Structural entanglements in protein complexes
Zhao, Yani; Chwastyk, Mateusz; Cieplak, Marek
2017-06-01
We consider multi-chain protein native structures and propose a criterion that determines whether two chains in the system are entangled or not. The criterion is based on the behavior observed by pulling at both termini of each chain simultaneously in the two chains. We have identified about 900 entangled systems in the Protein Data Bank and provided a more detailed analysis for several of them. We argue that entanglement enhances the thermodynamic stability of the system but it may have other functions: burying the hydrophobic residues at the interface and increasing the DNA or RNA binding area. We also study the folding and stretching properties of the knotted dimeric proteins MJ0366, YibK, and bacteriophytochrome. These proteins have been studied theoretically in their monomeric versions so far. The dimers are seen to separate on stretching through the tensile mechanism and the characteristic unraveling force depends on the pulling direction.
Entanglement in mesoscopic structures: Role of projection
Beenakker, C.W.J.; Lebedev, A.V.; Blatter, G.; Lesovik, G.B.
2004-01-01
We present a theoretical analysis of the appearance of entanglement in non-interacting mesoscopic structures. Our setup involves two oppositely polarized sources injecting electrons of opposite spin into the two incoming leads. The mixing of these polarized streams in an ideal four-channel beam splitter produces two outgoing streams with particular tunable correlations. A Bell inequality test involving cross-correlated spin-currents in opposite leads signals the presence of spin-entanglement ...
Structure and properties of compositions based on petroleum sulfonic acids
Energy Technology Data Exchange (ETDEWEB)
Tutorskii, I.A.; Sultanova, A.S.; Belkina, E.V.; Fomin, A.G. [Lomonosov Academy of Fine Chemical Technology, Moscow (Russian Federation)
1995-03-01
Colloidal characteristics of compositions based on petroleum sulfonic acids were studied. Neutralized heavy oil residue exhibits surface-active properties and contains an ultradisperse filler. Analysis of the compositions by size-exclusion-chromatography shows deep structural changes in the heavy acid residue upon neutralization with calcium carbonate.
Directory of Open Access Journals (Sweden)
Chulsung Bae
2011-01-01
Full Text Available A series of fluorinated sulfonated poly (ether amides (SPAs were synthesized for proton exchange membrane fuel cell applications. A polycondensation reaction of 4,4’-oxydianiline, 2-sulfoterephthalic acid monosodium salt, and tetrafluorophenylene dicarboxylic acids (terephthalic and isophthalic or fluoroaliphatic dicarboxylic acids produced SPAs with sulfonation degrees of 80–90%. Controlling the feed ratio of the sulfonated and unsulfonated dicarboxylic acid monomers afforded random SPAs with ion exchange capacities between 1.7 and 2.2 meq/g and good solubility in polar aprotic solvents. Their structures were characterized using NMR and FT IR spectroscopies. Tough, flexible, and transparent films were obtained with dimethylsulfoxide using a solution casting method. Most SPA membranes with 90% sulfonation degree showed high proton conductivity (>100 mS/cm at 80 °C and 100% relative humidity. Among them, two outstanding ionomers (ODA-STA-TPA-90 and ODA-STA-IPA-90 showed proton conductivity comparable to that of Nafion 117 between 40 and 80 °C. The influence of chemical structure on the membrane properties was systematically investigated by comparing the fluorinated polymers to their hydrogenated counterparts. The results suggest that the incorporation of fluorinated moieties in the polymer backbone of the membrane reduces water absorption. High molecular weight and the resulting physical entanglement of the polymers chains played a more important role in improving stability in water, however.
Structure, entanglements and dynamics of polymer nanocomposites containing spherical nanoparticles
International Nuclear Information System (INIS)
Karatrantos, A; Clarke, N; Composto, R J; Winey, K I
2014-01-01
We investigate the effect of nanoparticles on polymer structure, nanoparticle dynamics and topological constraints (entanglements) in polymer melts for nanoparticle loading above percolation threshold as high as 40.9% using stochastic molecular dynamics (MD) simulations. An increase in the number of entanglements (decrease of N e with 40.9% volume fraction of nanoparticles dispersed in the polymer matrix) in the nanocomposites is observed as evidenced by larger contour lengths of the primitive paths. Attraction between polymers and nanoparticles affects the entanglements in the nanocomposites and alters the primitive path. The diffusivity of small sized nanoparticles deviates significantly from the Stokes- Einstein relation
Testing the structure of multipartite entanglement with Bell inequalities.
Brunner, Nicolas; Sharam, James; Vértesi, Tamás
2012-03-16
We show that the rich structure of multipartite entanglement can be tested following a device-independent approach. Specifically we present Bell inequalities for distinguishing between different types of multipartite entanglement, without placing any assumptions on the measurement devices used in the protocol, in contrast with usual entanglement witnesses. We first address the case of three qubits and present Bell inequalities that can be violated by W states but not by Greenberger-Horne-Zeilinger states, and vice versa. Next, we devise 'subcorrelation Bell inequalities' for any number of parties, which can provably not be violated by a broad class of multipartite entangled states (generalizations of Greenberger-Horne-Zeilinger states), but for which violations can be obtained for W states. Our results give insight into the nonlocality of W states. The simplicity and robustness of our tests make them appealing for experiments.
International Nuclear Information System (INIS)
Bowmer, T.N.; O'Donnell, J.H.
1981-01-01
The principal volatile products observed after γ irradiation of nine different poly(olefin sulfone)s in the solid state were the two comonomers, i.e., the respective olefin and sulfur dioxide. An exponential increase in yield, G (volatile products), with increasing irradiation temperature, T/sub irr/, was observed for each copolymer through the ceiling temperature, T/sub c/, for the corresponding propagation/depropagation equilibrium. Thus the G value increased by ca. 3 orders of magnitude from T/sub irr/ = 0.7 T/sub c/ to T/sub irr/ = 1.3 T/sub c/ for all of the poly(olefin sulfone)s. Depropagation sensitivity was considered to be best measured by G(SO 2 ) since radiation induced, cationic homopolymerization of the product olefin occurred to a variable extent. Five of the poly(olefin sulfone)s had similar rates of depropagation at their respective T/sub c's/ but the polysulfones of 1-hexene, cyclohexene and 2-butene showed anomalously high depropagation rates. This may be related to greater steric hinderance to segmental chain mobility in the polysulfones of the 1,2 disubstituted olefins. Poly(1-hexene sulfone) appears to be anomalous, as in other respects
Jia, Ding
2017-12-01
The expected indefinite causal structure in quantum gravity poses a challenge to the notion of entanglement: If two parties are in an indefinite causal relation of being causally connected and not, can they still be entangled? If so, how does one measure the amount of entanglement? We propose to generalize the notions of entanglement and entanglement measure to address these questions. Importantly, the generalization opens the path to study quantum entanglement of states, channels, networks, and processes with definite or indefinite causal structure in a unified fashion, e.g., we show that the entanglement distillation capacity of a state, the quantum communication capacity of a channel, and the entanglement generation capacity of a network or a process are different manifestations of one and the same entanglement measure.
Werner State Structure and Entanglement Classification
Directory of Open Access Journals (Sweden)
David W. Lyons
2012-01-01
Full Text Available We present applications of the representation theory of Lie groups to the analysis of structure and local unitary classification of Werner states, sometimes called the decoherence-free states, which are states of n quantum bits left unchanged by local transformations that are the same on each particle. We introduce a multiqubit generalization of the singlet state and a construction that assembles these qubits into Werner states.
International Nuclear Information System (INIS)
Ding, Y.S.; Yarusso, D.J.; Pan, H.K.D.; Cooper, S.L.
1984-01-01
Extended x-ray absorption fine structure (EXAFS) measurements were performed on a series of zinc-neutralized sulfonated polystyrene ionomers and the local structure around the zinc atom was determined. An interference effect in the EXAFS signal between sulfur and oxygen atoms was found to be significant in these materials. A model for the local structure in the zinc-neutralized sulfonated polystyrene ionomers is proposed which suggests a highly ordered tetrahedral coordination of oxygen around the zinc atoms at a distance of 1.97 +- 0.02 A. In addition there are four sulfur atoms and four oxygen atoms at a distance of 3.15 +- 0.05 A. No zinc-zinc coordination within 5 A was detected in this study
Designing lattice structures with maximal nearest-neighbor entanglement
Energy Technology Data Exchange (ETDEWEB)
Navarro-Munoz, J C; Lopez-Sandoval, R [Instituto Potosino de Investigacion CientIfica y Tecnologica, Camino a la presa San Jose 2055, 78216 San Luis Potosi (Mexico); Garcia, M E [Theoretische Physik, FB 18, Universitaet Kassel and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), Heinrich-Plett-Str.40, 34132 Kassel (Germany)
2009-08-07
In this paper, we study the numerical optimization of nearest-neighbor concurrence of bipartite one- and two-dimensional lattices, as well as non-bipartite two-dimensional lattices. These systems are described in the framework of a tight-binding Hamiltonian while the optimization of concurrence was performed using genetic algorithms. Our results show that the concurrence of the optimized lattice structures is considerably higher than that of non-optimized systems. In the case of one-dimensional chains, the concurrence increases dramatically when the system begins to dimerize, i.e., it undergoes a structural phase transition (Peierls distortion). This result is consistent with the idea that entanglement is maximal or shows a singularity near quantum phase transitions. Moreover, the optimization of concurrence in two-dimensional bipartite and non-bipartite lattices is achieved when the structures break into smaller subsystems, which are arranged in geometrically distinguishable configurations.
Singh, Neetu; Singh, Udai P.; Nikhil, Kumar; Roy, Partha; Singh, Hariji
2017-10-01
The reactions of natural and unnatural nucleobases (cytosine (Cyt), adenine (Ade), 5-aminouracil (AU) and caffeine (Caff)) with sulfonic acids coformer (1,5-naphthalenedisulfonic acid, NDSA; 5-sulfosalicylic acid, SSA) resulted in the formation of salts viz. [NDSA.Cyt] (1), [NDSA.Ade] (2), [NDSA.AU] (3), [NDSA.Caff] (4), [SSA.Cyt] (5), [SSA.Ade] (6), [SSA.AU] (7), and [SSA.Caff] (8). The structural analysis revealed that salts 1, 4, 6 and 7 have intermolecular interactions between adjacent nucleobases which form two different homodimer shown in R22 (8) motif and assembled via complementary Nsbnd H⋯O and Nsbnd H⋯N interactions. However, in all other salts an intermediate supramolecular synthon pattern was observed between nucleobases and sulfonic acids. The lattice energy was also calculated by DFT to investigate whether salts were thermodynamically more stable than its coformer. The same was further confirmed by differential scanning calorimetry-thermogravimetric (DSC-TG) analysis. The anticancer activity study of individual nucleobases and their NDSA salts were also performed on human breast (MCF-7) and lung (A 549) cancer cell. The salts formation of nucleobases with sulfonic acids improved their solubility, thereby demonstrating up to 8-fold increase in solubility of nucleobases.
He, Guangzhi; Zhang, Meiyi; Zhou, Qin; Pan, Gang
2015-09-01
Concentration and salinity conditions are the dominant environmental factors affecting the behavior of perfluorinated compounds (PFCs) on the surfaces of a variety of solid matrices (suspended particles, sediments, and natural minerals). However, the mechanism has not yet been examined at molecular scales. Here, the structural transformation of perfluorooctane sulfonate (PFOS) at water/rutile interfaces induced by changes of the concentration level of PFOS and salt condition was investigated using molecular dynamics (MD) simulations. At low and intermediate concentrations all PFOS molecules directly interacted with the rutile (110) surface mainly by the sulfonate headgroups through electrostatic attraction, yielding a typical monolayer structure. As the concentration of PFOS increased, the molecules aggregated in a complex multi-layered structure, where an irregular assembling configuration was adsorbed on the monolayer structure by the van der Waals interactions between the perfluoroalkyl chains. When adding CaCl2 to the system, the multi-layered structure changed to a monolayer again, indicating that the addition of CaCl2 enhanced the critical concentration value to yield PFOS multilayer assemblies. The divalent Ca(2+) substituted for monovalent K(+) as the bridging counterion in PFOS adsorption. MD simulation may trigger wide applications in study of perfluorinated compounds (PFCs) from atomic/molecular scale. Copyright © 2015 Elsevier Ltd. All rights reserved.
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Two new inorganic-organic hybrid polymers, Mn(QS)(H2O) (1) and Co(QS)(H2O)2 (2) (H2QS=8-hydroxyl-quinoline-5-sulfonic acid), based on 8-hydroxylquinoline-5-sulfonate ligand, have been synthesized under solvothermal conditions and their structures were solved by single-crystal X-ray diffraction analysis. Compound 1 is a three-dimensional open framework with rutile topology structure, and compound 2 is a three-dimensional supramolecular structure. These compounds were characterized by powder XRD, infrared spectroscopy, thermogravimetric analysis, fluorescence properties and magnetism properties.
Energy Technology Data Exchange (ETDEWEB)
Reznickova, A., E-mail: alena.reznickova@vscht.cz [Department of Solid State Engineering, University of Chemistry and Technology, 166 28, Prague 6 (Czech Republic); Kolska, Z. [Department of Solid State Engineering, University of Chemistry and Technology, 166 28, Prague 6 (Czech Republic); Faculty of Science, J.E. Purkyne University, 400 96 Usti nad Labem (Czech Republic); Orendac, M.; Cizmar, E. [Faculty of Science, P.J. Safarik University, Park Angelinum 9, 04013 Kosice (Slovakia); Sajdl, P. [Department of Power Engineering, University of Chemistry and Technology, 166 28, Prague 6 (Czech Republic); Svorcik, V. [Department of Solid State Engineering, University of Chemistry and Technology, 166 28, Prague 6 (Czech Republic)
2016-08-30
Highlights: • Polyethylene (PE) surface was activated by argon plasma discharge. • Monolayer of copper phthalocyanine was achieved. • ESR proved that CuPc coated PE surface exhibits magnetic properties. • The studied structures may have potential application in spintronics and data storage. - Abstract: This study focuses on high density polyethylene (HDPE) activated by Ar plasma treatment, subsequently grafted with copper sulfonated phthalocyanine (CuPc) especially pointing out to the surface and magnetic properties of those composites. Properties of pristine PE and their plasma treated counterparts were studied by different experimental techniques: X-ray photoelectron spectroscopy (XPS), UV–vis spectroscopy, zeta potential and by electron spin resonance (ESR). XPS analysis confirmed the successful grafting of phthalocyanine. The highest absorption was found for the sample grafted with {sup b}CuPc for 1 h. Electrokinetic analysis also confirmed the plasma treatment and also subsequent CuPc grafting influence significantly the surface chemistry and charge. These results correspond well with XPS determination. ESR studies confirmed the presence of CuPc grafted on HDPE. It was found, that grafting is mediated by magnetically inactive functional groups, rather than radicals. Magnetic properties of CuPc do not seem to change significantly after grafting CuPc on polyethylene surface.
Horiuchi, Masayuki; Ohnishi, Keiichiro; Iwase, Noriyasu; Nakajima, Yoshikazu; Tounai, Kenji; Yamashita, Masakazu; Yamada, Yasumasa
2003-07-01
Novel zinniol-related compound 3, named porritoxin sulfonic acid, with an isoindoline skeleton was isolated from the culture liquid of Alternaria porri. The structure was determined to be 2-(2"-sulfoethyl)-4-methoxy-5-methyl-6-(3'-methyl-2'-butenyloxy)-2,3-dihydro-1H-isoindol-1-one. The phytotoxic activities of three isoindolines (1-3) were evaluated in a seedling-growth assay against stone leek and lettuce.
Entanglement branching operator
Harada, Kenji
2018-01-01
We introduce an entanglement branching operator to split a composite entanglement flow in a tensor network which is a promising theoretical tool for many-body systems. We can optimize an entanglement branching operator by solving a minimization problem based on squeezing operators. The entanglement branching is a new useful operation to manipulate a tensor network. For example, finding a particular entanglement structure by an entanglement branching operator, we can improve a higher-order tensor renormalization group method to catch a proper renormalization flow in a tensor network space. This new method yields a new type of tensor network states. The second example is a many-body decomposition of a tensor by using an entanglement branching operator. We can use it for a perfect disentangling among tensors. Applying a many-body decomposition recursively, we conceptually derive projected entangled pair states from quantum states that satisfy the area law of entanglement entropy.
International Nuclear Information System (INIS)
Lim, Youngdon; Seo, Dongwan; Hossain, Md. Awlad; Lee, Soonho; Lim, Jinseong; Jang, Hohyoun; Hong, Taehoon; Kim,; Kim, Whangi
2014-01-01
Poly(ether sulfone)s containing hexaphenyl (PHP) was prepared by 1,2-bis(4-hydroxyphenyl)-3,4,5,6-tetraphenylbenzene, 4,4-hydroxyphenylsulfone, and 4,4-fluorophenylsulfone, followed bromination on phenyl groups to produce brominated PHP (Br-PHP). Grafted sulfonated poly(ether sulfone)s containing hexaphenyl (GSPHP) were prepared from Br-PHP and 3-bromopropane sulfonic acid with potassium salt and copper powder. The salt form was converted to free acid using 1 M sulfuric acid solution. All these membranes were cast from dimethylacetamide (DMAc). The structural properties of the synthesized polymers were investigated by 1 H-NMR spectroscopy. The membranes were studied with regard to ion exchange capacity (IEC), water uptake, Fenton test, and proton conductivity. These grafted polymer membranes were compared with normal sulfonated poly(ether sulfone)s and Nafion
Sulfonated poly(ether sulfone)s containing pyridine moiety for PEMFC.
Jang, Hohyoun; Islam, Md Monirul; Lim, Youngdon; Hossain, Md Awlad; Cho, Younggil; Joo, Hyunho; Kim, Whangi; Jeon, Heung-Seok
2014-10-01
Sulfonated poly(ether sulfone)s with varied degree of sulfonation (DS) were prepared via post-sulfonation of synthesized pyridine based poly(ether sulfone) (PPES) using concentrated sulfuric acid as sulfonating agent. The DS was varied with different mole ratio of 4,4'-(2,2-diphenylethenylidene)diphenol, DHTPE in the polymer unit. PPES copolymers were synthesized by direct polycondensation of pyridine unit with bis-(4-fluorophenyl)-sulfone, 4, 4'-sulfonyldiphenol and DHTPE. The structure of the resulting PPES copolymer membranes with different sulfonated units were studied by 1H NMR spectroscopy and thermogravimetric analysis (TGA). Sorption experiments were conducted to observe the interaction of sulfonated polymer with water. The ion exchange capacity (IEC) and proton conductivity were evaluated according to the increase of DS. The water uptake (WU) of the resulting membranes was in the range of 17-58%, compared to that of Nafion 211 28%. The membranes provided proton conductivities of 65-95 mS/cm in contrast to 103 mS/cm of Nafion 211.
Higher dimensional unitary braid matrices: Construction, associated structures and entanglements
International Nuclear Information System (INIS)
Abdesselam, B.; Chakrabarti, A.; Dobrev, V.K.; Mihov, S.G.
2007-03-01
We construct (2n) 2 x (2n) 2 unitary braid matrices R-circumflex for n ≥ 2 generalizing the class known for n = 1. A set of (2n) x (2n) matrices (I, J,K,L) are defined. R-circumflex is expressed in terms of their tensor products (such as K x J), leading to a canonical formulation for all n. Complex projectors P ± provide a basis for our real, unitary R-circumflex. Baxterization is obtained. Diagonalizations and block- diagonalizations are presented. The loss of braid property when R-circumflex (n > 1) is block-diagonalized in terms of R-circumflex (n = 1) is pointed out and explained. For odd dimension (2n + 1) 2 x (2n + 1) 2 , a previously constructed braid matrix is complexified to obtain unitarity. R-circumflexLL- and R-circumflexTT- algebras, chain Hamiltonians, potentials for factorizable S-matrices, complex non-commutative spaces are all studied briefly in the context of our unitary braid matrices. Turaev construction of link invariants is formulated for our case. We conclude with comments concerning entanglements. (author)
Holographic entanglement entropy and the extended phase structure of STU black holes
International Nuclear Information System (INIS)
Caceres, Elena; Nguyen, Phuc H.; Pedraza, Juan F.
2015-01-01
We study the extended thermodynamics, obtained by considering the cosmological constant as a thermodynamic variable, of STU black holes in 4-dimensions in the fixed charge ensemble. The associated phase structure is conjectured to be dual to an RG-flow on the space of field theories. We find that for some charge configurations the phase structure resembles that of a Van der Waals gas: the system exhibits a family of first order phase transitions ending in a second order phase transition at a critical temperature. We calculate the holographic entanglement entropy for several charge configurations and show that for the cases where the gravity background exhibits Van der Waals behavior, the entanglement entropy presents a transition at the same critical temperature. To further characterize the phase transition we calculate appropriate critical exponents and show that they coincide. Thus, the entanglement entropy successfully captures the information of the extended phase structure. Finally, we discuss the physical interpretation of the extended space in terms of the boundary QFT and construct various holographic heat engines dual to STU black holes.
International Nuclear Information System (INIS)
Fu, Ruibiao; Hu, Shengmin; Wu, Xintao
2014-01-01
Hydrothermal reactions of Pb 2+ ion with disodium 4,4'-bis(2-sulfonatostyryl)biphenyl (Na 2 L1), 4-pyridyl-CH 2 N(CH 2 COOH)(CH 2 PO 3 H 2 ) (H 3 L2) and 4,4'-bipyridine (4,4'-bipy) afforded two new lead sulfonates, namely, [Pb 4 (L1) 2 (HL2) 2 (H 2 O)
On bipartite pure-state entanglement structure in terms of disentanglement
Herbut, Fedor
2006-12-01
Schrödinger's disentanglement [E. Schrödinger, Proc. Cambridge Philos. Soc. 31, 555 (1935)], i.e., remote state decomposition, as a physical way to study entanglement, is carried one step further with respect to previous work in investigating the qualitative side of entanglement in any bipartite state vector. Remote measurement (or, equivalently, remote orthogonal state decomposition) from previous work is generalized to remote linearly independent complete state decomposition both in the nonselective and the selective versions. The results are displayed in terms of commutative square diagrams, which show the power and beauty of the physical meaning of the (antiunitary) correlation operator inherent in the given bipartite state vector. This operator, together with the subsystem states (reduced density operators), constitutes the so-called correlated subsystem picture. It is the central part of the antilinear representation of a bipartite state vector, and it is a kind of core of its entanglement structure. The generalization of previously elaborated disentanglement expounded in this article is a synthesis of the antilinear representation of bipartite state vectors, which is reviewed, and the relevant results of [Cassinelli et al., J. Math. Anal. Appl. 210, 472 (1997)] in mathematical analysis, which are summed up. Linearly independent bases (finite or infinite) are shown to be almost as useful in some quantum mechanical studies as orthonormal ones. Finally, it is shown that linearly independent remote pure-state preparation carries the highest probability of occurrence. This singles out linearly independent remote influence from all possible ones.
Energy Technology Data Exchange (ETDEWEB)
Fu, Ruibiao, E-mail: furb@fjirsm.ac.cn; Hu, Shengmin; Wu, Xintao
2014-05-01
Hydrothermal reactions of Pb{sup 2+} ion with disodium 4,4'-bis(2-sulfonatostyryl)biphenyl (Na{sub 2}L1), 4-pyridyl-CH{sub 2}N(CH{sub 2}COOH)(CH{sub 2}PO{sub 3} H{sub 2}) (H{sub 3}L2) and 4,4'-bipyridine (4,4'-bipy) afforded two new lead sulfonates, namely, [Pb{sub 4}(L1){sub 2}(HL2){sub 2}(H{sub 2}O)
Structure of urban movements: polycentric activity and entangled hierarchical flows.
Directory of Open Access Journals (Sweden)
Camille Roth
Full Text Available The spatial arrangement of urban hubs and centers and how individuals interact with these centers is a crucial problem with many applications ranging from urban planning to epidemiology. We utilize here in an unprecedented manner the large scale, real-time 'Oyster' card database of individual person movements in the London subway to reveal the structure and organization of the city. We show that patterns of intraurban movement are strongly heterogeneous in terms of volume, but not in terms of distance travelled, and that there is a polycentric structure composed of large flows organized around a limited number of activity centers. For smaller flows, the pattern of connections becomes richer and more complex and is not strictly hierarchical since it mixes different levels consisting of different orders of magnitude. This new understanding can shed light on the impact of new urban projects on the evolution of the polycentric configuration of a city and the dense structure of its centers and it provides an initial approach to modeling flows in an urban system.
Kumar, S. Anil; Bhaskar, BL
2018-02-01
Ab-initio computational study of antihemorrhage drug molecule diethylammonium 2,5-dihydroxybenzene sulfonate, popularly known as ethamsylate, has been attempted using Gaussian 09. The optimized molecular geometry has been envisaged using density functional theory method at B3LYP/6-311 basis set. Different geometrical parameters like bond lengths and bond angles were computed and compared against the experimental results available in literature. Fourier transform infrared scanning of the title molecule was performed and vibrational frequencies were also computed using Gaussian software. The presence of O-H---O hydrogen bonds between C6H5O5S- anions and N-H---O hydrogen bonds between anion and cation is evident in the computational studies also. In general, satisfactory agreement of concordance has been observed between computational and experimental results.
Multiple-copy entanglement transformation and entanglement catalysis
International Nuclear Information System (INIS)
Duan Runyao; Feng Yuan; Li Xin; Ying Mingsheng
2005-01-01
We prove that any multiple-copy entanglement transformation [S. Bandyopadhyay, V. Roychowdhury, and U. Sen, Phys. Rev. A 65, 052315 (2002)] can be implemented by a suitable entanglement-assisted local transformation [D. Jonathan and M. B. Plenio, Phys. Rev. Lett. 83, 3566 (1999)]. Furthermore, we show that the combination of multiple-copy entanglement transformation and the entanglement-assisted one is still equivalent to the pure entanglement-assisted one. The mathematical structure of multiple-copy entanglement transformations then is carefully investigated. Many interesting properties of multiple-copy entanglement transformations are presented, which exactly coincide with those satisfied by the entanglement-assisted ones. Most interestingly, we show that an arbitrarily large number of copies of state should be considered in multiple-copy entanglement transformations
Crystal structure of di-methyl-formamidium bis-(tri-fluoro-methane-sulfon-yl)amide: an ionic liquid.
Cardenas, Allan Jay P; O'Hagan, Molly
2016-09-01
At 100 K, the title mol-ecular salt, C 3 H 8 NO + ·C 2 F 6 NO 4 S 2 - , has ortho-rhom-bic ( P 2 1 2 1 2 1 ) symmetry; the amino H atom of bis-(tri-fluoro-methane-sulfon-yl)amine (HNTf 2 ) was transferred to the basic O atom of di-methyl-formamide (DMF) when the ionic liquid components were mixed. The structure displays an O-H⋯N hydrogen bond, which links the cation to the anion, which is reinforced by a non-conventional C-H⋯O inter-action, generating an R 2 2 (7) loop. A further very weak C-H⋯O inter-action generates an [001] chain.
Adesso, Gerardo; Illuminati, Fabrizio
2008-10-01
We investigate the structural aspects of genuine multipartite entanglement in Gaussian states of continuous variable systems. Generalizing the results of Adesso and Illuminati [Phys. Rev. Lett. 99, 150501 (2007)], we analyze whether the entanglement shared by blocks of modes distributes according to a strong monogamy law. This property, once established, allows us to quantify the genuine N -partite entanglement not encoded into 2,…,K,…,(N-1) -partite quantum correlations. Strong monogamy is numerically verified, and the explicit expression of the measure of residual genuine multipartite entanglement is analytically derived, by a recursive formula, for a subclass of Gaussian states. These are fully symmetric (permutation-invariant) states that are multipartitioned into blocks, each consisting of an arbitrarily assigned number of modes. We compute the genuine multipartite entanglement shared by the blocks of modes and investigate its scaling properties with the number and size of the blocks, the total number of modes, the global mixedness of the state, and the squeezed resources needed for state engineering. To achieve the exact computation of the block entanglement, we introduce and prove a general result of symplectic analysis: Correlations among K blocks in N -mode multisymmetric and multipartite Gaussian states, which are locally invariant under permutation of modes within each block, can be transformed by a local (with respect to the partition) unitary operation into correlations shared by K single modes, one per block, in effective nonsymmetric states where N-K modes are completely uncorrelated. Due to this theorem, the above results, such as the derivation of the explicit expression for the residual multipartite entanglement, its nonnegativity, and its scaling properties, extend to the subclass of non-symmetric Gaussian states that are obtained by the unitary localization of the multipartite entanglement of symmetric states. These findings provide strong
Energy Technology Data Exchange (ETDEWEB)
Islam, M.M.; Jang, H.H.; Lim, Y.D.; Seo, D.W.; Kim, W.G. [Department of Applied Chemistry, Konkuk University, Chungju, Chungbuk (Korea, Republic of); Kim, T.H.; Hong, Y.T. [Energy Material Research Center, Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); Kim, D.M. [Material Engineering and Science, Hongik Univ, Jochiwon-eup, Yeongi-gun, Chungnam (Korea, Republic of)
2012-12-15
Sulfonated cardo poly(arylene ether sulfone)s (SPPA-PES) with various degrees of sulfonation (DS) were prepared by post-sulfonation of synthesized phenolphthalein anilide (PPA; N-phenyl-3,3'-bis(4-hydroxyphenyl)-1-isobenzopyrolidone) poly(arylene ether sulfone)s (PPA-PES) by using concentrated sulfuric acid. PPA-PES copolymers were synthesized by direct polycondensation of PPA with bis-(4-fluorophenyl)-sulfone and 4,4'-sulfonyldiphenol. The DS was varied with different mole ratios of PPA (24, 30, 40, 50 mol.%) in the polymer. The structure of the resulting SPPA-PES copolymers and the different contents of the sulfonated unit were studied by Fourier transform infrared (FT-IR) spectroscopy, {sup 1}H NMR spectroscopy, and thermogravimetric analysis (TGA). Sorption experiments were conducted to observe the interaction of sulfonated polymer with water. The ion exchange capacity (IEC) and proton conductivity of SPPA-PES were evaluated according to the increase of DS. The water uptake (WU) of the resulting SPPA-PES membranes was in the range of 20-72%, compared with 28% for Nafion 211 registered. The SPPA-PES membranes showed proton conductivities of 23-82 mS cm{sup -1}, compared with 194 mS cm{sup -1} for Nafion 211 registered, under 100% relative humidity (RH) at 80 C. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Sangeetha, M.; Mathammal, R.
2018-02-01
The ionic cocrystals of 5-amino-2-naphthalene sulfonate · ammonium ions (ANSA-ṡNH4+) were grown under slow evaporation method and examined in detail for pharmaceutical applications. The crystal structure and intermolecular interactions were studied from the single X-ray diffraction analysis and the Hirshfeld surfaces. The 2D fingerprint plots displayed the inter-contacts possible in the ionic crystal. Computational DFT method was established to determine the structural, physical and chemical properties. The molecular geometries obtained from the X-ray studies were compared with the optimized geometrical parameters calculated using DFT/6-31 + G(d,p) method. The band gap energy calculated from the UV-Visible spectral analysis and the HOMO-LUMO energy gap are compared. The theoretical UV-Visible calculations helped in determining the type of electronic transition taking place in the title molecule. The maximum absorption bands and transitions involved in the molecule represented the drug reaction possible. Non-linear optical properties were characterized from SHG efficiency measurements experimentally and the NLO parameters are also calculated from the optimized structure. The reactive sites within the molecule are detailed from the MEP surface maps. The molecular docking studies evident the structure-activity of the ionic cocrystal for anti-cancer drug property.
Entanglement beyond tensor product structure: algebraic aspects of quantum non-separability
International Nuclear Information System (INIS)
Derkacz, Łukasz; Gwóźdź, Marek; Jakóbczyk, Lech
2012-01-01
An algebraic approach to quantum non-separability is applied to the case of two qubits. It is based on the partition of the algebra of observables into independent subalgebras and the tensor product structure of the Hilbert space is not exploited. Even in this simple case, such a general formulation has some advantages. Using algebraic formalism, we can explicitly show the relativity of the notion of entanglement to the observables measured in the system and characterize separable and non-separable pure states. As a universal measure of non-separability of pure states, we propose to take the so-called total correlation. This quantity depends on the state as well as on the algebraic partition. Its numerical value is given by the norm of the corresponding correlation matrix. (paper)
Energy Technology Data Exchange (ETDEWEB)
Guehne, Otfried [Institut fuer Quantenoptik und Quanteninformation, Osterreichische Akademie der Wissenschaften, Technikerstrasse 21A, A-6020 Innsbruck (Austria); Institut fuer theoretische Physik, Universitaet Innsbruck, Technikerstrasse 25, A-6020 Innsbruck (Austria)], E-mail: otfried.guehne@uibk.ac.at; Toth, Geza [Department of Theoretical Physics, University of the Basque Country, P.O. Box 644, E-48080 Bilbao (Spain); Ikerbasque-Basque Foundation for Science, Alameda Urquijo 36, E-48011 Bilbao (Spain); ICFO-Institute of Photonic Sciences, Mediterranean Technology Park, E-08860 Castelldefels (Barcelona) (Spain); Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary)
2009-04-15
How can one prove that a given quantum state is entangled? In this paper we review different methods that have been proposed for entanglement detection. We first explain the basic elements of entanglement theory for two or more particles and then entanglement verification procedures such as Bell inequalities, entanglement witnesses, the determination of nonlinear properties of a quantum state via measurements on several copies, and spin squeezing inequalities. An emphasis is given to the theory and application of entanglement witnesses. We also discuss several experiments, where some of the presented methods have been implemented.
International Nuclear Information System (INIS)
Gong Zhongliang; Zheng Liangwen; Zhao Baoxiang
2012-01-01
A series of novel bis-pyrazoline derivatives were synthesized by the reaction of chalcone and (sulfonylbis(3,1-phenylene))bis(hydrazine) in 20–34% yields. The structures of the compounds were determined by IR, 1 H NMR, HRMS spectra, and a representative compound 3b was confirmed based on the X-ray crystallographic analysis. Absorption and fluorescence spectra of these compounds in dichloromethane solution were investigated. The results showed that the emission maxima varied from 415 to 444 nm mainly depending on C3 substituents of pyrazoline moiety. The compounds had higher quantum yields, when C3 substituent was an electron-withdrawing p-chlorophenyl group. Moreover, absorption spectra and emission spectra exhibited a blue-shift and a red-shift with increasing the polarity of solvents, respectively. Fluorescent molecules happened to collide with each other and resulted in quench of the fluorescence when the concentration increased over to 10 −5 M. - Highlights: ► A series of novel diphenyl sulfone-based bis-pyrazoline derivatives were designed and synthesized. ► Their UV–vis absorption and fluorescence emission spectra were investigated. ► The relationship of substituents and the optical properties were discussed. ► With increasing the solvent polarity, fluorescence emission displayed a red-shift and fluorescence quantum yields decreased. ► Fluorescence was quenched when the concentration increased over to 10 −5 M.
Energy Technology Data Exchange (ETDEWEB)
Albrecht-Schmitt, Thomas
2012-03-01
This grant supported the exploratory synthesis of new actinide materials with all of the actinides from thorium to californium with the exceptions of protactinium and berkelium. We developed detailed structure-property relationships that allowed for the identification of novel materials with selective ion-exchange, selective oxidation, and long-range magnetic ordering. We found novel bonding motifs and identified periodic trends across the actinide series. We identified structural building units that would lead to desired structural features and novel topologies. We also characterized many different spectroscopic trends across the actinide series. The grant support the preparation of approximately 1200 new compounds all of which were structurally characterized.
Gualdi, Giulia; Giampaolo, Salvatore M; Illuminati, Fabrizio
2011-02-04
We introduce and discuss the concept of modular entanglement. This is the entanglement that is established between the end points of modular systems composed by sets of interacting moduli of arbitrarily fixed size. We show that end-to-end modular entanglement scales in the thermodynamic limit and rapidly saturates with the number of constituent moduli. We clarify the mechanisms underlying the onset of entanglement between distant and noninteracting quantum systems and its optimization for applications to quantum repeaters and entanglement distribution and sharing.
Iliopoulos, Nikos; Thanopulos, Ioannis; Yannopapas, Vassilios; Paspalakis, Emmanuel
2018-03-01
We study the spontaneous emission of a two-level quantum emitter next to a plasmonic nanoparticle beyond the Markovian approximation and the rotating-wave approximation (RWA) by combining quantum dynamics and classical electromagnetic calculations. For emitters with decay times in the picosecond to nanosecond time regime, as well as located at distances from the nanoparticle up to its radius, the dynamics with and without the RWA and the transition from the non-Markovian to the Markovian regime are investigated. For emitters with longer decay times, the Markov approximation proves to be adequate for distances larger than half the nanoparticle radius. However, the RWA is correct for all distances of the emitter from the nanoparticle. For short decay time emitters, the Markov approximation and RWA are both inadequate, with only the RWA becoming valid again at a distance larger than half the nanoparticle radius. We also show that the entanglement dynamics of two initially entangled qubits interacting independently with the nanoparticle may have a strong non-Markovian character when counter-rotating effects are included. Interesting effects such as entanglement sudden death, periodic entanglement revival, entanglement oscillations, and entanglement trapping are further observed when different initial two-qubit states and different distances between the qubit and the nanoparticle are considered.
Entangled entanglement: A construction procedure
Energy Technology Data Exchange (ETDEWEB)
Uchida, Gabriele, E-mail: Gabriele.Uchida@univie.ac.at [University of Vienna, Faculty of Computer Science, Währinger Strasse 29, 1090 Vienna (Austria); Bertlmann, Reinhold A., E-mail: Reinhold.Bertlmann@univie.ac.at [University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna (Austria); Hiesmayr, Beatrix C., E-mail: Beatrix.Hiesmayr@univie.ac.at [University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna (Austria)
2015-10-30
The familiar Greenberger–Horne–Zeilinger (GHZ) states can be rewritten by entangling the Bell states for two qubits with a third qubit state, which is dubbed entangled entanglement. We show that in a constructive way we obtain all eight independent GHZ states that form the simplex of entangled entanglement, the magic simplex. The construction procedure allows a generalization to higher dimensions both, in the degrees of freedom (considering qudits) as well as in the number of particles (considering n-partite states). Such bases of GHZ-type states exhibit a cyclic geometry, a Merry Go Round, that is relevant for experimental and quantum information theoretic applications.
Photon Entanglement Through Brain Tissue.
Shi, Lingyan; Galvez, Enrique J; Alfano, Robert R
2016-12-20
Photon entanglement, the cornerstone of quantum correlations, provides a level of coherence that is not present in classical correlations. Harnessing it by study of its passage through organic matter may offer new possibilities for medical diagnosis technique. In this work, we study the preservation of photon entanglement in polarization, created by spontaneous parametric down-conversion, after one entangled photon propagates through multiphoton-scattering brain tissue slices with different thickness. The Tangle-Entropy (TS) plots show the strong preservation of entanglement of photons propagating in brain tissue. By spatially filtering the ballistic scattering of an entangled photon, we find that its polarization entanglement is preserved and non-locally correlated with its twin in the TS plots. The degree of entanglement correlates better with structure and water content than with sample thickness.
Go, D.; Takarada, W.; Kikutani, T.
2017-10-01
The aim of this study was to investigate the mechanism for the improvement of mechanical properties of poly(ethylene terephthalate) (PET) fibers based on the concept of controlling the state of molecular entanglement. For this purpose, five different PET fibers were prepared through either the conventional melt spinning and drawing/annealing process or the high-speed melt spinning process. In both cases, the melt spinning process was designed so as to realize different Deborah number conditions. The prepared fibers were subjected to the laser Raman spectroscopy measurement and the characteristics of the scattering peak at around 1616 cm-1, which corresponds to the C-C/C=C stretching mode of the aromatic ring in the main chain, were investigated in detail. It was revealed that the fibers drawn and annealed after the melt spinning process of lower Deborah number showed higher tensile strength as well as lower value of full width at half maximum (FWHM) in the laser Raman spectrum. Narrow FWHM was considered to represent the homogeneous state of entanglement structure, which may lead to the higher strength and toughness of fibers because individual molecular chains tend to bare similar level of tensile stress when the fiber is stretched. In case of high-speed spun fibers prepared with a high Deborah number condition, the FWHM was narrow presumably because much lower tensile stress in comparison with the drawing/annealing process was applied when the fiber structure was developed, however the value increased significantly upon applying tensile load to the fibers during the laser Raman spectrum measurement. From these results, it was concluded that the Laser Raman spectroscopy could differentiate molecular chain entanglement structure of various fiber samples, in that low FWHM, which corresponds to either homogeneous state of molecular entanglement or lower level of mean residual stress, and small increase of FWTH upon applying tensile stress are considered to be the key
Energy Technology Data Exchange (ETDEWEB)
Bubanja, Vladimir, E-mail: vladimir.bubanja@callaghaninnovation.govt.nz
2015-06-15
We present schemes for quantum teleportation and entanglement swapping of electronic spin states in hybrid superconductor–normal-metal systems. The proposed schemes employ subgap transport whereby the lowest order processes involve Cooper pair-electron and double Cooper-pair cotunneling in quantum teleportation and entanglement swapping protocols, respectively. The competition between elastic cotunneling and Cooper-pair splitting results in the success probability of 25% in both cases. Described implementations of these protocols are within reach of present-day experimental techniques.
Metric Structure of the Space of Two-Qubit Gates, Perfect Entanglers and Quantum Control
Directory of Open Access Journals (Sweden)
Paul Watts
2013-05-01
Full Text Available We derive expressions for the invariant length element and measure for the simple compact Lie group SU(4 in a coordinate system particularly suitable for treating entanglement in quantum information processing. Using this metric, we compute the invariant volume of the space of two-qubit perfect entanglers. We find that this volume corresponds to more than 84% of the total invariant volume of the space of two-qubit gates. This same metric is also used to determine the effective target sizes that selected gates will present in any quantum-control procedure designed to implement them.
Directory of Open Access Journals (Sweden)
Hohyoun Jang
2016-02-01
Full Text Available Polymers for application as sulfonated polyphenylene membranes were prepared by nickel-catalyzed carbon-carbon coupling reaction of bis(4-chlorophenyl-1,2-diphenylethylene (BCD and 1,4-dichloro-2,5-dibenzoylbenzene (DCBP. Conjugated cis/trans isomer (BCD had a non-planar conformation containing four peripheral aromatic rings that facilitate the formation of π–π interactions. 1,4-Dichloro-2,5-dibenzoylbenzene was synthesized from the oxidation reaction of 2,5-dichloro-p-xylene, followed by Friedel-Crafts reaction with benzene. DCBP monomer had good reactivity in polymerization affecting the activity of benzophenone as an electron-withdrawing group. The polyphenylene was sulfonated using concentrated sulfuric acid. These polymers without any ether linkages on the polymer backbone were protected from nucleophilic attack by hydrogen peroxide, hydroxide anion, and radicals generated by polymer electrolyte membrane fuel cell (PEMFC operation systems. The mole fraction of the sulfonic acid groups was controlled by varying the mole ratio of bis(4-chlorophenyl-1,2-diphenylethylene in the copolymer. In comparison with Nafion 211® membrane, these SBCDCBP membranes showed ion exchange capacity (IEC ranging from 1.04 to 2.07 meq./g, water uptake from 36.5% to 69.4%, proton conductivity from 58.7 to 101.9 mS/cm, and high thermal stability.
International Nuclear Information System (INIS)
Liu, Zhongchuan; Xie, Tian; Zhong, Qiuping; Wang, Ganggang
2016-01-01
The crystal structure of CotA complexed with 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) in a hole motif has been solved; this novel binding site could be a potential structure-based target for protein engineering of CotA laccase. The CotA laccase from Bacillus subtilis is an abundant component of the spore outer coat and has been characterized as a typical laccase. The crystal structure of CotA complexed with 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) in a hole motif has been solved. The novel binding site was about 26 Å away from the T1 binding pocket. Comparison with known structures of other laccases revealed that the hole is a specific feature of CotA. The key residues Arg476 and Ser360 were directly bound to ABTS. Site-directed mutagenesis studies revealed that the residues Arg146, Arg429 and Arg476, which are located at the bottom of the novel binding site, are essential for the oxidation of ABTS and syringaldazine. Specially, a Thr480Phe variant was identified to be almost 3.5 times more specific for ABTS than for syringaldazine compared with the wild type. These results suggest this novel binding site for ABTS could be a potential target for protein engineering of CotA laccases
Energy Technology Data Exchange (ETDEWEB)
Liu, Zhongchuan; Xie, Tian [Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of (China); Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu 610041, People’s Republic of (China); Zhong, Qiuping [Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of (China); Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu 610041, People’s Republic of (China); University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of (China); Wang, Ganggang, E-mail: wanggg@cib.ac.cn [Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of (China); Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu 610041, People’s Republic of (China)
2016-03-24
The crystal structure of CotA complexed with 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) in a hole motif has been solved; this novel binding site could be a potential structure-based target for protein engineering of CotA laccase. The CotA laccase from Bacillus subtilis is an abundant component of the spore outer coat and has been characterized as a typical laccase. The crystal structure of CotA complexed with 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) in a hole motif has been solved. The novel binding site was about 26 Å away from the T1 binding pocket. Comparison with known structures of other laccases revealed that the hole is a specific feature of CotA. The key residues Arg476 and Ser360 were directly bound to ABTS. Site-directed mutagenesis studies revealed that the residues Arg146, Arg429 and Arg476, which are located at the bottom of the novel binding site, are essential for the oxidation of ABTS and syringaldazine. Specially, a Thr480Phe variant was identified to be almost 3.5 times more specific for ABTS than for syringaldazine compared with the wild type. These results suggest this novel binding site for ABTS could be a potential target for protein engineering of CotA laccases.
Emergence of Symmetries from Entanglement
CERN. Geneva
2016-01-01
Maximal Entanglement appears to be a key ingredient for the emergence of symmetries. We first illustrate this phenomenon using two examples: the emergence of conformal symmetry in condensed matter systems and the relation of tensor networks to holography. We further present a Principle of Maximal Entanglement that seems to dictate to a large extend the structure of gauge symmetry.
DEFF Research Database (Denmark)
Flindt, Christian; Sørensen, A. S.; Lukin, M. D.
2007-01-01
We propose a semiconductor device that can electrically generate entangled electron spin-photon states, providing a building block for entanglement of distant spins. The device consists of a p-i-n diode structure that incorporates a coupled double quantum dot. We show that electronic control of t...
Sánchez-Peinado, M del Mar; González-López, Jesús; Martínez-Toledo, M Victoria; Pozo, Clementina; Rodelas, Belén
2010-03-01
Linear alkylbenzene sulfonate (LAS) is the most used anionic surfactant in a worldwide scale and is considered a high-priority pollutant. LAS is regarded as a readily biodegradable product under aerobic conditions in aqueous media and is mostly removed in wastewater treatment plants, but an important fraction (20-25%) is immobilized in sewage sludge and persists under anoxic conditions. Due to the application of the sludge as a fertilizer, LAS reaches agricultural soil, and therefore, microbial toxicity tests have been widely used to evaluate the influence of LAS on soil microbial ecology. However, molecular-based community-level analyses have been seldom applied in studies regarding the effects of LAS on natural or engineered systems, and, to our knowledge, there are no reports of their use for such appraisals in agricultural soil. In this study, a microcosm system is used to evaluate the effects of a commercial mixture of LAS on the community structure of Alphaproteobacteria, Actinobacteria, and Acidobacteria in an agricultural soil. The microcosms consisted of agricultural soil columns (800 g) fed with sterile water (8 ml h(-1)) added of different concentration of LAS (10 or 50 mg l(-1)) for periods of time up to 21 days. Sterile water was added to control columns for comparison. The structures of Alphaproteobacteria, Actinobacteria, and Acidobacteria communities were analyzed by a cultivation independent method (temperature gradient gel electrophoresis (TGGE) separation of polymerase chain reaction (PCR)-amplified partial 16S rRNA genes). Relevant populations were identified by subsequent reamplification, DNA sequencing, and database comparisons. Cluster analysis of the TGGE fingerprints taking into consideration both the number of bands and their relative intensities revealed that the structure of the Alphaproteobacteria community was significantly changed in the presence of LAS, at both concentrations tested. The average number of bands was significantly
A durable alternative for proton-exchange membranes: sulfonated poly(benzoxazole thioether sulfone)s
Energy Technology Data Exchange (ETDEWEB)
Zhao, Dan [Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); Lab of PEMFC Key Materials and Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Liaoning, Dalian 116023 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Li, Jinhuan [Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Song, Min-Kyu; Liu, Meilin [Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); Yi, Baolian; Zhang, Huamin [Lab of PEMFC Key Materials and Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Liaoning, Dalian 116023 (China)
2011-03-18
To develop a durable proton-exchange membrane (PEM) for fuel-cell applications, a series of sulfonated poly(benzoxazole thioether sulfone)s (SPTESBOs) are designed and synthesized, with anticipated good dimensional stability (via acid-base cross linking), improved oxidative stability against free radicals (via incorporation of thioether groups), and enhanced inherent stability (via elimination of unstable end groups) of the backbone. The structures and the degree of sulfonation of the copolymers are characterized using Fourier-transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy ({sup 1}H NMR and {sup 19}F NMR). The electrochemical stabilities of the monomers are examined using cyclic voltammetry in a typical three-electrode cell configuration. The physicochemical properties of the membranes vital to fuel-cell performance are also carefully evaluated under conditions relevant to fuel-cell operation, including chemical and thermal stability, proton conductivity, solubility in different solvents, water uptake, and swelling ratio. The new membranes exhibit low dimensional change at 25 C to 90 C and excellent thermal stability up to 250 C. Upon elimination of unstable end groups, the co-polymers display enhanced chemical resistance and oxidative stability in Fenton's test. Further, the SPTESBO-HFB-60 (HFB-60=hexafluorobenzene, 60 mol% sulfone) membrane displays comparable fuel-cell performance to that of an NRE 212 membrane at 80 C under fully humidified condition, suggesting that the new membranes have the potential to be more durable but less expensive for fuel-cell applications. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Sulfonated 1,3-bis(4-pyridylpropane
Directory of Open Access Journals (Sweden)
Ore Kuyinu
2011-06-01
Full Text Available In the title compound, 4-[3-(3-sulfonatopyridin-1-ium-4-ylpropyl]pyridin-1-ium-3-sulfonate, C13H14N2O6S2, the molecule is zwitterionic, with the sulfonic acid proton transfered to the basic pyridine N atom. Also, the structure adopts a butterfly-like conformation with the sulfonate groups on opposite sides of the `wings'. The dihedral angle between the two pyridinium rings is 83.56 (7°, and this results in the molecule having a chiral conformation and packing. There is strong intermolecular hydrogen bonding between the pyridinium H and sulfonate O atoms of adjoining molecules. In addition, there are weaker intermolecular C—H...O interactions.
Cosmological quantum entanglement
International Nuclear Information System (INIS)
Martín-Martínez, Eduardo; Menicucci, Nicolas C
2012-01-01
We review recent literature on the connection between quantum entanglement and cosmology, with an emphasis on the context of expanding universes. We discuss recent theoretical results reporting on the production of entanglement in quantum fields due to the expansion of the underlying spacetime. We explore how these results are affected by the statistics of the field (bosonic or fermionic), the type of expansion (de Sitter or asymptotically stationary), and the coupling to spacetime curvature (conformal or minimal). We then consider the extraction of entanglement from a quantum field by coupling to local detectors and how this procedure can be used to distinguish curvature from heating by their entanglement signature. We review the role played by quantum fluctuations in the early universe in nucleating the formation of galaxies and other cosmic structures through their conversion into classical density anisotropies during and after inflation. We report on current literature attempting to account for this transition in a rigorous way and discuss the importance of entanglement and decoherence in this process. We conclude with some prospects for further theoretical and experimental research in this area. These include extensions of current theoretical efforts, possible future observational pursuits, and experimental analogues that emulate these cosmic effects in a laboratory setting. (paper)
Energy Technology Data Exchange (ETDEWEB)
Blasone, Massimo [Dipartimento di Fisica, Università degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy); INFN Sezione di Napoli, Gruppo collegato di Salerno (Italy); Dell' Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio [Dipartimento di Ingegneria Industriale, Università degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)
2013-04-15
Neutrino oscillations can be equivalently described in terms of (dynamical) entanglement of neutrino flavor modes. We review previous results derived in the context of quantum mechanics and extend them to the quantum field theory framework, were a rich structure of quantum correlations appears.
International Nuclear Information System (INIS)
Blasone, Massimo; Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio
2013-01-01
Neutrino oscillations can be equivalently described in terms of (dynamical) entanglement of neutrino flavor modes. We review previous results derived in the context of quantum mechanics and extend them to the quantum field theory framework, were a rich structure of quantum correlations appears
The entanglement evolution between two entangled atoms
Indian Academy of Sciences (India)
... entanglement between the two atoms changes periodically and undergoes the entanglement sudden death (ESD) and sudden birth at some time. The entanglement properties between the field and the atom insidethe cavity are dependent on the photon number. Most interestingly, the entanglement between the field and ...
Dynamical pairwise entanglement and two-point correlations in the three-ligand spin-star structure
Motamedifar, M.
2017-10-01
We consider the three-ligand spin-star structure through homogeneous Heisenberg interactions (XXX-3LSSS) in the framework of dynamical pairwise entanglement. It is shown that the time evolution of the central qubit ;one-particle; state (COPS) brings about the generation of quantum W states at periodical time instants. On the contrary, W states cannot be generated from the time evolution of a ligand ;one-particle; state (LOPS). We also investigate the dynamical behavior of two-point quantum correlations as well as the expectation values of the different spin-components for each element in the XXX-3LSSS. It is found that when a W state is generated, the same value of the concurrence between any two arbitrary qubits arises from the xx and yy two-point quantum correlations. On the opposite, zz quantum correlation between any two qubits vanishes at these time instants.
Studying entanglement-assisted entanglement transformation
International Nuclear Information System (INIS)
Hsu Liyi
2004-01-01
In this paper, we study catalysis of entanglement transformations for n-level pure entangled states. We propose an algorithm of finding the required catalystic entanglement. We introduce several examples by way of demonstration. We evaluate the lower and upper bound of the required inequalities for deciding whether there are m-level appropriate catalyst states for entanglement transformations for two n-level pure entangled states
Benchmarks and statistics of entanglement dynamics
International Nuclear Information System (INIS)
Tiersch, Markus
2009-01-01
In the present thesis we investigate how the quantum entanglement of multicomponent systems evolves under realistic conditions. More specifically, we focus on open quantum systems coupled to the (uncontrolled) degrees of freedom of an environment. We identify key quantities that describe the entanglement dynamics, and provide efficient tools for its calculation. For quantum systems of high dimension, entanglement dynamics can be characterized with high precision. In the first part of this work, we derive evolution equations for entanglement. These formulas determine the entanglement after a given time in terms of a product of two distinct quantities: the initial amount of entanglement and a factor that merely contains the parameters that characterize the dynamics. The latter is given by the entanglement evolution of an initially maximally entangled state. A maximally entangled state thus benchmarks the dynamics, and hence allows for the immediate calculation or - under more general conditions - estimation of the change in entanglement. Thereafter, a statistical analysis supports that the derived (in-)equalities describe the entanglement dynamics of the majority of weakly mixed and thus experimentally highly relevant states with high precision. The second part of this work approaches entanglement dynamics from a topological perspective. This allows for a quantitative description with a minimum amount of assumptions about Hilbert space (sub-)structure and environment coupling. In particular, we investigate the limit of increasing system size and density of states, i.e. the macroscopic limit. In this limit, a universal behaviour of entanglement emerges following a ''reference trajectory'', similar to the central role of the entanglement dynamics of a maximally entangled state found in the first part of the present work. (orig.)
