WorldWideScience

Sample records for entangled coherent states

  1. Entanglement diversion and quantum teleportation of entangled coherent states

    Institute of Scientific and Technical Information of China (English)

    Cai Xin-Hua; Guo Jie-Rong; Nie Jian-Jun; Jia Jin-Ping

    2006-01-01

    The proposals on entanglement diversion and quantum teleportation of entangled coherent states are presented.In these proposals,the entanglement between two coherent states,|α〉and |-α〉,with the same amplitude but a phase difference of π is utilized as a quantum channel.The processes of the entanglement diversion and the teleportation are achieved by using the 5050 symmetric beam splitters,the phase shifters and the photodetectors with the help of classical information.

  2. Increasing Entanglement between Gaussian States by Coherent Photon Subtraction

    DEFF Research Database (Denmark)

    Ourjoumtsev, Alexei; Dantan, Aurelien Romain; Tualle Brouri, Rosa

    2007-01-01

    We experimentally demonstrate that the entanglement between Gaussian entangled states can be increased by non-Gaussian operations. Coherent subtraction of single photons from Gaussian quadrature-entangled light pulses, created by a nondegenerate parametric amplifier, produces delocalized states...

  3. Testing nonlocal realism with entangled coherent states

    International Nuclear Information System (INIS)

    Paternostro, Mauro; Jeong, Hyunseok

    2010-01-01

    We investigate the violation of nonlocal realism using entangled coherent states (ECSs) under nonlinear operations and homodyne measurements. We address recently proposed Leggett-type inequalities, including a class of optimized incompatibility inequalities proposed by Branciard et al. [Nature Phys. 4, 681 (2008)], and thoroughly assess the effects of detection inefficiency.

  4. Hybrid entanglement concentration assisted with single coherent state

    International Nuclear Information System (INIS)

    Guo Rui; Zhou Lan; Sheng Yu-Bo; Gu Shi-Pu; Wang Xing-Fu

    2016-01-01

    Hybrid entangled state (HES) is a new type of entanglement, which combines the advantages of an entangled polarization state and an entangled coherent state. HES is widely discussed in the applications of quantum communication and computation. In this paper, we propose three entanglement concentration protocols (ECPs) for Bell-type HES, W-type HES, and cluster-type HES, respectively. After performing these ECPs, we can obtain the maximally entangled HES with some success probability. All the ECPs exploit the single coherent state to complete the concentration. These protocols are based on the linear optics, which are feasible in future experiments. (paper)

  5. Quantitative measures of entanglement in pair-coherent states

    International Nuclear Information System (INIS)

    Agarwal, G S; Biswas, Asoka

    2005-01-01

    The pair-coherent states for a two-mode radiation field are known to belong to a family of states with non-Gaussian wavefunction. The nature of quantum entanglement between the two modes and some features of non-classicality are studied for such states. The existing criterion for inseparability are examined in the context of pair-coherent states

  6. Average subentropy, coherence and entanglement of random mixed quantum states

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lin, E-mail: godyalin@163.com [Institute of Mathematics, Hangzhou Dianzi University, Hangzhou 310018 (China); Singh, Uttam, E-mail: uttamsingh@hri.res.in [Harish-Chandra Research Institute, Allahabad, 211019 (India); Pati, Arun K., E-mail: akpati@hri.res.in [Harish-Chandra Research Institute, Allahabad, 211019 (India)

    2017-02-15

    Compact expressions for the average subentropy and coherence are obtained for random mixed states that are generated via various probability measures. Surprisingly, our results show that the average subentropy of random mixed states approaches the maximum value of the subentropy which is attained for the maximally mixed state as we increase the dimension. In the special case of the random mixed states sampled from the induced measure via partial tracing of random bipartite pure states, we establish the typicality of the relative entropy of coherence for random mixed states invoking the concentration of measure phenomenon. Our results also indicate that mixed quantum states are less useful compared to pure quantum states in higher dimension when we extract quantum coherence as a resource. This is because of the fact that average coherence of random mixed states is bounded uniformly, however, the average coherence of random pure states increases with the increasing dimension. As an important application, we establish the typicality of relative entropy of entanglement and distillable entanglement for a specific class of random bipartite mixed states. In particular, most of the random states in this specific class have relative entropy of entanglement and distillable entanglement equal to some fixed number (to within an arbitrary small error), thereby hugely reducing the complexity of computation of these entanglement measures for this specific class of mixed states.

  7. Teleportation of a Coherent Superposition State Via a nonmaximally Entangled Coherent Xhannel

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ We investigate the problemm of teleportation of a superposition coherent state with nonmaximally entangled coherent channel. Two strategies are considered to complete the task. The first one uses entanglement concentration to purify the channel to a maximally entangled one. The second one teleports the state through the nonmaximally entangled coherent channel directly. We find that the probabilities of successful teleportations for the two strategies are depend on the amplitudes of the coherent states and the mean fidelity of teleportation using the first strategy is always less than that of the second strategy.

  8. Entangled Coherent States Generation in two Superconducting LC Circuits

    International Nuclear Information System (INIS)

    Chen Meiyu; Zhang Weimin

    2008-01-01

    We proposed a novel pure electronic (solid state) device consisting of two superconducting LC circuits coupled to a superconducting flux qubit. The entangled coherent states of the two LC modes is generated through the measurement of the flux qubit states. The interaction of the flux qubit and two LC circuits is controlled by the external microwave control lines. The geometrical structure of the LC circuits is adjustable and makes a strong coupling between them achievable. This entangled coherent state generator can be realized by using the conventional microelectronic fabrication techniques which increases the feasibility of the experiment.

  9. The study of entanglement and teleportation of the harmonic oscillator bipartite coherent states

    Directory of Open Access Journals (Sweden)

    A Rabeie and

    2015-01-01

    Full Text Available In this paper, we reproduce the harmonic oscillator bipartite coherent states with imperfect cloning of coherent states. We show that if these entangled coherent states are embedded in a vacuum environment, their entanglement is degraded but not totally lost . Also, the optimal fidelity of these states is worked out for investigating their teleportation

  10. Generation of entangled coherent states for distant Bose-Einstein condensates via electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Kuang, L.-M.; Chen Zengbing; Pan Jianwei

    2007-01-01

    We propose a method to generate entangled coherent states between two spatially separated atomic Bose-Einstein condensates (BECs) via the technique of electromagnetically induced transparency (EIT). Two strong coupling laser beams and two entangled probe laser beams are used to cause two distant BECs to be in EIT states and to generate an atom-photon entangled state between probe lasers and distant BECs. The two BECs are initially in unentangled product coherent states while the probe lasers are initially in an entangled state. Entangled states of two distant BECs can be created through the performance of projective measurements upon the two outgoing probe lasers under certain conditions. Concretely, we propose two protocols to show how to generate entangled coherent states of the two distant BECs. One is a single-photon scheme in which an entangled single-photon state is used as the quantum channel to generate entangled distant BECs. The other is a multiphoton scheme where an entangled coherent state of the probe lasers is used as the quantum channel. Additionally, we also obtain some atom-photon entangled states of particular interest such as entangled states between a pair of optical Bell states (or quasi-Bell-states) and a pair of atomic entangled coherent states (or quasi-Bell-states)

  11. Faithful test of nonlocal realism with entangled coherent states

    International Nuclear Information System (INIS)

    Lee, Chang-Woo; Jeong, Hyunseok; Paternostro, Mauro

    2011-01-01

    We investigate the violation of Leggett's inequality for nonlocal realism using entangled coherent states and various types of local measurements. We prove mathematically the relation between the violation of the Clauser-Horne-Shimony-Holt form of Bell's inequality and Leggett's one when tested by the same resources. For Leggett inequalities, we generalize the nonlocal realistic bound to systems in Hilbert spaces larger than bidimensional ones and introduce an optimization technique that allows one to achieve larger degrees of violation by adjusting the local measurement settings. Our work describes the steps that should be performed to produce a self-consistent generalization of Leggett's original arguments to continuous-variable states.

  12. Role of initial coherence on entanglement dynamics of two qubit X states

    Science.gov (United States)

    V, Namitha C.; Satyanarayana, S. V. M.

    2018-02-01

    Bipartite entanglement is a necessary resource in most processes in quantum information science. Decoherence resulting from the interaction of the bipartite system with environment not only degrades the entanglement, but can result in abrupt disentanglement, known as entanglement sudden death (ESD). In some cases, a subsequent revival of entanglement is also possible. ESD is an undesirable feature for the state to be used as a resource in applications. In order to delay or avoid ESD, it is necessary to understand its origin. In this work we investigate the role of initial coherence on entanglement dynamics of a spatially separated two qubit system in a common vacuum reservoir with dipolar interaction. We construct two classes of X states, namely, states with one photon coherence (X 1) and states with two photon coherence (X 2). Considering them as initial states, we study entanglement dynamics under Markov approximation. We find for states in X 1, ESD time, revival time and time over which the state remains disentangled increase with increase in coherence. On the other hand for states in X 2, with increase in coherence ESD time increases, revival time remains same and time of disentanglement decreases. Thus, states with two photon coherence are better resources for applications since their entanglement is robust against decoherence compared to states with one photon coherence.

  13. Entanglement of Grassmannian Coherent States for Multi-Partite n-Level Systems

    Directory of Open Access Journals (Sweden)

    Ghader Najarbashi

    2011-01-01

    Full Text Available In this paper, we investigate the entanglement of multi-partite Grassmannian coherent states (GCSs described by Grassmann numbers for n>2 degree of nilpotency. Choosing an appropriate weight function, we show that it is possible to construct some well-known entangled pure states, consisting of GHZ, W, Bell, cluster type and bi-separable states, which are obtained by integrating over tensor product of GCSs. It is shown that for three level systems, the Grassmann creation and annihilation operators b and b^† together with bz form a closed deformed algebra, i.e., SU_q(2 with q=e^{2πi/3}, which is useful to construct entangled qutrit-states. The same argument holds for three level squeezed states. Moreover combining the Grassmann and bosonic coherent states we construct maximal entangled super coherent states.

  14. Entanglement between total intensity and polarization for pairs of coherent states

    Science.gov (United States)

    Sanchidrián-Vaca, Carlos; Luis, Alfredo

    2018-04-01

    We examine entanglement between number and polarization, or number and relative phase, in pair coherent states and two-mode squeezed vacuum via linear entropy and covariance criteria. We consider the embedding of the two-mode Hilbert space in a larger space to get a well-defined factorization of the number-phase variables. This can be regarded as a kind of protoentanglement that can be extracted and converted into real particle entanglement via feasible experimental procedures. In particular this reveals interesting entanglement properties of pairs of coherent states.

  15. Entanglement Generation with Deformed Barut-Girardello Coherent States as Input States in a Unitary Beam Splitter

    International Nuclear Information System (INIS)

    Berrada, K.; Benmoussa, A.; Hassouni, Y.

    2010-07-01

    Using linear entropy as a measure of entanglement, we investigate the entanglement generated via a beam splitter using deformed Barut-Girardello coherent states. We show that the degree of entanglement depends strongly on the q-deformation parameter and amplitude Z of the states. We compute the Mandel Q parameter to examine the quantum statistical properties of these coherent states and make a comparison with the Glauber coherent states. It is shown that these states are useful to describe the states of real and ideal lasers by a proper choice of their characterizing parameters, using an alteration of the Holstein-Primakoff realization. (author)

  16. FUNDAMENTAL AREAS OF PHENOMENOLOGY (INCLUDING APPLICATIONS): Teleportation of Entangled States through Divorce of Entangled Pair Mediated by a Weak Coherent Field in a High-Q Cavity

    Science.gov (United States)

    Cardoso B., W.; Almeida G. de, N.

    2008-07-01

    We propose a scheme to partially teleport an unknown entangled atomic state. A high-Q cavity, supporting one mode of a weak coherent state, is needed to accomplish this process. By partial teleportation we mean that teleportation will occur by changing one of the partners of the entangled state to be teleported. The entangled state to be teleported is composed by one pair of particles, we called this surprising characteristic of maintaining the entanglement, even when one of the particle of the entangled pair being teleported is changed, of divorce of entangled states.

  17. Teleportation of Entangled States through Divorce of Entangled Pair Mediated by a Weak Coherent Field in a High-Q Cavity

    International Nuclear Information System (INIS)

    Cardoso, W. B.; Almeida, N. G. de

    2008-01-01

    We propose a scheme to partially teleport an unknown entangled atomic state. A high-Q cavity, supporting one mode of a weak coherent state, is needed to accomplish this process. By partial teleportation we mean that teleportation will occur by changing one of the partners of the entangled state to be teleported. The entangled state to be teleported is composed by one pair of particles, we called this surprising characteristic of maintaining the entanglement, even when one of the particle of the entangled pair being teleported is changed, of divorce of entangled states. (fundamental areas of phenomenology (including applications))

  18. Teleportation of Entangled States through Divorce of Entangled Pair Mediated by a Weak Coherent Field in a High-Q Cavity

    Institute of Scientific and Technical Information of China (English)

    W. B. Cardosol; N. G. de Almeida

    2008-01-01

    We propose a scheme to partially teleport an unknown entangled atomic state. A high-Q cavity, supporting one mode of a weak coherent state, is needed to accomplish this process. By partial teleportation we mean that teleportation will occur by changing one of the partners of the entangled state to be teleported. The entangled state to be teleported is composed by one pair of particles, we called this surprising characteristic of maintaining the entanglement, even when one of the particle of the entangled pair being teleported is changed, of divorce of entangled states.

  19. Error Free Quantum Reading by Quasi Bell State of Entangled Coherent States

    Science.gov (United States)

    Hirota, Osamu

    2017-12-01

    Nonclassical states of light field have been exploited to provide marvellous results in quantum information science. Usefulness of nonclassical states in quantum information science depends on whether a physical parameter as a signal is continuous or discrete. Here we present an investigation of the potential of quasi Bell states of entangled coherent states in quantum reading of the classical digital memory which was pioneered by Pirandola (Phys.Rev.Lett.,106,090504,2011). This is a typical example of discrimination for discrete quantum parameters. We show that the quasi Bell state gives the error free performance in the quantum reading that cannot be obtained by any classical state.

  20. Generation of concatenated Greenberger-Horne-Zeilinger-type entangled coherent state based on linear optics

    Science.gov (United States)

    Guo, Rui; Zhou, Lan; Gu, Shi-Pu; Wang, Xing-Fu; Sheng, Yu-Bo

    2017-03-01

    The concatenated Greenberger-Horne-Zeilinger (C-GHZ) state is a new type of multipartite entangled state, which has potential application in future quantum information. In this paper, we propose a protocol of constructing arbitrary C-GHZ entangled state approximatively. Different from previous protocols, each logic qubit is encoded in the coherent state. This protocol is based on the linear optics, which is feasible in experimental technology. This protocol may be useful in quantum information based on the C-GHZ state.

