Entropic Analysis of Electromyography Time Series
Kaufman, Miron; Sung, Paul
2005-03-01
We are in the process of assessing the effectiveness of fractal and entropic measures for the diagnostic of low back pain from surface electromyography (EMG) time series. Surface electromyography (EMG) is used to assess patients with low back pain. In a typical EMG measurement, the voltage is measured every millisecond. We observed back muscle fatiguing during one minute, which results in a time series with 60,000 entries. We characterize the complexity of time series by computing the Shannon entropy time dependence. The analysis of the time series from different relevant muscles from healthy and low back pain (LBP) individuals provides evidence that the level of variability of back muscle activities is much larger for healthy individuals than for individuals with LBP. In general the time dependence of the entropy shows a crossover from a diffusive regime to a regime characterized by long time correlations (self organization) at about 0.01s.
The Entropic Linkage between Equity and Bond Market Dynamics
Directory of Open Access Journals (Sweden)
Edgar Parker
2017-06-01
Full Text Available An alternative derivation of the yield curve based on entropy or the loss of information as it is communicated through time is introduced. Given this focus on entropy growth in communication the Shannon entropy will be utilized. Additionally, Shannon entropy’s close relationship to the Kullback–Leibler divergence is used to provide a more precise understanding of this new yield curve. The derivation of the entropic yield curve is completed with the use of the Burnashev reliability function which serves as a weighting between the true and error distributions. The deep connections between the entropic yield curve and the popular Nelson–Siegel specification are also examined. Finally, this entropically derived yield curve is used to provide an estimate of the economy’s implied information processing ratio. This information theoretic ratio offers a new causal link between bond and equity markets, and is a valuable new tool for the modeling and prediction of stock market behavior.
From Entropic Dynamics to Quantum Theory
International Nuclear Information System (INIS)
Caticha, Ariel
2009-01-01
Non-relativistic quantum theory is derived from information codified into an appropriate statistical model. The basic assumption is that there is an irreducible uncertainty in the location of particles so that the configuration space is a statistical manifold. The dynamics then follows from a principle of inference, the method of Maximum Entropy. The concept of time is introduced as a convenient way to keep track of change. The resulting theory resembles both Nelson's stochastic mechanics and general relativity. The statistical manifold is a dynamical entity: its geometry determines the evolution of the probability distribution which, in its turn, reacts back and determines the evolution of the geometry. There is a new quantum version of the equivalence principle: 'osmotic' mass equals inertial mass. Mass and the phase of the wave function are explained as features of purely statistical origin.
Dynamics of entropic uncertainty for atoms immersed in thermal fluctuating massless scalar field
Huang, Zhiming
2018-04-01
In this article, the dynamics of quantum memory-assisted entropic uncertainty relation for two atoms immersed in a thermal bath of fluctuating massless scalar field is investigated. The master equation that governs the system evolution process is derived. It is found that the mixedness is closely associated with entropic uncertainty. For equilibrium state, the tightness of uncertainty vanishes. For the initial maximum entangled state, the tightness of uncertainty undergoes a slight increase and then declines to zero with evolution time. It is found that temperature can increase the uncertainty, but two-atom separation does not always increase the uncertainty. The uncertainty evolves to different relatively stable values for different temperatures and converges to a fixed value for different two-atom distances with evolution time. Furthermore, weak measurement reversal is employed to control the entropic uncertainty.
Entropic information of dynamical AdS/QCD holographic models
Energy Technology Data Exchange (ETDEWEB)
Bernardini, Alex E., E-mail: alexeb@ufscar.br [Departamento de Física, Universidade Federal de São Carlos, PO Box 676, 13565-905, São Carlos, SP (Brazil); Rocha, Roldão da, E-mail: roldao.rocha@ufabc.edu.br [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, UFABC, 09210-580, Santo André (Brazil)
2016-11-10
The Shannon based conditional entropy that underlies five-dimensional Einstein–Hilbert gravity coupled to a dilaton field is investigated in the context of dynamical holographic AdS/QCD models. Considering the UV and IR dominance limits of such AdS/QCD models, the conditional entropy is shown to shed some light onto the meson classification schemes, which corroborate with the existence of light-flavor mesons of lower spins in Nature. Our analysis is supported by a correspondence between statistical mechanics and information entropy which establishes the physical grounds to the Shannon information entropy, also in the context of statistical mechanics, and provides some specificities for accurately extending the entropic discussion to continuous modes of physical systems. From entropic informational grounds, the conditional entropy allows one to identify the lower experimental/phenomenological occurrence of higher spin mesons in Nature. Moreover, it introduces a quantitative theoretical apparatus for studying the instability of high spin light-flavor mesons.
Directory of Open Access Journals (Sweden)
Wassim M. Haddad
2012-02-01
Full Text Available In this paper, we combine the two universalisms of thermodynamics and dynamical systems theory to develop a dynamical system formalism for classical thermodynamics. Specifically, using a compartmental dynamical system energy flow model we develop a state-space dynamical system model that captures the key aspects of thermodynamics, including its fundamental laws. In addition, we establish the existence of a unique, continuously differentiable global entropy function for our dynamical system model, and using Lyapunov stability theory we show that the proposed thermodynamic model has finite-time convergent trajectories to Lyapunov stable equilibria determined by the system initial energies. Finally, using the system entropy, we establish the absence of Poincaré recurrence for our thermodynamic model and develop clear and rigorous connections between irreversibility, the second law of thermodynamics, and the entropic arrow of time.
Entropic dynamics: From entropy and information geometry to Hamiltonians and quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Caticha, Ariel; Bartolomeo, Daniel [Department of Physics, University at Albany-SUNY, Albany, NY 12222 (United States); Reginatto, Marcel [Physicalisch-Technische Bundesanstalt, 38116 Braunschweig (Germany)
2015-01-13
Entropic Dynamics is a framework in which quantum theory is derived as an application of entropic methods of inference. There is no underlying action principle. Instead, the dynamics is driven by entropy subject to the appropriate constraints. In this paper we show how a Hamiltonian dynamics arises as a type of non-dissipative entropic dynamics. We also show that the particular form of the 'quantum potential' that leads to the Schrödinger equation follows naturally from information geometry.
Entropic dynamics: From entropy and information geometry to Hamiltonians and quantum mechanics
International Nuclear Information System (INIS)
Caticha, Ariel; Bartolomeo, Daniel; Reginatto, Marcel
2015-01-01
Entropic Dynamics is a framework in which quantum theory is derived as an application of entropic methods of inference. There is no underlying action principle. Instead, the dynamics is driven by entropy subject to the appropriate constraints. In this paper we show how a Hamiltonian dynamics arises as a type of non-dissipative entropic dynamics. We also show that the particular form of the 'quantum potential' that leads to the Schrödinger equation follows naturally from information geometry
Entropic force, holography and thermodynamics for static space-times
International Nuclear Information System (INIS)
Konoplya, R.A.
2010-01-01
Recently Verlinde has suggested a new approach to gravity which interprets gravitational interaction as a kind of entropic force. The new approach uses the holographic principle by stating that the information is kept on the holographic screens which coincide with equipotential surfaces. Motivated by this new interpretation of gravity (but not being limited by it) we study equipotential surfaces, the Unruh-Verlinde temperature, energy and acceleration for various static space-times: generic spherically symmetric solutions, axially symmetric black holes immersed in a magnetic field, traversable spherically symmetric wormholes of an arbitrary shape function, system of two and more extremely charged black holes in equilibrium. In particular, we have shown that the Unruh-Verlinde temperature of the holographic screen reaches absolute zero on the wormhole throat independently of the particular form of the wormhole solution. (orig.)
Gross, Markus
2018-03-01
A fluctuating interfacial profile in one dimension is studied via Langevin simulations of the Edwards–Wilkinson equation with non-conserved noise and the Mullins–Herring equation with conserved noise. The profile is subject to either periodic or Dirichlet (no-flux) boundary conditions. We determine the noise-driven time-evolution of the profile between an initially flat configuration and the instant at which the profile reaches a given height M for the first time. The shape of the averaged profile agrees well with the prediction of weak-noise theory (WNT), which describes the most-likely trajectory to a fixed first-passage time. Furthermore, in agreement with WNT, on average the profile approaches the height M algebraically in time, with an exponent that is essentially independent of the boundary conditions. However, the actual value of the dynamic exponent turns out to be significantly smaller than predicted by WNT. This ‘renormalization’ of the exponent is explained in terms of the entropic repulsion exerted by the impenetrable boundary on the fluctuations of the profile around its most-likely path. The entropic repulsion mechanism is analyzed in detail for a single (fractional) Brownian walker, which describes the anomalous diffusion of a tagged monomer of the interface as it approaches the absorbing boundary. The present study sheds light on the accuracy and the limitations of the weak-noise approximation for the description of the full first-passage dynamics.
Johnson, David T.
Quantum mechanics is an extremely successful and accurate physical theory, yet since its inception, it has been afflicted with numerous conceptual difficulties. The primary subject of this thesis is the theory of entropic quantum dynamics (EQD), which seeks to avoid these conceptual problems by interpreting quantum theory from an informational perspective. We begin by reviewing Cox's work in describing probability theory as a means of rationally and consistently quantifying uncertainties. We then discuss how probabilities can be updated according to either Bayes' theorem or the extended method of maximum entropy (ME). After that discussion, we review the work of Caticha and Giffin that shows that Bayes' theorem is a special case of ME. This important result demonstrates that the ME method is the general method for updating probabilities. We then review some motivating difficulties in quantum mechanics before discussing Caticha's work in deriving quantum theory from the approach of entropic dynamics, which concludes our review. After entropic dynamics is introduced, we develop the concepts of symmetries and transformations from an informational perspective. The primary result is the formulation of a symmetry condition that any transformation must satisfy in order to qualify as a symmetry in EQD. We then proceed to apply this condition to the extended Galilean transformation. This transformation is of interest as it exhibits features of both special and general relativity. The transformation yields a gravitational potential that arises from an equivalence of information. We conclude the thesis with a discussion of the measurement problem in quantum mechanics. We discuss the difficulties that arise in the standard quantum mechanical approach to measurement before developing our theory of entropic measurement. In entropic dynamics, position is the only observable. We show how a theory built on this one observable can account for the multitude of measurements present in
Qin, Feifei; Mazloomi Moqaddam, Ali; Kang, Qinjun; Derome, Dominique; Carmeliet, Jan
2018-03-01
An entropic multiple-relaxation-time lattice Boltzmann approach is coupled to a multirange Shan-Chen pseudopotential model to study the two-phase flow. Compared with previous multiple-relaxation-time multiphase models, this model is stable and accurate for the simulation of a two-phase flow in a much wider range of viscosity and surface tension at a high liquid-vapor density ratio. A stationary droplet surrounded by equilibrium vapor is first simulated to validate this model using the coexistence curve and Laplace's law. Then, two series of droplet impact behavior, on a liquid film and a flat surface, are simulated in comparison with theoretical or experimental results. Droplet impact on a liquid film is simulated for different Reynolds numbers at high Weber numbers. With the increase of the Sommerfeld parameter, onset of splashing is observed and multiple secondary droplets occur. The droplet spreading ratio agrees well with the square root of time law and is found to be independent of Reynolds number. Moreover, shapes of simulated droplets impacting hydrophilic and superhydrophobic flat surfaces show good agreement with experimental observations through the entire dynamic process. The maximum spreading ratio of a droplet impacting the superhydrophobic flat surface is studied for a large range of Weber numbers. Results show that the rescaled maximum spreading ratios are in good agreement with a universal scaling law. This series of simulations demonstrates that the proposed model accurately captures the complex fluid-fluid and fluid-solid interfacial physical processes for a wide range of Reynolds and Weber numbers at high density ratios.
Dell, Zachary E.; Schweizer, Kenneth S.
2017-04-01
We develop a segment-scale, force-based theory for the breakdown of the unentangled Rouse model and subsequent emergence of isotropic mesoscopic localization and entropic elasticity in chain polymer liquids in the absence of ergodicity-restoring anisotropic reptation or activated hopping motion. The theory is formulated in terms of a conformational N-dynamic-order-parameter generalized Langevin equation approach. It is implemented using a universal field-theoretic Gaussian thread model of polymer structure and closed at the level of the chain dynamic second moment matrix. The physical idea is that the isotropic Rouse model fails due to the dynamical emergence, with increasing chain length, of time-persistent intermolecular contacts determined by the combined influence of local uncrossability, long range polymer connectivity, and a self-consistent treatment of chain motion and the dynamic forces that hinder it. For long chain melts, the mesoscopic localization length (identified as the tube diameter) and emergent entropic elasticity predictions are in near quantitative agreement with experiment. Moreover, the onset chain length scales with the semi-dilute crossover concentration with a realistic numerical prefactor. Distinctive novel predictions are made for various off-diagonal correlation functions that quantify the full spatial structure of the dynamically localized polymer conformation. As the local excluded volume constraint and/or intrachain bonding spring are softened to allow chain crossability, the tube diameter is predicted to swell until it reaches the radius-of-gyration at which point mesoscopic localization vanishes in a discontinuous manner. A dynamic phase diagram for such a delocalization transition is constructed, which is qualitatively consistent with simulations and the classical concept of a critical entanglement degree of polymerization.
Zhang, Zuo-Yuan; Wei, DaXiu; Liu, Jin-Ming
2018-06-01
The precision of measurements for two incompatible observables in a physical system can be improved with the assistance of quantum memory. In this paper, we investigate the quantum-memory-assisted entropic uncertainty relation for a spin-1 Heisenberg model in the presence of external magnetic fields, the systemic quantum entanglement (characterized by the negativity) is analyzed as contrast. Our results show that for the XY spin chain in thermal equilibrium, the entropic uncertainty can be reduced by reinforcing the coupling between the two particles or decreasing the temperature of the environment. At zero-temperature, the strong magnetic field can result in the growth of the entropic uncertainty. Moreover, in the Ising case, the variation trends of the uncertainty are relied on the choices of anisotropic parameters. Taking the influence of intrinsic decoherence into account, we find that the strong coupling accelerates the inflation of the uncertainty over time, whereas the high magnetic field contributes to its reduction during the temporal evolution. Furthermore, we also verify that the evolution behavior of the entropic uncertainty is roughly anti-correlated with that of the entanglement in the whole dynamical process. Our results could offer new insights into quantum precision measurement for the high spin solid-state systems.
Faghihi, M. J.; Tavassoly, M. K.; Bagheri Harouni, M.
2014-04-01
In this paper, we study the interaction between a Λ-type three-level atom and two quantized electromagnetic fields which are simultaneously injected in a bichromatic cavity surrounded by a Kerr medium in the presence of field-field interaction (parametric down conversion) and detuning parameters. By applying a canonical transformation, the introduced model is reduced to a well-known form of the generalized Jaynes-Cummings model. Under particular initial conditions which may be prepared for the atom and the field, the time evolution of the state vector of the entire system is analytically evaluated. Then, the dynamics of the atom is studied through the evolution of the atomic population inversion. In addition, two different measures of entanglement between the tripartite system (three entities make the system: two field modes and one atom), i.e., von Neumann and linear entropy are investigated. Also, two kinds of entropic uncertainty relations, from which entropy squeezing can be obtained, are discussed. In each case, the influences of the detuning parameters and Kerr medium on the above nonclassicality features are analyzed in detail via numerical results. It is illustrated that the amount of the above-mentioned physical phenomena can be tuned by choosing the evolved parameters, appropriately.
International Nuclear Information System (INIS)
Faghihi, M J; Tavassoly, M K; Bagheri Harouni, M
2014-01-01
In this paper, we study the interaction between a Λ-type three-level atom and two quantized electromagnetic fields which are simultaneously injected in a bichromatic cavity surrounded by a Kerr medium in the presence of field–field interaction (parametric down conversion) and detuning parameters. By applying a canonical transformation, the introduced model is reduced to a well-known form of the generalized Jaynes–Cummings model. Under particular initial conditions which may be prepared for the atom and the field, the time evolution of the state vector of the entire system is analytically evaluated. Then, the dynamics of the atom is studied through the evolution of the atomic population inversion. In addition, two different measures of entanglement between the tripartite system (three entities make the system: two field modes and one atom), i.e., von Neumann and linear entropy are investigated. Also, two kinds of entropic uncertainty relations, from which entropy squeezing can be obtained, are discussed. In each case, the influences of the detuning parameters and Kerr medium on the above nonclassicality features are analyzed in detail via numerical results. It is illustrated that the amount of the above-mentioned physical phenomena can be tuned by choosing the evolved parameters, appropriately. (paper)
Entropic quantization of scalar fields
International Nuclear Information System (INIS)
Ipek, Selman; Caticha, Ariel
2015-01-01
Entropic Dynamics is an information-based framework that seeks to derive the laws of physics as an application of the methods of entropic inference. The dynamics is derived by maximizing an entropy subject to constraints that represent the physically relevant information that the motion is continuous and non-dissipative. Here we focus on the quantum theory of scalar fields. We provide an entropic derivation of Hamiltonian dynamics and using concepts from information geometry derive the standard quantum field theory in the Schrödinger representation
Entropic quantization of scalar fields
Energy Technology Data Exchange (ETDEWEB)
Ipek, Selman; Caticha, Ariel [Department of Physics, University at Albany-SUNY, Albany, NY 12222 (United States)
2015-01-13
Entropic Dynamics is an information-based framework that seeks to derive the laws of physics as an application of the methods of entropic inference. The dynamics is derived by maximizing an entropy subject to constraints that represent the physically relevant information that the motion is continuous and non-dissipative. Here we focus on the quantum theory of scalar fields. We provide an entropic derivation of Hamiltonian dynamics and using concepts from information geometry derive the standard quantum field theory in the Schrödinger representation.
Caticha, Ariel
2010-01-01
In this tutorial we review the essential arguments behing entropic inference. We focus on the epistemological notion of information and its relation to the Bayesian beliefs of rational agents. The problem of updating from a prior to a posterior probability distribution is tackled through an eliminative induction process that singles out the logarithmic relative entropy as the unique tool for inference. The resulting method of Maximum relative Entropy (ME), includes as special cases both MaxEn...
Caticha, Ariel
2011-03-01
In this tutorial we review the essential arguments behing entropic inference. We focus on the epistemological notion of information and its relation to the Bayesian beliefs of rational agents. The problem of updating from a prior to a posterior probability distribution is tackled through an eliminative induction process that singles out the logarithmic relative entropy as the unique tool for inference. The resulting method of Maximum relative Entropy (ME), includes as special cases both MaxEnt and Bayes' rule, and therefore unifies the two themes of these workshops—the Maximum Entropy and the Bayesian methods—into a single general inference scheme.
Entropic Nonsignaling Correlations.
Chaves, Rafael; Budroni, Costantino
2016-06-17
We introduce the concept of entropic nonsignaling correlations, i.e., entropies arising from probabilistic theories that are compatible with the fact that we cannot transmit information instantaneously. We characterize and show the relevance of these entropic correlations in a variety of different scenarios, ranging from typical Bell experiments to more refined descriptions such as bilocality and information causality. In particular, we apply the framework to derive the first entropic inequality testing genuine tripartite nonlocality in quantum systems of arbitrary dimension and also prove the first known monogamy relation for entropic Bell inequalities. Further, within the context of complex Bell networks, we show that entropic nonlocal correlations can be activated.
Energy Technology Data Exchange (ETDEWEB)
Hahn, Steven [Iowa State Univ., Ames, IA (United States)
2012-01-01
Modern calculations are becoming an essential, complementary tool to inelastic x-ray scattering studies, where x-rays are scattered inelastically to resolve meV phonons. Calculations of the inelastic structure factor for any value of Q assist in both planning the experiment and analyzing the results. Moreover, differences between the measured data and theoretical calculations help identify important new physics driving the properties of novel correlated systems. We have used such calculations to better and more e ciently measure the phonon dispersion and elastic constants of several iron pnictide superconductors. This dissertation describes calculations and measurements at room temperature in the tetragonal phase of CaFe{sub 2}As{sub 2} and LaFeAsO. In both cases, spin-polarized calculations imposing the antiferromagnetic order present in the low-temperature orthorhombic phase dramatically improves the agreement between theory and experiment. This is discussed in terms of the strong antiferromagnetic correlations that are known to persist in the tetragonal phase. In addition, we discuss a relatively new approach called self-consistent ab initio lattice dynamics (SCAILD), which goes beyond the harmonic approximation to include phonon-phonon interactions and produce a temperature-dependent phonon dispersion. We used this technique to study the HCP to BCC transition in beryllium.
Controlling quantum memory-assisted entropic uncertainty in non-Markovian environments
Zhang, Yanliang; Fang, Maofa; Kang, Guodong; Zhou, Qingping
2018-03-01
Quantum memory-assisted entropic uncertainty relation (QMA EUR) addresses that the lower bound of Maassen and Uffink's entropic uncertainty relation (without quantum memory) can be broken. In this paper, we investigated the dynamical features of QMA EUR in the Markovian and non-Markovian dissipative environments. It is found that dynamical process of QMA EUR is oscillation in non-Markovian environment, and the strong interaction is favorable for suppressing the amount of entropic uncertainty. Furthermore, we presented two schemes by means of prior weak measurement and posterior weak measurement reversal to control the amount of entropic uncertainty of Pauli observables in dissipative environments. The numerical results show that the prior weak measurement can effectively reduce the wave peak values of the QMA-EUA dynamic process in non-Markovian environment for long periods of time, but it is ineffectual on the wave minima of dynamic process. However, the posterior weak measurement reversal has an opposite effects on the dynamic process. Moreover, the success probability entirely depends on the quantum measurement strength. We hope that our proposal could be verified experimentally and might possibly have future applications in quantum information processing.
Energy Technology Data Exchange (ETDEWEB)
Castagnino, Mario [CONICET-Instituto de AstronomIa y FIsica del Espacio, Casilla de Correos 67, Sucursal 28, 1428 Buenos Aires (Argentina); Lombardi, Olimpia [CONICET-Universidad Autonoma de Madrid, Ctra. Colmenar Km 15, 28049 Madrid (Spain)
2004-04-16
In this paper we adopt a generic, global and non-entropic approach to the problem of the arrow of time, according to which the arrow of time is a generic, intrinsic and geometrical property of spacetime. We demonstrate that the arrow of time so defined is generic in the sense that any spacetime with physically reasonable properties (e.g. time-orientability and global time) will be endowed with an arrow of time. The only exceptions are very special cases belonging to a subset of zero measure of the set of all possible spacetimes. We also show the dual role played by the energy-momentum tensor in the context of our approach. On one hand, the energy-momentum tensor is the intermediate step that permits us to turn the geometrical time-asymmetry of the universe into a local arrow of time manifested as a time-asymmetric energy flow. On the other hand, the energy-momentum tensor supplies the basis for deducing the time-asymmetry of quantum field theory, posed as an axiom in this theory.
Macrorealism from entropic Leggett-Garg inequalities
Devi, A. R. Usha; Karthik, H. S.; Sudha; Rajagopal, A. K.
2013-05-01
We formulate entropic Leggett-Garg inequalities, which place constraints on the statistical outcomes of temporal correlations of observables. The information theoretic inequalities are satisfied if macrorealism holds. We show that the quantum statistics underlying correlations between time-separated spin component of a quantum rotor mimics that of spin correlations in two spatially separated spin-s particles sharing a state of zero total spin. This brings forth the violation of the entropic Leggett-Garg inequality by a rotating quantum spin-s system in a similar manner as does the entropic Bell inequality [S. L. Braunstein and C. M. Caves, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.61.662 61, 662 (1988)] by a pair of spin-s particles forming a composite spin singlet state.
Essentially Entropic Lattice Boltzmann Model
Atif, Mohammad; Kolluru, Praveen Kumar; Thantanapally, Chakradhar; Ansumali, Santosh
2017-12-01
The entropic lattice Boltzmann model (ELBM), a discrete space-time kinetic theory for hydrodynamics, ensures nonlinear stability via the discrete time version of the second law of thermodynamics (the H theorem). Compliance with the H theorem is numerically enforced in this methodology and involves a search for the maximal discrete path length corresponding to the zero dissipation state by iteratively solving a nonlinear equation. We demonstrate that an exact solution for the path length can be obtained by assuming a natural criterion of negative entropy change, thereby reducing the problem to solving an inequality. This inequality is solved by creating a new framework for construction of Padé approximants via quadrature on appropriate convex function. This exact solution also resolves the issue of indeterminacy in case of nonexistence of the entropic involution step. Since our formulation is devoid of complex mathematical library functions, the computational cost is drastically reduced. To illustrate this, we have simulated a model setup of flow over the NACA-0012 airfoil at a Reynolds number of 2.88 ×106.
Dolenc, Jozica; Gerster, Sarah; van Gunsteren, Wilfred F
2010-09-02
With the aim to gain a better understanding of the various driving forces that govern sequence specific DNA minor groove binding, we performed a thermodynamic analysis of netropsin binding to an AT-containing and to a set of six mixed AT/GC-containing binding sequences in the DNA minor groove. The relative binding free energies obtained using molecular dynamics simulations and free energy calculations show significant variations with the binding sequence. While the introduction of a GC base pair in the middle or close to the middle of the binding site is unfavorable for netropsin binding, a GC base pair at the end of the binding site appears to have no negative influence on the binding. The results of the structural and energetic analyses of the netropsin-DNA complexes reveal that the differences in the calculated binding affinities cannot be explained solely in terms of netropsin-DNA hydrogen-bonding or interaction energies. In addition, solvation effects and entropic contributions to the relative binding free energy provide a more complete picture of the various factors determining binding. Analysis of the relative binding entropy indicates that its magnitude is highly sequence-dependent, with the ratio |TDeltaDeltaS|/|DeltaDeltaH| ranging from 0.07 for the AAAGA to 1.7 for the AAGAG binding sequence, respectively.
On the Humble Origins of the Brownian Entropic Force
Neumann, Richard M.
2015-01-01
Recognition that certain forces arising from the averaging of the multiple impacts of a solute particle by the surrounding solvent particles undergoing random thermal motion can be of an entropic nature has led to the incorporation of these forces and their related entropies into theoretical protocols ranging from molecular-dynamics simulations to the modeling of quarkonium suppression in particle physics. Here we present a rigorous derivation of this Brownian entropic force by means of the c...
Direction-dependent force-induced dissociation dynamics of an entropic-driven lock-and-key assembly.
Chen, Yen-Fu; Chen, Hsuan-Yi; Sheng, Yu-Jane; Tsao, Heng-Kwong
2017-09-01
The unbinding dynamics of a nanosized sphere-and-cavity assembly under the pulling of constant force and constant loading rate is explored by dissipative particle dynamics simulations. The formation of this matched lock-and-key pair in a polymer solution is driven by the depletion attraction. The two-dimensional free energy landscape U(x,z) associated with this assembly is constructed. Our results indicate that the unbinding pathway along the orientation of the assembly is unfavorable due to the relatively high energy barrier compared to that along the tortuous minimum path whose energy barrier is not high. It is also found that the dissociation rate depends on the direction of the external force (θ) with respect to the assembly orientation. The presence of the force component perpendicular to the assembly orientation can reduce the bond lifetime significantly by driving the key particle to approach the minimum path. Moreover, the dissociation dynamics can be facilitated even by a pushing force compared to the spontaneous dissociation (without forces). To elucidate the effective pathway under pulling, the escaping position is analyzed and its mean direction with respect to the assembly orientation rises generally with increasing θ, revealing that the presence of the force component along the minimum pathway is helpful. The importance of the direction of the external pulling has been demonstrated in our simple system. Therefore, this effect should be considered in more complicated unbinding experiments.
Directory of Open Access Journals (Sweden)
Shan Gao
2011-04-01
Full Text Available The remarkable connections between gravity and thermodynamics seem to imply that gravity is not fundamental but emergent, and in particular, as Verlinde suggested, gravity is probably an entropic force. In this paper, we will argue that the idea of gravity as an entropic force is debatable. It is shown that there is no convincing analogy between gravity and entropic force in Verlinde’s example. Neither holographic screen nor test particle satisfies all requirements for the existence of entropic force in a thermodynamics system. Furthermore, we show that the entropy increase of the screen is not caused by its statistical tendency to increase entropy as required by the existence of entropic force, but in fact caused by gravity. Therefore, Verlinde’s argument for the entropic origin of gravity is problematic. In addition, we argue that the existence of a minimum size of spacetime, together with the Heisenberg uncertainty principle in quantum theory, may imply the fundamental existence of gravity as a geometric property of spacetime. This may provide a further support for the conclusion that gravity is not an entropic force.
Intelligence by design in an entropic power grid
Negrete-Pincetic, Matias Alejandro
In this work, the term Entropic Grid is coined to describe a power grid with increased levels of uncertainty and dynamics. These new features will require the reconsideration of well-established paradigms in the way of planning and operating the grid and its associated markets. New tools and models able to handle uncertainty and dynamics will form the required scaffolding to properly capture the behavior of the physical system, along with the value of new technologies and policies. The leverage of this knowledge will facilitate the design of new architectures to organize power and energy systems and their associated markets. This work presents several results, tools and models with the goal of contributing to that design objective. A central idea of this thesis is that the definition of products is critical in electricity markets. When markets are constructed with appropriate product definitions in mind, the interference between the physical and the market/financial systems seen in today's markets can be reduced. A key element of evaluating market designs is understanding the impact that salient features of an entropic grid---uncertainty, dynamics, constraints---can have on the electricity markets. Dynamic electricity market models tailored to capture such features are developed in this work. Using a multi-settlement dynamic electricity market, the impact of volatility is investigated. The results show the need to implement policies and technologies able to cope with the volatility of renewable sources. Similarly, using a dynamic electricity market model in which ramping costs are considered, the impacts of those costs on electricity markets are investigated. The key conclusion is that those additional ramping costs, in average terms, are not reflected in electricity prices. These results reveal several difficulties with today's real-time markets. Elements of an alternative architecture to organize these markets are also discussed.
Simplified Entropic Model for the Evaluation of Suspended Load Concentration
Directory of Open Access Journals (Sweden)
Domenica Mirauda
2018-03-01
Full Text Available Suspended sediment concentration is a key aspect in the forecasting of river evolution dynamics, as well as in water quality assessment, evaluation of reservoir impacts, and management of water resources. The estimation of suspended load often relies on empirical models, of which efficiency is limited by their analytic structure or by the need for calibration parameters. The present work deals with a simplified fully-analytical formulation of the so-called entropic model in order to reproduce the vertical distribution of sediment concentration. The simplification consists in the leading order expansion of the generalized spatial coordinate of the entropic velocity profile that, strictly speaking, applies to the near-bed region, but that provides acceptable results also near the free surface. The proposed closed-form solution, which highlights the interplay among channel morphology, stream power, secondary flows, and suspended transport features, allows reducing the needed number of field measurements and, therefore, the time of field activities. Its accuracy and robustness were successfully tested based on the comparison with laboratory data reported in literature.
Kuehn, Christian
2015-01-01
This book provides an introduction to dynamical systems with multiple time scales. The approach it takes is to provide an overview of key areas, particularly topics that are less available in the introductory form. The broad range of topics included makes it accessible for students and researchers new to the field to gain a quick and thorough overview. The first of its kind, this book merges a wide variety of different mathematical techniques into a more unified framework. The book is highly illustrated with many examples and exercises and an extensive bibliography. The target audience of this book are senior undergraduates, graduate students as well as researchers interested in using the multiple time scale dynamics theory in nonlinear science, either from a theoretical or a mathematical modeling perspective.
Tightness Entropic Uncertainty Relation in Quantum Markovian-Davies Environment
Zhang, Jun; Liu, Liang; Han, Yan
2018-05-01
In this paper, we investigate the tightness of entropic uncertainty relation in the absence (presence) of the quantum memory which the memory particle being weakly coupled to a decohering Davies-type Markovian environment. The results show that the tightness of the quantum uncertainty relation can be controlled by the energy relaxation time F, the dephasing time G and the rescaled temperature p, the perfect tightness can be arrived by dephasing and energy relaxation satisfying F = 2G and p = 1/2. In addition, the tightness of the memory-assisted entropic uncertainty relation and the entropic uncertainty relation can be influenced mainly by the purity. While in memory-assisted model, the purity and quantum correlation can also influence the tightness actively while the quantum entanglement can influence the tightness slightly.
Hyperdynamics for entropic systems
DEFF Research Database (Denmark)
Zhou, Xin; Jiang, Yi; Kremer, Kurt
2006-01-01
We develop a generalized hyperdynamics method, which is able to simulate slow dynamics in atomistic general (both energy and entropy-dominated) systems. We show that a few functionals of the pair correlation function, involving two-body entropy, form a low-dimensional collective space, which is a...
Entropic Barriers for Two-Dimensional Quantum Memories
Brown, Benjamin J.; Al-Shimary, Abbas; Pachos, Jiannis K.
2014-03-01
Comprehensive no-go theorems show that information encoded over local two-dimensional topologically ordered systems cannot support macroscopic energy barriers, and hence will not maintain stable quantum information at finite temperatures for macroscopic time scales. However, it is still well motivated to study low-dimensional quantum memories due to their experimental amenability. Here we introduce a grid of defect lines to Kitaev's quantum double model where different anyonic excitations carry different masses. This setting produces a complex energy landscape which entropically suppresses the diffusion of excitations that cause logical errors. We show numerically that entropically suppressed errors give rise to superexponential inverse temperature scaling and polynomial system size scaling for small system sizes over a low-temperature regime. Curiously, these entropic effects are not present below a certain low temperature. We show that we can vary the system to modify this bound and potentially extend the described effects to zero temperature.
Faghihi, M. J.; Tavassoly, M. K.; Hooshmandasl, M. R.
2013-05-01
In this paper, the interaction between a $\\Lambda$-type three-level atom and two-mode cavity field is discussed. The detuning parameters and cross-Kerr nonlinearity are taken into account and it is assumed that atom-field coupling and Kerr medium to be $f$-deformed. Even though the system seems to be complicated, the analytical form of the state vector of the entire system for considered model is exactly obtained. The time evolution of nonclassical properties such as quantum entanglement and position-momentum entropic uncertainty relation (entropy squeezing) of the field are investigated. In each case, the influences of the detuning parameters, generalized Kerr medium and intensity-dependent coupling on the latter nonclassicality signs are analyzed, in detail.
Entropic uncertainty relations-a survey
International Nuclear Information System (INIS)
Wehner, Stephanie; Winter, Andreas
2010-01-01
Uncertainty relations play a central role in quantum mechanics. Entropic uncertainty relations in particular have gained significant importance within quantum information, providing the foundation for the security of many quantum cryptographic protocols. Yet, little is known about entropic uncertainty relations with more than two measurement settings. In the present survey, we review known results and open questions.
Additivity of entropic uncertainty relations
Directory of Open Access Journals (Sweden)
René Schwonnek
2018-03-01
Full Text Available We consider the uncertainty between two pairs of local projective measurements performed on a multipartite system. We show that the optimal bound in any linear uncertainty relation, formulated in terms of the Shannon entropy, is additive. This directly implies, against naive intuition, that the minimal entropic uncertainty can always be realized by fully separable states. Hence, in contradiction to proposals by other authors, no entanglement witness can be constructed solely by comparing the attainable uncertainties of entangled and separable states. However, our result gives rise to a huge simplification for computing global uncertainty bounds as they now can be deduced from local ones. Furthermore, we provide the natural generalization of the Maassen and Uffink inequality for linear uncertainty relations with arbitrary positive coefficients.
Entropic Phase Maps in Discrete Quantum Gravity
Directory of Open Access Journals (Sweden)
Benjamin F. Dribus
2017-06-01
Full Text Available Path summation offers a flexible general approach to quantum theory, including quantum gravity. In the latter setting, summation is performed over a space of evolutionary pathways in a history configuration space. Discrete causal histories called acyclic directed sets offer certain advantages over similar models appearing in the literature, such as causal sets. Path summation defined in terms of these histories enables derivation of discrete Schrödinger-type equations describing quantum spacetime dynamics for any suitable choice of algebraic quantities associated with each evolutionary pathway. These quantities, called phases, collectively define a phase map from the space of evolutionary pathways to a target object, such as the unit circle S 1 ⊂ C , or an analogue such as S 3 or S 7 . This paper explores the problem of identifying suitable phase maps for discrete quantum gravity, focusing on a class of S 1 -valued maps defined in terms of “structural increments” of histories, called terminal states. Invariants such as state automorphism groups determine multiplicities of states, and induce families of natural entropy functions. A phase map defined in terms of such a function is called an entropic phase map. The associated dynamical law may be viewed as an abstract combination of Schrödinger’s equation and the second law of thermodynamics.
Weak entropy inequalities and entropic convergence
Institute of Scientific and Technical Information of China (English)
2008-01-01
A criterion for algebraic convergence of the entropy is presented and an algebraic convergence result for the entropy of an exclusion process is improved. A weak entropy inequality is considered and its relationship to entropic convergence is discussed.
Entropic Representation and Estimation of Diversity Indices
Zhang, Zhiyi; Grabchak, Michael
2014-01-01
This paper serves a twofold purpose. First, a unified perspective on diversity indices is introduced based on an entropic basis. It is shown that the class of all linear combinations of the entropic basis, referred to as the class of linear diversity indices, covers a wide range of diversity indices used in the literature. Second, a class of estimators for linear diversity indices is proposed and it is shown that these estimators have rapidly decaying biases and asymptotic normality.
Modified entropic gravitation in superconductors
International Nuclear Information System (INIS)
Matos, Clovis Jacinto de
2012-01-01
Verlinde recently developed a theoretical account of gravitation in terms of an entropic force. The central element in Verlinde’s derivation is information and its relation with entropy through the holographic principle. The application of this approach to the case of superconductors requires to take into account that information associated with superconductor’s quantum vacuum energy is not stored on Planck size surface elements, but in four volume cells with Planck-Einstein size. This has profound consequences on the type of gravitational force generated by the quantum vacuum condensate in superconductors, which is closely related with the cosmological repulsive acceleration responsible for the accelerated expansion of the Universe. Remarkably this new gravitational type force depends on the level of breaking of the weak equivalence principle for cooper pairs in a given superconducting material, which was previously derived by the author starting from similar principles. It is also shown that this new gravitational force can be interpreted as a surface force. The experimental detection of this new repulsive gravitational-type force appears to be challenging.
Reconstructing time-dependent dynamics
Clemson, Philip; Lancaster, Gemma; Stefanovska, Aneta
2016-01-01
The usefulness of the information extracted from biomedical data relies heavily on the underlying theory of the methods used in its extraction. The assumptions of stationarity and autonomicity traditionally applied to dynamical systems break down when considering living systems, due to their inherent time-variability. Living systems are thermodynamically open, and thus constantly interacting with their environment. This results in highly nonlinear, time-dependent dynamics. The aim of signal a...
Long charged macromolecule in an entropic trap with rough surfaces.
Mamasakhlisov, Yevgeni Sh; Hayryan, Shura; Hu, Chin-Kun
2012-11-01
The kinetics of the flux of a charged macromolecular solution through an environment of changing geometry with wide and constricted regions is investigated analytically. A model device consisting of alternating deep and shallow slits known as an "entropic trap" is used to represent the environment. The flux is supported by the external electrostatic field. The "wormlike chain" model is used for the macromolecule (dsDNA in the present study). The chain entropy in both the deep and the shallow slits, the work by the electric field, and the energy of the elastic bending of the chain are taken into account accurately. Based on the calculated free energy, the kinetics and the scaling behavior of the chain escaping from the entropic trap are studied. We find that the escape process occurs in two kinetic stages with different time scales and discuss the possible influence of the surface roughness. The scope of the accuracy of the proposed model is discussed.
Dynamic inequalities on time scales
Agarwal, Ravi; Saker, Samir
2014-01-01
This is a monograph devoted to recent research and results on dynamic inequalities on time scales. The study of dynamic inequalities on time scales has been covered extensively in the literature in recent years and has now become a major sub-field in pure and applied mathematics. In particular, this book will cover recent results on integral inequalities, including Young's inequality, Jensen's inequality, Holder's inequality, Minkowski's inequality, Steffensen's inequality, Hermite-Hadamard inequality and Čebyšv's inequality. Opial type inequalities on time scales and their extensions with weighted functions, Lyapunov type inequalities, Halanay type inequalities for dynamic equations on time scales, and Wirtinger type inequalities on time scales and their extensions will also be discussed here in detail.
Decoherence effect on quantum-memory-assisted entropic uncertainty relations
Ming, Fei; Wang, Dong; Huang, Ai-Jun; Sun, Wen-Yang; Ye, Liu
2018-01-01
Uncertainty principle significantly provides a bound to predict precision of measurement with regard to any two incompatible observables, and thereby plays a nontrivial role in quantum precision measurement. In this work, we observe the dynamical features of the quantum-memory-assisted entropic uncertainty relations (EUR) for a pair of incompatible measurements in an open system characterized by local generalized amplitude damping (GAD) noises. Herein, we derive the dynamical evolution of the entropic uncertainty with respect to the measurement affecting by the canonical GAD noises when particle A is initially entangled with quantum memory B. Specifically, we examine the dynamics of EUR in the frame of three realistic scenarios: one case is that particle A is affected by environmental noise (GAD) while particle B as quantum memory is free from any noises, another case is that particle B is affected by the external noise while particle A is not, and the last case is that both of the particles suffer from the noises. By analytical methods, it turns out that the uncertainty is not full dependent of quantum correlation evolution of the composite system consisting of A and B, but the minimal conditional entropy of the measured subsystem. Furthermore, we present a possible physical interpretation for the behavior of the uncertainty evolution by means of the mixedness of the observed system; we argue that the uncertainty might be dramatically correlated with the systematic mixedness. Furthermore, we put forward a simple and effective strategy to reduce the measuring uncertainty of interest upon quantum partially collapsed measurement. Therefore, our explorations might offer an insight into the dynamics of the entropic uncertainty relation in a realistic system, and be of importance to quantum precision measurement during quantum information processing.
Entropic forces drive contraction of cytoskeletal networks
Czech Academy of Sciences Publication Activity Database
Braun, M.; Lánský, Zdeněk; Hilitski, F.; Dogic, Z.; Diez, S.
2016-01-01
Roč. 38, č. 5 (2016), s. 474-481 ISSN 0265-9247 R&D Projects: GA ČR(CZ) GA15-17488S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:86652036 Keywords : cytoskeleton * depletion forces * entropic forces Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.441, year: 2016
Towards a physical interpretation of the entropic lattice Boltzmann method
Malaspinas, Orestis; Deville, Michel; Chopard, Bastien
2008-12-01
The entropic lattice Boltzmann method (ELBM) is one among several different versions of the lattice Boltzmann method for the simulation of hydrodynamics. The collision term of the ELBM is characterized by a nonincreasing H function, guaranteed by a variable relaxation time. We propose here an analysis of the ELBM using the Chapman-Enskog expansion. We show that it can be interpreted as some kind of subgrid model, where viscosity correction scales like the strain rate tensor. We confirm our analytical results by the numerical computations of the relaxation time modifications on the two-dimensional dipole-wall interaction benchmark.
Higher derivative corrections to the entropic force from holography
Zhang, Zi-qiang; Luo, Zhong-jie; Hou, De-fu
2018-04-01
The entropic force has been recently argued to be responsible for dissociation of heavy quarkonia. In this paper, we analyze R2 corrections and R4 corrections to the entropic force, respectively. It is shown that for R2 corrections, increasing λGB (Gauss-Bonnet factor) leads to increasing the entropic force. While for R4 corrections, increasing λ ('t Hooft coupling) leads to decreasing the entropic force. Also, we discuss how the entropic force changes with the shear viscosity to entropy density ratio, η / s, at strong coupling.
Chen, Peng-Fei; Sun, Wen-Yang; Ming, Fei; Huang, Ai-Jun; Wang, Dong; Ye, Liu
2018-01-01
Quantum objects are susceptible to noise from their surrounding environments, interaction with which inevitably gives rise to quantum decoherence or dissipation effects. In this work, we examine how different types of local noise under an open system affect entropic uncertainty relations for two incompatible measurements. Explicitly, we observe the dynamics of the entropic uncertainty in the presence of quantum memory under two canonical categories of noisy environments: unital (phase flip) and nonunital (amplitude damping). Our study shows that the measurement uncertainty exhibits a non-monotonic dynamical behavior—that is, the amount of the uncertainty will first inflate, and subsequently decrease, with the growth of decoherence strengths in the two channels. In contrast, the uncertainty decreases monotonically with the growth of the purity of the initial state shared in prior. In order to reduce the measurement uncertainty in noisy environments, we put forward a remarkably effective strategy to steer the magnitude of uncertainty by means of a local non-unitary operation (i.e. weak measurement) on the qubit of interest. It turns out that this non-unitary operation can greatly reduce the entropic uncertainty, upon tuning the operation strength. Our investigations might thereby offer an insight into the dynamics and steering of entropic uncertainty in open systems.
Entropic stochastic resonance without external force in oscillatory confined space
Energy Technology Data Exchange (ETDEWEB)
Ding, Huai; Jiang, Huijun; Hou, Zhonghuai, E-mail: hzhlj@ustc.edu.cn [Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, Anhui 230026 (China)
2015-05-21
We have studied the dynamics of Brownian particles in a confined geometry of dumbbell-shape with periodically oscillating walls. Entropic stochastic resonance (ESR) behavior, characterizing by a maximum value of the coherent factor Q at some optimal level of noise, is observed even without external periodic force in the horizontal direction, which is necessary for conventional ESR where the wall is static and the particle is subjected to the force. Interestingly, the ESR can be remarkably enhanced by the particle gravity G, in contrast to the conventional case. In addition, Q decreases (increases) with G in the small (large) noise limit, respectively, while it non-monotonically changes with G for moderate noise levels. We have applied an effective 1D coarsening description to illustrate such a nontrivial dependence on G, by investigating the property of the 1D effective potential of entropic nature and paying special attention to the excess part resulting from the boundary oscillation. Dependences of the ESR strength with other related parameters are also discussed.
Entropic multirelaxation lattice Boltzmann models for turbulent flows
Bösch, Fabian; Chikatamarla, Shyam S.; Karlin, Ilya V.
2015-10-01
We present three-dimensional realizations of a class of lattice Boltzmann models introduced recently by the authors [I. V. Karlin, F. Bösch, and S. S. Chikatamarla, Phys. Rev. E 90, 031302(R) (2014), 10.1103/PhysRevE.90.031302] and review the role of the entropic stabilizer. Both coarse- and fine-grid simulations are addressed for the Kida vortex flow benchmark. We show that the outstanding numerical stability and performance is independent of a particular choice of the moment representation for high-Reynolds-number flows. We report accurate results for low-order moments for homogeneous isotropic decaying turbulence and second-order grid convergence for most assessed statistical quantities. It is demonstrated that all the three-dimensional lattice Boltzmann realizations considered herein converge to the familiar lattice Bhatnagar-Gross-Krook model when the resolution is increased. Moreover, thanks to the dynamic nature of the entropic stabilizer, the present model features less compressibility effects and maintains correct energy and enstrophy dissipation. The explicit and efficient nature of the present lattice Boltzmann method renders it a promising candidate for both engineering and scientific purposes for highly turbulent flows.
Entropic force, noncommutative gravity, and ungravity
International Nuclear Information System (INIS)
Nicolini, Piero
2010-01-01
After recalling the basic concepts of gravity as an emergent phenomenon, we analyze the recent derivation of Newton's law in terms of entropic force proposed by Verlinde. By reviewing some points of the procedure, we extend it to the case of a generic quantum gravity entropic correction to get compelling deviations to the Newton's law. More specifically, we study: (1) noncommutative geometry deviations and (2) ungraviton corrections. As a special result in the noncommutative case, we find that the noncommutative character of the manifold would be equivalent to the temperature of a thermodynamic system. Therefore, in analogy to the zero temperature configuration, the description of spacetime in terms of a differential manifold could be obtained only asymptotically. Finally, we extend the Verlinde's derivation to a general case, which includes all possible effects, noncommutativity, ungravity, asymptotically safe gravity, electrostatic energy, and extra dimensions, showing that the procedure is solid versus such modifications.
Quantum channels and their entropic characteristics
International Nuclear Information System (INIS)
Holevo, A S; Giovannetti, V
2012-01-01
One of the major achievements of the recently emerged quantum information theory is the introduction and thorough investigation of the notion of a quantum channel which is a basic building block of any data-transmitting or data-processing system. This development resulted in an elaborated structural theory and was accompanied by the discovery of a whole spectrum of entropic quantities, notably the channel capacities, characterizing information-processing performance of the channels. This paper gives a survey of the main properties of quantum channels and of their entropic characterization, with a variety of examples for finite-dimensional quantum systems. We also touch upon the 'continuous-variables' case, which provides an arena for quantum Gaussian systems. Most of the practical realizations of quantum information processing were implemented in such systems, in particular based on principles of quantum optics. Several important entropic quantities are introduced and used to describe the basic channel capacity formulae. The remarkable role of specific quantum correlations—entanglement—as a novel communication resource is stressed.
Entropic Entanglement: Information Prison Break
Directory of Open Access Journals (Sweden)
Alexander Y. Yosifov
2017-01-01
Full Text Available We argue that certain nonviolent local quantum field theory (LQFT modification considered at the global horizon (r=2M of a static spherically symmetric black hole can lead to adiabatic leakage of quantum information in the form of Hawking particles. The source of the modification is (i smooth at r=2M and (ii rapidly vanishing at r≫2M. Furthermore, we restore the unitary evolution by introducing extra quanta which departs slightly from the generic Hawking emission without changing the experience of an infalling observer (no drama. Also, we suggest that a possible interpretation of the Bekenstein-Hawking bound as entanglement entropy may yield a nonsingular dynamical horizon behavior described by black hole thermodynamics. Hence, by treating gravity as a field theory and considering its coupling to the matter fields in the Minkowski vacuum, we derive the conjectured fluctuations of the background geometry of a black hole.
Evolving Stochastic Learning Algorithm based on Tsallis entropic index
Anastasiadis, A. D.; Magoulas, G. D.
2006-03-01
In this paper, inspired from our previous algorithm, which was based on the theory of Tsallis statistical mechanics, we develop a new evolving stochastic learning algorithm for neural networks. The new algorithm combines deterministic and stochastic search steps by employing a different adaptive stepsize for each network weight, and applies a form of noise that is characterized by the nonextensive entropic index q, regulated by a weight decay term. The behavior of the learning algorithm can be made more stochastic or deterministic depending on the trade off between the temperature T and the q values. This is achieved by introducing a formula that defines a time-dependent relationship between these two important learning parameters. Our experimental study verifies that there are indeed improvements in the convergence speed of this new evolving stochastic learning algorithm, which makes learning faster than using the original Hybrid Learning Scheme (HLS). In addition, experiments are conducted to explore the influence of the entropic index q and temperature T on the convergence speed and stability of the proposed method.
Directionality Theory and the Entropic Principle of Natural Selection
Directory of Open Access Journals (Sweden)
Lloyd A. Demetrius
2014-10-01
Full Text Available Darwinian fitness describes the capacity of an organism to appropriate resources from the environment and to convert these resources into net-offspring production. Studies of competition between related types indicate that fitness is analytically described by entropy, a statistical measure which is positively correlated with population stability, and describes the number of accessible pathways of energy flow between the individuals in the population. Directionality theory is a mathematical model of the evolutionary process based on the concept evolutionary entropy as the measure of fitness. The theory predicts that the changes which occur as a population evolves from one non-equilibrium steady state to another are described by the following directionality principle–fundamental theorem of evolution: (a an increase in evolutionary entropy when resource composition is diverse, and resource abundance constant; (b a decrease in evolutionary entropy when resource composition is singular, and resource abundance variable. Evolutionary entropy characterizes the dynamics of energy flow between the individual elements in various classes of biological networks: (a where the units are individuals parameterized by age, and their age-specific fecundity and mortality; where the units are metabolites, and the transitions are the biochemical reactions that convert substrates to products; (c where the units are social groups, and the forces are the cooperative and competitive interactions between the individual groups. % This article reviews the analytical basis of the evolutionary entropic principle, and describes applications of directionality theory to the study of evolutionary dynamics in two biological systems; (i social networks–the evolution of cooperation; (ii metabolic networks–the evolution of body size. Statistical thermodynamics is a mathematical model of macroscopic behavior in inanimate matter based on entropy, a statistical measure which
Entropic Approach to Brownian Movement.
Neumann, Richard M.
1980-01-01
A diffusional driving force, called the radial force, which is responsible for the increase with time of the scalar separation between a fixed point and a particle undergoing three-dimensional Brownian motion, is derived using Boltzmann's equation. (Author/HM)
Ultraspinning limits and super-entropic black holes
Hennigar, Robie A.; Kubizňák, David; Mann, Robert B.; Musoke, Nathan
2015-06-01
By employing the new ultraspinning limit we construct novel classes of black holes with non-compact event horizons and finite horizon area and study their thermo-dynamics. Our ultraspinning limit can be understood as a simple generating technique that consists of three steps: i) transforming the known rotating AdS black hole solution to a special coordinate system that rotates (in a given 2-plane) at infinity ii) boosting this rotation to the speed of light iii) compactifying the corresponding azimuthal direction. In so doing we qualitatively change the structure of the spacetime since it is no longer pos-sible to return to a frame that does not rotate at infinity. The obtained black holes have non-compact horizons with topology of a sphere with two punctures. The entropy of some of these exceeds the maximal bound implied by the reverse isoperimetric inequality, such black holes are super-entropic.
Das, Moupriya
2014-12-01
The states of an overdamped Brownian particle confined in a two-dimensional bilobal enclosure are considered to correspond to two binary values: 0 (left lobe) and 1 (right lobe). An ensemble of such particles represents bits of entropic information. An external bias is applied on the particles, equally distributed in two lobes, to drive them to a particular lobe erasing one kind of bit of information. It has been shown that the average work done for the entropic memory erasure process approaches the Landauer bound for a very slow erasure cycle. Furthermore, the detailed Jarzynski equality holds to a very good extent for the erasure protocol, so that the Landauer bound may be calculated irrespective of the time period of the erasure cycle in terms of the effective free-energy change for the process. The detailed Jarzynski equality applied to two subprocesses, namely the transition from entropic memory state 0 to state 1 and the transition from entropic memory state 1 to state 1, connects the work done on the system to the probability to occupy the two states under a time-reversed process. In the entire treatment, the work appears as a boundary effect of the physical confinement of the system not having a conventional potential energy barrier. Finally, an analytical derivation of the detailed and classical Jarzynski equality for Brownian movement in confined space with varying width has been proposed. Our analytical scheme supports the numerical simulations presented in this paper.
