. (orig.)

  10. Parameters Tuning of Model Free Adaptive Control Based on Minimum Entropy

    Institute of Scientific and Technical Information of China (English)

    Chao Ji; Jing Wang; Liulin Cao; Qibing Jin

    2014-01-01

    Dynamic linearization based model free adaptive control(MFAC) algorithm has been widely used in practical systems, in which some parameters should be tuned before it is successfully applied to process industries. Considering the random noise existing in real processes, a parameter tuning method based on minimum entropy optimization is proposed,and the feature of entropy is used to accurately describe the system uncertainty. For cases of Gaussian stochastic noise and non-Gaussian stochastic noise, an entropy recursive optimization algorithm is derived based on approximate model or identified model. The extensive simulation results show the effectiveness of the minimum entropy optimization for the partial form dynamic linearization based MFAC. The parameters tuned by the minimum entropy optimization index shows stronger stability and more robustness than these tuned by other traditional index,such as integral of the squared error(ISE) or integral of timeweighted absolute error(ITAE), when the system stochastic noise exists.

  11. An Entropy-Based Measure for Assessing Fuzziness in Logistic Regression

    Science.gov (United States)

    Weiss, Brandi A.; Dardick, William

    2016-01-01

    This article introduces an entropy-based measure of data-model fit that can be used to assess the quality of logistic regression models. Entropy has previously been used in mixture-modeling to quantify how well individuals are classified into latent classes. The current study proposes the use of entropy for logistic regression models to quantify…

  12. IN-cross Entropy Based MAGDM Strategy under Interval Neutrosophic Set Environment

    Directory of Open Access Journals (Sweden)

    Shyamal Dalapati

    2017-12-01

    Full Text Available Cross entropy measure is one of the best way to calculate the divergence of any variable from the priori one variable. We define a new cross entropy measure under interval neutrosophic set (INS environment, which we call IN-cross entropy measure and prove its basic properties. We also develop weighted IN-cross entropy measure and investigats its basic properties. Based on the weighted IN-cross entropy measure, we develop a novel strategy for multi attribute group decision making (MAGDM strategy under interval neutrosophic environment. The proposed multi attribute group decision making strategy is compared with the existing cross entropy measure based strategy in the literature under interval neutrosophic set environment. Finally, an illustrative example of multi attribute group decision making problem is solved to show the feasibility, validity and efficiency of the proposed MAGDM strategy.

  13. Automated Clinical Assessment from Smart home-based Behavior Data

    Science.gov (United States)

    Dawadi, Prafulla Nath; Cook, Diane Joyce; Schmitter-Edgecombe, Maureen

    2016-01-01

    Smart home technologies offer potential benefits for assisting clinicians by automating health monitoring and well-being assessment. In this paper, we examine the actual benefits of smart home-based analysis by monitoring daily behaviour in the home and predicting standard clinical assessment scores of the residents. To accomplish this goal, we propose a Clinical Assessment using Activity Behavior (CAAB) approach to model a smart home resident’s daily behavior and predict the corresponding standard clinical assessment scores. CAAB uses statistical features that describe characteristics of a resident’s daily activity performance to train machine learning algorithms that predict the clinical assessment scores. We evaluate the performance of CAAB utilizing smart home sensor data collected from 18 smart homes over two years using prediction and classification-based experiments. In the prediction-based experiments, we obtain a statistically significant correlation (r = 0.72) between CAAB-predicted and clinician-provided cognitive assessment scores and a statistically significant correlation (r = 0.45) between CAAB-predicted and clinician-provided mobility scores. Similarly, for the classification-based experiments, we find CAAB has a classification accuracy of 72% while classifying cognitive assessment scores and 76% while classifying mobility scores. These prediction and classification results suggest that it is feasible to predict standard clinical scores using smart home sensor data and learning-based data analysis. PMID:26292348

  14. Periodic Classification of Local Anaesthetics (Procaine Analogues

    Directory of Open Access Journals (Sweden)

    Gloria Castellano

    2006-01-01

    Full Text Available Algorithms for classification are proposed based on criteria (information entropyand its production. The feasibility of replacing a given anaesthetic by similar ones in thecomposition of a complex drug is studied. Some local anaesthetics currently in use areclassified using characteristic chemical properties of different portions of their molecules.Many classification algorithms are based on information entropy. When applying theseprocedures to sets of moderate size, an excessive number of results appear compatible withdata, and this number suffers a combinatorial explosion. However, after the equipartitionconjecture, one has a selection criterion between different variants resulting fromclassification between hierarchical trees. According to this conjecture, for a given charge orduty, the best configuration of a flowsheet is the one in which the entropy production is mostuniformly distributed. Information entropy and principal component analyses agree. Theperiodic law of anaesthetics has not the rank of the laws of physics: (1 the properties ofanaesthetics are not repeated; (2 the order relationships are repeated with exceptions. Theproposed statement is: The relationships that any anaesthetic p has with its neighbour p 1are approximately repeated for each period.

  15. A minimum spanning forest based classification method for dedicated breast CT images

    International Nuclear Information System (INIS)

    Pike, Robert; Sechopoulos, Ioannis; Fei, Baowei

    2015-01-01

    Purpose: To develop and test an automated algorithm to classify different types of tissue in dedicated breast CT images. Methods: Images of a single breast of five different patients were acquired with a dedicated breast CT clinical prototype. The breast CT images were processed by a multiscale bilateral filter to reduce noise while keeping edge information and were corrected to overcome cupping artifacts. As skin and glandular tissue have similar CT values on breast CT images, morphologic processing is used to identify the skin based on its position information. A support vector machine (SVM) is trained and the resulting model used to create a pixelwise classification map of fat and glandular tissue. By combining the results of the skin mask with the SVM results, the breast tissue is classified as skin, fat, and glandular tissue. This map is then used to identify markers for a minimum spanning forest that is grown to segment the image using spatial and intensity information. To evaluate the authors’ classification method, they use DICE overlap ratios to compare the results of the automated classification to those obtained by manual segmentation on five patient images. Results: Comparison between the automatic and the manual segmentation shows that the minimum spanning forest based classification method was able to successfully classify dedicated breast CT image with average DICE ratios of 96.9%, 89.8%, and 89.5% for fat, glandular, and skin tissue, respectively. Conclusions: A 2D minimum spanning forest based classification method was proposed and evaluated for classifying the fat, skin, and glandular tissue in dedicated breast CT images. The classification method can be used for dense breast tissue quantification, radiation dose assessment, and other applications in breast imaging

  16. Statistical mechanical theory of liquid entropy

    International Nuclear Information System (INIS)

    Wallace, D.C.

    1993-01-01

    The multiparticle correlation expansion for the entropy of a classical monatomic liquid is presented. This entropy expresses the physical picture in which there is no free particle motion, but rather, each atom moves within a cage formed by its neighbors. The liquid expansion, including only pair correlations, gives an excellent account of the experimental entropy of most liquid metals, of liquid argon, and the hard sphere liquid. The pair correlation entropy is well approximated by a universal function of temperature. Higher order correlation entropy, due to n-particle irreducible correlations for n≥3, is significant in only a few liquid metals, and its occurrence suggests the presence of n-body forces. When the liquid theory is applied to the study of melting, the author discovers the important classification of normal and anomalous melting, according to whether there is not or is a significant change in the electronic structure upon melting, and he discovers the universal disordering entropy for melting of a monatomic crystal. Interesting directions for future research are: extension to include orientational correlations of molecules, theoretical calculation of the entropy of water, application to the entropy of the amorphous state, and correlational entropy of compressed argon. The author clarifies the relation among different entropy expansions in the recent literature

  17. Damage detection in rotating machinery by means of entropy-based parameters

    Science.gov (United States)

    Tocarciuc, Alexandru; Bereteu, Liviu; ǎgǎnescu, Gheorghe Eugen, Dr

    2014-11-01

    The paper is proposing two new entropy-based parameters, namely Renyi Entropy Index (REI) and Sharma-Mittal Entropy Index (SMEI), for detecting the presence of failures (or damages) in rotating machinery, namely: belt structural damage, belt wheels misalignment, failure of the fixing bolt of the machine to its baseplate and eccentricities (i.e.: due to detaching a small piece of material or bad mounting of the rotating components of the machine). The algorithms to obtain the proposed entropy-based parameters are described and test data is used in order to assess their sensitivity. A vibration test bench is used for measuring the levels of vibration while artificially inducing damage. The deviation of the two entropy-based parameters is compared in two states of the vibration test bench: not damaged and damaged. At the end of the study, their sensitivity is compared to Shannon Entropic Index.

  18. Automated vegetation classification using Thematic Mapper Simulation data

    Science.gov (United States)

    Nedelman, K. S.; Cate, R. B.; Bizzell, R. M.

    1983-01-01

    The present investigation is concerned with the results of a study of Thematic Mapper Simulation (TMS) data. One of the objectives of the study was related to an evaluation of the usefulness of the Thematic Mapper's (TM) improved spatial resolution and spectral coverage. The study was undertaken as part of a preparation for the efficient incorporation of Landsat 4 data into ongoing technology development in remote sensing. The study included an application of automated Landsat vegetation classification technology to TMS data. Results of comparing TMS data to Multispectral Scanner (MSS) data were found to indicate that all field definition, crop type discrimination, and subsequent proportion estimation may be greatly increased with the availability of TM data.

  19. Fractal Image Compression Based on High Entropy Values Technique

    Directory of Open Access Journals (Sweden)

    Douaa Younis Abbaas

    2018-04-01

    Full Text Available There are many attempts tried to improve the encoding stage of FIC because it consumed time. These attempts worked by reducing size of the search pool for pair range-domain matching but most of them led to get a bad quality, or a lower compression ratio of reconstructed image. This paper aims to present a method to improve performance of the full search algorithm by combining FIC (lossy compression and another lossless technique (in this case entropy coding is used. The entropy technique will reduce size of the domain pool (i. e., number of domain blocks based on the entropy value of each range block and domain block and then comparing the results of full search algorithm and proposed algorithm based on entropy technique to see each of which give best results (such as reduced the encoding time with acceptable values in both compression quali-ty parameters which are C. R (Compression Ratio and PSNR (Image Quality. The experimental results of the proposed algorithm proven that using the proposed entropy technique reduces the encoding time while keeping compression rates and reconstruction image quality good as soon as possible.

  20. Applying Improved Multiscale Fuzzy Entropy for Feature Extraction of MI-EEG

    Directory of Open Access Journals (Sweden)

    Ming-ai Li

    2017-01-01

    relatively high classification accuracy compared with other entropy-based and classical time–frequency–space feature extraction methods. The t-test is used to prove the correctness of the improved MFE.

  1. Learning features for tissue classification with the classification restricted Boltzmann machine

    DEFF Research Database (Denmark)

    van Tulder, Gijs; de Bruijne, Marleen

    2014-01-01

    Performance of automated tissue classification in medical imaging depends on the choice of descriptive features. In this paper, we show how restricted Boltzmann machines (RBMs) can be used to learn features that are especially suited for texture-based tissue classification. We introduce the convo...... outperform conventional RBM-based feature learning, which is unsupervised and uses only a generative learning objective, as well as often-used filter banks. We show that a mixture of generative and discriminative learning can produce filters that give a higher classification accuracy....

  2. Effective automated feature construction and selection for classification of biological sequences.

    Directory of Open Access Journals (Sweden)

    Uday Kamath

    Full Text Available Many open problems in bioinformatics involve elucidating underlying functional signals in biological sequences. DNA sequences, in particular, are characterized by rich architectures in which functional signals are increasingly found to combine local and distal interactions at the nucleotide level. Problems of interest include detection of regulatory regions, splice sites, exons, hypersensitive sites, and more. These problems naturally lend themselves to formulation as classification problems in machine learning. When classification is based on features extracted from the sequences under investigation, success is critically dependent on the chosen set of features.We present an algorithmic framework (EFFECT for automated detection of functional signals in biological sequences. We focus here on classification problems involving DNA sequences which state-of-the-art work in machine learning shows to be challenging and involve complex combinations of local and distal features. EFFECT uses a two-stage process to first construct a set of candidate sequence-based features and then select a most effective subset for the classification task at hand. Both stages make heavy use of evolutionary algorithms to efficiently guide the search towards informative features capable of discriminating between sequences that contain a particular functional signal and those that do not.To demonstrate its generality, EFFECT is applied to three separate problems of importance in DNA research: the recognition of hypersensitive sites, splice sites, and ALU sites. Comparisons with state-of-the-art algorithms show that the framework is both general and powerful. In addition, a detailed analysis of the constructed features shows that they contain valuable biological information about DNA architecture, allowing biologists and other researchers to directly inspect the features and potentially use the insights obtained to assist wet-laboratory studies on retainment or modification

  3. Entropy-based critical reaction time for mixing-controlled reactive transport

    DEFF Research Database (Denmark)

    Chiogna, Gabriele; Rolle, Massimo

    2017-01-01

    Entropy-based metrics, such as the dilution index, have been proposed to quantify dilution and reactive mixing in solute transport problems. In this work, we derive the transient advection dispersion equation for the entropy density of a reactive plume. We restrict our analysis to the case where...... the concentration distribution of the transported species is Gaussian and we observe that, even in case of an instantaneous complete bimolecular reaction, dilution caused by dispersive processes dominates the entropy balance at early times and results in the net increase of the entropy density of a reactive species...

  4. Comparison of Manual Mapping and Automated Object-Based Image Analysis of Non-Submerged Aquatic Vegetation from Very-High-Resolution UAS Images

    Directory of Open Access Journals (Sweden)

    Eva Husson

    2016-09-01

    Full Text Available Aquatic vegetation has important ecological and regulatory functions and should be monitored in order to detect ecosystem changes. Field data collection is often costly and time-consuming; remote sensing with unmanned aircraft systems (UASs provides aerial images with sub-decimetre resolution and offers a potential data source for vegetation mapping. In a manual mapping approach, UAS true-colour images with 5-cm-resolution pixels allowed for the identification of non-submerged aquatic vegetation at the species level. However, manual mapping is labour-intensive, and while automated classification methods are available, they have rarely been evaluated for aquatic vegetation, particularly at the scale of individual vegetation stands. We evaluated classification accuracy and time-efficiency for mapping non-submerged aquatic vegetation at three levels of detail at five test sites (100 m × 100 m differing in vegetation complexity. We used object-based image analysis and tested two classification methods (threshold classification and Random Forest using eCognition®. The automated classification results were compared to results from manual mapping. Using threshold classification, overall accuracy at the five test sites ranged from 93% to 99% for the water-versus-vegetation level and from 62% to 90% for the growth-form level. Using Random Forest classification, overall accuracy ranged from 56% to 94% for the growth-form level and from 52% to 75% for the dominant-taxon level. Overall classification accuracy decreased with increasing vegetation complexity. In test sites with more complex vegetation, automated classification was more time-efficient than manual mapping. This study demonstrated that automated classification of non-submerged aquatic vegetation from true-colour UAS images was feasible, indicating good potential for operative mapping of aquatic vegetation. When choosing the preferred mapping method (manual versus automated the desired level of

  5. Malware Classification Based on the Behavior Analysis and Back Propagation Neural Network

    Directory of Open Access Journals (Sweden)

    Pan Zhi-Peng

    2016-01-01

    Full Text Available With the development of the Internet, malwares have also been expanded on the network systems rapidly. In order to deal with the diversity and amount of the variants, a number of automated behavior analysis tools have emerged as the time requires. Yet these tools produce detailed behavior reports of the malwares, it still needs to specify its category and judge its criticality manually. In this paper, we propose an automated malware classification approach based on the behavior analysis. We firstly perform dynamic analyses to obtain the detailed behavior profiles of the malwares, which are then used to abstract the main features of the malwares and serve as the inputs of the Back Propagation (BP Neural Network model.The experimental results demonstrate that our classification technique is able to classify the malware variants effectively and detect malware accurately.

  6. Multi-Level Wavelet Shannon Entropy-Based Method for Single-Sensor Fault Location

    Directory of Open Access Journals (Sweden)

    Qiaoning Yang

    2015-10-01

    Full Text Available In actual application, sensors are prone to failure because of harsh environments, battery drain, and sensor aging. Sensor fault location is an important step for follow-up sensor fault detection. In this paper, two new multi-level wavelet Shannon entropies (multi-level wavelet time Shannon entropy and multi-level wavelet time-energy Shannon entropy are defined. They take full advantage of sensor fault frequency distribution and energy distribution across multi-subband in wavelet domain. Based on the multi-level wavelet Shannon entropy, a method is proposed for single sensor fault location. The method firstly uses a criterion of maximum energy-to-Shannon entropy ratio to select the appropriate wavelet base for signal analysis. Then multi-level wavelet time Shannon entropy and multi-level wavelet time-energy Shannon entropy are used to locate the fault. The method is validated using practical chemical gas concentration data from a gas sensor array. Compared with wavelet time Shannon entropy and wavelet energy Shannon entropy, the experimental results demonstrate that the proposed method can achieve accurate location of a single sensor fault and has good anti-noise ability. The proposed method is feasible and effective for single-sensor fault location.

  7. Automated mango fruit assessment using fuzzy logic approach

    Science.gov (United States)

    Hasan, Suzanawati Abu; Kin, Teoh Yeong; Sauddin@Sa'duddin, Suraiya; Aziz, Azlan Abdul; Othman, Mahmod; Mansor, Ab Razak; Parnabas, Vincent

    2014-06-01

    In term of value and volume of production, mango is the third most important fruit product next to pineapple and banana. Accurate size assessment of mango fruits during harvesting is vital to ensure that they are classified to the grade accordingly. However, the current practice in mango industry is grading the mango fruit manually using human graders. This method is inconsistent, inefficient and labor intensive. In this project, a new method of automated mango size and grade assessment is developed using RGB fiber optic sensor and fuzzy logic approach. The calculation of maximum, minimum and mean values based on RGB fiber optic sensor and the decision making development using minimum entropy formulation to analyse the data and make the classification for the mango fruit. This proposed method is capable to differentiate three different grades of mango fruit automatically with 77.78% of overall accuracy compared to human graders sorting. This method was found to be helpful for the application in the current agricultural industry.

  8. Classification of Automated Search Traffic

    Science.gov (United States)

    Buehrer, Greg; Stokes, Jack W.; Chellapilla, Kumar; Platt, John C.

    As web search providers seek to improve both relevance and response times, they are challenged by the ever-increasing tax of automated search query traffic. Third party systems interact with search engines for a variety of reasons, such as monitoring a web site’s rank, augmenting online games, or possibly to maliciously alter click-through rates. In this paper, we investigate automated traffic (sometimes referred to as bot traffic) in the query stream of a large search engine provider. We define automated traffic as any search query not generated by a human in real time. We first provide examples of different categories of query logs generated by automated means. We then develop many different features that distinguish between queries generated by people searching for information, and those generated by automated processes. We categorize these features into two classes, either an interpretation of the physical model of human interactions, or as behavioral patterns of automated interactions. Using the these detection features, we next classify the query stream using multiple binary classifiers. In addition, a multiclass classifier is then developed to identify subclasses of both normal and automated traffic. An active learning algorithm is used to suggest which user sessions to label to improve the accuracy of the multiclass classifier, while also seeking to discover new classes of automated traffic. Performance analysis are then provided. Finally, the multiclass classifier is used to predict the subclass distribution for the search query stream.

  9. Deep neural network and noise classification-based speech enhancement

    Science.gov (United States)

    Shi, Wenhua; Zhang, Xiongwei; Zou, Xia; Han, Wei

    2017-07-01

    In this paper, a speech enhancement method using noise classification and Deep Neural Network (DNN) was proposed. Gaussian mixture model (GMM) was employed to determine the noise type in speech-absent frames. DNN was used to model the relationship between noisy observation and clean speech. Once the noise type was determined, the corresponding DNN model was applied to enhance the noisy speech. GMM was trained with mel-frequency cepstrum coefficients (MFCC) and the parameters were estimated with an iterative expectation-maximization (EM) algorithm. Noise type was updated by spectrum entropy-based voice activity detection (VAD). Experimental results demonstrate that the proposed method could achieve better objective speech quality and smaller distortion under stationary and non-stationary conditions.

  10. Structure-based classification and ontology in chemistry

    Directory of Open Access Journals (Sweden)

    Hastings Janna

    2012-04-01

    Full Text Available Abstract Background Recent years have seen an explosion in the availability of data in the chemistry domain. With this information explosion, however, retrieving relevant results from the available information, and organising those results, become even harder problems. Computational processing is essential to filter and organise the available resources so as to better facilitate the work of scientists. Ontologies encode expert domain knowledge in a hierarchically organised machine-processable format. One such ontology for the chemical domain is ChEBI. ChEBI provides a classification of chemicals based on their structural features and a role or activity-based classification. An example of a structure-based class is 'pentacyclic compound' (compounds containing five-ring structures, while an example of a role-based class is 'analgesic', since many different chemicals can act as analgesics without sharing structural features. Structure-based classification in chemistry exploits elegant regularities and symmetries in the underlying chemical domain. As yet, there has been neither a systematic analysis of the types of structural classification in use in chemistry nor a comparison to the capabilities of available technologies. Results We analyze the different categories of structural classes in chemistry, presenting a list of patterns for features found in class definitions. We compare these patterns of class definition to tools which allow for automation of hierarchy construction within cheminformatics and within logic-based ontology technology, going into detail in the latter case with respect to the expressive capabilities of the Web Ontology Language and recent extensions for modelling structured objects. Finally we discuss the relationships and interactions between cheminformatics approaches and logic-based approaches. Conclusion Systems that perform intelligent reasoning tasks on chemistry data require a diverse set of underlying computational

  11. Detection System of HTTP DDoS Attacks in a Cloud Environment Based on Information Theoretic Entropy and Random Forest

    Directory of Open Access Journals (Sweden)

    Mohamed Idhammad

    2018-01-01

    Full Text Available Cloud Computing services are often delivered through HTTP protocol. This facilitates access to services and reduces costs for both providers and end-users. However, this increases the vulnerabilities of the Cloud services face to HTTP DDoS attacks. HTTP request methods are often used to address web servers’ vulnerabilities and create multiple scenarios of HTTP DDoS attack such as Low and Slow or Flooding attacks. Existing HTTP DDoS detection systems are challenged by the big amounts of network traffic generated by these attacks, low detection accuracy, and high false positive rates. In this paper we present a detection system of HTTP DDoS attacks in a Cloud environment based on Information Theoretic Entropy and Random Forest ensemble learning algorithm. A time-based sliding window algorithm is used to estimate the entropy of the network header features of the incoming network traffic. When the estimated entropy exceeds its normal range the preprocessing and the classification tasks are triggered. To assess the proposed approach various experiments were performed on the CIDDS-001 public dataset. The proposed approach achieves satisfactory results with an accuracy of 99.54%, a FPR of 0.4%, and a running time of 18.5s.

  12. A FULLY AUTOMATED PIPELINE FOR CLASSIFICATION TASKS WITH AN APPLICATION TO REMOTE SENSING

    Directory of Open Access Journals (Sweden)

    K. Suzuki

    2016-06-01

    Full Text Available Nowadays deep learning has been intensively in spotlight owing to its great victories at major competitions, which undeservedly pushed ‘shallow’ machine learning methods, relatively naive/handy algorithms commonly used by industrial engineers, to the background in spite of their facilities such as small requisite amount of time/dataset for training. We, with a practical point of view, utilized shallow learning algorithms to construct a learning pipeline such that operators can utilize machine learning without any special knowledge, expensive computation environment, and a large amount of labelled data. The proposed pipeline automates a whole classification process, namely feature-selection, weighting features and the selection of the most suitable classifier with optimized hyperparameters. The configuration facilitates particle swarm optimization, one of well-known metaheuristic algorithms for the sake of generally fast and fine optimization, which enables us not only to optimize (hyperparameters but also to determine appropriate features/classifier to the problem, which has conventionally been a priori based on domain knowledge and remained untouched or dealt with naïve algorithms such as grid search. Through experiments with the MNIST and CIFAR-10 datasets, common datasets in computer vision field for character recognition and object recognition problems respectively, our automated learning approach provides high performance considering its simple setting (i.e. non-specialized setting depending on dataset, small amount of training data, and practical learning time. Moreover, compared to deep learning the performance stays robust without almost any modification even with a remote sensing object recognition problem, which in turn indicates that there is a high possibility that our approach contributes to general classification problems.

  13. Semantics-based Automated Web Testing

    Directory of Open Access Journals (Sweden)

    Hai-Feng Guo

    2015-08-01

    Full Text Available We present TAO, a software testing tool performing automated test and oracle generation based on a semantic approach. TAO entangles grammar-based test generation with automated semantics evaluation using a denotational semantics framework. We show how TAO can be incorporated with the Selenium automation tool for automated web testing, and how TAO can be further extended to support automated delta debugging, where a failing web test script can be systematically reduced based on grammar-directed strategies. A real-life parking website is adopted throughout the paper to demonstrate the effectivity of our semantics-based web testing approach.

  14. Text mining in the classification of digital documents

    Directory of Open Access Journals (Sweden)

    Marcial Contreras Barrera

    2016-11-01

    Full Text Available Objective: Develop an automated classifier for the classification of bibliographic material by means of the text mining. Methodology: The text mining is used for the development of the classifier, based on a method of type supervised, conformed by two phases; learning and recognition, in the learning phase, the classifier learns patterns across the analysis of bibliographical records, of the classification Z, belonging to library science, information sciences and information resources, recovered from the database LIBRUNAM, in this phase is obtained the classifier capable of recognizing different subclasses (LC. In the recognition phase the classifier is validated and evaluates across classification tests, for this end bibliographical records of the classification Z are taken randomly, classified by a cataloguer and processed by the automated classifier, in order to obtain the precision of the automated classifier. Results: The application of the text mining achieved the development of the automated classifier, through the method classifying documents supervised type. The precision of the classifier was calculated doing the comparison among the assigned topics manually and automated obtaining 75.70% of precision. Conclusions: The application of text mining facilitated the creation of automated classifier, allowing to obtain useful technology for the classification of bibliographical material with the aim of improving and speed up the process of organizing digital documents.

  15. Morphological images analysis and chromosomic aberrations classification based on fuzzy logic

    International Nuclear Information System (INIS)

    Souza, Leonardo Peres

    2011-01-01

    This work has implemented a methodology for automation of images analysis of chromosomes of human cells irradiated at IEA-R1 nuclear reactor (located at IPEN, Sao Paulo, Brazil), and therefore subject to morphological aberrations. This methodology intends to be a tool for helping cytogeneticists on identification, characterization and classification of chromosomal metaphasic analysis. The methodology development has included the creation of a software application based on artificial intelligence techniques using Fuzzy Logic combined with image processing techniques. The developed application was named CHRIMAN and is composed of modules that contain the methodological steps which are important requirements in order to achieve an automated analysis. The first step is the standardization of the bi-dimensional digital image acquisition procedure through coupling a simple digital camera to the ocular of the conventional metaphasic analysis microscope. Second step is related to the image treatment achieved through digital filters application; storing and organization of information obtained both from image content itself, and from selected extracted features, for further use on pattern recognition algorithms. The third step consists on characterizing, counting and classification of stored digital images and extracted features information. The accuracy in the recognition of chromosome images is 93.9%. This classification is based on classical standards obtained at Buckton [1973], and enables support to geneticist on chromosomic analysis procedure, decreasing analysis time, and creating conditions to include this method on a broader evaluation system on human cell damage due to ionizing radiation exposure. (author)

  16. Automated classification of eligibility criteria in clinical trials to facilitate patient-trial matching for specific patient populations.

    Science.gov (United States)

    Zhang, Kevin; Demner-Fushman, Dina

    2017-07-01

    To develop automated classification methods for eligibility criteria in ClinicalTrials.gov to facilitate patient-trial matching for specific populations such as persons living with HIV or pregnant women. We annotated 891 interventional cancer trials from ClinicalTrials.gov based on their eligibility for human immunodeficiency virus (HIV)-positive patients using their eligibility criteria. These annotations were used to develop classifiers based on regular expressions and machine learning (ML). After evaluating classification of cancer trials for eligibility of HIV-positive patients, we sought to evaluate the generalizability of our approach to more general diseases and conditions. We annotated the eligibility criteria for 1570 of the most recent interventional trials from ClinicalTrials.gov for HIV-positive and pregnancy eligibility, and the classifiers were retrained and reevaluated using these data. On the cancer-HIV dataset, the baseline regex model, the bag-of-words ML classifier, and the ML classifier with named entity recognition (NER) achieved macro-averaged F2 scores of 0.77, 0.87, and 0.87, respectively; the addition of NER did not result in a significant performance improvement. On the general dataset, ML + NER achieved macro-averaged F2 scores of 0.91 and 0.85 for HIV and pregnancy, respectively. The eligibility status of specific patient populations, such as persons living with HIV and pregnant women, for clinical trials is of interest to both patients and clinicians. We show that it is feasible to develop a high-performing, automated trial classification system for eligibility status that can be integrated into consumer-facing search engines as well as patient-trial matching systems. Published by Oxford University Press on behalf of the American Medical Informatics Association 2017. This work is written by US Government employees and is in the public domain in the US.

  17. The improvement of Clausius entropy and its application in entropy analysis

    Institute of Scientific and Technical Information of China (English)

    WU Jing; GUO ZengYuan

    2008-01-01

    The defects of Cleusius entropy which Include s premise of reversible process and a process quantlty of heat in Its definition are discussed in this paper. Moreover, the heat temperature quotient under reversible conditions, i.e. (δQ/T)rev, is essentially a process quantity although it is numerically equal to the entropy change. The sum of internal energy temperature quotient and work temperature quotient is defined as the improved form of Clausius entropy and it can be further proved to be a state funcllon. Unlike Clausius entropy, the improved deflnltion consists of system properties wlthout premise just like other state functions, for example, pressure p and enthalpy h, etc. it is unnecessary to invent reversible paths when calculating entropy change for irreversible processes based on the improved form of entropy since it is independent of process. Furthermore, entropy balance equations for internally and externally irreversible processes are deduced respectively based on the concepts of thermal reservoir entropy transfer and system entropy transfer. Finally, some examples are presented to show that the improved deflnitlon of Clausius entropy provides a clear concept as well as a convenient method for en-tropy change calculation.

  18. Combined Power Quality Disturbances Recognition Using Wavelet Packet Entropies and S-Transform

    Directory of Open Access Journals (Sweden)

    Zhigang Liu

    2015-08-01

    Full Text Available Aiming at the combined power quality +disturbance recognition, an automated recognition method based on wavelet packet entropy (WPE and modified incomplete S-transform (MIST is proposed in this paper. By combining wavelet packet Tsallis singular entropy, energy entropy and MIST, a 13-dimension vector of different power quality (PQ disturbances including single disturbances and combined disturbances is extracted. Then, a ruled decision tree is designed to recognize the combined disturbances. The proposed method is tested and evaluated using a large number of simulated PQ disturbances and some real-life signals, which include voltage sag, swell, interruption, oscillation transient, impulsive transient, harmonics, voltage fluctuation and their combinations. In addition, the comparison of the proposed recognition approach with some existing techniques is made. The experimental results show that the proposed method can effectively recognize the single and combined PQ disturbances.

  19. Financial time series analysis based on effective phase transfer entropy

    Science.gov (United States)

    Yang, Pengbo; Shang, Pengjian; Lin, Aijing

    2017-02-01

    Transfer entropy is a powerful technique which is able to quantify the impact of one dynamic system on another system. In this paper, we propose the effective phase transfer entropy method based on the transfer entropy method. We use simulated data to test the performance of this method, and the experimental results confirm that the proposed approach is capable of detecting the information transfer between the systems. We also explore the relationship between effective phase transfer entropy and some variables, such as data size, coupling strength and noise. The effective phase transfer entropy is positively correlated with the data size and the coupling strength. Even in the presence of a large amount of noise, it can detect the information transfer between systems, and it is very robust to noise. Moreover, this measure is indeed able to accurately estimate the information flow between systems compared with phase transfer entropy. In order to reflect the application of this method in practice, we apply this method to financial time series and gain new insight into the interactions between systems. It is demonstrated that the effective phase transfer entropy can be used to detect some economic fluctuations in the financial market. To summarize, the effective phase transfer entropy method is a very efficient tool to estimate the information flow between systems.

  20. Implementation of several mathematical algorithms to breast tissue density classification

    International Nuclear Information System (INIS)

    Quintana, C.; Redondo, M.; Tirao, G.

    2014-01-01

    The accuracy of mammographic abnormality detection methods is strongly dependent on breast tissue characteristics, where a dense breast tissue can hide lesions causing cancer to be detected at later stages. In addition, breast tissue density is widely accepted to be an important risk indicator for the development of breast cancer. This paper presents the implementation and the performance of different mathematical algorithms designed to standardize the categorization of mammographic images, according to the American College of Radiology classifications. These mathematical techniques are based on intrinsic properties calculations and on comparison with an ideal homogeneous image (joint entropy, mutual information, normalized cross correlation and index Q) as categorization parameters. The algorithms evaluation was performed on 100 cases of the mammographic data sets provided by the Ministerio de Salud de la Provincia de Córdoba, Argentina—Programa de Prevención del Cáncer de Mama (Department of Public Health, Córdoba, Argentina, Breast Cancer Prevention Program). The obtained breast classifications were compared with the expert medical diagnostics, showing a good performance. The implemented algorithms revealed a high potentiality to classify breasts into tissue density categories. - Highlights: • Breast density classification can be obtained by suitable mathematical algorithms. • Mathematical processing help radiologists to obtain the BI-RADS classification. • The entropy and joint entropy show high performance for density classification

  1. Precision automation of cell type classification and sub-cellular fluorescence quantification from laser scanning confocal images

    Directory of Open Access Journals (Sweden)

    Hardy Craig Hall

    2016-02-01

    Full Text Available While novel whole-plant phenotyping technologies have been successfully implemented into functional genomics and breeding programs, the potential of automated phenotyping with cellular resolution is largely unexploited. Laser scanning confocal microscopy has the potential to close this gap by providing spatially highly resolved images containing anatomic as well as chemical information on a subcellular basis. However, in the absence of automated methods, the assessment of the spatial patterns and abundance of fluorescent markers with subcellular resolution is still largely qualitative and time-consuming. Recent advances in image acquisition and analysis, coupled with improvements in microprocessor performance, have brought such automated methods within reach, so that information from thousands of cells per image for hundreds of images may be derived in an experimentally convenient time-frame. Here, we present a MATLAB-based analytical pipeline to 1 segment radial plant organs into individual cells, 2 classify cells into cell type categories based upon random forest classification, 3 divide each cell into sub-regions, and 4 quantify fluorescence intensity to a subcellular degree of precision for a separate fluorescence channel. In this research advance, we demonstrate the precision of this analytical process for the relatively complex tissues of Arabidopsis hypocotyls at various stages of development. High speed and robustness make our approach suitable for phenotyping of large collections of stem-like material and other tissue types.

  2. Improved Ordinary Measure and Image Entropy Theory based intelligent Copy Detection Method

    Directory of Open Access Journals (Sweden)

    Dengpan Ye

    2011-10-01

    Full Text Available Nowadays, more and more multimedia websites appear in social network. It brings some security problems, such as privacy, piracy, disclosure of sensitive contents and so on. Aiming at copyright protection, the copy detection technology of multimedia contents becomes a hot topic. In our previous work, a new computer-based copyright control system used to detect the media has been proposed. Based on this system, this paper proposes an improved media feature matching measure and an entropy based copy detection method. The Levenshtein Distance was used to enhance the matching degree when using for feature matching measure in copy detection. For entropy based copy detection, we make a fusion of the two features of entropy matrix of the entropy feature we extracted. Firstly,we extract the entropy matrix of the image and normalize it. Then, we make a fusion of the eigenvalue feature and the transfer matrix feature of the entropy matrix. The fused features will be used for image copy detection. The experiments show that compared to use these two kinds of features for image detection singly, using feature fusion matching method is apparent robustness and effectiveness. The fused feature has a high detection for copy images which have been received some attacks such as noise, compression, zoom, rotation and so on. Comparing with referred methods, the method proposed is more intelligent and can be achieved good performance.

  3. Logarithmic black hole entropy corrections and holographic Renyi entropy

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, Subhash [The Institute of Mathematical Sciences, Chennai (India); KU Leuven - KULAK, Department of Physics, Kortrijk (Belgium)

    2018-01-15

    The entanglement and Renyi entropies for spherical entangling surfaces in CFTs with gravity duals can be explicitly calculated by mapping these entropies first to the thermal entropy on hyperbolic space and then, using the AdS/CFT correspondence, to the Wald entropy of topological black holes. Here we extend this idea by taking into account corrections to the Wald entropy. Using the method based on horizon symmetries and the asymptotic Cardy formula, we calculate corrections to the Wald entropy and find that these corrections are proportional to the logarithm of the area of the horizon. With the corrected expression for the entropy of the black hole, we then find corrections to the Renyi entropies. We calculate these corrections for both Einstein and Gauss-Bonnet gravity duals. Corrections with logarithmic dependence on the area of the entangling surface naturally occur at the order G{sub D}{sup 0}. The entropic c-function and the inequalities of the Renyi entropy are also satisfied even with the correction terms. (orig.)

  4. Logarithmic black hole entropy corrections and holographic Renyi entropy

    International Nuclear Information System (INIS)

    Mahapatra, Subhash

    2018-01-01

    The entanglement and Renyi entropies for spherical entangling surfaces in CFTs with gravity duals can be explicitly calculated by mapping these entropies first to the thermal entropy on hyperbolic space and then, using the AdS/CFT correspondence, to the Wald entropy of topological black holes. Here we extend this idea by taking into account corrections to the Wald entropy. Using the method based on horizon symmetries and the asymptotic Cardy formula, we calculate corrections to the Wald entropy and find that these corrections are proportional to the logarithm of the area of the horizon. With the corrected expression for the entropy of the black hole, we then find corrections to the Renyi entropies. We calculate these corrections for both Einstein and Gauss-Bonnet gravity duals. Corrections with logarithmic dependence on the area of the entangling surface naturally occur at the order G D 0 . The entropic c-function and the inequalities of the Renyi entropy are also satisfied even with the correction terms. (orig.)

  5. Development of an Automated MRI-Based Diagnostic Protocol for Amyotrophic Lateral Sclerosis Using Disease-Specific Pathognomonic Features: A Quantitative Disease-State Classification Study.

    Science.gov (United States)

    Schuster, Christina; Hardiman, Orla; Bede, Peter

    2016-01-01

    Despite significant advances in quantitative neuroimaging, the diagnosis of ALS remains clinical and MRI-based biomarkers are not currently used to aid the diagnosis. The objective of this study is to develop a robust, disease-specific, multimodal classification protocol and validate its diagnostic accuracy in independent, early-stage and follow-up data sets. 147 participants (81 ALS patients and 66 healthy controls) were divided into a training sample and a validation sample. Patients in the validation sample underwent follow-up imaging longitudinally. After removing age-related variability, indices of grey and white matter integrity in ALS-specific pathognomonic brain regions were included in a cross-validated binary logistic regression model to determine the probability of individual scans indicating ALS. The following anatomical regions were assessed for diagnostic classification: average grey matter density of the left and right precentral gyrus, the average fractional anisotropy and radial diffusivity of the left and right superior corona radiata, inferior corona radiata, internal capsule, mesencephalic crus of the cerebral peduncles, pontine segment of the corticospinal tract, and the average diffusivity values of the genu, corpus and splenium of the corpus callosum. Using a 50% probability cut-off value of suffering from ALS, the model was able to discriminate ALS patients and HC with good sensitivity (80.0%) and moderate accuracy (70.0%) in the training sample and superior sensitivity (85.7%) and accuracy (78.4%) in the independent validation sample. This diagnostic classification study endeavours to advance ALS biomarker research towards pragmatic clinical applications by providing an approach of automated individual-data interpretation based on group-level observations.

  6. The Grading Entropy-based Criteria for Structural Stability of Granular Materials and Filters

    Directory of Open Access Journals (Sweden)

    Janos Lőrincz

    2015-05-01

    Full Text Available This paper deals with three grading entropy-based rules that describe different soil structure stability phenomena: an internal stability rule, a filtering rule and a segregation rule. These rules are elaborated on the basis of a large amount of laboratory testing and from existing knowledge in the field. Use is made of the theory of grading entropy to derive parameters which incorporate all of the information of the grading curve into a pair of entropy-based parameters that allow soils with common behaviours to be grouped into domains on an entropy diagram. Applications of the derived entropy-based rules are presented by examining the reason of a dam failure, by testing against the existing filter rules from the literature, and by giving some examples for the design of non-segregating grading curves (discrete particle size distributions by dry weight. A physical basis for the internal stability rule is established, wherein the higher values of base entropy required for granular stability are shown to reflect the closeness between the mean and maximum grain diameters, which explains how there are sufficient coarser grains to achieve a stable grain skeleton.

  7. The improvement of Clausius entropy and its application in entropy analysis

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The defects of Clausius entropy which include a premise of reversible process and a process quantity of heat in its definition are discussed in this paper. Moreover, the heat temperature quotient under reversible conditions, i.e. (δQ/T)rev, is essentially a process quantity although it is numerically equal to the entropy change. The sum of internal energy temperature quotient and work temperature quotient is defined as the improved form of Clausius entropy and it can be further proved to be a state function. Unlike Clausius entropy, the improved definition consists of system properties without premise just like other state functions, for example, pressure p and enthalpy h, etc. It is unnecessary to invent reversible paths when calculating entropy change for irreversible processes based on the improved form of entropy since it is independent of process. Furthermore, entropy balance equations for internally and externally irreversible processes are deduced respectively based on the concepts of thermal reservoir entropy transfer and system entropy transfer. Finally, some examples are presented to show that the improved definition of Clausius entropy provides a clear concept as well as a convenient method for en- tropy change calculation.

  8. An Entropy-Based Network Anomaly Detection Method

    Directory of Open Access Journals (Sweden)

    Przemysław Bereziński

    2015-04-01

    Full Text Available Data mining is an interdisciplinary subfield of computer science involving methods at the intersection of artificial intelligence, machine learning and statistics. One of the data mining tasks is anomaly detection which is the analysis of large quantities of data to identify items, events or observations which do not conform to an expected pattern. Anomaly detection is applicable in a variety of domains, e.g., fraud detection, fault detection, system health monitoring but this article focuses on application of anomaly detection in the field of network intrusion detection.The main goal of the article is to prove that an entropy-based approach is suitable to detect modern botnet-like malware based on anomalous patterns in network. This aim is achieved by realization of the following points: (i preparation of a concept of original entropy-based network anomaly detection method, (ii implementation of the method, (iii preparation of original dataset, (iv evaluation of the method.

  9. Automated image segmentation using information theory

    International Nuclear Information System (INIS)

    Hibbard, L.S.

    2001-01-01

    Full text: Our development of automated contouring of CT images for RT planning is based on maximum a posteriori (MAP) analyses of region textures, edges, and prior shapes, and assumes stationary Gaussian distributions for voxel textures and contour shapes. Since models may not accurately represent image data, it would be advantageous to compute inferences without relying on models. The relative entropy (RE) from information theory can generate inferences based solely on the similarity of probability distributions. The entropy of a distribution of a random variable X is defined as -Σ x p(x)log 2 p(x) for all the values x which X may assume. The RE (Kullback-Liebler divergence) of two distributions p(X), q(X), over X is Σ x p(x)log 2 {p(x)/q(x)}. The RE is a kind of 'distance' between p,q, equaling zero when p=q and increasing as p,q are more different. Minimum-error MAP and likelihood ratio decision rules have RE equivalents: minimum error decisions obtain with functions of the differences between REs of compared distributions. One applied result is the contour ideally separating two regions is that which maximizes the relative entropy of the two regions' intensities. A program was developed that automatically contours the outlines of patients in stereotactic headframes, a situation most often requiring manual drawing. The relative entropy of intensities inside the contour (patient) versus outside (background) was maximized by conjugate gradient descent over the space of parameters of a deformable contour. shows the computed segmentation of a patient from headframe backgrounds. This program is particularly useful for preparing images for multimodal image fusion. Relative entropy and allied measures of distribution similarity provide automated contouring criteria that do not depend on statistical models of image data. This approach should have wide utility in medical image segmentation applications. Copyright (2001) Australasian College of Physical Scientists and

  10. Entropy-Based Privacy against Profiling of User Mobility

    Directory of Open Access Journals (Sweden)

    Alicia Rodriguez-Carrion

    2015-06-01

    Full Text Available Location-based services (LBSs flood mobile phones nowadays, but their use poses an evident privacy risk. The locations accompanying the LBS queries can be exploited by the LBS provider to build the user profile of visited locations, which might disclose sensitive data, such as work or home locations. The classic concept of entropy is widely used to evaluate privacy in these scenarios, where the information is represented as a sequence of independent samples of categorized data. However, since the LBS queries might be sent very frequently, location profiles can be improved by adding temporal dependencies, thus becoming mobility profiles, where location samples are not independent anymore and might disclose the user’s mobility patterns. Since the time dimension is factored in, the classic entropy concept falls short of evaluating the real privacy level, which depends also on the time component. Therefore, we propose to extend the entropy-based privacy metric to the use of the entropy rate to evaluate mobility profiles. Then, two perturbative mechanisms are considered to preserve locations and mobility profiles under gradual utility constraints. We further use the proposed privacy metric and compare it to classic ones to evaluate both synthetic and real mobility profiles when the perturbative methods proposed are applied. The results prove the usefulness of the proposed metric for mobility profiles and the need for tailoring the perturbative methods to the features of mobility profiles in order to improve privacy without completely loosing utility.

  11. A Theoretical Basis for Entropy-Scaling Effects in Human Mobility Patterns.

    Science.gov (United States)

    Osgood, Nathaniel D; Paul, Tuhin; Stanley, Kevin G; Qian, Weicheng

    2016-01-01

    Characterizing how people move through space has been an important component of many disciplines. With the advent of automated data collection through GPS and other location sensing systems, researchers have the opportunity to examine human mobility at spatio-temporal resolution heretofore impossible. However, the copious and complex data collected through these logging systems can be difficult for humans to fully exploit, leading many researchers to propose novel metrics for encapsulating movement patterns in succinct and useful ways. A particularly salient proposed metric is the mobility entropy rate of the string representing the sequence of locations visited by an individual. However, mobility entropy rate is not scale invariant: entropy rate calculations based on measurements of the same trajectory at varying spatial or temporal granularity do not yield the same value, limiting the utility of mobility entropy rate as a metric by confounding inter-experimental comparisons. In this paper, we derive a scaling relationship for mobility entropy rate of non-repeating straight line paths from the definition of Lempel-Ziv compression. We show that the resulting formulation predicts the scaling behavior of simulated mobility traces, and provides an upper bound on mobility entropy rate under certain assumptions. We further show that this formulation has a maximum value for a particular sampling rate, implying that optimal sampling rates for particular movement patterns exist.

  12. Application of wavelet transform for PDZ domain classification.

    Directory of Open Access Journals (Sweden)

    Khaled Daqrouq

    Full Text Available PDZ domains have been identified as part of an array of signaling proteins that are often unrelated, except for the well-conserved structural PDZ domain they contain. These domains have been linked to many disease processes including common Avian influenza, as well as very rare conditions such as Fraser and Usher syndromes. Historically, based on the interactions and the nature of bonds they form, PDZ domains have most often been classified into one of three classes (class I, class II and others - class III, that is directly dependent on their binding partner. In this study, we report on three unique feature extraction approaches based on the bigram and trigram occurrence and existence rearrangements within the domain's primary amino acid sequences in assisting PDZ domain classification. Wavelet packet transform (WPT and Shannon entropy denoted by wavelet entropy (WE feature extraction methods were proposed. Using 115 unique human and mouse PDZ domains, the existence rearrangement approach yielded a high recognition rate (78.34%, which outperformed our occurrence rearrangements based method. The recognition rate was (81.41% with validation technique. The method reported for PDZ domain classification from primary sequences proved to be an encouraging approach for obtaining consistent classification results. We anticipate that by increasing the database size, we can further improve feature extraction and correct classification.

  13. Multi-material classification of dry recyclables from municipal solid waste based on thermal imaging.

    Science.gov (United States)

    Gundupalli, Sathish Paulraj; Hait, Subrata; Thakur, Atul

    2017-12-01

    There has been a significant rise in municipal solid waste (MSW) generation in the last few decades due to rapid urbanization and industrialization. Due to the lack of source segregation practice, a need for automated segregation of recyclables from MSW exists in the developing countries. This paper reports a thermal imaging based system for classifying useful recyclables from simulated MSW sample. Experimental results have demonstrated the possibility to use thermal imaging technique for classification and a robotic system for sorting of recyclables in a single process step. The reported classification system yields an accuracy in the range of 85-96% and is comparable with the existing single-material recyclable classification techniques. We believe that the reported thermal imaging based system can emerge as a viable and inexpensive large-scale classification-cum-sorting technology in recycling plants for processing MSW in developing countries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Entropy Viscosity and L1-based Approximations of PDEs: Exploiting Sparsity

    Science.gov (United States)

    2015-10-23

    AFRL-AFOSR-VA-TR-2015-0337 Entropy Viscosity and L1-based Approximations of PDEs: Exploiting Sparsity Jean-Luc Guermond TEXAS A & M UNIVERSITY 750...REPORT DATE (DD-MM-YYYY) 09-05-2015 2. REPORT TYPE Final report 3. DATES COVERED (From - To) 01-07-2012 - 30-06-2015 4. TITLE AND SUBTITLE Entropy ...conservation equations can be stabilized by using the so-called entropy viscosity method and we proposed to to investigate this new technique. We

  15. Acoustic firearm discharge detection and classification in an enclosed environment

    Energy Technology Data Exchange (ETDEWEB)

    Luzi, Lorenzo; Gonzalez, Eric; Bruillard, Paul; Prowant, Matthew; Skorpik, James; Hughes, Michael; Child, Scott; Kist, Duane; McCarthy, John E.

    2016-05-01

    Two different signal processing algorithms are described for detection and classification of acoustic signals generated by firearm discharges in small enclosed spaces. The first is based on the logarithm of the signal energy. The second is a joint entropy. The current study indicates that a system using both signal energy and joint entropy would be able to both detect weapon discharges and classify weapon type, in small spaces, with high statistical certainty.