Benchmarks and statistics of entanglement dynamics
Energy Technology Data Exchange (ETDEWEB)
Tiersch, Markus
2009-09-04
In the present thesis we investigate how the quantum entanglement of multicomponent systems evolves under realistic conditions. More specifically, we focus on open quantum systems coupled to the (uncontrolled) degrees of freedom of an environment. We identify key quantities that describe the entanglement dynamics, and provide efficient tools for its calculation. For quantum systems of high dimension, entanglement dynamics can be characterized with high precision. In the first part of this work, we derive evolution equations for entanglement. These formulas determine the entanglement after a given time in terms of a product of two distinct quantities: the initial amount of entanglement and a factor that merely contains the parameters that characterize the dynamics. The latter is given by the entanglement evolution of an initially maximally entangled state. A maximally entangled state thus benchmarks the dynamics, and hence allows for the immediate calculation or - under more general conditions - estimation of the change in entanglement. Thereafter, a statistical analysis supports that the derived (in-)equalities describe the entanglement dynamics of the majority of weakly mixed and thus experimentally highly relevant states with high precision. The second part of this work approaches entanglement dynamics from a topological perspective. This allows for a quantitative description with a minimum amount of assumptions about Hilbert space (sub-)structure and environment coupling. In particular, we investigate the limit of increasing system size and density of states, i.e. the macroscopic limit. In this limit, a universal behaviour of entanglement emerges following a ''reference trajectory'', similar to the central role of the entanglement dynamics of a maximally entangled state found in the first part of the present work. (orig.)
Sulfonated carbon black-based composite membranes for fuel cell
Indian Academy of Sciences (India)
Composite membranes were then prepared using S–C as fillers and sulfonated poly(ether ether ketone) (SPEEK) as polymer matrix with three different sulfonation degrees (DS = 60, 70 and 82%). Structure and properties of the composite membranes were characterized by FTIR, TGA, scanning electron microscopy, proton ...
Entanglement entropy with a time-dependent Hamiltonian
Sivaramakrishnan, Allic
2018-03-01
The time evolution of entanglement tracks how information propagates in interacting quantum systems. We study entanglement entropy in CFT2 with a time-dependent Hamiltonian. We perturb by operators with time-dependent source functions and use the replica trick to calculate higher-order corrections to entanglement entropy. At first order, we compute the correction due to a metric perturbation in AdS3/CFT2 and find agreement on both sides of the duality. Past first order, we find evidence of a universal structure of entanglement propagation to all orders. The central feature is that interactions entangle unentangled excitations. Entanglement propagates according to "entanglement diagrams," proposed structures that are motivated by accessory spacetime diagrams for real-time perturbation theory. To illustrate the mechanisms involved, we compute higher-order corrections to free fermion entanglement entropy. We identify an unentangled operator, one which does not change the entanglement entropy to any order. Then, we introduce an interaction and find it changes entanglement entropy by entangling the unentangled excitations. The entanglement propagates in line with our conjecture. We compute several entanglement diagrams. We provide tools to simplify the computation of loop entanglement diagrams, which probe UV effects in entanglement propagation in CFT and holography.
Analytical methodology for sulfonated lignins
Brudin, S.; Schoenmakers, P.
2010-01-01
There is a significant need to characterize and classify lignins and sulfonated lignins. Lignins have so far received a good deal of attention, whereas this is not true for sulfonated lignins. There is a clear demand for a better understanding of sulfonated lignins on a chemical as well as physical
Graphical Classification of Entangled Qutrits
Directory of Open Access Journals (Sweden)
Kentaro Honda
2012-10-01
Full Text Available A multipartite quantum state is entangled if it is not separable. Quantum entanglement plays a fundamental role in many applications of quantum information theory, such as quantum teleportation. Stochastic local quantum operations and classical communication (SLOCC cannot essentially change quantum entanglement without destroying it. Therefore, entanglement can be classified by dividing quantum states into equivalence classes, where two states are equivalent if each can be converted into the other by SLOCC. Properties of this classification, especially in the case of non two-dimensional quantum systems, have not been well studied. Graphical representation is sometimes used to clarify the nature and structural features of entangled states. SLOCC equivalence of quantum bits (qubits has been described graphically via a connection between tripartite entangled qubit states and commutative Frobenius algebras (CFAs in monoidal categories. In this paper, we extend this method to qutrits, i.e., systems that have three basis states. We examine the correspondence between CFAs and tripartite entangled qutrits. Using the symmetry property, which is required by the definition of a CFA, we find that there are only three equivalence classes that correspond to CFAs. We represent qutrits graphically, using the connection to CFAs. We derive equations that characterize the three equivalence classes. Moreover, we show that any qutrit can be represented as a composite of three graphs that correspond to the three classes.
Zhang, Duo; Zhang, Hui; Zhang, Xiaohong; Sham, Tsun-Kong; Hu, Yongfeng; Sun, Xuhui
2016-03-07
The electronic structure and optical properties of di[4-(4-diphenylaminophenyl)phenyl]sulfone (denoted as DAPSF), a highly efficient fluorophor, have been investigated using X-ray excited optical luminescence (XEOL) and X-ray absorption near edge structure (XANES) spectroscopy at excitation energies across the C, N, O K-edges and the sulfur K-edge. The results indicate that the blue luminescence is mainly related to the sulfur functional group.
Local cloning of entangled states
International Nuclear Information System (INIS)
Gheorghiu, Vlad; Yu Li; Cohen, Scott M.
2010-01-01
We investigate the conditions under which a set S of pure bipartite quantum states on a DxD system can be locally cloned deterministically by separable operations, when at least one of the states is full Schmidt rank. We allow for the possibility of cloning using a resource state that is less than maximally entangled. Our results include that: (i) all states in S must be full Schmidt rank and equally entangled under the G-concurrence measure, and (ii) the set S can be extended to a larger clonable set generated by a finite group G of order |G|=N, the number of states in the larger set. It is then shown that any local cloning apparatus is capable of cloning a number of states that divides D exactly. We provide a complete solution for two central problems in local cloning, giving necessary and sufficient conditions for (i) when a set of maximally entangled states can be locally cloned, valid for all D; and (ii) local cloning of entangled qubit states with nonvanishing entanglement. In both of these cases, we show that a maximally entangled resource is necessary and sufficient, and the states must be related to each other by local unitary 'shift' operations. These shifts are determined by the group structure, so need not be simple cyclic permutations. Assuming this shifted form and partially entangled states, then in D=3 we show that a maximally entangled resource is again necessary and sufficient, while for higher-dimensional systems, we find that the resource state must be strictly more entangled than the states in S. All of our necessary conditions for separable operations are also necessary conditions for local operations and classical communication (LOCC), since the latter is a proper subset of the former. In fact, all our results hold for LOCC, as our sufficient conditions are demonstrated for LOCC, directly.
Energy Technology Data Exchange (ETDEWEB)
Bou, G.; Santillana, E; Sheri, A; Beceiro, A; Sampson, J; Kalp, M; Bethel, C; Distler, A; Drawz, S; et. al.
2010-01-01
Class D {beta}-lactamases represent a growing and diverse class of penicillin-inactivating enzymes that are usually resistant to commercial {beta}-lactamase inhibitors. As many such enzymes are found in multi-drug resistant (MDR) Acinetobacter baumannii and Pseudomonas aeruginosa, novel {beta}-lactamase inhibitors are urgently needed. Five unique 6-alkylidene-2{prime}-substituted penicillanic acid sulfones (1-5) were synthesized and tested against OXA-24, a clinically important {beta}-lactamase that inactivates carbapenems and is found in A. baumannii. Based upon the roles Tyr112 and Met223 play in the OXA-24 {beta}-lactamase, we also engineered two variants (Tyr112Ala and Tyr112Ala,Met223Ala) to test the hypothesis that the hydrophobic tunnel formed by these residues influences inhibitor recognition. IC{sub 50} values against OXA-24 and two OXA-24 {beta}-lactamase variants ranged from 10 {+-} 1 (4 vs WT) to 338 {+-} 20 nM (5 vs Tyr112Ala, Met223Ala). Compound 4 possessed the lowest K{sub i} (500 {+-} 80 nM vs WT), and 1 possessed the highest inactivation efficiency (k{sub inact}/K{sub i} = 0.21 {+-} 0.02 {micro}M{sup -1}s{sup -1}). Electrospray ionization mass spectrometry revealed a single covalent adduct, suggesting the formation of an acyl-enzyme intermediate. X-ray structures of OXA-24 complexed to four inhibitors (2.0-2.6 {angstrom}) reveal the formation of stable bicyclic aromatic intermediates with their carbonyl oxygen in the oxyanion hole. These data provide the first structural evidence that 6-alkylidene-2{prime}-substituted penicillin sulfones are effective mechanism-based inactivators of class D {beta}-lactamases. Their unique chemistry makes them developmental candidates. Mechanisms for class D hydrolysis and inhibition are discussed, and a pathway for the evolution of the BlaR1 sensor of Staphylococcus aureus to the class D {beta}-lactamases is proposed.
Artico, M; Silvestri, R; Pagnozzi, E; Bruno, B; Novellino, E; Greco, G; Massa, S; Ettorre, A; Loi, A G; Scintu, F; La Colla, P
2000-05-04
Pyrrolyl aryl sulfones (PASs) have been recently reported as a new class of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) inhibitors acting at the non-nucleoside binding site of this enzyme (Artico, M.; et al. J. Med. Chem. 1996, 39, 522-530). Compound 3, the most potent inhibitor within the series (EC(50) = 0.14 microM, IC(50) = 0.4 microM, and SI > 1429), was then selected as a lead compound for a synthetic project based on molecular modeling studies. Using the three-dimensional structure of RT cocrystallized with the alpha-APA derivative R95845, we derived a model of the RT/3 complex by taking into account previously developed structure-activity relationships. Inspection of this model and docking calculations on virtual compounds prompted the design of novel PAS derivatives and related analogues. Our computational approach proved to be effective in making qualitative predictions, that is in discriminating active versus inactive compounds. Among the compounds synthesized and tested, 20 was the most active one, with EC(50) = 0.045 microM, IC(50) = 0.05 microM, and SI = 5333. Compared with the lead 3, these values represent a 3- and 8-fold improvement in the cell-based and enzyme assays, respectively, together with the highest selectivity achieved so far in the PAS series.
The entanglement evolution between two entangled atoms
Indian Academy of Sciences (India)
Entanglement is an important resource for quantum information processing. [1–3] and also one of the most important nonclassical properties in quantum theory. ... consideration, which consists of two entangled two-level atoms A and B with ...
Charcterization of multipartite entanglement
International Nuclear Information System (INIS)
Chong, Bo
2006-01-01
In this thesis, we discuss several aspects of the characterization of entanglement in multipartite quantum systems, including detection, classification and quantification of entanglement. First, we discuss triqubit pure entanglement and propose a special true tripartite entanglement, the mixed entanglement, besides the Greenberger-Horne-Zeilinger (GHZ) entanglement and the W entanglement. Then, based on quantitative complementarity relations, we draw entanglement Venn diagrams for triqubit pure states with different entanglements and introduce the total tangle τ (T) to quantify total entanglement of triqubit pure states by defining the union I that is equivalent to the total tangle τ (T) from the mathematical point of view. The generalizations of entanglement Venn diagrams and the union I to N-qubit pure states are also discussed. Finally, based on the ranks of reduced density matrices, we discuss the separability of multiparticle arbitrary-dimensional pure and mixed states, respectively. (orig.)
Charcterization of multipartite entanglement
Energy Technology Data Exchange (ETDEWEB)
Chong, Bo
2006-06-23
In this thesis, we discuss several aspects of the characterization of entanglement in multipartite quantum systems, including detection, classification and quantification of entanglement. First, we discuss triqubit pure entanglement and propose a special true tripartite entanglement, the mixed entanglement, besides the Greenberger-Horne-Zeilinger (GHZ) entanglement and the W entanglement. Then, based on quantitative complementarity relations, we draw entanglement Venn diagrams for triqubit pure states with different entanglements and introduce the total tangle {tau}{sup (T)} to quantify total entanglement of triqubit pure states by defining the union I that is equivalent to the total tangle {tau}{sup (T)} from the mathematical point of view. The generalizations of entanglement Venn diagrams and the union I to N-qubit pure states are also discussed. Finally, based on the ranks of reduced density matrices, we discuss the separability of multiparticle arbitrary-dimensional pure and mixed states, respectively. (orig.)
Gaussian maximally multipartite-entangled states
Facchi, Paolo; Florio, Giuseppe; Lupo, Cosmo; Mancini, Stefano; Pascazio, Saverio
2009-12-01
We study maximally multipartite-entangled states in the context of Gaussian continuous variable quantum systems. By considering multimode Gaussian states with constrained energy, we show that perfect maximally multipartite-entangled states, which exhibit the maximum amount of bipartite entanglement for all bipartitions, only exist for systems containing n=2 or 3 modes. We further numerically investigate the structure of these states and their frustration for n≤7 .
Gaussian maximally multipartite-entangled states
International Nuclear Information System (INIS)
Facchi, Paolo; Florio, Giuseppe; Pascazio, Saverio; Lupo, Cosmo; Mancini, Stefano
2009-01-01
We study maximally multipartite-entangled states in the context of Gaussian continuous variable quantum systems. By considering multimode Gaussian states with constrained energy, we show that perfect maximally multipartite-entangled states, which exhibit the maximum amount of bipartite entanglement for all bipartitions, only exist for systems containing n=2 or 3 modes. We further numerically investigate the structure of these states and their frustration for n≤7.
Deelan Cunden, Fabio; Facchi, Paolo; Florio, Giuseppe; Pascazio, Saverio
2013-05-01
Let a pure state | ψ> be chosen randomly in an NM-dimensional Hilbert space, and consider the reduced density matrix ρ A of an N-dimensional subsystem. The bipartite entanglement properties of | ψ> are encoded in the spectrum of ρ A . By means of a saddle point method and using a "Coulomb gas" model for the eigenvalues, we obtain the typical spectrum of reduced density matrices. We consider the cases of an unbiased ensemble of pure states and of a fixed value of the purity. We finally obtain the eigenvalue distribution by using a statistical mechanics approach based on the introduction of a partition function.
International Nuclear Information System (INIS)
Allahverdyan, A.E.; Khrennikov, A.; Nieuwenhuizen, Th.M.
2005-01-01
For two classical Brownian particles an analog of continuous-variable quantum entanglement is presented: The common probability distribution of the two coordinates and the corresponding coarse-grained velocities cannot always be prepared via mixing of any factorized distributions referring to the two particles separately. This is possible for particles which have interacted in the past, but do not interact at present. Three factors are crucial for the effect: (1) separation of time scales of coordinate and momentum which motivates the definition of coarse-grained velocities; (2) the resulting uncertainty relations between the coordinate of the Brownian particle and the change of its coarse-grained velocity; (3) the fact that the coarse-grained velocity, though pertaining to a single Brownian particle, is defined on a common context of two particles. The Brownian entanglement is a consequence of a coarse-grained description and disappears for a finer resolution of the Brownian motion. Analogies with the quantum situation are discussed, as well as possibilities of experimental realization of the effect in examples of macroscopic Brownian motion
International Nuclear Information System (INIS)
Hadjiivanov, L.; Todorov, I.
2015-01-01
Expository paper providing a historical survey of the gradual transformation of the 'philosophical discussions' between Bohr, Einstein and Schrödinger on foundational issues in quantum mechanics into a quantitative prediction of a new quantum effect, its experimental verification and its proposed (and loudly advertised) applications. The basic idea of the 1935 paper of Einstein-Podolsky-Rosen (EPR) was reformulated by David Bohm for a finite dimensional spin system. This allowed John Bell to derive his inequalities that separate the prediction of quantum entanglement from its possible classical interpretation. We reproduce here their later (1971) version, reviewing on the way the generalization (and mathematical derivation) of Heisenberg's uncertainty relations (due to Weyl and Schrödinger) needed for the passage from EPR to Bell. We also provide an improved derivation of the quantum theoretic violation of Bell's inequalities. Soon after the experimental confirmation of the quantum entanglement (culminating with the work of Alain Aspect) it was Feynman who made public the idea of a quantum computer based on the observed effect
Entanglement distribution in quantum networks
International Nuclear Information System (INIS)
Perseguers, Sebastien
2010-01-01
This Thesis contributes to the theory of entanglement distribution in quantum networks, analyzing the generation of long-distance entanglement in particular. We consider that neighboring stations share one partially entangled pair of qubits, which emphasizes the difficulty of creating remote entanglement in realistic settings. The task is then to design local quantum operations at the stations, such that the entanglement present in the links of the whole network gets concentrated between few parties only, regardless of their spatial arrangement. First, we study quantum networks with a two-dimensional lattice structure, where quantum connections between the stations (nodes) are described by non-maximally entangled pure states (links). We show that the generation of a perfectly entangled pair of qubits over an arbitrarily long distance is possible if the initial entanglement of the links is larger than a threshold. This critical value highly depends on the geometry of the lattice, in particular on the connectivity of the nodes, and is related to a classical percolation problem. We then develop a genuine quantum strategy based on multipartite entanglement, improving both the threshold and the success probability of the generation of long-distance entanglement. Second, we consider a mixed-state definition of the connections of the quantum networks. This formalism is well-adapted for a more realistic description of systems in which noise (random errors) inevitably occurs. New techniques are required to create remote entanglement in this setting, and we show how to locally extract and globally process some error syndromes in order to create useful long-distance quantum correlations. Finally, we turn to networks that have a complex topology, which is the case for most real-world communication networks such as the Internet for instance. Besides many other characteristics, these systems have in common the small-world feature, stating that any two nodes are separated by a
Entanglement distribution in quantum networks
Energy Technology Data Exchange (ETDEWEB)
Perseguers, Sebastien
2010-04-15
This Thesis contributes to the theory of entanglement distribution in quantum networks, analyzing the generation of long-distance entanglement in particular. We consider that neighboring stations share one partially entangled pair of qubits, which emphasizes the difficulty of creating remote entanglement in realistic settings. The task is then to design local quantum operations at the stations, such that the entanglement present in the links of the whole network gets concentrated between few parties only, regardless of their spatial arrangement. First, we study quantum networks with a two-dimensional lattice structure, where quantum connections between the stations (nodes) are described by non-maximally entangled pure states (links). We show that the generation of a perfectly entangled pair of qubits over an arbitrarily long distance is possible if the initial entanglement of the links is larger than a threshold. This critical value highly depends on the geometry of the lattice, in particular on the connectivity of the nodes, and is related to a classical percolation problem. We then develop a genuine quantum strategy based on multipartite entanglement, improving both the threshold and the success probability of the generation of long-distance entanglement. Second, we consider a mixed-state definition of the connections of the quantum networks. This formalism is well-adapted for a more realistic description of systems in which noise (random errors) inevitably occurs. New techniques are required to create remote entanglement in this setting, and we show how to locally extract and globally process some error syndromes in order to create useful long-distance quantum correlations. Finally, we turn to networks that have a complex topology, which is the case for most real-world communication networks such as the Internet for instance. Besides many other characteristics, these systems have in common the small-world feature, stating that any two nodes are separated by a
Federle, T W; Ventullo, R M; White, D C
1990-12-01
The vertical distribution of microbial biomass, activity, community structure and the mineralization of xenobiotic chemicals was examined in two soil profiles in northern Wisconsin. One profile was impacted by infiltrating wastewater from a laundromat, while the other served as a control. An unconfined aquifer was present 14 meters below the surface at both sites. Biomass and community structure were determined by acridine orange direct counts and measuring concentrations of phospholipid-derived fatty acids (PLFA). Microbial activity was estimated by measuring fluorescein diacetate (FDA) hydrolysis, thymidine incorporation into DNA, and mixed amino acid (MAA) mineralization. Mineralization kinetics of linear alkylbenzene sulfonate (LAS) and linear alcohol ethoxylate (LAE) were determined at each depth. Except for MAA mineralization rates, measures of microbial biomass and activity exhibited similar patterns with depth. PLFA concentration and rates of FDA hydrolysis and thymidine incorporation decreased 10-100 fold below 3 m and then exhibited little variation with depth. Fungal fatty acid markers were found at all depths and represented from 1 to 15% of the total PLFAs. The relative proportion of tuberculostearic acid (TBS), an actinomycete marker, declined with depth and was not detected in the saturated zone. The profile impacted by wastewater exhibited higher levels of PLFA but a lower proportion of TBS than the control profile. This profile also exhibited faster rates of FDA hydrolysis and amino acid mineralization at most depths. LAS was mineralized in the upper 2 m of the vadose zone and in the saturated zone of both profiles. Little or no LAS biodegradation occurred at depths between 2 and 14 m. LAE was mineralized at all depths in both profiles, and the mineralization rate exhibited a similar pattern with depth as biomass and activity measurements. In general, biomass and biodegradative activities were much lower in groundwater than in soil samples obtained
Entanglement dynamics in quantum information theory
Energy Technology Data Exchange (ETDEWEB)
Cubitt, T.S.
2007-03-29
This thesis contributes to the theory of entanglement dynamics, that is, the behaviour of entanglement in systems that are evolving with time. Progressively more complex multipartite systems are considered, starting with low-dimensional tripartite systems, whose entanglement dynamics can nonetheless display surprising properties, progressing through larger networks of interacting particles, and finishing with infinitely large lattice models. Firstly, what is perhaps the most basic question in entanglement dynamics is considered: what resources are necessary in order to create entanglement between distant particles? The answer is surprising: sending separable states between the parties is sufficient; entanglement can be created without it being carried by a ''messenger'' particle. The analogous result also holds in the continuous-time case: two particles interacting indirectly via a common ancilla particle can be entangled without the ancilla ever itself becoming entangled. The latter result appears to discount any notion of entanglement flow. However, for pure states, this intuitive idea can be recovered, and even made quantitative. A ''bottleneck'' inequality is derived that relates the entanglement rate of the end particles in a tripartite chain to the entanglement of the middle one. In particular, no entanglement can be created if the middle particle is not entangled. However, although this result can be applied to general interaction networks, it does not capture the full entanglement dynamics of these more complex systems. This is remedied by the derivation of entanglement rate equations, loosely analogous to the rate equations describing a chemical reaction. A complete set of rate equations for a system reflects the full structure of its interaction network, and can be used to prove a lower bound on the scaling with chain length of the time required to entangle the ends of a chain. Finally, in contrast with these more
Entanglement dynamics in quantum information theory
International Nuclear Information System (INIS)
Cubitt, T.S.
2007-01-01
This thesis contributes to the theory of entanglement dynamics, that is, the behaviour of entanglement in systems that are evolving with time. Progressively more complex multipartite systems are considered, starting with low-dimensional tripartite systems, whose entanglement dynamics can nonetheless display surprising properties, progressing through larger networks of interacting particles, and finishing with infinitely large lattice models. Firstly, what is perhaps the most basic question in entanglement dynamics is considered: what resources are necessary in order to create entanglement between distant particles? The answer is surprising: sending separable states between the parties is sufficient; entanglement can be created without it being carried by a ''messenger'' particle. The analogous result also holds in the continuous-time case: two particles interacting indirectly via a common ancilla particle can be entangled without the ancilla ever itself becoming entangled. The latter result appears to discount any notion of entanglement flow. However, for pure states, this intuitive idea can be recovered, and even made quantitative. A ''bottleneck'' inequality is derived that relates the entanglement rate of the end particles in a tripartite chain to the entanglement of the middle one. In particular, no entanglement can be created if the middle particle is not entangled. However, although this result can be applied to general interaction networks, it does not capture the full entanglement dynamics of these more complex systems. This is remedied by the derivation of entanglement rate equations, loosely analogous to the rate equations describing a chemical reaction. A complete set of rate equations for a system reflects the full structure of its interaction network, and can be used to prove a lower bound on the scaling with chain length of the time required to entangle the ends of a chain. Finally, in contrast with these more abstract results, the entanglement and
International Nuclear Information System (INIS)
Araujo Melo, D.M. de.
1989-01-01
Addition compounds between several lanthanide salts and dimethylformamide (DMF) have been described in the literature. This thesis reports the synthesis and characterization of the compounds of general composition Ln (C H 3 SO 3 ) 3 . 3 DMF.6 H 3 O) (Ln = La - Ho) and Ln (C H 3 SO 3 ) 3 DMF.6 H 2 O (Ln = Er - Lu). The structure of the neodymium compound, isomorphous with the series, is also described. The enthalpy variations were determined by solution calorimetry. (author)
Entangled Light Emission From a Diode
International Nuclear Information System (INIS)
Stevenson, R. M.; Shields, A. J.; Salter, C. L.; Farrer, I.; Nicoll, C. A.; Ritchie, D. A.
2011-01-01
Electrically-driven entangled photon generation is demonstrated for the first time using a single semiconductor quantum dot embedded in a light emitting diode structure. The entanglement fidelity is shown to be of sufficient quality for applications such as quantum key distribution.
Remote entanglement distribution
International Nuclear Information System (INIS)
Sanders, B.C.; Gour, G.; Meyer, D.A.
2005-01-01
Full text: Shared bipartite entanglement is a crucial shared resource for many quantum information tasks such as teleportation, entanglement swapping, and remote state preparation. In general different nodes of a quantum network share an entanglement resource, such as ebits, that are consumed during the task. In practice, generating entangled states is expensive, but here we establish a protocol by which a quantum network requires only a single supplier of entanglement to all nodes who, by judicious measurements and classical communication, provides the nodes with a unique pair wise entangled state independent of the measurement outcome. Furthermore, we extend this result to a chain of suppliers and nodes, which enables an operational interpretation of concurrence. In the special case that the supplier shares bipartite states with two nodes, and such states are pure and maximally entangled, our protocol corresponds to entanglement swapping. However, in the practical case that initial shared entanglement between suppliers and nodes involves partially entangled or mixed states, we show that general local operations and classical communication by all parties (suppliers and nodes) yields distributions of entangled states between nodes. In general a distribution of bipartite entangled states between any two nodes will include states that do not have the same entanglement; thus we name this general process remote entanglement distribution. In our terminology entanglement swapping with partially entangled states is a particular class of remote entanglement distribution protocols. Here we identify which distributions of states that can or cannot be created by remote entanglement distribution. In particular we prove a powerful theorem that establishes an upper bound on the entanglement of formation that can be produced between two qubit nodes. We extend this result to the case of a linear chain of parties that play the roles of suppliers and nodes; this extension provides
Entangled states in quantum mechanics
Ruža, Jānis
2010-01-01
In some circles of quantum physicists, a view is maintained that the nonseparability of quantum systems-i.e., the entanglement-is a characteristic feature of quantum mechanics. According to this view, the entanglement plays a crucial role in the solution of quantum measurement problem, the origin of the “classicality” from the quantum physics, the explanation of the EPR paradox by a nonlocal character of the quantum world. Besides, the entanglement is regarded as a cornerstone of such modern disciplines as quantum computation, quantum cryptography, quantum information, etc. At the same time, entangled states are well known and widely used in various physics areas. In particular, this notion is widely used in nuclear, atomic, molecular, solid state physics, in scattering and decay theories as well as in other disciplines, where one has to deal with many-body quantum systems. One of the methods, how to construct the basis states of a composite many-body quantum system, is the so-called genealogical decomposition method. Genealogical decomposition allows one to construct recurrently by particle number the basis states of a composite quantum system from the basis states of its forming subsystems. These coupled states have a structure typical for entangled states. If a composite system is stable, the internal structure of its forming basis states does not manifest itself in measurements. However, if a composite system is unstable and decays onto its forming subsystems, then the measurables are the quantum numbers, associated with these subsystems. In such a case, the entangled state has a dynamical origin, determined by the Hamiltonian of the corresponding decay process. Possible correlations between the quantum numbers of resulting subsystems are determined by the symmetries-conservation laws of corresponding dynamical variables, and not by the quantum entanglement feature.
Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio
2006-03-01
We present a complete analysis of the multipartite entanglement of three-mode Gaussian states of continuous-variable systems. We derive standard forms which characterize the covariance matrix of pure and mixed three-mode Gaussian states up to local unitary operations, showing that the local entropies of pure Gaussian states are bound to fulfill a relationship which is stricter than the general Araki-Lieb inequality. Quantum correlations can be quantified by a proper convex roof extension of the squared logarithmic negativity, the continuous-variable tangle, or contangle. We review and elucidate in detail the proof that in multimode Gaussian states the contangle satisfies a monogamy inequality constraint [G. Adesso and F. Illuminati, New J. Phys8, 15 (2006)]. The residual contangle, emerging from the monogamy inequality, is an entanglement monotone under Gaussian local operations and classical communications and defines a measure of genuine tripartite entanglements. We determine the analytical expression of the residual contangle for arbitrary pure three-mode Gaussian states and study in detail the distribution of quantum correlations in such states. This analysis yields that pure, symmetric states allow for a promiscuous entanglement sharing, having both maximum tripartite entanglement and maximum couplewise entanglement between any pair of modes. We thus name these states GHZ/W states of continuous-variable systems because they are simultaneous continuous-variable counterparts of both the GHZ and the W states of three qubits. We finally consider the effect of decoherence on three-mode Gaussian states, studying the decay of the residual contangle. The GHZ/W states are shown to be maximally robust against losses and thermal noise.
International Nuclear Information System (INIS)
Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio
2006-01-01
We present a complete analysis of the multipartite entanglement of three-mode Gaussian states of continuous-variable systems. We derive standard forms which characterize the covariance matrix of pure and mixed three-mode Gaussian states up to local unitary operations, showing that the local entropies of pure Gaussian states are bound to fulfill a relationship which is stricter than the general Araki-Lieb inequality. Quantum correlations can be quantified by a proper convex roof extension of the squared logarithmic negativity, the continuous-variable tangle, or contangle. We review and elucidate in detail the proof that in multimode Gaussian states the contangle satisfies a monogamy inequality constraint [G. Adesso and F. Illuminati, New J. Phys8, 15 (2006)]. The residual contangle, emerging from the monogamy inequality, is an entanglement monotone under Gaussian local operations and classical communications and defines a measure of genuine tripartite entanglements. We determine the analytical expression of the residual contangle for arbitrary pure three-mode Gaussian states and study in detail the distribution of quantum correlations in such states. This analysis yields that pure, symmetric states allow for a promiscuous entanglement sharing, having both maximum tripartite entanglement and maximum couplewise entanglement between any pair of modes. We thus name these states GHZ/W states of continuous-variable systems because they are simultaneous continuous-variable counterparts of both the GHZ and the W states of three qubits. We finally consider the effect of decoherence on three-mode Gaussian states, studying the decay of the residual contangle. The GHZ/W states are shown to be maximally robust against losses and thermal noise
Renormalizing Entanglement Distillation
Waeldchen, Stephan; Gertis, Janina; Campbell, Earl T.; Eisert, Jens
2016-01-01
Entanglement distillation refers to the task of transforming a collection of weakly entangled pairs into fewer highly entangled ones. It is a core ingredient in quantum repeater protocols, which are needed to transmit entanglement over arbitrary distances in order to realize quantum key distribution schemes. Usually, it is assumed that the initial entangled pairs are identically and independently distributed and are uncorrelated with each other, an assumption that might not be reasonable at all in any entanglement generation process involving memory channels. Here, we introduce a framework that captures entanglement distillation in the presence of natural correlations arising from memory channels. Conceptually, we bring together ideas from condensed-matter physics—ideas from renormalization and matrix-product states and operators—with those of local entanglement manipulation, Markov chain mixing, and quantum error correction. We identify meaningful parameter regions for which we prove convergence to maximally entangled states, arising as the fixed points of a matrix-product operator renormalization flow.
Kosonen, H; Valkama, S; Hartikainen, J; Eerikainen, H; Torkkeli, M; Jokela, K; Serimaa, R; Sundholm, F; ten Brinke, G; Ikkala, O; Eerikäinen, Hannele
2002-01-01
We report self-organized polymer electrolytes based on poly(styrene)-block-poly(4-vinylpyridine) (PS-block-P4VP). Liquidlike ethylene oxide (EO) oligomers with sulfonic acid end groups are bonded to the P4VP block, leading to comb-shaped supramolecules with the PS-block-P4VP backbone. Lithium
Entanglement without nonlocality
International Nuclear Information System (INIS)
Hewitt-Horsman, C.; Vedral, V.
2007-01-01
We consider the characterization of entanglement from the perspective of a Heisenberg formalism. We derive a two-party generalized separability criterion, and from this describe a physical understanding of entanglement. We find that entanglement may be considered as fundamentally a local effect, and therefore as a separate computational resource from nonlocality. We show how entanglement differs from correlation physically, and explore the implications of this concept of entanglement for the notion of classicality. We find that this understanding of entanglement extends naturally to multipartite cases
International Nuclear Information System (INIS)
Perina, Jan Jr.; Centini, Marco; Sibilia, Concita; Bertolotti, Mario; Scalora, Michael
2006-01-01
We have developed a rigorous quantum model of spontaneous parametric down-conversion in a nonlinear 1D photonic-band-gap structure based upon expansion of the field into monochromatic plane waves. The model provides a two-photon amplitude of a created photon pair. The spectra of the signal and idler fields, their intensity profiles in the time domain, as well as the coincidence-count interference pattern in a Hong-Ou-Mandel interferometer are determined both for cw and pulsed pumping regimes in terms of the two-photon amplitude. A broad range of parameters characterizing the emitted down-converted fields can be used. As an example, a structure composed of 49 layers of GaN/AlN is analyzed as a suitable source of photon pairs having high efficiency
Energy Technology Data Exchange (ETDEWEB)
Ke, Wei; Bethel, Christopher R.; Papp-Wallace, Krisztina M.; Pagadala, Sundar Ram Reddy; Nottingham, Micheal; Fernandez, Daniel; Buynak, John D.; Bonomo, Robert A.; van den Akker, Focco (Case Western); (Stokes); (SMU)
2012-08-01
Class A carbapenemases are a major threat to the potency of carbapenem antibiotics. A widespread carbapenemase, KPC-2, is not easily inhibited by {beta}-lactamase inhibitors (i.e., clavulanic acid, sulbactam, and tazobactam). To explore different mechanisms of inhibition of KPC-2, we determined the crystal structures of KPC-2 with two {beta}-lactamase inhibitors that follow different inactivation pathways and kinetics. The first complex is that of a small boronic acid compound, 3-nitrophenyl boronic acid (3-NPBA), bound to KPC-2 with 1.62-{angstrom} resolution. 3-NPBA demonstrated a Km value of 1.0 {+-} 0.1 {micro}M (mean {+-} standard error) for KPC-2 and blocks the active site by making a reversible covalent interaction with the catalytic S70 residue. The two boron hydroxyl atoms of 3-NPBA are positioned in the oxyanion hole and the deacylation water pocket, respectively. In addition, the aromatic ring of 3-NPBA provides an edge-to-face interaction with W105 in the active site. The structure of KPC-2 with the penam sulfone PSR-3-226 was determined at 1.26-{angstrom} resolution. PSR-3-226 displayed a K{sub m} value of 3.8 {+-} 0.4 {micro}M for KPC-2, and the inactivation rate constant (kinact) was 0.034 {+-} 0.003 s{sup -1}. When covalently bound to S70, PSR-3-226 forms a trans-enamine intermediate in the KPC-2 active site. The predominant active site interactions are generated via the carbonyl oxygen, which resides in the oxyanion hole, and the carboxyl moiety of PSR-3-226, which interacts with N132, N170, and E166. 3-NPBA and PSR-3-226 are the first {beta}-lactamase inhibitors to be trapped as an acyl-enzyme complex with KPC-2. The structural and inhibitory insights gained here could aid in the design of potent KPC-2 inhibitors.
Energy Technology Data Exchange (ETDEWEB)
Nomura, Yasunori [Berkeley Center for Theoretical Physics, Department of Physics, University of California, Berkeley, CA 94720 (United States); Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, Kashiwa 277-8583 (Japan); Salzetta, Nico, E-mail: nsalzetta@berkeley.edu [Berkeley Center for Theoretical Physics, Department of Physics, University of California, Berkeley, CA 94720 (United States); Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Sanches, Fabio; Weinberg, Sean J. [Berkeley Center for Theoretical Physics, Department of Physics, University of California, Berkeley, CA 94720 (United States); Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)
2016-12-10
We study the Hilbert space structure of classical spacetimes under the assumption that entanglement in holographic theories determines semiclassical geometry. We show that this simple assumption has profound implications; for example, a superposition of classical spacetimes may lead to another classical spacetime. Despite its unconventional nature, this picture admits the standard interpretation of superpositions of well-defined semiclassical spacetimes in the limit that the number of holographic degrees of freedom becomes large. We illustrate these ideas using a model for the holographic theory of cosmological spacetimes.
Entanglement, Bell inequality and all that
Energy Technology Data Exchange (ETDEWEB)
Narnhofer, Heide; Thirring, Walter [Fakultaet fuer Physik, Universitaet Wien, Boltzmanngasse 5, A-1090 Wien (Austria)
2012-09-15
We start from the geometrical observation that a finite set of pure states correspond to some points on a sphere and their convex span cannot be the whole set of states. If we call the left over entangled we can pursue this picture from the simplest case of a two dimensional Hilbert space to the usual Alice-and-Bob game of entangled states and then move to bigger systems and finely to quantum field theory where almost everything is entangled. On the way we encounter more or less known old friends up from the shell structure of states to the monogamy of squashed entanglement. We study how entanglement can be concentrated on a small slice and how it depends on the particular factorization of the Hilbert space.
Entanglement, Bell inequality and all that
International Nuclear Information System (INIS)
Narnhofer, Heide; Thirring, Walter
2012-01-01
We start from the geometrical observation that a finite set of pure states correspond to some points on a sphere and their convex span cannot be the whole set of states. If we call the left over entangled we can pursue this picture from the simplest case of a two dimensional Hilbert space to the usual Alice-and-Bob game of entangled states and then move to bigger systems and finely to quantum field theory where almost everything is entangled. On the way we encounter more or less known old friends up from the shell structure of states to the monogamy of squashed entanglement. We study how entanglement can be concentrated on a small slice and how it depends on the particular factorization of the Hilbert space.
Maximal Entanglement in High Energy Physics
Directory of Open Access Journals (Sweden)
Alba Cervera-Lierta, José I. Latorre, Juan Rojo, Luca Rottoli
2017-11-01
Full Text Available We analyze how maximal entanglement is generated at the fundamental level in QED by studying correlations between helicity states in tree-level scattering processes at high energy. We demonstrate that two mechanisms for the generation of maximal entanglement are at work: i $s$-channel processes where the virtual photon carries equal overlaps of the helicities of the final state particles, and ii the indistinguishable superposition between $t$- and $u$-channels. We then study whether requiring maximal entanglement constrains the coupling structure of QED and the weak interactions. In the case of photon-electron interactions unconstrained by gauge symmetry, we show how this requirement allows reproducing QED. For $Z$-mediated weak scattering, the maximal entanglement principle leads to non-trivial predictions for the value of the weak mixing angle $\\theta_W$. Our results are a first step towards understanding the connections between maximal entanglement and the fundamental symmetries of high-energy physics.
Quantum entanglement of high angular momenta.
Fickler, Robert; Lapkiewicz, Radek; Plick, William N; Krenn, Mario; Schaeff, Christoph; Ramelow, Sven; Zeilinger, Anton
2012-11-02
Single photons with helical phase structures may carry a quantized amount of orbital angular momentum (OAM), and their entanglement is important for quantum information science and fundamental tests of quantum theory. Because there is no theoretical upper limit on how many quanta of OAM a single photon can carry, it is possible to create entanglement between two particles with an arbitrarily high difference in quantum number. By transferring polarization entanglement to OAM with an interferometric scheme, we generate and verify entanglement between two photons differing by 600 in quantum number. The only restrictive factors toward higher numbers are current technical limitations. We also experimentally demonstrate that the entanglement of very high OAM can improve the sensitivity of angular resolution in remote sensing.
Non-Markovian dynamics of entanglement for multipartite systems
Energy Technology Data Exchange (ETDEWEB)
Zhou Jiang; Wu Chengjun; Zhu Mingyi; Guo Hong, E-mail: hongguo@pku.edu.c [CREAM Group, State Key Laboratory of Advanced Optical Communication Systems and Networks (Peking University) and Institute of Quantum Electronics, School of Electronics Engineering and Computer Science, and Center for Computational Science and Engineering (CCSE), Peking University, Beijing 100871 (China)
2009-11-14
Entanglement dynamics for a couple of two-level atoms interacting with independent structured reservoirs is studied using a non-perturbative approach. It is shown that the revival of atom entanglement is not necessarily accompanied by the sudden death of reservoir entanglement, and vice versa. In fact, atom entanglement can revive before, simultaneously or even after the disentanglement of reservoirs. Using a novel method based on the population analysis for the excited atomic state, we present the quantitative criteria for the revival and death phenomena. To give a more physically intuitive insight, the quasimode Hamiltonian method is applied. Our quantitative analysis is helpful for the practical engineering of entanglement.
Basic logic and quantum entanglement
International Nuclear Information System (INIS)
Zizzi, P A
2007-01-01
As it is well known, quantum entanglement is one of the most important features of quantum computing, as it leads to massive quantum parallelism, hence to exponential computational speed-up. In a sense, quantum entanglement is considered as an implicit property of quantum computation itself. But... can it be made explicit? In other words, is it possible to find the connective 'entanglement' in a logical sequent calculus for the machine language? And also, is it possible to 'teach' the quantum computer to 'mimic' the EPR 'paradox'? The answer is in the affirmative, if the logical sequent calculus is that of the weakest possible logic, namely Basic logic. - A weak logic has few structural rules. But in logic, a weak structure leaves more room for connectives (for example the connective 'entanglement'). Furthermore, the absence in Basic logic of the two structural rules of contraction and weakening corresponds to the validity of the no-cloning and no-erase theorems, respectively, in quantum computing
Basic logic and quantum entanglement
Energy Technology Data Exchange (ETDEWEB)
Zizzi, P A [Dipartimento di Matematica Pura ed Applicata, Via Trieste 63, 35121 Padova (Italy)
2007-05-15
As it is well known, quantum entanglement is one of the most important features of quantum computing, as it leads to massive quantum parallelism, hence to exponential computational speed-up. In a sense, quantum entanglement is considered as an implicit property of quantum computation itself. But... can it be made explicit? In other words, is it possible to find the connective 'entanglement' in a logical sequent calculus for the machine language? And also, is it possible to 'teach' the quantum computer to 'mimic' the EPR 'paradox'? The answer is in the affirmative, if the logical sequent calculus is that of the weakest possible logic, namely Basic logic. - A weak logic has few structural rules. But in logic, a weak structure leaves more room for connectives (for example the connective 'entanglement'). Furthermore, the absence in Basic logic of the two structural rules of contraction and weakening corresponds to the validity of the no-cloning and no-erase theorems, respectively, in quantum computing.
Quantum Entanglement Growth under Random Unitary Dynamics
Nahum, Adam; Ruhman, Jonathan; Vijay, Sagar; Haah, Jeongwan
2017-07-01
Characterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the "entanglement tsunami" in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ) equation. The mean entanglement grows linearly in time, while fluctuations grow like (time )1/3 and are spatially correlated over a distance ∝(time )2/3. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i) a stochastic model of a growing surface, (ii) a "minimal cut" picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii) a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the "velocity" of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder.
Entanglement quantification by local unitary operations
Energy Technology Data Exchange (ETDEWEB)
Monras, A.; Giampaolo, S. M.; Gualdi, G.; Illuminati, F. [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, CNISM, Unita di Salerno, and INFN, Sezione di Napoli-Gruppo Collegato di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy); Adesso, G.; Davies, G. B. [School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)
2011-07-15
Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitary operations play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as ''mirror entanglement.'' They are constructed by first considering the (squared) Hilbert-Schmidt distance of the state from the set of states obtained by applying to it a given local unitary operator. To the action of each different local unitary operator there corresponds a different distance. We then minimize these distances over the sets of local unitary operations with different spectra, obtaining an entire family of different entanglement monotones. We show that these mirror-entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary operator for the associated mirror entanglement to be faithful, i.e., to vanish in and only in separable pure states. We analyze in detail the properties of one particularly relevant member of the family, the ''stellar mirror entanglement'' associated with the traceless local unitary operations with nondegenerate spectra and equispaced eigenvalues in the complex plane. This particular measure generalizes the original analysis of S. M. Giampaolo and F. Illuminati [Phys. Rev. A 76, 042301 (2007)], valid for qubits and qutrits. We prove that the stellar entanglement is a faithful bipartite entanglement monotone in any dimension and that it is bounded from below by a function proportional to the linear entropy and from above by the linear entropy itself, coinciding with it in two- and three-dimensional spaces.
Quantum Entanglement Growth under Random Unitary Dynamics
Directory of Open Access Journals (Sweden)
Adam Nahum
2017-07-01
Full Text Available Characterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the “entanglement tsunami” in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ equation. The mean entanglement grows linearly in time, while fluctuations grow like (time^{1/3} and are spatially correlated over a distance ∝(time^{2/3}. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i a stochastic model of a growing surface, (ii a “minimal cut” picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the “velocity” of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder.
Entanglement quantification by local unitary operations
International Nuclear Information System (INIS)
Monras, A.; Giampaolo, S. M.; Gualdi, G.; Illuminati, F.; Adesso, G.; Davies, G. B.
2011-01-01
Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitary operations play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as ''mirror entanglement.'' They are constructed by first considering the (squared) Hilbert-Schmidt distance of the state from the set of states obtained by applying to it a given local unitary operator. To the action of each different local unitary operator there corresponds a different distance. We then minimize these distances over the sets of local unitary operations with different spectra, obtaining an entire family of different entanglement monotones. We show that these mirror-entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary operator for the associated mirror entanglement to be faithful, i.e., to vanish in and only in separable pure states. We analyze in detail the properties of one particularly relevant member of the family, the ''stellar mirror entanglement'' associated with the traceless local unitary operations with nondegenerate spectra and equispaced eigenvalues in the complex plane. This particular measure generalizes the original analysis of S. M. Giampaolo and F. Illuminati [Phys. Rev. A 76, 042301 (2007)], valid for qubits and qutrits. We prove that the stellar entanglement is a faithful bipartite entanglement monotone in any dimension and that it is bounded from below by a function proportional to the linear entropy and from above by the linear entropy itself, coinciding with it in two- and three-dimensional spaces.
Alkyl Substitution Effect on Oxidation Stability of Sulfone-Based Electrolytes
Energy Technology Data Exchange (ETDEWEB)
Su, Chi-Cheung [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA; He, Meinan [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA; Redfern, Paul [Materials Science Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA; Curtiss, Larry A. [Materials Science Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA; Liao, Chen [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA; Zhang, Lu [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA; Burrell, Anthony K. [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA; Zhang, Zhengcheng [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA
2016-02-16
Organic sulfone compounds have been widely used as high-voltage electrolytes for lithium-ion batteries for decades. However, owing to the complexity of the synthesis of new sulfones, only a few commercially available sulfones have been studied. In this paper, we report the synthesis of new sulfone compounds with various substituent groups and the impact of the substituent group on the oxidation stability of sulfones. Electrochemical floating tests using a 5 V LiNi0.5Mn1.5O4 spinel cathode and density functional theory calculations showed that the cyclopentyl-substituted sulfone McPS suffered from oxidation instability, starting from 4.9 V versus Li+/Li, as observed by the large leakage currents. On the other hand, the isopropyl-substituted sulfone MiPS and tetramethylene substituted sulfone TMS showed much improved oxidation stability under identical testing conditions. The substitution structure of the sulfone plays a significant role in the determination of its oxidative stability and should first be considered for the development of new sulfone-based electrolytes for high-voltage, high-energy lithium-ion batteries.
Quantum entanglement: theory and applications
Energy Technology Data Exchange (ETDEWEB)
Schuch, N.
2007-10-10
This thesis deals with various questions concerning the quantification, the creation, and the application of quantum entanglement. Entanglement arises due to the restriction to local operations and classical communication. We investigate how the notion of entanglement changes if additional restrictions in form of a superselection rule are imposed and show that they give rise to a new resource. We characterize this resource and demonstrate that it can be used to overcome the restrictions, very much as entanglement can overcome the restriction to local operations by teleportation. We next turn towards the optimal generation of resources. We show how squeezing can be generated as efficiently as possible from noisy squeezing operations supplemented by noiseless passive operations, and discuss the implications of this result to the optimal generation of entanglement. The difficulty in describing the behaviour of correlated quantum many-body systems is ultimately due to the complicated entanglement structure of multipartite states. Using quantum information techniques, we investigate the ground state properties of lattices of harmonic oscillators. We derive an exponential decay of correlations for gapped systems, compute the dependence of correlation length and gap, and investigate the notion of criticality by relating a vanishing energy gap to an algebraic decay of correlations. Recently, ideas from entanglement theory have been applied to the description of many-body systems. Matrix Product States (MPS), which have a particularly simple interpretation from the point of quantum information, perform extremely well in approximating the ground states of local Hamiltonians. It is generally believed that this is due to the fact that both ground states and MPS obey an entropic area law. We clarify the relation between entropy scaling laws and approximability by MPS, and in particular find that an area law does not necessarily imply approximability. Using the quantum
Quantum entanglement: theory and applications
International Nuclear Information System (INIS)
Schuch, N.
2007-01-01
This thesis deals with various questions concerning the quantification, the creation, and the application of quantum entanglement. Entanglement arises due to the restriction to local operations and classical communication. We investigate how the notion of entanglement changes if additional restrictions in form of a superselection rule are imposed and show that they give rise to a new resource. We characterize this resource and demonstrate that it can be used to overcome the restrictions, very much as entanglement can overcome the restriction to local operations by teleportation. We next turn towards the optimal generation of resources. We show how squeezing can be generated as efficiently as possible from noisy squeezing operations supplemented by noiseless passive operations, and discuss the implications of this result to the optimal generation of entanglement. The difficulty in describing the behaviour of correlated quantum many-body systems is ultimately due to the complicated entanglement structure of multipartite states. Using quantum information techniques, we investigate the ground state properties of lattices of harmonic oscillators. We derive an exponential decay of correlations for gapped systems, compute the dependence of correlation length and gap, and investigate the notion of criticality by relating a vanishing energy gap to an algebraic decay of correlations. Recently, ideas from entanglement theory have been applied to the description of many-body systems. Matrix Product States (MPS), which have a particularly simple interpretation from the point of quantum information, perform extremely well in approximating the ground states of local Hamiltonians. It is generally believed that this is due to the fact that both ground states and MPS obey an entropic area law. We clarify the relation between entropy scaling laws and approximability by MPS, and in particular find that an area law does not necessarily imply approximability. Using the quantum
Quantum entanglement and fixed-point bifurcations
International Nuclear Information System (INIS)
Hines, Andrew P.; McKenzie, Ross H.; Milburn, G.J.
2005-01-01
How does the classical phase-space structure for a composite system relate to the entanglement characteristics of the corresponding quantum system? We demonstrate how the entanglement in nonlinear bipartite systems can be associated with a fixed-point bifurcation in the classical dynamics. Using the example of coupled giant spins we show that when a fixed point undergoes a supercritical pitchfork bifurcation, the corresponding quantum state--the ground state--achieves its maximum amount of entanglement near the critical point. We conjecture that this will be a generic feature of systems whose classical limit exhibits such a bifurcation
Directory of Open Access Journals (Sweden)
Seikh Jiyaur Rahaman
2016-09-01
Full Text Available Proton exchange membrane (PEM fuel cells are one of the most emerging alternative energy technologies under development. A novel proton exchange membrane sulfonated polyethersulfone (SPES was developed by homogeneous method using phthalic anhydride as catalyst and chlorosulfonic acid as sulfonating agent to control the sulfonation reaction. The method of sulfonation was optimized by varying the reaction time and concentration of the catalyst. The structure of the SPES was studied by 1H-Nuclear Magnetic Resonance, Fourier Transform Infra Red Spectroscopy and X-ray diffraction. The extent of sulfonation was determined by ion exchange capacity studies. The thermal and mechanical stabilities were studied using thermogravimetric analysis (TGA and Dynamic Mechanical Analysis (DMA respectively. DMA results show that the storage modulus increased with increase in degree of sulfonation (DS and water uptake of SPES increased with DS. The proton conductivity of SPES (34% DS measured by impedance spectroscopy was found to be 0.03S/cm at 80%RH and 100°C. Also, current-voltage polarization characteristics of SPES membranes offer a favourable alternative PEM due to the thermal stability and cost effective than perfluorinated ionomers.
International Nuclear Information System (INIS)
Biedlingmaier, S.; Schmidt, A.
1987-01-01
Growth of several cyanobacteria was examined on ethane sulfonate and taurine as only sulfur source. Comparing two strains with differential utilization of sulfonic acids (Anabaena variabilis and Synechococcus 6301) demonstrated that actual growth was coupled to the presence of an active sulfonate transport system due to species specific properties and nutritional conditions. Sulfonate uptake in Anabaena variabilis was characterized by a pH optimum of 6.5, a structural specificity for sulfonates, missing Na + dependence, and phosphate stimulation. Radiolabeled ethane sulfonate and taurine was metabolized to products of normal sulfur metabolism. Also considerable amounts of 35 S-labeled volatiles (mercaptanes and sulfide) could be detected, suggesting a degradation mechanism via reduction to mercaptanes and cleavage of the C-S bond. (orig.)
Plugge, Stephan; Zazunov, Alex; Sodano, Pasquale; Egger, Reinhold
2015-06-01
We study the concurrence of entanglement between two quantum dots in contact to Majorana bound states on a floating superconducting island. The distance between the Majorana states, the charging energy of the island, and the average island charge are shown to be decisive parameters for the efficiency of entanglement generation. We find that long-range entanglement with basically distance-independent concurrence is possible over wide parameter regions, where the proposed setup realizes a "Majorana entanglement bridge." We also study the time-dependent concurrence obtained after one of the tunnel couplings is suddenly switched on, which reveals the time scales for generating entanglement. Accurate analytical expressions for the concurrence are derived both for the static and the time-dependent cases. Our results indicate that entanglement formation in interacting Majorana devices can be fully understood in terms of an interplay of elastic cotunneling (also referred to as "teleportation") and crossed Andreev reflection processes.
Quantum entanglement at negative temperature
International Nuclear Information System (INIS)
Furman, G B; Meerovich, V M; Sokolovsky, V L
2013-01-01
An isolated spin system that is in internal thermodynamic equilibrium and that has an upper limit to its allowed energy states can possess a negative temperature. We calculate the thermodynamic characteristics and the concurrence in this system over the entire range of positive and negative temperatures. Our calculation was performed for different real structures, which can be used in experiments. It is found that the temperature dependence of the concurrence is substantially asymmetrical similarly to other thermodynamic characteristics. At a negative temperature the maximum concurrence and the absolute temperature of the entanglement appearance are significantly larger than those at a positive temperature. The concurrence can be characterized by two dimensionless parameters: the ratio between the Zeeman and dipolar energies and the ratio of the thermal and dipolar energies. It was shown that for all considered structures the dimensionless temperatures of the transition between entanglement and separability of the first and second spins are independent of spin structure and the number of spins. (paper)
Monogamy inequality for distributed gaussian entanglement.
Hiroshima, Tohya; Adesso, Gerardo; Illuminati, Fabrizio
2007-02-02
We show that for all n-mode Gaussian states of continuous variable systems, the entanglement shared among n parties exhibits the fundamental monogamy property. The monogamy inequality is proven by introducing the Gaussian tangle, an entanglement monotone under Gaussian local operations and classical communication, which is defined in terms of the squared negativity in complete analogy with the case of n-qubit systems. Our results elucidate the structure of quantum correlations in many-body harmonic lattice systems.
Multipartite secret key distillation and bound entanglement
International Nuclear Information System (INIS)
Augusiak, Remigiusz; Horodecki, Pawel
2009-01-01
Recently it has been shown that quantum cryptography beyond pure entanglement distillation is possible and a paradigm for the associated protocols has been established. Here we systematically generalize the whole paradigm to the multipartite scenario. We provide constructions of new classes of multipartite bound entangled states, i.e., those with underlying twisted Greenberger-Horne-Zeilinger (GHZ) structure and nonzero distillable cryptographic key. We quantitatively estimate the key from below with the help of the privacy squeezing technique.
Entanglement quantification by local unitary operations
Monras, A.; Adesso, G.; Giampaolo, S. M.; Gualdi, G.; Davies, G. B.; Illuminati, F.