Curvature constraints from the causal entropic principle
International Nuclear Information System (INIS)
Bozek, Brandon; Albrecht, Andreas; Phillips, Daniel
2009-01-01
Current cosmological observations indicate a preference for a cosmological constant that is drastically smaller than what can be explained by conventional particle physics. The causal entropic principle (Bousso et al.) provides an alternative approach to anthropic attempts to predict our observed value of the cosmological constant by calculating the entropy created within a causal diamond. We have extended this work to use the causal entropic principle to predict the preferred curvature within the 'multiverse'. We have found that values larger than ρ k =40ρ m are disfavored by more than 99.99% peak value at ρ Λ =7.9x10 -123 and ρ k =4.3ρ m for open universes. For universes that allow only positive curvature or both positive and negative curvature, we find a correlation between curvature and dark energy that leads to an extended region of preferred values. Our universe is found to be disfavored to an extent depending on the priors on curvature. We also provide a comparison to previous anthropic constraints on open universes and discuss future directions for this work.
International Nuclear Information System (INIS)
Hales, R.; Waalkens, H.
2009-01-01
We study the quantum transport through entropic barriers induced by hardwall constrictions of hyperboloidal shape in two and three spatial dimensions. Using the separability of the Schroedinger equation and the classical equations of motion for these geometries, we study in detail the quantum transmission probabilities and the associated quantum resonances, and relate them to the classical phase structures which govern the transport through the constrictions. These classical phase structures are compared to the analogous structures which, as has been shown only recently, govern reaction type dynamics in smooth systems. Although the systems studied in this paper are special due their separability they can be taken as a guide to study entropic barriers resulting from constriction geometries that lead to non-separable dynamics.
Ming, Fei; Wang, Dong; Shi, Wei-Nan; Huang, Ai-Jun; Sun, Wen-Yang; Ye, Liu
2018-04-01
The uncertainty principle is recognized as an elementary ingredient of quantum theory and sets up a significant bound to predict outcome of measurement for a couple of incompatible observables. In this work, we develop dynamical features of quantum memory-assisted entropic uncertainty relations (QMA-EUR) in a two-qubit Heisenberg XXZ spin chain with an inhomogeneous magnetic field. We specifically derive the dynamical evolutions of the entropic uncertainty with respect to the measurement in the Heisenberg XXZ model when spin A is initially correlated with quantum memory B. It has been found that the larger coupling strength J of the ferromagnetism ( J 0 ) chains can effectively degrade the measuring uncertainty. Besides, it turns out that the higher temperature can induce the inflation of the uncertainty because the thermal entanglement becomes relatively weak in this scenario, and there exists a distinct dynamical behavior of the uncertainty when an inhomogeneous magnetic field emerges. With the growing magnetic field | B | , the variation of the entropic uncertainty will be non-monotonic. Meanwhile, we compare several different optimized bounds existing with the initial bound proposed by Berta et al. and consequently conclude Adabi et al.'s result is optimal. Moreover, we also investigate the mixedness of the system of interest, dramatically associated with the uncertainty. Remarkably, we put forward a possible physical interpretation to explain the evolutionary phenomenon of the uncertainty. Finally, we take advantage of a local filtering operation to steer the magnitude of the uncertainty. Therefore, our explorations may shed light on the entropic uncertainty under the Heisenberg XXZ model and hence be of importance to quantum precision measurement over solid state-based quantum information processing.
The entropic cost of quantum generalized measurements
Mancino, Luca; Sbroscia, Marco; Roccia, Emanuele; Gianani, Ilaria; Somma, Fabrizia; Mataloni, Paolo; Paternostro, Mauro; Barbieri, Marco
2018-03-01
Landauer's principle introduces a symmetry between computational and physical processes: erasure of information, a logically irreversible operation, must be underlain by an irreversible transformation dissipating energy. Monitoring micro- and nano-systems needs to enter into the energetic balance of their control; hence, finding the ultimate limits is instrumental to the development of future thermal machines operating at the quantum level. We report on the experimental investigation of a lower bound to the irreversible entropy associated to generalized quantum measurements on a quantum bit. We adopted a quantum photonics gate to implement a device interpolating from the weakly disturbing to the fully invasive and maximally informative regime. Our experiment prompted us to introduce a bound taking into account both the classical result of the measurement and the outcoming quantum state; unlike previous investigation, our entropic bound is based uniquely on measurable quantities. Our results highlight what insights the information-theoretic approach provides on building blocks of quantum information processors.
Quantum-memory-assisted entropic uncertainty in spin models with Dzyaloshinskii-Moriya interaction
Huang, Zhiming
2018-02-01
In this article, we investigate the dynamics and correlations of quantum-memory-assisted entropic uncertainty, the tightness of the uncertainty, entanglement, quantum correlation and mixedness for various spin chain models with Dzyaloshinskii-Moriya (DM) interaction, including the XXZ model with DM interaction, the XY model with DM interaction and the Ising model with DM interaction. We find that the uncertainty grows to a stable value with growing temperature but reduces as the coupling coefficient, anisotropy parameter and DM values increase. It is found that the entropic uncertainty is closely correlated with the mixedness of the system. The increasing quantum correlation can result in a decrease in the uncertainty, and the robustness of quantum correlation is better than entanglement since entanglement means sudden birth and death. The tightness of the uncertainty drops to zero, apart from slight volatility as various parameters increase. Furthermore, we propose an effective approach to steering the uncertainty by weak measurement reversal.
International Nuclear Information System (INIS)
Zou, Hong-Mei; Fang, Mao-Fa; Yang, Bai-Yuan; Guo, You-Neng; He, Wei; Zhang, Shi-Yang
2014-01-01
The quantum entropic uncertainty relation and entanglement witness in the two-atom system coupling with the non-Markovian environments are studied using the time-convolutionless master-equation approach. The influence of the non-Markovian effect and detuning on the lower bound of the quantum entropic uncertainty relation and entanglement witness is discussed in detail. The results show that, only if the two non-Markovian reservoirs are identical, increasing detuning and non-Markovian effect can reduce the lower bound of the entropic uncertainty relation, lengthen the time region during which the entanglement can be witnessed, and effectively protect the entanglement region witnessed by the lower bound of the entropic uncertainty relation. The results can be applied in quantum measurement, quantum cryptography tasks and quantum information processing. (paper)
Complex dynamic in ecological time series
Peter Turchin; Andrew D. Taylor
1992-01-01
Although the possibility of complex dynamical behaviors-limit cycles, quasiperiodic oscillations, and aperiodic chaos-has been recognized theoretically, most ecologists are skeptical of their importance in nature. In this paper we develop a methodology for reconstructing endogenous (or deterministic) dynamics from ecological time series. Our method consists of fitting...
Entropic and algebraic K-systems: A comparison
International Nuclear Information System (INIS)
Benatti, F.
1990-01-01
In the quantum, i.e. non-commutative case, algebraic K-systems and entropic K-systems must be distinguished. The similarities and differences between them are considered, especially with regard to clustering- and mixing properties. 14 refs
Quantized Arnold cat maps can be entropic K systems
International Nuclear Information System (INIS)
Narnhofer, H.
1991-01-01
Automorphisms on the irrational rotation algebra with respect to their ergodic properties are studied. Especially it is shown that for a dense set of the rotation parameter θ cat maps are entropic K systems. (Author)
Fractional dynamic calculus and fractional dynamic equations on time scales
Georgiev, Svetlin G
2018-01-01
Pedagogically organized, this monograph introduces fractional calculus and fractional dynamic equations on time scales in relation to mathematical physics applications and problems. Beginning with the definitions of forward and backward jump operators, the book builds from Stefan Hilger’s basic theories on time scales and examines recent developments within the field of fractional calculus and fractional equations. Useful tools are provided for solving differential and integral equations as well as various problems involving special functions of mathematical physics and their extensions and generalizations in one and more variables. Much discussion is devoted to Riemann-Liouville fractional dynamic equations and Caputo fractional dynamic equations. Intended for use in the field and designed for students without an extensive mathematical background, this book is suitable for graduate courses and researchers looking for an introduction to fractional dynamic calculus and equations on time scales. .
Can time be a discrete dynamical variable
International Nuclear Information System (INIS)
Lee, T.D.
1983-01-01
The possibility that time can be regarded as a discrete dynamical variable is examined through all phases of mechanics: from classical mechanics to nonrelativistic quantum mechanics, and to relativistic quantum field theories. (orig.)
Entropic derivation of F=ma for circular motion
International Nuclear Information System (INIS)
Duncan, Michael; Myrzakulov, Ratbay; Singleton, Douglas
2011-01-01
We examine the entropic picture of Newton's second law for the case of circular motion. It is shown that one must make modifications to the derivation of F=ma due to a change in the effective Unruh temperature for circular motion. These modifications present a challenge to the entropic derivation of Newton's second law, but also open up the possibility to experimentally test and constrain this model for large centripetal accelerations.
Entropic Lower Bound for Distinguishability of Quantum States
Directory of Open Access Journals (Sweden)
Seungho Yang
2015-01-01
Full Text Available For a system randomly prepared in a number of quantum states, we present a lower bound for the distinguishability of the quantum states, that is, the success probability of determining the states in the form of entropy. When the states are all pure, acquiring the entropic lower bound requires only the density operator and the number of the possible states. This entropic bound shows a relation between the von Neumann entropy and the distinguishability.
Exhibition of Monogamy Relations between Entropic Non-contextuality Inequalities
International Nuclear Information System (INIS)
Zhu Feng; Zhang Wei; Huang Yi-Dong
2017-01-01
We exhibit the monogamy relation between two entropic non-contextuality inequalities in the scenario where compatible projectors are orthogonal. We show the monogamy relation can be exhibited by decomposing the orthogonality graph into perfect induced subgraphs. Then we find two entropic non-contextuality inequalities are monogamous while the KCBS-type non-contextuality inequalities are not if the orthogonality graphs of the observable sets are two odd cycles with two shared vertices. (paper)
An entropic framework for modeling economies
Caticha, Ariel; Golan, Amos
2014-08-01
We develop an information-theoretic framework for economic modeling. This framework is based on principles of entropic inference that are designed for reasoning on the basis of incomplete information. We take the point of view of an external observer who has access to limited information about broad macroscopic economic features. We view this framework as complementary to more traditional methods. The economy is modeled as a collection of agents about whom we make no assumptions of rationality (in the sense of maximizing utility or profit). States of statistical equilibrium are introduced as those macrostates that maximize entropy subject to the relevant information codified into constraints. The basic assumption is that this information refers to supply and demand and is expressed in the form of the expected values of certain quantities (such as inputs, resources, goods, production functions, utility functions and budgets). The notion of economic entropy is introduced. It provides a measure of the uniformity of the distribution of goods and resources. It captures both the welfare state of the economy as well as the characteristics of the market (say, monopolistic, concentrated or competitive). Prices, which turn out to be the Lagrange multipliers, are endogenously generated by the economy. Further studies include the equilibrium between two economies and the conditions for stability. As an example, the case of the nonlinear economy that arises from linear production and utility functions is treated in some detail.
The entropic cost to tie a knot
International Nuclear Information System (INIS)
Baiesi, M; Orlandini, E; Stella, A L
2010-01-01
We estimate by Monte Carlo simulations the configurational entropy of N-step polygons in the cubic lattice with fixed knot type. By collecting rich statistics of configurations with very large values of N we are able to analyse the asymptotic behaviour of the partition function of the problem for different knot types. Our results confirm that, in the large N limit, each prime knot is localized in a small region of the polygon, regardless of the possible presence of other knots. Each prime knot component may slide along the unknotted region contributing to the overall configurational entropy with a term proportional to lnN. Furthermore, we discover that the mere existence of a knot requires a well defined entropic cost that scales exponentially with its minimal length. In the case of polygons with composite knots it turns out that the partition function can be simply factorized in terms that depend only on prime components, with an additional combinatorial factor that takes into account the statistical property that by interchanging two identical prime knot components in the polygon the corresponding set of overall configurations remains unaltered. Finally, the above results allow one to conjecture a sequence of inequalities for the connective constants of polygons whose topology varies within a given family of composite knot types
Time ordering in multi-electron dynamics
International Nuclear Information System (INIS)
McGuire, J H; Godunov, A L; Shakov, Kh Kh; Shipakov, V A; Merabet, H; Bruch, R; Hanni, J
2003-01-01
Time ordering of interactions in dynamic quantum multi-electron systems provides a constraint that interconnects the time evolution of different electrons. In energy space, time ordering appears as the principal value contribution from the Green function, which corresponds to the asymptotic condition that specifies whether the system has outgoing (or possibly incoming) scattered waves. We report evidence of effects of time correlation found by comparing calculations to recent spectropolarimetric data
The Neuromagnetic Dynamics of Time Perception
Carver, Frederick W.; Elvevåg, Brita; Altamura, Mario; Weinberger, Daniel R.; Coppola, Richard
2012-01-01
Examining real-time cortical dynamics is crucial for understanding time perception. Using magnetoencephalography we studied auditory duration discrimination of short (.5 s) versus a pitch control. Time-frequency analysis of event-related fields showed widespread beta-band (13-30 Hz) desynchronization during all tone presentations. Synthetic aperture magnetometry indicated automatic primarily sensorimotor responses in short and pitch conditions, with activation specific to timing in bilateral ...
Time ordering in multi-electron dynamics
Energy Technology Data Exchange (ETDEWEB)
McGuire, J H [Department of Physics, Tulane University, New Orleans, LA (United States); Godunov, A L [Department of Physics, Tulane University, New Orleans, LA (United States); Shakov, Kh Kh [Department of Physics, Tulane University, New Orleans, LA (United States); Shipakov, V A [Troitsk Institute for Innovation and Fusion Research, Troitsk (Russian Federation); Merabet, H [Department of Physics, University of Nevada Reno, Reno, NV (United States); Bruch, R [Department of Physics, University of Nevada Reno, Reno, NV (United States); Hanni, J [Department of Physics, University of Nevada Reno, Reno, NV (United States)
2003-01-28
Time ordering of interactions in dynamic quantum multi-electron systems provides a constraint that interconnects the time evolution of different electrons. In energy space, time ordering appears as the principal value contribution from the Green function, which corresponds to the asymptotic condition that specifies whether the system has outgoing (or possibly incoming) scattered waves. We report evidence of effects of time correlation found by comparing calculations to recent spectropolarimetric data.
Entropic Constitutive Relation and Modeling for Fourier and Hyperbolic Heat Conductions
Directory of Open Access Journals (Sweden)
Shu-Nan Li
2017-12-01
Full Text Available Most existing phenomenological heat conduction models are expressed by temperature and heat flux distributions, whose definitions might be debatable in heat conductions with strong non-equilibrium. The constitutive relations of Fourier and hyperbolic heat conductions are here rewritten by the entropy and entropy flux distributions in the frameworks of classical irreversible thermodynamics (CIT and extended irreversible thermodynamics (EIT. The entropic constitutive relations are then generalized by Boltzmann–Gibbs–Shannon (BGS statistical mechanics, which can avoid the debatable definitions of thermodynamic quantities relying on local equilibrium. It shows a possibility of modeling heat conduction through entropic constitutive relations. The applicability of the generalizations by BGS statistical mechanics is also discussed based on the relaxation time approximation, and it is found that the generalizations require a sufficiently small entropy production rate.
Regular transport dynamics produce chaotic travel times.
Villalobos, Jorge; Muñoz, Víctor; Rogan, José; Zarama, Roberto; Johnson, Neil F; Toledo, Benjamín; Valdivia, Juan Alejandro
2014-06-01
In the hope of making passenger travel times shorter and more reliable, many cities are introducing dedicated bus lanes (e.g., Bogota, London, Miami). Here we show that chaotic travel times are actually a natural consequence of individual bus function, and hence of public transport systems more generally, i.e., chaotic dynamics emerge even when the route is empty and straight, stops and lights are equidistant and regular, and loading times are negligible. More generally, our findings provide a novel example of chaotic dynamics emerging from a single object following Newton's laws of motion in a regularized one-dimensional system.
Some nonlinear dynamic inequalities on time scales
Indian Academy of Sciences (India)
In 1988, Stefan Hilger [10] introduced the calculus on time scales which unifies continuous and discrete analysis. Since then many authors have expounded on various aspects of the theory of dynamic equations on time scales. Recently, there has been much research activity concerning the new theory. For example, we ...
Dynamics of Nonlinear Time-Delay Systems
Lakshmanan, Muthusamy
2010-01-01
Synchronization of chaotic systems, a patently nonlinear phenomenon, has emerged as a highly active interdisciplinary research topic at the interface of physics, biology, applied mathematics and engineering sciences. In this connection, time-delay systems described by delay differential equations have developed as particularly suitable tools for modeling specific dynamical systems. Indeed, time-delay is ubiquitous in many physical systems, for example due to finite switching speeds of amplifiers in electronic circuits, finite lengths of vehicles in traffic flows, finite signal propagation times in biological networks and circuits, and quite generally whenever memory effects are relevant. This monograph presents the basics of chaotic time-delay systems and their synchronization with an emphasis on the effects of time-delay feedback which give rise to new collective dynamics. Special attention is devoted to scalar chaotic/hyperchaotic time-delay systems, and some higher order models, occurring in different bran...
Long-time predictions in nonlinear dynamics
Szebehely, V.
1980-01-01
It is known that nonintegrable dynamical systems do not allow precise predictions concerning their behavior for arbitrary long times. The available series solutions are not uniformly convergent according to Poincare's theorem and numerical integrations lose their meaningfulness after the elapse of arbitrary long times. Two approaches are the use of existing global integrals and statistical methods. This paper presents a generalized method along the first approach. As examples long-time predictions in the classical gravitational satellite and planetary problems are treated.
Entropic measures of individual mobility patterns
International Nuclear Information System (INIS)
Gallotti, Riccardo; Bazzani, Armando; Rambaldi, Sandro; Esposti, Mirko Degli
2013-01-01
Understanding human mobility from a microscopic point of view may represent a fundamental breakthrough for the development of a statistical physics for cognitive systems and it can shed light on the applicability of macroscopic statistical laws for social systems. Even if the complexity of individual behaviors prevents a true microscopic approach, the introduction of mesoscopic models allows the study of the dynamical properties for the non-stationary states of the considered system. We propose to compute various entropy measures of the individual mobility patterns obtained from GPS data that record the movements of private vehicles in the Florence district, in order to point out new features of human mobility related to the use of time and space and to define the dynamical properties of a stochastic model that could generate similar patterns. Moreover, we can relate the predictability properties of human mobility to the distribution of time passed between two successive trips. Our analysis suggests the existence of a hierarchical structure in the mobility patterns which divides the performed activities into three different categories, according to the time cost, with different information contents. We show that a Markov process defined by using the individual mobility network is not able to reproduce this hierarchy, which seems the consequence of different strategies in the activity choice. Our results could contribute to the development of governance policies for a sustainable mobility in modern cities. (paper)
An entropic solver for ideal Lagrangian magnetohydrodynamics
International Nuclear Information System (INIS)
Bezard, F.; Despres, B.
1999-01-01
In this paper, the authors adapt to the ideal 1D lagrangian MHD equations a class of numerical schemes of order one in time and space presented in an earlier paper and applied to the gas dynamics system. They use some properties of systems of conservation laws with zero entropy flux which describe fluid models invariant by galilean transformation and reversible for regular solutions. These numerical schemes satisfy an entropy inequality under CFL conditions. In the last section, they describe a particular scheme for the MHD equations and show with some numerical applications its robustness and accuracy. The generalization to full Eulerian multidimensional MHD will be the subject of a forthcoming paper
Entanglement witness via quantum-memory-assisted entropic uncertainty relation
Shi, Jiadong; Ding, Zhiyong; Wu, Tao; He, Juan; Yu, Lizhi; Sun, Wenyang; Wang, Dong; Ye, Liu
2017-12-01
By virtue of the quantum-memory-assisted entropic uncertainty relation (EUR), we analyze entanglement witness via the efficiencies of the estimates proposed by Berta (2010 Nat. Phys. 6 659) and Pati (2012 Phys. Rev. A 86 042105). The results show that, without a structured reservoir, the entanglement regions witnessed by these EUR estimates are only determined by the chosen estimated setup, and have no correlation with the explicit form of the initial state. On the other hand, with the structured reservoirs, the time regions during which the entanglement can be witnessed, and the corresponding entanglement regions closely depend on the choice of the estimated setup, the initial state and the state purity p . Concretely, for a pure state with p=1 , the entanglement can be witnessed by both estimates, while for mixed states with p=0.78 , it can only be witnessed using the Pati estimate. What is more, we find that the time regions incorporating the Pati estimate become discontinuous for the initial state with ≤ft| {{φ }\\prime } \\right> ={≤ft(≤ft| 01 \\right> +≤ft| 10 \\right> \\right)}/{\\sqrt{2}} , and the corresponding entanglement regions remain the same; however the entanglement can only be witnessed once by utilizing the Berta estimate.
Abstraction of Dynamical Systems by Timed Automata
DEFF Research Database (Denmark)
Wisniewski, Rafael; Sloth, Christoffer
2011-01-01
To enable formal verification of a dynamical system, given by a set of differential equations, it is abstracted by a finite state model. This allows for application of methods for model checking. Consequently, it opens the possibility of carrying out the verification of reachability and timing re...
Some Nonlinear Dynamic Inequalities on Time Scales
Indian Academy of Sciences (India)
The aim of this paper is to investigate some nonlinear dynamic inequalities on time scales, which provide explicit bounds on unknown functions. The inequalities given here unify and extend some inequalities in (B G Pachpatte, On some new inequalities related to a certain inequality arising in the theory of differential ...
Entropic Lattice Boltzmann: an implicit Large-Eddy Simulation?
Tauzin, Guillaume; Biferale, Luca; Sbragaglia, Mauro; Gupta, Abhineet; Toschi, Federico; Ehrhardt, Matthias; Bartel, Andreas
2017-11-01
We study the modeling of turbulence implied by the unconditionally stable Entropic Lattice Boltzmann Method (ELBM). We first focus on 2D homogeneous turbulence, for which we conduct numerical simulations for a wide range of relaxation times τ. For these simulations, we analyze the effective viscosity obtained by numerically differentiating the kinetic energy and enstrophy balance equations averaged over sub-domains of the computational grid. We aim at understanding the behavior of the implied sub-grid scale model and verify a formulation previously derived using Chapman-Enskog expansion. These ELBM benchmark simulations are thus useful to understand the range of validity of ELBM as a turbulence model. Finally, we will discuss an extension of the previously obtained results to the 3D case. Supported by the European Unions Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under the Marie Sklodowska-Curie Grant Agreement No. 642069 and by the European Research Council under the ERC Grant Agreement No. 339032.
Discrete time and continuous time dynamic mean-variance analysis
Reiss, Ariane
1999-01-01
Contrary to static mean-variance analysis, very few papers have dealt with dynamic mean-variance analysis. Here, the mean-variance efficient self-financing portfolio strategy is derived for n risky assets in discrete and continuous time. In the discrete setting, the resulting portfolio is mean-variance efficient in a dynamic sense. It is shown that the optimal strategy for n risky assets may be dominated if the expected terminal wealth is constrained to exactly attain a certain goal instead o...
On the entropy variation in the scenario of entropic gravity
Xiao, Yong; Bai, Shi-Yang
2018-05-01
In the scenario of entropic gravity, entropy varies as a function of the location of the matter, while the tendency to increase entropy appears as gravity. We concentrate on studying the entropy variation of a typical gravitational system with different relative positions between the mass and the gravitational source. The result is that the entropy of the system doesn't increase when the mass is displaced closer to the gravitational source. In this way it disproves the proposal of entropic gravity from thermodynamic entropy. It doesn't exclude the possibility that gravity originates from non-thermodynamic entropy like entanglement entropy.
Entropic sampling in the path integral Monte Carlo method
International Nuclear Information System (INIS)
Vorontsov-Velyaminov, P N; Lyubartsev, A P
2003-01-01
We have extended the entropic sampling Monte Carlo method to the case of path integral representation of a quantum system. A two-dimensional density of states is introduced into path integral form of the quantum canonical partition function. Entropic sampling technique within the algorithm suggested recently by Wang and Landau (Wang F and Landau D P 2001 Phys. Rev. Lett. 86 2050) is then applied to calculate the corresponding entropy distribution. A three-dimensional quantum oscillator is considered as an example. Canonical distributions for a wide range of temperatures are obtained in a single simulation run, and exact data for the energy are reproduced
Aspherical bubble dynamics and oscillation times
Energy Technology Data Exchange (ETDEWEB)
Godwin, R.P.; Chapyak, E.J. [Los Alamos National Lab., NM (United States); Noack, J.; Vogel, A. [Medizinisches Laserzentrum Luebeck (Germany)
1999-03-01
The cavitation bubbles common in laser medicine are rarely perfectly spherical and are often located near tissue boundaries, in vessels, etc., which introduce aspherical dynamics. Here, novel features of aspherical bubble dynamics are explored. Time-resolved experimental photographs and simulations of large aspect ratio (length:diameter {approximately}20) cylindrical bubble dynamics are presented. The experiments and calculations exhibit similar dynamics. A small high-pressure cylindrical bubble initially expands radially with hardly any axial motion. Then, after reaching its maximum volume, a cylindrical bubble collapses along its long axis with relatively little radial motion. The growth-collapse period of these very aspherical bubbles differs only sightly from twice the Rayleigh collapse time for a spherical bubble with an equivalent maximum volume. This fact justifies using the temporal interval between the acoustic signals emitted upon bubble creation and collapse to estimate the maximum bubble volume. As a result, hydrophone measurements can provide an estimate of the bubble energy even for aspherical bubbles. The prolongation of the oscillation period of bubbles near solid boundaries relative to that of isolated spherical bubbles is also discussed.
Generating Dynamic Persistence in the Time Domain
Guerrero, A.; Smith, L. A.; Smith, L. A.; Kaplan, D. T.
2001-12-01
Many dynamical systems present long-range correlations. Physically, these systems vary from biological to economical, including geological or urban systems. Important geophysical candidates for this type of behaviour include weather (or climate) and earthquake sequences. Persistence is characterised by slowly decaying correlation function; that, in theory, never dies out. The Persistence exponent reflects the degree of memory in the system and much effort has been expended creating and analysing methods that successfully estimate this parameter and model data that exhibits persistence. The most widely used methods for generating long correlated time series are not dynamical systems in the time domain, but instead are derived from a given spectral density. Little attention has been drawn to modelling persistence in the time domain. The time domain approach has the advantage that an observation at certain time can be calculated using previous observations which is particularly suitable when investigating the predictability of a long memory process. We will describe two of these methods in the time domain. One is a traditional approach using fractional ARIMA (autoregressive and moving average) models; the second uses a novel approach to extending a given series using random Fourier basis functions. The statistical quality of the two methods is compared, and they are contrasted with weather data which shows, reportedly, persistence. The suitability of this approach both for estimating predictability and for making predictions is discussed.
Modeling biological pathway dynamics with timed automata.
Schivo, Stefano; Scholma, Jetse; Wanders, Brend; Urquidi Camacho, Ricardo A; van der Vet, Paul E; Karperien, Marcel; Langerak, Rom; van de Pol, Jaco; Post, Janine N
2014-05-01
Living cells are constantly subjected to a plethora of environmental stimuli that require integration into an appropriate cellular response. This integration takes place through signal transduction events that form tightly interconnected networks. The understanding of these networks requires capturing their dynamics through computational support and models. ANIMO (analysis of Networks with Interactive Modeling) is a tool that enables the construction and exploration of executable models of biological networks, helping to derive hypotheses and to plan wet-lab experiments. The tool is based on the formalism of Timed Automata, which can be analyzed via the UPPAAL model checker. Thanks to Timed Automata, we can provide a formal semantics for the domain-specific language used to represent signaling networks. This enforces precision and uniformity in the definition of signaling pathways, contributing to the integration of isolated signaling events into complex network models. We propose an approach to discretization of reaction kinetics that allows us to efficiently use UPPAAL as the computational engine to explore the dynamic behavior of the network of interest. A user-friendly interface hides the use of Timed Automata from the user, while keeping the expressive power intact. Abstraction to single-parameter kinetics speeds up construction of models that remain faithful enough to provide meaningful insight. The resulting dynamic behavior of the network components is displayed graphically, allowing for an intuitive and interactive modeling experience.
Multivariable dynamic calculus on time scales
Bohner, Martin
2016-01-01
This book offers the reader an overview of recent developments of multivariable dynamic calculus on time scales, taking readers beyond the traditional calculus texts. Covering topics from parameter-dependent integrals to partial differentiation on time scales, the book’s nine pedagogically oriented chapters provide a pathway to this active area of research that will appeal to students and researchers in mathematics and the physical sciences. The authors present a clear and well-organized treatment of the concept behind the mathematics and solution techniques, including many practical examples and exercises.
uncertain dynamic systems on time scales
Directory of Open Access Journals (Sweden)
V. Lakshmikantham
1995-01-01
Full Text Available A basic feedback control problem is that of obtaining some desired stability property from a system which contains uncertainties due to unknown inputs into the system. Despite such imperfect knowledge in the selected mathematical model, we often seek to devise controllers that will steer the system in a certain required fashion. Various classes of controllers whose design is based on the method of Lyapunov are known for both discrete [4], [10], [15], and continuous [3–9], [11] models described by difference and differential equations, respectively. Recently, a theory for what is known as dynamic systems on time scales has been built which incorporates both continuous and discrete times, namely, time as an arbitrary closed sets of reals, and allows us to handle both systems simultaneously [1], [2], [12], [13]. This theory permits one to get some insight into and better understanding of the subtle differences between discrete and continuous systems. We shall, in this paper, utilize the framework of the theory of dynamic systems on time scales to investigate the stability properties of conditionally invariant sets which are then applied to discuss controlled systems with uncertain elements. For the notion of conditionally invariant set and its stability properties, see [14]. Our results offer a new approach to the problem in question.
[Dynamic Attending Binds Time and Rhythm Perception].
Kuroda, Tsuyoshi; Ono, Fuminori; Kadota, Hiroshi
2017-11-01
Relations between time and rhythm perception are discussed in this review of psychophysical research relevant to the multiple-look effect and dynamic-attending theory. Discrimination of two neighboring intervals that are marked by three successive sounds is improved when the presentation of the first (standard, S) interval is repeated before that of the second (comparison, C), as SSSSC. This improvement in sensitivity, called the multiple-look effect, occurs because listeners (1) perceive regular rhythm during the repetition of the standard interval, (2) predict the timing of subsequent sounds, and (3) detect sounds that are deviated from the predicted timing. The dynamic-attending theory attributes such predictions to the entrainment of attentional rhythms. An endogenous attentional rhythm is synchronized with the periodic succession of sounds marking the repeated standard. The standard and the comparison are discriminated on the basis of whether the ending marker of the comparison appears at the peak of the entrained attentional rhythm. This theory is compatible with the findings of recent neurophysiological studies that relate temporal prediction to neural oscillations.
TIME-VARYING DYNAMICAL STAR FORMATION RATE
Energy Technology Data Exchange (ETDEWEB)
Lee, Eve J.; Chang, Philip; Murray, Norman, E-mail: evelee@berkeley.edu [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, University of Toronto, Toronto, ON M5S 3H8 (Canada)
2015-02-10
We present numerical evidence of dynamic star formation in which the accreted stellar mass grows superlinearly with time, roughly as t {sup 2}. We perform simulations of star formation in self-gravitating hydrodynamic and magnetohydrodynamic turbulence that is continuously driven. By turning the self-gravity of the gas in the simulations on or off, we demonstrate that self-gravity is the dominant physical effect setting the mass accretion rate at early times before feedback effects take over, contrary to theories of turbulence-regulated star formation. We find that gravitational collapse steepens the density profile around stars, generating the power-law tail on what is otherwise a lognormal density probability distribution function. Furthermore, we find turbulent velocity profiles to flatten inside collapsing regions, altering the size-line width relation. This local flattening reflects enhancements of turbulent velocity on small scales, as verified by changes to the velocity power spectra. Our results indicate that gas self-gravity dynamically alters both density and velocity structures in clouds, giving rise to a time-varying star formation rate. We find that a substantial fraction of the gas that forms stars arrives via low-density flows, as opposed to accreting through high-density filaments.
Continuous Time Dynamic Contraflow Models and Algorithms
Directory of Open Access Journals (Sweden)
Urmila Pyakurel
2016-01-01
Full Text Available The research on evacuation planning problem is promoted by the very challenging emergency issues due to large scale natural or man-created disasters. It is the process of shifting the maximum number of evacuees from the disastrous areas to the safe destinations as quickly and efficiently as possible. Contraflow is a widely accepted model for good solution of evacuation planning problem. It increases the outbound road capacity by reversing the direction of roads towards the safe destination. The continuous dynamic contraflow problem sends the maximum number of flow as a flow rate from the source to the sink in every moment of time unit. We propose the mathematical model for the continuous dynamic contraflow problem. We present efficient algorithms to solve the maximum continuous dynamic contraflow and quickest continuous contraflow problems on single source single sink arbitrary networks and continuous earliest arrival contraflow problem on single source single sink series-parallel networks with undefined supply and demand. We also introduce an approximation solution for continuous earliest arrival contraflow problem on two-terminal arbitrary networks.
Non extensive statistics and entropic gravity in a non-integer dimensional space
International Nuclear Information System (INIS)
Abreu, Everton M.C.; Ananias Neto, Jorge; Godinho, Cresus F.L.
2013-01-01
Full text: The idea that gravity can be originated from thermodynamics features has begun with the discovering that black hole physics is connected to the thermodynamics laws. These concepts were strongly boosted after Jacobson's work, where the Einstein equations were obtained from general thermodynamics approaches. In a recent work, Padmanabhan obtained an interpretation of gravity as an equipartition law. In Verlinde's thermo gravitational formalism, the temperature and the acceleration are connected via Unruh effect. At the same time, he combined the holographic principle with an equipartition law, where the number of bits is proportional to the area of the holographic surface. Bits were used to define the microscopic degrees of freedom. With these ingredients, the entropic force combined with the holographic principle and the equipartition law originated the Newton's law of gravitation. The possible interpretation of Verlinde's result is that gravity is not an underlying concept, but an emergent one. It originates from the statistical behavior of the holographic screen microscopic degrees of freedom. Following these ideas, the current literature has grown in an accelerated production from Coulomb force and symmetry considerations of entropic force to cosmology and loop quantum. In this work we introduced the Newton's constant in a fractal space as a function of the non extensive one. With this result we established a relation between the Tsallis non extensive parameter and the dimension of this fractal space. Using Verlinde's formalism we used these fractal ideas combined with the concept of entropic gravity to calculate the number of bits of an holographic surface in this non-integer dimensional space, a fractal holographic screen. We introduced a fundamental length, a Planck-like length, into this space as a function of this fractal holographic screen radius. Finally, we consider superior dimensions in this analysis. (author)
Positive maps, majorization, entropic inequalities and detection of entanglement
International Nuclear Information System (INIS)
Augusiak, R; Stasinska, J
2009-01-01
In this paper, we discuss some general connections between the notions of positive map, weak majorization and entropic inequalities in the context of detection of entanglement among bipartite quantum systems. First, basing on the fact that any positive map Λ:M d (C)→M d (C) can be written as the difference between two completely positive maps Λ=Λ 1 -Λ 2 , we propose a possible way to generalize the Nielsen-Kempe majorization criterion. Then, we present two methods of derivation of some general classes of entropic inequalities useful for the detection of entanglement. While the first one follows from the aforementioned generalized majorization relation and the concept of Schur-concave decreasing functions, the second is based on some functional inequalities. What is important is that, contrary to the Nielsen-Kempe majorization criterion and entropic inequalities, our criteria allow for the detection of entangled states with positive partial transposition when using indecomposable positive maps. We also point out that if a state with at least one maximally mixed subsystem is detected by some necessary criterion based on the positive map Λ, then there exist entropic inequalities derived from Λ (by both procedures) that also detect this state. In this sense, they are equivalent to the necessary criterion [IxΛ](rhov AB )≥0. Moreover, our inequalities provide a way of constructing multi-copy entanglement witnesses and therefore are promising from the experimental point of view. Finally, we discuss some of the derived inequalities in the context of the recently introduced protocol of state merging and the possibility of approximating the mean value of a linear entanglement witness.
Entropic noises-induced resonance in a geometrically confined system
International Nuclear Information System (INIS)
Zeng, Chunhua; Gong, Ailing; Wang, Hua
2012-01-01
We consider the motion of Brownian particles through a narrow tube of varying cross-section in a geometrically confined system subjected to a sinusoidal oscillating force. The varying cross-section of the confinement results in an effective purely entropic potential in reduced dimension. Besides an additive Langevin force, one external additive and another multiplicative noise are acting along the x-direction. We demonstrate that the presence of a periodic input may give rise to a maximum and a minimum of the spectral amplification at corresponding optimal values of the noise strength, and therefore to the appearance of the purely entropic stochastic resonance and reverse-resonance phenomena. Furthermore, we show that the cross-correlation between two noises leads to a decrease of the spectral amplification, i.e., we observe the cross-correlation between two noises weakening the resonance. Mechanisms for the cross-correlation weakening the resonance are explained from the point of view of the effective purely entropic potential. (paper)
Rigid Residue Scan Simulations Systematically Reveal Residue Entropic Roles in Protein Allostery.
Directory of Open Access Journals (Sweden)
Robert Kalescky
2016-04-01
Full Text Available Intra-protein information is transmitted over distances via allosteric processes. This ubiquitous protein process allows for protein function changes due to ligand binding events. Understanding protein allostery is essential to understanding protein functions. In this study, allostery in the second PDZ domain (PDZ2 in the human PTP1E protein is examined as model system to advance a recently developed rigid residue scan method combining with configurational entropy calculation and principal component analysis. The contributions from individual residues to whole-protein dynamics and allostery were systematically assessed via rigid body simulations of both unbound and ligand-bound states of the protein. The entropic contributions of individual residues to whole-protein dynamics were evaluated based on covariance-based correlation analysis of all simulations. The changes of overall protein entropy when individual residues being held rigid support that the rigidity/flexibility equilibrium in protein structure is governed by the La Châtelier's principle of chemical equilibrium. Key residues of PDZ2 allostery were identified with good agreement with NMR studies of the same protein bound to the same peptide. On the other hand, the change of entropic contribution from each residue upon perturbation revealed intrinsic differences among all the residues. The quasi-harmonic and principal component analyses of simulations without rigid residue perturbation showed a coherent allosteric mode from unbound and bound states, respectively. The projection of simulations with rigid residue perturbation onto coherent allosteric modes demonstrated the intrinsic shifting of ensemble distributions supporting the population-shift theory of protein allostery. Overall, the study presented here provides a robust and systematic approach to estimate the contribution of individual residue internal motion to overall protein dynamics and allostery.
Peng, Zhen; Braun, Daniel A.
2015-01-01
In a previous study we have shown that human motion trajectories can be characterized by translating continuous trajectories into symbol sequences with well-defined complexity measures. Here we test the hypothesis that the motion complexity individuals generate in their movements might be correlated to the degree of creativity assigned by a human observer to the visualized motion trajectories. We asked participants to generate 55 novel hand movement patterns in virtual reality, where each pattern had to be repeated 10 times in a row to ensure reproducibility. This allowed us to estimate a probability distribution over trajectories for each pattern. We assessed motion complexity not only by the previously proposed complexity measures on symbolic sequences, but we also propose two novel complexity measures that can be directly applied to the distributions over trajectories based on the frameworks of Gaussian Processes and Probabilistic Movement Primitives. In contrast to previous studies, these new methods allow computing complexities of individual motion patterns from very few sample trajectories. We compared the different complexity measures to how a group of independent jurors rank ordered the recorded motion trajectories according to their personal creativity judgment. We found three entropic complexity measures that correlate significantly with human creativity judgment and discuss differences between the measures. We also test whether these complexity measures correlate with individual creativity in divergent thinking tasks, but do not find any consistent correlation. Our results suggest that entropic complexity measures of hand motion may reveal domain-specific individual differences in kinesthetic creativity. PMID:26733896
Characterization of autoregressive processes using entropic quantifiers
Traversaro, Francisco; Redelico, Francisco O.
2018-01-01
The aim of the contribution is to introduce a novel information plane, the causal-amplitude informational plane. As previous works seems to indicate, Bandt and Pompe methodology for estimating entropy does not allow to distinguish between probability distributions which could be fundamental for simulation or for probability analysis purposes. Once a time series is identified as stochastic by the causal complexity-entropy informational plane, the novel causal-amplitude gives a deeper understanding of the time series, quantifying both, the autocorrelation strength and the probability distribution of the data extracted from the generating processes. Two examples are presented, one from climate change model and the other from financial markets.
An entropic barriers diffusion theory of decision-making in multiple alternative tasks.
Directory of Open Access Journals (Sweden)
Diego Fernandez Slezak
2018-03-01
Full Text Available We present a theory of decision-making in the presence of multiple choices that departs from traditional approaches by explicitly incorporating entropic barriers in a stochastic search process. We analyze response time data from an on-line repository of 15 million blitz chess games, and show that our model fits not just the mean and variance, but the entire response time distribution (over several response-time orders of magnitude at every stage of the game. We apply the model to show that (a higher cognitive expertise corresponds to the exploration of more complex solution spaces, and (b reaction times of users at an on-line buying website can be similarly explained. Our model can be seen as a synergy between diffusion models used to model simple two-choice decision-making and planning agents in complex problem solving.
Cancer biomarker discovery: the entropic hallmark.
Berretta, Regina; Moscato, Pablo
2010-08-18
It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles
The entropic boundary law in BF theory
Livine, Etera R.; Terno, Daniel R.
2009-01-01
We compute the entropy of a closed bounded region of space for pure 3d Riemannian gravity formulated as a topological BF theory for the gauge group SU(2) and show its holographic behavior. More precisely, we consider a fixed graph embedded in space and study the flat connection spin network state without and with particle-like topological defects. We regularize and compute exactly the entanglement for a bipartite splitting of the graph and show it scales at leading order with the number of vertices on the boundary (or equivalently with the number of loops crossing the boundary). More generally these results apply to BF theory with any compact gauge group in any space-time dimension.
Entropic Ratchet transport of interacting active Brownian particles
International Nuclear Information System (INIS)
Ai, Bao-Quan; He, Ya-Feng; Zhong, Wei-Rong
2014-01-01
Directed transport of interacting active (self-propelled) Brownian particles is numerically investigated in confined geometries (entropic barriers). The self-propelled velocity can break thermodynamical equilibrium and induce the directed transport. It is found that the interaction between active particles can greatly affect the ratchet transport. For attractive particles, on increasing the interaction strength, the average velocity first decreases to its minima, then increases, and finally decreases to zero. For repulsive particles, when the interaction is very weak, there exists a critical interaction at which the average velocity is minimal, nearly tends to zero, however, for the strong interaction, the average velocity is independent of the interaction
Characterizing entanglement with global and marginal entropic measures
International Nuclear Information System (INIS)
Adesso, Gerardo; Illuminati, Fabrizio; De Siena, Silvio
2003-01-01
We qualify the entanglement of arbitrary mixed states of bipartite quantum systems by comparing global and marginal mixednesses quantified by different entropic measures. For systems of two qubits we discriminate the class of maximally entangled states with fixed marginal mixednesses, and determine an analytical upper bound relating the entanglement of formation to the marginal linear entropies. This result partially generalizes to mixed states the quantification of entanglement with marginal mixednesses holding for pure states. We identify a class of entangled states that, for fixed marginals, are globally more mixed than product states when measured by the linear entropy. Such states cannot be discriminated by the majorization criterion
Entropic Ratchet transport of interacting active Brownian particles
Energy Technology Data Exchange (ETDEWEB)
Ai, Bao-Quan, E-mail: aibq@hotmail.com [Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, 510006 Guangzhou (China); He, Ya-Feng [College of Physics Science and Technology, Hebei University, 071002 Baoding (China); Zhong, Wei-Rong, E-mail: wrzhong@jnu.edu.cn [Department of Physics and Siyuan Laboratory, College of Science and Engineering, Jinan University, 510632 Guangzhou (China)
2014-11-21
Directed transport of interacting active (self-propelled) Brownian particles is numerically investigated in confined geometries (entropic barriers). The self-propelled velocity can break thermodynamical equilibrium and induce the directed transport. It is found that the interaction between active particles can greatly affect the ratchet transport. For attractive particles, on increasing the interaction strength, the average velocity first decreases to its minima, then increases, and finally decreases to zero. For repulsive particles, when the interaction is very weak, there exists a critical interaction at which the average velocity is minimal, nearly tends to zero, however, for the strong interaction, the average velocity is independent of the interaction.
Interrelation of Entropic Contributors to π -Stacking in Solution
Starodub, Maria A.; Lantushenko, Anastasia O.; Evstigneev, Vladislav P.; Golovchenko, Igor V.; Mykhina, Yulia V.; Savin, Valery V.; Evstigneev, Maxim P.
2016-08-01
The recently published most complete set of thermodynamical data on self- and hetero-complexation of aromatic molecules measured under comparable experimental conditions were analyzed. The main aim of this study is to get insights into contribution of various entropic factors to π -stacking in aqueous solution. It was found that the experimental entropy change on π -stacking is determined by counterbalancing effects of two principal factors, i.e., the hydrophobic interaction (positive contribution) and the loss of degrees of freedom (negative contribution) modulated by the electrostatic contribution. Other factors, including the mixing entropy contribution, were shown to be less important.
Surface tension, hydrophobicity, and black holes: The entropic connection
International Nuclear Information System (INIS)
Callaway, D.J.
1996-01-01
The geometric entropy arising from partitioning space in a fluid open-quote open-quote field theory close-quote close-quote is shown to be linearly proportional to the area of an excluded region. The coefficient of proportionality is related to surface tension by a thermodynamic argument. Good agreement with experimental data is obtained for a number of fluids. The calculation employs a density-matrix formalism developed previously for studying the origin of black hole entropy. This approach may lead to a practical technique for the evaluation of thermodynamic quantities with important entropic components. copyright 1996 The American Physical Society
Limited entropic uncertainty as new principle of quantum physics
International Nuclear Information System (INIS)
Ion, D.B.; Ion, M.L.
2001-01-01
The Uncertainty Principle (UP) of quantum mechanics discovered by Heisenberg, which constitute the corner-stone of quantum physics, asserts that: there is an irreducible lower bound on the uncertainty in the result of a simultaneous measurement of non-commuting observables. In order to avoid this state-dependence many authors proposed to use the information entropy as a measure of the uncertainty instead of above standard quantitative formulation of the Heisenberg uncertainty principle. In this paper the Principle of Limited Entropic Uncertainty (LEU-Principle), as a new principle in quantum physics, is proved. Then, consistent experimental tests of the LEU-principle, obtained by using the available 49 sets of the pion-nucleus phase shifts, are presented for both, extensive (q=1) and nonextensive (q=0.5 and q=2.0) cases. Some results obtained by the application of LEU-Principle to the diffraction phenomena are also discussed. The main results and conclusions of our paper can be summarized as follows: (i) We introduced a new principle in quantum physics namely the Principle of Limited Entropic Uncertainty (LEU-Principle). This new principle includes in a more general and exact form not only the old Heisenberg uncertainty principle but also introduce an upper limit on the magnitude of the uncertainty in the quantum physics. The LEU-Principle asserts that: 'there is an irreducible lower bound as well as an upper bound on the uncertainty in the result of a simultaneous measurement of non-commuting observables for any extensive and nonextensive (q ≥ 0) quantum systems'; (ii) Two important concrete realizations of the LEU-Principle are explicitly obtained in this paper, namely: (a) the LEU-inequalities for the quantum scattering of spinless particles and (b) the LEU-inequalities for the diffraction on single slit of width 2a. In particular from our general results, in the limit y → +1 we recover in an exact form all the results previously reported. In our paper an
Information causality from an entropic and a probabilistic perspective
International Nuclear Information System (INIS)
Al-Safi, Sabri W.; Short, Anthony J.
2011-01-01
The information causality principle is a generalization of the no-signaling principle which implies some of the known restrictions on quantum correlations. But despite its clear physical motivation, information causality is formulated in terms of a rather specialized game and figure of merit. We explore different perspectives on information causality, discussing the probability of success as the figure of merit, a relation between information causality and the nonlocal ''inner-product game,'' and the derivation of a quadratic bound for these games. We then examine an entropic formulation of information causality with which one can obtain the same results, arguably in a simpler fashion.
Waiting Time Dynamics in Two-Dimensional Infrared Spectroscopy
Jansen, Thomas L. C.; Knoester, Jasper
We review recent work on the waiting time dynamics of coherent two-dimensional infrared (2DIR) spectroscopy. This dynamics can reveal chemical and physical processes that take place on the femto- and picosecond time scale, which is faster than the time scale that may be probed by, for example,
Dynamical structure of space and time
International Nuclear Information System (INIS)
Sannikov-Proskuryakov, S.S.
2000-01-01
A mathematically correct solution of the problem of ultraviolet divergences requires a radical change of our ideas on space and matter. We show that the space is a discontinuum in small which is the carrier of a new dynamical structure. Taking into account this structure, a new theory of elementary particles can be suggested
Detection of dynamically varying interaural time differences
DEFF Research Database (Denmark)
Kohlrausch, Armin; Le Goff, Nicolas; Breebaart, Jeroen
2010-01-01
of fringes surrounding the probe is equal to the addition of the effects of the individual fringes. In this contribution, we present behavioral data for the same experimental condition, called dynamically varying ITD detection, but for a wider range of probe and fringe durations. Probe durations varied...
A Dynamic Travel Time Estimation Model Based on Connected Vehicles
Directory of Open Access Journals (Sweden)
Daxin Tian
2015-01-01
Full Text Available With advances in connected vehicle technology, dynamic vehicle route guidance models gradually become indispensable equipment for drivers. Traditional route guidance models are designed to direct a vehicle along the shortest path from the origin to the destination without considering the dynamic traffic information. In this paper a dynamic travel time estimation model is presented which can collect and distribute traffic data based on the connected vehicles. To estimate the real-time travel time more accurately, a road link dynamic dividing algorithm is proposed. The efficiency of the model is confirmed by simulations, and the experiment results prove the effectiveness of the travel time estimation method.
Chen, Min-Nan; Sun, Wen-Yang; Huang, Ai-Jun; Ming, Fei; Wang, Dong; Ye, Liu
2018-01-01
In this work, we investigate the dynamics of quantum-memory-assisted entropic uncertainty relations under open systems, and how to steer the uncertainty under different types of decoherence. Specifically, we develop the dynamical behaviors of the uncertainty of interest under two typical categories of noise; bit flipping and depolarizing channels. It has been shown that the measurement uncertainty firstly increases and then decreases with the growth of the decoherence strength in bit flipping channels. In contrast, the uncertainty monotonically increases with the increase of the decoherence strength in depolarizing channels. Notably, and to a large degree, it is shown that the uncertainty depends on both the systematic quantum correlation and the minimal conditional entropy of the observed subsystem. Moreover, we present a possible physical interpretation for these distinctive behaviors of the uncertainty within such scenarios. Furthermore, we propose a simple and effective strategy to reduce the entropic uncertainty by means of a partially collapsed operation—quantum weak measurement. Therefore, our investigations might offer an insight into the dynamics of the measurment uncertainty under decoherence, and be of importance to quantum precision measurement in open systems.
Wang, Dong; Huang, Aijun; Ming, Fei; Sun, Wenyang; Lu, Heping; Liu, Chengcheng; Ye, Liu
2017-06-01
The uncertainty principle provides a nontrivial bound to expose the precision for the outcome of the measurement on a pair of incompatible observables in a quantum system. Therefore, it is of essential importance for quantum precision measurement in the area of quantum information processing. Herein, we investigate quantum-memory-assisted entropic uncertainty relation (QMA-EUR) in a two-qubit Heisenberg \\boldsymbol{X}\\boldsymbol{Y}\\boldsymbol{Z} spin chain. Specifically, we observe the dynamics of QMA-EUR in a realistic model there are two correlated sites linked by a thermal entanglement in the spin chain with an inhomogeneous magnetic field. It turns out that the temperature, the external inhomogeneous magnetic field and the field inhomogeneity can lift the uncertainty of the measurement due to the reduction of the thermal entanglement, and explicitly higher temperature, stronger magnetic field or larger inhomogeneity of the field can result in inflation of the uncertainty. Besides, it is found that there exists distinct dynamical behaviors of the uncertainty for ferromagnetism \\boldsymbol{}≤ft(\\boldsymbol{J}\\boldsymbol{0}\\right) chains. Moreover, we also verify that the measuring uncertainty is dramatically anti-correlated with the purity of the bipartite spin system, the greater purity can result in the reduction of the measuring uncertainty, vice versa. Therefore, our observations might provide a better understanding of the dynamics of the entropic uncertainty in the Heisenberg spin chain, and thus shed light on quantum precision measurement in the framework of versatile systems, particularly solid states.
Exploring entropic uncertainty relation in the Heisenberg XX model with inhomogeneous magnetic field
Huang, Ai-Jun; Wang, Dong; Wang, Jia-Ming; Shi, Jia-Dong; Sun, Wen-Yang; Ye, Liu
2017-08-01
In this work, we investigate the quantum-memory-assisted entropic uncertainty relation in a two-qubit Heisenberg XX model with inhomogeneous magnetic field. It has been found that larger coupling strength J between the two spin-chain qubits can effectively reduce the entropic uncertainty. Besides, we observe the mechanics of how the inhomogeneous field influences the uncertainty, and find out that when the inhomogeneous field parameter b1. Intriguingly, the entropic uncertainty can shrink to zero when the coupling coefficients are relatively large, while the entropic uncertainty only reduces to 1 with the increase of the homogeneous magnetic field. Additionally, we observe the purity of the state and Bell non-locality and obtain that the entropic uncertainty is anticorrelated with both the purity and Bell non-locality of the evolution state.