  16. On the Entropy Based Associative Memory Model with Higher-Order Correlations

    Directory of Open Access Journals (Sweden)

    Masahiro Nakagawa

    2010-01-01

    Full Text Available In this paper, an entropy based associative memory model will be proposed and applied to memory retrievals with an orthogonal learning model so as to compare with the conventional model based on the quadratic Lyapunov functional to be minimized during the retrieval process. In the present approach, the updating dynamics will be constructed on the basis of the entropy minimization strategy which may be reduced asymptotically to the above-mentioned conventional dynamics as a special case ignoring the higher-order correlations. According to the introduction of the entropy functional, one may involve higer-order correlation effects between neurons in a self-contained manner without any heuristic coupling coefficients as in the conventional manner. In fact we shall show such higher order coupling tensors are to be uniquely determined in the framework of the entropy based approach. From numerical results, it will be found that the presently proposed novel approach realizes much larger memory capacity than that of the quadratic Lyapunov functional approach, e.g., associatron.

  17. Airborne LIDAR Power Line Classification Based on Spatial Topological Structure Characteristics

    Science.gov (United States)

    Wang, Y.; Chen, Q.; Li, K.; Zheng, D.; Fang, J.

    2017-09-01

    Automatic extraction of power lines has become a topic of great importance in airborne LiDAR data processing for transmission line management. In this paper, we present a new, fully automated and versatile framework that consists of four steps: (i) power line candidate point filtering, (ii) neighbourhood selection, (iii) feature extraction based on spatial topology, and (iv) SVM classification. In a detailed evaluation involving seven neighbourhood definitions, 26 geometric features and two datasets, we demonstrated that the use of multi-scale neighbourhoods for individual 3D points significantly improved the power line classification. Additionally, we showed that the spatial topological features may even further improve the results while reducing data processing time.

  18. Entropy equilibrium equation and dynamic entropy production in environment liquid

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The entropy equilibrium equation is the basis of the nonequilibrium state thermodynamics. But the internal energy implies the kinetic energy of the fluid micelle relative to mass center in the classical entropy equilibrium equation at present. This internal energy is not the mean kinetic energy of molecular movement in thermodynamics. Here a modified entropy equilibrium equation is deduced, based on the concept that the internal energy is just the mean kinetic energy of the molecular movement. A dynamic entropy production is introduced into the entropy equilibrium equation to describe the dynamic process distinctly. This modified entropy equilibrium equation can describe not only the entropy variation of the irreversible processes but also the reversible processes in a thermodynamic system. It is more reasonable and suitable for wider applications.

  19. A Method of Rotating Machinery Fault Diagnosis Based on the Close Degree of Information Entropy

    Institute of Scientific and Technical Information of China (English)

    GENG Jun-bao; HUANG Shu-hong; JIN Jia-shan; CHEN Fei; LIU Wei

    2006-01-01

    This paper presents a method of rotating machinery fault diagnosis based on the close degree of information entropy. In the view of the information entropy, we introduce four information entropy features of the rotating machinery, which describe the vibration condition of the machinery. The four features are, respectively, denominated as singular spectrum entropy, power spectrum entropy, wavelet space state feature entropy and wavelet power spectrum entropy. The value scopes of the four information entropy features of the rotating machinery in some typical fault conditions are gained by experiments, which can be acted as the standard features of fault diagnosis. According to the principle of the shorter distance between the more similar models, the decision-making method based on the close degree of information entropy is put forward to deal with the recognition of fault patterns. We demonstrate the effectiveness of this approach in an instance involving the fault pattern recognition of some rotating machinery.

  20. Analyzing the Performances of Automotive Companies Using Entropy Based MAUT and SAW Methods

    Directory of Open Access Journals (Sweden)

    Nuri Ömürbek

    2016-06-01

    Full Text Available In this study, performances of automotive companies traded on BİST (Istanbul Stock Exchange and also operated in our country have been  compared with the multi-criteria decision making techniques. Data of the most important automotive companies operating in Turkey have been analyzed based on capital, stock certificate, marketing value, sales revenue, number of employees, net profit margin, current ratio, net profit/capital, net profit/sales and net sales/number of employees. Criteria applied on  Performance measurement  was gained  operating reports of companies  in 2014. Entropy method  has been used to determine the weights of the criteria. Those weights have been used MAUT (Multi-Attribute Utility Theory and SAW (Simple Additive Weighting  methods to rank automative companies’ performances The findings highlight that the same companies were in the first three places  in both methods.

  1. Multiattribute Decision Making Based on Entropy under Interval-Valued Intuitionistic Fuzzy Environment

    Directory of Open Access Journals (Sweden)

    Yingjun Zhang

    2013-01-01

    Full Text Available Multiattribute decision making (MADM is one of the central problems in artificial intelligence, specifically in management fields. In most cases, this problem arises from uncertainty both in the data derived from the decision maker and the actions performed in the environment. Fuzzy set and high-order fuzzy sets were proven to be effective approaches in solving decision-making problems with uncertainty. Therefore, in this paper, we investigate the MADM problem with completely unknown attribute weights in the framework of interval-valued intuitionistic fuzzy (IVIF set (IVIFS. We first propose a new definition of IVIF entropy and some calculation methods for IVIF entropy. Furthermore, we propose an entropy-based decision-making method to solve IVIF MADM problems with completely unknown attribute weights. Particular emphasis is put on assessing the attribute weights based on IVIF entropy. Instead of the traditional methods, which use divergence among attributes or the probabilistic discrimination of attributes to obtain attribute weights, we utilize the IVIF entropy to assess the attribute weights based on the credibility of the decision-making matrix for solving the problem. Finally, a supplier selection example is given to demonstrate the feasibility and validity of the proposed MADM method.

  2. Logarithmic black hole entropy corrections and holographic Rényi entropy

    Science.gov (United States)

    Mahapatra, Subhash

    2018-01-01

    The entanglement and Rényi entropies for spherical entangling surfaces in CFTs with gravity duals can be explicitly calculated by mapping these entropies first to the thermal entropy on hyperbolic space and then, using the AdS/CFT correspondence, to the Wald entropy of topological black holes. Here we extend this idea by taking into account corrections to the Wald entropy. Using the method based on horizon symmetries and the asymptotic Cardy formula, we calculate corrections to the Wald entropy and find that these corrections are proportional to the logarithm of the area of the horizon. With the corrected expression for the entropy of the black hole, we then find corrections to the Rényi entropies. We calculate these corrections for both Einstein and Gauss-Bonnet gravity duals. Corrections with logarithmic dependence on the area of the entangling surface naturally occur at the order GD^0. The entropic c-function and the inequalities of the Rényi entropy are also satisfied even with the correction terms.

  3. Automated detection and classification of cryptographic algorithms in binary programs through machine learning

    OpenAIRE

    Hosfelt, Diane Duros

    2015-01-01

    Threats from the internet, particularly malicious software (i.e., malware) often use cryptographic algorithms to disguise their actions and even to take control of a victim's system (as in the case of ransomware). Malware and other threats proliferate too quickly for the time-consuming traditional methods of binary analysis to be effective. By automating detection and classification of cryptographic algorithms, we can speed program analysis and more efficiently combat malware. This thesis wil...

  4. AUTOMATED UNSUPERVISED CLASSIFICATION OF THE SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA USING k-MEANS CLUSTERING

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Almeida, J.; Allende Prieto, C., E-mail: jos@iac.es, E-mail: callende@iac.es [Instituto de Astrofisica de Canarias, E-38205 La Laguna, Tenerife (Spain)

    2013-01-20

    Large spectroscopic surveys require automated methods of analysis. This paper explores the use of k-means clustering as a tool for automated unsupervised classification of massive stellar spectral catalogs. The classification criteria are defined by the data and the algorithm, with no prior physical framework. We work with a representative set of stellar spectra associated with the Sloan Digital Sky Survey (SDSS) SEGUE and SEGUE-2 programs, which consists of 173,390 spectra from 3800 to 9200 A sampled on 3849 wavelengths. We classify the original spectra as well as the spectra with the continuum removed. The second set only contains spectral lines, and it is less dependent on uncertainties of the flux calibration. The classification of the spectra with continuum renders 16 major classes. Roughly speaking, stars are split according to their colors, with enough finesse to distinguish dwarfs from giants of the same effective temperature, but with difficulties to separate stars with different metallicities. There are classes corresponding to particular MK types, intrinsically blue stars, dust-reddened, stellar systems, and also classes collecting faulty spectra. Overall, there is no one-to-one correspondence between the classes we derive and the MK types. The classification of spectra without continuum renders 13 classes, the color separation is not so sharp, but it distinguishes stars of the same effective temperature and different metallicities. Some classes thus obtained present a fairly small range of physical parameters (200 K in effective temperature, 0.25 dex in surface gravity, and 0.35 dex in metallicity), so that the classification can be used to estimate the main physical parameters of some stars at a minimum computational cost. We also analyze the outliers of the classification. Most of them turn out to be failures of the reduction pipeline, but there are also high redshift QSOs, multiple stellar systems, dust-reddened stars, galaxies, and, finally, odd

  5. Estimating the melting point, entropy of fusion, and enthalpy of fusion of organic compounds via SPARC

    Science.gov (United States)

    The entropies of fusion, enthalies of fusion, and melting points of organic compounds can be estimated through three models developed using the SPARC (SPARC Performs Automated Reasoning in Chemistry) platform. The entropy of fusion is modeled through a combination of interaction ...

  6. Towards an entropy-based detached-eddy simulation

    Science.gov (United States)

    Zhao, Rui; Yan, Chao; Li, XinLiang; Kong, WeiXuan

    2013-10-01

    A concept of entropy increment ratio ( s¯) is introduced for compressible turbulence simulation through a series of direct numerical simulations (DNS). s¯ represents the dissipation rate per unit mechanical energy with the benefit of independence of freestream Mach numbers. Based on this feature, we construct the shielding function f s to describe the boundary layer region and propose an entropy-based detached-eddy simulation method (SDES). This approach follows the spirit of delayed detached-eddy simulation (DDES) proposed by Spalart et al. in 2005, but it exhibits much better behavior after their performances are compared in the following flows, namely, pure attached flow with thick boundary layer (a supersonic flat-plate flow with high Reynolds number), fully separated flow (the supersonic base flow), and separated-reattached flow (the supersonic cavity-ramp flow). The Reynolds-averaged Navier-Stokes (RANS) resolved region is reliably preserved and the modeled stress depletion (MSD) phenomenon which is inherent in DES and DDES is partly alleviated. Moreover, this new hybrid strategy is simple and general, making it applicable to other models related to the boundary layer predictions.

  7. Automics: an integrated platform for NMR-based metabonomics spectral processing and data analysis

    Directory of Open Access Journals (Sweden)

    Qu Lijia

    2009-03-01

    Full Text Available Abstract Background Spectral processing and post-experimental data analysis are the major tasks in NMR-based metabonomics studies. While there are commercial and free licensed software tools available to assist these tasks, researchers usually have to use multiple software packages for their studies because software packages generally focus on specific tasks. It would be beneficial to have a highly integrated platform, in which these tasks can be completed within one package. Moreover, with open source architecture, newly proposed algorithms or methods for spectral processing and data analysis can be implemented much more easily and accessed freely by the public. Results In this paper, we report an open source software tool, Automics, which is specifically designed for NMR-based metabonomics studies. Automics is a highly integrated platform that provides functions covering almost all the stages of NMR-based metabonomics studies. Automics provides high throughput automatic modules with most recently proposed algorithms and powerful manual modules for 1D NMR spectral processing. In addition to spectral processing functions, powerful features for data organization, data pre-processing, and data analysis have been implemented. Nine statistical methods can be applied to analyses including: feature selection (Fisher's criterion, data reduction (PCA, LDA, ULDA, unsupervised clustering (K-Mean and supervised regression and classification (PLS/PLS-DA, KNN, SIMCA, SVM. Moreover, Automics has a user-friendly graphical interface for visualizing NMR spectra and data analysis results. The functional ability of Automics is demonstrated with an analysis of a type 2 diabetes metabolic profile. Conclusion Automics facilitates high throughput 1D NMR spectral processing and high dimensional data analysis for NMR-based metabonomics applications. Using Automics, users can complete spectral processing and data analysis within one software package in most cases

  8. Automics: an integrated platform for NMR-based metabonomics spectral processing and data analysis.

    Science.gov (United States)

    Wang, Tao; Shao, Kang; Chu, Qinying; Ren, Yanfei; Mu, Yiming; Qu, Lijia; He, Jie; Jin, Changwen; Xia, Bin

    2009-03-16

    Spectral processing and post-experimental data analysis are the major tasks in NMR-based metabonomics studies. While there are commercial and free licensed software tools available to assist these tasks, researchers usually have to use multiple software packages for their studies because software packages generally focus on specific tasks. It would be beneficial to have a highly integrated platform, in which these tasks can be completed within one package. Moreover, with open source architecture, newly proposed algorithms or methods for spectral processing and data analysis can be implemented much more easily and accessed freely by the public. In this paper, we report an open source software tool, Automics, which is specifically designed for NMR-based metabonomics studies. Automics is a highly integrated platform that provides functions covering almost all the stages of NMR-based metabonomics studies. Automics provides high throughput automatic modules with most recently proposed algorithms and powerful manual modules for 1D NMR spectral processing. In addition to spectral processing functions, powerful features for data organization, data pre-processing, and data analysis have been implemented. Nine statistical methods can be applied to analyses including: feature selection (Fisher's criterion), data reduction (PCA, LDA, ULDA), unsupervised clustering (K-Mean) and supervised regression and classification (PLS/PLS-DA, KNN, SIMCA, SVM). Moreover, Automics has a user-friendly graphical interface for visualizing NMR spectra and data analysis results. The functional ability of Automics is demonstrated with an analysis of a type 2 diabetes metabolic profile. Automics facilitates high throughput 1D NMR spectral processing and high dimensional data analysis for NMR-based metabonomics applications. Using Automics, users can complete spectral processing and data analysis within one software package in most cases. Moreover, with its open source architecture, interested

  9. Automated Classification and Removal of EEG Artifacts With SVM and Wavelet-ICA.

    Science.gov (United States)

    Sai, Chong Yeh; Mokhtar, Norrima; Arof, Hamzah; Cumming, Paul; Iwahashi, Masahiro

    2018-05-01

    Brain electrical activity recordings by electroencephalography (EEG) are often contaminated with signal artifacts. Procedures for automated removal of EEG artifacts are frequently sought for clinical diagnostics and brain-computer interface applications. In recent years, a combination of independent component analysis (ICA) and discrete wavelet transform has been introduced as standard technique for EEG artifact removal. However, in performing the wavelet-ICA procedure, visual inspection or arbitrary thresholding may be required for identifying artifactual components in the EEG signal. We now propose a novel approach for identifying artifactual components separated by wavelet-ICA using a pretrained support vector machine (SVM). Our method presents a robust and extendable system that enables fully automated identification and removal of artifacts from EEG signals, without applying any arbitrary thresholding. Using test data contaminated by eye blink artifacts, we show that our method performed better in identifying artifactual components than did existing thresholding methods. Furthermore, wavelet-ICA in conjunction with SVM successfully removed target artifacts, while largely retaining the EEG source signals of interest. We propose a set of features including kurtosis, variance, Shannon's entropy, and range of amplitude as training and test data of SVM to identify eye blink artifacts in EEG signals. This combinatorial method is also extendable to accommodate multiple types of artifacts present in multichannel EEG. We envision future research to explore other descriptive features corresponding to other types of artifactual components.

  10. Automated Classification of Seedlings Using Computer Vision

    DEFF Research Database (Denmark)

    Dyrmann, Mads; Christiansen, Peter

    The objective of this project is to investigate the possibilities of recognizing plant species at multiple growth stages based on RGB images. Plants and leaves are initially segmented from a database through a partly automated procedure providing samples of 2438 plants and 4767 leaves distributed...

  11. Temperature multiscale entropy analysis: a promising marker for early prediction of mortality in septic patients

    International Nuclear Information System (INIS)

    Papaioannou, V E; Pneumatikos, I A; Chouvarda, I G; Maglaveras, N K; Baltopoulos, G I

    2013-01-01

    A few studies estimating temperature complexity have found decreased Shannon entropy, during severe stress. In this study, we measured both Shannon and Tsallis entropy of temperature signals in a cohort of critically ill patients and compared these measures with the sequential organ failure assessment (SOFA) score, in terms of intensive care unit (ICU) mortality. Skin temperature was recorded in 21 mechanically ventilated patients, who developed sepsis and septic shock during the first 24 h of an ICU-acquired infection. Shannon and Tsallis entropies were calculated in wavelet-based decompositions of the temperature signal. Statistically significant differences of entropy features were tested between survivors and non-survivors and classification models were built, for predicting final outcome. Significantly reduced Tsallis and Shannon entropies were found in non-survivors (seven patients, 33%) as compared to survivors. Wavelet measurements of both entropy metrics were found to predict ICU mortality better than SOFA, according to a combination of area under the curve, sensitivity and specificity values. Both entropies exhibited similar prognostic accuracy. Combination of SOFA and entropy presented improved the outcome of univariate models. We suggest that reduced wavelet Shannon and Tsallis entropies of temperature signals may complement SOFA in mortality prediction, during the first 24 h of an ICU-acquired infection. (paper)

  12. Automated Classification of Heritage Buildings for As-Built Bim Using Machine Learning Techniques

    Science.gov (United States)

    Bassier, M.; Vergauwen, M.; Van Genechten, B.

    2017-08-01

    Semantically rich three dimensional models such as Building Information Models (BIMs) are increasingly used in digital heritage. They provide the required information to varying stakeholders during the different stages of the historic buildings life cyle which is crucial in the conservation process. The creation of as-built BIM models is based on point cloud data. However, manually interpreting this data is labour intensive and often leads to misinterpretations. By automatically classifying the point cloud, the information can be proccesed more effeciently. A key aspect in this automated scan-to-BIM process is the classification of building objects. In this research we look to automatically recognise elements in existing buildings to create compact semantic information models. Our algorithm efficiently extracts the main structural components such as floors, ceilings, roofs, walls and beams despite the presence of significant clutter and occlusions. More specifically, Support Vector Machines (SVM) are proposed for the classification. The algorithm is evaluated using real data of a variety of existing buildings. The results prove that the used classifier recognizes the objects with both high precision and recall. As a result, entire data sets are reliably labelled at once. The approach enables experts to better document and process heritage assets.

  13. Sample Entropy-Based Approach to Evaluate the Stability of Double-Wire Pulsed MIG Welding

    Directory of Open Access Journals (Sweden)

    Ping Yao

    2014-01-01

    Full Text Available According to the sample entropy, this paper deals with a quantitative method to evaluate the current stability in double-wire pulsed MIG welding. Firstly, the sample entropy of current signals with different stability but the same parameters is calculated. The results show that the more stable the current, the smaller the value and the standard deviation of sample entropy. Secondly, four parameters, which are pulse width, peak current, base current, and frequency, are selected for four-level three-factor orthogonal experiment. The calculation and analysis of desired signals indicate that sample entropy values are affected by welding current parameters. Then, a quantitative method based on sample entropy is proposed. The experiment results show that the method can preferably quantify the welding current stability.

  14. Music viewed by its entropy content: A novel window for comparative analysis.

    Directory of Open Access Journals (Sweden)

    Gerardo Febres

    Full Text Available Polyphonic music files were analyzed using the set of symbols that produced the Minimal Entropy Description, which we call the Fundamental Scale. This allowed us to create a novel space to represent music pieces by developing: (a a method to adjust a textual description from its original scale of observation to an arbitrarily selected scale, (b a method to model the structure of any textual description based on the shape of the symbol frequency profiles, and (c the concept of higher order entropy as the entropy associated with the deviations of a frequency-ranked symbol profile from a perfect Zipfian profile. We call this diversity index the '2nd Order Entropy'. Applying these methods to a variety of musical pieces showed how the space of 'symbolic specific diversity-entropy' and that of '2nd order entropy' captures characteristics that are unique to each music type, style, composer and genre. Some clustering of these properties around each musical category is shown. These methods allow us to visualize a historic trajectory of academic music across this space, from medieval to contemporary academic music. We show that the description of musical structures using entropy, symbol frequency profiles and specific symbolic diversity allows us to characterize traditional and popular expressions of music. These classification techniques promise to be useful in other disciplines for pattern recognition and machine learning.

  15. Music viewed by its entropy content: A novel window for comparative analysis.

    Science.gov (United States)

    Febres, Gerardo; Jaffe, Klaus

    2017-01-01

    Polyphonic music files were analyzed using the set of symbols that produced the Minimal Entropy Description, which we call the Fundamental Scale. This allowed us to create a novel space to represent music pieces by developing: (a) a method to adjust a textual description from its original scale of observation to an arbitrarily selected scale, (b) a method to model the structure of any textual description based on the shape of the symbol frequency profiles, and (c) the concept of higher order entropy as the entropy associated with the deviations of a frequency-ranked symbol profile from a perfect Zipfian profile. We call this diversity index the '2nd Order Entropy'. Applying these methods to a variety of musical pieces showed how the space of 'symbolic specific diversity-entropy' and that of '2nd order entropy' captures characteristics that are unique to each music type, style, composer and genre. Some clustering of these properties around each musical category is shown. These methods allow us to visualize a historic trajectory of academic music across this space, from medieval to contemporary academic music. We show that the description of musical structures using entropy, symbol frequency profiles and specific symbolic diversity allows us to characterize traditional and popular expressions of music. These classification techniques promise to be useful in other disciplines for pattern recognition and machine learning.

  16. On the Possibility of Calculating Entropy, Free Energy, and Enthalpy of Vitreous Substances

    Directory of Open Access Journals (Sweden)

    Sergei V. Nemilov

    2018-03-01

    Full Text Available A critical analysis for the arguments in support of, and against, the traditional approach to thermodynamics of vitreous state is provided. In this approach one presumes that there is a continuous variation of the entropy in the glass-liquid transition temperature range, or a “continuous entropy approach” towards 0 K which produces a positive value of the entropy at T → 0 K. I find that arguments given against this traditional approach use a different understanding of the thermodynamics of glass transition on cooling a liquid, because it suggests a discontinuity or “entropy loss approach” in the variation of entropy in the glass-liquid transition range. That is based on: (1 an unjustifiable use of the classical Boltzmann statistics for interpreting the value of entropy at absolute zero; (2 the rejection of thermodynamic analysis of systems with broken ergodicity, even though the possibility of analogous analysis was proposed already by Gibbs; (3 the possibility of a finite change in entropy of a system without absorption or release of heat; and, (4 describing the thermodynamic properties of glasses in the framework of functions, instead of functionals. The last one is necessary because for glasses the entropy and enthalpy are not functions of the state, but functionals, as defined by Gibbs’ in his classification.

  17. A Discrete Wavelet Based Feature Extraction and Hybrid Classification Technique for Microarray Data Analysis

    Directory of Open Access Journals (Sweden)

    Jaison Bennet

    2014-01-01

    Full Text Available Cancer classification by doctors and radiologists was based on morphological and clinical features and had limited diagnostic ability in olden days. The recent arrival of DNA microarray technology has led to the concurrent monitoring of thousands of gene expressions in a single chip which stimulates the progress in cancer classification. In this paper, we have proposed a hybrid approach for microarray data classification based on nearest neighbor (KNN, naive Bayes, and support vector machine (SVM. Feature selection prior to classification plays a vital role and a feature selection technique which combines discrete wavelet transform (DWT and moving window technique (MWT is used. The performance of the proposed method is compared with the conventional classifiers like support vector machine, nearest neighbor, and naive Bayes. Experiments have been conducted on both real and benchmark datasets and the results indicate that the ensemble approach produces higher classification accuracy than conventional classifiers. This paper serves as an automated system for the classification of cancer and can be applied by doctors in real cases which serve as a boon to the medical community. This work further reduces the misclassification of cancers which is highly not allowed in cancer detection.

  18. 2D Tsallis Entropy for Image Segmentation Based on Modified Chaotic Bat Algorithm

    Directory of Open Access Journals (Sweden)

    Zhiwei Ye

    2018-03-01

    Full Text Available Image segmentation is a significant step in image analysis and computer vision. Many entropy based approaches have been presented in this topic; among them, Tsallis entropy is one of the best performing methods. However, 1D Tsallis entropy does not consider make use of the spatial correlation information within the neighborhood results might be ruined by noise. Therefore, 2D Tsallis entropy is proposed to solve the problem, and results are compared with 1D Fisher, 1D maximum entropy, 1D cross entropy, 1D Tsallis entropy, fuzzy entropy, 2D Fisher, 2D maximum entropy and 2D cross entropy. On the other hand, due to the existence of huge computational costs, meta-heuristics algorithms like genetic algorithm (GA, particle swarm optimization (PSO, ant colony optimization algorithm (ACO and differential evolution algorithm (DE are used to accelerate the 2D Tsallis entropy thresholding method. In this paper, considering 2D Tsallis entropy as a constrained optimization problem, the optimal thresholds are acquired by maximizing the objective function using a modified chaotic Bat algorithm (MCBA. The proposed algorithm has been tested on some actual and infrared images. The results are compared with that of PSO, GA, ACO and DE and demonstrate that the proposed method outperforms other approaches involved in the paper, which is a feasible and effective option for image segmentation.

  19. Bubble Entropy: An Entropy Almost Free of Parameters.

    Science.gov (United States)

    Manis, George; Aktaruzzaman, Md; Sassi, Roberto

    2017-11-01

    Objective : A critical point in any definition of entropy is the selection of the parameters employed to obtain an estimate in practice. We propose a new definition of entropy aiming to reduce the significance of this selection. Methods: We call the new definition Bubble Entropy . Bubble Entropy is based on permutation entropy, where the vectors in the embedding space are ranked. We use the bubble sort algorithm for the ordering procedure and count instead the number of swaps performed for each vector. Doing so, we create a more coarse-grained distribution and then compute the entropy of this distribution. Results: Experimental results with both real and synthetic HRV signals showed that bubble entropy presents remarkable stability and exhibits increased descriptive and discriminating power compared to all other definitions, including the most popular ones. Conclusion: The definition proposed is almost free of parameters. The most common ones are the scale factor r and the embedding dimension m . In our definition, the scale factor is totally eliminated and the importance of m is significantly reduced. The proposed method presents increased stability and discriminating power. Significance: After the extensive use of some entropy measures in physiological signals, typical values for their parameters have been suggested, or at least, widely used. However, the parameters are still there, application and dataset dependent, influencing the computed value and affecting the descriptive power. Reducing their significance or eliminating them alleviates the problem, decoupling the method from the data and the application, and eliminating subjective factors. Objective : A critical point in any definition of entropy is the selection of the parameters employed to obtain an estimate in practice. We propose a new definition of entropy aiming to reduce the significance of this selection. Methods: We call the new definition Bubble Entropy . Bubble Entropy is based on permutation

  20. EEG BASED COGNITIVE WORKLOAD CLASSIFICATION DURING NASA MATB-II MULTITASKING

    Directory of Open Access Journals (Sweden)

    Sushil Chandra

    2015-06-01

    Full Text Available The objective of this experiment was to determine the best possible input EEG feature for classification of the workload while designing load balancing logic for an automated operator. The input features compared in this study consisted of spectral features of Electroencephalography, objective scoring and subjective scoring. Method utilizes to identify best EEG feature as an input in Neural Network Classifiers for workload classification, to identify channels which could provide classification with the highest accuracy and for identification of EEG feature which could give discrimination among workload level without adding any classifiers. The result had shown Engagement Index is the best feature for neural network classification.

  1. CONSTRUCTION OF A CALIBRATED PROBABILISTIC CLASSIFICATION CATALOG: APPLICATION TO 50k VARIABLE SOURCES IN THE ALL-SKY AUTOMATED SURVEY

    International Nuclear Information System (INIS)

    Richards, Joseph W.; Starr, Dan L.; Miller, Adam A.; Bloom, Joshua S.; Brink, Henrik; Crellin-Quick, Arien; Butler, Nathaniel R.

    2012-01-01

    With growing data volumes from synoptic surveys, astronomers necessarily must become more abstracted from the discovery and introspection processes. Given the scarcity of follow-up resources, there is a particularly sharp onus on the frameworks that replace these human roles to provide accurate and well-calibrated probabilistic classification catalogs. Such catalogs inform the subsequent follow-up, allowing consumers to optimize the selection of specific sources for further study and permitting rigorous treatment of classification purities and efficiencies for population studies. Here, we describe a process to produce a probabilistic classification catalog of variability with machine learning from a multi-epoch photometric survey. In addition to producing accurate classifications, we show how to estimate calibrated class probabilities and motivate the importance of probability calibration. We also introduce a methodology for feature-based anomaly detection, which allows discovery of objects in the survey that do not fit within the predefined class taxonomy. Finally, we apply these methods to sources observed by the All-Sky Automated Survey (ASAS), and release the Machine-learned ASAS Classification Catalog (MACC), a 28 class probabilistic classification catalog of 50,124 ASAS sources in the ASAS Catalog of Variable Stars. We estimate that MACC achieves a sub-20% classification error rate and demonstrate that the class posterior probabilities are reasonably calibrated. MACC classifications compare favorably to the classifications of several previous domain-specific ASAS papers and to the ASAS Catalog of Variable Stars, which had classified only 24% of those sources into one of 12 science classes.

  2. CONSTRUCTION OF A CALIBRATED PROBABILISTIC CLASSIFICATION CATALOG: APPLICATION TO 50k VARIABLE SOURCES IN THE ALL-SKY AUTOMATED SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Richards, Joseph W.; Starr, Dan L.; Miller, Adam A.; Bloom, Joshua S.; Brink, Henrik; Crellin-Quick, Arien [Astronomy Department, University of California, Berkeley, CA 94720-3411 (United States); Butler, Nathaniel R., E-mail: jwrichar@stat.berkeley.edu [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States)

    2012-12-15

    With growing data volumes from synoptic surveys, astronomers necessarily must become more abstracted from the discovery and introspection processes. Given the scarcity of follow-up resources, there is a particularly sharp onus on the frameworks that replace these human roles to provide accurate and well-calibrated probabilistic classification catalogs. Such catalogs inform the subsequent follow-up, allowing consumers to optimize the selection of specific sources for further study and permitting rigorous treatment of classification purities and efficiencies for population studies. Here, we describe a process to produce a probabilistic classification catalog of variability with machine learning from a multi-epoch photometric survey. In addition to producing accurate classifications, we show how to estimate calibrated class probabilities and motivate the importance of probability calibration. We also introduce a methodology for feature-based anomaly detection, which allows discovery of objects in the survey that do not fit within the predefined class taxonomy. Finally, we apply these methods to sources observed by the All-Sky Automated Survey (ASAS), and release the Machine-learned ASAS Classification Catalog (MACC), a 28 class probabilistic classification catalog of 50,124 ASAS sources in the ASAS Catalog of Variable Stars. We estimate that MACC achieves a sub-20% classification error rate and demonstrate that the class posterior probabilities are reasonably calibrated. MACC classifications compare favorably to the classifications of several previous domain-specific ASAS papers and to the ASAS Catalog of Variable Stars, which had classified only 24% of those sources into one of 12 science classes.

  3. Developing and Integrating Advanced Movement Features Improves Automated Classification of Ciliate Species.

    Science.gov (United States)

    Soleymani, Ali; Pennekamp, Frank; Petchey, Owen L; Weibel, Robert

    2015-01-01

    Recent advances in tracking technologies such as GPS or video tracking systems describe the movement paths of individuals in unprecedented details and are increasingly used in different fields, including ecology. However, extracting information from raw movement data requires advanced analysis techniques, for instance to infer behaviors expressed during a certain period of the recorded trajectory, or gender or species identity in case data is obtained from remote tracking. In this paper, we address how different movement features affect the ability to automatically classify the species identity, using a dataset of unicellular microbes (i.e., ciliates). Previously, morphological attributes and simple movement metrics, such as speed, were used for classifying ciliate species. Here, we demonstrate that adding advanced movement features, in particular such based on discrete wavelet transform, to morphological features can improve classification. These results may have practical applications in automated monitoring of waste water facilities as well as environmental monitoring of aquatic systems.

  4. A Novel Entropy-Based Decoding Algorithm for a Generalized High-Order Discrete Hidden Markov Model

    Directory of Open Access Journals (Sweden)

    Jason Chin-Tiong Chan

    2018-01-01

    Full Text Available The optimal state sequence of a generalized High-Order Hidden Markov Model (HHMM is tracked from a given observational sequence using the classical Viterbi algorithm. This classical algorithm is based on maximum likelihood criterion. We introduce an entropy-based Viterbi algorithm for tracking the optimal state sequence of a HHMM. The entropy of a state sequence is a useful quantity, providing a measure of the uncertainty of a HHMM. There will be no uncertainty if there is only one possible optimal state sequence for HHMM. This entropy-based decoding algorithm can be formulated in an extended or a reduction approach. We extend the entropy-based algorithm for computing the optimal state sequence that was developed from a first-order to a generalized HHMM with a single observational sequence. This extended algorithm performs the computation exponentially with respect to the order of HMM. The computational complexity of this extended algorithm is due to the growth of the model parameters. We introduce an efficient entropy-based decoding algorithm that used reduction approach, namely, entropy-based order-transformation forward algorithm (EOTFA to compute the optimal state sequence of any generalized HHMM. This EOTFA algorithm involves a transformation of a generalized high-order HMM into an equivalent first-order HMM and an entropy-based decoding algorithm is developed based on the equivalent first-order HMM. This algorithm performs the computation based on the observational sequence and it requires OTN~2 calculations, where N~ is the number of states in an equivalent first-order model and T is the length of observational sequence.

  5. Relation Entropy and Transferable Entropy Think of Aggregation on Group Decision Making

    Institute of Scientific and Technical Information of China (English)

    CHENG Qi-yue; QIU Wan-hua; LIU Xiao-feng

    2002-01-01

    In this paper, aggregation question based on group decision making and a single decision making is studied. The theory of entropy is applied to the sets pair analysis. The system of relation entropy and the transferable entropy notion are put. The character is studied. An potential by the relation entropy and transferable entropy are defined. It is the consistency measure on the group between a single decision making. We gained a new aggregation effective definition on the group misjudge.

  6. Fuzzy 2-partition entropy threshold selection based on Big Bang–Big Crunch Optimization algorithm

    Directory of Open Access Journals (Sweden)

    Baljit Singh Khehra

    2015-03-01

    Full Text Available The fuzzy 2-partition entropy approach has been widely used to select threshold value for image segmenting. This approach used two parameterized fuzzy membership functions to form a fuzzy 2-partition of the image. The optimal threshold is selected by searching an optimal combination of parameters of the membership functions such that the entropy of fuzzy 2-partition is maximized. In this paper, a new fuzzy 2-partition entropy thresholding approach based on the technology of the Big Bang–Big Crunch Optimization (BBBCO is proposed. The new proposed thresholding approach is called the BBBCO-based fuzzy 2-partition entropy thresholding algorithm. BBBCO is used to search an optimal combination of parameters of the membership functions for maximizing the entropy of fuzzy 2-partition. BBBCO is inspired by the theory of the evolution of the universe; namely the Big Bang and Big Crunch Theory. The proposed algorithm is tested on a number of standard test images. For comparison, three different algorithms included Genetic Algorithm (GA-based, Biogeography-based Optimization (BBO-based and recursive approaches are also implemented. From experimental results, it is observed that the performance of the proposed algorithm is more effective than GA-based, BBO-based and recursion-based approaches.

  7. Chemometric classification of casework arson samples based on gasoline content.

    Science.gov (United States)

    Sinkov, Nikolai A; Sandercock, P Mark L; Harynuk, James J

    2014-02-01

    Detection and identification of ignitable liquids (ILs) in arson debris is a critical part of arson investigations. The challenge of this task is due to the complex and unpredictable chemical nature of arson debris, which also contains pyrolysis products from the fire. ILs, most commonly gasoline, are complex chemical mixtures containing hundreds of compounds that will be consumed or otherwise weathered by the fire to varying extents depending on factors such as temperature, air flow, the surface on which IL was placed, etc. While methods such as ASTM E-1618 are effective, data interpretation can be a costly bottleneck in the analytical process for some laboratories. In this study, we address this issue through the application of chemometric tools. Prior to the application of chemometric tools such as PLS-DA and SIMCA, issues of chromatographic alignment and variable selection need to be addressed. Here we use an alignment strategy based on a ladder consisting of perdeuterated n-alkanes. Variable selection and model optimization was automated using a hybrid backward elimination (BE) and forward selection (FS) approach guided by the cluster resolution (CR) metric. In this work, we demonstrate the automated construction, optimization, and application of chemometric tools to casework arson data. The resulting PLS-DA and SIMCA classification models, trained with 165 training set samples, have provided classification of 55 validation set samples based on gasoline content with 100% specificity and sensitivity. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Entropy-Weighted Instance Matching Between Different Sourcing Points of Interest

    Directory of Open Access Journals (Sweden)

    Lin Li

    2016-01-01

    Full Text Available The crucial problem for integrating geospatial data is finding the corresponding objects (the counterpart from different sources. Most current studies focus on object matching with individual attributes such as spatial, name, or other attributes, which avoids the difficulty of integrating those attributes, but at the cost of an ineffective matching. In this study, we propose an approach for matching instances by integrating heterogeneous attributes with the allocation of suitable attribute weights via information entropy. First, a normalized similarity formula is developed, which can simplify the calculation of spatial attribute similarity. Second, sound-based and word segmentation-based methods are adopted to eliminate the semantic ambiguity when there is a lack of a normative coding standard in geospatial data to express the name attribute. Third, category mapping is established to address the heterogeneity among different classifications. Finally, to address the non-linear characteristic of attribute similarity, the weights of the attributes are calculated by the entropy of the attributes. Experiments demonstrate that the Entropy-Weighted Approach (EWA has good performance both in terms of precision and recall for instance matching from different data sets.

  9. A new entropy based method for computing software structural complexity

    CERN Document Server

    Roca, J L

    2002-01-01

    In this paper a new methodology for the evaluation of software structural complexity is described. It is based on the entropy evaluation of the random uniform response function associated with the so called software characteristic function SCF. The behavior of the SCF with the different software structures and their relationship with the number of inherent errors is investigated. It is also investigated how the entropy concept can be used to evaluate the complexity of a software structure considering the SCF as a canonical representation of the graph associated with the control flow diagram. The functions, parameters and algorithms that allow to carry out this evaluation are also introduced. After this analytic phase follows the experimental phase, verifying the consistency of the proposed metric and their boundary conditions. The conclusion is that the degree of software structural complexity can be measured as the entropy of the random uniform response function of the SCF. That entropy is in direct relation...

  10. A two-phase copula entropy-based multiobjective optimization approach to hydrometeorological gauge network design

    Science.gov (United States)

    Xu, Pengcheng; Wang, Dong; Singh, Vijay P.; Wang, Yuankun; Wu, Jichun; Wang, Lachun; Zou, Xinqing; Chen, Yuanfang; Chen, Xi; Liu, Jiufu; Zou, Ying; He, Ruimin

    2017-12-01

    Hydrometeorological data are needed for obtaining point and areal mean, quantifying the spatial variability of hydrometeorological variables, and calibration and verification of hydrometeorological models. Hydrometeorological networks are utilized to collect such data. Since data collection is expensive, it is essential to design an optimal network based on the minimal number of hydrometeorological stations in order to reduce costs. This study proposes a two-phase copula entropy- based multiobjective optimization approach that includes: (1) copula entropy-based directional information transfer (CDIT) for clustering the potential hydrometeorological gauges into several groups, and (2) multiobjective method for selecting the optimal combination of gauges for regionalized groups. Although entropy theory has been employed for network design before, the joint histogram method used for mutual information estimation has several limitations. The copula entropy-based mutual information (MI) estimation method is shown to be more effective for quantifying the uncertainty of redundant information than the joint histogram (JH) method. The effectiveness of this approach is verified by applying to one type of hydrometeorological gauge network, with the use of three model evaluation measures, including Nash-Sutcliffe Coefficient (NSC), arithmetic mean of the negative copula entropy (MNCE), and MNCE/NSC. Results indicate that the two-phase copula entropy-based multiobjective technique is capable of evaluating the performance of regional hydrometeorological networks and can enable decision makers to develop strategies for water resources management.

  11. Estimating the melting point, entropy of fusion, and enthalpy of ...

    Science.gov (United States)

    The entropies of fusion, enthalies of fusion, and melting points of organic compounds can be estimated through three models developed using the SPARC (SPARC Performs Automated Reasoning in Chemistry) platform. The entropy of fusion is modeled through a combination of interaction terms and physical descriptors. The enthalpy of fusion is modeled as a function of the entropy of fusion, boiling point, and fexibility of the molecule. The melting point model is the enthlapy of fusion divided by the entropy of fusion. These models were developed in part to improve SPARC's vapor pressure and solubility models. These models have been tested on 904 unique compounds. The entropy model has a RMS of 12.5 J mol-1K-1. The enthalpy model has a RMS of 4.87 kJ mol-1. The melting point model has a RMS of 54.4°C. Published in the journal, SAR and QSAR in Environmental Research

  12. Automated Analysis and Classification of Histological Tissue Features by Multi-Dimensional Microscopic Molecular Profiling.

    Directory of Open Access Journals (Sweden)

    Daniel P Riordan

    Full Text Available Characterization of the molecular attributes and spatial arrangements of cells and features within complex human tissues provides a critical basis for understanding processes involved in development and disease. Moreover, the ability to automate steps in the analysis and interpretation of histological images that currently require manual inspection by pathologists could revolutionize medical diagnostics. Toward this end, we developed a new imaging approach called multidimensional microscopic molecular profiling (MMMP that can measure several independent molecular properties in situ at subcellular resolution for the same tissue specimen. MMMP involves repeated cycles of antibody or histochemical staining, imaging, and signal removal, which ultimately can generate information analogous to a multidimensional flow cytometry analysis on intact tissue sections. We performed a MMMP analysis on a tissue microarray containing a diverse set of 102 human tissues using a panel of 15 informative antibody and 5 histochemical stains plus DAPI. Large-scale unsupervised analysis of MMMP data, and visualization of the resulting classifications, identified molecular profiles that were associated with functional tissue features. We then directly annotated H&E images from this MMMP series such that canonical histological features of interest (e.g. blood vessels, epithelium, red blood cells were individually labeled. By integrating image annotation data, we identified molecular signatures that were associated with specific histological annotations and we developed statistical models for automatically classifying these features. The classification accuracy for automated histology labeling was objectively evaluated using a cross-validation strategy, and significant accuracy (with a median per-pixel rate of 77% per feature from 15 annotated samples for de novo feature prediction was obtained. These results suggest that high-dimensional profiling may advance the

  13. An entropy-based analysis of lane changing behavior: An interactive approach.

    Science.gov (United States)

    Kosun, Caglar; Ozdemir, Serhan

    2017-05-19

    As a novelty, this article proposes the nonadditive entropy framework for the description of driver behaviors during lane changing. The authors also state that this entropy framework governs the lane changing behavior in traffic flow in accordance with the long-range vehicular interactions and traffic safety. The nonadditive entropy framework is the new generalized theory of thermostatistical mechanics. Vehicular interactions during lane changing are considered within this framework. The interactive approach for the lane changing behavior of the drivers is presented in the traffic flow scenarios presented in the article. According to the traffic flow scenarios, 4 categories of traffic flow and driver behaviors are obtained. Through the scenarios, comparative analyses of nonadditive and additive entropy domains are also provided. Two quadrants of the categories belong to the nonadditive entropy; the rest are involved in the additive entropy domain. Driving behaviors are extracted and the scenarios depict that nonadditivity matches safe driving well, whereas additivity corresponds to unsafe driving. Furthermore, the cooperative traffic system is considered in nonadditivity where the long-range interactions are present. However, the uncooperative traffic system falls into the additivity domain. The analyses also state that there would be possible traffic flow transitions among the quadrants. This article shows that lane changing behavior could be generalized as nonadditive, with additivity as a special case, based on the given traffic conditions. The nearest and close neighbor models are well within the conventional additive entropy framework. In this article, both the long-range vehicular interactions and safe driving behavior in traffic are handled in the nonadditive entropy domain. It is also inferred that the Tsallis entropy region would correspond to mandatory lane changing behavior, whereas additive and either the extensive or nonextensive entropy region would

  14. Multiscale Symbolic Phase Transfer Entropy in Financial Time Series Classification

    Science.gov (United States)

    Zhang, Ningning; Lin, Aijing; Shang, Pengjian

    We address the challenge of classifying financial time series via a newly proposed multiscale symbolic phase transfer entropy (MSPTE). Using MSPTE method, we succeed to quantify the strength and direction of information flow between financial systems and classify financial time series, which are the stock indices from Europe, America and China during the period from 2006 to 2016 and the stocks of banking, aviation industry and pharmacy during the period from 2007 to 2016, simultaneously. The MSPTE analysis shows that the value of symbolic phase transfer entropy (SPTE) among stocks decreases with the increasing scale factor. It is demonstrated that MSPTE method can well divide stocks into groups by areas and industries. In addition, it can be concluded that the MSPTE analysis quantify the similarity among the stock markets. The symbolic phase transfer entropy (SPTE) between the two stocks from the same area is far less than the SPTE between stocks from different areas. The results also indicate that four stocks from America and Europe have relatively high degree of similarity and the stocks of banking and pharmaceutical industry have higher similarity for CA. It is worth mentioning that the pharmaceutical industry has weaker particular market mechanism than banking and aviation industry.

  15. Robust automated classification of first-motion polarities for focal mechanism determination with machine learning

    Science.gov (United States)

    Ross, Z. E.; Meier, M. A.; Hauksson, E.

    2017-12-01

    Accurate first-motion polarities are essential for determining earthquake focal mechanisms, but are difficult to measure automatically because of picking errors and signal to noise issues. Here we develop an algorithm for reliable automated classification of first-motion polarities using machine learning algorithms. A classifier is designed to identify whether the first-motion polarity is up, down, or undefined by examining the waveform data directly. We first improve the accuracy of automatic P-wave onset picks by maximizing a weighted signal/noise ratio for a suite of candidate picks around the automatic pick. We then use the waveform amplitudes before and after the optimized pick as features for the classification. We demonstrate the method's potential by training and testing the classifier on tens of thousands of hand-made first-motion picks by the Southern California Seismic Network. The classifier assigned the same polarity as chosen by an analyst in more than 94% of the records. We show that the method is generalizable to a variety of learning algorithms, including neural networks and random forest classifiers. The method is suitable for automated processing of large seismic waveform datasets, and can potentially be used in real-time applications, e.g. for improving the source characterizations of earthquake early warning algorithms.

  16. Entropy Based Analysis of DNS Query Traffic in the Campus Network

    Directory of Open Access Journals (Sweden)

    Dennis Arturo Ludeña Romaña

    2008-10-01

    Full Text Available We carried out the entropy based study on the DNS query traffic from the campus network in a university through January 1st, 2006 to March 31st, 2007. The results are summarized, as follows: (1 The source IP addresses- and query keyword-based entropies change symmetrically in the DNS query traffic from the outside of the campus network when detecting the spam bot activity on the campus network. On the other hand (2, the source IP addresses- and query keywordbased entropies change similarly each other when detecting big DNS query traffic caused by prescanning or distributed denial of service (DDoS attack from the campus network. Therefore, we can detect the spam bot and/or DDoS attack bot by only watching DNS query access traffic.

  17. Entropy-based Probabilistic Fatigue Damage Prognosis and Algorithmic Performance Comparison

    Data.gov (United States)

    National Aeronautics and Space Administration — In this paper, a maximum entropy-based general framework for probabilistic fatigue damage prognosis is investigated. The proposed methodology is based on an...

  18. Entropy-based probabilistic fatigue damage prognosis and algorithmic performance comparison

    Data.gov (United States)

    National Aeronautics and Space Administration — In this paper, a maximum entropy-based general framework for probabilistic fatigue damage prognosis is investigated. The proposed methodology is based on an...

  19. Entropy based fingerprint for local crystalline order

    Science.gov (United States)

    Piaggi, Pablo M.; Parrinello, Michele

    2017-09-01

    We introduce a new fingerprint that allows distinguishing between liquid-like and solid-like atomic environments. This fingerprint is based on an approximate expression for the entropy projected on individual atoms. When combined with local enthalpy, this fingerprint acquires an even finer resolution and it is capable of discriminating between different crystal structures.

  20. Symmetry Analysis of Gait between Left and Right Limb Using Cross-Fuzzy Entropy

    Directory of Open Access Journals (Sweden)

    Yi Xia

    2016-01-01

    Full Text Available The purpose of this paper is the investigation of gait symmetry problem by using cross-fuzzy entropy (C-FuzzyEn, which is a recently proposed cross entropy that has many merits as compared to the frequently used cross sample entropy (C-SampleEn. First, we used several simulation signals to test its performance regarding the relative consistency and dependence on data length. Second, the gait time series of the left and right stride interval were used to calculate the C-FuzzyEn values for gait symmetry analysis. Besides the statistical analysis, we also realized a support vector machine (SVM classifier to perform the classification of normal and abnormal gaits. The gait dataset consists of 15 patients with Parkinson’s disease (PD and 16 control (CO subjects. The results show that the C-FuzzyEn values of the PD patients’ gait are significantly higher than that of the CO subjects with a p value of less than 10-5, and the best classification performance evaluated by a leave-one-out (LOO cross-validation method is an accuracy of 96.77%. Such encouraging results imply that the C-FuzzyEn-based gait symmetry measure appears as a suitable tool for analyzing abnormal gaits.

  1. Integrating image processing and classification technology into automated polarizing film defect inspection

    Science.gov (United States)

    Kuo, Chung-Feng Jeffrey; Lai, Chun-Yu; Kao, Chih-Hsiang; Chiu, Chin-Hsun

    2018-05-01

    In order to improve the current manual inspection and classification process for polarizing film on production lines, this study proposes a high precision automated inspection and classification system for polarizing film, which is used for recognition and classification of four common defects: dent, foreign material, bright spot, and scratch. First, the median filter is used to remove the impulse noise in the defect image of polarizing film. The random noise in the background is smoothed by the improved anisotropic diffusion, while the edge detail of the defect region is sharpened. Next, the defect image is transformed by Fourier transform to the frequency domain, combined with a Butterworth high pass filter to sharpen the edge detail of the defect region, and brought back by inverse Fourier transform to the spatial domain to complete the image enhancement process. For image segmentation, the edge of the defect region is found by Canny edge detector, and then the complete defect region is obtained by two-stage morphology processing. For defect classification, the feature values, including maximum gray level, eccentricity, the contrast, and homogeneity of gray level co-occurrence matrix (GLCM) extracted from the images, are used as the input of the radial basis function neural network (RBFNN) and back-propagation neural network (BPNN) classifier, 96 defect images are then used as training samples, and 84 defect images are used as testing samples to validate the classification effect. The result shows that the classification accuracy by using RBFNN is 98.9%. Thus, our proposed system can be used by manufacturing companies for a higher yield rate and lower cost. The processing time of one single image is 2.57 seconds, thus meeting the practical application requirement of an industrial production line.