  1. Entanglement between atomic thermal states and coherent or squeezed photons in a damping cavity

    Science.gov (United States)

    Yadollahi, F.; Safaiee, R.; Golshan, M. M.

    2018-02-01

    In the present study, the standard Jaynes-Cummings model, in a lossy cavity, is employed to characterize the entanglement between atoms and photons when the former is initially in a thermal state (mixed ensemble) while the latter is described by either coherent or squeezed distributions. The whole system is thus assumed to be in equilibrium with a heat reservoir at a finite temperature T, and the measure of negativity is used to determine the time evolution of atom-photon entanglement. To this end, the master equation for the density matrix, in the secular approximation, is solved and a partial transposition of the result is made. The degree of atom-photon entanglement is then numerically computed, through the negativity, as a function of time and temperature. To justify the behavior of atom-photon entanglement, moreover, we employ the so obtained total density matrix to compute and analyze the time evolution of the initial photonic coherent or squeezed probability distributions and the squeezing parameters. On more practical points, our results demonstrate that as the initial photon mean number increases, the atom-photon entanglement decays at a faster pace for the coherent distribution compared to the squeezed one. Moreover, it is shown that the degree of atom-photon entanglement is much higher and more stable for the squeezed distribution than that for the coherent one. Consequently, we conclude that the time intervals during which the atom-photon entanglement is distillable is longer for the squeezed distribution. It is also illustrated that as the temperature increases the rate of approaching separability is faster for the coherent initial distribution. The novel point of the present report is the calculation of dynamical density matrix (containing all physical information) for the combined system of atom-photon in a lossy cavity, as well as the corresponding negativity, at a finite temperature.

  2. Coherent control of long-distance steady-state entanglement in lossy resonator arrays

    Science.gov (United States)

    Angelakis, D. G.; Dai, L.; Kwek, L. C.

    2010-07-01

    We show that coherent control of the steady-state long-distance entanglement between pairs of cavity-atom systems in an array of lossy and driven coupled resonators is possible. The cavities are doped with atoms and are connected through waveguides, other cavities or fibers depending on the implementation. We find that the steady-state entanglement can be coherently controlled through the tuning of the phase difference between the driving fields. It can also be surprisingly high in spite of the pumps being classical fields. For some implementations where the connecting element can be a fiber, long-distance steady-state quantum correlations can be established. Furthermore, the maximal of entanglement for any pair is achieved when their corresponding direct coupling is much smaller than their individual couplings to the third party. This effect is reminiscent of the establishment of coherence between otherwise uncoupled atomic levels using classical coherent fields. We suggest a method to measure this entanglement by analyzing the correlations of the emitted photons from the array and also analyze the above results for a range of values of the system parameters, different network geometries and possible implementation technologies.

  3. Teleportation of a two-mode entangled coherent state encoded with two-qubit information

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Manoj K; Prakash, Hari, E-mail: manoj.qit@gmail.co, E-mail: prakash_hari123@rediffmail.co [Department of physics, University of Allahabad, Allahabad (India)

    2010-09-28

    We propose a scheme to teleport a two-mode entangled coherent state encoded with two-qubit information, which is better than the two schemes recently proposed by Liao and Kuang (2007 J. Phys. B: At. Mol. Opt. Phys. 40 1183) and by Phien and Nguyen (2008 Phys. Lett. A 372 2825) in that our scheme gives higher value of minimum assured fidelity and minimum average fidelity without using any nonlinear interactions. For involved coherent states | {+-} {alpha}), minimum average fidelity in our case is {>=}0.99 for |{alpha}| {>=} 1.6 (i.e. |{alpha}|{sup 2} {>=} 2.6), while previously proposed schemes referred above report the same for |{alpha}| {>=} 5 (i.e. |{alpha}|{sup 2} {>=} 25). Since it is very challenging to produce superposed coherent states of high coherent amplitude (|{alpha}|), our teleportation scheme is at the reach of modern technology.

  4. On-chip generation of high-dimensional entangled quantum states and their coherent control.

    Science.gov (United States)

    Kues, Michael; Reimer, Christian; Roztocki, Piotr; Cortés, Luis Romero; Sciara, Stefania; Wetzel, Benjamin; Zhang, Yanbing; Cino, Alfonso; Chu, Sai T; Little, Brent E; Moss, David J; Caspani, Lucia; Azaña, José; Morandotti, Roberto

    2017-06-28

    Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics, for increasing the sensitivity of quantum imaging schemes, for improving the robustness and key rate of quantum communication protocols, for enabling a richer variety of quantum simulations, and for achieving more efficient and error-tolerant quantum computation. Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of non-classical optical states. However, so far, integrated entangled quantum sources have been limited to qubits (D = 2). Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple high-purity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with D = 10. Furthermore, using state-of-the-art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode.

  5. Measuring coherence with entanglement concurrence

    Science.gov (United States)

    Qi, Xianfei; Gao, Ting; Yan, Fengli

    2017-07-01

    Quantum coherence is a fundamental manifestation of the quantum superposition principle. Recently, Baumgratz et al (2014 Phys. Rev. Lett. 113 140401) presented a rigorous framework to quantify coherence from the view of theory of physical resource. Here we propose a new valid quantum coherence measure which is a convex roof measure, for a quantum system of arbitrary dimension, essentially using the generalized Gell-Mann matrices. Rigorous proof shows that the proposed coherence measure, coherence concurrence, fulfills all the requirements dictated by the resource theory of quantum coherence measures. Moreover, strong links between the resource frameworks of coherence concurrence and entanglement concurrence is derived, which shows that any degree of coherence with respect to some reference basis can be converted to entanglement via incoherent operations. Our work provides a clear quantitative and operational connection between coherence and entanglement based on two kinds of concurrence. This new coherence measure, coherence concurrence, may also be beneficial to the study of quantum coherence.

  6. Quantum dual signature scheme based on coherent states with entanglement swapping

    International Nuclear Information System (INIS)

    Liu Jia-Li; Shi Rong-Hua; Shi Jin-Jing; Lv Ge-Li; Guo Ying

    2016-01-01

    A novel quantum dual signature scheme, which combines two signed messages expected to be sent to two diverse receivers Bob and Charlie, is designed by applying entanglement swapping with coherent states. The signatory Alice signs two different messages with unitary operations (corresponding to the secret keys) and applies entanglement swapping to generate a quantum dual signature. The dual signature is firstly sent to the verifier Bob who extracts and verifies the signature of one message and transmits the rest of the dual signature to the verifier Charlie who verifies the signature of the other message. The transmission of the dual signature is realized with quantum teleportation of coherent states. The analysis shows that the security of secret keys and the security criteria of the signature protocol can be greatly guaranteed. An extensional multi-party quantum dual signature scheme which considers the case with more than three participants is also proposed in this paper and this scheme can remain secure. The proposed schemes are completely suited for the quantum communication network including multiple participants and can be applied to the e-commerce system which requires a secure payment among the customer, business and bank. (paper)

  7. Quantum dual signature scheme based on coherent states with entanglement swapping

    Science.gov (United States)

    Liu, Jia-Li; Shi, Rong-Hua; Shi, Jin-Jing; Lv, Ge-Li; Guo, Ying

    2016-08-01

    A novel quantum dual signature scheme, which combines two signed messages expected to be sent to two diverse receivers Bob and Charlie, is designed by applying entanglement swapping with coherent states. The signatory Alice signs two different messages with unitary operations (corresponding to the secret keys) and applies entanglement swapping to generate a quantum dual signature. The dual signature is firstly sent to the verifier Bob who extracts and verifies the signature of one message and transmits the rest of the dual signature to the verifier Charlie who verifies the signature of the other message. The transmission of the dual signature is realized with quantum teleportation of coherent states. The analysis shows that the security of secret keys and the security criteria of the signature protocol can be greatly guaranteed. An extensional multi-party quantum dual signature scheme which considers the case with more than three participants is also proposed in this paper and this scheme can remain secure. The proposed schemes are completely suited for the quantum communication network including multiple participants and can be applied to the e-commerce system which requires a secure payment among the customer, business and bank. Project supported by the National Natural Science Foundation of China (Grant Nos. 61272495, 61379153, and 61401519) and the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130162110012).

  8. Collapse and revival of entanglement between qubits coupled to a spin coherent state

    Science.gov (United States)

    Bahari, Iskandar; Spiller, Timothy P.; Dooley, Shane; Hayes, Anthony; McCrossan, Francis

    We extend the study of the Jayne-Cummings (JC) model involving a pair of identical two-level atoms (or qubits) interacting with a single mode quantized field. We investigate the effects of replacing the radiation field mode with a composite spin, comprising N qubits, or spin-1/2 particles. This model is relevant for physical implementations in superconducting circuit QED, ion trap and molecular systems. For the case of the composite spin prepared in a spin coherent state, we demonstrate the similarities of this set-up to the qubits-field model in terms of the time evolution, attractor states and in particular the collapse and revival of the entanglement between the two qubits. We extend our analysis by taking into account an effect due to qubit imperfections. We consider a difference (or “mismatch”) in the dipole interaction strengths of the two qubits, for both the field mode and composite spin cases. To address decoherence due to this mismatch, we then average over this coupling strength difference with distributions of varying width. We demonstrate in both the field mode and the composite spin scenarios that increasing the width of the “error” distribution increases suppression of the coherent dynamics of the coupled system, including the collapse and revival of the entanglement between the qubits.

  9. High-dimensional quantum key distribution with the entangled single-photon-added coherent state

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yang [Zhengzhou Information Science and Technology Institute, Zhengzhou, 450001 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Bao, Wan-Su, E-mail: 2010thzz@sina.com [Zhengzhou Information Science and Technology Institute, Zhengzhou, 450001 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Bao, Hai-Ze; Zhou, Chun; Jiang, Mu-Sheng; Li, Hong-Wei [Zhengzhou Information Science and Technology Institute, Zhengzhou, 450001 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2017-04-25

    High-dimensional quantum key distribution (HD-QKD) can generate more secure bits for one detection event so that it can achieve long distance key distribution with a high secret key capacity. In this Letter, we present a decoy state HD-QKD scheme with the entangled single-photon-added coherent state (ESPACS) source. We present two tight formulas to estimate the single-photon fraction of postselected events and Eve's Holevo information and derive lower bounds on the secret key capacity and the secret key rate of our protocol. We also present finite-key analysis for our protocol by using the Chernoff bound. Our numerical results show that our protocol using one decoy state can perform better than that of previous HD-QKD protocol with the spontaneous parametric down conversion (SPDC) using two decoy states. Moreover, when considering finite resources, the advantage is more obvious. - Highlights: • Implement the single-photon-added coherent state source into the high-dimensional quantum key distribution. • Enhance both the secret key capacity and the secret key rate compared with previous schemes. • Show an excellent performance in view of statistical fluctuations.

  10. High-dimensional quantum key distribution with the entangled single-photon-added coherent state

    International Nuclear Information System (INIS)

    Wang, Yang; Bao, Wan-Su; Bao, Hai-Ze; Zhou, Chun; Jiang, Mu-Sheng; Li, Hong-Wei

    2017-01-01

    High-dimensional quantum key distribution (HD-QKD) can generate more secure bits for one detection event so that it can achieve long distance key distribution with a high secret key capacity. In this Letter, we present a decoy state HD-QKD scheme with the entangled single-photon-added coherent state (ESPACS) source. We present two tight formulas to estimate the single-photon fraction of postselected events and Eve's Holevo information and derive lower bounds on the secret key capacity and the secret key rate of our protocol. We also present finite-key analysis for our protocol by using the Chernoff bound. Our numerical results show that our protocol using one decoy state can perform better than that of previous HD-QKD protocol with the spontaneous parametric down conversion (SPDC) using two decoy states. Moreover, when considering finite resources, the advantage is more obvious. - Highlights: • Implement the single-photon-added coherent state source into the high-dimensional quantum key distribution. • Enhance both the secret key capacity and the secret key rate compared with previous schemes. • Show an excellent performance in view of statistical fluctuations.

  11. Generalized Weyl–Heisenberg Algebra, Qudit Systems and Entanglement Measure of Symmetric States via Spin Coherent States

    Directory of Open Access Journals (Sweden)

    Mohammed Daoud

    2018-04-01

    Full Text Available A relation is established in the present paper between Dicke states in a d-dimensional space and vectors in the representation space of a generalized Weyl–Heisenberg algebra of finite dimension d. This provides a natural way to deal with the separable and entangled states of a system of N = d − 1 symmetric qubit states. Using the decomposition property of Dicke states, it is shown that the separable states coincide with the Perelomov coherent states associated with the generalized Weyl–Heisenberg algebra considered in this paper. In the so-called Majorana scheme, the qudit (d-level states are represented by N points on the Bloch sphere; roughly speaking, it can be said that a qudit (in a d-dimensional space is describable by a N-qubit vector (in a N-dimensional space. In such a scheme, the permanent of the matrix describing the overlap between the N qubits makes it possible to measure the entanglement between the N qubits forming the qudit. This is confirmed by a Fubini–Study metric analysis. A new parameter, proportional to the permanent and called perma-concurrence, is introduced for characterizing the entanglement of a symmetric qudit arising from N qubits. For d = 3 ( ⇔ N = 2 , this parameter constitutes an alternative to the concurrence for two qubits. Other examples are given for d = 4 and 5. A connection between Majorana stars and zeros of a Bargmmann function for qudits closes this article.

  12. Greenberger-Horne-Zeilinger-type and W-type entangled coherent states: Generation and Bell-type inequality tests without photon counting

    International Nuclear Information System (INIS)

    Jeong, Hyunseok; Nguyen Ba An

    2006-01-01

    We study Greenberger-Horne-Zeilinger-type (GHZ-type) and W-type three-mode entangled coherent states. Both types of entangled coherent states violate Mermin's version of the Bell inequality with threshold photon detection (i.e., without photon counting). Such an experiment can be performed using linear optics elements and threshold detectors with significant Bell violations for GHZ-type entangled coherent states. However, to demonstrate Bell-type inequality violations for W-type entangled coherent states, additional nonlinear interactions are needed. We also propose an optical scheme to generate W-type entangled coherent states in free-traveling optical fields. The required resources for the generation are a single-photon source, a coherent state source, beam splitters, phase shifters, photodetectors, and Kerr nonlinearities. Our scheme does not necessarily require strong Kerr nonlinear interactions; i.e., weak nonlinearities can be used for the generation of the W-type entangled coherent states. Furthermore, it is also robust against inefficiencies of the single-photon source and the photon detectors

  13. Teleportation of Squeezed Entangled State

    Institute of Scientific and Technical Information of China (English)

    HU Li-Yun; ZHOU Nan-Run

    2007-01-01

    Based on the coherent entangled state |α, x> we introduce the squeezed entangled state (SES). Then we propose a teleportation protocol for the SES by using Einstein-Podolsky-Rosen entangled state |η>as a quantum channel.The calculation is greatly simplified by virtue of the Schmidt decompositions of both |α, x>and |η>. Any bipartite states that can be expanded in terms of |α, x>may be teleported in this way due to the completeness of |α, x>.