2011-07-01
Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitary operations play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as “mirror entanglement.” They are constructed by first considering the (squared) Hilbert-Schmidt distance of the state from the set of states obtained by applying to it a given local unitary operator. To the action of each different local unitary operator there corresponds a different distance. We then minimize these distances over the sets of local unitary operations with different spectra, obtaining an entire family of different entanglement monotones. We show that these mirror-entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary operator for the associated mirror entanglement to be faithful, i.e., to vanish in and only in separable pure states. We analyze in detail the properties of one particularly relevant member of the family, the “stellar mirror entanglement” associated with the traceless local unitary operations with nondegenerate spectra and equispaced eigenvalues in the complex plane. This particular measure generalizes the original analysis of S. M. Giampaolo and F. Illuminati [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.76.042301 76, 042301 (2007)], valid for qubits and qutrits. We prove that the stellar entanglement is a faithful bipartite entanglement monotone in any dimension and that it is bounded from below by a function proportional to the linear entropy and from above by the linear entropy itself, coinciding with it in two- and three-dimensional spaces.
Geometric multipartite entanglement measures
International Nuclear Information System (INIS)
Paz-Silva, Gerardo A.; Reina, John H.
2007-01-01
Within the framework of constructions for quantifying entanglement, we build a natural scenario for the assembly of multipartite entanglement measures based on Hopf bundle-like mappings obtained through Clifford algebra representations. Then, given the non-factorizability of an arbitrary two-qubit density matrix, we give an alternate quantity that allows the construction of two types of entanglement measures based on their arithmetical and geometrical averages over all pairs of qubits in a register of size N, and thus fully characterize its degree and type of entanglement. We find that such an arithmetical average is both additive and strongly super additive
Remarks on entanglement swapping
International Nuclear Information System (INIS)
Song, Daegene
2004-01-01
In two partially entangled states, entanglement swapping by Bell measurement will yield the weaker entanglement of the two. This scheme is optimal because the average entanglement cannot increase under local operation and classical communication. However, for more than two states, this scheme does not always yield the weakest link. We consider projective measurements other than Bell-type measurement and show, numerically, that while Bell measurement may not be unique, it is indeed optimal among these projective measurements. We also discuss the non-uniqueness of Bell measurements. (letter to the editor)
Computational complexity in entanglement transformations
Chitambar, Eric A.
In physics, systems having three parts are typically much more difficult to analyze than those having just two. Even in classical mechanics, predicting the motion of three interacting celestial bodies remains an insurmountable challenge while the analogous two-body problem has an elementary solution. It is as if just by adding a third party, a fundamental change occurs in the structure of the problem that renders it unsolvable. In this thesis, we demonstrate how such an effect is likewise present in the theory of quantum entanglement. In fact, the complexity differences between two-party and three-party entanglement become quite conspicuous when comparing the difficulty in deciding what state changes are possible for these systems when no additional entanglement is consumed in the transformation process. We examine this entanglement transformation question and its variants in the language of computational complexity theory, a powerful subject that formalizes the concept of problem difficulty. Since deciding feasibility of a specified bipartite transformation is relatively easy, this task belongs to the complexity class P. On the other hand, for tripartite systems, we find the problem to be NP-Hard, meaning that its solution is at least as hard as the solution to some of the most difficult problems humans have encountered. One can then rigorously defend the assertion that a fundamental complexity difference exists between bipartite and tripartite entanglement since unlike the former, the full range of forms realizable by the latter is incalculable (assuming P≠NP). However, similar to the three-body celestial problem, when one examines a special subclass of the problem---invertible transformations on systems having at least one qubit subsystem---we prove that the problem can be solved efficiently. As a hybrid of the two questions, we find that the question of tripartite to bipartite transformations can be solved by an efficient randomized algorithm. Our results are
Sulfonated polyphenyl ether by electropolymerization
International Nuclear Information System (INIS)
Hou Hongying; Vacandio, Florence; Di Vona, Maria Luisa; Knauth, Philippe
2012-01-01
Highlights: ► Sulfonated polyphenyl ether was for the first time electropolymerized. ► This technique allows the economical preparation of ionomeric membranes for electrochemical energy technologies. ► The mechanism of electropolymerization was discussed in detail. - Abstract: Electropolymerization of sulfonated phenol was for the first time achieved and studied by cyclic voltammetry (CV) and chronoamperometry on stainless steel substrates. The obtained sulfonated polyphenyl ether was characterized in terms of impedance spectroscopy, nuclear magnetic resonance (NMR), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD) and Fourier-Transform Infrared (FTIR) spectroscopy. Dense films of micrometer thickness can be obtained; the proton conductivity is about 3 mS/cm at room temperature.
Testing for entanglement with periodic coarse graining
Tasca, D. S.; Rudnicki, Łukasz; Aspden, R. S.; Padgett, M. J.; Souto Ribeiro, P. H.; Walborn, S. P.
2018-04-01
Continuous-variable systems find valuable applications in quantum information processing. To deal with an infinite-dimensional Hilbert space, one in general has to handle large numbers of discretized measurements in tasks such as entanglement detection. Here we employ the continuous transverse spatial variables of photon pairs to experimentally demonstrate entanglement criteria based on a periodic structure of coarse-grained measurements. The periodization of the measurements allows an efficient evaluation of entanglement using spatial masks acting as mode analyzers over the entire transverse field distribution of the photons and without the need to reconstruct the probability densities of the conjugate continuous variables. Our experimental results demonstrate the utility of the derived criteria with a success rate in entanglement detection of ˜60 % relative to 7344 studied cases.
International Nuclear Information System (INIS)
Cotler, Jordan; Wilczek, Frank
2016-01-01
We introduce quantum history states and their mathematical framework, thereby reinterpreting and extending the consistent histories approach to quantum theory. Through thought experiments, we demonstrate that our formalism allows us to analyze a quantum version of history in which we reconstruct the past by observations. In particular, we can pass from measurements to inferences about ‘what happened’ in a way that is sensible and free of paradox. Our framework allows for a richer understanding of the temporal structure of quantum theory, and we construct history states that embody peculiar, non-classical correlations in time. (paper)
Maximally multipartite entangled states
Facchi, Paolo; Florio, Giuseppe; Parisi, Giorgio; Pascazio, Saverio
2008-06-01
We introduce the notion of maximally multipartite entangled states of n qubits as a generalization of the bipartite case. These pure states have a bipartite entanglement that does not depend on the bipartition and is maximal for all possible bipartitions. They are solutions of a minimization problem. Examples for small n are investigated, both analytically and numerically.
Side-chain sulfonated poly(ether sulfone)s for PEM applications
Energy Technology Data Exchange (ETDEWEB)
Meier-Haack, J.; Butwilowski, W.; Quetschke, A.; Vogel, C. [Leibniz Institute of Polymer Research Dresden, Dresden (Germany)
2010-07-01
Copoly(arylene ether sulfone)s from bis-(4-fluoro phenyl)sulfone (DFDPhS), bis(4-trimethylsiloxy phenyl)sulfone (DHDPhS), and 2,5-diphenylhydroquinone trimethylsilylether (Bis-TMS-DPhHQ) were obtained by nucleophilic displacement polycondensation with high molecular weights (M{sub n} up to 70,000 g/mol; {eta}{sub inh} up to 0.93 dl/g) and narrow molecular weight distributions (2.1 - 2.9). All copolymers showed a single glass-transition temperature (T{sub g}) around 230 C. Upon sulfonation with concentrated sulfuric acid, the T{sub g}s (from samples in the protonated form) were shifted to higher temperatures (+ 35 {+-} 5 C). NMR spectra and the determined ion-exchange capacities (IEC; 1.46 - 2.05 mmol/g), which were close to the theoretical values, indicating that only the pendant phenyl rings of the 2,5- diphenylhydroquinone moieties in the polymer backbone were sulfonated. Membranes prepared from N-methyl- 2-pyrrolidone (NMP) solutions were transparent and soft. The water-uptake at room temperature increased from 30% to 80% with increasing IEC. Samples from random copolymers with an IEC {>=} 1.8 mmol/g were soluble in water at 90 C. While the proton conductivity of the low IEC samples (random copolymer) (1.46 mmol/g) was lower than that of Nafion {sup registered}, the conductivities of the high IEC samples were superior to Nafion {sup registered}. In general membranes from blockcopolymers showed lower water-uptake, higher dimensional stability and higher proton conductivities as compared to samples from random copolymers with similar monomer composition and ion-exchange capacities. (orig.)
International Nuclear Information System (INIS)
Daniell, M.L.
2000-09-01
The motivation of this thesis was to create higher-order entanglements. The first experimental observation of a four-photon entanglement was presented in the experiment of this thesis. And the visibility of this entanglement was 0.79+-0.06, which is sufficient to make claims of the nonlocality of quantum mechanics. This therefore lays a foundation for experiments showing the nonlocality of teleportation, and the purification of entanglement. The work of this thesis brings together a lot of earlier work done by the Zeilinger Group, and lays a foundation for future experiments. Earlier experiments such as teleportation together with entanglement swapping, which are 'complete teleportation' in as much as the state teleported is entirely undefined, can be combined and re-done with this four-photon entanglement. This result would be the first demonstration of complete, nonlocal teleportation. Also this experiment can be slightly modified and used to perform the first experimental quantum purification of entanglement, which is of vital importance to the fields of quantum information, and also is interesting for fundamental experiments on entanglement. Another direct application of this experiment is to perform the first 'event-ready' testing of Bell's Inequality. Here the four-photon entanglement can be used as a source of entangled photons, whereby the photons have no common source. This would enable an even more stringent testing of Bells theorem. Finally this experiment can be used for the demonstration and investigation of many practical, directly applicable quantum information schemes. For instance quantum cryptography, error correction, and computing. (author)
Directory of Open Access Journals (Sweden)
Bakhshali Massoumi
2015-04-01
Full Text Available Conductive polymers based on water-soluble polythiophenes were prepared. In this respect, alkylation reaction was carried out to synthesize the monomer 3-dodecylthiophene using 3-bromothiophene, bromododecane and magnesium. The monomer 2,2′-bithiophene was also prepared from 2-bromothiophene. Then, poly(2,2′-bithiophene, poly(3,4-ethylenedioxythiophene and poly(3-dodecylthiophene homopolymers were prepared at room temperature by successive chemical oxidation in the presence of polystyrene sulfonic acid and ammonium persulfate and water, as dopant, oxidant and solvent, respectively, under vigorous stirring. Under similar conditions, 2,2′-bithiophene copolymers with 3-dodecylthiophene and 3,4-ethylenedioxythiophene, copolymers with 3-dodecylthiophene were prepared at different molar ratios. To purify and dry the prepared polymers, dialysis tubs and freezing dry processes were applied. Structure of homo and copolymers were investigated by Fourier transform infrared (FTIR. Conjugated and planar structures of polymers were studied by Ultravoilet (UV-vis spectroscopy. The electrical conductivity of synthesized polymers was measured by four probe technique. The morphology and thermal stability of the products were studied using scanning electron microscopy (SEM, transmission electron microscopy (TEM and thermogravimetric analysis (TGA. Finally, solubility of homo and copolymers were tested in some organic solvents and water. Electro- activity of the prepared polymers was studied by cyclic voltammetry (CV on the glassy carbon (GC in LiClO4/CH3CN electrolyte solution and their electro-activity was confirmed. Electro-conductivity and electro-activity of homo and co polymers were low due topresence of polystyrene sulfonic acid which reduced the immobility of the polymers.
Entanglement in Quantum Field Theory: particle mixing and oscillations
International Nuclear Information System (INIS)
Blasone, M; Dell'Anno, F; De Siena, S; Illuminati, F
2013-01-01
The phenomena of particle mixing and flavor oscillations in elementary particle physics are associated with multi-mode entanglement of single-particle states. We show that, in the framework of quantum field theory, these phenomena exhibit a fine structure of quantum correlations, as multi-mode multi-particle entanglement appears. Indeed, the presence of anti-particles adds further degrees of freedom, thus providing nontrivial contributions both to flavor entanglement and, more generally, to multi-partite entanglement. By using the global entanglement measure, based on the linear entropies associated with all the possible bipartitions, we analyze the entanglement in the multiparticle states of two-flavor neutrinos and anti-neutrinos. A direct comparison with the instance of the quantum mechanical Pontecorvo single-particle states is also performed.
Influence of entanglements on glass transition temperature of polystyrene
Ougizawa, Toshiaki; Kinugasa, Yoshinori
2013-03-01
Chain entanglement is essential behavior of polymeric molecules and it seems to affect many physical properties such as not only viscosity of melt state but also glass transition temperature (Tg). But we have not attained the quantitative estimation because the entanglement density is considered as an intrinsic value of the polymer at melt state depending on the chemical structure. Freeze-drying method is known as one of the few ways to make different entanglement density sample from dilute solution. In this study, the influence of entanglements on Tg of polystyrene obtained by the freeze-dried method was estimated quantitatively. The freeze-dried samples showed Tg depression with decreasing the concentration of precursor solution due to the lower entanglement density and their depressed Tg would be saturated when the almost no intermolecular entanglement was formed. The molecular weight dependence of the maximum value of Tg depression was discussed.
Interuniversal entanglement in a cyclic multiverse
Robles-Pérez, Salvador; Balcerzak, Adam; Dąbrowski, Mariusz P.; Krämer, Manuel
2017-04-01
We study scenarios of parallel cyclic multiverses which allow for a different evolution of the physical constants, while having the same geometry. These universes are classically disconnected, but quantum-mechanically entangled. Applying the thermodynamics of entanglement, we calculate the temperature and the entropy of entanglement. It emerges that the entropy of entanglement is large at big bang and big crunch singularities of the parallel universes as well as at the maxima of the expansion of these universes. The latter seems to confirm earlier studies that quantum effects are strong at turning points of the evolution of the universe performed in the context of the timeless nature of the Wheeler-DeWitt equation and decoherence. On the other hand, the entropy of entanglement at big rip singularities is going to zero despite its presumably quantum nature. This may be an effect of total dissociation of the universe structures into infinitely separated patches violating the null energy condition. However, the temperature of entanglement is large/infinite at every classically singular point and at maximum expansion and seems to be a better measure of quantumness.
Channel capacities versus entanglement measures in multiparty quantum states
International Nuclear Information System (INIS)
Sen, Aditi; Sen, Ujjwal
2010-01-01
For quantum states of two subsystems, highly entangled states have a higher capacity of transmitting classical as well as quantum information, and vice versa. We show that this is no more the case in general: Quantum capacities of multiaccess channels, motivated by communication in quantum networks, do not have any relation with genuine multiparty entanglement measures. Importantly, the statement is demonstrated for arbitrary multipartite entanglement measures. Along with revealing the structural richness of multiaccess channels, this gives us a tool to classify multiparty quantum states from the perspective of its usefulness in quantum networks, which cannot be visualized by any genuine multiparty entanglement measure.
Hexaaquamagnesium(II bis(d-camphor-10-sulfonate
Directory of Open Access Journals (Sweden)
Dejan Jeremić
2008-07-01
Full Text Available The structure of the title complex, [Mg(H2O6](C10H15O4S2, consists of regular octahedral [Mg(H2O6]2+ cations and d-camphor-10-sulfonate anions. A three-dimensional supramolecular architecture is formed via hydrogen-bond interactions [O—H...O = 2.723 (2–2.833 (2 Å] to give alternating layers of [Mg(H2O6]2+ cations and d-camphor-10-sulfonate anions. The title compound is isomorphous with the zinc, copper, cadmium and nickel analogues.
Entanglement negativity in the multiverse
Energy Technology Data Exchange (ETDEWEB)
Kanno, Sugumi [Department of Theoretical Physics and History of Science, University of the Basque Country UPV/EHU, 48080 Bilbao (Spain); Shock, Jonathan P. [Laboratory for Quantum Gravity and Strings and Astrophysics, Cosmology and Gravity Center, Department of Mathematics and Applied Mathematics, University of Cape Town, Private Bag, Rondebosch 7701 (South Africa); Soda, Jiro, E-mail: sugumi.kanno@ehu.es, E-mail: jonathan.shock@uct.ac.za, E-mail: jiro@phys.sci.kobe-u.ac.jp [Department of Physics, Kobe University, Kobe 657-8501 (Japan)
2015-03-01
We explore quantum entanglement between two causally disconnected regions in the multiverse. We first consider a free massive scalar field, and compute the entanglement negativity between two causally separated open charts in de Sitter space. The qualitative feature of it turns out to be in agreement with that of the entanglement entropy. We then introduce two observers who determine the entanglement between two causally disconnected de Sitter spaces. When one of the observers remains constrained to a region of the open chart in a de Sitter space, we find that the scale dependence enters into the entanglement. We show that a state which is initially maximally entangled becomes more entangled or less entangled on large scales depending on the mass of the scalar field and recovers the initial entanglement in the small scale limit. We argue that quantum entanglement may provide some evidence for the existence of the multiverse.
Entanglement negativity in the multiverse
International Nuclear Information System (INIS)
Kanno, Sugumi; Shock, Jonathan P.; Soda, Jiro
2015-01-01
We explore quantum entanglement between two causally disconnected regions in the multiverse. We first consider a free massive scalar field, and compute the entanglement negativity between two causally separated open charts in de Sitter space. The qualitative feature of it turns out to be in agreement with that of the entanglement entropy. We then introduce two observers who determine the entanglement between two causally disconnected de Sitter spaces. When one of the observers remains constrained to a region of the open chart in a de Sitter space, we find that the scale dependence enters into the entanglement. We show that a state which is initially maximally entangled becomes more entangled or less entangled on large scales depending on the mass of the scalar field and recovers the initial entanglement in the small scale limit. We argue that quantum entanglement may provide some evidence for the existence of the multiverse
Entanglement negativity in the multiverse
Energy Technology Data Exchange (ETDEWEB)
Kanno, Sugumi [Department of Theoretical Physics and History of Science, University of the Basque Country UPV/EHU, 48080 Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao (Spain); Laboratory for Quantum Gravity & Strings and Astrophysics, Cosmology & Gravity Center, Department of Mathematics & Applied Mathematics, University of Cape Town, Private Bag, Rondebosch 7701 (South Africa); Shock, Jonathan P. [Laboratory for Quantum Gravity & Strings and Astrophysics, Cosmology & Gravity Center, Department of Mathematics & Applied Mathematics, University of Cape Town, Private Bag, Rondebosch 7701 (South Africa); National Institute for Theoretical Physics, Private Bag X1, Matieland, 7602 (South Africa); Soda, Jiro [Department of Physics, Kobe University, Kobe 657-8501 (Japan)
2015-03-10
We explore quantum entanglement between two causally disconnected regions in the multiverse. We first consider a free massive scalar field, and compute the entanglement negativity between two causally separated open charts in de Sitter space. The qualitative feature of it turns out to be in agreement with that of the entanglement entropy. We then introduce two observers who determine the entanglement between two causally disconnected de Sitter spaces. When one of the observers remains constrained to a region of the open chart in a de Sitter space, we find that the scale dependence enters into the entanglement. We show that a state which is initially maximally entangled becomes more entangled or less entangled on large scales depending on the mass of the scalar field and recovers the initial entanglement in the small scale limit. We argue that quantum entanglement may provide some evidence for the existence of the multiverse.
Mutual preservation of entanglement
International Nuclear Information System (INIS)
Veitia, Andrzej; Jing, Jun; Yu, Ting; Wong, Chee Wei
2012-01-01
We study a generalized double Jaynes–Cummings (JC) model where two entangled pairs of two-level atoms interact indirectly. We show that there exist initial states of the qubit system so that two entangled pairs are available at all times. In particular, the minimum entanglement in the pairs as a function of the initial state is studied. Finally, we extend our findings to a model consisting of multi-mode atom–cavity interactions. We use a non-Markovian quantum state diffusion (QSD) equation to obtain the steady-state density matrix for the qubits. We show that the multi-mode model also displays dynamical preservation of entanglement. -- Highlights: ► Entanglement dynamics is studied in a generalized double Jaynes–Cummings model. ► We show that for certain initial states, the atoms remain entangled at all times. ► We extend the results to the case of multi-mode atom–cavity interactions. ► The model suggest that indirect interaction may help to preserve entanglement.
Fast atom bombardment mass spectrometry of condensed tannin sulfonate derivatives
J.J. Karchesy; L.Y. Foo; Richard W. Hemingway; E. Barofsky; D.F. Barofsky
1989-01-01
Condensed tannin sulfonate derivatives were studied by fast atom bombardment mass spectrometry (FAB-MS) to assess the feasibility of using this technique for determining molecular weight and structural information about these compounds. Both positive- and negative-ion spectra provided useful data with regard to molecular weight, cation species present, and presence of...
Energy Technology Data Exchange (ETDEWEB)
Seo, Dong-Wan; Lim, Young-Don; Lee, Soon-Ho; Jeong, Young-Gi; Kim, Whan-Gi [Department of Applied Chemistry/RIC-ReSEM, Konkuk University, Chungju-si, Chungbuk 380-701 (Korea, Republic of); Hong, Tae-Whan [Department of Materials Sci and Engineering/RIC-ReSEM, Chungju National University, Chungju, Chungbuk (Korea, Republic of)
2010-12-15
Sulfonated amine-poly(ether sulfone)s (S-APES)s were prepared by nitration, reduction and sulfonation of poly(ether sulfone) (ultrason {sup registered} -S6010). Poly(ether sulfone) was reacted with ammonium nitrate and trifluoroacetic anhydride to produce the nitrated poly(ether sulfone), and was followed by reduction using tin(II)chloride and sodium iodide as reducing agents to give the amino-poly(ether sulfone). The S-APES was obtained by reaction of 1,3-propanesultone and the amino-poly(ether sulfone) (NH{sub 2}-PES) with sodium methoxide. The different degrees of nitration and reduction of poly(ether sulfone) were successfully synthesized by an optimized process. The reduction of nitro group to amino was done quantitatively, and this controlled the contents of the sulfonic acid group. The films were converted from salt to acid forms with dilute hydrochloric acid. Different contents of sulfonated unit of the S-APES were studied by FT-IR, {sup 1}H NMR spectroscopy, differential scanning calorimetry (DSC), and thermo gravimetric analysis (TGA). Sorption experiments were conducted to observe the interaction of sulfonated polymers with water and methanol. The ion exchange capacity (IEC), a measure of proton conductivity, was evaluated. The S-APES membranes exhibit conductivities (25 C) from 1.05 x 10{sup -3} to 4.83 x 10{sup -3} S/cm, water swell from 30.25 to 66.50%, IEC from 0.38 to 0.82 meq/g, and methanol diffusion coefficients from 3.10 x 10{sup -7} to 4.82 x 10{sup -7} cm{sup 2}/S at 25 C. (author)
Entanglement, holography and causal diamonds
Energy Technology Data Exchange (ETDEWEB)
Boer, Jan de [Institute of Physics, Universiteit van Amsterdam,Science Park 904, 1090 GL Amsterdam (Netherlands); Haehl, Felix M. [Centre for Particle Theory & Department of Mathematical Sciences, Durham University,South Road, Durham DH1 3LE (United Kingdom); Heller, Michal P.; Myers, Robert C. [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada)
2016-08-29
We argue that the degrees of freedom in a d-dimensional CFT can be re-organized in an insightful way by studying observables on the moduli space of causal diamonds (or equivalently, the space of pairs of timelike separated points). This 2d-dimensional space naturally captures some of the fundamental nonlocality and causal structure inherent in the entanglement of CFT states. For any primary CFT operator, we construct an observable on this space, which is defined by smearing the associated one-point function over causal diamonds. Known examples of such quantities are the entanglement entropy of vacuum excitations and its higher spin generalizations. We show that in holographic CFTs, these observables are given by suitably defined integrals of dual bulk fields over the corresponding Ryu-Takayanagi minimal surfaces. Furthermore, we explain connections to the operator product expansion and the first law of entanglement entropy from this unifying point of view. We demonstrate that for small perturbations of the vacuum, our observables obey linear two-derivative equations of motion on the space of causal diamonds. In two dimensions, the latter is given by a product of two copies of a two-dimensional de Sitter space. For a class of universal states, we show that the entanglement entropy and its spin-three generalization obey nonlinear equations of motion with local interactions on this moduli space, which can be identified with Liouville and Toda equations, respectively. This suggests the possibility of extending the definition of our new observables beyond the linear level more generally and in such a way that they give rise to new dynamically interacting theories on the moduli space of causal diamonds. Various challenges one has to face in order to implement this idea are discussed.
Holographic Entanglement Entropy
Rangamani, Mukund
2016-01-01
We review the developments in the past decade on holographic entanglement entropy, a subject that has garnered much attention owing to its potential to teach us about the emergence of spacetime in holography. We provide an introduction to the concept of entanglement entropy in quantum field theories, review the holographic proposals for computing the same, providing some justification for where these proposals arise from in the first two parts. The final part addresses recent developments linking entanglement and geometry. We provide an overview of the various arguments and technical developments that teach us how to use field theory entanglement to detect geometry. Our discussion is by design eclectic; we have chosen to focus on developments that appear to us most promising for further insights into the holographic map. This is a preliminary draft of a few chapters of a book which will appear sometime in the near future, to be published by Springer. The book in addition contains a discussion of application o...
Entanglement in neutrino oscillations
Energy Technology Data Exchange (ETDEWEB)
Blasone, M.; Dell' Anno, F.; De Siena, S.; Illuminati, F. [Universita degli Studi di Salerno Via Ponte don Melillon, Dipt. di Matematica e Informatica, Fisciano SA (Italy); INFN Sezione di Napoli, Gruppo collegato di Salerno - Baronissi SA (Italy); Dell' Anno, F.; De Siena, S.; Illuminati, F. [CNR-INFM Coherentia - Napoli (Italy); Blasone, M. [ISI Foundation for Scientific Interchange, Torino (Italy)
2009-03-15
Flavor oscillations in elementary particle physics are related to multimode entanglement of single-particle states. We show that mode entanglement can be expressed in terms of flavor transition probabilities, and therefore that single-particle entangled states acquire a precise operational characterization in the context of particle mixing. We treat in detail the physically relevant cases of two- and three-flavor neutrino oscillations, including the effective measure of CP violation. We discuss experimental schemes for the transfer of the quantum information encoded in single-neutrino states to spatially delocalized two-flavor charged-lepton states, thus showing, at least in principle, that single-particle entangled states of neutrino mixing are legitimate physical resources for quantum information tasks. (authors)
Entanglement in neutrino oscillations
International Nuclear Information System (INIS)
Blasone, M.; Dell'Anno, F.; De Siena, S.; Illuminati, F.; Dell'Anno, F.; De Siena, S.; Illuminati, F.; Blasone, M.
2009-01-01
Flavor oscillations in elementary particle physics are related to multimode entanglement of single-particle states. We show that mode entanglement can be expressed in terms of flavor transition probabilities, and therefore that single-particle entangled states acquire a precise operational characterization in the context of particle mixing. We treat in detail the physically relevant cases of two- and three-flavor neutrino oscillations, including the effective measure of CP violation. We discuss experimental schemes for the transfer of the quantum information encoded in single-neutrino states to spatially delocalized two-flavor charged-lepton states, thus showing, at least in principle, that single-particle entangled states of neutrino mixing are legitimate physical resources for quantum information tasks. (authors)
Witnessing entanglement by proxy
International Nuclear Information System (INIS)
Bäuml, Stefan; Bruß, Dagmar; Kampermann, Hermann; Huber, Marcus; Winter, Andreas
2016-01-01
Entanglement is a ubiquitous feature of low temperature systems and believed to be highly relevant for the dynamics of condensed matter properties and quantum computation even at higher temperatures. The experimental certification of this paradigmatic quantum effect in macroscopic high temperature systems is constrained by the limited access to the quantum state of the system. In this paper we show how macroscopic observables beyond the mean energy of the system can be exploited as proxy witnesses for entanglement detection. Using linear and semi-definite relaxations we show that all previous approaches to this problem can be outperformed by our proxies, i.e. entanglement can be certified at higher temperatures without access to any local observable. For an efficient computation of proxy witnesses one can resort to a generalised grand canonical ensemble, enabling entanglement certification even in complex systems with macroscopic particle numbers. (paper)
DEFF Research Database (Denmark)
Ateniese, Giuseppe; Dagdelen, Özgür; Damgård, Ivan Bjerre
2012-01-01
keeps the files in it private but still lets each client P_i recover his own data by interacting with S; no cooperation from other clients is needed. At the same time, the cloud provider is discouraged from altering or overwriting any significant part of c as this will imply that none of the clients can......Entangled cloud storage enables a set of clients {P_i} to “entangle” their files {f_i} into a single clew c to be stored by a (potentially malicious) cloud provider S. The entanglement makes it impossible to modify or delete significant part of the clew without affecting all files in c. A clew...... recover their files. We provide theoretical foundations for entangled cloud storage, introducing the notion of an entangled encoding scheme that guarantees strong security requirements capturing the properties above. We also give a concrete construction based on privacy-preserving polynomial interpolation...
Transplanckian entanglement entropy
International Nuclear Information System (INIS)
Chang, Darwin; Chu, C.-S.; Lin Fengli
2004-01-01
The entanglement entropy of the event horizon is known to be plagued by the UV divergence due to the infinitely blue-shifted near horizon modes. In this Letter we calculate the entanglement entropy using the transplanckian dispersion relation, which has been proposed to model the quantum gravity effects. We show that, very generally, the entropy is rendered UV finite due to the suppression of high energy modes effected by the transplanckian dispersion relation
Multipartite entanglement and firewalls
Luo, Shengqiao; Stoltenberg, Henry; Albrecht, Andreas
2017-03-01
Black holes offer an exciting area to explore the nature of quantum gravity. The classic work on Hawking radiation indicates that black holes should decay via quantum effects, but our ideas about how this might work at a technical level are incomplete. Recently Almheiri-Marolf-Polchinski-Sully (AMPS) have noted an apparent paradox in reconciling fundamental properties of quantum mechanics with standard beliefs about black holes. One way to resolve the paradox is to postulate the existence of a "firewall" inside the black hole horizon which prevents objects from falling smoothly toward the singularity. A fundamental limitation on the behavior of quantum entanglement known as "monogamy" plays a key role in the AMPS argument. Our goal is to study and apply many-body entanglement theory to consider the entanglement among different parts of Hawking radiation and black holes. Using the multipartite entanglement measure called negativity, we identify an example which could change the AMPS accounting of quantum entanglement and perhaps eliminate the need for a firewall. Specifically, we constructed a toy model for black hole decay which has different entanglement behavior than that assumed by AMPS. We discuss the additional steps that would be needed to bring lessons from our toy model to our understanding of realistic black holes.
Quantum Entanglement in Neural Network States
Directory of Open Access Journals (Sweden)
Dong-Ling Deng
2017-05-01
Full Text Available Machine learning, one of today’s most rapidly growing interdisciplinary fields, promises an unprecedented perspective for solving intricate quantum many-body problems. Understanding the physical aspects of the representative artificial neural-network states has recently become highly desirable in the applications of machine-learning techniques to quantum many-body physics. In this paper, we explore the data structures that encode the physical features in the network states by studying the quantum entanglement properties, with a focus on the restricted-Boltzmann-machine (RBM architecture. We prove that the entanglement entropy of all short-range RBM states satisfies an area law for arbitrary dimensions and bipartition geometry. For long-range RBM states, we show by using an exact construction that such states could exhibit volume-law entanglement, implying a notable capability of RBM in representing quantum states with massive entanglement. Strikingly, the neural-network representation for these states is remarkably efficient, in the sense that the number of nonzero parameters scales only linearly with the system size. We further examine the entanglement properties of generic RBM states by randomly sampling the weight parameters of the RBM. We find that their averaged entanglement entropy obeys volume-law scaling, and the meantime strongly deviates from the Page entropy of the completely random pure states. We show that their entanglement spectrum has no universal part associated with random matrix theory and bears a Poisson-type level statistics. Using reinforcement learning, we demonstrate that RBM is capable of finding the ground state (with power-law entanglement of a model Hamiltonian with a long-range interaction. In addition, we show, through a concrete example of the one-dimensional symmetry-protected topological cluster states, that the RBM representation may also be used as a tool to analytically compute the entanglement spectrum. Our
Entanglement entropy and the colored Jones polynomial
Balasubramanian, Vijay; DeCross, Matthew; Fliss, Jackson; Kar, Arjun; Leigh, Robert G.; Parrikar, Onkar
2018-05-01
We study the multi-party entanglement structure of states in Chern-Simons theory created by performing the path integral on 3-manifolds with linked torus boundaries, called link complements. For gauge group SU(2), the wavefunctions of these states (in a particular basis) are the colored Jones polynomials of the corresponding links. We first review the case of U(1) Chern-Simons theory where these are stabilizer states, a fact we use to re-derive an explicit formula for the entanglement entropy across a general link bipartition. We then present the following results for SU(2) Chern-Simons theory: (i) The entanglement entropy for a bipartition of a link gives a lower bound on the genus of surfaces in the ambient S 3 separating the two sublinks. (ii) All torus links (namely, links which can be drawn on the surface of a torus) have a GHZ-like entanglement structure — i.e., partial traces leave a separable state. By contrast, through explicit computation, we test in many examples that hyperbolic links (namely, links whose complements admit hyperbolic structures) have W-like entanglement — i.e., partial traces leave a non-separable state. (iii) Finally, we consider hyperbolic links in the complexified SL(2,C) Chern-Simons theory, which is closely related to 3d Einstein gravity with a negative cosmological constant. In the limit of small Newton constant, we discuss how the entanglement structure is controlled by the Neumann-Zagier potential on the moduli space of hyperbolic structures on the link complement.
Circuit QED: generation of two-transmon-qutrit entangled states via resonant interaction
Ye, Xi-Mei; Zheng, Zhen-Fei; Lu, Dao-Ming; Yang, Chui-Ping
2018-04-01
We present a way to create entangled states of two superconducting transmon qutrits based on circuit QED. Here, a qutrit refers to a three-level quantum system. Since only resonant interaction is employed, the entanglement creation can be completed within a short time. The degree of entanglement for the prepared entangled state can be controlled by varying the weight factors of the initial state of one qutrit, which allows the prepared entangled state to change from a partially entangled state to a maximally entangled state. Because a single cavity is used, only resonant interaction is employed, and none of identical qutrit-cavity coupling constant, measurement, and auxiliary qutrit is needed, this proposal is easy to implement in experiments. The proposal is quite general and can be applied to prepare a two-qutrit partially or maximally entangled state with two natural or artificial atoms of a ladder-type level structure, coupled to an optical or microwave cavity.
Biofilm behavior on sulfonated poly(ether-ether-ketone) (sPEEK)
International Nuclear Information System (INIS)
Montero, Juan F.D.; Tajiri, Henrique A.; Barra, Guilherme M.O.; Fredel, Márcio C.; Benfatti, Cesar A.M.; Magini, Ricardo S.; Pimenta, Andréa L.; Souza, Júlio C.M.
2017-01-01
Poly(ether-ether-ketone) (PEEK) has also shown to be very attractive for incorporating therapeutic compounds thanks to a sulfonation process which modifies the material structure resulting in a sulfonated-PEEK (sPEEK). Concerning biomedical applications, the objective of this work was to evaluate the influence of different sulfonation degree of sPEEK on the biofilm growth. PEEK samples were functionalized by using sulphuric acid (98%) and then dissolved into dimethyl-sulfoxide. A dip coating technique was used to synthesize sPEEK thin films. The sulfonation degree of the materials was analyzed by FT-IR, H NMR, TG and IEC. The surfaces were characterized by scanning electron microscopy, profilometry and contact angle analyses. Subsequently, the biofilm formation on sulfonated-PEEK based on Streptococcus mutans and Enterococcus faecalis was measured by spectrophotometry, colony forming units (CFU mL −1 ) and SEM. Results obtained from thermal and chemical analyses showed an intensification in sulfonation degree for sPEEK at 2 and 2.5 h. The E. faecalis or S. mutans biofilm growth revealed statistically significant differences (p < 0.05) between 2 and 3 h sulfonation groups. A significant decrease (p < 0.05) in CFU mL −1 was recorded for S. mutans or E. faecalis biofilm grown on 2.5 or 3 h sPEEK. Regarding the thermal-chemical and microbiologic analyses, the sulfonation degree of sPEEK ranging from 2 up to 3 h was successful capable to decrease the biofilm growth. That revealed an alternative strategy to embed anti-biofilm and therapeutic compounds into PEEK avoiding infections in biomedical applications. - Highlights: • PEEK can be dissolved to incorporate therapeutic compounds. • High sulfonation degree on sPEEK affected the biofilm growth. • The sulfonation degree must be controlled to maintain the properties of sPEEK.
Biofilm behavior on sulfonated poly(ether-ether-ketone) (sPEEK)
Energy Technology Data Exchange (ETDEWEB)
Montero, Juan F.D. [Center for Research on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina - UFSC, Florianópolis, SC 88040-900 (Brazil); Tajiri, Henrique A.; Barra, Guilherme M.O.; Fredel, Márcio C. [Department of Mechanical Engineering (EMC), Federal University of Santa Catarina (UFSC), Florianópolis, SC 88040-900 (Brazil); Benfatti, Cesar A.M.; Magini, Ricardo S. [Center for Research on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina - UFSC, Florianópolis, SC 88040-900 (Brazil); Pimenta, Andréa L. [Integrated Laboratories Technologies (InteLAB), Dept. Chemical Engineering (EQA), Federal University of Santa Catarina - UFSC, Florianópolis, SC 88040-970 (Brazil); Department of Biologie, Université de Cergy Pontoise, 2, Av. Adolphe Chauvin, 95302 Cergy Pontoise (France); Souza, Júlio C.M., E-mail: julio.c.m.souza@ufsc.br [Center for Research on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina - UFSC, Florianópolis, SC 88040-900 (Brazil); Center for Microelectromechanical Systems (CMEMS), Dept. Mechanical Engineering (DEM), Campus Azurém, 4800-058 Guimarães (Portugal)
2017-01-01
Poly(ether-ether-ketone) (PEEK) has also shown to be very attractive for incorporating therapeutic compounds thanks to a sulfonation process which modifies the material structure resulting in a sulfonated-PEEK (sPEEK). Concerning biomedical applications, the objective of this work was to evaluate the influence of different sulfonation degree of sPEEK on the biofilm growth. PEEK samples were functionalized by using sulphuric acid (98%) and then dissolved into dimethyl-sulfoxide. A dip coating technique was used to synthesize sPEEK thin films. The sulfonation degree of the materials was analyzed by FT-IR, H NMR, TG and IEC. The surfaces were characterized by scanning electron microscopy, profilometry and contact angle analyses. Subsequently, the biofilm formation on sulfonated-PEEK based on Streptococcus mutans and Enterococcus faecalis was measured by spectrophotometry, colony forming units (CFU mL{sup −1}) and SEM. Results obtained from thermal and chemical analyses showed an intensification in sulfonation degree for sPEEK at 2 and 2.5 h. The E. faecalis or S. mutans biofilm growth revealed statistically significant differences (p < 0.05) between 2 and 3 h sulfonation groups. A significant decrease (p < 0.05) in CFU mL{sup −1} was recorded for S. mutans or E. faecalis biofilm grown on 2.5 or 3 h sPEEK. Regarding the thermal-chemical and microbiologic analyses, the sulfonation degree of sPEEK ranging from 2 up to 3 h was successful capable to decrease the biofilm growth. That revealed an alternative strategy to embed anti-biofilm and therapeutic compounds into PEEK avoiding infections in biomedical applications. - Highlights: • PEEK can be dissolved to incorporate therapeutic compounds. • High sulfonation degree on sPEEK affected the biofilm growth. • The sulfonation degree must be controlled to maintain the properties of sPEEK.
Copolymers of fluorinated polydienes and sulfonated polystyrene
Mays, Jimmy W [Knoxville, TN; Gido, Samuel P [Hadley, MA; Huang, Tianzi [Knoxville, TN; Hong, Kunlun [Knoxville, TN
2009-11-17
Copolymers of fluorinated polydienes and sulfonated polystyrene and their use in fuel cell membranes, batteries, breathable chemical-biological protective materials, and templates for sol-gel polymerization.
Properties of polypyrrole doped with alkylbenzene sulfonates
DEFF Research Database (Denmark)
Bay, Lasse; Skaarup, Steen; West, Keld
2001-01-01
-standing 10 mu m thick film is prepared electrochemically at a constant current from an aqueous solution of pyrrole and sodium alkylbenzene sulfonate. The mechanical properties of the film (tensile strength and Young's modulus) and the reversible linear elongation between the oxidised and reduced states...... are measured. Alkylbenzene sulfonates with alkyl chain lengths between 1 and 22 carbon atoms are used as dopant anion. The films made with the different anions have highly different properties and are here compared to outline the influence of the size of the anion. A maximum in linear elongation is found for p......-(n-octyl)benzene sulfonate and in conductivity for p-(n-butyl)benzene sulfonate....
Entanglement diversion and quantum teleportation of entangled coherent states
Institute of Scientific and Technical Information of China (English)
Cai Xin-Hua; Guo Jie-Rong; Nie Jian-Jun; Jia Jin-Ping
2006-01-01
The proposals on entanglement diversion and quantum teleportation of entangled coherent states are presented.In these proposals,the entanglement between two coherent states,|α〉and |-α〉,with the same amplitude but a phase difference of π is utilized as a quantum channel.The processes of the entanglement diversion and the teleportation are achieved by using the 5050 symmetric beam splitters,the phase shifters and the photodetectors with the help of classical information.
Device-independent entanglement certification of all entangled states
Bowles, Joseph; Šupić, Ivan; Cavalcanti, Daniel; Acín, Antonio
2018-01-01
We present a method to certify the entanglement of all bipartite entangled quantum states in a device-independent way. This is achieved by placing the state in a quantum network and constructing a correlation inequality based on an entanglement witness for the state. Our method is device-independent, in the sense that entanglement can be certified from the observed statistics alone, under minimal assumptions on the underlying physics. Conceptually, our results borrow ideas from the field of s...
Manipulating continuous variable photonic entanglement
International Nuclear Information System (INIS)
Plenio, M.B.
2005-01-01
I will review our work on photonic entanglement in the continuous variable regime including both Gaussian and non-Gaussian states. The feasibility and efficiency of various entanglement purification protocols are discussed this context. (author)
Optimization of entanglement witnesses
Lewenstein, M.; Kraus, B.; Cirac, J. I.; Horodecki, P.
2000-11-01
An entanglement witness (EW) is an operator that allows the detection of entangled states. We give necessary and sufficient conditions for such operators to be optimal, i.e., to detect entangled states in an optimal way. We show how to optimize general EW, and then we particularize our results to the nondecomposable ones; the latter are those that can detect positive partial transpose entangled states (PPTES's). We also present a method to systematically construct and optimize this last class of operators based on the existence of ``edge'' PPTES's, i.e., states that violate the range separability criterion [Phys. Lett. A 232, 333 (1997)] in an extreme manner. This method also permits a systematic construction of nondecomposable positive maps (PM's). Our results lead to a sufficient condition for entanglement in terms of nondecomposable EW's and PM's. Finally, we illustrate our results by constructing optimal EW acting on H=C2⊗C4. The corresponding PM's constitute examples of PM's with minimal ``qubit'' domains, or-equivalently-minimal Hermitian conjugate codomains.
Amperometric urea biosensors based on sulfonated graphene/polyaniline nanocomposite
Directory of Open Access Journals (Sweden)
Das G
2015-08-01
Full Text Available Gautam Das, Hyon Hee Yoon Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-do, South Korea Abstract: An electrochemical biosensor based on sulfonated graphene/polyaniline nanocomposite was developed for urea analysis. Oxidative polymerization of aniline in the presence of sulfonated graphene oxide was carried out by electrochemical methods in an aqueous environment. The structural properties of the nanocomposite were characterized by Fourier-transform infrared, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy techniques. The urease enzyme-immobilized sulfonated graphene/polyaniline nanocomposite film showed impressive performance in the electroanalytical detection of urea with a detection limit of 0.050 mM and a sensitivity of 0.85 µA·cm-2·mM-1. The biosensor achieved a broad linear range of detection (0.12–12.3 mM with a notable response time of approximately 5 seconds. Moreover, the fabricated biosensor retained 81% of its initial activity (based on sensitivity after 15 days of storage at 4°C. The ease of fabrication coupled with the low cost and good electrochemical performance of this system holds potential for the development of solid-state biosensors for urea detection. Keywords: electrochemical deposition, sulfonated graphene oxide, urease
Holographic entanglement in a noncommutative gauge theory
International Nuclear Information System (INIS)
Fischler, Willy; Kundu, Arnab; Kundu, Sandipan
2014-01-01
In this article we investigate aspects of entanglement entropy and mutual information in a large-N strongly coupled noncommutative gauge theory, both at zero and at finite temperature. Using the gauge-gravity duality and the Ryu-Takayanagi (RT) prescription, we adopt a scheme for defining spatial regions on such noncommutative geometries and subsequently compute the corresponding entanglement entropy. We observe that for regions which do not lie entirely in the noncommutative plane, the RT-prescription yields sensible results. In order to make sense of the divergence structure of the corresponding entanglement entropy, it is essential to introduce an additional cut-off in the theory. For regions which lie entirely in the noncommutative plane, the corresponding minimal area surfaces can only be defined at this cut-off and they have distinctly peculiar properties
Multipartite entanglement in neutrino oscillations
International Nuclear Information System (INIS)
Blasone, Massimo; Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio
2009-01-01
Particle mixing is related to multi-mode entanglement of single-particle states The occupation number of both flavor eigenstates and mass eigenstates can be used to define a multiqubit space. In such a framework, flavor neutrino states can be interpreted as multipartite mode-entangled states. By using two different entanglement measures, we analyze the behavior of multipartite entanglement in the phenomenon of neutrino oscillations.
Multipartite entanglement in neutrino oscillations
Energy Technology Data Exchange (ETDEWEB)
Blasone, Massimo; Dell' Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio, E-mail: blasone@sa.infn.i [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)
2009-06-01
Particle mixing is related to multi-mode entanglement of single-particle states The occupation number of both flavor eigenstates and mass eigenstates can be used to define a multiqubit space. In such a framework, flavor neutrino states can be interpreted as multipartite mode-entangled states. By using two different entanglement measures, we analyze the behavior of multipartite entanglement in the phenomenon of neutrino oscillations.
Quantum entanglement in electron optics generation, characterization, and applications
Chandra, Naresh
2013-01-01
This monograph forms an interdisciplinary study in atomic, molecular, and quantum information (QI) science. Here a reader will find that applications of the tools developed in QI provide new physical insights into electron optics as well as properties of atoms & molecules which, in turn, are useful in studying QI both at fundamental and applied levels. In particular, this book investigates entanglement properties of flying electronic qubits generated in some of the well known processes capable of taking place in an atom or a molecule following the absorption of a photon. Here, one can generate Coulombic or fine-structure entanglement of electronic qubits. The properties of these entanglements differ not only from each other, but also from those when spin of an inner-shell photoelectron is entangled with the polarization of the subsequent fluorescence. Spins of an outer-shell electron and of a residual photoion can have free or bound entanglement in a laboratory.
Entanglement entropy in a holographic p-wave superconductor model
Directory of Open Access Journals (Sweden)
Li-Fang Li
2015-05-01
Full Text Available In a recent paper, arXiv:1309.4877, a holographic p-wave model has been proposed in an Einstein–Maxwell-complex vector field theory with a negative cosmological constant. The model exhibits rich phase structure depending on the mass and the charge of the vector field. We investigate the behavior of the entanglement entropy of dual field theory in this model. When the above two model parameters change, we observe the second order, first order and zeroth order phase transitions from the behavior of the entanglement entropy at some intermediate temperatures. These imply that the entanglement entropy can indicate not only the occurrence of the phase transition, but also the order of the phase transition. The entanglement entropy is indeed a good probe to phase transition. Furthermore, the “retrograde condensation” which is a sub-dominated phase is also reflected on the entanglement entropy.
Entanglement entropy in a holographic p-wave superconductor model
Energy Technology Data Exchange (ETDEWEB)
Li, Li-Fang, E-mail: lilf@itp.ac.cn [State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China); Cai, Rong-Gen, E-mail: cairg@itp.ac.cn [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Li, Li, E-mail: liliphy@itp.ac.cn [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Shen, Chao, E-mail: sc@nssc.ac.cn [State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China)
2015-05-15
In a recent paper, (arXiv:1309.4877), a holographic p-wave model has been proposed in an Einstein–Maxwell-complex vector field theory with a negative cosmological constant. The model exhibits rich phase structure depending on the mass and the charge of the vector field. We investigate the behavior of the entanglement entropy of dual field theory in this model. When the above two model parameters change, we observe the second order, first order and zeroth order phase transitions from the behavior of the entanglement entropy at some intermediate temperatures. These imply that the entanglement entropy can indicate not only the occurrence of the phase transition, but also the order of the phase transition. The entanglement entropy is indeed a good probe to phase transition. Furthermore, the “retrograde condensation” which is a sub-dominated phase is also reflected on the entanglement entropy.
Derivatives of phenyl tribromomethyl sulfone as novel compounds with potential pesticidal activity
Directory of Open Access Journals (Sweden)
Krzysztof M. Borys
2012-02-01
Full Text Available A halogenmethylsulfonyl moiety is incorporated in numerous active herbicides and fungicides. The synthesis of tribromomethyl phenyl sulfone derivatives as novel potential pesticides is reported. The title sulfone was obtained by following three different synthetic routes, starting from 4-chlorothiophenol or 4-halogenphenyl methyl sulfone. Products of its subsequent nitration were subjected to the SNAr reactions with ammonia, amines, hydrazines and phenolates to give 2-nitroaniline, 2-nitrophenylhydrazine and diphenyl ether derivatives. Reduction of the nitro group of 4-tribromomethylsulfonyl-2-nitroaniline yielded the corresponding o-phenylenediamine substrate for preparation of structurally varied benzimidazoles.
Universal entanglement transformations without communication
International Nuclear Information System (INIS)
Dam, Wim van; Hayden, Patrick
2003-01-01
We show that in the presence of finite catalysts, any pure bipartite entangled state can be converted into any other, to unlimited accuracy, without the use of any communication, quantum or classical. We call this process embezzling entanglement because it involves removing a small amount of entanglement from the catalyst in a physically unnoticeable way
Quantum Statistics and Entanglement Problems
Trainor, L. E. H.; Lumsden, Charles J.
2002-01-01
Interpretations of quantum measurement theory have been plagued by two questions, one concerning the role of observer consciousness and the other the entanglement phenomenon arising from the superposition of quantum states. We emphasize here the remarkable role of quantum statistics in describing the entanglement problem correctly and discuss the relationship to issues arising from current discussions of intelligent observers in entangled, decohering quantum worlds.
Entanglement between noncomplementary parts of many-body systems
International Nuclear Information System (INIS)
Wichterich, Hannu Christian
2011-01-01
This thesis investigates the structure and behaviour of entanglement, the purely quantum mechanical part of correlations, in many-body systems, employing both numerical and analytical techniques at the interface of condensed matter theory and quantum information theory. Entanglement can be seen as a precious resource which, for example, enables the noiseless and instant transmission of quantum information, provided the communicating parties share a sufficient ''amount'' of it. Furthermore, measures of entanglement of a quantum mechanical state are perceived as useful probes of collective properties of many-body systems. For instance, certain measures are capable of detecting and classifying ground-state phases and, particularly, transition (or critical) points separating such phases. Chapters 2 and 3 focus on entanglement in many-body systems and its use as a potential resource for communication protocols. They address the questions of how a substantial amount of entanglement can be established between distant subsystems, and how efficiently this entanglement could be ''harvested'' by way of measurements. The subsequent chapters 4 and 5 are devoted to universality of entanglement between large collections of particles undergoing a quantum phase transition, where, despite the enormous complexity of these systems, collective properties including entanglement no longer depend crucially on the microscopic details. (orig.)
Deriving covariant holographic entanglement
Energy Technology Data Exchange (ETDEWEB)
Dong, Xi [School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540 (United States); Lewkowycz, Aitor [Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); Rangamani, Mukund [Center for Quantum Mathematics and Physics (QMAP), Department of Physics, University of California, Davis, CA 95616 (United States)
2016-11-07
We provide a gravitational argument in favour of the covariant holographic entanglement entropy proposal. In general time-dependent states, the proposal asserts that the entanglement entropy of a region in the boundary field theory is given by a quarter of the area of a bulk extremal surface in Planck units. The main element of our discussion is an implementation of an appropriate Schwinger-Keldysh contour to obtain the reduced density matrix (and its powers) of a given region, as is relevant for the replica construction. We map this contour into the bulk gravitational theory, and argue that the saddle point solutions of these replica geometries lead to a consistent prescription for computing the field theory Rényi entropies. In the limiting case where the replica index is taken to unity, a local analysis suffices to show that these saddles lead to the extremal surfaces of interest. We also comment on various properties of holographic entanglement that follow from this construction.
Images in quantum entanglement
Energy Technology Data Exchange (ETDEWEB)
Bowden, G J [School of Physics and Astronomy, University of Southampton, SO17 1BJ (United Kingdom)
2009-08-28
A system for classifying and quantifying entanglement in spin 1/2 pure states is presented based on simple images. From the image point of view, an entangled state can be described as a linear superposition of separable object wavefunction {psi}{sub O} plus a portion of its own inverse image. Bell states can be defined in this way: {psi}= 1/{radical}2 ({psi}{sub O}{+-}{psi}{sub I} ). Using the method of images, the three-spin 1/2 system is discussed in some detail. This system can exhibit exclusive three-particle {nu}{sub 123} entanglement, two-particle entanglements {nu}{sub 12}, {nu}{sub 13}, {nu}{sub 23} and/or mixtures of all four. All four image states are orthogonal both to each other and to the object wavefunction. In general, five entanglement parameters {nu}{sub 12}, {nu}{sub 13}, {nu}{sub 23}, {nu}{sub 123} and {phi}{sub 123} are required to define the general entangled state. In addition, it is shown that there is considerable scope for encoding numbers, at least from the classical point of view but using quantum-mechanical principles. Methods are developed for their extraction. It is shown that concurrence can be used to extract even-partite, but not odd-partite information. Additional relationships are also presented which can be helpful in the decoding process. However, in general, numerical methods are mandatory. A simple roulette method for decoding is presented and discussed. But it is shown that if the encoder chooses to use transcendental numbers for the angles defining the target function ({alpha}{sub 1}, {beta}{sub 1}), etc, the method rapidly turns into the Devil's roulette, requiring finer and finer angular steps.
Images in quantum entanglement
International Nuclear Information System (INIS)
Bowden, G J
2009-01-01
A system for classifying and quantifying entanglement in spin 1/2 pure states is presented based on simple images. From the image point of view, an entangled state can be described as a linear superposition of separable object wavefunction Ψ O plus a portion of its own inverse image. Bell states can be defined in this way: Ψ= 1/√2 (Ψ O ±Ψ I ). Using the method of images, the three-spin 1/2 system is discussed in some detail. This system can exhibit exclusive three-particle ν 123 entanglement, two-particle entanglements ν 12 , ν 13 , ν 23 and/or mixtures of all four. All four image states are orthogonal both to each other and to the object wavefunction. In general, five entanglement parameters ν 12 , ν 13 , ν 23 , ν 123 and φ 123 are required to define the general entangled state. In addition, it is shown that there is considerable scope for encoding numbers, at least from the classical point of view but using quantum-mechanical principles. Methods are developed for their extraction. It is shown that concurrence can be used to extract even-partite, but not odd-partite information. Additional relationships are also presented which can be helpful in the decoding process. However, in general, numerical methods are mandatory. A simple roulette method for decoding is presented and discussed. But it is shown that if the encoder chooses to use transcendental numbers for the angles defining the target function (α 1 , β 1 ), etc, the method rapidly turns into the Devil's roulette, requiring finer and finer angular steps.
Treating shale oil to obtain sulfonates
Energy Technology Data Exchange (ETDEWEB)
Schaeffer, H
1921-01-21
The process shows as its principal characteristics: (1) treating the oil with chlorsulfonic acid at a temperature of about 100/sup 0/C; (2) the transformation of the sulfonic acid obtained into salts; (3) as new industrial products, the sulfonates obtained and their industrial application as disinfectants for hides and wood.