  2. Optimization and large scale computation of an entropy-based moment closure

    Science.gov (United States)

    Kristopher Garrett, C.; Hauck, Cory; Hill, Judith

    2015-12-01

    We present computational advances and results in the implementation of an entropy-based moment closure, MN, in the context of linear kinetic equations, with an emphasis on heterogeneous and large-scale computing platforms. Entropy-based closures are known in several cases to yield more accurate results than closures based on standard spectral approximations, such as PN, but the computational cost is generally much higher and often prohibitive. Several optimizations are introduced to improve the performance of entropy-based algorithms over previous implementations. These optimizations include the use of GPU acceleration and the exploitation of the mathematical properties of spherical harmonics, which are used as test functions in the moment formulation. To test the emerging high-performance computing paradigm of communication bound simulations, we present timing results at the largest computational scales currently available. These results show, in particular, load balancing issues in scaling the MN algorithm that do not appear for the PN algorithm. We also observe that in weak scaling tests, the ratio in time to solution of MN to PN decreases.

  3. A review of the automated detection and classification of acute leukaemia: Coherent taxonomy, datasets, validation and performance measurements, motivation, open challenges and recommendations.

    Science.gov (United States)

    Alsalem, M A; Zaidan, A A; Zaidan, B B; Hashim, M; Madhloom, H T; Azeez, N D; Alsyisuf, S

    2018-05-01

    Acute leukaemia diagnosis is a field requiring automated solutions, tools and methods and the ability to facilitate early detection and even prediction. Many studies have focused on the automatic detection and classification of acute leukaemia and their subtypes to promote enable highly accurate diagnosis. This study aimed to review and analyse literature related to the detection and classification of acute leukaemia. The factors that were considered to improve understanding on the field's various contextual aspects in published studies and characteristics were motivation, open challenges that confronted researchers and recommendations presented to researchers to enhance this vital research area. We systematically searched all articles about the classification and detection of acute leukaemia, as well as their evaluation and benchmarking, in three main databases: ScienceDirect, Web of Science and IEEE Xplore from 2007 to 2017. These indices were considered to be sufficiently extensive to encompass our field of literature. Based on our inclusion and exclusion criteria, 89 articles were selected. Most studies (58/89) focused on the methods or algorithms of acute leukaemia classification, a number of papers (22/89) covered the developed systems for the detection or diagnosis of acute leukaemia and few papers (5/89) presented evaluation and comparative studies. The smallest portion (4/89) of articles comprised reviews and surveys. Acute leukaemia diagnosis, which is a field requiring automated solutions, tools and methods, entails the ability to facilitate early detection or even prediction. Many studies have been performed on the automatic detection and classification of acute leukaemia and their subtypes to promote accurate diagnosis. Research areas on medical-image classification vary, but they are all equally vital. We expect this systematic review to help emphasise current research opportunities and thus extend and create additional research fields. Copyright

  4. Adaptive Neuro-Fuzzy Inference System for Classification of Background EEG Signals from ESES Patients and Controls

    Directory of Open Access Journals (Sweden)

    Zhixian Yang

    2014-01-01

    Full Text Available Background electroencephalography (EEG, recorded with scalp electrodes, in children with electrical status epilepticus during slow-wave sleep (ESES syndrome and control subjects has been analyzed. We considered 10 ESES patients, all right-handed and aged 3–9 years. The 10 control individuals had the same characteristics of the ESES ones but presented a normal EEG. Recordings were undertaken in the awake and relaxed states with their eyes open. The complexity of background EEG was evaluated using the permutation entropy (PE and sample entropy (SampEn in combination with the ANOVA test. It can be seen that the entropy measures of EEG are significantly different between the ESES patients and normal control subjects. Then, a classification framework based on entropy measures and adaptive neuro-fuzzy inference system (ANFIS classifier is proposed to distinguish ESES and normal EEG signals. The results are promising and a classification accuracy of about 89% is achieved.

  5. Global sensitivity analysis for fuzzy inputs based on the decomposition of fuzzy output entropy

    Science.gov (United States)

    Shi, Yan; Lu, Zhenzhou; Zhou, Yicheng

    2018-06-01

    To analyse the component of fuzzy output entropy, a decomposition method of fuzzy output entropy is first presented. After the decomposition of fuzzy output entropy, the total fuzzy output entropy can be expressed as the sum of the component fuzzy entropy contributed by fuzzy inputs. Based on the decomposition of fuzzy output entropy, a new global sensitivity analysis model is established for measuring the effects of uncertainties of fuzzy inputs on the output. The global sensitivity analysis model can not only tell the importance of fuzzy inputs but also simultaneously reflect the structural composition of the response function to a certain degree. Several examples illustrate the validity of the proposed global sensitivity analysis, which is a significant reference in engineering design and optimization of structural systems.

  6. The criteria for selecting a method for unfolding neutron spectra based on the information entropy theory

    International Nuclear Information System (INIS)

    Zhu, Qingjun; Song, Fengquan; Ren, Jie; Chen, Xueyong; Zhou, Bin

    2014-01-01

    To further expand the application of an artificial neural network in the field of neutron spectrometry, the criteria for choosing between an artificial neural network and the maximum entropy method for the purpose of unfolding neutron spectra was presented. The counts of the Bonner spheres for IAEA neutron spectra were used as a database, and the artificial neural network and the maximum entropy method were used to unfold neutron spectra; the mean squares of the spectra were defined as the differences between the desired and unfolded spectra. After the information entropy of each spectrum was calculated using information entropy theory, the relationship between the mean squares of the spectra and the information entropy was acquired. Useful information from the information entropy guided the selection of unfolding methods. Due to the importance of the information entropy, the method for predicting the information entropy using the Bonner spheres' counts was established. The criteria based on the information entropy theory can be used to choose between the artificial neural network and the maximum entropy method unfolding methods. The application of an artificial neural network to unfold neutron spectra was expanded. - Highlights: • Two neutron spectra unfolding methods, ANN and MEM, were compared. • The spectrum's entropy offers useful information for selecting unfolding methods. • For the spectrum with low entropy, the ANN was generally better than MEM. • The spectrum's entropy was predicted based on the Bonner spheres' counts

  7. Entropy-Based Application Layer DDoS Attack Detection Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Khundrakpam Johnson Singh

    2016-10-01

    Full Text Available Distributed denial-of-service (DDoS attack is one of the major threats to the web server. The rapid increase of DDoS attacks on the Internet has clearly pointed out the limitations in current intrusion detection systems or intrusion prevention systems (IDS/IPS, mostly caused by application-layer DDoS attacks. Within this context, the objective of the paper is to detect a DDoS attack using a multilayer perceptron (MLP classification algorithm with genetic algorithm (GA as learning algorithm. In this work, we analyzed the standard EPA-HTTP (environmental protection agency-hypertext transfer protocol dataset and selected the parameters that will be used as input to the classifier model for differentiating the attack from normal profile. The parameters selected are the HTTP GET request count, entropy, and variance for every connection. The proposed model can provide a better accuracy of 98.31%, sensitivity of 0.9962, and specificity of 0.0561 when compared to other traditional classification models.

  8. Value at risk estimation with entropy-based wavelet analysis in exchange markets

    Science.gov (United States)

    He, Kaijian; Wang, Lijun; Zou, Yingchao; Lai, Kin Keung

    2014-08-01

    In recent years, exchange markets are increasingly integrated together. Fluctuations and risks across different exchange markets exhibit co-moving and complex dynamics. In this paper we propose the entropy-based multivariate wavelet based approaches to analyze the multiscale characteristic in the multidimensional domain and improve further the Value at Risk estimation reliability. Wavelet analysis has been introduced to construct the entropy-based Multiscale Portfolio Value at Risk estimation algorithm to account for the multiscale dynamic correlation. The entropy measure has been proposed as the more effective measure with the error minimization principle to select the best basis when determining the wavelet families and the decomposition level to use. The empirical studies conducted in this paper have provided positive evidence as to the superior performance of the proposed approach, using the closely related Chinese Renminbi and European Euro exchange market.

  9. Automatic maximum entropy spectral reconstruction in NMR

    International Nuclear Information System (INIS)

    Mobli, Mehdi; Maciejewski, Mark W.; Gryk, Michael R.; Hoch, Jeffrey C.

    2007-01-01

    Developments in superconducting magnets, cryogenic probes, isotope labeling strategies, and sophisticated pulse sequences together have enabled the application, in principle, of high-resolution NMR spectroscopy to biomolecular systems approaching 1 megadalton. In practice, however, conventional approaches to NMR that utilize the fast Fourier transform, which require data collected at uniform time intervals, result in prohibitively lengthy data collection times in order to achieve the full resolution afforded by high field magnets. A variety of approaches that involve nonuniform sampling have been proposed, each utilizing a non-Fourier method of spectrum analysis. A very general non-Fourier method that is capable of utilizing data collected using any of the proposed nonuniform sampling strategies is maximum entropy reconstruction. A limiting factor in the adoption of maximum entropy reconstruction in NMR has been the need to specify non-intuitive parameters. Here we describe a fully automated system for maximum entropy reconstruction that requires no user-specified parameters. A web-accessible script generator provides the user interface to the system

  10. SpatEntropy: Spatial Entropy Measures in R

    OpenAIRE

    Altieri, Linda; Cocchi, Daniela; Roli, Giulia

    2018-01-01

    This article illustrates how to measure the heterogeneity of spatial data presenting a finite number of categories via computation of spatial entropy. The R package SpatEntropy contains functions for the computation of entropy and spatial entropy measures. The extension to spatial entropy measures is a unique feature of SpatEntropy. In addition to the traditional version of Shannon's entropy, the package includes Batty's spatial entropy, O'Neill's entropy, Li and Reynolds' contagion index, Ka...

  11. Multi-National Banknote Classification Based on Visible-light Line Sensor and Convolutional Neural Network.

    Science.gov (United States)

    Pham, Tuyen Danh; Lee, Dong Eun; Park, Kang Ryoung

    2017-07-08

    Automatic recognition of banknotes is applied in payment facilities, such as automated teller machines (ATMs) and banknote counters. Besides the popular approaches that focus on studying the methods applied to various individual types of currencies, there have been studies conducted on simultaneous classification of banknotes from multiple countries. However, their methods were conducted with limited numbers of banknote images, national currencies, and denominations. To address this issue, we propose a multi-national banknote classification method based on visible-light banknote images captured by a one-dimensional line sensor and classified by a convolutional neural network (CNN) considering the size information of each denomination. Experiments conducted on the combined banknote image database of six countries with 62 denominations gave a classification accuracy of 100%, and results show that our proposed algorithm outperforms previous methods.

  12. Symbolic transfer entropy-based premature signal analysis

    International Nuclear Information System (INIS)

    Wang Jun; Yu Zheng-Feng

    2012-01-01

    In this paper, we use symbolic transfer entropy to study the coupling strength between premature signals. Numerical experiments show that three types of signal couplings are in the same direction. Among them, normal signal coupling is the strongest, followed by that of premature ventricular contractions, and that of atrial premature beats is the weakest. The T test shows that the entropies of the three signals are distinct. Symbolic transfer entropy requires less data, can distinguish the three types of signals and has very good computational efficiency. (interdisciplinary physics and related areas of science and technology)

  13. Accuracy of automated classification of major depressive disorder as a function of symptom severity.

    Science.gov (United States)

    Ramasubbu, Rajamannar; Brown, Matthew R G; Cortese, Filmeno; Gaxiola, Ismael; Goodyear, Bradley; Greenshaw, Andrew J; Dursun, Serdar M; Greiner, Russell

    2016-01-01

    Growing evidence documents the potential of machine learning for developing brain based diagnostic methods for major depressive disorder (MDD). As symptom severity may influence brain activity, we investigated whether the severity of MDD affected the accuracies of machine learned MDD-vs-Control diagnostic classifiers. Forty-five medication-free patients with DSM-IV defined MDD and 19 healthy controls participated in the study. Based on depression severity as determined by the Hamilton Rating Scale for Depression (HRSD), MDD patients were sorted into three groups: mild to moderate depression (HRSD 14-19), severe depression (HRSD 20-23), and very severe depression (HRSD ≥ 24). We collected functional magnetic resonance imaging (fMRI) data during both resting-state and an emotional-face matching task. Patients in each of the three severity groups were compared against controls in separate analyses, using either the resting-state or task-based fMRI data. We use each of these six datasets with linear support vector machine (SVM) binary classifiers for identifying individuals as patients or controls. The resting-state fMRI data showed statistically significant classification accuracy only for the very severe depression group (accuracy 66%, p = 0.012 corrected), while mild to moderate (accuracy 58%, p = 1.0 corrected) and severe depression (accuracy 52%, p = 1.0 corrected) were only at chance. With task-based fMRI data, the automated classifier performed at chance in all three severity groups. Binary linear SVM classifiers achieved significant classification of very severe depression with resting-state fMRI, but the contribution of brain measurements may have limited potential in differentiating patients with less severe depression from healthy controls.

  14. A new classification scheme of plastic wastes based upon recycling labels

    Energy Technology Data Exchange (ETDEWEB)

    Özkan, Kemal, E-mail: kozkan@ogu.edu.tr [Computer Engineering Dept., Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Ergin, Semih, E-mail: sergin@ogu.edu.tr [Electrical Electronics Engineering Dept., Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Işık, Şahin, E-mail: sahini@ogu.edu.tr [Computer Engineering Dept., Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Işıklı, İdil, E-mail: idil.isikli@bilecik.edu.tr [Electrical Electronics Engineering Dept., Bilecik University, 11210 Bilecik (Turkey)

    2015-01-15

    Highlights: • PET, HPDE or PP types of plastics are considered. • An automated classification of plastic bottles based on the feature extraction and classification methods is performed. • The decision mechanism consists of PCA, Kernel PCA, FLDA, SVD and Laplacian Eigenmaps methods. • SVM is selected to achieve the classification task and majority voting technique is used. - Abstract: Since recycling of materials is widely assumed to be environmentally and economically beneficial, reliable sorting and processing of waste packaging materials such as plastics is very important for recycling with high efficiency. An automated system that can quickly categorize these materials is certainly needed for obtaining maximum classification while maintaining high throughput. In this paper, first of all, the photographs of the plastic bottles have been taken and several preprocessing steps were carried out. The first preprocessing step is to extract the plastic area of a bottle from the background. Then, the morphological image operations are implemented. These operations are edge detection, noise removal, hole removing, image enhancement, and image segmentation. These morphological operations can be generally defined in terms of the combinations of erosion and dilation. The effect of bottle color as well as label are eliminated using these operations. Secondly, the pixel-wise intensity values of the plastic bottle images have been used together with the most popular subspace and statistical feature extraction methods to construct the feature vectors in this study. Only three types of plastics are considered due to higher existence ratio of them than the other plastic types in the world. The decision mechanism consists of five different feature extraction methods including as Principal Component Analysis (PCA), Kernel PCA (KPCA), Fisher’s Linear Discriminant Analysis (FLDA), Singular Value Decomposition (SVD) and Laplacian Eigenmaps (LEMAP) and uses a simple

  15. A new classification scheme of plastic wastes based upon recycling labels

    International Nuclear Information System (INIS)

    Özkan, Kemal; Ergin, Semih; Işık, Şahin; Işıklı, İdil

    2015-01-01

    Highlights: • PET, HPDE or PP types of plastics are considered. • An automated classification of plastic bottles based on the feature extraction and classification methods is performed. • The decision mechanism consists of PCA, Kernel PCA, FLDA, SVD and Laplacian Eigenmaps methods. • SVM is selected to achieve the classification task and majority voting technique is used. - Abstract: Since recycling of materials is widely assumed to be environmentally and economically beneficial, reliable sorting and processing of waste packaging materials such as plastics is very important for recycling with high efficiency. An automated system that can quickly categorize these materials is certainly needed for obtaining maximum classification while maintaining high throughput. In this paper, first of all, the photographs of the plastic bottles have been taken and several preprocessing steps were carried out. The first preprocessing step is to extract the plastic area of a bottle from the background. Then, the morphological image operations are implemented. These operations are edge detection, noise removal, hole removing, image enhancement, and image segmentation. These morphological operations can be generally defined in terms of the combinations of erosion and dilation. The effect of bottle color as well as label are eliminated using these operations. Secondly, the pixel-wise intensity values of the plastic bottle images have been used together with the most popular subspace and statistical feature extraction methods to construct the feature vectors in this study. Only three types of plastics are considered due to higher existence ratio of them than the other plastic types in the world. The decision mechanism consists of five different feature extraction methods including as Principal Component Analysis (PCA), Kernel PCA (KPCA), Fisher’s Linear Discriminant Analysis (FLDA), Singular Value Decomposition (SVD) and Laplacian Eigenmaps (LEMAP) and uses a simple

  16. Adjoint entropy vs topological entropy

    OpenAIRE

    Giordano Bruno, Anna

    2012-01-01

    Recently the adjoint algebraic entropy of endomorphisms of abelian groups was introduced and studied. We generalize the notion of adjoint entropy to continuous endomorphisms of topological abelian groups. Indeed, the adjoint algebraic entropy is defined using the family of all finite-index subgroups, while we take only the subfamily of all open finite-index subgroups to define the topological adjoint entropy. This allows us to compare the (topological) adjoint entropy with the known topologic...

  17. Naive Bayes classifiers for verbal autopsies: comparison to physician-based classification for 21,000 child and adult deaths.

    Science.gov (United States)

    Miasnikof, Pierre; Giannakeas, Vasily; Gomes, Mireille; Aleksandrowicz, Lukasz; Shestopaloff, Alexander Y; Alam, Dewan; Tollman, Stephen; Samarikhalaj, Akram; Jha, Prabhat

    2015-11-25

    Verbal autopsies (VA) are increasingly used in low- and middle-income countries where most causes of death (COD) occur at home without medical attention, and home deaths differ substantially from hospital deaths. Hence, there is no plausible "standard" against which VAs for home deaths may be validated. Previous studies have shown contradictory performance of automated methods compared to physician-based classification of CODs. We sought to compare the performance of the classic naive Bayes classifier (NBC) versus existing automated classifiers, using physician-based classification as the reference. We compared the performance of NBC, an open-source Tariff Method (OTM), and InterVA-4 on three datasets covering about 21,000 child and adult deaths: the ongoing Million Death Study in India, and health and demographic surveillance sites in Agincourt, South Africa and Matlab, Bangladesh. We applied several training and testing splits of the data to quantify the sensitivity and specificity compared to physician coding for individual CODs and to test the cause-specific mortality fractions at the population level. The NBC achieved comparable sensitivity (median 0.51, range 0.48-0.58) to OTM (median 0.50, range 0.41-0.51), with InterVA-4 having lower sensitivity (median 0.43, range 0.36-0.47) in all three datasets, across all CODs. Consistency of CODs was comparable for NBC and InterVA-4 but lower for OTM. NBC and OTM achieved better performance when using a local rather than a non-local training dataset. At the population level, NBC scored the highest cause-specific mortality fraction accuracy across the datasets (median 0.88, range 0.87-0.93), followed by InterVA-4 (median 0.66, range 0.62-0.73) and OTM (median 0.57, range 0.42-0.58). NBC outperforms current similar COD classifiers at the population level. Nevertheless, no current automated classifier adequately replicates physician classification for individual CODs. There is a need for further research on automated

  18. Generalized sample entropy analysis for traffic signals based on similarity measure

    Science.gov (United States)

    Shang, Du; Xu, Mengjia; Shang, Pengjian

    2017-05-01

    Sample entropy is a prevailing method used to quantify the complexity of a time series. In this paper a modified method of generalized sample entropy and surrogate data analysis is proposed as a new measure to assess the complexity of a complex dynamical system such as traffic signals. The method based on similarity distance presents a different way of signals patterns match showing distinct behaviors of complexity. Simulations are conducted over synthetic data and traffic signals for providing the comparative study, which is provided to show the power of the new method. Compared with previous sample entropy and surrogate data analysis, the new method has two main advantages. The first one is that it overcomes the limitation about the relationship between the dimension parameter and the length of series. The second one is that the modified sample entropy functions can be used to quantitatively distinguish time series from different complex systems by the similar measure.

  19. Calculating the Entropy of Solid and Liquid Metals, Based on Acoustic Data

    Science.gov (United States)

    Tekuchev, V. V.; Kalinkin, D. P.; Ivanova, I. V.

    2018-05-01

    The entropies of iron, cobalt, rhodium, and platinum are studied for the first time, based on acoustic data and using the Debye theory and rigid-sphere model, from 298 K up to the boiling point. A formula for the melting entropy of metals is validated. Good agreement between the research results and the literature data is obtained.

  20. Entropy and equilibrium via games of complexity

    Science.gov (United States)

    Topsøe, Flemming

    2004-09-01

    It is suggested that thermodynamical equilibrium equals game theoretical equilibrium. Aspects of this thesis are discussed. The philosophy is consistent with maximum entropy thinking of Jaynes, but goes one step deeper by deriving the maximum entropy principle from an underlying game theoretical principle. The games introduced are based on measures of complexity. Entropy is viewed as minimal complexity. It is demonstrated that Tsallis entropy ( q-entropy) and Kaniadakis entropy ( κ-entropy) can be obtained in this way, based on suitable complexity measures. A certain unifying effect is obtained by embedding these measures in a two-parameter family of entropy functions.

  1. Non-Gaussian Systems Control Performance Assessment Based on Rational Entropy

    Directory of Open Access Journals (Sweden)

    Jinglin Zhou

    2018-05-01

    Full Text Available Control loop Performance Assessment (CPA plays an important role in system operations. Stochastic statistical CPA index, such as a minimum variance controller (MVC-based CPA index, is one of the most widely used CPA indices. In this paper, a new minimum entropy controller (MEC-based CPA method of linear non-Gaussian systems is proposed. In this method, probability density function (PDF and rational entropy (RE are respectively used to describe the characteristics and the uncertainty of random variables. To better estimate the performance benchmark, an improved EDA algorithm, which is used to estimate the system parameters and noise PDF, is given. The effectiveness of the proposed method is illustrated through case studies on an ARMAX system.

  2. Nonsymmetric entropy and maximum nonsymmetric entropy principle

    International Nuclear Information System (INIS)

    Liu Chengshi

    2009-01-01

    Under the frame of a statistical model, the concept of nonsymmetric entropy which generalizes the concepts of Boltzmann's entropy and Shannon's entropy, is defined. Maximum nonsymmetric entropy principle is proved. Some important distribution laws such as power law, can be derived from this principle naturally. Especially, nonsymmetric entropy is more convenient than other entropy such as Tsallis's entropy in deriving power laws.

  3. Towards an information extraction and knowledge formation framework based on Shannon entropy

    Directory of Open Access Journals (Sweden)

    Iliescu Dragoș

    2017-01-01

    Full Text Available Information quantity subject is approached in this paperwork, considering the specific domain of nonconforming product management as information source. This work represents a case study. Raw data were gathered from a heavy industrial works company, information extraction and knowledge formation being considered herein. Involved method for information quantity estimation is based on Shannon entropy formula. Information and entropy spectrum are decomposed and analysed for extraction of specific information and knowledge-that formation. The result of the entropy analysis point out the information needed to be acquired by the involved organisation, this being presented as a specific knowledge type.

  4. Fault detection of the connection of lithium-ion power batteries based on entropy for electric vehicles

    Science.gov (United States)

    Yao, Lei; Wang, Zhenpo; Ma, Jun

    2015-10-01

    This paper proposes a method of fault detection of the connection of Lithium-Ion batteries based on entropy for electric vehicle. In electric vehicle operation process, some factors, such as road conditions, driving habits, vehicle performance, always affect batteries by vibration, which easily cause loosing or virtual connection between batteries. Through the simulation of the battery charging and discharging experiment under vibration environment, the data of voltage fluctuation can be obtained. Meanwhile, an optimal filtering method is adopted using discrete cosine filter method to analyze the characteristics of system noise, based on the voltage set when batteries are working under different vibration frequency. Experimental data processed by filtering is analyzed based on local Shannon entropy, ensemble Shannon entropy and sample entropy. And the best way to find a method of fault detection of the connection of lithium-ion batteries based on entropy is presented for electric vehicle. The experimental data shows that ensemble Shannon entropy can predict the accurate time and the location of battery connection failure in real time. Besides electric-vehicle industry, this method can also be used in other areas in complex vibration environment.

  5. One-Class Classification-Based Real-Time Activity Error Detection in Smart Homes.

    Science.gov (United States)

    Das, Barnan; Cook, Diane J; Krishnan, Narayanan C; Schmitter-Edgecombe, Maureen

    2016-08-01

    Caring for individuals with dementia is frequently associated with extreme physical and emotional stress, which often leads to depression. Smart home technology and advances in machine learning techniques can provide innovative solutions to reduce caregiver burden. One key service that caregivers provide is prompting individuals with memory limitations to initiate and complete daily activities. We hypothesize that sensor technologies combined with machine learning techniques can automate the process of providing reminder-based interventions. The first step towards automated interventions is to detect when an individual faces difficulty with activities. We propose machine learning approaches based on one-class classification that learn normal activity patterns. When we apply these classifiers to activity patterns that were not seen before, the classifiers are able to detect activity errors, which represent potential prompt situations. We validate our approaches on smart home sensor data obtained from older adult participants, some of whom faced difficulties performing routine activities and thus committed errors.

  6. A Novel Entropy-Based Centrality Approach for Identifying Vital Nodes in Weighted Networks

    Directory of Open Access Journals (Sweden)

    Tong Qiao

    2018-04-01

    Full Text Available Measuring centrality has recently attracted increasing attention, with algorithms ranging from those that simply calculate the number of immediate neighbors and the shortest paths to those that are complicated iterative refinement processes and objective dynamical approaches. Indeed, vital nodes identification allows us to understand the roles that different nodes play in the structure of a network. However, quantifying centrality in complex networks with various topological structures is not an easy task. In this paper, we introduce a novel definition of entropy-based centrality, which can be applicable to weighted directed networks. By design, the total power of a node is divided into two parts, including its local power and its indirect power. The local power can be obtained by integrating the structural entropy, which reveals the communication activity and popularity of each node, and the interaction frequency entropy, which indicates its accessibility. In addition, the process of influence propagation can be captured by the two-hop subnetworks, resulting in the indirect power. In order to evaluate the performance of the entropy-based centrality, we use four weighted real-world networks with various instance sizes, degree distributions, and densities. Correspondingly, these networks are adolescent health, Bible, United States (US airports, and Hep-th, respectively. Extensive analytical results demonstrate that the entropy-based centrality outperforms degree centrality, betweenness centrality, closeness centrality, and the Eigenvector centrality.

  7. A New Classification Approach Based on Multiple Classification Rules

    OpenAIRE

    Zhongmei Zhou

    2014-01-01

    A good classifier can correctly predict new data for which the class label is unknown, so it is important to construct a high accuracy classifier. Hence, classification techniques are much useful in ubiquitous computing. Associative classification achieves higher classification accuracy than some traditional rule-based classification approaches. However, the approach also has two major deficiencies. First, it generates a very large number of association classification rules, especially when t...

  8. Interpreting complex data by methods of recognition and classification in an automated system of aerogeophysical material processing

    Energy Technology Data Exchange (ETDEWEB)

    Koval' , L.A.; Dolgov, S.V.; Liokumovich, G.B.; Ovcharenko, A.V.; Priyezzhev, I.I.

    1984-01-01

    The system of automated processing of aerogeophysical data, ASOM-AGS/YeS, is equipped with complex interpretation of multichannel measurements. Algorithms of factor analysis, automatic classification and apparatus of a priori specified (selected) decisive rules are used. The areas of effect of these procedures can be initially limited to the specified geological information. The possibilities of the method are demonstrated by the results of automated processing of the aerogram-spectrometric measurements in the region of the known copper-porphyr manifestation in Kazakhstan. This ore deposit was clearly noted after processing by the method of main components by complex aureole of independent factors U (severe increase), Th (noticeable increase), K (decrease).

  9. Fundamental limits on quantum dynamics based on entropy change

    Science.gov (United States)

    Das, Siddhartha; Khatri, Sumeet; Siopsis, George; Wilde, Mark M.

    2018-01-01

    It is well known in the realm of quantum mechanics and information theory that the entropy is non-decreasing for the class of unital physical processes. However, in general, the entropy does not exhibit monotonic behavior. This has restricted the use of entropy change in characterizing evolution processes. Recently, a lower bound on the entropy change was provided in the work of Buscemi, Das, and Wilde [Phys. Rev. A 93(6), 062314 (2016)]. We explore the limit that this bound places on the physical evolution of a quantum system and discuss how these limits can be used as witnesses to characterize quantum dynamics. In particular, we derive a lower limit on the rate of entropy change for memoryless quantum dynamics, and we argue that it provides a witness of non-unitality. This limit on the rate of entropy change leads to definitions of several witnesses for testing memory effects in quantum dynamics. Furthermore, from the aforementioned lower bound on entropy change, we obtain a measure of non-unitarity for unital evolutions.

  10. Automated classification of RNA 3D motifs and the RNA 3D Motif Atlas

    Science.gov (United States)

    Petrov, Anton I.; Zirbel, Craig L.; Leontis, Neocles B.

    2013-01-01

    The analysis of atomic-resolution RNA three-dimensional (3D) structures reveals that many internal and hairpin loops are modular, recurrent, and structured by conserved non-Watson–Crick base pairs. Structurally similar loops define RNA 3D motifs that are conserved in homologous RNA molecules, but can also occur at nonhomologous sites in diverse RNAs, and which often vary in sequence. To further our understanding of RNA motif structure and sequence variability and to provide a useful resource for structure modeling and prediction, we present a new method for automated classification of internal and hairpin loop RNA 3D motifs and a new online database called the RNA 3D Motif Atlas. To classify the motif instances, a representative set of internal and hairpin loops is automatically extracted from a nonredundant list of RNA-containing PDB files. Their structures are compared geometrically, all-against-all, using the FR3D program suite. The loops are clustered into motif groups, taking into account geometric similarity and structural annotations and making allowance for a variable number of bulged bases. The automated procedure that we have implemented identifies all hairpin and internal loop motifs previously described in the literature. All motif instances and motif groups are assigned unique and stable identifiers and are made available in the RNA 3D Motif Atlas (http://rna.bgsu.edu/motifs), which is automatically updated every four weeks. The RNA 3D Motif Atlas provides an interactive user interface for exploring motif diversity and tools for programmatic data access. PMID:23970545

  11. Dissecting Protein Configurational Entropy into Conformational and Vibrational Contributions.

    Science.gov (United States)

    Chong, Song-Ho; Ham, Sihyun

    2015-10-01

    Quantifying how the rugged nature of the underlying free-energy landscape determines the entropic cost a protein must incur upon folding and ligand binding is a challenging problem. Here, we present a novel computational approach that dissects the protein configurational entropy on the basis of the classification of protein dynamics on the landscape into two separate components: short-term vibrational dynamics related to individual free-energy wells and long-term conformational dynamics associated with transitions between wells. We apply this method to separate the configurational entropy of the protein villin headpiece subdomain into its conformational and vibrational components. We find that the change in configurational entropy upon folding is dominated by the conformational entropy despite the fact that the magnitude of the vibrational entropy is the significantly larger component in each of the folded and unfolded states, which is in accord with the previous empirical estimations. The straightforward applicability of our method to unfolded proteins promises a wide range of applications, including those related to intrinsically disordered proteins.

  12. Fault Diagnosis Method Based on Information Entropy and Relative Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    Xiaoming Xu

    2017-01-01

    Full Text Available In traditional principle component analysis (PCA, because of the neglect of the dimensions influence between different variables in the system, the selected principal components (PCs often fail to be representative. While the relative transformation PCA is able to solve the above problem, it is not easy to calculate the weight for each characteristic variable. In order to solve it, this paper proposes a kind of fault diagnosis method based on information entropy and Relative Principle Component Analysis. Firstly, the algorithm calculates the information entropy for each characteristic variable in the original dataset based on the information gain algorithm. Secondly, it standardizes every variable’s dimension in the dataset. And, then, according to the information entropy, it allocates the weight for each standardized characteristic variable. Finally, it utilizes the relative-principal-components model established for fault diagnosis. Furthermore, the simulation experiments based on Tennessee Eastman process and Wine datasets demonstrate the feasibility and effectiveness of the new method.

  13. Entropy, neutro-entropy and anti-entropy for neutrosophic information

    OpenAIRE

    Vasile Patrascu

    2017-01-01

    This approach presents a multi-valued representation of the neutrosophic information. It highlights the link between the bifuzzy information and neutrosophic one. The constructed deca-valued structure shows the neutrosophic information complexity. This deca-valued structure led to construction of two new concepts for the neutrosophic information: neutro-entropy and anti-entropy. These two concepts are added to the two existing: entropy and non-entropy. Thus, we obtained the following triad: e...

  14. Index finger motor imagery EEG pattern recognition in BCI applications using dictionary cleaned sparse representation-based classification for healthy people

    Science.gov (United States)

    Miao, Minmin; Zeng, Hong; Wang, Aimin; Zhao, Fengkui; Liu, Feixiang

    2017-09-01

    Electroencephalogram (EEG)-based motor imagery (MI) brain-computer interface (BCI) has shown its effectiveness for the control of rehabilitation devices designed for large body parts of the patients with neurologic impairments. In order to validate the feasibility of using EEG to decode the MI of a single index finger and constructing a BCI-enhanced finger rehabilitation system, we collected EEG data during right hand index finger MI and rest state for five healthy subjects and proposed a pattern recognition approach for classifying these two mental states. First, Fisher's linear discriminant criteria and power spectral density analysis were used to analyze the event-related desynchronization patterns. Second, both band power and approximate entropy were extracted as features. Third, aiming to eliminate the abnormal samples in the dictionary and improve the classification performance of the conventional sparse representation-based classification (SRC) method, we proposed a novel dictionary cleaned sparse representation-based classification (DCSRC) method for final classification. The experimental results show that the proposed DCSRC method gives better classification accuracies than SRC and an average classification accuracy of 81.32% is obtained for five subjects. Thus, it is demonstrated that single right hand index finger MI can be decoded from the sensorimotor rhythms, and the feature patterns of index finger MI and rest state can be well recognized for robotic exoskeleton initiation.

  15. Using heteroclinic orbits to quantify topological entropy in fluid flows

    International Nuclear Information System (INIS)

    Sattari, Sulimon; Chen, Qianting; Mitchell, Kevin A.

    2016-01-01

    Topological approaches to mixing are important tools to understand chaotic fluid flows, ranging from oceanic transport to the design of micro-mixers. Typically, topological entropy, the exponential growth rate of material lines, is used to quantify topological mixing. Computing topological entropy from the direct stretching rate is computationally expensive and sheds little light on the source of the mixing. Earlier approaches emphasized that topological entropy could be viewed as generated by the braiding of virtual, or “ghost,” rods stirring the fluid in a periodic manner. Here, we demonstrate that topological entropy can also be viewed as generated by the braiding of ghost rods following heteroclinic orbits instead. We use the machinery of homotopic lobe dynamics, which extracts symbolic dynamics from finite-length pieces of stable and unstable manifolds attached to fixed points of the fluid flow. As an example, we focus on the topological entropy of a bounded, chaotic, two-dimensional, double-vortex cavity flow. Over a certain parameter range, the topological entropy is primarily due to the braiding of a period-three orbit. However, this orbit does not explain the topological entropy for parameter values where it does not exist, nor does it explain the excess of topological entropy for the entire range of its existence. We show that braiding by heteroclinic orbits provides an accurate computation of topological entropy when the period-three orbit does not exist, and that it provides an explanation for some of the excess topological entropy when the period-three orbit does exist. Furthermore, the computation of symbolic dynamics using heteroclinic orbits has been automated and can be used to compute topological entropy for a general 2D fluid flow.

  16. Physical entropy, information entropy and their evolution equations

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Inspired by the evolution equation of nonequilibrium statistical physics entropy and the concise statistical formula of the entropy production rate, we develop a theory of the dynamic information entropy and build a nonlinear evolution equation of the information entropy density changing in time and state variable space. Its mathematical form and physical meaning are similar to the evolution equation of the physical entropy: The time rate of change of information entropy density originates together from drift, diffusion and production. The concise statistical formula of information entropy production rate is similar to that of physical entropy also. Furthermore, we study the similarity and difference between physical entropy and information entropy and the possible unification of the two statistical entropies, and discuss the relationship among the principle of entropy increase, the principle of equilibrium maximum entropy and the principle of maximum information entropy as well as the connection between them and the entropy evolution equation.

  17. MSCT follow-up in malignant lymphoma. Comparison of manual linear measurements with semi-automated lymph node analysis for therapy response classification

    International Nuclear Information System (INIS)

    Wessling, J.; Puesken, M.; Kohlhase, N.; Persigehl, T.; Mesters, R.; Heindel, W.; Buerke, B.; Koch, R.

    2012-01-01

    Purpose: Assignment of semi-automated lymph node analysis compared to manual measurements for therapy response classification of malignant lymphoma in MSCT. Materials and Methods: MSCT scans of 63 malignant lymphoma patients before and after 2 cycles of chemotherapy (307 target lymph nodes) were evaluated. The long axis diameter (LAD), short axis diameter (SAD) and bi-dimensional WHO were determined manually and semi-automatically. The time for manual and semi-automatic segmentation was evaluated. The ref. standard response was defined as the mean relative change across all manual and semi-automatic measurements (mean manual/semi-automatic LAD, SAD, semi-automatic volume). Statistical analysis encompassed t-test and McNemar's test for clustered data. Results: Response classification per lymph node revealed semi-automated volumetry and bi-dimensional WHO to be significantly more accurate than manual linear metric measurements. Response classification per patient based on RECIST revealed more patients to be correctly classified by semi-automatic measurements, e.g. 96.0 %/92.9 % (WHO bi-dimensional/volume) compared to 85.7/84.1 % for manual LAD and SAD, respectively (mean reduction in misclassified patients of 9.95 %). Considering the use of correction tools, the time expenditure for lymph node segmentation (29.7 ± 17.4 sec) was the same as with the manual approach (29.1 ± 14.5 sec). Conclusion: Semi-automatically derived 'lymph node volume' and 'bi-dimensional WHO' significantly reduce the number of misclassified patients in the CT follow-up of malignant lymphoma by at least 10 %. However, lymph node volumetry does not outperform bi-dimensional WHO. (orig.)

  18. MSCT follow-up in malignant lymphoma. Comparison of manual linear measurements with semi-automated lymph node analysis for therapy response classification

    Energy Technology Data Exchange (ETDEWEB)

    Wessling, J.; Puesken, M.; Kohlhase, N.; Persigehl, T.; Mesters, R.; Heindel, W.; Buerke, B. [Muenster Univ. (Germany). Dept. of Clinical Radiology; Koch, R. [Muenster Univ. (Germany). Inst. of Biostatistics and Clinical Research

    2012-09-15

    Purpose: Assignment of semi-automated lymph node analysis compared to manual measurements for therapy response classification of malignant lymphoma in MSCT. Materials and Methods: MSCT scans of 63 malignant lymphoma patients before and after 2 cycles of chemotherapy (307 target lymph nodes) were evaluated. The long axis diameter (LAD), short axis diameter (SAD) and bi-dimensional WHO were determined manually and semi-automatically. The time for manual and semi-automatic segmentation was evaluated. The ref. standard response was defined as the mean relative change across all manual and semi-automatic measurements (mean manual/semi-automatic LAD, SAD, semi-automatic volume). Statistical analysis encompassed t-test and McNemar's test for clustered data. Results: Response classification per lymph node revealed semi-automated volumetry and bi-dimensional WHO to be significantly more accurate than manual linear metric measurements. Response classification per patient based on RECIST revealed more patients to be correctly classified by semi-automatic measurements, e.g. 96.0 %/92.9 % (WHO bi-dimensional/volume) compared to 85.7/84.1 % for manual LAD and SAD, respectively (mean reduction in misclassified patients of 9.95 %). Considering the use of correction tools, the time expenditure for lymph node segmentation (29.7 {+-} 17.4 sec) was the same as with the manual approach (29.1 {+-} 14.5 sec). Conclusion: Semi-automatically derived 'lymph node volume' and 'bi-dimensional WHO' significantly reduce the number of misclassified patients in the CT follow-up of malignant lymphoma by at least 10 %. However, lymph node volumetry does not outperform bi-dimensional WHO. (orig.)

  19. Explaining the entropy concept and entropy components

    Directory of Open Access Journals (Sweden)

    Marko Popovic

    2018-04-01

    Full Text Available Total entropy of a thermodynamic system consists of two components: thermal entropy due to energy, and residual entropy due to molecular orientation. In this article, a three-step method for explaining entropy is suggested. Step one is to use a classical method to introduce thermal entropy STM as a function of temperature T and heat capacity at constant pressure Cp: STM = ∫(Cp/T dT. Thermal entropy is the entropy due to uncertainty in motion of molecules and vanishes at absolute zero (zero-point energy state. It is also the measure of useless thermal energy that cannot be converted into useful work. The next step is to introduce residual entropy S0 as a function of the number of molecules N and the number of distinct orientations available to them in a crystal m: S0 = N kB ln m, where kB is the Boltzmann constant. Residual entropy quantifies the uncertainty in molecular orientation. Residual entropy, unlike thermal entropy, is independent of temperature and remains present at absolute zero. The third step is to show that thermal entropy and residual entropy add up to the total entropy of a thermodynamic system S: S = S0 + STM. This method of explanation should result in a better comprehension of residual entropy and thermal entropy, as well as of their similarities and differences. The new method was tested in teaching at Faculty of Chemistry University of Belgrade, Serbia. The results of the test show that the new method has a potential to improve the quality of teaching.

  20. An Automated Algorithm to Screen Massive Training Samples for a Global Impervious Surface Classification

    Science.gov (United States)

    Tan, Bin; Brown de Colstoun, Eric; Wolfe, Robert E.; Tilton, James C.; Huang, Chengquan; Smith, Sarah E.

    2012-01-01

    An algorithm is developed to automatically screen the outliers from massive training samples for Global Land Survey - Imperviousness Mapping Project (GLS-IMP). GLS-IMP is to produce a global 30 m spatial resolution impervious cover data set for years 2000 and 2010 based on the Landsat Global Land Survey (GLS) data set. This unprecedented high resolution impervious cover data set is not only significant to the urbanization studies but also desired by the global carbon, hydrology, and energy balance researches. A supervised classification method, regression tree, is applied in this project. A set of accurate training samples is the key to the supervised classifications. Here we developed the global scale training samples from 1 m or so resolution fine resolution satellite data (Quickbird and Worldview2), and then aggregate the fine resolution impervious cover map to 30 m resolution. In order to improve the classification accuracy, the training samples should be screened before used to train the regression tree. It is impossible to manually screen 30 m resolution training samples collected globally. For example, in Europe only, there are 174 training sites. The size of the sites ranges from 4.5 km by 4.5 km to 8.1 km by 3.6 km. The amount training samples are over six millions. Therefore, we develop this automated statistic based algorithm to screen the training samples in two levels: site and scene level. At the site level, all the training samples are divided to 10 groups according to the percentage of the impervious surface within a sample pixel. The samples following in each 10% forms one group. For each group, both univariate and multivariate outliers are detected and removed. Then the screen process escalates to the scene level. A similar screen process but with a looser threshold is applied on the scene level considering the possible variance due to the site difference. We do not perform the screen process across the scenes because the scenes might vary due to

  1. Entropy, neutro-entropy and anti-entropy for neutrosophic information

    OpenAIRE

    Vasile Patrascu

    2017-01-01

    This article shows a deca-valued representation of neutrosophic information in which are defined the following features: truth, falsity, weak truth, weak falsity, ignorance, contradiction, saturation, neutrality, ambiguity and hesitation. Using these features, there are constructed computing formulas for entropy, neutro-entropy and anti-entropy.

  2. Low-Pass Filtering Approach via Empirical Mode Decomposition Improves Short-Scale Entropy-Based Complexity Estimation of QT Interval Variability in Long QT Syndrome Type 1 Patients

    Directory of Open Access Journals (Sweden)

    Vlasta Bari

    2014-09-01

    Full Text Available Entropy-based complexity of cardiovascular variability at short time scales is largely dependent on the noise and/or action of neural circuits operating at high frequencies. This study proposes a technique for canceling fast variations from cardiovascular variability, thus limiting the effect of these overwhelming influences on entropy-based complexity. The low-pass filtering approach is based on the computation of the fastest intrinsic mode function via empirical mode decomposition (EMD and its subtraction from the original variability. Sample entropy was exploited to estimate complexity. The procedure was applied to heart period (HP and QT (interval from Q-wave onset to T-wave end variability derived from 24-hour Holter recordings in 14 non-mutation carriers (NMCs and 34 mutation carriers (MCs subdivided into 11 asymptomatic MCs (AMCs and 23 symptomatic MCs (SMCs. All individuals belonged to the same family developing long QT syndrome type 1 (LQT1 via KCNQ1-A341V mutation. We found that complexity indexes computed over EMD-filtered QT variability differentiated AMCs from NMCs and detected the effect of beta-blocker therapy, while complexity indexes calculated over EMD-filtered HP variability separated AMCs from SMCs. The EMD-based filtering method enhanced features of the cardiovascular control that otherwise would have remained hidden by the dominant presence of noise and/or fast physiological variations, thus improving classification in LQT1.

  3. Machine Learning Based Localization and Classification with Atomic Magnetometers

    Science.gov (United States)

    Deans, Cameron; Griffin, Lewis D.; Marmugi, Luca; Renzoni, Ferruccio

    2018-01-01

    We demonstrate identification of position, material, orientation, and shape of objects imaged by a Rb 85 atomic magnetometer performing electromagnetic induction imaging supported by machine learning. Machine learning maximizes the information extracted from the images created by the magnetometer, demonstrating the use of hidden data. Localization 2.6 times better than the spatial resolution of the imaging system and successful classification up to 97% are obtained. This circumvents the need of solving the inverse problem and demonstrates the extension of machine learning to diffusive systems, such as low-frequency electrodynamics in media. Automated collection of task-relevant information from quantum-based electromagnetic imaging will have a relevant impact from biomedicine to security.

  4. A Spectral-Texture Kernel-Based Classification Method for Hyperspectral Images

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2016-11-01

    Full Text Available Classification of hyperspectral images always suffers from high dimensionality and very limited labeled samples. Recently, the spectral-spatial classification has attracted considerable attention and can achieve higher classification accuracy and smoother classification maps. In this paper, a novel spectral-spatial classification method for hyperspectral images by using kernel methods is investigated. For a given hyperspectral image, the principle component analysis (PCA transform is first performed. Then, the first principle component of the input image is segmented into non-overlapping homogeneous regions by using the entropy rate superpixel (ERS algorithm. Next, the local spectral histogram model is applied to each homogeneous region to obtain the corresponding texture features. Because this step is performed within each homogenous region, instead of within a fixed-size image window, the obtained local texture features in the image are more accurate, which can effectively benefit the improvement of classification accuracy. In the following step, a contextual spectral-texture kernel is constructed by combining spectral information in the image and the extracted texture information using the linearity property of the kernel methods. Finally, the classification map is achieved by the support vector machines (SVM classifier using the proposed spectral-texture kernel. Experiments on two benchmark airborne hyperspectral datasets demonstrate that our method can effectively improve classification accuracies, even though only a very limited training sample is available. Specifically, our method can achieve from 8.26% to 15.1% higher in terms of overall accuracy than the traditional SVM classifier. The performance of our method was further compared to several state-of-the-art classification methods of hyperspectral images using objective quantitative measures and a visual qualitative evaluation.

  5. Automated classification of tropical shrub species: a hybrid of leaf shape and machine learning approach.

    Science.gov (United States)

    Murat, Miraemiliana; Chang, Siow-Wee; Abu, Arpah; Yap, Hwa Jen; Yong, Kien-Thai

    2017-01-01

    Plants play a crucial role in foodstuff, medicine, industry, and environmental protection. The skill of recognising plants is very important in some applications, including conservation of endangered species and rehabilitation of lands after mining activities. However, it is a difficult task to identify plant species because it requires specialized knowledge. Developing an automated classification system for plant species is necessary and valuable since it can help specialists as well as the public in identifying plant species easily. Shape descriptors were applied on the myDAUN dataset that contains 45 tropical shrub species collected from the University of Malaya (UM), Malaysia. Based on literature review, this is the first study in the development of tropical shrub species image dataset and classification using a hybrid of leaf shape and machine learning approach. Four types of shape descriptors were used in this study namely morphological shape descriptors (MSD), Histogram of Oriented Gradients (HOG), Hu invariant moments (Hu) and Zernike moments (ZM). Single descriptor, as well as the combination of hybrid descriptors were tested and compared. The tropical shrub species are classified using six different classifiers, which are artificial neural network (ANN), random forest (RF), support vector machine (SVM), k-nearest neighbour (k-NN), linear discriminant analysis (LDA) and directed acyclic graph multiclass least squares twin support vector machine (DAG MLSTSVM). In addition, three types of feature selection methods were tested in the myDAUN dataset, Relief, Correlation-based feature selection (CFS) and Pearson's coefficient correlation (PCC). The well-known Flavia dataset and Swedish Leaf dataset were used as the validation dataset on the proposed methods. The results showed that the hybrid of all descriptors of ANN outperformed the other classifiers with an average classification accuracy of 98.23% for the myDAUN dataset, 95.25% for the Flavia dataset and 99

  6. Automated classification of tropical shrub species: a hybrid of leaf shape and machine learning approach

    Directory of Open Access Journals (Sweden)

    Miraemiliana Murat

    2017-09-01

    Full Text Available Plants play a crucial role in foodstuff, medicine, industry, and environmental protection. The skill of recognising plants is very important in some applications, including conservation of endangered species and rehabilitation of lands after mining activities. However, it is a difficult task to identify plant species because it requires specialized knowledge. Developing an automated classification system for plant species is necessary and valuable since it can help specialists as well as the public in identifying plant species easily. Shape descriptors were applied on the myDAUN dataset that contains 45 tropical shrub species collected from the University of Malaya (UM, Malaysia. Based on literature review, this is the first study in the development of tropical shrub species image dataset and classification using a hybrid of leaf shape and machine learning approach. Four types of shape descriptors were used in this study namely morphological shape descriptors (MSD, Histogram of Oriented Gradients (HOG, Hu invariant moments (Hu and Zernike moments (ZM. Single descriptor, as well as the combination of hybrid descriptors were tested and compared. The tropical shrub species are classified using six different classifiers, which are artificial neural network (ANN, random forest (RF, support vector machine (SVM, k-nearest neighbour (k-NN, linear discriminant analysis (LDA and directed acyclic graph multiclass least squares twin support vector machine (DAG MLSTSVM. In addition, three types of feature selection methods were tested in the myDAUN dataset, Relief, Correlation-based feature selection (CFS and Pearson’s coefficient correlation (PCC. The well-known Flavia dataset and Swedish Leaf dataset were used as the validation dataset on the proposed methods. The results showed that the hybrid of all descriptors of ANN outperformed the other classifiers with an average classification accuracy of 98.23% for the myDAUN dataset, 95.25% for the Flavia

  7. Risk Contagion in Chinese Banking Industry: A Transfer Entropy-Based Analysis

    Directory of Open Access Journals (Sweden)

    Jianping Li

    2013-12-01

    Full Text Available What is the impact of a bank failure on the whole banking industry? To resolve this issue, the paper develops a transfer entropy-based method to determine the interbank exposure matrix between banks. This method constructs the interbank market structure by calculating the transfer entropy matrix using bank stock price sequences. This paper also evaluates the stability of Chinese banking system by simulating the risk contagion process. This paper contributes to the literature on interbank contagion mainly in two ways: it establishes a convincing connection between interbank market and transfer entropy, and exploits the market information (stock price rather than presumptions to determine the interbank exposure matrix. Second, the empirical analysis provides an in depth understanding of the stability of the current Chinese banking system.