  14. Coherence and entanglement in the ground state of a bosonic Josephson junction: From macroscopic Schroedinger cat states to separable Fock states

    International Nuclear Information System (INIS)

    Mazzarella, G.; Toigo, F.; Salasnich, L.; Parola, A.

    2011-01-01

    We consider a bosonic Josephson junction made of N ultracold and dilute atoms confined by a quasi-one-dimensional double-well potential within the two-site Bose-Hubbard model framework. The behavior of the system is investigated at zero temperature by varying the interatomic interaction from the strongly attractive regime to the repulsive one. We show that the ground state exhibits a crossover from a macroscopic Schroedinger-cat state to a separable Fock state through an atomic coherent regime. By diagonalizing the Bose-Hubbard Hamiltonian we characterize the emergence of the macroscopic cat states by calculating the Fisher information F, the coherence by means of the visibility α of the interference fringes in the momentum distribution, and the quantum correlations by using the entanglement entropy S. Both Fisher information and visibility are shown to be related to the ground-state energy by employing the Hellmann-Feynman theorem. This result, together with a perturbative calculation of the ground-state energy, allows simple analytical formulas for F and α to be obtained over a range of interactions, in excellent agreement with the exact diagonalization of the Bose-Hubbard Hamiltonian. In the attractive regime the entanglement entropy attains values very close to its upper limit for a specific interaction strength lying in the region where coherence is lost and self-trapping sets in.

  15. Coherence and entanglement measures based on Rényi relative entropies

    International Nuclear Information System (INIS)

    Zhu, Huangjun; Hayashi, Masahito; Chen, Lin

    2017-01-01

    We study systematically resource measures of coherence and entanglement based on Rényi relative entropies, which include the logarithmic robustness of coherence, geometric coherence, and conventional relative entropy of coherence together with their entanglement analogues. First, we show that each Rényi relative entropy of coherence is equal to the corresponding Rényi relative entropy of entanglement for any maximally correlated state. By virtue of this observation, we establish a simple operational connection between entanglement measures and coherence measures based on Rényi relative entropies. We then prove that all these coherence measures, including the logarithmic robustness of coherence, are additive. Accordingly, all these entanglement measures are additive for maximally correlated states. In addition, we derive analytical formulas for Rényi relative entropies of entanglement of maximally correlated states and bipartite pure states, which reproduce a number of classic results on the relative entropy of entanglement and logarithmic robustness of entanglement in a unified framework. Several nontrivial bounds for Rényi relative entropies of coherence (entanglement) are further derived, which improve over results known previously. Moreover, we determine all states whose relative entropy of coherence is equal to the logarithmic robustness of coherence. As an application, we provide an upper bound for the exact coherence distillation rate, which is saturated for pure states. (paper)

  16. Effect of decoherence on fidelity in teleportation using entangled coherent states

    International Nuclear Information System (INIS)

    Prakash, H; Chandra, N; Prakash, R; Shivani

    2007-01-01

    A scheme of teleporting a superposition of coherent states (α) and ( - α) using a beam splitter and two phase shifters was proposed by van Enk and Hirota (2001 Phys. Rev. A 64 022313). The authors concluded that the probability for successful teleportation is 1/2. In this paper, it is shown that the authors' scheme can be altered slightly so as to obtain an almost perfect teleportation for an appreciable value of (α) 2 . For (α) 2 = 5, the minimum of average fidelity, which is the minimum of the sum of the product of probability of occurrence of any case, and the corresponding fidelity is less than 1 by a quantity ∼10 -4 . We also discuss the effect of decoherence on teleportation fidelity. We find that if no photons are counted in both final outputs, the minimum assured fidelity is still non-zero except when there is no decoherence and the information is an even coherent state. For non-zero photon counts, minimum assured fidelity decreases with an increase in (α) 2 for low noise. For high noise, however, it increases, attains a maximum value and then decreases with (α) 2 . The average fidelity depends appreciably on the information for low values of (α) 2 only

  17. Maximally multipartite entangled states

    Science.gov (United States)

    Facchi, Paolo; Florio, Giuseppe; Parisi, Giorgio; Pascazio, Saverio

    2008-06-01

    We introduce the notion of maximally multipartite entangled states of n qubits as a generalization of the bipartite case. These pure states have a bipartite entanglement that does not depend on the bipartition and is maximal for all possible bipartitions. They are solutions of a minimization problem. Examples for small n are investigated, both analytically and numerically.

  18. Communication via an entangled coherent quantum network

    Energy Technology Data Exchange (ETDEWEB)

    El Allati, A; Hassouni, Y [Faculte des Sciences, Departement de Physique, Laboratoire de Physique Theorique URAC 13, Universite Mohammed V Agdal Rabat, Avenue Ibn Battouta, B.P. 1014, Rabat (Morocco); Metwally, N, E-mail: Nmetwally@gmail.com [Mathematics Department, College of Science, University of Bahrain, PO Box 32038 (Bahrain)

    2011-06-01

    A quantum network (QN) is constructed via maximum entangled coherent states. The possibility of using this network to achieve quantum communication between multi-participants is investigated. We showed that the probability of the successful teleportation of an unknown state depends on the size of the used network. As the number of participants increases, the success probability does not depend on the intensity of the field. Implementing a quantum teleportation protocol via a noisy QN is discussed. The unknown state can be teleported perfectly with small values of the field intensity and larger values of the noise strength. The success probability of this suggested protocol increases abruptly for larger values of the noise strength and gradually for small values. For small-size QNs, the fidelity of the teleported state decreases smoothly, whereas it decreases abruptly for larger-sized networks.

  19. Coherent feedback control of multipartite quantum entanglement for optical fields

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Zhihui; Jia, Xiaojun; Xie, Changde; Peng, Kunchi [State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, 030006 (China)

    2011-12-15

    Coherent feedback control (CFC) of multipartite optical entangled states produced by a nondegenerate optical parametric amplifier is theoretically studied. The features of the quantum correlations of amplitude and phase quadratures among more than two entangled optical modes can be controlled by tuning the transmissivity of the optical beam splitter in the CFC loop. The physical conditions to enhance continuous variable multipartite entanglement of optical fields utilizing the CFC loop are obtained. The numeric calculations based on feasible physical parameters of realistic systems provide direct references for the design of experimental devices.

  20. Quantum coherence and entanglement control for atom-cavity systems

    Science.gov (United States)

    Shu, Wenchong

    Coherence and entanglement play a significant role in the quantum theory. Ideal quantum systems, "closed" to the outside world, remain quantum forever and thus manage to retain coherence and entanglement. Real quantum systems, however, are open to the environment and are therefore susceptible to the phenomenon of decoherence and disentanglement which are major hindrances to the effectiveness of quantum information processing tasks. In this thesis we have theoretically studied the evolution of coherence and entanglement in quantum systems coupled to various environments. We have also studied ways and means of controlling the decay of coherence and entanglement. We have studied the exact qubit entanglement dynamics of some interesting initial states coupled to a high-Q cavity containing zero photon, one photon, two photons and many photons respectively. We have found that an initially correlated environmental state can serve as an enhancer for entanglement decay or generation processes. More precisely, we have demonstrated that the degree of entanglement, including its collapse as well as its revival times, can be significantly modified by the correlated structure of the environmental modes. We have also studied dynamical decoupling (DD) technique --- a prominent strategy of controlling decoherence and preserving entanglement in open quantum systems. We have analyzed several DD control methods applied to qubit systems that can eliminate the system-environment coupling and prolong the quantum coherence time. Particularly, we have proposed a new DD sequence consisting a set of designed control operators that can universally protected an unknown qutrit state against colored phase and amplitude environment noises. In addition, in a non-Markovian regime, we have reformulated the quantum state diffusion (QSD) equation to incorporate the effect of the external control fields. Without any assumptions on the system-environment coupling and the size of environment, we have

  1. Spin squeezing and light entanglement in Coherent Population Trapping

    DEFF Research Database (Denmark)

    Dantan, Aurelien Romain; Cviklinski, Jean; Giacobino, Elisabeth

    2006-01-01

    We show that strong squeezing and entanglement can be generated at the output of a cavity containing atoms interacting with two fields in a coherent population trapping situation, on account of a nonlinear Faraday effect experienced by the fields close to a dark-state resonance in a cavity....... Moreover, the cavity provides a feedback mechanism allowing to reduce the quantum fluctuations of the ground state spin, resulting in strong steady state spin squeezing....

  2. Triangle inequalities in coherence measures and entanglement concurrence

    Science.gov (United States)

    Dai, Yue; You, Wenlong; Dong, Yuli; Zhang, Chengjie

    2017-12-01

    We provide detailed proofs of triangle inequalities in coherence measures and entanglement concurrence. If a rank-2 state ϱ can be expressed as a convex combination of two pure states, i.e., ϱ =p1| ψ1〉〈 ψ1|+ p2| ψ2〉〈 ψ2| , a triangle inequality can be established as |E (|Ψ1〉 )-E (|Ψ2〉 )|≤E (ϱ ) ≤E (|Ψ1〉 )+E (|Ψ2〉 ) , where | Ψ1〉= √{p1}|ψ1〉 and | Ψ2〉= √{p2}|ψ2〉 ; E can be considered either coherence measures or entanglement concurrence. This inequality displays mathematical beauty for its similarity to the triangle inequality in plane geometry. An illustrative example is given after the proof.

  3. Dark Entangled Steady States of Interacting Rydberg Atoms

    DEFF Research Database (Denmark)

    Dasari, Durga; Mølmer, Klaus

    2013-01-01

    their short-lived excited states lead to rapid, dissipative formation of an entangled steady state. We show that for a wide range of physical parameters, this entangled state is formed on a time scale given by the strengths of coherent Raman and Rabi fields applied to the atoms, while it is only weakly...

  4. Device-independent entanglement certification of all entangled states

    OpenAIRE

    Bowles, Joseph; Šupić, Ivan; Cavalcanti, Daniel; Acín, Antonio

    2018-01-01

    We present a method to certify the entanglement of all bipartite entangled quantum states in a device-independent way. This is achieved by placing the state in a quantum network and constructing a correlation inequality based on an entanglement witness for the state. Our method is device-independent, in the sense that entanglement can be certified from the observed statistics alone, under minimal assumptions on the underlying physics. Conceptually, our results borrow ideas from the field of s...

  5. Multipartite entangled states in particle mixing

    International Nuclear Information System (INIS)

    Blasone, M.; Dell'Anno, F.; De Siena, S.; Di Mauro, M.; Illuminati, F.

    2008-01-01

    In the physics of flavor mixing, the flavor states are given by superpositions of mass eigenstates. By using the occupation number to define a multiqubit space, the flavor states can be interpreted as multipartite mode-entangled states. By exploiting a suitable global measure of entanglement, based on the entropies related to all possible bipartitions of the system, we analyze the correlation properties of such states in the instances of three- and four-flavor mixing. Depending on the mixing parameters, and, in particular, on the values taken by the free phases, responsible for the CP-violation, entanglement concentrates in certain bipartitions. We quantify in detail the amount and the distribution of entanglement in the physically relevant cases of flavor mixing in quark and neutrino systems. By using the wave packet description for localized particles, we use the global measure of entanglement, suitably adapted for the instance of multipartite mixed states, to analyze the decoherence, induced by the free evolution dynamics, on the quantum correlations of stationary neutrino beams. We define a decoherence length as the distance associated with the vanishing of the coherent interference effects among massive neutrino states. We investigate the role of the CP-violating phase in the decoherence process.

  6. Local cloning of entangled states

    International Nuclear Information System (INIS)

    Gheorghiu, Vlad; Yu Li; Cohen, Scott M.

    2010-01-01

    We investigate the conditions under which a set S of pure bipartite quantum states on a DxD system can be locally cloned deterministically by separable operations, when at least one of the states is full Schmidt rank. We allow for the possibility of cloning using a resource state that is less than maximally entangled. Our results include that: (i) all states in S must be full Schmidt rank and equally entangled under the G-concurrence measure, and (ii) the set S can be extended to a larger clonable set generated by a finite group G of order |G|=N, the number of states in the larger set. It is then shown that any local cloning apparatus is capable of cloning a number of states that divides D exactly. We provide a complete solution for two central problems in local cloning, giving necessary and sufficient conditions for (i) when a set of maximally entangled states can be locally cloned, valid for all D; and (ii) local cloning of entangled qubit states with nonvanishing entanglement. In both of these cases, we show that a maximally entangled resource is necessary and sufficient, and the states must be related to each other by local unitary 'shift' operations. These shifts are determined by the group structure, so need not be simple cyclic permutations. Assuming this shifted form and partially entangled states, then in D=3 we show that a maximally entangled resource is again necessary and sufficient, while for higher-dimensional systems, we find that the resource state must be strictly more entangled than the states in S. All of our necessary conditions for separable operations are also necessary conditions for local operations and classical communication (LOCC), since the latter is a proper subset of the former. In fact, all our results hold for LOCC, as our sufficient conditions are demonstrated for LOCC, directly.