Kenzom, T; Srivastava, P; Mishra, S
2014-12-01
Advanced oxidation processes are currently used for the treatment of different reactive dyes which involve use of toxic catalysts. Peroxidases are reported to be effective on such dyes and require hydrogen peroxide and/or metal ions. Cyathus bulleri laccase, expressed in Pichia pastoris, catalyzes efficient degradation (78 to 85%) of reactive azo dyes (reactive black 5, reactive orange 16, and reactive red 198) in the presence of synthetic mediator ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)]. This laccase was engineered to degrade effectively reactive blue 21 (RB21), a phthalocyanine dye reported to be decolorized only by peroxidases. The 816-bp segment (toward the C terminus) of the lcc gene was subjected to random mutagenesis and enzyme variants (Lcc35, Lcc61, and Lcc62) were selected based on increased ABTS oxidizing ability. Around 78 to 95% decolorization of RB21 was observed with the ABTS-supplemented Lcc variants in 30 min. Analysis of the degradation products by mass spectrometry indicated the formation of several low-molecular-weight compounds. Mapping the mutations on the modeled structure implicated residues both near and far from the T1 Cu site that affected the catalytic efficiency of the mutant enzymes on ABTS and, in turn, the rate of oxidation of RB21. Several inactive clones were also mapped. The importance of geometry as well as electronic changes on the reactivity of laccases was indicated. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Kenzom, T.; Srivastava, P.
2014-01-01
Advanced oxidation processes are currently used for the treatment of different reactive dyes which involve use of toxic catalysts. Peroxidases are reported to be effective on such dyes and require hydrogen peroxide and/or metal ions. Cyathus bulleri laccase, expressed in Pichia pastoris, catalyzes efficient degradation (78 to 85%) of reactive azo dyes (reactive black 5, reactive orange 16, and reactive red 198) in the presence of synthetic mediator ABTS [2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)]. This laccase was engineered to degrade effectively reactive blue 21 (RB21), a phthalocyanine dye reported to be decolorized only by peroxidases. The 816-bp segment (toward the C terminus) of the lcc gene was subjected to random mutagenesis and enzyme variants (Lcc35, Lcc61, and Lcc62) were selected based on increased ABTS oxidizing ability. Around 78 to 95% decolorization of RB21 was observed with the ABTS-supplemented Lcc variants in 30 min. Analysis of the degradation products by mass spectrometry indicated the formation of several low-molecular-weight compounds. Mapping the mutations on the modeled structure implicated residues both near and far from the T1 Cu site that affected the catalytic efficiency of the mutant enzymes on ABTS and, in turn, the rate of oxidation of RB21. Several inactive clones were also mapped. The importance of geometry as well as electronic changes on the reactivity of laccases was indicated. PMID:25261507
Multipartite entanglement and frustration
International Nuclear Information System (INIS)
Facchi, P; Florio, G; Pascazio, S; Marzolino, U; Parisi, G
2010-01-01
Some features of the global entanglement of a composed quantum system can be quantified in terms of the purity of a balanced bipartition, made up of half of its subsystems. For the given bipartition, purity can always be minimized by taking a suitable (pure) state. When many bipartitions are considered, the requirement that purity be minimal for all bipartitions can engender conflicts and frustration will arise. This unearths an interesting link between frustration and multipartite entanglement, defined as the average purity over all (balanced) bipartitions.
Multipartite entanglement and frustration
Facchi, P.; Florio, G.; Marzolino, U.; Parisi, G.; Pascazio, S.
2010-02-01
Some features of the global entanglement of a composed quantum system can be quantified in terms of the purity of a balanced bipartition, made up of half of its subsystems. For the given bipartition, purity can always be minimized by taking a suitable (pure) state. When many bipartitions are considered, the requirement that purity be minimal for all bipartitions can engender conflicts and frustration will arise. This unearths an interesting link between frustration and multipartite entanglement, defined as the average purity over all (balanced) bipartitions.
Multipartite entanglement and frustration
Energy Technology Data Exchange (ETDEWEB)
Facchi, P [Dipartimento di Matematica, Universita di Bari, I-70125 Bari (Italy); Florio, G; Pascazio, S [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Marzolino, U [Dipartimento di Fisica, Universita di Trieste, and Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34014 Trieste (Italy); Parisi, G [Dipartimento di Fisica, Universita di Roma ' La Sapienza' , Piazzale Aldo Moro 2, Centre for Statistical Mechanics and Complexity (SMC), CNR-INFM, and Istituto Nazionale di Fisica Nucleare, Sezione di Roma, 00185 Roma (Italy)], E-mail: paolo.facchi@ba.infn.it
2010-02-15
Some features of the global entanglement of a composed quantum system can be quantified in terms of the purity of a balanced bipartition, made up of half of its subsystems. For the given bipartition, purity can always be minimized by taking a suitable (pure) state. When many bipartitions are considered, the requirement that purity be minimal for all bipartitions can engender conflicts and frustration will arise. This unearths an interesting link between frustration and multipartite entanglement, defined as the average purity over all (balanced) bipartitions.
Entanglement in miscible blends
Watanabe, Hiroshi
2010-03-01
The entanglement length Le of polymer chains (corresponding to the entanglement molecular weight Me) is not an intrinsic material parameter but changes with the interaction with surrounding chains. For miscible blends of cis-polyisoprene (PI) and poly(tert-butyl styrene) (PtBS), changes of Le on blending was examined. It turned out that the Le averaged over the number fractions of the Kuhn segments of the components (PI and PtBS) satisfactorily describes the viscoelastic behavior of pseudo-monodisperse blends in which the terminal relaxation time is the same for PI and PtBS.
International Nuclear Information System (INIS)
John C Baez; Vicary, Jamie
2014-01-01
Maldacena and Susskind have proposed a correspondence between wormholes and entanglement, dubbed ER=EPR. We study this in the context of three-dimensional topological quantum field theory (TQFT), where we show that the formation of a wormhole is the same process as creating a particle–antiparticle pair. A key feature of the ER=EPR proposal is that certain apparently entangled degrees of freedom turn out to be the same. We name this phenomenon ‘fake entanglement’, and show how it arises in our TQFT model. (paper)
Multi-particle entanglement via two-party entanglement
Brassard, Gilles; Mor, Tal
2001-09-01
Entanglement between n particles is a generalization of the entanglement between two particles, and a state is considered entangled if it cannot be written as a mixture of tensor products of the n particles' states. We present the key notion of semi-separability, used to investigate n-particle entanglement by looking at two-party entanglement between its various subsystems. We provide necessary conditions for n-particle separability (that is, sufficient conditions for n-particle entanglement). We also provide necessary and sufficient conditions in the case of pure states. By surprising examples, we show that such conditions are not sufficient for separability in the case of mixed states, suggesting entanglement of a strange type.
Correcting quantum errors with entanglement.
Brun, Todd; Devetak, Igor; Hsieh, Min-Hsiu
2006-10-20
We show how entanglement shared between encoder and decoder can simplify the theory of quantum error correction. The entanglement-assisted quantum codes we describe do not require the dual-containing constraint necessary for standard quantum error-correcting codes, thus allowing us to "quantize" all of classical linear coding theory. In particular, efficient modern classical codes that attain the Shannon capacity can be made into entanglement-assisted quantum codes attaining the hashing bound (closely related to the quantum capacity). For systems without large amounts of shared entanglement, these codes can also be used as catalytic codes, in which a small amount of initial entanglement enables quantum communication.
Entanglement in the Bogoliubov vacuum
DEFF Research Database (Denmark)
Poulsen, Uffe Vestergaard; Meyer, T.; Lewenstein, M.
2005-01-01
We analyze the entanglement properties of the Bogoliubov vacuum, which is obtained as a second-order approximation to the ground state of an interacting Bose-Einstein condensate. We work in one- and two-dimensional lattices and study the entanglement between two groups of sites as a function...... of the geometry of the configuration and the strength of the interactions. As our measure of entanglement we use the logarithmic negativity, supplemented by an algorithmic check for bound entanglement where appropiate. The short-range entanglement is found to grow approximately linearly with the group sizes...
Entanglement, holography and causal diamonds
de Boer, Jan; Haehl, Felix M.; Heller, Michal P.; Myers, Robert C.
2016-08-01
We argue that the degrees of freedom in a d-dimensional CFT can be reorganized in an insightful way by studying observables on the moduli space of causal diamonds (or equivalently, the space of pairs of timelike separated points). This 2 d-dimensional space naturally captures some of the fundamental nonlocality and causal structure inherent in the entanglement of CFT states. For any primary CFT operator, we construct an observable on this space, which is defined by smearing the associated one-point function over causal diamonds. Known examples of such quantities are the entanglement entropy of vacuum excitations and its higher spin generalizations. We show that in holographic CFTs, these observables are given by suitably defined integrals of dual bulk fields over the corresponding Ryu-Takayanagi minimal surfaces. Furthermore, we explain connections to the operator product expansion and the first law of entanglemententropy from this unifying point of view. We demonstrate that for small perturbations of the vacuum, our observables obey linear two-derivative equations of motion on the space of causal diamonds. In two dimensions, the latter is given by a product of two copies of a two-dimensional de Sitter space. For a class of universal states, we show that the entanglement entropy and its spin-three generalization obey nonlinear equations of motion with local interactions on this moduli space, which can be identified with Liouville and Toda equations, respectively. This suggests the possibility of extending the definition of our new observables beyond the linear level more generally and in such a way that they give rise to new dynamically interacting theories on the moduli space of causal diamonds. Various challenges one has to face in order to implement this idea are discussed.
Derivatization of enolic OH of piroxicam: a comparative study on esters and sulfonates
Energy Technology Data Exchange (ETDEWEB)
Jayaselli, J.; Cheemala, J. Manila Sagar; Geetha Rani, D.P.; Pal, Sarbani [MNR Post Graduate College, Kukatpally, Hyderabad (India). Dept. of Chemistry]. E-mail: sarbani277@yahoo.com
2008-07-01
A number of ester and sulfonate derivatives of piroxicam were prepared via acylation/sulfonation of the enolic OH of piroxicam. All the compounds were evaluated for their chemical stability and cyclooxygenase inhibiting properties. Data suggested that esters could be useful for the development of potential prodrugs. The sulfonate derivatives prepared for the first time were found to be stable. One of them showed a moderately selective COX-2 inhibition over COX-1 and would have lower gastrointestinal side effects than piroxicam due to the masked enolic OH group. A plausible mechanism for the acylation/sulfonation process has been proposed that involves participation of the pyridine moiety of piroxicam. Molecular structure of one of the ester was established for the first time by the crystal structure analysis from X-ray powder data. (author)
Derivatization of enolic OH of piroxicam: a comparative study on esters and sulfonates
International Nuclear Information System (INIS)
Jayaselli, J.; Cheemala, J. Manila Sagar; Geetha Rani, D.P.; Pal, Sarbani
2008-01-01
A number of ester and sulfonate derivatives of piroxicam were prepared via acylation/sulfonation of the enolic OH of piroxicam. All the compounds were evaluated for their chemical stability and cyclooxygenase inhibiting properties. Data suggested that esters could be useful for the development of potential prodrugs. The sulfonate derivatives prepared for the first time were found to be stable. One of them showed a moderately selective COX-2 inhibition over COX-1 and would have lower gastrointestinal side effects than piroxicam due to the masked enolic OH group. A plausible mechanism for the acylation/sulfonation process has been proposed that involves participation of the pyridine moiety of piroxicam. Molecular structure of one of the ester was established for the first time by the crystal structure analysis from X-ray powder data. (author)
Experimental test of entangled histories
Cotler, Jordan; Duan, Lu-Ming; Hou, Pan-Yu; Wilczek, Frank; Xu, Da; Yin, Zhang-Qi; Zu, Chong
2017-12-01
Entangled histories arise when a system partially decoheres in such a way that its past cannot be described by a sequence of states, but rather a superposition of sequences of states. Such entangled histories have not been previously observed. We propose and demonstrate the first experimental scheme to create entangled history states of the Greenberger-Horne-Zeilinger (GHZ) type. In our experiment, the polarization states of a single photon at three different times are prepared as a GHZ entangled history state. We define a GHZ functional which attains a maximum value 1 on the ideal GHZ entangled history state and is bounded above by 1 / 16 for any three-time history state lacking tripartite entanglement. We have measured the GHZ functional on a state we have prepared experimentally, yielding a value of 0 . 656 ± 0 . 005, clearly demonstrating the contribution of entangled histories.
Martin, Anita; Park, Soonhye; Hand, Brian
2017-08-01
This qualitative case study examined the process of change in an experienced elementary teacher's belief structure during implementation of an inquiry-based science program. Difficulties generally associated with ascertaining beliefs were minimized by using Leatham's (Journal of Mathematics Teacher Education, 9, 91-102 (2006) Sensible System Framework, enabling researchers to obtain rich descriptions of the teacher's belief structure by focusing on words (professed beliefs), intentions (intended beliefs), and actions (enacted beliefs). Models were constructed of the teacher's belief structure before and after implementation of the Science Writing Heuristic (SWH) approach (Hand et al. International Journal of Science Education, 26(2), 131-149, 2004), an inquiry-based approach to teaching science. Key beliefs for this teacher were related to how students learn, goals for teaching science, focus of instruction, and roles of teacher and student. Ultimately, the teacher shifted her professed, intended, and enacted beliefs resulting in a shift from a teacher-centered to a student-centered classroom. Findings support Thagard's Coherence Theory of Justification (2002), positing that change in one belief creates a state of disequilibrium that must be alleviated by changing/realigning other beliefs in order to re-establish coherence in the overall belief structure. This research focus is distinct from the general trend in teacher beliefs research in important ways. Most significant is that this study was not focused on the traditional two lists—those beliefs that were consistent with practice and those that were inconsistent with practice—but instead focused on the entwined nature of beliefs and practice and have shown that a teacher's practice can be viewed as their enacted beliefs, an integral part of the teacher's overall belief structure.
Facets of tripartite entanglement
Indian Academy of Sciences (India)
Quantum mechanical correlations between results of measurments on entangled ..... It is interesting that motivation underpinning Einstein locality is not the relativistic re- quirement of no faster-than-light signalling but rather a consideration related .... of the relevant studies see, for instance, D Home, Conceptual foundations.
Multipartite entangled quantum states: Transformation, Entanglement monotones and Application
Cui, Wei
Entanglement is one of the fundamental features of quantum information science. Though bipartite entanglement has been analyzed thoroughly in theory and shown to be an important resource in quantum computation and communication protocols, the theory of entanglement shared between more than two parties, which is called multipartite entanglement, is still not complete. Specifically, the classification of multipartite entanglement and the transformation property between different multipartite states by local operators and classical communications (LOCC) are two fundamental questions in the theory of multipartite entanglement. In this thesis, we present results related to the LOCC transformation between multipartite entangled states. Firstly, we investigate the bounds on the LOCC transformation probability between multipartite states, especially the GHZ class states. By analyzing the involvement of 3-tangle and other entanglement measures under weak two-outcome measurement, we derive explicit upper and lower bound on the transformation probability between GHZ class states. After that, we also analyze the transformation between N-party W type states, which is a special class of multipartite entangled states that has an explicit unique expression and a set of analytical entanglement monotones. We present a necessary and sufficient condition for a known upper bound of transformation probability between two N-party W type states to be achieved. We also further investigate a novel entanglement transformation protocol, the random distillation, which transforms multipartite entanglement into bipartite entanglement ii shared by a non-deterministic pair of parties. We find upper bounds for the random distillation protocol for general N-party W type states and find the condition for the upper bounds to be achieved. What is surprising is that the upper bounds correspond to entanglement monotones that can be increased by Separable Operators (SEP), which gives the first set of
Entanglement witness via quantum-memory-assisted entropic uncertainty relation
Shi, Jiadong; Ding, Zhiyong; Wu, Tao; He, Juan; Yu, Lizhi; Sun, Wenyang; Wang, Dong; Ye, Liu
2017-12-01
By virtue of the quantum-memory-assisted entropic uncertainty relation (EUR), we analyze entanglement witness via the efficiencies of the estimates proposed by Berta (2010 Nat. Phys. 6 659) and Pati (2012 Phys. Rev. A 86 042105). The results show that, without a structured reservoir, the entanglement regions witnessed by these EUR estimates are only determined by the chosen estimated setup, and have no correlation with the explicit form of the initial state. On the other hand, with the structured reservoirs, the time regions during which the entanglement can be witnessed, and the corresponding entanglement regions closely depend on the choice of the estimated setup, the initial state and the state purity p . Concretely, for a pure state with p=1 , the entanglement can be witnessed by both estimates, while for mixed states with p=0.78 , it can only be witnessed using the Pati estimate. What is more, we find that the time regions incorporating the Pati estimate become discontinuous for the initial state with ≤ft| {{φ }\\prime } \\right> ={≤ft(≤ft| 01 \\right> +≤ft| 10 \\right> \\right)}/{\\sqrt{2}} , and the corresponding entanglement regions remain the same; however the entanglement can only be witnessed once by utilizing the Berta estimate.
Zhang, Jingjing; Xu, Ya'nan; Chen, Shouwen; Li, Jiansheng; Han, Weiqing; Sun, Xiuyun; Wu, Dihua; Hu, Zhaoxia; Wang, Lianjun
2018-03-01
A series of novel blend ultrafiltration (UF) membranes have been successfully prepared from commercial poly (ether sulfone), lab-synthesized sulfonated poly (aryl ether sulfone) (SPAES, 1 wt%) and copper nanoparticles (0 ∼ 0.4 wt%) via immersion precipitation phase conversion. The micro-structure and separation performance of the membranes were characterized by field emission scanning electron microscopy (SEM) and cross-flow filtration experiments, respectively. Sodium alginate, bovine serum albumin and humic acid were chosen as model organic foulants to investigate the antifouling properties, while E. coil was used to evaluate the antibacterial property of the fabricated membranes. By the incorporation with SPAES and copper nanoparticles, the hydrophilicity, antifouling and antibacterial properties of the modified UF membranes have been profoundly improved. At a copper nanoparticles content of 0.4 wt%, the PES/SPAES/nCu(0.4) membrane exhibited a high pure water flux of 193.0 kg/m2 h, reaching the smallest contact angle of 52°, highest flux recovery ratio of 79% and largest antibacterial rate of 78.9%. Furthermore, the stability of copper nanoparticles inside the membrane matrix was also considerably enhanced, the copper nanoparticles were less than 0.08 mg/L in the effluent during the whole operation.
Briels, Willem J.; Mulder, P.; den Otter, Wouter K.
2004-01-01
The merging process of two amphiphilic cylindrical micelles has been simulated using a coarse grained model in which amphiphiles are represented as chains of one head particle and four tail particles. In our set-up with twisted boundary conditions, a ring-shaped worm is effectively entangled with
Blood Compatibility of Sulfonated Cladophora Nanocellulose Beads
Directory of Open Access Journals (Sweden)
Igor Rocha
2018-03-01
Full Text Available Sulfonated cellulose beads were prepared by oxidation of Cladophora nanocellulose to 2,3-dialdehyde cellulose followed by sulfonation using bisulfite. The physicochemical properties of the sulfonated beads, i.e., high surface area, high degree of oxidation, spherical shape, and the possibility of tailoring the porosity, make them interesting candidates for the development of immunosorbent platforms, including their application in extracorporeal blood treatments. A desired property for materials used in such applications is blood compatibility; therefore in the present work, we investigate the hemocompatibility of the sulfonated cellulose beads using an in vitro whole blood model. Complement system activation (C3a and sC5b-9 levels, coagulation activation (thrombin-antithrombin (TAT levels and hemolysis were evaluated after whole blood contact with the sulfonated beads and the results were compared with the values obtained with the unmodified Cladophora nanocellulose. Results showed that neither of the cellulosic materials presented hemolytic activity. A marked decrease in TAT levels was observed after blood contact with the sulfonated beads, compared with Cladophora nanocellulose. However, the chemical modification did not promote an improvement in Cladophora nanocellulose hemocompatibility in terms of complement system activation. Even though the sulfonated beads presented a significant reduction in pro-coagulant activity compared with the unmodified material, further modification strategies need to be investigated to control the complement activation by the cellulosic materials.
Blood Compatibility of Sulfonated Cladophora Nanocellulose Beads.
Rocha, Igor; Lindh, Jonas; Hong, Jaan; Strømme, Maria; Mihranyan, Albert; Ferraz, Natalia
2018-03-07
Sulfonated cellulose beads were prepared by oxidation of Cladophora nanocellulose to 2,3-dialdehyde cellulose followed by sulfonation using bisulfite. The physicochemical properties of the sulfonated beads, i.e., high surface area, high degree of oxidation, spherical shape, and the possibility of tailoring the porosity, make them interesting candidates for the development of immunosorbent platforms, including their application in extracorporeal blood treatments. A desired property for materials used in such applications is blood compatibility; therefore in the present work, we investigate the hemocompatibility of the sulfonated cellulose beads using an in vitro whole blood model. Complement system activation (C3a and sC5b-9 levels), coagulation activation (thrombin-antithrombin (TAT) levels) and hemolysis were evaluated after whole blood contact with the sulfonated beads and the results were compared with the values obtained with the unmodified Cladophora nanocellulose. Results showed that neither of the cellulosic materials presented hemolytic activity. A marked decrease in TAT levels was observed after blood contact with the sulfonated beads, compared with Cladophora nanocellulose. However, the chemical modification did not promote an improvement in Cladophora nanocellulose hemocompatibility in terms of complement system activation. Even though the sulfonated beads presented a significant reduction in pro-coagulant activity compared with the unmodified material, further modification strategies need to be investigated to control the complement activation by the cellulosic materials.
Entanglement measure for general pure multipartite quantum states
International Nuclear Information System (INIS)
Heydari, Hoshang; Bjoerk, Gunnar
2004-01-01
We propose an explicit formula for a measure of entanglement of pure multipartite quantum states. We discuss the mathematical structure of the measure and give a brief explanation of its physical motivation. We apply the measure on some pure, tripartite, qubit states and demonstrate that, in general, the entanglement can depend on what actions are performed on the various subsystems, and specifically if the parties in possession of the subsystems cooperate or not. We also give some simple but illustrative examples of the entanglement of four-qubit and m-qubit states
Probabilistic Teleportation of the Three-Particle Entangled State viaEntanglement Swapping
Institute of Scientific and Technical Information of China (English)
路洪
2001-01-01
A scheme of teleportation of a three-particle entangled state via entanglement swapping is proposed. It is shown that if a two-particle entangled state and a three-particle entangled state (both are not maximum entangled states) are used as quantum channels, probabilistic teleportation of the three-particle entangled state can be realized.
Entanglement reactivation in separable environments
International Nuclear Information System (INIS)
Pirandola, Stefano
2013-01-01
Combining two entanglement-breaking channels into a correlated-noise environment restores the distribution of entanglement. Surprisingly, this reactivation can be induced by the injection of separable correlations from the composite environment. In any dimension (finite or infinite), we can construct classically correlated ‘twirling’ environments which are entanglement-breaking in the transmission of single systems but entanglement-preserving when two systems are transmitted. Here entanglement is simply preserved by the existence of decoherence-free subspaces. Remarkably, even when such subspaces do not exist, a fraction of the input entanglement can still be distributed. This is found in separable Gaussian environments, where distillable entanglement is able to survive the two-mode transmission, despite being broken in any single-mode transmission by the strong thermal noise. In the Gaussian setting, entanglement restoration is a threshold process, occurring only after a critical amount of correlations has been injected. Such findings suggest new perspectives for distributing entanglement in realistic environments with extreme decoherence, identifying separable correlations and classical memory effects as physical resources for ‘breaking entanglement-breaking’. (paper)
Antimalarial effects of vinyl sulfone cysteine proteinase inhibitors.
Rosenthal, P J; Olson, J E; Lee, G K; Palmer, J T; Klaus, J L; Rasnick, D
1996-01-01
We evaluated the antimalarial effects of vinyl sulfone cysteine proteinase inhibitors. A number of vinyl sulfones strongly inhibited falcipain, a Plasmodium falciparum cysteine proteinase that is a critical hemoglobinase. In studies of cultured parasites, nanomolar concentrations of three vinyl sulfones inhibited parasite hemoglobin degradation, metabolic activity, and development. The antimalarial effects correlated with the inhibition of falcipain. Our results suggest that vinyl sulfones or...
International Nuclear Information System (INIS)
Lawrie, Kirsten; Blakey, Idriss; Blinco, James; Gronheid, Roel; Jack, Kevin; Pollentier, Ivan; Leeson, Michael J.; Younkin, Todd R.; Whittaker, Andrew K.
2011-01-01
Poly(olefin sulfone)s, formed by the reaction of sulfur dioxide (SO 2 ) and an olefin, are known to be highly susceptible to degradation by radiation and thus have been identified as candidate materials for chain scission-based extreme ultraviolet lithography (EUVL) resist materials. In order to investigate this further, the synthesis and characterisation of two poly(olefin sulfone)s namely poly(1-pentene sulfone) (PPS) and poly(2-methyl-1-pentene sulfone) (PMPS), was achieved and the two materials were evaluated for possible chain scission EUVL resist applications. It was found that both materials possess high sensitivities to EUV photons; however; the rates of outgassing were extremely high. The only observed degradation products were found to be SO 2 and the respective olefin suggesting that depolymerisation takes place under irradiation in a vacuum environment. In addition to depolymerisation, a concurrent conversion of SO 2 moieties to a sulfide phase was observed using XPS.
Braiding transformation, entanglement swapping, and Berry phase in entanglement space
International Nuclear Information System (INIS)
Chen Jingling; Ge Molin; Xue Kang
2007-01-01
We show that braiding transformation is a natural approach to describe quantum entanglement by using the unitary braiding operators to realize entanglement swapping and generate the Greenberger-Horne-Zeilinger states as well as the linear cluster states. A Hamiltonian is constructed from the unitary R i,i+1 (θ,φ) matrix, where φ=ωt is time-dependent while θ is time-independent. This in turn allows us to investigate the Berry phase in the entanglement space
The entanglement purification for entangled multi-particle states
Ye, Liu; Guo Guang Can
2002-01-01
We present two purification schemes for nonmaximally entangled states. We first show that two parties, Alice and Bob, start with shared less-entangled three-particle states to probabilistically produce a three-particle Greenberger-Horne-Zeilinger state by Bell state measurements and positive operator valued measure (POVM) or a unitary transformation. Then, by a straightforward generalization of the schemes, the purification of a multi-particle entangled state can be realized. 25 Refs. --- 35 --- AN
Crystal structure of 4-[(5-methyl-isoxazol-3-yl)amino-sulfon-yl]anilinium 3,5-di-nitro-salicylate.
Malathy, Sevaiyan; Nirmalram, Jeyaraman Selvaraj; Muthiah, Packianathan Thomas
2015-06-01
The title mol-ecular salt, C10H12N3O3S(+)·C7H3N2O7 (-), protonation occurs at the amino N atom attached to the benzene ring of sulfamethoxazole. In the anion, there is an intra-molecular O-H⋯O hydrogen bond and the cation is linked to the anion by an N-H⋯O hydrogen bond. In the extended structure, the cations and anions are linked via N-H⋯O, N-H⋯N and C-H⋯O hydrogen bonds, forming a three-dimensional framework.
Entanglement between two interacting CFTs and generalized holographic entanglement entropy
International Nuclear Information System (INIS)
Mollabashi, Ali; Shiba, Noburo; Takayanagi, Tadashi
2014-01-01
In this paper we discuss behaviors of entanglement entropy between two interacting CFTs and its holographic interpretation using the AdS/CFT correspondence. We explicitly perform analytical calculations of entanglement entropy between two free scalar field theories which are interacting with each other in both static and time-dependent ways. We also conjecture a holographic calculation of entanglement entropy between two interacting N=4 super Yang-Mills theories by introducing a minimal surface in the S 5 direction, instead of the AdS 5 direction. This offers a possible generalization of holographic entanglement entropy
Entanglement and quantum teleportation via decohered tripartite entangled states
Energy Technology Data Exchange (ETDEWEB)
Metwally, N., E-mail: nmohamed31@gmail.com
2014-12-15
The entanglement behavior of two classes of multi-qubit system, GHZ and GHZ like states passing through a generalized amplitude damping channel is discussed. Despite this channel causes degradation of the entangled properties and consequently their abilities to perform quantum teleportation, one can always improve the lower values of the entanglement and the fidelity of the teleported state by controlling on Bell measurements, analyzer angle and channel’s strength. Using GHZ-like state within a generalized amplitude damping channel is much better than using the normal GHZ-state, where the decay rate of entanglement and the fidelity of the teleported states are smaller than those depicted for GHZ state.
Universal quantum entanglement between an oscillator and continuous fields
International Nuclear Information System (INIS)
Miao Haixing; Danilishin, Stefan; Chen Yanbei
2010-01-01
Quantum entanglement has been actively sought in optomechanical and electromechanical systems. The simplest system is a mechanical oscillator interacting with a coherent optical field, while the oscillator also suffers from thermal decoherence. With a rigorous functional analysis, we develop a mathematical framework for treating quantum entanglement that involves infinite degrees of freedom. We show that the quantum entanglement is always present between the oscillator and continuous optical field--even when the environmental temperature is high and the oscillator is highly classical. Such a universal entanglement is also shown to be able to survive more than one mechanical oscillation period if the characteristic frequency of the optomechanical interaction is larger than that of the thermal noise. In addition, we introduce effective optical modes that are ordered by the entanglement strength to better understand the entanglement structure, analogously to the energy spectrum of an atomic system. In particular, we derive the optical mode that is maximally entangled with the mechanical oscillator, which will be useful for future quantum computing and encoding information into mechanical degrees of freedom.
Microscopic wormholes and the geometry of entanglement
Energy Technology Data Exchange (ETDEWEB)
Lobo, Francisco S.N. [Centro de Astronomia e Astrofisica da Universidade de Lisboa, Lisbon (Portugal); Olmo, Gonzalo J. [Centro Mixto Universidad de Valencia-CSIC, Universidad de Valencia, Departamento de Fisica Teorica y IFIC, Valencia (Spain); Rubiera-Garcia, D. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, Paraiba (Brazil)
2014-06-15
It has recently been suggested that Einstein-Rosen (ER) bridges can be interpreted as maximally entangled states of two black holes that form a complex Einstein-Podolsky-Rosen (EPR) pair. This relationship has been dubbed as the ER = EPR correlation. In this work, we consider the latter conjecture in the context of quadratic Palatini theory. An important result, which stems from the underlying assumptions as regards the geometry on which the theory is constructed, is the fact that all the charged solutions of the quadratic Palatini theory possess a wormhole structure. Our results show that spacetime may have a foam like microstructure with wormholes generated by fluctuations of the quantum vacuum. This involves the spontaneous creation/annihilation of entangled particle-antiparticle pairs, existing in a maximally entangled state connected by a nontraversable wormhole. Since the particles are produced from the vacuum and therefore exist in a singlet state, they are necessarily entangled with one another. This gives further support to the ER = EPR claim. (orig.)
International Nuclear Information System (INIS)
Martini, F. de; Giuseppe, G. di
2001-01-01
A multiparticle quantum superposition state has been generated by a novel phase-selective parametric amplifier of an entangled two-photon state. This realization is expected to open a new field of investigations on the persistence of the validity of the standard quantum theory for systems of increasing complexity, in a quasi decoherence-free environment. Because of its nonlocal structure the new system is expected to play a relevant role in the modern endeavor on quantum information and in the basic physics of entanglement. (orig.)
Entangled network and quantum communication
Energy Technology Data Exchange (ETDEWEB)
Metwally, Nasser, E-mail: Nmetwally@gmail.com [Math. Dept., Faculty of Science, South Valley University, Aswan (Egypt); Math. Dept., College of Science, University of Bahrain, P.O. Box 32038 (Bahrain)
2011-11-21
A theoretical scheme is introduced to generate entangled network via Dzyaloshinskii–Moriya (DM) interaction. The dynamics of entanglement between different nodes, which is generated by direct or indirect interaction, is investigated. It is shown that, the direction of (DM) interaction and the locations of the nodes have a sensational effect on the degree of entanglement. The minimum entanglement generated between all the nodes is quantified. The upper and lower bounds of the entanglement depend on the direction of DM interaction, and the repetition of the behavior depends on the strength of DM. The generated entangled nodes are used as quantum channel to perform quantum teleportation, where it is shown that the fidelity of teleporting unknown information between the network members depends on the locations of the members.
Quantum entanglement via nilpotent polynomials
International Nuclear Information System (INIS)
Mandilara, Aikaterini; Akulin, Vladimir M.; Smilga, Andrei V.; Viola, Lorenza
2006-01-01
We propose a general method for introducing extensive characteristics of quantum entanglement. The method relies on polynomials of nilpotent raising operators that create entangled states acting on a reference vacuum state. By introducing the notion of tanglemeter, the logarithm of the state vector represented in a special canonical form and expressed via polynomials of nilpotent variables, we show how this description provides a simple criterion for entanglement as well as a universal method for constructing the invariants characterizing entanglement. We compare the existing measures and classes of entanglement with those emerging from our approach. We derive the equation of motion for the tanglemeter and, in representative examples of up to four-qubit systems, show how the known classes appear in a natural way within our framework. We extend our approach to qutrits and higher-dimensional systems, and make contact with the recently introduced idea of generalized entanglement. Possible future developments and applications of the method are discussed
Hyperspherical entanglement entropy
International Nuclear Information System (INIS)
Dowker, J S
2010-01-01
The coefficient of the log term in the entanglement entropy associated with hyperspherical surfaces in flat spacetime is shown to equal the conformal anomaly by conformally transforming Euclideanized spacetime to a sphere and using already existing formulae for the relevant heat-kernel coefficients after cyclic factoring. The result follows from the fact that the conformal anomaly on this lune has an extremum at the ordinary sphere limit. A proof is given. Agreement with a recent evaluation of the coefficient is found.
Hyperspherical entanglement entropy
Energy Technology Data Exchange (ETDEWEB)
Dowker, J S, E-mail: dowker@man.ac.u [Theory Group, School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom)
2010-11-05
The coefficient of the log term in the entanglement entropy associated with hyperspherical surfaces in flat spacetime is shown to equal the conformal anomaly by conformally transforming Euclideanized spacetime to a sphere and using already existing formulae for the relevant heat-kernel coefficients after cyclic factoring. The result follows from the fact that the conformal anomaly on this lune has an extremum at the ordinary sphere limit. A proof is given. Agreement with a recent evaluation of the coefficient is found.
Inter-Universal Quantum Entanglement
Robles-Pérez, S. J.; González-Díaz, P. F.
2015-01-01
The boundary conditions to be imposed on the quantum state of the whole multiverse could be such that the universes would be created in entangled pairs. Then, interuniversal entanglement would provide us with a vacuum energy for each single universe that might be fitted with observational data, making testable not only the multiverse proposal but also the boundary conditions of the multiverse. Furthermore, the second law of the entanglement thermodynamics would enhance the expansion of the single universes.
Global entanglement in multiparticle systems
International Nuclear Information System (INIS)
Meyer, David A.; Wallach, Nolan R.
2002-01-01
We define a polynomial measure of multiparticle entanglement which is scalable, i.e., which applies to any number of spin-(1/2) particles. By evaluating it for three particle states, for eigenstates of the one dimensional Heisenberg antiferromagnet and on quantum error correcting code subspaces, we illustrate the extent to which it quantifies global entanglement. We also apply it to track the evolution of entanglement during a quantum computation
Gravity as Quantum Entanglement Force
Lee, Jae-Weon; Kim, Hyeong-Chan; Lee, Jungjai
2010-01-01
We conjecture that the total quantum entanglement of matter and vacuum in the universe tends to increase with time, like entropy, and that an effective force is associated with this tendency. We also suggest that gravity and dark energy are types of quantum entanglement forces, similar to Verlinde's entropic force, and give holographic dark energy with an equation of state comparable to current observational data. This connection between quantum entanglement and gravity could give some new in...
Direct catalytic olefination of alcohols with sulfones.
Srimani, Dipankar; Leitus, Gregory; Ben-David, Yehoshoa; Milstein, David
2014-10-06
The synthesis of terminal, as well as internal, olefins was achieved by the one-step olefination of alcohols with sulfones catalyzed by a ruthenium pincer complex. Furthermore, performing the reaction with dimethyl sulfone under mild hydrogen pressure provides a direct route for the replacement of alcohol hydroxy groups by methyl groups in one step. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Experimental Entanglement Distribution by Separable States
Vollmer, Christina E.; Schulze, Daniela; Eberle, Tobias; Händchen, Vitus; Fiurášek, Jaromír; Schnabel, Roman
2013-12-01
Distribution of entanglement between macroscopically separated parties is crucial for future quantum information networks. Surprisingly, it has been theoretically shown that two distant systems can be entangled by sending a third system that is not entangled with either of them. Here, we experimentally distribute entanglement and successfully prove that our transmitted light beam is indeed not entangled with the parties’ local systems. Our work demonstrates an unexpected variant of entanglement distribution and improves the understanding necessary to engineer multipartite quantum networks.
Error exponents for entanglement concentration
International Nuclear Information System (INIS)
Hayashi, Masahito; Koashi, Masato; Matsumoto, Keiji; Morikoshi, Fumiaki; Winter, Andreas
2003-01-01
Consider entanglement concentration schemes that convert n identical copies of a pure state into a maximally entangled state of a desired size with success probability being close to one in the asymptotic limit. We give the distillable entanglement, the number of Bell pairs distilled per copy, as a function of an error exponent, which represents the rate of decrease in failure probability as n tends to infinity. The formula fills the gap between the least upper bound of distillable entanglement in probabilistic concentration, which is the well-known entropy of entanglement, and the maximum attained in deterministic concentration. The method of types in information theory enables the detailed analysis of the distillable entanglement in terms of the error rate. In addition to the probabilistic argument, we consider another type of entanglement concentration scheme, where the initial state is deterministically transformed into a (possibly mixed) final state whose fidelity to a maximally entangled state of a desired size converges to one in the asymptotic limit. We show that the same formula as in the probabilistic argument is valid for the argument on fidelity by replacing the success probability with the fidelity. Furthermore, we also discuss entanglement yield when optimal success probability or optimal fidelity converges to zero in the asymptotic limit (strong converse), and give the explicit formulae for those cases
Entanglement in a parametric converter
Energy Technology Data Exchange (ETDEWEB)
Lee, Su-Yong; Qamar, Shahid; Lee, Hai-Woong; Zubairy, M Suhail [Center for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan)], E-mail: shahid_qamar@pieas.edu.pk, E-mail: zubairy@physics.tamu.edu
2008-07-28
In this paper, we consider a parametric converter as a source of entangled radiation. We examine recently derived conditions (Hillery and Zubairy 2006 Phys. Rev. Lett. 96 050503, Duan et al 2000 Phys. Rev. Lett. 84 2722) for determining when the two output modes in a parametric converter are entangled. We show that for different initial field states, the two criteria give different conditions that ensure that the output states are entangled. We also present an input-output calculation for the entanglement of the output field.
Multi-Photon Entanglement and Quantum Teleportation
National Research Council Canada - National Science Library
Shih, Yanhua
1999-01-01
The project 'Multi-Photon Entanglement and Quantum Teleportation' concerns a series of experimental and theoretical investigations on multi-photon entangled states and the applications, for example...
Composite plasma polymerized sulfonated polystyrene membrane for PEMFC
Energy Technology Data Exchange (ETDEWEB)
Nath, Bhabesh Kumar; Khan, Aziz; Chutia, Joyanti, E-mail: jchutiaiasst@gmail.com
2015-10-15
Highlights: • Methyl methane sulfonate (MMS) is used as the sulfonating agent. • The proton conductivity of the membrane is found to be 0.141 S cm{sup −1}. • Power density of fuel cell with styrene/MMS membrane is 0.5 W cm{sup −2}. • The membrane exhibits thermal stability up to 140 °C. - Abstract: This work presents the introduction of an organic compound methyl methane sulfonate (MMS) for the first time in fabrication of polystyrene based proton exchange membrane (PEM) by plasma polymerization process. The membrane is fabricated by co-polymerizing styrene and MMS in capacitively coupled continuous RF plasma. The chemical composition of the plasma polymerized polymer membrane is investigated using Fourier Transform Infrared Spectroscopy which reveals the formation of composite structure of styrene and MMS. The surface morphology studied using AFM and SEM depicts the effect of higher partial pressure of MMS on surface topography of the membrane. The proton transport property of the membrane studied using electrochemical impedance spectroscopy shows the achievement of maximum proton conductivity of 0.141 S cm{sup −1} which is comparable to Nafion 117 membrane. Fuel cell performance test of the synthesized membrane shows a maximum power density of 500 mW cm{sup −2} and current density of 0.62 A cm{sup −2} at 0.6 V.
Entanglement in continuous-variable systems: recent advances and current perspectives
International Nuclear Information System (INIS)
Adesso, Gerardo; Illuminati, Fabrizio
2007-01-01
We review the theory of continuous-variable entanglement with special emphasis on foundational aspects, conceptual structures and mathematical methods. Much attention is devoted to the discussion of separability criteria and entanglement properties of Gaussian states, for their great practical relevance in applications to quantum optics and quantum information, as well as for the very clean framework that they allow for the study of the structure of nonlocal correlations. We give a self-contained introduction to phase-space and symplectic methods in the study of Gaussian states of infinite-dimensional bosonic systems. We review the most important results on the separability and distillability of Gaussian states and discuss the main properties of bipartite entanglement. These include the extremal entanglement, minimal and maximal, of two-mode mixed Gaussian states, the ordering of two-mode Gaussian states according to different measures of entanglement, the unitary (reversible) localization and the scaling of bipartite entanglement in multimode Gaussian states. We then discuss recent advances in the understanding of entanglement sharing in multimode Gaussian states, including the proof of the monogamy inequality of distributed entanglement for all Gaussian states. Multipartite entanglement of Gaussian states is reviewed by discussing its qualification by different classes of separability, and the main consequences of the monogamy inequality, such as the quantification of genuine tripartite entanglement in three-mode Gaussian states, the promiscuous nature of entanglement sharing in symmetric Gaussian states and the possible coexistence of unlimited bipartite and multipartite entanglement. We finally review recent advances and discuss possible perspectives on the qualification and quantification of entanglement in non-Gaussian states, a field of research that is to a large extent yet to be explored
Entanglement in continuous-variable systems: recent advances and current perspectives
Energy Technology Data Exchange (ETDEWEB)
Adesso, Gerardo [Dipartimento di Fisica, Universita degli Studi di Roma ' La Sapienza' , Piazzale Aldo Moro 5, I-00185 Rome (Italy); Illuminati, Fabrizio [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)
2007-07-13
We review the theory of continuous-variable entanglement with special emphasis on foundational aspects, conceptual structures and mathematical methods. Much attention is devoted to the discussion of separability criteria and entanglement properties of Gaussian states, for their great practical relevance in applications to quantum optics and quantum information, as well as for the very clean framework that they allow for the study of the structure of nonlocal correlations. We give a self-contained introduction to phase-space and symplectic methods in the study of Gaussian states of infinite-dimensional bosonic systems. We review the most important results on the separability and distillability of Gaussian states and discuss the main properties of bipartite entanglement. These include the extremal entanglement, minimal and maximal, of two-mode mixed Gaussian states, the ordering of two-mode Gaussian states according to different measures of entanglement, the unitary (reversible) localization and the scaling of bipartite entanglement in multimode Gaussian states. We then discuss recent advances in the understanding of entanglement sharing in multimode Gaussian states, including the proof of the monogamy inequality of distributed entanglement for all Gaussian states. Multipartite entanglement of Gaussian states is reviewed by discussing its qualification by different classes of separability, and the main consequences of the monogamy inequality, such as the quantification of genuine tripartite entanglement in three-mode Gaussian states, the promiscuous nature of entanglement sharing in symmetric Gaussian states and the possible coexistence of unlimited bipartite and multipartite entanglement. We finally review recent advances and discuss possible perspectives on the qualification and quantification of entanglement in non-Gaussian states, a field of research that is to a large extent yet to be explored.
Coherent delocalization: views of entanglement in different scenarios
International Nuclear Information System (INIS)
De J León-Montiel, R; Vallés, A; Torres, J P; Moya-Cessa, H M
2015-01-01
The concept of entanglement was originally introduced to explain correlations existing between two spatially separated systems, that cannot be described using classical ideas. Interestingly, in recent years, it has been shown that similar correlations can be observed when considering different degrees of freedom of a single system, even a classical one. Surprisingly, it has also been suggested that entanglement might be playing a relevant role in certain biological processes, such as the functioning of pigment-proteins that constitute light-harvesting complexes of photosynthetic bacteria. The aim of this work is to show that the presence of entanglement in all of these different scenarios should not be unexpected, once it is realized that the very same mathematical structure can describe all of them. We show this by considering three different, realistic cases in which the only condition for entanglement to exist is that a single excitation is coherently delocalized between the different subsystems that compose the system of interest. (letter)
Left-right entanglement entropy of Dp-branes
Energy Technology Data Exchange (ETDEWEB)
Zayas, Leopoldo A. Pando [The Abdus Salam International Centre for Theoretical Physics,Strada Costiera 11, 34014 Trieste (Italy); Michigan Center for Theoretical Physics, Randall Laboratory of Physics,The University of Michigan,450 Church Street, Ann Arbor, MI 48109-1120 (United States); Quiroz, Norma [Departamento de Ciencias Exactas, Tecnología y Metodología,Centro Universitario del Sur, Universidad de Guadalajara,Enrique Arreola Silva 883, C.P. 49000, Cd. Guzmán, Jalisco (Mexico)
2016-11-04
We compute the left-right entanglement entropy for Dp-branes in string theory. We employ the CFT approach to string theory Dp-branes, in particular, its presentation as coherent states of the closed string sector. The entanglement entropy is computed as the von Neumann entropy for a density matrix resulting from integration over the left-moving degrees of freedom. We discuss various crucial ambiguities related to sums over spin structures and argue that different choices capture different physics; however, we advance a themodynamic argument that seems to favor a particular choice of replica. We also consider Dp branes on compact dimensions and verify that the effects of T-duality act covariantly on the Dp brane entanglement entropy. We find that generically the left-right entanglement entropy provides a suitable generalization of boundary entropy and of the D-brane tension.
Partial recovery of entanglement in bipartite-entanglement transformations
International Nuclear Information System (INIS)
Bandyopadhyay, Somshubhro; Roychowdhury, Vwani; Vatan, Farrokh
2002-01-01
Any deterministic bipartite-entanglement transformation involving finite copies of pure states and carried out using local operations and classical communication (LOCC) results in a net loss of entanglement. We show that for almost all such transformations, partial recovery of lost entanglement is achievable by using 2x2 auxiliary entangled states, no matter how large the dimensions of the parent states are. For the rest of the special cases of deterministic LOCC transformations, we show that the dimension of the auxiliary entangled state depends on the presence of equalities in the majorization relations of the parent states. We show that genuine recovery is still possible using auxiliary states in dimensions less than that of the parent states for all patterns of majorization relations except only one special case
Sulfonation of vulcanized ethylene-propylene-diene terpolymer membranes
International Nuclear Information System (INIS)
Barroso-Bujans, F.; Verdejo, R.; Lozano, A.; Fierro, J.L.G.; Lopez-Manchado, M.A.
2008-01-01
In the present work, sulfonation of previously vulcanized ethylene propylene diene terpolymer (EPDM) membranes was developed in a swelling solvent with acetyl sulfate. This procedure avoids the need to pre-dissolve the raw polymer. The reaction conditions were optimized in terms of solvent type, reaction time, acetyl sulfate concentration and film thickness to obtain the maximum degree of sulfonation of the polymer. The sulfonation procedure presented in this study yields a degree of sulfonation comparable to the chlorosulfonic acid procedure. Sulfonic acid groups were detected by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy, and quantified by titrations. Proton conductivity and water uptake were measured by means of impedance spectroscopy and swelling measurements, respectively, and were correlated with the degree of sulfonation. Tensile strength and Young's modulus of sulfonated EPDM increased with the degree of sulfonation, while elongation at break remained constant. Thermal stability of the sulfonated EPDM was studied by simultaneous thermogravimetry-mass spectroscopy
Impact of quantum–classical correspondence on entanglement enhancement by single-mode squeezing
International Nuclear Information System (INIS)
Joseph, Sijo K.; Chew, Lock Yue; Sanjuán, Miguel A.F.
2014-01-01
Quantum entanglement between two field modes can be achieved through the collective squeezing of the two respective modes. If single-mode squeezing is performed prior to such a two-mode squeezing, an enhancement of entanglement production can happen. Interestingly, the occurrence of this enhancement can be implicitly linked to the local classical dynamical behavior via the paradigm of quantum–classical correspondence. In particular, the entanglement generated through quantum chaos is found to be hardly enhanced by prior squeezing, since it is bounded by the saturation value of the maximally entangled Schmidt state with fixed energy. These results illustrate that entanglement enhancement via initial squeezing can serve as a useful indicator of quantum chaotic behaviour. - Highlights: • Continuous-variable entanglement is explored in the Pullen–Edmonds Hamiltonian. • The local phase-space structure and the entanglement enhancement are related. • Entanglement enhancement via squeezing is smaller for the chaotic orbit. • Entanglement enhancement via squeezing is higher for the regular orbit. • The magnitude of the entanglement enhancement serves as a quantum-chaos indicator
Statistical mechanics of multipartite entanglement
Facchi, P.; Florio, G.; Marzolino, U.; Parisi, G.; Pascazio, S.
2009-02-01
We characterize the multipartite entanglement of a system of n qubits in terms of the distribution function of the bipartite purity over all balanced bipartitions. We search for those (maximally multipartite entangled) states whose purity is minimum for all bipartitions and recast this optimization problem into a problem of statistical mechanics.
Statistical mechanics of multipartite entanglement
Energy Technology Data Exchange (ETDEWEB)
Facchi, P [Dipartimento di Matematica, Universita di Bari, I-70125 Bari (Italy); Florio, G; Pascazio, S [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Marzolino, U [Dipartimento di Fisica Teorica, Universita di Trieste, Strada Costiera 11, 34014 Trieste (Italy); Parisi, G [Dipartimento di Fisica, Universita di Roma ' La Sapienza' , Piazzale Aldo Moro 2, 00185 Roma, Italy, Centre for Statistical Mechanics and Complexity (SMC), CNR-INFM, 00185 Roma (Italy)
2009-02-06
We characterize the multipartite entanglement of a system of n qubits in terms of the distribution function of the bipartite purity over all balanced bipartitions. We search for those (maximally multipartite entangled) states whose purity is minimum for all bipartitions and recast this optimization problem into a problem of statistical mechanics.
Statistical mechanics of multipartite entanglement
International Nuclear Information System (INIS)
Facchi, P; Florio, G; Pascazio, S; Marzolino, U; Parisi, G
2009-01-01
We characterize the multipartite entanglement of a system of n qubits in terms of the distribution function of the bipartite purity over all balanced bipartitions. We search for those (maximally multipartite entangled) states whose purity is minimum for all bipartitions and recast this optimization problem into a problem of statistical mechanics
Entanglement transfer between bipartite systems
International Nuclear Information System (INIS)
Bougouffa, Smail; Ficek, Zbigniew
2012-01-01
The problem of a controlled transfer of an entanglement initially encoded into two two-level atoms that are successively sent through two single-mode cavities is investigated. The atoms and the cavity modes form a four-qubit system and we demonstrate the conditions under which the initial entanglement encoded into the atoms can be completely transferred to other pairs of qubits. We find that in the case of non-zero detuning between the atomic transition frequencies and the cavity mode frequencies, no complete transfer of the initial entanglement is possible to any of the other pairs of qubits. In the case of exact resonance and equal coupling strengths of the atoms to the cavity modes, an initial maximally entangled state of the atoms can be completely transferred to the cavity modes. Complete transfer of the entanglement is restricted to the cavity modes, with transfer to the other pairs being limited to 50%. We find that complete transfer of an initial entanglement to other pairs of qubits may take place if the initial state is not the maximally entangled state and the atoms couple to the cavity modes with unequal strengths. Depending on the ratio between the coupling strengths, optimal entanglement can be created between the atoms and one of the cavity modes.
Generic entangling through quantum indistinguishability
Indian Academy of Sciences (India)
quantum systems (methods such as entanglement swapping [5] fall in this ... continued till the particles anti-bunch, in which case they are entangled. 2. .... in the context of the scattering of ballistic electrons from a magnetic impurity in a semi-.
Entanglement entropy and duality
Energy Technology Data Exchange (ETDEWEB)
Radičević, Ðorđe [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA 94305-4060 (United States)
2016-11-22
Using the algebraic approach to entanglement entropy, we study several dual pairs of lattice theories and show how the entropy is completely preserved across each duality. Our main result is that a maximal algebra of observables in a region typically dualizes to a non-maximal algebra in a dual region. In particular, we show how the usual notion of tracing out external degrees of freedom dualizes to a tracing out coupled to an additional summation over superselection sectors. We briefly comment on possible extensions of our results to more intricate dualities, including holographic ones.
CSIR Research Space (South Africa)
Mc
2012-07-01
Full Text Available stream_source_info McLaren_2012.pdf.txt stream_content_type text/plain stream_size 2190 Content-Encoding ISO-8859-1 stream_name McLaren_2012.pdf.txt Content-Type text/plain; charset=ISO-8859-1 High dimensional... entanglement M. McLAREN1,2, F.S. ROUX1 & A. FORBES1,2,3 1. CSIR National Laser Centre, PO Box 395, Pretoria 0001 2. School of Physics, University of the Stellenbosch, Private Bag X1, 7602, Matieland 3. School of Physics, University of Kwazulu...
Entanglements in Conjugated Polymers
Xie, Renxuan; Lee, Youngmin; Aplan, Melissa; Caggiano, Nick; Gomez, Enrique; Colby, Ralph
Conjugated polymers, such as poly(3-hexylthiophene-2,5-diyl) (P3HT) and poly-((9,9-dioctylfluorene)-2,7-diyl-alt-[4,7-bis(thiophen-5-yl)-2,1,3-benzothiadiazole]-2',2''-diyl) (PFTBT), are widely used as hole and electron transport materials in a variety of electronic devices. However, fundamental knowledge regarding chain entanglements and nematic-to-isotropic transition is still lacking and are crucial to maximize charge transport properties. A systematic melt rheology study on P3HT with various molecular weights and regio regularities was performed. We find that the entanglement molecular weight Me is 5.0 kg/mol for regiorandom P3HT, but the apparent Me for regioregular P3HT is significantly higher. The difference is postulated to arise from the presence of a nematic phase only in regioregular P3HT. Analogously, PFTBT shows a clear rheological signature of the nematic-to-isotropic transition as a reversible sharp transition at 278 C. Shearing of this nematic phase leads to anisotropic crystalline order in PFTBT. We postulate that aligning the microstructure will impact charge transport and thereby advance the field of conducting polymers. National Science Foundation.
Entanglement percolation on a quantum internet with scale-free and clustering characters
International Nuclear Information System (INIS)
Wu Liang; Zhu Shiqun
2011-01-01
The applicability of entanglement percolation protocol to real Internet structure is investigated. If the current Internet can be used directly in the quantum regime, the protocol can provide a way to establish long-distance entanglement when the links are pure nonmaximally entangled states. This applicability is primarily due to the combination of scale-free degree distribution and a high level of clustering, both of which are widely observed in many natural and artificial networks including the current Internet. It suggests that the topology of real Internet may play an important role in entanglement establishment.
Entanglement percolation on a quantum internet with scale-free and clustering characters
Energy Technology Data Exchange (ETDEWEB)
Wu Liang; Zhu Shiqun [School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006 (China)
2011-11-15
The applicability of entanglement percolation protocol to real Internet structure is investigated. If the current Internet can be used directly in the quantum regime, the protocol can provide a way to establish long-distance entanglement when the links are pure nonmaximally entangled states. This applicability is primarily due to the combination of scale-free degree distribution and a high level of clustering, both of which are widely observed in many natural and artificial networks including the current Internet. It suggests that the topology of real Internet may play an important role in entanglement establishment.
Experimental entanglement distillation of mesoscopic quantum states
DEFF Research Database (Denmark)
Dong, Ruifang; Lassen, Mikael Østergaard; Heersink, Joel
2008-01-01
channel, the distribution of loss-intolerant entangled states is inevitably afflicted by decoherence, which causes a degradation of the transmitted entanglement. To combat the decoherence, entanglement distillation, a process of extracting a small set of highly entangled states from a large set of less...... entangled states, can be used(4-14). Here we report on the distillation of deterministically prepared light pulses entangled in continuous variables that have undergone non-Gaussian noise. The entangled light pulses(15-17) are sent through a lossy channel, where the transmission is varying in time similarly...
Squashed entanglement in infinite dimensions
International Nuclear Information System (INIS)
Shirokov, M. E.