  8. Entropy of Iterated Function Systems and Their Relations with Black Holes and Bohr-Like Black Holes Entropies

    Directory of Open Access Journals (Sweden)

    Christian Corda

    2018-01-01

    Full Text Available In this paper we consider the metric entropies of the maps of an iterated function system deduced from a black hole which are known the Bekenstein–Hawking entropies and its subleading corrections. More precisely, we consider the recent model of a Bohr-like black hole that has been recently analysed in some papers in the literature, obtaining the intriguing result that the metric entropies of a black hole are created by the metric entropies of the functions, created by the black hole principal quantum numbers, i.e., by the black hole quantum levels. We present a new type of topological entropy for general iterated function systems based on a new kind of the inverse of covers. Then the notion of metric entropy for an Iterated Function System ( I F S is considered, and we prove that these definitions for topological entropy of IFS’s are equivalent. It is shown that this kind of topological entropy keeps some properties which are hold by the classic definition of topological entropy for a continuous map. We also consider average entropy as another type of topological entropy for an I F S which is based on the topological entropies of its elements and it is also an invariant object under topological conjugacy. The relation between Axiom A and the average entropy is investigated.

  9. Biological Aging and Life Span Based on Entropy Stress via Organ and Mitochondrial Metabolic Loading

    Directory of Open Access Journals (Sweden)

    Kalyan Annamalai

    2017-10-01

    Full Text Available The energy for sustaining life is released through the oxidation of glucose, fats, and proteins. A part of the energy released within each cell is stored as chemical energy of Adenosine Tri-Phosphate molecules, which is essential for performing life-sustaining functions, while the remainder is released as heat in order to maintain isothermal state of the body. Earlier literature introduced the availability concepts from thermodynamics, related the specific irreversibility and entropy generation rates to metabolic efficiency and energy release rate of organ k, computed whole body specific entropy generation rate of whole body at any given age as a sum of entropy generation within four vital organs Brain, Heart, Kidney, Liver (BHKL with 5th organ being the rest of organs (R5 and estimated the life span using an upper limit on lifetime entropy generated per unit mass of body, σM,life. The organ entropy stress expressed in terms of lifetime specific entropy generated per unit mass of body organs (kJ/(K kg of organ k was used to rank organs and heart ranked highest while liver ranked lowest. The present work includes the effects of (1 two additional organs: adipose tissue (AT and skeletal muscles (SM which are of importance to athletes; (2 proportions of nutrients oxidized which affects blood temperature and metabolic efficiencies; (3 conversion of the entropy stress from organ/cellular level to mitochondrial level; and (4 use these parameters as metabolism-based biomarkers for quantifying the biological aging process in reaching the limit of σM,life. Based on the 7-organ model and Elia constants for organ metabolic rates for a male of 84 kg steady mass and using basic and derived allometric constants of organs, the lifetime energy expenditure is estimated to be 2725 MJ/kg body mass while lifetime entropy generated is 6050 kJ/(K kg body mass with contributions of 190; 1835.0; 610; 290; 700; 1470 and 95 kJ/K contributed by AT-BHKL-SM-R7 to 1 kg body

  10. Image coding based on maximum entropy partitioning for identifying ...

    Indian Academy of Sciences (India)

    A new coding scheme based on maximum entropy partitioning is proposed in our work, particularly to identify the improbable intensities related to different emotions. The improbable intensities when used as a mask decode the facial expression correctly, providing an effectiveplatform for future emotion categorization ...

  11. Using entropy measures to characterize human locomotion.

    Science.gov (United States)

    Leverick, Graham; Szturm, Tony; Wu, Christine Q

    2014-12-01

    Entropy measures have been widely used to quantify the complexity of theoretical and experimental dynamical systems. In this paper, the value of using entropy measures to characterize human locomotion is demonstrated based on their construct validity, predictive validity in a simple model of human walking and convergent validity in an experimental study. Results show that four of the five considered entropy measures increase meaningfully with the increased probability of falling in a simple passive bipedal walker model. The same four entropy measures also experienced statistically significant increases in response to increasing age and gait impairment caused by cognitive interference in an experimental study. Of the considered entropy measures, the proposed quantized dynamical entropy (QDE) and quantization-based approximation of sample entropy (QASE) offered the best combination of sensitivity to changes in gait dynamics and computational efficiency. Based on these results, entropy appears to be a viable candidate for assessing the stability of human locomotion.

  12. Towards an entropy-based analysis of log variability

    DEFF Research Database (Denmark)

    Back, Christoffer Olling; Debois, Søren; Slaats, Tijs

    2017-01-01

    the development of hybrid miners: given a (sub-)log, can we determine a priori whether the log is best suited for imperative or declarative mining? We propose using the concept of entropy, commonly used in information theory. We consider different measures for entropy that could be applied and show through...... experimentation on both synthetic and real-life logs that these entropy measures do indeed give insights into the complexity of the log and can act as an indicator of which mining paradigm should be used....

  13. Towards an Entropy-based Analysis of Log Variability

    DEFF Research Database (Denmark)

    Back, Christoffer Olling; Debois, Søren; Slaats, Tijs

    2018-01-01

    the development of hybrid miners: given a log, can we determine a priori whether the log is best suited for imperative or declarative mining? We propose using the concept of entropy, commonly used in information theory. We consider different measures for entropy that could be applied and show through...... experimentation on both synthetic and real-life logs that these entropy measures do indeed give insights into the complexity of the log and can act as an indicator of which mining paradigm should be used....

  14. Giant irreversible positive to large reversible negative magnetic entropy change evolution in Tb-based bulk metallic glass

    International Nuclear Information System (INIS)

    Luo Qiang; Schwarz, Bjoern; Mattern, Norbert; Eckert, Juergen

    2010-01-01

    We study the effects of amorphous structure and random anisotropy on the magnetic entropy change in a series of Tb-based amorphous alloys. The amorphous structure broadens the peak of magnetic entropy change and facilitates the adjustment of properties. The peak magnetic entropy change above the spin freezing temperature first depends on the average magnetic moment approximately linearly and second on the exchange interaction and random anisotropy. Large and broad reversible negative magnetic entropy changes are observed above the spin freezing temperature and giant positive irreversible magnetic entropy changes which associate with the internal entropy production are obtained well below.

  15. Lossless Compression of Classification-Map Data

    Science.gov (United States)

    Hua, Xie; Klimesh, Matthew

    2009-01-01

    A lossless image-data-compression algorithm intended specifically for application to classification-map data is based on prediction, context modeling, and entropy coding. The algorithm was formulated, in consideration of the differences between classification maps and ordinary images of natural scenes, so as to be capable of compressing classification- map data more effectively than do general-purpose image-data-compression algorithms. Classification maps are typically generated from remote-sensing images acquired by instruments aboard aircraft (see figure) and spacecraft. A classification map is a synthetic image that summarizes information derived from one or more original remote-sensing image(s) of a scene. The value assigned to each pixel in such a map is the index of a class that represents some type of content deduced from the original image data for example, a type of vegetation, a mineral, or a body of water at the corresponding location in the scene. When classification maps are generated onboard the aircraft or spacecraft, it is desirable to compress the classification-map data in order to reduce the volume of data that must be transmitted to a ground station.

  16. Task-Driven Dictionary Learning Based on Mutual Information for Medical Image Classification.

    Science.gov (United States)

    Diamant, Idit; Klang, Eyal; Amitai, Michal; Konen, Eli; Goldberger, Jacob; Greenspan, Hayit

    2017-06-01

    We present a novel variant of the bag-of-visual-words (BoVW) method for automated medical image classification. Our approach improves the BoVW model by learning a task-driven dictionary of the most relevant visual words per task using a mutual information-based criterion. Additionally, we generate relevance maps to visualize and localize the decision of the automatic classification algorithm. These maps demonstrate how the algorithm works and show the spatial layout of the most relevant words. We applied our algorithm to three different tasks: chest x-ray pathology identification (of four pathologies: cardiomegaly, enlarged mediastinum, right consolidation, and left consolidation), liver lesion classification into four categories in computed tomography (CT) images and benign/malignant clusters of microcalcifications (MCs) classification in breast mammograms. Validation was conducted on three datasets: 443 chest x-rays, 118 portal phase CT images of liver lesions, and 260 mammography MCs. The proposed method improves the classical BoVW method for all tested applications. For chest x-ray, area under curve of 0.876 was obtained for enlarged mediastinum identification compared to 0.855 using classical BoVW (with p-value 0.01). For MC classification, a significant improvement of 4% was achieved using our new approach (with p-value = 0.03). For liver lesion classification, an improvement of 6% in sensitivity and 2% in specificity were obtained (with p-value 0.001). We demonstrated that classification based on informative selected set of words results in significant improvement. Our new BoVW approach shows promising results in clinically important domains. Additionally, it can discover relevant parts of images for the task at hand without explicit annotations for training data. This can provide computer-aided support for medical experts in challenging image analysis tasks.

  17. Entropy-based implied volatility and its information content

    NARCIS (Netherlands)

    X. Xiao (Xiao); C. Zhou (Chen)

    2016-01-01

    markdownabstractThis paper investigates the maximum entropy approach on estimating implied volatility. The entropy approach also allows to measure option implied skewness and kurtosis nonparametrically, and to construct confidence intervals. Simulations show that the en- tropy approach outperforms

  18. Optimizing an estuarine water quality monitoring program through an entropy-based hierarchical spatiotemporal Bayesian framework

    Science.gov (United States)

    Alameddine, Ibrahim; Karmakar, Subhankar; Qian, Song S.; Paerl, Hans W.; Reckhow, Kenneth H.

    2013-10-01

    The total maximum daily load program aims to monitor more than 40,000 standard violations in around 20,000 impaired water bodies across the United States. Given resource limitations, future monitoring efforts have to be hedged against the uncertainties in the monitored system, while taking into account existing knowledge. In that respect, we have developed a hierarchical spatiotemporal Bayesian model that can be used to optimize an existing monitoring network by retaining stations that provide the maximum amount of information, while identifying locations that would benefit from the addition of new stations. The model assumes the water quality parameters are adequately described by a joint matrix normal distribution. The adopted approach allows for a reduction in redundancies, while emphasizing information richness rather than data richness. The developed approach incorporates the concept of entropy to account for the associated uncertainties. Three different entropy-based criteria are adopted: total system entropy, chlorophyll-a standard violation entropy, and dissolved oxygen standard violation entropy. A multiple attribute decision making framework is adopted to integrate the competing design criteria and to generate a single optimal design. The approach is implemented on the water quality monitoring system of the Neuse River Estuary in North Carolina, USA. The model results indicate that the high priority monitoring areas identified by the total system entropy and the dissolved oxygen violation entropy criteria are largely coincident. The monitoring design based on the chlorophyll-a standard violation entropy proved to be less informative, given the low probabilities of violating the water quality standard in the estuary.

  19. Fault feature extraction method based on local mean decomposition Shannon entropy and improved kernel principal component analysis model

    Directory of Open Access Journals (Sweden)

    Jinlu Sheng

    2016-07-01

    Full Text Available To effectively extract the typical features of the bearing, a new method that related the local mean decomposition Shannon entropy and improved kernel principal component analysis model was proposed. First, the features are extracted by time–frequency domain method, local mean decomposition, and using the Shannon entropy to process the original separated product functions, so as to get the original features. However, the features been extracted still contain superfluous information; the nonlinear multi-features process technique, kernel principal component analysis, is introduced to fuse the characters. The kernel principal component analysis is improved by the weight factor. The extracted characteristic features were inputted in the Morlet wavelet kernel support vector machine to get the bearing running state classification model, bearing running state was thereby identified. Cases of test and actual were analyzed.

  20. Feature selection for neural network based defect classification of ceramic components using high frequency ultrasound.

    Science.gov (United States)

    Kesharaju, Manasa; Nagarajah, Romesh

    2015-09-01

    The motivation for this research stems from a need for providing a non-destructive testing method capable of detecting and locating any defects and microstructural variations within armour ceramic components before issuing them to the soldiers who rely on them for their survival. The development of an automated ultrasonic inspection based classification system would make possible the checking of each ceramic component and immediately alert the operator about the presence of defects. Generally, in many classification problems a choice of features or dimensionality reduction is significant and simultaneously very difficult, as a substantial computational effort is required to evaluate possible feature subsets. In this research, a combination of artificial neural networks and genetic algorithms are used to optimize the feature subset used in classification of various defects in reaction-sintered silicon carbide ceramic components. Initially wavelet based feature extraction is implemented from the region of interest. An Artificial Neural Network classifier is employed to evaluate the performance of these features. Genetic Algorithm based feature selection is performed. Principal Component Analysis is a popular technique used for feature selection and is compared with the genetic algorithm based technique in terms of classification accuracy and selection of optimal number of features. The experimental results confirm that features identified by Principal Component Analysis lead to improved performance in terms of classification percentage with 96% than Genetic algorithm with 94%. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Fully-automated identification of fish species based on otolith contour: using short-time Fourier transform and discriminant analysis (STFT-DA).

    Science.gov (United States)

    Salimi, Nima; Loh, Kar Hoe; Kaur Dhillon, Sarinder; Chong, Ving Ching

    2016-01-01

    Background. Fish species may be identified based on their unique otolith shape or contour. Several pattern recognition methods have been proposed to classify fish species through morphological features of the otolith contours. However, there has been no fully-automated species identification model with the accuracy higher than 80%. The purpose of the current study is to develop a fully-automated model, based on the otolith contours, to identify the fish species with the high classification accuracy. Methods. Images of the right sagittal otoliths of 14 fish species from three families namely Sciaenidae, Ariidae, and Engraulidae were used to develop the proposed identification model. Short-time Fourier transform (STFT) was used, for the first time in the area of otolith shape analysis, to extract important features of the otolith contours. Discriminant Analysis (DA), as a classification technique, was used to train and test the model based on the extracted features. Results. Performance of the model was demonstrated using species from three families separately, as well as all species combined. Overall classification accuracy of the model was greater than 90% for all cases. In addition, effects of STFT variables on the performance of the identification model were explored in this study. Conclusions. Short-time Fourier transform could determine important features of the otolith outlines. The fully-automated model proposed in this study (STFT-DA) could predict species of an unknown specimen with acceptable identification accuracy. The model codes can be accessed at http://mybiodiversityontologies.um.edu.my/Otolith/ and https://peerj.com/preprints/1517/. The current model has flexibility to be used for more species and families in future studies.

  2. Deep SOMs for automated feature extraction and classification from big data streaming

    Science.gov (United States)

    Sakkari, Mohamed; Ejbali, Ridha; Zaied, Mourad

    2017-03-01

    In this paper, we proposed a deep self-organizing map model (Deep-SOMs) for automated features extracting and learning from big data streaming which we benefit from the framework Spark for real time streams and highly parallel data processing. The SOMs deep architecture is based on the notion of abstraction (patterns automatically extract from the raw data, from the less to more abstract). The proposed model consists of three hidden self-organizing layers, an input and an output layer. Each layer is made up of a multitude of SOMs, each map only focusing at local headmistress sub-region from the input image. Then, each layer trains the local information to generate more overall information in the higher layer. The proposed Deep-SOMs model is unique in terms of the layers architecture, the SOMs sampling method and learning. During the learning stage we use a set of unsupervised SOMs for feature extraction. We validate the effectiveness of our approach on large data sets such as Leukemia dataset and SRBCT. Results of comparison have shown that the Deep-SOMs model performs better than many existing algorithms for images classification.

  3. Eigenvalue and Entropy Statistics for Products of Conjugate Random Quantum Channels

    Directory of Open Access Journals (Sweden)

    Benoît Collins

    2010-06-01

    Full Text Available Using the graphical calculus and integration techniques introduced by the authors, we study the statistical properties of outputs of products of random quantum channels for entangled inputs. In particular, we revisit and generalize models of relevance for the recent counterexamples to the minimum output entropy additivity problems. Our main result is a classification of regimes for which the von Neumann entropy is lower on average than the elementary bounds that can be obtained with linear algebra techniques.

  4. Research on Sustainable Development Level Evaluation of Resource-based Cities Based on Shapely Entropy and Chouqet Integral

    Science.gov (United States)

    Zhao, Hui; Qu, Weilu; Qiu, Weiting

    2018-03-01

    In order to evaluate sustainable development level of resource-based cities, an evaluation method with Shapely entropy and Choquet integral is proposed. First of all, a systematic index system is constructed, the importance of each attribute is calculated based on the maximum Shapely entropy principle, and then the Choquet integral is introduced to calculate the comprehensive evaluation value of each city from the bottom up, finally apply this method to 10 typical resource-based cities in China. The empirical results show that the evaluation method is scientific and reasonable, which provides theoretical support for the sustainable development path and reform direction of resource-based cities.

  5. Application of texture analysis method for mammogram density classification

    Science.gov (United States)

    Nithya, R.; Santhi, B.

    2017-07-01

    Mammographic density is considered a major risk factor for developing breast cancer. This paper proposes an automated approach to classify breast tissue types in digital mammogram. The main objective of the proposed Computer-Aided Diagnosis (CAD) system is to investigate various feature extraction methods and classifiers to improve the diagnostic accuracy in mammogram density classification. Texture analysis methods are used to extract the features from the mammogram. Texture features are extracted by using histogram, Gray Level Co-Occurrence Matrix (GLCM), Gray Level Run Length Matrix (GLRLM), Gray Level Difference Matrix (GLDM), Local Binary Pattern (LBP), Entropy, Discrete Wavelet Transform (DWT), Wavelet Packet Transform (WPT), Gabor transform and trace transform. These extracted features are selected using Analysis of Variance (ANOVA). The features selected by ANOVA are fed into the classifiers to characterize the mammogram into two-class (fatty/dense) and three-class (fatty/glandular/dense) breast density classification. This work has been carried out by using the mini-Mammographic Image Analysis Society (MIAS) database. Five classifiers are employed namely, Artificial Neural Network (ANN), Linear Discriminant Analysis (LDA), Naive Bayes (NB), K-Nearest Neighbor (KNN), and Support Vector Machine (SVM). Experimental results show that ANN provides better performance than LDA, NB, KNN and SVM classifiers. The proposed methodology has achieved 97.5% accuracy for three-class and 99.37% for two-class density classification.

  6. Classification of forensic autopsy reports through conceptual graph-based document representation model.

    Science.gov (United States)

    Mujtaba, Ghulam; Shuib, Liyana; Raj, Ram Gopal; Rajandram, Retnagowri; Shaikh, Khairunisa; Al-Garadi, Mohammed Ali

    2018-06-01

    . The experimental results indicated that the CGDR technique achieved 12% to 15% improvement in accuracy compared with fully automated document representation baseline techniques. Moreover, two-level classification obtained better results compared with one-level classification. The promising results of the proposed conceptual graph-based document representation technique suggest that pathologists can adopt the proposed system as their basis for second opinion, thereby supporting them in effectively determining CoD. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. USING SAS ENTERPRISE GUIDE SOFTWARE IN CLASSIFICATION

    OpenAIRE

    Ana Maria Mihaela IORDACHE

    2011-01-01

    Data mining, also known as "discovery knowledge in large databases "is a modern and powerful information technology and communications tool that can be used to extract useful information but still unknown. This automates the process of discovery some relations and mixtures from the raw data and founded results could be incorporated into an automated decision support. This paper aims to present and perform the classification of European Union countries based on the social indicators calculated...

  8. Characterizing brain structures and remodeling after TBI based on information content, diffusion entropy.

    Science.gov (United States)

    Fozouni, Niloufar; Chopp, Michael; Nejad-Davarani, Siamak P; Zhang, Zheng Gang; Lehman, Norman L; Gu, Steven; Ueno, Yuji; Lu, Mei; Ding, Guangliang; Li, Lian; Hu, Jiani; Bagher-Ebadian, Hassan; Hearshen, David; Jiang, Quan

    2013-01-01

    To overcome the limitations of conventional diffusion tensor magnetic resonance imaging resulting from the assumption of a Gaussian diffusion model for characterizing voxels containing multiple axonal orientations, Shannon's entropy was employed to evaluate white matter structure in human brain and in brain remodeling after traumatic brain injury (TBI) in a rat. Thirteen healthy subjects were investigated using a Q-ball based DTI data sampling scheme. FA and entropy values were measured in white matter bundles, white matter fiber crossing areas, different gray matter (GM) regions and cerebrospinal fluid (CSF). Axonal densities' from the same regions of interest (ROIs) were evaluated in Bielschowsky and Luxol fast blue stained autopsy (n = 30) brain sections by light microscopy. As a case demonstration, a Wistar rat subjected to TBI and treated with bone marrow stromal cells (MSC) 1 week after TBI was employed to illustrate the superior ability of entropy over FA in detecting reorganized crossing axonal bundles as confirmed by histological analysis with Bielschowsky and Luxol fast blue staining. Unlike FA, entropy was less affected by axonal orientation and more affected by axonal density. A significant agreement (r = 0.91) was detected between entropy values from in vivo human brain and histologically measured axonal density from post mortum from the same brain structures. The MSC treated TBI rat demonstrated that the entropy approach is superior to FA in detecting axonal remodeling after injury. Compared with FA, entropy detected new axonal remodeling regions with crossing axons, confirmed with immunohistological staining. Entropy measurement is more effective in distinguishing axonal remodeling after injury, when compared with FA. Entropy is also more sensitive to axonal density than axonal orientation, and thus may provide a more accurate reflection of axonal changes that occur in neurological injury and disease.

  9. Characterizing Brain Structures and Remodeling after TBI Based on Information Content, Diffusion Entropy

    Science.gov (United States)

    Fozouni, Niloufar; Chopp, Michael; Nejad-Davarani, Siamak P.; Zhang, Zheng Gang; Lehman, Norman L.; Gu, Steven; Ueno, Yuji; Lu, Mei; Ding, Guangliang; Li, Lian; Hu, Jiani; Bagher-Ebadian, Hassan; Hearshen, David; Jiang, Quan

    2013-01-01

    Background To overcome the limitations of conventional diffusion tensor magnetic resonance imaging resulting from the assumption of a Gaussian diffusion model for characterizing voxels containing multiple axonal orientations, Shannon's entropy was employed to evaluate white matter structure in human brain and in brain remodeling after traumatic brain injury (TBI) in a rat. Methods Thirteen healthy subjects were investigated using a Q-ball based DTI data sampling scheme. FA and entropy values were measured in white matter bundles, white matter fiber crossing areas, different gray matter (GM) regions and cerebrospinal fluid (CSF). Axonal densities' from the same regions of interest (ROIs) were evaluated in Bielschowsky and Luxol fast blue stained autopsy (n = 30) brain sections by light microscopy. As a case demonstration, a Wistar rat subjected to TBI and treated with bone marrow stromal cells (MSC) 1 week after TBI was employed to illustrate the superior ability of entropy over FA in detecting reorganized crossing axonal bundles as confirmed by histological analysis with Bielschowsky and Luxol fast blue staining. Results Unlike FA, entropy was less affected by axonal orientation and more affected by axonal density. A significant agreement (r = 0.91) was detected between entropy values from in vivo human brain and histologically measured axonal density from post mortum from the same brain structures. The MSC treated TBI rat demonstrated that the entropy approach is superior to FA in detecting axonal remodeling after injury. Compared with FA, entropy detected new axonal remodeling regions with crossing axons, confirmed with immunohistological staining. Conclusions Entropy measurement is more effective in distinguishing axonal remodeling after injury, when compared with FA. Entropy is also more sensitive to axonal density than axonal orientation, and thus may provide a more accurate reflection of axonal changes that occur in neurological injury and disease

  10. Application of Bayesian Classification to Content-Based Data Management

    Science.gov (United States)

    Lynnes, Christopher; Berrick, S.; Gopalan, A.; Hua, X.; Shen, S.; Smith, P.; Yang, K-Y.; Wheeler, K.; Curry, C.

    2004-01-01

    The high volume of Earth Observing System data has proven to be challenging to manage for data centers and users alike. At the Goddard Earth Sciences Distributed Active Archive Center (GES DAAC), about 1 TB of new data are archived each day. Distribution to users is also about 1 TB/day. A substantial portion of this distribution is MODIS calibrated radiance data, which has a wide variety of uses. However, much of the data is not useful for a particular user's needs: for example, ocean color users typically need oceanic pixels that are free of cloud and sun-glint. The GES DAAC is using a simple Bayesian classification scheme to rapidly classify each pixel in the scene in order to support several experimental content-based data services for near-real-time MODIS calibrated radiance products (from Direct Readout stations). Content-based subsetting would allow distribution of, say, only clear pixels to the user if desired. Content-based subscriptions would distribute data to users only when they fit the user's usability criteria in their area of interest within the scene. Content-based cache management would retain more useful data on disk for easy online access. The classification may even be exploited in an automated quality assessment of the geolocation product. Though initially to be demonstrated at the GES DAAC, these techniques have applicability in other resource-limited environments, such as spaceborne data systems.

  11. State recognition of the viscoelastic sandwich structure based on the adaptive redundant second generation wavelet packet transform, permutation entropy and the wavelet support vector machine

    International Nuclear Information System (INIS)

    Qu, Jinxiu; Zhang, Zhousuo; Guo, Ting; Luo, Xue; Sun, Chuang; Li, Bing; Wen, Jinpeng

    2014-01-01

    The viscoelastic sandwich structure is widely used in mechanical equipment, yet the structure always suffers from damage during long-term service. Therefore, state recognition of the viscoelastic sandwich structure is very necessary for monitoring structural health states and keeping the equipment running with high reliability. Through the analysis of vibration response signals, this paper presents a novel method for this task based on the adaptive redundant second generation wavelet packet transform (ARSGWPT), permutation entropy (PE) and the wavelet support vector machine (WSVM). In order to tackle the non-linearity existing in the structure vibration response, the PE is introduced to reveal the state changes of the structure. In the case of complex non-stationary vibration response signals, in order to obtain more effective information regarding the structural health states, the ARSGWPT, which can adaptively match the characteristics of a given signal, is proposed to process the vibration response signals, and then multiple PE features are extracted from the resultant wavelet packet coefficients. The WSVM, which can benefit from the conventional SVM as well as wavelet theory, is applied to classify the various structural states automatically. In this study, to achieve accurate and automated state recognition, the ARSGWPT, PE and WSVM are combined for signal processing, feature extraction and state classification, respectively. To demonstrate the effectiveness of the proposed method, a typical viscoelastic sandwich structure is designed, and the different degrees of preload on the structure are used to characterize the various looseness states. The test results show that the proposed method can reliably recognize the different looseness states of the viscoelastic sandwich structure, and the WSVM can achieve a better classification performance than the conventional SVM. Moreover, the superiority of the proposed ARSGWPT in processing the complex vibration response

  12. A new entropy based method for computing software structural complexity

    International Nuclear Information System (INIS)

    Roca, Jose L.

    2002-01-01

    In this paper a new methodology for the evaluation of software structural complexity is described. It is based on the entropy evaluation of the random uniform response function associated with the so called software characteristic function SCF. The behavior of the SCF with the different software structures and their relationship with the number of inherent errors is investigated. It is also investigated how the entropy concept can be used to evaluate the complexity of a software structure considering the SCF as a canonical representation of the graph associated with the control flow diagram. The functions, parameters and algorithms that allow to carry out this evaluation are also introduced. After this analytic phase follows the experimental phase, verifying the consistency of the proposed metric and their boundary conditions. The conclusion is that the degree of software structural complexity can be measured as the entropy of the random uniform response function of the SCF. That entropy is in direct relationship with the number of inherent software errors and it implies a basic hazard failure rate for it, so that a minimum structure assures a certain stability and maturity of the program. This metric can be used, either to evaluate the product or the process of software development, as development tool or for monitoring the stability and the quality of the final product. (author)

  13. A semi-automated method for bone age assessment using cervical vertebral maturation.

    Science.gov (United States)

    Baptista, Roberto S; Quaglio, Camila L; Mourad, Laila M E H; Hummel, Anderson D; Caetano, Cesar Augusto C; Ortolani, Cristina Lúcia F; Pisa, Ivan T

    2012-07-01

    To propose a semi-automated method for pattern classification to predict individuals' stage of growth based on morphologic characteristics that are described in the modified cervical vertebral maturation (CVM) method of Baccetti et al. A total of 188 lateral cephalograms were collected, digitized, evaluated manually, and grouped into cervical stages by two expert examiners. Landmarks were located on each image and measured. Three pattern classifiers based on the Naïve Bayes algorithm were built and assessed using a software program. The classifier with the greatest accuracy according to the weighted kappa test was considered best. The classifier showed a weighted kappa coefficient of 0.861 ± 0.020. If an adjacent estimated pre-stage or poststage value was taken to be acceptable, the classifier would show a weighted kappa coefficient of 0.992 ± 0.019. Results from this study show that the proposed semi-automated pattern classification method can help orthodontists identify the stage of CVM. However, additional studies are needed before this semi-automated classification method for CVM assessment can be implemented in clinical practice.

  14. Multiple Sclerosis Identification Based on Fractional Fourier Entropy and a Modified Jaya Algorithm

    Directory of Open Access Journals (Sweden)

    Shui-Hua Wang

    2018-04-01

    Full Text Available Aim: Currently, identifying multiple sclerosis (MS by human experts may come across the problem of “normal-appearing white matter”, which causes a low sensitivity. Methods: In this study, we presented a computer vision based approached to identify MS in an automatic way. This proposed method first extracted the fractional Fourier entropy map from a specified brain image. Afterwards, it sent the features to a multilayer perceptron trained by a proposed improved parameter-free Jaya algorithm. We used cost-sensitivity learning to handle the imbalanced data problem. Results: The 10 × 10-fold cross validation showed our method yielded a sensitivity of 97.40 ± 0.60%, a specificity of 97.39 ± 0.65%, and an accuracy of 97.39 ± 0.59%. Conclusions: We validated by experiments that the proposed improved Jaya performs better than plain Jaya algorithm and other latest bioinspired algorithms in terms of classification performance and training speed. In addition, our method is superior to four state-of-the-art MS identification approaches.

  15. Multidimensional scaling analysis of financial time series based on modified cross-sample entropy methods

    Science.gov (United States)

    He, Jiayi; Shang, Pengjian; Xiong, Hui

    2018-06-01

    Stocks, as the concrete manifestation of financial time series with plenty of potential information, are often used in the study of financial time series. In this paper, we utilize the stock data to recognize their patterns through out the dissimilarity matrix based on modified cross-sample entropy, then three-dimensional perceptual maps of the results are provided through multidimensional scaling method. Two modified multidimensional scaling methods are proposed in this paper, that is, multidimensional scaling based on Kronecker-delta cross-sample entropy (MDS-KCSE) and multidimensional scaling based on permutation cross-sample entropy (MDS-PCSE). These two methods use Kronecker-delta based cross-sample entropy and permutation based cross-sample entropy to replace the distance or dissimilarity measurement in classical multidimensional scaling (MDS). Multidimensional scaling based on Chebyshev distance (MDSC) is employed to provide a reference for comparisons. Our analysis reveals a clear clustering both in synthetic data and 18 indices from diverse stock markets. It implies that time series generated by the same model are easier to have similar irregularity than others, and the difference in the stock index, which is caused by the country or region and the different financial policies, can reflect the irregularity in the data. In the synthetic data experiments, not only the time series generated by different models can be distinguished, the one generated under different parameters of the same model can also be detected. In the financial data experiment, the stock indices are clearly divided into five groups. Through analysis, we find that they correspond to five regions, respectively, that is, Europe, North America, South America, Asian-Pacific (with the exception of mainland China), mainland China and Russia. The results also demonstrate that MDS-KCSE and MDS-PCSE provide more effective divisions in experiments than MDSC.

  16. A High-Precision Time-Frequency Entropy Based on Synchrosqueezing Generalized S-Transform Applied in Reservoir Detection

    Directory of Open Access Journals (Sweden)

    Hui Chen

    2018-06-01

    Full Text Available According to the fact that high frequency will be abnormally attenuated when seismic signals travel across reservoirs, a new method, which is named high-precision time-frequency entropy based on synchrosqueezing generalized S-transform, is proposed for hydrocarbon reservoir detection in this paper. First, the proposed method obtains the time-frequency spectra by synchrosqueezing generalized S-transform (SSGST, which are concentrated around the real instantaneous frequency of the signals. Then, considering the characteristics and effects of noises, we give a frequency constraint condition to calculate the entropy based on time-frequency spectra. The synthetic example verifies that the entropy will be abnormally high when seismic signals have an abnormal attenuation. Besides, comparing with the GST time-frequency entropy and the original SSGST time-frequency entropy in field data, the results of the proposed method show higher precision. Moreover, the proposed method can not only accurately detect and locate hydrocarbon reservoirs, but also effectively suppress the impact of random noises.

  17. Entropy in molecular recognition by proteins.

    Science.gov (United States)

    Caro, José A; Harpole, Kyle W; Kasinath, Vignesh; Lim, Jackwee; Granja, Jeffrey; Valentine, Kathleen G; Sharp, Kim A; Wand, A Joshua

    2017-06-20

    Molecular recognition by proteins is fundamental to molecular biology. Dissection of the thermodynamic energy terms governing protein-ligand interactions has proven difficult, with determination of entropic contributions being particularly elusive. NMR relaxation measurements have suggested that changes in protein conformational entropy can be quantitatively obtained through a dynamical proxy, but the generality of this relationship has not been shown. Twenty-eight protein-ligand complexes are used to show a quantitative relationship between measures of fast side-chain motion and the underlying conformational entropy. We find that the contribution of conformational entropy can range from favorable to unfavorable, which demonstrates the potential of this thermodynamic variable to modulate protein-ligand interactions. For about one-quarter of these complexes, the absence of conformational entropy would render the resulting affinity biologically meaningless. The dynamical proxy for conformational entropy or "entropy meter" also allows for refinement of the contributions of solvent entropy and the loss in rotational-translational entropy accompanying formation of high-affinity complexes. Furthermore, structure-based application of the approach can also provide insight into long-lived specific water-protein interactions that escape the generic treatments of solvent entropy based simply on changes in accessible surface area. These results provide a comprehensive and unified view of the general role of entropy in high-affinity molecular recognition by proteins.

  18. Distance-Based Configurational Entropy of Proteins from Molecular Dynamics Simulations.

    Science.gov (United States)

    Fogolari, Federico; Corazza, Alessandra; Fortuna, Sara; Soler, Miguel Angel; VanSchouwen, Bryan; Brancolini, Giorgia; Corni, Stefano; Melacini, Giuseppe; Esposito, Gennaro

    2015-01-01

    Estimation of configurational entropy from molecular dynamics trajectories is a difficult task which is often performed using quasi-harmonic or histogram analysis. An entirely different approach, proposed recently, estimates local density distribution around each conformational sample by measuring the distance from its nearest neighbors. In this work we show this theoretically well grounded the method can be easily applied to estimate the entropy from conformational sampling. We consider a set of systems that are representative of important biomolecular processes. In particular: reference entropies for amino acids in unfolded proteins are obtained from a database of residues not participating in secondary structure elements;the conformational entropy of folding of β2-microglobulin is computed from molecular dynamics simulations using reference entropies for the unfolded state;backbone conformational entropy is computed from molecular dynamics simulations of four different states of the EPAC protein and compared with order parameters (often used as a measure of entropy);the conformational and rototranslational entropy of binding is computed from simulations of 20 tripeptides bound to the peptide binding protein OppA and of β2-microglobulin bound to a citrate coated gold surface. This work shows the potential of the method in the most representative biological processes involving proteins, and provides a valuable alternative, principally in the shown cases, where other approaches are problematic.

  19. Support vector machine-based classification of Alzheimer's disease from whole-brain anatomical MRI

    International Nuclear Information System (INIS)

    Magnin, Benoit; Mesrob, Lilia; Kinkingnehun, Serge; Pelegrini-Issac, Melanie; Colliot, Olivier; Sarazin, Marie; Dubois, Bruno; Lehericy, Stephane; Benali, Habib

    2009-01-01

    We present and evaluate a new automated method based on support vector machine (SVM) classification of whole-brain anatomical magnetic resonance imaging to discriminate between patients with Alzheimer's disease (AD) and elderly control subjects. We studied 16 patients with AD [mean age ± standard deviation (SD)=74.1 ±5.2 years, mini-mental score examination (MMSE) = 23.1 ± 2.9] and 22 elderly controls (72.3±5.0 years, MMSE=28.5± 1.3). Three-dimensional T1-weighted MR images of each subject were automatically parcellated into regions of interest (ROIs). Based upon the characteristics of gray matter extracted from each ROI, we used an SVM algorithm to classify the subjects and statistical procedures based on bootstrap resampling to ensure the robustness of the results. We obtained 94.5% mean correct classification for AD and control subjects (mean specificity, 96.6%; mean sensitivity, 91.5%). Our method has the potential in distinguishing patients with AD from elderly controls and therefore may help in the early diagnosis of AD. (orig.)

  20. A Dynamic and Adaptive Selection Radar Tracking Method Based on Information Entropy

    Directory of Open Access Journals (Sweden)

    Ge Jianjun

    2017-12-01

    Full Text Available Nowadays, the battlefield environment has become much more complex and variable. This paper presents a quantitative method and lower bound for the amount of target information acquired from multiple radar observations to adaptively and dynamically organize the detection of battlefield resources based on the principle of information entropy. Furthermore, for minimizing the given information entropy’s lower bound for target measurement at every moment, a method to dynamically and adaptively select radars with a high amount of information for target tracking is proposed. The simulation results indicate that the proposed method has higher tracking accuracy than that of tracking without adaptive radar selection based on entropy.

  1. Automated Processing of Imaging Data through Multi-tiered Classification of Biological Structures Illustrated Using Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Mei Zhan

    2015-04-01

    Full Text Available Quantitative imaging has become a vital technique in biological discovery and clinical diagnostics; a plethora of tools have recently been developed to enable new and accelerated forms of biological investigation. Increasingly, the capacity for high-throughput experimentation provided by new imaging modalities, contrast techniques, microscopy tools, microfluidics and computer controlled systems shifts the experimental bottleneck from the level of physical manipulation and raw data collection to automated recognition and data processing. Yet, despite their broad importance, image analysis solutions to address these needs have been narrowly tailored. Here, we present a generalizable formulation for autonomous identification of specific biological structures that is applicable for many problems. The process flow architecture we present here utilizes standard image processing techniques and the multi-tiered application of classification models such as support vector machines (SVM. These low-level functions are readily available in a large array of image processing software packages and programming languages. Our framework is thus both easy to implement at the modular level and provides specific high-level architecture to guide the solution of more complicated image-processing problems. We demonstrate the utility of the classification routine by developing two specific classifiers as a toolset for automation and cell identification in the model organism Caenorhabditis elegans. To serve a common need for automated high-resolution imaging and behavior applications in the C. elegans research community, we contribute a ready-to-use classifier for the identification of the head of the animal under bright field imaging. Furthermore, we extend our framework to address the pervasive problem of cell-specific identification under fluorescent imaging, which is critical for biological investigation in multicellular organisms or tissues. Using these examples as a

  2. Automated Processing of Imaging Data through Multi-tiered Classification of Biological Structures Illustrated Using Caenorhabditis elegans.

    Science.gov (United States)

    Zhan, Mei; Crane, Matthew M; Entchev, Eugeni V; Caballero, Antonio; Fernandes de Abreu, Diana Andrea; Ch'ng, QueeLim; Lu, Hang

    2015-04-01

    Quantitative imaging has become a vital technique in biological discovery and clinical diagnostics; a plethora of tools have recently been developed to enable new and accelerated forms of biological investigation. Increasingly, the capacity for high-throughput experimentation provided by new imaging modalities, contrast techniques, microscopy tools, microfluidics and computer controlled systems shifts the experimental bottleneck from the level of physical manipulation and raw data collection to automated recognition and data processing. Yet, despite their broad importance, image analysis solutions to address these needs have been narrowly tailored. Here, we present a generalizable formulation for autonomous identification of specific biological structures that is applicable for many problems. The process flow architecture we present here utilizes standard image processing techniques and the multi-tiered application of classification models such as support vector machines (SVM). These low-level functions are readily available in a large array of image processing software packages and programming languages. Our framework is thus both easy to implement at the modular level and provides specific high-level architecture to guide the solution of more complicated image-processing problems. We demonstrate the utility of the classification routine by developing two specific classifiers as a toolset for automation and cell identification in the model organism Caenorhabditis elegans. To serve a common need for automated high-resolution imaging and behavior applications in the C. elegans research community, we contribute a ready-to-use classifier for the identification of the head of the animal under bright field imaging. Furthermore, we extend our framework to address the pervasive problem of cell-specific identification under fluorescent imaging, which is critical for biological investigation in multicellular organisms or tissues. Using these examples as a guide, we envision

  3. Adaptive Automation Design and Implementation

    Science.gov (United States)

    2015-09-17

    with an automated system to a real-world adaptive au- tomation system implementation. There have been plenty of adaptive automation 17 Adaptive...of systems without increasing manpower requirements by allocating routine tasks to automated aids, improving safety through the use of au- tomated ...between intermediate levels of au- tomation , explicitly defining which human task a given level automates. Each model aids the creation and classification

  4. Fault Detection and Diagnosis for Gas Turbines Based on a Kernelized Information Entropy Model

    Directory of Open Access Journals (Sweden)

    Weiying Wang

    2014-01-01

    Full Text Available Gas turbines are considered as one kind of the most important devices in power engineering and have been widely used in power generation, airplanes, and naval ships and also in oil drilling platforms. However, they are monitored without man on duty in the most cases. It is highly desirable to develop techniques and systems to remotely monitor their conditions and analyze their faults. In this work, we introduce a remote system for online condition monitoring and fault diagnosis of gas turbine on offshore oil well drilling platforms based on a kernelized information entropy model. Shannon information entropy is generalized for measuring the uniformity of exhaust temperatures, which reflect the overall states of the gas paths of gas turbine. In addition, we also extend the entropy to compute the information quantity of features in kernel spaces, which help to select the informative features for a certain recognition task. Finally, we introduce the information entropy based decision tree algorithm to extract rules from fault samples. The experiments on some real-world data show the effectiveness of the proposed algorithms.

  5. Fault detection and diagnosis for gas turbines based on a kernelized information entropy model.

    Science.gov (United States)

    Wang, Weiying; Xu, Zhiqiang; Tang, Rui; Li, Shuying; Wu, Wei

    2014-01-01

    Gas turbines are considered as one kind of the most important devices in power engineering and have been widely used in power generation, airplanes, and naval ships and also in oil drilling platforms. However, they are monitored without man on duty in the most cases. It is highly desirable to develop techniques and systems to remotely monitor their conditions and analyze their faults. In this work, we introduce a remote system for online condition monitoring and fault diagnosis of gas turbine on offshore oil well drilling platforms based on a kernelized information entropy model. Shannon information entropy is generalized for measuring the uniformity of exhaust temperatures, which reflect the overall states of the gas paths of gas turbine. In addition, we also extend the entropy to compute the information quantity of features in kernel spaces, which help to select the informative features for a certain recognition task. Finally, we introduce the information entropy based decision tree algorithm to extract rules from fault samples. The experiments on some real-world data show the effectiveness of the proposed algorithms.

  6. Contrast Enhancement Using Brightness Preserving Histogram Equalization Technique for Classification of Date Varieties

    Directory of Open Access Journals (Sweden)

    G Thomas

    2014-06-01

    Full Text Available Computer vision technique is becoming popular for quality assessment of many products in food industries. Image enhancement is the first step in analyzing the images in order to obtain detailed information for the determination of quality. In this study, Brightness preserving histogram equalization technique was used to enhance the features of gray scale images to classify three date varieties (Khalas, Fard and Madina. Mean, entropy, kurtosis and skewness features were extracted from the original and enhanced images. Mean and entropy from original images and kurtosis from the enhanced images were selected based on Lukka's feature selection approach. An overall classification efficiency of 93.72% was achieved with just three features. Brightness preserving histogram equalization technique has great potential to improve the classification in various quality attributes of food and agricultural products with minimum features.

  7. Automated pathologies detection in retina digital images based on complex continuous wavelet transform phase angles.

    Science.gov (United States)

    Lahmiri, Salim; Gargour, Christian S; Gabrea, Marcel

    2014-10-01

    An automated diagnosis system that uses complex continuous wavelet transform (CWT) to process retina digital images and support vector machines (SVMs) for classification purposes is presented. In particular, each retina image is transformed into two one-dimensional signals by concatenating image rows and columns separately. The mathematical norm of phase angles found in each one-dimensional signal at each level of CWT decomposition are relied on to characterise the texture of normal images against abnormal images affected by exudates, drusen and microaneurysms. The leave-one-out cross-validation method was adopted to conduct experiments and the results from the SVM show that the proposed approach gives better results than those obtained by other methods based on the correct classification rate, sensitivity and specificity.

  8. Automated method for identification and artery-venous classification of vessel trees in retinal vessel networks.

    Science.gov (United States)

    Joshi, Vinayak S; Reinhardt, Joseph M; Garvin, Mona K; Abramoff, Michael D

    2014-01-01

    The separation of the retinal vessel network into distinct arterial and venous vessel trees is of high interest. We propose an automated method for identification and separation of retinal vessel trees in a retinal color image by converting a vessel segmentation image into a vessel segment map and identifying the individual vessel trees by graph search. Orientation, width, and intensity of each vessel segment are utilized to find the optimal graph of vessel segments. The separated vessel trees are labeled as primary vessel or branches. We utilize the separated vessel trees for arterial-venous (AV) classification, based on the color properties of the vessels in each tree graph. We applied our approach to a dataset of 50 fundus images from 50 subjects. The proposed method resulted in an accuracy of 91.44% correctly classified vessel pixels as either artery or vein. The accuracy of correctly classified major vessel segments was 96.42%.

  9. Feedback structure based entropy approach for multiple-model estimation

    Institute of Scientific and Technical Information of China (English)

    Shen-tu Han; Xue Anke; Guo Yunfei

    2013-01-01

    The variable-structure multiple-model (VSMM) approach, one of the multiple-model (MM) methods, is a popular and effective approach in handling problems with mode uncertainties. The model sequence set adaptation (MSA) is the key to design a better VSMM. However, MSA methods in the literature have big room to improve both theoretically and practically. To this end, we propose a feedback structure based entropy approach that could find the model sequence sets with the smallest size under certain conditions. The filtered data are fed back in real time and can be used by the minimum entropy (ME) based VSMM algorithms, i.e., MEVSMM. Firstly, the full Markov chains are used to achieve optimal solutions. Secondly, the myopic method together with particle filter (PF) and the challenge match algorithm are also used to achieve sub-optimal solutions, a trade-off between practicability and optimality. The numerical results show that the proposed algorithm provides not only refined model sets but also a good robustness margin and very high accuracy.

  10. An automatic system for Turkish word recognition using Discrete Wavelet Neural Network based on adaptive entropy

    International Nuclear Information System (INIS)

    Avci, E.

    2007-01-01

    In this paper, an automatic system is presented for word recognition using real Turkish word signals. This paper especially deals with combination of the feature extraction and classification from real Turkish word signals. A Discrete Wavelet Neural Network (DWNN) model is used, which consists of two layers: discrete wavelet layer and multi-layer perceptron. The discrete wavelet layer is used for adaptive feature extraction in the time-frequency domain and is composed of Discrete Wavelet Transform (DWT) and wavelet entropy. The multi-layer perceptron used for classification is a feed-forward neural network. The performance of the used system is evaluated by using noisy Turkish word signals. Test results showing the effectiveness of the proposed automatic system are presented in this paper. The rate of correct recognition is about 92.5% for the sample speech signals. (author)

  11. Object-Based Land Use Classification of Agricultural Land by Coupling Multi-Temporal Spectral Characteristics and Phenological Events in Germany

    Science.gov (United States)

    Knoefel, Patrick; Loew, Fabian; Conrad, Christopher

    2015-04-01

    Crop maps based on classification of remotely sensed data are of increased attendance in agricultural management. This induces a more detailed knowledge about the reliability of such spatial information. However, classification of agricultural land use is often limited by high spectral similarities of the studied crop types. More, spatially and temporally varying agro-ecological conditions can introduce confusion in crop mapping. Classification errors in crop maps in turn may have influence on model outputs, like agricultural production monitoring. One major goal of the PhenoS project ("Phenological structuring to determine optimal acquisition dates for Sentinel-2 data for field crop classification"), is the detection of optimal phenological time windows for land cover classification purposes. Since many crop species are spectrally highly similar, accurate classification requires the right selection of satellite images for a certain classification task. In the course of one growing season, phenological phases exist where crops are separable with higher accuracies. For this purpose, coupling of multi-temporal spectral characteristics and phenological events is promising. The focus of this study is set on the separation of spectrally similar cereal crops like winter wheat, barley, and rye of two test sites in Germany called "Harz/Central German Lowland" and "Demmin". However, this study uses object based random forest (RF) classification to investigate the impact of image acquisition frequency and timing on crop classification uncertainty by permuting all possible combinations of available RapidEye time series recorded on the test sites between 2010 and 2014. The permutations were applied to different segmentation parameters. Then, classification uncertainty was assessed and analysed, based on the probabilistic soft-output from the RF algorithm at the per-field basis. From this soft output, entropy was calculated as a spatial measure of classification uncertainty

  12. Entropy-based derivation of generalized distributions for hydrometeorological frequency analysis

    Science.gov (United States)

    Chen, Lu; Singh, Vijay P.