  7. The entanglement purification for entangled multi-particle states

    CERN Document Server

    Ye, Liu; Guo Guang Can

    2002-01-01

    We present two purification schemes for nonmaximally entangled states. We first show that two parties, Alice and Bob, start with shared less-entangled three-particle states to probabilistically produce a three-particle Greenberger-Horne-Zeilinger state by Bell state measurements and positive operator valued measure (POVM) or a unitary transformation. Then, by a straightforward generalization of the schemes, the purification of a multi-particle entangled state can be realized. 25 Refs. --- 35 --- AN

  8. Multipartite entangled quantum states: Transformation, Entanglement monotones and Application

    Science.gov (United States)

    Cui, Wei

    Entanglement is one of the fundamental features of quantum information science. Though bipartite entanglement has been analyzed thoroughly in theory and shown to be an important resource in quantum computation and communication protocols, the theory of entanglement shared between more than two parties, which is called multipartite entanglement, is still not complete. Specifically, the classification of multipartite entanglement and the transformation property between different multipartite states by local operators and classical communications (LOCC) are two fundamental questions in the theory of multipartite entanglement. In this thesis, we present results related to the LOCC transformation between multipartite entangled states. Firstly, we investigate the bounds on the LOCC transformation probability between multipartite states, especially the GHZ class states. By analyzing the involvement of 3-tangle and other entanglement measures under weak two-outcome measurement, we derive explicit upper and lower bound on the transformation probability between GHZ class states. After that, we also analyze the transformation between N-party W type states, which is a special class of multipartite entangled states that has an explicit unique expression and a set of analytical entanglement monotones. We present a necessary and sufficient condition for a known upper bound of transformation probability between two N-party W type states to be achieved. We also further investigate a novel entanglement transformation protocol, the random distillation, which transforms multipartite entanglement into bipartite entanglement ii shared by a non-deterministic pair of parties. We find upper bounds for the random distillation protocol for general N-party W type states and find the condition for the upper bounds to be achieved. What is surprising is that the upper bounds correspond to entanglement monotones that can be increased by Separable Operators (SEP), which gives the first set of

  9. Entanglement and quantum teleportation via decohered tripartite entangled states

    Energy Technology Data Exchange (ETDEWEB)

    Metwally, N., E-mail: nmohamed31@gmail.com

    2014-12-15

    The entanglement behavior of two classes of multi-qubit system, GHZ and GHZ like states passing through a generalized amplitude damping channel is discussed. Despite this channel causes degradation of the entangled properties and consequently their abilities to perform quantum teleportation, one can always improve the lower values of the entanglement and the fidelity of the teleported state by controlling on Bell measurements, analyzer angle and channel’s strength. Using GHZ-like state within a generalized amplitude damping channel is much better than using the normal GHZ-state, where the decay rate of entanglement and the fidelity of the teleported states are smaller than those depicted for GHZ state.

  10. Entangled states in quantum mechanics

    Science.gov (United States)

    Ruža, Jānis

    2010-01-01

    In some circles of quantum physicists, a view is maintained that the nonseparability of quantum systems-i.e., the entanglement-is a characteristic feature of quantum mechanics. According to this view, the entanglement plays a crucial role in the solution of quantum measurement problem, the origin of the “classicality” from the quantum physics, the explanation of the EPR paradox by a nonlocal character of the quantum world. Besides, the entanglement is regarded as a cornerstone of such modern disciplines as quantum computation, quantum cryptography, quantum information, etc. At the same time, entangled states are well known and widely used in various physics areas. In particular, this notion is widely used in nuclear, atomic, molecular, solid state physics, in scattering and decay theories as well as in other disciplines, where one has to deal with many-body quantum systems. One of the methods, how to construct the basis states of a composite many-body quantum system, is the so-called genealogical decomposition method. Genealogical decomposition allows one to construct recurrently by particle number the basis states of a composite quantum system from the basis states of its forming subsystems. These coupled states have a structure typical for entangled states. If a composite system is stable, the internal structure of its forming basis states does not manifest itself in measurements. However, if a composite system is unstable and decays onto its forming subsystems, then the measurables are the quantum numbers, associated with these subsystems. In such a case, the entangled state has a dynamical origin, determined by the Hamiltonian of the corresponding decay process. Possible correlations between the quantum numbers of resulting subsystems are determined by the symmetries-conservation laws of corresponding dynamical variables, and not by the quantum entanglement feature.

  11. Mixtures of maximally entangled pure states

    Energy Technology Data Exchange (ETDEWEB)

    Flores, M.M., E-mail: mflores@nip.up.edu.ph; Galapon, E.A., E-mail: eric.galapon@gmail.com

    2016-09-15

    We study the conditions when mixtures of maximally entangled pure states remain entangled. We found that the resulting mixed state remains entangled when the number of entangled pure states to be mixed is less than or equal to the dimension of the pure states. For the latter case of mixing a number of pure states equal to their dimension, we found that the mixed state is entangled provided that the entangled pure states to be mixed are not equally weighted. We also found that one can restrict the set of pure states that one can mix from in order to ensure that the resulting mixed state is genuinely entangled. Also, we demonstrate how these results could be applied as a way to detect entanglement in mixtures of the entangled pure states with noise.

  12. Application of Bipartite and Tripartite Entangled State Representations in Quantum Teleportation of Continuous Variables

    Institute of Scientific and Technical Information of China (English)

    YUAN Hong-Chun; QI Kai-Guo

    2005-01-01

    We mostly investigate two schemes. One is to teleport a multi-mode W-type entangled coherent state using a peculiar bipartite entangled state as the quantum channel different from other proposals. Based on our formalism,teleporting multi-mode coherent state or squeezed state is also possible. Another is that the tripartite entangled state is used as the quantum channel of controlled teleportation of an arbitrary and unknown continuous variable in the case of three participators.

  13. Entanglement purification of multi-mode quantum states

    International Nuclear Information System (INIS)

    Clausen, J; Knoell, L; Welsch, D-G

    2003-01-01

    An iterative random procedure is considered allowing entanglement purification of a class of multi-mode quantum states. In certain cases, complete purification may be achieved using only a single signal state preparation. A physical implementation based on beam splitter arrays and non-linear elements is suggested. The influence of loss is analysed in the example of purification of entangled N-mode coherent states

  14. Entanglement of two atoms interacting with a dissipative coherent cavity field without rotating wave approximation

    International Nuclear Information System (INIS)

    Kang Guo-Dong; Fang Mao-Fa; Ouyang Xi-Cheng; Deng Xiao-Juan

    2010-01-01

    Considering two identical two-level atoms interacting with a single-model dissipative coherent cavity field without rotating wave approximation, we explore the entanglement dynamics of the two atoms prepared in different states using concurrence. Interestingly, our results show that the entanglement between the two atoms that initially disentangled will come up to a large constant rapidly, and then keeps steady in the following time or always has its maximum when prepared in some special Bell states. The model considered in this study is a good candidate for quantum information processing especially for quantum computation as steady high-degree atomic entanglement resource obtained in dissipative cavity

  15. Experimental entanglement distillation of mesoscopic quantum states

    DEFF Research Database (Denmark)

    Dong, Ruifang; Lassen, Mikael Østergaard; Heersink, Joel

    2008-01-01

    channel, the distribution of loss-intolerant entangled states is inevitably afflicted by decoherence, which causes a degradation of the transmitted entanglement. To combat the decoherence, entanglement distillation, a process of extracting a small set of highly entangled states from a large set of less...... entangled states, can be used(4-14). Here we report on the distillation of deterministically prepared light pulses entangled in continuous variables that have undergone non-Gaussian noise. The entangled light pulses(15-17) are sent through a lossy channel, where the transmission is varying in time similarly...

  16. Probabilistic Teleportation of the Three-Particle Entangled State viaEntanglement Swapping

    Institute of Scientific and Technical Information of China (English)

    路洪

    2001-01-01

    A scheme of teleportation of a three-particle entangled state via entanglement swapping is proposed. It is shown that if a two-particle entangled state and a three-particle entangled state (both are not maximum entangled states) are used as quantum channels, probabilistic teleportation of the three-particle entangled state can be realized.

  17. Coherent excitation-energy transfer and quantum entanglement in a dimer

    International Nuclear Information System (INIS)

    Liao Jieqiao; Sun, C. P.; Huang Jinfeng; Kuang Leman

    2010-01-01

    We study coherent energy transfer of a single excitation and quantum entanglement in a dimer, which consists of a donor and an acceptor modeled by two two-level systems. Between the donor and the acceptor, there exists a dipole-dipole interaction, which provides the physical mechanism for coherent energy transfer and entanglement generation. The donor and the acceptor couple to two independent heat baths with diagonal couplings that do not dissipate the energy of the noncoupling dimer. Special attention is paid to the effect on single-excitation energy transfer and entanglement generation of the energy detuning between the donor and the acceptor and the temperatures of the two heat baths. It is found that, the probability for single-excitation energy transfer largely depends on the energy detuning in the low temperature limit. Concretely, the positive and negative energy detunings can increase and decrease the probability at steady state, respectively. In the high temperature limit, however, the effect of the energy detuning on the probability is negligibly small. We also find that the probability is negligibly dependent on the bath temperature difference of the two heat baths. In addition, it is found that quantum entanglement can be generated in the process of coherent energy transfer. As the bath temperature increases, the generated steady-state entanglement decreases. For a given bath temperature, the steady-state entanglement decreases with the increase of the absolute value of the energy detuning.

  18. Maximally Entangled Multipartite States: A Brief Survey

    International Nuclear Information System (INIS)

    Enríquez, M; Wintrowicz, I; Życzkowski, K

    2016-01-01

    The problem of identifying maximally entangled quantum states of a composite quantum systems is analyzed. We review some states of multipartite systems distinguished with respect to certain measures of quantum entanglement. Numerical results obtained for 4-qubit pure states illustrate the fact that the notion of maximally entangled state depends on the measure used. (paper)

  19. Entangled exciton states in quantum dot molecules

    Science.gov (United States)

    Bayer, Manfred

    2002-03-01

    Currently there is strong interest in quantum information processing(See, for example, The Physics of Quantum Information, eds. D. Bouwmeester, A. Ekert and A. Zeilinger (Springer, Berlin, 2000).) in a solid state environment. Many approaches mimic atomic physics concepts in which semiconductor quantum dots are implemented as artificial atoms. An essential building block of a quantum processor is a gate which entangles the states of two quantum bits. Recently a pair of vertically aligned quantum dots has been suggested as optically driven quantum gate(P. Hawrylak, S. Fafard, and Z. R. Wasilewski, Cond. Matter News 7, 16 (1999).)(M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z.R. Wasilewski, O. Stern, and A. Forchel, Science 291, 451 (2001).): The quantum bits are individual carriers either on dot zero or dot one. The different dot indices play the same role as a "spin", therefore we call them "isospin". Quantum mechanical tunneling between the dots rotates the isospin and leads to superposition of these states. The quantum gate is built when two different particles, an electron and a hole, are created optically. The two particles form entangled isospin states. Here we present spectrocsopic studies of single self-assembled InAs/GaAs quantum dot molecules that support the feasibility of this proposal. The evolution of the excitonic recombination spectrum with varying separation between the dots allows us to demonstrate coherent tunneling of carriers across the separating barrier and the formation of entangled exciton states: Due to the coupling between the dots the exciton states show a splitting that increases with decreasing barrier width. For barrier widths below 5 nm it exceeds the thermal energy at room temperature. For a given barrier width, we find only small variations of the tunneling induced splitting demonstrating a good homogeneity within a molecule ensemble. The entanglement may be controlled by application of electromagnetic field. For

  20. Coherent delocalization: views of entanglement in different scenarios

    International Nuclear Information System (INIS)

    De J León-Montiel, R; Vallés, A; Torres, J P; Moya-Cessa, H M

    2015-01-01

    The concept of entanglement was originally introduced to explain correlations existing between two spatially separated systems, that cannot be described using classical ideas. Interestingly, in recent years, it has been shown that similar correlations can be observed when considering different degrees of freedom of a single system, even a classical one. Surprisingly, it has also been suggested that entanglement might be playing a relevant role in certain biological processes, such as the functioning of pigment-proteins that constitute light-harvesting complexes of photosynthetic bacteria. The aim of this work is to show that the presence of entanglement in all of these different scenarios should not be unexpected, once it is realized that the very same mathematical structure can describe all of them. We show this by considering three different, realistic cases in which the only condition for entanglement to exist is that a single excitation is coherently delocalized between the different subsystems that compose the system of interest. (letter)

  1. Quantum teleportation of entangled squeezed vacuum states

    Institute of Scientific and Technical Information of China (English)

    蔡新华

    2003-01-01

    An optical scheme for probabilistic teleporting entangled squeezed vacuum states (SVS) is proposed. In this scheme,the teleported state is a bipartite entangled SVS,and the quantum channel is a tripartite entangled SVS.The process of the teleportation is achieved by using a 50/50 symmetric beamsplitter and photon detectors with the help of classical information.

  2. Entanglement in Gaussian matrix-product states

    International Nuclear Information System (INIS)

    Adesso, Gerardo; Ericsson, Marie

    2006-01-01

    Gaussian matrix-product states are obtained as the outputs of projection operations from an ancillary space of M infinitely entangled bonds connecting neighboring sites, applied at each of N sites of a harmonic chain. Replacing the projections by associated Gaussian states, the building blocks, we show that the entanglement range in translationally invariant Gaussian matrix-product states depends on how entangled the building blocks are. In particular, infinite entanglement in the building blocks produces fully symmetric Gaussian states with maximum entanglement range. From their peculiar properties of entanglement sharing, a basic difference with spin chains is revealed: Gaussian matrix-product states can possess unlimited, long-range entanglement even with minimum number of ancillary bonds (M=1). Finally we discuss how these states can be experimentally engineered from N copies of a three-mode building block and N two-mode finitely squeezed states

  3. Multiparty Quantum Secret Sharing of Quantum States Using Entanglement States

    International Nuclear Information System (INIS)

    Ying, Guo; Da-Zu, Huang; Gui-Hua, Zeng; Ho, Lee Moon

    2008-01-01

    A multi-partite-controlled quantum secret sharing scheme using several non-orthogonal entanglement states is presented with unconditional security. In this scheme, the participants share the secret quantum state by exchanging the secret polarization angles of the disordered travel particles. The security of the secret quantum state is also guaranteed by the non-orthogonal multi-partite-controlled entanglement states, the participants' secret polarizations, and the disorder of the travelling particles. Moreover, the present scheme is secure against the particle-number splitting attack and the intercept-and-resend attack. It may be still secure even if the distributed quantum state is embedded in a not-so-weak coherent-state pulse

  4. Strong Einstein-Podolsky-Rosen steering with unconditional entangled states

    Science.gov (United States)

    Steinlechner, Sebastian; Bauchrowitz, Jöran; Eberle, Tobias; Schnabel, Roman

    2013-02-01

    In 1935 Schrödinger introduced the terms entanglement and steering in the context of the famous gedanken experiment discussed by Einstein, Podolsky, and Rosen (EPR). Here, we report on a sixfold increase of the observed EPR-steering effect with regard to previous experiments, as quantified by the Reid criterion. We achieved an unprecedented low conditional variance product of about 0.04<1, where 1 is the upper bound below which steering is demonstrated. The steering effect was observed on an unconditional two-mode-squeezed entangled state that contained a total vacuum state contribution of less than 8%, including detection imperfections. Together with the achieved high interference contrast between the entangled state and a bright coherent laser field, our state is compatible with efficient applications in high-power laser interferometers and fiber-based networks for entanglement distribution.