Super-entropic black holes and the Kerr-CFT correspondence
Energy Technology Data Exchange (ETDEWEB)
Sinamuli, Musema [Department of Physics and Astronomy, University of Waterloo,200 University Ave., Waterloo, Ontario N2L 3G1 (Canada); Perimeter Institute for Theoretical Physics,31 Caroline St., Waterloo, Ontario, N2L 2Y5 (Canada); Mann, Robert B. [Department of Physics and Astronomy, University of Waterloo,200 University Ave., Waterloo, Ontario N2L 3G1 (Canada)
2016-08-24
We demonstrate that Kerr-CFT duality can be extended to super-entropic black holes, which have non-compact horizons with finite area. We demonstrate that this duality is robust insofar as the ultra-spinning limit of a Kerr-AdS black hole (which yields the super-entropic class) commutes with the near-horizon limit (which yields the Kerr-CFT duality). Consequently the Bekenstein-Hawking and the CFT entropies are equivalent. We show that the duality holds for both singly-spinning super-entropic black holes in 4 dimensions and for doubly-spinning super-entropic black holes of gauged supergravity in 5 dimensions. In both cases we obtain not only the expected left/right temperatures, but also temperatures associated with electric charge and with a new thermodynamic parameter specific to super-entropic black holes.
Super-entropic black holes and the Kerr-CFT correspondence
International Nuclear Information System (INIS)
Sinamuli, Musema; Mann, Robert B.
2016-01-01
We demonstrate that Kerr-CFT duality can be extended to super-entropic black holes, which have non-compact horizons with finite area. We demonstrate that this duality is robust insofar as the ultra-spinning limit of a Kerr-AdS black hole (which yields the super-entropic class) commutes with the near-horizon limit (which yields the Kerr-CFT duality). Consequently the Bekenstein-Hawking and the CFT entropies are equivalent. We show that the duality holds for both singly-spinning super-entropic black holes in 4 dimensions and for doubly-spinning super-entropic black holes of gauged supergravity in 5 dimensions. In both cases we obtain not only the expected left/right temperatures, but also temperatures associated with electric charge and with a new thermodynamic parameter specific to super-entropic black holes.
Time for a change: dynamic urban ecology.
Ramalho, Cristina E; Hobbs, Richard J
2012-03-01
Contemporary cities are expanding rapidly in a spatially complex, non-linear manner. However, this form of expansion is rarely taken into account in the way that urbanization is classically assessed in ecological studies. An explicit consideration of the temporal dynamics, although frequently missing, is crucial in order to understand the effects of urbanization on biodiversity and ecosystem functioning in rapidly urbanizing landscapes. In particular, a temporal perspective highlights the importance of land-use legacies and transient dynamics in the response of biodiversity to environmental change. Here, we outline the essential elements of an emerging framework for urban ecology that incorporates the characteristics of contemporary urbanization and thus empowers ecologists to understand and intervene in the planning and management of cities. Copyright Â© 2011 Elsevier Ltd. All rights reserved.
Dynamic travel time estimation using regression trees.
2008-10-01
This report presents a methodology for travel time estimation by using regression trees. The dissemination of travel time information has become crucial for effective traffic management, especially under congested road conditions. In the absence of c...
Entropic elasticity in the generation of muscle Force - A theoretical model
DEFF Research Database (Denmark)
Nielsen, Bjørn Gilbert
2002-01-01
A novel simplified structural model of sarcomeric force production in striate muscle is presented. Using some simple assumptions regarding the distribution of myosin spring lengths at different sliding velocities it is possible to derive a very simple expression showing the main components...... of the experimentally observed force-velocity relationship of muscle: nonlinearity during contraction (Hill, 1938), maximal force production during stretching equal to two times the isometric force (Katz, 1939), yielding at high stretching velocity, slightly concave force-extension relationship during sudden length......-bridges are explored [linear, power function and worm-like chain (WLC) model based], and it is shown that the best results are obtained if the individual myosin-spring forces are modelled using a WLC model, thus hinting that entropic elasticity could be the main source of force in myosin undergoing the conformational...
Bounds of Certain Dynamic Inequalities on Time Scales
Directory of Open Access Journals (Sweden)
Deepak B. Pachpatte
2014-10-01
Full Text Available In this paper we study explicit bounds of certain dynamic integral inequalities on time scales. These estimates give the bounds on unknown functions which can be used in studying the qualitative aspects of certain dynamic equations. Using these inequalities we prove the uniqueness of some partial integro-differential equations on time scales.
Distributed Time Synchronization Algorithms and Opinion Dynamics
Manita, Anatoly; Manita, Larisa
2018-01-01
We propose new deterministic and stochastic models for synchronization of clocks in nodes of distributed networks. An external accurate time server is used to ensure convergence of the node clocks to the exact time. These systems have much in common with mathematical models of opinion formation in multiagent systems. There is a direct analogy between the time server/node clocks pair in asynchronous networks and the leader/follower pair in the context of social network models.
Predicting the Cosmological Constant from the Causal Entropic Principle
Energy Technology Data Exchange (ETDEWEB)
Bousso, Raphael; Bousso, Raphael; Harnik, Roni; Kribs, Graham D.; Perez, Gilad
2007-05-01
We compute the expected value of the cosmological constant in our universe from the Causal Entropic Principle. Since observers must obey the laws of thermodynamics and causality, the principle asserts that physical parameters are most likely to be found in the range of values for which the total entropy production within a causally connected region is maximized. Despite the absence of more explicit anthropic criteria, the resulting probability distribution turns out to be in excellent agreement with observation. In particular, we find that dust heated by stars dominates the entropy production, demonstrating the remarkable power of this thermodynamic selection criterion. The alternative approach-weighting by the number of"observers per baryon" -- is less well-defined, requires problematic assumptions about the nature of observers, and yet prefers values larger than present experimental bounds.
Predicting the Cosmological Constant from the CausalEntropic Principle
Energy Technology Data Exchange (ETDEWEB)
Bousso, Raphael; Harnik, Roni; Kribs, Graham D.; Perez, Gilad
2007-02-20
We compute the expected value of the cosmological constant in our universe from the Causal Entropic Principle. Since observers must obey the laws of thermodynamics and causality, it asserts that physical parameters are most likely to be found in the range of values for which the total entropy production within a causally connected region is maximized. Despite the absence of more explicit anthropic criteria, the resulting probability distribution turns out to be in excellent agreement with observation. In particular, we find that dust heated by stars dominates the entropy production, demonstrating the remarkable power of this thermodynamic selection criterion. The alternative approach--weighting by the number of ''observers per baryon''--is less well-defined, requires problematic assumptions about the nature of observers, and yet prefers values larger than present experimental bounds.
Ultraspinning limits and super-entropic black holes
Energy Technology Data Exchange (ETDEWEB)
Hennigar, Robie A. [Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Kubizňák, David [Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Perimeter Institute, 31 Caroline St. N., Waterloo, Ontario, N2L 2Y5 (Canada); Mann, Robert B. [Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Musoke, Nathan [Perimeter Institute, 31 Caroline St. N., Waterloo, Ontario, N2L 2Y5 (Canada)
2015-06-16
By employing the new ultraspinning limit we construct novel classes of black holes with non-compact event horizons and finite horizon area and study their thermodynamics. Our ultraspinning limit can be understood as a simple generating technique that consists of three steps: i) transforming the known rotating AdS black hole solution to a special coordinate system that rotates (in a given 2-plane) at infinity ii) boosting this rotation to the speed of light iii) compactifying the corresponding azimuthal direction. In so doing we qualitatively change the structure of the spacetime since it is no longer possible to return to a frame that does not rotate at infinity. The obtained black holes have non-compact horizons with topology of a sphere with two punctures. The entropy of some of these exceeds the maximal bound implied by the reverse isoperimetric inequality, such black holes are super-entropic.
Predicting Atomic Decay Rates Using an Informational-Entropic Approach
Gleiser, Marcelo; Jiang, Nan
2018-06-01
We show that a newly proposed Shannon-like entropic measure of shape complexity applicable to spatially-localized or periodic mathematical functions known as configurational entropy (CE) can be used as a predictor of spontaneous decay rates for one-electron atoms. The CE is constructed from the Fourier transform of the atomic probability density. For the hydrogen atom with degenerate states labeled with the principal quantum number n, we obtain a scaling law relating the n-averaged decay rates to the respective CE. The scaling law allows us to predict the n-averaged decay rate without relying on the traditional computation of dipole matrix elements. We tested the predictive power of our approach up to n = 20, obtaining an accuracy better than 3.7% within our numerical precision, as compared to spontaneous decay tables listed in the literature.
Hyper-entropic gravitational fireballs (grireballs) with firewalls
International Nuclear Information System (INIS)
Page, Don N.
2013-01-01
Recently there has been much discussion as to whether old black holes have firewalls at their surfaces that would destroy infalling observers. Though I suspect that a proper handling of nonlocality in quantum gravity may show that firewalls do not exist, it is interesting to consider an extension of the firewall idea to what seems to be the logically possible concept of hyper-entropic gravitational hot objects (gravitational fireballs or grireballs for short) that have more entropy than ordinary black holes of the same mass. Here some properties of such grireballs are discussed under various assumptions, such as assuming that their radii and entropies both go as powers of their masses as the one independent parameter, or assuming that their radii depend on both their masses and their entropies as two independent parameters
Hyper-entropic gravitational fireballs (grireballs) with firewalls
Page, Don N.
2013-04-01
Recently there has been much discussion as to whether old black holes have firewalls at their surfaces that would destroy infalling observers. Though I suspect that a proper handling of nonlocality in quantum gravity may show that firewalls do not exist, it is interesting to consider an extension of the firewall idea to what seems to be the logically possible concept of hyper-entropic gravitational hot objects (gravitational fireballs or grireballs for short) that have more entropy than ordinary black holes of the same mass. Here some properties of such grireballs are discussed under various assumptions, such as assuming that their radii and entropies both go as powers of their masses as the one independent parameter, or assuming that their radii depend on both their masses and their entropies as two independent parameters.
Predicting Atomic Decay Rates Using an Informational-Entropic Approach
Gleiser, Marcelo; Jiang, Nan
2018-02-01
We show that a newly proposed Shannon-like entropic measure of shape complexity applicable to spatially-localized or periodic mathematical functions known as configurational entropy (CE) can be used as a predictor of spontaneous decay rates for one-electron atoms. The CE is constructed from the Fourier transform of the atomic probability density. For the hydrogen atom with degenerate states labeled with the principal quantum number n, we obtain a scaling law relating the n-averaged decay rates to the respective CE. The scaling law allows us to predict the n-averaged decay rate without relying on the traditional computation of dipole matrix elements. We tested the predictive power of our approach up to n = 20, obtaining an accuracy better than 3.7% within our numerical precision, as compared to spontaneous decay tables listed in the literature.
Stability theory for dynamic equations on time scales
Martynyuk, Anatoly A
2016-01-01
This monograph is a first in the world to present three approaches for stability analysis of solutions of dynamic equations. The first approach is based on the application of dynamic integral inequalities and the fundamental matrix of solutions of linear approximation of dynamic equations. The second is based on the generalization of the direct Lyapunovs method for equations on time scales, using scalar, vector and matrix-valued auxiliary functions. The third approach is the application of auxiliary functions (scalar, vector, or matrix-valued ones) in combination with differential dynamic inequalities. This is an alternative comparison method, developed for time continuous and time discrete systems. In recent decades, automatic control theory in the study of air- and spacecraft dynamics and in other areas of modern applied mathematics has encountered problems in the analysis of the behavior of solutions of time continuous-discrete linear and/or nonlinear equations of perturbed motion. In the book “Men of Ma...
Directory of Open Access Journals (Sweden)
Tanti Octavia
2003-01-01
Full Text Available A Modified Giffler and Thompson algorithm combined with dynamic slack time is used to allocate machines resources in dynamic nature. It was compared with a Real Time Order Promising (RTP algorithm. The performance of modified Giffler and Thompson and RTP algorithms are measured by mean tardiness. The result shows that modified Giffler and Thompson algorithm combined with dynamic slack time provides significantly better result compared with RTP algorithm in terms of mean tardiness.
Family dynamics and first-time homeownership
Smits, A.; Mulder, C.H.
2008-01-01
The transition to first-time homeownership is related to household events such as cohabitation and marriage as well as to parents' homeownership. This paper investigates how these relationships have changed during the last few decades, using the first wave of the Netherlands Kinship Panel Study and
Exploitation and exploration dynamics in recessionary times
Walrave, B.
2012-01-01
Firm performance largely depends on the ability to adapt to, and exploit, changes in the business environment. That is, firms should maintain ecological fitness by reconfiguring their resource base to cope with emerging threats and explore new opportunities, while at the same time exploiting
Exploitation and exploration dynamics in recessionary times
Walrave, B.
2012-01-01
Firm performance largely depends on the ability to adapt to, and exploit, changes in the business environment. That is, firms should maintain ecological fitness by reconfiguring their resource base to cope with emerging threats and explore new opportunities, while at the same time exploiting existing resources. As such, firms possessing the ability to simultaneously perform exploitative and explorative initiatives are more resilient. In this respect, the performance implications of balancing ...
Real time simulation method for fast breeder reactors dynamics
International Nuclear Information System (INIS)
Miki, Tetsushi; Mineo, Yoshiyuki; Ogino, Takamichi; Kishida, Koji; Furuichi, Kenji.
1985-01-01
The development of multi-purpose real time simulator models with suitable plant dynamics was made; these models can be used not only in training operators but also in designing control systems, operation sequences and many other items which must be studied for the development of new type reactors. The prototype fast breeder reactor ''Monju'' is taken as an example. Analysis is made on various factors affecting the accuracy and computer load of its dynamic simulation. A method is presented which determines the optimum number of nodes in distributed systems and time steps. The oscillations due to the numerical instability are observed in the dynamic simulation of evaporators with a small number of nodes, and a method to cancel these oscillations is proposed. It has been verified through the development of plant dynamics simulation codes that these methods can provide efficient real time dynamics models of fast breeder reactors. (author)
Complete Abstractions of Dynamical Systems by Timed Automata
DEFF Research Database (Denmark)
Sloth, Christoffer; Wisniewski, Rafael
2013-01-01
This paper addresses the generation of complete abstractions of polynomial dynamical systems by timed automata. For the proposed abstraction, the state space is divided into cells by sublevel sets of functions. We identify a relation between these functions and their directional derivatives along...... to approximate the dynamical system, in a subset of admissible subdivisioning functions....
Dynamic Factor Analysis of Nonstationary Multivariate Time Series.
Molenaar, Peter C. M.; And Others
1992-01-01
The dynamic factor model proposed by P. C. Molenaar (1985) is exhibited, and a dynamic nonstationary factor model (DNFM) is constructed with latent factor series that have time-varying mean functions. The use of a DNFM is illustrated using data from a television viewing habits study. (SLD)
Arresting Strategy Based on Dynamic Criminal Networks Changing over Time
Directory of Open Access Journals (Sweden)
Junqing Yuan
2013-01-01
Full Text Available We investigate a sequence of dynamic criminal networks on a time series based on the dynamic network analysis (DNA. According to the change of networks’ structure, networks’ variation trend is analyzed to forecast its future structure. Finally, an optimal arresting time and priority list are designed based on our analysis. Better results can be expected than that based on social network analysis (SNA.
X-ray testing for short-time dynamic applications
International Nuclear Information System (INIS)
Kurfiss, Malte; Moser, Stefan; Popko, Gregor; Nau, Siegfried
2017-01-01
For nondestructive testing purposes new challenges are short-time dynamic processes. The application of x-ray flash tubes and modern high-speed cameras allows the observation of the opening of air-bags or the energy absorption of compressed tubes as occurring during a vehicle crash. Special algorithms designed for computerized tomography analyses allow the 3D reconstruction at individual time points of the dynamic process. Possibilities and limitations of the actual techniques are discussed.
Analysis of Time Reversible Born-Oppenheimer Molecular Dynamics
Directory of Open Access Journals (Sweden)
Lin Lin
2013-12-01
Full Text Available We analyze the time reversible Born-Oppenheimer molecular dynamics (TRBOMD scheme, which preserves the time reversibility of the Born-Oppenheimer molecular dynamics even with non-convergent self-consistent field iteration. In the linear response regime, we derive the stability condition, as well as the accuracy of TRBOMD for computing physical properties, such as the phonon frequency obtained from the molecular dynamics simulation. We connect and compare TRBOMD with Car-Parrinello molecular dynamics in terms of accuracy and stability. We further discuss the accuracy of TRBOMD beyond the linear response regime for non-equilibrium dynamics of nuclei. Our results are demonstrated through numerical experiments using a simplified one-dimensional model for Kohn-Sham density functional theory.
The Effects of Minimal Length, Maximal Momentum, and Minimal Momentum in Entropic Force
Directory of Open Access Journals (Sweden)
Zhong-Wen Feng
2016-01-01
Full Text Available The modified entropic force law is studied by using a new kind of generalized uncertainty principle which contains a minimal length, a minimal momentum, and a maximal momentum. Firstly, the quantum corrections to the thermodynamics of a black hole are investigated. Then, according to Verlinde’s theory, the generalized uncertainty principle (GUP corrected entropic force is obtained. The result shows that the GUP corrected entropic force is related not only to the properties of the black holes but also to the Planck length and the dimensionless constants α0 and β0. Moreover, based on the GUP corrected entropic force, we also derive the modified Einstein’s field equation (EFE and the modified Friedmann equation.
Time perception and dynamics of facial expressions of emotions.
Directory of Open Access Journals (Sweden)
Sophie L Fayolle
Full Text Available Two experiments were run to examine the effects of dynamic displays of facial expressions of emotions on time judgments. The participants were given a temporal bisection task with emotional facial expressions presented in a dynamic or a static display. Two emotional facial expressions and a neutral expression were tested and compared. Each of the emotional expressions had the same affective valence (unpleasant, but one was high-arousing (expressing anger and the other low-arousing (expressing sadness. Our results showed that time judgments are highly sensitive to movements in facial expressions and the emotions expressed. Indeed, longer perceived durations were found in response to the dynamic faces and the high-arousing emotional expressions compared to the static faces and low-arousing expressions. In addition, the facial movements amplified the effect of emotions on time perception. Dynamic facial expressions are thus interesting tools for examining variations in temporal judgments in different social contexts.
A partial entropic lattice Boltzmann MHD simulation of the Orszag-Tang vortex
Flint, Christopher; Vahala, George
2018-02-01
Karlin has introduced an analytically determined entropic lattice Boltzmann (LB) algorithm for Navier-Stokes turbulence. Here, this is partially extended to an LB model of magnetohydrodynamics, on using the vector distribution function approach of Dellar for the magnetic field (which is permitted to have field reversal). The partial entropic algorithm is benchmarked successfully against standard simulations of the Orszag-Tang vortex [Orszag, S.A.; Tang, C.M. J. Fluid Mech. 1979, 90 (1), 129-143].
Solitary wave dynamics in time-dependent potentials
International Nuclear Information System (INIS)
Abou Salem, Walid K.
2008-01-01
The long time dynamics of solitary wave solutions of the nonlinear Schroedinger equation in time-dependent external potentials is rigorously studied. To set the stage, the well-posedness of the Cauchy problem for a generalized nonautonomous nonlinear Schroedinger equation with time-dependent nonlinearities and potential is established. Afterward, the dynamics of NLS solitary waves in time-dependent potentials is studied. It is shown that in the space-adiabatic regime where the external potential varies slowly in space compared to the size of the soliton, the dynamics of the center of the soliton is described by Hamilton's equations, plus terms due to radiation damping. Finally, two physical applications are discussed: the first is adiabatic transportation of solitons and the second is the Mathieu instability of trapped solitons due to time-periodic perturbations
Species Turnover through Time: Colonization and Extinction Dynamics across Metacommunities.
Nuvoloni, Felipe Micali; Feres, Reinaldo José Fazzio; Gilbert, Benjamin
2016-06-01
Island biogeography and metacommunity theory often use equilibrium assumptions to predict local diversity, yet nonequilibrium dynamics are common in nature. In nonequilibrium communities, local diversity fluctuates through time as the relative importance of colonization and extinction change. Here, we test the prevalence and causes of nonequilibrium dynamics in metacommunities of mites associated with rubber trees distributed over large spatial (>1,000 km) and temporal (>30-60 generations) scales in Brazil. We measured colonization and extinction rates to test species turnover and nonequilibrium dynamics over a growing season. Mite metacommunities exhibited nonequilibrium dynamics for most months of the year, and these dynamics tracked climatic conditions. Monthly shifts in temperature of more than 1°C resulted in nonequilibrium dynamics, as did mean temperatures outside of two critical ranges. Nonequilibrium dynamics were caused by a change in colonization with temperature change and changes in both colonization and extinction with absolute temperature. Species turnover showed different trends; high relative humidity increased both colonization and extinction rates, increasing turnover but not nonequilibrium dynamics. Our study illustrates that testing nonequilibrium dynamics can provide new insights into the drivers of colonization, extinction, and diversity fluctuations in metacommunities.
Neural Computations in a Dynamical System with Multiple Time Scales.
Mi, Yuanyuan; Lin, Xiaohan; Wu, Si
2016-01-01
Neural systems display rich short-term dynamics at various levels, e.g., spike-frequency adaptation (SFA) at the single-neuron level, and short-term facilitation (STF) and depression (STD) at the synapse level. These dynamical features typically cover a broad range of time scales and exhibit large diversity in different brain regions. It remains unclear what is the computational benefit for the brain to have such variability in short-term dynamics. In this study, we propose that the brain can exploit such dynamical features to implement multiple seemingly contradictory computations in a single neural circuit. To demonstrate this idea, we use continuous attractor neural network (CANN) as a working model and include STF, SFA and STD with increasing time constants in its dynamics. Three computational tasks are considered, which are persistent activity, adaptation, and anticipative tracking. These tasks require conflicting neural mechanisms, and hence cannot be implemented by a single dynamical feature or any combination with similar time constants. However, with properly coordinated STF, SFA and STD, we show that the network is able to implement the three computational tasks concurrently. We hope this study will shed light on the understanding of how the brain orchestrates its rich dynamics at various levels to realize diverse cognitive functions.
Multiple time step integrators in ab initio molecular dynamics
International Nuclear Information System (INIS)
Luehr, Nathan; Martínez, Todd J.; Markland, Thomas E.
2014-01-01
Multiple time-scale algorithms exploit the natural separation of time-scales in chemical systems to greatly accelerate the efficiency of molecular dynamics simulations. Although the utility of these methods in systems where the interactions are described by empirical potentials is now well established, their application to ab initio molecular dynamics calculations has been limited by difficulties associated with splitting the ab initio potential into fast and slowly varying components. Here we present two schemes that enable efficient time-scale separation in ab initio calculations: one based on fragment decomposition and the other on range separation of the Coulomb operator in the electronic Hamiltonian. We demonstrate for both water clusters and a solvated hydroxide ion that multiple time-scale molecular dynamics allows for outer time steps of 2.5 fs, which are as large as those obtained when such schemes are applied to empirical potentials, while still allowing for bonds to be broken and reformed throughout the dynamics. This permits computational speedups of up to 4.4x, compared to standard Born-Oppenheimer ab initio molecular dynamics with a 0.5 fs time step, while maintaining the same energy conservation and accuracy
Verification of Continuous Dynamical Systems by Timed Automata
DEFF Research Database (Denmark)
Sloth, Christoffer; Wisniewski, Rafael
2011-01-01
This paper presents a method for abstracting continuous dynamical systems by timed automata. The abstraction is based on partitioning the state space of a dynamical system using positive invariant sets, which form cells that represent locations of a timed automaton. The abstraction is intended......, which is generated utilizing sub-level sets of Lyapunov functions, as they are positive invariant sets. It is shown that this partition generates sound and complete abstractions. Furthermore, the complete abstractions can be composed of multiple timed automata, allowing parallelization...
Quantum Dynamics of Test Particle in Curved Space-Time
International Nuclear Information System (INIS)
Piechocki, W.
2002-01-01
To reveal the nature of space-time singularities of removable type we examine classical and quantum dynamics of a free particle in the Sitter type spacetimes. Consider space-times have different topologies otherwise are isometric. Our systems are integrable and we present analytic solutions of the classical dynamics. We quantize the systems by making use of the group theoretical method: we find an essentially self-adjoint representation of the algebra of observables integrable to the irreducible unitarity representation of the symmetry group of each consider gravitational system. The massless particle dynamics is obtained in the zero-mass limit of the massive case. Global properties of considered gravitational systems are of primary importance for the quantization procedure. Systems of a particle in space-times with removable singularities appear to be quantizable. We give specific proposal for extension of our analysis to space-times with essential type singularities. (author)
Metagenomics meets time series analysis: unraveling microbial community dynamics
Faust, K.; Lahti, L.M.; Gonze, D.; Vos, de W.M.; Raes, J.
2015-01-01
The recent increase in the number of microbial time series studies offers new insights into the stability and dynamics of microbial communities, from the world's oceans to human microbiota. Dedicated time series analysis tools allow taking full advantage of these data. Such tools can reveal periodic
Modeling dynamic effects of promotion on interpurchase times
D. Fok (Dennis); R. Paap (Richard); Ph.H.B.F. Franses (Philip Hans)
2002-01-01
textabstractIn this paper we put forward a duration model to analyze the dynamic effects of marketing-mix variables on interpurchase times. We extend the accelerated failure-time model with an autoregressive structure. An important feature of our model is that it allows for different long-run and
A dynamical approach to time dilation and length contraction
Vries, de D.K.; Muynck, de W.M.
1996-01-01
Simple models of length and time measuring instruments are studied in order to see under what conditions a relativistic description of the dynamics of accelerated motion can be consistent with the kinematic prescriptions of Lorentz contraction and time dilation. The outcomes obtained for the
Innovative tools for real-time simulation of dynamic systems
Palli, Gianluca; Carloni, Raffaella; Melchiorri, Claudio
2008-01-01
In this paper, we present a software architecture, based on RTAI-Linux, for the real-time simulation of dynamic systems and for the rapid prototyping of digital controllers. Our aim is to simplify the testing phase of digital controllers by providing the real-time simulation of the plant with the
Entropic effects, shape, and size of mixed micelles formed by copolymers with complex architectures
Kalogirou, Andreas; Gergidis, Leonidas N.; Moultos, Othonas; Vlahos, Costas
2015-11-01
The entropic effects in the comicellization behavior of amphiphilic A B copolymers differing in the chain size of solvophilic A parts were studied by means of molecular dynamics simulations. In particular, mixtures of miktoarm star copolymers differing in the molecular weight of solvophilic arms were investigated. We found that the critical micelle concentration values show a positive deviation from the analytical predictions of the molecular theory of comicellization for chemically identical copolymers. This can be attributed to the effective interactions between copolymers originated from the arm size asymmetry. The effective interactions induce a very small decrease in the aggregation number of preferential micelles triggering the nonrandom mixing between the solvophilic moieties in the corona. Additionally, in order to specify how the chain architecture affects the size distribution and the shape of mixed micelles we studied star-shaped, H-shaped, and homo-linked-rings-linear mixtures. In the first case the individual constituents form micelles with preferential and wide aggregation numbers and in the latter case the individual constituents form wormlike and spherical micelles.
An Optimization Framework for Dynamic, Distributed Real-Time Systems
Eckert, Klaus; Juedes, David; Welch, Lonnie; Chelberg, David; Bruggerman, Carl; Drews, Frank; Fleeman, David; Parrott, David; Pfarr, Barbara
2003-01-01
Abstract. This paper presents a model that is useful for developing resource allocation algorithms for distributed real-time systems .that operate in dynamic environments. Interesting aspects of the model include dynamic environments, utility and service levels, which provide a means for graceful degradation in resource-constrained situations and support optimization of the allocation of resources. The paper also provides an allocation algorithm that illustrates how to use the model for producing feasible, optimal resource allocations.
Recovery time after localized perturbations in complex dynamical networks
Mitra, Chiranjit; Kittel, Tim; Choudhary, Anshul; Kurths, Jürgen; Donner, Reik V.
2017-10-01
Maintaining the synchronous motion of dynamical systems interacting on complex networks is often critical to their functionality. However, real-world networked dynamical systems operating synchronously are prone to random perturbations driving the system to arbitrary states within the corresponding basin of attraction, thereby leading to epochs of desynchronized dynamics with a priori unknown durations. Thus, it is highly relevant to have an estimate of the duration of such transient phases before the system returns to synchrony, following a random perturbation to the dynamical state of any particular node of the network. We address this issue here by proposing the framework of single-node recovery time (SNRT) which provides an estimate of the relative time scales underlying the transient dynamics of the nodes of a network during its restoration to synchrony. We utilize this in differentiating the particularly slow nodes of the network from the relatively fast nodes, thus identifying the critical nodes which when perturbed lead to significantly enlarged recovery time of the system before resuming synchronized operation. Further, we reveal explicit relationships between the SNRT values of a network, and its global relaxation time when starting all the nodes from random initial conditions. Earlier work on relaxation time generally focused on investigating its dependence on macroscopic topological properties of the respective network. However, we employ the proposed concept for deducing microscopic relationships between topological features of nodes and their respective SNRT values. The framework of SNRT is further extended to a measure of resilience of the different nodes of a networked dynamical system. We demonstrate the potential of SNRT in networks of Rössler oscillators on paradigmatic topologies and a model of the power grid of the United Kingdom with second-order Kuramoto-type nodal dynamics illustrating the conceivable practical applicability of the proposed
Recovery time after localized perturbations in complex dynamical networks
International Nuclear Information System (INIS)
Mitra, Chiranjit; Kittel, Tim; Kurths, Jürgen; Donner, Reik V; Choudhary, Anshul
2017-01-01
Maintaining the synchronous motion of dynamical systems interacting on complex networks is often critical to their functionality. However, real-world networked dynamical systems operating synchronously are prone to random perturbations driving the system to arbitrary states within the corresponding basin of attraction, thereby leading to epochs of desynchronized dynamics with a priori unknown durations. Thus, it is highly relevant to have an estimate of the duration of such transient phases before the system returns to synchrony, following a random perturbation to the dynamical state of any particular node of the network. We address this issue here by proposing the framework of single-node recovery time (SNRT) which provides an estimate of the relative time scales underlying the transient dynamics of the nodes of a network during its restoration to synchrony. We utilize this in differentiating the particularly slow nodes of the network from the relatively fast nodes, thus identifying the critical nodes which when perturbed lead to significantly enlarged recovery time of the system before resuming synchronized operation. Further, we reveal explicit relationships between the SNRT values of a network, and its global relaxation time when starting all the nodes from random initial conditions. Earlier work on relaxation time generally focused on investigating its dependence on macroscopic topological properties of the respective network. However, we employ the proposed concept for deducing microscopic relationships between topological features of nodes and their respective SNRT values. The framework of SNRT is further extended to a measure of resilience of the different nodes of a networked dynamical system. We demonstrate the potential of SNRT in networks of Rössler oscillators on paradigmatic topologies and a model of the power grid of the United Kingdom with second-order Kuramoto-type nodal dynamics illustrating the conceivable practical applicability of the proposed
Clinical time series prediction: Toward a hierarchical dynamical system framework.
Liu, Zitao; Hauskrecht, Milos
2015-09-01
Developing machine learning and data mining algorithms for building temporal models of clinical time series is important for understanding of the patient condition, the dynamics of a disease, effect of various patient management interventions and clinical decision making. In this work, we propose and develop a novel hierarchical framework for modeling clinical time series data of varied length and with irregularly sampled observations. Our hierarchical dynamical system framework for modeling clinical time series combines advantages of the two temporal modeling approaches: the linear dynamical system and the Gaussian process. We model the irregularly sampled clinical time series by using multiple Gaussian process sequences in the lower level of our hierarchical framework and capture the transitions between Gaussian processes by utilizing the linear dynamical system. The experiments are conducted on the complete blood count (CBC) panel data of 1000 post-surgical cardiac patients during their hospitalization. Our framework is evaluated and compared to multiple baseline approaches in terms of the mean absolute prediction error and the absolute percentage error. We tested our framework by first learning the time series model from data for the patients in the training set, and then using it to predict future time series values for the patients in the test set. We show that our model outperforms multiple existing models in terms of its predictive accuracy. Our method achieved a 3.13% average prediction accuracy improvement on ten CBC lab time series when it was compared against the best performing baseline. A 5.25% average accuracy improvement was observed when only short-term predictions were considered. A new hierarchical dynamical system framework that lets us model irregularly sampled time series data is a promising new direction for modeling clinical time series and for improving their predictive performance. Copyright © 2014 Elsevier B.V. All rights reserved.
Clinical time series prediction: towards a hierarchical dynamical system framework
Liu, Zitao; Hauskrecht, Milos
2014-01-01
Objective Developing machine learning and data mining algorithms for building temporal models of clinical time series is important for understanding of the patient condition, the dynamics of a disease, effect of various patient management interventions and clinical decision making. In this work, we propose and develop a novel hierarchical framework for modeling clinical time series data of varied length and with irregularly sampled observations. Materials and methods Our hierarchical dynamical system framework for modeling clinical time series combines advantages of the two temporal modeling approaches: the linear dynamical system and the Gaussian process. We model the irregularly sampled clinical time series by using multiple Gaussian process sequences in the lower level of our hierarchical framework and capture the transitions between Gaussian processes by utilizing the linear dynamical system. The experiments are conducted on the complete blood count (CBC) panel data of 1000 post-surgical cardiac patients during their hospitalization. Our framework is evaluated and compared to multiple baseline approaches in terms of the mean absolute prediction error and the absolute percentage error. Results We tested our framework by first learning the time series model from data for the patient in the training set, and then applying the model in order to predict future time series values on the patients in the test set. We show that our model outperforms multiple existing models in terms of its predictive accuracy. Our method achieved a 3.13% average prediction accuracy improvement on ten CBC lab time series when it was compared against the best performing baseline. A 5.25% average accuracy improvement was observed when only short-term predictions were considered. Conclusion A new hierarchical dynamical system framework that lets us model irregularly sampled time series data is a promising new direction for modeling clinical time series and for improving their predictive
Decay of surface nanostructures via long-time-scale dynamics
International Nuclear Information System (INIS)
Voter, A.F.; Stanciu, N.
1998-01-01
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors have developed a new approach for extending the time scale of molecular dynamics simulations. For infrequent-event systems, the category that includes most diffusive events in the solid phase, this hyperdynamics method can extend the simulation time by a few orders of magnitude compared to direct molecular dynamics. The trajectory is run on a potential surface that has been biased to raise the energy in the potential basins without affecting the transition state region. The method is described and applied to surface and bulk diffusion processes, achieving microsecond and millisecond simulation times. The authors have also developed a new parallel computing method that is efficient for small system sizes. The combination of the hyperdynamics with this parallel replica dynamics looks promising as a general materials simulation tool
Electron dynamics in solid state via time varying wavevectors
Khaneja, Navin
2018-06-01
In this paper, we study electron wavepacket dynamics in electric and magnetic fields. We rigorously derive the semiclassical equations of electron dynamics in electric and magnetic fields. We do it both for free electron and electron in a periodic potential. We do this by introducing time varying wavevectors k(t). In the presence of magnetic field, our wavepacket reproduces the classical cyclotron orbits once the origin of the Schröedinger equation is correctly chosen to be center of cyclotron orbit. In the presence of both electric and magnetic fields, our equations for wavepacket dynamics differ from classical Lorentz force equations. We show that in a periodic potential, on application of electric field, the electron wave function adiabatically follows the wavefunction of a time varying Bloch wavevector k(t), with its energies suitably shifted with time. We derive the effective mass equation and discuss conduction in conductors and insulators.
Time course of dynamic range adaptation in the auditory nerve
Wang, Grace I.; Dean, Isabel; Delgutte, Bertrand
2012-01-01
Auditory adaptation to sound-level statistics occurs as early as in the auditory nerve (AN), the first stage of neural auditory processing. In addition to firing rate adaptation characterized by a rate decrement dependent on previous spike activity, AN fibers show dynamic range adaptation, which is characterized by a shift of the rate-level function or dynamic range toward the most frequently occurring levels in a dynamic stimulus, thereby improving the precision of coding of the most common sound levels (Wen B, Wang GI, Dean I, Delgutte B. J Neurosci 29: 13797–13808, 2009). We investigated the time course of dynamic range adaptation by recording from AN fibers with a stimulus in which the sound levels periodically switch from one nonuniform level distribution to another (Dean I, Robinson BL, Harper NS, McAlpine D. J Neurosci 28: 6430–6438, 2008). Dynamic range adaptation occurred rapidly, but its exact time course was difficult to determine directly from the data because of the concomitant firing rate adaptation. To characterize the time course of dynamic range adaptation without the confound of firing rate adaptation, we developed a phenomenological “dual adaptation” model that accounts for both forms of AN adaptation. When fitted to the data, the model predicts that dynamic range adaptation occurs as rapidly as firing rate adaptation, over 100–400 ms, and the time constants of the two forms of adaptation are correlated. These findings suggest that adaptive processing in the auditory periphery in response to changes in mean sound level occurs rapidly enough to have significant impact on the coding of natural sounds. PMID:22457465
Singular perturbation methods for nonlinear dynamic systems with time delays
International Nuclear Information System (INIS)
Hu, H.Y.; Wang, Z.H.
2009-01-01
This review article surveys the recent advances in the dynamics and control of time-delay systems, with emphasis on the singular perturbation methods, such as the method of multiple scales, the method of averaging, and two newly developed methods, the energy analysis and the pseudo-oscillator analysis. Some examples are given to demonstrate the advantages of the methods. The comparisons with other methods show that these methods lead to easier computations and higher accurate prediction on the local dynamics of time-delay systems near a Hopf bifurcation.
Radar time delays in the dynamic theory of gravity
Directory of Open Access Journals (Sweden)
Haranas I.I.
2004-01-01
Full Text Available There is a new theory gravity called the dynamic theory, which is derived from thermodynamic principles in a five dimensional space, radar signals traveling times and delays are calculated for the major planets in the solar system, and compared to those of general relativity. This is done by using the usual four dimensional spherically symmetric space-time element of classical general relativistic gravity which has now been slightly modified by a negative inverse radial exponential term due to the dynamic theory of gravity potential.
Neural Computations in a Dynamical System with Multiple Time Scales
Directory of Open Access Journals (Sweden)
Yuanyuan Mi
2016-09-01
Full Text Available Neural systems display rich short-term dynamics at various levels, e.g., spike-frequencyadaptation (SFA at single neurons, and short-term facilitation (STF and depression (STDat neuronal synapses. These dynamical features typically covers a broad range of time scalesand exhibit large diversity in different brain regions. It remains unclear what the computationalbenefit for the brain to have such variability in short-term dynamics is. In this study, we proposethat the brain can exploit such dynamical features to implement multiple seemingly contradictorycomputations in a single neural circuit. To demonstrate this idea, we use continuous attractorneural network (CANN as a working model and include STF, SFA and STD with increasing timeconstants in their dynamics. Three computational tasks are considered, which are persistent activity,adaptation, and anticipative tracking. These tasks require conflicting neural mechanisms, andhence cannot be implemented by a single dynamical feature or any combination with similar timeconstants. However, with properly coordinated STF, SFA and STD, we show that the network isable to implement the three computational tasks concurrently. We hope this study will shed lighton the understanding of how the brain orchestrates its rich dynamics at various levels to realizediverse cognitive functions.
Dynamical pruning of static localized basis sets in time-dependent quantum dynamics
McCormack, D.A.
2006-01-01
We investigate the viability of dynamical pruning of localized basis sets in time-dependent quantum wave packet methods. Basis functions that have a very small population at any given time are removed from the active set. The basis functions themselves are time independent, but the set of active
Simulating transient dynamics of the time-dependent time fractional Fokker–Planck systems
Energy Technology Data Exchange (ETDEWEB)
Kang, Yan-Mei, E-mail: ymkang@mail.xjtu.edu.cn
2016-09-16
For a physically realistic type of time-dependent time fractional Fokker–Planck (FP) equation, derived as the continuous limit of the continuous time random walk with time-modulated Boltzmann jumping weight, a semi-analytic iteration scheme based on the truncated (generalized) Fourier series is presented to simulate the resultant transient dynamics when the external time modulation is a piece-wise constant signal. At first, the iteration scheme is demonstrated with a simple time-dependent time fractional FP equation on finite interval with two absorbing boundaries, and then it is generalized to the more general time-dependent Smoluchowski-type time fractional Fokker–Planck equation. The numerical examples verify the efficiency and accuracy of the iteration method, and some novel dynamical phenomena including polarized motion orientations and periodic response death are discussed. - Highlights: • An iteration method is proposed for the transient dynamics of time-dependent time fractional Fokker–Planck equations. • The method is based on Fourier Series solution and the multi-step transition probability formula. • With the time-modulated subdiffusion on finite interval as example, the polarized motion orientation is disclosed. • With the time-modulated subdiffusion within a confined potential as example, the death of dynamic response is observed.
Simulating transient dynamics of the time-dependent time fractional Fokker–Planck systems
International Nuclear Information System (INIS)
Kang, Yan-Mei
2016-01-01
For a physically realistic type of time-dependent time fractional Fokker–Planck (FP) equation, derived as the continuous limit of the continuous time random walk with time-modulated Boltzmann jumping weight, a semi-analytic iteration scheme based on the truncated (generalized) Fourier series is presented to simulate the resultant transient dynamics when the external time modulation is a piece-wise constant signal. At first, the iteration scheme is demonstrated with a simple time-dependent time fractional FP equation on finite interval with two absorbing boundaries, and then it is generalized to the more general time-dependent Smoluchowski-type time fractional Fokker–Planck equation. The numerical examples verify the efficiency and accuracy of the iteration method, and some novel dynamical phenomena including polarized motion orientations and periodic response death are discussed. - Highlights: • An iteration method is proposed for the transient dynamics of time-dependent time fractional Fokker–Planck equations. • The method is based on Fourier Series solution and the multi-step transition probability formula. • With the time-modulated subdiffusion on finite interval as example, the polarized motion orientation is disclosed. • With the time-modulated subdiffusion within a confined potential as example, the death of dynamic response is observed.
Absorption dynamics and delay time in complex potentials
Villavicencio, Jorge; Romo, Roberto; Hernández-Maldonado, Alberto
2018-05-01
The dynamics of absorption is analyzed by using an exactly solvable model that deals with an analytical solution to Schrödinger’s equation for cutoff initial plane waves incident on a complex absorbing potential. A dynamical absorption coefficient which allows us to explore the dynamical loss of particles from the transient to the stationary regime is derived. We find that the absorption process is characterized by the emission of a series of damped periodic pulses in time domain, associated with damped Rabi-type oscillations with a characteristic frequency, ω = (E + ε)/ℏ, where E is the energy of the incident waves and ‑ε is energy of the quasidiscrete state of the system induced by the absorptive part of the Hamiltonian; the width γ of this resonance governs the amplitude of the pulses. The resemblance of the time-dependent absorption coefficient with a real decay process is discussed, in particular the transition from exponential to nonexponential regimes, a well-known feature of quantum decay. We have also analyzed the effect of the absorptive part of the potential on the dynamical delay time, which behaves differently from the one observed in attractive real delta potentials, exhibiting two regimes: time advance and time delay.
A Novel Time Synchronization Method for Dynamic Reconfigurable Bus
Directory of Open Access Journals (Sweden)
Zhang Weigong
2016-01-01
Full Text Available UM-BUS is a novel dynamically reconfigurable high-speed serial bus for embedded systems. It can achieve fault tolerance by detecting the channel status in real time and reconfigure dynamically at run-time. The bus supports direct interconnections between up to eight master nodes and multiple slave nodes. In order to solve the time synchronization problem among master nodes, this paper proposes a novel time synchronization method, which can meet the requirement of time precision in UM-BUS. In this proposed method, time is firstly broadcasted through time broadcast packets. Then, the transmission delay and time deviations via three handshakes during link self-checking and channel detection can be worked out referring to the IEEE 1588 protocol. Thereby, each node calibrates its own time according to the broadcasted time. The proposed method has been proved to meet the requirement of real-time time synchronization. The experimental results show that the synchronous precision can achieve a bias less than 20 ns.
Nandi, Prithwish K.; Burnham, Christian J.; English, Niall J.
2018-01-01
Understanding water solidification, especially in "No Man's Land" (NML) (150 K < T < 235 K) is crucially important (e.g., upper-troposphere cloud processes) and challenging. A rather neglected aspect of tropospheric ice-crystallite formation is inevitably present electromagnetic fields' role. Here, we employ non-equilibrium molecular dynamics of aggressively quenched supercooled water nano-droplets in the gas phase under NML conditions, in externally applied electromagnetic (e/m) fields, elucidating significant differences between effects of static and oscillating fields: although static fields induce "electro-freezing," e/m fields exhibit the contrary - solidification inhibition. This anti-freeze action extends not only to crystal-ice formation but also restricts amorphisation, i.e., suppression of low-density amorphous ice which forms otherwise in zero-field NML environments. E/m-field applications maintain water in the deeply supercooled state in an "entropic trap," which is ripe for industrial impacts in cryo-freezing, etc.
Multi-scale entropic depletion phenomena in polymer liquids
Energy Technology Data Exchange (ETDEWEB)
Banerjee, Debapriya [Department of Materials Science, University of Illinois, Urbana, Illinois 61801 (United States); Schweizer, Kenneth S., E-mail: kschweiz@illinois.edu [Department of Materials Science, University of Illinois, Urbana, Illinois 61801 (United States); Department of Chemistry, University of Illinois, Urbana, Illinois 61801 (United States); Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (United States)
2015-06-07
We apply numerical polymer integral equation theory to study the entropic depletion problem for hard spheres dissolved in flexible chain polymer melts and concentrated solutions over an exceptionally wide range of polymer radius of gyration to particle diameter ratios (R{sub g}/D), particle-monomer diameter ratios (D/d), and chain lengths (N) including the monomer and oligomer regimes. Calculations are performed based on a calibration of the effective melt packing fraction that reproduces the isobaric dimensionless isothermal compressibility of real polymer liquids. Three regimes of the polymer-mediated interparticle potential of mean force (PMF) are identified and analyzed in depth. (i) The magnitude of the contact attraction that dominates thermodynamic stability scales linearly with D/d and exhibits a monotonic and nonperturbative logarithmic increase with N ultimately saturating in the long chain limit. (ii) A close to contact repulsive barrier emerges that grows linearly with D/d and can attain values far in excess of thermal energy for experimentally relevant particle sizes and chain lengths. This raises the possibility of kinetic stabilization of particles in nanocomposites. The barrier grows initially logarithmically with N, attains a maximum when 2R{sub g} ∼ D/2, and then decreases towards its asymptotic long chain limit as 2R{sub g} ≫ D. (iii) A long range (of order R{sub g}) repulsive, exponentially decaying component of the depletion potential emerges when polymer coils are smaller than, or of order, the nanoparticle diameter. Its amplitude is effectively constant for 2R{sub g} ≤ D. As the polymer becomes larger than the particle, the amplitude of this feature decreases extremely rapidly and becomes negligible. A weak long range and N-dependent component of the monomer-particle pair correlation function is found which is suggested to be the origin of the long range repulsive PMF. Implications of our results for thermodynamics and miscibility are
Real-time high dynamic range laser scanning microscopy
Vinegoni, C.; Leon Swisher, C.; Fumene Feruglio, P.; Giedt, R. J.; Rousso, D. L.; Stapleton, S.; Weissleder, R.
2016-04-01
In conventional confocal/multiphoton fluorescence microscopy, images are typically acquired under ideal settings and after extensive optimization of parameters for a given structure or feature, often resulting in information loss from other image attributes. To overcome the problem of selective data display, we developed a new method that extends the imaging dynamic range in optical microscopy and improves the signal-to-noise ratio. Here we demonstrate how real-time and sequential high dynamic range microscopy facilitates automated three-dimensional neural segmentation. We address reconstruction and segmentation performance on samples with different size, anatomy and complexity. Finally, in vivo real-time high dynamic range imaging is also demonstrated, making the technique particularly relevant for longitudinal imaging in the presence of physiological motion and/or for quantification of in vivo fast tracer kinetics during functional imaging.
Complexity, Sustainability, Justice, and Meaning: Chronological Versus Dynamical Time
Directory of Open Access Journals (Sweden)
Horacio Velasco
2009-11-01
Full Text Available
Times New Roman;">Abstract: It is shown that time may be appreciated in at least two senses: chronological and dynamical. Chronological time is the time of our naïve acquaintance as transient beings. At its most extensive scale, it corresponds to history encompassing both the abiotic and the biotic universe. Dynamical time, deriving from classical mechanics, is the time embraced by most of the laws of physics. It concerns itself only with present conditions since it is held that that the past may be reconstructed from the present (literally and the future predicted from the present, a position known as Laplacian determinism.
Times New Roman;">
Times New Roman;">Nonlinear dynamics has shown the fallacy of this supposition because, of necessity, the concrete values that may be assumed in the variables of the equations of motion constituting the laws of physics (i.e. the present or starting conditions as a result of the spontaneous or intentional interaction of subject (or measuring systems and of object (or measured systems, cannot be of infinite precision. Indeed, even if they could be, it is not at all clear that they would permit Laplacian determinism because of what is thought to be the ubiquity of K-flow dynamics in nature in which even infinite past information leading to the present cannot yield prediction of the future. In consequence, nonlinear dynamics, in rebellion against dynamical time, generates a primitive form of history distinguishing past, present, and future that may be termed nonlinear dynamical hysteresis.
Fractal differential equations and fractal-time dynamical systems
Indian Academy of Sciences (India)
like fractal subsets of the real line may be termed as fractal-time dynamical systems. Formulation ... involving scaling and memory effects. But most of ..... begin by recalling the definition of the Riemann integral in ordinary calculus [33]. Let g: [a ...
Dynamic modelling of heavy metals - time scales and target loads
Posch, M.; Vries, de W.
2009-01-01
Over the past decade steady-state methods have been developed to assess critical loads of metals avoiding long-term risks in view of food quality and eco-toxicological effects on organisms in soils and surface waters. However, dynamic models are needed to estimate the times involved in attaining a
Construction of time-dependent dynamical invariants: A new approach
International Nuclear Information System (INIS)
Bertin, M. C.; Pimentel, B. M.; Ramirez, J. A.
2012-01-01
We propose a new way to obtain polynomial dynamical invariants of the classical and quantum time-dependent harmonic oscillator from the equations of motion. We also establish relations between linear and quadratic invariants, and discuss how the quadratic invariant can be related to the Ermakov invariant.
Contact Dynamics of EHL Contacts under Time Varying Conditions
Venner, Cornelis H.; Popovici, G.; Wijnant, Ysbrand H.; Dalmaz, G.; Lubrecht, A.A.; Priest, M
2004-01-01
By means of numerical simulations of two situations with time varying operating conditions it is shown that the dynamic behaviour of Elasto-Hydrodynamically Lubricated contacts in terms of vibrations can be characterized as: Changes in the mutual approach lead to film thickness changes in the inlet
Simulating transient dynamics of the time-dependent time fractional Fokker-Planck systems
Kang, Yan-Mei
2016-09-01
For a physically realistic type of time-dependent time fractional Fokker-Planck (FP) equation, derived as the continuous limit of the continuous time random walk with time-modulated Boltzmann jumping weight, a semi-analytic iteration scheme based on the truncated (generalized) Fourier series is presented to simulate the resultant transient dynamics when the external time modulation is a piece-wise constant signal. At first, the iteration scheme is demonstrated with a simple time-dependent time fractional FP equation on finite interval with two absorbing boundaries, and then it is generalized to the more general time-dependent Smoluchowski-type time fractional Fokker-Planck equation. The numerical examples verify the efficiency and accuracy of the iteration method, and some novel dynamical phenomena including polarized motion orientations and periodic response death are discussed.
Topology Identification of General Dynamical Network with Distributed Time Delays
International Nuclear Information System (INIS)
Zhao-Yan, Wu; Xin-Chu, Fu
2009-01-01
General dynamical networks with distributed time delays are studied. The topology of the networks are viewed as unknown parameters, which need to be identified. Some auxiliary systems (also called the network estimators) are designed to achieve this goal. Both linear feedback control and adaptive strategy are applied in designing these network estimators. Based on linear matrix inequalities and the Lyapunov function method, the sufficient condition for the achievement of topology identification is obtained. This method can also better monitor the switching topology of dynamical networks. Illustrative examples are provided to show the effectiveness of this method. (general)
Discrete and continuous time dynamic mean-variance analysis
Reiss, Ariane
1999-01-01
Contrary to static mean-variance analysis, very few papers have dealt with dynamic mean-variance analysis. Here, the mean-variance efficient self-financing portfolio strategy is derived for n risky assets in discrete and continuous time. In the discrete setting, the resulting portfolio is mean-variance efficient in a dynamic sense. It is shown that the optimal strategy for n risky assets may be dominated if the expected terminal wealth is constrained to exactly attain a certain goal instead o...