    2018-02-01

    Frequency analysis of hydrometeorological and hydrological extremes is needed for the design of hydraulic and civil infrastructure facilities as well as water resources management. A multitude of distributions have been employed for frequency analysis of these extremes. However, no single distribution has been accepted as a global standard. Employing the entropy theory, this study derived five generalized distributions for frequency analysis that used different kinds of information encoded as constraints. These distributions were the generalized gamma (GG), the generalized beta distribution of the second kind (GB2), and the Halphen type A distribution (Hal-A), Halphen type B distribution (Hal-B) and Halphen type inverse B distribution (Hal-IB), among which the GG and GB2 distribution were previously derived by Papalexiou and Koutsoyiannis (2012) and the Halphen family was first derived using entropy theory in this paper. The entropy theory allowed to estimate parameters of the distributions in terms of the constraints used for their derivation. The distributions were tested using extreme daily and hourly rainfall data. Results show that the root mean square error (RMSE) values were very small, which indicated that the five generalized distributions fitted the extreme rainfall data well. Among them, according to the Akaike information criterion (AIC) values, generally the GB2 and Halphen family gave a better fit. Therefore, those general distributions are one of the best choices for frequency analysis. The entropy-based derivation led to a new way for frequency analysis of hydrometeorological extremes.

  13. Entropy based classifier for cross-domain opinion mining

    Directory of Open Access Journals (Sweden)

    Jyoti S. Deshmukh

    2018-01-01

    Full Text Available In recent years, the growth of social network has increased the interest of people in analyzing reviews and opinions for products before they buy them. Consequently, this has given rise to the domain adaptation as a prominent area of research in sentiment analysis. A classifier trained from one domain often gives poor results on data from another domain. Expression of sentiment is different in every domain. The labeling cost of each domain separately is very high as well as time consuming. Therefore, this study has proposed an approach that extracts and classifies opinion words from one domain called source domain and predicts opinion words of another domain called target domain using a semi-supervised approach, which combines modified maximum entropy and bipartite graph clustering. A comparison of opinion classification on reviews on four different product domains is presented. The results demonstrate that the proposed method performs relatively well in comparison to the other methods. Comparison of SentiWordNet of domain-specific and domain-independent words reveals that on an average 72.6% and 88.4% words, respectively, are correctly classified.

  14. A simple and robust method for automated photometric classification of supernovae using neural networks

    Science.gov (United States)

    Karpenka, N. V.; Feroz, F.; Hobson, M. P.

    2013-02-01

    A method is presented for automated photometric classification of supernovae (SNe) as Type Ia or non-Ia. A two-step approach is adopted in which (i) the SN light curve flux measurements in each observing filter are fitted separately to an analytical parametrized function that is sufficiently flexible to accommodate virtually all types of SNe and (ii) the fitted function parameters and their associated uncertainties, along with the number of flux measurements, the maximum-likelihood value of the fit and Bayesian evidence for the model, are used as the input feature vector to a classification neural network that outputs the probability that the SN under consideration is of Type Ia. The method is trained and tested using data released following the Supernova Photometric Classification Challenge (SNPCC), consisting of light curves for 20 895 SNe in total. We consider several random divisions of the data into training and testing sets: for instance, for our sample D_1 (D_4), a total of 10 (40) per cent of the data are involved in training the algorithm and the remainder used for blind testing of the resulting classifier; we make no selection cuts. Assigning a canonical threshold probability of pth = 0.5 on the network output to class an SN as Type Ia, for the sample D_1 (D_4) we obtain a completeness of 0.78 (0.82), purity of 0.77 (0.82) and SNPCC figure of merit of 0.41 (0.50). Including the SN host-galaxy redshift and its uncertainty as additional inputs to the classification network results in a modest 5-10 per cent increase in these values. We find that the quality of the classification does not vary significantly with SN redshift. Moreover, our probabilistic classification method allows one to calculate the expected completeness, purity and figure of merit (or other measures of classification quality) as a function of the threshold probability pth, without knowing the true classes of the SNe in the testing sample, as is the case in the classification of real SNe

  15. Classification methods to detect sleep apnea in adults based on respiratory and oximetry signals: a systematic review.

    Science.gov (United States)

    Uddin, M B; Chow, C M; Su, S W

    2018-03-26

    Sleep apnea (SA), a common sleep disorder, can significantly decrease the quality of life, and is closely associated with major health risks such as cardiovascular disease, sudden death, depression, and hypertension. The normal diagnostic process of SA using polysomnography is costly and time consuming. In addition, the accuracy of different classification methods to detect SA varies with the use of different physiological signals. If an effective, reliable, and accurate classification method is developed, then the diagnosis of SA and its associated treatment will be time-efficient and economical. This study aims to systematically review the literature and present an overview of classification methods to detect SA using respiratory and oximetry signals and address the automated detection approach. Sixty-two included studies revealed the application of single and multiple signals (respiratory and oximetry) for the diagnosis of SA. Both airflow and oxygen saturation signals alone were effective in detecting SA in the case of binary decision-making, whereas multiple signals were good for multi-class detection. In addition, some machine learning methods were superior to the other classification methods for SA detection using respiratory and oximetry signals. To deal with the respiratory and oximetry signals, a good choice of classification method as well as the consideration of associated factors would result in high accuracy in the detection of SA. An accurate classification method should provide a high detection rate with an automated (independent of human action) analysis of respiratory and oximetry signals. Future high-quality automated studies using large samples of data from multiple patient groups or record batches are recommended.

  16. Object-based classification of global undersea topography and geomorphological features from the SRTM30_PLUS data

    Science.gov (United States)

    Dekavalla, Maria; Argialas, Demetre

    2017-07-01

    The analysis of undersea topography and geomorphological features provides necessary information to related disciplines and many applications. The development of an automated knowledge-based classification approach of undersea topography and geomorphological features is challenging due to their multi-scale nature. The aim of the study is to develop and evaluate an automated knowledge-based OBIA approach to: i) decompose the global undersea topography to multi-scale regions of distinct morphometric properties, and ii) assign the derived regions to characteristic geomorphological features. First, the global undersea topography was decomposed through the SRTM30_PLUS bathymetry data to the so-called morphometric objects of discrete morphometric properties and spatial scales defined by data-driven methods (local variance graphs and nested means) and multi-scale analysis. The derived morphometric objects were combined with additional relative topographic position information computed with a self-adaptive pattern recognition method (geomorphons), and auxiliary data and were assigned to characteristic undersea geomorphological feature classes through a knowledge base, developed from standard definitions. The decomposition of the SRTM30_PLUS data to morphometric objects was considered successful for the requirements of maximizing intra-object and inter-object heterogeneity, based on the near zero values of the Moran's I and the low values of the weighted variance index. The knowledge-based classification approach was tested for its transferability in six case studies of various tectonic settings and achieved the efficient extraction of 11 undersea geomorphological feature classes. The classification results for the six case studies were compared with the digital global seafloor geomorphic features map (GSFM). The 11 undersea feature classes and their producer's accuracies in respect to the GSFM relevant areas were Basin (95%), Continental Shelf (94.9%), Trough (88

  17. Automated diagnosis of myositis from muscle ultrasound: Exploring the use of machine learning and deep learning methods.

    Directory of Open Access Journals (Sweden)

    Philippe Burlina

    Full Text Available To evaluate the use of ultrasound coupled with machine learning (ML and deep learning (DL techniques for automated or semi-automated classification of myositis.Eighty subjects comprised of 19 with inclusion body myositis (IBM, 14 with polymyositis (PM, 14 with dermatomyositis (DM, and 33 normal (N subjects were included in this study, where 3214 muscle ultrasound images of 7 muscles (observed bilaterally were acquired. We considered three problems of classification including (A normal vs. affected (DM, PM, IBM; (B normal vs. IBM patients; and (C IBM vs. other types of myositis (DM or PM. We studied the use of an automated DL method using deep convolutional neural networks (DL-DCNNs for diagnostic classification and compared it with a semi-automated conventional ML method based on random forests (ML-RF and "engineered" features. We used the known clinical diagnosis as the gold standard for evaluating performance of muscle classification.The performance of the DL-DCNN method resulted in accuracies ± standard deviation of 76.2% ± 3.1% for problem (A, 86.6% ± 2.4% for (B and 74.8% ± 3.9% for (C, while the ML-RF method led to accuracies of 72.3% ± 3.3% for problem (A, 84.3% ± 2.3% for (B and 68.9% ± 2.5% for (C.This study demonstrates the application of machine learning methods for automatically or semi-automatically classifying inflammatory muscle disease using muscle ultrasound. Compared to the conventional random forest machine learning method used here, which has the drawback of requiring manual delineation of muscle/fat boundaries, DCNN-based classification by and large improved the accuracies in all classification problems while providing a fully automated approach to classification.

  18. Automated diagnosis of myositis from muscle ultrasound: Exploring the use of machine learning and deep learning methods.

    Science.gov (United States)

    Burlina, Philippe; Billings, Seth; Joshi, Neil; Albayda, Jemima

    2017-01-01

    To evaluate the use of ultrasound coupled with machine learning (ML) and deep learning (DL) techniques for automated or semi-automated classification of myositis. Eighty subjects comprised of 19 with inclusion body myositis (IBM), 14 with polymyositis (PM), 14 with dermatomyositis (DM), and 33 normal (N) subjects were included in this study, where 3214 muscle ultrasound images of 7 muscles (observed bilaterally) were acquired. We considered three problems of classification including (A) normal vs. affected (DM, PM, IBM); (B) normal vs. IBM patients; and (C) IBM vs. other types of myositis (DM or PM). We studied the use of an automated DL method using deep convolutional neural networks (DL-DCNNs) for diagnostic classification and compared it with a semi-automated conventional ML method based on random forests (ML-RF) and "engineered" features. We used the known clinical diagnosis as the gold standard for evaluating performance of muscle classification. The performance of the DL-DCNN method resulted in accuracies ± standard deviation of 76.2% ± 3.1% for problem (A), 86.6% ± 2.4% for (B) and 74.8% ± 3.9% for (C), while the ML-RF method led to accuracies of 72.3% ± 3.3% for problem (A), 84.3% ± 2.3% for (B) and 68.9% ± 2.5% for (C). This study demonstrates the application of machine learning methods for automatically or semi-automatically classifying inflammatory muscle disease using muscle ultrasound. Compared to the conventional random forest machine learning method used here, which has the drawback of requiring manual delineation of muscle/fat boundaries, DCNN-based classification by and large improved the accuracies in all classification problems while providing a fully automated approach to classification.

  19. Classification of COROT Exoplanet Light Curves

    NARCIS (Netherlands)

    Debosscher, J.; Aerts, C.C.; Vandenbussche, B.

    2006-01-01

    We present methodology to achieve the automated variability classification of stars based on photometric time series. Our work is done in the framework of the COROT space mission to be launched in 2006, but will also be applicable to data of the future Gaia satellite. We developed routines that are

  20. Prediction of Protein Configurational Entropy (Popcoen).

    Science.gov (United States)

    Goethe, Martin; Gleixner, Jan; Fita, Ignacio; Rubi, J Miguel

    2018-03-13

    A knowledge-based method for configurational entropy prediction of proteins is presented; this methodology is extremely fast, compared to previous approaches, because it does not involve any type of configurational sampling. Instead, the configurational entropy of a query fold is estimated by evaluating an artificial neural network, which was trained on molecular-dynamics simulations of ∼1000 proteins. The predicted entropy can be incorporated into a large class of protein software based on cost-function minimization/evaluation, in which configurational entropy is currently neglected for performance reasons. Software of this type is used for all major protein tasks such as structure predictions, proteins design, NMR and X-ray refinement, docking, and mutation effect predictions. Integrating the predicted entropy can yield a significant accuracy increase as we show exemplarily for native-state identification with the prominent protein software FoldX. The method has been termed Popcoen for Prediction of Protein Configurational Entropy. An implementation is freely available at http://fmc.ub.edu/popcoen/ .

  1. Music viewed by its entropy content: A novel window for comparative analysis

    Science.gov (United States)

    Febres, Gerardo; Jaffe, Klaus

    2017-01-01

    Polyphonic music files were analyzed using the set of symbols that produced the Minimal Entropy Description, which we call the Fundamental Scale. This allowed us to create a novel space to represent music pieces by developing: (a) a method to adjust a textual description from its original scale of observation to an arbitrarily selected scale, (b) a method to model the structure of any textual description based on the shape of the symbol frequency profiles, and (c) the concept of higher order entropy as the entropy associated with the deviations of a frequency-ranked symbol profile from a perfect Zipfian profile. We call this diversity index the ‘2nd Order Entropy’. Applying these methods to a variety of musical pieces showed how the space of ‘symbolic specific diversity-entropy’ and that of ‘2nd order entropy’ captures characteristics that are unique to each music type, style, composer and genre. Some clustering of these properties around each musical category is shown. These methods allow us to visualize a historic trajectory of academic music across this space, from medieval to contemporary academic music. We show that the description of musical structures using entropy, symbol frequency profiles and specific symbolic diversity allows us to characterize traditional and popular expressions of music. These classification techniques promise to be useful in other disciplines for pattern recognition and machine learning. PMID:29040288

  2. Entropy Based Feature Selection for Fuzzy Set-Valued Information Systems

    Science.gov (United States)

    Ahmed, Waseem; Sufyan Beg, M. M.; Ahmad, Tanvir

    2018-06-01

    In Set-valued Information Systems (SIS), several objects contain more than one value for some attributes. Tolerance relation used for handling SIS sometimes leads to loss of certain information. To surmount this problem, fuzzy rough model was introduced. However, in some cases, SIS may contain some real or continuous set-values. Therefore, the existing fuzzy rough model for handling Information system with fuzzy set-values needs some changes. In this paper, Fuzzy Set-valued Information System (FSIS) is proposed and fuzzy similarity relation for FSIS is defined. Yager's relative conditional entropy was studied to find the significance measure of a candidate attribute of FSIS. Later, using these significance values, three greedy forward algorithms are discussed for finding the reduct and relative reduct for the proposed FSIS. An experiment was conducted on a sample population of the real dataset and a comparison of classification accuracies of the proposed FSIS with the existing SIS and single-valued Fuzzy Information Systems was made, which demonstrated the effectiveness of proposed FSIS.

  3. Entropy Coherent and Entropy Convex Measures of Risk

    NARCIS (Netherlands)

    Laeven, R.J.A.; Stadje, M.A.

    2011-01-01

    We introduce two subclasses of convex measures of risk, referred to as entropy coherent and entropy convex measures of risk. We prove that convex, entropy convex and entropy coherent measures of risk emerge as certainty equivalents under variational, homothetic and multiple priors preferences,

  4. A novel fruit shape classification method based on multi-scale analysis

    Science.gov (United States)

    Gui, Jiangsheng; Ying, Yibin; Rao, Xiuqin

    2005-11-01

    Shape is one of the major concerns and which is still a difficult problem in automated inspection and sorting of fruits. In this research, we proposed the multi-scale energy distribution (MSED) for object shape description, the relationship between objects shape and its boundary energy distribution at multi-scale was explored for shape extraction. MSED offers not only the mainly energy which represent primary shape information at the lower scales, but also subordinate energy which represent local shape information at higher differential scales. Thus, it provides a natural tool for multi resolution representation and can be used as a feature for shape classification. We addressed the three main processing steps in the MSED-based shape classification. They are namely, 1) image preprocessing and citrus shape extraction, 2) shape resample and shape feature normalization, 3) energy decomposition by wavelet and classification by BP neural network. Hereinto, shape resample is resample 256 boundary pixel from a curve which is approximated original boundary by using cubic spline in order to get uniform raw data. A probability function was defined and an effective method to select a start point was given through maximal expectation, which overcame the inconvenience of traditional methods in order to have a property of rotation invariants. The experiment result is relatively well normal citrus and serious abnormality, with a classification rate superior to 91.2%. The global correct classification rate is 89.77%, and our method is more effective than traditional method. The global result can meet the request of fruit grading.

  5. A review of entropy generation in microchannels

    Directory of Open Access Journals (Sweden)

    Mohamed M Awad

    2015-12-01

    Full Text Available In this study, a critical review of thermodynamic optimum of microchannels based on entropy generation analysis is presented. Using entropy generation analysis as evaluation parameter of microchannels has been reported by many studies in the literature. In these studies, different working fluids such as nanofluids, air, water, engine oil, aniline, ethylene glycol, and non-Newtonian fluids have been used. For the case of nanofluids, “nanoparticles” has been used in various kinds such as Al2O3 and Cu, and “base fluid” has been used in various kinds such as water and ethylene glycol. Furthermore, studies on thermodynamic optimum of microchannels based on entropy generation analysis are summarized in a table. At the end, recommendations of future work for thermodynamic optimum of microchannels based on entropy generation analysis are given. As a result, this article can not only be used as the starting point for the researcher interested in entropy generation in microchannels, but it also includes recommendations for future studies on entropy generation in microchannels.

  6. Particle swarm optimization-based local entropy weighted histogram equalization for infrared image enhancement

    Science.gov (United States)

    Wan, Minjie; Gu, Guohua; Qian, Weixian; Ren, Kan; Chen, Qian; Maldague, Xavier

    2018-06-01

    Infrared image enhancement plays a significant role in intelligent urban surveillance systems for smart city applications. Unlike existing methods only exaggerating the global contrast, we propose a particle swam optimization-based local entropy weighted histogram equalization which involves the enhancement of both local details and fore-and background contrast. First of all, a novel local entropy weighted histogram depicting the distribution of detail information is calculated based on a modified hyperbolic tangent function. Then, the histogram is divided into two parts via a threshold maximizing the inter-class variance in order to improve the contrasts of foreground and background, respectively. To avoid over-enhancement and noise amplification, double plateau thresholds of the presented histogram are formulated by means of particle swarm optimization algorithm. Lastly, each sub-image is equalized independently according to the constrained sub-local entropy weighted histogram. Comparative experiments implemented on real infrared images prove that our algorithm outperforms other state-of-the-art methods in terms of both visual and quantized evaluations.

  7. Automated classification and quantitative analysis of arterial and venous vessels in fundus images

    Science.gov (United States)

    Alam, Minhaj; Son, Taeyoon; Toslak, Devrim; Lim, Jennifer I.; Yao, Xincheng

    2018-02-01

    It is known that retinopathies may affect arteries and veins differently. Therefore, reliable differentiation of arteries and veins is essential for computer-aided analysis of fundus images. The purpose of this study is to validate one automated method for robust classification of arteries and veins (A-V) in digital fundus images. We combine optical density ratio (ODR) analysis and blood vessel tracking algorithm to classify arteries and veins. A matched filtering method is used to enhance retinal blood vessels. Bottom hat filtering and global thresholding are used to segment the vessel and skeleton individual blood vessels. The vessel tracking algorithm is used to locate the optic disk and to identify source nodes of blood vessels in optic disk area. Each node can be identified as vein or artery using ODR information. Using the source nodes as starting point, the whole vessel trace is then tracked and classified as vein or artery using vessel curvature and angle information. 50 color fundus images from diabetic retinopathy patients were used to test the algorithm. Sensitivity, specificity, and accuracy metrics were measured to assess the validity of the proposed classification method compared to ground truths created by two independent observers. The algorithm demonstrated 97.52% accuracy in identifying blood vessels as vein or artery. A quantitative analysis upon A-V classification showed that average A-V ratio of width for NPDR subjects with hypertension decreased significantly (43.13%).

  8. Automation for a base station stability testing

    OpenAIRE

    Punnek, Elvis

    2016-01-01

    This Batchelor’s thesis was commissioned by Oy LM Ericsson Ab Oulu. The aim of it was to help to investigate and create a test automation solution for the stability testing of the LTE base station. The main objective was to create a test automation for a predefined test set. This test automation solution had to be created for specific environments and equipment. This work included creating the automation for the test cases and putting them to daily test automation jobs. The key factor...

  9. New Fault Recognition Method for Rotary Machinery Based on Information Entropy and a Probabilistic Neural Network.

    Science.gov (United States)

    Jiang, Quansheng; Shen, Yehu; Li, Hua; Xu, Fengyu

    2018-01-24

    Feature recognition and fault diagnosis plays an important role in equipment safety and stable operation of rotating machinery. In order to cope with the complexity problem of the vibration signal of rotating machinery, a feature fusion model based on information entropy and probabilistic neural network is proposed in this paper. The new method first uses information entropy theory to extract three kinds of characteristics entropy in vibration signals, namely, singular spectrum entropy, power spectrum entropy, and approximate entropy. Then the feature fusion model is constructed to classify and diagnose the fault signals. The proposed approach can combine comprehensive information from different aspects and is more sensitive to the fault features. The experimental results on simulated fault signals verified better performances of our proposed approach. In real two-span rotor data, the fault detection accuracy of the new method is more than 10% higher compared with the methods using three kinds of information entropy separately. The new approach is proved to be an effective fault recognition method for rotating machinery.

  10. Entropy coherent and entropy convex measures of risk

    NARCIS (Netherlands)

    Laeven, Roger; Stadje, M.A.

    2010-01-01

    We introduce entropy coherent and entropy convex measures of risk and prove a collection of axiomatic characterization and duality results. We show in particular that entropy coherent and entropy convex measures of risk emerge as negative certainty equivalents in (the regular and a generalized

  11. Objective automated quantification of fluorescence signal in histological sections of rat lens.

    Science.gov (United States)

    Talebizadeh, Nooshin; Hagström, Nanna Zhou; Yu, Zhaohua; Kronschläger, Martin; Söderberg, Per; Wählby, Carolina

    2017-08-01

    Visual quantification and classification of fluorescent signals is the gold standard in microscopy. The purpose of this study was to develop an automated method to delineate cells and to quantify expression of fluorescent signal of biomarkers in each nucleus and cytoplasm of lens epithelial cells in a histological section. A region of interest representing the lens epithelium was manually demarcated in each input image. Thereafter, individual cell nuclei within the region of interest were automatically delineated based on watershed segmentation and thresholding with an algorithm developed in Matlab™. Fluorescence signal was quantified within nuclei, cytoplasms and juxtaposed backgrounds. The classification of cells as labelled or not labelled was based on comparison of the fluorescence signal within cells with local background. The classification rule was thereafter optimized as compared with visual classification of a limited dataset. The performance of the automated classification was evaluated by asking 11 independent blinded observers to classify all cells (n = 395) in one lens image. Time consumed by the automatic algorithm and visual classification of cells was recorded. On an average, 77% of the cells were correctly classified as compared with the majority vote of the visual observers. The average agreement among visual observers was 83%. However, variation among visual observers was high, and agreement between two visual observers was as low as 71% in the worst case. Automated classification was on average 10 times faster than visual scoring. The presented method enables objective and fast detection of lens epithelial cells and quantification of expression of fluorescent signal with an accuracy comparable with the variability among visual observers. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  12. Entropy: From Thermodynamics to Hydrology

    Directory of Open Access Journals (Sweden)

    Demetris Koutsoyiannis

    2014-02-01

    Full Text Available Some known results from statistical thermophysics as well as from hydrology are revisited from a different perspective trying: (a to unify the notion of entropy in thermodynamic and statistical/stochastic approaches of complex hydrological systems and (b to show the power of entropy and the principle of maximum entropy in inference, both deductive and inductive. The capability for deductive reasoning is illustrated by deriving the law of phase change transition of water (Clausius-Clapeyron from scratch by maximizing entropy in a formal probabilistic frame. However, such deductive reasoning cannot work in more complex hydrological systems with diverse elements, yet the entropy maximization framework can help in inductive inference, necessarily based on data. Several examples of this type are provided in an attempt to link statistical thermophysics with hydrology with a unifying view of entropy.

  13. An objective method to optimize the MR sequence set for plaque classification in carotid vessel wall images using automated image segmentation.

    Directory of Open Access Journals (Sweden)

    Ronald van 't Klooster

    Full Text Available A typical MR imaging protocol to study the status of atherosclerosis in the carotid artery consists of the application of multiple MR sequences. Since scanner time is limited, a balance has to be reached between the duration of the applied MR protocol and the quantity and quality of the resulting images which are needed to assess the disease. In this study an objective method to optimize the MR sequence set for classification of soft plaque in vessel wall images of the carotid artery using automated image segmentation was developed. The automated method employs statistical pattern recognition techniques and was developed based on an extensive set of MR contrast weightings and corresponding manual segmentations of the vessel wall and soft plaque components, which were validated by histological sections. Evaluation of the results from nine contrast weightings showed the tradeoff between scan duration and automated image segmentation performance. For our dataset the best segmentation performance was achieved by selecting five contrast weightings. Similar performance was achieved with a set of three contrast weightings, which resulted in a reduction of scan time by more than 60%. The presented approach can help others to optimize MR imaging protocols by investigating the tradeoff between scan duration and automated image segmentation performance possibly leading to shorter scanning times and better image interpretation. This approach can potentially also be applied to other research fields focusing on different diseases and anatomical regions.

  14. Joint learning and weighting of visual vocabulary for bag-of-feature based tissue classification

    KAUST Repository

    Wang, Jim Jing-Yan

    2013-12-01

    Automated classification of tissue types of Region of Interest (ROI) in medical images has been an important application in Computer-Aided Diagnosis (CAD). Recently, bag-of-feature methods which treat each ROI as a set of local features have shown their power in this field. Two important issues of bag-of-feature strategy for tissue classification are investigated in this paper: the visual vocabulary learning and weighting, which are always considered independently in traditional methods by neglecting the inner relationship between the visual words and their weights. To overcome this problem, we develop a novel algorithm, Joint-ViVo, which learns the vocabulary and visual word weights jointly. A unified objective function based on large margin is defined for learning of both visual vocabulary and visual word weights, and optimized alternately in the iterative algorithm. We test our algorithm on three tissue classification tasks: classifying breast tissue density in mammograms, classifying lung tissue in High-Resolution Computed Tomography (HRCT) images, and identifying brain tissue type in Magnetic Resonance Imaging (MRI). The results show that Joint-ViVo outperforms the state-of-art methods on tissue classification problems. © 2013 Elsevier Ltd.

  15. A Real-Time Analysis Method for Pulse Rate Variability Based on Improved Basic Scale Entropy

    Directory of Open Access Journals (Sweden)

    Yongxin Chou

    2017-01-01

    Full Text Available Base scale entropy analysis (BSEA is a nonlinear method to analyze heart rate variability (HRV signal. However, the time consumption of BSEA is too long, and it is unknown whether the BSEA is suitable for analyzing pulse rate variability (PRV signal. Therefore, we proposed a method named sliding window iterative base scale entropy analysis (SWIBSEA by combining BSEA and sliding window iterative theory. The blood pressure signals of healthy young and old subjects are chosen from the authoritative international database MIT/PhysioNet/Fantasia to generate PRV signals as the experimental data. Then, the BSEA and the SWIBSEA are used to analyze the experimental data; the results show that the SWIBSEA reduces the time consumption and the buffer cache space while it gets the same entropy as BSEA. Meanwhile, the changes of base scale entropy (BSE for healthy young and old subjects are the same as that of HRV signal. Therefore, the SWIBSEA can be used for deriving some information from long-term and short-term PRV signals in real time, which has the potential for dynamic PRV signal analysis in some portable and wearable medical devices.

  16. Semi-automated landform classification for hazard mapping of soil liquefaction by earthquake

    Science.gov (United States)

    Nakano, Takayuki

    2018-05-01

    Soil liquefaction damages were caused by huge earthquake in Japan, and the similar damages are concerned in near future huge earthquake. On the other hand, a preparation of soil liquefaction risk map (soil liquefaction hazard map) is impeded by the difficulty of evaluation of soil liquefaction risk. Generally, relative soil liquefaction risk should be able to be evaluated from landform classification data by using experimental rule based on the relationship between extent of soil liquefaction damage and landform classification items associated with past earthquake. Therefore, I rearranged the relationship between landform classification items and soil liquefaction risk intelligibly in order to enable the evaluation of soil liquefaction risk based on landform classification data appropriately and efficiently. And I developed a new method of generating landform classification data of 50-m grid size from existing landform classification data of 250-m grid size by using digital elevation model (DEM) data and multi-band satellite image data in order to evaluate soil liquefaction risk in detail spatially. It is expected that the products of this study contribute to efficient producing of soil liquefaction hazard map by local government.

  17. Entropy coherent and entropy convex measures of risk

    NARCIS (Netherlands)

    Laeven, R.J.A.; Stadje, M.

    2013-01-01

    We introduce two subclasses of convex measures of risk, referred to as entropy coherent and entropy convex measures of risk. Entropy coherent and entropy convex measures of risk are special cases of φ-coherent and φ-convex measures of risk. Contrary to the classical use of coherent and convex

  18. Classification of high-resolution multi-swath hyperspectral data using Landsat 8 surface reflectance data as a calibration target and a novel histogram based unsupervised classification technique to determine natural classes from biophysically relevant fit parameters

    Science.gov (United States)

    McCann, C.; Repasky, K. S.; Morin, M.; Lawrence, R. L.; Powell, S. L.

    2016-12-01

    Compact, cost-effective, flight-based hyperspectral imaging systems can provide scientifically relevant data over large areas for a variety of applications such as ecosystem studies, precision agriculture, and land management. To fully realize this capability, unsupervised classification techniques based on radiometrically-calibrated data that cluster based on biophysical similarity rather than simply spectral similarity are needed. An automated technique to produce high-resolution, large-area, radiometrically-calibrated hyperspectral data sets based on the Landsat surface reflectance data product as a calibration target was developed and applied to three subsequent years of data covering approximately 1850 hectares. The radiometrically-calibrated data allows inter-comparison of the temporal series. Advantages of the radiometric calibration technique include the need for minimal site access, no ancillary instrumentation, and automated processing. Fitting the reflectance spectra of each pixel using a set of biophysically relevant basis functions reduces the data from 80 spectral bands to 9 parameters providing noise reduction and data compression. Examination of histograms of these parameters allows for determination of natural splitting into biophysical similar clusters. This method creates clusters that are similar in terms of biophysical parameters, not simply spectral proximity. Furthermore, this method can be applied to other data sets, such as urban scenes, by developing other physically meaningful basis functions. The ability to use hyperspectral imaging for a variety of important applications requires the development of data processing techniques that can be automated. The radiometric-calibration combined with the histogram based unsupervised classification technique presented here provide one potential avenue for managing big-data associated with hyperspectral imaging.

  19. Entropy Production of Stars

    Directory of Open Access Journals (Sweden)

    Leonid M. Martyushev

    2015-06-01

    Full Text Available The entropy production (inside the volume bounded by a photosphere of main-sequence stars, subgiants, giants, and supergiants is calculated based on B–V photometry data. A non-linear inverse relationship of thermodynamic fluxes and forces as well as an almost constant specific (per volume entropy production of main-sequence stars (for 95% of stars, this quantity lies within 0.5 to 2.2 of the corresponding solar magnitude is found. The obtained results are discussed from the perspective of known extreme principles related to entropy production.

  20. Properties of Risk Measures of Generalized Entropy in Portfolio Selection

    Directory of Open Access Journals (Sweden)

    Rongxi Zhou

    2017-12-01

    Full Text Available This paper systematically investigates the properties of six kinds of entropy-based risk measures: Information Entropy and Cumulative Residual Entropy in the probability space, Fuzzy Entropy, Credibility Entropy and Sine Entropy in the fuzzy space, and Hybrid Entropy in the hybridized uncertainty of both fuzziness and randomness. We discover that none of the risk measures satisfy all six of the following properties, which various scholars have associated with effective risk measures: Monotonicity, Translation Invariance, Sub-additivity, Positive Homogeneity, Consistency and Convexity. Measures based on Fuzzy Entropy, Credibility Entropy, and Sine Entropy all exhibit the same properties: Sub-additivity, Positive Homogeneity, Consistency, and Convexity. These measures based on Information Entropy and Hybrid Entropy, meanwhile, only exhibit Sub-additivity and Consistency. Cumulative Residual Entropy satisfies just Sub-additivity, Positive Homogeneity, and Convexity. After identifying these properties, we develop seven portfolio models based on different risk measures and made empirical comparisons using samples from both the Shenzhen Stock Exchange of China and the New York Stock Exchange of America. The comparisons show that the Mean Fuzzy Entropy Model performs the best among the seven models with respect to both daily returns and relative cumulative returns. Overall, these results could provide an important reference for both constructing effective risk measures and rationally selecting the appropriate risk measure under different portfolio selection conditions.

  1. Enthalpy-entropy compensation in protein unfolding

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Enthalpy-entropy compensation was found to be a universal law in protein unfolding based on over 3 000 experimental data. Water molecular reorganization accompanying the protein unfolding was suggested as the origin of the enthalpy-entropy compensation in protein unfolding. It is indicated that the enthalpy-entropy compensation constitutes the physical foundation that satisfies the biological need of the small free energy changes in protein unfolding, without the sacrifice of the bio-diversity of proteins. The enthalpy-entropy compensation theory proposed herein also provides valuable insights into the Privalov's puzzle of enthalpy and entropy convergence in protein unfolding.

  2. Astrophysical Information from Objective Prism Digitized Images: Classification with an Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Bratsolis Emmanuel

    2005-01-01

    Full Text Available Stellar spectral classification is not only a tool for labeling individual stars but is also useful in studies of stellar population synthesis. Extracting the physical quantities from the digitized spectral plates involves three main stages: detection, extraction, and classification of spectra. Low-dispersion objective prism images have been used and automated methods have been developed. The detection and extraction problems have been presented in previous works. In this paper, we present a classification method based on an artificial neural network (ANN. We make a brief presentation of the entire automated system and we compare the new classification method with the previously used method of maximum correlation coefficient (MCC. Digitized photographic material has been used here. The method can also be used on CCD spectral images.

  3. Black hole entropy functions and attractor equations

    International Nuclear Information System (INIS)

    Lopes Cardoso, Gabriel; Wit, Bernard de; Mahapatra, Swapna

    2007-01-01

    The entropy and the attractor equations for static extremal black hole solutions follow from a variational principle based on an entropy function. In the general case such an entropy function can be derived from the reduced action evaluated in a near-horizon geometry. BPS black holes constitute special solutions of this variational principle, but they can also be derived directly from a different entropy function based on supersymmetry enhancement at the horizon. Both functions are consistent with electric/magnetic duality and for BPS black holes their corresponding OSV-type integrals give identical results at the semi-classical level. We clarify the relation between the two entropy functions and the corresponding attractor equations for N = 2 supergravity theories with higher-derivative couplings in four space-time dimensions. We discuss how non-holomorphic corrections will modify these entropy functions

  4. Automated image processing method for the diagnosis and classification of malaria on thin blood smears.

    Science.gov (United States)

    Ross, Nicholas E; Pritchard, Charles J; Rubin, David M; Dusé, Adriano G

    2006-05-01

    Malaria is a serious global health problem, and rapid, accurate diagnosis is required to control the disease. An image processing algorithm to automate the diagnosis of malaria on thin blood smears is developed. The image classification system is designed to positively identify malaria parasites present in thin blood smears, and differentiate the species of malaria. Images are acquired using a charge-coupled device camera connected to a light microscope. Morphological and novel threshold selection techniques are used to identify erythrocytes (red blood cells) and possible parasites present on microscopic slides. Image features based on colour, texture and the geometry of the cells and parasites are generated, as well as features that make use of a priori knowledge of the classification problem and mimic features used by human technicians. A two-stage tree classifier using backpropogation feedforward neural networks distinguishes between true and false positives, and then diagnoses the species (Plasmodium falciparum, P. vivax, P. ovale or P. malariae) of the infection. Malaria samples obtained from the Department of Clinical Microbiology and Infectious Diseases at the University of the Witwatersrand Medical School are used for training and testing of the system. Infected erythrocytes are positively identified with a sensitivity of 85% and a positive predictive value (PPV) of 81%, which makes the method highly sensitive at diagnosing a complete sample provided many views are analysed. Species were correctly determined for 11 out of 15 samples.

  5. Novel insights in agent-based complex automated negotiation

    CERN Document Server

    Lopez-Carmona, Miguel; Ito, Takayuki; Zhang, Minjie; Bai, Quan; Fujita, Katsuhide

    2014-01-01

    This book focuses on all aspects of complex automated negotiations, which are studied in the field of autonomous agents and multi-agent systems. This book consists of two parts. I: Agent-Based Complex Automated Negotiations, and II: Automated Negotiation Agents Competition. The chapters in Part I are extended versions of papers presented at the 2012 international workshop on Agent-Based Complex Automated Negotiation (ACAN), after peer reviews by three Program Committee members. Part II examines in detail ANAC 2012 (The Third Automated Negotiating Agents Competition), in which automated agents that have different negotiation strategies and are implemented by different developers are automatically negotiated in the several negotiation domains. ANAC is an international competition in which automated negotiation strategies, submitted by a number of universities and research institutes across the world, are evaluated in tournament style. The purpose of the competition is to steer the research in the area of bilate...

  6. Quantitative evaluation of variations in rule-based classifications of land cover in urban neighbourhoods using WorldView-2 imagery

    Science.gov (United States)

    Belgiu, Mariana; ǎguţ, Lucian, , Dr; Strobl, Josef

    2014-01-01

    The increasing availability of high resolution imagery has triggered the need for automated image analysis techniques, with reduced human intervention and reproducible analysis procedures. The knowledge gained in the past might be of use to achieving this goal, if systematically organized into libraries which would guide the image analysis procedure. In this study we aimed at evaluating the variability of digital classifications carried out by three experts who were all assigned the same interpretation task. Besides the three classifications performed by independent operators, we developed an additional rule-based classification that relied on the image classifications best practices found in the literature, and used it as a surrogate for libraries of object characteristics. The results showed statistically significant differences among all operators who classified the same reference imagery. The classifications carried out by the experts achieved satisfactory results when transferred to another area for extracting the same classes of interest, without modification of the developed rules.

  7. Multivariate refined composite multiscale entropy analysis

    International Nuclear Information System (INIS)

    Humeau-Heurtier, Anne

    2016-01-01

    Multiscale entropy (MSE) has become a prevailing method to quantify signals complexity. MSE relies on sample entropy. However, MSE may yield imprecise complexity estimation at large scales, because sample entropy does not give precise estimation of entropy when short signals are processed. A refined composite multiscale entropy (RCMSE) has therefore recently been proposed. Nevertheless, RCMSE is for univariate signals only. The simultaneous analysis of multi-channel (multivariate) data often over-performs studies based on univariate signals. We therefore introduce an extension of RCMSE to multivariate data. Applications of multivariate RCMSE to simulated processes reveal its better performances over the standard multivariate MSE. - Highlights: • Multiscale entropy quantifies data complexity but may be inaccurate at large scale. • A refined composite multiscale entropy (RCMSE) has therefore recently been proposed. • Nevertheless, RCMSE is adapted to univariate time series only. • We herein introduce an extension of RCMSE to multivariate data. • It shows better performances than the standard multivariate multiscale entropy.

  8. Activity-Based Approach for Teaching Aqueous Solubility, Energy, and Entropy

    Science.gov (United States)

    Eisen, Laura; Marano, Nadia; Glazier, Samantha

    2014-01-01

    We describe an activity-based approach for teaching aqueous solubility to introductory chemistry students that provides a more balanced presentation of the roles of energy and entropy in dissolution than is found in most general chemistry textbooks. In the first few activities, students observe that polar substances dissolve in water, whereas…

  9. Trajectories entropy in dynamical graphs with memory

    Directory of Open Access Journals (Sweden)

    Francesco eCaravelli

    2016-04-01

    Full Text Available In this paper we investigate the application of non-local graph entropy to evolving and dynamical graphs. The measure is based upon the notion of Markov diffusion on a graph, and relies on the entropy applied to trajectories originating at a specific node. In particular, we study the model of reinforcement-decay graph dynamics, which leads to scale free graphs. We find that the node entropy characterizes the structure of the network in the two parameter phase-space describing the dynamical evolution of the weighted graph. We then apply an adapted version of the entropy measure to purely memristive circuits. We provide evidence that meanwhile in the case of DC voltage the entropy based on the forward probability is enough to characterize the graph properties, in the case of AC voltage generators one needs to consider both forward and backward based transition probabilities. We provide also evidence that the entropy highlights the self-organizing properties of memristive circuits, which re-organizes itself to satisfy the symmetries of the underlying graph.

  10. Automated Detection of Driver Fatigue Based on AdaBoost Classifier with EEG Signals

    Directory of Open Access Journals (Sweden)

    Jianfeng Hu

    2017-08-01

    fatigue through the classification of EEG signals.Conclusion: By using combination of FE features and AdaBoost classifier to detect EEG-based driver fatigue, this paper ensured confidence in exploring the inherent physiological mechanisms and wearable application.

  11. Pitch Based Sound Classification

    DEFF Research Database (Denmark)

    Nielsen, Andreas Brinch; Hansen, Lars Kai; Kjems, U

    2006-01-01

    A sound classification model is presented that can classify signals into music, noise and speech. The model extracts the pitch of the signal using the harmonic product spectrum. Based on the pitch estimate and a pitch error measure, features are created and used in a probabilistic model with soft......-max output function. Both linear and quadratic inputs are used. The model is trained on 2 hours of sound and tested on publicly available data. A test classification error below 0.05 with 1 s classification windows is achieved. Further more it is shown that linear input performs as well as a quadratic......, and that even though classification gets marginally better, not much is achieved by increasing the window size beyond 1 s....

  12. Time Dependence of Entropy Flux and Entropy Production of a Dissipative Dynamical System Driven by Non-Gaussian Noise

    International Nuclear Information System (INIS)

    Guo Yongfeng; Xu Wei; Li Dongxi; Xie Wenxian

    2008-01-01

    A stochastic dissipative dynamical system driven by non-Gaussian noise is investigated. A general approximate Fokker-Planck equation of the system is derived through a path-integral approach. Based on the definition of Shannon's information entropy, the exact time dependence of entropy flux and entropy production of the system is calculated both in the absence and in the presence of non-equilibrium constraint. The present calculation can be used to interpret the interplay of the dissipative constant and non-Gaussian noise on the entropy flux and entropy production

  13. Application of the entropy generation minimization method to a solar heat exchanger: A pseudo-optimization design process based on the analysis of the local entropy generation maps

    International Nuclear Information System (INIS)

    Giangaspero, Giorgio; Sciubba, Enrico

    2013-01-01

    This paper presents an application of the entropy generation minimization method to the pseudo-optimization of the configuration of the heat exchange surfaces in a Solar Rooftile. An initial “standard” commercial configuration is gradually improved by introducing design changes aimed at the reduction of the thermodynamic losses due to heat transfer and fluid friction. Different geometries (pins, fins and others) are analysed with a commercial CFD (Computational Fluid Dynamics) code that also computes the local entropy generation rate. The design improvement process is carried out on the basis of a careful analysis of the local entropy generation maps and the rationale behind each step of the process is discussed in this perspective. The results are compared with other entropy generation minimization techniques available in the recent technical literature. It is found that the geometry with pin-fins has the best performance among the tested ones, and that the optimal pin array shape parameters (pitch and span) can be determined by a critical analysis of the integrated and local entropy maps and of the temperature contours. - Highlights: ► An entropy generation minimization method is applied to a solar heat exchanger. ► The approach is heuristic and leads to a pseudo-optimization process with CFD as main tool. ► The process is based on the evaluation of the local entropy generation maps. ► The geometry with pin-fins in general outperforms all other configurations. ► The entropy maps and temperature contours can be used to determine the optimal pin array design parameters

  14. [Galaxy/quasar classification based on nearest neighbor method].

    Science.gov (United States)

    Li, Xiang-Ru; Lu, Yu; Zhou, Jian-Ming; Wang, Yong-Jun

    2011-09-01

    With the wide application of high-quality CCD in celestial spectrum imagery and the implementation of many large sky survey programs (e. g., Sloan Digital Sky Survey (SDSS), Two-degree-Field Galaxy Redshift Survey (2dF), Spectroscopic Survey Telescope (SST), Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) program and Large Synoptic Survey Telescope (LSST) program, etc.), celestial observational data are coming into the world like torrential rain. Therefore, to utilize them effectively and fully, research on automated processing methods for celestial data is imperative. In the present work, we investigated how to recognizing galaxies and quasars from spectra based on nearest neighbor method. Galaxies and quasars are extragalactic objects, they are far away from earth, and their spectra are usually contaminated by various noise. Therefore, it is a typical problem to recognize these two types of spectra in automatic spectra classification. Furthermore, the utilized method, nearest neighbor, is one of the most typical, classic, mature algorithms in pattern recognition and data mining, and often is used as a benchmark in developing novel algorithm. For applicability in practice, it is shown that the recognition ratio of nearest neighbor method (NN) is comparable to the best results reported in the literature based on more complicated methods, and the superiority of NN is that this method does not need to be trained, which is useful in incremental learning and parallel computation in mass spectral data processing. In conclusion, the results in this work are helpful for studying galaxies and quasars spectra classification.

  15. An automated Pearson's correlation change classification (APC3) approach for GC/MS metabonomic data using total ion chromatograms (TICs).

    Science.gov (United States)

    Prakash, Bhaskaran David; Esuvaranathan, Kesavan; Ho, Paul C; Pasikanti, Kishore Kumar; Chan, Eric Chun Yong; Yap, Chun Wei

    2013-05-21

    A fully automated and computationally efficient Pearson's correlation change classification (APC3) approach is proposed and shown to have overall comparable performance with both an average accuracy and an average AUC of 0.89 ± 0.08 but is 3.9 to 7 times faster, easier to use and have low outlier susceptibility in contrast to other dimensional reduction and classification combinations using only the total ion chromatogram (TIC) intensities of GC/MS data. The use of only the TIC permits the possible application of APC3 to other metabonomic data such as LC/MS TICs or NMR spectra. A RapidMiner implementation is available for download at http://padel.nus.edu.sg/software/padelapc3.

  16. Automated Discovery of Speech Act Categories in Educational Games

    Science.gov (United States)

    Rus, Vasile; Moldovan, Cristian; Niraula, Nobal; Graesser, Arthur C.

    2012-01-01

    In this paper we address the important task of automated discovery of speech act categories in dialogue-based, multi-party educational games. Speech acts are important in dialogue-based educational systems because they help infer the student speaker's intentions (the task of speech act classification) which in turn is crucial to providing adequate…

  17. Microscopic insights into the NMR relaxation based protein conformational entropy meter

    Science.gov (United States)

    Kasinath, Vignesh; Sharp, Kim A.; Wand, A. Joshua

    2013-01-01

    Conformational entropy is a potentially important thermodynamic parameter contributing to protein function. Quantitative measures of conformational entropy are necessary for an understanding of its role but have been difficult to obtain. An empirical method that utilizes changes in conformational dynamics as a proxy for changes in conformational entropy has recently been introduced. Here we probe the microscopic origins of the link between conformational dynamics and conformational entropy using molecular dynamics simulations. Simulation of seven pro! teins gave an excellent correlation with measures of side-chain motion derived from NMR relaxation. The simulations show that the motion of methyl-bearing side-chains are sufficiently coupled to that of other side chains to serve as excellent reporters of the overall side-chain conformational entropy. These results tend to validate the use of experimentally accessible measures of methyl motion - the NMR-derived generalized order parameters - as a proxy from which to derive changes in protein conformational entropy. PMID:24007504

  18. ENTROPY FUNCTIONAL FOR CONTINUOUS SYSTEMS OF FINITE ENTROPY

    Institute of Scientific and Technical Information of China (English)

    M. Rahimi A. Riazi

    2012-01-01

    In this article,we introduce the concept of entropy functional for continuous systems on compact metric spaces,and prove some of its properties.We also extract the Kolmogorov entropy from the entropy functional.

  19. COLLAGE-BASED INVERSE PROBLEMS FOR IFSM WITH ENTROPY MAXIMIZATION AND SPARSITY CONSTRAINTS

    Directory of Open Access Journals (Sweden)

    Herb Kunze

    2013-11-01

    Full Text Available We consider the inverse problem associated with IFSM: Given a target function f, find an IFSM, such that its invariant fixed point f is sufficiently close to f in the Lp distance. In this paper, we extend the collage-based method developed by Forte and Vrscay (1995 along two different directions. We first search for a set of mappings that not only minimizes the collage error but also maximizes the entropy of the dynamical system. We then include an extra term in the minimization process which takes into account the sparsity of the set of mappings. In this new formulation, the minimization of collage error is treated as multi-criteria problem: we consider three different and conflicting criteria i.e., collage error, entropy and sparsity. To solve this multi-criteria program we proceed by scalarization and we reduce the model to a single-criterion program by combining all objective functions with different trade-off weights. The results of some numerical computations are presented. Numerical studies indicate that a maximum entropy principle exists for this approximation problem, i.e., that the suboptimal solutions produced by collage coding can be improved at least slightly by adding a maximum entropy criterion.