  5. Entanglement entropy of excited states

    International Nuclear Information System (INIS)

    Alba, Vincenzo; Fagotti, Maurizio; Calabrese, Pasquale

    2009-01-01

    We study the entanglement entropy of a block of contiguous spins in excited states of spin chains. We consider the XY model in a transverse field and the XXZ Heisenberg spin chain. For the latter, we developed a numerical application of the algebraic Bethe ansatz. We find two main classes of states with logarithmic and extensive behavior in the dimension of the block, characterized by the properties of excitations of the state. This behavior can be related to the locality properties of the Hamiltonian having a given state as the ground state. We also provide several details of the finite size scaling

  6. Enhancing quantum entanglement for continuous variables by a coherent superposition of photon subtraction and addition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Su-Yong; Kim, Ho-Joon [Department of Physics, Texas A and M University at Qatar, P.O. Box 23874, Doha (Qatar); Ji, Se-Wan [School of Computational Sciences, Korea Institute for Advanced Study, Seoul 130-012 (Korea, Republic of); Nha, Hyunchul [Department of Physics, Texas A and M University at Qatar, P.O. Box 23874, Doha (Qatar); Institute fuer Quantenphysik, Universitaet Ulm, D-89069 Ulm (Germany)

    2011-07-15

    We investigate how the entanglement properties of a two-mode state can be improved by performing a coherent superposition operation ta+ra{sup {dagger}} of photon subtraction and addition, proposed by Lee and Nha [Phys. Rev. A 82, 053812 (2010)], on each mode. We show that the degree of entanglement, the Einstein-Podolsky-Rosen-type correlation, and the performance of quantum teleportation can be all enhanced for the output state when the coherent operation is applied to a two-mode squeezed state. The effects of the coherent operation are more prominent than those of the mere photon subtraction a and the addition a{sup {dagger}} particularly in the small-squeezing regime, whereas the optimal operation becomes the photon subtraction (case of r=0) in the large-squeezing regime.

  7. Local copying of orthogonal entangled quantum states

    International Nuclear Information System (INIS)

    Anselmi, Fabio; Chefles, Anthony; Plenio, Martin B

    2004-01-01

    In classical information theory one can, in principle, produce a perfect copy of any input state. In quantum information theory, the no cloning theorem prohibits exact copying of non-orthogonal states. Moreover, if we wish to copy multiparticle entangled states and can perform only local operations and classical communication (LOCC), then further restrictions apply. We investigate the problem of copying orthogonal, entangled quantum states with an entangled blank state under the restriction to LOCC. Throughout, the subsystems have finite dimension D. We show that if all of the states to be copied are non-maximally entangled, then novel LOCC copying procedures based on entanglement catalysis are possible. We then study in detail the LOCC copying problem where both the blank state and at least one of the states to be copied are maximally entangled. For this to be possible, we find that all the states to be copied must be maximally entangled. We obtain a necessary and sufficient condition for LOCC copying under these conditions. For two orthogonal, maximally entangled states, we provide the general solution to this condition. We use it to show that for D = 2, 3, any pair of orthogonal, maximally entangled states can be locally copied using a maximally entangled blank state. However, we also show that for any D which is not prime, one can construct pairs of such states for which this is impossible

  8. Negativity of Two-Qubit System Through Spin Coherent States

    International Nuclear Information System (INIS)

    Berrada, K.; El Baz, M.; Hassouni, Y.; Eleuch, H.

    2009-12-01

    Using the negativity, we express and analyze the entanglement of two-qubit nonorthogonal pure states through the spin coherent states. We formulate this measure in terms of the amplitudes of coherent states and we give the conditions for the minimal and the maximal entanglement. We generalize this formalism to the case of a class of mixed states and show that the negativity is also a function of probabilities. (author)

  9. Gaussian maximally multipartite-entangled states

    Science.gov (United States)

    Facchi, Paolo; Florio, Giuseppe; Lupo, Cosmo; Mancini, Stefano; Pascazio, Saverio

    2009-12-01

    We study maximally multipartite-entangled states in the context of Gaussian continuous variable quantum systems. By considering multimode Gaussian states with constrained energy, we show that perfect maximally multipartite-entangled states, which exhibit the maximum amount of bipartite entanglement for all bipartitions, only exist for systems containing n=2 or 3 modes. We further numerically investigate the structure of these states and their frustration for n≤7 .

  10. Gaussian maximally multipartite-entangled states

    International Nuclear Information System (INIS)

    Facchi, Paolo; Florio, Giuseppe; Pascazio, Saverio; Lupo, Cosmo; Mancini, Stefano

    2009-01-01

    We study maximally multipartite-entangled states in the context of Gaussian continuous variable quantum systems. By considering multimode Gaussian states with constrained energy, we show that perfect maximally multipartite-entangled states, which exhibit the maximum amount of bipartite entanglement for all bipartitions, only exist for systems containing n=2 or 3 modes. We further numerically investigate the structure of these states and their frustration for n≤7.

  11. Generating continuous variable optical quantum states and entanglement

    International Nuclear Information System (INIS)

    Lam, P.K.; Bowen, W.P.; Schnabel, R.; Treps, N.; Buchler, B.C.; Bachor, H.-A.; Ralph, T.C.

    2002-01-01

    Full text: Quantum information research has recently been shown to have many applications in the field of communication and information processing. Quantum states and entanglement play a central role to almost all quantum information protocols, and form the basic building blocks for larger quantum information networks. We present an overview of the research activities at the quantum optics group at the ANU relating to this area. In particular, we demonstrate technology to suppress the noise on a coherent laser beam to below that of even vacuum. This quantum state of light is called 'squeezed light'. We show experimentally that by mixing two squeezed beams on a beam splitter, a pair of Einstein-Podolsky-Rosen (EPR) entangled beams can be created. This kind of entanglement exhibits below shot noise correlations between both the phase and amplitude quandratures of two beams. Our experimental results show conclusively that our entangled beams demonstrate the famous EPR paradox

  12. Dynamical generation of maximally entangled states in two identical cavities

    International Nuclear Information System (INIS)

    Alexanian, Moorad

    2011-01-01

    The generation of entanglement between two identical coupled cavities, each containing a single three-level atom, is studied when the cavities exchange two coherent photons and are in the N=2,4 manifolds, where N represents the maximum number of photons possible in either cavity. The atom-photon state of each cavity is described by a qutrit for N=2 and a five-dimensional qudit for N=4. However, the conservation of the total value of N for the interacting two-cavity system limits the total number of states to only 4 states for N=2 and 8 states for N=4, rather than the usual 9 for two qutrits and 25 for two five-dimensional qudits. In the N=2 manifold, two-qutrit states dynamically generate four maximally entangled Bell states from initially unentangled states. In the N=4 manifold, two-qudit states dynamically generate maximally entangled states involving three or four states. The generation of these maximally entangled states occurs rather rapidly for large hopping strengths. The cavities function as a storage of periodically generated maximally entangled states.

  13. Asymmetry and coherence weight of quantum states

    Science.gov (United States)

    Bu, Kaifeng; Anand, Namit; Singh, Uttam

    2018-03-01

    The asymmetry of quantum states is an important resource in quantum information processing tasks such as quantum metrology and quantum communication. In this paper, we introduce the notion of asymmetry weight—an operationally motivated asymmetry quantifier in the resource theory of asymmetry. We study the convexity and monotonicity properties of asymmetry weight and focus on its interplay with the corresponding semidefinite programming (SDP) forms along with its connection to other asymmetry measures. Since the SDP form of asymmetry weight is closely related to asymmetry witnesses, we find that the asymmetry weight can be regarded as a (state-dependent) asymmetry witness. Moreover, some specific entanglement witnesses can be viewed as a special case of an asymmetry witness—which indicates a potential connection between asymmetry and entanglement. We also provide an operationally meaningful coherence measure, which we term coherence weight, and investigate its relationship to other coherence measures like the robustness of coherence and the l1 norm of coherence. In particular, we show that for Werner states in any dimension d all three coherence quantifiers, namely, the coherence weight, the robustness of coherence, and the l1 norm of coherence, are equal and are given by a single letter formula.

  14. Teleportation of Two-Particle Entangled State via Cluster State

    Institute of Scientific and Technical Information of China (English)

    LI Da-Chuang; CAO Zhuo-Liang

    2007-01-01

    In this paper,two schemes for teleporting an unknown two-particle entangled state from the sender (Alice)to the receiver (Bob) via a four-particle entangled cluster state are proposed.In these two schemes,the unknown twoparticle entangled state can be teleported perfectly.The successful probabilities and fidelities of the schemes can reach unity.

  15. Deterministic dense coding with partially entangled states

    Science.gov (United States)

    Mozes, Shay; Oppenheim, Jonathan; Reznik, Benni

    2005-01-01

    The utilization of a d -level partially entangled state, shared by two parties wishing to communicate classical information without errors over a noiseless quantum channel, is discussed. We analytically construct deterministic dense coding schemes for certain classes of nonmaximally entangled states, and numerically obtain schemes in the general case. We study the dependency of the maximal alphabet size of such schemes on the partially entangled state shared by the two parties. Surprisingly, for d>2 it is possible to have deterministic dense coding with less than one ebit. In this case the number of alphabet letters that can be communicated by a single particle is between d and 2d . In general, we numerically find that the maximal alphabet size is any integer in the range [d,d2] with the possible exception of d2-1 . We also find that states with less entanglement can have a greater deterministic communication capacity than other more entangled states.

  16. Wigner function and tomogram of the pair coherent state

    International Nuclear Information System (INIS)

    Meng, Xiang-Guo; Wang, Ji-Suo; Fan, Hong-Yi

    2007-01-01

    Using the entangled state representation of Wigner operator and the technique of integration within an ordered product (IWOP) of operators, the Wigner function of the pair coherent state is derived. The variations of the Wigner function with the parameters α and q in the ρ-γ phase space are discussed. The physical meaning of the Wigner function for the pair coherent state is given by virtue of its marginal distributions. The tomogram of the pair coherent state is calculated with the help of the Radon transform between the Wigner operator and the projection operator of the entangled state |η 1 ,η 2 ,τ 1 ,τ 2 >

  17. Task-oriented maximally entangled states

    International Nuclear Information System (INIS)

    Agrawal, Pankaj; Pradhan, B

    2010-01-01

    We introduce the notion of a task-oriented maximally entangled state (TMES). This notion depends on the task for which a quantum state is used as the resource. TMESs are the states that can be used to carry out the task maximally. This concept may be more useful than that of a general maximally entangled state in the case of a multipartite system. We illustrate this idea by giving an operational definition of maximally entangled states on the basis of communication tasks of teleportation and superdense coding. We also give examples and a procedure to obtain such TMESs for n-qubit systems.

  18. Quantum learning of coherent states

    Energy Technology Data Exchange (ETDEWEB)

    Sentis, Gael [Universitat Autonoma de Barcelona, Fisica Teorica: Informacio i Fenomens Quantics, Barcelona (Spain); Guta, Madalin; Adesso, Gerardo [University of Nottingham, School of Mathematical Sciences, Nottingham (United Kingdom)

    2015-12-15

    We develop a quantum learning scheme for binary discrimination of coherent states of light. This is a problem of technological relevance for the reading of information stored in a digital memory. In our setting, a coherent light source is used to illuminate a memory cell and retrieve its encoded bit by determining the quantum state of the reflected signal. We consider a situation where the amplitude of the states produced by the source is not fully known, but instead this information is encoded in a large training set comprising many copies of the same coherent state. We show that an optimal global measurement, performed jointly over the signal and the training set, provides higher successful identification rates than any learning strategy based on first estimating the unknown amplitude by means of Gaussian measurements on the training set, followed by an adaptive discrimination procedure on the signal. By considering a simplified variant of the problem, we argue that this is the case even for non-Gaussian estimation measurements. Our results show that, even in absence of entanglement, collective quantum measurements yield an enhancement in the readout of classical information, which is particularly relevant in the operating regime of low-energy signals. (orig.)

  19. Quantum learning of coherent states

    International Nuclear Information System (INIS)

    Sentis, Gael; Guta, Madalin; Adesso, Gerardo

    2015-01-01

    We develop a quantum learning scheme for binary discrimination of coherent states of light. This is a problem of technological relevance for the reading of information stored in a digital memory. In our setting, a coherent light source is used to illuminate a memory cell and retrieve its encoded bit by determining the quantum state of the reflected signal. We consider a situation where the amplitude of the states produced by the source is not fully known, but instead this information is encoded in a large training set comprising many copies of the same coherent state. We show that an optimal global measurement, performed jointly over the signal and the training set, provides higher successful identification rates than any learning strategy based on first estimating the unknown amplitude by means of Gaussian measurements on the training set, followed by an adaptive discrimination procedure on the signal. By considering a simplified variant of the problem, we argue that this is the case even for non-Gaussian estimation measurements. Our results show that, even in absence of entanglement, collective quantum measurements yield an enhancement in the readout of classical information, which is particularly relevant in the operating regime of low-energy signals. (orig.)

  20. Optimized entanglement witnesses for Dicke states

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, Marcel; Guehne, Otfried [Naturwissenschaftlich-Technische Fakultaet, Universitaet Siegen, Department Physik, Walter-Flex-Strasse 3, D-57068 Siegen (Germany)

    2013-07-01

    Quantum entanglement is an important resource for applications in quantum information processing like quantum teleportation and cryptography. Moreover, the number of particles that can be entangled experimentally using polarized photons or ion traps has been significantly enlarged. Therefore, criteria to decide the question whether a given multi-particle state is entangled or not have to be improved. Our approach to this problem uses the notion of PPT mixtures which form an approximation to the set of bi-separable states. With this method, entanglement witnesses can be obtained in a natural manner via linear semi-definite programming. In our contribution, we will present analytical results for entanglement witnesses for Dicke states. This allows to overcome the limitations of convex optimization.

  1. Teleportation of N-particle entangled W state via entanglement swapping

    Institute of Scientific and Technical Information of China (English)

    Zhan You-Bang

    2004-01-01

    A scheme for teleporting an unknown N-particle entangled W state is proposed via entanglement swapping. In this scheme, N maximally entangled particle pairs are used as quantum channel. As a special case, the teleportation of an unknown four-particle entangled W state is studied.

  2. Protocol for generating multiphoton entangled states from quantum dots in the presence of nuclear spin fluctuations

    DEFF Research Database (Denmark)

    Denning, Emil Vosmar; Iles-Smith, Jake; McCutcheon, Dara P. S.

    2017-01-01

    Multiphoton entangled states are a crucial resource for many applications inquantum information science. Semiconductor quantum dots offer a promising route to generate such states by mediating photon-photon correlations via a confinedelectron spin, but dephasing caused by the host nuclear spin...... environment typically limits coherence (and hence entanglement) between photons to the spin T2* time of a few nanoseconds. We propose a protocol for the deterministic generation of multiphoton entangled states that is inherently robust against the dominating slow nuclear spin environment fluctuations, meaning...... that coherence and entanglement is instead limited only by the much longer spin T2 time of microseconds. Unlike previous protocols, the present schemeallows for the generation of very low error probability polarisation encoded three-photon GHZ states and larger entangled states, without the need for spin echo...