2016-01-01
We analyse two possible definitions of the squashed entanglement in an infinite-dimensional bipartite system: direct translation of the finite-dimensional definition and its universal extension. It is shown that the both definitions produce the same lower semicontinuous entanglement measure possessing all basis properties of the squashed entanglement on the set of states having at least one finite marginal entropy. It is also shown that the second definition gives an adequate lower semicontinuous extension of this measure to all states of the infinite-dimensional bipartite system. A general condition relating continuity of the squashed entanglement to continuity of the quantum mutual information is proved and its corollaries are considered. Continuity bound for the squashed entanglement under the energy constraint on one subsystem is obtained by using the tight continuity bound for quantum conditional mutual information (proved in the Appendix by using Winter’s technique). It is shown that the same continuity bound is valid for the entanglement of formation. As a result the asymptotic continuity of the both entanglement measures under the energy constraint on one subsystem is proved.
Anaerobic degradation of linear alkylbenzene sulfonate
DEFF Research Database (Denmark)
Mogensen, Anders Skibsted; Haagensen, Frank; Ahring, Birgitte Kiær
2003-01-01
Linear alkylbenzene sulfonate (LAS) found in wastewater is removed in the wastewater treatment facilities by sorption and aerobic biodegradation. The anaerobic digestion of sewage sludge has not been shown to contribute to the removal. The concentration of LAS based on dry matter typically...... increases during anaerobic stabilization due to transformation of easily degradable organic matter. Hence, LAS is regarded as resistant to biodegradation under anaerobic conditions. We present data from a lab-scale semi-continuously stirred tank reactor (CSTR) spiked with linear dodecylbenzene sulfonate (C...
Entanglement in a Dimerized Antiferromagnetic Heisenberg Chain
Hao, Xiang; Zhu, Shiqun
2008-01-01
The entanglement properties in an antiferromagnetic dimerized Heisenberg spin-1/2 chain are investigated. The entanglement gap, which is the difference between the ground-state energy and the minimal energy that any separable state can attain, is calculated to detect the entanglement. It is found that the entanglement gap can be increased by varying the alternation parameter. Through thermal energy, the witness of the entanglement can determine a characteristic temperature below that an entan...
Polyether sulfone/hydroxyapatite mixed matrix membranes for protein purification
Energy Technology Data Exchange (ETDEWEB)
Sun, Junfen, E-mail: junfensun@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, North People Road 2999, Shanghai 201620 (China); Wu, Lishun [Department of Chemistry and Chemical Engineering, Heze University, Daxue Road 2269, Heze, Shandong Province 274015 (China)
2014-07-01
This work proposes a novel approach for protein purification from solution using mixed matrix membranes (MMMs) comprising of hydroxyapatite (HAP) inside polyether sulfone (PES) matrix. The influence of HAP particle loading on membrane morphology is studied. The MMMs are further characterized concerning permeability and adsorption capacity. The MMMs show purification of protein via both diffusion as well as adsorption, and show the potential of using MMMs for improvements in protein purification techniques. The bovine serum albumin (BSA) was used as a model protein. The properties and structures of MMMs prepared by immersion phase separation process were characterized by pure water flux, BSA adsorption and scanning electron microscopy (SEM).
Properties of sulfonated cation-exchangers made from petroleum asphaltites
International Nuclear Information System (INIS)
Pokonova, Yu.V.; Pol'kin, G.B.; Proskuryakov, V.A.
1982-01-01
The use of ion-exchangers in radiochemical technology is accompanied by changes of their properties under the influence of ionizing radiation. The rate of development of these processes depends on the nature and structure of the matrix and on the nature and amount of ionic groups. We have proposed a method of synthesis of ion-exchangers resistant to γ radiation from petroleum asphaltites. Continuing these investigations, we prepared cation-exchangers by sulfonation of a mixture of petroleum asphaltites and acid asphalt. An investigation of their radiation resistance is described in this paper
Zero modes and entanglement entropy
Energy Technology Data Exchange (ETDEWEB)
Yazdi, Yasaman K. [Perimeter Institute for Theoretical Physics,31 Caroline St. N., Waterloo, ON, N2L 2Y5 (Canada); Department of Physics and Astronomy, University of Waterloo,200 University Avenue West, Waterloo, ON, N2L 3G1 (Canada)
2017-04-26
Ultraviolet divergences are widely discussed in studies of entanglement entropy. Also present, but much less understood, are infrared divergences due to zero modes in the field theory. In this note, we discuss the importance of carefully handling zero modes in entanglement entropy. We give an explicit example for a chain of harmonic oscillators in 1D, where a mass regulator is necessary to avoid an infrared divergence due to a zero mode. We also comment on a surprising contribution of the zero mode to the UV-scaling of the entanglement entropy.
Slow Images and Entangled Photons
International Nuclear Information System (INIS)
Swordy, Simon
2007-01-01
I will discuss some recent experiments using slow light and entangled photons. We recently showed that it was possible to map a two dimensional image onto very low light level signals, slow them down in a hot atomic vapor while preserving the amplitude and phase of the images. If time remains, I will discuss some of our recent work with time-energy entangled photons for quantum cryptography. We were able to show that we could have a measurable state space of over 1000 states for a single pair of entangled photons in fiber.
Teleportation of Squeezed Entangled State
Institute of Scientific and Technical Information of China (English)
HU Li-Yun; ZHOU Nan-Run
2007-01-01
Based on the coherent entangled state |α, x＞ we introduce the squeezed entangled state (SES). Then we propose a teleportation protocol for the SES by using Einstein-Podolsky-Rosen entangled state |η＞as a quantum channel.The calculation is greatly simplified by virtue of the Schmidt decompositions of both |α, x＞and |η＞. Any bipartite states that can be expanded in terms of |α, x＞may be teleported in this way due to the completeness of |α, x＞.
Bound entanglement and local realism
International Nuclear Information System (INIS)
Kaszlikowski, Dagomir; Zukowski, Marek; Gnacinski, Piotr
2002-01-01
We show using a numerical approach, which gives necessary and sufficient conditions for the existence of local realism, that the bound entangled state presented in Bennett et al. [Phys. Rev. Lett. 82, 5385 (1999)] admits a local and realistic description. We also find the lowest possible amount of some appropriate entangled state that must be ad-mixed to the bound entangled state so that the resulting density operator has no local and realistic description and as such can be useful in quantum communication and quantum computation
Nitric Acid Dehydration Using Perfluoro Carboxylate and Mixed Sulfonate/Carboxylate Membranes
Energy Technology Data Exchange (ETDEWEB)
Ames, Richard L. [Colorado School of Mines, Golden, CO (United States)
2004-09-01
Perfluoro ionomer membranes are tetrafluoro ethylene-based materials with microheterogeneous structures consisting of a hydrophobic polymer backbone and a hydrophilic side-chain cluster region. Due to the ionomer cluster morphology, these films exhibit unique transport properties. Recent investigations with perfluoro sulfonate and perfluoro sulfonate/carboxylate composite polymers have demonstrated their value in the dehydration of nitric acid and they show potential as an alternative to conventional, energy intensive unit operations in the concentration of acid feeds. As a result, investigations were conducted to determine the feasibility of using pure perfluoro carboxylate and mixed perfluoro sulfonate/carboxylate films for the dehydration of nitric acid because of the speculation of improved water selectivity of the carboxylate pendant chain. During the first phase of these investigations the effort was focused on generating a thin, solution cast perfluoro carboxylate ionomer film, to evaluate the general, chemical and physical characteristics of the polymer, and to assess the material's aqueous transport performance (flux and nitrate separation efficiencies) in pervaporation and high-pressure environments. Results demonstrated that generating robust solution-cast films was difficult yet a number of membranes survived high trans-membrane pressures up to 700 psig. General characterization of the solution cast product showed reduced ion exchange capacities when compared with thicker, ''as received'' perfluoro carboxylate and similar sulfonate films. Small angle x-ray scattering analysis results suggested that the solution cast carboxylate films contained a small fraction of sulfonate terminated side-chains. Aqueous transport experimentation showed that permeate fluxes for both pure water and nitric acid were approximately two orders of magnitude smaller for the carboxylate solution cast membranes when compared to their sulfonate
Gaussian entanglement revisited
Lami, Ludovico; Serafini, Alessio; Adesso, Gerardo
2018-02-01
We present a novel approach to the separability problem for Gaussian quantum states of bosonic continuous variable systems. We derive a simplified necessary and sufficient separability criterion for arbitrary Gaussian states of m versus n modes, which relies on convex optimisation over marginal covariance matrices on one subsystem only. We further revisit the currently known results stating the equivalence between separability and positive partial transposition (PPT) for specific classes of Gaussian states. Using techniques based on matrix analysis, such as Schur complements and matrix means, we then provide a unified treatment and compact proofs of all these results. In particular, we recover the PPT-separability equivalence for: (i) Gaussian states of 1 versus n modes; and (ii) isotropic Gaussian states. In passing, we also retrieve (iii) the recently established equivalence between separability of a Gaussian state and and its complete Gaussian extendability. Our techniques are then applied to progress beyond the state of the art. We prove that: (iv) Gaussian states that are invariant under partial transposition are necessarily separable; (v) the PPT criterion is necessary and sufficient for separability for Gaussian states of m versus n modes that are symmetric under the exchange of any two modes belonging to one of the parties; and (vi) Gaussian states which remain PPT under passive optical operations can not be entangled by them either. This is not a foregone conclusion per se (since Gaussian bound entangled states do exist) and settles a question that had been left unanswered in the existing literature on the subject. This paper, enjoyable by both the quantum optics and the matrix analysis communities, overall delivers technical and conceptual advances which are likely to be useful for further applications in continuous variable quantum information theory, beyond the separability problem.
Perfluorooctane sulfonate (PFOS) depletion in beef cattle
Perfluorooctane sulfonate (PFOS) is an industrial chemical that is used as a surfactant in several manufactured consumer products but is also a breakdown product from other chemical surfactants. As a result of its extensive use, PFOS is ubiquitous in the environment and is often detected in biosoli...
Toxicity of pyrolysis gases from polyether sulfone
Hilado, C. J.; Olcomendy, E. M.
1979-01-01
A sample of polyether sulfone was evaluated for toxicity of pyrolysis gases, using the toxicity screening test method developed at the University of San Francisco. Animal response times were relatively short at pyrolysis temperatures of 600 to 800 C, with death occurring within 6 min. The principal toxicant appeared to be a compound other than carbon monoxide.
Room temperature synthesis of biodiesel using sulfonated ...
Sulfonation of graphitic carbon nitride (g-CN) affords a polar and strongly acidic catalyst, Sg-CN, which displays unprecedented reactivity and selectivity in biodiesel synthesis and esterification reactions at room temperature. Prepared for submission to Royal Society of Chemistry (RSC) journal, Green Chemistry as a communication.
Carbon dioxide sensing with sulfonated polyaniline
Doan, D.C.T.; Ramaneti, R.; Baggerman, J.; Bent, van der J.; Marcelis, A.T.M.; Tong, H.D.; Rijn, van C.J.M.
2012-01-01
The use of polyaniline and especially sulfonated polyaniline (SPAN) is explored for sensing carbon dioxide (CO2) at room temperature. Frequency-dependent AC measurements were carried out to detect changes in impedance of the polymer, drop casted on interdigitated electrodes, when exposed to CO2 gas.
Entangled Bessel-Gaussian beams
CSIR Research Space (South Africa)
McLaren, M
2012-10-01
Full Text Available by performing a Bell-type experiment and showing a violation of the Clauser-Horne-Shimony-Holt inequality. In addition, we use quantum state tomography to indicate higher-dimensional entanglement in terms of BG modes....
Gaussian entanglement distribution via satellite
Hosseinidehaj, Nedasadat; Malaney, Robert
2015-02-01
In this work we analyze three quantum communication schemes for the generation of Gaussian entanglement between two ground stations. Communication occurs via a satellite over two independent atmospheric fading channels dominated by turbulence-induced beam wander. In our first scheme, the engineering complexity remains largely on the ground transceivers, with the satellite acting simply as a reflector. Although the channel state information of the two atmospheric channels remains unknown in this scheme, the Gaussian entanglement generation between the ground stations can still be determined. On the ground, distillation and Gaussification procedures can be applied, leading to a refined Gaussian entanglement generation rate between the ground stations. We compare the rates produced by this first scheme with two competing schemes in which quantum complexity is added to the satellite, thereby illustrating the tradeoff between space-based engineering complexity and the rate of ground-station entanglement generation.
Continuous-Variable Entanglement Swapping
Directory of Open Access Journals (Sweden)
Kevin Marshall
2015-05-01
Full Text Available We present a very brief overview of entanglement swapping as it relates to continuous-variable quantum information. The technical background required is discussed and the natural link to quantum teleportation is established before discussing the nature of Gaussian entanglement swapping. The limitations of Gaussian swapping are introduced, along with the general applications of swapping in the context of to quantum communication and entanglement distribution. In light of this, we briefly summarize a collection of entanglement swapping schemes which incorporate a non-Gaussian ingredient and the benefits of such schemes are noted. Finally, we motivate the need to further study and develop such schemes by highlighting requirements of a continuous-variable repeater.
Quantum entanglement and quantum teleportation
International Nuclear Information System (INIS)
Shih, Y.H.
2001-01-01
One of the most surprising consequences of quantum mechanics is the entanglement of two or more distance particles. The ''ghost'' interference and the ''ghost'' image experiments demonstrated the astonishing nonlocal behavior of an entangled photon pair. Even though we still have questions in regard to fundamental issues of the entangled quantum systems, quantum entanglement has started to play important roles in quantum information and quantum computation. Quantum teleportation is one of the hot topics. We have demonstrated a quantum teleportation experiment recently. The experimental results proved the working principle of irreversibly teleporting an unknown arbitrary quantum state from one system to another distant system by disassembling into and then later reconstructing from purely classical information and nonclassical EPR correlations. The distinct feature of this experiment is that the complete set of Bell states can be distinguished in the Bell state measurement. Teleportation of a quantum state can thus occur with certainty in principle. (orig.)
Entanglement scaling in lattice systems
Energy Technology Data Exchange (ETDEWEB)
Audenaert, K M R [Institute for Mathematical Sciences, Imperial College London, 53 Prince' s Gate, Exhibition Road, London SW7 2PG (United Kingdom); Cramer, M [QOLS, Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom); Eisert, J [Institute for Mathematical Sciences, Imperial College London, 53 Prince' s Gate, Exhibition Road, London SW7 2PG (United Kingdom); Plenio, M B [Institute for Mathematical Sciences, Imperial College London, 53 Prince' s Gate, Exhibition Road, London SW7 2PG (United Kingdom)
2007-05-15
We review some recent rigorous results on scaling laws of entanglement properties in quantum many body systems. More specifically, we study the entanglement of a region with its surrounding and determine its scaling behaviour with its size for systems in the ground and thermal states of bosonic and fermionic lattice systems. A theorem connecting entanglement between a region and the rest of the lattice with the surface area of the boundary between the two regions is presented for non-critical systems in arbitrary spatial dimensions. The entanglement scaling in the field limit exhibits a peculiar difference between fermionic and bosonic systems. In one-spatial dimension a logarithmic divergence is recovered for both bosonic and fermionic systems. In two spatial dimensions in the setting of half-spaces however we observe strict area scaling for bosonic systems and a multiplicative logarithmic correction to such an area scaling in fermionic systems. Similar questions may be posed and answered in classical systems.
Transverse correlations in multiphoton entanglement
International Nuclear Information System (INIS)
Wen Jianming; Rubin, Morton H.; Shih Yanhua
2007-01-01
We have analyzed the transverse correlation in multiphoton entanglement. The generalization of quantum ghost imaging is extended to the N-photon state. The Klyshko's two-photon advanced-wave picture is generalized to the N-photon case
Direct Olefination of Alcohols with Sulfones by Using Heterogeneous Platinum Catalysts.
Siddiki, S M A Hakim; Touchy, Abeda Sultana; Kon, Kenichi; Shimizu, Ken-Ichi
2016-04-18
Carbon-supported Pt nanoparticles (Pt/C) were found to be effective heterogeneous catalysts for the direct Julia olefination of alcohols in the presence of sulfones and KOtBu under oxidant-free conditions. Primary alcohols, including aryl, aliphatic, allyl, and heterocyclic alcohols, underwent olefination with dimethyl sulfone and aryl alkyl sulfones to give terminal and internal olefins, respectively. Secondary alcohols underwent methylenation with dimethyl sulfone. Under 2.5 bar H2, the same reaction system was effective for the transformation of alcohol OH groups to alkyl groups. Structural and mechanistic studies of the terminal olefination system suggested that Pt(0) sites on the Pt metal particles are responsible for the rate-limiting dehydrogenation of alcohols and that KOtBu may deprotonate the sulfone reagent. The Pt/C catalyst was reusable after the olefination, and this method showed a higher turnover number (TON) and a wider substrate scope than previously reported methods, which demonstrates the high catalytic efficiency of the present method. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Estimating localizable entanglement from witnesses
Amaro, David; Müller, Markus; Pal, Amit Kumar
2018-01-01
Computing localizable entanglement for noisy many-particle quantum states is difficult due to the optimization over all possible sets of local projection measurements. Therefore, it is crucial to develop lower bounds, which can provide useful information about the behaviour of localizable entanglement, and which can be determined by measuring a limited number of operators, or by performing least number of measurements on the state, preferably without performing a full state tomography. In thi...
Minimal tomography with entanglement witnesses
Zhu, Huangjun; Teo, Yong Siah; Englert, Berthold-Georg
2009-01-01
We introduce informationally complete measurements whose outcomes are entanglement witnesses and so answer the question of how many witnesses need to be measured to decide whether an arbitrary state is entangled or not: as many as the dimension of the state space. The optimized witness-based measurement can provide exponential improvement with respect to witness efficiency in high-dimensional Hilbert spaces, at the price of a reduction in the tomographic efficiency. We describe a systematic c...
Entanglement as a signature of quantum chaos.
Wang, Xiaoguang; Ghose, Shohini; Sanders, Barry C; Hu, Bambi
2004-01-01
We explore the dynamics of entanglement in classically chaotic systems by considering a multiqubit system that behaves collectively as a spin system obeying the dynamics of the quantum kicked top. In the classical limit, the kicked top exhibits both regular and chaotic dynamics depending on the strength of the chaoticity parameter kappa in the Hamiltonian. We show that the entanglement of the multiqubit system, considered for both the bipartite and the pairwise entanglement, yields a signature of quantum chaos. Whereas bipartite entanglement is enhanced in the chaotic region, pairwise entanglement is suppressed. Furthermore, we define a time-averaged entangling power and show that this entangling power changes markedly as kappa moves the system from being predominantly regular to being predominantly chaotic, thus sharply identifying the edge of chaos. When this entangling power is averaged over all states, it yields a signature of global chaos. The qualitative behavior of this global entangling power is similar to that of the classical Lyapunov exponent.
Pseudo-entanglement evaluated in noninertial frames
International Nuclear Information System (INIS)
Mehri-Dehnavi, Hossein; Mirza, Behrouz; Mohammadzadeh, Hosein; Rahimi, Robabeh
2011-01-01
Research highlights: → We study pseudo-entanglement in noninertial frames. → We examine different measures of entanglement and nonclassical correlation for the state. → We find the threshold for entanglement is changed in noninertial frames. → We also describe the behavior of local unitary classes of states in noninertial frames. - Abstract: We study quantum discord, in addition to entanglement, of bipartite pseudo-entanglement in noninertial frames. It is shown that the entanglement degrades from its maximum value in a stationary frame to a minimum value in an infinite accelerating frame. There is a critical region found in which, for particular cases, entanglement of states vanishes for certain accelerations. The quantum discord of pseudo-entanglement decreases by increasing the acceleration. Also, for a physically inaccessible region, entanglement and nonclassical correlation are evaluated and shown to match the corresponding values of the physically accessible region for an infinite acceleration.
Mixtures of maximally entangled pure states
Energy Technology Data Exchange (ETDEWEB)
Flores, M.M., E-mail: mflores@nip.up.edu.ph; Galapon, E.A., E-mail: eric.galapon@gmail.com
2016-09-15
We study the conditions when mixtures of maximally entangled pure states remain entangled. We found that the resulting mixed state remains entangled when the number of entangled pure states to be mixed is less than or equal to the dimension of the pure states. For the latter case of mixing a number of pure states equal to their dimension, we found that the mixed state is entangled provided that the entangled pure states to be mixed are not equally weighted. We also found that one can restrict the set of pure states that one can mix from in order to ensure that the resulting mixed state is genuinely entangled. Also, we demonstrate how these results could be applied as a way to detect entanglement in mixtures of the entangled pure states with noise.
Geometric Aspects of Quantum Mechanics and Quantum Entanglement
International Nuclear Information System (INIS)
Chruscinski, Dariusz
2006-01-01
It is shown that the standard non-relativistic Quantum Mechanics gives rise to elegant and rich geometrical structures. The space of quantum states is endowed with nontrivial Fubini-Study metric which is responsible for the 'peculiarities' of the quantum world. We show that there is also intricate connection between geometrical structures and quantum entanglement
Quantum entanglement of identical particles
International Nuclear Information System (INIS)
Shi Yu
2003-01-01
We consider entanglement in a system with a fixed number of identical particles. Since any operation should be symmetrized over all the identical particles and there is the precondition that the spatial wave functions overlap, the meaning of identical-particle entanglement is fundamentally different from that of distinguishable particles. The identical-particle counterpart of the Schmidt basis is shown to be the single-particle basis in which the one-particle reduced density matrix is diagonal. But it does not play a special role in the issue of entanglement, which depends on the single-particle basis chosen. The nonfactorization due to (anti)symmetrization is naturally excluded by using the (anti)symmetrized basis or, equivalently, the particle number representation. The natural degrees of freedom in quantifying the identical-particle entanglement in a chosen single-particle basis are occupation numbers of different single-particle basis states. The entanglement between effectively distinguishable spins is shown to be a special case of the occupation-number entanglement
Thermodynamic entanglement of magnonic condensates
Yuan, H. Y.; Yung, Man-Hong
2018-02-01
Over the past decade, significant progress has been achieved to create Bose-Einstein condensates (BECs) of magnetic excitations, i.e., magnons, at room temperature, which is a novel quantum many-body system with a strong spin-spin correlation, and contains potential applications in magnonic spintronics. For quantum information science, the magnonic condensates can become an attractive source of quantum entanglement, which plays a central role in most of the quantum information processing tasks. Here we theoretically study the entanglement properties of a magnon gas above and below the condensation temperature. We show that the thermodynamic entanglement of the spins is a manifestation of the off-diagonal long-range order; the entanglement of the condensate does not vanish, even if the spins are separated by an infinitely long distance, which is fundamentally distinct from the normal magnetic ordering below the Curie temperature. In addition, the phase-transition point occurs when the derivative of the entanglement changes abruptly. These results provide a theoretical foundation for a future investigation of the magnon BEC in terms of quantum entanglement.
Multipartite geometric entanglement in finite size XY model
Energy Technology Data Exchange (ETDEWEB)
Blasone, Massimo; Dell' Anno, Fabio; De Siena, Silvio; Giampaolo, Salvatore Marco; Illuminati, Fabrizio, E-mail: blasone@sa.infn.i [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)
2009-06-01
We investigate the behavior of the multipartite entanglement in the finite size XY model by means of the hierarchical geometric measure of entanglement. By selecting specific components of the hierarchy, we study both global entanglement and genuinely multipartite entanglement.
The role of lignin sulfonate in flotation of bastnasite from barite
International Nuclear Information System (INIS)
Gerdel, M.A.; Smith, R.W.
1988-01-01
In carboxylate collector flotation of bastnasite from other semisoluble salt type minerals such as barite various modifiers must be added in order to achieve selective flotation. One such modifier is a lignin sulfonate. It may function in part by acting as a sequestrant for metal ions present, preventing autoactivation in the system by metal ions derived from the minerals themselves. It also functions as a depressant for barite than for bastnasite. The authors suggest that the strong depressing action on barite is related to a good fit of the sulfonate into the barite structure
Sulindac Sulfide, but Not Sulindac Sulfone, Inhibits Colorectal Cancer Growth
Directory of Open Access Journals (Sweden)
Christopher S. Williams
1999-06-01
Full Text Available Sulindac sulfide, a metabolite of the nonsteroidal antiinflammatory drug (NSAID sulindac sulfoxide, is effective at reducing tumor burden in both familial adenomatous polyposis patients and in animals with colorectal cancer. Another sulindac sulfoxide metabolite, sulindac sulfone, has been reported to have antitumor properties without inhibiting cyclooxygenase activity. Here we report the effect of sulindac sulfone treatment on the growth of colorectal carcinoma cells. We observed that sulindac sulfide or sulfone treatment of HCA-7 cells led to inhibition of prostaglandin E2 production. Both sulindac sulfide and sulfone inhibited HCA-7 and HCT-116 cell growth in vitro. Sulindac sulfone had no effect on the growth of either HCA-7 or HCT-116 xenografts, whereas the sulfide derivative inhibited HCA-7 growth in vivo. Both sulindac sulfide and sulfone inhibited colon carcinoma cell growth and prostaglandin production in vitro, but sulindac sulfone had no effect on the growth of colon cancer cell xenografts in nude mice.
Optimal simulation of a perfect entangler
International Nuclear Information System (INIS)
Yu Nengkun; Duan Runyao; Ying Mingsheng
2010-01-01
A 2 x 2 unitary operation is called a perfect entangler if it can generate a maximally entangled state from some unentangled input. We study the following question: How many runs of a given two-qubit entangling unitary operation are required to simulate some perfect entangler with one-qubit unitary operations as free resources? We completely solve this problem by presenting an analytical formula for the optimal number of runs of the entangling operation. Our result reveals an entanglement strength of two-qubit unitary operations.
Minimal Entanglement Witness from Electrical Current Correlations.
Brange, F; Malkoc, O; Samuelsson, P
2017-01-20
Despite great efforts, an unambiguous demonstration of entanglement of mobile electrons in solid state conductors is still lacking. Investigating theoretically a generic entangler-detector setup, we here show that a witness of entanglement between two flying electron qubits can be constructed from only two current cross correlation measurements, for any nonzero detector efficiencies and noncollinear polarization vectors. We find that all entangled pure states, but not all mixed ones, can be detected with only two measurements, except the maximally entangled states, which require three. Moreover, detector settings for optimal entanglement witnessing are presented.
Optimal entanglement witnesses for qubits and qutrits
Bertlmann, Reinhold A.; Durstberger, Katharina; Hiesmayr, Beatrix C.; Krammer, Philipp
2005-11-01
We study the connection between the Hilbert-Schmidt measure of entanglement (that is the minimal distance of an entangled state to the set of separable states) and entanglement witness in terms of a generalized Bell inequality which distinguishes between entangled and separable states. A method for checking the nearest separable state to a given entangled one is presented. We illustrate the general results by considering isotropic states, in particular two-qubit and two-qutrit states—and their generalizations to arbitrary dimensions—where we calculate the optimal entanglement witnesses explicitly.
Optimal entanglement witnesses for qubits and qutrits
International Nuclear Information System (INIS)
Bertlmann, Reinhold A.; Durstberger, Katharina; Hiesmayr, Beatrix C.; Krammer, Philipp
2005-01-01
We study the connection between the Hilbert-Schmidt measure of entanglement (that is the minimal distance of an entangled state to the set of separable states) and entanglement witness in terms of a generalized Bell inequality which distinguishes between entangled and separable states. A method for checking the nearest separable state to a given entangled one is presented. We illustrate the general results by considering isotropic states, in particular two-qubit and two-qutrit states--and their generalizations to arbitrary dimensions--where we calculate the optimal entanglement witnesses explicitly
Minimal Entanglement Witness from Electrical Current Correlations
Brange, F.; Malkoc, O.; Samuelsson, P.
2017-01-01
Despite great efforts, an unambiguous demonstration of entanglement of mobile electrons in solid state conductors is still lacking. Investigating theoretically a generic entangler-detector setup, we here show that a witness of entanglement between two flying electron qubits can be constructed from only two current cross correlation measurements, for any nonzero detector efficiencies and noncollinear polarization vectors. We find that all entangled pure states, but not all mixed ones, can be detected with only two measurements, except the maximally entangled states, which require three. Moreover, detector settings for optimal entanglement witnessing are presented.
Kim, Patrick J; Fontecha, Harif D; Kim, Kyungho; Pol, Vilas G
2018-05-02
Lithium-sulfur batteries were intensively explored during the last few decades as next-generation batteries owing to their high energy density (2600 Wh kg -1 ) and effective cost benefit. However, systemic challenges, mainly associated with polysulfide shuttling effect and low Coulombic efficiency, plague the practical utilization of sulfur cathode electrodes in the battery market. To address the aforementioned issues, many approaches have been investigated by tailoring the surface characteristics and porosities of carbon scaffold. In this study, we first present an effective strategy of preparing porous sulfonated carbon (PSC) from low-density polyethylene (LDPE) plastic via microwave-promoted sulfonation. Microwave process not only boosts the sulfonation reaction of LDPE but also induces huge amounts of pores within the sulfonated LDPE plastic. When a PSC layer was utilized as an interlayer in lithium-sulfur batteries, the sulfur cathode delivered an improved capacity of 776 mAh g -1 at 0.5C and an excellent cycle retention of 79% over 200 cycles. These are mainly attributed to two materialistic benefits of PSC: (a) porous structure with high surface area and (b) negatively charged conductive scaffold. These two characteristics not only facilitate the improved electrochemical kinetics but also effectively block the diffusion of polysulfides via Coulomb interaction.
Detecting quantum entanglement. Entanglement witnesses and uncertainty relations
International Nuclear Information System (INIS)
Guehne, O.
2004-01-01
This thesis deals with methods of the detection of entanglement. After recalling some facts and definitions concerning entanglement and separability, we investigate two methods of the detection of entanglement. In the first part of this thesis we consider so-called entanglement witnesses, mainly in view of the detection of multipartite entanglement. Entanglement witnesses are observables for which a negative expectation value indicates entanglement. We first present a simple method to construct these witnesses. Since witnesses are nonlocal observables, they are not easy to measure in a real experiment. However, as we will show, one can circumvent this problem by decomposing the witness into several local observables which can be measured separately. We calculate the local decompositions for several interesting witnesses for two, three and four qubits. Local decompositions can be optimized in the number of measurement settings which are needed for an experimental implementation. We present a method to prove that a given local decomposition is optimal and discuss with this the optimality of our decompositions. Then we present another method of designing witnesses which are by construction measurable with local measurements. Finally, we shortly report on experiments where some of the witnesses derived in this part have been used to detect three- and four-partite entanglement of polarized photons. The second part of this thesis deals with separability criteria which are written in terms of uncertainty relations. There are two different formulations of uncertainty relations since one can measure the uncertainty of an observable by its variance as well as by entropic quantities. We show that both formulations are useful tools for the derivation of separability criteria for finite-dimensional systems and investigate the resulting criteria. Our results in this part exhibit also some more fundamental properties of entanglement: We show how known separability criteria for
Liu, Xubo; Men, Chuanling; Zhang, Xiaohua; Li, Qingwen
2016-09-01
Sulfonated graphenal polymers can be assembled up by poly(vinyl alcohol) adhesion. The porous assembly structure results in a remarkably improved ionic conductivity and thus enhances electrochemical performances such as specific capacitance, capacitance retention, and cycling stability. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Demarcation of mutant-carrying regions in barley plants after ethylmethane-sulfonate seed treatment
DEFF Research Database (Denmark)
Jacobsen, P.
1966-01-01
The branching pattern of the barley plant is analyzed and the anatomical structure of the resting barley embryo studied in longitudinal and cross-sections as well as by dissection techniques. The frequency and distribution of ethylmethane-sulfonate induced chloroplast and morphological seedling...
Energy Technology Data Exchange (ETDEWEB)
Chen, Dongyang; Wang, Shuanjin; Xiao, Min; Meng, Yuezhong [The Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, Institute of Optoelectronic and Functional Composite Materials, Sun Yat-Sen University, Guangzhou 510275 (China)
2010-12-15
Novel sulfonated poly(arylene ether sulfone)s with electron-withdrawing sulfone groups in each repeat unit were synthesized via step polymerization followed by post-sulfonation using chlorosulfonic acid. The sulfonation degree can be readily controlled by adjusting the feed ratio of the repeat unit of polymers to chlorosulfonic acid. The synthesized polymers are soluble in common aprotic solvents such as dimethyl sulfoxide, N,N'-dimethylacetamide and dimethylformamide, and can be cast into transparent membranes from their solutions. The ion exchange capacity, water uptake, swelling ratio, sulfonation degree, mechanical property, oxidative property, thermal property and proton conductivity were investigated in detail using different methodologies. As an objective to apply these polymers as separators for vanadium redox flow battery, the VO{sup 2+} permeability and cell performance for the single cell were examined and assessed. (author)
Energy Technology Data Exchange (ETDEWEB)
Chen Dongyang [Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, Institute of Optoelectronic and Functional Composite Materials, Sun Yat-Sen University, Guangzhou 510275 (China); Wang Shuanjin, E-mail: wangshj@mail.sysu.edu.c [Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, Institute of Optoelectronic and Functional Composite Materials, Sun Yat-Sen University, Guangzhou 510275 (China); Xiao Min [Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, Institute of Optoelectronic and Functional Composite Materials, Sun Yat-Sen University, Guangzhou 510275 (China); Meng Yuezhong, E-mail: mengyzh@mail.sysu.edu.c [Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, Institute of Optoelectronic and Functional Composite Materials, Sun Yat-Sen University, Guangzhou 510275 (China)
2010-12-15
Novel sulfonated poly(arylene ether sulfone)s with electron-withdrawing sulfone groups in each repeat unit were synthesized via step polymerization followed by post-sulfonation using chlorosulfonic acid. The sulfonation degree can be readily controlled by adjusting the feed ratio of the repeat unit of polymers to chlorosulfonic acid. The synthesized polymers are soluble in common aprotic solvents such as dimethyl sulfoxide, N,N'-dimethylacetamide and dimethylformamide, and can be cast into transparent membranes from their solutions. The ion exchange capacity, water uptake, swelling ratio, sulfonation degree, mechanical property, oxidative property, thermal property and proton conductivity were investigated in detail using different methodologies. As an objective to apply these polymers as separators for vanadium redox flow battery, the VO{sup 2+} permeability and cell performance for the single cell were examined and assessed.
Salberger, Olof; Korepin, Vladimir
We introduce a new model of interacting spin 1/2. It describes interactions of three nearest neighbors. The Hamiltonian can be expressed in terms of Fredkin gates. The Fredkin gate (also known as the controlled swap gate) is a computational circuit suitable for reversible computing. Our construction generalizes the model presented by Peter Shor and Ramis Movassagh to half-integer spins. Our model can be solved by means of Catalan combinatorics in the form of random walks on the upper half plane of a square lattice (Dyck walks). Each Dyck path can be mapped on a wave function of spins. The ground state is an equally weighted superposition of Dyck walks (instead of Motzkin walks). We can also express it as a matrix product state. We further construct a model of interacting spins 3/2 and greater half-integer spins. The models with higher spins require coloring of Dyck walks. We construct a SU(k) symmetric model (where k is the number of colors). The leading term of the entanglement entropy is then proportional to the square root of the length of the lattice (like in the Shor-Movassagh model). The gap closes as a high power of the length of the lattice [5, 11].
Teleportation of N-particle entangled W state via entanglement swapping
Institute of Scientific and Technical Information of China (English)
Zhan You-Bang
2004-01-01
A scheme for teleporting an unknown N-particle entangled W state is proposed via entanglement swapping. In this scheme, N maximally entangled particle pairs are used as quantum channel. As a special case, the teleportation of an unknown four-particle entangled W state is studied.
Entanglement dynamics after quantum quenches in generic integrable systems
Directory of Open Access Journals (Sweden)
Vincenzo Alba, Pasquale Calabrese
2018-03-01
Full Text Available The time evolution of the entanglement entropy in non-equilibrium quantum systems provides crucial information about the structure of the time-dependent state. For quantum quench protocols, by combining a quasiparticle picture for the entanglement spreading with the exact knowledge of the stationary state provided by Bethe ansatz, it is possible to obtain an exact and analytic description of the evolution of the entanglement entropy. Here we discuss the application of these ideas to several integrable models. First we show that for non-interacting systems, both bosonic and fermionic, the exact time-dependence of the entanglement entropy can be derived by elementary techniques and without solving the dynamics. We then provide exact results for interacting spin chains that are carefully tested against numerical simulations. Finally, we apply this method to integrable one-dimensional Bose gases (Lieb-Liniger model both in the attractive and repulsive regimes. We highlight a peculiar behaviour of the entanglement entropy due to the absence of a maximum velocity of excitations.
Protecting single-photon entanglement with practical entanglement source
Zhou, Lan; Ou-Yang, Yang; Wang, Lei; Sheng, Yu-Bo
2017-06-01
Single-photon entanglement (SPE) is important for quantum communication and quantum information processing. However, SPE is sensitive to photon loss. In this paper, we discuss a linear optical amplification protocol for protecting SPE. Different from the previous protocols, we exploit the practical spontaneous parametric down-conversion (SPDC) source to realize the amplification, for the ideal entanglement source is unavailable in current quantum technology. Moreover, we prove that the amplification using the entanglement generated from SPDC source as auxiliary is better than the amplification assisted with single photons. The reason is that the vacuum state from SPDC source will not affect the amplification, so that it can be eliminated automatically. This protocol may be useful in future long-distance quantum communications.
From entanglement witness to generalized Catalan numbers
Cohen, E.; Hansen, T.; Itzhaki, N.
2016-07-01
Being extremely important resources in quantum information and computation, it is vital to efficiently detect and properly characterize entangled states. We analyze in this work the problem of entanglement detection for arbitrary spin systems. It is demonstrated how a single measurement of the squared total spin can probabilistically discern separable from entangled many-particle states. For achieving this goal, we construct a tripartite analogy between the degeneracy of entanglement witness eigenstates, tensor products of SO(3) representations and classical lattice walks with special constraints. Within this framework, degeneracies are naturally given by generalized Catalan numbers and determine the fraction of states that are decidedly entangled and also known to be somewhat protected against decoherence. In addition, we introduce the concept of a “sterile entanglement witness”, which for large enough systems detects entanglement without affecting much the system’s state. We discuss when our proposed entanglement witness can be regarded as a sterile one.
Experimental distribution of entanglement with separable carriers
Fedrizzi, Alessandro; Zuppardo, Margherita; Gillett, Geoff; Broome, Matthew; de Almeida, Marcelo; Paternostro, Mauro; White, Andrew; Paterek, Tomasz
2014-03-01
Quantum networks will allow us to overcome distance limitations in quantum communication, and to share quantum computing tasks between remote quantum processors. The key requirement for quantum networking is the distribution of entanglement between nodes. Surprisingly, entanglement can be generated across a network without directly being communicated between nodes. In contrast to information gain, which cannot exceed the communicated information, the entanglement gain is bounded by the communicated quantum discord, a more general measure of quantum correlation that includes but is not limited to entanglement. Here we report an experiment in which two communicating parties who share three initially separable photonic qubits are entangled by exchange of a carrier photon that is not entangled with either party at all times. We show that distributing entanglement with separable carriers is resilient to noise and in some cases becomes the only way of distributing entanglement over noisy environments.
Separability criteria for genuine multiparticle entanglement
Guhne, O.; Seevinck, M.P.|info:eu-repo/dai/nl/304847399
2010-01-01
We present a method to derive separability criteria for different classes of multiparticle entanglement, especially genuine multiparticle entanglement. The resulting criteria are necessary and sufficient for certain families of states. This, for example, completely solves the problem of classifying
Separability Criteria for Genuine Multiparticle Entanglement
Guehne, O.; Seevinck, M.P.
2010-01-01
We present a method to derive separability criteria for different classes of multiparticle entanglement, especially genuine multiparticle entanglement. The resulting criteria are necessary and sufficient for certain families of states. This, for example, completely solves the problem of classifying
HMSRP Hawaiian Monk Seal Entanglement data
National Oceanic and Atmospheric Administration, Department of Commerce — The data set contains records of all entanglements of Hawaiian monk seals in marine debris. The data set comprises records of seals entangled by derelict fishing...
Relay entanglement and clusters of correlated spins
Doronin, S. I.; Zenchuk, A. I.
2018-06-01
Considering a spin-1/2 chain, we suppose that the entanglement passes from a given pair of particles to another one, thus establishing the relay transfer of entanglement along the chain. Therefore, we introduce the relay entanglement as a sum of all pairwise entanglements in a spin chain. For more detailed studying the effects of remote pairwise entanglements, we use the partial sums collecting entanglements between the spins separated by up to a certain number of nodes. The problem of entangled cluster formation is considered, and the geometric mean entanglement is introduced as a characteristic of quantum correlations in a cluster. Generally, the lifetime of a cluster decreases with an increase in its size.
International Nuclear Information System (INIS)
Liu Tang-Kun; Zhang Kang-Long; Tao Yu; Shan Chuan-Jia; Liu Ji-Bing
2016-01-01
The temporal evolution of the degree of entanglement between two atoms in a system of the binomial optical field interacting with two arbitrary entangled atoms is investigated. The influence of the strength of the dipole–dipole interaction between two atoms, probabilities of the Bernoulli trial, and particle number of the binomial optical field on the temporal evolution of the atomic entanglement are discussed. The result shows that the two atoms are always in the entanglement state. Moreover, if and only if the two atoms are initially in the maximally entangled state, the entanglement evolution is not affected by the parameters, and the degree of entanglement is always kept as 1. (paper)
International Nuclear Information System (INIS)
Hendy, Gillian M.; Breslin, Carmel B.
2012-01-01
Highlights: ► DA and Sβ-CD form an Inclusion complex. ► Electrochemical techniques demonstrated this inclusion complex. ► The association constant, K, was computed as 331.3. ► 1:1 stoichiometry for the inclusion complex was deduced from a Job's plot analysis. ► NMR studies confirmed the structural information on the inclusion complex. - Abstract: Clear evidence for the formation of a weak inclusion complex between dopamine (DA) and a sulfonated β-CD host in aqueous solution was obtained using a combination of electrochemical approaches. Using cyclic voltammetry, a distinct increase in the oxidation potential of DA and a reduction in the peak oxidation current were observed on adding an excess concentration of the sulfonated β-CD to the electrolyte solution. Equally, a clear increase in the half-wave oxidation potential of DA was observed in the presence of the sulfonated β-CD using rotating disc voltammetry. The association constant, K, was computed as 331.3 ± 5.8, indicating the formation of a weak inclusion complex, while a 1:1 stoichiometry for the inclusion complex was deduced from a Job's plot analysis. The rate constant for the oxidation of DA was found to decrease on formation of the inclusion complex. This was attributed to higher reorganization energy for the oxidation of the included DA. These changes in the electrochemistry of DA were not observed when an excess of the smaller sulfonated α-CD was added to the electrolyte, indicating that these variations are not connected with simple electrostatic interactions between the protonated DA and the anionic sulfonated groups. It is proposed that the aromatic ring of the DA molecule includes within the cyclodextrin cavity, while the protonated amine group remains outside the cavity, bound electrostatically with the anionic sulfonated groups.
Novel high-performance nanocomposite proton exchange membranes based on poly (ether sulfone)
Energy Technology Data Exchange (ETDEWEB)
Hasani-Sadrabadi, Mohammad Mahdi [Polymer Engineering Department, Amirkabir University of Technology, Tehran (Iran); Biomedical Engineering Department, Amirkabir University of Technology, Tehran (Iran); Dashtimoghadam, Erfan; Ghaffarian, Seyed Reza [Polymer Engineering Department, Amirkabir University of Technology, Tehran (Iran); Hasani Sadrabadi, Mohammad Hossein [Faculty of Social and Economics Science, Alzahra University, Tehran (Iran); Heidari, Mahdi [Graduate School of Management and Economics, Sharif University of Technology, Tehran (Iran); Moaddel, Homayoun [Department of Materials Science and Engineering, University of California, Los Angeles, CA (United States)
2010-01-15
In the present research, proton exchange membranes based on partially sulfonated poly (ether sulfone) (S-PES) with various degrees of sulfonation were synthesized. It was found that the increasing of sulfonation degree up to 40% results in the enhancement of water uptake, ion exchange capacity and proton conductivity properties of the prepared membranes to 28.1%, 1.59 meq g{sup -1}, and 0.145 S cm{sup -1}, respectively. Afterwards, nanocomposite membranes based on S-PES (at the predetermined optimum sulfonation degree) containing various loading weights of organically treated montmorillonite (OMMT) were prepared via the solution intercalation technique. X-ray diffraction patterns revealed the exfoliated structure of OMMT in the macromolecular matrices. The S-PES nanocomposite membrane with 3.0 wt% of OMMT content showed the maximum selectivity parameter of about 520,000 S s cm{sup -3} which is related to the high conductivity of 0.051 S cm{sup -1} and low methanol permeability of 9.8 x 10{sup -8} cm{sup 2} s{sup -1}. Furthermore, single cell DMFC fuel cell performance test with 4 molar methanol concentration showed a high power density (131 mW cm{sup -2}) of the nanocomposite membrane at the optimum composition (40% of sulfonation and 3.0 wt% of OMMT loading) compared to the Nafion {sup registered} 117 membrane (114 mW cm{sup -2}). Manufactured nanocomposite membranes thanks to their high selectivity, ease of preparation and low cost could be suggested as the ideal candidate for the direct methanol fuel cell applications. (author)
Quantum entanglement and special relativity
International Nuclear Information System (INIS)
Nishikawa, Yoshihisa
2008-01-01
Quantum entanglement was suggested by Einstein to indicate that quantum mechanics was incomplete. However, against Einstein's expectation, the phenomenon due to quantum entanglement has been verified by experiments. Recently, in quantum information theory, it has been also treated as a resource for quantum teleportation and so on. In around 2000, it is recognized that quantum correlations between two particles of one pair state in an entangled spin-state are affected by the non-trivial effect due to the successive Lorentz transformation. This relativistic effect is called the Wigner rotation. The Wigner rotation has to been taken into account when we observe spin-correlation of moving particles in a different coordinate frame. In this paper, first, we explain quantum entanglement and its modification due to the Wigner rotation. After that, we introduce an extended model instead of one pair state model. In the extended model, quantum entanglement state is prepared as a superposition state of various pair states. We have computed the von Neumann entropy and the Shannon entropy to see the global behavior of variation for the spin correlation due to the relativistic effect. We also discuss distinguishability between the two particles of the pair. (author)
Quantum walks with entangled coins
International Nuclear Information System (INIS)
Venegas-Andraca, S E; Ball, J L; Burnett, K; Bose, S
2005-01-01
We present a mathematical formalism for the description of un- restricted quantum walks with entangled coins and one walker. The numerical behaviour of such walks is examined when using a Bell state as the initial coin state, with two different coin operators, two different shift operators, and one walker. We compare and contrast the performance of these quantum walks with that of a classical random walk consisting of one walker and two maximally correlated coins as well as quantum walks with coins sharing different degrees of entanglement. We illustrate that the behaviour of our walk with entangled coins can be very different in comparison to the usual quantum walk with a single coin. We also demonstrate that simply by changing the shift operator, we can generate widely different distributions. We also compare the behaviour of quantum walks with maximally entangled coins with that of quantum walks with non-entangled coins. Finally, we show that the use of different shift operators on two and three qubit coins leads to different position probability distributions in one- and two-dimensional graphs
Communication cost of entanglement transformations
International Nuclear Information System (INIS)
Hayden, Patrick; Winter, Andreas
2003-01-01
We study the amount of communication needed for two parties to transform some given joint pure state into another one, either exactly or with some fidelity. Specifically, we present a method to lower bound this communication cost even when the amount of entanglement does not increase. Moreover, the bound applies even if the initial state is supplemented with unlimited entanglement in the form of EPR (Einstein-Podolsky-Rosen) pairs and the communication is allowed to be quantum mechanical. We then apply the method to the determination of the communication cost of asymptotic entanglement concentration and dilution. While concentration is known to require no communication whatsoever, the best known protocol for dilution, discovered by H.-K. Lo and S. Popescu [Phys. Rev. Lett. 83, 1459 (1999)], requires exchange of a number of bits that is of the order of the square root of the number of EPR pairs. Here we prove a matching lower bound of the same asymptotic order, demonstrating the optimality of the Lo-Popescu protocol up to a constant factor and establishing the existence of a fundamental asymmetry between the concentration and dilution tasks. We also discuss states for which the minimal communication cost is proportional to their entanglement, such as the states recently introduced in the context of 'embezzling entanglement' (W. van Dam and P. Hayden, e-print quant-ph/0201041)
Entanglement in mutually unbiased bases
Energy Technology Data Exchange (ETDEWEB)
Wiesniak, M; Zeilinger, A [Vienna Center for Quantum Science and Technology (VCQ), Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna (Austria); Paterek, T, E-mail: tomasz.paterek@nus.edu.sg [Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore (Singapore)
2011-05-15
One of the essential features of quantum mechanics is that most pairs of observables cannot be measured simultaneously. This phenomenon manifests itself most strongly when observables are related to mutually unbiased bases. In this paper, we shed some light on the connection between mutually unbiased bases and another essential feature of quantum mechanics, quantum entanglement. It is shown that a complete set of mutually unbiased bases of a bipartite system contains a fixed amount of entanglement, independent of the choice of the set. This has implications for entanglement distribution among the states of a complete set. In prime-squared dimensions we present an explicit experiment-friendly construction of a complete set with a particularly simple entanglement distribution. Finally, we describe the basic properties of mutually unbiased bases composed of product states only. The constructions are illustrated with explicit examples in low dimensions. We believe that the properties of entanglement in mutually unbiased bases may be one of the ingredients to be taken into account to settle the question of the existence of complete sets. We also expect that they will be relevant to applications of bases in the experimental realization of quantum protocols in higher-dimensional Hilbert spaces.
International Nuclear Information System (INIS)
Lasagni, Andres F.; Shao, Peng; Hendricks, Jeffrey L.; Shaw, Charles M.; Martin, David C.; Das, Suman
2010-01-01
A simple optical interference method for the fabrication of simply periodic and periodic with a substructure on poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate) using femtosecond laser interference patterns is demonstrated. The femtosecond laser pulse was split by a diffractive beam splitter and overlapped with two lenses. Homogeneous periodic arrays could be fabricated even using a single laser pulse. In addition, multipulse irradiation resulted in reproducible sub-wavelength ripples oriented perpendicularly to the laser polarization with spatial period from 170 to 220 nm (around one-fourth of the laser wavelength). In addition, the observed size of the spatial period was not affected by the number of incident laser pulses or accumulated energy density. Using high energy pulses it was possible to completely remove the PEDOT:PSS layer without inducing damage to the underneath substrate.
Entangled Coherent States Generation in two Superconducting LC Circuits
International Nuclear Information System (INIS)
Chen Meiyu; Zhang Weimin
2008-01-01
We proposed a novel pure electronic (solid state) device consisting of two superconducting LC circuits coupled to a superconducting flux qubit. The entangled coherent states of the two LC modes is generated through the measurement of the flux qubit states. The interaction of the flux qubit and two LC circuits is controlled by the external microwave control lines. The geometrical structure of the LC circuits is adjustable and makes a strong coupling between them achievable. This entangled coherent state generator can be realized by using the conventional microelectronic fabrication techniques which increases the feasibility of the experiment.
Spatial EPR entanglement in atomic vapor quantum memory
Parniak, Michal; Dabrowski, Michal; Wasilewski, Wojciech
Spatially-structured quantum states of light are staring to play a key role in modern quantum science with the rapid development of single-photon sensitive cameras. In particular, spatial degree of freedom holds a promise to enhance continous-variable quantum memories. Here we present the first demonstration of spatial entanglement between an atomic spin-wave and a photon measured with an I-sCMOS camera. The system is realized in a warm atomic vapor quantum memory based on rubidium atoms immersed in inert buffer gas. In the experiment we create and characterize a 12-dimensional entangled state exhibiting quantum correlations between a photon and an atomic ensemble in position and momentum bases. This state allows us to demonstrate the Einstein-Podolsky-Rosen paradox in its original version, with an unprecedented delay time of 6 μs between generation of entanglement and detection of the atomic state.
Entanglement entropy in random quantum spin-S chains
International Nuclear Information System (INIS)
Saguia, A.; Boechat, B.; Continentino, M. A.; Sarandy, M. S.
2007-01-01
We discuss the scaling of entanglement entropy in the random singlet phase (RSP) of disordered quantum magnetic chains of general spin S. Through an analysis of the general structure of the RSP, we show that the entanglement entropy scales logarithmically with the size of a block, and we provide a closed expression for this scaling. This result is applicable for arbitrary quantum spin chains in the RSP, being dependent only on the magnitude S of the spin. Remarkably, the logarithmic scaling holds for the disordered chain even if the pure chain with no disorder does not exhibit conformal invariance, as is the case for Heisenberg integer-spin chains. Our conclusions are supported by explicit evaluations of the entanglement entropy for random spin-1 and spin-3/2 chains using an asymptotically exact real-space renormalization group approach
Bulk locality and entanglement swapping in AdS/CFT
Energy Technology Data Exchange (ETDEWEB)
Kelly, William R. [Center for Quantum Mathematics and Physics (QMAP),Department of Physics, University of California,Davis, CA 95616 (United States)
2017-03-29
Localized bulk excitations in AdS/CFT are produced by operators which modify the pattern of entanglement in the boundary state. We show that simple models — consisting of entanglement swapping operators acting on a qubit system or a free field theory — capture qualitative features of gravitational backreaction and reproduce predictions of the Ryu-Takayanagi formula. These entanglement swapping operators naturally admit multiple representations associated with different degrees of freedom, thereby reproducing the code subspace structure emphasized by Almheiri, Dong, and Harlow. We also show that the boundary Reeh-Schlieder theorem implies that equivalence of certain operators on a code subspace necessarily breaks down when non-perturbative effects are taken into account (as is expected based on bulk arguments).
Energy entanglement relation for quantum energy teleportation
Energy Technology Data Exchange (ETDEWEB)
Hotta, Masahiro, E-mail: hotta@tuhep.phys.tohoku.ac.j [Department of Physics, Faculty of Science, Tohoku University, Sendai 980-8578 (Japan)
2010-07-26
Protocols of quantum energy teleportation (QET), while retaining causality and local energy conservation, enable the transportation of energy from a subsystem of a many-body quantum system to a distant subsystem by local operations and classical communication through ground-state entanglement. We prove two energy-entanglement inequalities for a minimal QET model. These relations help us to gain a profound understanding of entanglement itself as a physical resource by relating entanglement to energy as an evident physical resource.
Minimal Entanglement Witness From Electrical Current Correlations
Brange, F.; Malkoc, O.; Samuelsson, P.
2016-01-01
Despite great efforts, an unambiguous demonstration of entanglement of mobile electrons in solid state conductors is still lacking. Investigating theoretically a generic entangler-detector setup, we here show that a witness of entanglement between two flying electron qubits can be constructed from only two current cross correlation measurements, for any nonzero detector efficiencies and non-collinear polarization vectors. We find that all entangled pure states, but not all mixed ones, can be ...
Structure, Ion Transport, and Rheology of Nanoparticle Salts
Wen, Yu Ho
2014-07-08
Above a critical surface chemistry-dependent particle loading associated with nanoscale interparticle spacing, ligand-ligand interactions-both electrostatic and steric-come into play and govern the structure and dynamics of charged oligomer-functionalized nanoparticle suspensions. We report in particular on the structure, ion transport, and rheology of suspensions of nanoparticle salts created by cofunctionalization of silica particles with tethered sulfonate salts and oligomers. Dispersion of the hairy ionic particles into medium and high dielectric constant liquids yields electrolytes with unique structure and transport properties. We find that electrostatic repulsion imparted by ion dissociation can be tuned to control the dispersion state and rheology through counterion size (i.e., Li+, Na+, and K+) and dielectric properties of the dispersing medium. Analysis of small-angle X-ray scattering (SAXS) structure factors and the mechanical modulus shows that when the interparticle spacing approaches nanometer dimensions, weakly entangled anchored ligands experience strong and long-lived topological constraints analogous to those normally found in well-entangled polymeric fluids. This finding provides insight into the molecular origins of the surprisingly similar rubbery plateau moduli observed in hairy nanoparticle suspensions and entangled polymers of the same chemistry as the tethered ligands. Additionally, we find that a time-composition superposition (TCS) principle exists for the suspensions, which can be used to substantially extend the observation time over which dynamics are observed in jammed, soft glassy suspensions. Application of TCS reveals dynamical similarities between the suspensions and entangled solutions of linear polymer chains; i.e., a hairy particle trapped in a cage appears to exhibit analogous dynamics to a long polymer chain confined to a tube. © 2014 American Chemical Society.