  20. Automation-aided Task Loads Index based on the Automation Rate Reflecting the Effects on Human Operators in NPPs

    International Nuclear Information System (INIS)

    Lee, Seungmin; Seong, Poonghyun; Kim, Jonghyun

    2013-01-01

    Many researchers have found that a high automation rate does not guarantee high performance. Therefore, to reflect the effects of automation on human performance, a new estimation method of the automation rate that considers the effects of automation on human operators in nuclear power plants (NPPs) was suggested. These suggested measures express how much automation support human operators but it cannot express the change of human operators' workload, whether the human operators' workload is increased or decreased. Before considering automation rates, whether the adopted automation is good or bad might be estimated in advance. In this study, to estimate the appropriateness of automation according to the change of the human operators' task loads, automation-aided task loads index is suggested based on the concept of the suggested automation rate. To insure plant safety and efficiency on behalf of human operators, various automation systems have been installed in NPPs, and many works which were previously conducted by human operators can now be supported by computer-based operator aids. According to the characteristics of the automation types, the estimation method of the system automation and the cognitive automation rate were suggested. The proposed estimation method concentrates on the effects of introducing automation, so it directly express how much the automated system support human operators. Based on the suggested automation rates, the way to estimate how much the automated system can affect the human operators' cognitive task load is suggested in this study. When there is no automation, the calculated index is 1, and it means there is no change of human operators' task load

  1. Automated surgical skill assessment in RMIS training.

    Science.gov (United States)

    Zia, Aneeq; Essa, Irfan

    2018-05-01

    Manual feedback in basic robot-assisted minimally invasive surgery (RMIS) training can consume a significant amount of time from expert surgeons' schedule and is prone to subjectivity. In this paper, we explore the usage of different holistic features for automated skill assessment using only robot kinematic data and propose a weighted feature fusion technique for improving score prediction performance. Moreover, we also propose a method for generating 'task highlights' which can give surgeons a more directed feedback regarding which segments had the most effect on the final skill score. We perform our experiments on the publicly available JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS) and evaluate four different types of holistic features from robot kinematic data-sequential motion texture (SMT), discrete Fourier transform (DFT), discrete cosine transform (DCT) and approximate entropy (ApEn). The features are then used for skill classification and exact skill score prediction. Along with using these features individually, we also evaluate the performance using our proposed weighted combination technique. The task highlights are produced using DCT features. Our results demonstrate that these holistic features outperform all previous Hidden Markov Model (HMM)-based state-of-the-art methods for skill classification on the JIGSAWS dataset. Also, our proposed feature fusion strategy significantly improves performance for skill score predictions achieving up to 0.61 average spearman correlation coefficient. Moreover, we provide an analysis on how the proposed task highlights can relate to different surgical gestures within a task. Holistic features capturing global information from robot kinematic data can successfully be used for evaluating surgeon skill in basic surgical tasks on the da Vinci robot. Using the framework presented can potentially allow for real-time score feedback in RMIS training and help surgical trainees have more focused training.

  2. Cluster Based Text Classification Model

    DEFF Research Database (Denmark)

    Nizamani, Sarwat; Memon, Nasrullah; Wiil, Uffe Kock

    2011-01-01

    We propose a cluster based classification model for suspicious email detection and other text classification tasks. The text classification tasks comprise many training examples that require a complex classification model. Using clusters for classification makes the model simpler and increases...... the accuracy at the same time. The test example is classified using simpler and smaller model. The training examples in a particular cluster share the common vocabulary. At the time of clustering, we do not take into account the labels of the training examples. After the clusters have been created......, the classifier is trained on each cluster having reduced dimensionality and less number of examples. The experimental results show that the proposed model outperforms the existing classification models for the task of suspicious email detection and topic categorization on the Reuters-21578 and 20 Newsgroups...

  3. Entropy type complexity of quantum processes

    International Nuclear Information System (INIS)

    Watanabe, Noboru

    2014-01-01

    von Neumann entropy represents the amount of information in the quantum state, and this was extended by Ohya for general quantum systems [10]. Umegaki first defined the quantum relative entropy for σ-finite von Neumann algebras, which was extended by Araki, and Uhlmann, for general von Neumann algebras and *-algebras, respectively. In 1983 Ohya introduced the quantum mutual entropy by using compound states; this describes the amount of information correctly transmitted through the quantum channel, which was also extended by Ohya for general quantum systems. In this paper, we briefly explain Ohya's S-mixing entropy and the quantum mutual entropy for general quantum systems. By using structure equivalent class, we will introduce entropy type functionals based on quantum information theory to improve treatment for the Gaussian communication process. (paper)

  4. Topological nearly entropy

    Science.gov (United States)

    Gulamsarwar, Syazwani; Salleh, Zabidin

    2017-08-01

    The purpose of this paper is to generalize the notions of Adler's topological entropy along with their several fundamental properties. A function f : X → Y is said to be R-map if f-1 (V) is regular open in X for every regular open set V in Y. Thus, we initiated a notion of topological nearly entropy for topological R-dynamical systems which is based on nearly compact relative to the space by using R-map.

  5. 100% classification accuracy considered harmful: the normalized information transfer factor explains the accuracy paradox.

    Directory of Open Access Journals (Sweden)

    Francisco J Valverde-Albacete

    Full Text Available The most widely spread measure of performance, accuracy, suffers from a paradox: predictive models with a given level of accuracy may have greater predictive power than models with higher accuracy. Despite optimizing classification error rate, high accuracy models may fail to capture crucial information transfer in the classification task. We present evidence of this behavior by means of a combinatorial analysis where every possible contingency matrix of 2, 3 and 4 classes classifiers are depicted on the entropy triangle, a more reliable information-theoretic tool for classification assessment. Motivated by this, we develop from first principles a measure of classification performance that takes into consideration the information learned by classifiers. We are then able to obtain the entropy-modulated accuracy (EMA, a pessimistic estimate of the expected accuracy with the influence of the input distribution factored out, and the normalized information transfer factor (NIT, a measure of how efficient is the transmission of information from the input to the output set of classes. The EMA is a more natural measure of classification performance than accuracy when the heuristic to maximize is the transfer of information through the classifier instead of classification error count. The NIT factor measures the effectiveness of the learning process in classifiers and also makes it harder for them to "cheat" using techniques like specialization, while also promoting the interpretability of results. Their use is demonstrated in a mind reading task competition that aims at decoding the identity of a video stimulus based on magnetoencephalography recordings. We show how the EMA and the NIT factor reject rankings based in accuracy, choosing more meaningful and interpretable classifiers.

  6. Maximum mutual information regularized classification

    KAUST Repository

    Wang, Jim Jing-Yan

    2014-09-07

    In this paper, a novel pattern classification approach is proposed by regularizing the classifier learning to maximize mutual information between the classification response and the true class label. We argue that, with the learned classifier, the uncertainty of the true class label of a data sample should be reduced by knowing its classification response as much as possible. The reduced uncertainty is measured by the mutual information between the classification response and the true class label. To this end, when learning a linear classifier, we propose to maximize the mutual information between classification responses and true class labels of training samples, besides minimizing the classification error and reducing the classifier complexity. An objective function is constructed by modeling mutual information with entropy estimation, and it is optimized by a gradient descend method in an iterative algorithm. Experiments on two real world pattern classification problems show the significant improvements achieved by maximum mutual information regularization.

  7. Maximum mutual information regularized classification

    KAUST Repository

    Wang, Jim Jing-Yan; Wang, Yi; Zhao, Shiguang; Gao, Xin

    2014-01-01

    In this paper, a novel pattern classification approach is proposed by regularizing the classifier learning to maximize mutual information between the classification response and the true class label. We argue that, with the learned classifier, the uncertainty of the true class label of a data sample should be reduced by knowing its classification response as much as possible. The reduced uncertainty is measured by the mutual information between the classification response and the true class label. To this end, when learning a linear classifier, we propose to maximize the mutual information between classification responses and true class labels of training samples, besides minimizing the classification error and reducing the classifier complexity. An objective function is constructed by modeling mutual information with entropy estimation, and it is optimized by a gradient descend method in an iterative algorithm. Experiments on two real world pattern classification problems show the significant improvements achieved by maximum mutual information regularization.

  8. A numerically research on energy loss evaluation in a centrifugal pump system based on local entropy production method

    Directory of Open Access Journals (Sweden)

    Hou Hucan

    2017-01-01

    Full Text Available Inspired by wide application of the second law of thermodynamics to flow and heat transfer devices, local entropy production analysis method was creatively introduced into energy assessment system of centrifugal water pump. Based on Reynolds stress turbulent model and energy equation model, the steady numerical simulation of the whole flow passage of one IS centrifugal pump was carried out. The local entropy production terms were calculated by user defined functions, mainly including wall entropy production, turbulent entropy production, and viscous entropy production. The numerical results indicated that the irreversible energy loss calculated by the local entropy production method agreed well with that calculated by the traditional method but with some deviations which were probably caused by high rotatability and high curvature of impeller and volute. The wall entropy production and turbulent entropy production took up large part of the whole entropy production about 48.61% and 47.91%, respectively, which indicated that wall friction and turbulent fluctuation were the major factors in affecting irreversible energy loss. Meanwhile, the entropy production rate distribution was discussed and compared with turbulent kinetic energy dissipation rate distribution, it showed that turbulent entropy production rate increased sharply at the near wall regions and both distributed more uniformly. The blade region in leading edge near suction side, trailing edge and volute tongue were the main regions to generate irreversible exergy loss. This research broadens a completely new view in evaluating energy loss and further optimizes pump using entropy production minimization.

  9. A novel evaluation of heat-electricity cost allocation in cogenerations based on entropy change method

    International Nuclear Information System (INIS)

    Ye, Xuemin; Li, Chunxi

    2013-01-01

    As one of the most significant measures to improve energy utilization efficiency and save energy, cogeneration or combined heat and power (CHP) has been widely applied and promoted with positive motivations in many countries. A rational cost allocation model should indicate the performance of cogenerations and balance the benefits between electricity generation and heat production. Based on the second law of thermodynamics, the present paper proposes an entropy change method for cost allocation by choosing exhaust steam entropy as a datum point, and the new model works in conjunction with entropy change and irreversibility during energy conversion processes. The allocation ratios of heat cost with the present and existing methods are compared for different types of cogenerations. Results show that the allocation ratios with the entropy change method are more rational and the cost allocation model can make up some limitations involved in other approaches. The future energy policies and innovational directions for cogenerations and heat consumers should be developed. - Highlights: • A rational model of cogeneration cost allocation is established. • Entropy change method integrates the relation of entropy change and exergy losses. • The unity of measuring energy quality and quantity is materialized. • The benefits between electricity generation and heat production are balanced

  10. Automation-aided Task Loads Index based on the Automation Rate Reflecting the Effects on Human Operators in NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seungmin; Seong, Poonghyun [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Jonghyun [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2013-05-15

    Many researchers have found that a high automation rate does not guarantee high performance. Therefore, to reflect the effects of automation on human performance, a new estimation method of the automation rate that considers the effects of automation on human operators in nuclear power plants (NPPs) was suggested. These suggested measures express how much automation support human operators but it cannot express the change of human operators' workload, whether the human operators' workload is increased or decreased. Before considering automation rates, whether the adopted automation is good or bad might be estimated in advance. In this study, to estimate the appropriateness of automation according to the change of the human operators' task loads, automation-aided task loads index is suggested based on the concept of the suggested automation rate. To insure plant safety and efficiency on behalf of human operators, various automation systems have been installed in NPPs, and many works which were previously conducted by human operators can now be supported by computer-based operator aids. According to the characteristics of the automation types, the estimation method of the system automation and the cognitive automation rate were suggested. The proposed estimation method concentrates on the effects of introducing automation, so it directly express how much the automated system support human operators. Based on the suggested automation rates, the way to estimate how much the automated system can affect the human operators' cognitive task load is suggested in this study. When there is no automation, the calculated index is 1, and it means there is no change of human operators' task load.

  11. Entanglement entropy and differential entropy for massive flavors

    International Nuclear Information System (INIS)

    Jones, Peter A.R.; Taylor, Marika

    2015-01-01

    In this paper we compute the holographic entanglement entropy for massive flavors in the D3-D7 system, for arbitrary mass and various entangling region geometries. We show that the universal terms in the entanglement entropy exactly match those computed in the dual theory using conformal perturbation theory. We derive holographically the universal terms in the entanglement entropy for a CFT perturbed by a relevant operator, up to second order in the coupling; our results are valid for any entangling region geometry. We present a new method for computing the entanglement entropy of any top-down brane probe system using Kaluza-Klein holography and illustrate our results with massive flavors at finite density. Finally we discuss the differential entropy for brane probe systems, emphasising that the differential entropy captures only the effective lower-dimensional Einstein metric rather than the ten-dimensional geometry.

  12. Time dependence of entropy flux and entropy production for a dynamical system driven by noises with coloured cross-correlation

    Institute of Scientific and Technical Information of China (English)

    Xie Wen-Xian; Xu Wei; Cai Li

    2007-01-01

    This paper shows the Fokker-Planck equation of a dynamical system driven by coloured cross-correlated white noises in the absence and presence of a small external force. Based on the Fokker-Planck equation and the definition of Shannon's information entropy, the time dependence of entropy flux and entropy production can be calculated. The present results can be used to explain the extremal behaviour of time dependence of entropy flux and entropy production in view of the dissipative parameter γ of the system, coloured cross-correlation time τ and coloured cross-correlation strength λ.

  13. Dynamic Cross-Entropy.

    Science.gov (United States)

    Aur, Dorian; Vila-Rodriguez, Fidel

    2017-01-01

    Complexity measures for time series have been used in many applications to quantify the regularity of one dimensional time series, however many dynamical systems are spatially distributed multidimensional systems. We introduced Dynamic Cross-Entropy (DCE) a novel multidimensional complexity measure that quantifies the degree of regularity of EEG signals in selected frequency bands. Time series generated by discrete logistic equations with varying control parameter r are used to test DCE measures. Sliding window DCE analyses are able to reveal specific period doubling bifurcations that lead to chaos. A similar behavior can be observed in seizures triggered by electroconvulsive therapy (ECT). Sample entropy data show the level of signal complexity in different phases of the ictal ECT. The transition to irregular activity is preceded by the occurrence of cyclic regular behavior. A significant increase of DCE values in successive order from high frequencies in gamma to low frequencies in delta band reveals several phase transitions into less ordered states, possible chaos in the human brain. To our knowledge there are no reliable techniques able to reveal the transition to chaos in case of multidimensional times series. In addition, DCE based on sample entropy appears to be robust to EEG artifacts compared to DCE based on Shannon entropy. The applied technique may offer new approaches to better understand nonlinear brain activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Chatter detection in milling process based on VMD and energy entropy

    Science.gov (United States)

    Liu, Changfu; Zhu, Lida; Ni, Chenbing

    2018-05-01

    This paper presents a novel approach to detect the milling chatter based on Variational Mode Decomposition (VMD) and energy entropy. VMD has already been employed in feature extraction from non-stationary signals. The parameters like number of modes (K) and the quadratic penalty (α) need to be selected empirically when raw signal is decomposed by VMD. Aimed at solving the problem how to select K and α, the automatic selection method of VMD's based on kurtosis is proposed in this paper. When chatter occurs in the milling process, energy will be absorbed to chatter frequency bands. To detect the chatter frequency bands automatically, the chatter detection method based on energy entropy is presented. The vibration signal containing chatter frequency is simulated and three groups of experiments which represent three cutting conditions are conducted. To verify the effectiveness of method presented by this paper, chatter feather extraction has been successfully employed on simulation signals and experimental signals. The simulation and experimental results show that the proposed method can effectively detect the chatter.

  15. Specific classification of financial analysis of enterprise activity

    Directory of Open Access Journals (Sweden)

    Synkevych Nadiia I.

    2014-01-01

    Full Text Available Despite the fact that one can find a big variety of classifications of types of financial analysis of enterprise activity, which differ with their approach to classification and a number of classification features and their content, in modern scientific literature, their complex comparison and analysis of existing classification have not been done. This explains urgency of this study. The article studies classification of types of financial analysis of scientists and presents own approach to this problem. By the results of analysis the article improves and builds up a specific classification of financial analysis of enterprise activity and offers classification by the following features: objects, subjects, goals of study, automation level, time period of the analytical base, scope of study, organisation system, classification features of the subject, spatial belonging, sufficiency, information sources, periodicity, criterial base, method of data selection for analysis and time direction. All types of financial analysis significantly differ with their inherent properties and parameters depending on the goals of financial analysis. The developed specific classification provides subjects of financial analysis of enterprise activity with a possibility to identify a specific type of financial analysis, which would correctly meet the set goals.

  16. Symplectic entropy

    International Nuclear Information System (INIS)

    De Nicola, Sergio; Fedele, Renato; Man'ko, Margarita A; Man'ko, Vladimir I

    2007-01-01

    The tomographic-probability description of quantum states is reviewed. The symplectic tomography of quantum states with continuous variables is studied. The symplectic entropy of the states with continuous variables is discussed and its relation to Shannon entropy and information is elucidated. The known entropic uncertainty relations of the probability distribution in position and momentum of a particle are extended and new uncertainty relations for symplectic entropy are obtained. The partial case of symplectic entropy, which is optical entropy of quantum states, is considered. The entropy associated to optical tomogram is shown to satisfy the new entropic uncertainty relation. The example of Gaussian states of harmonic oscillator is studied and the entropic uncertainty relations for optical tomograms of the Gaussian state are shown to minimize the uncertainty relation

  17. Time-dependent entropy evolution in microscopic and macroscopic electromagnetic relaxation

    International Nuclear Information System (INIS)

    Baker-Jarvis, James

    2005-01-01

    This paper is a study of entropy and its evolution in the time and frequency domains upon application of electromagnetic fields to materials. An understanding of entropy and its evolution in electromagnetic interactions bridges the boundaries between electromagnetism and thermodynamics. The approach used here is a Liouville-based statistical-mechanical theory. I show that the microscopic entropy is reversible and the macroscopic entropy satisfies an H theorem. The spectral entropy development can be very useful for studying the frequency response of materials. Using a projection-operator based nonequilibrium entropy, different equations are derived for the entropy and entropy production and are applied to the polarization, magnetization, and macroscopic fields. I begin by proving an exact H theorem for the entropy, progress to application of time-dependent entropy in electromagnetics, and then apply the theory to relevant applications in electromagnetics. The paper concludes with a discussion of the relationship of the frequency-domain form of the entropy to the permittivity, permeability, and impedance

  18. Studying the potential impact of automated document classification on scheduling a systematic review update

    Science.gov (United States)

    2012-01-01

    Background Systematic Reviews (SRs) are an essential part of evidence-based medicine, providing support for clinical practice and policy on a wide range of medical topics. However, producing SRs is resource-intensive, and progress in the research they review leads to SRs becoming outdated, requiring updates. Although the question of how and when to update SRs has been studied, the best method for determining when to update is still unclear, necessitating further research. Methods In this work we study the potential impact of a machine learning-based automated system for providing alerts when new publications become available within an SR topic. Some of these new publications are especially important, as they report findings that are more likely to initiate a review update. To this end, we have designed a classification algorithm to identify articles that are likely to be included in an SR update, along with an annotation scheme designed to identify the most important publications in a topic area. Using an SR database containing over 70,000 articles, we annotated articles from 9 topics that had received an update during the study period. The algorithm was then evaluated in terms of the overall correct and incorrect alert rate for publications meeting the topic inclusion criteria, as well as in terms of its ability to identify important, update-motivating publications in a topic area. Results Our initial approach, based on our previous work in topic-specific SR publication classification, identifies over 70% of the most important new publications, while maintaining a low overall alert rate. Conclusions We performed an initial analysis of the opportunities and challenges in aiding the SR update planning process with an informatics-based machine learning approach. Alerts could be a useful tool in the planning, scheduling, and allocation of resources for SR updates, providing an improvement in timeliness and coverage for the large number of medical topics needing SRs

  19. Crane Safety Assessment Method Based on Entropy and Cumulative Prospect Theory

    Directory of Open Access Journals (Sweden)

    Aihua Li

    2017-01-01

    Full Text Available Assessing the safety status of cranes is an important problem. To overcome the inaccuracies and misjudgments in such assessments, this work describes a safety assessment method for cranes that combines entropy and cumulative prospect theory. Firstly, the proposed method transforms the set of evaluation indices into an evaluation vector. Secondly, a decision matrix is then constructed from the evaluation vectors and evaluation standards, and an entropy-based technique is applied to calculate the index weights. Thirdly, positive and negative prospect value matrices are established from reference points based on the positive and negative ideal solutions. Thus, this enables the crane safety grade to be determined according to the ranked comprehensive prospect values. Finally, the safety status of four general overhead traveling crane samples is evaluated to verify the rationality and feasibility of the proposed method. The results demonstrate that the method described in this paper can precisely and reasonably reflect the safety status of a crane.

  20. Controlling the Shannon Entropy of Quantum Systems

    Science.gov (United States)

    Xing, Yifan; Wu, Jun

    2013-01-01

    This paper proposes a new quantum control method which controls the Shannon entropy of quantum systems. For both discrete and continuous entropies, controller design methods are proposed based on probability density function control, which can drive the quantum state to any target state. To drive the entropy to any target at any prespecified time, another discretization method is proposed for the discrete entropy case, and the conditions under which the entropy can be increased or decreased are discussed. Simulations are done on both two- and three-dimensional quantum systems, where division and prediction are used to achieve more accurate tracking. PMID:23818819

  1. Controlling the Shannon Entropy of Quantum Systems

    Directory of Open Access Journals (Sweden)

    Yifan Xing

    2013-01-01

    Full Text Available This paper proposes a new quantum control method which controls the Shannon entropy of quantum systems. For both discrete and continuous entropies, controller design methods are proposed based on probability density function control, which can drive the quantum state to any target state. To drive the entropy to any target at any prespecified time, another discretization method is proposed for the discrete entropy case, and the conditions under which the entropy can be increased or decreased are discussed. Simulations are done on both two- and three-dimensional quantum systems, where division and prediction are used to achieve more accurate tracking.

  2. Entropy for Mechanically Vibrating Systems

    Science.gov (United States)

    Tufano, Dante

    , which demonstrates the applicability of entropy-based approaches to real-world systems. Three systems are considered to demonstrate these findings: 1) a rod end-coupled to a simple oscillator, 2) two end-coupled rods, and 3) two end-coupled beams. The aforementioned work utilizes the weak coupling assumption to determine the entropy of composite systems. Following this discussion, a direct method of finding entropy is developed which does not rely on this limiting assumption. The resulting entropy provides a useful benchmark for evaluating the accuracy of the weak coupling approach, and is validated using systems of coupled oscillators. The later chapters of this work discuss Khinchin's entropy as applied to nonlinear and nonconservative systems, respectively. The discussion of entropy for nonlinear systems is motivated by the desire to expand the applicability of SEA techniques beyond the linear regime. The discussion of nonconservative systems is also crucial, since real-world systems interact with their environment, and it is necessary to confirm the validity of an entropy approach for systems that are relevant in the context of SEA. Having developed a mathematical framework for determining entropy under a number of previously unexplored cases, the relationship between thermodynamics and statistical vibroacoustics can be better understood. Specifically, vibroacoustic temperatures can be obtained for systems that are not necessarily linear or weakly coupled. In this way, entropy provides insight into how the power flow proportionality of statistical energy analysis (SEA) can be applied to a broader class of vibroacoustic systems. As such, entropy is a useful tool for both justifying and expanding the foundational results of SEA.

  3. Classification of pulmonary pathology from breath sounds using the wavelet packet transform and an extreme learning machine.

    Science.gov (United States)

    Palaniappan, Rajkumar; Sundaraj, Kenneth; Sundaraj, Sebastian; Huliraj, N; Revadi, S S

    2017-06-08

    Auscultation is a medical procedure used for the initial diagnosis and assessment of lung and heart diseases. From this perspective, we propose assessing the performance of the extreme learning machine (ELM) classifiers for the diagnosis of pulmonary pathology using breath sounds. Energy and entropy features were extracted from the breath sound using the wavelet packet transform. The statistical significance of the extracted features was evaluated by one-way analysis of variance (ANOVA). The extracted features were inputted into the ELM classifier. The maximum classification accuracies obtained for the conventional validation (CV) of the energy and entropy features were 97.36% and 98.37%, respectively, whereas the accuracies obtained for the cross validation (CRV) of the energy and entropy features were 96.80% and 97.91%, respectively. In addition, maximum classification accuracies of 98.25% and 99.25% were obtained for the CV and CRV of the ensemble features, respectively. The results indicate that the classification accuracy obtained with the ensemble features was higher than those obtained with the energy and entropy features.

  4. Entanglement entropy in top-down models

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Peter A.R.; Taylor, Marika [Mathematical Sciences and STAG Research Centre, University of Southampton,Highfield, Southampton, SO17 1BJ (United Kingdom)

    2016-08-26

    We explore holographic entanglement entropy in ten-dimensional supergravity solutions. It has been proposed that entanglement entropy can be computed in such top-down models using minimal surfaces which asymptotically wrap the compact part of the geometry. We show explicitly in a wide range of examples that the holographic entanglement entropy thus computed agrees with the entanglement entropy computed using the Ryu-Takayanagi formula from the lower-dimensional Einstein metric obtained from reduction over the compact space. Our examples include not only consistent truncations but also cases in which no consistent truncation exists and Kaluza-Klein holography is used to identify the lower-dimensional Einstein metric. We then give a general proof, based on the Lewkowycz-Maldacena approach, of the top-down entanglement entropy formula.

  5. Entanglement entropy in top-down models

    International Nuclear Information System (INIS)

    Jones, Peter A.R.; Taylor, Marika

    2016-01-01

    We explore holographic entanglement entropy in ten-dimensional supergravity solutions. It has been proposed that entanglement entropy can be computed in such top-down models using minimal surfaces which asymptotically wrap the compact part of the geometry. We show explicitly in a wide range of examples that the holographic entanglement entropy thus computed agrees with the entanglement entropy computed using the Ryu-Takayanagi formula from the lower-dimensional Einstein metric obtained from reduction over the compact space. Our examples include not only consistent truncations but also cases in which no consistent truncation exists and Kaluza-Klein holography is used to identify the lower-dimensional Einstein metric. We then give a general proof, based on the Lewkowycz-Maldacena approach, of the top-down entanglement entropy formula.

  6. Automated audiometry using apple iOS-based application technology.

    Science.gov (United States)

    Foulad, Allen; Bui, Peggy; Djalilian, Hamid

    2013-11-01

    The aim of this study is to determine the feasibility of an Apple iOS-based automated hearing testing application and to compare its accuracy with conventional audiometry. Prospective diagnostic study. Setting Academic medical center. An iOS-based software application was developed to perform automated pure-tone hearing testing on the iPhone, iPod touch, and iPad. To assess for device variations and compatibility, preliminary work was performed to compare the standardized sound output (dB) of various Apple device and headset combinations. Forty-two subjects underwent automated iOS-based hearing testing in a sound booth, automated iOS-based hearing testing in a quiet room, and conventional manual audiometry. The maximum difference in sound intensity between various Apple device and headset combinations was 4 dB. On average, 96% (95% confidence interval [CI], 91%-100%) of the threshold values obtained using the automated test in a sound booth were within 10 dB of the corresponding threshold values obtained using conventional audiometry. When the automated test was performed in a quiet room, 94% (95% CI, 87%-100%) of the threshold values were within 10 dB of the threshold values obtained using conventional audiometry. Under standardized testing conditions, 90% of the subjects preferred iOS-based audiometry as opposed to conventional audiometry. Apple iOS-based devices provide a platform for automated air conduction audiometry without requiring extra equipment and yield hearing test results that approach those of conventional audiometry.

  7. Knowledge-based automated radiopharmaceutical manufacturing for Positron Emission Tomography

    International Nuclear Information System (INIS)

    Alexoff, D.L.

    1991-01-01

    This article describes the application of basic knowledge engineering principles to the design of automated synthesis equipment for radiopharmaceuticals used in Positron Emission Tomography (PET). Before discussing knowledge programming, an overview of the development of automated radiopharmaceutical synthesis systems for PET will be presented. Since knowledge systems will rely on information obtained from machine transducers, a discussion of the uses of sensory feedback in today's automated systems follows. Next, the operation of these automated systems is contrasted to radiotracer production carried out by chemists, and the rationale for and basic concepts of knowledge-based programming are explained. Finally, a prototype knowledge-based system supporting automated radiopharmaceutical manufacturing of 18FDG at Brookhaven National Laboratory (BNL) is described using 1stClass, a commercially available PC-based expert system shell

  8. Problems in black-hole entropy interpretation

    International Nuclear Information System (INIS)

    Liberati, S.

    1997-01-01

    In this work some proposals for black-hole entropy interpretation are exposed and investigated. In particular, the author will firstly consider the so-called 'entanglement entropy' interpretation, in the framework of the brick wall model and the divergence problem arising in the one-loop calculations of various thermodynamical quantities, like entropy, internal energy and heat capacity. It is shown that the assumption of equality of entanglement entropy and Bekenstein-Hawking one appears to give inconsistent results. These will be a starting point for a different interpretation of black.hole entropy based on peculiar topological structures of manifolds with 'intrinsic' thermodynamical features. It is possible to show an exact relation between black-hole gravitational entropy and topology of these Euclidean space-times. the expression for the Euler characteristic, through the Gauss-Bonnet integral, and the one for entropy for gravitational instantons are proposed in a form which makes the relation between these self-evident. Using this relation he propose a generalization of the Bekenstein-Hawking entropy in which the former and Euler characteristic are related in the equation S = χA / 8. Finally, he try to expose some conclusions and hypotheses about possible further development of this research

  9. Automated Segmentation and Classification of Coral using Fluid Lensing from Unmanned Airborne Platforms

    Science.gov (United States)

    Instrella, Ron; Chirayath, Ved

    2016-01-01

    In recent years, there has been a growing interest among biologists in monitoring the short and long term health of the world's coral reefs. The environmental impact of climate change poses a growing threat to these biologically diverse and fragile ecosystems, prompting scientists to use remote sensing platforms and computer vision algorithms to analyze shallow marine systems. In this study, we present a novel method for performing coral segmentation and classification from aerial data collected from small unmanned aerial vehicles (sUAV). Our method uses Fluid Lensing algorithms to remove and exploit strong optical distortions created along the air-fluid boundary to produce cm-scale resolution imagery of the ocean floor at depths up to 5 meters. A 3D model of the reef is reconstructed using structure from motion (SFM) algorithms, and the associated depth information is combined with multidimensional maximum a posteriori (MAP) estimation to separate organic from inorganic material and classify coral morphologies in the Fluid-Lensed transects. In this study, MAP estimation is performed using a set of manually classified 100 x 100 pixel training images to determine the most probable coral classification within an interrogated region of interest. Aerial footage of a coral reef was captured off the coast of American Samoa and used to test our proposed method. 90 x 20 meter transects of the Samoan coastline undergo automated classification and are manually segmented by a marine biologist for comparison, leading to success rates as high as 85%. This method has broad applications for coastal remote sensing, and will provide marine biologists access to large swaths of high resolution, segmented coral imagery.

  10. Hybrid Optimization of Object-Based Classification in High-Resolution Images Using Continous ANT Colony Algorithm with Emphasis on Building Detection

    Science.gov (United States)

    Tamimi, E.; Ebadi, H.; Kiani, A.

    2017-09-01

    Automatic building detection from High Spatial Resolution (HSR) images is one of the most important issues in Remote Sensing (RS). Due to the limited number of spectral bands in HSR images, using other features will lead to improve accuracy. By adding these features, the presence probability of dependent features will be increased, which leads to accuracy reduction. In addition, some parameters should be determined in Support Vector Machine (SVM) classification. Therefore, it is necessary to simultaneously determine classification parameters and select independent features according to image type. Optimization algorithm is an efficient method to solve this problem. On the other hand, pixel-based classification faces several challenges such as producing salt-paper results and high computational time in high dimensional data. Hence, in this paper, a novel method is proposed to optimize object-based SVM classification by applying continuous Ant Colony Optimization (ACO) algorithm. The advantages of the proposed method are relatively high automation level, independency of image scene and type, post processing reduction for building edge reconstruction and accuracy improvement. The proposed method was evaluated by pixel-based SVM and Random Forest (RF) classification in terms of accuracy. In comparison with optimized pixel-based SVM classification, the results showed that the proposed method improved quality factor and overall accuracy by 17% and 10%, respectively. Also, in the proposed method, Kappa coefficient was improved by 6% rather than RF classification. Time processing of the proposed method was relatively low because of unit of image analysis (image object). These showed the superiority of the proposed method in terms of time and accuracy.

  11. Automated, high accuracy classification of Parkinsonian disorders: a pattern recognition approach.

    Directory of Open Access Journals (Sweden)

    Andre F Marquand

    Full Text Available Progressive supranuclear palsy (PSP, multiple system atrophy (MSA and idiopathic Parkinson's disease (IPD can be clinically indistinguishable, especially in the early stages, despite distinct patterns of molecular pathology. Structural neuroimaging holds promise for providing objective biomarkers for discriminating these diseases at the single subject level but all studies to date have reported incomplete separation of disease groups. In this study, we employed multi-class pattern recognition to assess the value of anatomical patterns derived from a widely available structural neuroimaging sequence for automated classification of these disorders. To achieve this, 17 patients with PSP, 14 with IPD and 19 with MSA were scanned using structural MRI along with 19 healthy controls (HCs. An advanced probabilistic pattern recognition approach was employed to evaluate the diagnostic value of several pre-defined anatomical patterns for discriminating the disorders, including: (i a subcortical motor network; (ii each of its component regions and (iii the whole brain. All disease groups could be discriminated simultaneously with high accuracy using the subcortical motor network. The region providing the most accurate predictions overall was the midbrain/brainstem, which discriminated all disease groups from one another and from HCs. The subcortical network also produced more accurate predictions than the whole brain and all of its constituent regions. PSP was accurately predicted from the midbrain/brainstem, cerebellum and all basal ganglia compartments; MSA from the midbrain/brainstem and cerebellum and IPD from the midbrain/brainstem only. This study demonstrates that automated analysis of structural MRI can accurately predict diagnosis in individual patients with Parkinsonian disorders, and identifies distinct patterns of regional atrophy particularly useful for this process.

  12. Entropy Measurement for Biometric Verification Systems.

    Science.gov (United States)

    Lim, Meng-Hui; Yuen, Pong C

    2016-05-01

    Biometric verification systems are designed to accept multiple similar biometric measurements per user due to inherent intrauser variations in the biometric data. This is important to preserve reasonable acceptance rate of genuine queries and the overall feasibility of the recognition system. However, such acceptance of multiple similar measurements decreases the imposter's difficulty of obtaining a system-acceptable measurement, thus resulting in a degraded security level. This deteriorated security needs to be measurable to provide truthful security assurance to the users. Entropy is a standard measure of security. However, the entropy formula is applicable only when there is a single acceptable possibility. In this paper, we develop an entropy-measuring model for biometric systems that accepts multiple similar measurements per user. Based on the idea of guessing entropy, the proposed model quantifies biometric system security in terms of adversarial guessing effort for two practical attacks. Excellent agreement between analytic and experimental simulation-based measurement results on a synthetic and a benchmark face dataset justify the correctness of our model and thus the feasibility of the proposed entropy-measuring approach.

  13. An Integrated Dictionary-Learning Entropy-Based Medical Image Fusion Framework

    Directory of Open Access Journals (Sweden)

    Guanqiu Qi

    2017-10-01

    Full Text Available Image fusion is widely used in different areas and can integrate complementary and relevant information of source images captured by multiple sensors into a unitary synthetic image. Medical image fusion, as an important image fusion application, can extract the details of multiple images from different imaging modalities and combine them into an image that contains complete and non-redundant information for increasing the accuracy of medical diagnosis and assessment. The quality of the fused image directly affects medical diagnosis and assessment. However, existing solutions have some drawbacks in contrast, sharpness, brightness, blur and details. This paper proposes an integrated dictionary-learning and entropy-based medical image-fusion framework that consists of three steps. First, the input image information is decomposed into low-frequency and high-frequency components by using a Gaussian filter. Second, low-frequency components are fused by weighted average algorithm and high-frequency components are fused by the dictionary-learning based algorithm. In the dictionary-learning process of high-frequency components, an entropy-based algorithm is used for informative blocks selection. Third, the fused low-frequency and high-frequency components are combined to obtain the final fusion results. The results and analyses of comparative experiments demonstrate that the proposed medical image fusion framework has better performance than existing solutions.

  14. Wavelet entropy characterization of elevated intracranial pressure.

    Science.gov (United States)

    Xu, Peng; Scalzo, Fabien; Bergsneider, Marvin; Vespa, Paul; Chad, Miller; Hu, Xiao

    2008-01-01

    Intracranial Hypertension (ICH) often occurs for those patients with traumatic brain injury (TBI), stroke, tumor, etc. Pathology of ICH is still controversial. In this work, we used wavelet entropy and relative wavelet entropy to study the difference existed between normal and hypertension states of ICP for the first time. The wavelet entropy revealed the similar findings as the approximation entropy that entropy during ICH state is smaller than that in normal state. Moreover, with wavelet entropy, we can see that ICH state has the more focused energy in the low wavelet frequency band (0-3.1 Hz) than the normal state. The relative wavelet entropy shows that the energy distribution in the wavelet bands between these two states is actually different. Based on these results, we suggest that ICH may be formed by the re-allocation of oscillation energy within brain.

  15. Fault Features Extraction and Identification based Rolling Bearing Fault Diagnosis

    International Nuclear Information System (INIS)

    Qin, B; Sun, G D; Zhang L Y; Wang J G; HU, J

    2017-01-01

    For the fault classification model based on extreme learning machine (ELM), the diagnosis accuracy and stability of rolling bearing is greatly influenced by a critical parameter, which is the number of nodes in hidden layer of ELM. An adaptive adjustment strategy is proposed based on vibrational mode decomposition, permutation entropy, and nuclear kernel extreme learning machine to determine the tunable parameter. First, the vibration signals are measured and then decomposed into different fault feature models based on variation mode decomposition. Then, fault feature of each model is formed to a high dimensional feature vector set based on permutation entropy. Second, the ELM output function is expressed by the inner product of Gauss kernel function to adaptively determine the number of hidden layer nodes. Finally, the high dimension feature vector set is used as the input to establish the kernel ELM rolling bearing fault classification model, and the classification and identification of different fault states of rolling bearings are carried out. In comparison with the fault classification methods based on support vector machine and ELM, the experimental results show that the proposed method has higher classification accuracy and better generalization ability. (paper)

  16. Network-based automation for SMEs

    DEFF Research Database (Denmark)

    Parizi, Mohammad Shahabeddini; Radziwon, Agnieszka

    2017-01-01

    The implementation of appropriate automation concepts which increase productivity in Small and Medium Sized Enterprises (SMEs) requires a lot of effort, due to their limited resources. Therefore, it is strongly recommended for small firms to open up for the external sources of knowledge, which...... could be obtained through network interaction. Based on two extreme cases of SMEs representing low-tech industry and an in-depth analysis of their manufacturing facilities this paper presents how collaboration between firms embedded in a regional ecosystem could result in implementation of new...... with other members of the same regional ecosystem. The findings highlight two main automation related areas where manufacturing SMEs could leverage on external sources on knowledge – these are assistance in defining automation problem as well as appropriate solution and provider selection. Consequently...

  17. Classification of voice disorder in children with cochlear implantation and hearing aid using multiple classifier fusion

    Directory of Open Access Journals (Sweden)

    Tayarani Hamid

    2011-01-01

    Full Text Available Abstract Background Speech production and speech phonetic features gradually improve in children by obtaining audio feedback after cochlear implantation or using hearing aids. The aim of this study was to develop and evaluate automated classification of voice disorder in children with cochlear implantation and hearing aids. Methods We considered 4 disorder categories in children's voice using the following definitions: Level_1: Children who produce spontaneous phonation and use words spontaneously and imitatively. Level_2: Children, who produce spontaneous phonation, use words spontaneously and make short sentences imitatively. Level_3: Children, who produce spontaneous phonations, use words and arbitrary sentences spontaneously. Level_4: Normal children without any hearing loss background. Thirty Persian children participated in the study, including six children in each level from one to three and 12 children in level four. Voice samples of five isolated Persian words "mashin", "mar", "moosh", "gav" and "mouz" were analyzed. Four levels of the voice quality were considered, the higher the level the less significant the speech disorder. "Frame-based" and "word-based" features were extracted from voice signals. The frame-based features include intensity, fundamental frequency, formants, nasality and approximate entropy and word-based features include phase space features and wavelet coefficients. For frame-based features, hidden Markov models were used as classifiers and for word-based features, neural network was used. Results After Classifiers fusion with three methods: Majority Voting Rule, Linear Combination and Stacked fusion, the best classification rates were obtained using frame-based and word-based features with MVR rule (level 1:100%, level 2: 93.75%, level 3: 100%, level 4: 94%. Conclusions Result of this study may help speech pathologists follow up voice disorder recovery in children with cochlear implantation or hearing aid who are

  18. Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence.

    Science.gov (United States)

    Rajalakshmi, Ramachandran; Subashini, Radhakrishnan; Anjana, Ranjit Mohan; Mohan, Viswanathan

    2018-06-01

    To assess the role of artificial intelligence (AI)-based automated software for detection of diabetic retinopathy (DR) and sight-threatening DR (STDR) by fundus photography taken using a smartphone-based device and validate it against ophthalmologist's grading. Three hundred and one patients with type 2 diabetes underwent retinal photography with Remidio 'Fundus on phone' (FOP), a smartphone-based device, at a tertiary care diabetes centre in India. Grading of DR was performed by the ophthalmologists using International Clinical DR (ICDR) classification scale. STDR was defined by the presence of severe non-proliferative DR, proliferative DR or diabetic macular oedema (DME). The retinal photographs were graded using a validated AI DR screening software (EyeArt TM ) designed to identify DR, referable DR (moderate non-proliferative DR or worse and/or DME) or STDR. The sensitivity and specificity of automated grading were assessed and validated against the ophthalmologists' grading. Retinal images of 296 patients were graded. DR was detected by the ophthalmologists in 191 (64.5%) and by the AI software in 203 (68.6%) patients while STDR was detected in 112 (37.8%) and 146 (49.3%) patients, respectively. The AI software showed 95.8% (95% CI 92.9-98.7) sensitivity and 80.2% (95% CI 72.6-87.8) specificity for detecting any DR and 99.1% (95% CI 95.1-99.9) sensitivity and 80.4% (95% CI 73.9-85.9) specificity in detecting STDR with a kappa agreement of k = 0.78 (p < 0.001) and k = 0.75 (p < 0.001), respectively. Automated AI analysis of FOP smartphone retinal imaging has very high sensitivity for detecting DR and STDR and thus can be an initial tool for mass retinal screening in people with diabetes.

  19. Permutation Entropy: New Ideas and Challenges

    Directory of Open Access Journals (Sweden)

    Karsten Keller

    2017-03-01

    Full Text Available Over recent years, some new variants of Permutation entropy have been introduced and applied to EEG analysis, including a conditional variant and variants using some additional metric information or being based on entropies that are different from the Shannon entropy. In some situations, it is not completely clear what kind of information the new measures and their algorithmic implementations provide. We discuss the new developments and illustrate them for EEG data.

  20. Rolling Bearing Fault Diagnosis Based on ELCD Permutation Entropy and RVM

    Directory of Open Access Journals (Sweden)

    Jiang Xingmeng

    2016-01-01

    Full Text Available Aiming at the nonstationary characteristic of a gear fault vibration signal, a recognition method based on permutation entropy of ensemble local characteristic-scale decomposition (ELCD and relevance vector machine (RVM is proposed. First, the vibration signal was decomposed by ELCD; then a series of intrinsic scale components (ISCs were obtained. Second, according to the kurtosis of ISCs, principal ISCs were selected and then the permutation entropy of principal ISCs was calculated and they were combined into a feature vector. Finally, the feature vectors were input in RVM classifier to train and test and identify the type of rolling bearing faults. Experimental results show that this method can effectively diagnose four kinds of working condition, and the effect is better than local characteristic-scale decomposition (LCD method.

  1. Measuring time series regularity using nonlinear similarity-based sample entropy

    International Nuclear Information System (INIS)

    Xie Hongbo; He Weixing; Liu Hui

    2008-01-01

    Sampe Entropy (SampEn), a measure quantifying regularity and complexity, is believed to be an effective analyzing method of diverse settings that include both deterministic chaotic and stochastic processes, particularly operative in the analysis of physiological signals that involve relatively small amount of data. However, the similarity definition of vectors is based on Heaviside function, of which the boundary is discontinuous and hard, may cause some problems in the validity and accuracy of SampEn. Sigmoid function is a smoothed and continuous version of Heaviside function. To overcome the problems SampEn encountered, a modified SampEn (mSampEn) based on nonlinear Sigmoid function was proposed. The performance of mSampEn was tested on the independent identically distributed (i.i.d.) uniform random numbers, the MIX stochastic model, the Rossler map, and the Hennon map. The results showed that mSampEn was superior to SampEn in several aspects, including giving entropy definition in case of small parameters, better relative consistency, robust to noise, and more independence on record length when characterizing time series generated from either deterministic or stochastic system with different regularities

  2. Gradient Dynamics and Entropy Production Maximization

    Science.gov (United States)

    Janečka, Adam; Pavelka, Michal

    2018-01-01

    We compare two methods for modeling dissipative processes, namely gradient dynamics and entropy production maximization. Both methods require similar physical inputs-how energy (or entropy) is stored and how it is dissipated. Gradient dynamics describes irreversible evolution by means of dissipation potential and entropy, it automatically satisfies Onsager reciprocal relations as well as their nonlinear generalization (Maxwell-Onsager relations), and it has statistical interpretation. Entropy production maximization is based on knowledge of free energy (or another thermodynamic potential) and entropy production. It also leads to the linear Onsager reciprocal relations and it has proven successful in thermodynamics of complex materials. Both methods are thermodynamically sound as they ensure approach to equilibrium, and we compare them and discuss their advantages and shortcomings. In particular, conditions under which the two approaches coincide and are capable of providing the same constitutive relations are identified. Besides, a commonly used but not often mentioned step in the entropy production maximization is pinpointed and the condition of incompressibility is incorporated into gradient dynamics.

  3. Classification of multiple sclerosis lesions using adaptive dictionary learning.

    Science.gov (United States)

    Deshpande, Hrishikesh; Maurel, Pierre; Barillot, Christian

    2015-12-01

    This paper presents a sparse representation and an adaptive dictionary learning based method for automated classification of multiple sclerosis (MS) lesions in magnetic resonance (MR) images. Manual delineation of MS lesions is a time-consuming task, requiring neuroradiology experts to analyze huge volume of MR data. This, in addition to the high intra- and inter-observer variability necessitates the requirement of automated MS lesion classification methods. Among many image representation models and classification methods that can be used for such purpose, we investigate the use of sparse modeling. In the recent years, sparse representation has evolved as a tool in modeling data using a few basis elements of an over-complete dictionary and has found applications in many image processing tasks including classification. We propose a supervised classification approach by learning dictionaries specific to the lesions and individual healthy brain tissues, which include white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF). The size of the dictionaries learned for each class plays a major role in data representation but it is an even more crucial element in the case of competitive classification. Our approach adapts the size of the dictionary for each class, depending on the complexity of the underlying data. The algorithm is validated using 52 multi-sequence MR images acquired from 13 MS patients. The results demonstrate the effectiveness of our approach in MS lesion classification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Automated time activity classification based on global positioning system (GPS) tracking data.

    Science.gov (United States)

    Wu, Jun; Jiang, Chengsheng; Houston, Douglas; Baker, Dean; Delfino, Ralph

    2011-11-14

    Air pollution epidemiological studies are increasingly using global positioning system (GPS) to collect time-location data because they offer continuous tracking, high temporal resolution, and minimum reporting burden for participants. However, substantial uncertainties in the processing and classifying of raw GPS data create challenges for reliably characterizing time activity patterns. We developed and evaluated models to classify people's major time activity patterns from continuous GPS tracking data. We developed and evaluated two automated models to classify major time activity patterns (i.e., indoor, outdoor static, outdoor walking, and in-vehicle travel) based on GPS time activity data collected under free living conditions for 47 participants (N = 131 person-days) from the Harbor Communities Time Location Study (HCTLS) in 2008 and supplemental GPS data collected from three UC-Irvine research staff (N = 21 person-days) in 2010. Time activity patterns used for model development were manually classified by research staff using information from participant GPS recordings, activity logs, and follow-up interviews. We evaluated two models: (a) a rule-based model that developed user-defined rules based on time, speed, and spatial location, and (b) a random forest decision tree model. Indoor, outdoor static, outdoor walking and in-vehicle travel activities accounted for 82.7%, 6.1%, 3.2% and 7.2% of manually-classified time activities in the HCTLS dataset, respectively. The rule-based model classified indoor and in-vehicle travel periods reasonably well (Indoor: sensitivity > 91%, specificity > 80%, and precision > 96%; in-vehicle travel: sensitivity > 71%, specificity > 99%, and precision > 88%), but the performance was moderate for outdoor static and outdoor walking predictions. No striking differences in performance were observed between the rule-based and the random forest models. The random forest model was fast and easy to execute, but was likely less robust

  5. Entropy and information

    CERN Document Server

    Volkenstein, Mikhail V

    2009-01-01

    The book "Entropy and Information" deals with the thermodynamical concept of entropy and its relationship to information theory. It is successful in explaining the universality of the term "Entropy" not only as a physical phenomenon, but reveals its existence also in other domains. E.g., Volkenstein discusses the "meaning" of entropy in a biological context and shows how entropy is related to artistic activities. Written by the renowned Russian bio-physicist Mikhail V. Volkenstein, this book on "Entropy and Information" surely serves as a timely introduction to understand entropy from a thermodynamic perspective and is definitely an inspiring and thought-provoking book that should be read by every physicist, information-theorist, biologist, and even artist.

  6. Option price calibration from Renyi entropy

    International Nuclear Information System (INIS)

    Brody, Dorje C.; Buckley, Ian R.C.; Constantinou, Irene C.

    2007-01-01

    The calibration of the risk-neutral density function for the future asset price, based on the maximisation of the entropy measure of Renyi, is proposed. Whilst the conventional approach based on the use of logarithmic entropy measure fails to produce the observed power-law distribution when calibrated against option prices, the approach outlined here is shown to produce the desired form of the distribution. Procedures for the maximisation of the Renyi entropy under constraints are outlined in detail, and a number of interesting properties of the resulting power-law distributions are also derived. The result is applied to efficiently evaluate prices of path-independent derivatives

  7. Entropy generation of nanofluid flow in a microchannel heat sink

    Science.gov (United States)

    Manay, Eyuphan; Akyürek, Eda Feyza; Sahin, Bayram

    2018-06-01

    Present study aims to investigate the effects of the presence of nano sized TiO2 particles in the base fluid on entropy generation rate in a microchannel heat sink. Pure water was chosen as base fluid, and TiO2 particles were suspended into the pure water in five different particle volume fractions of 0.25%, 0.5%, 1.0%, 1.5% and 2.0%. Under laminar, steady state flow and constant heat flux boundary conditions, thermal, frictional, total entropy generation rates and entropy generation number ratios of nanofluids were experimentally analyzed in microchannel flow for different channel heights of 200 μm, 300 μm, 400 μm and 500 μm. It was observed that frictional and total entropy generation rates increased as thermal entropy generation rate were decreasing with an increase in particle volume fraction. In microchannel flows, thermal entropy generation could be neglected due to its too low rate smaller than 1.10e-07 in total entropy generation. Higher channel heights caused higher thermal entropy generation rates, and increasing channel height yielded an increase from 30% to 52% in thermal entropy generation. When channel height decreased, an increase of 66%-98% in frictional entropy generation was obtained. Adding TiO2 nanoparticles into the base fluid caused thermal entropy generation to decrease about 1.8%-32.4%, frictional entropy generation to increase about 3.3%-21.6%.