Time variation of fundamental couplings and dynamical dark energy
International Nuclear Information System (INIS)
Dent, Thomas; Stern, Steffen; Wetterich, Christof
2009-01-01
Scalar field dynamics may give rise to a nonzero cosmological variation of fundamental constants. Within different scenarios based on the unification of gauge couplings, the various claimed observations and bounds may be combined in order to trace or restrict the time history of the couplings and masses. If the scalar field is responsible for a dynamical dark energy or quintessence, cosmological information becomes available for its time evolution. Combining this information with the time variation of couplings, one can determine the interaction strength between the scalar and atoms, which may be observed by tests of the Weak Equivalence Principle. We compute bounds on the present rate of coupling variation from experiments testing the differential accelerations for bodies with equal mass and different composition and compare the sensitivity of various methods. In particular, we discuss two specific models of scalar evolution: crossover quintessence and growing neutrino models
The Perception of Time While Perceiving Dynamic Emotional Faces
Directory of Open Access Journals (Sweden)
Wang On eLi
2015-08-01
Full Text Available Emotion plays an essential role in the perception of time such that time is perceived to fly when events are enjoyable, while unenjoyable moments are perceived to drag. Previous studies have reported a time-drag effect when participants are presented with emotional facial expressions, regardless of the emotion presented. This effect can hardly be explained by induced emotion given the heterogeneous nature of emotional expressions. We conducted two experiments (n=44 & n=39 to examine the cognitive mechanism underlying this effect by presenting dynamic sequences of emotional expressions to participants. Each sequence started with a particular expression, then morphed to another. The presentation of dynamic facial expressions allows a comparison between the time-drag effect of homogeneous pairs of emotional expressions sharing similar valence and arousal to heterogeneous pairs. Sequences of seven durations (400ms, 600ms, 800ms, 1,000ms, 1,200ms, 1,400ms, 1,600ms were presented to participants, who were asked to judge whether the sequences were closer to 400ms or 1,600ms in a two-alternative forced choice task. The data were then collated according to conditions and fit into cumulative Gaussian curves to estimate the point of subjective equivalence indicating the perceived duration of 1,000ms. Consistent with previous reports, a feeling of time dragging is induced regardless of the sequence presented, such that 1,000ms is perceived to be longer than 1,000ms. In addition, dynamic facial expressions exert a greater effect on perceived time drag than static expressions. The effect is most prominent when the dynamics involve an angry face or a change in valence. The significance of this sensitivity is discussed in terms of emotion perception and its evolutionary significance for our attention mechanism.
Dynamical analysis and visualization of tornadoes time series.
Directory of Open Access Journals (Sweden)
António M Lopes
Full Text Available In this paper we analyze the behavior of tornado time-series in the U.S. from the perspective of dynamical systems. A tornado is a violently rotating column of air extending from a cumulonimbus cloud down to the ground. Such phenomena reveal features that are well described by power law functions and unveil characteristics found in systems with long range memory effects. Tornado time series are viewed as the output of a complex system and are interpreted as a manifestation of its dynamics. Tornadoes are modeled as sequences of Dirac impulses with amplitude proportional to the events size. First, a collection of time series involving 64 years is analyzed in the frequency domain by means of the Fourier transform. The amplitude spectra are approximated by power law functions and their parameters are read as an underlying signature of the system dynamics. Second, it is adopted the concept of circular time and the collective behavior of tornadoes analyzed. Clustering techniques are then adopted to identify and visualize the emerging patterns.
Dynamical analysis and visualization of tornadoes time series.
Lopes, António M; Tenreiro Machado, J A
2015-01-01
In this paper we analyze the behavior of tornado time-series in the U.S. from the perspective of dynamical systems. A tornado is a violently rotating column of air extending from a cumulonimbus cloud down to the ground. Such phenomena reveal features that are well described by power law functions and unveil characteristics found in systems with long range memory effects. Tornado time series are viewed as the output of a complex system and are interpreted as a manifestation of its dynamics. Tornadoes are modeled as sequences of Dirac impulses with amplitude proportional to the events size. First, a collection of time series involving 64 years is analyzed in the frequency domain by means of the Fourier transform. The amplitude spectra are approximated by power law functions and their parameters are read as an underlying signature of the system dynamics. Second, it is adopted the concept of circular time and the collective behavior of tornadoes analyzed. Clustering techniques are then adopted to identify and visualize the emerging patterns.
Observing Bridge Dynamic Deflection in Green Time by Information Technology
Yu, Chengxin; Zhang, Guojian; Zhao, Yongqian; Chen, Mingzhi
2018-01-01
As traditional surveying methods are limited to observe bridge dynamic deflection; information technology is adopted to observe bridge dynamic deflection in Green time. Information technology used in this study means that we use digital cameras to photograph the bridge in red time as a zero image. Then, a series of successive images are photographed in green time. Deformation point targets are identified and located by Hough transform. With reference to the control points, the deformation values of these deformation points are obtained by differencing the successive images with a zero image, respectively. Results show that the average measurement accuracies of C0 are 0.46 pixels, 0.51 pixels and 0.74 pixels in X, Z and comprehensive direction. The average measurement accuracies of C1 are 0.43 pixels, 0.43 pixels and 0.67 pixels in X, Z and comprehensive direction in these tests. The maximal bridge deflection is 44.16mm, which is less than 75mm (Bridge deflection tolerance value). Information technology in this paper can monitor bridge dynamic deflection and depict deflection trend curves of the bridge in real time. It can provide data support for the site decisions to the bridge structure safety.
Dynamic Modeling and Real-Time Monitoring of Froth Flotation
Directory of Open Access Journals (Sweden)
Khushaal Popli
2015-08-01
Full Text Available A dynamic fundamental model was developed linking processes from the microscopic scale to the equipment scale for batch froth flotation. State estimation, fault detection, and disturbance identification were implemented using the extended Kalman filter (EKF, which reconciles real-time measurements with dynamic models. The online measurements for the EKF were obtained through image analysis of froth images that were captured and analyzed using the commercial package VisioFroth (Metsor Minerals. The extracted image features were then correlated to recovery using principal component analysis and partial least squares regression. The performance of real-time state estimation and fault detection was validated using batch flotation of pure galena at various operating conditions. The image features that were strongly representative of recovery were identified, and calibration and validation were performed against off-line measurements of recovery. The EKF successfully captured the dynamics of the process by updating the model states and parameters using the online measurements. Finally, disturbances in the air flow rate and impeller speed were introduced into the system, and the dynamic behavior of the flotation process was successfully tracked and the disturbances were identified using state estimation.
Linear and nonlinear dynamic systems in financial time series prediction
Directory of Open Access Journals (Sweden)
Salim Lahmiri
2012-10-01
Full Text Available Autoregressive moving average (ARMA process and dynamic neural networks namely the nonlinear autoregressive moving average with exogenous inputs (NARX are compared by evaluating their ability to predict financial time series; for instance the S&P500 returns. Two classes of ARMA are considered. The first one is the standard ARMA model which is a linear static system. The second one uses Kalman filter (KF to estimate and predict ARMA coefficients. This model is a linear dynamic system. The forecasting ability of each system is evaluated by means of mean absolute error (MAE and mean absolute deviation (MAD statistics. Simulation results indicate that the ARMA-KF system performs better than the standard ARMA alone. Thus, introducing dynamics into the ARMA process improves the forecasting accuracy. In addition, the ARMA-KF outperformed the NARX. This result may suggest that the linear component found in the S&P500 return series is more dominant than the nonlinear part. In sum, we conclude that introducing dynamics into the ARMA process provides an effective system for S&P500 time series prediction.
DEFF Research Database (Denmark)
Hygum, Morten Arnfeldt; Karlin, Iliya; Popok, Vladimir
2015-01-01
A model for vapor condensation on vertical hydrophilic surfaces is developed using the entropic lattice Boltzmann method extended with a free surface formulation of the evaporation–condensation problem. The model is validated with the steady liquid film formation on a flat vertical wall. It is sh......A model for vapor condensation on vertical hydrophilic surfaces is developed using the entropic lattice Boltzmann method extended with a free surface formulation of the evaporation–condensation problem. The model is validated with the steady liquid film formation on a flat vertical wall...
Producción de entropía y ley de enfriamiento de newton
Barragán, Daniel
2010-01-01
Para un sistema con una fuente interna de generación de calor se analizan, en el marco de la termodinámica de los procesos irreversibles, las ecuaciones evolutivas que describen la transferencia de calor según la ley de enfriamiento de Newton. A partir del balance de flujo de entropía se muestra que la generación de entropía no es mínima en el estado estacionario descrito por la ley de enfriamiento de Newton. Igualmente, se discute cómo realizar el balance de flujos en el sistema, su conex...
Electrochemical deposition of coatings of highly entropic alloys from non-aqueous solutions
Directory of Open Access Journals (Sweden)
Jeníček V.
2016-03-01
Full Text Available The paper deals with electrochemical deposition of coatings of highly entropic alloys. These relatively new materials have been recently intensively studied. The paper describes the first results of electrochemical coating with highly entropic alloys by deposition from non-aqueous solutions. An electrochemical device was designed and coatings were deposited. The coatings were characterised with electronic microscopy scanning, atomic absorption spectrometry and X-ray diffraction methods and the combination of methods of thermic analysis of differential scanning calorimetry and thermogravimetry.
Night-Time Light Dynamics during the Iraqi Civil War
Directory of Open Access Journals (Sweden)
Xi Li
2018-06-01
Full Text Available In this study, we analyzed the night-time light dynamics in Iraq over the period 2012–2017 by using Visible Infrared Imaging Radiometer Suite (VIIRS monthly composites. The data quality of VIIRS images was improved by repairing the missing data, and the Night-time Light Ratio Indices (NLRIs, derived from urban extent map and night-time light images, were calculated for different provinces and cities. We found that when the Islamic State of Iraq and Syria (ISIS attacked or occupied a region, the region lost its light rapidly, with the provinces of Al-Anbar, At-Ta’min, Ninawa, and Sala Ad-din losing 63%, 73%, 88%, and 56%, of their night-time light, respectively, between December 2013 and December 2014. Moreover, the light returned after the Iraqi Security Forces (ISF recaptured the region. In addition, we also found that the night-time light in the Kurdish Autonomous Region showed a steady decline after 2014, with the Arbil, Dihok, and As-Sulaymaniyah provinces losing 47%, 18%, and 31% of their night-time light between December 2013 and December 2016 as a result of the economic crisis in the region. The night-time light in Southern Iraq, the region controlled by Iraqi central government, has grown continuously; for example, the night-time light in Al Basrah increased by 75% between December 2013 and December 2017. Regions formerly controlled by ISIS experienced a return of night-time light during 2017 as the ISF retook almost all this territory in 2017. This indicates that as reconstruction began, electricity was re-supplied in these regions. Our analysis shows the night-time light in Iraq is directly linked to the socioeconomic dynamics of Iraq, and demonstrates that the VIIRS monthly night-time light images are an effective data source for tracking humanitarian disasters in that country.
Two-actor conflict with time delay: A dynamical model
Qubbaj, Murad R.; Muneepeerakul, Rachata
2012-11-01
Recent mathematical dynamical models of the conflict between two different actors, be they nations, groups, or individuals, have been developed that are capable of predicting various outcomes depending on the chosen feedback strategies, initial conditions, and the previous states of the actors. In addition to these factors, this paper examines the effect of time delayed feedback on the conflict dynamics. Our analysis shows that under certain initial and feedback conditions, a stable neutral equilibrium of conflict may destabilize for some critical values of time delay, and the two actors may evolve to new emotional states. We investigate the results by constructing critical delay surfaces for different sets of parameters and analyzing results from numerical simulations. These results provide new insights regarding conflict and conflict resolution and may help planners in adjusting and assessing their strategic decisions.
Controller synthesis for dynamic hierarchical real-time plants using timed automata
DEFF Research Database (Denmark)
Bin Waez, Md Tawhid; Wasowski, Andrzej; Dingel, Juergen
2017-01-01
We use timed I/O automata based timed games to synthesize task-level reconfiguration services for cost-effective fault tolerance in a case study. The case study shows that state-space explosion is a severe problem for timed games. By applying suitable abstractions, we dramatically improve...... the scalability. However, timed I/O automata do not facilitate algorithmic abstraction generation techniques. The case study motivates the development of timed process automata to improve modeling and analysis for controller synthesis of time-critical plants which can be hierarchical and dynamic. The model offers...
Gudowska-Nowak, Ewa; Ritter, Sylvia; Durante, Marco; Deperas-Standylo, Joanna; Ciesla, Michal
2012-07-01
. The degree of condensation of the chromatin fiber is modeled by changing length of the string: e.g. loosening of the structure is achieved by distributing the chromosome mass into a higher number of smaller beads and tighter configuration corresponds to a lower number of fragments (balls) with a bigger radius. Additionally, for each configuration, a degree of possible overlapping between domains is assumed. This procedure effectively intensifies loosening/tightening of the chromosome structure by changing the radial dimension of the domain while keeping a constant volume of the polymer chain. Such a positioning model is confronted with a minimalistic molecular dynamics model [5] on a similar structure, in which a chain of beads becomes connected by entropic spring energy and subjected to thermal fluctuations. Comparison of both Monte Carlo models allows to discuss variability of possible configurations as observed in static and dynamic models of chromosome territories along with the effect of compaction and relative arrangements of territorial polymer structures. Acknowledgements: Project is operated within the Foundation for Polish Science International Ph.D. Projects Programme co-financed by the European Regional Development Fund covering, under the agreement no. MPD/2009/6, the Jagiellonian University International Ph.D. Studies in Physics of Complex Systems. References: [1] F. Ballarini, M. Biaggi, and A. Ottolenghi, Radiation Protection Dosimetry 99, 175 (2002). [2] M. Nicodemi and A. Prisco, Biophysical Journal 96, 2168 (2009). [3] P. Cook and D. Marenduzzo, Journal of Cell Biology 186, 825 (2009). [4] M. Tark-Dame, R. van Driel, and D. Heermann, Journal of Cell Science 124, 839 (2011). [5] W. Swope, H. Andersen, P. Berens, and K. Wilson, J. Chem. Phys. 76, 637 (1982).
Dynamic Obstacle Clearing for Real-time Character Animation
Glardon, Pascal; Boulic, Ronan; Thalmann, Daniel
2006-01-01
This paper proposes a novel method to control virtual characters in dynamic environments. A virtual character is animated by a locomotion and jumping engine, enabling production of continuous parameterized motions. At any time during runtime, flat obstacles (e.g. a puddle of water) can be created and placed in front of a character. The method first decides whether the character is able to get around or jump over the obstacle. Then the motion parameters are accordingly modified. The transition...
Disequilibrium dynamics in a Keynesian model with time delays
Gori, Luca; Guerrini, Luca; Sodini, Mauro
2018-05-01
The aim of this research is to analyse a Keynesian goods market closed economy by considering a continuous-time setup with fixed delays. The work compares dynamic results based on linear and nonlinear adjustment mechanisms through which the aggregate supply (production) reacts to a disequilibrium in the goods market and consumption depends on income at a preceding date. Both analytical and geometrical (stability switching curves) techniques are used to characterise the stability properties of the stationary equilibrium.
Prediction of dynamic expected time to system failure
Energy Technology Data Exchange (ETDEWEB)
Oh, Deog Yeon; Lee, Chong Chul [Korea Nuclear Fuel Co., Ltd., Taejon (Korea, Republic of)
1997-12-31
The mean time to failure (MTTF) expressing the mean value of the system life is a measure of system effectiveness. To estimate the remaining life of component and/or system, the dynamic mean time to failure concept is suggested. It is the time-dependent property depending on the status of components. The Kalman filter is used to estimate the reliability of components using the on-line information (directly measured sensor output or device-specific diagnostics in the intelligent sensor) in form of the numerical value (state factor). This factor considers the persistency of the fault condition and confidence level in measurement. If there is a complex system with many components, each calculated reliability`s of components are combined, which results in the dynamic MTTF of system. The illustrative examples are discussed. The results show that the dynamic MTTF can well express the component and system failure behaviour whether any kinds of failure are occurred or not. 9 refs., 6 figs. (Author)
Prediction of dynamic expected time to system failure
Energy Technology Data Exchange (ETDEWEB)
Oh, Deog Yeon; Lee, Chong Chul [Korea Nuclear Fuel Co., Ltd., Taejon (Korea, Republic of)
1998-12-31
The mean time to failure (MTTF) expressing the mean value of the system life is a measure of system effectiveness. To estimate the remaining life of component and/or system, the dynamic mean time to failure concept is suggested. It is the time-dependent property depending on the status of components. The Kalman filter is used to estimate the reliability of components using the on-line information (directly measured sensor output or device-specific diagnostics in the intelligent sensor) in form of the numerical value (state factor). This factor considers the persistency of the fault condition and confidence level in measurement. If there is a complex system with many components, each calculated reliability`s of components are combined, which results in the dynamic MTTF of system. The illustrative examples are discussed. The results show that the dynamic MTTF can well express the component and system failure behaviour whether any kinds of failure are occurred or not. 9 refs., 6 figs. (Author)
The Comparison between Spectral and Entropic Measures Following Fatigue in Erector Spinae Muscles
Directory of Open Access Journals (Sweden)
Saeed Talebian
2016-03-01
Full Text Available Background: Surface electromyography (sEMG of muscles is a non-invasive tool that can be helpful in the assessment of muscle function and some motor control evaluations. A loss of force, known as muscle fatigue is accompanied by changes in muscle electrical activity. One of the most commonly used surface EMG parameters which reflects paraspinal muscle fatigue during different tasks and positions is median frequency. Although it is widely known that the electromyography power spectrum shifts to lower frequencies during fatiguing contraction, an opinion exists that the validity of spectral shifts in assessment of fatigue is questionable. Some researchers have examined whether other quantities derived from sEMG signals are better indicators for muscle fatigue. Following cyclic flexion/extension and consequence fatigue, variation in sEMG signals may be complex for study. The aim of this study was to determine which of the median frequency (MF or entropic (ENTR is more sensitive for measuring muscular fatigue in erector spinae muscles during cyclic flexion/extension. Methods: Surface electromyography of erector spine muscles was recorded in 25 healthy subjects during cyclic dynamic contractions. The experimental session consisted of two parts: measurement of Maximal Voluntary Contraction (MVC, and performing the fatigue test. All subjects performed rhythmic flexion/extension with 50% MVC loading against B-200 Isostation, about 4-6 minutes. The MF and ENTR of the muscle activities were computed to assess muscular fatigue. Results: Paired sample t-tests showed that MF and ENTR changes after fatigue test were significant (P<0.001. Percentage changes of both MF and ENTR were reduced, this reduction for ENTR was more than 40% (P<0.001. Conclusion: It seems that the changes of ENTR in muscle activities have the ability to measure muscular fatigue and is more sensitive in comparison to MF.
Entropic transport without external force in confined channel with oscillatory boundary
Energy Technology Data Exchange (ETDEWEB)
Ding, Huai; Jiang, Huijun; Hou, Zhonghuai, E-mail: hzhlj@ustc.edu.cn [Department of Chemical Physics & Hefei National Laboratory for Physical Sciences at Microscales, University of Science and Technology of China, Hefei, Anhui 230026 (China)
2015-12-28
The dynamics of point-like Brownian particles in a periodic confined channel with oscillating boundaries has been studied. Directional transport (DT) behavior, characterized by net displacement along the horizontal direction, is observed even without external force which is necessary for the conventional DT where the boundaries are static. For typical parameter values, the average velocity V{sub t} of DT reaches a maximum with the variation of the noise intensity D, being alike to the phenomenon of stochastic resonance. Interestingly, we find that V{sub t} shows nontrivial dependences on the particle gravity G depending on the noise level. When the noise is large, V{sub t} increases monotonically with G indicating that heavier particle moves faster, while for small noise, V{sub t} shows a bell-shape dependence on G, suggesting that a particle with an intermediate weight may move the fastest. Such results were not observed for DT in a channel with static boundaries. To understand these findings, we have adopted an effective one-dimensional coarsening description, which facilitates us to introduce an effective entropic force along the horizontal direction. The average force is apparently nonzero due to the oscillatory boundary, hence leading to the net transport, and it shows similar dependences as V{sub t} on the noise intensity D and particle gravity G. The dependences of the DT behavior on other parameters describing the oscillatory channel have also been investigated, showing that DT is more pronounced for larger oscillation amplitude and frequency, and asymmetric geometry within a channel period and phase difference between neighboring periods are both necessary for the occurrence of DT.
Dynamical continuous time random Lévy flights
Liu, Jian; Chen, Xiaosong
2016-03-01
The Lévy flights' diffusive behavior is studied within the framework of the dynamical continuous time random walk (DCTRW) method, while the nonlinear friction is introduced in each step. Through the DCTRW method, Lévy random walker in each step flies by obeying the Newton's Second Law while the nonlinear friction f(v) = - γ0v - γ2v3 being considered instead of Stokes friction. It is shown that after introducing the nonlinear friction, the superdiffusive Lévy flights converges, behaves localization phenomenon with long time limit, but for the Lévy index μ = 2 case, it is still Brownian motion.
Dynamics symmetries of Hamiltonian system on time scales
Energy Technology Data Exchange (ETDEWEB)
Peng, Keke, E-mail: pengkeke88@126.com; Luo, Yiping, E-mail: zjstulyp@126.com [Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018 (China)
2014-04-15
In this paper, the dynamics symmetries of Hamiltonian system on time scales are studied. We study the symmetries and quantities based on the calculation of variation and Lie transformation group. Particular focus lies in: the Noether symmetry leads to the Noether conserved quantity and the Lie symmetry leads to the Noether conserved quantity if the infinitesimal transformations satisfy the structure equation. As the new application of result, at end of the article, we give a simple example of Noether symmetry and Lie symmetry on time scales.
The dynamics of female time allocation upon a first birth
DEFF Research Database (Denmark)
Belzil, Christian
1997-01-01
both home an labor market productivities. Overall, the model is able to explain the relatively large fraction of women who do not experience career interruptions, the rapidly declining re-employment hazards and the weak effect of education on the duration of non-employment (hometime) spells.......I estimate a non-stationary dynamic programming model of time allocation decisions between full-time work, child care and search activities upon a first birth using recursive methods. The model incorporates the following sequence of decisions; whether to stop working or not (for those who work...
Short-time quantum dynamics of sharp boundaries potentials
Energy Technology Data Exchange (ETDEWEB)
Granot, Er' el, E-mail: erel@ariel.ac.il; Marchewka, Avi
2015-02-15
Despite the high prevalence of singular potential in general, and rectangular potentials in particular, in applied scattering models, to date little is known about their short time effects. The reason is that singular potentials cause a mixture of complicated local as well as non-local effects. The object of this work is to derive a generic method to calculate analytically the short-time impact of any singular potential. In this paper it is shown that the scattering of a smooth wavefunction on a singular potential is totally equivalent, in the short-time regime, to the free propagation of a singular wavefunction. However, the latter problem was totally addressed analytically in Ref. [7]. Therefore, this equivalency can be utilized in solving analytically the short time dynamics of any smooth wavefunction at the presence of a singular potentials. In particular, with this method the short-time dynamics of any problem where a sharp boundaries potential (e.g., a rectangular barrier) is turned on instantaneously can easily be solved analytically.
Short-time quantum dynamics of sharp boundaries potentials
Granot, Er'el; Marchewka, Avi
2015-02-01
Despite the high prevalence of singular potential in general, and rectangular potentials in particular, in applied scattering models, to date little is known about their short time effects. The reason is that singular potentials cause a mixture of complicated local as well as non-local effects. The object of this work is to derive a generic method to calculate analytically the short-time impact of any singular potential. In this paper it is shown that the scattering of a smooth wavefunction on a singular potential is totally equivalent, in the short-time regime, to the free propagation of a singular wavefunction. However, the latter problem was totally addressed analytically in Ref. [7]. Therefore, this equivalency can be utilized in solving analytically the short time dynamics of any smooth wavefunction at the presence of a singular potentials. In particular, with this method the short-time dynamics of any problem where a sharp boundaries potential (e.g., a rectangular barrier) is turned on instantaneously can easily be solved analytically.
Short-time quantum dynamics of sharp boundaries potentials
International Nuclear Information System (INIS)
Granot, Er'el; Marchewka, Avi
2015-01-01
Despite the high prevalence of singular potential in general, and rectangular potentials in particular, in applied scattering models, to date little is known about their short time effects. The reason is that singular potentials cause a mixture of complicated local as well as non-local effects. The object of this work is to derive a generic method to calculate analytically the short-time impact of any singular potential. In this paper it is shown that the scattering of a smooth wavefunction on a singular potential is totally equivalent, in the short-time regime, to the free propagation of a singular wavefunction. However, the latter problem was totally addressed analytically in Ref. [7]. Therefore, this equivalency can be utilized in solving analytically the short time dynamics of any smooth wavefunction at the presence of a singular potentials. In particular, with this method the short-time dynamics of any problem where a sharp boundaries potential (e.g., a rectangular barrier) is turned on instantaneously can easily be solved analytically
Coordinated scheduling for dynamic real-time systems
Natarajan, Swaminathan; Zhao, Wei
1994-01-01
In this project, we addressed issues in coordinated scheduling for dynamic real-time systems. In particular, we concentrated on design and implementation of a new distributed real-time system called R-Shell. The design objective of R-Shell is to provide computing support for space programs that have large, complex, fault-tolerant distributed real-time applications. In R-shell, the approach is based on the concept of scheduling agents, which reside in the application run-time environment, and are customized to provide just those resource management functions which are needed by the specific application. With this approach, we avoid the need for a sophisticated OS which provides a variety of generalized functionality, while still not burdening application programmers with heavy responsibility for resource management. In this report, we discuss the R-Shell approach, summarize the achievement of the project, and describe a preliminary prototype of R-Shell system.
Theory of time-averaged neutral dynamics with environmental stochasticity
Danino, Matan; Shnerb, Nadav M.
2018-04-01
Competition is the main driver of population dynamics, which shapes the genetic composition of populations and the assembly of ecological communities. Neutral models assume that all the individuals are equivalent and that the dynamics is governed by demographic (shot) noise, with a steady state species abundance distribution (SAD) that reflects a mutation-extinction equilibrium. Recently, many empirical and theoretical studies emphasized the importance of environmental variations that affect coherently the relative fitness of entire populations. Here we consider two generic time-averaged neutral models; in both the relative fitness of each species fluctuates independently in time but its mean is zero. The first (model A) describes a system with local competition and linear fitness dependence of the birth-death rates, while in the second (model B) the competition is global and the fitness dependence is nonlinear. Due to this nonlinearity, model B admits a noise-induced stabilization mechanism that facilitates the invasion of new mutants. A self-consistent mean-field approach is used to reduce the multispecies problem to two-species dynamics, and the large-N asymptotics of the emerging set of Fokker-Planck equations is presented and solved. Our analytic expressions are shown to fit the SADs obtained from extensive Monte Carlo simulations and from numerical solutions of the corresponding master equations.
Constant pressure and temperature discrete-time Langevin molecular dynamics
Energy Technology Data Exchange (ETDEWEB)
Grønbech-Jensen, Niels [Department of Mechanical and Aerospace Engineering, University of California, Davis, California 95616 (United States); Department of Mathematics, University of California, Davis, California 95616 (United States); Farago, Oded [Department of Biomedical Engineering, Ben Gurion University of the Negev, Be' er Sheva 84105 (Israel); Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Be' er Sheva 84105 (Israel)
2014-11-21
We present a new and improved method for simultaneous control of temperature and pressure in molecular dynamics simulations with periodic boundary conditions. The thermostat-barostat equations are built on our previously developed stochastic thermostat, which has been shown to provide correct statistical configurational sampling for any time step that yields stable trajectories. Here, we extend the method and develop a set of discrete-time equations of motion for both particle dynamics and system volume in order to seek pressure control that is insensitive to the choice of the numerical time step. The resulting method is simple, practical, and efficient. The method is demonstrated through direct numerical simulations of two characteristic model systems—a one-dimensional particle chain for which exact statistical results can be obtained and used as benchmarks, and a three-dimensional system of Lennard-Jones interacting particles simulated in both solid and liquid phases. The results, which are compared against the method of Kolb and Dünweg [J. Chem. Phys. 111, 4453 (1999)], show that the new method behaves according to the objective, namely that acquired statistical averages and fluctuations of configurational measures are accurate and robust against the chosen time step applied to the simulation.
Radioactive waste. Risk, reward, space and time dynamics
International Nuclear Information System (INIS)
Duncan, I.J.
2001-01-01
This study considers, in a geographical context, issues arising from the disposal of radioactive waste with particular emphasis on societal perceptions of Risk, Trust, NIMBYand Time. It establishes that the wider community now accepts the concepts of 'user pays' and offsetting compensation to any community that accepts a risk, such risk to be minimised and interruptible as necessary. The underlying causes of NIMBYism have been misjudged by industry and this work establishes that they are as much due to exclusion from the decision making process as they are to direct concerns about the social impact, health and environment. The principal cause of NIMBYism is discussed and a procedure to assist siting approval is suggested. This study establishes that industry, government authorities or specialists working alone in this field engender less trust by society than composite bodies including government departments, industry, environmentalists, health, science and society. The dimension of an individual's perception of forward time has been quantified and found to be much shorter than the time required for the isolation of radioactive waste. This research highlights the dynamic nature of all waste isolation processes and proposes a procedure that could render the concept of long term geological disposal more acceptable to the public. It evolved that the disposal of all waste is a dynamic process, the management of which must provide the time necessary for physical and chemical change and to ensure isolation from the biosphere while it remains hazardous. The outcome of this research is applicable to the disposal of all solid hazardous waste. (author)
[Approximation to the dynamics of meningococcal meningitis through dynamic systems and time series].
Canals, M
1996-02-01
Meningococcal meningitis is subjected to epidemiological surveillance due to its severity and the occasional presentation of epidemic outbreaks. This work analyses previous disease models, generate new ones and analyses monthly cases using ARIMA time series models. The results show that disease dynamics for closed populations is epidemic and the epidemic size is related to the proportion of carriers and the transmissiveness of the agent. In open populations, disease dynamics depends on the admission rate of susceptible and the relative admission of infected individuals. Our model considers a logistic populational growth and carrier admission proportional to populational size, generating an endemic dynamics. Considering a non-instantaneous system response, a greater realism is obtained establishing that the endemic situation may present a dynamics highly sensitive to initial conditions, depending on the transmissiveness and proportion of susceptible individuals in the population. Time series model showed an adequate predictive capacity in terms no longer than 10 months. The lack of long term predictability was attributed to local changes in the proportion of carriers or on transmissiveness that lead to chaotic dynamics over a seasonal pattern. Predictions for 1995 and 1996 were obtained.
Dynamic ADMM for Real-time Optimal Power Flow: Preprint
Energy Technology Data Exchange (ETDEWEB)
Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States)
2018-02-23
This paper considers distribution networks featuring distributed energy resources (DERs), and develops a dynamic optimization method to maximize given operational objectives in real time while adhering to relevant network constraints. The design of the dynamic algorithm is based on suitable linearizations of the AC power flow equations, and it leverages the so-called alternating direction method of multipliers (ADMM). The steps of the ADMM, however, are suitably modified to accommodate appropriate measurements from the distribution network and the DERs. With the aid of these measurements, the resultant algorithm can enforce given operational constraints in spite of inaccuracies in the representation of the AC power flows, and it avoids ubiquitous metering to gather the state of non-controllable resources. Optimality and convergence of the propose algorithm are established in terms of tracking of the solution of a convex surrogate of the AC optimal power flow problem.
Un método sencillo para definir la entropía
Directory of Open Access Journals (Sweden)
Jorge Alejo Pinzón Bello
2010-07-01
Full Text Available Analizando un proceso adiabático de comprimir y expandir un gas y con base en el enunciado de la segunda ley de la termodinámica, dado por Carathéodory, se define la entropía sin cálculos matemáticos complicados.
Exploiting large-pore metal-organic frameworks for separations through entropic molecular mechanisms
Torres-Knoop, A.; Dubbeldam, D.
2015-01-01
We review the molecular mechanisms behind adsorption and the separations of mixtures in metal-organic frameworks and zeolites. Separation mechanisms can be based on differences in the affinity of the adsorbate with the framework and on entropic effects. To develop next-generation adsorbents, the
Continuous time modelling of dynamical spatial lattice data observed at sparsely distributed times
DEFF Research Database (Denmark)
Rasmussen, Jakob Gulddahl; Møller, Jesper
2007-01-01
Summary. We consider statistical and computational aspects of simulation-based Bayesian inference for a spatial-temporal model based on a multivariate point process which is only observed at sparsely distributed times. The point processes are indexed by the sites of a spatial lattice......, and they exhibit spatial interaction. For specificity we consider a particular dynamical spatial lattice data set which has previously been analysed by a discrete time model involving unknown normalizing constants. We discuss the advantages and disadvantages of using continuous time processes compared...... with discrete time processes in the setting of the present paper as well as other spatial-temporal situations....
Late-time dynamics of rapidly rotating black holes
International Nuclear Information System (INIS)
Glampedakis, K.; Andersson, N.
2001-01-01
We study the late-time behaviour of a dynamically perturbed rapidly rotating black hole. Considering an extreme Kerr black hole, we show that the large number of virtually undamped quasinormal modes (that exist for nonzero values of the azimuthal eigenvalue m) combine in such a way that the field (as observed at infinity) oscillates with an amplitude that decays as 1/t at late times. For a near extreme black hole, these modes, collectively, give rise to an exponentially decaying field which, however, is considerably 'long-lived'. Our analytic results are verified using numerical time-evolutions of the Teukolsky equation. Moreover, we argue that the physical mechanism behind the observed behaviour is the presence of a 'superradiance resonance cavity' immediately outside the black hole. We present this new feature in detail, and discuss whether it may be relevant for astrophysical black holes. (author)
Relationships between Isometric Force-Time Characteristics and Dynamic Performance
Directory of Open Access Journals (Sweden)
Thomas Dos’Santos
2017-09-01
Full Text Available The purpose of this study was to explore the relationships between isometric mid-thigh pull (IMTP force-time characteristics (peak force and time-specific force vales (100–250 ms and dynamic performance and compare dynamic performance between stronger and weaker athletes. Forty-three athletes from different sports (rowing, soccer, bicycle motocross, and hockey performed three trials of the squat jump (SJ, countermovement jump (CMJ, and IMTP, and performed a one repetition maximum power clean (PC. Reactive strength index modified (RSImod was also calculated from the CMJ. Statistically significant large correlations between IMTP force-time characteristics and PC (ρ = 0.569–0.674, p < 0.001, and moderate correlations between IMTP force-time characteristics (excluding force at 100 ms and RSImod (ρ = 0.389–0.449, p = 0.013–0.050 were observed. Only force at 250 ms demonstrated a statistically significant moderate correlation with CMJ height (ρ = 0.346, p = 0.016 and no statistically significant associations were observed between IMTP force-time characteristics and SJ height. Stronger athletes (top 10 demonstrated statistically significantly greater CMJ heights, RSImods, and PCs (p ≤ 0.004, g = 1.32–1.89 compared to weaker (bottom 10 athletes, but no differences in SJ height were observed (p = 0.871, g = 0.06. These findings highlight that the ability to apply rapidly high levels of force in short time intervals is integral for PC, CMJ height, and reactive strength.
LSD-induced entropic brain activity predicts subsequent personality change.
Lebedev, A V; Kaelen, M; Lövdén, M; Nilsson, J; Feilding, A; Nutt, D J; Carhart-Harris, R L
2016-09-01
Personality is known to be relatively stable throughout adulthood. Nevertheless, it has been shown that major life events with high personal significance, including experiences engendered by psychedelic drugs, can have an enduring impact on some core facets of personality. In the present, balanced-order, placebo-controlled study, we investigated biological predictors of post-lysergic acid diethylamide (LSD) changes in personality. Nineteen healthy adults underwent resting state functional MRI scans under LSD (75µg, I.V.) and placebo (saline I.V.). The Revised NEO Personality Inventory (NEO-PI-R) was completed at screening and 2 weeks after LSD/placebo. Scanning sessions consisted of three 7.5-min eyes-closed resting-state scans, one of which involved music listening. A standardized preprocessing pipeline was used to extract measures of sample entropy, which characterizes the predictability of an fMRI time-series. Mixed-effects models were used to evaluate drug-induced shifts in brain entropy and their relationship with the observed increases in the personality trait openness at the 2-week follow-up. Overall, LSD had a pronounced global effect on brain entropy, increasing it in both sensory and hierarchically higher networks across multiple time scales. These shifts predicted enduring increases in trait openness. Moreover, the predictive power of the entropy increases was greatest for the music-listening scans and when "ego-dissolution" was reported during the acute experience. These results shed new light on how LSD-induced shifts in brain dynamics and concomitant subjective experience can be predictive of lasting changes in personality. Hum Brain Mapp 37:3203-3213, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Parareal in Time for Dynamic Simulations of Power Systems
Energy Technology Data Exchange (ETDEWEB)
Gurrala, Gurunath [ORNL; Dimitrovski, Aleksandar D [ORNL; Pannala, Sreekanth [ORNL; Simunovic, Srdjan [ORNL; Starke, Michael R [ORNL
2015-01-01
In recent years, there have been significant developments in parallel algorithms and high performance parallel computing platforms. Parareal in time algorithm has become popular for long transient simulations (e.g., molecular dynamics, fusion, reacting flows). Parareal is a parallel algorithm which divides the time interval into sub-intervals and solves them concurrently. This paper investigates the applicability of the parareal algorithm to power system dynamic simulations. Preliminary results on the application of parareal for multi-machine power systems are reported in this paper. Two widely used test systems, WECC 3-generator 9-bus system, New England 10-generator 39- bus system, is used to explore the effectiveness of the parareal. Severe 3 phase bus faults are simulated using both the classical and detailed models of multi-machine power systems. Actual Speedup of 5-7 times is observed assuming ideal parallelization. It has been observed that the speedup factors of the order of 20 can be achieved by using fast coarse approximations of power system models. Dependency of parareal convergence on fault duration and location has been observed.
Essential uncontrollability of discrete linear, time-invariant, dynamical systems
Cliff, E. M.
1975-01-01
The concept of a 'best approximating m-dimensional subspace' for a given set of vectors in n-dimensional whole space is introduced. Such a subspace is easily described in terms of the eigenvectors of an associated Gram matrix. This technique is used to approximate an achievable set for a discrete linear time-invariant dynamical system. This approximation characterizes the part of the state space that may be reached using modest levels of control. If the achievable set can be closely approximated by a proper subspace of the whole space then the system is 'essentially uncontrollable'. The notion finds application in studies of failure-tolerant systems, and in decoupling.
Shapes and dynamics from the time-dependent mean field
International Nuclear Information System (INIS)
Stevenson, P.D.; Goddard, P.M.; Rios, A.
2015-01-01
Explaining observed properties in terms of underlying shape degrees of freedom is a well-established prism with which to understand atomic nuclei. Self-consistent mean-field models provide one tool to understand nuclear shapes, and their link to other nuclear properties and observables. We present examples of how the time-dependent extension of the mean-field approach can be used in particular to shed light on nuclear shape properties, particularly looking at the giant resonances built on deformed nuclear ground states, and at dynamics in highly-deformed fission isomers. Example calculations are shown of 28 Si in the first case, and 240 Pu in the latter case
Time-Frequency Dynamics of Biofuel-Fuel-Food System
Czech Academy of Sciences Publication Activity Database
Vácha, Lukáš; Janda, K.; Krištoufek, Ladislav; Zilberman, D.
2013-01-01
Roč. 40, č. 1 (2013), s. 233-241 ISSN 0140-9883 R&D Projects: GA ČR(CZ) GBP402/12/G097 Grant - others:GA ČR(CZ) GAP402/11/0948 Program:GA Institutional support: RVO:67985556 Keywords : biofuels * correlations * wavelet coherence Subject RIV: AH - Economics Impact factor: 2.580, year: 2013 http://library.utia.cas.cz/separaty/2013/E/vacha-time-frequency dynamics of biofuels-fuels-food system.pdf
Extending the Dynamic Range of a Time Projection Chamber
Estee, Justin; S πRIT Collaboration
2017-09-01
The use of Time Projection Chambers (TPCs) in intermediate heavy ion reactions faces some challenges in addressing the energy losses that range from the small energy loss of relativistic pions to the large energy loss of slow moving heavy ions. A typical trade-off can be to set the smallest desired signals to be well within the lower limits of the dynamic range of the electronics while allowing for some larger signals to saturate the electronics. With wire plane anodes, signals from readout pads further away from the track remain unsaturated and allow signals from tracks with saturated pads to be accurately recovered. We illustrate this technique using data from the SAMURAI Pion-Reconstruction and Ion-Tracker (S πRIT) TPC , which recently measured pions and light charged particles in collisions of Sn+Sn isotopes. Our method exploits knowledge of how the induced charge distribution depends on the distance from the track to smoothly extend dynamic range even when some of the pads in the track are saturated. To accommodate the analysis of slow moving heavy ions, we have extended the Bichsel energy loss distributions to handle slower moving ions as well. In this talk, I will discuss a combined approach which successfully extends the dynamic range of the TPC electronics. This work is supported by the U.S. DOE under Grant Nos. DE-SC0014530, DE-NA0002923, US NSF Grant No. PHY-1565546 and the Japan MEXT KAKENHI Grant No. 24105004.
Introduction to Focus Issue: Time-delay dynamics
Erneux, Thomas; Javaloyes, Julien; Wolfrum, Matthias; Yanchuk, Serhiy
2017-11-01
The field of dynamical systems with time delay is an active research area that connects practically all scientific disciplines including mathematics, physics, engineering, biology, neuroscience, physiology, economics, and many others. This Focus Issue brings together contributions from both experimental and theoretical groups and emphasizes a large variety of applications. In particular, lasers and optoelectronic oscillators subject to time-delayed feedbacks have been explored by several authors for their specific dynamical output, but also because they are ideal test-beds for experimental studies of delay induced phenomena. Topics include the control of cavity solitons, as light spots in spatially extended systems, new devices for chaos communication or random number generation, higher order locking phenomena between delay and laser oscillation period, and systematic bifurcation studies of mode-locked laser systems. Moreover, two original theoretical approaches are explored for the so-called Low Frequency Fluctuations, a particular chaotical regime in laser output which has attracted a lot of interest for more than 30 years. Current hot problems such as the synchronization properties of networks of delay-coupled units, novel stabilization techniques, and the large delay limit of a delay differential equation are also addressed in this special issue. In addition, analytical and numerical tools for bifurcation problems with or without noise and two reviews on concrete questions are proposed. The first review deals with the rich dynamics of simple delay climate models for El Nino Southern Oscillations, and the second review concentrates on neuromorphic photonic circuits where optical elements are used to emulate spiking neurons. Finally, two interesting biological problems are considered in this Focus Issue, namely, multi-strain epidemic models and the interaction of glucose and insulin for more effective treatment.
Hamiltonian Dynamics of Doubly-Foliable Space-Times
Directory of Open Access Journals (Sweden)
Cecília Gergely
2018-01-01
Full Text Available The 2 + 1 + 1 decomposition of space-time is useful in monitoring the temporal evolution of gravitational perturbations/waves in space-times with a spatial direction singled-out by symmetries. Such an approach based on a perpendicular double foliation has been employed in the framework of dark matter and dark energy-motivated scalar-tensor gravitational theories for the discussion of the odd sector perturbations of spherically-symmetric gravity. For the even sector, however, the perpendicularity has to be suppressed in order to allow for suitable gauge freedom, recovering the 10th metric variable. The 2 + 1 + 1 decomposition of the Einstein–Hilbert action leads to the identification of the canonical pairs, the Hamiltonian and momentum constraints. Hamiltonian dynamics is then derived via Poisson brackets.
One-Time Pad as a nonlinear dynamical system
Nagaraj, Nithin
2012-11-01
The One-Time Pad (OTP) is the only known unbreakable cipher, proved mathematically by Shannon in 1949. In spite of several practical drawbacks of using the OTP, it continues to be used in quantum cryptography, DNA cryptography and even in classical cryptography when the highest form of security is desired (other popular algorithms like RSA, ECC, AES are not even proven to be computationally secure). In this work, we prove that the OTP encryption and decryption is equivalent to finding the initial condition on a pair of binary maps (Bernoulli shift). The binary map belongs to a family of 1D nonlinear chaotic and ergodic dynamical systems known as Generalized Luröth Series (GLS). Having established these interesting connections, we construct other perfect secrecy systems on the GLS that are equivalent to the One-Time Pad, generalizing for larger alphabets. We further show that OTP encryption is related to Randomized Arithmetic Coding - a scheme for joint compression and encryption.
Managing time-substitutable electricity usage using dynamic controls
Ghosh, Soumyadip; Hosking, Jonathan R.; Natarajan, Ramesh; Subramaniam, Shivaram; Zhang, Xiaoxuan
2017-02-21
A predictive-control approach allows an electricity provider to monitor and proactively manage peak and off-peak residential intra-day electricity usage in an emerging smart energy grid using time-dependent dynamic pricing incentives. The daily load is modeled as time-shifted, but cost-differentiated and substitutable, copies of the continuously-consumed electricity resource, and a consumer-choice prediction model is constructed to forecast the corresponding intra-day shares of total daily load according to this model. This is embedded within an optimization framework for managing the daily electricity usage. A series of transformations are employed, including the reformulation-linearization technique (RLT) to obtain a Mixed-Integer Programming (MIP) model representation of the resulting nonlinear optimization problem. In addition, various regulatory and pricing constraints are incorporated in conjunction with the specified profit and capacity utilization objectives.
Managing time-substitutable electricity usage using dynamic controls
Ghosh, Soumyadip; Hosking, Jonathan R.; Natarajan, Ramesh; Subramaniam, Shivaram; Zhang, Xiaoxuan
2017-02-07
A predictive-control approach allows an electricity provider to monitor and proactively manage peak and off-peak residential intra-day electricity usage in an emerging smart energy grid using time-dependent dynamic pricing incentives. The daily load is modeled as time-shifted, but cost-differentiated and substitutable, copies of the continuously-consumed electricity resource, and a consumer-choice prediction model is constructed to forecast the corresponding intra-day shares of total daily load according to this model. This is embedded within an optimization framework for managing the daily electricity usage. A series of transformations are employed, including the reformulation-linearization technique (RLT) to obtain a Mixed-Integer Programming (MIP) model representation of the resulting nonlinear optimization problem. In addition, various regulatory and pricing constraints are incorporated in conjunction with the specified profit and capacity utilization objectives.
Real Time Mapping and Dynamic Navigation for Mobile Robots
Directory of Open Access Journals (Sweden)
Maki K. Habib
2008-11-01
Full Text Available This paper discusses the importance, the complexity and the challenges of mapping mobile robot?s unknown and dynamic environment, besides the role of sensors and the problems inherited in map building. These issues remain largely an open research problems in developing dynamic navigation systems for mobile robots. The paper presenst the state of the art in map building and localization for mobile robots navigating within unknown environment, and then introduces a solution for the complex problem of autonomous map building and maintenance method with focus on developing an incremental grid based mapping technique that is suitable for real-time obstacle detection and avoidance. In this case, the navigation of mobile robots can be treated as a problem of tracking geometric features that occur naturally in the environment of the robot. The robot maps its environment incrementally using the concept of occupancy grids and the fusion of multiple ultrasonic sensory information while wandering in it and stay away from all obstacles. To ensure real-time operation with limited resources, as well as to promote extensibility, the mapping and obstacle avoidance modules are deployed in parallel and distributed framework. Simulation based experiments has been conducted and illustrated to show the validity of the developed mapping and obstacle avoidance approach.
Sivak, David A; Chodera, John D; Crooks, Gavin E
2014-06-19
When simulating molecular systems using deterministic equations of motion (e.g., Newtonian dynamics), such equations are generally numerically integrated according to a well-developed set of algorithms that share commonly agreed-upon desirable properties. However, for stochastic equations of motion (e.g., Langevin dynamics), there is still broad disagreement over which integration algorithms are most appropriate. While multiple desiderata have been proposed throughout the literature, consensus on which criteria are important is absent, and no published integration scheme satisfies all desiderata simultaneously. Additional nontrivial complications stem from simulating systems driven out of equilibrium using existing stochastic integration schemes in conjunction with recently developed nonequilibrium fluctuation theorems. Here, we examine a family of discrete time integration schemes for Langevin dynamics, assessing how each member satisfies a variety of desiderata that have been enumerated in prior efforts to construct suitable Langevin integrators. We show that the incorporation of a novel time step rescaling in the deterministic updates of position and velocity can correct a number of dynamical defects in these integrators. Finally, we identify a particular splitting (related to the velocity Verlet discretization) that has essentially universally appropriate properties for the simulation of Langevin dynamics for molecular systems in equilibrium, nonequilibrium, and path sampling contexts.
Architecture for dynamically reconfigurable real-time lossless compression
Carter, Alison J.; Audsley, Neil C.
2004-05-01
Image compression is a computationally intensive task, which can be undertaken most efficiently by dedicated hardware. If a portable device is to carry out real-time compression on a variety of image types, then it may be useful to reconfigure the circuitry dynamically. Using commercial off-the shelf (COTS) chips, reconfiguration is usually implemented by a complete re-load from memory, but it is also possible to perform a partial reconfiguration. This work studies the use of programmable hardware devices to implement the lossless JPEG compression algorithm in real-time on a stream of independent image frames. The data rate is faster than can be compressed serially in hardware by a single processor, so the operation is split amongst several processors. These are implemented as programmable circuits, together with necessary buffering of input and output data. The timing of input and output, bearing in mind the different, and context-dependent amounts of data due to Huffman coding, is analyzed using storage-timing graphs. Because there may be differing parameters from one frame to the next, several different configurations are prepared and stored, ready to load as required. The scheduling of these reconfigurations, and the distribution/recombination of data streams is studied, giving an analysis of the real-time performance.
Assessing Coupling Dynamics from an Ensemble of Time Series
Directory of Open Access Journals (Sweden)
Germán Gómez-Herrero
2015-04-01
Full Text Available Finding interdependency relations between time series provides valuable knowledge about the processes that generated the signals. Information theory sets a natural framework for important classes of statistical dependencies. However, a reliable estimation from information-theoretic functionals is hampered when the dependency to be assessed is brief or evolves in time. Here, we show that these limitations can be partly alleviated when we have access to an ensemble of independent repetitions of the time series. In particular, we gear a data-efficient estimator of probability densities to make use of the full structure of trial-based measures. By doing so, we can obtain time-resolved estimates for a family of entropy combinations (including mutual information, transfer entropy and their conditional counterparts, which are more accurate than the simple average of individual estimates over trials. We show with simulated and real data generated by coupled electronic circuits that the proposed approach allows one to recover the time-resolved dynamics of the coupling between different subsystems.
Simulating continuous-time Hamiltonian dynamics by way of a discrete-time quantum walk
International Nuclear Information System (INIS)
Schmitz, A.T.; Schwalm, W.A.
2016-01-01
Much effort has been made to connect the continuous-time and discrete-time quantum walks. We present a method for making that connection for a general graph Hamiltonian on a bigraph. Furthermore, such a scheme may be adapted for simulating discretized quantum models on a quantum computer. A coin operator is found for the discrete-time quantum walk which exhibits the same dynamics as the continuous-time evolution. Given the spectral decomposition of the graph Hamiltonian and certain restrictions, the discrete-time evolution is solved for explicitly and understood at or near important values of the parameters. Finally, this scheme is connected to past results for the 1D chain. - Highlights: • A discrete-time quantum walk is purposed which approximates a continuous-time quantum walk. • The purposed quantum walk could be used to simulate Hamiltonian dynamics on a quantum computer. • Given the spectra decomposition of the Hamiltonian, the quantum walk is solved explicitly. • The method is demonstrated and connected to previous work done on the 1D chain.
Real-time dynamics of dissipative quantum systems
International Nuclear Information System (INIS)
Chow, K.S.
1988-01-01
The first part of this thesis motivates a real time approach to the dynamics of dissipative quantum systems. We review previous imaginary time methods for calculating escape rates and discuss their applications to the analysis of data in macroscopic quantum tunneling experiments. In tunneling experiments on heavily damped Superconducting Quantum Interference Devices, the instanton method gave results that compare reasonably well with data. In tunneling experiments on weakly damped Current Biased Josephson Junctions, two problems arise. First, the classical limit of the instanton result disagrees with the classical rate of thermal activation. Second, the instanton method cannot predict the microwave enhancement of escape rates. In the third chapter, we discuss our real time approach to the dynamics of dissipative systems in terms of a kinetic equation for the reduced density matrix. We demonstrate some known equilibrium properties of dissipative systems through the kinetic equation and derived the bath induced widths and energy shifts. In the low damping limit, the kinetic equation reduces to a much simpler master equation. The classical limit of the master equation is completely equivalent to the Fokker-Planck equation that describes thermal activation. In the fourth chapter, we apply the master equation to the problem of tunneling and resonance enhancement of tunneling in weakly damped current biased Josephson junctions. In the classical regime, microwaves of the appropriate frequency induce resonances between many neighboring levels and an asymmetrical resonance peak is measured. We can calibrate the junction parameters by fitting the stationary solution of the master equation to the classical resonance data. In the quantum regime, the stationary solution of the master equation, predicts well-resolved resonance peaks which agree very well with the observed data
Dynamic Web Expression for Near-real-time Sensor Networks
Lindquist, K. G.; Newman, R. L.; Nayak, A.; Vernon, F. L.; Nelson, C.; Hansen, T. S.; Yuen-Wong, R.
2003-12-01
As near-real-time sensor grids become more widespread, and processing systems based on them become more powerful, summarizing the raw and derived information products and delivering them to the end user become increasingly important both for ongoing monitoring and as a platform for cross-disciplinary research. We have re-engineered the dbrecenteqs program, which was designed to express real-time earthquake databases into dynamic web pages, with several powerful new technologies. While the application is still most fully developed for seismic data, the infrastructure is extensible (and being extended) to create a real-time information architecture for numerous signal domains. This work provides a practical, lightweight approach suitable for individual seismic and sensor networks, which does not require a full 'web-services' implementation. Nevertheless, the technologies here are extensible to larger applications such as the Storage-Resource-Broker based VORB project. The technologies included in the new system blend real-time relational databases as a focus for processing and data handling; an XML->XSLT architecture as the core of the web mirroring; PHP extensions to Antelope (the environmental monitoring-system context adopted for RoadNET) in order to support complex, user-driven interactivity; and VRML output for expression of information as web-browsable three-dimensional worlds.
Physical relativity. Space-time structure from a dynamical perspective
Brown, Harvey R.