Probing quantum entanglement in the Schwarzschild space-time beyond the single-mode approximation
He, Juan; Ding, Zhi-Yong; Ye, Liu
2018-05-01
In this paper, we deduce the vacuum structure for Dirac fields in the background of Schwarzschild space-time beyond the single-mode approximation and discuss the performance of quantum entanglement between particle and antiparticle modes of a Dirac field with Hawking effect. It is shown that Hawking radiation does not always destroy the physically accessible entanglement, and entanglement amplification may happen in some cases. This striking result is different from that of the single-mode approximation, which holds that the Hawking radiation can only destroy entanglement. Lastly, we analyze the physically accessible entanglement relation outside the event horizon and demonstrate that the monogamy inequality is constantly established regardless of the choice of given parameters.
Zenchuk, A. I.
2010-01-01
We {characterize the multipartite entanglement in a quantum system by the quantity} which vanishes if only the quantum system may be decomposed into two weakly entangled subsystems, unlike measures of multipartite entanglement introduced before. We refer to this {quantity} as the minimal entanglement of bipartite decompositions (MEBD). Big MEBD means that the system may not be decomposed into two weakly entangled subsystems. MEBD allows one to define, for instance, whether the given quantum s...
Energy Technology Data Exchange (ETDEWEB)
Toshio Kakui; Hidehiro Kamiya [Lion Corporation, Tokyo (Japan). Chemicals Research Laboratories, Chemicals Division
2004-06-01
This paper focused on the effect of sodium aromatic sulfonate in anionic polymer dispersants on the viscosity of coal-water mixtures (CWMs) with a Tatung coal powder. To determine the optimum molecular structure of a polymer dispersant for the minimum viscosity of a CWM, various anionic co-polymers with different hydrophilic and hydrophobic groups or different molecular weights were prepared, using various types of monomers. Anionic co-polymers with sodium aromatic sulfonate, such as sodium styrene-sulfonate and sodium naphthalene-sulfonate, reduced the viscosity of dense CWMs. In particular, a co-polymer of sodium styrene-sulfonate and sodium acrylate with a molar ratio of 70:30 and a molecular weight of {approximately} 10 000 gave the minimum viscosity of a 70 wt % CWM. To obtain a low viscosity for a CWM, a large electrostatic repulsive force with an absolute value of the zeta potential of the coal particles of {gt} 70 mV and {gt} 6.5 mg/g of adsorbed polymer on the coal surface were needed. The mixture of sodium polystyrene-sulfonate and sodium polyacrylate with a weight ratio of 50:50 also gave a low viscosity of 70 wt % CWM. On the basis of the results, the adsorption behavior of polymer dispersants on the coal surface is examined by measuring the wettability of coal powder pellets. 27 refs., 8 figs., 3 tabs.
Entropy-driven phase transitions of entanglement
Facchi, Paolo; Florio, Giuseppe; Parisi, Giorgio; Pascazio, Saverio; Yuasa, Kazuya
2013-05-01
We study the behavior of bipartite entanglement at fixed von Neumann entropy. We look at the distribution of the entanglement spectrum, that is, the eigenvalues of the reduced density matrix of a quantum system in a pure state. We report the presence of two continuous phase transitions, characterized by different entanglement spectra, which are deformations of classical eigenvalue distributions.
Maximally Entangled Multipartite States: A Brief Survey
International Nuclear Information System (INIS)
Enríquez, M; Wintrowicz, I; Życzkowski, K
2016-01-01
The problem of identifying maximally entangled quantum states of a composite quantum systems is analyzed. We review some states of multipartite systems distinguished with respect to certain measures of quantum entanglement. Numerical results obtained for 4-qubit pure states illustrate the fact that the notion of maximally entangled state depends on the measure used. (paper)
Quantum entanglement and quantum computational algorithms
Indian Academy of Sciences (India)
Abstract. The existence of entangled quantum states gives extra power to quantum computers over their classical counterparts. Quantum entanglement shows up qualitatively at the level of two qubits. We demonstrate that the one- and the two-bit Deutsch-Jozsa algorithm does not require entanglement and can be mapped ...
Universal distortion-free entanglement concentration
International Nuclear Information System (INIS)
Matsumoto, Keiji; Hayashi, Masahito
2007-01-01
We propose a new protocol of universal entanglement concentration, which converts many copies of an unknown pure state to an exact maximally entangled state. The yield of the protocol, which is outputted as a classical information, is probabilistic, and achieves the entropy rate with high probability, just as nonuniversal entanglement concentration protocols do
Quantum teleportation of entangled squeezed vacuum states
Institute of Scientific and Technical Information of China (English)
蔡新华
2003-01-01
An optical scheme for probabilistic teleporting entangled squeezed vacuum states (SVS) is proposed. In this scheme,the teleported state is a bipartite entangled SVS,and the quantum channel is a tripartite entangled SVS.The process of the teleportation is achieved by using a 50/50 symmetric beamsplitter and photon detectors with the help of classical information.
International Nuclear Information System (INIS)
Lim, Youngdon; Lee, Hyunchul; Lee, Soonho; Jang, Hohyoun; Hossain, Md. Awlad; Cho, Younggil; Kim, Taeho; Hong, Youngtaik; Kim, Whangi
2014-01-01
A new sulfonated poly(phenylene sulfone) polymer (SPPS) was synthesized by Diels-Alder polymerization from 1,4-bis(2,4,5-triphenylcyclopentadienone)benzene (BTPCPB) and 4,4′-diethynylphenylsulfone, and followed by sulfonation reaction with chlorosulfuric acid. A series of sulfonated poly(phenylene sulfone)s (SPPS) with different degrees of sulfonation was prepared in a controllable manner with chlorosulfuric acid. These polymers showed good solubility in aprotic polar solvents, dimethyl acetamide (DMAC) and dimethyl sulfoxide (DMSO). Three different polymer membranes were studied by 1 H NMR spectroscopy, and thermogravimetric analysis (TGA). The ion exchange capacity (IEC) and proton conductivity of SPPS were evaluated according to the degrees of sulfonation. The water uptake (WU) of the synthesized SPPS membranes ranged from 38%∼75%, compared with 32% for Nafion 211 ® at 80 °C. The SPPS membranes exhibited proton conductivities (at 80 °C under 90% RH) of 110.2 mS/cm compared with 102.7 mS/cm for Nafion 211 ® . Power density was performed by single cell and showed similar to Nafion value
Entanglement in open quantum systems
International Nuclear Information System (INIS)
Isar, A.
2007-01-01
In the framework of the theory of open systems based on quantum dynamical semigroups, we solve the master equation for two independent bosonic oscillators interacting with an environment in the asymptotic long-time regime. We give a description of the continuous-variable entanglement in terms of the covariance matrix of the quantum states of the considered system for an arbitrary Gaussian input state. Using the Peres-Simon necessary and sufficient condition for separability of two-mode Gaussian states, we show that the two non-interacting systems immersed in a common environment and evolving under a Markovian, completely positive dynamics become asymptotically entangled for certain environments, so that their non-local quantum correlations exist in the long-time regime. (author) Key words: quantum information theory, open systems, quantum entanglement, inseparable states
Global entanglement in XXZ chains
International Nuclear Information System (INIS)
Canosa, N.; Rossignoli, R.
2006-01-01
We examine the thermal entanglement of XXZ-type Heisenberg chains in the presence of a uniform magnetic field along the z axes through the evaluation of the negativity associated with bipartitions of the whole system and subsystems. Limit temperatures for nonzero global negativities are shown to depend on the asymmetry Δ, but not on the uniform field, and can be much higher than those limiting pairwise entanglement. It is also shown that global bipartite entanglement may exist for T>0 even for Δ≥1, i.e., when the system is fully aligned (and hence separable) at T=0, and that the bipartition leading to the highest limit temperature depends on Δ
Measuring coherence with entanglement concurrence
Qi, Xianfei; Gao, Ting; Yan, Fengli
2017-07-01
Quantum coherence is a fundamental manifestation of the quantum superposition principle. Recently, Baumgratz et al (2014 Phys. Rev. Lett. 113 140401) presented a rigorous framework to quantify coherence from the view of theory of physical resource. Here we propose a new valid quantum coherence measure which is a convex roof measure, for a quantum system of arbitrary dimension, essentially using the generalized Gell-Mann matrices. Rigorous proof shows that the proposed coherence measure, coherence concurrence, fulfills all the requirements dictated by the resource theory of quantum coherence measures. Moreover, strong links between the resource frameworks of coherence concurrence and entanglement concurrence is derived, which shows that any degree of coherence with respect to some reference basis can be converted to entanglement via incoherent operations. Our work provides a clear quantitative and operational connection between coherence and entanglement based on two kinds of concurrence. This new coherence measure, coherence concurrence, may also be beneficial to the study of quantum coherence.
Berry phase in entangled systems
International Nuclear Information System (INIS)
Bertlmann, R.A.; Hasegawa, Y.; Hiesmayr, B.C.; Durstberger, C.
2005-01-01
Full text: The influence of the geometric phase, in particular the Berry phase, on an entangled spin-1/2 system is studied. We discuss in detail the case, where the geometric phase is generated only by one part of the Hilbert space. We are able to cancel the effects of the dynamical phase by using the 'spin-echo' method. We analyze how the Berry phase affects the Bell angles and the maximal violation of a CHSH-Bell inequality. Furthermore, we suggest an experimental realization of our setup within neutron interferometry. It is possible to create entanglement between different degrees of freedom (spin and spatial degree of freedom) for a single neutron. The influence of the geometrical phase on the entangled neutron state is tested experimentally which is work in progress. (author)
Entanglement of transverse modes in a pendular cavity
Mancini, Stefano; Gatti, Alessandra
2001-01-01
We study the phenomena that arise in the transverse structure of electromagnetic field impinging on a linear Fabry-Perot cavity with an oscillating end mirror. We find quantum correlations among transverse modes which can be considered as a signature of their entanglement.
Quantum Entanglements: Selected Papers
International Nuclear Information System (INIS)
Giannetto, E
2005-01-01
This book is a sort of tribute to Rob Clifton (1964-2002), Associate Professor of Philosophy and Associate Director of the Center for Philosophy of Science at the University of Pittsburgh, philosopher of physics and editor of the journal Studies in the History and Philosophy of Modern Physics, who tragically died of cancer. It contains fourteen papers by Clifton, for the most part written in collaboration with other authors (Jeffrey Bub (2), Sheldon Goldstein, Michael Dickson, Hans Halvorson (6), Adrian Kent (2)), published between 1995 and 2002. The choice of papers made by the editors is very impressive. They concern the foundations of quantum mechanics and quantum field theory. Among the issues discussed are the modal interpretations of quantum mechanics, the problems of hidden variables theories, non-locality, Bell's inequality, the Einstein-Podolsky-Rosen paradox, Lorentz invariance, de-coherence, non-contextuality, complementarity, entanglement and quantum information. A consequence of such investigations is that non-separability is a more complex issue than violation of Bell's inequality. Apart from the perspective one can follow-whether one agrees or not with Clifton-these papers are effective contributions to an understanding of the problems involved in the foundations of quantum mechanics. The most interesting parts, in my opinion, are related to the extension of the discussion of foundational problems to quantum field theory: on the algebraic approach, and on the twin concepts of particle and vacuum. Non-locality appears to be 'worse' in relativistic quantum field theory than in non-relativistic quantum mechanics. All the papers deal with relevant epistemological and even historical aspects of quantum mechanics interpretations, but all the issues are discussed from a technical, logical and mathematical approach. A complete bibliography of Clifton's papers is given at the end of the volume. (book review)
Entanglement evolution for quantum trajectories
International Nuclear Information System (INIS)
Vogelsberger, S; Spehner, D
2011-01-01
Entanglement is a key resource in quantum information. It can be destroyed or sometimes created by interactions with a reservoir. In recent years, much attention has been devoted to the phenomena of entanglement sudden death and sudden birth, i.e., the sudden disappearance or revival of entanglement at finite times resulting from a coupling of the quantum system to its environment. We investigate the evolution of the entanglement of noninteracting qubits coupled to reservoirs under monitoring of the reservoirs by means of continuous measurements. Because of these measurements, the qubits remain at all times in a pure state, which evolves randomly. To each measurement result (or 'realization') corresponds a quantum trajectory in the Hilbert space of the qubits. We show that for two qubits coupled to independent baths subjected to local measurements, the average of the qubits' concurrence over all quantum trajectories is either constant or decays exponentially. The corresponding decay rate depends on the measurement scheme only. This result contrasts with the entanglement sudden death phenomenon exhibited by the qubits' density matrix in the absence of measurements. Our analysis applies to arbitrary quantum jump dynamics (photon counting) as well as to quantum state diffusion (homodyne or heterodyne detections) in the Markov limit. We discuss the best measurement schemes to protect the entanglement of the qubits. We also analyze the case of two qubits coupled to a common bath. Then, the average concurrence can vanish at discrete times and may coincide with the concurrence of the density matrix. The results explained in this article have been presented during the 'Fifth International Workshop DICE2010' by the first author and have been the subject of a prior publication.
Bosonic behavior of entangled fermions
DEFF Research Database (Denmark)
C. Tichy, Malte; Alexander Bouvrie, Peter; Mølmer, Klaus
2012-01-01
Two bound, entangled fermions form a composite boson, which can be treated as an elementary boson as long as the Pauli principle does not affect the behavior of many such composite bosons. The departure of ideal bosonic behavior is quantified by the normalization ratio of multi-composite-boson st......Two bound, entangled fermions form a composite boson, which can be treated as an elementary boson as long as the Pauli principle does not affect the behavior of many such composite bosons. The departure of ideal bosonic behavior is quantified by the normalization ratio of multi...
Deterministic chaos in entangled eigenstates
Schlegel, K. G.; Förster, S.
2008-05-01
We investigate the problem of deterministic chaos in connection with entangled states using the Bohmian formulation of quantum mechanics. We show for a two particle system in a harmonic oscillator potential, that in a case of entanglement and three energy eigen-values the maximum Lyapunov-parameters of a representative ensemble of trajectories for large times develops to a narrow positive distribution, which indicates nearly complete chaotic dynamics. We also present in short results from two time-dependent systems, the anisotropic and the Rabi oscillator.
Deterministic chaos in entangled eigenstates
Energy Technology Data Exchange (ETDEWEB)
Schlegel, K.G. [Fakultaet fuer Physik, Universitaet Bielefeld, Postfach 100131, D-33501 Bielefeld (Germany)], E-mail: guenter.schlegel@arcor.de; Foerster, S. [Fakultaet fuer Physik, Universitaet Bielefeld, Postfach 100131, D-33501 Bielefeld (Germany)
2008-05-12
We investigate the problem of deterministic chaos in connection with entangled states using the Bohmian formulation of quantum mechanics. We show for a two particle system in a harmonic oscillator potential, that in a case of entanglement and three energy eigen-values the maximum Lyapunov-parameters of a representative ensemble of trajectories for large times develops to a narrow positive distribution, which indicates nearly complete chaotic dynamics. We also present in short results from two time-dependent systems, the anisotropic and the Rabi oscillator.
Deterministic chaos in entangled eigenstates
International Nuclear Information System (INIS)
Schlegel, K.G.; Foerster, S.
2008-01-01
We investigate the problem of deterministic chaos in connection with entangled states using the Bohmian formulation of quantum mechanics. We show for a two particle system in a harmonic oscillator potential, that in a case of entanglement and three energy eigen-values the maximum Lyapunov-parameters of a representative ensemble of trajectories for large times develops to a narrow positive distribution, which indicates nearly complete chaotic dynamics. We also present in short results from two time-dependent systems, the anisotropic and the Rabi oscillator
Holographic entanglement entropy close to crossover/phase transition in strongly coupled systems
Energy Technology Data Exchange (ETDEWEB)
Zhang, Shao-Jun, E-mail: sjzhang84@hotmail.com
2017-03-15
We investigate the behavior of entanglement entropy in the holographic QCD model proposed by Gubser et al. By choosing suitable parameters of the scalar self-interaction potential, this model can exhibit various types of phase structures: crossover, first order and second order phase transitions. We use entanglement entropy to probe the crossover/phase transition, and find that it drops quickly/suddenly when the temperature approaches the critical point which can be seen as a signal of confinement. Moreover, the critical behavior of the entanglement entropy suggests that we may use it to characterize the corresponding phase structures.
Towards Scalable Entangled Photon Sources with Self-Assembled InAs /GaAs Quantum Dots
Wang, Jianping; Gong, Ming; Guo, G.-C.; He, Lixin
2015-08-01
The biexciton cascade process in self-assembled quantum dots (QDs) provides an ideal system for realizing deterministic entangled photon-pair sources, which are essential to quantum information science. The entangled photon pairs have recently been generated in experiments after eliminating the fine-structure splitting (FSS) of excitons using a number of different methods. Thus far, however, QD-based sources of entangled photons have not been scalable because the wavelengths of QDs differ from dot to dot. Here, we propose a wavelength-tunable entangled photon emitter mounted on a three-dimensional stressor, in which the FSS and exciton energy can be tuned independently, thereby enabling photon entanglement between dissimilar QDs. We confirm these results via atomistic pseudopotential calculations. This provides a first step towards future realization of scalable entangled photon generators for quantum information applications.
Transverse entanglement migration in Hilbert space
International Nuclear Information System (INIS)
Chan, K. W.; Torres, J. P.; Eberly, J. H.
2007-01-01
We show that, although the amount of mutual entanglement of photons propagating in free space is fixed, the type of correlations between the photons that determine the entanglement can dramatically change during propagation. We show that this amounts to a migration of entanglement in Hilbert space, rather than real space. For the case of spontaneous parametric down-conversion, the migration of entanglement in transverse coordinates takes place from modulus to phase of the biphoton state and back again. We propose an experiment to observe this migration in Hilbert space and to determine the full entanglement
Characterization of two-qubit perfect entanglers
International Nuclear Information System (INIS)
Rezakhani, A.T.
2004-01-01
Here we consider perfect entanglers from another perspective. It is shown that there are some special perfect entanglers which can maximally entangle a full product basis. We explicitly construct a one-parameter family of such entanglers together with the proper product basis that they maximally entangle. This special family of perfect entanglers contains some well-known operators such as controlled-NOT (CNOT) and double-CNOT, but not √(SWAP). In addition, it is shown that all perfect entanglers with entangling power equal to the maximal value (2/9) are also special perfect entanglers. It is proved that the one-parameter family is the only possible set of special perfect entanglers. Also we provide an analytic way to implement any arbitrary two-qubit gate, given a proper special perfect entangler supplemented with single-qubit gates. Such gates are shown to provide a minimum universal gate construction in that just two of them are necessary and sufficient in implementation of a generic two-qubit gate
Continuous variable polarization entanglement, experiment and analysis
International Nuclear Information System (INIS)
Bowen, Warwick P; Treps, Nicolas; Schnabel, Roman; Ralph, Timothy C; Lam, Ping Koy
2003-01-01
We generate and characterize continuous variable polarization entanglement between two optical beams. We first produce quadrature entanglement, and by performing local operations we transform it into a polarization basis. We extend two entanglement criteria, the inseparability criteria proposed by Duan et al (2000 Phys. Rev. Lett. 84 2722) and the Einstein-Podolsky-Rosen (EPR) paradox criteria proposed by Reid and Drummond (1988 Phys. Rev. Lett. 60 2731), to Stokes operators; and use them to characterize the entanglement. Our results for the EPR paradox criteria are visualized in terms of uncertainty balls on the Poincare sphere. We demonstrate theoretically that using two quadrature entangled pairs it is possible to entangle three orthogonal Stokes operators between a pair of beams, although with a bound √3 times more stringent than for the quadrature entanglement
Continuous variable polarization entanglement, experiment and analysis
Energy Technology Data Exchange (ETDEWEB)
Bowen, Warwick P [Department of Physics, Faculty of Science, Australian National University, ACT 0200 (Australia); Treps, Nicolas [Department of Physics, Faculty of Science, Australian National University, ACT 0200 (Australia); Schnabel, Roman [Department of Physics, Faculty of Science, Australian National University, ACT 0200 (Australia); Ralph, Timothy C [Department of Physics, Centre for Quantum Computer Technology, University of Queensland, St Lucia, QLD 4072 (Australia); Lam, Ping Koy [Department of Physics, Faculty of Science, Australian National University, ACT 0200 (Australia)
2003-08-01
We generate and characterize continuous variable polarization entanglement between two optical beams. We first produce quadrature entanglement, and by performing local operations we transform it into a polarization basis. We extend two entanglement criteria, the inseparability criteria proposed by Duan et al (2000 Phys. Rev. Lett. 84 2722) and the Einstein-Podolsky-Rosen (EPR) paradox criteria proposed by Reid and Drummond (1988 Phys. Rev. Lett. 60 2731), to Stokes operators; and use them to characterize the entanglement. Our results for the EPR paradox criteria are visualized in terms of uncertainty balls on the Poincare sphere. We demonstrate theoretically that using two quadrature entangled pairs it is possible to entangle three orthogonal Stokes operators between a pair of beams, although with a bound {radical}3 times more stringent than for the quadrature entanglement.
Entanglement and decoherence in high energy physics
International Nuclear Information System (INIS)
Bertlmann, R.
2005-01-01
Full text: The phenomenon of entanglement occurs in very heavy quantum systems of particle physics. We find analogies but also differences to the entangled spin-1/2 or photon systems. In particular we discuss the features of entangled 'strangeness', the K-meson system, where a Bell inequality exists which has a remarkable connection to CP (charge conjugation and parity) and its violation. Stability of entangled quantum states is studied by allowing the system to interact with an environment. We consider possible decoherence of entangled 'beauty', the B-meson system, produced at the particle colliders at very high energies (10 GeV). Finally, we discuss a criterion for detecting entangled/separable states, a generalized Bell inequality and entanglement witness. We illustrate its geometric features by the two-spin example Alice and Bob. (author)
Entanglement in Gaussian matrix-product states
International Nuclear Information System (INIS)
Adesso, Gerardo; Ericsson, Marie
2006-01-01
Gaussian matrix-product states are obtained as the outputs of projection operations from an ancillary space of M infinitely entangled bonds connecting neighboring sites, applied at each of N sites of a harmonic chain. Replacing the projections by associated Gaussian states, the building blocks, we show that the entanglement range in translationally invariant Gaussian matrix-product states depends on how entangled the building blocks are. In particular, infinite entanglement in the building blocks produces fully symmetric Gaussian states with maximum entanglement range. From their peculiar properties of entanglement sharing, a basic difference with spin chains is revealed: Gaussian matrix-product states can possess unlimited, long-range entanglement even with minimum number of ancillary bonds (M=1). Finally we discuss how these states can be experimentally engineered from N copies of a three-mode building block and N two-mode finitely squeezed states
Classical-driving-assisted entanglement dynamics control
Energy Technology Data Exchange (ETDEWEB)
Zhang, Ying-Jie, E-mail: yingjiezhang@qfnu.edu.cn [Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University, Qufu 273165 (China); Han, Wei [Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University, Qufu 273165 (China); Xia, Yun-Jie, E-mail: yjxia@qfnu.edu.cn [Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University, Qufu 273165 (China); Fan, Heng, E-mail: hfan@iphy.ac.cn [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing, 100190 (China)
2017-04-15
We propose a scheme of controlling entanglement dynamics of a quantum system by applying the external classical driving field for two atoms separately located in a single-mode photon cavity. It is shown that, with a judicious choice of the classical-driving strength and the atom–photon detuning, the effective atom–photon interaction Hamiltonian can be switched from Jaynes–Cummings model to anti-Jaynes–Cummings model. By tuning the controllable atom–photon interaction induced by the classical field, we illustrate that the evolution trajectory of the Bell-like entanglement states can be manipulated from entanglement-sudden-death to no-entanglement-sudden-death, from no-entanglement-invariant to entanglement-invariant. Furthermore, the robustness of the initial Bell-like entanglement can be improved by the classical driving field in the leaky cavities. This classical-driving-assisted architecture can be easily extensible to multi-atom quantum system for scalability.
Optimal Entanglement Witnesses for Qubits and Qutrits
International Nuclear Information System (INIS)
Bertlmann, R.A.; Durstberger, K.; Hiesmayr, B.C.; Krammer, P.
2005-01-01
Full text: We give a review of the connection between an optimal entanglement witness and the Hilbert-Schmidt measure of entanglement (that is the minimal distance of an entangled state to the set of separable states): a generalized Bell inequality is derived within the concept of entanglement witnesses, in the sense that a violation of the inequality detects entanglement and not non-locality liKEX usual Bell inequalities do. It can be seen that the maximal violation equals the Hilbert-Schmidt measure. Furthermore, since finding the nearest separable state to a given entangled state is rather difficult, a method for checking an estimated nearest separable state is presented. This is illustrated with isotropic qubit and qutrit states; the Hilbert-Schmidt measure, the optimal entanglement witness and the maximal violation of the GBI are calculated for those cases. Possible generalizations for arbitrary dimensions are discussed. (author)
Bessel-Gaussian entanglement; presentation
CSIR Research Space (South Africa)
Mclaren, M
2013-07-01
Full Text Available mode Hologram Page 9 Violation of Bell’s inequality demonstrates entanglement © CSIR 2013 www.csir.co.za P ro b ab il it y Classical Quantum mechanical M. McLaren et al.,2012, Opt. Express, 20, 23589 Page 10 Comparison...
Transitivity of an entangled choice
International Nuclear Information System (INIS)
Makowski, Marcin; Piotrowski, Edward W
2011-01-01
We describe a quantum model of a simple choice game (constructed upon the entangled state of two qubits), which involves the fundamental problem of transitive-intransitive preferences. We compare attainability of optimal intransitive strategies in both classical and quantum models with the use of geometrical interpretation.
Entangling light in high dimensions
Pors, Jan Bardeus
2011-01-01
Quantum entanglement is a fundamental trait of quantum mechanics that causes the information about the properties of two (or more) objects to be inextricably linked. When a measurement on one of the objects is performed, the state of the other object is immediately altered, even when these objects
Directory of Open Access Journals (Sweden)
Shimoga D. Ganesh
2016-01-01
Full Text Available The present paper discusses the aspects of the synthesizing valeric acid based poly(ether sulfones with active carboxylic acid pendants (VALPSU from solution polymerization technique via nucleophilic displacement polycondensation reaction among 4,4′-dichlorodiphenyl sulfone (DCDPS and 4,4′-bis(4-hydroxyphenyl valeric acid (BHPA. The conditions necessary to synthesize and purify the polymer were investigated in some detail. The synthesized poly(ether sulfones comprise sulfone and ether linkages in addition to reactive carboxylic acid functionality; these active carboxylic acid functional groups were exploited to hold the phenyl sulphonic acid and phenyl phosphonic acid pendants. The phenyl sulphonic acid pendants in VALPSU were easily constructed by altering active carboxylic acid moieties by sulfanilic acid using N,N′-dicyclohexylcarbodiimide (DCC mediated mild synthetic route, whereas the latter one was built in two steps. Initially, polyphosphoric acid condensation with VALPSU by 4-bromoaniline and next straightforward palladium catalyzed synthetic route, in both of which acidic pendants are clenched by polymer backbone via amide linkage. Without impairing the primary polymeric backbone modified polymers were prepared by varying the stoichiometric ratios of respective combinations. All the polymers were physicochemically characterized and pressed into tablets; electrical contacts were established to study the dielectric properties. Finally, the influence of the acidic pendants on the dielectric properties was examined.
Poly (ether imide sulfone) membranes from solutions in ionic liquids
Kim, Dooli
2017-11-20
A membrane manufacture method based on non-volatile solvents and a high performance polymer, poly (ether imide sulfone) (EXTEM™), is proposed, as greener alternative to currently industrial process. We dissolved EXTEM™ in pure ionic liquids: 1-ethyl-3-methylimidalzolium thiocyanate ([EMIM]SCN), 1-butyl-3-methylimidalzolium thiocyanate ([BMIM]SCN), and 1-ethyl-3-methylimidalzolium acetate ([EMIM]OAc). The following polymer solution parameters were evaluated to optimize the manufacture: Gibbs free energy of mixing (G), intrinsic viscosity ([]) and hydrodynamic diameter. Membranes with sponge-like structure and narrow pore size distribution were obtained from solutions in [EMIM]SCN. They were tested for separation of proteins and deoxyribonucleic acids (DNA). Due to the polymer stability, we foresee that applications in more demanding chemical separations would be possible. [EMIM]SCN was 96 % purified and recovered after the membrane fabrication, contributing to the sustainability of the whole manufacturing process.
Displacement-enhanced entanglement distillation of single-mode-squeezed entangled states
DEFF Research Database (Denmark)
Tipsmark, Anders; Neergaard-Nielsen, Jonas Schou; Andersen, Ulrik Lund
2013-01-01
It has been shown that entanglement distillation of Gaussian entangled states by means of local photon subtraction can be improved by local Gaussian transformations. Here we show that a similar effect can be expected for the distillation of an asymmetric Gaussian entangled state that is produced...... by a single squeezed beam. We show that for low initial entanglement, our largely simplified protocol generates more entanglement than previous proposed protocols. Furthermore, we show that the distillation scheme also works efficiently on decohered entangled states as well as with a practical photon...
Quantum coherence and entanglement control for atom-cavity systems
Shu, Wenchong
Coherence and entanglement play a significant role in the quantum theory. Ideal quantum systems, "closed" to the outside world, remain quantum forever and thus manage to retain coherence and entanglement. Real quantum systems, however, are open to the environment and are therefore susceptible to the phenomenon of decoherence and disentanglement which are major hindrances to the effectiveness of quantum information processing tasks. In this thesis we have theoretically studied the evolution of coherence and entanglement in quantum systems coupled to various environments. We have also studied ways and means of controlling the decay of coherence and entanglement. We have studied the exact qubit entanglement dynamics of some interesting initial states coupled to a high-Q cavity containing zero photon, one photon, two photons and many photons respectively. We have found that an initially correlated environmental state can serve as an enhancer for entanglement decay or generation processes. More precisely, we have demonstrated that the degree of entanglement, including its collapse as well as its revival times, can be significantly modified by the correlated structure of the environmental modes. We have also studied dynamical decoupling (DD) technique --- a prominent strategy of controlling decoherence and preserving entanglement in open quantum systems. We have analyzed several DD control methods applied to qubit systems that can eliminate the system-environment coupling and prolong the quantum coherence time. Particularly, we have proposed a new DD sequence consisting a set of designed control operators that can universally protected an unknown qutrit state against colored phase and amplitude environment noises. In addition, in a non-Markovian regime, we have reformulated the quantum state diffusion (QSD) equation to incorporate the effect of the external control fields. Without any assumptions on the system-environment coupling and the size of environment, we have
Quantum entanglement: the unitary 8-vertex braid matrix with imaginary rapidity
International Nuclear Information System (INIS)
Chakrabarti, Amitabha; Chakraborti, Anirban; Jedidi, Aymen
2010-01-01
We study quantum entanglements induced on product states by the action of 8-vertex braid matrices, rendered unitary with purely imaginary spectral parameters (rapidity). The unitarity is displayed via the 'canonical factorization' of the coefficients of the projectors spanning the basis. This adds one more new facet to the famous and fascinating features of the 8-vertex model. The double periodicity and the analytic properties of the elliptic functions involved lead to a rich structure of the 3-tangle quantifying the entanglement. We thus explore the complex relationship between topological and quantum entanglement. (fast track communication)
(1 +1 )D Calculation Provides Evidence that Quantum Entanglement Survives a Firewall
Martín-Martínez, Eduardo; Louko, Jorma
2015-07-01
We analyze how preexisting entanglement between two Unruh-DeWitt particle detectors evolves when one of the detectors falls through a Rindler firewall in (1 +1 )-dimensional Minkowski space. The firewall effect is minor and does not wash out the detector-detector entanglement, in some regimes even preserving the entanglement better than Minkowski vacuum. The absence of cataclysmic events should continue to hold for young black hole firewalls. A firewall's prospective ability to resolve the information paradox must hence hinge on its detailed gravitational structure, presently poorly understood.
International Nuclear Information System (INIS)
Cui, H. T.; Yuan Di; Tian, J. L.
2010-01-01
The maximal overlap with the fully separable state for the multipartite entangled pure state with translational invariance is studied explicitly by some exact and numerical evaluations, focusing on the one-dimensional qubit system and some representative types of translational invariance. The results show that the translational invariance of the multipartite state could have an intrinsic effect on the determination of the maximal overlap and the nearest fully separable state for multipartite entangled states. Furthermore, a hierarchy of the basic entangled states with translational invariance is found, from which one could readily find the maximal overlap and a related fully separable state for the multipartite state composed of different translational invariance structures.
Li, Qing; Chen, Yu; Rowlett, Jarrett R; McGrath, James E; Mack, Nathan H; Kim, Yu Seung
2014-04-23
Structure-property-performance relationships of disulfonated poly(arylene ether sulfone) multiblock copolymer membranes were investigated for their use in direct methanol fuel cell (DMFC) applications. Multiple series of reactive polysulfone, polyketone, and polynitrile hydrophobic block segments having different block lengths and molecular composition were synthesized and reacted with a disulfonated poly(arylene ether sulfone) hydrophilic block segment by a coupling reaction. Large-scale morphological order of the multiblock copolymers evolved with the increase of block size that gave notable influence on mechanical toughness, water uptake, and proton/methanol transport. Chemical structural changes of the hydrophobic blocks through polar group, fluorination, and bisphenol type allowed further control of the specific properties. DMFC performance was analyzed to elicit the impact of structural variations of the multiblock copolymers. Finally, DMFC performances of selected multiblock copolymers were compared against that of the industrial standard Nafion in the DMFC system.
Local copying of orthogonal entangled quantum states
International Nuclear Information System (INIS)
Anselmi, Fabio; Chefles, Anthony; Plenio, Martin B
2004-01-01
In classical information theory one can, in principle, produce a perfect copy of any input state. In quantum information theory, the no cloning theorem prohibits exact copying of non-orthogonal states. Moreover, if we wish to copy multiparticle entangled states and can perform only local operations and classical communication (LOCC), then further restrictions apply. We investigate the problem of copying orthogonal, entangled quantum states with an entangled blank state under the restriction to LOCC. Throughout, the subsystems have finite dimension D. We show that if all of the states to be copied are non-maximally entangled, then novel LOCC copying procedures based on entanglement catalysis are possible. We then study in detail the LOCC copying problem where both the blank state and at least one of the states to be copied are maximally entangled. For this to be possible, we find that all the states to be copied must be maximally entangled. We obtain a necessary and sufficient condition for LOCC copying under these conditions. For two orthogonal, maximally entangled states, we provide the general solution to this condition. We use it to show that for D = 2, 3, any pair of orthogonal, maximally entangled states can be locally copied using a maximally entangled blank state. However, we also show that for any D which is not prime, one can construct pairs of such states for which this is impossible
Polyether sulfone membrane modeling and construction for the ...
African Journals Online (AJOL)
Polyether sulfone membrane modeling and construction for the removal of nitrate from water using ion interference sulfate and iron nano-particle. ... The aim of this study was constructed the polyether sulfone membrane and modelling it, and for checking impact pressure, the amount of iron nanoparticles and sulfate iron ...
21 CFR 177.2210 - Ethylene polymer, chloro-sulfonated.
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene polymer, chloro-sulfonated. 177.2210... as Components of Articles Intended for Repeated Use § 177.2210 Ethylene polymer, chloro-sulfonated. Ethylene polymer, chlorosulfonated as identified in this section may be safely used as an article or...
21 CFR 173.395 - Trifluoromethane sulfonic acid.
2010-04-01
...) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Specific Usage Additives § 173.395 Trifluoromethane sulfonic acid. Trifluoromethane sulfonic acid... acid) may safely be used in the production of cocoa butter substitute from palm oil (1-palmitoyl-2...
Aryl sulfonate based anticancer alkylating agents.
Sheikh, Hamdullah Khadim; Arshad, Tanzila; Kanwal, Ghazala
2018-05-01
This research work revolves around synthesis of antineoplastic alkylating sulfonate esters with dual alkylating sites for crosslinking of the DNA strands. These molecules were evaluated as potential antineoplastic cross linking alkylating agents by reaction with the nucleoside of Guanine DNA nucleobase at both ends of the synthesized molecule. Synthesis of the alkylating molecules and the crosslinking with the guanosine nucleoside was monitored by MALDITOF mass spectroscopy. The synthesized molecule's crosslinking or adduct forming rate with the nucleoside was compared with that of 1,4 butane disulfonate (busulfan), in form of time taken for the appearance of [M+H] + . It was found that aryl sulfonate leaving group was causing higher rate of nucleophilic attack by the Lewis basic site of the nucleobase. Furthermore, the rate was also found to be a function of electron withdrawing or donating nature of the substituent on the aryl ring. Compound with strong electron withdrawing substituent on the para position of the ring reacted fastest. Hence, new alkylating agents were synthesized with optimized or desired reactivity.
Undoped poly (phenyl sulfone) for radiation detection
International Nuclear Information System (INIS)
Nakamura, Hidehito; Shirakawa, Yoshiyuki; Sato, Nobuhiro; Kitamura, Hisashi; Takahashi, Sentaro
2015-01-01
Undoped aromatic ring polymers are potential scintillation materials. Here, we characterise poly (phenyl sulfone) (PPSU) for radiation detection. The amber-coloured transparent resin emits bluish-white fluorescence with 390-nm maximum. It has an excitation maximum of 340 nm, and has a density of 1.29 g/cm 3 . The effective refractive index based on its emission spectrum is 1.75. The light yield is almost equal to that of poly (ethylene terephthalate), which is a transparent resin. These results demonstrate that PPSU can be used as a component substrate in polymer blends for altering optical characteristics. - Highlights: • Poly (phenyl sulfone) (PPSU) has suitable characteristics as a scintillation material. • PPSU is an amber-coloured transparent resin that emits bluish white fluorescence with 390-nm maximum. • The 1.75 effective refractive index over the emission spectrum is relatively high. • The light yield is 0.95 times that of poly (ethylene terephthalate), which is a transparent resin. • PPSU can potentially alter optical characteristics in polymer blends
Smith, Graham; Wermuth, Urs D; Healy, Peter C
2007-07-01
The crystal structures of the proton-transfer compounds of ferron (8-hydroxy-7-iodoquinoline-5-sulfonic acid) with 4-chloroaniline and 4-bromoaniline, namely 4-chloroanilinium 8-hydroxy-7-iodoquinoline-5-sulfonate monohydrate, C(6)H(7)ClN(+) x C(9)H(5)INO(4)S(-) x H(2)O, and 4-bromoanilinium 8-hydroxy-7-iodoquinoline-5-sulfonate monohydrate, C(6)H(7)BrN(+) x C(9)H(5)INO(4)S(-) x H(2)O, have been determined. The compounds are isomorphous and comprise sheets of hydrogen-bonded cations, anions and water molecules which are extended into a three-dimensional framework structure through centrosymmetric R(2)(2)(10) O-H...N hydrogen-bonded ferron dimer interactions.
Physico-chemistry characterization of sulfonated polyacrylamide polymers for use in polymer flooding
Energy Technology Data Exchange (ETDEWEB)
Rashidi, Masoud
2010-07-01
Hydrolyzed polyacrylamide polymer (HPAM) as a feasible and effective viscosifier has been fully studied and used for polymer flooding processes in several oil field, e.g. Daqing oil field. It has been shown that Hydrolyzed polyacrylamide polymers (HPAM) may be a good choice for high temperature condition with no oxygen and no divalent ions presence. At high temperature and high salinity conditions, polymer may precipitates and loss their viscosyfing properties. Also adsorption and retention of polymer in porous medium may change rheological properties of polymers. Thus, the viscosyfing property of polymers is influenced by several important parameters, e.g. salinity, hardness, temperature, adsorption, retention, polymer structure, and etc. By replacing some of carboxylate group of HPAM with another monomer, e.g. sodium salt of acrylic acid and 2-acrylamido-2-methylpropane sulfonic acid (AMPS), effect of high salinity/hardness and temperature seems to be reduced specially for the samples with higher percentage of AMPS co-monomer. The ultimate aim of this work is to develop an understanding of the sulfonated polyacrylamide copolymers with a range of different sulfonation and molecular weight at high salinity and high temperature conditions. Most of the work in this thesis deals with viscosity and adsorption/retention measurements of the sulfonated copolymers and HPAM. The factors which may affect the viscosity of the polymers and have been identified in this work as most likely influencing also adsorption and retention of the polymers are shear rate, polymer concentration, sulfonation degree, molecular weight, NaCl concentration, divalent ion concentration, and temperature. (Author)
Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route
Energy Technology Data Exchange (ETDEWEB)
Chang, Binbin, E-mail: changbinbin806@163.com; Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng, E-mail: baochengyang@yahoo.com
2015-01-15
Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl{sub 2} using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl{sub 2} at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of –SO{sub 3}H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N{sub 2} adsorption–desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of –SO{sub 3}H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of –SO{sub 3}H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and –SO{sub 3}H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles. - Graphical abstract: Sulfonated porous carbon nanospheres with high surface area and superior catalytic performance were prepared by a facile chemical activation route. - Highlights: • Porous carbon spheres solid acid prepared by a facile chemical activation. • It owns high surface area, superior porosity and uniform spherical morphology. • It possesses
Entanglement transfer from electrons to photons in quantum dots: an open quantum system approach
International Nuclear Information System (INIS)
Budich, Jan C; Trauzettel, Bjoern
2010-01-01
We investigate entanglement transfer from a system of two spin-entangled electron-hole pairs, each placed in a separate single mode cavity, to the photons emitted due to cavity leakage. Dipole selection rules and a splitting between the light hole and the heavy hole subbands are the crucial ingredients establishing a one-to-one correspondence between electron spins and circular photon polarizations. To account for the measurement of the photons as well as dephasing effects, we choose a stochastic Schroedinger equation and a conditional master equation approach, respectively. The influence of interactions with the environment as well as asymmetries in the coherent couplings on the photon entanglement is analysed for two concrete measurement schemes. The first one is designed to violate the Clauser-Horne-Shimony-Holt (CHSH) inequality, while the second one employs the visibility of interference fringes to prove the entanglement of the photons. Because of the spatial separation of the entangled electronic system over two quantum dots, a successful verification of entangled photons emitted by this system would imply the detection of nonlocal spin entanglement of massive particles in a solid state structure.
Dynamics and manipulation of entanglement in coupled harmonic systems with many degrees of freedom
Plenio, M. B.; Hartley, J.; Eisert, J.
2004-03-01
We study the entanglement dynamics of a system consisting of a large number of coupled harmonic oscillators in various configurations and for different types of nearest-neighbour interactions. For a one-dimensional chain, we provide compact analytical solutions and approximations to the dynamical evolution of the entanglement between spatially separated oscillators. Key properties such as the speed of entanglement propagation, the maximum amount of transferred entanglement and the efficiency for the entanglement transfer are computed. For harmonic oscillators coupled by springs, corresponding to a phonon model, we observe a non-monotonic transfer efficiency in the initially prepared amount of entanglement, i.e. an intermediate amount of initial entanglement is transferred with the highest efficiency. In contrast, within the framework of the rotating-wave approximation (as appropriate, e.g. in quantum optical settings) one finds a monotonic behaviour. We also study geometrical configurations that are analogous to quantum optical devices (such as beamsplitters and interferometers) and observe characteristic differences when initially thermal or squeezed states are entering these devices. We show that these devices may be switched on and off by changing the properties of an individual oscillator. They may therefore be used as building blocks of large fixed and pre-fabricated but programmable structures in which quantum information is manipulated through propagation. We discuss briefly possible experimental realizations of systems of interacting harmonic oscillators in which these effects may be confirmed experimentally.
Dirac bi-spinor entanglement under local noise and its simulation by Jaynes-Cummings interactions
Bittencourt, Victor A. S. V.; Bernardini, Alex E.
2017-08-01
A description of the effects of the local noise on the quantum entanglement constraining the internal degrees of freedom of Dirac bi-spinor structures driven by arbitrary Poincaré invariant potentials is proposed. Given that the Dirac equation dynamics including external potentials can be simulated by a suitable four level trapped ion setup, quantum entanglement of two-qubit ionic states with quantum numbers related to the total angular momentum and to its projection onto the direction of the external magnetic field (used for lift the ions degeneracy), are recovered by means of a suitable ansatz. This formalism allows the inclusion of noise effects, which leads to disentanglement in the four level trapped ion quantum system. Our results indicate the role of interactions in bi-spinor entanglement, as well as the description of disentanglement in ionic states under local noises. For a state prepared initially in one of the ionic levels, local noise induces entanglement sudden death followed by sudden revivals driven by the noiseless dynamics of the state. Residual quantum correlations are observed in the intervals where such state is separable. Schrödinger cat and Werner states partially loose their initial entanglement content due to the interaction with the noisy environment but presenting entanglement oscillations without sudden death. Because Dirac equation describes low energy excitations of mono layer and bi-layer graphene, the formalism can also be applied to compute, for instance, electron-hole or electron/electron entanglement in various circumstances.
Bisphenol A sulfonation is impaired in metabolic and liver disease
International Nuclear Information System (INIS)
Yalcin, Emine B.; Kulkarni, Supriya R.; Slitt, Angela L.; King, Roberta
2016-01-01
Background: Bisphenol A (BPA) is a widely used industrial chemical and suspected endocrine disruptor to which humans are ubiquitously exposed. The liver metabolizes and facilitates BPA excretion through glucuronidation and sulfonation. The sulfotransferase enzymes contributing to BPA sulfonation (detected in human and rodents) is poorly understood. Objectives: To determine the impact of metabolic and liver disease on BPA sulfonation in human and mouse livers. Methods: The capacity for BPA sulfonation was determined in human liver samples that were categorized into different stages of metabolic and liver disease (including obesity, diabetes, steatosis, and cirrhosis) and in livers from ob/ob mice. Results: In human liver tissues, BPA sulfonation was substantially lower in livers from subjects with steatosis (23%), diabetes cirrhosis (16%), and cirrhosis (18%), relative to healthy individuals with non-fatty livers (100%). In livers of obese mice (ob/ob), BPA sulfonation was lower (23%) than in livers from lean wild-type controls (100%). In addition to BPA sulfonation activity, Sult1a1 protein expression decreased by 97% in obese mouse livers. Conclusion: Taken together these findings establish a profoundly reduced capacity of BPA elimination via sulfonation in obese or diabetic individuals and in those with fatty or cirrhotic livers versus individuals with healthy livers. - Highlights: • Present study demonstrates that hepatic SULT 1A1/1A3 are primarily sulfonate BPA in mouse and human. • Hepatic BPA sulfonation is profoundly reduced steatosis, diabetes and cirrhosis. • With BPA-S detectable in urine under low or common exposures, these findings are novel and important.
Bisphenol A sulfonation is impaired in metabolic and liver disease
Energy Technology Data Exchange (ETDEWEB)
Yalcin, Emine B.; Kulkarni, Supriya R.; Slitt, Angela L., E-mail: angela_slitt@uri.edu; King, Roberta, E-mail: rking@uri.edu
2016-02-01
Background: Bisphenol A (BPA) is a widely used industrial chemical and suspected endocrine disruptor to which humans are ubiquitously exposed. The liver metabolizes and facilitates BPA excretion through glucuronidation and sulfonation. The sulfotransferase enzymes contributing to BPA sulfonation (detected in human and rodents) is poorly understood. Objectives: To determine the impact of metabolic and liver disease on BPA sulfonation in human and mouse livers. Methods: The capacity for BPA sulfonation was determined in human liver samples that were categorized into different stages of metabolic and liver disease (including obesity, diabetes, steatosis, and cirrhosis) and in livers from ob/ob mice. Results: In human liver tissues, BPA sulfonation was substantially lower in livers from subjects with steatosis (23%), diabetes cirrhosis (16%), and cirrhosis (18%), relative to healthy individuals with non-fatty livers (100%). In livers of obese mice (ob/ob), BPA sulfonation was lower (23%) than in livers from lean wild-type controls (100%). In addition to BPA sulfonation activity, Sult1a1 protein expression decreased by 97% in obese mouse livers. Conclusion: Taken together these findings establish a profoundly reduced capacity of BPA elimination via sulfonation in obese or diabetic individuals and in those with fatty or cirrhotic livers versus individuals with healthy livers. - Highlights: • Present study demonstrates that hepatic SULT 1A1/1A3 are primarily sulfonate BPA in mouse and human. • Hepatic BPA sulfonation is profoundly reduced steatosis, diabetes and cirrhosis. • With BPA-S detectable in urine under low or common exposures, these findings are novel and important.
Quantum entanglement and the dissociation process of diatomic molecules
Energy Technology Data Exchange (ETDEWEB)
Esquivel, Rodolfo O; Molina-Espiritu, Moyocoyani [Departamento de Quimica, Universidad Autonoma Metropolitana, 09340-Mexico DF (Mexico); Flores-Gallegos, Nelson [Unidad Profesional Interdisciplinaria de IngenierIa, Campus Guanajuato del Instituto Politecnico Nacional, 36275-Guanajuato (Mexico); Plastino, A R; Angulo, Juan Carlos; Dehesa, Jesus S [Instituto Carlos I de Fisica Teorica y Computacional, and Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, 18071-Granada (Spain); Antolin, Juan, E-mail: esquivel@xanum.uam.mx, E-mail: arplastino@ugr.es [Departamento de Fisica Aplicada, EUITIZ, Universidad de Zaragoza, 50018-Zaragoza (Spain)
2011-09-14
In this work, we investigate quantum entanglement-related aspects of the dissociation process of some selected, representative homo- and heteronuclear diatomic molecules. This study is based upon high-quality ab initio calculations of the (correlated) molecular wavefunctions involved in the dissociation processes. The values of the electronic entanglement characterizing the system in the limit cases corresponding to (i) the united-atom representation and (ii) the asymptotic region when atoms dissociate are discussed in detail. It is also shown that the behaviour of the electronic entanglement as a function of the reaction coordinate R exhibits remarkable correspondences with the phenomenological description of the physically meaningful regimes comprising the processes under study. In particular, the extrema of the total energies and the electronic entanglement are shown to be associated with the main physical changes experienced by the molecular spatial electronic density, such as charge depletion and accumulation or bond cleavage regions. These structural changes are characterized by several selected descriptors of the density, such as the Laplacian of the electronic molecular distributions (LAP), the molecular electrostatic potential (MEP) and the atomic electric potentials fitted to the MEP.
A link between quantum entanglement, secant varieties and sphericity
International Nuclear Information System (INIS)
Sawicki, A; Tsanov, V V
2013-01-01
In this paper, we shed light on the relations between three concepts studied in representation theory, algebraic geometry and quantum information theory. First—spherical actions of reductive groups on projective spaces. Second—secant varieties of homogeneous projective varieties, and the related notions of rank and border rank. Third—quantum entanglement. Our main result concerns the relation between the problem of the state reconstruction from its reduced one-particle density matrices and the minimal number of separable summands in its decomposition. More precisely, we show that sphericity implies that states of a given rank cannot be approximated by states of a lower rank. We call states for which such an approximation is possible exceptional states. For three, important from a quantum entanglement perspective, cases of distinguishable, fermionic and bosonic particles, we also show that non-sphericity implies the existence of exceptional states. Remarkably, the exceptional states belong to non-bipartite entanglement classes. In particular, we show that the W-type states and their appropriate modifications are exceptional states stemming from the second secant variety for three cases above. We point out that the existence of the exceptional states is a physical obstruction for deciding the local unitary equivalence of states by means of the one-particle-reduced density matrices. Finally, for a number of systems of distinguishable particles with a known orbit structure, we list all exceptional states and discuss their possible importance in entanglement theory. (paper)
Vorticity field, helicity integral and persistence of entanglement in reaction-diffusion systems
International Nuclear Information System (INIS)
Trueba, J L; Arrayas, M
2009-01-01
We show that a global description of the stability of entangled structures in reaction-diffusion systems can be made by means of a helicity integral. A vorticity vector field is defined for these systems, as in electromagnetism or fluid dynamics. We have found under which conditions the helicity is conserved or lost through the boundaries of the medium, so the entanglement of structures observed is preserved or disappears during time evolution. We illustrate the theory with an example of knotted entanglement in a FitzHugh-Nagumo model. For this model, we introduce new non-trivial initial conditions using the Hopf fibration and follow the time evolution of the entanglement. (fast track communication)
Vorticity field, helicity integral and persistence of entanglement in reaction-diffusion systems
Energy Technology Data Exchange (ETDEWEB)
Trueba, J L; Arrayas, M [Area de Electromagnetismo, Universidad Rey Juan Carlos, Camino del Molino s/n, 28943 Fuenlabrada, Madrid (Spain)
2009-07-17
We show that a global description of the stability of entangled structures in reaction-diffusion systems can be made by means of a helicity integral. A vorticity vector field is defined for these systems, as in electromagnetism or fluid dynamics. We have found under which conditions the helicity is conserved or lost through the boundaries of the medium, so the entanglement of structures observed is preserved or disappears during time evolution. We illustrate the theory with an example of knotted entanglement in a FitzHugh-Nagumo model. For this model, we introduce new non-trivial initial conditions using the Hopf fibration and follow the time evolution of the entanglement. (fast track communication)
Spin-resolved entanglement spectroscopy of critical spin chains and Luttinger liquids
International Nuclear Information System (INIS)
Laflorencie, Nicolas; Rachel, Stephan
2014-01-01
Quantum critical chains are well-described and understood by virtue of conformal field theory. Still, the meaning of the real space entanglement spectrum—the eigenvalues of the reduced density matrix—of such systems remains elusive in general, even when there is an additional quantum number available such as the spin or particle number. In this paper, we explore in detail the properties and structure of the reduced density matrix of critical XXZ spin- (1/2) chains. We investigate the quantum/thermal correspondence between the reduced density matrix of a T = 0 pure quantum state and the thermal density matrix of an effective entanglement Hamiltonian. Using large scale DMRG and QMC simulations, we investigate the conformal structure of the spectra, the entanglement Hamiltonian, and temperature. We then introduce the notion of spin-resolved entanglement entropies, which display interesting scaling features. (paper)
Entanglement rules for holographic Fermi surfaces
Directory of Open Access Journals (Sweden)
Dibakar Roychowdhury
2016-08-01
Full Text Available In this paper, based on the notion of Gauge/Gravity duality, we explore the laws of entanglement thermodynamics for most generic classes of Quantum Field Theories with hyperscaling violation. In our analysis, we note that for Quantum Field Theories with compressible quark like excitation, the first law of entanglement thermodynamics gets modified due to the presence of an additional term that could be identified as the entanglement chemical potential associated with hidden Fermi surfaces of the boundary theory. Most notably, we find that the so called entanglement chemical potential does not depend on the size of the entangling region and is purely determined by the quark d.o.f. encoded within the entangling region.
Entanglement between two spatially separated atomic modes
Lange, Karsten; Peise, Jan; Lücke, Bernd; Kruse, Ilka; Vitagliano, Giuseppe; Apellaniz, Iagoba; Kleinmann, Matthias; Tóth, Géza; Klempt, Carsten
2018-04-01
Modern quantum technologies in the fields of quantum computing, quantum simulation, and quantum metrology require the creation and control of large ensembles of entangled particles. In ultracold ensembles of neutral atoms, nonclassical states have been generated with mutual entanglement among thousands of particles. The entanglement generation relies on the fundamental particle-exchange symmetry in ensembles of identical particles, which lacks the standard notion of entanglement between clearly definable subsystems. Here, we present the generation of entanglement between two spatially separated clouds by splitting an ensemble of ultracold identical particles prepared in a twin Fock state. Because the clouds can be addressed individually, our experiments open a path to exploit the available entangled states of indistinguishable particles for quantum information applications.
Entanglement rules for holographic Fermi surfaces
Energy Technology Data Exchange (ETDEWEB)
Roychowdhury, Dibakar, E-mail: dibakarphys@gmail.com
2016-08-15
In this paper, based on the notion of Gauge/Gravity duality, we explore the laws of entanglement thermodynamics for most generic classes of Quantum Field Theories with hyperscaling violation. In our analysis, we note that for Quantum Field Theories with compressible quark like excitation, the first law of entanglement thermodynamics gets modified due to the presence of an additional term that could be identified as the entanglement chemical potential associated with hidden Fermi surfaces of the boundary theory. Most notably, we find that the so called entanglement chemical potential does not depend on the size of the entangling region and is purely determined by the quark d.o.f. encoded within the entangling region.