  8. Parametric Bayesian Estimation of Differential Entropy and Relative Entropy

    OpenAIRE

    Gupta; Srivastava

    2010-01-01

    Given iid samples drawn from a distribution with known parametric form, we propose the minimization of expected Bregman divergence to form Bayesian estimates of differential entropy and relative entropy, and derive such estimators for the uniform, Gaussian, Wishart, and inverse Wishart distributions. Additionally, formulas are given for a log gamma Bregman divergence and the differential entropy and relative entropy for the Wishart and inverse Wishart. The results, as always with Bayesian est...

  9. Maximum Entropy Fundamentals

    Directory of Open Access Journals (Sweden)

    F. Topsøe

    2001-09-01

    Full Text Available Abstract: In its modern formulation, the Maximum Entropy Principle was promoted by E.T. Jaynes, starting in the mid-fifties. The principle dictates that one should look for a distribution, consistent with available information, which maximizes the entropy. However, this principle focuses only on distributions and it appears advantageous to bring information theoretical thinking more prominently into play by also focusing on the "observer" and on coding. This view was brought forward by the second named author in the late seventies and is the view we will follow-up on here. It leads to the consideration of a certain game, the Code Length Game and, via standard game theoretical thinking, to a principle of Game Theoretical Equilibrium. This principle is more basic than the Maximum Entropy Principle in the sense that the search for one type of optimal strategies in the Code Length Game translates directly into the search for distributions with maximum entropy. In the present paper we offer a self-contained and comprehensive treatment of fundamentals of both principles mentioned, based on a study of the Code Length Game. Though new concepts and results are presented, the reading should be instructional and accessible to a rather wide audience, at least if certain mathematical details are left aside at a rst reading. The most frequently studied instance of entropy maximization pertains to the Mean Energy Model which involves a moment constraint related to a given function, here taken to represent "energy". This type of application is very well known from the literature with hundreds of applications pertaining to several different elds and will also here serve as important illustration of the theory. But our approach reaches further, especially regarding the study of continuity properties of the entropy function, and this leads to new results which allow a discussion of models with so-called entropy loss. These results have tempted us to speculate over

  10. A New Method of Reliability Evaluation Based on Wavelet Information Entropy for Equipment Condition Identification

    International Nuclear Information System (INIS)

    He, Z J; Zhang, X L; Chen, X F

    2012-01-01

    Aiming at reliability evaluation of condition identification of mechanical equipment, it is necessary to analyze condition monitoring information. A new method of reliability evaluation based on wavelet information entropy extracted from vibration signals of mechanical equipment is proposed. The method is quite different from traditional reliability evaluation models that are dependent on probability statistics analysis of large number sample data. The vibration signals of mechanical equipment were analyzed by means of second generation wavelet package (SGWP). We take relative energy in each frequency band of decomposed signal that equals a percentage of the whole signal energy as probability. Normalized information entropy (IE) is obtained based on the relative energy to describe uncertainty of a system instead of probability. The reliability degree is transformed by the normalized wavelet information entropy. A successful application has been achieved to evaluate the assembled quality reliability for a kind of dismountable disk-drum aero-engine. The reliability degree indicates the assembled quality satisfactorily.

  11. EEG artifacts reduction by multivariate empirical mode decomposition and multiscale entropy for monitoring depth of anaesthesia during surgery.

    Science.gov (United States)

    Liu, Quan; Chen, Yi-Feng; Fan, Shou-Zen; Abbod, Maysam F; Shieh, Jiann-Shing

    2017-08-01

    Electroencephalography (EEG) has been widely utilized to measure the depth of anaesthesia (DOA) during operation. However, the EEG signals are usually contaminated by artifacts which have a consequence on the measured DOA accuracy. In this study, an effective and useful filtering algorithm based on multivariate empirical mode decomposition and multiscale entropy (MSE) is proposed to measure DOA. Mean entropy of MSE is used as an index to find artifacts-free intrinsic mode functions. The effect of different levels of artifacts on the performances of the proposed filtering is analysed using simulated data. Furthermore, 21 patients' EEG signals are collected and analysed using sample entropy to calculate the complexity for monitoring DOA. The correlation coefficients of entropy and bispectral index (BIS) results show 0.14 ± 0.30 and 0.63 ± 0.09 before and after filtering, respectively. Artificial neural network (ANN) model is used for range mapping in order to correlate the measurements with BIS. The ANN method results show strong correlation coefficient (0.75 ± 0.08). The results in this paper verify that entropy values and BIS have a strong correlation for the purpose of DOA monitoring and the proposed filtering method can effectively filter artifacts from EEG signals. The proposed method performs better than the commonly used wavelet denoising method. This study provides a fully adaptive and automated filter for EEG to measure DOA more accuracy and thus reduce risk related to maintenance of anaesthetic agents.

  12. Pattern recognition and classification an introduction

    CERN Document Server

    Dougherty, Geoff

    2012-01-01

    The use of pattern recognition and classification is fundamental to many of the automated electronic systems in use today. However, despite the existence of a number of notable books in the field, the subject remains very challenging, especially for the beginner. Pattern Recognition and Classification presents a comprehensive introduction to the core concepts involved in automated pattern recognition. It is designed to be accessible to newcomers from varied backgrounds, but it will also be useful to researchers and professionals in image and signal processing and analysis, and in computer visi

  13. Dissimilarity-based classification of anatomical tree structures

    DEFF Research Database (Denmark)

    Sørensen, Lauge; Lo, Pechin Chien Pau; Dirksen, Asger

    2011-01-01

    A novel method for classification of abnormality in anatomical tree structures is presented. A tree is classified based on direct comparisons with other trees in a dissimilarity-based classification scheme. The pair-wise dissimilarity measure between two trees is based on a linear assignment betw...

  14. Dissimilarity-based classification of anatomical tree structures

    DEFF Research Database (Denmark)

    Sørensen, Lauge Emil Borch Laurs; Lo, Pechin Chien Pau; Dirksen, Asger

    2011-01-01

    A novel method for classification of abnormality in anatomical tree structures is presented. A tree is classified based on direct comparisons with other trees in a dissimilarity-based classification scheme. The pair-wise dissimilarity measure between two trees is based on a linear assignment...

  15. Graph Theory-Based Brain Connectivity for Automatic Classification of Multiple Sclerosis Clinical Courses

    Directory of Open Access Journals (Sweden)

    Gabriel Kocevar

    2016-10-01

    Full Text Available Purpose: In this work, we introduce a method to classify Multiple Sclerosis (MS patients into four clinical profiles using structural connectivity information. For the first time, we try to solve this question in a fully automated way using a computer-based method. The main goal is to show how the combination of graph-derived metrics with machine learning techniques constitutes a powerful tool for a better characterization and classification of MS clinical profiles.Materials and methods: Sixty-four MS patients (12 Clinical Isolated Syndrome (CIS, 24 Relapsing Remitting (RR, 24 Secondary Progressive (SP, and 17 Primary Progressive (PP along with 26 healthy controls (HC underwent MR examination. T1 and diffusion tensor imaging (DTI were used to obtain structural connectivity matrices for each subject. Global graph metrics, such as density and modularity, were estimated and compared between subjects’ groups. These metrics were further used to classify patients using tuned Support Vector Machine (SVM combined with Radial Basic Function (RBF kernel.Results: When comparing MS patients to HC subjects, a greater assortativity, transitivity and characteristic path length as well as a lower global efficiency were found. Using all graph metrics, the best F-Measures (91.8%, 91.8%, 75.6% and 70.6% were obtained for binary (HC-CIS, CIS-RR, RR-PP and multi-class (CIS-RR-SP classification tasks, respectively. When using only one graph metric, the best F-Measures (83.6%, 88.9% and 70.7% were achieved for modularity with previous binary classification tasks.Conclusion: Based on a simple DTI acquisition associated with structural brain connectivity analysis, this automatic method allowed an accurate classification of different MS patients’ clinical profiles.

  16. Entropy and wigner functions

    Science.gov (United States)

    Manfredi; Feix

    2000-10-01

    The properties of an alternative definition of quantum entropy, based on Wigner functions, are discussed. Such a definition emerges naturally from the Wigner representation of quantum mechanics, and can easily quantify the amount of entanglement of a quantum state. It is shown that smoothing of the Wigner function induces an increase in entropy. This fact is used to derive some simple rules to construct positive-definite probability distributions which are also admissible Wigner functions.

  17. Entropy and Wigner Functions

    OpenAIRE

    Manfredi, G.; Feix, M. R.

    2002-01-01

    The properties of an alternative definition of quantum entropy, based on Wigner functions, are discussed. Such definition emerges naturally from the Wigner representation of quantum mechanics, and can easily quantify the amount of entanglement of a quantum state. It is shown that smoothing of the Wigner function induces an increase in entropy. This fact is used to derive some simple rules to construct positive definite probability distributions which are also admissible Wigner functions

  18. Extraction of prostatic lumina and automated recognition for prostatic calculus image using PCA-SVM.

    Science.gov (United States)

    Wang, Zhuocai; Xu, Xiangmin; Ding, Xiaojun; Xiao, Hui; Huang, Yusheng; Liu, Jian; Xing, Xiaofen; Wang, Hua; Liao, D Joshua

    2011-01-01

    Identification of prostatic calculi is an important basis for determining the tissue origin. Computation-assistant diagnosis of prostatic calculi may have promising potential but is currently still less studied. We studied the extraction of prostatic lumina and automated recognition for calculus images. Extraction of lumina from prostate histology images was based on local entropy and Otsu threshold recognition using PCA-SVM and based on the texture features of prostatic calculus. The SVM classifier showed an average time 0.1432 second, an average training accuracy of 100%, an average test accuracy of 93.12%, a sensitivity of 87.74%, and a specificity of 94.82%. We concluded that the algorithm, based on texture features and PCA-SVM, can recognize the concentric structure and visualized features easily. Therefore, this method is effective for the automated recognition of prostatic calculi.

  19. Extraction of Prostatic Lumina and Automated Recognition for Prostatic Calculus Image Using PCA-SVM

    Science.gov (United States)

    Wang, Zhuocai; Xu, Xiangmin; Ding, Xiaojun; Xiao, Hui; Huang, Yusheng; Liu, Jian; Xing, Xiaofen; Wang, Hua; Liao, D. Joshua

    2011-01-01

    Identification of prostatic calculi is an important basis for determining the tissue origin. Computation-assistant diagnosis of prostatic calculi may have promising potential but is currently still less studied. We studied the extraction of prostatic lumina and automated recognition for calculus images. Extraction of lumina from prostate histology images was based on local entropy and Otsu threshold recognition using PCA-SVM and based on the texture features of prostatic calculus. The SVM classifier showed an average time 0.1432 second, an average training accuracy of 100%, an average test accuracy of 93.12%, a sensitivity of 87.74%, and a specificity of 94.82%. We concluded that the algorithm, based on texture features and PCA-SVM, can recognize the concentric structure and visualized features easily. Therefore, this method is effective for the automated recognition of prostatic calculi. PMID:21461364

  20. Quantum dynamical entropy revisited

    International Nuclear Information System (INIS)

    Hudetz, T.

    1996-10-01

    We define a new quantum dynamical entropy, which is a 'hybrid' of the closely related, physically oriented entropy introduced by Alicki and Fannes in 1994, and of the mathematically well-developed, single-argument entropy introduced by Connes, Narnhofer and Thirring in 1987. We show that this new quantum dynamical entropy has many properties similar to the ones of the Alicki-Fannes entropy, and also inherits some additional properties from the CNT entropy. In particular, the 'hybrid' entropy interpolates between the two different ways in which both the AF and the CNT entropy of the shift automorphism on the quantum spin chain agree with the usual quantum entropy density, resulting in even better agreement. Also, the new quantum dynamical entropy generalizes the classical dynamical entropy of Kolmogorov and Sinai in the same way as does the AF entropy. Finally, we estimate the 'hybrid' entropy both for the Powers-Price shift systems and for the noncommutative Arnold map on the irrational rotation C * -algebra, leaving some interesting open problems. (author)

  1. Optimization-based Method for Automated Road Network Extraction

    International Nuclear Information System (INIS)

    Xiong, D

    2001-01-01

    Automated road information extraction has significant applicability in transportation. It provides a means for creating, maintaining, and updating transportation network databases that are needed for purposes ranging from traffic management to automated vehicle navigation and guidance. This paper is to review literature on the subject of road extraction and to describe a study of an optimization-based method for automated road network extraction

  2. A Parallel Adaboost-Backpropagation Neural Network for Massive Image Dataset Classification

    Science.gov (United States)

    Cao, Jianfang; Chen, Lichao; Wang, Min; Shi, Hao; Tian, Yun

    2016-01-01

    Image classification uses computers to simulate human understanding and cognition of images by automatically categorizing images. This study proposes a faster image classification approach that parallelizes the traditional Adaboost-Backpropagation (BP) neural network using the MapReduce parallel programming model. First, we construct a strong classifier by assembling the outputs of 15 BP neural networks (which are individually regarded as weak classifiers) based on the Adaboost algorithm. Second, we design Map and Reduce tasks for both the parallel Adaboost-BP neural network and the feature extraction algorithm. Finally, we establish an automated classification model by building a Hadoop cluster. We use the Pascal VOC2007 and Caltech256 datasets to train and test the classification model. The results are superior to those obtained using traditional Adaboost-BP neural network or parallel BP neural network approaches. Our approach increased the average classification accuracy rate by approximately 14.5% and 26.0% compared to the traditional Adaboost-BP neural network and parallel BP neural network, respectively. Furthermore, the proposed approach requires less computation time and scales very well as evaluated by speedup, sizeup and scaleup. The proposed approach may provide a foundation for automated large-scale image classification and demonstrates practical value. PMID:27905520

  3. Entropy resistance minimization: An alternative method for heat exchanger analyses

    International Nuclear Information System (INIS)

    Cheng, XueTao

    2013-01-01

    In this paper, the concept of entropy resistance is proposed based on the entropy generation analyses of heat transfer processes. It is shown that smaller entropy resistance leads to larger heat transfer rate with fixed thermodynamic force difference and smaller thermodynamic force difference with fixed heat transfer rate, respectively. For the discussed two-stream heat exchangers in which the heat transfer rates are not given and the three-stream heat exchanger with prescribed heat capacity flow rates and inlet temperatures of the streams, smaller entropy resistance leads to larger heat transfer rate. For the two-stream heat exchangers with fixed heat transfer rate, smaller entropy resistance leads to larger effectiveness. Furthermore, it is shown that smaller values of the concepts of entropy generation numbers and modified entropy generation number do not always correspond to better performance of the discussed heat exchangers. - Highlights: • The concept of entropy resistance is defined for heat exchangers. • The concepts based on entropy generation are used to analyze heat exchangers. • Smaller entropy resistance leads to better performance of heat exchangers. • The applicability of entropy generation minimization is conditional

  4. Cloud field classification based on textural features

    Science.gov (United States)

    Sengupta, Sailes Kumar

    1989-01-01

    An essential component in global climate research is accurate cloud cover and type determination. Of the two approaches to texture-based classification (statistical and textural), only the former is effective in the classification of natural scenes such as land, ocean, and atmosphere. In the statistical approach that was adopted, parameters characterizing the stochastic properties of the spatial distribution of grey levels in an image are estimated and then used as features for cloud classification. Two types of textural measures were used. One is based on the distribution of the grey level difference vector (GLDV), and the other on a set of textural features derived from the MaxMin cooccurrence matrix (MMCM). The GLDV method looks at the difference D of grey levels at pixels separated by a horizontal distance d and computes several statistics based on this distribution. These are then used as features in subsequent classification. The MaxMin tectural features on the other hand are based on the MMCM, a matrix whose (I,J)th entry give the relative frequency of occurrences of the grey level pair (I,J) that are consecutive and thresholded local extremes separated by a given pixel distance d. Textural measures are then computed based on this matrix in much the same manner as is done in texture computation using the grey level cooccurrence matrix. The database consists of 37 cloud field scenes from LANDSAT imagery using a near IR visible channel. The classification algorithm used is the well known Stepwise Discriminant Analysis. The overall accuracy was estimated by the percentage or correct classifications in each case. It turns out that both types of classifiers, at their best combination of features, and at any given spatial resolution give approximately the same classification accuracy. A neural network based classifier with a feed forward architecture and a back propagation training algorithm is used to increase the classification accuracy, using these two classes

  5. Microscopic entropy and nonlocality

    International Nuclear Information System (INIS)

    Karpov, E.; Ordonets, G.; Petroskij, T.; Prigozhin, I.

    2003-01-01

    We have obtained a microscopic expression for entropy in terms of H function based on nonunitary Λ transformation which leads from the time evolution as a unitary group to a Markovian dynamics and unifies the reversible and irreversible aspects of quantum mechanics. This requires a new representation outside the Hilbert space. In terms of H, we show the entropy production and the entropy flow during the emission and absorption of radiation by an atom. Analyzing the time inversion experiment, we emphasize the importance of pre- and postcollisional correlations, which break the symmetry between incoming and outgoing waves. We consider the angle dependence of the H function in a three-dimensional situation. A model including virtual transitions is discussed in a subsequent paper

  6. Automation-assisted cervical cancer screening in manual liquid-based cytology with hematoxylin and eosin staining.

    Science.gov (United States)

    Zhang, Ling; Kong, Hui; Ting Chin, Chien; Liu, Shaoxiong; Fan, Xinmin; Wang, Tianfu; Chen, Siping

    2014-03-01

    Current automation-assisted technologies for screening cervical cancer mainly rely on automated liquid-based cytology slides with proprietary stain. This is not a cost-efficient approach to be utilized in developing countries. In this article, we propose the first automation-assisted system to screen cervical cancer in manual liquid-based cytology (MLBC) slides with hematoxylin and eosin (H&E) stain, which is inexpensive and more applicable in developing countries. This system consists of three main modules: image acquisition, cell segmentation, and cell classification. First, an autofocusing scheme is proposed to find the global maximum of the focus curve by iteratively comparing image qualities of specific locations. On the autofocused images, the multiway graph cut (GC) is performed globally on the a* channel enhanced image to obtain cytoplasm segmentation. The nuclei, especially abnormal nuclei, are robustly segmented by using GC adaptively and locally. Two concave-based approaches are integrated to split the touching nuclei. To classify the segmented cells, features are selected and preprocessed to improve the sensitivity, and contextual and cytoplasm information are introduced to improve the specificity. Experiments on 26 consecutive image stacks demonstrated that the dynamic autofocusing accuracy was 2.06 μm. On 21 cervical cell images with nonideal imaging condition and pathology, our segmentation method achieved a 93% accuracy for cytoplasm, and a 87.3% F-measure for nuclei, both outperformed state of the art works in terms of accuracy. Additional clinical trials showed that both the sensitivity (88.1%) and the specificity (100%) of our system are satisfyingly high. These results proved the feasibility of automation-assisted cervical cancer screening in MLBC slides with H&E stain, which is highly desirable in community health centers and small hospitals. © 2013 International Society for Advancement of Cytometry.

  7. Recent advances in agent-based complex automated negotiation

    CERN Document Server

    Ito, Takayuki; Zhang, Minjie; Fujita, Katsuhide; Robu, Valentin

    2016-01-01

    This book covers recent advances in Complex Automated Negotiations as a widely studied emerging area in the field of Autonomous Agents and Multi-Agent Systems. The book includes selected revised and extended papers from the 7th International Workshop on Agent-Based Complex Automated Negotiation (ACAN2014), which was held in Paris, France, in May 2014. The book also includes brief introductions about Agent-based Complex Automated Negotiation which are based on tutorials provided in the workshop, and brief summaries and descriptions about the ANAC'14 (Automated Negotiating Agents Competition) competition, where authors of selected finalist agents explain the strategies and the ideas used by them. The book is targeted to academic and industrial researchers in various communities of autonomous agents and multi-agent systems, such as agreement technology, mechanism design, electronic commerce, related areas, as well as graduate, undergraduate, and PhD students working in those areas or having interest in them.

  8. Entropy based quantification of Ki-67 positive cell images and its evaluation by a reader study

    Science.gov (United States)

    Niazi, M. Khalid Khan; Pennell, Michael; Elkins, Camille; Hemminger, Jessica; Jin, Ming; Kirby, Sean; Kurt, Habibe; Miller, Barrie; Plocharczyk, Elizabeth; Roth, Rachel; Ziegler, Rebecca; Shana'ah, Arwa; Racke, Fred; Lozanski, Gerard; Gurcan, Metin N.

    2013-03-01

    Presence of Ki-67, a nuclear protein, is typically used to measure cell proliferation. The quantification of the Ki-67 proliferation index is performed visually by the pathologist; however, this is subject to inter- and intra-reader variability. Automated techniques utilizing digital image analysis by computers have emerged. The large variations in specimen preparation, staining, and imaging as well as true biological heterogeneity of tumor tissue often results in variable intensities in Ki-67 stained images. These variations affect the performance of currently developed methods. To optimize the segmentation of Ki-67 stained cells, one should define a data dependent transformation that will account for these color variations instead of defining a fixed linear transformation to separate different hues. To address these issues in images of tissue stained with Ki-67, we propose a methodology that exploits the intrinsic properties of CIE L∗a∗b∗ color space to translate this complex problem into an automatic entropy based thresholding problem. The developed method was evaluated through two reader studies with pathology residents and expert hematopathologists. Agreement between the proposed method and the expert pathologists was good (CCC = 0.80).

  9. Entropy in bimolecular simulations: A comprehensive review of atomic fluctuations-based methods.

    Science.gov (United States)

    Kassem, Summer; Ahmed, Marawan; El-Sheikh, Salah; Barakat, Khaled H

    2015-11-01

    Entropy of binding constitutes a major, and in many cases a detrimental, component of the binding affinity in biomolecular interactions. While the enthalpic part of the binding free energy is easier to calculate, estimating the entropy of binding is further more complicated. A precise evaluation of entropy requires a comprehensive exploration of the complete phase space of the interacting entities. As this task is extremely hard to accomplish in the context of conventional molecular simulations, calculating entropy has involved many approximations. Most of these golden standard methods focused on developing a reliable estimation of the conformational part of the entropy. Here, we review these methods with a particular emphasis on the different techniques that extract entropy from atomic fluctuations. The theoretical formalisms behind each method is explained highlighting its strengths as well as its limitations, followed by a description of a number of case studies for each method. We hope that this brief, yet comprehensive, review provides a useful tool to understand these methods and realize the practical issues that may arise in such calculations. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. HYBRID OPTIMIZATION OF OBJECT-BASED CLASSIFICATION IN HIGH-RESOLUTION IMAGES USING CONTINOUS ANT COLONY ALGORITHM WITH EMPHASIS ON BUILDING DETECTION

    Directory of Open Access Journals (Sweden)

    E. Tamimi

    2017-09-01

    Full Text Available Automatic building detection from High Spatial Resolution (HSR images is one of the most important issues in Remote Sensing (RS. Due to the limited number of spectral bands in HSR images, using other features will lead to improve accuracy. By adding these features, the presence probability of dependent features will be increased, which leads to accuracy reduction. In addition, some parameters should be determined in Support Vector Machine (SVM classification. Therefore, it is necessary to simultaneously determine classification parameters and select independent features according to image type. Optimization algorithm is an efficient method to solve this problem. On the other hand, pixel-based classification faces several challenges such as producing salt-paper results and high computational time in high dimensional data. Hence, in this paper, a novel method is proposed to optimize object-based SVM classification by applying continuous Ant Colony Optimization (ACO algorithm. The advantages of the proposed method are relatively high automation level, independency of image scene and type, post processing reduction for building edge reconstruction and accuracy improvement. The proposed method was evaluated by pixel-based SVM and Random Forest (RF classification in terms of accuracy. In comparison with optimized pixel-based SVM classification, the results showed that the proposed method improved quality factor and overall accuracy by 17% and 10%, respectively. Also, in the proposed method, Kappa coefficient was improved by 6% rather than RF classification. Time processing of the proposed method was relatively low because of unit of image analysis (image object. These showed the superiority of the proposed method in terms of time and accuracy.

  11. Some Comments on the Entropy-Based Criteria for Piping

    Directory of Open Access Journals (Sweden)

    Emöke Imre

    2015-04-01

    Full Text Available This paper is an extension of previous work which characterises soil behaviours using the grading entropy diagram. The present work looks at the piping process in granular soils, by considering some new data from flood-protection dikes. The piping process is divided into three parts here: particle movement at the micro scale to segregate free water; sand boil development (which is the initiation of the pipe, and pipe growth. In the first part of the process, which occurs during the rising flood, the increase in shear stress along the dike base may cause segregation of water into micro pipes if the subsoil in the dike base is relatively loose. This occurs at the maximum dike base shear stress level (ratio of shear stress and strength zone which is close to the toe. In the second part of the process, the shear strain increment causes a sudden, asymmetric slide and cracking of the dike leading to the localized excess pore pressure, liquefaction and the formation of a sand boil. In the third part of the process, the soil erosion initiated through the sand boil continues, and the pipe grows. The piping in the Hungarian dikes often occurs in a two-layer system; where the base layer is coarser with higher permeability and the cover layer is finer with lower permeability. The new data presented here show that the soils ejected from the sand boils are generally silty sands and sands, which are prone to both erosion (on the basis of the entropy criterion and liquefaction. They originate from the cover layer which is basically identical to the soil used in the Dutch backward erosion experiments.

  12. Entropy of Vaidya-deSitter Spacetime

    Institute of Scientific and Technical Information of China (English)

    LI Xiang; ZHAO Zheng

    2001-01-01

    As a statistical model of black hole entropy, the brick-wall method based on the thermal equilibrium in a large scale cannot be applied to the cases out of equilibrium, such as the non-static hole or the case with two horizons.However, the leading term of hole entropy called the Bekenstein-Hawking entropy comes from the contribution of the field near the horizon. According to this idea, the entropy of Vaidya-deSitter spacetime is calculated. A difference from the static case is that the result proportional to the area of horizon relies on a time-dependent cut-off. The condition of local equilibrium near the horizon is used as a working postulate.

  13. Classification of Weed Species Using Artificial Neural Networks Based on Color Leaf Texture Feature

    Science.gov (United States)

    Li, Zhichen; An, Qiu; Ji, Changying

    The potential impact of herbicide utilization compel people to use new method of weed control. Selective herbicide application is optimal method to reduce herbicide usage while maintain weed control. The key of selective herbicide is how to discriminate weed exactly. The HIS color co-occurrence method (CCM) texture analysis techniques was used to extract four texture parameters: Angular second moment (ASM), Entropy(E), Inertia quadrature (IQ), and Inverse difference moment or local homogeneity (IDM).The weed species selected for studying were Arthraxon hispidus, Digitaria sanguinalis, Petunia, Cyperus, Alternanthera Philoxeroides and Corchoropsis psilocarpa. The software of neuroshell2 was used for designing the structure of the neural network, training and test the data. It was found that the 8-40-1 artificial neural network provided the best classification performance and was capable of classification accuracies of 78%.

  14. Entropy Coding in HEVC

    OpenAIRE

    Sze, Vivienne; Marpe, Detlev

    2014-01-01

    Context-Based Adaptive Binary Arithmetic Coding (CABAC) is a method of entropy coding first introduced in H.264/AVC and now used in the latest High Efficiency Video Coding (HEVC) standard. While it provides high coding efficiency, the data dependencies in H.264/AVC CABAC make it challenging to parallelize and thus limit its throughput. Accordingly, during the standardization of entropy coding for HEVC, both aspects of coding efficiency and throughput were considered. This chapter describes th...

  15. Information Entropy Measures for Stand Structural Diversity:Joint Entropy

    Institute of Scientific and Technical Information of China (English)

    Lei Xiangdong; Lu Yuanchang

    2004-01-01

    Structural diversity is the key attribute of a stand. A set of biodiversity measures in ecology was introduced in forest management for describing stand structure, of which Shannon information entropy (Shannon index) has been the most widely used measure of species diversity. It is generally thought that tree size diversity could serve as a good proxy for height diversity. However, tree size diversity and height diversity for stand structure is not completely consistent. Stand diameter cannot reflect height information completely. Either tree size diversity or height diversity is one-dimensional information entropy measure. This paper discussed the method of multiple-dimensional information entropy measure with the concept of joint entropy. It is suggested that joint entropy is a good measure for describing overall stand structural diversity.

  16. On Using Entropy for Enhancing Handwriting Preprocessing

    Directory of Open Access Journals (Sweden)

    Bernhard Peischl

    2012-11-01

    Full Text Available Handwriting is an important modality for Human-Computer Interaction. For medical professionals, handwriting is (still the preferred natural method of documentation. Handwriting recognition has long been a primary research area in Computer Science. With the tremendous ubiquity of smartphones, along with the renaissance of the stylus, handwriting recognition has become a new impetus. However, recognition rates are still not 100% perfect, and researchers still are constantly improving handwriting algorithms. In this paper we evaluate the performance of entropy based slant- and skew-correction, and compare the results to other methods. We selected 3700 words of 23 writers out of the Unipen-ICROW-03 benchmark set, which we annotated with their associated error angles by hand. Our results show that the entropy-based slant correction method outperforms a window based approach with an average precision of 6:02 for the entropy-based method, compared with the 7:85 for the alternative. On the other hand, the entropy-based skew correction yields a lower average precision of 2:86, compared with the average precision of 2:13 for the alternative LSM based approach.

  17. Quantum chaos: entropy signatures

    International Nuclear Information System (INIS)

    Miller, P.A.; Sarkar, S.; Zarum, R.

    1998-01-01

    A definition of quantum chaos is given in terms of entropy production rates for a quantum system coupled weakly to a reservoir. This allows the treatment of classical and quantum chaos on the same footing. In the quantum theory the entropy considered is the von Neumann entropy and in classical systems it is the Gibbs entropy. The rate of change of the coarse-grained Gibbs entropy of the classical system with time is given by the Kolmogorov-Sinai (KS) entropy. The relation between KS entropy and the rate of change of von Neumann entropy is investigated for the kicked rotator. For a system which is classically chaotic there is a linear relationship between these two entropies. Moreover it is possible to construct contour plots for the local KS entropy and compare it with the corresponding plots for the rate of change of von Neumann entropy. The quantitative and qualitative similarities of these plots are discussed for the standard map (kicked rotor) and the generalised cat maps. (author)

  18. 基于信息熵的SVM入侵检测技术%Exploring SVM-based intrusion detection through information entropy theory

    Institute of Scientific and Technical Information of China (English)

    朱文杰; 王强; 翟献军

    2013-01-01

    在传统基于SVM的入侵检测中,核函数构造和特征选择采用先验知识,普遍存在准确度不高、效率低下的问题.通过信息熵理论与SVM算法相结合的方法改进为基于信息熵的SVM入侵检测算法,可以提高入侵检测的准确性,提升入侵检测的效率.基于信息熵的SVM入侵检测算法包括两个方面:一方面,根据样本包含的用户信息熵和方差,将样本特征统一,以特征是否属于置信区间来度量.将得到的样本特征置信向量作为SVM核函数的构造参数,既可保证训练样本集与最优分类面之间的对应关系,又可得到入侵检测需要的最大分类间隔;另一方面,将样本包含的用户信息量作为度量大幅度约简样本特征子集,不但降低了样本计算规模,而且提高了分类器的训练速度.实验表明,该算法在入侵检测系统中的应用优于传统的SVM算法.%In traditional SVM based intrusion detection approaches,both core function construction and feature selection use prior knowdege.Due to this,they are not only inefficient but also inaccurate.It is observed that integrating information entropy theory into SVM-based intrusion detection can enhance both the precision and the speed.Concludely speaking,SVM-based entropy intrusion detection algorithms are made up of two aspects:on one hand,setting sample confidence vector as core function's constructor of SVM algorithm can guarantee the mapping relationship between training sample and optimization classification plane.Also,the intrusion detection's maximum interval can be acquired.On the other hand,simplifying feature subset with samples's entropy as metric standard can not only shrink the computing scale but also improve the speed.Experiments prove that the SVM based entropy intrusion detection algoritm outperfomrs other tradional algorithms.

  19. Bivariate Rainfall and Runoff Analysis Using Shannon Entropy Theory

    Science.gov (United States)

    Rahimi, A.; Zhang, L.

    2012-12-01

    Rainfall-Runoff analysis is the key component for many hydrological and hydraulic designs in which the dependence of rainfall and runoff needs to be studied. It is known that the convenient bivariate distribution are often unable to model the rainfall-runoff variables due to that they either have constraints on the range of the dependence or fixed form for the marginal distributions. Thus, this paper presents an approach to derive the entropy-based joint rainfall-runoff distribution using Shannon entropy theory. The distribution derived can model the full range of dependence and allow different specified marginals. The modeling and estimation can be proceeded as: (i) univariate analysis of marginal distributions which includes two steps, (a) using the nonparametric statistics approach to detect modes and underlying probability density, and (b) fitting the appropriate parametric probability density functions; (ii) define the constraints based on the univariate analysis and the dependence structure; (iii) derive and validate the entropy-based joint distribution. As to validate the method, the rainfall-runoff data are collected from the small agricultural experimental watersheds located in semi-arid region near Riesel (Waco), Texas, maintained by the USDA. The results of unviariate analysis show that the rainfall variables follow the gamma distribution, whereas the runoff variables have mixed structure and follow the mixed-gamma distribution. With this information, the entropy-based joint distribution is derived using the first moments, the first moments of logarithm transformed rainfall and runoff, and the covariance between rainfall and runoff. The results of entropy-based joint distribution indicate: (1) the joint distribution derived successfully preserves the dependence between rainfall and runoff, and (2) the K-S goodness of fit statistical tests confirm the marginal distributions re-derived reveal the underlying univariate probability densities which further

  20. Forest Tree Species Distribution Mapping Using Landsat Satellite Imagery and Topographic Variables with the Maximum Entropy Method in Mongolia

    Science.gov (United States)

    Hao Chiang, Shou; Valdez, Miguel; Chen, Chi-Farn

    2016-06-01

    Forest is a very important ecosystem and natural resource for living things. Based on forest inventories, government is able to make decisions to converse, improve and manage forests in a sustainable way. Field work for forestry investigation is difficult and time consuming, because it needs intensive physical labor and the costs are high, especially surveying in remote mountainous regions. A reliable forest inventory can give us a more accurate and timely information to develop new and efficient approaches of forest management. The remote sensing technology has been recently used for forest investigation at a large scale. To produce an informative forest inventory, forest attributes, including tree species are unavoidably required to be considered. In this study the aim is to classify forest tree species in Erdenebulgan County, Huwsgul province in Mongolia, using Maximum Entropy method. The study area is covered by a dense forest which is almost 70% of total territorial extension of Erdenebulgan County and is located in a high mountain region in northern Mongolia. For this study, Landsat satellite imagery and a Digital Elevation Model (DEM) were acquired to perform tree species mapping. The forest tree species inventory map was collected from the Forest Division of the Mongolian Ministry of Nature and Environment as training data and also used as ground truth to perform the accuracy assessment of the tree species classification. Landsat images and DEM were processed for maximum entropy modeling, and this study applied the model with two experiments. The first one is to use Landsat surface reflectance for tree species classification; and the second experiment incorporates terrain variables in addition to the Landsat surface reflectance to perform the tree species classification. All experimental results were compared with the tree species inventory to assess the classification accuracy. Results show that the second one which uses Landsat surface reflectance coupled

  1. FOREST TREE SPECIES DISTRIBUTION MAPPING USING LANDSAT SATELLITE IMAGERY AND TOPOGRAPHIC VARIABLES WITH THE MAXIMUM ENTROPY METHOD IN MONGOLIA

    Directory of Open Access Journals (Sweden)

    S. H. Chiang

    2016-06-01

    Full Text Available Forest is a very important ecosystem and natural resource for living things. Based on forest inventories, government is able to make decisions to converse, improve and manage forests in a sustainable way. Field work for forestry investigation is difficult and time consuming, because it needs intensive physical labor and the costs are high, especially surveying in remote mountainous regions. A reliable forest inventory can give us a more accurate and timely information to develop new and efficient approaches of forest management. The remote sensing technology has been recently used for forest investigation at a large scale. To produce an informative forest inventory, forest attributes, including tree species are unavoidably required to be considered. In this study the aim is to classify forest tree species in Erdenebulgan County, Huwsgul province in Mongolia, using Maximum Entropy method. The study area is covered by a dense forest which is almost 70% of total territorial extension of Erdenebulgan County and is located in a high mountain region in northern Mongolia. For this study, Landsat satellite imagery and a Digital Elevation Model (DEM were acquired to perform tree species mapping. The forest tree species inventory map was collected from the Forest Division of the Mongolian Ministry of Nature and Environment as training data and also used as ground truth to perform the accuracy assessment of the tree species classification. Landsat images and DEM were processed for maximum entropy modeling, and this study applied the model with two experiments. The first one is to use Landsat surface reflectance for tree species classification; and the second experiment incorporates terrain variables in addition to the Landsat surface reflectance to perform the tree species classification. All experimental results were compared with the tree species inventory to assess the classification accuracy. Results show that the second one which uses Landsat surface

  2. Toward an Attention-Based Diagnostic Tool for Patients With Locked-in Syndrome.

    Science.gov (United States)

    Lesenfants, Damien; Habbal, Dina; Chatelle, Camille; Soddu, Andrea; Laureys, Steven; Noirhomme, Quentin

    2018-03-01

    Electroencephalography (EEG) has been proposed as a supplemental tool for reducing clinical misdiagnosis in severely brain-injured populations helping to distinguish conscious from unconscious patients. We studied the use of spectral entropy as a measure of focal attention in order to develop a motor-independent, portable, and objective diagnostic tool for patients with locked-in syndrome (LIS), answering the issues of accuracy and training requirement. Data from 20 healthy volunteers, 6 LIS patients, and 10 patients with a vegetative state/unresponsive wakefulness syndrome (VS/UWS) were included. Spectral entropy was computed during a gaze-independent 2-class (attention vs rest) paradigm, and compared with EEG rhythms (delta, theta, alpha, and beta) classification. Spectral entropy classification during the attention-rest paradigm showed 93% and 91% accuracy in healthy volunteers and LIS patients respectively. VS/UWS patients were at chance level. EEG rhythms classification reached a lower accuracy than spectral entropy. Resting-state EEG spectral entropy could not distinguish individual VS/UWS patients from LIS patients. The present study provides evidence that an EEG-based measure of attention could detect command-following in patients with severe motor disabilities. The entropy system could detect a response to command in all healthy subjects and LIS patients, while none of the VS/UWS patients showed a response to command using this system.

  3. An ordinal classification approach for CTG categorization.

    Science.gov (United States)

    Georgoulas, George; Karvelis, Petros; Gavrilis, Dimitris; Stylios, Chrysostomos D; Nikolakopoulos, George

    2017-07-01

    Evaluation of cardiotocogram (CTG) is a standard approach employed during pregnancy and delivery. But, its interpretation requires high level expertise to decide whether the recording is Normal, Suspicious or Pathological. Therefore, a number of attempts have been carried out over the past three decades for development automated sophisticated systems. These systems are usually (multiclass) classification systems that assign a category to the respective CTG. However most of these systems usually do not take into consideration the natural ordering of the categories associated with CTG recordings. In this work, an algorithm that explicitly takes into consideration the ordering of CTG categories, based on binary decomposition method, is investigated. Achieved results, using as a base classifier the C4.5 decision tree classifier, prove that the ordinal classification approach is marginally better than the traditional multiclass classification approach, which utilizes the standard C4.5 algorithm for several performance criteria.

  4. Gravitational entropies in LTB dust models

    International Nuclear Information System (INIS)

    Sussman, Roberto A; Larena, Julien

    2014-01-01

    We consider generic Lemaître–Tolman–Bondi (LTB) dust models to probe the gravitational entropy proposals of Clifton, Ellis and Tavakol (CET) and of Hosoya and Buchert (HB). We also consider a variant of the HB proposal based on a suitable quasi-local scalar weighted average. We show that the conditions for entropy growth for all proposals are directly related to a negative correlation of similar fluctuations of the energy density and Hubble scalar. While this correlation is evaluated locally for the CET proposal, it must be evaluated in a non-local domain dependent manner for the two HB proposals. By looking at the fulfilment of these conditions at the relevant asymptotic limits we are able to provide a well grounded qualitative description of the full time evolution and radial asymptotic scaling of the three entropies in generic models. The following rigorous analytic results are obtained for the three proposals: (i) entropy grows when the density growing mode is dominant, (ii) all ever-expanding hyperbolic models reach a stable terminal equilibrium characterized by an inhomogeneous entropy maximum in their late time evolution; (iii) regions with decaying modes and collapsing elliptic models exhibit unstable equilibria associated with an entropy minimum (iv) near singularities the CET entropy diverges while the HB entropies converge; (v) the CET entropy converges for all models in the radial asymptotic range, whereas the HB entropies only converge for models asymptotic to a Friedmann–Lemaître–Robertson–Walker background. The fact that different independent proposals yield fairly similar conditions for entropy production, time evolution and radial scaling in generic LTB models seems to suggest that their common notion of a ‘gravitational entropy’ may be a theoretically robust concept applicable to more general spacetimes. (paper)

  5. Multiscale multifractal multiproperty analysis of financial time series based on Rényi entropy

    Science.gov (United States)

    Yujun, Yang; Jianping, Li; Yimei, Yang

    This paper introduces a multiscale multifractal multiproperty analysis based on Rényi entropy (3MPAR) method to analyze short-range and long-range characteristics of financial time series, and then applies this method to the five time series of five properties in four stock indices. Combining the two analysis techniques of Rényi entropy and multifractal detrended fluctuation analysis (MFDFA), the 3MPAR method focuses on the curves of Rényi entropy and generalized Hurst exponent of five properties of four stock time series, which allows us to study more universal and subtle fluctuation characteristics of financial time series. By analyzing the curves of the Rényi entropy and the profiles of the logarithm distribution of MFDFA of five properties of four stock indices, the 3MPAR method shows some fluctuation characteristics of the financial time series and the stock markets. Then, it also shows a richer information of the financial time series by comparing the profile of five properties of four stock indices. In this paper, we not only focus on the multifractality of time series but also the fluctuation characteristics of the financial time series and subtle differences in the time series of different properties. We find that financial time series is far more complex than reported in some research works using one property of time series.

  6. Fault detection in nonlinear chemical processes based on kernel entropy component analysis and angular structure

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Qingchao; Yan, Xuefeng; Lv, Zhaomin; Guo, Meijin [East China University of Science and Technology, Shanghai (China)

    2013-06-15

    Considering that kernel entropy component analysis (KECA) is a promising new method of nonlinear data transformation and dimensionality reduction, a KECA based method is proposed for nonlinear chemical process monitoring. In this method, an angle-based statistic is designed because KECA reveals structure related to the Renyi entropy of input space data set, and the transformed data sets are produced with a distinct angle-based structure. Based on the angle difference between normal status and current sample data, the current status can be monitored effectively. And, the confidence limit of the angle-based statistics is determined by kernel density estimation based on sample data of the normal status. The effectiveness of the proposed method is demonstrated by case studies on both a numerical process and a simulated continuous stirred tank reactor (CSTR) process. The KECA based method can be an effective method for nonlinear chemical process monitoring.

  7. Fault detection in nonlinear chemical processes based on kernel entropy component analysis and angular structure

    International Nuclear Information System (INIS)

    Jiang, Qingchao; Yan, Xuefeng; Lv, Zhaomin; Guo, Meijin

    2013-01-01

    Considering that kernel entropy component analysis (KECA) is a promising new method of nonlinear data transformation and dimensionality reduction, a KECA based method is proposed for nonlinear chemical process monitoring. In this method, an angle-based statistic is designed because KECA reveals structure related to the Renyi entropy of input space data set, and the transformed data sets are produced with a distinct angle-based structure. Based on the angle difference between normal status and current sample data, the current status can be monitored effectively. And, the confidence limit of the angle-based statistics is determined by kernel density estimation based on sample data of the normal status. The effectiveness of the proposed method is demonstrated by case studies on both a numerical process and a simulated continuous stirred tank reactor (CSTR) process. The KECA based method can be an effective method for nonlinear chemical process monitoring

  8. Self-adjusting entropy-stable scheme for compressible Euler equations

    Institute of Scientific and Technical Information of China (English)

    程晓晗; 聂玉峰; 封建湖; LuoXiao-Yu; 蔡力

    2015-01-01

    In this work, a self-adjusting entropy-stable scheme is proposed for solving compressible Euler equations. The entropy-stable scheme is constructed by combining the entropy conservative flux with a suitable diffusion operator. The entropy has to be preserved in smooth solutions and be dissipated at shocks. To achieve this, a switch function, based on entropy variables, is employed to make the numerical diffusion term added around discontinuities automatically. The resulting scheme is still entropy-stable. A number of numerical experiments illustrating the robustness and accuracy of the scheme are presented. From these numerical results, we observe a remarkable gain in accuracy.

  9. Tsallis Entropy Theory for Modeling in Water Engineering: A Review

    Directory of Open Access Journals (Sweden)

    Vijay P. Singh

    2017-11-01

    Full Text Available Water engineering is an amalgam of engineering (e.g., hydraulics, hydrology, irrigation, ecosystems, environment, water resources and non-engineering (e.g., social, economic, political aspects that are needed for planning, designing and managing water systems. These aspects and the associated issues have been dealt with in the literature using different techniques that are based on different concepts and assumptions. A fundamental question that still remains is: Can we develop a unifying theory for addressing these? The second law of thermodynamics permits us to develop a theory that helps address these in a unified manner. This theory can be referred to as the entropy theory. The thermodynamic entropy theory is analogous to the Shannon entropy or the information theory. Perhaps, the most popular generalization of the Shannon entropy is the Tsallis entropy. The Tsallis entropy has been applied to a wide spectrum of problems in water engineering. This paper provides an overview of Tsallis entropy theory in water engineering. After some basic description of entropy and Tsallis entropy, a review of its applications in water engineering is presented, based on three types of problems: (1 problems requiring entropy maximization; (2 problems requiring coupling Tsallis entropy theory with another theory; and (3 problems involving physical relations.

  10. Sensor Data Acquisition and Processing Parameters for Human Activity Classification

    Directory of Open Access Journals (Sweden)

    Sebastian D. Bersch

    2014-03-01

    Full Text Available It is known that parameter selection for data sampling frequency and segmentation techniques (including different methods and window sizes has an impact on the classification accuracy. For Ambient Assisted Living (AAL, no clear information to select these parameters exists, hence a wide variety and inconsistency across today’s literature is observed. This paper presents the empirical investigation of different data sampling rates, segmentation techniques and segmentation window sizes and their effect on the accuracy of Activity of Daily Living (ADL event classification and computational load for two different accelerometer sensor datasets. The study is conducted using an ANalysis Of VAriance (ANOVA based on 32 different window sizes, three different segmentation algorithm (with and without overlap, totaling in six different parameters and six sampling frequencies for nine common classification algorithms. The classification accuracy is based on a feature vector consisting of Root Mean Square (RMS, Mean, Signal Magnitude Area (SMA, Signal Vector Magnitude (here SMV, Energy, Entropy, FFTPeak, Standard Deviation (STD. The results are presented alongside recommendations for the parameter selection on the basis of the best performing parameter combinations that are identified by means of the corresponding Pareto curve.

  11. Special Issue on Entropy-Based Applied Cryptography and Enhanced Security for Ubiquitous Computing

    Directory of Open Access Journals (Sweden)

    James (Jong Hyuk Park

    2016-09-01

    Full Text Available Entropy is a basic and important concept in information theory. It is also often used as a measure of the unpredictability of a cryptographic key in cryptography research areas. Ubiquitous computing (Ubi-comp has emerged rapidly as an exciting new paradigm. In this special issue, we mainly selected and discussed papers related with ore theories based on the graph theory to solve computational problems on cryptography and security, practical technologies; applications and services for Ubi-comp including secure encryption techniques, identity and authentication; credential cloning attacks and countermeasures; switching generator with resistance against the algebraic and side channel attacks; entropy-based network anomaly detection; applied cryptography using chaos function, information hiding and watermark, secret sharing, message authentication, detection and modeling of cyber attacks with Petri Nets, and quantum flows for secret key distribution, etc.

  12. ENTROPY FLOW CHARACTERISTICS ANALYSIS OF TYPHOON MATSA (0509)

    Institute of Scientific and Technical Information of China (English)

    XU Hui; LIU Chong-jian

    2008-01-01

    The evolution of Typhoon Matsa (0509) is examined in terms of entropy flow through an entropy balance equation derived from the Gibbs relation, according to the second law of thermodynamics. The entropy flows in the various significant stages of (genesis, development and decaying) during its evolution are diagnosed based on the outputs of the PSU/NCAR mesoscale model (known as MM5). The results show that: (1) the vertical spatial distribution of entropy flow for Matsa is characterized by a predominantly negative entropy flow in a large portion of the troposphere and a positive flow in the upper levels; (2) the fields of entropy flows at the middle troposphere (500 hPa) show that the growth of the typhoon is greatly dependent on the negative entropy flows from its surroundings; and (3) the simulated centres of heavy rainfall associated with the typhoon match well with the zones of large negative entropy flows, suggesting that they may be a significant indicator for severe weather events.

  13. Automated Classification of Phonological Errors in Aphasic Language

    Science.gov (United States)

    Ahuja, Sanjeev B.; Reggia, James A.; Berndt, Rita S.

    1984-01-01

    Using heuristically-guided state space search, a prototype program has been developed to simulate and classify phonemic errors occurring in the speech of neurologically-impaired patients. Simulations are based on an interchangeable rule/operator set of elementary errors which represent a theory of phonemic processing faults. This work introduces and evaluates a novel approach to error simulation and classification, it provides a prototype simulation tool for neurolinguistic research, and it forms the initial phase of a larger research effort involving computer modelling of neurolinguistic processes.