Physical Relativity explores the nature of the distinction at the heart of Einstein's 1905 formulation of his special theory of relativity: that between kinematics and dynamics. Einstein himself became increasingly uncomfortable with this distinction, and with the limitations of what he called the 'principle theory' approach inspired by the logic of thermodynamics. A handful of physicists and philosophers have over the last century likewise expressed doubts about Einstein's treatment of the relativistic behaviour of rigid bodies and clocks in motion in the kinematical part of his great paper, and suggested that the dynamical understanding of length contraction and time dilation intimated by the immediate precursors of Einstein is more fundamental. Harvey Brown both examines and extends these arguments (which support a more 'constructive' approach to relativistic effects in Einstein's terminology), after giving a careful analysis of key features of the pre-history of relativity theory. He argues furthermore that the geometrization of the theory by Minkowski in 1908 brought illumination, but not a causal explanation of relativistic effects. Finally, Brown tries to show that the dynamical interpretation of special relativity defended in the book is consistent with the role this theory must play as a limiting case of Einstein's 1915 theory of gravity: the general theory of relativity. Appearing in the centennial year of Einstein's celebrated paper on special relativity, Physical Relativity is an unusual, critical examination of the way Einstein formulated his theory. It also examines in detail certain specific historical and conceptual issues that have long given rise to debate in both special and general relativity theory, such as the conventionality of simultaneity, the principle of general covariance, and the consistency or otherwise of the special theory with quantum mechanics. Harvey Brown's new interpretation of relativity theory will interest anyone working on
Rattleback dynamics and its reversal time of rotation
Kondo, Yoichiro; Nakanishi, Hiizu
2017-06-01
A rattleback is a rigid, semielliptic toy which exhibits unintuitive behavior; when it is spun in one direction, it soon begins pitching and stops spinning, then it starts to spin in the opposite direction, but in the other direction, it seems to spin just steadily. This puzzling behavior results from the slight misalignment between the principal axes for the inertia and those for the curvature; the misalignment couples the spinning with the pitching and the rolling oscillations. It has been shown that under the no-slip condition and without dissipation the spin can reverse in both directions, and Garcia and Hubbard obtained the formula for the time required for the spin reversal tr [Proc. R. Soc. Lond. A 418, 165 (1988), 10.1098/rspa.1988.0078]. In this work, we reformulate the rattleback dynamics in a physically transparent way and reduce it to a three-variable dynamics for spinning, pitching, and rolling. We obtain an expression of the Garcia-Hubbard formula for tr by a simple product of four factors: (1) the misalignment angle, (2) the difference in the inverses of inertia moment for the two oscillations, (3) that in the radii for the two principal curvatures, and (4) the squared frequency of the oscillation. We perform extensive numerical simulations to examine validity and limitation of the formula, and find that (1) the Garcia-Hubbard formula is good for both spinning directions in the small spin and small oscillation regime, but (2) in the fast spin regime especially for the steady direction, the rattleback may not reverse and shows a rich variety of dynamics including steady spinning, spin wobbling, and chaotic behavior reminiscent of chaos in a dissipative system.
The angle-angular momentum and entropic uncertainty relations for quantum scattering
International Nuclear Information System (INIS)
Ion, D.B.; Ion, M.L.
1999-01-01
Recently the entropic uncertainty relations are obtained in a more general form by using Tsallis-like entropies for the quantum scattering. Hence, using Riesz theorem, the state-independent entropic angle-angular momentum uncertainty relations are proved for the Tsallis-like scattering entropies of spinless particles. The generalized entropic inequalities for the Tsallis-like entropies are presented. The two upper bounds are optimal bounds and can be obtained via Lagrange multipliers by extremizing the Tsallis-like entropies subject to the normalization constraints, respectively. The proof of the lower bound is provided by considering the condition that the angular distribution of probability, P(x) has, everywhere, a finite magnitude. Next, by using the Riesz Theorem a general result was obtained, appearing as inequalities valid for the case of hadron-hadron scattering. An important entropic uncertainty relation for the scattering of spinless particle was thus obtained. For σ el and dσ/dΩ, fixed from experiment, we proved that the optimal scattering entropies are the maximum possible entropies in the scattering process. In as previous paper it was shown that the experimental values of the entropies for the pion--nucleus scatterings are systematically described by the optimal entropies, at all available pion kinetic energies. In this sense the obtained results can also be considered as new experimental signatures for the validity of the principle of minimum distance in space of scattering states. The extension of the optimal state analysis to the generalized non-extensive statistics case, as well as, a test of the entropic inequalities, can be obtained in similar way by using non-extensive optimal entropies. Since this kind of analysis is more involved the numerical examples will be given in a following more extended paper. Finally, we believe that the results obtained here are encouraging for further investigations of the entropic uncertainty relations as well
Second RPA dynamics at finite temperature: time-evolutions of dynamical operators
International Nuclear Information System (INIS)
Jang, S.
1989-01-01
Time-evolutions of dynamical operators, in particular the generalized density matrix comprising both diagonal and off-diagonal elements, are investigated within the framework of second RPA dynamics at finite temperature. The calculation of the density matrix previously carried out through the appliance of the second RPA master equation by retaining only the slowly oscillating coupling terms is extended to include in the interaction Hamiltonian both the rapidly and slowly oscillating coupling terms. The extended second RPA master equation, thereby formulated without making use of the so-called resonant approximation, is analytically solved and a closed expression for the generalized density matrix is extracted. We provide illustrative examples of the generalized density matrix for various specific initial conditions. We turn particularly our attention to the Poisson distribution type of initial condition for which we deduce specifically a particular form of the density matrix from the solution of the Fokker-Planck equation for the coherent state representation. The relation of the Fokker-Planck equation to the second RPA master equation and its properties are briefly discussed. The oversight incurred in the time-evolution of operators by the resonant approximation is elucidated. The first and second moments of collective coordinates are also computed in relation to the expectation value of various dynamical operators involved in the extended master equation
Population dynamics of minimally cognitive individuals. Part 2: Dynamics of time-dependent knowledge
Energy Technology Data Exchange (ETDEWEB)
Schmieder, R.W.
1995-07-01
The dynamical principle for a population of interacting individuals with mutual pairwise knowledge, presented by the author in a previous paper for the case of constant knowledge, is extended to include the possibility that the knowledge is time-dependent. Several mechanisms are presented by which the mutual knowledge, represented by a matrix K, can be altered, leading to dynamical equations for K(t). The author presents various examples of the transient and long time asymptotic behavior of K(t) for populations of relatively isolated individuals interacting infrequently in local binary collisions. Among the effects observed in the numerical experiments are knowledge diffusion, learning transients, and fluctuating equilibria. This approach will be most appropriate to small populations of complex individuals such as simple animals, robots, computer networks, agent-mediated traffic, simple ecosystems, and games. Evidence of metastable states and intermittent switching leads them to envision a spectroscopy associated with such transitions that is independent of the specific physical individuals and the population. Such spectra may serve as good lumped descriptors of the collective emergent behavior of large classes of populations in which mutual knowledge is an important part of the dynamics.
Formal methods for discrete-time dynamical systems
Belta, Calin; Aydin Gol, Ebru
2017-01-01
This book bridges fundamental gaps between control theory and formal methods. Although it focuses on discrete-time linear and piecewise affine systems, it also provides general frameworks for abstraction, analysis, and control of more general models. The book is self-contained, and while some mathematical knowledge is necessary, readers are not expected to have a background in formal methods or control theory. It rigorously defines concepts from formal methods, such as transition systems, temporal logics, model checking and synthesis. It then links these to the infinite state dynamical systems through abstractions that are intuitive and only require basic convex-analysis and control-theory terminology, which is provided in the appendix. Several examples and illustrations help readers understand and visualize the concepts introduced throughout the book.
Improved real-time dynamics from imaginary frequency lattice simulations
Directory of Open Access Journals (Sweden)
Pawlowski Jan M.
2018-01-01
Full Text Available The computation of real-time properties, such as transport coefficients or bound state spectra of strongly interacting quantum fields in thermal equilibrium is a pressing matter. Since the sign problem prevents a direct evaluation of these quantities, lattice data needs to be analytically continued from the Euclidean domain of the simulation to Minkowski time, in general an ill-posed inverse problem. Here we report on a novel approach to improve the determination of real-time information in the form of spectral functions by setting up a simulation prescription in imaginary frequencies. By carefully distinguishing between initial conditions and quantum dynamics one obtains access to correlation functions also outside the conventional Matsubara frequencies. In particular the range between ω0 and ω1 = 2πT, which is most relevant for the inverse problem may be more highly resolved. In combination with the fact that in imaginary frequencies the kernel of the inverse problem is not an exponential but only a rational function we observe significant improvements in the reconstruction of spectral functions, demonstrated in a simple 0+1 dimensional scalar field theory toy model.
Time- and Site-Resolved Dynamics in a Topological Circuit
Directory of Open Access Journals (Sweden)
Jia Ningyuan
2015-06-01
Full Text Available From studies of exotic quantum many-body phenomena to applications in spintronics and quantum information processing, topological materials are poised to revolutionize the condensed-matter frontier and the landscape of modern materials science. Accordingly, there is a broad effort to realize topologically nontrivial electronic and photonic materials for fundamental science as well as practical applications. In this work, we demonstrate the first simultaneous site- and time-resolved measurements of a time-reversal-invariant topological band structure, which we realize in a radio-frequency photonic circuit. We control band-structure topology via local permutation of a traveling-wave capacitor-inductor network, increasing robustness by going beyond the tight-binding limit. We observe a gapped density of states consistent with a modified Hofstadter spectrum at a flux per plaquette of ϕ=π/2. In situ probes of the band gaps reveal spatially localized bulk states and delocalized edge states. Time-resolved measurements reveal dynamical separation of localized edge excitations into spin-polarized currents. The radio-frequency circuit paradigm is naturally compatible with nonlocal coupling schemes, allowing us to implement a Möbius strip topology inaccessible in conventional systems. This room-temperature experiment illuminates the origins of topology in band structure, and when combined with circuit quantum electrodynamics techniques, it provides a direct path to topologically ordered quantum matter.
Improved real-time dynamics from imaginary frequency lattice simulations
Pawlowski, Jan M.; Rothkopf, Alexander
2018-03-01
The computation of real-time properties, such as transport coefficients or bound state spectra of strongly interacting quantum fields in thermal equilibrium is a pressing matter. Since the sign problem prevents a direct evaluation of these quantities, lattice data needs to be analytically continued from the Euclidean domain of the simulation to Minkowski time, in general an ill-posed inverse problem. Here we report on a novel approach to improve the determination of real-time information in the form of spectral functions by setting up a simulation prescription in imaginary frequencies. By carefully distinguishing between initial conditions and quantum dynamics one obtains access to correlation functions also outside the conventional Matsubara frequencies. In particular the range between ω0 and ω1 = 2πT, which is most relevant for the inverse problem may be more highly resolved. In combination with the fact that in imaginary frequencies the kernel of the inverse problem is not an exponential but only a rational function we observe significant improvements in the reconstruction of spectral functions, demonstrated in a simple 0+1 dimensional scalar field theory toy model.
Classification of time series patterns from complex dynamic systems
Energy Technology Data Exchange (ETDEWEB)
Schryver, J.C.; Rao, N.
1998-07-01
An increasing availability of high-performance computing and data storage media at decreasing cost is making possible the proliferation of large-scale numerical databases and data warehouses. Numeric warehousing enterprises on the order of hundreds of gigabytes to terabytes are a reality in many fields such as finance, retail sales, process systems monitoring, biomedical monitoring, surveillance and transportation. Large-scale databases are becoming more accessible to larger user communities through the internet, web-based applications and database connectivity. Consequently, most researchers now have access to a variety of massive datasets. This trend will probably only continue to grow over the next several years. Unfortunately, the availability of integrated tools to explore, analyze and understand the data warehoused in these archives is lagging far behind the ability to gain access to the same data. In particular, locating and identifying patterns of interest in numerical time series data is an increasingly important problem for which there are few available techniques. Temporal pattern recognition poses many interesting problems in classification, segmentation, prediction, diagnosis and anomaly detection. This research focuses on the problem of classification or characterization of numerical time series data. Highway vehicles and their drivers are examples of complex dynamic systems (CDS) which are being used by transportation agencies for field testing to generate large-scale time series datasets. Tools for effective analysis of numerical time series in databases generated by highway vehicle systems are not yet available, or have not been adapted to the target problem domain. However, analysis tools from similar domains may be adapted to the problem of classification of numerical time series data.
Incremental fuzzy C medoids clustering of time series data using dynamic time warping distance
Chen, Jingli; Wu, Shuai; Liu, Zhizhong; Chao, Hao
2018-01-01
Clustering time series data is of great significance since it could extract meaningful statistics and other characteristics. Especially in biomedical engineering, outstanding clustering algorithms for time series may help improve the health level of people. Considering data scale and time shifts of time series, in this paper, we introduce two incremental fuzzy clustering algorithms based on a Dynamic Time Warping (DTW) distance. For recruiting Single-Pass and Online patterns, our algorithms could handle large-scale time series data by splitting it into a set of chunks which are processed sequentially. Besides, our algorithms select DTW to measure distance of pair-wise time series and encourage higher clustering accuracy because DTW could determine an optimal match between any two time series by stretching or compressing segments of temporal data. Our new algorithms are compared to some existing prominent incremental fuzzy clustering algorithms on 12 benchmark time series datasets. The experimental results show that the proposed approaches could yield high quality clusters and were better than all the competitors in terms of clustering accuracy. PMID:29795600
Incremental fuzzy C medoids clustering of time series data using dynamic time warping distance.
Liu, Yongli; Chen, Jingli; Wu, Shuai; Liu, Zhizhong; Chao, Hao
2018-01-01
Clustering time series data is of great significance since it could extract meaningful statistics and other characteristics. Especially in biomedical engineering, outstanding clustering algorithms for time series may help improve the health level of people. Considering data scale and time shifts of time series, in this paper, we introduce two incremental fuzzy clustering algorithms based on a Dynamic Time Warping (DTW) distance. For recruiting Single-Pass and Online patterns, our algorithms could handle large-scale time series data by splitting it into a set of chunks which are processed sequentially. Besides, our algorithms select DTW to measure distance of pair-wise time series and encourage higher clustering accuracy because DTW could determine an optimal match between any two time series by stretching or compressing segments of temporal data. Our new algorithms are compared to some existing prominent incremental fuzzy clustering algorithms on 12 benchmark time series datasets. The experimental results show that the proposed approaches could yield high quality clusters and were better than all the competitors in terms of clustering accuracy.
MyDTW - Dynamic Time Warping program for stratigraphical time series
Kotov, Sergey; Paelike, Heiko
2017-04-01
One of the general tasks in many geological disciplines is matching of one time or space signal to another. It can be classical correlation between two cores or cross-sections in sedimentology or marine geology. For example, tuning a paleoclimatic signal to a target curve, driven by variations in the astronomical parameters, is a powerful technique to construct accurate time scales. However, these methods can be rather time-consuming and can take ours of routine work even with the help of special semi-automatic software. Therefore, different approaches to automate the processes have been developed during last decades. Some of them are based on classical statistical cross-correlations such as the 'Correlator' after Olea [1]. Another ones use modern ideas of dynamic programming. A good example is as an algorithm developed by Lisiecki and Lisiecki [2] or dynamic time warping based algorithm after Pälike [3]. We introduce here an algorithm and computer program, which are also stemmed from the Dynamic Time Warping algorithm class. Unlike the algorithm of Lisiecki and Lisiecki, MyDTW does not lean on a set of penalties to follow geological logics, but on a special internal structure and specific constrains. It differs also from [3] in basic ideas of implementation and constrains design. The algorithm is implemented as a computer program with a graphical user interface using Free Pascal and Lazarus IDE and available for Windows, Mac OS, and Linux. Examples with synthetic and real data are demonstrated. Program is available for free download at http://www.marum.de/Sergey_Kotov.html . References: 1. Olea, R.A. Expert systems for automated correlation and interpretation of wireline logs // Math Geol (1994) 26: 879. doi:10.1007/BF02083420 2. Lisiecki L. and Lisiecki P. Application of dynamic programming to the correlation of paleoclimate records // Paleoceanography (2002), Volume 17, Issue 4, pp. 1-1, CiteID 1049, doi: 10.1029/2001PA000733 3. Pälike, H. Extending the
The Time Diagram Control Approach for the Dynamic Representation of Time-Oriented Data
Directory of Open Access Journals (Sweden)
Rolf Dornberger
2016-04-01
Full Text Available The dynamic representation of time-oriented data on small screen devices is of increasing importance. Most solution approaches use issue-specific requirements based on established desktop technologies. Applied to mobile devices with small multi-touch displays such approaches often lead to a limited usability. Particularly, the time-dependent data can only be fragmentarily visualized due to limited screen sizes. Instead of reducing the complexity by visualizing the data, the interpretation of the data is getting more complex. This paper proposes a Time Diagram Control (TDC approach, a new way of representing time-based diagrams on small screen devices. The TDC uses a principle of cybernetics to integrate the user in the visualization process and thus reduce complexity. TDC focuses on simplicity of design by only providing 2D temporal line diagrams with a dynamic zooming function that works via standard multi-touch controls. Involving the user into a continuous loop of refining the visualization, TDC allows to compare data of different temporal granularities without losing the overall context of the presented data. The TDC approach ensures constant information reliability on small screen devices.
On entropic uncertainty relations in the presence of a minimal length
Rastegin, Alexey E.
2017-07-01
Entropic uncertainty relations for the position and momentum within the generalized uncertainty principle are examined. Studies of this principle are motivated by the existence of a minimal observable length. Then the position and momentum operators satisfy the modified commutation relation, for which more than one algebraic representation is known. One of them is described by auxiliary momentum so that the momentum and coordinate wave functions are connected by the Fourier transform. However, the probability density functions of the physically true and auxiliary momenta are different. As the corresponding entropies differ, known entropic uncertainty relations are changed. Using differential Shannon entropies, we give a state-dependent formulation with correction term. State-independent uncertainty relations are obtained in terms of the Rényi entropies and the Tsallis entropies with binning. Such relations allow one to take into account a finiteness of measurement resolution.
Producción de entropía y ley de enfriamiento de Newton
Directory of Open Access Journals (Sweden)
Daniel Barragán
2009-05-01
Full Text Available Para un sistema con una fuente interna de generación de calor se analizan, en el marco de la termodinámica de los procesos irreversibles, las ecuaciones evolutivas que describen la transferencia de calor según la ley de enfriamiento de Newton. A partir del balance de flujo de entropía se muestra que la generación de entropía no es mínima en el estado estacionario descrito por la ley de enfriamiento de Newton. Igualmente, se discute cómo realizar el balance de flujos en el sistema, su conexión con los parámetros de control y su futura aplicación a procesos de optimización basados en la segunda ley de la termodinámica.
Entropic lattice Boltzmann representations required to recover Navier-Stokes flows.
Keating, Brian; Vahala, George; Yepez, Jeffrey; Soe, Min; Vahala, Linda
2007-03-01
There are two disparate formulations of the entropic lattice Boltzmann scheme: one of these theories revolves around the analog of the discrete Boltzmann H function of standard extensive statistical mechanics, while the other revolves around the nonextensive Tsallis entropy. It is shown here that it is the nonenforcement of the pressure tensor moment constraints that lead to extremizations of entropy resulting in Tsallis-like forms. However, with the imposition of the pressure tensor moment constraint, as is fundamentally necessary for the recovery of the Navier-Stokes equations, it is proved that the entropy function must be of the discrete Boltzmann form. Three-dimensional simulations are performed which illustrate some of the differences between standard lattice Boltzmann and entropic lattice Boltzmann schemes, as well as the role played by the number of phase-space velocities used in the discretization.
Entropic formulation of the uncertainty principle for the number and annihilation operators
International Nuclear Information System (INIS)
Rastegin, Alexey E
2011-01-01
An entropic approach to formulating uncertainty relations for the number-annihilation pair is considered. We construct some normal operator that traces the annihilation operator as well as commuting quadratures with a complete system of common eigenfunctions. Expanding the measured wave function with respect to them, one obtains a relevant probability distribution. Another distribution is naturally generated by measuring the number operator. Due to the Riesz-Thorin theorem, there exists a nontrivial inequality between corresponding functionals of the above distributions. We find the bound in this inequality and further derive uncertainty relations in terms of both the Rényi and Tsallis entropies. Entropic uncertainty relations for a continuous distribution as well as relations for a discretized one are presented. (comment)
Predicting physical time series using dynamic ridge polynomial neural networks.
Directory of Open Access Journals (Sweden)
Dhiya Al-Jumeily
Full Text Available Forecasting naturally occurring phenomena is a common problem in many domains of science, and this has been addressed and investigated by many scientists. The importance of time series prediction stems from the fact that it has wide range of applications, including control systems, engineering processes, environmental systems and economics. From the knowledge of some aspects of the previous behaviour of the system, the aim of the prediction process is to determine or predict its future behaviour. In this paper, we consider a novel application of a higher order polynomial neural network architecture called Dynamic Ridge Polynomial Neural Network that combines the properties of higher order and recurrent neural networks for the prediction of physical time series. In this study, four types of signals have been used, which are; The Lorenz attractor, mean value of the AE index, sunspot number, and heat wave temperature. The simulation results showed good improvements in terms of the signal to noise ratio in comparison to a number of higher order and feedforward neural networks in comparison to the benchmarked techniques.
Adaptation and learning: characteristic time scales of performance dynamics.
Newell, Karl M; Mayer-Kress, Gottfried; Hong, S Lee; Liu, Yeou-Teh
2009-12-01
A multiple time scales landscape model is presented that reveals structures of performance dynamics that were not resolved in the traditional power law analysis of motor learning. It shows the co-existence of separate processes during and between practice sessions that evolve in two independent dimensions characterized by time scales that differ by about an order of magnitude. Performance along the slow persistent dimension of learning improves often as much and sometimes more during rest (memory consolidation and/or insight generation processes) than during a practice session itself. In contrast, the process characterized by the fast, transient dimension of adaptation reverses direction between practice sessions, thereby significantly degrading performance at the beginning of the next practice session (warm-up decrement). The theoretical model fits qualitatively and quantitatively the data from Snoddy's [Snoddy, G. S. (1926). Learning and stability. Journal of Applied Psychology, 10, 1-36] classic learning study of mirror tracing and other averaged and individual data sets, and provides a new account of the processes of change in adaptation and learning. 2009 Elsevier B.V. All rights reserved.
Entropía de la información: una herramienta útil
Cincotta, P.
En este trabajo se presenta una muy breve introducción al concepto de Entropía de la Información y se muestran distintas aplicaciones de una misma técnica para estudiar problemas tan variados como la determinación de periodicidad en una serie de tiempo arbitraria o de estimar el grado de caoticidad de una trayectoria en un sistema dinámico de N grados de libertad.
Liu, Fan; Abrol, Ravinder; Goddard, William, III; Dougherty, Dennis
2014-03-01
Entropic effect in GPCR activation is poorly understood. Based on the recent solved structures, researchers in the GPCR structural biology field have proposed several ``local activating switches'' that consisted of a few number of conserved residues, but have long ignored the collective dynamical effect (conformational entropy) of a domain comprised of an ensemble of residues. A new paradigm has been proposed recently that a GPCR can be viewed as a composition of several functional coupling domains, each of which undergoes order-to-disorder or disorder-to-order transitions upon activation. Here we identified and studied these functional coupling domains by comparing the local entropy changes of each residue between the inactive and active states of the β2 adrenergic receptor from computational simulation. We found that agonist and G-protein binding increases the heterogeneity of the entropy distribution in the receptor. This new activation paradigm and computational entropy analysis scheme provides novel ways to design functionally modified mutant and identify new allosteric sites for GPCRs. The authors thank NIH and Sanofi for funding this project.
Directory of Open Access Journals (Sweden)
Bhanupriya Dash
2017-09-01
Full Text Available Background: Replenishment policy for entropic order quantity model with two component demand and partial backlogging under inflation is an important subject in the stock management. Methods: In this paper an inventory model for non-instantaneous deteriorating items with stock dependant consumption rate and partial back logged in addition the effect of inflection and time value of money on replacement policy with zero lead time consider was developed. Profit maximization model is formulated by considering the effects of partial backlogging under inflation with cash discounts. Further numerical example presented to evaluate the relative performance between the entropic order quantity and EOQ models separately. Numerical example is present to demonstrate the developed model and to illustrate the procedure. Lingo 13.0 version software used to derive optimal order quantity and total cost of inventory. Finally sensitivity analysis of the optimal solution with respect to different parameters of the system carried out. Results and conclusions: The obtained inventory model is very useful in retail business. This model can extend to total backorder.
Interglacial climate dynamics and advanced time series analysis
Mudelsee, Manfred; Bermejo, Miguel; Köhler, Peter; Lohmann, Gerrit
2013-04-01
Studying the climate dynamics of past interglacials (IGs) helps to better assess the anthropogenically influenced dynamics of the current IG, the Holocene. We select the IG portions from the EPICA Dome C ice core archive, which covers the past 800 ka, to apply methods of statistical time series analysis (Mudelsee 2010). The analysed variables are deuterium/H (indicating temperature) (Jouzel et al. 2007), greenhouse gases (Siegenthaler et al. 2005, Loulergue et al. 2008, L¨ü thi et al. 2008) and a model-co-derived climate radiative forcing (Köhler et al. 2010). We select additionally high-resolution sea-surface-temperature records from the marine sedimentary archive. The first statistical method, persistence time estimation (Mudelsee 2002) lets us infer the 'climate memory' property of IGs. Second, linear regression informs about long-term climate trends during IGs. Third, ramp function regression (Mudelsee 2000) is adapted to look on abrupt climate changes during IGs. We compare the Holocene with previous IGs in terms of these mathematical approaches, interprete results in a climate context, assess uncertainties and the requirements to data from old IGs for yielding results of 'acceptable' accuracy. This work receives financial support from the Deutsche Forschungsgemeinschaft (Project ClimSens within the DFG Research Priority Program INTERDYNAMIK) and the European Commission (Marie Curie Initial Training Network LINC, No. 289447, within the 7th Framework Programme). References Jouzel J, Masson-Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola JM, Chappellaz J, Fischer H, Gallet JC, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud D, Schilt A, Schwander J, Selmo E, Souchez R, Spahni R, Stauffer B, Steffensen JP, Stenni B, Stocker TF, Tison JL, Werner M, Wolff EW (2007) Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317:793. Köhler P, Bintanja R
Estimation of dynamic flux profiles from metabolic time series data
Directory of Open Access Journals (Sweden)
Chou I-Chun
2012-07-01
Full Text Available Abstract Background Advances in modern high-throughput techniques of molecular biology have enabled top-down approaches for the estimation of parameter values in metabolic systems, based on time series data. Special among them is the recent method of dynamic flux estimation (DFE, which uses such data not only for parameter estimation but also for the identification of functional forms of the processes governing a metabolic system. DFE furthermore provides diagnostic tools for the evaluation of model validity and of the quality of a model fit beyond residual errors. Unfortunately, DFE works only when the data are more or less complete and the system contains as many independent fluxes as metabolites. These drawbacks may be ameliorated with other types of estimation and information. However, such supplementations incur their own limitations. In particular, assumptions must be made regarding the functional forms of some processes and detailed kinetic information must be available, in addition to the time series data. Results The authors propose here a systematic approach that supplements DFE and overcomes some of its shortcomings. Like DFE, the approach is model-free and requires only minimal assumptions. If sufficient time series data are available, the approach allows the determination of a subset of fluxes that enables the subsequent applicability of DFE to the rest of the flux system. The authors demonstrate the procedure with three artificial pathway systems exhibiting distinct characteristics and with actual data of the trehalose pathway in Saccharomyces cerevisiae. Conclusions The results demonstrate that the proposed method successfully complements DFE under various situations and without a priori assumptions regarding the model representation. The proposed method also permits an examination of whether at all, to what degree, or within what range the available time series data can be validly represented in a particular functional format of
A Dynamic Time Warping Approach to Real-Time Activity Recognition for Food Preparation
Pham, Cuong; Plötz, Thomas; Olivier, Patrick
We present a dynamic time warping based activity recognition system for the analysis of low-level food preparation activities. Accelerometers embedded into kitchen utensils provide continuous sensor data streams while people are using them for cooking. The recognition framework analyzes frames of contiguous sensor readings in real-time with low latency. It thereby adapts to the idiosyncrasies of utensil use by automatically maintaining a template database. We demonstrate the effectiveness of the classification approach by a number of real-world practical experiments on a publically available dataset. The adaptive system shows superior performance compared to a static recognizer. Furthermore, we demonstrate the generalization capabilities of the system by gradually reducing the amount of training samples. The system achieves excellent classification results even if only a small number of training samples is available, which is especially relevant for real-world scenarios.
Dynamic Simulation over Long Time Periods with 100% Solar Generation.
Energy Technology Data Exchange (ETDEWEB)
Concepcion, Ricky James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Elliott, Ryan Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-12-01
This project aimed to identify the path forward for dynamic simulation tools to accommodate these needs by characterizing the properties of power systems (with high PV penetration), analyzing how these properties affect dynamic simulation software, and offering solutions for potential problems.
Positive dynamical systems in discrete time theory, models, and applications
Krause, Ulrich
2015-01-01
This book provides a systematic, rigorous and self-contained treatment of positive dynamical systems. A dynamical system is positive when all relevant variables of a systemare nonnegative in a natural way. This is in biology, demography or economics, where the levels of populations or prices of goods are positive. The principle also finds application in electrical engineering, physics and computer sciences.
Effect of time derivative of contact area on dynamic friction
Arakawa, Kazuo
2015-01-01
This study investigated dynamic friction during oblique impact of a golf ball by evaluating the ball’s angular velocity, contact force, and the contact area between the ball and target. The effect of the contact area on the angular velocities was evaluated, and the results indicated that the contact area plays an important role in dynamic friction. In this study, the dynamic friction force F was given by F= μN+μη.dA/dt, where μ is the coefficient of friction, N is the contact force, dA/dt is ...
Dynamics of nonlinear oscillators with time-varying conjugate coupling
Indian Academy of Sciences (India)
oscillators. We analyze the behavior of coupled systems with respect to the coupling switching frequency using ..... are of potential utility in appropriate design strategies and/or understanding of complex systems with dynamic interaction ...
Characterisation and modelling of vacancy dynamics in Ni–Mn–Ga ferromagnetic shape memory alloys
Energy Technology Data Exchange (ETDEWEB)
Merida, D., E-mail: david.merida@ehu.es [Fisika Aplikatua II Saila, Euskal Herriko Unibertsitatea UPV/EHU, p.k. 644, 48080 Bilbao (Spain); Elektrizitate eta Elektronika Saila, Euskal Herriko Unibertsitatea UPV/EHU, p.k. 644, 48080 Bilbao (Spain); García, J.A. [Fisika Aplikatua II Saila, Euskal Herriko Unibertsitatea UPV/EHU, p.k. 644, 48080 Bilbao (Spain); BC Materials (Basque Centre for Materials, Application and Nanostructures), 48040 Leioa (Spain); Sánchez-Alarcos, V. [Departamento de Física, Universidad Pública de Navarra, Campus de Arrosadia, 31006 Pamplona (Spain); Pérez-Landazábal, J.I.; Recarte, V. [Departamento de Física, Universidad Pública de Navarra, Campus de Arrosadia, 31006 Pamplona (Spain); Institute for Advanced Materials (INAMAT), Universidad Pública de Navarra, Campus de Arrosadía, 31006 Pamplona (Spain); Plazaola, F. [Elektrizitate eta Elektronika Saila, Euskal Herriko Unibertsitatea UPV/EHU, p.k. 644, 48080 Bilbao (Spain)
2015-08-05
Highlights: • We study the dynamics of vacancies for three different Ni–Mn–Ga alloy samples. • The formation and migration energies have been obtained experimentally. • The entropic factor and the distance a vacancy has to reach a sink are measured. • We present a theoretical model to explain the dynamics of vacancies. • Results are applicable for any thermal treatment and extensible to other alloys. - Abstract: The dynamics of vacancies in Ni–Mn–Ga shape memory alloys has been studied by positron annihilation lifetime spectroscopy. The temperature evolution of the vacancy concentration for three different Ni–Mn–Ga samples, two polycrystalline and one monocrystalline, have been determined. The formation and migration energies and the entropic factors are quite similar in all cases, but vary slightly according to composition. However, the number of jumps a vacancy has to overtake to reach a sink is five times higher in the single crystal. This is an expected result, due to the role that surfaces and grain boundaries should play in balancing the vacancy concentration. In all cases, the initial vacancy concentration for the samples quenched from 1173 K lies between 1000 ppm and 2000 ppm. A phenomenological model able to explain the dynamics of vacancies has been developed in terms of the previous parameters. The model can reproduce the vacancy dynamics for any different kind of thermal history and can be easily extended to other alloys.
Directory of Open Access Journals (Sweden)
M. de la Sen
2010-01-01
Full Text Available This paper investigates the stability properties of a class of dynamic linear systems possessing several linear time-invariant parameterizations (or configurations which conform a linear time-varying polytopic dynamic system with a finite number of time-varying time-differentiable point delays. The parameterizations may be timevarying and with bounded discontinuities and they can be subject to mixed regular plus impulsive controls within a sequence of time instants of zero measure. The polytopic parameterization for the dynamics associated with each delay is specific, so that (q+1 polytopic parameterizations are considered for a system with q delays being also subject to delay-free dynamics. The considered general dynamic system includes, as particular cases, a wide class of switched linear systems whose individual parameterizations are timeinvariant which are governed by a switching rule. However, the dynamic system under consideration is viewed as much more general since it is time-varying with timevarying delays and the bounded discontinuous changes of active parameterizations are generated by impulsive controls in the dynamics and, at the same time, there is not a prescribed set of candidate potential parameterizations.
Estimating the level of dynamical noise in time series by using fractal dimensions
International Nuclear Information System (INIS)
Sase, Takumi; Ramírez, Jonatán Peña; Kitajo, Keiichi; Aihara, Kazuyuki; Hirata, Yoshito
2016-01-01
We present a method for estimating the dynamical noise level of a ‘short’ time series even if the dynamical system is unknown. The proposed method estimates the level of dynamical noise by calculating the fractal dimensions of the time series. Additionally, the method is applied to EEG data to demonstrate its possible effectiveness as an indicator of temporal changes in the level of dynamical noise. - Highlights: • A dynamical noise level estimator for time series is proposed. • The estimator does not need any information about the dynamics generating the time series. • The estimator is based on a novel definition of time series dimension (TSD). • It is demonstrated that there exists a monotonic relationship between the • TSD and the level of dynamical noise. • We apply the proposed method to human electroencephalographic data.
Estimating the level of dynamical noise in time series by using fractal dimensions
Energy Technology Data Exchange (ETDEWEB)
Sase, Takumi, E-mail: sase@sat.t.u-tokyo.ac.jp [Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 153-8505 (Japan); Ramírez, Jonatán Peña [CONACYT Research Fellow, Center for Scientific Research and Higher Education at Ensenada (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California (Mexico); Kitajo, Keiichi [BSI-Toyota Collaboration Center, RIKEN Brain Science Institute, Wako, Saitama 351-0198 (Japan); Aihara, Kazuyuki; Hirata, Yoshito [Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 153-8505 (Japan); Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505 (Japan)
2016-03-11
We present a method for estimating the dynamical noise level of a ‘short’ time series even if the dynamical system is unknown. The proposed method estimates the level of dynamical noise by calculating the fractal dimensions of the time series. Additionally, the method is applied to EEG data to demonstrate its possible effectiveness as an indicator of temporal changes in the level of dynamical noise. - Highlights: • A dynamical noise level estimator for time series is proposed. • The estimator does not need any information about the dynamics generating the time series. • The estimator is based on a novel definition of time series dimension (TSD). • It is demonstrated that there exists a monotonic relationship between the • TSD and the level of dynamical noise. • We apply the proposed method to human electroencephalographic data.
Efectos de la entropía urbana en el coste energético del trasporte
Directory of Open Access Journals (Sweden)
Francisco Bascuñán Walker
2011-05-01
Full Text Available El objetivo del trabajo presentado fue descubrir los efectos de la diversidad de uso de suelo o entropía urbana sobre el gasto energético del transporte. Se eligió como zona de estudio la ciudad de La Serena y se encuestó a un grupo representativo de familias con gastos energéticos y de estratos sociales diversos y se comparó con las zonas urbanas de diferentes grados de entropía. El estudio mostró que, indistintamente del nivel social, los habitantes de las zonas que mostraban niveles mayores de entropía gastaban menos energía en traslados a destinos urbanos que aquellos que vivían en zonas de menores entropías. Basados en los resultados del estudio se concluyó que para disminuir el gasto energético en trasporte de los habitantes de la ciudad se requería incrementar el nivel de entropía. La alternativa más eficiente estudiada fue contemplar en la planificación urbana, pequeños policentros de multiservicios (más de tres servicios diferentes que cubran una superficie de población urbana de 78 has aproximadamente.
Hilton, David
2011-10-01
In correlated electronic systems, observed electronic and structural behavior results from the complex interplay between multiple, sometimes competing degrees-of- freedom. One such material used to study insulator-to-metal transitions is vanadium dioxide, which undergoes a phase transition from a monoclinic-insulating phase to a rutile-metallic phase when the sample is heated to 340 K. The major open question with this material is the relative influence of this structural phase transition (Peirels transition) and the effects of electronic correlations (Mott transition) on the observed insulator-to-metal transition. Answers to these major questions are complicated by vanadium dioxide's sensitivity to perturbations in the chemical structure in VO2. For example, related VxOy oxides with nearly a 2:1 ratio do not demonstrate the insulator-to- metal transition, while recent work has demonstrated that W:VO2 has demonstrated a tunable transition temperature controllable with tungsten doping. All of these preexisting results suggest that the observed electronic properties are exquisitely sensitive to the sample disorder. Using ultrafast spectroscopic techniques, it is now possible to impulsively excite this transition and investigate the photoinduced counterpart to this thermal phase transition in a strongly nonequilibrium regime. I will discuss our recent results studying the terahertz-frequency conductivity dynamics of this photoinduced phase transition in the poorly understood near threshold temperature range. We find a dramatic softening of the transition near the critical temperature, which results primarily from the mixed phase coexistence near the transition temperature. To directly study this mixed phase behavior, we directly study the nucleation and growth rates of the metallic phase in the parent insulator using non-degenerate optical pump-probe spectroscopy. These experiments measure, in the time- domain, the coexistent phase separation in VO2 (spatially
Langevin approach to synchronization of hyperchaotic time-delay dynamics
Energy Technology Data Exchange (ETDEWEB)
Budini, Adrian A [Consejo Nacional de Investigaciones CientIficas y Tecnicas, Centro Atomico Bariloche, Av. E Bustillo Km 9.5, (8400) Bariloche (Argentina); Consortium of the Americas for Interdisciplinary Science and Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States)
2008-11-07
In this paper, we characterize the synchronization phenomenon of hyperchaotic scalar nonlinear delay dynamics in a fully-developed chaos regime. Our results rely on the observation that, in that regime, the stationary statistical properties of a class of hyperchaotic attractors can be reproduced with a linear Langevin equation, defined by replacing the nonlinear delay force by a delta-correlated noise. Therefore, the synchronization phenomenon can be analytically characterized by a set of coupled Langevin equations. We apply this formalism to study anticipated synchronization dynamics subject to external noise fluctuations as well as for characterizing the effects of parameter mismatch in a hyperchaotic communication scheme. The same procedure is applied to second-order differential delay equations associated with synchronization in electro-optical devices. In all cases, the departure with respect to perfect synchronization is measured through a similarity function. Numerical simulations in discrete maps associated with the hyperchaotic dynamics support the formalism.
Modelling Protein Dynamics on the Microsecond Time Scale
DEFF Research Database (Denmark)
Siuda, Iwona Anna
Recent years have shown an increase in coarse-grained (CG) molecular dynamics simulations, providing structural and dynamic details of large proteins and enabling studies of self-assembly of biological materials. It is not easy to acquire such data experimentally, and access is also still limited...... in atomistic simulations. During her PhD studies, Iwona Siuda used MARTINI CG models to study the dynamics of different globular and membrane proteins. In several cases, the MARTINI model was sufficient to study conformational changes of small, purely alpha-helical proteins. However, in studies of larger......ELNEDIN was therefore proposed as part of the work. Iwona Siuda’s results from the CG simulations had biological implications that provide insights into possible mechanisms of the periplasmic leucine-binding protein, the sarco(endo)plasmic reticulum calcium pump, and several proteins from the saposin-like proteins...
Introduction to modern dynamics chaos, networks, space and time
Nolte, David D
2015-01-01
The best parts of physics are the last topics that our students ever see. These are the exciting new frontiers of nonlinear and complex systems that are at the forefront of university research and are the basis of many high-tech businesses. Topics such as traffic on the World Wide Web, the spread of epidemics through globally-mobile populations, or the synchronization of global economies are governed by universal principles just as profound as Newton's laws. Nonetheless, the conventional university physics curriculum reserves most of these topics for advanced graduate study. Two justifications are given for this situation: first, that the mathematical tools needed to understand these topics are beyond the skill set of undergraduate students, and second, that these are speciality topics with no common theme and little overlap. Introduction to Modern Dynamics dispels these myths. The structure of this book combines the three main topics of modern dynamics - chaos theory, dynamics on complex networks, and gener...
Multiple time scale dynamics in the breakdown of superhydrophobicity
Pirat, C.; Sbragaglia, M.; Peters, A.M.; Borkent, B.M.; Lammertink, Rob G.H.; Wessling, Matthias; Lohse, Detlef
2008-01-01
Drops deposited on rough and hydrophobic surfaces can stay suspended with gas pockets underneath the liquid, then showing very low hydrodynamic resistance. When this superhydrophobic state breaks down, the subsequent wetting process can show different dynamical properties. A suitable choice of the
Linking PCA and time derivatives of dynamic systems
Stanimirovic, Olja; Hoefsloot, Huub C. J.; de Bokx, Pieter K.; Smilde, Age K.
2006-01-01
Low dimensional approximate descriptions of the high dimensional phase space of dynamic processes are very useful. Principal component analysis (PCA) is the most used technique to find the low dimensional subspace of interest. Here, it will be shown that mean centering of the process data across
Vehicle routing with dynamic travel times : a queueing approach
Woensel, van T.; Kerbache, L.; Peremans, H.; Vandaele, N.J.
2008-01-01
Transportation is an important component of supply chain competitiveness since it plays a major role in the inbound, inter-facility, and outbound logistics. In this context, assigning and scheduling vehicle routes is a crucial management problem. In this paper, a vehicle routing problem with dynamic
Audibility of time switching in dynamic binaural synthesis
DEFF Research Database (Denmark)
Hoffmann, Pablo F.F.; Møller, Henrik
2005-01-01
In binaural synthesis, signals are convolved with head-related transfer functions (HRTFs). In dynamic systems, the update is often done by cross- fading between signals that have been filtered in parallel with two HRTFs. An alternative to cross-fading that is attractive in terms of computing power...
Mobile charge generation dynamics in P3HT: PCBM observed by time-resolved terahertz spectroscopy
DEFF Research Database (Denmark)
Cooke, D. G.; Krebs, Frederik C; Jepsen, Peter Uhd
2012-01-01
Ultra-broadband time-resolved terahertz spectroscopy is used to examine the sub-ps conductivity dynamics of a conjugated polymer bulk heterojunction film P3HT:PCBM. We directly observe mobile charge generation dynamics on a sub-100 fs time scale.......Ultra-broadband time-resolved terahertz spectroscopy is used to examine the sub-ps conductivity dynamics of a conjugated polymer bulk heterojunction film P3HT:PCBM. We directly observe mobile charge generation dynamics on a sub-100 fs time scale....
Dittmann, Niklas; Splettstoesser, Janine; Helbig, Nicole
2018-04-01
We simulate the dynamics of a single-electron source, modeled as a quantum dot with on-site Coulomb interaction and tunnel coupling to an adjacent lead in time-dependent density-functional theory. Based on this system, we develop a time-nonlocal exchange-correlation potential by exploiting analogies with quantum-transport theory. The time nonlocality manifests itself in a dynamical potential step. We explicitly link the time evolution of the dynamical step to physical relaxation timescales of the electron dynamics. Finally, we discuss prospects for simulations of larger mesoscopic systems.
Unavailability Analysis of Dynamic Systems of which the Configuration Changes with Time
International Nuclear Information System (INIS)
Shin, Seung Ki; Seong, Poong Hyun
2011-01-01
A dynamic system has a state at any given time which can be represented by a point in an appropriate state space and it is much more difficult to estimate the reliability or availability than a static system. As the classic fault tree cannot be used to model the time requirements, dynamic fault tree methods have been developed for the analysis of dynamic systems. They are time-dependent fault trees, so they can capture the dynamic behaviors of the system failure mechanisms. There exist two types of dynamic fault trees to analyze various dynamic properties of the system failure mechanisms. One dynamic fault tree handles failure mechanisms composed of sequence-dependent events using dynamic gates and the other one handles failure mechanisms of which the system configuration changes with time using house event matrix. In this paper, the second dynamic failure mechanism is assessed using a reliability graph with general gates (RGGG) which is an extended reliability graph model and allows more intuitive modeling of target systems compared to the fault tree. In order for the RGGG method to analyze such dynamic failure mechanism, a novel concept of reliability matrix for the RGGG is introduced and Bayesian Networks are used to quantify the modeled RGGG. The proposed method provides much easier way to model dynamic systems and understand the actual structure of the system compared to the dynamic fault tree with house events
Real-Time Simulation of Coaxial Rotor Configurations with Combined Finite State Dynamic Wake and VPM
Zhao, Jinggen; He, Chengjian
2017-01-01
This paper describes a first-principle based finite state dynamic rotor wake model that addresses the complex aerodynamic interference inherent to coaxial rotor configurations in support of advanced vertical lift aircraft simulation, design, and analysis. The high fidelity rotor dynamic wake solution combines an enhanced real-time finite state dynamic wake model (DYW) with a first-principle based viscous Vortex Particle Method (VPM). The finite state dynamic wake model provides a state-spa...
Time-resolved infrared studies of protein conformational dynamics
Energy Technology Data Exchange (ETDEWEB)
Woodruff, W.H.; Causgrove, T.P.; Dyer, R.B. [Los Alamos National Laboratory, NM (United States); Callender, R.H. [Univ. of New York, NY (United States)
1994-12-01
We have demonstrated that TRIR in the amide I region gives structural information regarding protein conformational changes in realtime, both on processes involved in the development of the functional structure (protein folding) and on protein structural changes that accompany the functional dynamics of the native structure. Assignment of many of the amide I peaks to specific amide or sidechain structures will require much additional effort. Specifically, the congestion and complexity of the protein vibrational spectra dictate that isotope studies are an absolute requirement for more than a qualitative notion of the structural interpretation of these measurements. It is clear, however, that enormous potential exists for elucidating structural relaxation dynamics and energetics with a high degree of structural specificity using this approach.
A Dynamic Fuzzy Cluster Algorithm for Time Series
Directory of Open Access Journals (Sweden)
Min Ji
2013-01-01
clustering time series by introducing the definition of key point and improving FCM algorithm. The proposed algorithm works by determining those time series whose class labels are vague and further partitions them into different clusters over time. The main advantage of this approach compared with other existing algorithms is that the property of some time series belonging to different clusters over time can be partially revealed. Results from simulation-based experiments on geographical data demonstrate the excellent performance and the desired results have been obtained. The proposed algorithm can be applied to solve other clustering problems in data mining.
A Reparametrization Approach for Dynamic Space-Time Models
Lee, Hyeyoung; Ghosh, Sujit K.
2008-01-01
Researchers in diverse areas such as environmental and health sciences are increasingly working with data collected across space and time. The space-time processes that are generally used in practice are often complicated in the sense that the auto-dependence structure across space and time is non-trivial, often non-separable and non-stationary in space and time. Moreover, the dimension of such data sets across both space and time can be very large leading to computational difficulties due to...
DEFF Research Database (Denmark)
Kragh, Helge
in particular, materialists and positivists engaged in battle with Christian - mostly Catholic - scholars over the cosmological consequences of thermodynamics. This heated debate, which is today largely forgotten, is reconstructed and examined in detail in this book, bringing into focus key themes...
Directory of Open Access Journals (Sweden)
Korablev Grigoriy Andreevich
2014-12-01
Full Text Available The concept of entropy spatial-energy interactions is used to reflect the similar views on the statistical thermodynamics of entropy. The resulting nomogram is obtained for estimating the entropy of various processes. The authors discuss the variety of manifestations of entropy, including the biochemical processes in the economy. In living systems the entropy increase is offset by the negative entropy, which is formed through interaction with the external environment. Thus, a living system is an open system. And businesses can no longer be isolated systems without exchange process and the relationship with the external environment. The role of the external system reducing the increase in business entropy must perform, for example, relevant state and public structures, functionally separated from the business. Perhaps, inevitable process in this direction can be de-monopolization of the largest economic structures, carried out “on top” in an evolutionary way. In thermodynamics it is considered that the uncontrolled growth of entropy leads to the termination of any macroeconomic systems, that is, to their death. Therefore, the main task is to search for the methods of reducing the uncontrolled growth of entropy in big business. In addition, these critical numbers of entropy relate mainly to big business. A simple reduction of the number of its employees may not give the real result of a decrease in entropy. So, reduction of the number of employees by 10 % would decrease the entropy of only 0.6 % and this despite the general negative effects of unemployment, which inevitably accompanies such a process. Therefore, such sermonettes not controlled either by the state or society are aimed to reduce the entropy of the business in a more real way of demonopolization without optimization (that is, without reducing the total number of employees. Now the scientific world is puzzled by the intensification of technological processes on the basis of energy-saving technology, for example. This technique P-parameter can also be used in this promising direction.
Time and inequality in labor and family dynamics
Directory of Open Access Journals (Sweden)
Tomás Cano
2017-03-01
Full Text Available The social changes in last decades have modified the time use of individuals. However, how time is used varies according to the position occupied within the social structure. This paper argues that the social inequality in the power over the time use is increasing among different socioeconomic statuses, while social policies are failing in their equalizer potential. To do so, this essay critically synthetizes three recent published books covering the cases of United States, France and Spain. Three elements that shape the social organization of time are being discussed: (a the dependency among different social groups in time’s control and the endogeneity between family time and work time; (b the ambivalence of flexibility regarding its relation with gender and socioeconomic status; and (c the need for a new assessment of the social policies designated to protect the workers’ family time.
Strategic thinking in turbulent times
Directory of Open Access Journals (Sweden)
Bratianu Constantin
2017-07-01
Full Text Available The purpose of this paper is to present a structural analysis of strategic thinking spectrum in turbulent times. Business excellence cannot be achieved without a well-defined strategic thinking spectrum able to elaborate and implement strategies in a fast changeable and unpredictable business environment. Strategic thinking means to think for a desirable future which can be ahead 4-5 years of the present time and to make decisions to the best of our knowledge for that unknown business environment. Thus, the research question is: How can we conceive the spectrum of strategic thinking such that we shall be able to deal with a complex and unknown future in achieving a competitive advantage? The methodology used to answer this question is based on metaphorical thinking, and multidimensional analysis. I shall consider four main dimensions: time, complexity, uncertainty, and novelty. On each of these dimensions I shall analyze the known thinking models and their attributes with respect to request formulated in the research question. Then, I shall choose those thinking models that correspond to the future characteristics and integrate them in a continuous spectrum. On each dimension I shall consider three basic thinking models. On the time dimension they are: inertial, dynamic and entropic thinking. On the complexity dimension they are: linear, nonlinear and systemic thinking. On the uncertainty dimension they are: deterministic, probabilistic and chaotic thinking. Finally, on the novelty dimension we have: template, intelligent and creative thinking. Considering all requirements for the unknown future, we conclude that strategic thinking spectrum should contain: entropic, nonlinear and systemic, probabilistic and chaotic, intelligent and creative thinking models. Such a spectrum increases the capacity of our understanding and as a consequence it enhances the capability of making adequate decisions in conditions of complexity and uncertainty.
Role of network dynamics in shaping spike timing reliability
International Nuclear Information System (INIS)
Bazhenov, Maxim; Rulkov, Nikolai F.; Fellous, Jean-Marc; Timofeev, Igor
2005-01-01
We study the reliability of cortical neuron responses to periodically modulated synaptic stimuli. Simple map-based models of two different types of cortical neurons are constructed to replicate the intrinsic resonances of reliability found in experimental data and to explore the effects of those resonance properties on collective behavior in a cortical network model containing excitatory and inhibitory cells. We show that network interactions can enhance the frequency range of reliable responses and that the latter can be controlled by the strength of synaptic connections. The underlying dynamical mechanisms of reliability enhancement are discussed
Time and inequality in labor and family dynamics
Tomás Cano
2017-01-01
The social changes in last decades have modified the time use of individuals. However, how time is used varies according to the position occupied within the social structure. This paper argues that the social inequality in the power over the time use is increasing among different socioeconomic statuses, while social policies are failing in their equalizer potential. To do so, this essay critically synthetizes three recent published books covering the cases of United States, France and Spain. ...
Can Real-Time Systems Benefit from Dynamic Partial Reconfiguration?
DEFF Research Database (Denmark)
Pezzarossa, Luca; Kristensen, Andreas Toftegaard; Schoeberl, Martin
2017-01-01
In real-time systems, a solution where hardware accelerators are used to implement computationally intensive tasks can be easier to analyze, in terms of worst-case execution time (WCET), than a pure software solution. However, when using FPGAs, the amount and the complexity of the hardware...... hardware accelerators in real-time systems and presents an experimental analysis of the trade-offs between hardware utilization and WCET increase due to the reconfiguration time overhead of DPR. We also investigate the trade-off between the use of multiple specialized accelerators combined with DPR instead...
On synchronized regions of discrete-time complex dynamical networks
International Nuclear Information System (INIS)
Duan Zhisheng; Chen Guanrong
2011-01-01
In this paper, the local synchronization of discrete-time complex networks is studied. First, it is shown that for any natural number n, there exists a discrete-time network which has at least left floor n/2 right floor +1 disconnected synchronized regions for local synchronization, which implies the possibility of intermittent synchronization behaviors. Different from the continuous-time networks, the existence of an unbounded synchronized region is impossible for discrete-time networks. The convexity of the synchronized regions is also characterized based on the stability of a class of matrix pencils, which is useful for enlarging the stability region so as to improve the network synchronizability.
Real-time visualization of dynamic particle contact failures
Energy Technology Data Exchange (ETDEWEB)
Parab, Niranjan D.; Hudspeth, Matthew; Claus, Ben; Guo, Zherui; Sun, Tao; Fezzaa, Kamel; Chen, Weinong W.