  3. Generating stationary entangled states in superconducting qubits

    International Nuclear Information System (INIS)

    Zhang Jing; Liu Yuxi; Li Chunwen; Tarn, T.-J.; Nori, Franco

    2009-01-01

    When a two-qubit system is initially maximally entangled, two independent decoherence channels, one per qubit, would greatly reduce the entanglement of the two-qubit system when it reaches its stationary state. We propose a method on how to minimize such a loss of entanglement in open quantum systems. We find that the quantum entanglement of general two-qubit systems with controllable parameters can be controlled by tuning both the single-qubit parameters and the two-qubit coupling strengths. Indeed, the maximum fidelity F max between the stationary entangled state, ρ ∞ , and the maximally entangled state, ρ m , can be about 2/3≅max(tr(ρ ∞ ρ m ))=F max , corresponding to a maximum stationary concurrence, C max , of about 1/3≅C(ρ ∞ )=C max . This is significant because the quantum entanglement of the two-qubit system can be produced and kept, even for a long time. We apply our proposal to several types of two-qubit superconducting circuits and show how the entanglement of these two-qubit circuits can be optimized by varying experimentally controllable parameters.

  4. Quantum renormalization group approach to quantum coherence and multipartite entanglement in an XXZ spin chain

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wei [Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027 (China); Beijing Computational Science Research Center, Beijing 100193 (China); Xu, Jing-Bo, E-mail: xujb@zju.edu.cn [Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027 (China)

    2017-01-30

    We investigate the performances of quantum coherence and multipartite entanglement close to the quantum critical point of a one-dimensional anisotropic spin-1/2 XXZ spin chain by employing the real-space quantum renormalization group approach. It is shown that the quantum criticality of XXZ spin chain can be revealed by the singular behaviors of the first derivatives of renormalized quantum coherence and multipartite entanglement in the thermodynamics limit. Moreover, we find the renormalized quantum coherence and multipartite entanglement obey certain universal exponential-type scaling laws in the vicinity of the quantum critical point of XXZ spin chain. - Highlights: • The QPT of XXZ chain is studied by renormalization group. • The renormalized coherence and multiparticle entanglement is investigated. • Scaling laws of renormalized coherence and multiparticle entanglement are revealed.

  5. Generating entangled states of continuous variables via cross-Kerr nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zhiming [Center for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Khosa, Ashfaq H [Center for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Ikram, Manzoor [Center for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Zubairy, M Suhail [Center for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan)

    2007-05-28

    We propose a scheme for generating entanglement of quantum states with continuous variables (coherent states and squeezed vacuum states) of electromagnetical fields. The scheme involves cross-Kerr nonlinearity. It was shown that the cross-Kerr nonlinearity required for generating the superposition and entanglement of squeezed vacuum states is smaller than that required for coherent states. It was also found that the fidelity monotonously decreases with both the increase of the amplitude of the input coherent field and the increase of the deviation of the nonlinear phase shift from {pi}.

  6. Mode entanglement of Gaussian fermionic states

    Science.gov (United States)

    Spee, C.; Schwaiger, K.; Giedke, G.; Kraus, B.

    2018-04-01

    We investigate the entanglement of n -mode n -partite Gaussian fermionic states (GFS). First, we identify a reasonable definition of separability for GFS and derive a standard form for mixed states, to which any state can be mapped via Gaussian local unitaries (GLU). As the standard form is unique, two GFS are equivalent under GLU if and only if their standard forms coincide. Then, we investigate the important class of local operations assisted by classical communication (LOCC). These are central in entanglement theory as they allow one to partially order the entanglement contained in states. We show, however, that there are no nontrivial Gaussian LOCC (GLOCC) among pure n -partite (fully entangled) states. That is, any such GLOCC transformation can also be accomplished via GLU. To obtain further insight into the entanglement properties of such GFS, we investigate the richer class of Gaussian stochastic local operations assisted by classical communication (SLOCC). We characterize Gaussian SLOCC classes of pure n -mode n -partite states and derive them explicitly for few-mode states. Furthermore, we consider certain fermionic LOCC and show how to identify the maximally entangled set of pure n -mode n -partite GFS, i.e., the minimal set of states having the property that any other state can be obtained from one state inside this set via fermionic LOCC. We generalize these findings also to the pure m -mode n -partite (for m >n ) case.

  7. Teleportation of Multi-qudit Entangled States

    Institute of Scientific and Technical Information of China (English)

    ZHAN Xiao-Gui; LI Hong-Mei; ZENG Hao-Sheng

    2006-01-01

    @@ We propose a method to realize the teleportation of an unknown entangled state that consists of many qudits through a partially entangled-qudit quantum channel with the help of 2 log2 d-bit classical communication. The operations used in the teleportation process include a generalized Bell-state measurement and a series of singlequdit π-measurements performed by Alice, a series of generalized qudit-Pauli gates and two-level unitary gates,as well as a qubit measurement performed by Bob. For a maximally entangled quantum channel, the successful probability of the teleportation becomes unit.

  8. Two-way and three-way negativities of three-qubit entangled states

    International Nuclear Information System (INIS)

    Sharma, S. Shelly; Sharma, N. K.

    2007-01-01

    We propose to quantify three-qubit entanglement using global negativity along with K-way negativities, where K=2 and 3. The principle underlying the definition of K-way negativity for pure and mixed states of N subsystems is a positive partial transpose sufficient condition. However, K-way partial transpose with respect to a subsystem is defined so as to shift the focus to K-way coherences instead of K subsystems of the composite system. A quantum state of a three-qubit system is characterized by the coherences measured by global, two-way, and three-way negativities. For a canonical state of three-qubit system, entanglement measures for genuine tripartite entanglement, W-like entanglement, and bipartite entanglement can be related to two-way and three-way negativities

  9. Projected entangled pair states: status and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Verstraete, Frank [Universitaet Wien (Austria)

    2008-07-01

    We report on the progress made to extend the density matrix renormalization group to higher dimensions, discuss the underlying theory of projected entangled pair states (PEPS) and illustrate its potential on the hand of a few examples.

  10. Bipartite entanglement in continuous variable cluster states

    Energy Technology Data Exchange (ETDEWEB)

    Cable, Hugo; Browne, Daniel E, E-mail: cqthvc@nus.edu.s, E-mail: d.browne@ucl.ac.u [Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore)

    2010-11-15

    A study of the entanglement properties of Gaussian cluster states, proposed as a universal resource for continuous variable (CV) quantum computing is presented in this paper. The central aim is to compare mathematically idealized cluster states defined using quadrature eigenstates, which have infinite squeezing and cannot exist in nature, with Gaussian approximations that are experimentally accessible. Adopting widely used definitions, we first review the key concepts, by analysing a process of teleportation along a CV quantum wire in the language of matrix product states. Next we consider the bipartite entanglement properties of the wire, providing analytic results. We proceed to grid cluster states, which are universal for the qubit case. To extend our analysis of the bipartite entanglement, we adopt the entropic-entanglement width, a specialized entanglement measure introduced recently by Van den Nest et al (2006 Phys. Rev. Lett. 97 150504), adapting their definition to the CV context. Finally, we consider the effects of photonic loss, extending our arguments to mixed states. Cumulatively our results point to key differences in the properties of idealized and Gaussian cluster states. Even modest loss rates are found to strongly limit the amount of entanglement. We discuss the implications for the potential of CV analogues for measurement-based quantum computation.

  11. Quantum Entanglement in Neural Network States

    Directory of Open Access Journals (Sweden)

    Dong-Ling Deng

    2017-05-01

    Full Text Available Machine learning, one of today’s most rapidly growing interdisciplinary fields, promises an unprecedented perspective for solving intricate quantum many-body problems. Understanding the physical aspects of the representative artificial neural-network states has recently become highly desirable in the applications of machine-learning techniques to quantum many-body physics. In this paper, we explore the data structures that encode the physical features in the network states by studying the quantum entanglement properties, with a focus on the restricted-Boltzmann-machine (RBM architecture. We prove that the entanglement entropy of all short-range RBM states satisfies an area law for arbitrary dimensions and bipartition geometry. For long-range RBM states, we show by using an exact construction that such states could exhibit volume-law entanglement, implying a notable capability of RBM in representing quantum states with massive entanglement. Strikingly, the neural-network representation for these states is remarkably efficient, in the sense that the number of nonzero parameters scales only linearly with the system size. We further examine the entanglement properties of generic RBM states by randomly sampling the weight parameters of the RBM. We find that their averaged entanglement entropy obeys volume-law scaling, and the meantime strongly deviates from the Page entropy of the completely random pure states. We show that their entanglement spectrum has no universal part associated with random matrix theory and bears a Poisson-type level statistics. Using reinforcement learning, we demonstrate that RBM is capable of finding the ground state (with power-law entanglement of a model Hamiltonian with a long-range interaction. In addition, we show, through a concrete example of the one-dimensional symmetry-protected topological cluster states, that the RBM representation may also be used as a tool to analytically compute the entanglement spectrum. Our

  12. Displacement-enhanced entanglement distillation of single-mode-squeezed entangled states

    DEFF Research Database (Denmark)

    Tipsmark, Anders; Neergaard-Nielsen, Jonas Schou; Andersen, Ulrik Lund

    2013-01-01

    It has been shown that entanglement distillation of Gaussian entangled states by means of local photon subtraction can be improved by local Gaussian transformations. Here we show that a similar effect can be expected for the distillation of an asymmetric Gaussian entangled state that is produced...... by a single squeezed beam. We show that for low initial entanglement, our largely simplified protocol generates more entanglement than previous proposed protocols. Furthermore, we show that the distillation scheme also works efficiently on decohered entangled states as well as with a practical photon...

  13. A heralded two-qutrit entangled state

    International Nuclear Information System (INIS)

    Joo, Jaewoo; Sanders, Barry C; Rudolph, Terry

    2009-01-01

    We propose a scheme for building a heralded two-qutrit entangled state from polarized photons. An optical circuit is presented to build the maximally entangled two-qutrit state from two heralded Bell pairs and ideal threshold detectors. Several schemes are discussed for constructing the two Bell pairs. We also show how one can produce an unbalanced two-qutrit state that could be of general purpose use in some protocols. In terms of the applications of the maximally entangled qutrit state, we mainly focus on how to use the state to demonstrate a violation of the Collins-Gisin-Linden-Massar-Popescu inequality under the restriction of measurements which can be performed using linear optical elements and photon counting. Other possible applications of the state, such as for higher dimensional quantum cryptography, teleportation and generation of heralded two-qudit states, are also briefly discussed.

  14. Time evolution of the Wigner function in the entangled-state representation

    International Nuclear Information System (INIS)

    Fan Hongyi

    2002-01-01

    For quantum-mechanical entangled states we introduce the entangled Wigner operator in the entangled-state representation. We derive the time evolution equation of the entangled Wigner operator . The trace product rule for entangled Wigner functions is also obtained

  15. Generalized hypergeometric coherent states

    International Nuclear Information System (INIS)

    Appl, Thomas; Schiller, Diethard H

    2004-01-01

    We introduce a large class of holomorphic quantum states by choosing their normalization functions to be given by generalized hypergeometric functions. We call them generalized hypergeometric states in general, and generalized hypergeometric coherent states in particular, if they allow a resolution of unity. Depending on the domain of convergence of the generalized hypergeometric functions, we distinguish generalized hypergeometric states on the plane, the open unit disc and the unit circle. All states are eigenstates of suitably defined lowering operators. We then study their photon number statistics and phase properties as revealed by the Husimi and Pegg-Barnett phase distributions. On the basis of the generalized hypergeometric coherent states we introduce new analytic representations of arbitrary quantum states in Bargmann and Hardy spaces as well as generalized hypergeometric Husimi distributions and corresponding phase distributions

  16. Searching for highly entangled multi-qubit states

    International Nuclear Information System (INIS)

    Brown, Iain D K; Stepney, Susan; Sudbery, Anthony; Braunstein, Samuel L

    2005-01-01

    We present a simple numerical optimization procedure to search for highly entangled states of 2, 3, 4 and 5 qubits. We develop a computationally tractable entanglement measure based on the negative partial transpose criterion, which can be applied to quantum systems of an arbitrary number of qubits. The search algorithm attempts to optimize this entanglement cost function to find the maximal entanglement in a quantum system. We present highly entangled 4-qubit and 5-qubit states discovered by this search. We show that the 4-qubit state is not quite as entangled, according to two separate measures, as the conjectured maximally entangled Higuchi-Sudbery state. Using this measure, these states are more highly entangled than the 4-qubit and 5-qubit GHZ states. We also present a conjecture about the NPT measure, inspired by some of our numerical results, that the single-qubit reduced states of maximally entangled states are all totally mixed

  17. Probabilistic Teleportation of a Four-Particle Entangled State

    Institute of Scientific and Technical Information of China (English)

    ZHAN You-Bang; FU Hao; DONG Zheng-Chao

    2005-01-01

    A Scheme for teleporting an unknown four-particle entangled state is proposed via entangled swapping. In this scheme, four pairs of entangled particles are used as quantum channel. It is shown that, if the four pairs of particles are nonmaximally entangled, the teleportation can be successfully realized with certain probability if a receiver adopts some appropriate unitary transformations.

  18. Experimental tests of coherence and entanglement conservation under unitary evolutions

    Science.gov (United States)

    Černoch, Antonín; Bartkiewicz, Karol; Lemr, Karel; Soubusta, Jan

    2018-04-01

    We experimentally demonstrate the migration of coherence between composite quantum systems and their subsystems. The quantum systems are implemented using polarization states of photons in two experimental setups. The first setup is based on a linear optical controlled-phase quantum gate and the second scheme utilizes effects of nonlinear optics. Our experiment allows one to verify the relation between correlations of the subsystems and the coherence of the composite system, which was given in terms of a conservation law for maximal accessible coherence by Svozilík et al. [J. Svozilík et al., Phys. Rev. Lett. 115, 220501 (2015), 10.1103/PhysRevLett.115.220501]. We observe that the maximal accessible coherence is conserved for the implemented class of global evolutions of the composite system.