  14. Cooperative Localization for Multi-AUVs Based on GM-PHD Filters and Information Entropy Theory

    Directory of Open Access Journals (Sweden)

    Lichuan Zhang

    2017-10-01

    Full Text Available Cooperative localization (CL is considered a promising method for underwater localization with respect to multiple autonomous underwater vehicles (multi-AUVs. In this paper, we proposed a CL algorithm based on information entropy theory and the probability hypothesis density (PHD filter, aiming to enhance the global localization accuracy of the follower. In the proposed framework, the follower carries lower cost navigation systems, whereas the leaders carry better ones. Meanwhile, the leaders acquire the followers’ observations, including both measurements and clutter. Then, the PHD filters are utilized on the leaders and the results are communicated to the followers. The followers then perform weighted summation based on all received messages and obtain a final positioning result. Based on the information entropy theory and the PHD filter, the follower is able to acquire a precise knowledge of its position.

  15. [Identification of special quality eggs with NIR spectroscopy technology based on symbol entropy feature extraction method].

    Science.gov (United States)

    Zhao, Yong; Hong, Wen-Xue

    2011-11-01

    Fast, nondestructive and accurate identification of special quality eggs is an urgent problem. The present paper proposed a new feature extraction method based on symbol entropy to identify near infrared spectroscopy of special quality eggs. The authors selected normal eggs, free range eggs, selenium-enriched eggs and zinc-enriched eggs as research objects and measured the near-infrared diffuse reflectance spectra in the range of 12 000-4 000 cm(-1). Raw spectra were symbolically represented with aggregation approximation algorithm and symbolic entropy was extracted as feature vector. An error-correcting output codes multiclass support vector machine classifier was designed to identify the spectrum. Symbolic entropy feature is robust when parameter changed and the highest recognition rate reaches up to 100%. The results show that the identification method of special quality eggs using near-infrared is feasible and the symbol entropy can be used as a new feature extraction method of near-infrared spectra.

  16. Classification of breast cancer cytological specimen using convolutional neural network

    Science.gov (United States)

    Żejmo, Michał; Kowal, Marek; Korbicz, Józef; Monczak, Roman

    2017-01-01

    The paper presents a deep learning approach for automatic classification of breast tumors based on fine needle cytology. The main aim of the system is to distinguish benign from malignant cases based on microscopic images. Experiment was carried out on cytological samples derived from 50 patients (25 benign cases + 25 malignant cases) diagnosed in Regional Hospital in Zielona Góra. To classify microscopic images, we used convolutional neural networks (CNN) of two types: GoogLeNet and AlexNet. Due to the very large size of images of cytological specimen (on average 200000 × 100000 pixels), they were divided into smaller patches of size 256 × 256 pixels. Breast cancer classification usually is based on morphometric features of nuclei. Therefore, training and validation patches were selected using Support Vector Machine (SVM) so that suitable amount of cell material was depicted. Neural classifiers were tuned using GPU accelerated implementation of gradient descent algorithm. Training error was defined as a cross-entropy classification loss. Classification accuracy was defined as the percentage ratio of successfully classified validation patches to the total number of validation patches. The best accuracy rate of 83% was obtained by GoogLeNet model. We observed that more misclassified patches belong to malignant cases.

  17. Towards operational interpretations of generalized entropies

    Science.gov (United States)

    Topsøe, Flemming

    2010-12-01

    The driving force behind our study has been to overcome the difficulties you encounter when you try to extend the clear and convincing operational interpretations of classical Boltzmann-Gibbs-Shannon entropy to other notions, especially to generalized entropies as proposed by Tsallis. Our approach is philosophical, based on speculations regarding the interplay between truth, belief and knowledge. The main result demonstrates that, accepting philosophically motivated assumptions, the only possible measures of entropy are those suggested by Tsallis - which, as we know, include classical entropy. This result constitutes, so it seems, a more transparent interpretation of entropy than previously available. However, further research to clarify the assumptions is still needed. Our study points to the thesis that one should never consider the notion of entropy in isolation - in order to enable a rich and technically smooth study, further concepts, such as divergence, score functions and descriptors or controls should be included in the discussion. This will clarify the distinction between Nature and Observer and facilitate a game theoretical discussion. The usefulness of this distinction and the subsequent exploitation of game theoretical results - such as those connected with the notion of Nash equilibrium - is demonstrated by a discussion of the Maximum Entropy Principle.

  18. Towards operational interpretations of generalized entropies

    International Nuclear Information System (INIS)

    Topsoee, Flemming

    2010-01-01

    The driving force behind our study has been to overcome the difficulties you encounter when you try to extend the clear and convincing operational interpretations of classical Boltzmann-Gibbs-Shannon entropy to other notions, especially to generalized entropies as proposed by Tsallis. Our approach is philosophical, based on speculations regarding the interplay between truth, belief and knowledge. The main result demonstrates that, accepting philosophically motivated assumptions, the only possible measures of entropy are those suggested by Tsallis - which, as we know, include classical entropy. This result constitutes, so it seems, a more transparent interpretation of entropy than previously available. However, further research to clarify the assumptions is still needed. Our study points to the thesis that one should never consider the notion of entropy in isolation - in order to enable a rich and technically smooth study, further concepts, such as divergence, score functions and descriptors or controls should be included in the discussion. This will clarify the distinction between Nature and Observer and facilitate a game theoretical discussion. The usefulness of this distinction and the subsequent exploitation of game theoretical results - such as those connected with the notion of Nash equilibrium - is demonstrated by a discussion of the Maximum Entropy Principle.

  19. Angular momentum independence of the entropy sum and entropy product for AdS rotating black holes in all dimensions

    Directory of Open Access Journals (Sweden)

    Hang Liu

    2016-08-01

    Full Text Available In this paper, we investigate the angular momentum independence of the entropy sum and product for AdS rotating black holes based on the first law of thermodynamics and a mathematical lemma related to Vandermonde determinant. The advantage of this method is that the explicit forms of the spacetime metric, black hole mass and charge are not needed but the Hawking temperature and entropy formula on the horizons are necessary for static black holes, while our calculations require the expressions of metric and angular velocity formula. We find that the entropy sum is always independent of angular momentum for all dimensions and the angular momentum-independence of entropy product only holds for the dimensions d>4 with at least one rotation parameter ai=0, while the mass-free of entropy sum and entropy product for rotating black holes only stand for higher dimensions (d>4 and for all dimensions, respectively. On the other hand, we find that the introduction of a negative cosmological constant does not affect the angular momentum-free of entropy sum and product but the criterion for angular momentum-independence of entropy product will be affected.

  20. Automated morphological analysis of bone marrow cells in microscopic images for diagnosis of leukemia: nucleus-plasma separation and cell classification using a hierarchical tree model of hematopoesis

    Science.gov (United States)

    Krappe, Sebastian; Wittenberg, Thomas; Haferlach, Torsten; Münzenmayer, Christian

    2016-03-01

    The morphological differentiation of bone marrow is fundamental for the diagnosis of leukemia. Currently, the counting and classification of the different types of bone marrow cells is done manually under the use of bright field microscopy. This is a time-consuming, subjective, tedious and error-prone process. Furthermore, repeated examinations of a slide may yield intra- and inter-observer variances. For that reason a computer assisted diagnosis system for bone marrow differentiation is pursued. In this work we focus (a) on a new method for the separation of nucleus and plasma parts and (b) on a knowledge-based hierarchical tree classifier for the differentiation of bone marrow cells in 16 different classes. Classification trees are easily interpretable and understandable and provide a classification together with an explanation. Using classification trees, expert knowledge (i.e. knowledge about similar classes and cell lines in the tree model of hematopoiesis) is integrated in the structure of the tree. The proposed segmentation method is evaluated with more than 10,000 manually segmented cells. For the evaluation of the proposed hierarchical classifier more than 140,000 automatically segmented bone marrow cells are used. Future automated solutions for the morphological analysis of bone marrow smears could potentially apply such an approach for the pre-classification of bone marrow cells and thereby shortening the examination time.

  1. Minimal entropy approximation for cellular automata

    International Nuclear Information System (INIS)

    Fukś, Henryk

    2014-01-01

    We present a method for the construction of approximate orbits of measures under the action of cellular automata which is complementary to the local structure theory. The local structure theory is based on the idea of Bayesian extension, that is, construction of a probability measure consistent with given block probabilities and maximizing entropy. If instead of maximizing entropy one minimizes it, one can develop another method for the construction of approximate orbits, at the heart of which is the iteration of finite-dimensional maps, called minimal entropy maps. We present numerical evidence that the minimal entropy approximation sometimes outperforms the local structure theory in characterizing the properties of cellular automata. The density response curve for elementary CA rule 26 is used to illustrate this claim. (paper)

  2. Comparison Effectiveness of Pixel Based Classification and Object Based Classification Using High Resolution Image In Floristic Composition Mapping (Study Case: Gunung Tidar Magelang City)

    Science.gov (United States)

    Ardha Aryaguna, Prama; Danoedoro, Projo

    2016-11-01

    Developments of analysis remote sensing have same way with development of technology especially in sensor and plane. Now, a lot of image have high spatial and radiometric resolution, that's why a lot information. Vegetation object analysis such floristic composition got a lot advantage of that development. Floristic composition can be interpreted using a lot of method such pixel based classification and object based classification. The problems for pixel based method on high spatial resolution image are salt and paper who appear in result of classification. The purpose of this research are compare effectiveness between pixel based classification and object based classification for composition vegetation mapping on high resolution image Worldview-2. The results show that pixel based classification using majority 5×5 kernel windows give the highest accuracy between another classifications. The highest accuracy is 73.32% from image Worldview-2 are being radiometric corrected level surface reflectance, but for overall accuracy in every class, object based are the best between another methods. Reviewed from effectiveness aspect, pixel based are more effective then object based for vegetation composition mapping in Tidar forest.

  3. Quantum key distribution with finite resources: Smooth Min entropy vs. Smooth Renyi entropy

    Energy Technology Data Exchange (ETDEWEB)

    Mertz, Markus; Abruzzo, Silvestre; Bratzik, Sylvia; Kampermann, Hermann; Bruss, Dagmar [Institut fuer Theoretische Physik III, Duesseldorf (Germany)

    2010-07-01

    We consider different entropy measures that play an important role in the analysis of the security of QKD with finite resources. The smooth min entropy leads to an optimal bound for the length of a secure key. Another bound on the secure key length was derived by using Renyi entropies. Unfortunately, it is very hard or even impossible to calculate these entropies for realistic QKD scenarios. To estimate the security rate it becomes important to find computable bounds on these entropies. Here, we compare a lower bound for the smooth min entropy with a bound using Renyi entropies. We compare these entropies for the six-state protocol with symmetric attacks.

  4. Correction of oral contrast artifacts in CT-based attenuation correction of PET images using an automated segmentation algorithm

    International Nuclear Information System (INIS)

    Ahmadian, Alireza; Ay, Mohammad R.; Sarkar, Saeed; Bidgoli, Javad H.; Zaidi, Habib

    2008-01-01

    Oral contrast is usually administered in most X-ray computed tomography (CT) examinations of the abdomen and the pelvis as it allows more accurate identification of the bowel and facilitates the interpretation of abdominal and pelvic CT studies. However, the misclassification of contrast medium with high-density bone in CT-based attenuation correction (CTAC) is known to generate artifacts in the attenuation map (μmap), thus resulting in overcorrection for attenuation of positron emission tomography (PET) images. In this study, we developed an automated algorithm for segmentation and classification of regions containing oral contrast medium to correct for artifacts in CT-attenuation-corrected PET images using the segmented contrast correction (SCC) algorithm. The proposed algorithm consists of two steps: first, high CT number object segmentation using combined region- and boundary-based segmentation and second, object classification to bone and contrast agent using a knowledge-based nonlinear fuzzy classifier. Thereafter, the CT numbers of pixels belonging to the region classified as contrast medium are substituted with their equivalent effective bone CT numbers using the SCC algorithm. The generated CT images are then down-sampled followed by Gaussian smoothing to match the resolution of PET images. A piecewise calibration curve was then used to convert CT pixel values to linear attenuation coefficients at 511 keV. The visual assessment of segmented regions performed by an experienced radiologist confirmed the accuracy of the segmentation and classification algorithms for delineation of contrast-enhanced regions in clinical CT images. The quantitative analysis of generated μmaps of 21 clinical CT colonoscopy datasets showed an overestimation ranging between 24.4% and 37.3% in the 3D-classified regions depending on their volume and the concentration of contrast medium. Two PET/CT studies known to be problematic demonstrated the applicability of the technique in

  5. New Definition and Properties of Fuzzy Entropy

    Institute of Scientific and Technical Information of China (English)

    Qing Ming; Qin Yingbing

    2006-01-01

    Let X = (x1,x2 ,…,xn ) and F(X) be a fuzzy set on a universal set X. A new definition of fuzzy entropy about a fuzzy set A on F(X), e*, is defined based on the order relation "≤" on [0,1/2] n. It is proved that e* is a σ-entropy under an additional requirement. Besides, some entropy formulas are presented and related properties are discussed.

  6. Properties of Fuzzy Entropy Based on the Shape Change of Membership Function

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Modification of a fuzzy partition often leads to the change of fuzziness of a fuzzy system. Researches on the change of fuzzy entropy of a fuzzy set, responding to shape alteration of membership function, therefore, play a significant role in analysis of the change of fuzziness of a fuzzy system because a fuzzy partition consists of a set of fuzzy sets which satisfy some special constraints. This paper has shown several results about entropy changes of a fuzzy set. First, the entropies of two same type of fuzzy sets have a constant proportional relationship which depends on the ratio of the sizes of their support intervals. Second, as for Triangular Fuzzy Numbers (TFNs), the entropies of any two TFNs which can not be always the same type, also,have a constant proportional relationship which depends on the ratio of the sizes of their support intervals. Hence, any two TFNs with the same sizes of support intervals have the same entropies. Third, concerning two Triangular Fuzzy Sets (TFSs) with same sizes of support intervals and different heights, the relationship of their entropies lies on their height.Finally, we point it out a mistake that Chen's assertion that the entropy of resultant fuzzy set of elevation operation is directly proportional to that of the original one while elevation factor just acts as a proportional factor. These results should contribute to the analysis and design of a fuzzy system.

  7. Future Control and Automation : Proceedings of the 2nd International Conference on Future Control and Automation

    CERN Document Server

    2012-01-01

    This volume Future Control and Automation- Volume 2 includes best papers from 2012 2nd International Conference on Future Control and Automation (ICFCA 2012) held on July 1-2, 2012, Changsha, China. Future control and automation is the use of control systems and information technologies to reduce the need for human work in the production of goods and services. This volume can be divided into six sessions on the basis of the classification of manuscripts considered, which is listed as follows: Mathematical Modeling, Analysis and Computation, Control Engineering, Reliable Networks Design, Vehicular Communications and Networking, Automation and Mechatronics.

  8. An Algorithm of Traffic Perception of DDoS Attacks against SOA Based on Time United Conditional Entropy

    Directory of Open Access Journals (Sweden)

    Yuntao Zhao

    2016-01-01

    Full Text Available DDoS attacks can prevent legitimate users from accessing the service by consuming resource of the target nodes, whose availability of network and service is exposed to a significant threat. Therefore, DDoS traffic perception is the premise and foundation of the whole system security. In this paper the method of DDoS traffic perception for SOA network based on time united conditional entropy was proposed. According to many-to-one relationship mapping between the source IP address and destination IP addresses of DDoS attacks, traffic characteristics of services are analyzed based on conditional entropy. The algorithm is provided with perception ability of DDoS attacks on SOA services by introducing time dimension. Simulation results show that the novel method can realize DDoS traffic perception with analyzing abrupt variation of conditional entropy in time dimension.

  9. Wavelet Entropy-Based Traction Inverter Open Switch Fault Diagnosis in High-Speed Railways

    Directory of Open Access Journals (Sweden)

    Keting Hu

    2016-03-01

    Full Text Available In this paper, a diagnosis plan is proposed to settle the detection and isolation problem of open switch faults in high-speed railway traction system traction inverters. Five entropy forms are discussed and compared with the traditional fault detection methods, namely, discrete wavelet transform and discrete wavelet packet transform. The traditional fault detection methods cannot efficiently detect the open switch faults in traction inverters because of the low resolution or the sudden change of the current. The performances of Wavelet Packet Energy Shannon Entropy (WPESE, Wavelet Packet Energy Tsallis Entropy (WPETE with different non-extensive parameters, Wavelet Packet Energy Shannon Entropy with a specific sub-band (WPESE3,6, Empirical Mode Decomposition Shannon Entropy (EMDESE, and Empirical Mode Decomposition Tsallis Entropy (EMDETE with non-extensive parameters in detecting the open switch fault are evaluated by the evaluation parameter. Comparison experiments are carried out to select the best entropy form for the traction inverter open switch fault detection. In addition, the DC component is adopted to isolate the failure Isolated Gate Bipolar Transistor (IGBT. The simulation experiments show that the proposed plan can diagnose single and simultaneous open switch faults correctly and timely.

  10. Self-adjusting entropy-stable scheme for compressible Euler equations

    International Nuclear Information System (INIS)

    Cheng Xiao-Han; Nie Yu-Feng; Cai Li; Feng Jian-Hu; Luo Xiao-Yu

    2015-01-01

    In this work, a self-adjusting entropy-stable scheme is proposed for solving compressible Euler equations. The entropy-stable scheme is constructed by combining the entropy conservative flux with a suitable diffusion operator. The entropy has to be preserved in smooth solutions and be dissipated at shocks. To achieve this, a switch function, which is based on entropy variables, is employed to make the numerical diffusion term be automatically added around discontinuities. The resulting scheme is still entropy-stable. A number of numerical experiments illustrating the robustness and accuracy of the scheme are presented. From these numerical results, we observe a remarkable gain in accuracy. (paper)

  11. Entropy of the system formed in heavy ion collision

    International Nuclear Information System (INIS)

    Gudima, K.K.; Schulz, H.; Toneev, V.D.

    1985-01-01

    In frames of a cascade model the entropy evolution in a system producted in heavy ion collisions is investigated. Entropy calculation is based on smoothing of the distribution function over the momentum space by the temperature field introduction. The resulting entropy per one nucleon is shown to be rather sensitive to phase space subdivision into cells at the stage of free scattering of reaction products. Compared to recent experimental results for specific entropy values inferred from the composite particle yield of 4π measurements, it is found that cascade calculations do not favour some particular entropy model treatments and suggest smaller entropy values than following from consideration within equilibrium statistics

  12. Automated reliability assessment for spectroscopic redshift measurements

    Science.gov (United States)

    Jamal, S.; Le Brun, V.; Le Fèvre, O.; Vibert, D.; Schmitt, A.; Surace, C.; Copin, Y.; Garilli, B.; Moresco, M.; Pozzetti, L.

    2018-03-01

    Context. Future large-scale surveys, such as the ESA Euclid mission, will produce a large set of galaxy redshifts (≥106) that will require fully automated data-processing pipelines to analyze the data, extract crucial information and ensure that all requirements are met. A fundamental element in these pipelines is to associate to each galaxy redshift measurement a quality, or reliability, estimate. Aim. In this work, we introduce a new approach to automate the spectroscopic redshift reliability assessment based on machine learning (ML) and characteristics of the redshift probability density function. Methods: We propose to rephrase the spectroscopic redshift estimation into a Bayesian framework, in order to incorporate all sources of information and uncertainties related to the redshift estimation process and produce a redshift posterior probability density function (PDF). To automate the assessment of a reliability flag, we exploit key features in the redshift posterior PDF and machine learning algorithms. Results: As a working example, public data from the VIMOS VLT Deep Survey is exploited to present and test this new methodology. We first tried to reproduce the existing reliability flags using supervised classification in order to describe different types of redshift PDFs, but due to the subjective definition of these flags (classification accuracy 58%), we soon opted for a new homogeneous partitioning of the data into distinct clusters via unsupervised classification. After assessing the accuracy of the new clusters via resubstitution and test predictions (classification accuracy 98%), we projected unlabeled data from preliminary mock simulations for the Euclid space mission into this mapping to predict their redshift reliability labels. Conclusions: Through the development of a methodology in which a system can build its own experience to assess the quality of a parameter, we are able to set a preliminary basis of an automated reliability assessment for

  13. Entropy and cosmology.

    Science.gov (United States)

    Zucker, M. H.

    This paper is a critical analysis and reassessment of entropic functioning as it applies to the question of whether the ultimate fate of the universe will be determined in the future to be "open" (expanding forever to expire in a big chill), "closed" (collapsing to a big crunch), or "flat" (balanced forever between the two). The second law of thermodynamics declares that entropy can only increase and that this principle extends, inevitably, to the universe as a whole. This paper takes the position that this extension is an unwarranted projection based neither on experience nonfact - an extrapolation that ignores the powerful effect of a gravitational force acting within a closed system. Since it was originally presented by Clausius, the thermodynamic concept of entropy has been redefined in terms of "order" and "disorder" - order being equated with a low degree of entropy and disorder with a high degree. This revised terminology more subjective than precise, has generated considerable confusion in cosmology in several critical instances. For example - the chaotic fireball of the big bang, interpreted by Stephen Hawking as a state of disorder (high entropy), is infinitely hot and, thermally, represents zero entropy (order). Hawking, apparently focusing on the disorderly "chaotic" aspect, equated it with a high degree of entropy - overlooking the fact that the universe is a thermodynamic system and that the key factor in evaluating the big-bang phenomenon is the infinitely high temperature at the early universe, which can only be equated with zero entropy. This analysis resolves this confusion and reestablishes entropy as a cosmological function integrally linked to temperature. The paper goes on to show that, while all subsystems contained within the universe require external sources of energization to have their temperatures raised, this requirement does not apply to the universe as a whole. The universe is the only system that, by itself can raise its own

  14. Structural contributions to the third-law entropy of uranyl phases

    International Nuclear Information System (INIS)

    Chen, F.; Ewing, R.C.

    1999-01-01

    Entropies that are used in geochemical calculations are usually based on calorimetric measurements. However, because of the contributions of neglected residual entropies which cannot be determined by calorimetric measurements, the true third-law entropies for many phases may be quite different from those derived from thermal data. The residual entropies are caused by site-mixing, structural disorder and magnetic spin disorder and may result in a considerable contribution to the third-law entropy of solid phases. Magnetic spin-configurational entropy is not expected to be significant in uranyl phases. However, because most uranyl phases are based on sheet or chain structures and usually contain several molecular water groups, site-mixing, vacancies, as well as disorder in the orientation of hydrogen bonds and the polar H 2 O molecules may occur. Calculations of the ideal site-mixing configurational entropy for some uranyl phases indicate that the residual contributions that arise from substitution and vacancies to the third-law entropies of uranyl phases may be large. A brief examination of the crystal chemistry of water molecules in uranyl phases suggests that considerable residual entropy may be caused by the disorder of hydrogen bonds associated with interstitial H 2 O groups

  15. Object-Oriented Semisupervised Classification of VHR Images by Combining MedLDA and a Bilateral Filter

    Directory of Open Access Journals (Sweden)

    Shi He

    2015-01-01

    Full Text Available A Bayesian hierarchical model is presented to classify very high resolution (VHR images in a semisupervised manner, in which both a maximum entropy discrimination latent Dirichlet allocation (MedLDA and a bilateral filter are combined into a novel application framework. The primary contribution of this paper is to nullify the disadvantages of traditional probabilistic topic models on pixel-level supervised information and to achieve the effective classification of VHR remote sensing images. This framework consists of the following two iterative steps. In the training stage, the model utilizes the central labeled pixel and its neighborhood, as a squared labeled image object, to train the classifiers. In the classification stage, each central unlabeled pixel with its neighborhood, as an unlabeled object, is classified as a user-provided geoobject class label with the maximum posterior probability. Gibbs sampling is adopted for model inference. The experimental results demonstrate that the proposed method outperforms two classical SVM-based supervised classification methods and probabilistic-topic-models-based classification methods.

  16. ENTROPIES AND FLUX-SPLITTINGS FOR THE ISENTROPIC EULER EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The authors establish the existence of a large class of mathematical entropies (the so-called weak entropies) associated with the Euler equations for an isentropic, compressible fluid governed by a general pressure law. A mild assumption on the behavior of the pressure law near the vacuum is solely required. The analysis is based on an asymptotic expansion of the fundamental solution (called here the entropy kernel) of a highly singular Euler-Poisson-Darboux equation. The entropy kernel is only H lder continuous and its regularity is carefully investigated. Relying on a notion introduced earlier by the authors, it is also proven that, for the Euler equations, the set of entropy flux-splittings coincides with the set of entropies-entropy fluxes. These results imply the existence of a flux-splitting consistent with all of the entropy inequalities.

  17. The Conditional Entropy Power Inequality for Bosonic Quantum Systems

    DEFF Research Database (Denmark)

    de Palma, Giacomo; Trevisan, Dario

    2018-01-01

    We prove the conditional Entropy Power Inequality for Gaussian quantum systems. This fundamental inequality determines the minimum quantum conditional von Neumann entropy of the output of the beam-splitter or of the squeezing among all the input states where the two inputs are conditionally...... independent given the memory and have given quantum conditional entropies. We also prove that, for any couple of values of the quantum conditional entropies of the two inputs, the minimum of the quantum conditional entropy of the output given by the conditional Entropy Power Inequality is asymptotically...... achieved by a suitable sequence of quantum Gaussian input states. Our proof of the conditional Entropy Power Inequality is based on a new Stam inequality for the quantum conditional Fisher information and on the determination of the universal asymptotic behaviour of the quantum conditional entropy under...

  18. Inventory classification based on decoupling points

    Directory of Open Access Journals (Sweden)

    Joakim Wikner

    2015-01-01

    Full Text Available The ideal state of continuous one-piece flow may never be achieved. Still the logistics manager can improve the flow by carefully positioning inventory to buffer against variations. Strategies such as lean, postponement, mass customization, and outsourcing all rely on strategic positioning of decoupling points to separate forecast-driven from customer-order-driven flows. Planning and scheduling of the flow are also based on classification of decoupling points as master scheduled or not. A comprehensive classification scheme for these types of decoupling points is introduced. The approach rests on identification of flows as being either demand based or supply based. The demand or supply is then combined with exogenous factors, classified as independent, or endogenous factors, classified as dependent. As a result, eight types of strategic as well as tactical decoupling points are identified resulting in a process-based framework for inventory classification that can be used for flow design.

  19. Operational Based Vision Assessment Automated Vision Test Collection User Guide

    Science.gov (United States)

    2017-05-15

    AFRL-SA-WP-SR-2017-0012 Operational Based Vision Assessment Automated Vision Test Collection User Guide Elizabeth Shoda, Alex...June 2015 – May 2017 4. TITLE AND SUBTITLE Operational Based Vision Assessment Automated Vision Test Collection User Guide 5a. CONTRACT NUMBER... automated vision tests , or AVT. Development of the AVT was required to support threshold-level vision testing capability needed to investigate the

  20. Trustworthiness Measurement Algorithm for TWfMS Based on Software Behaviour Entropy

    Directory of Open Access Journals (Sweden)

    Qiang Han

    2018-03-01

    Full Text Available As the virtual mirror of complex real-time business processes of organisations’ underlying information systems, the workflow management system (WfMS has emerged in recent decades as a new self-autonomous paradigm in the open, dynamic, distributed computing environment. In order to construct a trustworthy workflow management system (TWfMS, the design of a software behaviour trustworthiness measurement algorithm is an urgent task for researchers. Accompanying the trustworthiness mechanism, the measurement algorithm, with uncertain software behaviour trustworthiness information of the WfMS, should be resolved as an infrastructure. Based on the framework presented in our research prior to this paper, we firstly introduce a formal model for the WfMS trustworthiness measurement, with the main property reasoning based on calculus operators. Secondly, this paper proposes a novel measurement algorithm from the software behaviour entropy of calculus operators through the principle of maximum entropy (POME and the data mining method. Thirdly, the trustworthiness measurement algorithm for incomplete software behaviour tests and runtime information is discussed and compared by means of a detailed explanation. Finally, we provide conclusions and discuss certain future research areas of the TWfMS.

  1. Combined Forecasting of Rainfall Based on Fuzzy Clustering and Cross Entropy

    Directory of Open Access Journals (Sweden)

    Baohui Men

    2017-12-01

    Full Text Available Rainfall is an essential index to measure drought, and it is dependent upon various parameters including geographical environment, air temperature and pressure. The nonlinear nature of climatic variables leads to problems such as poor accuracy and instability in traditional forecasting methods. In this paper, the combined forecasting method based on data mining technology and cross entropy is proposed to forecast the rainfall with full consideration of the time-effectiveness of historical data. In view of the flaws of the fuzzy clustering method which is easy to fall into local optimal solution and low speed of operation, the ant colony algorithm is adopted to overcome these shortcomings and, as a result, refine the model. The method for determining weights is also improved by using the cross entropy. Besides, the forecast is conducted by analyzing the weighted average rainfall based on Thiessen polygon in the Beijing–Tianjin–Hebei region. Since the predictive errors are calculated, the results show that improved ant colony fuzzy clustering can effectively select historical data and enhance the accuracy of prediction so that the damage caused by extreme weather events like droughts and floods can be greatly lessened and even kept at bay.

  2. Classifying epileptic EEG signals with delay permutation entropy and Multi-Scale K-means.

    Science.gov (United States)

    Zhu, Guohun; Li, Yan; Wen, Peng Paul; Wang, Shuaifang

    2015-01-01

    Most epileptic EEG classification algorithms are supervised and require large training datasets, that hinder their use in real time applications. This chapter proposes an unsupervised Multi-Scale K-means (MSK-means) MSK-means algorithm to distinguish epileptic EEG signals and identify epileptic zones. The random initialization of the K-means algorithm can lead to wrong clusters. Based on the characteristics of EEGs, the MSK-means MSK-means algorithm initializes the coarse-scale centroid of a cluster with a suitable scale factor. In this chapter, the MSK-means algorithm is proved theoretically superior to the K-means algorithm on efficiency. In addition, three classifiers: the K-means, MSK-means MSK-means and support vector machine (SVM), are used to identify seizure and localize epileptogenic zone using delay permutation entropy features. The experimental results demonstrate that identifying seizure with the MSK-means algorithm and delay permutation entropy achieves 4. 7 % higher accuracy than that of K-means, and 0. 7 % higher accuracy than that of the SVM.

  3. Cost Accounting in the Automated Manufacturing Environment

    Science.gov (United States)

    1988-06-01

    1 NAVAL POSTGRADUATE SCHOOL M terey, California 0 DTIC II ELECTE R AD%$° NO 0,19880 -- THESIS COST ACCOUNTING IN THE AUTOMATED MANUFACTURING...PROJECT TASK WORK UNIT ELEMENT NO. NO NO ACCESSION NO 11. TITLE (Include Security Classification) E COST ACCOUNTING IN THE AUTOMATED MANUFACTURING...GROUP ’" Cost Accounting ; Product Costing ; Automated Manufacturing; CAD/CAM- CIM 19 ABSTRACT (Continue on reverse if necessary and identify by blo

  4. Secondary structural entropy in RNA switch (Riboswitch) identification.

    Science.gov (United States)

    Manzourolajdad, Amirhossein; Arnold, Jonathan

    2015-04-28

    RNA regulatory elements play a significant role in gene regulation. Riboswitches, a widespread group of regulatory RNAs, are vital components of many bacterial genomes. These regulatory elements generally function by forming a ligand-induced alternative fold that controls access to ribosome binding sites or other regulatory sites in RNA. Riboswitch-mediated mechanisms are ubiquitous across bacterial genomes. A typical class of riboswitch has its own unique structural and biological complexity, making de novo riboswitch identification a formidable task. Traditionally, riboswitches have been identified through comparative genomics based on sequence and structural homology. The limitations of structural-homology-based approaches, coupled with the assumption that there is a great diversity of undiscovered riboswitches, suggests the need for alternative methods for riboswitch identification, possibly based on features intrinsic to their structure. As of yet, no such reliable method has been proposed. We used structural entropy of riboswitch sequences as a measure of their secondary structural dynamics. Entropy values of a diverse set of riboswitches were compared to that of their mutants, their dinucleotide shuffles, and their reverse complement sequences under different stochastic context-free grammar folding models. Significance of our results was evaluated by comparison to other approaches, such as the base-pairing entropy and energy landscapes dynamics. Classifiers based on structural entropy optimized via sequence and structural features were devised as riboswitch identifiers and tested on Bacillus subtilis, Escherichia coli, and Synechococcus elongatus as an exploration of structural entropy based approaches. The unusually long untranslated region of the cotH in Bacillus subtilis, as well as upstream regions of certain genes, such as the sucC genes were associated with significant structural entropy values in genome-wide examinations. Various tests show that there

  5. Sentiment classification technology based on Markov logic networks

    Science.gov (United States)

    He, Hui; Li, Zhigang; Yao, Chongchong; Zhang, Weizhe

    2016-07-01

    With diverse online media emerging, there is a growing concern of sentiment classification problem. At present, text sentiment classification mainly utilizes supervised machine learning methods, which feature certain domain dependency. On the basis of Markov logic networks (MLNs), this study proposed a cross-domain multi-task text sentiment classification method rooted in transfer learning. Through many-to-one knowledge transfer, labeled text sentiment classification, knowledge was successfully transferred into other domains, and the precision of the sentiment classification analysis in the text tendency domain was improved. The experimental results revealed the following: (1) the model based on a MLN demonstrated higher precision than the single individual learning plan model. (2) Multi-task transfer learning based on Markov logical networks could acquire more knowledge than self-domain learning. The cross-domain text sentiment classification model could significantly improve the precision and efficiency of text sentiment classification.

  6. Parametric Bayesian Estimation of Differential Entropy and Relative Entropy

    Directory of Open Access Journals (Sweden)

    Maya Gupta

    2010-04-01

    Full Text Available Given iid samples drawn from a distribution with known parametric form, we propose the minimization of expected Bregman divergence to form Bayesian estimates of differential entropy and relative entropy, and derive such estimators for the uniform, Gaussian, Wishart, and inverse Wishart distributions. Additionally, formulas are given for a log gamma Bregman divergence and the differential entropy and relative entropy for the Wishart and inverse Wishart. The results, as always with Bayesian estimates, depend on the accuracy of the prior parameters, but example simulations show that the performance can be substantially improved compared to maximum likelihood or state-of-the-art nonparametric estimators.

  7. Beyond crosswalks: reliability of exposure assessment following automated coding of free-text job descriptions for occupational epidemiology.

    Science.gov (United States)

    Burstyn, Igor; Slutsky, Anton; Lee, Derrick G; Singer, Alison B; An, Yuan; Michael, Yvonne L

    2014-05-01

    Epidemiologists typically collect narrative descriptions of occupational histories because these are less prone than self-reported exposures to recall bias of exposure to a specific hazard. However, the task of coding these narratives can be daunting and prohibitively time-consuming in some settings. The aim of this manuscript is to evaluate the performance of a computer algorithm to translate the narrative description of occupational codes into standard classification of jobs (2010 Standard Occupational Classification) in an epidemiological context. The fundamental question we address is whether exposure assignment resulting from manual (presumed gold standard) coding of the narratives is materially different from that arising from the application of automated coding. We pursued our work through three motivating examples: assessment of physical demands in Women's Health Initiative observational study, evaluation of predictors of exposure to coal tar pitch volatiles in the US Occupational Safety and Health Administration's (OSHA) Integrated Management Information System, and assessment of exposure to agents known to cause occupational asthma in a pregnancy cohort. In these diverse settings, we demonstrate that automated coding of occupations results in assignment of exposures that are in reasonable agreement with results that can be obtained through manual coding. The correlation between physical demand scores based on manual and automated job classification schemes was reasonable (r = 0.5). The agreement between predictive probability of exceeding the OSHA's permissible exposure level for polycyclic aromatic hydrocarbons, using coal tar pitch volatiles as a surrogate, based on manual and automated coding of jobs was modest (Kendall rank correlation = 0.29). In the case of binary assignment of exposure to asthmagens, we observed that fair to excellent agreement in classifications can be reached, depending on presence of ambiguity in assigned job classification

  8. Mechanism-based drug exposure classification in pharmacoepidemiological studies

    NARCIS (Netherlands)

    Verdel, B.M.

    2010-01-01

    Mechanism-based classification of drug exposure in pharmacoepidemiological studies In pharmacoepidemiology and pharmacovigilance, the relation between drug exposure and clinical outcomes is crucial. Exposure classification in pharmacoepidemiological studies is traditionally based on

  9. A gravitational entropy proposal

    International Nuclear Information System (INIS)

    Clifton, Timothy; Tavakol, Reza; Ellis, George F R

    2013-01-01

    We propose a thermodynamically motivated measure of gravitational entropy based on the Bel–Robinson tensor, which has a natural interpretation as the effective super-energy–momentum tensor of free gravitational fields. The specific form of this measure differs depending on whether the gravitational field is Coulomb-like or wave-like, and reduces to the Bekenstein–Hawking value when integrated over the interior of a Schwarzschild black hole. For scalar perturbations of a Robertson–Walker geometry we find that the entropy goes like the Hubble weighted anisotropy of the gravitational field, and therefore increases as structure formation occurs. This is in keeping with our expectations for the behaviour of gravitational entropy in cosmology, and provides a thermodynamically motivated arrow of time for cosmological solutions of Einstein’s field equations. It is also in keeping with Penrose’s Weyl curvature hypothesis. (paper)

  10. Entropy? Honest!

    Directory of Open Access Journals (Sweden)

    Tommaso Toffoli

    2016-06-01

    Full Text Available Here we deconstruct, and then in a reasoned way reconstruct, the concept of “entropy of a system”, paying particular attention to where the randomness may be coming from. We start with the core concept of entropy as a count associated with a description; this count (traditionally expressed in logarithmic form for a number of good reasons is in essence the number of possibilities—specific instances or “scenarios”—that match that description. Very natural (and virtually inescapable generalizations of the idea of description are the probability distribution and its quantum mechanical counterpart, the density operator. We track the process of dynamically updating entropy as a system evolves. Three factors may cause entropy to change: (1 the system’s internal dynamics; (2 unsolicited external influences on it; and (3 the approximations one has to make when one tries to predict the system’s future state. The latter task is usually hampered by hard-to-quantify aspects of the original description, limited data storage and processing resource, and possibly algorithmic inadequacy. Factors 2 and 3 introduce randomness—often huge amounts of it—into one’s predictions and accordingly degrade them. When forecasting, as long as the entropy bookkeping is conducted in an honest fashion, this degradation will always lead to an entropy increase. To clarify the above point we introduce the notion of honest entropy, which coalesces much of what is of course already done, often tacitly, in responsible entropy-bookkeping practice. This notion—we believe—will help to fill an expressivity gap in scientific discourse. With its help, we shall prove that any dynamical system—not just our physical universe—strictly obeys Clausius’s original formulation of the second law of thermodynamics if and only if it is invertible. Thus this law is a tautological property of invertible systems!

  11. An automatic classifier of emotions built from entropy of noise.

    Science.gov (United States)

    Ferreira, Jacqueline; Brás, Susana; Silva, Carlos F; Soares, Sandra C

    2017-04-01

    The electrocardiogram (ECG) signal has been widely used to study the physiological substrates of emotion. However, searching for better filtering techniques in order to obtain a signal with better quality and with the maximum relevant information remains an important issue for researchers in this field. Signal processing is largely performed for ECG analysis and interpretation, but this process can be susceptible to error in the delineation phase. In addition, it can lead to the loss of important information that is usually considered as noise and, consequently, discarded from the analysis. The goal of this study was to evaluate if the ECG noise allows for the classification of emotions, while using its entropy as an input in a decision tree classifier. We collected the ECG signal from 25 healthy participants while they were presented with videos eliciting negative (fear and disgust) and neutral emotions. The results indicated that the neutral condition showed a perfect identification (100%), whereas the classification of negative emotions indicated good identification performances (60% of sensitivity and 80% of specificity). These results suggest that the entropy of noise contains relevant information that can be useful to improve the analysis of the physiological correlates of emotion. © 2016 Society for Psychophysiological Research.

  12. EEG entropy measures in anesthesia

    Science.gov (United States)

    Liang, Zhenhu; Wang, Yinghua; Sun, Xue; Li, Duan; Voss, Logan J.; Sleigh, Jamie W.; Hagihira, Satoshi; Li, Xiaoli

    2015-01-01

    Highlights: ► Twelve entropy indices were systematically compared in monitoring depth of anesthesia and detecting burst suppression.► Renyi permutation entropy performed best in tracking EEG changes associated with different anesthesia states.► Approximate Entropy and Sample Entropy performed best in detecting burst suppression. Objective: Entropy algorithms have been widely used in analyzing EEG signals during anesthesia. However, a systematic comparison of these entropy algorithms in assessing anesthesia drugs' effect is lacking. In this study, we compare the capability of 12 entropy indices for monitoring depth of anesthesia (DoA) and detecting the burst suppression pattern (BSP), in anesthesia induced by GABAergic agents. Methods: Twelve indices were investigated, namely Response Entropy (RE) and State entropy (SE), three wavelet entropy (WE) measures [Shannon WE (SWE), Tsallis WE (TWE), and Renyi WE (RWE)], Hilbert-Huang spectral entropy (HHSE), approximate entropy (ApEn), sample entropy (SampEn), Fuzzy entropy, and three permutation entropy (PE) measures [Shannon PE (SPE), Tsallis PE (TPE) and Renyi PE (RPE)]. Two EEG data sets from sevoflurane-induced and isoflurane-induced anesthesia respectively were selected to assess the capability of each entropy index in DoA monitoring and BSP detection. To validate the effectiveness of these entropy algorithms, pharmacokinetic/pharmacodynamic (PK/PD) modeling and prediction probability (Pk) analysis were applied. The multifractal detrended fluctuation analysis (MDFA) as a non-entropy measure was compared. Results: All the entropy and MDFA indices could track the changes in EEG pattern during different anesthesia states. Three PE measures outperformed the other entropy indices, with less baseline variability, higher coefficient of determination (R2) and prediction probability, and RPE performed best; ApEn and SampEn discriminated BSP best. Additionally, these entropy measures showed an advantage in computation

  13. Optimized Kernel Entropy Components.

    Science.gov (United States)

    Izquierdo-Verdiguier, Emma; Laparra, Valero; Jenssen, Robert; Gomez-Chova, Luis; Camps-Valls, Gustau

    2017-06-01

    This brief addresses two main issues of the standard kernel entropy component analysis (KECA) algorithm: the optimization of the kernel decomposition and the optimization of the Gaussian kernel parameter. KECA roughly reduces to a sorting of the importance of kernel eigenvectors by entropy instead of variance, as in the kernel principal components analysis. In this brief, we propose an extension of the KECA method, named optimized KECA (OKECA), that directly extracts the optimal features retaining most of the data entropy by means of compacting the information in very few features (often in just one or two). The proposed method produces features which have higher expressive power. In particular, it is based on the independent component analysis framework, and introduces an extra rotation to the eigen decomposition, which is optimized via gradient-ascent search. This maximum entropy preservation suggests that OKECA features are more efficient than KECA features for density estimation. In addition, a critical issue in both the methods is the selection of the kernel parameter, since it critically affects the resulting performance. Here, we analyze the most common kernel length-scale selection criteria. The results of both the methods are illustrated in different synthetic and real problems. Results show that OKECA returns projections with more expressive power than KECA, the most successful rule for estimating the kernel parameter is based on maximum likelihood, and OKECA is more robust to the selection of the length-scale parameter in kernel density estimation.

  14. Irreversible entropy model for damage diagnosis in resistors

    Energy Technology Data Exchange (ETDEWEB)

    Cuadras, Angel, E-mail: angel.cuadras@upc.edu; Crisóstomo, Javier; Ovejas, Victoria J.; Quilez, Marcos [Instrumentation, Sensor and Interfaces Group, Electronic Engineering Department, Escola d' Enginyeria de Telecomunicació i Aeronàutica de Castelldefels EETAC, Universitat Politècnica de Catalunya, Barcelona Tech (UPC), Castelldefels-Barcelona (Spain)

    2015-10-28

    We propose a method to characterize electrical resistor damage based on entropy measurements. Irreversible entropy and the rate at which it is generated are more convenient parameters than resistance for describing damage because they are essentially positive in virtue of the second law of thermodynamics, whereas resistance may increase or decrease depending on the degradation mechanism. Commercial resistors were tested in order to characterize the damage induced by power surges. Resistors were biased with constant and pulsed voltage signals, leading to power dissipation in the range of 4–8 W, which is well above the 0.25 W nominal power to initiate failure. Entropy was inferred from the added power and temperature evolution. A model is proposed to understand the relationship among resistance, entropy, and damage. The power surge dissipates into heat (Joule effect) and damages the resistor. The results show a correlation between entropy generation rate and resistor failure. We conclude that damage can be conveniently assessed from irreversible entropy generation. Our results for resistors can be easily extrapolated to other systems or machines that can be modeled based on their resistance.

  15. Irreversible entropy model for damage diagnosis in resistors

    International Nuclear Information System (INIS)

    Cuadras, Angel; Crisóstomo, Javier; Ovejas, Victoria J.; Quilez, Marcos

    2015-01-01

    We propose a method to characterize electrical resistor damage based on entropy measurements. Irreversible entropy and the rate at which it is generated are more convenient parameters than resistance for describing damage because they are essentially positive in virtue of the second law of thermodynamics, whereas resistance may increase or decrease depending on the degradation mechanism. Commercial resistors were tested in order to characterize the damage induced by power surges. Resistors were biased with constant and pulsed voltage signals, leading to power dissipation in the range of 4–8 W, which is well above the 0.25 W nominal power to initiate failure. Entropy was inferred from the added power and temperature evolution. A model is proposed to understand the relationship among resistance, entropy, and damage. The power surge dissipates into heat (Joule effect) and damages the resistor. The results show a correlation between entropy generation rate and resistor failure. We conclude that damage can be conveniently assessed from irreversible entropy generation. Our results for resistors can be easily extrapolated to other systems or machines that can be modeled based on their resistance

  16. Infinite Shannon entropy

    International Nuclear Information System (INIS)

    Baccetti, Valentina; Visser, Matt

    2013-01-01

    Even if a probability distribution is properly normalizable, its associated Shannon (or von Neumann) entropy can easily be infinite. We carefully analyze conditions under which this phenomenon can occur. Roughly speaking, this happens when arbitrarily small amounts of probability are dispersed into an infinite number of states; we shall quantify this observation and make it precise. We develop several particularly simple, elementary, and useful bounds, and also provide some asymptotic estimates, leading to necessary and sufficient conditions for the occurrence of infinite Shannon entropy. We go to some effort to keep technical computations as simple and conceptually clear as possible. In particular, we shall see that large entropies cannot be localized in state space; large entropies can only be supported on an exponentially large number of states. We are for the time being interested in single-channel Shannon entropy in the information theoretic sense, not entropy in a stochastic field theory or quantum field theory defined over some configuration space, on the grounds that this simple problem is a necessary precursor to understanding infinite entropy in a field theoretic context. (paper)

  17. Local curvature entropy-based 3D terrain representation using a comprehensive Quadtree

    Science.gov (United States)

    Chen, Qiyu; Liu, Gang; Ma, Xiaogang; Mariethoz, Gregoire; He, Zhenwen; Tian, Yiping; Weng, Zhengping

    2018-05-01

    Large scale 3D digital terrain modeling is a crucial part of many real-time applications in geoinformatics. In recent years, the improved speed and precision in spatial data collection make the original terrain data more complex and bigger, which poses challenges for data management, visualization and analysis. In this work, we presented an effective and comprehensive 3D terrain representation based on local curvature entropy and a dynamic Quadtree. The Level-of-detail (LOD) models of significant terrain features were employed to generate hierarchical terrain surfaces. In order to reduce the radical changes of grid density between adjacent LODs, local entropy of terrain curvature was regarded as a measure of subdividing terrain grid cells. Then, an efficient approach was presented to eliminate the cracks among the different LODs by directly updating the Quadtree due to an edge-based structure proposed in this work. Furthermore, we utilized a threshold of local entropy stored in each parent node of this Quadtree to flexibly control the depth of the Quadtree and dynamically schedule large-scale LOD terrain. Several experiments were implemented to test the performance of the proposed method. The results demonstrate that our method can be applied to construct LOD 3D terrain models with good performance in terms of computational cost and the maintenance of terrain features. Our method has already been deployed in a geographic information system (GIS) for practical uses, and it is able to support the real-time dynamic scheduling of large scale terrain models more easily and efficiently.

  18. Design of a hybrid model for cardiac arrhythmia classification based on Daubechies wavelet transform.

    Science.gov (United States)

    Rajagopal, Rekha; Ranganathan, Vidhyapriya

    2018-06-05

    Automation in cardiac arrhythmia classification helps medical professionals make accurate decisions about the patient's health. The aim of this work was to design a hybrid classification model to classify cardiac arrhythmias. The design phase of the classification model comprises the following stages: preprocessing of the cardiac signal by eliminating detail coefficients that contain noise, feature extraction through Daubechies wavelet transform, and arrhythmia classification using a collaborative decision from the K nearest neighbor classifier (KNN) and a support vector machine (SVM). The proposed model is able to classify 5 arrhythmia classes as per the ANSI/AAMI EC57: 1998 classification standard. Level 1 of the proposed model involves classification using the KNN and the classifier is trained with examples from all classes. Level 2 involves classification using an SVM and is trained specifically to classify overlapped classes. The final classification of a test heartbeat pertaining to a particular class is done using the proposed KNN/SVM hybrid model. The experimental results demonstrated that the average sensitivity of the proposed model was 92.56%, the average specificity 99.35%, the average positive predictive value 98.13%, the average F-score 94.5%, and the average accuracy 99.78%. The results obtained using the proposed model were compared with the results of discriminant, tree, and KNN classifiers. The proposed model is able to achieve a high classification accuracy.

  19. RNA Thermodynamic Structural Entropy.

    Directory of Open Access Journals (Sweden)

    Juan Antonio Garcia-Martin

    Full Text Available Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs. However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner'99 and Turner'04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http

  20. RNA Thermodynamic Structural Entropy.

    Science.gov (United States)

    Garcia-Martin, Juan Antonio; Clote, Peter

    2015-01-01

    Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs). However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE) element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner'99 and Turner'04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http