2017-01-01
Granular materials are widely used to resist impact and blast. Under these dynamic loadings, the constituent particles in the granular system fracture. To study the fracture mechanisms in brittle particles under dynamic compressive loading, a high speed X-ray phase contrast imaging setup was synchronized with a Kolsky bar apparatus. Controlled compressive loading was applied on two contacting particles using the Kolsky bar apparatus and fracture process was captured using the high speed X-ray imaging setup. Five different particles were investigated: soda-lime glass, polycrystalline silica (silicon dioxide), polycrystalline silicon, barium titanate glass, and yttrium stabilized zirconia. For both soda lime glass and polycrystalline silica particles, one of the particles fragmented explosively, thus breaking into many small pieces. For Silicon and barium titanate glass particles, a finite number of cracks were observed in one of the particles causing it to fracture. For yttrium stabilized zirconia particles, a single meridonial crack developed in one of the particles, breaking it into two parts.
Run-time Phenomena in Dynamic Software Updating: Causes and Effects
DEFF Research Database (Denmark)
Gregersen, Allan Raundahl; Jørgensen, Bo Nørregaard
2011-01-01
The development of a dynamic software updating system for statically-typed object-oriented programming languages has turned out to be a challenging task. Despite the fact that the present state of the art in dynamic updating systems, like JRebel, Dynamic Code Evolution VM, JVolve and Javeleon, all...... written in statically-typed object-oriented programming languages. In this paper, we present our experience from developing dynamically updatable applications using a state-of-the-art dynamic updating system for Java. We believe that the findings presented in this paper provide an important step towards...... provide very transparent and flexible technical solutions to dynamic updating, case studies have shown that designing dynamically updatable applications still remains a challenging task. This challenge has its roots in a number of run-time phenomena that are inherent to dynamic updating of applications...
dynamic-threshold-limited timed-token (dtltt) protocol
African Journals Online (AJOL)
2013-03-01
Mar 1, 2013 ... Token (STOGSTT) Media Access Control (MAC) protocol for channel capacity allocation to the asynchronous traffic in ... Keywords: multi-access, multiservice, network, synchronous, asynchronous, traffic, timed-token. 1. Introduction .... Messages generated in the system at run time may be classified as ...
Time-resolved Femtosecond Photon Echo Probes Bimodal Solvent Dynamics
Pshenichnikov, M.S; Duppen, K.; Wiersma, D. A.
1995-01-01
We report on time-resolved femtosecond photon echo experiments of a dye molecule in a polar solution. The photon echo is time resolved by mixing the echo with a femtosecond gate pulse in a nonlinear crystal. It is shown that the temporal profile of the photon echo allows separation of the
Dynamics at Intermediate Time Scales and Management of Ecological Populations
2017-05-10
thinking about the importance of transients is to recognize the importance of serial autocorrelation in time of forcing terms over realistic ecological time...rich areas helps produce divergent home range responses bet - ween individuals from difference age classes. This model has broad applications for
DEFF Research Database (Denmark)
Lacevic, N.; Starr, F. W.; Schrøder, Thomas
2003-01-01
correlation function g4(r,t) and corresponding "structure factor" S4(q,t) which measure the spatial correlations between the local liquid density at two points in space, each at two different times, and so are sensitive to dynamical heterogeneity. We study g4(r,t) and S4(q,t) via molecular dynamics......Relaxation in supercooled liquids above their glass transition and below the onset temperature of "slow" dynamics involves the correlated motion of neighboring particles. This correlated motion results in the appearance of spatially heterogeneous dynamics or "dynamical heterogeneity." Traditional...... two-point time-dependent density correlation functions, while providing information about the transient "caging" of particles on cooling, are unable to provide sufficiently detailed information about correlated motion and dynamical heterogeneity. Here, we study a four-point, time-dependent density...
Labour Market Dynamics in Times of Crisis: Evidence from Africa ...
International Development Research Centre (IDRC) Digital Library (Canada)
... from Kenya, researchers will track how the labour trajectories for men and women change over time, and the links between firm outcomes and labour markets. ... Addressing Africa's unmet need for family planning by intensifying sexual and ...
Multiple dynamical time-scales in networks with hierarchically
Indian Academy of Sciences (India)
Modular networks; hierarchical organization; synchronization. ... we show that such a topological structure gives rise to characteristic time-scale separation ... This suggests a possible functional role of such mesoscopic organization principle in ...
The arrow of time in the dynamic theory
International Nuclear Information System (INIS)
Williams, P.E.
1981-02-01
A newly proposed, and as yet unverified, theory provides new answers to the old questions concerning the symmetry of time in nature. The theory requires an asymmetry in time for systems whose Newtonian or relativistic description is symmetrical. This is accompanied with the prediction that the universe must forever grow older and continually expand, and provides new insight on the extreme red shift of quasars
Geometry and dynamics with time-dependent constraints
Evans, Jonathan M.; Jonathan M Evans; Philip A Tuckey
1995-01-01
We describe how geometrical methods can be applied to a system with explicitly time-dependent second-class constraints so as to cast it in Hamiltonian form on its physical phase space. Examples of particular interest are systems which require time-dependent gauge fixing conditions in order to reduce them to their physical degrees of freedom. To illustrate our results we discuss the gauge-fixing of relativistic particles and strings moving in arbitrary background electromagnetic and antisymmetric tensor fields.
Testing for time-varying loadings in dynamic factor models
DEFF Research Database (Denmark)
Mikkelsen, Jakob Guldbæk
Abstract: In this paper we develop a test for time-varying factor loadings in factor models. The test is simple to compute and is constructed from estimated factors and residuals using the principal components estimator. The hypothesis is tested by regressing the squared residuals on the squared...... there is evidence of time-varying loadings on the risk factors underlying portfolio returns for around 80% of the portfolios....
Beyond the dynamical universe unifying block universe physics and time as experienced
Silberstein, Michael; McDevitt, Timothy
2018-01-01
Theoretical physics and foundations of physics have not made much progress in the last few decades. Whether we are talking about unifying general relativity and quantum field theory (quantum gravity), explaining so-called dark energy and dark matter (cosmology), or the interpretation and implications of quantum mechanics and relativity, there is no consensus in sight. In addition, both enterprises are deeply puzzled about various facets of time including above all, time as experienced. The authors argue that, across the board, this impasse is the result of the "dynamical universe paradigm," the idea that reality is fundamentally made up of physical entities that evolve in time from some initial state according to dynamical laws. Thus, in the dynamical universe, the initial conditions plus the dynamical laws explain everything else going exclusively forward in time. In cosmology, for example, the initial conditions reside in the Big Bang and the dynamical law is supplied by general relativity. Accordingly, th...
What does scalar timing tell us about neural dynamics?
Directory of Open Access Journals (Sweden)
Harel Z Shouval
2014-06-01
Full Text Available The Scalar Timing Law, which is a temporal domain generalization of the well known Weber Law, states that the errors in estimating temporal intervals scale linearly with the durations of the intervals. Linear scaling has been studied extensively in human and animal models and holds over several orders of magnitude, though to date there is no agreed upon explanation for its physiological basis. Starting from the assumption that behavioral variability stems from neural variability, this work shows how to derive firing rate functions that are consistent with scalar timing. We show that firing rate functions with a log-power form, and a set of parameters that depend on spike count statistics, can account for scalar timing. Our derivation depends on a linear approximation, but we use simulations to validate the theory and show that log-power firing rate functions result in scalar timing over a large range of times and parameters.Simulation results also show that our theory as first posed exhibits a slight bias towards overestimation.We show that this bias can be corrected using a simple iterative approach to learn a decision threshold.
Global Format for Conservative Time Integration in Nonlinear Dynamics
DEFF Research Database (Denmark)
Krenk, Steen
2014-01-01
The widely used classic collocation-based time integration procedures like Newmark, Generalized-alpha etc. generally work well within a framework of linear problems, but typically may encounter problems, when used in connection with essentially nonlinear structures. These problems are overcome....... In the present paper a conservative time integration algorithm is developed in a format using only the internal forces and the associated tangent stiffness at the specific time integration points. Thus, the procedure is computationally very similar to a collocation method, consisting of a series of nonlinear...... equivalent static load steps, easily implemented in existing computer codes. The paper considers two aspects: representation of nonlinear internal forces in a form that implies energy conservation, and the option of an algorithmic damping with the purpose of extracting energy from undesirable high...
Ning, Boda; Jin, Jiong; Zheng, Jinchuan; Man, Zhihong
2018-06-01
This paper is concerned with finite-time and fixed-time consensus of multi-agent systems in a leader-following framework. Different from conventional leader-following tracking approaches where inherent dynamics satisfying the Lipschitz continuous condition is required, a more generalised case is investigated: discontinuous inherent dynamics. By nonsmooth techniques, a nonlinear protocol is first proposed to achieve the finite-time leader-following consensus. Then, based on fixed-time stability strategies, the fixed-time leader-following consensus problem is solved. An upper bound of settling time is obtained by using a new protocol, and such a bound is independent of initial states, thereby providing additional options for designers in practical scenarios where initial conditions are unavailable. Finally, numerical simulations are provided to demonstrate the effectiveness of the theoretical results.
Time-limited optimal dynamics beyond the Quantum Speed Limit
DEFF Research Database (Denmark)
Gajdacz, Miroslav; Das, Kunal K.; Arlt, Jan
2015-01-01
The quantum speed limit sets the minimum time required to transfer a quantum system completely into a given target state. At shorter times the higher operation speed has to be paid with a loss of fidelity. Here we quantify the trade-off between the fidelity and the duration in a system driven......-off expressed in terms of the direct Hilbert velocity provides a robust prediction of the quantum speed limit and allows to adapt the control optimization such that it yields a predefined fidelity. The results are verified numerically in a multilevel system with a constrained Hamiltonian, and a classification...
Labour Market Dynamics in Times of Crisis: Evidence from Africa ...
International Development Research Centre (IDRC) Digital Library (Canada)
By examining recent panel data from Ghana, Madagascar, South Africa and Uganda, plus cross-sectional data from Kenya, researchers will track how the labour trajectories for men and women change over time, and the links between firm outcomes and labour markets. It is hoped that the ... Date de début. 15 mars 2011 ...
Improving the Timed Automata Approach to Biological Pathway Dynamics
Langerak, R.; Pol, Jaco van de; Post, Janine N.; Schivo, Stefano; Aceto, Luca; Bacci, Giorgio; Bacci, Giovanni; Ingólfsdóttir, Anna; Legay, Axel; Mardare, Radu
2017-01-01
Biological systems such as regulatory or gene networks can be seen as a particular type of distributed systems, and for this reason they can be modeled within the Timed Automata paradigm, which was developed in the computer science context. However, tools designed to model distributed systems often
Dynamic-Threshold-Limited Timed-Token (DTLTT) Protocol | Kalu ...
African Journals Online (AJOL)
An improved version of the Static-Threshold-Limited On-Demand Guaranteed Service Timed-Token (STOGSTT) Media Access Control (MAC) protocol for channel capacity allocation to the asynchronous trac in Multiservice Local Area Network (MLANs) was developed and analyzed. TLODGSTT protocol uses static value of ...
Algebraic time-dependent variational approach to dynamical calculations
International Nuclear Information System (INIS)
Shi, S.; Rabitz, H.
1988-01-01
A set of time-dependent basis states is obtained with a group of unitary transformations generated by a Lie algebra. Applying the time-dependent variational principle to the trial function subspace constructed from the linear combination of the time-dependent basis states gives rise to a set of ''classical'' equations of motion for the group parameters and the expansion coefficients from which the time evolution of the system state can be determined. The formulation is developed for a general Lie algebra as well as for the commonly encountered algebra containing homogeneous polynominal products of the coordinate Q and momentum P operators (or equivalently the boson creation a/sup dagger/ and annihilation a operators) of order 0, 1, and 2. Explicit expressions for the transition amplitudes are derived by virtue of the cannonical transformation properties of the unitary transformation. The applicability of the present formalism in a variety of problems is implied by two illustrative examples: (a) a parametric amplifier; (b) the collinear collision of an atom with a Morse oscillator
Quantum dynamics via a time propagator in Wigner's phase space
DEFF Research Database (Denmark)
Grønager, Michael; Henriksen, Niels Engholm
1995-01-01
We derive an expression for a short-time phase space propagator. We use it in a new propagation scheme and demonstrate that it works for a Morse potential. The propagation scheme is used to propagate classical distributions which do not obey the Heisenberg uncertainty principle. It is shown that ...... as a part of the sampling function. ©1995 American Institute of Physics....
Time Resolved Broadband Terahertz Relaxation Dynamics of Electron in Water
DEFF Research Database (Denmark)
Wang, Tianwu; Iwaszczuk, Krzysztof; Cooke, David G.
We investigated the transient response of the solvated electron in water ejected by photodetachment from potassium ferrocyanide using time resolved terahertz spectroscopy (TSTS). Ultrabroadband THz transients are generated and detected by a two-color femtosecond-induced air plasma and air biased...
Online Synchrophasor-Based Dynamic State Estimation using Real-Time Digital Simulator
DEFF Research Database (Denmark)
Khazraj, Hesam; Adewole, Adeyemi Charles; Udaya, Annakkage
2018-01-01
Dynamic state estimation is a very important control center application used in the dynamic monitoring of state variables. This paper presents and validates a time-synchronized phasor measurement unit (PMU)-based for dynamic state estimation by unscented Kalman filter (UKF) method using the real-...... using the RTDS (real-time digital simulator). The dynamic state variables of multi-machine systems are monitored and measured for the study on the transient behavior of power systems.......Dynamic state estimation is a very important control center application used in the dynamic monitoring of state variables. This paper presents and validates a time-synchronized phasor measurement unit (PMU)-based for dynamic state estimation by unscented Kalman filter (UKF) method using the real......-time digital simulator (RTDS). The dynamic state variables of the system are the rotor angle and speed of the generators. The performance of the UKF method is tested with PMU measurements as inputs using the IEEE 14-bus test system. This test system was modeled in the RSCAD software and tested in real time...
Wang, Dong; Ming, Fei; Huang, Ai-Jun; Sun, Wen-Yang; Ye, Liu
2017-09-01
The uncertainty principle configures a low bound to the measuring precision for a pair of non-commuting observables, and hence is considerably nontrivial to quantum precision measurement in the field of quantum information theory. In this letter, we consider the entropic uncertainty relation (EUR) in the context of quantum memory in a two-qubit isotropic Heisenberg spin chain. Specifically, we explore the dynamics of EUR in a practical scenario, where two associated nodes of a one-dimensional XXX-spin chain, under an inhomogeneous magnetic field, are connected to a thermal entanglement. We show that the temperature and magnetic field effect can lead to the inflation of the measuring uncertainty, stemming from the reduction of systematic quantum correlation. Notably, we reveal that, firstly, the uncertainty is not fully dependent on the observed quantum correlation of the system; secondly, the dynamical behaviors of the measuring uncertainty are relatively distinct with respect to ferromagnetism and antiferromagnetism chains. Meanwhile, we deduce that the measuring uncertainty is dramatically correlated with the mixedness of the system, implying that smaller mixedness tends to reduce the uncertainty. Furthermore, we propose an effective strategy to control the uncertainty of interest by means of quantum weak measurement reversal. Therefore, our work may shed light on the dynamics of the measuring uncertainty in the Heisenberg spin chain, and thus be important to quantum precision measurement in various solid-state systems.
Performing dynamic time history analyses by extension of the response spectrum method
International Nuclear Information System (INIS)
Hulbert, G.M.
1983-01-01
A method is presented to calculate the dynamic time history response of finite-element models using results from response spectrum analyses. The proposed modified time history method does not represent a new mathamatical approach to dynamic analysis but suggests a more efficient ordering of the analytical equations and procedures. The modified time history method is considerably faster and less expensive to use than normal time hisory methods. This paper presents the theory and implementation of the modified time history approach along with comparisons of the modified and normal time history methods for a prototypic seismic piping design problem
Nonlinear MHD dynamics of tokamak plasmas on multiple time scales
International Nuclear Information System (INIS)
Kruger, S.E.; Schnack, D.D.; Brennan, D.P.; Gianakon, T.A.; Sovinec, C.R.
2003-01-01
Two types of numerical, nonlinear simulations using the NIMROD code are presented. In the first simulation, we model the disruption occurring in DIII-D discharge 87009 as an ideal MHD instability driven unstable by neutral-beam heating. The mode grows faster than exponential, but on a time scale that is a hybrid of the heating rate and the ideal MHD growth rate as predicted by analytic theory. The second type of simulations, which occur on a much longer time scale, focus on the seeding of tearing modes by sawteeth. Pressure effects play a role both in the exterior region solutions and in the neoclassical drive terms. The results of both simulations are reviewed and their implications for experimental analysis is discussed. (author)
Transcriptional dynamics with time-dependent reaction rates
Nandi, Shubhendu; Ghosh, Anandamohan
2015-02-01
Transcription is the first step in the process of gene regulation that controls cell response to varying environmental conditions. Transcription is a stochastic process, involving synthesis and degradation of mRNAs, that can be modeled as a birth-death process. We consider a generic stochastic model, where the fluctuating environment is encoded in the time-dependent reaction rates. We obtain an exact analytical expression for the mRNA probability distribution and are able to analyze the response for arbitrary time-dependent protocols. Our analytical results and stochastic simulations confirm that the transcriptional machinery primarily act as a low-pass filter. We also show that depending on the system parameters, the mRNA levels in a cell population can show synchronous/asynchronous fluctuations and can deviate from Poisson statistics.
Transcriptional dynamics with time-dependent reaction rates
International Nuclear Information System (INIS)
Nandi, Shubhendu; Ghosh, Anandamohan
2015-01-01
Transcription is the first step in the process of gene regulation that controls cell response to varying environmental conditions. Transcription is a stochastic process, involving synthesis and degradation of mRNAs, that can be modeled as a birth–death process. We consider a generic stochastic model, where the fluctuating environment is encoded in the time-dependent reaction rates. We obtain an exact analytical expression for the mRNA probability distribution and are able to analyze the response for arbitrary time-dependent protocols. Our analytical results and stochastic simulations confirm that the transcriptional machinery primarily act as a low-pass filter. We also show that depending on the system parameters, the mRNA levels in a cell population can show synchronous/asynchronous fluctuations and can deviate from Poisson statistics. (paper)
Dynamic scheduling and analysis of real time systems with multiprocessors
Directory of Open Access Journals (Sweden)
M.D. Nashid Anjum
2016-08-01
Full Text Available This research work considers a scenario of cloud computing job-shop scheduling problems. We consider m realtime jobs with various lengths and n machines with different computational speeds and costs. Each job has a deadline to be met, and the profit of processing a packet of a job differs from other jobs. Moreover, considered deadlines are either hard or soft and a penalty is applied if a deadline is missed where the penalty is considered as an exponential function of time. The scheduling problem has been formulated as a mixed integer non-linear programming problem whose objective is to maximize net-profit. The formulated problem is computationally hard and not solvable in deterministic polynomial time. This research work proposes an algorithm named the Tube-tap algorithm as a solution to this scheduling optimization problem. Extensive simulation shows that the proposed algorithm outperforms existing solutions in terms of maximizing net-profit and preserving deadlines.
String dynamics in curved space-time revisited
International Nuclear Information System (INIS)
Marrakchi, A.L.; Singh, L.P.
1989-09-01
The equations of motion of the general background of curved space-time, Einstein's equations, are derived simply by demanding the renormalized energy-momentum tensor of a bosonic string propagating in this background to be traceless. The energy-momentum tensor of such a string is then separable into a holomorphic and an antiholomorphic parts as a consequence of the conformal invariance of the theory regained at the quantum level. (author). 8 refs
The grounds for time dependent market potentials from dealers' dynamics
Yamada, K.; Takayasu, H.; Takayasu, M.
2008-06-01
We apply the potential force estimation method to artificial time series of market price produced by a deterministic dealer model. We find that dealers’ feedback of linear prediction of market price based on the latest mean price changes plays the central role in the market’s potential force. When markets are dominated by dealers with positive feedback the resulting potential force is repulsive, while the effect of negative feedback enhances the attractive potential force.
Timing of Investment and Dynamic Pricing in Privatized Sectors
Sandro Brusco; Ornella Tarola; Sandro Trento
2012-01-01
In equipment-intensive sectors - such as water utilities, power generation, gas - billions of dollars are spent in capital equipment. We discuss and characterize the optimal policy of a profit-maximizing firm and compare it with the optimal policy of a welfare-maximizing planner. When there is no technical progress, the duration of the plant is longer for a private firm. With technical progress, we show that duration tends to increase when the installed capacity increases over time, while it ...
Coding space-time stimulus dynamics in auditory brain maps
Directory of Open Access Journals (Sweden)
Yunyan eWang
2014-04-01
Full Text Available Sensory maps are often distorted representations of the environment, where ethologically-important ranges are magnified. The implication of a biased representation extends beyond increased acuity for having more neurons dedicated to a certain range. Because neurons are functionally interconnected, non-uniform representations influence the processing of high-order features that rely on comparison across areas of the map. Among these features are time-dependent changes of the auditory scene generated by moving objects. How sensory representation affects high order processing can be approached in the map of auditory space of the owl’s midbrain, where locations in the front are over-represented. In this map, neurons are selective not only to location but also to location over time. The tuning to space over time leads to direction selectivity, which is also topographically organized. Across the population, neurons tuned to peripheral space are more selective to sounds moving into the front. The distribution of direction selectivity can be explained by spatial and temporal integration on the non-uniform map of space. Thus, the representation of space can induce biased computation of a second-order stimulus feature. This phenomenon is likely observed in other sensory maps and may be relevant for behavior.
Decision dynamics of departure times: Experiments and modeling
Sun, Xiaoyan; Han, Xiao; Bao, Jian-Zhang; Jiang, Rui; Jia, Bin; Yan, Xiaoyong; Zhang, Boyu; Wang, Wen-Xu; Gao, Zi-You
2017-10-01
A fundamental problem in traffic science is to understand user-choice behaviors that account for the emergence of complex traffic phenomena. Despite much effort devoted to theoretically exploring departure time choice behaviors, relatively large-scale and systematic experimental tests of theoretical predictions are still lacking. In this paper, we aim to offer a more comprehensive understanding of departure time choice behaviors in terms of a series of laboratory experiments under different traffic conditions and feedback information provided to commuters. In the experiment, the number of recruited players is much larger than the number of choices to better mimic the real scenario, in which a large number of commuters will depart simultaneously in a relatively small time window. Sufficient numbers of rounds are conducted to ensure the convergence of collective behavior. Experimental results demonstrate that collective behavior is close to the user equilibrium, regardless of different scales and traffic conditions. Moreover, the amount of feedback information has a negligible influence on collective behavior but has a relatively stronger effect on individual choice behaviors. Reinforcement learning and Fermi learning models are built to reproduce the experimental results and uncover the underlying mechanism. Simulation results are in good agreement with the experimentally observed collective behaviors.
Quantifying evolutionary dynamics from variant-frequency time series
Khatri, Bhavin S.
2016-09-01
From Kimura’s neutral theory of protein evolution to Hubbell’s neutral theory of biodiversity, quantifying the relative importance of neutrality versus selection has long been a basic question in evolutionary biology and ecology. With deep sequencing technologies, this question is taking on a new form: given a time-series of the frequency of different variants in a population, what is the likelihood that the observation has arisen due to selection or neutrality? To tackle the 2-variant case, we exploit Fisher’s angular transformation, which despite being discovered by Ronald Fisher a century ago, has remained an intellectual curiosity. We show together with a heuristic approach it provides a simple solution for the transition probability density at short times, including drift, selection and mutation. Our results show under that under strong selection and sufficiently frequent sampling these evolutionary parameters can be accurately determined from simulation data and so they provide a theoretical basis for techniques to detect selection from variant or polymorphism frequency time-series.
Hancock, R
2018-04-01
The view of the cell nucleus as a crowded system of colloid particles and that chromosomes are giant self-avoiding polymers is stimulating rapid advances in our understanding of its structure and activities, thanks to concepts and experimental methods from colloid, polymer, soft matter, and nano sciences and to increased computational power for simulating macromolecules and polymers. This review summarizes current understanding of some characteristics of the molecular environment in the nucleus, of how intranuclear compartments are formed, and of how the genome is highly but precisely compacted, and underlines the crucial, subtle, and sometimes unintuitive effects on structures and reactions of entropic forces caused by the high concentration of macromolecules in the nucleus.
Bounds on topological Abelian string-vortex and string-cigar from information-entropic measure
Energy Technology Data Exchange (ETDEWEB)
Correa, R.A.C., E-mail: rafael.couceiro@ufabc.edu.br [CCNH, Universidade Federal do ABC (UFABC), 09210-580, Santo André, SP (Brazil); Dantas, D.M., E-mail: davi@fisica.ufc.br [Universidade Federal do Ceará (UFC), 60455-760, Fortaleza, CE (Brazil); Almeida, C.A.S., E-mail: carlos@fisica.ufc.br [Universidade Federal do Ceará (UFC), Departamento de Física, 60455-760, Fortaleza, CE (Brazil); Rocha, Roldão da, E-mail: roldao.rocha@ufabc.edu.br [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC (UFABC), 09210-580, Santo André, SP (Brazil)
2016-04-10
In this work we obtain bounds on the topological Abelian string-vortex and on the string-cigar, by using a new measure of configurational complexity, known as configurational entropy. In this way, the information-theoretical measure of six-dimensional braneworlds scenarios is capable to probe situations where the parameters responsible for the brane thickness are arbitrary. The so-called configurational entropy (CE) selects the best value of the parameter in the model. This is accomplished by minimizing the CE, namely, by selecting the most appropriate parameters in the model that correspond to the most organized system, based upon the Shannon information theory. This information-theoretical measure of complexity provides a complementary perspective to situations where strictly energy-based arguments are inconclusive. We show that the higher the energy the higher the CE, what shows an important correlation between the energy of the a localized field configuration and its associated entropic measure.
Free energy calculations along entropic pathways. III. Nucleation of capillary bridges and bubbles
Desgranges, Caroline; Delhommelle, Jerome
2017-05-01
Using molecular simulation, we analyze the capillary condensation and evaporation processes for argon confined in a cylindrical nanopore. For this purpose, we define the entropy of the adsorbed fluid as a reaction coordinate and determine the free energy associated with both processes along entropic pathways. For capillary condensation, we identify a complex free energy profile resulting from the multi-stage nature of this phenomenon. We find capillary condensation to proceed through the nucleation of a liquid bridge across the nanopore, followed by its expansion throughout the pore to give rise to the stable phase of high density. In the case of capillary evaporation, the free energy profile along the entropy pathway also exhibits different regimes, corresponding to the initial destabilization of the layered structure of the fluid followed by the formation, and subsequent expansion, of a bubble across the nanopore.
Entropic solvation force between surfaces modified by grafted chains: a density functional approach
Directory of Open Access Journals (Sweden)
O. Pizio
2010-01-01
Full Text Available The behavior of a hard sphere fluid in slit-like pores with walls modified by grafted chain molecules composed of hard sphere segments is studied using density functional theory. The chains are grafted to opposite walls via terminating segments forming pillars. The effects of confinement and of "chemical" modification of pore walls on the entropic solvation force are investigated in detail. We observe that in the absence of adsorbed fluid the solvation force is strongly repulsive for narrow pores and attractive for wide pores. In the presence of adsorbed fluid both parts of the curve of the solvation force may develop oscillatory behavior dependent on the density of pillars, the number of segments and adsorption conditions. Also, the size ratio between adsorbed fluid species and chain segments is of importance for the development of oscillations. The choice of these parameters is crucial for efficient manipulation of the solvation force as desired for pores of different width.
Phenomenon of entropic stochastic resonance with asymmetric dichotomous noise and white noise
International Nuclear Information System (INIS)
Guo, Feng; Li, Shao-Fu; Cheng, Xiao-Feng
2012-01-01
The entropic stochastic resonance (ESR) in a confined system subject to asymmetric dichotomous noise, white noise, and a periodic square-wave signal is investigated. Under the adiabatic approximation condition, by use of the properties of the dichotomous noise, we obtain the expression of the output signal-to-noise ratio (SNR) based on two-state theory. The SNR is shown to be a nonmonotonic function of the strength and asymmetry of the dichotomous noise, the intensity of the white noise, and the amplitude of the square-wave signal. The SNR varies non-monotonically with increases in the parameters of the confined structure. The influence of the correlation rate of the dichotomous noise and the frequency of the external constant force on the SNR is also discussed.
First law of thermodynamics on holographic screens in entropic force frame
International Nuclear Information System (INIS)
Chen Yixin; Li Jianlong
2011-01-01
Imposing a mathematical definition of holographic screen, in the spirit of Verlinde's entropic force proposal (E.P. Verlinde, (arXiv:1001.0785)), we give the differential and integral form of the first law of thermodynamics on the holographic screen enclosing a spherical symmetric black hole. It is consistent with equipartition principle and the form of Komar mass. There are also other version of first law, which are equivalent up to a Legendre transformation. The holographic screen thermodynamics is defined in a quasi-local form, which is the main difference to black hole thermodynamics. Thus, the physical interpretation of holographic screen thermodynamics might be different from black hole thermodynamics. We argue that the entropy of the holographic screen determines its area, i.e. S=A/4 . And the metric can be expressed by thermodynamics variables, which is an illustration of how the space is foliated by the thermodynamical potentials.
Time scales of the stick–slip dynamics of the peeling of an adhesive tape
Mishra, Nachiketa; Parida, Nigam Chandra; Raha, Soumyendu
2015-01-01
The stick–slip dynamics of the peeling of an adhesive tape is characterized by bifurcations that have been experimentally well studied. In this work, we investigate the time scale in which the the stick–slips happen leading to the bifurcations. This is fundamental to understanding the triboluminescence and acoustic emissions associated with the bifurcations. We establish a relationship between the time scale of the bifurcations and the inherent mathematical structure of the peeling dynamics by studying a characteristic time quantity associated with the dynamics. PMID:25663802
The multiple time scales of sleep dynamics as a challenge for modelling the sleeping brain.
Olbrich, Eckehard; Claussen, Jens Christian; Achermann, Peter
2011-10-13
A particular property of the sleeping brain is that it exhibits dynamics on very different time scales ranging from the typical sleep oscillations such as sleep spindles and slow waves that can be observed in electroencephalogram (EEG) segments of several seconds duration over the transitions between the different sleep stages on a time scale of minutes to the dynamical processes involved in sleep regulation with typical time constants in the range of hours. There is an increasing body of work on mathematical and computational models addressing these different dynamics, however, usually considering only processes on a single time scale. In this paper, we review and present a new analysis of the dynamics of human sleep EEG at the different time scales and relate the findings to recent modelling efforts pointing out both the achievements and remaining challenges.
Time-resolved imaging of purely valence-electron dynamics during a chemical reaction
DEFF Research Database (Denmark)
Hockett, Paul; Bisgaard, Christer Z.; Clarkin, Owen J.
2011-01-01
Chemical reactions are manifestations of the dynamics of molecular valence electrons and their couplings to atomic motions. Emerging methods in attosecond science can probe purely electronic dynamics in atomic and molecular systems(1-6). By contrast, time-resolved structural-dynamics methods...... such as electron(7-10) or X-ray diffraction(11) and X-ray absorption(12) yield complementary information about the atomic motions. Time-resolved methods that are directly sensitive to both valence-electron dynamics and atomic motions include photoelectron spectroscopy(13-15) and high-harmonic generation(16......,17): in both cases, this sensitivity derives from the ionization-matrix element(18,19). Here we demonstrate a time-resolved molecular-frame photoelectron-angular-distribution (TRMFPAD) method for imaging the purely valence-electron dynamics during a chemical reaction. Specifically, the TRMFPADs measured during...
Positivity-preserving dual time stepping schemes for gas dynamics
Parent, Bernard
2018-05-01
A new approach at discretizing the temporal derivative of the Euler equations is here presented which can be used with dual time stepping. The temporal discretization stencil is derived along the lines of the Cauchy-Kowalevski procedure resulting in cross differences in spacetime but with some novel modifications which ensure the positivity of the discretization coefficients. It is then shown that the so-obtained spacetime cross differences result in changes to the wave speeds and can thus be incorporated within Roe or Steger-Warming schemes (with and without reconstruction-evolution) simply by altering the eigenvalues. The proposed approach is advantaged over alternatives in that it is positivity-preserving for the Euler equations. Further, it yields monotone solutions near discontinuities while exhibiting a truncation error in smooth regions less than the one of the second- or third-order accurate backward-difference-formula (BDF) for either small or large time steps. The high resolution and positivity preservation of the proposed discretization stencils are independent of the convergence acceleration technique which can be set to multigrid, preconditioning, Jacobian-free Newton-Krylov, block-implicit, etc. Thus, the current paper also offers the first implicit integration of the time-accurate Euler equations that is positivity-preserving in the strict sense (that is, the density and temperature are guaranteed to remain positive). This is in contrast to all previous positivity-preserving implicit methods which only guaranteed the positivity of the density, not of the temperature or pressure. Several stringent reacting and inert test cases confirm the positivity-preserving property of the proposed method as well as its higher resolution and higher computational efficiency over other second-order and third-order implicit temporal discretization strategies.
Dynamic backcalculation with different load-time histories
DEFF Research Database (Denmark)
Madsen, Stine Skov; Levenberg, Eyal
2017-01-01
This paper focused attention to the falling weight deflectometer (FWD) load-time history. For a commonly used device, it studied the pulse generation mechanism and the influence of different load histories on backcalculation results. In this connection, a semi-analytic impact theory was first...... for an experimental dataset that resulted from operating an FWD with different loading configurations. It was found that backcalculated parameters are sensitive to the FWD pulse features. Consequently, it is recommended that, whenever advanced pavement characterisation is sought, experimental attention should...
Modelling nematode movement using time-fractional dynamics.
Hapca, Simona; Crawford, John W; MacMillan, Keith; Wilson, Mike J; Young, Iain M
2007-09-07
We use a correlated random walk model in two dimensions to simulate the movement of the slug parasitic nematode Phasmarhabditis hermaphrodita in homogeneous environments. The model incorporates the observed statistical distributions of turning angle and speed derived from time-lapse studies of individual nematode trails. We identify strong temporal correlations between the turning angles and speed that preclude the case of a simple random walk in which successive steps are independent. These correlated random walks are appropriately modelled using an anomalous diffusion model, more precisely using a fractional sub-diffusion model for which the associated stochastic process is characterised by strong memory effects in the probability density function.
Dynamic thermal signature prediction for real-time scene generation
Christie, Chad L.; Gouthas, Efthimios (Themie); Williams, Owen M.; Swierkowski, Leszek
2013-05-01
At DSTO, a real-time scene generation framework, VIRSuite, has been developed in recent years, within which trials data are predominantly used for modelling the radiometric properties of the simulated objects. Since in many cases the data are insufficient, a physics-based simulator capable of predicting the infrared signatures of objects and their backgrounds has been developed as a new VIRSuite module. It includes transient heat conduction within the materials, and boundary conditions that take into account the heat fluxes due to solar radiation, wind convection and radiative transfer. In this paper, an overview is presented, covering both the steady-state and transient performance.
Real time modeling, simulation and control of dynamical systems
Mughal, Asif Mahmood
2016-01-01
This book introduces modeling and simulation of linear time invariant systems and demonstrates how these translate to systems engineering, mechatronics engineering, and biomedical engineering. It is organized into nine chapters that follow the lectures used for a one-semester course on this topic, making it appropriate for students as well as researchers. The author discusses state space modeling derived from two modeling techniques and the analysis of the system and usage of modeling in control systems design. It also contains a unique chapter on multidisciplinary energy systems with a special focus on bioengineering systems and expands upon how the bond graph augments research in biomedical and bio-mechatronics systems.
Solving Algebraic Riccati Equation Real Time for Integrated Vehicle Dynamics Control
Kunnappillil Madhusudhanan, A; Corno, M.; Bonsen, B.; Holweg, E.
2012-01-01
In this paper we present a comparison study of different computational methods to implement State Dependent Riccati Equation (SDRE) based control in real time for a vehicle dynamics control application. Vehicles are mechatronic systems with nonlinear dynamics. One of the promising nonlinear control
On the Mutual Dynamics of Interregional Gross Migration Flows in Space and Time
DEFF Research Database (Denmark)
Mitze, Timo
2016-01-01
This paper applies spatial dynamic panel data models to analyse the labor market dimension of interregional population flows among German federal states in the period 1993–2009. Making use of recent improvements in the estimation of space-time dynamic panel data models and the computation of mean...
Return times dynamics: role of the Poincare section in numerical analysis
International Nuclear Information System (INIS)
Pavlov, Alexey N.; Dumsky, Dmitry V.
2003-01-01
We study how different measures estimated from return time sequences are sensitive to choice of the Poincare section in the case of chaotic dynamics. We show that scaling characteristics of point processes are highly dependent on the secant plane. We focus on dynamical properties of a chaotic regime being more stable to displacements of the section than metrical characteristics
International Nuclear Information System (INIS)
Meltzer, M.
1977-04-01
The tracer theory in steady and non-steady systems is presented. The unsteady system was applied in the study of the concentration dynamics of the National Water Carrier in Israel. A method that uses Bromine 82 for the investigation of the transfer time distribution and of the dynamics of inert matter concentration in the system is desribed. (B.G.)
Quantum dynamical time evolutions as stochastic flows on phase space
International Nuclear Information System (INIS)
Combe, P.; Rodriguez, R.; Guerra, F.; Sirigue, M.; Sirigue-Collin, M.
1984-01-01
We are mainly interested in describing the time development of the Wigner functions by means of stochastic processes. In the second section we recall the main properties of the Wigner functions as well as those of their Fourier transform. In the next one we derive the evolution equation of these functions for a class of Hamiltonians and we give a probabilistic expression for the solution of these equations by means of a stochastic flow in phase space which reminds of the classical flows. In the last section we remark that the previously defined flow can be extended to the bounded continuous functions on phase space and that this flow conserves the cone generated by the Wigner functions. (orig./HSI)
Real-time dynamic imaging of virus distribution in vivo.
Directory of Open Access Journals (Sweden)
Sean E Hofherr
2011-02-01
Full Text Available The distribution of viruses and gene therapy vectors is difficult to assess in a living organism. For instance, trafficking in murine models can usually only be assessed after sacrificing the animal for tissue sectioning or extraction. These assays are laborious requiring whole animal sectioning to ascertain tissue localization. They also obviate the ability to perform longitudinal or kinetic studies in one animal. To track viruses after systemic infection, we have labeled adenoviruses with a near-infrared (NIR fluorophore and imaged these after intravenous injection in mice. Imaging was able to track and quantitate virus particles entering the jugular vein simultaneous with injection, appearing in the heart within 500 milliseconds, distributing in the bloodstream and throughout the animal within 7 seconds, and that the bulk of virus distribution was essentially complete within 3 minutes. These data provide the first in vivo real-time tracking of the rapid initial events of systemic virus infection.
Shi, Lei; Yao, Bo; Zhao, Lei; Liu, Xiaotong; Yang, Min; Liu, Yanming
2018-01-01
The plasma sheath-surrounded hypersonic vehicle is a dynamic and time-varying medium and it is almost impossible to calculate time-varying physical parameters directly. The in-fight detection of the time-varying degree is important to understand the dynamic nature of the physical parameters and their effect on re-entry communication. In this paper, a constant envelope zero autocorrelation (CAZAC) sequence based on time-varying frequency detection and channel sounding method is proposed to detect the plasma sheath electronic density time-varying property and wireless channel characteristic. The proposed method utilizes the CAZAC sequence, which has excellent autocorrelation and spread gain characteristics, to realize dynamic time-varying detection/channel sounding under low signal-to-noise ratio in the plasma sheath environment. Theoretical simulation under a typical time-varying radio channel shows that the proposed method is capable of detecting time-variation frequency up to 200 kHz and can trace the channel amplitude and phase in the time domain well under -10 dB. Experimental results conducted in the RF modulation discharge plasma device verified the time variation detection ability in practical dynamic plasma sheath. Meanwhile, nonlinear phenomenon of dynamic plasma sheath on communication signal is observed thorough channel sounding result.
International Nuclear Information System (INIS)
Huo Haifeng; Li Wantong
2009-01-01
This paper is concerned with the global stability characteristics of a system of equations modelling the dynamics of continuous-time bidirectional associative memory neural networks with impulses. Sufficient conditions which guarantee the existence of a unique equilibrium and its exponential stability of the networks are obtained. For the goal of computation, discrete-time analogues of the corresponding continuous-time bidirectional associative memory neural networks with impulses are also formulated and studied. Our results show that the above continuous-time and discrete-time systems with impulses preserve the dynamics of the networks without impulses when we make some modifications and impose some additional conditions on the systems, the convergence characteristics dynamics of the networks are preserved by both continuous-time and discrete-time systems with some restriction imposed on the impulse effect.
Hybrid approximations via second order combined dynamic derivatives on time scales
Directory of Open Access Journals (Sweden)
Qin Sheng
2007-09-01
Full Text Available This article focuses on the approximation of conventional second order derivative via the combined (diamond-$\\alpha$ dynamic derivative on time scales with necessary smoothness conditions embedded. We will show the constraints under which the second order dynamic derivative provides a consistent approximation to the conventional second derivative; the cases where the dynamic derivative approximates the derivative only via a proper modification of the existing formula; and the situations in which the dynamic derivative can never approximate consistently even with the help of available structure correction methods. Constructive error analysis will be given via asymptotic expansions for practical hybrid modeling and computational applications.
Real-time tumor ablation simulation based on the dynamic mode decomposition method
Bourantas, George C.; Ghommem, Mehdi; Kagadis, George C.; Katsanos, Konstantinos H.; Loukopoulos, Vassilios C.; Burganos, Vasilis N.; Nikiforidis, George C.
2014-01-01
Purpose: The dynamic mode decomposition (DMD) method is used to provide a reliable forecasting of tumor ablation treatment simulation in real time, which is quite needed in medical practice. To achieve this, an extended Pennes bioheat model must
Time-dependent nonlinear Jaynes-Cummings dynamics of a trapped ion
Krumm, F.; Vogel, W.
2018-04-01
In quantum interaction problems with explicitly time-dependent interaction Hamiltonians, the time ordering plays a crucial role for describing the quantum evolution of the system under consideration. In such complex scenarios, exact solutions of the dynamics are rarely available. Here we study the nonlinear vibronic dynamics of a trapped ion, driven in the resolved sideband regime with some small frequency mismatch. By describing the pump field in a quantized manner, we are able to derive exact solutions for the dynamics of the system. This eventually allows us to provide analytical solutions for various types of time-dependent quantities. In particular, we study in some detail the electronic and the motional quantum dynamics of the ion, as well as the time evolution of the nonclassicality of the motional quantum state.
OSCILLATION CRITERIA FOR A FOURTH ORDER SUBLINEAR DYNAMIC EQUATION ON TIME SCALE
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
Some new criteria for the oscillation of a fourth order sublinear and/or linear dynamic equation on time scale are established. Our results are new for the corresponding fourth order differential equations as well as difference equations.
DYNAMIC STRAIN MAPPING AND REAL-TIME DAMAGE STATE ESTIMATION UNDER BIAXIAL RANDOM FATIGUE LOADING
National Aeronautics and Space Administration — DYNAMIC STRAIN MAPPING AND REAL-TIME DAMAGE STATE ESTIMATION UNDER BIAXIAL RANDOM FATIGUE LOADING SUBHASISH MOHANTY*, ADITI CHATTOPADHYAY, JOHN N. RAJADAS, AND CLYDE...
Judo strategy. The competitive dynamics of Internet time.
Yoffie, D B; Cusumano, M A
1999-01-01
Competition on the Internet is creating fierce battles between industry giants and small-scale start-ups. Smart start-ups can avoid those conflicts by moving quickly to uncontested ground and, when that's no longer possible, turning dominant players' strengths against them. The authors call this competitive approach judo strategy. They use the Netscape-Microsoft battles to illustrate the three main principles of judo strategy: rapid movement, flexibility, and leverage. In the early part of the browser wars, for instance, Netscape applied the principle of rapid movement by being the first company to offer a free stand-alone browser. This allowed Netscape to build market share fast and to set the market standard. Flexibility became a critical factor later in the browser wars. In December 1995, when Microsoft announced that it would "embrace and extend" competitors' Internet successes, Netscape failed to give way in the face of superior strength. Instead it squared off against Microsoft and even turned down numerous opportunities to craft deep partnerships with other companies. The result was that Netscape lost deal after deal when competing with Microsoft for common distribution channels. Netscape applied the principle of leverage by using Microsoft's strengths against it. Taking advantage of Microsoft's determination to convert the world to Windows or Windows NT, Netscape made its software compatible with existing UNIX systems. While it is true that these principles can't replace basic execution, say the authors, without speed, flexibility, and leverage, very few companies can compete successfully on Internet time.
Arentze, Theo; Ettema, D.F.; Timmermans, Harry
Existing theories and models in economics and transportation treat households’ decisions regarding allocation of time and income to activities as a resource-allocation optimization problem. This stands in contrast with the dynamic nature of day-by-day activity-travel choices. Therefore, in the
Thermal quantum time-correlation functions from classical-like dynamics
Hele, Timothy J. H.
2017-07-01
Thermal quantum time-correlation functions are of fundamental importance in quantum dynamics, allowing experimentally measurable properties such as reaction rates, diffusion constants and vibrational spectra to be computed from first principles. Since the exact quantum solution scales exponentially with system size, there has been considerable effort in formulating reliable linear-scaling methods involving exact quantum statistics and approximate quantum dynamics modelled with classical-like trajectories. Here, we review recent progress in the field with the development of methods including centroid molecular dynamics , ring polymer molecular dynamics (RPMD) and thermostatted RPMD (TRPMD). We show how these methods have recently been obtained from 'Matsubara dynamics', a form of semiclassical dynamics which conserves the quantum Boltzmann distribution. We also apply the Matsubara formalism to reaction rate theory, rederiving t → 0+ quantum transition-state theory (QTST) and showing that Matsubara-TST, like RPMD-TST, is equivalent to QTST. We end by surveying areas for future progress.
Energy Technology Data Exchange (ETDEWEB)
Kurfiss, Malte; Moser, Stefan; Popko, Gregor; Nau, Siegfried [Fraunhofer-Institut fuer Kurzzeitdynamik, Efringen-Kirchen (Germany). Ernst-Mach-Inst. (EMI)
2017-08-01
For nondestructive testing purposes new challenges are short-time dynamic processes. The application of x-ray flash tubes and modern high-speed cameras allows the observation of the opening of air-bags or the energy absorption of compressed tubes as occurring during a vehicle crash. Special algorithms designed for computerized tomography analyses allow the 3D reconstruction at individual time points of the dynamic process. Possibilities and limitations of the actual techniques are discussed.
How have inflation dynamics changed over time? Evidence from the euro area and USA
Oinonen, Sami; Paloviita, Maritta; Vilmi , Lauri
2013-01-01
This paper analyzes euro area and U.S. inflation dynamics since the beginning of the 1990s by estimating New Keynesian hybrid Phillips curves with time-varying parameters. We measure inflation expectations by subjective forecasts from Consensus Economics survey and so do not assume rational expectations. Both rolling regressions and state-space models are employed. The results indicate that in both economic areas the inflation dynamics have steadily become more forward-looking over time. We a...
A Study on Efficient Robust Speech Recognition with Stochastic Dynamic Time Warping
孫, 喜浩
2014-01-01
In recent years, great progress has been made in automatic speech recognition (ASR) system. The hidden Markov model (HMM) and dynamic time warping (DTW) are the two main algorithms which have been widely applied to ASR system. Although, HMM technique achieves higher recognition accuracy in clear speech environment and noisy environment. It needs large-set of words and realizes the algorithm more complexly.Thus, more and more researchers have focused on DTW-based ASR system.Dynamic time warpin...
Bounds of Double Integral Dynamic Inequalities in Two Independent Variables on Time Scales
Directory of Open Access Journals (Sweden)
S. H. Saker
2011-01-01
Full Text Available Our aim in this paper is to establish some explicit bounds of the unknown function in a certain class of nonlinear dynamic inequalities in two independent variables on time scales which are unbounded above. These on the one hand generalize and on the other hand furnish a handy tool for the study of qualitative as well as quantitative properties of solutions of partial dynamic equations on time scales. Some examples are considered to demonstrate the applications of the results.
Qualitative aspects of Volterra integro-dynamic system on time scales
Directory of Open Access Journals (Sweden)
Vasile Lupulescu
2013-01-01
Full Text Available This paper deals with the resolvent, asymptotic stability and boundedness of the solution of time-varying Volterra integro-dynamic system on time scales in which the coefficient matrix is not necessarily stable. We generalize at time scale some known properties about asymptotic behavior and boundedness from the continuous case. Some new results for discrete case are obtained.
International Nuclear Information System (INIS)
Deviren, Bayram; Kantar, Ersin; Keskin, Mustafa
2012-01-01
The dynamic phase transitions in a cylindrical Ising nanowire system under a time-dependent oscillating external magnetic field for both ferromagnetic and antiferromagnetic interactions are investigated within the effective-field theory with correlations and the Glauber-type stochastic dynamics approach. The effective-field dynamic equations for the average longitudinal magnetizations on the surface shell and core are derived by employing the Glauber transition rates. Temperature dependence of the dynamic magnetizations, the dynamic total magnetization, the hysteresis loop areas and the dynamic correlations are investigated in order to characterize the nature (first- or second-order) of the dynamic transitions as well as the dynamic phase transition temperatures and the compensation behaviors. The system strongly affected by the surface situations. Some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and the core. According to the values of Hamiltonian parameters, five different types of compensation behaviors in the Néel classification nomenclature exist in the system. The system also exhibits a reentrant behavior. - Highlights: ► The dynamic aspects of a cylindrical Ising nanowire are investigated in detail. ► The dynamic magnetizations, hysteresis loop areas and correlations are calculated. ► We studied both the FM and AFM interactions within the EFT with correlations. ► Some characteristic phenomena are found depending on the interaction parameters. ► We obtained five different types of compensation behaviors and reentrant behavior.
Energy Technology Data Exchange (ETDEWEB)
Deviren, Bayram [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Kantar, Ersin [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)
2012-07-15
The dynamic phase transitions in a cylindrical Ising nanowire system under a time-dependent oscillating external magnetic field for both ferromagnetic and antiferromagnetic interactions are investigated within the effective-field theory with correlations and the Glauber-type stochastic dynamics approach. The effective-field dynamic equations for the average longitudinal magnetizations on the surface shell and core are derived by employing the Glauber transition rates. Temperature dependence of the dynamic magnetizations, the dynamic total magnetization, the hysteresis loop areas and the dynamic correlations are investigated in order to characterize the nature (first- or second-order) of the dynamic transitions as well as the dynamic phase transition temperatures and the compensation behaviors. The system strongly affected by the surface situations. Some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and the core. According to the values of Hamiltonian parameters, five different types of compensation behaviors in the Neel classification nomenclature exist in the system. The system also exhibits a reentrant behavior. - Highlights: Black-Right-Pointing-Pointer The dynamic aspects of a cylindrical Ising nanowire are investigated in detail. Black-Right-Pointing-Pointer The dynamic magnetizations, hysteresis loop areas and correlations are calculated. Black-Right-Pointing-Pointer We studied both the FM and AFM interactions within the EFT with correlations. Black-Right-Pointing-Pointer Some characteristic phenomena are found depending on the interaction parameters. Black-Right-Pointing-Pointer We obtained five different types of compensation behaviors and reentrant behavior.
Li, Shuai; Long, Jinyou; Ling, Fengzi; Wang, Yanmei; Song, Xinli; Zhang, Song; Zhang, Bing
2017-07-01
The vibrational wavepacket dynamics at the very early stages of the S1-T1 intersystem crossing in photoexcited pyrimidine is visualized in real time by femtosecond time-resolved photoelectron imaging and time-resolved mass spectroscopy. A coherent superposition of the vibrational states is prepared by the femtosecond pump pulse at 315.3 nm, resulting in a vibrational wavepacket. The composition of the prepared wavepacket is directly identified by a sustained quantum beat superimposed on the parent-ion transient, possessing a frequency in accord with the energy separation between the 6a1 and 6b2 states. The dephasing time of the vibrational wavepacket is determined to be 82 ps. More importantly, the variable Franck-Condon factors between the wavepacket components and the dispersed cation vibrational levels are experimentally illustrated to identify the dark state and follow the energy-flow dynamics on the femtosecond time scale. The time-dependent intensities of the photoelectron peaks originated from the 6a1 vibrational state exhibit a clear quantum beating pattern with similar periodicity but a phase shift of π rad with respect to those from the 6b2 state, offering an unambiguous picture of the restricted intramolecular vibrational energy redistribution dynamics in the 6a1/6b2 Fermi resonance.
Hashemi Kamangar, Somayeh Sadat; Moradimanesh, Zahra; Mokhtari, Setareh; Bakouie, Fatemeh
2018-06-11
A developmental process can be described as changes through time within a complex dynamic system. The self-organized changes and emergent behaviour during development can be described and modeled as a dynamical system. We propose a dynamical system approach to answer the main question in human cognitive development i.e. the changes during development happens continuously or in discontinuous stages. Within this approach there is a concept; the size of time scales, which can be used to address the aforementioned question. We introduce a framework, by considering the concept of time-scale, in which "fast" and "slow" is defined by the size of time-scales. According to our suggested model, the overall pattern of development can be seen as one continuous function, with different time-scales in different time intervals.
Modeling Nonstationary Emotion Dynamics in Dyads using a Time-Varying Vector-Autoregressive Model.
Bringmann, Laura F; Ferrer, Emilio; Hamaker, Ellen L; Borsboom, Denny; Tuerlinckx, Francis
2018-01-01
Emotion dynamics are likely to arise in an interpersonal context. Standard methods to study emotions in interpersonal interaction are limited because stationarity is assumed. This means that the dynamics, for example, time-lagged relations, are invariant across time periods. However, this is generally an unrealistic assumption. Whether caused by an external (e.g., divorce) or an internal (e.g., rumination) event, emotion dynamics are prone to change. The semi-parametric time-varying vector-autoregressive (TV-VAR) model is based on well-studied generalized additive models, implemented in the software R. The TV-VAR can explicitly model changes in temporal dependency without pre-existing knowledge about the nature of change. A simulation study is presented, showing that the TV-VAR model is superior to the standard time-invariant VAR model when the dynamics change over time. The TV-VAR model is applied to empirical data on daily feelings of positive affect (PA) from a single couple. Our analyses indicate reliable changes in the male's emotion dynamics over time, but not in the female's-which were not predicted by her own affect or that of her partner. This application illustrates the usefulness of using a TV-VAR model to detect changes in the dynamics in a system.