Entanglement criteria for microscopic-macroscopic systems
International Nuclear Information System (INIS)
Spagnolo, Nicolo; Vitelli, Chiara; Sciarrino, Fabio; De Martini, Francesco
2010-01-01
We discuss the conclusions that can be drawn on a recent experimental micro-macro entanglement test [De Martini, Sciarrino, and Vitelli, Phys. Rev. Lett. 100, 253601 (2008)]. The system under investigation is generated through optical parametric amplification of one photon belonging to an entangled pair. The adopted entanglement criterion makes it possible to infer the presence of entanglement before losses that occur on the macrostate under a specific assumption. In particular, an a priori knowledge of the system that generates the micro-macro pair is necessary to exclude a class of separable states that can reproduce the obtained experimental results. Finally, we discuss the feasibility of a micro-macro ''genuine'' entanglement test on the analyzed system by considering different strategies, which show that in principle a fraction ε, proportional to the number of photons that survive the lossy process, of the original entanglement persists in any loss regime.
Entangled photons and quantum communication
Energy Technology Data Exchange (ETDEWEB)
Yuan Zhensheng, E-mail: yuanzs@ustc.edu.c [Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Physikalisches Institut, Universitaet Heidelberg, Philosophenweg 12, 69120 Heidelberg (Germany); Bao Xiaohui [Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Physikalisches Institut, Universitaet Heidelberg, Philosophenweg 12, 69120 Heidelberg (Germany); Lu Chaoyang; Zhang Jun; Peng Chengzhi [Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Pan Jianwei, E-mail: pan@ustc.edu.c [Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Physikalisches Institut, Universitaet Heidelberg, Philosophenweg 12, 69120 Heidelberg (Germany)
2010-12-15
This article reviews the progress of quantum communication that utilizes photonic entanglement. We start with a survey of various methods for generating entangled photons, followed by an introduction of the theoretical principles and the experimental implementations of quantum key distribution. We then move on to a discussion of more involved quantum communication protocols including quantum dense coding, teleportation and quantum communication complexity. After that, we review the progress in free-space quantum communication, decoherence-free subspace, and quantum repeater protocols which are essential ingredients for long-distance quantum communication. Practical realizations of quantum repeaters, which require an interface between photons and quantum memories, are discussed briefly. Finally, we draw concluding remarks considering the technical challenges, and put forward an outlook on further developments of this field.
Quantum steganography using prior entanglement
International Nuclear Information System (INIS)
Mihara, Takashi
2015-01-01
Steganography is the hiding of secret information within innocent-looking information (e.g., text, audio, image, video, etc.). A quantum version of steganography is a method based on quantum physics. In this paper, we propose quantum steganography by combining quantum error-correcting codes with prior entanglement. In many steganographic techniques, embedding secret messages in error-correcting codes may cause damage to them if the embedded part is corrupted. However, our proposed steganography can separately create secret messages and the content of cover messages. The intrinsic form of the cover message does not have to be modified for embedding secret messages. - Highlights: • Our steganography combines quantum error-correcting codes with prior entanglement. • Our steganography can separately create secret messages and the content of cover messages. • Errors in cover messages do not have affect the recovery of secret messages. • We embed a secret message in the Steane code as an example of our steganography
Quantum steganography using prior entanglement
Energy Technology Data Exchange (ETDEWEB)
Mihara, Takashi, E-mail: mihara@toyo.jp
2015-06-05
Steganography is the hiding of secret information within innocent-looking information (e.g., text, audio, image, video, etc.). A quantum version of steganography is a method based on quantum physics. In this paper, we propose quantum steganography by combining quantum error-correcting codes with prior entanglement. In many steganographic techniques, embedding secret messages in error-correcting codes may cause damage to them if the embedded part is corrupted. However, our proposed steganography can separately create secret messages and the content of cover messages. The intrinsic form of the cover message does not have to be modified for embedding secret messages. - Highlights: • Our steganography combines quantum error-correcting codes with prior entanglement. • Our steganography can separately create secret messages and the content of cover messages. • Errors in cover messages do not have affect the recovery of secret messages. • We embed a secret message in the Steane code as an example of our steganography.
Experimental quantum computing without entanglement.
Lanyon, B P; Barbieri, M; Almeida, M P; White, A G
2008-11-14
Deterministic quantum computation with one pure qubit (DQC1) is an efficient model of computation that uses highly mixed states. Unlike pure-state models, its power is not derived from the generation of a large amount of entanglement. Instead it has been proposed that other nonclassical correlations are responsible for the computational speedup, and that these can be captured by the quantum discord. In this Letter we implement DQC1 in an all-optical architecture, and experimentally observe the generated correlations. We find no entanglement, but large amounts of quantum discord-except in three cases where an efficient classical simulation is always possible. Our results show that even fully separable, highly mixed, states can contain intrinsically quantum mechanical correlations and that these could offer a valuable resource for quantum information technologies.
Entangled photons and quantum communication
International Nuclear Information System (INIS)
Yuan Zhensheng; Bao Xiaohui; Lu Chaoyang; Zhang Jun; Peng Chengzhi; Pan Jianwei
2010-01-01
This article reviews the progress of quantum communication that utilizes photonic entanglement. We start with a survey of various methods for generating entangled photons, followed by an introduction of the theoretical principles and the experimental implementations of quantum key distribution. We then move on to a discussion of more involved quantum communication protocols including quantum dense coding, teleportation and quantum communication complexity. After that, we review the progress in free-space quantum communication, decoherence-free subspace, and quantum repeater protocols which are essential ingredients for long-distance quantum communication. Practical realizations of quantum repeaters, which require an interface between photons and quantum memories, are discussed briefly. Finally, we draw concluding remarks considering the technical challenges, and put forward an outlook on further developments of this field.
Increasing Entanglement between Gaussian States by Coherent Photon Subtraction
DEFF Research Database (Denmark)
Ourjoumtsev, Alexei; Dantan, Aurelien Romain; Tualle Brouri, Rosa
2007-01-01
We experimentally demonstrate that the entanglement between Gaussian entangled states can be increased by non-Gaussian operations. Coherent subtraction of single photons from Gaussian quadrature-entangled light pulses, created by a nondegenerate parametric amplifier, produces delocalized states...
Zhang, Xuan; Hu, Zhaoxia; Luo, Linqiang; Chen, Shanshan; Liu, Jianmei; Chen, Shouwen; Wang, Lianjun
2011-07-15
Novel poly(arylene ether ketone) polymers with fluorophenyl pendants and phenoxide-terminated wholly sulfonated poly(arylene ether sulfone) oligomers are prepared via Ni(0)-catalyzed and nucleophilic polymerization, respectively, and subsequently used as starting materials to obtain graft-crosslinked membranes as polymer electrolyte membranes. The phenoxide-terminated sulfonated moieties are introduced as hydrophilic parts as well as crosslinking units. The chemical structure and morphology of the obtained membranes are confirmed by (1) H NMR and tapping-mode AFM. The properties required for fuel cell applications, including water uptake and dimensional change, as well as proton conductivity, are investigated. AFM results show a clear nanoscale phase-separation microstructure of the obtained membranes. The membranes show good dimensional stability and reasonably high proton conductivities under 30-90% relative humidity. The anisotropic proton conductivity ratios (σ(formula see text) ) of the membranes in water are in the range 0.65-0.92, and increase with an increase in hydrophilic block length. The results indicate that the graft-crosslinked membranes are promising candidates for applications as polymer electrolyte membranes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Quantify entanglement by concurrence hierarchy
Fan, Heng; Matsumoto, Keiji; Imai, Hiroshi
2002-01-01
We define the concurrence hierarchy as d-1 independent invariants under local unitary transformations in d-level quantum system. The first one is the original concurrence defined by Wootters et al in 2-level quantum system and generalized to d-level pure quantum states case. We propose to use this concurrence hierarchy as measurement of entanglement. This measurement does not increase under local quantum operations and classical communication.
Entanglement and inhibited quantum evolution
International Nuclear Information System (INIS)
Toschek, P E; Balzer, Chr; Hannemann, Th; Wunderlich, Ch; Neuhauser, W
2003-01-01
The evolution of a quantum system is impeded by the system's state being observed. A test on an ensemble neither proves the causal nexus nor discloses the nature of the inhibition. Two recent experiments that make use of sequential optical or microwave-optical double resonance on an individual trapped ion disprove a dynamical effect of back action by meter or environment. They rather indicate the ionic states involved in the evolution being entangled with the potentially recorded bivalued scattered-light signal
Spin entanglement, decoherence and Bohm's EPR paradox
Cavalcanti, E. G.; Drummond, P. D.; Bachor, H. A.; Reid, M. D.
2007-01-01
We obtain criteria for entanglement and the EPR paradox for spin-entangled particles and analyse the effects of decoherence caused by absorption and state purity errors. For a two qubit photonic state, entanglement can occur for all transmission efficiencies. In this case, the state preparation purity must be above a threshold value. However, Bohm's spin EPR paradox can be achieved only above a critical level of loss. We calculate a required efficiency of 58%, which appears achievable with cu...
Variation of entanglement entropy in scattering process
Energy Technology Data Exchange (ETDEWEB)
Seki, Shigenori, E-mail: sigenori@hanyang.ac.kr [Research Institute for Natural Science, Hanyang University, Seoul 133-791 (Korea, Republic of); Park, I.Y., E-mail: inyongpark05@gmail.com [Department of Applied Mathematics, Philander Smith College, Little Rock, AR 72223 (United States); Sin, Sang-Jin, E-mail: sjsin@hanyang.ac.kr [Department of Physics, Hanyang University, Seoul 133-791 (Korea, Republic of)
2015-04-09
In a scattering process, the final state is determined by an initial state and an S-matrix. We focus on two-particle scattering processes and consider the entanglement between these particles. For two types initial states, i.e., an unentangled state and an entangled one, we calculate perturbatively the change of entanglement entropy from the initial state to the final one. Then we show a few examples in a field theory and in quantum mechanics.
Hybrid Long-Distance Entanglement Distribution Protocol
DEFF Research Database (Denmark)
Brask, J.B.; Rigas, I.; Polzik, E.S.
2010-01-01
We propose a hybrid (continuous-discrete variable) quantum repeater protocol for long-distance entanglement distribution. Starting from states created by single-photon detection, we show how entangled coherent state superpositions can be generated by means of homodyne detection. We show that near......-deterministic entanglement swapping with such states is possible using only linear optics and homodyne detectors, and we evaluate the performance of our protocol combining these elements....
Controllable entanglement sudden birth of Heisenberg spins
International Nuclear Information System (INIS)
Zheng Qiang; Zhi Qijun; Zhang Xiaoping; Ren Zhongzhou
2011-01-01
We investigate the Entanglement Sudden Birth (ESB) of two Heisenberg spins A and B. The third controller, qutrit C is introduced, which only has the Dzyaloshinskii-Moriya (DM) spin-orbit interaction with qubit B. We find that the DM interaction is necessary to induce the Entanglement Sudden Birth of the system qubits A and B, and the initial states of the system qubits and the qutrit C are also important to control its Entanglement Sudden Birth. (authors)
Experimental generation of complex noisy photonic entanglement
International Nuclear Information System (INIS)
Dobek, K; Banaszek, K; Karpiński, M; Demkowicz-Dobrzański, R; Horodecki, P
2013-01-01
We present an experimental scheme based on spontaneous parametric down-conversion to produce multiple-photon pairs in maximally entangled polarization states using an arrangement of two type-I nonlinear crystals. By introducing correlated polarization noise in the paths of the generated photons we prepare mixed-entangled states whose properties illustrate fundamental results obtained recently in quantum information theory, in particular those concerning bound entanglement and privacy. (paper)
Quantum dialogue using non-maximally entangled states based on entanglement swapping
International Nuclear Information System (INIS)
Xia Yan; Song Jie; Song Heshan
2007-01-01
We present a secure quantum dialogue protocol using non-maximally entangled two-particle states via entanglement swapping at first, and then discuss the requirements for a real quantum dialogue. Within the present version two authorized users can exchange their faithful secret messages securely and simultaneously based on the method of entanglement purification
Time evolution of the Wigner function in the entangled-state representation
International Nuclear Information System (INIS)
Fan Hongyi
2002-01-01
For quantum-mechanical entangled states we introduce the entangled Wigner operator in the entangled-state representation. We derive the time evolution equation of the entangled Wigner operator . The trace product rule for entangled Wigner functions is also obtained
Energy Technology Data Exchange (ETDEWEB)
Laurat, Julien [Laboratoire Kastler Brossel, Case 74, Universite Pierre et Marie curie, 4 Place Jussieu, 75252 Paris cedex 05 (France); Keller, Gaelle [Laboratoire Kastler Brossel, Case 74, Universite Pierre et Marie curie, 4 Place Jussieu, 75252 Paris cedex 05 (France); Oliveira-Huguenin, Jose Augusto [Laboratoire Kastler Brossel, Case 74, Universite Pierre et Marie curie, 4 Place Jussieu, 75252 Paris cedex 05 (France); Fabre, Claude [Laboratoire Kastler Brossel, Case 74, Universite Pierre et Marie curie, 4 Place Jussieu, 75252 Paris cedex 05 (France); Coudreau, Thomas [Laboratoire Kastler Brossel, Case 74, Universite Pierre et Marie curie, 4 Place Jussieu, 75252 Paris cedex 05 (France); Laboratoire Materiaux et Phenomenes Quantiques, Case 7021, Universite Denis Diderot, 2 Place Jussieu, 75251 Paris cedex 05 (France); Serafini, Alessio [Dipartimento di Fisica ' E R Caianiello' , Universita di Salerno (Italy); CNR-Coherentia, Gruppo di Salerno (Italy); and INFN Sezione di Napoli-Gruppo Collegato di Salerno, Via S Allende, 84081 Baronissi (Saudi Arabia) (Italy); Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Adesso, Gerardo [Dipartimento di Fisica ' E R Caianiello' , Universita di Salerno (Italy); CNR-Coherentia, Gruppo di Salerno (Italy); and INFN Sezione di Napoli-Gruppo Collegato di Salerno, Via S Allende, 84081 Baronissi (Saudi Arabia) (Italy); Illuminati, Fabrizio [Dipartimento di Fisica ' E R Caianiello' , Universita di Salerno (Italy) and CNR-Coherentia, Gruppo di Salerno (Italy) and INFN Sezione di Napoli-Gruppo Collegato di Salerno, Via S Allende, 84081 Baronissi (SA) (Italy)
2005-12-01
A powerful theoretical structure has emerged in recent years on the characterization and quantification of entanglement in continuous-variable systems. After reviewing this framework, we will illustrate it with an original set-up based on a type-II OPO (optical parametric oscillator) with adjustable mode coupling. Experimental results allow a direct verification of many theoretical predictions and provide a sharp insight into the general properties of two-mode Gaussian states and entanglement resource manipulation.
International Nuclear Information System (INIS)
Laurat, Julien; Keller, Gaelle; Oliveira-Huguenin, Jose Augusto; Fabre, Claude; Coudreau, Thomas; Serafini, Alessio; Adesso, Gerardo; Illuminati, Fabrizio
2005-01-01
A powerful theoretical structure has emerged in recent years on the characterization and quantification of entanglement in continuous-variable systems. After reviewing this framework, we will illustrate it with an original set-up based on a type-II OPO (optical parametric oscillator) with adjustable mode coupling. Experimental results allow a direct verification of many theoretical predictions and provide a sharp insight into the general properties of two-mode Gaussian states and entanglement resource manipulation
Spin squeezing of atomic ensembles via nuclear-electronic spin entanglement
DEFF Research Database (Denmark)
Fernholz, Thomas; Krauter, Hanna; Jensen, Kasper
2008-01-01
quantum limit for quantum memory experiments and applications in quantum metrology and is thus a complementary alternative to spin squeezing obtained via inter-atom entanglement. Squeezing of the collective spin is verified by quantum state tomography.......We demonstrate spin squeezing in a room temperature ensemble of 1012 Cesium atoms using their internal structure, where the necessary entanglement is created between nuclear and electronic spins of each individual atom. This state provides improvement in measurement sensitivity beyond the standard...
Entanglement dynamics in random media
Menezes, G.; Svaiter, N. F.; Zarro, C. A. D.
2017-12-01
We study how the entanglement dynamics between two-level atoms is impacted by random fluctuations of the light cone. In our model the two-atom system is envisaged as an open system coupled with an electromagnetic field in the vacuum state. We employ the quantum master equation in the Born-Markov approximation in order to describe the completely positive time evolution of the atomic system. We restrict our investigations to the situation in which the atoms are coupled individually to two spatially separated cavities, one of which displays the emergence of light-cone fluctuations. In such a disordered cavity, we assume that the coefficients of the Klein-Gordon equation are random functions of the spatial coordinates. The disordered medium is modeled by a centered, stationary, and Gaussian process. We demonstrate that disorder has the effect of slowing down the entanglement decay. We conjecture that in a strong-disorder environment the mean life of entangled states can be enhanced in such a way as to almost completely suppress quantum nonlocal decoherence.
Minimal tomography with entanglement witnesses
International Nuclear Information System (INIS)
Zhu Huangjun; Teo Yong Siah; Englert, Berthold-Georg
2010-01-01
We introduce informationally complete measurements whose outcomes are entanglement witnesses and so answer the question of how many witnesses need to be measured to decide whether an arbitrary state is entangled or not: as many as the dimension of the state space. The witnesses can be measured successively; if all of them give an inconclusive result, one exploits their tomographic completeness for a reconstruction of the quantum state and can then determine its entanglement properties by data processing. There are witnesses that are optimal for this purpose. The optimized witness-based measurement can provide exponential improvement with respect to witness efficiency in high-dimensional Hilbert spaces, at the price of a reduction in the tomographic efficiency. We describe a systematic construction and illustrate the matter with the example of two qubits. For the case of two polarization qubits of photons, we show how existing technology can be used to implement the optimized witnesses in a very efficient way. Owing to the details of the implementation, which actually measures the eigenstate basis of the witness rather than solely determining the expectation value of the witness, one does not need to measure more than six witnesses in this example of a 16-dimensional state space.
Minimal tomography with entanglement witnesses
Zhu, Huangjun; Teo, Yong Siah; Englert, Berthold-Georg
2010-05-01
We introduce informationally complete measurements whose outcomes are entanglement witnesses and so answer the question of how many witnesses need to be measured to decide whether an arbitrary state is entangled or not: as many as the dimension of the state space. The witnesses can be measured successively; if all of them give an inconclusive result, one exploits their tomographic completeness for a reconstruction of the quantum state and can then determine its entanglement properties by data processing. There are witnesses that are optimal for this purpose. The optimized witness-based measurement can provide exponential improvement with respect to witness efficiency in high-dimensional Hilbert spaces, at the price of a reduction in the tomographic efficiency. We describe a systematic construction and illustrate the matter with the example of two qubits. For the case of two polarization qubits of photons, we show how existing technology can be used to implement the optimized witnesses in a very efficient way. Owing to the details of the implementation, which actually measures the eigenstate basis of the witness rather than solely determining the expectation value of the witness, one does not need to measure more than six witnesses in this example of a 16-dimensional state space.
Entanglement Swapping in the Presence of White and Color Noise
Dotsenko, Ivan S.; Korobka, R.
2018-02-01
The influence of white and color noise on the outcome of the entanglement swapping process is investigated in a four-qubit system. Critical degree of noise in initial state, that could destroy entanglement in a result state is presented. The entanglement characteristics, such as concurrence, tangle, etc. are compared. Results could be helpful for experiments regarding entanglement swapping as conditions for initial quantum entangled states, to obtain entangled result state.
Entanglement property in matrix product spin systems
International Nuclear Information System (INIS)
Zhu Jingmin
2012-01-01
We study the entanglement property in matrix product spin-ring systems systemically by von Neumann entropy. We find that: (i) the Hilbert space dimension of one spin determines the upper limit of the maximal value of the entanglement entropy of one spin, while for multiparticle entanglement entropy, the upper limit of the maximal value depends on the dimension of the representation matrices. Based on the theory, we can realize the maximum of the entanglement entropy of any spin block by choosing the appropriate control parameter values. (ii) When the entanglement entropy of one spin takes its maximal value, the entanglement entropy of an asymptotically large spin block, i.e. the renormalization group fixed point, is not likely to take its maximal value, and so only the entanglement entropy S n of a spin block that varies with size n can fully characterize the spin-ring entanglement feature. Finally, we give the entanglement dynamics, i.e. the Hamiltonian of the matrix product system. (author)
Quantum communication using a multiqubit entangled channel
Energy Technology Data Exchange (ETDEWEB)
Ghose, Shohini, E-mail: sghose@wlu.ca [Department of Physics and Computer Science, Wilfrid Laurier University, Waterloo, Ontario (Canada); Institute for Quantum Computing, University of Waterloo, Ontario (Canada); Hamel, Angele [Department of Physics and Computer Science, Wilfrid Laurier University, Waterloo, Ontario (Canada)
2015-12-31
We describe a protocol in which two senders each teleport a qubit to a receiver using a multiqubit entangled state. The multiqubit channel used for teleportation is genuinely 4-qubit entangled and is not equivalent to a product of maximally entangled Bell pairs under local unitary operations. We discuss a scenario in which both senders must participate for the qubits to be successfully teleported. Such an all-or-nothing scheme cannot be implemented with standard two-qubit entangled Bell pairs and can be useful for different communication and computing tasks.
Entanglement polygon inequality in qubit systems
Qian, Xiao-Feng; Alonso, Miguel A.; Eberly, J. H.
2018-06-01
We prove a set of tight entanglement inequalities for arbitrary N-qubit pure states. By focusing on all bi-partite marginal entanglements between each single qubit and its remaining partners, we show that the inequalities provide an upper bound for each marginal entanglement, while the known monogamy relation establishes the lower bound. The restrictions and sharing properties associated with the inequalities are further analyzed with a geometric polytope approach, and examples of three-qubit GHZ-class and W-class entangled states are presented to illustrate the results.
Entanglement Equilibrium and the Einstein Equation.
Jacobson, Ted
2016-05-20
A link between the semiclassical Einstein equation and a maximal vacuum entanglement hypothesis is established. The hypothesis asserts that entanglement entropy in small geodesic balls is maximized at fixed volume in a locally maximally symmetric vacuum state of geometry and quantum fields. A qualitative argument suggests that the Einstein equation implies the validity of the hypothesis. A more precise argument shows that, for first-order variations of the local vacuum state of conformal quantum fields, the vacuum entanglement is stationary if and only if the Einstein equation holds. For nonconformal fields, the same conclusion follows modulo a conjecture about the variation of entanglement entropy.
Directory of Open Access Journals (Sweden)
Bor-Kuan Chen
2014-10-01
Full Text Available Proton exchange membranes (PEMs are a key component of a proton exchange membrane fuel cell. Sulfonated polyimides (SPIs were doped by protic ionic liquid (PIL to prepare composite PEMs with substantially improved conductivity. SPIs were synthesized from diamine, 2,2-bis[4-(4-amino-phenoxyphenyl]propane (BAPP, sulfonated diamine, 4,4'-diamino diphenyl ether-2,2'-disulfonic acid (ODADS and aromatic anhydride. BAPP improved the mechanical and thermal properties of SPIs, while ODADS enhanced conductivity. A PIL, 1-vinylimidazolium trifluoromethane-sulfonate ([VIm][OTf], was utilized. [VIm][OTf] offered better conductivity, which can be attributed to its vinyl chemical structure attached to an imidazolium ring that contributed to ionomer-PIL interactions. We prepared sulfonated polyimide/ionic liquid (SPI/IL composite PEMs using 50 wt% [VIm][OTf] with a conductivity of 7.17 mS/cm at 100 °C, and in an anhydrous condition, 3,3',4,4'-diphenyl sulfone tetracarboxylic dianhydride (DSDA was used in the synthesis of SPIs, leading to several hundred-times improvement in conductivity compared to pristine SPIs.
Lei, Jiehua; Yuan, Yuqi; Lyu, Zhonglin; Wang, Mengmeng; Liu, Qi; Wang, Hongwei; Yuan, Lin; Chen, Hong
2017-08-30
Glycosaminoglycans (GAGs), especially heparin and heparan sulfate (HS), hold great potential for inducing the neural differentiation of embryonic stem cells (ESCs) and have brought new hope for the treatment of neurological diseases. However, the disadvantages of natural heparin/HS, such as difficulty in isolating them with a sufficient amount, highly heterogeneous structure, and the risk of immune responses, have limited their further therapeutic applications. Thus, there is a great demand for stable, controllable, and well-defined synthetic alternatives of heparin/HS with more effective biological functions. In this study, based upon a previously proposed unit-recombination strategy, several heparin-mimicking polymers were synthesized by integrating glucosamine-like 2-methacrylamido glucopyranose monomers (MAG) with three sulfonated units in different structural forms, and their effects on cell proliferation, the pluripotency, and the differentiation of ESCs were carefully studied. The results showed that all the copolymers had good cytocompatibility and displayed much better bioactivity in promoting the neural differentiation of ESCs as compared to natural heparin; copolymers with different sulfonated units exhibited different levels of promoting ability; among them, copolymer with 3-sulfopropyl acrylate (SPA) as a sulfonated unit was the most potent in promoting the neural differentiation of ESCs; the promoting effect is dependent on the molecular weight and concentration of P(MAG-co-SPA), with the highest levels occurring at the intermediate molecular weight and concentration. These results clearly demonstrated that the sulfonated unit in the copolymers played an important role in determining the promoting effect on ESCs' neural differentiation; SPA was identified as the most potent sulfonated unit for copolymer with the strongest promoting ability. The possible reason for sulfonated unit structure as a vital factor influencing the ability of the copolymers
Triclosan is a potent inhibitor of estradiol and estrone sulfonation in sheep placenta
James, Margaret O.; Li, Wenjun; Summerlot, David P.; Rowland-Faux, Laura; Wood, Charles E.
2009-01-01
The personal care product Triclosan, 5-chloro-2(2,4-dichlorophenoxy)-phenol, is widely used in consumer products as an antibacterial agent and is increasingly found in the environment as a contaminant of sewage sludge and wastewater. This compound has been identified in plasma and urine of people in the United States, Sweden and Australia. Triclosan is known to inhibit sulfonation of phenolic xenobiotics and is structurally related to inhibitors of estrogen sulfotransferase, such as polychlor...
The design and synthesis of novel spirocyclic heterocyclic sulfone ROMK inhibitors as diuretics.
Chobanian, Harry R; Guo, Yan; Pio, Barbara; Tang, Haifeng; Teumelsan, Nardos; Clements, Matthew; Frie, Jessica; Ferguson, Ronald; Guo, Zach; Thomas-Fowlkes, Brande S; Felix, John P; Liu, Jessica; Kohler, Martin; Priest, Birgit; Hampton, Caryn; Pai, Lee-Yuh; Corona, Aaron; Metzger, Joseph; Tong, Vincent; Joshi, Elizabeth M; Xu, Ling; Owens, Karen; Maloney, Kevin; Sullivan, Kathleen; Pasternak, Alexander
2017-02-15
A spirocyclic class of ROMK inhibitors was developed containing a structurally diverse heterocyclic sulfone moiety and spirocyclic core starting from lead 1. These compounds not only displayed exquisite ROMK potency but significantly improved selectivity over hERG. The lead compounds were found to have favorable pharmacokinetic properties and displayed robust diuretic, natriuretic and blood pressure lowering effects in spontaneously hypertensive rats. Copyright © 2016 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Mabrouk, W.; Ogier, L.; Matoussi, F.; Sollogoub, C.; Vidal, S.; Dachraoui, M.; Fauvarque, J.F.
2011-01-01
Highlights: → New, simple and cheap way to synthesize a membrane. → The membranes combine good proton conductivities with good mechanical properties. → The membrane performances in a fuel cell are similar to the Nafion 117. - Abstract: Sulfonated poly(arylene ether sulfone) (SPES) has received considerable attention in membrane preparation for proton exchange membrane fuel cell (PEMFC). But such membranes are brittle and difficult to handle in operation. We investigated new membranes using SPES grafted with various degrees of octylamine. Five new materials made from sulfonated polyethersulfone sulfonamide (SPESOS) were synthetized with different grades of grafting. They were made from SPES, with initially an ionic exchange capacity (IEC) of 2.4 meq g -1 (1.3 H + per monomer unit). Pristine SPES with that IEC is water swelling and becomes soluble at 80 deg. C, its proton conductivity is in the range of 0.1 S cm -1 at room temperature in aqueous H 2 SO 4 1 M, similar to that of Nafion. After grafting with various amounts of octylamine, the material is water insoluble; membranes are less brittle and show sufficient ionic conductivity. Proton transport numbers were measured close to 1.
On entanglement spreading from holography
Energy Technology Data Exchange (ETDEWEB)
Mezei, Márk [Princeton Center for Theoretical Science, Princeton University,Princeton, NJ 08544 (United States)
2017-05-11
A global quench is an interesting setting where we can study thermalization of subsystems in a pure state. We investigate entanglement entropy (EE) growth in global quenches in holographic field theories and relate some of its aspects to quantities characterizing chaos. More specifically we obtain four key results: We prove holographic bounds on the entanglement velocity v{sub E} and the butterfly effect speed v{sub B} that arises in the study of chaos. We obtain the EE as a function of time for large spherical entangling surfaces analytically. We show that the EE is insensitive to the details of the initial state or quenchÂ protocol. In a thermofield double state we determine analytically the two-sided mutual information between two large concentric spheres separated in time. We derive a bound on the rate of growth of EE for arbitrary shapes, and develop an expansion for EE at early times. In a companion paper https://arxiv.org/abs/1608.05101, these results are put in the broader context of EE growth in chaotic systems: we relate EE growth to the chaotic spreading of operators, derive bounds on EE at a given time, and compare the holographic results to spin chain numerics and toy models. In this paper, we perform holographic calculations that provide the basis of arguments presented in that paper. We prove holographic bounds on the entanglement velocity v{sub E} and the butterfly effect speed v{sub B} that arises in the study of chaos. We obtain the EE as a function of time for large spherical entangling surfaces analytically. We show that the EE is insensitive to the details of the initial state or quenchÂ protocol. In a thermofield double state we determine analytically the two-sided mutual information between two large concentric spheres separated in time. We derive a bound on the rate of growth of EE for arbitrary shapes, and develop an expansion for EE at early times.
Spatial separation and entanglement of identical particles
Cunden, Fabio Deelan; di Martino, Sara; Facchi, Paolo; Florio, Giuseppe
2014-04-01
We reconsider the effect of indistinguishability on the reduced density operator of the internal degrees of freedom (tracing out the spatial degrees of freedom) for a quantum system composed of identical particles located in different spatial regions. We explicitly show that if the spin measurements are performed in disjoint spatial regions then there are no constraints on the structure of the reduced state of the system. This implies that the statistics of identical particles has no role from the point of view of separability and entanglement when the measurements are spatially separated. We extend the treatment to the case of n particles and show the connection with some recent criteria for separability based on subalgebras of observables.
Alkyl phosphonic acids and sulfonic acids in the Murchison meteorite
Cooper, George W.; Onwo, Wilfred M.; Cronin, John R.
1992-01-01
Homologous series of alkyl phosphonic acids and alkyl sulfonic acids, along with inorganic orthophosphate and sulfate, are identified in water extracts of the Murchison meteorite after conversion to their t-butyl dimethylsilyl derivatives. The methyl, ethyl, propyl, and butyl compounds are observed in both series. Five of the eight possible alkyl phosphonic acids and seven of the eight possible alkyl sulfonic acids through C4 are identified. Abundances decrease with increasing carbon number as observed of other homologous series indigenous to Murchison. Concentrations range downward from approximately 380 nmol/gram in the alkyl sulfonic acid series, and from 9 nmol/gram in the alkyl phosphonic acid series.
Characterizing quantum correlations. The genuine multiparticle negativity as entanglement monotone
International Nuclear Information System (INIS)
Hofmann, Martin
2014-01-01
divergence is observed in the first derivative of the genuine multiparticle negativity. It is then shown that genuine three- and fourparticle entanglement obeys finite-size scaling and that the genuine three-particle entanglement has a finite spatial range. In the third part, a generalisation to the so-called stabiliser formalism is introduced. The idea of characterising pure stabiliser states via a maximal commuting group of local symmetries is extended to mixed states. These so-called stabilised states are then characterised by a not necessarily maximal commuting group of local symmetries and unite graph diagonal states and X-states in a single framework. Finally, the ambiguity of local base change is studied and a method to obtain a classification of the underlying symmetry groups into equivalence classes under local Clifford operations is provided. In the last part of this thesis, it is shown how symmetries of a state may be used to simplify the optimisation problem defining the genuine multiparticle negativity. A relationship between the symmetry of a state and the internal structure of the optimisation is established that can be used to reduce the number of variables in the optimisation problem. The latter is an instance of a semidefinite programming problem for which efficient numerical optimisation algorithms with a certified solution exist.
Sulfonation of PEEK-WC polymer via chloro-sulfonic acid for potential PEM fuel cell applications
Energy Technology Data Exchange (ETDEWEB)
Iulianelli, A.; Clarizia, G.; Gugliuzza, A.; Ebrasu, D.; Basile, A. [Institute on Membrane Technology, ITM-CNR, c/o University of Calabria, Via P. Bucci, Cubo 17/C, 87030 Rende (CS) (Italy); Bevilacqua, A. [Research Centre Italsistemi S.r.l., Via Avogadro, 88900 Crotone (KR) (Italy); Trotta, F. [Department of Organic Chemistry, University of Torino, C.So M. D' Azeglio 48, 10125 Torino (TO) (Italy)
2010-11-15
The preparation and characterization of thin dense sulfonated poly-ether-ether-ketone with cardo group (PEEK-WC) membranes for proton exchange membrane fuel cell (PEMFC) applications are described. The sulfonation of PEEK-WC polymer was realized via chloro-sulfonic acid and different kinds of membrane samples were prepared with a sulfonation degree ranging from 67 to 99%. The degree of sulfonation, homogeneity and thickness significantly affect both the membrane transport properties and the electrochemical performances. The dense character of the membranes was confirmed by SEM analysis. Proton conductivity measurements were carried out in a temperature range from 30 to 80 C and at 100% of relative humidity, reaching 5.40 x 10{sup -3} S/cm{sup -1} as best value at 80 C and with a sulfonation degree (DS) of 99%. At the same conditions, a water uptake of 17% was achieved. DSC and TGA characterizations were used in order to determine the thermal stability of the membranes, confirming a T{sub g} ranging between 206 and 216 C depending on the DS, whereas FT-IR yielded indication about intermolecular interactions and water uptake at various sulfonation degrees. (author)
Fully Aromatic Block Copolymers for Fuel Cell Membranes with Densely Sulfonated Nanophase Domains
DEFF Research Database (Denmark)
Takamuku, Shogo; Jannasch, Patrick; Lund, Peter Brilner
Two multiblock copoly(arylene ether sulfone)s with similar block lengths and ion exchange capacities (IECs) were prepared by a coupling reaction between a non-sulfonated precursor block and a highly sulfonated precursor block containing either fully disulfonated diarylsulfone or fully...... tetrasulfonated tetraaryldisulfone segments. The latter two precursor blocks were sulfonated via lithiation-sulﬁnation reactions whereby the sulfonic acid groups were exclu- sively placed in ortho positions to the many sulfone bridges, giving these locks IECs of 4.1 and 4.6 meqg1, respectively. Copolymer...
Synthesis and Antifungal Activity of Novel Sulfone Derivatives Containing 1,3,4-Oxadiazole Moieties
Directory of Open Access Journals (Sweden)
Maoguo Tong
2011-11-01
Full Text Available A series of new sulfone compounds containing 1,3,4-oxadiazole moieties were synthesized. The structures of these compounds were confirmed by spectroscopic data (IR, 1H- and 13C-NMR and elemental analyses. Antifungal tests indicated that all the title compounds exhibited good antifungal activities against eight kinds of plant pathogenic fungi, and some showed superiority over the commercial fungicide hymexazol. Among them, compounds 5d, 5e, 5f, and 5i showed prominent activity against B. cinerea, with determined EC50 values of 5.21 μg/mL, 8.25 µg/mL, 8.03 µg/mL, and 21.00 µg/mL, respectively. The present work demonstrates that sulfone derivatives such as 5d containing a 1,3,4-oxadiazole moiety can be used as possible lead compounds for the development of potential agrochemicals.
Quinolinium 8-hy-droxy-7-iodo-quinoline-5-sulfonate 0.8-hydrate.
Smith, Graham
2012-12-01
In the crystal structure of the title hydrated quinolinium salt of ferron (8-hy-droxy-7-iodo-quinoline-5-sulfonic acid), C9H7N(+)·C9H5INO4S(-)·0.8H2O, the quinolinium cation is fully disordered over two sites (occupancy factors fixed at 0.63 and 0.37) lying essentially within a common plane and with the ferron anions forming π-π-associated stacks down the b axis [minimum ring centroid separation = 3.462 (6) Å]. The cations and anions are linked into chains extending along c through hy-droxy O-H⋯O and quinolinium N-H⋯O hydrogen bonds to sulfonate O-atom acceptors which are also involved in water O-H⋯O hydrogen-bonding inter-actions along b, giving a two-dimensional network.
Quinolinium 8-hydroxy-7-iodoquinoline-5-sulfonate 0.8-hydrate
Directory of Open Access Journals (Sweden)
Graham Smith
2012-12-01
Full Text Available In the crystal structure of the title hydrated quinolinium salt of ferron (8-hydroxy-7-iodoquinoline-5-sulfonic acid, C9H7N+·C9H5INO4S−·0.8H2O, the quinolinium cation is fully disordered over two sites (occupancy factors fixed at 0.63 and 0.37 lying essentially within a common plane and with the ferron anions forming π–π-associated stacks down the b axis [minimum ring centroid separation = 3.462 (6 Å]. The cations and anions are linked into chains extending along c through hydroxy O—H...O and quinolinium N—H...O hydrogen bonds to sulfonate O-atom acceptors which are also involved in water O—H...O hydrogen-bonding interactions along b, giving a two-dimensional network.
Two particle entanglement and its geometric duals
Energy Technology Data Exchange (ETDEWEB)
Wasay, Muhammad Abdul [University of Agriculture, Department of Physics, Faisalabad (Pakistan); Quaid-i-Azam University Campus, National Centre for Physics, Islamabad (Pakistan); Bashir, Asma [University of Agriculture, Department of Physics, Faisalabad (Pakistan)
2017-12-15
We show that for a system of two entangled particles, there is a dual description to the particle equations in terms of classical theory of conformally stretched spacetime. We also connect these entangled particle equations with Finsler geometry. We show that this duality translates strongly coupled quantum equations in the pilot-wave limit to weakly coupled geometric equations. (orig.)
Generating stationary entangled states in superconducting qubits
International Nuclear Information System (INIS)
Zhang Jing; Liu Yuxi; Li Chunwen; Tarn, T.-J.; Nori, Franco
2009-01-01
When a two-qubit system is initially maximally entangled, two independent decoherence channels, one per qubit, would greatly reduce the entanglement of the two-qubit system when it reaches its stationary state. We propose a method on how to minimize such a loss of entanglement in open quantum systems. We find that the quantum entanglement of general two-qubit systems with controllable parameters can be controlled by tuning both the single-qubit parameters and the two-qubit coupling strengths. Indeed, the maximum fidelity F max between the stationary entangled state, ρ ∞ , and the maximally entangled state, ρ m , can be about 2/3≅max(tr(ρ ∞ ρ m ))=F max , corresponding to a maximum stationary concurrence, C max , of about 1/3≅C(ρ ∞ )=C max . This is significant because the quantum entanglement of the two-qubit system can be produced and kept, even for a long time. We apply our proposal to several types of two-qubit superconducting circuits and show how the entanglement of these two-qubit circuits can be optimized by varying experimentally controllable parameters.
Rank-dependant factorization of entanglement evolution
International Nuclear Information System (INIS)
Siomau, Michael
2016-01-01
Highlights: • In some cases the complex entanglement evolution can be factorized on simple terms. • We suggest factorization equations for multiqubit entanglement evolution. • The factorization is solely defined by the rank of the final state density matrices. • The factorization is independent on the local noisy channels and initial pure states. - Abstract: The description of the entanglement evolution of a complex quantum system can be significantly simplified due to the symmetries of the initial state and the quantum channels, which simultaneously affect parts of the system. Using concurrence as the entanglement measure, we study the entanglement evolution of few qubit systems, when each of the qubits is affected by a local unital channel independently on the others. We found that for low-rank density matrices of the final quantum state, such complex entanglement dynamics can be completely described by a combination of independent factors representing the evolution of entanglement of the initial state, when just one of the qubits is affected by a local channel. We suggest necessary conditions for the rank of the density matrices to represent the entanglement evolution through the factors. Our finding is supported with analytical examples and numerical simulations.
On entanglement in neutrino mixing and oscillations
International Nuclear Information System (INIS)
Blasone, Massimo; Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio
2010-01-01
We report on recent results about entanglement in the context of particle mixing and oscillations. We study in detail single-particle entanglement arising in two-flavor neutrino mixing. The analysis is performed first in the context of Quantum Mechanics, and then for the case of Quantum Field Theory.
On entanglement in neutrino mixing and oscillations
Energy Technology Data Exchange (ETDEWEB)
Blasone, Massimo; Dell' Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio, E-mail: blasone@sa.infn.i [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)
2010-06-01
We report on recent results about entanglement in the context of particle mixing and oscillations. We study in detail single-particle entanglement arising in two-flavor neutrino mixing. The analysis is performed first in the context of Quantum Mechanics, and then for the case of Quantum Field Theory.
Two particle entanglement and its geometric duals
International Nuclear Information System (INIS)
Wasay, Muhammad Abdul; Bashir, Asma
2017-01-01
We show that for a system of two entangled particles, there is a dual description to the particle equations in terms of classical theory of conformally stretched spacetime. We also connect these entangled particle equations with Finsler geometry. We show that this duality translates strongly coupled quantum equations in the pilot-wave limit to weakly coupled geometric equations. (orig.)
Entangled spins and ghost-spins
Directory of Open Access Journals (Sweden)
Dileep P. Jatkar
2017-09-01
Full Text Available We study patterns of quantum entanglement in systems of spins and ghost-spins regarding them as simple quantum mechanical toy models for theories containing negative norm states. We define a single ghost-spin as in [20] as a 2-state spin variable with an indefinite inner product in the state space. We find that whenever the spin sector is disentangled from the ghost-spin sector (both of which could be entangled within themselves, the reduced density matrix obtained by tracing over all the ghost-spins gives rise to positive entanglement entropy for positive norm states, while negative norm states have an entanglement entropy with a negative real part and a constant imaginary part. However when the spins are entangled with the ghost-spins, there are new entanglement patterns in general. For systems where the number of ghost-spins is even, it is possible to find subsectors of the Hilbert space where positive norm states always lead to positive entanglement entropy after tracing over the ghost-spins. With an odd number of ghost-spins however, we find that there always exist positive norm states with negative real part for entanglement entropy after tracing over the ghost-spins.
Continuous variable tripartite entanglement from twin nonlinearities
International Nuclear Information System (INIS)
Olsen, M K; Bradley, A S
2006-01-01
In this work, we analyse and compare the continuous variable tripartite entanglement available from the use of two concurrent or cascaded χ (2) nonlinearities. We examine both idealized travelling-wave models and more experimentally realistic intracavity models, showing that tripartite entangled outputs are readily producible. These may be a useful resource for applications such as quantum cryptography and teleportation
Quantum entanglement in polarization and space
Lee, Peter Sing Kin
2006-01-01
One of the most intriguing concepts of quantum mechanics is quantum entanglement. Two physical systems are said to be entangled with respect to a certain variable, if their individual outcomes of the variable are undetermined before measurement, but strictly correlated. Measurement of the variable
Teleportation of entanglement over 143 km.
Herbst, Thomas; Scheidl, Thomas; Fink, Matthias; Handsteiner, Johannes; Wittmann, Bernhard; Ursin, Rupert; Zeilinger, Anton
2015-11-17
As a direct consequence of the no-cloning theorem, the deterministic amplification as in classical communication is impossible for unknown quantum states. This calls for more advanced techniques in a future global quantum network, e.g., for cloud quantum computing. A unique solution is the teleportation of an entangled state, i.e., entanglement swapping, representing the central resource to relay entanglement between distant nodes. Together with entanglement purification and a quantum memory it constitutes a so-called quantum repeater. Since the aforementioned building blocks have been individually demonstrated in laboratory setups only, the applicability of the required technology in real-world scenarios remained to be proven. Here we present a free-space entanglement-swapping experiment between the Canary Islands of La Palma and Tenerife, verifying the presence of quantum entanglement between two previously independent photons separated by 143 km. We obtained an expectation value for the entanglement-witness operator, more than 6 SDs beyond the classical limit. By consecutive generation of the two required photon pairs and space-like separation of the relevant measurement events, we also showed the feasibility of the swapping protocol in a long-distance scenario, where the independence of the nodes is highly demanded. Because our results already allow for efficient implementation of entanglement purification, we anticipate our research to lay the ground for a fully fledged quantum repeater over a realistic high-loss and even turbulent quantum channel.
Quantum entanglement and quantum computational algorithms
Indian Academy of Sciences (India)
We demonstrate that the one- and the two-bit Deutsch-Jozsa algorithm does not require entanglement and can be mapped onto a classical optical scheme. It is only for three and more input bits that the DJ algorithm requires the implementation of entangling transformations and in these cases it is impossible to implement ...
Multiparticle entanglement under the influence of decoherence
Gühne, O.; Bodoky, F.; Blaauboer, M.
2008-01-01
We present a method to determine the decay of multiparticle quantum correlations as quantified by the geometric measure of entanglement under the influence of decoherence. With this, we compare the robustness of entanglement in Greenberger-Horne-Zeilinger (GHZ), cluster, W, and Dicke states of four
Holographic entanglement entropy in Lovelock gravities
de Boer, J.; Kulaxizi, M.; Parnachev, A.
2011-01-01
We study entanglement entropies of simply connected surfaces in field theories dual to Lovelock gravities. We consider Gauss-Bonnet and cubic Lovelock gravities in detail. In the conformal case the logarithmic terms in the entanglement entropy are governed by the conformal anomalies of the CFT; we
Huberty, Wayne; Tong, Xiaowei; Balamurugan, Sreelatha; Deville, Kyle; Russo, Paul S; Zhang, Donghui
2016-03-01
A labeled green fluorescent polystyrene sulfonate (LNaPSS) has been synthesized using atom transfer radical polymerization of a styrene sulfonate monomer with a fluorescent co-monomer, fluorescein thiocyanate-vinyl aniline. As a result this 100 % sulfonated polymer contains no hydrophobic patches along the chain backbone besides the fluorescent marker itself. The concentration of the fluorescent monomer was kept low to maintain the characteristic properties of the anionic polyelectrolyte, LNaPSS. ATRP conditions facilitated the production of polymers spanning a range of molecular weights from 35,000 to 175,000 in gram-scale batches with polydispersity indices of 1.01-1.24. Molecular weight increased with the monomer to initiator ratio. Gel permeation chromatography results show a unimodal distribution, and the polymer structure was also confirmed by (1)H NMR and FT-IR spectroscopy. Fluorescence spectroscopy confirmed covalent bonding of fluorescein isothiocyanate to the polymer, indicating that the polymer is suitable as a probe in fluorescence microscopy. To demonstrate this ability, the polymer was used to locate structural features in salt crystals formed during drying, as in the evaporation of sea mist. A second application to probe diffusion studies is also demonstrated.
Entanglement verification with detection efficiency mismatch
Zhang, Yanbao; Lütkenhaus, Norbert
Entanglement is a necessary condition for secure quantum key distribution (QKD). When there is an efficiency mismatch between various detectors used in the QKD system, it is still an open problem how to verify entanglement. Here we present a method to address this problem, given that the detection efficiency mismatch is characterized and known. The method works without assuming an upper bound on the number of photons going to each threshold detector. Our results suggest that the efficiency mismatch affects the ability to verify entanglement: the larger the efficiency mismatch is, the smaller the set of entangled states that can be verified becomes. When there is no mismatch, our method can verify entanglement even if the method based on squashing maps [PRL 101, 093601 (2008)] fails.
Optimized entanglement witnesses for Dicke states
Energy Technology Data Exchange (ETDEWEB)
Bergmann, Marcel; Guehne, Otfried [Naturwissenschaftlich-Technische Fakultaet, Universitaet Siegen, Department Physik, Walter-Flex-Strasse 3, D-57068 Siegen (Germany)
2013-07-01
Quantum entanglement is an important resource for applications in quantum information processing like quantum teleportation and cryptography. Moreover, the number of particles that can be entangled experimentally using polarized photons or ion traps has been significantly enlarged. Therefore, criteria to decide the question whether a given multi-particle state is entangled or not have to be improved. Our approach to this problem uses the notion of PPT mixtures which form an approximation to the set of bi-separable states. With this method, entanglement witnesses can be obtained in a natural manner via linear semi-definite programming. In our contribution, we will present analytical results for entanglement witnesses for Dicke states. This allows to overcome the limitations of convex optimization.
Entanglement-Gradient Routing for Quantum Networks.
Gyongyosi, Laszlo; Imre, Sandor
2017-10-27
We define the entanglement-gradient routing scheme for quantum repeater networks. The routing framework fuses the fundamentals of swarm intelligence and quantum Shannon theory. Swarm intelligence provides nature-inspired solutions for problem solving. Motivated by models of social insect behavior, the routing is performed using parallel threads to determine the shortest path via the entanglement gradient coefficient, which describes the feasibility of the entangled links and paths of the network. The routing metrics are derived from the characteristics of entanglement transmission and relevant measures of entanglement distribution in quantum networks. The method allows a moderate complexity decentralized routing in quantum repeater networks. The results can be applied in experimental quantum networking, future quantum Internet, and long-distance quantum communications.
Multipartite entanglement detection with nonsymmetric probing
DEFF Research Database (Denmark)
Dellantonio, Luca; Das, Sumanta; Appel, Jürgen
2017-01-01
We show that spin-squeezing criteria commonly used for entanglement detection can be erroneous if the probe is not symmetric. We then derive a lower bound on squeezing for separable states in spin systems probed asymmetrically. Using this we further develop a procedure that allows us to verify th...... the degree of entanglement of a quantum state in the spin system. Finally, we apply our method for entanglement verification to existing experimental data, and use it to prove the existence of tripartite entanglement in a spin-squeezed atomic ensemble.......We show that spin-squeezing criteria commonly used for entanglement detection can be erroneous if the probe is not symmetric. We then derive a lower bound on squeezing for separable states in spin systems probed asymmetrically. Using this we further develop a procedure that allows us to verify...
Entanglement temperature with Gauss–Bonnet term
Directory of Open Access Journals (Sweden)
Shesansu Sekhar Pal
2015-09-01
Full Text Available We compute the entanglement temperature using the first law-like of thermodynamics, ΔE=TentΔSEE, up to Gauss–Bonnet term in the Jacobson–Myers entropy functional in any arbitrary spacetime dimension. The computation is done when the entangling region is the geometry of a slab. We also show that such a Gauss–Bonnet term, which becomes a total derivative, when the co-dimension two hypersurface is four dimensional, does not contribute to the finite term in the entanglement entropy. We observe that the Weyl-squared term does not contribute to the entanglement entropy. It is important to note that the calculations are performed when the entangling region is very small and the energy is calculated using the normal Hamiltonian.
Entanglement entropy in top-down models
Energy Technology Data Exchange (ETDEWEB)
Jones, Peter A.R.; Taylor, Marika [Mathematical Sciences and STAG Research Centre, University of Southampton,Highfield, Southampton, SO17 1BJ (United Kingdom)
2016-08-26
We explore holographic entanglement entropy in ten-dimensional supergravity solutions. It has been proposed that entanglement entropy can be computed in such top-down models using minimal surfaces which asymptotically wrap the compact part of the geometry. We show explicitly in a wide range of examples that the holographic entanglement entropy thus computed agrees with the entanglement entropy computed using the Ryu-Takayanagi formula from the lower-dimensional Einstein metric obtained from reduction over the compact space. Our examples include not only consistent truncations but also cases in which no consistent truncation exists and Kaluza-Klein holography is used to identify the lower-dimensional Einstein metric. We then give a general proof, based on the Lewkowycz-Maldacena approach, of the top-down entanglement entropy formula.
Entanglement entropy in top-down models
International Nuclear Information System (INIS)
Jones, Peter A.R.; Taylor, Marika
2016-01-01
We explore holographic entanglement entropy in ten-dimensional supergravity solutions. It has been proposed that entanglement entropy can be computed in such top-down models using minimal surfaces which asymptotically wrap the compact part of the geometry. We show explicitly in a wide range of examples that the holographic entanglement entropy thus computed agrees with the entanglement entropy computed using the Ryu-Takayanagi formula from the lower-dimensional Einstein metric obtained from reduction over the compact space. Our examples include not only consistent truncations but also cases in which no consistent truncation exists and Kaluza-Klein holography is used to identify the lower-dimensional Einstein metric. We then give a general proof, based on the Lewkowycz-Maldacena approach, of the top-down entanglement entropy formula.
Superadditivity of distillable entanglement from quantum teleportation
Bandyopadhyay, Somshubhro; Roychowdhury, Vwani
2005-12-01
We show that the phenomenon of superadditivity of distillable entanglement observed in multipartite quantum systems results from the consideration of states created during the execution of the standard end-to-end quantum teleportation protocol [and a few additional local operations and classical communication (LOCC) steps] on a linear chain of singlets. Some of these intermediate states are tensor products of bound entangled (BE) states, and hence, by construction possess distillable entanglement, which can be unlocked by simply completing the rest of the LOCC operations required by the underlying teleportation protocol. We use this systematic approach to construct both new and known examples of superactivation of bound entanglement, and examples of activation of BE states using other BE states. A surprising outcome is the construction of noiseless quantum relay channels with no distillable entanglement between any two parties, except for that between the two end nodes.
Superadditivity of distillable entanglement from quantum teleportation
International Nuclear Information System (INIS)
Bandyopadhyay, Somshubhro; Roychowdhury, Vwani
2005-01-01
We show that the phenomenon of superadditivity of distillable entanglement observed in multipartite quantum systems results from the consideration of states created during the execution of the standard end-to-end quantum teleportation protocol [and a few additional local operations and classical communication (LOCC) steps] on a linear chain of singlets. Some of these intermediate states are tensor products of bound entangled (BE) states, and hence, by construction possess distillable entanglement, which can be unlocked by simply completing the rest of the LOCC operations required by the underlying teleportation protocol. We use this systematic approach to construct both new and known examples of superactivation of bound entanglement, and examples of activation of BE states using other BE states. A surprising outcome is the construction of noiseless quantum relay channels with no distillable entanglement between any two parties, except for that between the two end nodes
Deterministic dense coding with partially entangled states
Mozes, Shay; Oppenheim, Jonathan; Reznik, Benni
2005-01-01
The utilization of a d -level partially entangled state, shared by two parties wishing to communicate classical information without errors over a noiseless quantum channel, is discussed. We analytically construct deterministic dense coding schemes for certain classes of nonmaximally entangled states, and numerically obtain schemes in the general case. We study the dependency of the maximal alphabet size of such schemes on the partially entangled state shared by the two parties. Surprisingly, for d>2 it is possible to have deterministic dense coding with less than one ebit. In this case the number of alphabet letters that can be communicated by a single particle is between d and 2d . In general, we numerically find that the maximal alphabet size is any integer in the range [d,d2] with the possible exception of d2-1 . We also find that states with less entanglement can have a greater deterministic communication capacity than other more entangled states.
Real-time imaging of quantum entanglement.