  19. Quantum dialogue using non-maximally entangled states based on entanglement swapping

    International Nuclear Information System (INIS)

    Xia Yan; Song Jie; Song Heshan

    2007-01-01

    We present a secure quantum dialogue protocol using non-maximally entangled two-particle states via entanglement swapping at first, and then discuss the requirements for a real quantum dialogue. Within the present version two authorized users can exchange their faithful secret messages securely and simultaneously based on the method of entanglement purification

  20. Coherent states in quantum mechanics

    International Nuclear Information System (INIS)

    Rodrigues, R. de Lima; Fernandes Junior, Damasio; Batista, Sheyla Marques

    2001-12-01

    We present a review work on the coherent states is non-relativistic quantum mechanics analysing the quantum oscillators in the coherent states. The coherent states obtained via a displacement operator that act on the wave function of ground state of the oscillator and the connection with Quantum Optics which were implemented by Glauber have also been considered. A possible generalization to the construction of new coherent states it is point out. (author)

  1. Coherent states in quantum mechanics

    CERN Document Server

    Rodrigues, R D L; Fernandes, D

    2001-01-01

    We present a review work on the coherent states is non-relativistic quantum mechanics analysing the quantum oscillators in the coherent states. The coherent states obtained via a displacement operator that act on the wave function of ground state of the oscillator and the connection with Quantum Optics which were implemented by Glauber have also been considered. A possible generalization to the construction of new coherent states it is point out.

  2. A Criterion to Identify Maximally Entangled Four-Qubit State

    International Nuclear Information System (INIS)

    Zha Xinwei; Song Haiyang; Feng Feng

    2011-01-01

    Paolo Facchi, et al. [Phys. Rev. A 77 (2008) 060304(R)] presented a maximally multipartite entangled state (MMES). Here, we give a criterion for the identification of maximally entangled four-qubit states. Using this criterion, we not only identify some existing maximally entangled four-qubit states in the literature, but also find several new maximally entangled four-qubit states as well. (general)

  3. A new theory of the origin of cancer: quantum coherent entanglement, centrioles, mitosis, and differentiation.

    Science.gov (United States)

    Hameroff, Stuart R

    2004-11-01

    Malignant cells are characterized by abnormal segregation of chromosomes during mitosis ("aneuploidy"), generally considered a result of malignancy originating in genetic mutations. However, recent evidence supports a century-old concept that maldistribution of chromosomes (and resultant genomic instability) due to abnormalities in mitosis itself is the primary cause of malignancy rather than a mere byproduct. In normal mitosis chromosomes replicate into sister chromatids which are then precisely separated and transported into mirror-like sets by structural protein assemblies called mitotic spindles and centrioles, both composed of microtubules. The elegant yet poorly understood ballet-like movements and geometric organization occurring in mitosis have suggested guidance by some type of organizing field, however neither electromagnetic nor chemical gradient fields have been demonstrated or shown to be sufficient. It is proposed here that normal mirror-like mitosis is organized by quantum coherence and quantum entanglement among microtubule-based centrioles and mitotic spindles which ensure precise, complementary duplication of daughter cell genomes and recognition of daughter cell boundaries. Evidence and theory supporting organized quantum states in cytoplasm/nucleoplasm (and quantum optical properties of centrioles in particular) at physiological temperature are presented. Impairment of quantum coherence and/or entanglement among microtubule-based mitotic spindles and centrioles can result in abnormal distribution of chromosomes, abnormal differentiation and uncontrolled growth, and account for all aspects of malignancy. New approaches to cancer therapy and stem cell production are suggested via non-thermal laser-mediated effects aimed at quantum optical states of centrioles.

  4. Continuous variable quantum key distribution with modulated entangled states

    DEFF Research Database (Denmark)

    Madsen, Lars S; Usenko, Vladyslav C.; Lassen, Mikael

    2012-01-01

    Quantum key distribution enables two remote parties to grow a shared key, which they can use for unconditionally secure communication over a certain distance. The maximal distance depends on the loss and the excess noise of the connecting quantum channel. Several quantum key distribution schemes...... based on coherent states and continuous variable measurements are resilient to high loss in the channel, but are strongly affected by small amounts of channel excess noise. Here we propose and experimentally address a continuous variable quantum key distribution protocol that uses modulated fragile...... entangled states of light to greatly enhance the robustness to channel noise. We experimentally demonstrate that the resulting quantum key distribution protocol can tolerate more noise than the benchmark set by the ideal continuous variable coherent state protocol. Our scheme represents a very promising...

  5. Relating Out-of-Time-Order Correlations to Entanglement via Multiple-Quantum Coherences.

    Science.gov (United States)

    Gärttner, Martin; Hauke, Philipp; Rey, Ana Maria

    2018-01-26

    Out-of-time-order correlations (OTOCs) characterize the scrambling, or delocalization, of quantum information over all the degrees of freedom of a system and thus have been proposed as a proxy for chaos in quantum systems. Recent experimental progress in measuring OTOCs calls for a more thorough understanding of how these quantities characterize complex quantum systems, most importantly in terms of the buildup of entanglement. Although a connection between OTOCs and entanglement entropy has been derived, the latter only quantifies entanglement in pure systems and is hard to access experimentally. In this work, we formally demonstrate that the multiple-quantum coherence spectra, a specific family of OTOCs well known in NMR, can be used as an entanglement witness and as a direct probe of multiparticle entanglement. Our results open a path to experimentally testing the fascinating idea that entanglement is the underlying glue that links thermodynamics, statistical mechanics, and quantum gravity.

  6. Relating Out-of-Time-Order Correlations to Entanglement via Multiple-Quantum Coherences

    Science.gov (United States)

    Gärttner, Martin; Hauke, Philipp; Rey, Ana Maria

    2018-01-01

    Out-of-time-order correlations (OTOCs) characterize the scrambling, or delocalization, of quantum information over all the degrees of freedom of a system and thus have been proposed as a proxy for chaos in quantum systems. Recent experimental progress in measuring OTOCs calls for a more thorough understanding of how these quantities characterize complex quantum systems, most importantly in terms of the buildup of entanglement. Although a connection between OTOCs and entanglement entropy has been derived, the latter only quantifies entanglement in pure systems and is hard to access experimentally. In this work, we formally demonstrate that the multiple-quantum coherence spectra, a specific family of OTOCs well known in NMR, can be used as an entanglement witness and as a direct probe of multiparticle entanglement. Our results open a path to experimentally testing the fascinating idea that entanglement is the underlying glue that links thermodynamics, statistical mechanics, and quantum gravity.

  7. Tractable Quantification of Entanglement for Multipartite Pure States

    International Nuclear Information System (INIS)

    Nian-Quan, Jiang; Yu-Jian, Wang; Yi-Zhuang, Zheng; Gen-Chang, Cai

    2008-01-01

    We present kth-order entanglement measure and global kth-order entanglement measure for multipartite pure states, and extend Bennett's measure of partial entropy for bipartite pure states to a multipartite case. These measures are computable and can effectively classify and quantify the entanglement of multipartite pure states. (general)

  8. Entanglement in Solid-State Nanostructures

    NARCIS (Netherlands)

    Bodoky, F.

    2009-01-01

    The goal of this thesis is to investigate theoretically the generation and behaviour of multipartite entanglement for solid-state nanosystems, in particular electron spin quantum bits (so-called 'qubits') in quantum dots. A quantum dot is a tiny potential well where a single electron can be trapped.

  9. On coherent states

    International Nuclear Information System (INIS)

    Polubarinov, I.V.

    1975-01-01

    A definition of the coherent state representation is given in this paper. In the representation quantum theory equations take the form of classical field theory equations (with causality inherent to the latter) not only in simple cases (free field and interactions with an external current or field), but also in the general case of closed systems of interacting fields. And, conversely, a classical field theory can be transformed into a form of a quantum one

  10. Geometric entanglement in topologically ordered states

    International Nuclear Information System (INIS)

    Orús, Román; Wei, Tzu-Chieh; Buerschaper, Oliver; Nest, Maarten Van den

    2014-01-01

    Here we investigate the connection between topological order and the geometric entanglement, as measured by the logarithm of the overlap between a given state and its closest product state of blocks. We do this for a variety of topologically ordered systems such as the toric code, double semion, colour code and quantum double models. As happens for the entanglement entropy, we find that for sufficiently large block sizes the geometric entanglement is, up to possible sub-leading corrections, the sum of two contributions: a bulk contribution obeying a boundary law times the number of blocks and a contribution quantifying the underlying pattern of long-range entanglement of the topologically ordered state. This topological contribution is also present in the case of single-spin blocks in most cases, and constitutes an alternative characterization of topological order for these quantum states based on a multipartite entanglement measure. In particular, we see that the topological term for the two-dimensional colour code is twice as much as the one for the toric code, in accordance with recent renormalization group arguments (Bombin et al 2012 New J. Phys. 14 073048). Motivated by these results, we also derive a general formalism to obtain upper- and lower-bounds to the geometric entanglement of states with a non-Abelian group symmetry, and which we explicitly use to analyse quantum double models. Furthermore, we also provide an analysis of the robustness of the topological contribution in terms of renormalization and perturbation theory arguments, as well as a numerical estimation for small systems. Some of the results in this paper rely on the ability to disentangle single sites from the quantum state, which is always possible for the systems that we consider. Additionally we relate our results to the behaviour of the relative entropy of entanglement in topologically ordered systems, and discuss a number of numerical approaches based on tensor networks that could be

  11. Nonclassical features of trimodal excited coherent Greenberger - Horne - Zeilinger(GHZ) - type state

    Science.gov (United States)

    Merlin, J.; Ahmed, A. B. M.; Mohammed, S. Naina

    2017-06-01

    We examine the influence of photon excitation on each mode of the Glauber coherent GHZ type tripartite state. Concurrence is adopted as entanglement measure between bipartite entangled state. The pairwise concurrence is calculated and used as a quantifier of intermodal entanglement. The entanglement distribution among three modes is investigated using tangle as a measure and the residual entanglement is also calculated. The effect of the photon addition process on the quadrature squeezing is investigated. The higher order squeezing capacity of the photon addition process is also shown.

  12. Unitarily localizable entanglement of Gaussian states

    International Nuclear Information System (INIS)

    Serafini, Alessio; Adesso, Gerardo; Illuminati, Fabrizio

    2005-01-01

    We consider generic (mxn)-mode bipartitions of continuous-variable systems, and study the associated bisymmetric multimode Gaussian states. They are defined as (m+n)-mode Gaussian states invariant under local mode permutations on the m-mode and n-mode subsystems. We prove that such states are equivalent, under local unitary transformations, to the tensor product of a two-mode state and of m+n-2 uncorrelated single-mode states. The entanglement between the m-mode and the n-mode blocks can then be completely concentrated on a single pair of modes by means of local unitary operations alone. This result allows us to prove that the PPT (positivity of the partial transpose) condition is necessary and sufficient for the separability of (m+n)-mode bisymmetric Gaussian states. We determine exactly their negativity and identify a subset of bisymmetric states whose multimode entanglement of formation can be computed analytically. We consider explicit examples of pure and mixed bisymmetric states and study their entanglement scaling with the number of modes

  13. Effect of Bound Entanglement on the Convertibility of Pure States

    International Nuclear Information System (INIS)

    Ishizaka, Satoshi

    2004-01-01

    I show that bound entanglement strongly influences the quantum entanglement processing of pure states: If N distant parties share appropriate bound entangled states with positive partial transpose, all N-partite pure entangled states become inter-convertible by stochastic local operations and classical communication (SLOCC) at the single copy level. This implies that the Schmidt rank of a bipartite pure entangled state can be increased, and that two incomparable tripartite entanglement of the GHZ and W type can be inter-converted by the assistance of bound entanglement. Further, I propose the simplest experimental scheme for the demonstration of the corresponding bound-entanglement-assisted SLOCC. This scheme does not need quantum gates and is feasible for the current experimental technology of linear optics

  14. Generation of the quadripartite Greenberger–Horne–Zeilinger entangled state in quantum beat lasers

    International Nuclear Information System (INIS)

    Wang, Fei

    2013-01-01

    In this letter, a scheme is presented to obtain quadripartite Greenberger–Horne–Zeilinger (GHZ) entanglement via quantum beats in a four-level diamond configuration atomic system. When the top and the ground states are initially prepared in a coherent superposition, the four quantized fields coupling with four dipole-allowed transitions can be correlated with each other by using a strong microwave field to drive the dipole-forbidden transition. It is the combined effect of atomic coherence-controlled correlated-spontaneous emission and double quantum beats that results in the quadripartite GHZ-type entanglement. Our numerical results show that the quadripartite entanglement, which can be controlled effectively by varying the amplitude and phase of the microwave field, occurs in a very wide parameter range. In addition, using input–output theory, we find that the output quadripartite entanglement is robust against thermal fluctuations, which may be useful for long-distance quantum communications. (letter)

  15. Teleportation of a three-particle entangled W state

    Institute of Scientific and Technical Information of China (English)

    郑亦庄; 顾永建; 郭光灿

    2002-01-01

    We have investigated the problem of teleporting a three-particle entangled W state and we propose a scheme based on entanglement swapping to complete the teleportation. We also put forward a scheme for the teleportation of a general W state by using nonmaximally entangled quantum channels. The probability of success of the latter scheme is obtained.

  16. Probabilistic Teleportation of an Arbitrary n-Particle Entangled State

    Institute of Scientific and Technical Information of China (English)

    XI Yong-Jun; FANG Jian-Xing; ZHU Shi-Qun; GUO Zhan-Ying

    2005-01-01

    A scheme for teleporting an arbitrary n-particle entangled state via n pairs of non-maximally entangled states is proposed. The probability of successful teleportation is determined only by the smaller coefficients of the partially entangled pairs. The method is very easy to be realized.

  17. Coherent states and rational surfaces

    International Nuclear Information System (INIS)

    Brody, Dorje C; Graefe, Eva-Maria

    2010-01-01

    The state spaces of generalized coherent states associated with special unitary groups are shown to form rational curves and surfaces in the space of pure states. These curves and surfaces are generated by the various Veronese embeddings of the underlying state space into higher dimensional state spaces. This construction is applied to the parameterization of generalized coherent states, which is useful for practical calculations, and provides an elementary combinatorial approach to the geometry of the coherent state space. The results are extended to Hilbert spaces with indefinite inner products, leading to the introduction of a new kind of generalized coherent states.

  18. Entanglement distribution schemes employing coherent photon-to-spin conversion in semiconductor quantum dot circuits

    Science.gov (United States)

    Gaudreau, Louis; Bogan, Alex; Korkusinski, Marek; Studenikin, Sergei; Austing, D. Guy; Sachrajda, Andrew S.