Gurzadyan, V. G.; Kocharyan, A. A.
2015-07-01
The recently developed method (Paper 1) enabling one to investigate the evolution of dynamical systems with an accuracy not dependent on time is developed further. The classes of dynamical systems which can be studied by that method are much extended, now including systems that are: (1) non-Hamiltonian, conservative; (2) Hamiltonian with time-dependent perturbation; (3) non-conservative (with dissipation). These systems cover various types of N-body gravitating systems of astrophysical and cosmological interest, such as the orbital evolution of planets, minor planets, artificial satellites due to tidal, non-tidal perturbations and thermal thrust, evolving close binary stellar systems, and the dynamics of accretion disks.
Electron-phonon thermalization in a scalable method for real-time quantum dynamics
Rizzi, Valerio; Todorov, Tchavdar N.; Kohanoff, Jorge J.; Correa, Alfredo A.
2016-01-01
We present a quantum simulation method that follows the dynamics of out-of-equilibrium many-body systems of electrons and oscillators in real time. Its cost is linear in the number of oscillators and it can probe time scales from attoseconds to hundreds of picoseconds. Contrary to Ehrenfest dynamics, it can thermalize starting from a variety of initial conditions, including electronic population inversion. While an electronic temperature can be defined in terms of a nonequilibrium entropy, a Fermi-Dirac distribution in general emerges only after thermalization. These results can be used to construct a kinetic model of electron-phonon equilibration based on the explicit quantum dynamics.
Hu, Cheng; Yu, Juan; Chen, Zhanheng; Jiang, Haijun; Huang, Tingwen
2017-05-01
In this paper, the fixed-time stability of dynamical systems and the fixed-time synchronization of coupled discontinuous neural networks are investigated under the framework of Filippov solution. Firstly, by means of reduction to absurdity, a theorem of fixed-time stability is established and a high-precision estimation of the settling-time is given. It is shown by theoretic proof that the estimation bound of the settling time given in this paper is less conservative and more accurate compared with the classical results. Besides, as an important application, the fixed-time synchronization of coupled neural networks with discontinuous activation functions is proposed. By designing a discontinuous control law and using the theory of differential inclusions, some new criteria are derived to ensure the fixed-time synchronization of the addressed coupled networks. Finally, two numerical examples are provided to show the effectiveness and validity of the theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dynamic Planar Convex Hull with Optimal Query Time and O(log n · log log n ) Update Time
DEFF Research Database (Denmark)
Brodal, Gerth Stølting; Jakob, Riko
2000-01-01
The dynamic maintenance of the convex hull of a set of points in the plane is one of the most important problems in computational geometry. We present a data structure supporting point insertions in amortized O(log n · log log log n) time, point deletions in amortized O(log n · log log n) time......, and various queries about the convex hull in optimal O(log n) worst-case time. The data structure requires O(n) space. Applications of the new dynamic convex hull data structure are improved deterministic algorithms for the k-level problem and the red-blue segment intersection problem where all red and all...
Directory of Open Access Journals (Sweden)
Chellaboina Vijaysekhar
2005-01-01
Full Text Available We develop thermodynamic models for discrete-time large-scale dynamical systems. Specifically, using compartmental dynamical system theory, we develop energy flow models possessing energy conservation, energy equipartition, temperature equipartition, and entropy nonconservation principles for discrete-time, large-scale dynamical systems. Furthermore, we introduce a new and dual notion to entropy; namely, ectropy, as a measure of the tendency of a dynamical system to do useful work and grow more organized, and show that conservation of energy in an isolated thermodynamic system necessarily leads to nonconservation of ectropy and entropy. In addition, using the system ectropy as a Lyapunov function candidate, we show that our discrete-time, large-scale thermodynamic energy flow model has convergent trajectories to Lyapunov stable equilibria determined by the system initial subsystem energies.
Diffusive real-time dynamics of a particle with Berry curvature
Misaki, Kou; Miyashita, Seiji; Nagaosa, Naoto
2018-02-01
We study theoretically the influence of Berry phase on the real-time dynamics of the single particle focusing on the diffusive dynamics, i.e., the time dependence of the distribution function. Our model can be applied to the real-time dynamics of intraband relaxation and diffusion of optically excited excitons, trions, or particle-hole pair. We found that the dynamics at the early stage is deeply influenced by the Berry curvature in real space (B ), momentum space (Ω ), and also the crossed space between these two (C ). For example, it is found that Ω induces the rotation of the wave packet and causes the time dependence of the mean square displacement of the particle to be linear in time t at the initial stage; it is qualitatively different from the t3 dependence in the absence of the Berry curvature. It is also found that Ω and C modify the characteristic time scale of the thermal equilibration of momentum distribution. Moreover, the dynamics under various combinations of B ,Ω , and C shows singular behaviors such as the critical slowing down or speeding up of the momentum equilibration and the reversals of the direction of rotations. The relevance of our model for time-resolved experiments in transition metal dichalcogenides is also discussed.
Reversal time of jump-noise magnetization dynamics in nanomagnets via Monte Carlo simulations
Parthasarathy, Arun; Rakheja, Shaloo
2018-06-01
The jump-noise is a nonhomogeneous Poisson process which models thermal effects in magnetization dynamics, with special applications in low temperature escape rate phenomena. In this work, we develop improved numerical methods for Monte Carlo simulation of the jump-noise dynamics and validate the method by comparing the stationary distribution obtained empirically against the Boltzmann distribution. In accordance with the Néel-Brown theory, the jump-noise dynamics display an exponential relaxation toward equilibrium with a characteristic reversal time, which we extract for nanomagnets with uniaxial and cubic anisotropy. We relate the jump-noise dynamics to the equivalent Landau-Lifshitz dynamics up to second order correction for a general energy landscape and obtain the analogous Néel-Brown theory's solution of the reversal time. We find that the reversal time of jump-noise dynamics is characterized by Néel-Brown theory's solution at the energy saddle point for small noise. For large noise, the magnetization reversal due to jump-noise dynamics phenomenologically represents macroscopic tunneling of magnetization.
Sun, Jingya
2016-02-25
Selectively capturing the ultrafast dynamics of charge carriers on materials surfaces and at interfaces is crucial to the design of solar cells and optoelectronic devices. Despite extensive research efforts over the past few decades, information and understanding about surface-dynamical processes, including carrier trapping and recombination remains extremely limited. A key challenge is to selectively map such dynamic processes, a capability that is hitherto impractical by time-resolved laser techniques, which are limited by the laser’s relatively large penetration depth and consequently they record mainly bulk information. Such surface dynamics can only be mapped in real space and time by applying four-dimensional (4D) scanning ultrafast electron microscopy (S-UEM), which records snapshots of materials surfaces with nanometer spatial and sub-picosecond temporal resolutions. In this method, the secondary electron (SE) signal emitted from the sample’s surface is extremely sensitive to the surface dynamics and is detected in real time. In several unique applications, we spatially and temporally visualize the SE energy gain and loss, the charge carrier dynamics on the surface of InGaN nanowires and CdSe single crystals and its powder film. We also provide the mechanisms for the observed dynamics, which will be the foundation for future potential applications of S-UEM to a wide range of studies on material surfaces and device interfaces.
Sun, Jingya; Adhikari, Aniruddha; Shaheen, Basamat; Yang, Haoze; Mohammed, Omar F.
2016-01-01
Selectively capturing the ultrafast dynamics of charge carriers on materials surfaces and at interfaces is crucial to the design of solar cells and optoelectronic devices. Despite extensive research efforts over the past few decades, information and understanding about surface-dynamical processes, including carrier trapping and recombination remains extremely limited. A key challenge is to selectively map such dynamic processes, a capability that is hitherto impractical by time-resolved laser techniques, which are limited by the laser’s relatively large penetration depth and consequently they record mainly bulk information. Such surface dynamics can only be mapped in real space and time by applying four-dimensional (4D) scanning ultrafast electron microscopy (S-UEM), which records snapshots of materials surfaces with nanometer spatial and sub-picosecond temporal resolutions. In this method, the secondary electron (SE) signal emitted from the sample’s surface is extremely sensitive to the surface dynamics and is detected in real time. In several unique applications, we spatially and temporally visualize the SE energy gain and loss, the charge carrier dynamics on the surface of InGaN nanowires and CdSe single crystals and its powder film. We also provide the mechanisms for the observed dynamics, which will be the foundation for future potential applications of S-UEM to a wide range of studies on material surfaces and device interfaces.
Wavelet and adaptive methods for time dependent problems and applications in aerosol dynamics
Guo, Qiang
Time dependent partial differential equations (PDEs) are widely used as mathematical models of environmental problems. Aerosols are now clearly identified as an important factor in many environmental aspects of climate and radiative forcing processes, as well as in the health effects of air quality. The mathematical models for the aerosol dynamics with respect to size distribution are nonlinear partial differential and integral equations, which describe processes of condensation, coagulation and deposition. Simulating the general aerosol dynamic equations on time, particle size and space exhibits serious difficulties because the size dimension ranges from a few nanometer to several micrometer while the spatial dimension is usually described with kilometers. Therefore, it is an important and challenging task to develop efficient techniques for solving time dependent dynamic equations. In this thesis, we develop and analyze efficient wavelet and adaptive methods for the time dependent dynamic equations on particle size and further apply them to the spatial aerosol dynamic systems. Wavelet Galerkin method is proposed to solve the aerosol dynamic equations on time and particle size due to the fact that aerosol distribution changes strongly along size direction and the wavelet technique can solve it very efficiently. Daubechies' wavelets are considered in the study due to the fact that they possess useful properties like orthogonality, compact support, exact representation of polynomials to a certain degree. Another problem encountered in the solution of the aerosol dynamic equations results from the hyperbolic form due to the condensation growth term. We propose a new characteristic-based fully adaptive multiresolution numerical scheme for solving the aerosol dynamic equation, which combines the attractive advantages of adaptive multiresolution technique and the characteristics method. On the aspect of theoretical analysis, the global existence and uniqueness of
International Nuclear Information System (INIS)
Zhang Min-Min; Mei Dong-Cheng; Wang Can-Jun
2011-01-01
The effects of the time delay on the upper bound of the time derivative of information entropy are investigated in a time-delayed dynamical system driven by correlated noise. Using the Markov approximation of the stochastic delay differential equations and the Schwartz inequality principle, we obtain an analytical expression for the upper bound U B (t) of the time derivative of the information entropy. The results show that there is a critical value of τ (delay time), and U B (t) presents opposite behaviours on difference sides of the critical value. For the case of the weak additive noise, τ can induce a reentrance transition. Delay time τ also causes a reversal behaviour in U B (t)-λ plot, where λ denotes the degree of the correlation between the two noises. (general)
Real-Time Dynamics in U(1 Lattice Gauge Theories with Tensor Networks
Directory of Open Access Journals (Sweden)
T. Pichler
2016-03-01
Full Text Available Tensor network algorithms provide a suitable route for tackling real-time-dependent problems in lattice gauge theories, enabling the investigation of out-of-equilibrium dynamics. We analyze a U(1 lattice gauge theory in (1+1 dimensions in the presence of dynamical matter for different mass and electric-field couplings, a theory akin to quantum electrodynamics in one dimension, which displays string breaking: The confining string between charges can spontaneously break during quench experiments, giving rise to charge-anticharge pairs according to the Schwinger mechanism. We study the real-time spreading of excitations in the system by means of electric-field and particle fluctuations. We determine a dynamical state diagram for string breaking and quantitatively evaluate the time scales for mass production. We also show that the time evolution of the quantum correlations can be detected via bipartite von Neumann entropies, thus demonstrating that the Schwinger mechanism is tightly linked to entanglement spreading. To present a variety of possible applications of this simulation platform, we show how one could follow the real-time scattering processes between mesons and the creation of entanglement during scattering processes. Finally, we test the quality of quantum simulations of these dynamics, quantifying the role of possible imperfections in cold atoms, trapped ions, and superconducting circuit systems. Our results demonstrate how entanglement properties can be used to deepen our understanding of basic phenomena in the real-time dynamics of gauge theories such as string breaking and collisions.
Molecular dynamics based enhanced sampling of collective variables with very large time steps
Chen, Pei-Yang; Tuckerman, Mark E.
2018-01-01
Enhanced sampling techniques that target a set of collective variables and that use molecular dynamics as the driving engine have seen widespread application in the computational molecular sciences as a means to explore the free-energy landscapes of complex systems. The use of molecular dynamics as the fundamental driver of the sampling requires the introduction of a time step whose magnitude is limited by the fastest motions in a system. While standard multiple time-stepping methods allow larger time steps to be employed for the slower and computationally more expensive forces, the maximum achievable increase in time step is limited by resonance phenomena, which inextricably couple fast and slow motions. Recently, we introduced deterministic and stochastic resonance-free multiple time step algorithms for molecular dynamics that solve this resonance problem and allow ten- to twenty-fold gains in the large time step compared to standard multiple time step algorithms [P. Minary et al., Phys. Rev. Lett. 93, 150201 (2004); B. Leimkuhler et al., Mol. Phys. 111, 3579-3594 (2013)]. These methods are based on the imposition of isokinetic constraints that couple the physical system to Nosé-Hoover chains or Nosé-Hoover Langevin schemes. In this paper, we show how to adapt these methods for collective variable-based enhanced sampling techniques, specifically adiabatic free-energy dynamics/temperature-accelerated molecular dynamics, unified free-energy dynamics, and by extension, metadynamics, thus allowing simulations employing these methods to employ similarly very large time steps. The combination of resonance-free multiple time step integrators with free-energy-based enhanced sampling significantly improves the efficiency of conformational exploration.
A Method Based on Dial's Algorithm for Multi-time Dynamic Traffic Assignment
Directory of Open Access Journals (Sweden)
Rongjie Kuang
2014-03-01
Full Text Available Due to static traffic assignment has poor performance in reflecting actual case and dynamic traffic assignment may incurs excessive compute cost, method of multi-time dynamic traffic assignment combining static and dynamic traffic assignment balances factors of precision and cost effectively. A method based on Dial's logit algorithm is proposed in the article to solve the dynamic stochastic user equilibrium problem in dynamic traffic assignment. Before that, a fitting function that can proximately reflect overloaded traffic condition of link is proposed and used to give corresponding model. Numerical example is given to illustrate heuristic procedure of method and to compare results with one of same example solved by other literature's algorithm. Results show that method based on Dial's algorithm is preferable to algorithm from others.
Bifurcation and complex dynamics of a discrete-time predator-prey system involving group defense
Directory of Open Access Journals (Sweden)
S. M. Sohel Rana
2015-09-01
Full Text Available In this paper, we investigate the dynamics of a discrete-time predator-prey system involving group defense. The existence and local stability of positive fixed point of the discrete dynamical system is analyzed algebraically. It is shown that the system undergoes a flip bifurcation and a Neimark-Sacker bifurcation in the interior of R+2 by using bifurcation theory. Numerical simulation results not only show the consistence with the theoretical analysis but also display the new and interesting dynamical behaviors, including phase portraits, period-7, 20-orbits, attracting invariant circle, cascade of period-doubling bifurcation from period-20 leading to chaos, quasi-periodic orbits, and sudden disappearance of the chaotic dynamics and attracting chaotic set. The Lyapunov exponents are numerically computed to characterize the complexity of the dynamical behaviors.
Dynamical response of the Ising model to the time dependent magnetic field with white noise
Akıncı, Ümit
2018-03-01
The effect of the white noise in time dependent magnetic field on the dynamic behavior of the Ising model has been investigated within the effective field theory based on Glauber type of stochastic process. Discrete white noise has been chosen from both Gaussian and uniform probability distributions. Detailed investigation on probability distribution of dynamical order parameter results that, both type of noise distributions yield the same probability distribution related to the dynamical order parameter, namely Gaussian probability distribution. The variation of the parameters that describe the probability distribution of dynamical order parameter (mean value and standard deviation) with temperature and strength of the noise have been inspected. Also, it has been shown that, rising strength of the noise can induce dynamical phase transition in the system.
New entropic uncertainty relations and tests of PMD-SQS-optimal limits in pion-nucleus scattering
International Nuclear Information System (INIS)
Ion, D.B.; Ion, M.L.
2002-01-01
In this paper we define a new kind of quantum entropy, namely, the nonextensivity conjugated entropy S Jθ (p,q) bar.Then we prove the optimal nonextensivity conjugated entropic uncertainty relations (ONC-EUR) as well as optimal nonextensivity conjugated entropic uncertainty bands (ONC E UB). The results of the first experimental test of ONC-EUB in the pion-nucleus scattering, obtained by using 49-sets of experimental phase shift analysis, are presented. So, strong evidences for the saturation of the PMD-SQS-optimum limit are obtained with high accuracy (confidence level > 99%) for the nonextensivities: 1/2 ≤ p ≤ 2/3 and q = p/(2p-1). (authors)
Estimation of system parameters in discrete dynamical systems from time series
International Nuclear Information System (INIS)
Palaniyandi, P.; Lakshmanan, M.
2005-01-01
We propose a simple method to estimate the parameters involved in discrete dynamical systems from time series. The method is based on the concept of controlling chaos by constant feedback. The major advantages of the method are that it needs a minimal number of time series data (either vector or scalar) and is applicable to dynamical systems of any dimension. The method also works extremely well even in the presence of noise in the time series. The method is specifically illustrated by means of logistic and Henon maps
Inference of Time-Evolving Coupled Dynamical Systems in the Presence of Noise
Stankovski, Tomislav; Duggento, Andrea; McClintock, Peter V. E.; Stefanovska, Aneta
2012-07-01
A new method is introduced for analysis of interactions between time-dependent coupled oscillators, based on the signals they generate. It distinguishes unsynchronized dynamics from noise-induced phase slips and enables the evolution of the coupling functions and other parameters to be followed. It is based on phase dynamics, with Bayesian inference of the time-evolving parameters achieved by shaping the prior densities to incorporate knowledge of previous samples. The method is tested numerically and applied to reveal and quantify the time-varying nature of cardiorespiratory interactions.
DEFF Research Database (Denmark)
Langbein, Wolfgang Werner; Hvam, Jørn Märcher
2002-01-01
The directional dynamics of the resonant Rayleigh scattering from a semiconductor microcavity is investigated. When optically exciting the lower polariton branch, the strong dispersion results in a directional emission on a ring. The coherent emission ring shows a reduction of its angular width...... for increasing time after excitation, giving direct evidence for the time-energy uncertainty in the dynamics of the scattering by disorder. The ring width converges with time to a finite value, a direct measure of an intrinsic momentum broadening of the polariton states localized by multiple disorder scattering....
International Nuclear Information System (INIS)
Pittner, Jiri; Lischka, Hans; Barbatti, Mario
2009-01-01
The usage of time-derivative non-adiabatic coupling terms and partially coupled time-dependent equations are investigated to accelerate non-adiabatic dynamics simulations at multireference configuration interaction (MRCI) level. The quality of the results and computational costs are compared against non-adiabatic benchmark dynamics calculations using non-adiabatic coupling vectors. In the comparison between the time-derivative couplings and coupling vectors, deviations in the adiabatic population of individual trajectories were observed in regions of rapid variation of the coupling terms. They, however, affected the average adiabatic population to only about 5%. For small multiconfiguration spaces, dynamics with time-derivative couplings are significantly faster than those with coupling vectors. This relation inverts for larger configuration spaces. The use of the partially coupled equations approach speeds up the simulations significantly while keeping the deviations in the population below few percent. Imidazole and the methaniminium cation are used as test examples
Dynamic Reconfiguration in Real-Time Systems Energy, Performance, and Thermal Perspectives
Wang, Weixun; Ranka, Sanjay
2013-01-01
Given the widespread use of real-time multitasking systems, there are tremendous optimization opportunities if reconfigurable computing can be effectively incorporated while maintaining performance and other design constraints of typical applications. The focus of this book is to describe the dynamic reconfiguration techniques that can be safely used in real-time systems. This book provides comprehensive approaches by considering synergistic effects of computation, communication as well as storage together to significantly improve overall performance, power, energy and temperature. Provides a comprehensive introduction to optimization and dynamic reconfiguration techniques in real-time embedded systems; Covers state-of-the-art techniques and ongoing research in reconfigurable architectures; Focuses on algorithms tuned for dynamic reconfiguration techniques in real-time systems; Provides reference for anyone designing low-power systems, energy-/temperature-constrained devices, and power-performance efficie...
Dong, Lu; Zhong, Xiangnan; Sun, Changyin; He, Haibo
2017-07-01
This paper presents the design of a novel adaptive event-triggered control method based on the heuristic dynamic programming (HDP) technique for nonlinear discrete-time systems with unknown system dynamics. In the proposed method, the control law is only updated when the event-triggered condition is violated. Compared with the periodic updates in the traditional adaptive dynamic programming (ADP) control, the proposed method can reduce the computation and transmission cost. An actor-critic framework is used to learn the optimal event-triggered control law and the value function. Furthermore, a model network is designed to estimate the system state vector. The main contribution of this paper is to design a new trigger threshold for discrete-time systems. A detailed Lyapunov stability analysis shows that our proposed event-triggered controller can asymptotically stabilize the discrete-time systems. Finally, we test our method on two different discrete-time systems, and the simulation results are included.
Entropic sampling of simple polymer models within Wang-Landau algorithm
International Nuclear Information System (INIS)
Vorontsov-Velyaminov, P N; Volkov, N A; Yurchenko, A A
2004-01-01
In this paper we apply a new simulation technique proposed in Wang and Landau (WL) (2001 Phys. Rev. Lett. 86 2050) to sampling of three-dimensional lattice and continuous models of polymer chains. Distributions obtained by homogeneous (unconditional) random walks are compared with results of entropic sampling (ES) within the WL algorithm. While homogeneous sampling gives reliable results typically in the range of 4-5 orders of magnitude, the WL entropic sampling yields them in the range of 20-30 orders and even larger with comparable computer effort. A combination of homogeneous and WL sampling provides reliable data for events with probabilities down to 10 -35 . For the lattice model we consider both the athermal case (self-avoiding walks, SAWs) and the thermal case when an energy is attributed to each contact between nonbonded monomers in a self-avoiding walk. For short chains the simulation results are checked by comparison with the exact data. In WL calculations for chain lengths up to N = 300 scaling relations for SAWs are well reproduced. In the thermal case distribution over the number of contacts is obtained in the N-range up to N = 100 and the canonical averages - internal energy, heat capacity, excess canonical entropy, mean square end-to-end distance - are calculated as a result in a wide temperature range. The continuous model is studied in the athermal case. By sorting conformations of a continuous phantom freely joined N-bonded chain with a unit bond length over a stochastic variable, the minimum distance between nonbonded beads, we determine the probability distribution for the N-bonded chain with hard sphere monomer units over its diameter a in the complete diameter range, 0 ≤ a ≤ 2, within a single ES run. This distribution provides us with excess specific entropy for a set of diameters a in this range. Calculations were made for chain lengths up to N = 100 and results were extrapolated to N → ∞ for a in the range 0 ≤ a ≤ 1.25
International Nuclear Information System (INIS)
Tarasov, Yu.V.; Shostenko, L.D.
2015-01-01
A unified theory for the conductance of an infinitely long multimode quantum wire whose finite segment has randomly rough lateral boundaries is developed. It enables one to rigorously take account of all feasible mechanisms of wave scattering, both related to boundary roughness and to contacts between the wire rough section and the perfect leads within the same technical frameworks. The rough part of the conducting wire is shown to act as a mode-specific randomly modulated effective potential barrier whose height is governed essentially by the asperity slope. The mean height of the barrier, which is proportional to the average slope squared, specifies the number of conducting channels. Under relatively small asperity amplitude this number can take on arbitrary small, up to zero, values if the asperities are sufficiently sharp. The consecutive channel cut-off that arises when the asperity sharpness increases can be regarded as a kind of localization, which is not related to the disorder per se but rather is of entropic or (equivalently) geometric origin. The fluctuating part of the effective barrier results in two fundamentally different types of guided wave scattering, viz., inter- and intramode scattering. The intermode scattering is shown to be for the most part very strong except in the cases of (a) extremely smooth asperities, (b) excessively small length of the corrugated segment, and (c) the asperities sharp enough for only one conducting channel to remain in the wire. Under strong intermode scattering, a new set of conducting channels develops in the corrugated waveguide, which have the form of asymptotically decoupled extended modes subject to individual solely intramode random potentials. In view of this fact, two transport regimes only are realizable in randomly corrugated multimode waveguides, specifically, the ballistic and the localized regime, the latter characteristic of one-dimensional random systems. Two kinds of localization are thus shown to
Revealing time bunching effect in single-molecule enzyme conformational dynamics.
Lu, H Peter
2011-04-21
In this perspective, we focus our discussion on how the single-molecule spectroscopy and statistical analysis are able to reveal enzyme hidden properties, taking the study of T4 lysozyme as an example. Protein conformational fluctuations and dynamics play a crucial role in biomolecular functions, such as in enzymatic reactions. Single-molecule spectroscopy is a powerful approach to analyze protein conformational dynamics under physiological conditions, providing dynamic perspectives on a molecular-level understanding of protein structure-function mechanisms. Using single-molecule fluorescence spectroscopy, we have probed T4 lysozyme conformational motions under the hydrolysis reaction of a polysaccharide of E. coli B cell walls by monitoring the fluorescence resonant energy transfer (FRET) between a donor-acceptor probe pair tethered to T4 lysozyme domains involving open-close hinge-bending motions. Based on the single-molecule spectroscopic results, molecular dynamics simulation, a random walk model analysis, and a novel 2D statistical correlation analysis, we have revealed a time bunching effect in protein conformational motion dynamics that is critical to enzymatic functions. Bunching effect implies that conformational motion times tend to bunch in a finite and narrow time window. We show that convoluted multiple Poisson rate processes give rise to the bunching effect in the enzymatic reaction dynamics. Evidently, the bunching effect is likely common in protein conformational dynamics involving in conformation-gated protein functions. In this perspective, we will also discuss a new approach of 2D regional correlation analysis capable of analyzing fluctuation dynamics of complex multiple correlated and anti-correlated fluctuations under a non-correlated noise background. Using this new method, we are able to map out any defined segments along the fluctuation trajectories and determine whether they are correlated, anti-correlated, or non-correlated; after which, a
A non-critical string approach to black holes, time and quantum dynamics
Ellis, John R.; Nanopoulos, Dimitri V.
1994-01-01
We review our approach to time and quantum dynamics based on non-critical string theory, developing its relationship to previous work on non-equilibrium quantum statistical mechanics and the microscopic arrow of time. We exhibit specific non-factorizing contributions to the {\
Contracts for Cross-organizational Workflows as Timed Dynamic Condition Response Graphs
DEFF Research Database (Denmark)
Hildebrandt, Thomas; Mukkamala, Raghava Rao; Slaats, Tijs
2013-01-01
We conservatively extend the declarative Dynamic Condition Response (DCR) Graph process model, introduced in the PhD thesis of the second author, to allow for discrete time deadlines. We prove that safety and liveness properties can be verified by mapping finite timed DCR Graphs to finite state...
Dynamic Bus Travel Time Prediction Models on Road with Multiple Bus Routes
Bai, Cong; Peng, Zhong-Ren; Lu, Qing-Chang; Sun, Jian
2015-01-01
Accurate and real-time travel time information for buses can help passengers better plan their trips and minimize waiting times. A dynamic travel time prediction model for buses addressing the cases on road with multiple bus routes is proposed in this paper, based on support vector machines (SVMs) and Kalman filtering-based algorithm. In the proposed model, the well-trained SVM model predicts the baseline bus travel times from the historical bus trip data; the Kalman filtering-based dynamic algorithm can adjust bus travel times with the latest bus operation information and the estimated baseline travel times. The performance of the proposed dynamic model is validated with the real-world data on road with multiple bus routes in Shenzhen, China. The results show that the proposed dynamic model is feasible and applicable for bus travel time prediction and has the best prediction performance among all the five models proposed in the study in terms of prediction accuracy on road with multiple bus routes. PMID:26294903
Dynamic Bus Travel Time Prediction Models on Road with Multiple Bus Routes.
Bai, Cong; Peng, Zhong-Ren; Lu, Qing-Chang; Sun, Jian
2015-01-01
Accurate and real-time travel time information for buses can help passengers better plan their trips and minimize waiting times. A dynamic travel time prediction model for buses addressing the cases on road with multiple bus routes is proposed in this paper, based on support vector machines (SVMs) and Kalman filtering-based algorithm. In the proposed model, the well-trained SVM model predicts the baseline bus travel times from the historical bus trip data; the Kalman filtering-based dynamic algorithm can adjust bus travel times with the latest bus operation information and the estimated baseline travel times. The performance of the proposed dynamic model is validated with the real-world data on road with multiple bus routes in Shenzhen, China. The results show that the proposed dynamic model is feasible and applicable for bus travel time prediction and has the best prediction performance among all the five models proposed in the study in terms of prediction accuracy on road with multiple bus routes.
Real Time Emulation of Dynamic Tariff for Congestion Management in Distribution Networks
DEFF Research Database (Denmark)
Rasmussen, Theis Bo; Wu, Qiuwei; Huang, Shaojun
2016-01-01
This paper presents the real time evaluation of the dynamic tariff (DT) method for alleviating congestion in a distribution networks with high penetration of distributed energy resources (DERs). The DT method is implemented in a real time digital testing platform that emulates a real distribution...
Tewatia, D K; Tolakanahalli, R P; Paliwal, B R; Tomé, W A
2011-04-07
The underlying requirements for successful implementation of any efficient tumour motion management strategy are regularity and reproducibility of a patient's breathing pattern. The physiological act of breathing is controlled by multiple nonlinear feedback and feed-forward couplings. It would therefore be appropriate to analyse the breathing pattern of lung cancer patients in the light of nonlinear dynamical system theory. The purpose of this paper is to analyse the one-dimensional respiratory time series of lung cancer patients based on nonlinear dynamics and delay coordinate state space embedding. It is very important to select a suitable pair of embedding dimension 'm' and time delay 'τ' when performing a state space reconstruction. Appropriate time delay and embedding dimension were obtained using well-established methods, namely mutual information and the false nearest neighbour method, respectively. Establishing stationarity and determinism in a given scalar time series is a prerequisite to demonstrating that the nonlinear dynamical system that gave rise to the scalar time series exhibits a sensitive dependence on initial conditions, i.e. is chaotic. Hence, once an appropriate state space embedding of the dynamical system has been reconstructed, we show that the time series of the nonlinear dynamical systems under study are both stationary and deterministic in nature. Once both criteria are established, we proceed to calculate the largest Lyapunov exponent (LLE), which is an invariant quantity under time delay embedding. The LLE for all 16 patients is positive, which along with stationarity and determinism establishes the fact that the time series of a lung cancer patient's breathing pattern is not random or irregular, but rather it is deterministic in nature albeit chaotic. These results indicate that chaotic characteristics exist in the respiratory waveform and techniques based on state space dynamics should be employed for tumour motion management.
Energy Technology Data Exchange (ETDEWEB)
Tewatia, D K; Tolakanahalli, R P; Paliwal, B R; Tome, W A, E-mail: tewatia@wisc.edu [Department of Human Oncology, University of Wisconsin, Madison, WI (United States)
2011-04-07
The underlying requirements for successful implementation of any efficient tumour motion management strategy are regularity and reproducibility of a patient's breathing pattern. The physiological act of breathing is controlled by multiple nonlinear feedback and feed-forward couplings. It would therefore be appropriate to analyse the breathing pattern of lung cancer patients in the light of nonlinear dynamical system theory. The purpose of this paper is to analyse the one-dimensional respiratory time series of lung cancer patients based on nonlinear dynamics and delay coordinate state space embedding. It is very important to select a suitable pair of embedding dimension 'm' and time delay '{tau}' when performing a state space reconstruction. Appropriate time delay and embedding dimension were obtained using well-established methods, namely mutual information and the false nearest neighbour method, respectively. Establishing stationarity and determinism in a given scalar time series is a prerequisite to demonstrating that the nonlinear dynamical system that gave rise to the scalar time series exhibits a sensitive dependence on initial conditions, i.e. is chaotic. Hence, once an appropriate state space embedding of the dynamical system has been reconstructed, we show that the time series of the nonlinear dynamical systems under study are both stationary and deterministic in nature. Once both criteria are established, we proceed to calculate the largest Lyapunov exponent (LLE), which is an invariant quantity under time delay embedding. The LLE for all 16 patients is positive, which along with stationarity and determinism establishes the fact that the time series of a lung cancer patient's breathing pattern is not random or irregular, but rather it is deterministic in nature albeit chaotic. These results indicate that chaotic characteristics exist in the respiratory waveform and techniques based on state space dynamics should be employed
International Nuclear Information System (INIS)
Tewatia, D K; Tolakanahalli, R P; Paliwal, B R; Tome, W A
2011-01-01
The underlying requirements for successful implementation of any efficient tumour motion management strategy are regularity and reproducibility of a patient's breathing pattern. The physiological act of breathing is controlled by multiple nonlinear feedback and feed-forward couplings. It would therefore be appropriate to analyse the breathing pattern of lung cancer patients in the light of nonlinear dynamical system theory. The purpose of this paper is to analyse the one-dimensional respiratory time series of lung cancer patients based on nonlinear dynamics and delay coordinate state space embedding. It is very important to select a suitable pair of embedding dimension 'm' and time delay 'τ' when performing a state space reconstruction. Appropriate time delay and embedding dimension were obtained using well-established methods, namely mutual information and the false nearest neighbour method, respectively. Establishing stationarity and determinism in a given scalar time series is a prerequisite to demonstrating that the nonlinear dynamical system that gave rise to the scalar time series exhibits a sensitive dependence on initial conditions, i.e. is chaotic. Hence, once an appropriate state space embedding of the dynamical system has been reconstructed, we show that the time series of the nonlinear dynamical systems under study are both stationary and deterministic in nature. Once both criteria are established, we proceed to calculate the largest Lyapunov exponent (LLE), which is an invariant quantity under time delay embedding. The LLE for all 16 patients is positive, which along with stationarity and determinism establishes the fact that the time series of a lung cancer patient's breathing pattern is not random or irregular, but rather it is deterministic in nature albeit chaotic. These results indicate that chaotic characteristics exist in the respiratory waveform and techniques based on state space dynamics should be employed for tumour motion management.
Early-time particle dynamics and non-affine deformations during microstructure selection in solids
Energy Technology Data Exchange (ETDEWEB)
Sengupta, Surajit [Centre for Advanced Materials, Indian Association for the Cultivation of Science, 2A and 2B, Raja S C Mullick Road, Jadavpur, Kolkata 700032 (India); Rao, Madan [Raman Research Institute, C V Raman Avenue, Bangalore 560 080 (India); Bhattacharya, Jayee [S N Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098 (India)
2011-07-27
Solid-solid transitions are invariably associated with groups of particles whose deformations cannot be expressed as an affine strain about a reference configuration. The dynamics of these non-affine zones (NAZ) determine the subsequent microstructure, i.e. the mesoscale patterning resulting from the structural transition. Here, we focus on early-time dynamics of individual particles within an NAZ associated with a nucleation event. We show that the early-time behavior of these particles have distinctive characteristics depending on the transition temperature. The dynamics is heterogeneous, consisting of a few active particles exhibiting complex intermittent jamming and flow in response to internal stresses generated during the transformation. At low temperatures, the dynamics of these active particles is ballistic and the structural transformation proceeds via string-like correlated movement of active particles, along ridges in the potential energy topography set up by inactive particles. On increasing temperature, the dynamics of active particles show an abrupt transition from ballistic to diffusive behavior with a diffusion coefficient which appears to be independent of temperature. This dynamical transition in the nature of the trajectories of particles is coincident with a discontinuous transition in the microstructure of the solid. Finally, we characterize this transition in terms of a dynamical order parameter in the space of trajectories and discuss its connection with the glass transition and rheology of soft and granular matter.
A time domain inverse dynamic method for the end point tracking control of a flexible manipulator
Kwon, Dong-Soo; Book, Wayne J.
1991-01-01
The inverse dynamic equation of a flexible manipulator was solved in the time domain. By dividing the inverse system equation into the causal part and the anticausal part, we calculated the torque and the trajectories of all state variables for a given end point trajectory. The interpretation of this method in the frequency domain was explained in detail using the two-sided Laplace transform and the convolution integral. The open loop control of the inverse dynamic method shows an excellent result in simulation. For real applications, a practical control strategy is proposed by adding a feedback tracking control loop to the inverse dynamic feedforward control, and its good experimental performance is presented.
Molecular dynamics on diffusive time scales from the phase-field-crystal equation.
Chan, Pak Yuen; Goldenfeld, Nigel; Dantzig, Jon
2009-03-01
We extend the phase-field-crystal model to accommodate exact atomic configurations and vacancies by requiring the order parameter to be non-negative. The resulting theory dictates the number of atoms and describes the motion of each of them. By solving the dynamical equation of the model, which is a partial differential equation, we are essentially performing molecular dynamics simulations on diffusive time scales. To illustrate this approach, we calculate the two-point correlation function of a fluid.
International Nuclear Information System (INIS)
Sun, Xiaoran; Small, Michael; Zhao, Yi; Xue, Xiaoping
2014-01-01
In this work, we propose a novel method to transform a time series into a weighted and directed network. For a given time series, we first generate a set of segments via a sliding window, and then use a doubly symbolic scheme to characterize every windowed segment by combining absolute amplitude information with an ordinal pattern characterization. Based on this construction, a network can be directly constructed from the given time series: segments corresponding to different symbol-pairs are mapped to network nodes and the temporal succession between nodes is represented by directed links. With this conversion, dynamics underlying the time series has been encoded into the network structure. We illustrate the potential of our networks with a well-studied dynamical model as a benchmark example. Results show that network measures for characterizing global properties can detect the dynamical transitions in the underlying system. Moreover, we employ a random walk algorithm to sample loops in our networks, and find that time series with different dynamics exhibits distinct cycle structure. That is, the relative prevalence of loops with different lengths can be used to identify the underlying dynamics
Energy Technology Data Exchange (ETDEWEB)
Sun, Xiaoran, E-mail: sxr0806@gmail.com [Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055 (China); School of Mathematics and Statistics, The University of Western Australia, Crawley WA 6009 (Australia); Small, Michael, E-mail: michael.small@uwa.edu.au [School of Mathematics and Statistics, The University of Western Australia, Crawley WA 6009 (Australia); Zhao, Yi [Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055 (China); Xue, Xiaoping [Department of Mathematics, Harbin Institute of Technology, Harbin 150025 (China)
2014-06-15
In this work, we propose a novel method to transform a time series into a weighted and directed network. For a given time series, we first generate a set of segments via a sliding window, and then use a doubly symbolic scheme to characterize every windowed segment by combining absolute amplitude information with an ordinal pattern characterization. Based on this construction, a network can be directly constructed from the given time series: segments corresponding to different symbol-pairs are mapped to network nodes and the temporal succession between nodes is represented by directed links. With this conversion, dynamics underlying the time series has been encoded into the network structure. We illustrate the potential of our networks with a well-studied dynamical model as a benchmark example. Results show that network measures for characterizing global properties can detect the dynamical transitions in the underlying system. Moreover, we employ a random walk algorithm to sample loops in our networks, and find that time series with different dynamics exhibits distinct cycle structure. That is, the relative prevalence of loops with different lengths can be used to identify the underlying dynamics.
Fisher, Aaron J; Reeves, Jonathan W; Chi, Cyrus
2016-07-01
Expanding on recently published methods, the current study presents an approach to estimating the dynamic, regulatory effect of the parasympathetic nervous system on heart period on a moment-to-moment basis. We estimated second-to-second variation in respiratory sinus arrhythmia (RSA) in order to estimate the contemporaneous and time-lagged relationships among RSA, interbeat interval (IBI), and respiration rate via vector autoregression. Moreover, we modeled these relationships at lags of 1 s to 10 s, in order to evaluate the optimal latency for estimating dynamic RSA effects. The IBI (t) on RSA (t-n) regression parameter was extracted from individual models as an operationalization of the regulatory effect of RSA on IBI-referred to as dynamic RSA (dRSA). Dynamic RSA positively correlated with standard averages of heart rate and negatively correlated with standard averages of RSA. We propose that dRSA reflects the active downregulation of heart period by the parasympathetic nervous system and thus represents a novel metric that provides incremental validity in the measurement of autonomic cardiac control-specifically, a method by which parasympathetic regulatory effects can be measured in process. © 2016 Society for Psychophysiological Research.
Bayesian dynamic modeling of time series of dengue disease case counts.
Martínez-Bello, Daniel Adyro; López-Quílez, Antonio; Torres-Prieto, Alexander
2017-07-01
The aim of this study is to model the association between weekly time series of dengue case counts and meteorological variables, in a high-incidence city of Colombia, applying Bayesian hierarchical dynamic generalized linear models over the period January 2008 to August 2015. Additionally, we evaluate the model's short-term performance for predicting dengue cases. The methodology shows dynamic Poisson log link models including constant or time-varying coefficients for the meteorological variables. Calendar effects were modeled using constant or first- or second-order random walk time-varying coefficients. The meteorological variables were modeled using constant coefficients and first-order random walk time-varying coefficients. We applied Markov Chain Monte Carlo simulations for parameter estimation, and deviance information criterion statistic (DIC) for model selection. We assessed the short-term predictive performance of the selected final model, at several time points within the study period using the mean absolute percentage error. The results showed the best model including first-order random walk time-varying coefficients for calendar trend and first-order random walk time-varying coefficients for the meteorological variables. Besides the computational challenges, interpreting the results implies a complete analysis of the time series of dengue with respect to the parameter estimates of the meteorological effects. We found small values of the mean absolute percentage errors at one or two weeks out-of-sample predictions for most prediction points, associated with low volatility periods in the dengue counts. We discuss the advantages and limitations of the dynamic Poisson models for studying the association between time series of dengue disease and meteorological variables. The key conclusion of the study is that dynamic Poisson models account for the dynamic nature of the variables involved in the modeling of time series of dengue disease, producing useful
The role of entropic potential in voltage activation and K+ transport through Kv 1.2 channels
Wawrzkiewicz-Jałowiecka, Agata; Grzywna, Zbigniew J.
2018-03-01
We analyze the entropic effects of inner pore geometry changes of Kv 1.2 channel during membrane depolarization and their implications for the rate of transmembrane transport of potassium ions. We base this on the idea that spatial confinements within the channel pore give rise to entropic barriers which can both effectively affect the stability of open macroconformation and influence channel's ability to conduct the potassium ions through the membrane. First, we calculate the differences in entropy between voltage-activated and resting states of the channel. As a template, we take a set of structures of channel pore in an open state at different membrane potentials generated in our previous research. The obtained results indicate that tendency to occupy open states at membrane depolarization is entropy facilitated. Second, we describe the differences in rates of K+ transport through the channel pore at different voltages based on the results of appropriate random walk simulations in entropic and electric potentials. The simulated single channel currents (I) suggest that the geometry changes during membrane depolarization are an important factor contributing to the observed flow of potassium ions through the channel. Nevertheless, the charge distribution within the channel pore (especially at the extracellular entrance) seems most prominent for the observed I/Imax relation at a qualitative level at analyzed voltages.
Böhringer, Klaus; Hess, Ortwin
The spatio-temporal dynamics of novel semiconductor lasers is discussed on the basis of a space- and momentum-dependent full time-domain approach. To this means the space-, time-, and momentum-dependent Full-Time Domain Maxwell Semiconductor Bloch equations, derived and discussed in our preceding paper I [K. Böhringer, O. Hess, A full time-domain approach to spatio-temporal dynamics of semiconductor lasers. I. Theoretical formulation], are solved by direct numerical integration. Focussing on the device physics of novel semiconductor lasers that profit, in particular, from recent advances in nanoscience and nanotechnology, we discuss the examples of photonic band edge surface emitting lasers (PBE-SEL) and semiconductor disc lasers (SDLs). It is demonstrated that photonic crystal effects can be obtained for finite crystal structures, and leading to a significant improvement in laser performance such as reduced lasing thresholds. In SDLs, a modern device concept designed to increase the power output of surface-emitters in combination with near-diffraction-limited beam quality, we explore the complex interplay between the intracavity optical fields and the quantum well gain material in SDL structures. Our simulations reveal the dynamical balance between carrier generation due to pumping into high energy states, momentum relaxation of carriers, and stimulated recombination from states near the band edge. Our full time-domain approach is shown to also be an excellent framework for the modelling of the interaction of high-intensity femtosecond and picosecond pulses with semiconductor nanostructures. It is demonstrated that group velocity dispersion, dynamical gain saturation and fast self-phase modulation (SPM) are the main causes for the induced changes and asymmetries in the amplified pulse shape and spectrum of an ultrashort high-intensity pulse. We attest that the time constants of the intraband scattering processes are critical to gain recovery. Moreover, we present
Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale
International Nuclear Information System (INIS)
Maslennikov, Oleg V.; Nekorkin, Vladimir I.
2016-01-01
In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basic properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.
Capturing change: the duality of time-lapse imagery to acquire data and depict ecological dynamics
Brinley Buckley, Emma M.; Allen, Craig R.; Forsberg, Michael; Farrell, Michael; Caven, Andrew J.
2017-01-01
We investigate the scientific and communicative value of time-lapse imagery by exploring applications for data collection and visualization. Time-lapse imagery has a myriad of possible applications to study and depict ecosystems and can operate at unique temporal and spatial scales to bridge the gap between large-scale satellite imagery projects and observational field research. Time-lapse data sequences, linking time-lapse imagery with data visualization, have the ability to make data come alive for a wider audience by connecting abstract numbers to images that root data in time and place. Utilizing imagery from the Platte Basin Timelapse Project, water inundation and vegetation phenology metrics are quantified via image analysis and then paired with passive monitoring data, including streamflow and water chemistry. Dynamic and interactive time-lapse data sequences elucidate the visible and invisible ecological dynamics of a significantly altered yet internationally important river system in central Nebraska.
An energy efficient and dynamic time synchronization protocol for wireless sensor networks
Zhang, Anran; Bai, Fengshan
2017-01-01
Time synchronization is an important support technology of WSN(Wireless Sensor Network), and plays an irreplaceable role in the development of WSN. In view of the disadvantage of the traditional timing sync protocol for sensor networks (TPSN), we present a Physical Timing-sync Protocol (PTPSN) that aims at reducing the energy consumption of the synchronization process and realizes a dynamic Network. The algorithm broadcasts reference message to select some nodes in specific area. The receiver calculate offset of every selected node, and then calculate the average of offset to compensate for clock skew . At the same time ,we add time-filter process to ensure the security of the algorithm for time synchronization. The experiment results show that our algorithm is efficient in both saving energy consumption and dynamic network, and it can effectively resist attacks.
Capturing change: the duality of time-lapse imagery to acquire data and depict ecological dynamics
Directory of Open Access Journals (Sweden)
Emma M. Brinley Buckley
2017-09-01
Full Text Available We investigate the scientific and communicative value of time-lapse imagery by exploring applications for data collection and visualization. Time-lapse imagery has a myriad of possible applications to study and depict ecosystems and can operate at unique temporal and spatial scales to bridge the gap between large-scale satellite imagery projects and observational field research. Time-lapse data sequences, linking time-lapse imagery with data visualization, have the ability to make data come alive for a wider audience by connecting abstract numbers to images that root data in time and place. Utilizing imagery from the Platte Basin Timelapse Project, water inundation and vegetation phenology metrics are quantified via image analysis and then paired with passive monitoring data, including streamflow and water chemistry. Dynamic and interactive time-lapse data sequences elucidate the visible and invisible ecological dynamics of a significantly altered yet internationally important river system in central Nebraska.
International Nuclear Information System (INIS)
Wu, Guorong; Neville, Simon P.; Schalk, Oliver; Sekikawa, Taro; Ashfold, Michael N. R.; Worth, Graham A.; Stolow, Albert
2016-01-01
The dynamics of N-methylpyrrole following excitation at wavelengths in the range 241.5-217.0 nm were studied using a combination of time-resolved photoelectron spectroscopy (TRPES), ab initio quantum dynamics calculations using the multi-layer multi-configurational time-dependent Hartree method, as well as high-level photoionization cross section calculations. Excitation at 241.5 and 236.2 nm results in population of the A 2 (πσ ∗ ) state, in agreement with previous studies. Excitation at 217.0 nm prepares the previously neglected B 1 (π3p y ) Rydberg state, followed by prompt internal conversion to the A 2 (πσ ∗ ) state. In contrast with the photoinduced dynamics of pyrrole, the lifetime of the wavepacket in the A 2 (πσ ∗ ) state was found to vary with excitation wavelength, decreasing by one order of magnitude upon tuning from 241.5 nm to 236.2 nm and by more than three orders of magnitude when excited at 217.0 nm. The order of magnitude difference in lifetimes measured at the longer excitation wavelengths is attributed to vibrational excitation in the A 2 (πσ ∗ ) state, facilitating wavepacket motion around the potential barrier in the N–CH 3 dissociation coordinate
Energy Technology Data Exchange (ETDEWEB)
Wu, Guorong [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China); Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Neville, Simon P. [Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada); Schalk, Oliver [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Physics, AlbaNova University Center, Stockholm University, Roslagstullsbacken 21, 106 91 Stockholm (Sweden); Sekikawa, Taro [Department of Applied Physics, Hokkaido University, Kita-13 Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Ashfold, Michael N. R. [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Worth, Graham A. [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Stolow, Albert, E-mail: astolow@uottawa.ca [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada)
2016-01-07
The dynamics of N-methylpyrrole following excitation at wavelengths in the range 241.5-217.0 nm were studied using a combination of time-resolved photoelectron spectroscopy (TRPES), ab initio quantum dynamics calculations using the multi-layer multi-configurational time-dependent Hartree method, as well as high-level photoionization cross section calculations. Excitation at 241.5 and 236.2 nm results in population of the A{sub 2}(πσ{sup ∗}) state, in agreement with previous studies. Excitation at 217.0 nm prepares the previously neglected B{sub 1}(π3p{sub y}) Rydberg state, followed by prompt internal conversion to the A{sub 2}(πσ{sup ∗}) state. In contrast with the photoinduced dynamics of pyrrole, the lifetime of the wavepacket in the A{sub 2}(πσ{sup ∗}) state was found to vary with excitation wavelength, decreasing by one order of magnitude upon tuning from 241.5 nm to 236.2 nm and by more than three orders of magnitude when excited at 217.0 nm. The order of magnitude difference in lifetimes measured at the longer excitation wavelengths is attributed to vibrational excitation in the A{sub 2}(πσ{sup ∗}) state, facilitating wavepacket motion around the potential barrier in the N–CH{sub 3} dissociation coordinate.
Hertz, Anaelle; Vanbever, Luc; Cerf, Nicolas J.
2018-01-01
The uncertainty relation for continuous variables due to Byałinicki-Birula and Mycielski [I. Białynicki-Birula and J. Mycielski, Commun. Math. Phys. 44, 129 (1975), 10.1007/BF01608825] expresses the complementarity between two n -tuples of canonically conjugate variables (x1,x2,...,xn) and (p1,p2,...,pn) in terms of Shannon differential entropy. Here we consider the generalization to variables that are not canonically conjugate and derive an entropic uncertainty relation expressing the balance between any two n -variable Gaussian projective measurements. The bound on entropies is expressed in terms of the determinant of a matrix of commutators between the measured variables. This uncertainty relation also captures the complementarity between any two incompatible linear canonical transforms, the bound being written in terms of the corresponding symplectic matrices in phase space. Finally, we extend this uncertainty relation to Rényi entropies and also prove a covariance-based uncertainty relation which generalizes the Robertson relation.
International Nuclear Information System (INIS)
Amitabh, J.; Vaccaro, J.A.; Hill, K.E.
1998-01-01
We study the recently defined number-phase Wigner function S NP (n,θ) for a single-mode field considered to be in binomial and negative binomial states. These states interpolate between Fock and coherent states and coherent and quasi thermal states, respectively, and thus provide a set of states with properties ranging from uncertain phase and sharp photon number to sharp phase and uncertain photon number. The distribution function S NP (n,θ) gives a graphical representation of the complimentary nature of the number and phase properties of these states. We highlight important differences between Wigner's quasi probability function, which is associated with the position and momentum observables, and S NP (n,θ), which is associated directly with the photon number and phase observables. We also discuss the number-phase entropic uncertainty relation for the binomial and negative binomial states and we show that negative binomial states give a lower phase entropy than states which minimize the phase variance
Entropic Measure of Epistemic Uncertainties in Multibody System Models by Axiomatic Design
Directory of Open Access Journals (Sweden)
Francesco Villecco
2017-06-01
Full Text Available In this paper, the use of the MaxInf Principle in real optimization problems is investigated for engineering applications, where the current design solution is actually an engineering approximation. In industrial manufacturing, multibody system simulations can be used to develop new machines and mechanisms by using virtual prototyping, where an axiomatic design can be employed to analyze the independence of elements and the complexity of connections forming a general mechanical system. In the classic theories of Fisher and Wiener-Shannon, the idea of information is a measure of only probabilistic and repetitive events. However, this idea is broader than the probability alone field. Thus, the Wiener-Shannon’s axioms can be extended to non-probabilistic events and it is possible to introduce a theory of information for non-repetitive events as a measure of the reliability of data for complex mechanical systems. To this end, one can devise engineering solutions consistent with the values of the design constraints analyzing the complexity of the relation matrix and using the idea of information in the metric space. The final solution gives the entropic measure of epistemic uncertainties which can be used in multibody system models, analyzed with an axiomatic design.
Self-assembly of Archimedean tilings with enthalpically and entropically patchy polygons.