Fickler, Robert; Krenn, Mario; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton
2013-01-01
Quantum Entanglement is widely regarded as one of the most prominent features of quantum mechanics and quantum information science. Although, photonic entanglement is routinely studied in many experiments nowadays, its signature has been out of the grasp for real-time imaging. Here we show that modern technology, namely triggered intensified charge coupled device (ICCD) cameras are fast and sensitive enough to image in real-time the effect of the measurement of one photon on its entangled partner. To quantitatively verify the non-classicality of the measurements we determine the detected photon number and error margin from the registered intensity image within a certain region. Additionally, the use of the ICCD camera allows us to demonstrate the high flexibility of the setup in creating any desired spatial-mode entanglement, which suggests as well that visual imaging in quantum optics not only provides a better intuitive understanding of entanglement but will improve applications of quantum science.
Entanglement effects in model polymer networks
Everaers, R.; Kremer, K.
The influence of topological constraints on the local dynamics in cross-linked polymer melts and their contribution to the elastic properties of rubber elastic systems are a long standing problem in statistical mechanics. Polymer networks with diamond lattice connectivity (Everaers and Kremer 1995, Everaers and Kremer 1996a) are idealized model systems which isolate the effect of topology conservation from other sources of quenched disorder. We study their behavior in molecular dynamics simulations under elongational strain. In our analysis we compare the measured, purely entropic shear moduli G to the predictions of statistical mechanical models of rubber elasticity, making extensive use of the microscopic structural and topological information available in computer simulations. We find (Everaers and Kremer 1995) that the classical models of rubber elasticity underestimate the true change in entropy in a deformed network significantly, because they neglect the tension along the contour of the strands which cannot relax due to entanglements (Everaers and Kremer (in preparation)). This contribution and the fluctuations in strained systems seem to be well described by the constrained mode model (Everaers 1998) which allows to treat the crossover from classical rubber elasticity to the tube model for polymer networks with increasing strand length within one transparant formalism. While this is important for the description of the effects we try to do a first quantitative step towards their explanation by topological considerations. We show (Everaers and Kremer 1996a) that for the comparatively short strand lengths of our diamond networks the topology contribution to the shear modulus is proportional to the density of entangled mesh pairs with non-zero Gauss linking number. Moreover, the prefactor can be estimated consistently within a rather simple model developed by Vologodskii et al. and by Graessley and Pearson, which is based on the definition of an entropic
An investigation of proton conductivity of binary matrices sulfonated ...
Indian Academy of Sciences (India)
to their potential applications in proton exchange membrane fuel cells (PEMFCs) ... is highly sulfonated and has high water uptake property.11,12 The proton conductivity ... SPSU membranes have lower gas permeability and liquid. (water and ...
Poly (ether imide sulfone) membranes from solutions in ionic liquids
Kim, Dooli; Nunes, Suzana Pereira
2017-01-01
A membrane manufacture method based on non-volatile solvents and a high performance polymer, poly (ether imide sulfone) (EXTEM™), is proposed, as greener alternative to currently industrial process. We dissolved EXTEM™ in pure ionic liquids: 1-ethyl
Preparation and Characterization of Sulfonated Poly (ether ether ...
African Journals Online (AJOL)
NJD
2007-08-10
Aug 10, 2007 ... Preparation and Characterization of Sulfonated Poly (ether ... Currently perfluori- ... with phosphoric acid solution according to the method described earlier.11,12 ... where A is the membrane area available for diffusion; CA is.
Entanglement fidelity of quantum memories
International Nuclear Information System (INIS)
Surmacz, K.; Nunn, J.; Waldermann, F. C.; Wang, Z.; Walmsley, I. A.; Jaksch, D.
2006-01-01
We introduce a figure of merit for a quantum memory which measures the preservation of entanglement between a qubit stored in and retrieved from the memory and an auxiliary qubit. We consider a general quantum memory system consisting of a medium of two level absorbers, with the qubit to be stored encoded in a single photon. We derive an analytic expression for our figure of merit taking into account Gaussian fluctuations in the Hamiltonian parameters, which, for example, model inhomogeneous broadening and storage time dephasing. Finally we specialize to the case of an atomic quantum memory where fluctuations arise predominantly from Doppler broadening and motional dephasing
Entanglement entropy of excited states
International Nuclear Information System (INIS)
Alba, Vincenzo; Fagotti, Maurizio; Calabrese, Pasquale
2009-01-01
We study the entanglement entropy of a block of contiguous spins in excited states of spin chains. We consider the XY model in a transverse field and the XXZ Heisenberg spin chain. For the latter, we developed a numerical application of the algebraic Bethe ansatz. We find two main classes of states with logarithmic and extensive behavior in the dimension of the block, characterized by the properties of excitations of the state. This behavior can be related to the locality properties of the Hamiltonian having a given state as the ground state. We also provide several details of the finite size scaling
Secret sharing via quantum entanglement
International Nuclear Information System (INIS)
Hillery, M.; Buzek, V.
1999-01-01
Secret sharing is a procedure for splitting a message into several parts so that no single part is sufficient to read the message, but the entire set is. This procedure can be implemented using either GHZ states or two-particle entangled states. In the quantum case the presence of an eavesdropper will introduce errors so that her presence can be detected. We also discuss how quantum information can be split into parts so that the message can be reconstructed from a sufficiently large subset of the parts. (Authors)
Entanglement and inhibited quantum evolution
Energy Technology Data Exchange (ETDEWEB)
Toschek, P E; Balzer, Chr; Hannemann, Th; Wunderlich, Ch; Neuhauser, W [Universitaet Hamburg, Institut fuer Laser-Physik, Jungiusstrasse 9, D-20355 Hamburg (Germany)
2003-03-14
The evolution of a quantum system is impeded by the system's state being observed. A test on an ensemble neither proves the causal nexus nor discloses the nature of the inhibition. Two recent experiments that make use of sequential optical or microwave-optical double resonance on an individual trapped ion disprove a dynamical effect of back action by meter or environment. They rather indicate the ionic states involved in the evolution being entangled with the potentially recorded bivalued scattered-light signal.
Quantum key distribution with entangled photon sources
International Nuclear Information System (INIS)
Ma Xiongfeng; Fung, Chi-Hang Fred; Lo, H.-K.
2007-01-01
A parametric down-conversion (PDC) source can be used as either a triggered single-photon source or an entangled-photon source in quantum key distribution (QKD). The triggering PDC QKD has already been studied in the literature. On the other hand, a model and a post-processing protocol for the entanglement PDC QKD are still missing. We fill in this important gap by proposing such a model and a post-processing protocol for the entanglement PDC QKD. Although the PDC model is proposed to study the entanglement-based QKD, we emphasize that our generic model may also be useful for other non-QKD experiments involving a PDC source. Since an entangled PDC source is a basis-independent source, we apply Koashi and Preskill's security analysis to the entanglement PDC QKD. We also investigate the entanglement PDC QKD with two-way classical communications. We find that the recurrence scheme increases the key rate and the Gottesman-Lo protocol helps tolerate higher channel losses. By simulating a recent 144-km open-air PDC experiment, we compare three implementations: entanglement PDC QKD, triggering PDC QKD, and coherent-state QKD. The simulation result suggests that the entanglement PDC QKD can tolerate higher channel losses than the coherent-state QKD. The coherent-state QKD with decoy states is able to achieve highest key rate in the low- and medium-loss regions. By applying the Gottesman-Lo two-way post-processing protocol, the entanglement PDC QKD can tolerate up to 70 dB combined channel losses (35 dB for each channel) provided that the PDC source is placed in between Alice and Bob. After considering statistical fluctuations, the PDC setup can tolerate up to 53 dB channel losses
Gain maximization in a probabilistic entanglement protocol
di Lorenzo, Antonio; Esteves de Queiroz, Johnny Hebert
Entanglement is a resource. We can therefore define gain as a monotonic function of entanglement G (E) . If a pair with entanglement E is produced with probability P, the net gain is N = PG (E) - (1 - P) C , where C is the cost of a failed attempt. We study a protocol where a pair of quantum systems is produced in a maximally entangled state ρm with probability Pm, while it is produced in a partially entangled state ρp with the complementary probability 1 -Pm . We mix a fraction w of the partially entangled pairs with the maximally entangled ones, i.e. we take the state to be ρ = (ρm + wUlocρpUloc+) / (1 + w) , where Uloc is an appropriate unitary local operation designed to maximize the entanglement of ρ. This procedure on one hand reduces the entanglement E, and hence the gain, but on the other hand it increases the probability of success to P =Pm + w (1 -Pm) , therefore the net gain N may increase. There may be hence, a priori, an optimal value for w, the fraction of failed attempts that we mix in. We show that, in the hypothesis of a linear gain G (E) = E , even assuming a vanishing cost C -> 0 , the net gain N is increasing with w, therefore the best strategy is to always mix the partially entangled states. Work supported by CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico, proc. 311288/2014-6, and by FAPEMIG, Fundação de Amparo à Pesquisa de Minas Gerais, proc. IC-FAPEMIG2016-0269 and PPM-00607-16.
Oil recovery with vinyl sulfonic acid-acrylamide copolymers
Energy Technology Data Exchange (ETDEWEB)
Norton, C.J.; Falk, D.O.
1973-12-18
An aqueous polymer flood containing sulfomethylated alkali metal vinyl sulfonate-acrylamide copolymers was proposed for use in secondary or tertiary enhanced oil recovery. The sulfonate groups on the copolymers sustain the viscosity of the flood in the presence of brine and lime. Injection of the copolymer solution into a waterflooded Berea core, produced 30.5 percent of the residual oil. It is preferred that the copolymers are partially hydrolyzed.
On the Importance of Purification of Sodium Polystyrene Sulfonate
Sen, Akhil K.; Roy, Sandip; Juvekar, Vinay A.
2012-01-01
Ion exchange is commonly employed for purification of sodium polystyrene sulfonate (NaPSS), a molecule widely used as a model polyelectrolyte. However, the present work demonstrates that the ion exchange process itself may introduce some extraneous species into NaPSS samples by two possible mechanisms: (i) chemical transformation of polystyrene sulfonic acid (HPSS), a relatively unstable intermediate formed during ion exchange and (ii) release of small amount of “condensed” acid from cationic...
Entanglement fidelity of the standard quantum teleportation channel
Energy Technology Data Exchange (ETDEWEB)
Li, Gang; Ye, Ming-Yong, E-mail: myye@fjnu.edu.cn; Lin, Xiu-Min
2013-09-16
We consider the standard quantum teleportation protocol where a general bipartite state is used as entanglement resource. We use the entanglement fidelity to describe how well the standard quantum teleportation channel transmits quantum entanglement and give a simple expression for the entanglement fidelity when it is averaged on all input states.
Probabilistic Teleportation of a Four-Particle Entangled State
Institute of Scientific and Technical Information of China (English)
ZHAN You-Bang; FU Hao; DONG Zheng-Chao
2005-01-01
A Scheme for teleporting an unknown four-particle entangled state is proposed via entangled swapping. In this scheme, four pairs of entangled particles are used as quantum channel. It is shown that, if the four pairs of particles are nonmaximally entangled, the teleportation can be successfully realized with certain probability if a receiver adopts some appropriate unitary transformations.
Quantum entanglement of baby universes
International Nuclear Information System (INIS)
Aganagic, Mina; Okuda, Takuya; Ooguri, Hirosi
2007-01-01
We study quantum entanglements of baby universes which appear in non-perturbative corrections to the OSV formula for the entropy of extremal black holes in type IIA string theory compactified on the local Calabi-Yau manifold defined as a rank 2 vector bundle over an arbitrary genus G Riemann surface. This generalizes the result for G=1 in hep-th/0504221. Non-perturbative terms can be organized into a sum over contributions from baby universes, and the total wave-function is their coherent superposition in the third quantized Hilbert space. We find that half of the universes preserve one set of supercharges while the other half preserve a different set, making the total universe stable but non-BPS. The parent universe generates baby universes by brane/anti-brane pair creation, and baby universes are correlated by conservation of non-normalizable D-brane charges under the process. There are no other source of entanglement of baby universes, and all possible states are superposed with the equal weight
Quantum entanglement of baby universes
International Nuclear Information System (INIS)
Essman, Eric P.; Aganagic, Mina; Okuda, Takuya; Ooguri, Hirosi
2006-01-01
We study quantum entanglements of baby universes which appear in non-perturbative corrections to the OSV formula for the entropy of extremal black holes in type IIA string theory compactified on the local Calabi-Yau manifold defined as a rank 2 vector bundle over an arbitrary genus G Riemann surface. This generalizes the result for G=1 in hep-th/0504221. Non-perturbative terms can be organized into a sum over contributions from baby universes, and the total wave-function is their coherent superposition in the third quantized Hilbert space. We find that half of the universes preserve one set of supercharges while the other half preserve a different set, making the total universe stable but non-BPS. The parent universe generates baby universes by brane/anti-brane pair creation, and baby universes are correlated by conservation of non-normalizable D-brane charges under the process. There are no other source of entanglement of baby universes, and all possible states are superposed with the equal weight
Linearity of holographic entanglement entropy
Energy Technology Data Exchange (ETDEWEB)
Almheiri, Ahmed [Stanford Institute for Theoretical Physics, Department of Physics,Stanford University, Stanford, CA 94305 (United States); Dong, Xi [School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States); Swingle, Brian [Stanford Institute for Theoretical Physics, Department of Physics,Stanford University, Stanford, CA 94305 (United States)
2017-02-14
We consider the question of whether the leading contribution to the entanglement entropy in holographic CFTs is truly given by the expectation value of a linear operator as is suggested by the Ryu-Takayanagi formula. We investigate this property by computing the entanglement entropy, via the replica trick, in states dual to superpositions of macroscopically distinct geometries and find it consistent with evaluating the expectation value of the area operator within such states. However, we find that this fails once the number of semi-classical states in the superposition grows exponentially in the central charge of the CFT. Moreover, in certain such scenarios we find that the choice of surface on which to evaluate the area operator depends on the density matrix of the entire CFT. This nonlinearity is enforced in the bulk via the homology prescription of Ryu-Takayanagi. We thus conclude that the homology constraint is not a linear property in the CFT. We also discuss the existence of ‘entropy operators’ in general systems with a large number of degrees of freedom.
Directory of Open Access Journals (Sweden)
Gérald Gaibelet
2017-02-01
Full Text Available This review addresses the question of fluorescent detection of ordered membrane (micro domains in living (cultured cells, with a “practical” point of view since the situation is much more complicated than for studying model membranes. We first briefly recall the bases of model membrane structural organization involving liquid-ordered and -disordered phases, and the main features of their counterparts in cell membranes that are the various microdomains. We then emphasize the utility of the fluorescent probes derived from cholesterol, and delineate the respective advantages, limitations and drawbacks of the existing ones. In particular, besides their intra-membrane behavior, their relevant characteristics should integrate their different cellular fates for membrane turn-over, trafficking and metabolism, in order to evaluate and improve their efficiency for in-situ probing membrane microdomains in the cell physiology context. Finally, at the present stage, it appears that Bdp-Chol and Pyr-met-Chol display well complementary properties, allowing to use them in combination to improve the reliability of the current experimental approaches. But the field is still open, and there remains much work to perform in this research area.
Jiang, Zhong-Jie; Jiang, Zhongqing; Tian, Xiaoning; Luo, Lijuan; Liu, Meilin
2017-06-14
Sulfonated holey graphene oxides (SHGOs) have been synthesized by the etching of sulfonated graphene oxides with concentrated HNO 3 under the assistance of ultrasonication. These SHGOs could be used as fillers for the sulfonated aromatic poly(ether ether ketone) (SPEEK) membrane. The obtained SHGO-incorporated SPEEK membrane has a uniform and dense structure, exhibiting higher performance as proton exchange membranes (PEMs), for instance, higher proton conductivity, lower activation energy for proton conduction, and comparable methanol permeability, as compared to Nafion 112. The sulfonated graphitic structure of the SHGOs is believed to be one of the crucial factors resulting in the higher performance of the SPEEK/SHGO membrane, since it could increase the local density of the -SO 3 H groups in the membrane and induce a strong interfacial interaction between SHGO and the SPEEK matrix, which improve the proton conductivity and lower the swelling ratio of the membrane, respectively. Additionally, the proton conductivity of the membrane could be further enhanced by the presence of the holes in the graphitic planes of the SHGOs, since it provides an additional channel for transport of the protons. When used, direct methanol fuel cell with the SPEEK/SHGO membrane is found to exhibit much higher performance than that with Nafion 112, suggesting potential use of the SPEEK/SHGO membrane as the PEMs.
Quantum Entanglement: Separability, Measure, Fidelity of Teleportation, and Distillation
Directory of Open Access Journals (Sweden)
Ming Li
2010-01-01
Full Text Available Quantum entanglement plays crucial roles in quantum information processing. Quantum entangled states have become the key ingredient in the rapidly expanding field of quantum information science. Although the nonclassical nature of entanglement has been recognized for many years, considerable efforts have been taken to understand and characterize its properties recently. In this review, we introduce some recent results in the theory of quantum entanglement. In particular separability criteria based on the Bloch representation, covariance matrix, normal form and entanglement witness, lower bounds, subadditivity property of concurrence and tangle, fully entangled fraction related to the optimal fidelity of quantum teleportation, and entanglement distillation will be discussed in detail.
Cloning the entanglement of a pair of quantum bits
International Nuclear Information System (INIS)
Lamoureux, Louis-Philippe; Navez, Patrick; Cerf, Nicolas J.; Fiurasek, Jaromir
2004-01-01
It is shown that any quantum operation that perfectly clones the entanglement of all maximally entangled qubit pairs cannot preserve separability. This 'entanglement no-cloning' principle naturally suggests that some approximate cloning of entanglement is nevertheless allowed by quantum mechanics. We investigate a separability-preserving optimal cloning machine that duplicates all maximally entangled states of two qubits, resulting in 0.285 bits of entanglement per clone, while a local cloning machine only yields 0.060 bits of entanglement per clone
Residual entanglement and sudden death: A direct connection
International Nuclear Information System (INIS)
Oliveira, J.G.G. de; Peixoto de Faria, J.G.; Nemes, M.C.
2011-01-01
We explore the results of [V. Coffman, et al., Phys. Rev. A 61 (2000) 052306] derived for general tripartite states in a dynamical context. We study a class of physically motivated tripartite systems. We show that whenever entanglement sudden death occurs in one of the partitions residual entanglement will appear. For fourpartite systems however, the appearance of residual entanglement is not conditioned by sudden death of entanglement. We can only say that if sudden death of entanglement occurs in some partition there will certainly be residual entanglement. -- Highlights: ► For tripartite systems we show there exists residual entanglement if sudden death occurs. ► For fourpartite systems, the residual entanglement is not conditioned by sudden death. ► If sudden death of entanglement occurs there will certainly be residual entanglement.
Energy Technology Data Exchange (ETDEWEB)
Takamuku, Shogo; Jannasch, Patric [Polymer and Materials Chemistry, Department of Chemistry, Lund University (Sweden)
2012-01-15
Multiblock copoly(arylene ether sulfone)s with different block lengths and ionic contents are tailored for durable and proton-conducting electrolyte membranes. Two series of fully aromatic copolymers are prepared by coupling reactions between non-sulfonated hydrophobic precursor blocks and highly sulfonated hydrophilic precursor blocks containing either fully disulfonated diarylsulfone or fully tetrasulfonated tetraaryldisulfone segments. The sulfonic acid groups are exclusively introduced in ortho positions to the sulfone bridges to impede desulfonation reactions and give the blocks ion exchange capacities (IECs) of 4.1 and 4.6 meq. g{sup -1}, respectively. Solvent cast block copolymer membranes show well-connected hydrophilic nanophase domains for proton transport and high decomposition temperatures above 310 C under air. Despite higher IEC values, membranes containing tetrasulfonated tetraaryldisulfone segments display a markedly lower water uptake than the corresponding ones with disulfonated diarylsulfone segments when immersed in water at 100 C, presumably because of the much higher chain stiffness and glass transition temperature of the former segments. The former membranes have proton conductivities in level of a perfluorosulfonic acid membrane (NRE212) under fully humidified conditions. A membrane with an IEC of 1.83 meq. g{sup -1} reaches above 6 mS cm{sup -1} under 30% relative humidity at 80 C, to be compared with 10 mS cm{sup -1} for NRE212 under the same conditions. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Gauge field entanglement in Kitaev's honeycomb model
Dóra, Balázs; Moessner, Roderich
2018-01-01
A spin fractionalizes into matter and gauge fermions in Kitaev's spin liquid on the honeycomb lattice. This follows from a Jordan-Wigner mapping to fermions, allowing for the construction of a minimal entropy ground-state wave function on the cylinder. We use this to calculate the entanglement entropy by choosing several distinct partitionings. First, by partitioning an infinite cylinder into two, the -ln2 topological entanglement entropy is reconfirmed. Second, the reduced density matrix of the gauge sector on the full cylinder is obtained after tracing out the matter degrees of freedom. This allows for evaluating the gauge entanglement Hamiltonian, which contains infinitely long-range correlations along the symmetry axis of the cylinder. The matter-gauge entanglement entropy is (Ny-1 )ln2 , with Ny the circumference of the cylinder. Third, the rules for calculating the gauge sector entanglement of any partition are determined. Rather small correctly chosen gauge partitions can still account for the topological entanglement entropy in spite of long-range correlations in the gauge entanglement Hamiltonian.
Cosmological perturbations in the entangled inflationary universe
Robles-Pérez, Salvador J.
2018-03-01
In this paper, the model of a multiverse made up of universes that are created in entangled pairs that conserve the total momentum conjugated to the scale factor is presented. For the background spacetime, assumed is a Friedmann-Robertson-Walker metric with a scalar field with mass m minimally coupled to gravity. For the fields that propagate in the entangled spacetimes, the perturbations of the spacetime and the scalar field, whose quantum states become entangled too, are considered. They turn out to be in a quasithermal state, and the corresponding thermodynamical magnitudes are computed. Three observables are expected to be caused by the creation of the universes in entangled pairs: a modification of the Friedmann equation because of the entanglement of the spacetimes, a modification of the effective value of the potential of the scalar field by the backreaction of the perturbation modes, and a modification of the spectrum of fluctuations because the thermal distribution is induced by the entanglement of the partner universes. The later would be a distinctive feature of the creation of universes in entangled pairs.
The geometry of entanglement and Grover's algorithm
International Nuclear Information System (INIS)
Iwai, Toshihiro; Hayashi, Naoki; Mizobe, Kimitake
2008-01-01
A measure of entanglement with respect to a bipartite partition of n-qubit has been defined and studied from the viewpoint of Riemannian geometry (Iwai 2007 J. Phys. A: Math. Theor. 40 12161). This paper has two aims. One is to study further the geometry of entanglement, and the other is to investigate Grover's search algorithms, both the original and the fixed-point ones, in reference with entanglement. As the distance between the maximally entangled states and the separable states is known already in the previous paper, this paper determines the set of maximally entangled states nearest to a typical separable state which is used as an initial state in Grover's search algorithms, and to find geodesic segments which realize the above-mentioned distance. As for Grover's algorithms, it is already known that while the initial and the target states are separable, the algorithms generate sequences of entangled states. This fact is confirmed also in the entanglement measure proposed in the previous paper, and then a split Grover algorithm is proposed which generates sequences of separable states only with respect to the bipartite partition
Heralded entanglement of two remote atoms
Krug, Michael; Hofmann, Julian; Ortegel, Norbert; Gerard, Lea; Redeker, Kai; Henkel, Florian; Rosenfeld, Wenjamin; Weber, Markus; Weinfurter, Harald
2012-06-01
Entanglement between atomic quantum memories at remote locations will be a key resource for future applications in quantum communication. One possibility to generate such entanglement over large distances is entanglement swapping starting from two quantum memories each entangled with a photon. The photons can be transported to a Bell-state measurement where after the atomic quantum memories are projected onto an entangled state. We have set up two independently operated single atom experiments separated by 20 m. Via a spontaneous decay process each quantum memory, in our case a single Rb-87 atom, emits a single photon whose polarization is entangled with the atomic spin. The photons one emitted from each atom are collected into single-mode optical fibers guided to a non-polarizing 50-50 beam-splitter and detected by avalanche photodetectors. Bunching of indistinguishable photons allows to perform a Bell-state measurement on the photons. Conditioned on the registration of particular two-photon coincidences the spin states of both atoms are measured. The observed correlations clearly prove the entanglement of the two atoms. This is a first step towards creating a basic node of a quantum network as well as a key prerequisite for a future loophole-free test of Bell's inequality.
Entanglement entropy for (3+1)-dimensional topological order with excitations
Wen, Xueda; He, Huan; Tiwari, Apoorv; Zheng, Yunqin; Ye, Peng
2018-02-01
Excitations in (3+1)-dimensional [(3+1)D] topologically ordered phases have very rich structures. (3+1)D topological phases support both pointlike and stringlike excitations, and in particular the loop (closed string) excitations may admit knotted and linked structures. In this work, we ask the following question: How do different types of topological excitations contribute to the entanglement entropy or, alternatively, can we use the entanglement entropy to detect the structure of excitations, and further obtain the information of the underlying topological order? We are mainly interested in (3+1)D topological order that can be realized in Dijkgraaf-Witten (DW) gauge theories, which are labeled by a finite group G and its group 4-cocycle ω ∈H4[G ;U(1 ) ] up to group automorphisms. We find that each topological excitation contributes a universal constant lndi to the entanglement entropy, where di is the quantum dimension that depends on both the structure of the excitation and the data (G ,ω ) . The entanglement entropy of the excitations of the linked/unlinked topology can capture different information of the DW theory (G ,ω ) . In particular, the entanglement entropy introduced by Hopf-link loop excitations can distinguish certain group 4-cocycles ω from the others.
Developments in entanglement theory and applications to relevant physical systems
Lamata Manuel, Lucas
2007-01-01
This Thesis is devoted to the analysis of entanglement in relevant physical systems. Entanglement is the conducting theme of this research, though I do not dedicate to a single topic, but consider a wide scope of physical situations. I have followed mainly three lines of research for this Thesis, with a series of different works each, which are, Entanglement and Relativistic Quantum Theory, Continuous-variable entanglement, and Multipartite entanglement.
Entanglement replication in driven dissipative many-body systems.
Zippilli, S; Paternostro, M; Adesso, G; Illuminati, F
2013-01-25
We study the dissipative dynamics of two independent arrays of many-body systems, locally driven by a common entangled field. We show that in the steady state the entanglement of the driving field is reproduced in an arbitrarily large series of inter-array entangled pairs over all distances. Local nonclassical driving thus realizes a scale-free entanglement replication and long-distance entanglement distribution mechanism that has immediate bearing on the implementation of quantum communication networks.
Dynamics of pairwise entanglement between two Tavis-Cummings atoms
International Nuclear Information System (INIS)
Guo Jinliang; Song Heshan
2008-01-01
We investigate the time evolution of pairwise entanglement between two Tavis-Cummings atoms for various entangled initial states, including pure and mixed states. We find that the phenomenon of entanglement sudden death behaviors is distinct in the evolution of entanglement for different initial states. What deserves mentioning here is that the initial portion of the excited state in the initial state is responsible for the sudden death of entanglement, and the degree of this effect also depends on the initial states
Entanglement witnesses arising from exposed positive linear maps
Ha, Kil-Chan; Kye, Seung-Hyeok
2011-01-01
We consider entanglement witnesses arising from positive linear maps which generate exposed extremal rays. We show that every entanglement can be detected by one of these witnesses, and this witness detects a unique set of entanglement among those. Therefore, they provide a minimal set of witnesses to detect all entanglement in a sense. Furthermore, if those maps are indecomposable then they detect large classes of entanglement with positive partial transposes which have nonempty relative int...
International Nuclear Information System (INIS)
Wang Chuan; Zhang Yong; Jin Guangsheng
2011-01-01
We present an entanglement purification protocol and an entanglement concentration protocol for electron-spin entangled states, resorting to quantum-dot spin and optical-microcavity-coupled systems. The parity-check gates (PCGs) constructed by the cavity-spin-coupling system provide a different method for the entanglement purification of electron-spin entangled states. This protocol can efficiently purify an electron ensemble in a mixed entangled state. The PCGs can also concentrate electron-spin pairs in less-entangled pure states efficiently. The proposed methods are more flexible as only single-photon detection and single-electron detection are needed.
Evolution of entanglement under echo dynamics
International Nuclear Information System (INIS)
Prosen, Tomaz; Znidaric, Marko; Seligman, Thomas H.
2003-01-01
Echo dynamics and fidelity are often used to discuss stability in quantum-information processing and quantum chaos. Yet fidelity yields no information about entanglement, the characteristic property of quantum mechanics. We study the evolution of entanglement in echo dynamics. We find qualitatively different behavior between integrable and chaotic systems on one hand and between random and coherent initial states for integrable systems on the other. For the latter the evolution of entanglement is given by a classical time scale. Analytic results are illustrated numerically in a Jaynes-Cummings model
Detecting Kondo Entanglement by Electron Conductance
Yoo, Gwangsu; Lee, S.-S. B.; Sim, H.-S.
2018-04-01
Quantum entanglement between an impurity spin and electrons nearby is a key property of the single-channel Kondo effects. We show that the entanglement can be detected by measuring electron conductance through a double quantum dot in an orbital Kondo regime. We derive a relation between the entanglement and the conductance, when the SU(2) spin symmetry of the regime is weakly broken. The relation reflects the universal form of many-body states near the Kondo fixed point. Using it, the spatial distribution of the entanglement—hence, the Kondo cloud—can be detected, with breaking of the symmetry spatially nonuniformly by electrical means.
Scattering effect on entanglement propagation in RCFTs
Energy Technology Data Exchange (ETDEWEB)
Numasawa, Tokiro [Yukawa Institute for Theoretical Physics, Kyoto University,Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto, 606-8502 (Japan); Kavli Institute for Theoretical Physics, University of California Santa Barbara,Santa Barbara, CA, 93106 (United States)
2016-12-14
In this paper we discuss the scattering effect on entanglement propagation in RCFTs. In our setup, we consider the time evolution of excited states created by the insertion of many local operators. Our results show that because of the finiteness of quantum dimension, entanglement is not changed after the scattering in RCFTs. In this mean, entanglement is conserved after the scattering event in RCFTs, which reflects the integrability of the system. Our results are also consistent with the free quasiparticle picture after the global quenches.
Task-oriented maximally entangled states
International Nuclear Information System (INIS)
Agrawal, Pankaj; Pradhan, B
2010-01-01
We introduce the notion of a task-oriented maximally entangled state (TMES). This notion depends on the task for which a quantum state is used as the resource. TMESs are the states that can be used to carry out the task maximally. This concept may be more useful than that of a general maximally entangled state in the case of a multipartite system. We illustrate this idea by giving an operational definition of maximally entangled states on the basis of communication tasks of teleportation and superdense coding. We also give examples and a procedure to obtain such TMESs for n-qubit systems.
Teleportation of Multi-qudit Entangled States
Institute of Scientific and Technical Information of China (English)
ZHAN Xiao-Gui; LI Hong-Mei; ZENG Hao-Sheng
2006-01-01
@@ We propose a method to realize the teleportation of an unknown entangled state that consists of many qudits through a partially entangled-qudit quantum channel with the help of 2 log2 d-bit classical communication. The operations used in the teleportation process include a generalized Bell-state measurement and a series of singlequdit π-measurements performed by Alice, a series of generalized qudit-Pauli gates and two-level unitary gates,as well as a qubit measurement performed by Bob. For a maximally entangled quantum channel, the successful probability of the teleportation becomes unit.
Experimental Measurement-Device-Independent Entanglement Detection
Nawareg, Mohamed; Muhammad, Sadiq; Amselem, Elias; Bourennane, Mohamed
2015-02-01
Entanglement is one of the most puzzling features of quantum theory and of great importance for the new field of quantum information. The determination whether a given state is entangled or not is one of the most challenging open problems of the field. Here we report on the experimental demonstration of measurement-device-independent (MDI) entanglement detection using witness method for general two qubits photon polarization systems. In the MDI settings, there is no requirement to assume perfect implementations or neither to trust the measurement devices. This experimental demonstration can be generalized for the investigation of properties of quantum systems and for the realization of cryptography and communication protocols.
Entanglement detection in hybrid optomechanical systems
International Nuclear Information System (INIS)
De Chiara, Gabriele; Paternostro, Mauro; Palma, G. Massimo
2011-01-01
We study a device formed by a Bose-Einstein condensate (BEC) coupled to the field of a cavity with a moving end mirror and find a working point such that the mirror-light entanglement is reproduced by the BEC-light quantum correlations. This provides an experimentally viable tool for inferring mirror-light entanglement with only a limited set of assumptions. We prove the existence of tripartite entanglement in the hybrid device, persisting up to temperatures of a few milli-Kelvin, and discuss a scheme to detect it.
Multipartite Entanglement Detection with Minimal Effort
Knips, Lukas; Schwemmer, Christian; Klein, Nico; Wieśniak, Marcin; Weinfurter, Harald
2016-11-01
Certifying entanglement of a multipartite state is generally considered a demanding task. Since an N qubit state is parametrized by 4N-1 real numbers, one might naively expect that the measurement effort of generic entanglement detection also scales exponentially with N . Here, we introduce a general scheme to construct efficient witnesses requiring a constant number of measurements independent of the number of qubits for states like, e.g., Greenberger-Horne-Zeilinger states, cluster states, and Dicke states. For four qubits, we apply this novel method to experimental realizations of the aforementioned states and prove genuine four-partite entanglement with two measurement settings only.
Electrodeposition of polypyrrole films on aluminum surfaces from a p-toluene sulfonic acid medium
Directory of Open Access Journals (Sweden)
Andréa Santos Liu
2009-01-01
Full Text Available Electrodeposition of polypyrrole films on aluminum from aqueous solutions containing p-toluene sulfonic acid and pyrrole was performed by cyclic voltammetry and galvanostatic technique. The influence of applied current density on the morphology of the films was studied by Scanning Electron Microscopy. The films displayed a cauliflower-like structure consisting of micro-spherical grains. This structure is related to dopand intercalation in the polymeric chain. Films deposited at higher current density were more susceptible to the formation of pores and defects along the polymeric chain than films deposited at lower current density. These pores allow the penetration of aggressive species, thereby favoring the corrosion process.
Proof of the holographic formula for entanglement entropy
International Nuclear Information System (INIS)
Fursaev, Dmitri V.
2006-01-01
Entanglement entropy for a spatial partition of a quantum system is studied in theories which admit a dual description in terms of the anti-de Sitter (AdS) gravity one dimension higher. A general proof of the holographic formula which relates the entropy to the area of a codimension 2 minimal hypersurface embedded in the bulk AdS space is given. The entanglement entropy is determined by a partition function which is defined as a path integral over Riemannian AdS geometries with non-trivial boundary conditions. The topology of the Riemannian spaces puts restrictions on the choice of the minimal hypersurface for a given boundary conditions. The entanglement entropy is also considered in Randall-Sundrum braneworld models where its asymptotic expansion is derived when the curvature radius of the brane is much larger than the AdS radius. Special attention is paid to the geometrical structure of anomalous terms in the entropy in four dimensions. Modification of the holographic formula by the higher curvature terms in the bulk is briefly discussed
Nonlocal hyperconcentration on entangled photons using photonic module system
Energy Technology Data Exchange (ETDEWEB)
Cao, Cong; Wang, Tie-Jun; Mi, Si-Chen [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Zhang, Ru [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); School of Ethnic Minority Education, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Wang, Chuan, E-mail: wangchuan@bupt.edu.cn [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China)
2016-06-15
Entanglement distribution will inevitably be affected by the channel and environment noise. Thus distillation of maximal entanglement nonlocally becomes a crucial goal in quantum information. Here we illustrate that maximal hyperentanglement on nonlocal photons could be distilled using the photonic module and cavity quantum electrodynamics, where the photons are simultaneously entangled in polarization and spatial-mode degrees of freedom. The construction of the photonic module in a photonic band-gap structure is presented, and the operation of the module is utilized to implement the photonic nondestructive parity checks on the two degrees of freedom. We first propose a hyperconcentration protocol using two identical partially hyperentangled initial states with unknown coefficients to distill a maximally hyperentangled state probabilistically, and further propose a protocol by the assistance of an ancillary single photon prepared according to the known coefficients of the initial state. In the two protocols, the total success probability can be improved greatly by introducing the iteration mechanism, and only one of the remote parties is required to perform the parity checks in each round of iteration. Estimates on the system requirements and recent experimental results indicate that our proposal is realizable with existing or near-further technologies.
Signalling, entanglement and quantum evolution beyond Cauchy horizons
International Nuclear Information System (INIS)
Yurtsever, Ulvi; Hockney, George
2005-01-01
Consider a bipartite entangled system, half of which falls through the event horizon of an evaporating black hole, while the other half remains coherently accessible to experiments in the exterior region. Beyond complete evaporation, the evolution of the quantum state past the Cauchy horizon cannot remain unitary, raising the questions: how can this evolution be described as a quantum map, and how is causality preserved? What are the possible effects of such non-standard quantum evolution maps on the behaviour of the entangled laboratory partner? More generally, the laws of quantum evolution under extreme conditions in remote regions (not just in evaporating black-hole interiors, but possibly near other naked singularities and regions of extreme spacetime structure) remain untested by observation, and might conceivably be non-unitary or even nonlinear, raising the same questions about the evolution of entangled states. The answers to these questions are subtle, and are linked in unexpected ways to the fundamental laws of quantum mechanics. We show that terrestrial experiments can be designed to probe and constrain exactly how the laws of quantum evolution might be altered, either by black-hole evaporation, or by other extreme processes in remote regions possibly governed by unknown physics
Nonlocal hyperconcentration on entangled photons using photonic module system
International Nuclear Information System (INIS)
Cao, Cong; Wang, Tie-Jun; Mi, Si-Chen; Zhang, Ru; Wang, Chuan
2016-01-01
Entanglement distribution will inevitably be affected by the channel and environment noise. Thus distillation of maximal entanglement nonlocally becomes a crucial goal in quantum information. Here we illustrate that maximal hyperentanglement on nonlocal photons could be distilled using the photonic module and cavity quantum electrodynamics, where the photons are simultaneously entangled in polarization and spatial-mode degrees of freedom. The construction of the photonic module in a photonic band-gap structure is presented, and the operation of the module is utilized to implement the photonic nondestructive parity checks on the two degrees of freedom. We first propose a hyperconcentration protocol using two identical partially hyperentangled initial states with unknown coefficients to distill a maximally hyperentangled state probabilistically, and further propose a protocol by the assistance of an ancillary single photon prepared according to the known coefficients of the initial state. In the two protocols, the total success probability can be improved greatly by introducing the iteration mechanism, and only one of the remote parties is required to perform the parity checks in each round of iteration. Estimates on the system requirements and recent experimental results indicate that our proposal is realizable with existing or near-further technologies.
Entanglement-continuous unitary transformations
Energy Technology Data Exchange (ETDEWEB)
Sahin, Serkan; Orus, Roman [Institute of Physics, Johannes Gutenberg University, 55099 Mainz (Germany)
2016-07-01
In this talk we present a new algorithm for quantum many-body systems using continuous unitary transformations (CUT) and tensor networks (TNs). With TNs we are able to approximate the solution to the flow equations that lie at the heart of continuous unitary transformations. We call this method Entanglement-Continuous Unitary Transformations (eCUT). It allows us to compute expectation values of local observables as well as tensor network representations of ground states and low-energy excited states. An implementation of the method is shown for 1d systems using matrix product operators. We show preliminary results for the 1d transverse-field Ising model to demonstrate the feasibility of the method.
Entropic Entanglement: Information Prison Break
Directory of Open Access Journals (Sweden)
Alexander Y. Yosifov
2017-01-01
Full Text Available We argue that certain nonviolent local quantum field theory (LQFT modification considered at the global horizon (r=2M of a static spherically symmetric black hole can lead to adiabatic leakage of quantum information in the form of Hawking particles. The source of the modification is (i smooth at r=2M and (ii rapidly vanishing at r≫2M. Furthermore, we restore the unitary evolution by introducing extra quanta which departs slightly from the generic Hawking emission without changing the experience of an infalling observer (no drama. Also, we suggest that a possible interpretation of the Bekenstein-Hawking bound as entanglement entropy may yield a nonsingular dynamical horizon behavior described by black hole thermodynamics. Hence, by treating gravity as a field theory and considering its coupling to the matter fields in the Minkowski vacuum, we derive the conjectured fluctuations of the background geometry of a black hole.
Synthesis in pilot plant scale and physical properties of sulfonated polystyrene
Directory of Open Access Journals (Sweden)
Martins Cristiane R.
2003-01-01
Full Text Available The homogenous sulfonation of polystyrene was developed in a pilot plant scale producing polymers with different sulfonation degrees (18 to 22 mole % of sulfonated styrene units. The reaction yield depends chiefly on the concentration ratio of acetyl sulfate and polystyrene. The morphological and thermal properties of the sulfonated polystyrene obtained by homogeneous sulfonation were studied by means of scanning electron microscopy, differential scanning calorimetry and thermogravimetry. The glass transition temperature of sulfonated polystyrene increases in relation to pure polystyrene and DCp was evaluated in order to confirm the strong interactions among the ~SO3H groups.
Kwon, Sohyun; Rao, Anil H. N.; Kim, Tae-Hyun
2018-01-01
Azide-assisted terminal crosslinking of methyl morpholinium-functionalized poly(arylene ether sulfone) block copolymers yields products (xMM-PESs) suitable for use as anion exchange membranes. By combining the advantages of bulky morpholinium conductors and our unique polymer network crosslinked only at the termini of the polymer chains, we can produce AEMs that after the crosslinking show minimal loss in conductivity, yet with dramatically reduced water uptake. Terminal crosslinking also significantly increases the thermal, mechanical and chemical stability levels of the membranes. A high ion conductivity of 73.4 mS cm-1 and low water uptake of 26.1% at 80 °C are obtained for the crosslinked membrane with higher amount of hydrophilic composition, denoted as xMM-PES-1.5-1. In addition, the conductivity of the crosslinked xMM-PES-1.5-1 membrane exceeds that of its non-crosslinked counterpart (denoted as MM-PES-1.5-1) above 60 °C at 95% relative humidity because of its enhanced water retention capacity caused by the terminally-crosslinked structure.
Quantum Entanglement and Projective Ring Geometry
Directory of Open Access Journals (Sweden)
Michel Planat
2006-08-01
Full Text Available The paper explores the basic geometrical properties of the observables characterizing two-qubit systems by employing a novel projective ring geometric approach. After introducing the basic facts about quantum complementarity and maximal quantum entanglement in such systems, we demonstrate that the 15 × 15 multiplication table of the associated four-dimensional matrices exhibits a so-far-unnoticed geometrical structure that can be regarded as three pencils of lines in the projective plane of order two. In one of the pencils, which we call the kernel, the observables on two lines share a base of Bell states. In the complement of the kernel, the eight vertices/observables are joined by twelve lines which form the edges of a cube. A substantial part of the paper is devoted to showing that the nature of this geometry has much to do with the structure of the projective lines defined over the rings that are the direct product of n copies of the Galois field GF(2, with n = 2, 3 and 4.
Energy Technology Data Exchange (ETDEWEB)
Unveren, Elif Erdal; Erdogan, Tuba; Inan, Tulay Y. [Chemistry Institute, TUBITAK Marmara Research Center, 41470, Gebze, Kocaeli (Turkey); Celebi, Serdar S. [Professor Emeritus, Chemical Engineering Department, Hacettepe University, 06800, Beytepe, Ankara (Turkey)
2010-04-15
Commercially available poly(ether ether sulfone), PEES, was directly sulfonated using concentrated sulfuric acid at low temperatures by minimizing degradation during sulfonation. The sulfonation reaction was performed in the temperature range of 5-25 C. Sulfonated polymers were characterized by FTIR, {sup 1}H NMR spectroscopy and ion exchange capacity (IEC) measurements. Degradation during sulfonation was investigated by measuring intrinsic viscosity, glass transition temperature and thermal decomposition temperature of sulfonated polymers. Sulfonated PEES, SPEES, membranes were prepared by solvent casting method and characterized in terms of IEC, proton conductivity and water uptake. The effect of sulfonation conditions on chemical stability of membranes was also investigated via Fenton test. Optimum sulfonation condition was determined to be 10 C with conc. H{sub 2}SO{sub 4} based on the characteristics of sulfonated polymers and also the chemical stability of their membranes. SPEES membranes exhibited proton conductivity up to 185.8 mS cm{sup -1} which is higher than that of Nafion 117 (133.3 mS cm{sup -1}) measured at 80 C and relative humidity 100%. (author)
On the entanglement entropy for gauge theories
International Nuclear Information System (INIS)
Ghosh, Sudip; Soni, Ronak M; Trivedi, Sandip P.
2015-01-01
We propose a definition for the entanglement entropy of a gauge theory on a spatial lattice. Our definition applies to any subset of links in the lattice, and is valid for both Abelian and Non-Abelian gauge theories. For ℤ_N and U(1) theories, without matter, our definition agrees with a particular case of the definition given by Casini, Huerta and Rosabal. We also argue that in general, both for Abelian and Non-Abelian theories, our definition agrees with the entanglement entropy calculated using a definition of the replica trick. Our definition, however, does not agree with some standard ways to measure entanglement, like the number of Bell pairs which can be produced by entanglement distillation.
From quantum entanglement to mirror neuron
International Nuclear Information System (INIS)
Zak, Michail
2007-01-01
It is proposed that two fundamental phenomena: quantum entanglement in physics, and mirror neuron in biopsychology, can be described by using the same mathematical formalism, namely, the feedback from the Liouville equation to equation of motion
Entanglement-assisted quantum feedback control
Yamamoto, Naoki; Mikami, Tomoaki
2017-07-01
The main advantage of quantum metrology relies on the effective use of entanglement, which indeed allows us to achieve strictly better estimation performance over the standard quantum limit. In this paper, we propose an analogous method utilizing entanglement for the purpose of feedback control. The system considered is a general linear dynamical quantum system, where the control goal can be systematically formulated as a linear quadratic Gaussian control problem based on the quantum Kalman filtering method; in this setting, an entangled input probe field is effectively used to reduce the estimation error and accordingly the control cost function. In particular, we show that, in the problem of cooling an opto-mechanical oscillator, the entanglement-assisted feedback control can lower the stationary occupation number of the oscillator below the limit attainable by the controller with a coherent probe field and furthermore beats the controller with an optimized squeezed probe field.
Entanglement entropy from the holographic stress tensor
International Nuclear Information System (INIS)
Bhattacharyya, Arpan; Sinha, Aninda
2013-01-01
We consider entanglement entropy in the context of gauge/gravity duality for conformal field theories in even dimensions. The holographic prescription due to Ryu and Takayanagi (RT) leads to an equation describing how the entangling surface extends into the bulk geometry. We show that setting to zero, the time–time component of the Brown–York stress tensor evaluated on the co-dimension 1 entangling surface, leads to the same equation. By considering a spherical entangling surface as an example, we observe that the Euclidean action methods in AdS/CFT will lead to the RT area functional arising as a counterterm needed to regularize the stress tensor. We present arguments leading to a justification for the minimal area prescription. (paper)
Spin entanglement, decoherence and Bohm's EPR paradox.
Cavalcanti, E G; Drummond, P D; Bachor, H A; Reid, M D
2009-10-12
We obtain criteria for entanglement and the EPR paradox for spin-entangled particles and analyse the effects of decoherence caused by absorption and state purity errors. For a two qubit photonic state, entanglement can occur for all transmission efficiencies. In this case, the state preparation purity must be above a threshold value. However, Bohm's spin EPR paradox can be achieved only above a critical level of loss. We calculate a required efficiency of 58%, which appears achievable with current quantum optical technologies. For a macroscopic number of particles prepared in a correlated state, spin entanglement and the EPR paradox can be demonstrated using our criteria for efficiencies eta > 1/3 and eta > 2/3 respectively. This indicates a surprising insensitivity to loss decoherence, in a macroscopic system of ultra-cold atoms or photons.
Entangled biphoton source - property and preparation
International Nuclear Information System (INIS)
Shih, Yanhua
2003-01-01
One of the most surprising consequences of quantum mechanics is the entanglement of two or more distance particles. Even though there are still questions regarding the fundamental issues of quantum theory, quantum entanglement has started to play important roles in practical engineering applications such as quantum information processing, quantum metrology, quantum imaging and quantum lithography. Two-photon states have been the most popular entangled states in fundamental and applied research. Using spontaneous parametric down conversion as an example, this review introduces the concept of biphoton wavepacket and emphasizes the very different physics associated with the entangled two-photon system (pure state) and with the 'individual' subsystems (statistical mixture). Experimental approaches for Bell state preparation, pumped by continuous wave and ultrashort pulse are discussed
Revisiting entanglement entropy of lattice gauge theories
Energy Technology Data Exchange (ETDEWEB)
Hung, Ling-Yan [Department of Physics and Center for Field Theory and Particle Physics, Fudan University,220 Handan Lu, Shanghai 200433 (China); Collaborative Innovation Center of Advanced Microstructures, Fudan University,220 Handan Lu, Shanghai 200433 (China); Wan, Yidun [Perimeter Institute for Theoretical Physics,31 Caroline Street, Waterloo, ON N2L 2Y5 (Canada)
2015-04-22
It is realized recently that the entanglement entropy in gauge theories is ambiguous because the Hilbert space cannot be expressed as a simple direct product of Hilbert spaces defined on the two regions; different ways of dividing the Hilbert spaces near the boundary leads to significantly different result, to the extreme that it could annihilate the otherwise finite topological entanglement entropy between two regions altogether. In this article, we first show that the topological entanglement entropy in the Kitaev model http://dx.doi.org/10.1016/S0003-4916(02)00018-0 which is not a true gauge theory, is free of ambiguity. Then, we give a physical interpretation, from the perspectives of what can be measured in an experiment, to the purported ambiguity of true gauge theories, where the topological entanglement arises as redundancy in counting the degrees of freedom along the boundary separating two regions. We generalize these discussions to non-Abelian gauge theories.
Persistent entanglement in the classical limit
Energy Technology Data Exchange (ETDEWEB)
Everitt, M J [Centre for Physical Electronics and Quantum Technology, School of Science and Technology, University of Sussex, Falmer, Brighton BN1 9QT (United Kingdom); Clark, T D [Centre for Physical Electronics and Quantum Technology, School of Science and Technology, University of Sussex, Falmer, Brighton BN1 9QT (United Kingdom); Stiffell, P B [Centre for Physical Electronics and Quantum Technology, School of Science and Technology, University of Sussex, Falmer, Brighton BN1 9QT (United Kingdom); Ralph, J F [Department of Electrical and Electronic Engineering, Liverpool University, Brownlow Hill, Liverpool L69 3GJ (United Kingdom); Bulsara, A R [Space and Naval Warfare Systems Center, Code 2363, 53560 Hull Street, San Diego, CA 92152-5001 (United States); Harland, C J [Centre for Physical Electronics and Quantum Technology, School of Science and Technology, University of Sussex, Falmer, Brighton BN1 9QT (United Kingdom)
2005-02-01
The apparent difficulty in recovering classical nonlinear dynamics and chaos from standard quantum mechanics has been the subject of a great deal of interest over the last 20 years. For open quantum systems-those coupled to a dissipative environment and/or a measurement device-it has been demonstrated that chaotic-like behaviour can be recovered in the appropriate classical limit. In this paper, we investigate the entanglement generated between two nonlinear oscillators, coupled to each other and to their environment. Entanglement-the inability to factorize coupled quantum systems into their constituent parts-is one of the defining features of quantum mechanics. Indeed, it underpins many of the recent developments in quantum technologies. Here, we show that the entanglement characteristics of two 'classical' states (chaotic and periodic solutions) differ significantly in the classical limit. In particular, we show that significant levels of entanglement are preserved only in the chaotic-like solutions.
Criticality and entanglement in random quantum systems
International Nuclear Information System (INIS)
Refael, G; Moore, J E
2009-01-01
We review studies of entanglement entropy in systems with quenched randomness, concentrating on universal behavior at strongly random quantum critical points. The disorder-averaged entanglement entropy provides insight into the quantum criticality of these systems and an understanding of their relationship to non-random ('pure') quantum criticality. The entanglement near many such critical points in one dimension shows a logarithmic divergence in subsystem size, similar to that in the pure case but with a different universal coefficient. Such universal coefficients are examples of universal critical amplitudes in a random system. Possible measurements are reviewed along with the one-particle entanglement scaling at certain Anderson localization transitions. We also comment briefly on higher dimensions and challenges for the future.
Converting multilevel nonclassicality into genuine multipartite entanglement
Regula, Bartosz; Piani, Marco; Cianciaruso, Marco; Bromley, Thomas R.; Streltsov, Alexander; Adesso, Gerardo
2018-03-01
Characterizing genuine quantum resources and determining operational rules for their manipulation are crucial steps to appraise possibilities and limitations of quantum technologies. Two such key resources are nonclassicality, manifested as quantum superposition between reference states of a single system, and entanglement, capturing quantum correlations among two or more subsystems. Here we present a general formalism for the conversion of nonclassicality into multipartite entanglement, showing that a faithful reversible transformation between the two resources is always possible within a precise resource-theoretic framework. Specializing to quantum coherence between the levels of a quantum system as an instance of nonclassicality, we introduce explicit protocols for such a mapping. We further show that the conversion relates multilevel coherence and multipartite entanglement not only qualitatively, but also quantitatively, restricting the amount of entanglement achievable in the process and in particular yielding an equality between the two resources when quantified by fidelity-based geometric measures.
Orbital-angular-momentum entanglement in turbulence
CSIR Research Space (South Africa)
Hamadou Ibrahim, A
2013-06-01
Full Text Available The turbulence-induced decay of orbital-angular-momentum (OAM) entanglement between two photons is investigated numerically and experimentally. To compare our resultswith previouswork,we simulate the turbulent atmosphere with a single phase screen...
Entanglement degradation in depolarizing light scattering
International Nuclear Information System (INIS)
Aiello, A.; Woerdman, J.P.
2005-01-01
Full text: In the classical regime, when a beam of light is scattered by a medium, it may emerge partially or completely depolarized depending on the optical properties of the medium. Correspondingly, in the quantum regime, when an entangled two-photon pair is scattered, the classical depolarization may result in an entanglement degradation. Here, relations between photon scattering, entanglement and multi-mode detection are investigated. We establish a general framework in which one- and two-photon elastic scattering processes can be discussed, and we focus on the study of the intrinsic entanglement degradation caused by a multi-mode detection. We show that any multi-mode scattered state cannot maximally violate the Bell-CHSH inequality because of the momentum spread. The results presented here have general validity and can be applied to both deterministic and random scattering processes. (author)
Machine learning spatial geometry from entanglement features
You, Yi-Zhuang; Yang, Zhao; Qi, Xiao-Liang
2018-02-01
Motivated by the close relations of the renormalization group with both the holography duality and the deep learning, we propose that the holographic geometry can emerge from deep learning the entanglement feature of a quantum many-body state. We develop a concrete algorithm, call the entanglement feature learning (EFL), based on the random tensor network (RTN) model for the tensor network holography. We show that each RTN can be mapped to a Boltzmann machine, trained by the entanglement entropies over all subregions of a given quantum many-body state. The goal is to construct the optimal RTN that best reproduce the entanglement feature. The RTN geometry can then be interpreted as the emergent holographic geometry. We demonstrate the EFL algorithm on a 1D free fermion system and observe the emergence of the hyperbolic geometry (AdS3 spatial geometry) as we tune the fermion system towards the gapless critical point (CFT2 point).
Projected entangled pair states: status and prospects
Energy Technology Data Exchange (ETDEWEB)
Verstraete, Frank [Universitaet Wien (Austria)
2008-07-01
We report on the progress made to extend the density matrix renormalization group to higher dimensions, discuss the underlying theory of projected entangled pair states (PEPS) and illustrate its potential on the hand of a few examples.
Quantum Entanglement and Reduced Density Matrices
Purwanto, Agus; Sukamto, Heru; Yuwana, Lila
2018-05-01
We investigate entanglement and separability criteria of multipartite (n-partite) state by examining ranks of its reduced density matrices. Firstly, we construct the general formula to determine the criterion. A rank of origin density matrix always equals one, meanwhile ranks of reduced matrices have various ranks. Next, separability and entanglement criterion of multipartite is determined by calculating ranks of reduced density matrices. In this article we diversify multipartite state criteria into completely entangled state, completely separable state, and compound state, i.e. sub-entangled state and sub-entangledseparable state. Furthermore, we also shorten the calculation proposed by the previous research to determine separability of multipartite state and expand the methods to be able to differ multipartite state based on criteria above.