Millan, Jaime A; Ortiz, Daniel; van Anders, Greg; Glotzer, Sharon C
2014-03-25
Considerable progress in the synthesis of anisotropic patchy nanoplates (nanoplatelets) promises a rich variety of highly ordered two-dimensional superlattices. Recent experiments of superlattices assembled from nanoplates confirm the accessibility of exotic phases and motivate the need for a better understanding of the underlying self-assembly mechanisms. Here, we present experimentally accessible, rational design rules for the self-assembly of the Archimedean tilings from polygonal nanoplates. The Archimedean tilings represent a model set of target patterns that (i) contain both simple and complex patterns, (ii) are comprised of simple regular shapes, and (iii) contain patterns with potentially interesting materials properties. Via Monte Carlo simulations, we propose a set of design rules with general applicability to one- and two-component systems of polygons. These design rules, specified by increasing levels of patchiness, correspond to a reduced set of anisotropy dimensions for robust self-assembly of the Archimedean tilings. We show for which tilings entropic patches alone are sufficient for assembly and when short-range enthalpic interactions are required. For the latter, we show how patchy these interactions should be for optimal yield. This study provides a minimal set of guidelines for the design of anisostropic patchy particles that can self-assemble all 11 Archimedean tilings.
The Influence of the Relaxation Time on the Dynamic Hysteresis in Perovskite Solar Cells
Directory of Open Access Journals (Sweden)
Palici Alexandra
2018-01-01
Full Text Available We investigate the dynamic behavior of perovskite solar cells by focusing on the relaxation time τ, which corresponds to the slow de-polarization process from an initial bias pre-poled state. The dynamic electrical model (DEM is employed for simulating the J-V characteristics for different bias scan rates and pre-poling conditions. Depending on the sign of the initial polarization normal or inverted hysteresis may be induced. For fixed pre-poling conditions, the relaxation time, in relation to the bias scan rate, governs the magnitude of the dynamic hysteresis. In the limit of large τ the hysteretic effects are vanishing for the typical range of bias scan rates considered, while for very small τ the hysteresis is significant only when it is comparable with the measurement time interval.
Detecting dynamical changes in time series by using the Jensen Shannon divergence
Mateos, D. M.; Riveaud, L. E.; Lamberti, P. W.
2017-08-01
Most of the time series in nature are a mixture of signals with deterministic and random dynamics. Thus the distinction between these two characteristics becomes important. Distinguishing between chaotic and aleatory signals is difficult because they have a common wide band power spectrum, a delta like autocorrelation function, and share other features as well. In general, signals are presented as continuous records and require to be discretized for being analyzed. In this work, we introduce different schemes for discretizing and for detecting dynamical changes in time series. One of the main motivations is to detect transitions between the chaotic and random regime. The tools here used here originate from the Information Theory. The schemes proposed are applied to simulated and real life signals, showing in all cases a high proficiency for detecting changes in the dynamics of the associated time series.
Discrete time population dynamics of a two-stage species with recruitment and capture
International Nuclear Information System (INIS)
Ladino, Lilia M.; Mammana, Cristiana; Michetti, Elisabetta; Valverde, Jose C.
2016-01-01
This work models and analyzes the dynamics of a two-stage species with recruitment and capture factors. It arises from the discretization of a previous model developed by Ladino and Valverde (2013), which represents a progress in the knowledge of the dynamics of exploited populations. Although the methods used here are related to the study of discrete-time systems and are different from those related to continuous version, the results are similar in both the discrete and the continuous case what confirm the skill in the selection of the factors to design the model. Unlike for the continuous-time case, for the discrete-time one some (non-negative) parametric constraints are derived from the biological significance of the model and become fundamental for the proofs of such results. Finally, numerical simulations show different scenarios of dynamics related to the analytical results which confirm the validity of the model.
Dynamics model for real time diagnostics of Triga RC-1 system
International Nuclear Information System (INIS)
Gadomski, A.M.; Nanni, V.; Meo, G.
1988-01-01
This paper presents dynamics model of TRIGA RC-1 reactor system. The model is dedicated to the real-time early fault detection during a reactor operation in one week exploitation cycle. The algorithms are specially suited for real-time, long time and also accelerated simulations with assumed diagnostic oriented accuracy. The approximations, modular structure, numerical methods and validation are discussed. The elaborated model will be build in the TRIGA Supervisor System and TRIGA Diagnostic Simulator
Dynamics model for real time diagnostics of TRIGA RC-1 system
International Nuclear Information System (INIS)
Gadomski, A.M.; Nanni, V.; Meo, G.B.
1986-01-01
This paper presents dynamics model of TRIGA RC-1 reactor system. The model is dedicated to the real-time early fault detection during a reactor operation in one week exploitation cycle. The algorithms are specially suited for real-time, long time and also accelerated simulations with assumed diagnostic oriented accuracy. The approximations, modular structure, numerical methods and validation are discussed. The elaborated model will be build in the TRIGA Supervisory System and TRIGA Diagnostic Simulator. (author)
Dynamic Beam Solutions for Real-Time Simulation and Control Development of Flexible Rockets
Su, Weihua; King, Cecilia K.; Clark, Scott R.; Griffin, Edwin D.; Suhey, Jeffrey D.; Wolf, Michael G.
2016-01-01
In this study, flexible rockets are structurally represented by linear beams. Both direct and indirect solutions of beam dynamic equations are sought to facilitate real-time simulation and control development for flexible rockets. The direct solution is completed by numerically integrate the beam structural dynamic equation using an explicit Newmark-based scheme, which allows for stable and fast transient solutions to the dynamics of flexile rockets. Furthermore, in the real-time operation, the bending strain of the beam is measured by fiber optical sensors (FOS) at intermittent locations along the span, while both angular velocity and translational acceleration are measured at a single point by the inertial measurement unit (IMU). Another study in this paper is to find the analytical and numerical solutions of the beam dynamics based on the limited measurement data to facilitate the real-time control development. Numerical studies demonstrate the accuracy of these real-time solutions to the beam dynamics. Such analytical and numerical solutions, when integrated with data processing and control algorithms and mechanisms, have the potential to increase launch availability by processing flight data into the flexible launch vehicle's control system.
Pabst, Stefan
2013-04-01
Time-resolved investigations of ultrafast electronic and molecular dynamics were not possible until recently. The typical time scale of these processes is in the picosecond to attosecond realm. The tremendous technological progress in recent years made it possible to generate ultrashort pulses, which can be used to trigger, to watch, and to control atomic and molecular motion. This tutorial focuses on experimental and theoretical advances which are used to study the dynamics of electrons and molecules in the presence of ultrashort pulses. In the first part, the rotational dynamics of molecules, which happens on picosecond and femtosecond time scales, is reviewed. Well-aligned molecules are particularly suitable for angle-dependent investigations like x-ray diffraction or strong-field ionization experiments. In the second part, the ionization dynamics of atoms is studied. The characteristic time scale lies, here, in the attosecond to few-femtosecond regime. Although a one-particle picture has been successfully applied to many processes, many-body effects do constantly occur. After a broad overview of the main mechanisms and the most common tools in attosecond physics, examples of many-body dynamics in the attosecond world (e.g., in high-harmonic generation and attosecond transient absorption spectroscopy) are discussed.
Velásquez-Rojas, Fátima; Vazquez, Federico
2017-05-01
Opinion formation and disease spreading are among the most studied dynamical processes on complex networks. In real societies, it is expected that these two processes depend on and affect each other. However, little is known about the effects of opinion dynamics over disease dynamics and vice versa, since most studies treat them separately. In this work we study the dynamics of the voter model for opinion formation intertwined with that of the contact process for disease spreading, in a population of agents that interact via two types of connections, social and contact. These two interacting dynamics take place on two layers of networks, coupled through a fraction q of links present in both networks. The probability that an agent updates its state depends on both the opinion and disease states of the interacting partner. We find that the opinion dynamics has striking consequences on the statistical properties of disease spreading. The most important is that the smooth (continuous) transition from a healthy to an endemic phase observed in the contact process, as the infection probability increases beyond a threshold, becomes abrupt (discontinuous) in the two-layer system. Therefore, disregarding the effects of social dynamics on epidemics propagation may lead to a misestimation of the real magnitude of the spreading. Also, an endemic-healthy discontinuous transition is found when the coupling q overcomes a threshold value. Furthermore, we show that the disease dynamics delays the opinion consensus, leading to a consensus time that varies nonmonotonically with q in a large range of the model's parameters. A mean-field approach reveals that the coupled dynamics of opinions and disease can be approximately described by the dynamics of the voter model decoupled from that of the contact process, with effective probabilities of opinion and disease transmission.
Exploratory Study for Continuous-time Parameter Estimation of Ankle Dynamics
Kukreja, Sunil L.; Boyle, Richard D.
2014-01-01
Recently, a parallel pathway model to describe ankle dynamics was proposed. This model provides a relationship between ankle angle and net ankle torque as the sum of a linear and nonlinear contribution. A technique to identify parameters of this model in discrete-time has been developed. However, these parameters are a nonlinear combination of the continuous-time physiology, making insight into the underlying physiology impossible. The stable and accurate estimation of continuous-time parameters is critical for accurate disease modeling, clinical diagnosis, robotic control strategies, development of optimal exercise protocols for longterm space exploration, sports medicine, etc. This paper explores the development of a system identification technique to estimate the continuous-time parameters of ankle dynamics. The effectiveness of this approach is assessed via simulation of a continuous-time model of ankle dynamics with typical parameters found in clinical studies. The results show that although this technique improves estimates, it does not provide robust estimates of continuous-time parameters of ankle dynamics. Due to this we conclude that alternative modeling strategies and more advanced estimation techniques be considered for future work.
An evaluation of dynamic mutuality measurements and methods in cyclic time series
Xia, Xiaohua; Huang, Guitian; Duan, Na
2010-12-01
Several measurements and techniques have been developed to detect dynamic mutuality and synchronicity of time series in econometrics. This study aims to compare the performances of five methods, i.e., linear regression, dynamic correlation, Markov switching models, concordance index and recurrence quantification analysis, through numerical simulations. We evaluate the abilities of these methods to capture structure changing and cyclicity in time series and the findings of this paper would offer guidance to both academic and empirical researchers. Illustration examples are also provided to demonstrate the subtle differences of these techniques.
Quantum-Enhanced Sensing Based on Time Reversal of Nonlinear Dynamics.
Linnemann, D; Strobel, H; Muessel, W; Schulz, J; Lewis-Swan, R J; Kheruntsyan, K V; Oberthaler, M K
2016-07-01
We experimentally demonstrate a nonlinear detection scheme exploiting time-reversal dynamics that disentangles continuous variable entangled states for feasible readout. Spin-exchange dynamics of Bose-Einstein condensates is used as the nonlinear mechanism which not only generates entangled states but can also be time reversed by controlled phase imprinting. For demonstration of a quantum-enhanced measurement we construct an active atom SU(1,1) interferometer, where entangled state preparation and nonlinear readout both consist of parametric amplification. This scheme is capable of exhausting the quantum resource by detecting solely mean atom numbers. Controlled nonlinear transformations widen the spectrum of useful entangled states for applied quantum technologies.
Research on Monte Carlo improved quasi-static method for reactor space-time dynamics
International Nuclear Information System (INIS)
Xu Qi; Wang Kan; Li Shirui; Yu Ganglin
2013-01-01
With large time steps, improved quasi-static (IQS) method can improve the calculation speed for reactor dynamic simulations. The Monte Carlo IQS method was proposed in this paper, combining the advantages of both the IQS method and MC method. Thus, the Monte Carlo IQS method is beneficial for solving space-time dynamics problems of new concept reactors. Based on the theory of IQS, Monte Carlo algorithms for calculating adjoint neutron flux, reactor kinetic parameters and shape function were designed and realized. A simple Monte Carlo IQS code and a corresponding diffusion IQS code were developed, which were used for verification of the Monte Carlo IQS method. (authors)
Heterogeneous dynamics of ionic liquids: A four-point time correlation function approach
Liu, Jiannan; Willcox, Jon A. L.; Kim, Hyung J.
2018-05-01
Many ionic liquids show behavior similar to that of glassy systems, e.g., large and long-lasted deviations from Gaussian dynamics and clustering of "mobile" and "immobile" groups of ions. Herein a time-dependent four-point density correlation function—typically used to characterize glassy systems—is implemented for the ionic liquids, choline acetate, and 1-butyl-3-methylimidazolium acetate. Dynamic correlation beyond the first ionic solvation shell on the time scale of nanoseconds is found in the ionic liquids, revealing the cooperative nature of ion motions. The traditional solvent, acetonitrile, on the other hand, shows a much shorter length-scale that decays after a few picoseconds.
DEFF Research Database (Denmark)
Bordbar, Aarash; Yurkovich, James T.; Paglia, Giuseppe
2017-01-01
The increasing availability of metabolomics data necessitates novel methods for deeper data analysis and interpretation. We present a flux balance analysis method that allows for the computation of dynamic intracellular metabolic changes at the cellular scale through integration of time-course ab......The increasing availability of metabolomics data necessitates novel methods for deeper data analysis and interpretation. We present a flux balance analysis method that allows for the computation of dynamic intracellular metabolic changes at the cellular scale through integration of time...
Bifurcation and complex dynamics of a discrete-time predator-prey system
Directory of Open Access Journals (Sweden)
S. M. Sohel Rana
2015-06-01
Full Text Available In this paper, we investigate the dynamics of a discrete-time predator-prey system of Holling-I type in the closed first quadrant R+2. The existence and local stability of positive fixed point of the discrete dynamical system is analyzed algebraically. It is shown that the system undergoes a flip bifurcation and a Neimark-Sacker bifurcation in the interior of R+2 by using bifurcation theory. It has been found that the dynamical behavior of the model is very sensitive to the parameter values and the initial conditions. Numerical simulation results not only show the consistence with the theoretical analysis but also display the new and interesting dynamic behaviors, including phase portraits, period-9, 10, 20-orbits, attracting invariant circle, cascade of period-doubling bifurcation from period-20 leading to chaos, quasi-periodic orbits, and sudden disappearance of the chaotic dynamics and attracting chaotic set. In particular, we observe that when the prey is in chaotic dynamic, the predator can tend to extinction or to a stable equilibrium. The Lyapunov exponents are numerically computed to characterize the complexity of the dynamical behaviors. The analysis and results in this paper are interesting in mathematics and biology.
Jia, Xingyu; Liu, Zhigang; Tao, Long; Deng, Zhongwen
2017-10-16
Frequency scanning interferometry (FSI) with a single external cavity diode laser (ECDL) and time-invariant Kalman filtering is an effective technique for measuring the distance of a dynamic target. However, due to the hysteresis of the piezoelectric ceramic transducer (PZT) actuator in the ECDL, the optical frequency sweeps of the ECDL exhibit different behaviors, depending on whether the frequency is increasing or decreasing. Consequently, the model parameters of Kalman filter appear time varying in each iteration, which produces state estimation errors with time-invariant filtering. To address this, in this paper, a time-varying Kalman filter is proposed to model the instantaneous movement of a target relative to the different optical frequency tuning durations of the ECDL. The combination of the FSI method with the time-varying Kalman filter was theoretically analyzed, and the simulation and experimental results show the proposed method greatly improves the performance of dynamic FSI measurements.
Synchronization criterion for Lur'e type complex dynamical networks with time-varying delay
International Nuclear Information System (INIS)
Ji, D.H.; Park, Ju H.; Yoo, W.J.; Won, S.C.; Lee, S.M.
2010-01-01
In this Letter, the synchronization problem for a class of complex dynamical networks in which every identical node is a Lur'e system with time-varying delay is considered. A delay-dependent synchronization criterion is derived for the synchronization of complex dynamical network that represented by Lur'e system with sector restricted nonlinearities. The derived criterion is a sufficient condition for absolute stability of error dynamics between the each nodes and the isolated node. Using a convex representation of the nonlinearity for error dynamics, the stability condition based on the discretized Lyapunov-Krasovskii functional is obtained via LMI formulation. The proposed delay-dependent synchronization criterion is less conservative than the existing ones. The effectiveness of our work is verified through numerical examples.
Rai, Shesh N; Trainor, Patrick J; Khosravi, Farhad; Kloecker, Goetz; Panchapakesan, Balaji
2016-01-01
The development of biosensors that produce time series data will facilitate improvements in biomedical diagnostics and in personalized medicine. The time series produced by these devices often contains characteristic features arising from biochemical interactions between the sample and the sensor. To use such characteristic features for determining sample class, similarity-based classifiers can be utilized. However, the construction of such classifiers is complicated by the variability in the time domains of such series that renders the traditional distance metrics such as Euclidean distance ineffective in distinguishing between biological variance and time domain variance. The dynamic time warping (DTW) algorithm is a sequence alignment algorithm that can be used to align two or more series to facilitate quantifying similarity. In this article, we evaluated the performance of DTW distance-based similarity classifiers for classifying time series that mimics electrical signals produced by nanotube biosensors. Simulation studies demonstrated the positive performance of such classifiers in discriminating between time series containing characteristic features that are obscured by noise in the intensity and time domains. We then applied a DTW distance-based k -nearest neighbors classifier to distinguish the presence/absence of mesenchymal biomarker in cancer cells in buffy coats in a blinded test. Using a train-test approach, we find that the classifier had high sensitivity (90.9%) and specificity (81.8%) in differentiating between EpCAM-positive MCF7 cells spiked in buffy coats and those in plain buffy coats.
Non-Gaussian lineshapes and dynamics of time-resolved linear and nonlinear (correlation) spectra.
Dinpajooh, Mohammadhasan; Matyushov, Dmitry V
2014-07-17
Signatures of nonlinear and non-Gaussian dynamics in time-resolved linear and nonlinear (correlation) 2D spectra are analyzed in a model considering a linear plus quadratic dependence of the spectroscopic transition frequency on a Gaussian nuclear coordinate of the thermal bath (quadratic coupling). This new model is contrasted to the commonly assumed linear dependence of the transition frequency on the medium nuclear coordinates (linear coupling). The linear coupling model predicts equality between the Stokes shift and equilibrium correlation functions of the transition frequency and time-independent spectral width. Both predictions are often violated, and we are asking here the question of whether a nonlinear solvent response and/or non-Gaussian dynamics are required to explain these observations. We find that correlation functions of spectroscopic observables calculated in the quadratic coupling model depend on the chromophore's electronic state and the spectral width gains time dependence, all in violation of the predictions of the linear coupling models. Lineshape functions of 2D spectra are derived assuming Ornstein-Uhlenbeck dynamics of the bath nuclear modes. The model predicts asymmetry of 2D correlation plots and bending of the center line. The latter is often used to extract two-point correlation functions from 2D spectra. The dynamics of the transition frequency are non-Gaussian. However, the effect of non-Gaussian dynamics is limited to the third-order (skewness) time correlation function, without affecting the time correlation functions of higher order. The theory is tested against molecular dynamics simulations of a model polar-polarizable chromophore dissolved in a force field water.
Dynamic Maternal Gradients Control Timing and Shift-Rates for Drosophila Gap Gene Expression
Verd, Berta; Crombach, Anton
2017-01-01
Pattern formation during development is a highly dynamic process. In spite of this, few experimental and modelling approaches take into account the explicit time-dependence of the rules governing regulatory systems. We address this problem by studying dynamic morphogen interpretation by the gap gene network in Drosophila melanogaster. Gap genes are involved in segment determination during early embryogenesis. They are activated by maternal morphogen gradients encoded by bicoid (bcd) and caudal (cad). These gradients decay at the same time-scale as the establishment of the antero-posterior gap gene pattern. We use a reverse-engineering approach, based on data-driven regulatory models called gene circuits, to isolate and characterise the explicitly time-dependent effects of changing morphogen concentrations on gap gene regulation. To achieve this, we simulate the system in the presence and absence of dynamic gradient decay. Comparison between these simulations reveals that maternal morphogen decay controls the timing and limits the rate of gap gene expression. In the anterior of the embyro, it affects peak expression and leads to the establishment of smooth spatial boundaries between gap domains. In the posterior of the embryo, it causes a progressive slow-down in the rate of gap domain shifts, which is necessary to correctly position domain boundaries and to stabilise the spatial gap gene expression pattern. We use a newly developed method for the analysis of transient dynamics in non-autonomous (time-variable) systems to understand the regulatory causes of these effects. By providing a rigorous mechanistic explanation for the role of maternal gradient decay in gap gene regulation, our study demonstrates that such analyses are feasible and reveal important aspects of dynamic gene regulation which would have been missed by a traditional steady-state approach. More generally, it highlights the importance of transient dynamics for understanding complex regulatory
Real-time electricity pricing mechanism in China based on system dynamics
International Nuclear Information System (INIS)
He, Yongxiu; Zhang, Jixiang
2015-01-01
Highlights: • The system dynamics is used to research the real-time electricity pricing mechanism. • Four kinds of the real-time electricity pricing models are carried out and simulated. • It analysed the electricity price, the user satisfaction and the social benefits under the different models. • Market pricing is the trend of the real-time electricity pricing mechanism. • Initial development path of the real-time price mechanism for China is designed between 2015 and 2030. - Abstract: As an important means of demand-side response, the reasonable formulation of the electricity price mechanism will have an important impact on the balance between the supply and demand of electric power. With the introduction of Chinese intelligence apparatus and the rapid development of smart grids, real-time electricity pricing, as the frontier electricity pricing mechanism in the smart grid, will have great significance on the promotion of energy conservation and the improvement of the total social surplus. From the perspective of system dynamics, this paper studies different real-time electricity pricing mechanisms based on load structure, cost structure and bidding and analyses the situation of user satisfaction and the total social surplus under different pricing mechanisms. Finally, through the comparative analysis of examples under different real-time pricing scenarios, this paper aims to explore and design the future dynamic real-time electricity pricing mechanism in China, predicts the dynamic real-time pricing level and provides a reference for real-time electricity price promotion in the future
Space and time dynamical heterogeneity in glassy relaxation. The role of democratic clusters
International Nuclear Information System (INIS)
Appignanesi, G A; Rodriguez Fris, J A
2009-01-01
In this work we review recent computational advances in the understanding of the relaxation dynamics of supercooled glass-forming liquids. In such a supercooled regime these systems experience a striking dynamical slowing down which can be rationalized in terms of the picture of dynamical heterogeneities, wherein the dynamics can vary by orders of magnitude from one region of the sample to another and where the sizes and timescales of such slowly relaxing regions are expected to increase considerably as the temperature is decreased. We shall focus on the relaxation events at a microscopic level and describe the finding of the collective motions of particles responsible for the dynamical heterogeneities. In so doing, we shall demonstrate that the dynamics in different regions of the system is not only heterogeneous in space but also in time. In particular, we shall be interested in the events relevant to the long-time structural relaxation or α relaxation. In this regard, we shall focus on the discovery of cooperatively relaxing units involving the collective motion of relatively compact clusters of particles, called 'democratic clusters' or d-clusters. These events have been shown to trigger transitions between metabasins of the potential energy landscape (collections of similar configurations or structures) and to consist of the main steps in the α relaxation. Such events emerge in systems quite different in nature such as simple model glass formers and supercooled amorphous water. Additionally, another relevant issue in this context consists in the determination of a link between structure and dynamics. In this context, we describe the relationship between the d-cluster events and the constraints that the local structure poses on the relaxation dynamics, thus revealing their role in reformulating structural constraints. (topical review)
Capturing Context-Related Change in Emotional Dynamics via Fixed Moderated Time Series Analysis.
Adolf, Janne K; Voelkle, Manuel C; Brose, Annette; Schmiedek, Florian
2017-01-01
Much of recent affect research relies on intensive longitudinal studies to assess daily emotional experiences. The resulting data are analyzed with dynamic models to capture regulatory processes involved in emotional functioning. Daily contexts, however, are commonly ignored. This may not only result in biased parameter estimates and wrong conclusions, but also ignores the opportunity to investigate contextual effects on emotional dynamics. With fixed moderated time series analysis, we present an approach that resolves this problem by estimating context-dependent change in dynamic parameters in single-subject time series models. The approach examines parameter changes of known shape and thus addresses the problem of observed intra-individual heterogeneity (e.g., changes in emotional dynamics due to observed changes in daily stress). In comparison to existing approaches to unobserved heterogeneity, model estimation is facilitated and different forms of change can readily be accommodated. We demonstrate the approach's viability given relatively short time series by means of a simulation study. In addition, we present an empirical application, targeting the joint dynamics of affect and stress and how these co-vary with daily events. We discuss potentials and limitations of the approach and close with an outlook on the broader implications for understanding emotional adaption and development.
Dynamic divisive normalization predicts time-varying value coding in decision-related circuits.
Louie, Kenway; LoFaro, Thomas; Webb, Ryan; Glimcher, Paul W
2014-11-26
Normalization is a widespread neural computation, mediating divisive gain control in sensory processing and implementing a context-dependent value code in decision-related frontal and parietal cortices. Although decision-making is a dynamic process with complex temporal characteristics, most models of normalization are time-independent and little is known about the dynamic interaction of normalization and choice. Here, we show that a simple differential equation model of normalization explains the characteristic phasic-sustained pattern of cortical decision activity and predicts specific normalization dynamics: value coding during initial transients, time-varying value modulation, and delayed onset of contextual information. Empirically, we observe these predicted dynamics in saccade-related neurons in monkey lateral intraparietal cortex. Furthermore, such models naturally incorporate a time-weighted average of past activity, implementing an intrinsic reference-dependence in value coding. These results suggest that a single network mechanism can explain both transient and sustained decision activity, emphasizing the importance of a dynamic view of normalization in neural coding. Copyright © 2014 the authors 0270-6474/14/3416046-12$15.00/0.
Impact of Stock Market Structure on Intertrade Time and Price Dynamics
Ivanov, Plamen Ch.; Yuen, Ainslie; Perakakis, Pandelis
2014-01-01
We analyse times between consecutive transactions for a diverse group of stocks registered on the NYSE and NASDAQ markets, and we relate the dynamical properties of the intertrade times with those of the corresponding price fluctuations. We report that market structure strongly impacts the scale-invariant temporal organisation in the transaction timing of stocks, which we have observed to have long-range power-law correlations. Specifically, we find that, compared to NYSE stocks, stocks registered on the NASDAQ exhibit significantly stronger correlations in their transaction timing on scales within a trading day. Further, we find that companies that transfer from the NASDAQ to the NYSE show a reduction in the correlation strength of transaction timing on scales within a trading day, indicating influences of market structure. We also report a persistent decrease in correlation strength of intertrade times with increasing average intertrade time and with corresponding decrease in companies' market capitalization–a trend which is less pronounced for NASDAQ stocks. Surprisingly, we observe that stronger power-law correlations in intertrade times are coupled with stronger power-law correlations in absolute price returns and higher price volatility, suggesting a strong link between the dynamical properties of intertrade times and the corresponding price fluctuations over a broad range of time scales. Comparing the NYSE and NASDAQ markets, we demonstrate that the stronger correlations we find in intertrade times for NASDAQ stocks are associated with stronger correlations in absolute price returns and with higher volatility, suggesting that market structure may affect price behavior through information contained in transaction timing. These findings do not support the hypothesis of universal scaling behavior in stock dynamics that is independent of company characteristics and stock market structure. Further, our results have implications for utilising transaction timing
Impact of stock market structure on intertrade time and price dynamics.
Ivanov, Plamen Ch; Yuen, Ainslie; Perakakis, Pandelis
2014-01-01
We analyse times between consecutive transactions for a diverse group of stocks registered on the NYSE and NASDAQ markets, and we relate the dynamical properties of the intertrade times with those of the corresponding price fluctuations. We report that market structure strongly impacts the scale-invariant temporal organisation in the transaction timing of stocks, which we have observed to have long-range power-law correlations. Specifically, we find that, compared to NYSE stocks, stocks registered on the NASDAQ exhibit significantly stronger correlations in their transaction timing on scales within a trading day. Further, we find that companies that transfer from the NASDAQ to the NYSE show a reduction in the correlation strength of transaction timing on scales within a trading day, indicating influences of market structure. We also report a persistent decrease in correlation strength of intertrade times with increasing average intertrade time and with corresponding decrease in companies' market capitalization-a trend which is less pronounced for NASDAQ stocks. Surprisingly, we observe that stronger power-law correlations in intertrade times are coupled with stronger power-law correlations in absolute price returns and higher price volatility, suggesting a strong link between the dynamical properties of intertrade times and the corresponding price fluctuations over a broad range of time scales. Comparing the NYSE and NASDAQ markets, we demonstrate that the stronger correlations we find in intertrade times for NASDAQ stocks are associated with stronger correlations in absolute price returns and with higher volatility, suggesting that market structure may affect price behavior through information contained in transaction timing. These findings do not support the hypothesis of universal scaling behavior in stock dynamics that is independent of company characteristics and stock market structure. Further, our results have implications for utilising transaction timing
Direct Observation of Insulin Association Dynamics with Time-Resolved X-ray Scattering
Energy Technology Data Exchange (ETDEWEB)
Rimmerman, Dolev [Department; Leshchev, Denis [Department; Hsu, Darren J. [Department; Hong, Jiyun [Department; Kosheleva, Irina [Center; Chen, Lin X. [Department; Chemical
2017-09-05
Biological functions frequently require protein-protein interactions that involve secondary and tertiary structural perturbation. Here we study protein-protein dissociation and reassociation dynamics in insulin, a model system for protein oligomerization. Insulin dimer dissociation into monomers was induced by a nanosecond temperature-jump (T-jump) of ~8 °C in aqueous solution, and the resulting protein and solvent dynamics were tracked by time-resolved X-ray solution scattering (TRXSS) on time scales of 10 ns to 100 ms. The protein scattering signals revealed the formation of five distinguishable transient species during the association process that deviate from simple two state kinetics. Our results show that the combination of T-jump pump coupled to TRXSS probe allows for direct tracking of structural dynamics in nonphotoactive proteins.
Exponential synchronization of complex networks with nonidentical time-delayed dynamical nodes
International Nuclear Information System (INIS)
Cai Shuiming; He Qinbin; Hao Junjun; Liu Zengrong
2010-01-01
In this Letter, exponential synchronization of a complex network with nonidentical time-delayed dynamical nodes is considered. Two effective control schemes are proposed to drive the network to synchronize globally exponentially onto any smooth goal dynamics. By applying open-loop control to all nodes and adding some intermittent controllers to partial nodes, some simple criteria for exponential synchronization of such network are established. Meanwhile, a pinning scheme deciding which nodes need to be pinned and a simply approximate formula for estimating the least number of pinned nodes are also provided. By introducing impulsive effects to the open-loop controlled network, another synchronization scheme is developed for the network with nonidentical time-delayed dynamical nodes, and an estimate of the upper bound of impulsive intervals ensuring global exponential stability of the synchronization process is also given. Numerical simulations are presented finally to demonstrate the effectiveness of the theoretical results.
Neural Network Based Real-time Correction of Transducer Dynamic Errors
Roj, J.
2013-12-01
In order to carry out real-time dynamic error correction of transducers described by a linear differential equation, a novel recurrent neural network was developed. The network structure is based on solving this equation with respect to the input quantity when using the state variables. It is shown that such a real-time correction can be carried out using simple linear perceptrons. Due to the use of a neural technique, knowledge of the dynamic parameters of the transducer is not necessary. Theoretical considerations are illustrated by the results of simulation studies performed for the modeled second order transducer. The most important properties of the neural dynamic error correction, when emphasizing the fundamental advantages and disadvantages, are discussed.
A simple analytical model for dynamics of time-varying target leverage ratios
Lo, C. F.; Hui, C. H.
2012-03-01
In this paper we have formulated a simple theoretical model for the dynamics of the time-varying target leverage ratio of a firm under some assumptions based upon empirical observations. In our theoretical model the time evolution of the target leverage ratio of a firm can be derived self-consistently from a set of coupled Ito's stochastic differential equations governing the leverage ratios of an ensemble of firms by the nonlinear Fokker-Planck equation approach. The theoretically derived time paths of the target leverage ratio bear great resemblance to those used in the time-dependent stationary-leverage (TDSL) model [Hui et al., Int. Rev. Financ. Analy. 15, 220 (2006)]. Thus, our simple model is able to provide a theoretical foundation for the selected time paths of the target leverage ratio in the TDSL model. We also examine how the pace of the adjustment of a firm's target ratio, the volatility of the leverage ratio and the current leverage ratio affect the dynamics of the time-varying target leverage ratio. Hence, with the proposed dynamics of the time-dependent target leverage ratio, the TDSL model can be readily applied to generate the default probabilities of individual firms and to assess the default risk of the firms.
On Stabilizing the Variance of Dynamic Functional Brain Connectivity Time Series.
Thompson, William Hedley; Fransson, Peter
2016-12-01
Assessment of dynamic functional brain connectivity based on functional magnetic resonance imaging (fMRI) data is an increasingly popular strategy to investigate temporal dynamics of the brain's large-scale network architecture. Current practice when deriving connectivity estimates over time is to use the Fisher transformation, which aims to stabilize the variance of correlation values that fluctuate around varying true correlation values. It is, however, unclear how well the stabilization of signal variance performed by the Fisher transformation works for each connectivity time series, when the true correlation is assumed to be fluctuating. This is of importance because many subsequent analyses either assume or perform better when the time series have stable variance or adheres to an approximate Gaussian distribution. In this article, using simulations and analysis of resting-state fMRI data, we analyze the effect of applying different variance stabilization strategies on connectivity time series. We focus our investigation on the Fisher transformation, the Box-Cox (BC) transformation and an approach that combines both transformations. Our results show that, if the intention of stabilizing the variance is to use metrics on the time series, where stable variance or a Gaussian distribution is desired (e.g., clustering), the Fisher transformation is not optimal and may even skew connectivity time series away from being Gaussian. Furthermore, we show that the suboptimal performance of the Fisher transformation can be substantially improved by including an additional BC transformation after the dynamic functional connectivity time series has been Fisher transformed.
Claure, Yuri Navarro; Matsubara, Edson Takashi; Padovani, Carlos; Prati, Ronaldo Cristiano
2018-03-01
Traditional methods for estimating timing parameters in hydrological science require a rigorous study of the relations of flow resistance, slope, flow regime, watershed size, water velocity, and other local variables. These studies are mostly based on empirical observations, where the timing parameter is estimated using empirically derived formulas. The application of these studies to other locations is not always direct. The locations in which equations are used should have comparable characteristics to the locations from which such equations have been derived. To overcome this barrier, in this work, we developed a data-driven approach to estimate timing parameters such as travel time. Our proposal estimates timing parameters using historical data of the location without the need of adapting or using empirical formulas from other locations. The proposal only uses one variable measured at two different locations on the same river (for instance, two river-level measurements, one upstream and the other downstream on the same river). The recorded data from each location generates two time series. Our method aligns these two time series using derivative dynamic time warping (DDTW) and perceptually important points (PIP). Using data from timing parameters, a polynomial function generalizes the data by inducing a polynomial water travel time estimator, called PolyWaTT. To evaluate the potential of our proposal, we applied PolyWaTT to three different watersheds: a floodplain ecosystem located in the part of Brazil known as Pantanal, the world's largest tropical wetland area; and the Missouri River and the Pearl River, in United States of America. We compared our proposal with empirical formulas and a data-driven state-of-the-art method. The experimental results demonstrate that PolyWaTT showed a lower mean absolute error than all other methods tested in this study, and for longer distances the mean absolute error achieved by PolyWaTT is three times smaller than empirical
Quantum dynamics at finite temperature: Time-dependent quantum Monte Carlo study
Energy Technology Data Exchange (ETDEWEB)
Christov, Ivan P., E-mail: ivan.christov@phys.uni-sofia.bg
2016-08-15
In this work we investigate the ground state and the dissipative quantum dynamics of interacting charged particles in an external potential at finite temperature. The recently devised time-dependent quantum Monte Carlo (TDQMC) method allows a self-consistent treatment of the system of particles together with bath oscillators first for imaginary-time propagation of Schrödinger type of equations where both the system and the bath converge to their finite temperature ground state, and next for real time calculation where the dissipative dynamics is demonstrated. In that context the application of TDQMC appears as promising alternative to the path-integral related techniques where the real time propagation can be a challenge.
Communication: Time-dependent optimized coupled-cluster method for multielectron dynamics
Sato, Takeshi; Pathak, Himadri; Orimo, Yuki; Ishikawa, Kenichi L.
2018-02-01
Time-dependent coupled-cluster method with time-varying orbital functions, called time-dependent optimized coupled-cluster (TD-OCC) method, is formulated for multielectron dynamics in an intense laser field. We have successfully derived the equations of motion for CC amplitudes and orthonormal orbital functions based on the real action functional, and implemented the method including double excitations (TD-OCCD) and double and triple excitations (TD-OCCDT) within the optimized active orbitals. The present method is size extensive and gauge invariant, a polynomial cost-scaling alternative to the time-dependent multiconfiguration self-consistent-field method. The first application of the TD-OCC method of intense-laser driven correlated electron dynamics in Ar atom is reported.
Integration of domain and resource-based reasoning for real-time control in dynamic environments
Morgan, Keith; Whitebread, Kenneth R.; Kendus, Michael; Cromarty, Andrew S.
1993-01-01
A real-time software controller that successfully integrates domain-based and resource-based control reasoning to perform task execution in a dynamically changing environment is described. The design of the controller is based on the concept of partitioning the process to be controlled into a set of tasks, each of which achieves some process goal. It is assumed that, in general, there are multiple ways (tasks) to achieve a goal. The controller dynamically determines current goals and their current criticality, choosing and scheduling tasks to achieve those goals in the time available. It incorporates rule-based goal reasoning, a TMS-based criticality propagation mechanism, and a real-time scheduler. The controller has been used to build a knowledge-based situation assessment system that formed a major component of a real-time, distributed, cooperative problem solving system built under DARPA contract. It is also being employed in other applications now in progress.
Feynman’s clock, a new variational principle, and parallel-in-time quantum dynamics
McClean, Jarrod R.; Parkhill, John A.; Aspuru-Guzik, Alán
2013-01-01
We introduce a discrete-time variational principle inspired by the quantum clock originally proposed by Feynman and use it to write down quantum evolution as a ground-state eigenvalue problem. The construction allows one to apply ground-state quantum many-body theory to quantum dynamics, extending the reach of many highly developed tools from this fertile research area. Moreover, this formalism naturally leads to an algorithm to parallelize quantum simulation over time. We draw an explicit connection between previously known time-dependent variational principles and the time-embedded variational principle presented. Sample calculations are presented, applying the idea to a hydrogen molecule and the spin degrees of freedom of a model inorganic compound, demonstrating the parallel speedup of our method as well as its flexibility in applying ground-state methodologies. Finally, we take advantage of the unique perspective of this variational principle to examine the error of basis approximations in quantum dynamics. PMID:24062428
Hardy inequality on time scales and its application to half-linear dynamic equations
Directory of Open Access Journals (Sweden)
Řehák Pavel
2005-01-01
Full Text Available A time-scale version of the Hardy inequality is presented, which unifies and extends well-known Hardy inequalities in the continuous and in the discrete setting. An application in the oscillation theory of half-linear dynamic equations is given.
Dynamic life-time assessing method for the N1C700 turbine's rotor
International Nuclear Information System (INIS)
Popescu-Vifor, B.
1993-01-01
The N1C700 turbine's rotor subject to different sorts of stress variations was investigated through dynamic life-time assessing method. To obtain the temperature fields at different steam parameters inside the turbine components, a computer code named DENOPAR was developed
The effect of finite response–time in coupled dynamical systems
Indian Academy of Sciences (India)
The paper investigates synchronization in unidirectionally coupled dynamical systems wherein the inﬂuence of drive on response is cumulative: coupling signals are integrated over a time interval . A major consequence of integrative coupling is that the onset of the generalized and phase synchronization occurs at higher ...
Real-Time Dynamic MLC Tracking for Intensity Modulated Arc Therapy
DEFF Research Database (Denmark)
Falk, Marianne
Motion management of intra-fraction tumour motion during radiotherapy treatment can be a challenging task in order to achieve tumour control as well as minimizing the dose to the surrounding healthy tissue. Real-time dynamic multileaf collimator (MLC) tracking is a novel method for intra-fraction...
Rotation in the Dynamic Factor Modeling of Multivariate Stationary Time Series.
Molenaar, Peter C. M.; Nesselroade, John R.
2001-01-01
Proposes a special rotation procedure for the exploratory dynamic factor model for stationary multivariate time series. The rotation procedure applies separately to each univariate component series of a q-variate latent factor series and transforms such a component, initially represented as white noise, into a univariate moving-average.…
Wave packet dynamics and photofragmentation in time-dependent quadratic potentials
DEFF Research Database (Denmark)
Møller, Klaus Braagaard; Henriksen, Niels Engholm
1996-01-01
We study the dynamics of generalized harmonic oscillator states in time-dependent quadratic potentials and derive analytical expressions for the momentum space and the Wigner phase space representation of these wave packets. Using these results we consider a model for the rotational excitation...
Dynamic state estimation and prediction for real-time control and operation
Nguyen, P.H.; Venayagamoorthy, G.K.; Kling, W.L.; Ribeiro, P.F.
2013-01-01
Real-time control and operation are crucial to deal with increasing complexity of modern power systems. To effectively enable those functions, it is required a Dynamic State Estimation (DSE) function to provide accurate network state variables at the right moment and predict their trends ahead. This
Shape selection in Landsat time series: A tool for monitoring forest dynamics
Gretchen G. Moisen; Mary C. Meyer; Todd A. Schroeder; Xiyue Liao; Karen G. Schleeweis; Elizabeth A. Freeman; Chris Toney
2016-01-01
We present a new methodology for fitting nonparametric shape-restricted regression splines to time series of Landsat imagery for the purpose of modeling, mapping, and monitoring annual forest disturbance dynamics over nearly three decades. For each pixel and spectral band or index of choice in temporal Landsat data, our method delivers a smoothed rendition of...
Dissolved organic nitrogen dynamics in the North Sea: A time series analysis (1995-2005)
Van Engeland, T.; Soetaert, K.E.R.; Knuijt, A.; Laane, R.W.P.M.; Middelburg, J.J.
2010-01-01
Dissolved organic nitrogen (DON) dynamics in the North Sea was explored by means of long-term time series of nitrogen parameters from the Dutch national monitoring program. Generally, the data quality was good with little missing data points. Different imputation methods were used to verify the
Principal and nonprincipal solutions of symplectic dynamic systems on time scales
Directory of Open Access Journals (Sweden)
Ondrej Dosly
2000-01-01
Full Text Available We establish the concept of the principal and nonprincipal solution for the so-called symplectic dynamic systems on time scales. We also present a brief survey of the history of these concept for differential and difference equations.
Real time control of the flexible dynamics of orbital launch vehicles
Bos, van den J.; Steinbuch, M.; Gutierrez, H.M.
2011-01-01
During this traineeship the flexible dynamics of orbital launch vehicles are estimated and controlled in real time, using distributed fiber-Bragg sensor arrays for motion estimation and cold gas thrusters for control. The use of these cold-gas thrusters to actively control flexible modes is the main
Generalized Dynamic Panel Data Models with Random Effects for Cross-Section and Time
Mesters, G.; Koopman, S.J.
2014-01-01
An exact maximum likelihood method is developed for the estimation of parameters in a nonlinear non-Gaussian dynamic panel data model with unobserved random individual-specific and time-varying effects. We propose an estimation procedure based on the importance sampling technique. In particular, a
Czech Academy of Sciences Publication Activity Database
Durand, P.; Paidarová, Ivana
2011-01-01
Roč. 111, č. 2 (2011), s. 225-236 ISSN 0020-7608 R&D Projects: GA AV ČR IAA100400501; GA AV ČR IAA401870702 Institutional research plan: CEZ:AV0Z40400503 Keywords : Liouville equation * time scales * chemical kinetics and dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.357, year: 2011
DYNAMIC TIME HISTORY ANALYSIS OF BLAST RESISTANT DOOR USING BLAST LOAD MODELED AS IMPACT LOAD
Directory of Open Access Journals (Sweden)
Y. A. Pranata
2012-06-01
Full Text Available A blast resistant single door was designed to withstand a 0.91 bar blast pressure and 44 ms blast duration. The analysis was done using Dynamic Time History Analysis using Blast Load modeled as Impact Load for given duration. The material properties used have been modified to accommodate dynamic effects. The analysis was done using dynamic finite element method (fem for time of the blast duration, and the maximum/minimum internal forces and displacement were taken from the time history output, in order to know the behavior under blast load and estimate the safety margin of the door. Results obtained from this research indicated that the maximum z-displacement is 1.709 mm, while in the term of serviceability, the permitted is 25 mm. The maximum reaction force is 73,960 N, while the maximum anchor capacity is 82,069 N. On blast condition, the maximum frame stress is 71.71 MPa, the maximum hinge shear stress is 45.28 MPa. While on rebound condition, the maximum frame stress is 172.11 MPa, the maximum hinge shear stress is 29.46 MPa. The maximum door edge rotation is 0.44 degree, which is not exceed the permitted boundary (1.2 degree. Keywords: Dynamic time history, blast resistant door, single door, finite element method.
Molenaar, P.C.M.
1987-01-01
Outlines a frequency domain analysis of the dynamic factor model and proposes a solution to the problem of constructing a causal filter of lagged factor loadings. The method is illustrated with applications to simulated and real multivariate time series. The latter applications involve topographic
Rotation in the dynamic factor modeling of multivariate stationary time series.
Molenaar, P.C.M.; Nesselroade, J.R.
2001-01-01
A special rotation procedure is proposed for the exploratory dynamic factor model for stationary multivariate time series. The rotation procedure applies separately to each univariate component series of a q-variate latent factor series and transforms such a component, initially represented as white
Performance analysis of a cooperative adaptive cruise controller subject to dynamic time headway
Semsar-Kazerooni, E.; Ploeg, J.
2013-01-01
The current paper shows string stability of a platoon of vehicles when the spacing policy within the platoon is dynamic, i.e., it has time-varying parameters. This problem setup is to address the safety issues that arise due to malfunction of some redundant sensing/communicating devices installed on
Real-Time Dynamics in the (1+1)-D Abelian Higgs Model with Fermions
Aarts, G.; Smit, J.
2000-01-01
In approximate dynamical equations, inhomogenous classical (mean) gauge and Higgs fields are coupled to quantized fermions. The equations are solved numerically on a spacetime lattice. The fermions appear to equilibrate according to the Fermi-Dirac distribution with time-dependent temperature and
Jelsma, L.D.; Smits-Engelsman, B.C.M.; Geuze, R.H.
2015-01-01
Changes in dynamic balance control over time in children with and without Developmental Coordination Disorder L.D. Jelsma1, B.C.M. Smits-Engelsman2 & R.H. Geuze1 1Clinical and Developmental Neuropsychology, University of Groningen, Grote Kruisstraat 2-1, 9712 TS Groningen, the Netherlands.
Real-Time Probing of Structural Dynamics by Interaction between Chromophores
DEFF Research Database (Denmark)
Brogaard, Rasmus Y.; Møller, Klaus Braagaard; Sølling, Theis Ivan
2011-01-01
We present an investigation of structural dynamics in excited-state cations probed in real-time by femtosecond timeresolved ion photofragmentation spectroscopy. From photoelectron spectroscopy data on 1,3-dibromopropane we conclude that the pump pulse ionizes the molecule, populating an excited...
Directory of Open Access Journals (Sweden)
Ming-Chorng Hwang
2015-01-01
Full Text Available A theoretic formulation on how traffic time information distributed by ITS operations influences the trajectory of network flows is presented in this paper. The interactions between users and ITS operator are decomposed into three parts: (i travel time induced path flow dynamics (PFDTT; (ii demand induced path flow dynamics (PFDD; and (iii predicted travel time dynamics for an origin-destination (OD pair (PTTDOD. PFDTT describes the collective results of user’s daily route selection by pairwise comparison of path travel time provided by ITS services. The other two components, PTTDOD and PFDD, are concentrated on the evolutions of system variables which are predicted and observed, respectively, by ITS operators to act as a benchmark in guiding the target system towards an expected status faster. In addition to the delivered modelings, the stability theorem of the equilibrium solution in the sense of Lyapunov stability is also provided. A Lyapunov function is developed and employed to the proof of stability theorem to show the asymptotic behavior of the aimed system. The information of network flow dynamics plays a key role in traffic control policy-making. The evaluation of ITS-based strategies will not be reasonable without a well-established modeling of network flow evolutions.
International Nuclear Information System (INIS)
Nemeth, J.; Barranco, M.; Ngo, C.; Tomasi, E.
1985-01-01
We have used a self-consistent time dependent Thomas-Fermi model at finite temperature to calculate the dynamical evolution of hot and compressed nuclei. It has been found that nuclei can accomodate more thermal energy than compressional energy before they break. (orig.)
No Time Like the Present : Discovering the Hidden Dynamics in Intensive Longitudinal Data
Hamaker, Ellen L.|info:eu-repo/dai/nl/208146660; Wichers, Marieke
2017-01-01
There has been a strong increase in the number of studies based on intensive longitudinal data, such as those obtained with experience sampling and daily diaries. These data contain a wealth of information regarding the dynamics of processes as they unfold within individuals over time. In this
Selecting local constraint for alignment of batch process data with dynamic time warping
DEFF Research Database (Denmark)
Spooner, Max Peter; Kold, David; Kulahci, Murat
2017-01-01
” may be interpreted as a progress signature of the batch which may be appended to the aligned data for further analysis. For the warping function to be a realistic reflection of the progress of a batch, it is necessary to impose some constraints on the dynamic time warping algorithm, to avoid...
The effect of finite response–time in coupled dynamical systems
Indian Academy of Sciences (India)
Abstract. The paper investigates synchronization in unidirectionally coupled dynamical systems wherein the influence of drive on response is cumulative: coupling signals are integrated over a time interval τ. A major consequence of integrative coupling is that the onset of the generalized and phase synchronization occurs ...
Ultrafast Structural Dynamics in InSb Probed by Time-Resolved X-Ray Diffraction
International Nuclear Information System (INIS)
Chin, A.H.; Shank, C.V.; Chin, A.H.; Schoenlein, R.W.; Shank, C.V.; Glover, T.E.; Leemans, W.P.; Balling, P.
1999-01-01
Ultrafast structural dynamics in laser-perturbed InSb are studied using time-resolved x-ray diffraction with a novel femtosecond x-ray source. We report the first observation of a delay in the onset of lattice expansion, which we attribute to energy relaxation processes and lattice strain propagation. In addition, we observe direct indications of ultrafast disordering on a subpicosecond time scale. copyright 1999 The American Physical Society
Dynamics and control of a financial system with time-delayed feedbacks
International Nuclear Information System (INIS)
Chen, W.-C.
2008-01-01
Complex behaviors in a financial system with time-delayed feedbacks are discussed in this study via numerical modeling. The system shows complex dynamics such as periodic, quasi-periodic, and chaotic behaviors. Both period doubling and inverse period doubling routes were found in this system. This paper also shows that the attractor merging crisis is a fundamental feature of nonlinear financial systems with time-delayed feedbacks. Control of the deterministic chaos in the financial system can be realized using Pyragas feedbacks
Microprocessor-controlled time domain reflectometer for dynamic shock position measurements
International Nuclear Information System (INIS)
Virchow, C.F.; Conrad, G.E.; Holt, D.M.; Hodson, E.K.
1980-01-01
Time-domain reflectometry is used in a novel way to measure dynamically shock propagation in various media. The primary component in this measurement system is a digital time domain reflectometer, which uses local intelligence, a Motorola 6800 microprocessor, to make the unit adaptable and versatile. The recorder, its operating theory and its method of implementation are described and typical data are reviewed. Applications include nuclear explosion yield estimates and explosive energy flow measurements
Intense field stabilization in circular polarization: Three-dimensional time-dependent dynamics
International Nuclear Information System (INIS)
Choi, Dae-Il; Chism, Will
2002-01-01
We investigate the stabilization of hydrogen atoms in a circularly polarized laser field. We use a three-dimensional, time-dependent approach to study the quantum dynamics of hydrogen atoms subject to high-intensity, short-wavelength, laser pulses. We find an enhanced survival probability as the field is increased under fixed envelope conditions. We also confirm wave packet behaviors previously seen in two-dimensional time-dependent computations
Time-Varying Dynamic Properties of Offshore Wind Turbines Evaluated by Modal Testing
DEFF Research Database (Denmark)
Damgaard, Mads; Andersen, J. K. F.; Ibsen, Lars Bo
2014-01-01
resonance of the wind turbine structure. In this paper, free vibration tests and a numerical Winkler type approach are used to evaluate the dynamic properties of a total of 30 offshore wind turbines located in the North Sea. Analyses indicate time-varying eigenfrequencies and damping ratios of the lowest...... structural eigenmode. Isolating the oscillation oil damper performance, moveable seabed conditions may lead to the observed time dependency....
Exact time-dependent exchange-correlation potentials for strong-field electron dynamics
International Nuclear Information System (INIS)
Lein, Manfred; Kuemmel, Stephan
2005-01-01
By solving the time-dependent Schroedinger equation and inverting the time-dependent Kohn-Sham scheme we obtain the exact time-dependent exchange-correlation potential of density-functional theory for the strong-field dynamics of a correlated system. We demonstrate that essential features of the exact exchange-correlation potential can be related to derivative discontinuities in stationary density-functional theory. Incorporating the discontinuity in a time-dependent density-functional calculation greatly improves the description of the ionization process
Effective description of the short-time dynamics in open quantum systems
Rossi, Matteo A. C.; Foti, Caterina; Cuccoli, Alessandro; Trapani, Jacopo; Verrucchi, Paola; Paris, Matteo G. A.
2017-09-01
We address the dynamics of a bosonic system coupled to either a bosonic or a magnetic environment and derive a set of sufficient conditions that allow one to describe the dynamics in terms of the effective interaction with a classical fluctuating field. We find that for short interaction times the dynamics of the open system is described by a Gaussian noise map for several different interaction models and independently on the temperature of the environment. In order to go beyond a qualitative understanding of the origin and physical meaning of the above short-time constraint, we take a general viewpoint and, based on an algebraic approach, suggest that any quantum environment can be described by classical fields whenever global symmetries lead to the definition of environmental operators that remain well defined when increasing the size, i.e., the number of dynamical variables, of the environment. In the case of the bosonic environment this statement is exactly demonstrated via a constructive procedure that explicitly shows why a large number of environmental dynamical variables and, necessarily, global symmetries, entail the set of conditions derived in the first part of the work.