    2017-09-01

    Long distance entanglement distribution is an important problem for quantum information technologies to solve. Current optical schemes are known to have fundamental limitations. A coherent photon-to-spin interface built with quantum dots (QDs) in a direct bandgap semiconductor can provide a solution for efficient entanglement distribution. QD circuits offer integrated spin processing for full Bell state measurement (BSM) analysis and spin quantum memory. Crucially the photo-generated spins can be heralded by non-destructive charge detection techniques. We review current schemes to transfer a polarization-encoded state or a time-bin-encoded state of a photon to the state of a spin in a QD. The spin may be that of an electron or that of a hole. We describe adaptations of the original schemes to employ heavy holes which have a number of attractive properties including a g-factor that is tunable to zero for QDs in an appropriately oriented external magnetic field. We also introduce simple throughput scaling models to demonstrate the potential performance advantage of full BSM capability in a QD scheme, even when the quantum memory is imperfect, over optical schemes relying on linear optical elements and ensemble quantum memories.

  19. Bound entangled states violate a nonsymmetric local uncertainty relation

    International Nuclear Information System (INIS)

    Hofmann, Holger F.

    2003-01-01

    As a consequence of having a positive partial transpose, bound entangled states lack many of the properties otherwise associated with entanglement. It is therefore interesting to identify properties that distinguish bound entangled states from separable states. In this paper, it is shown that some bound entangled states violate a nonsymmetric class of local uncertainty relations [H. F. Hofmann and S. Takeuchi, Phys. Rev. A 68, 032103 (2003)]. This result indicates that the asymmetry of nonclassical correlations may be a characteristic feature of bound entanglement

  20. Faithful teleportation with partially entangled states

    International Nuclear Information System (INIS)

    Gour, Gilad

    2004-01-01

    We write explicitly a general protocol for faithful teleportation of a d-state particle (qudit) via a partially entangled pair of (pure) n-state particles. The classical communication cost (CCC) of the protocol is log 2 (nd) bits, and it is implemented by a projective measurement performed by Alice, and a unitary operator performed by Bob (after receiving from Alice the measurement result). We prove the optimality of our protocol by a comparison with the concentrate and teleport strategy. We also show that if d>n/2, or if there is no residual entanglement left after the faithful teleportation, the CCC of any protocol is at least log 2 (nd) bits. Furthermore, we find a lower bound on the CCC in the process transforming one bipartite state to another by means of local operation and classical communication

  1. Experimental Entanglement Distribution by Separable States

    Science.gov (United States)

    Vollmer, Christina E.; Schulze, Daniela; Eberle, Tobias; Händchen, Vitus; Fiurášek, Jaromír; Schnabel, Roman

    2013-12-01

    Distribution of entanglement between macroscopically separated parties is crucial for future quantum information networks. Surprisingly, it has been theoretically shown that two distant systems can be entangled by sending a third system that is not entangled with either of them. Here, we experimentally distribute entanglement and successfully prove that our transmitted light beam is indeed not entangled with the parties’ local systems. Our work demonstrates an unexpected variant of entanglement distribution and improves the understanding necessary to engineer multipartite quantum networks.

  2. Deterministic quantum state transfer and remote entanglement using microwave photons.

    Science.gov (United States)

    Kurpiers, P; Magnard, P; Walter, T; Royer, B; Pechal, M; Heinsoo, J; Salathé, Y; Akin, A; Storz, S; Besse, J-C; Gasparinetti, S; Blais, A; Wallraff, A

    2018-06-01

    Sharing information coherently between nodes of a quantum network is fundamental to distributed quantum information processing. In this scheme, the computation is divided into subroutines and performed on several smaller quantum registers that are connected by classical and quantum channels 1 . A direct quantum channel, which connects nodes deterministically rather than probabilistically, achieves larger entanglement rates between nodes and is advantageous for distributed fault-tolerant quantum computation 2 . Here we implement deterministic state-transfer and entanglement protocols between two superconducting qubits fabricated on separate chips. Superconducting circuits 3 constitute a universal quantum node 4 that is capable of sending, receiving, storing and processing quantum information 5-8 . Our implementation is based on an all-microwave cavity-assisted Raman process 9 , which entangles or transfers the qubit state of a transmon-type artificial atom 10 with a time-symmetric itinerant single photon. We transfer qubit states by absorbing these itinerant photons at the receiving node, with a probability of 98.1 ± 0.1 per cent, achieving a transfer-process fidelity of 80.02 ± 0.07 per cent for a protocol duration of only 180 nanoseconds. We also prepare remote entanglement on demand with a fidelity as high as 78.9 ± 0.1 per cent at a rate of 50 kilohertz. Our results are in excellent agreement with numerical simulations based on a master-equation description of the system. This deterministic protocol has the potential to be used for quantum computing distributed across different nodes of a cryogenic network.

  3. Strong monotonicity in mixed-state entanglement manipulation

    International Nuclear Information System (INIS)

    Ishizaka, Satoshi

    2006-01-01

    A strong entanglement monotone, which never increases under local operations and classical communications (LOCC), restricts quantum entanglement manipulation more strongly than the usual monotone since the usual one does not increase on average under LOCC. We propose strong monotones in mixed-state entanglement manipulation under LOCC. These are related to the decomposability and one-positivity of an operator constructed from a quantum state, and reveal geometrical characteristics of entangled states. These are lower bounded by the negativity or generalized robustness of entanglement

  4. An entanglement concentration protocol for cluster states using ...

    Indian Academy of Sciences (India)

    It may be noted that these protocols are not the only approaches of gener- ating maximally entangled states. There are several other protocols such as entanglement purification [8–12], quantum entanglement distillation [13,14], etc., to this effect. The history of ECP starts in the work of Bennett et al [8] in 1996 in which he ...

  5. Entanglement negativity bounds for fermionic Gaussian states

    Science.gov (United States)

    Eisert, Jens; Eisler, Viktor; Zimborás, Zoltán

    2018-04-01

    The entanglement negativity is a versatile measure of entanglement that has numerous applications in quantum information and in condensed matter theory. It can not only efficiently be computed in the Hilbert space dimension, but for noninteracting bosonic systems, one can compute the negativity efficiently in the number of modes. However, such an efficient computation does not carry over to the fermionic realm, the ultimate reason for this being that the partial transpose of a fermionic Gaussian state is no longer Gaussian. To provide a remedy for this state of affairs, in this work, we introduce efficiently computable and rigorous upper and lower bounds to the negativity, making use of techniques of semidefinite programming, building upon the Lagrangian formulation of fermionic linear optics, and exploiting suitable products of Gaussian operators. We discuss examples in quantum many-body theory and hint at applications in the study of topological properties at finite temperature.

  6. Coherent states: a contemporary panorama Coherent states: a contemporary panorama

    Science.gov (United States)

    Twareque Ali, S.; Antoine, Jean-Pierre; Bagarello, Fabio; Gazeau, Jean-Pierre

    2012-06-01

    Coherent states (CS) of the harmonic oscillator (also called canonical CS) were introduced in 1926 by Schrödinger in answer to a remark by Lorentz on the classical interpretation of the wave function. They were rediscovered in the early 1960s, first (somewhat implicitly) by Klauder in the context of a novel representation of quantum states, then by Glauber and Sudarshan for the description of coherence in lasers. Since then, CS have grown into an extremely rich domain that pervades almost every corner of physics and have also led to the development of several flourishing topics in mathematics. Along the way, a number of review articles have appeared in the literature, devoted to CS, notably the 1985 reprint volume of Klauder and Skagerstam [1], the 1990 review paper by Zhang et al [2], the 1993 Oak Ridge Conference [3] and the 1995 review paper by Ali et al [4]. Textbooks also have been published, among which one might mention the ground breaking text of Perelomov [5] focusing on the group-theoretical aspects, that of Ali et al [6]1 analyzing systematically the mathematical structure beyond the group-theoretical approach and also the relation to wavelet analysis, that of Dodonov and Man'ko [7] mostly devoted to quantum optics, that of Gazeau [8] more oriented towards the physical, probabilistic and quantization aspects, and finally the very recent one by Combescure and Robert [9]. In retrospect, one can see that the development of CS has gone through a two-phase transition. First, the (simultaneous) discovery in 1972 by Gilmore and Perelomov that CS were rooted in group theory, then the realization that CS can be defined in a purely algebraic way, as an eigenvalue problem or by a series expansion (Malkin and Man'ko 1969, Barut and Girardello 1971, Gazeau and Klauder 1999; references to the original articles may be found in the textbooks quoted above). Both facts resulted in an explosive expansion of the CS literature. We thought, therefore, that the time was ripe

  7. Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities

    International Nuclear Information System (INIS)

    Wang Chuan; Zhang Yong; Jin Guangsheng

    2011-01-01

    We present an entanglement purification protocol and an entanglement concentration protocol for electron-spin entangled states, resorting to quantum-dot spin and optical-microcavity-coupled systems. The parity-check gates (PCGs) constructed by the cavity-spin-coupling system provide a different method for the entanglement purification of electron-spin entangled states. This protocol can efficiently purify an electron ensemble in a mixed entangled state. The PCGs can also concentrate electron-spin pairs in less-entangled pure states efficiently. The proposed methods are more flexible as only single-photon detection and single-electron detection are needed.

  8. Entanglement Evolution of Three-Qubit States under Local Decoherence

    International Nuclear Information System (INIS)

    Ma Xiaosan; Liu Gaosheng; Wang Anmin

    2010-01-01

    By using negativity as entanglement measure, we have investigated the effect of local decoherence from a non-Markovian environment on the time evolution of entanglement of three-qubit states including the GHZ state, the W state, and the Werner state. From the results, we find that the entanglement dynamics depends not only on the coupling strengths but also on the specific states of concern. Specifically, the entanglement takes different behaviors under weak or strong coupling and it varies with the quantum states under study. The entanglement of the GHZ state and the Werner state can be destroyed completely by the local decoherence, while the entanglement of the W state can survive through the local decoherence partially. (general)

  9. Quench dynamics of topological maximally entangled states.

    Science.gov (United States)

    Chung, Ming-Chiang; Jhu, Yi-Hao; Chen, Pochung; Mou, Chung-Yu

    2013-07-17

    We investigate the quench dynamics of the one-particle entanglement spectra (OPES) for systems with topologically nontrivial phases. By using dimerized chains as an example, it is demonstrated that the evolution of OPES for the quenched bipartite systems is governed by an effective Hamiltonian which is characterized by a pseudospin in a time-dependent pseudomagnetic field S(k,t). The existence and evolution of the topological maximally entangled states (tMESs) are determined by the winding number of S(k,t) in the k-space. In particular, the tMESs survive only if nontrivial Berry phases are induced by the winding of S(k,t). In the infinite-time limit the equilibrium OPES can be determined by an effective time-independent pseudomagnetic field Seff(k). Furthermore, when tMESs are unstable, they are destroyed by quasiparticles within a characteristic timescale in proportion to the system size.

  10. Communication: Fully coherent quantum state hopping

    Energy Technology Data Exchange (ETDEWEB)

    Martens, Craig C., E-mail: cmartens@uci.edu [University of California, Irvine, California 92697-2025 (United States)

    2015-10-14

    In this paper, we describe a new and fully coherent stochastic surface hopping method for simulating mixed quantum-classical systems. We illustrate the approach on the simple but unforgiving problem of quantum evolution of a two-state quantum system in the limit of unperturbed pure state dynamics and for dissipative evolution in the presence of both stationary and nonstationary random environments. We formulate our approach in the Liouville representation and describe the density matrix elements by ensembles of trajectories. Population dynamics are represented by stochastic surface hops for trajectories representing diagonal density matrix elements. These are combined with an unconventional coherent stochastic hopping algorithm for trajectories representing off-diagonal quantum coherences. The latter generalizes the binary (0,1) “probability” of a trajectory to be associated with a given state to allow integers that can be negative or greater than unity in magnitude. Unlike existing surface hopping methods, the dynamics of the ensembles are fully entangled, correctly capturing the coherent and nonlocal structure of quantum mechanics.

  11. Conditional generation of arbitrary multimode entangled states of light with linear optics

    International Nuclear Information System (INIS)

    Fiurasek, J.; Massar, S.; Cerf, N. J.

    2003-01-01

    We propose a universal scheme for the probabilistic generation of an arbitrary multimode entangled state of light with finite expansion in Fock basis. The suggested setup involves passive linear optics, single-photon sources, strong coherent laser beams, and photodetectors with single-photon resolution. The efficiency of this setup may be greatly enhanced if, in addition, a quantum memory is available

  12. A probabilistic CNOT gate for coherent state qubits

    International Nuclear Information System (INIS)

    Oliveira, M.S.R.; Vasconcelos, H.M.; Silva, J.B.R.

    2013-01-01

    We propose a scheme for implementing a probabilistic controlled-NOT (CNOT) gate for coherent state qubits using only linear optics and a particular four-mode state. The proposed optical setup works, as a CNOT gate, near-faithful when |α| 2 ⩾25 and independent of the input state. The key element for realizing the proposed CNOT scheme is the entangled four-mode state.

  13. A probabilistic CNOT gate for coherent state qubits

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, M.S.R.; Vasconcelos, H.M.; Silva, J.B.R., E-mail: joaobrs@ufc.br

    2013-11-22

    We propose a scheme for implementing a probabilistic controlled-NOT (CNOT) gate for coherent state qubits using only linear optics and a particular four-mode state. The proposed optical setup works, as a CNOT gate, near-faithful when |α|{sup 2}⩾25 and independent of the input state. The key element for realizing the proposed CNOT scheme is the entangled four-mode state.

  14. Quantum Enhanced Imaging by Entangled States

    Science.gov (United States)

    2009-07-01

    Zeilinger (GHZ) class and the W class. The GHZ-like entangled state 1,1,1 and the W-like state 2,1 were studied during the course of the QSP Program...D. M. Greenberger, M. Horne and A. Zeilinger , in Bell’s Theorem, Quantum Theory, and Concepts of the Universe, ed. M. Kafatos (Kluwer, Dordrecht 1989...Daniell, H. Weinfurter, and A. Zeilinger , Phys. Rev. Lett. 82,1345 (1999); Z. Zhao, T. Yang, Y.-A. Chen, A.-N. Zhang, M. Zukowski, and J.-W. Pan, Phys

  15. Wigner function for the generalized excited pair coherent state

    International Nuclear Information System (INIS)

    Meng Xiangguo; Wang Jisuo; Liang Baolong; Li Hongqi

    2008-01-01

    This paper introduces the generalized excited pair coherent state (GEPCS). Using the entangled state |η> representation of Wigner operator, it obtains the Wigner function for the GEPCS. In the ρ-γ phase space, the variations of the Wigner function distributions with the parameters q, α, k and l are discussed. The tomogram of the GEPCS is calculated with the help of the Radon transform between the Wigner operator and the projection operator of the entangled state |η 1 , η 2 , τ 1 , τ 2 >. The entangled states |η> and η 1 , η 2 , τ 1 , τ 2 > provide two good representative space for studying the Wigner functions and tomograms of various two-mode correlated quantum states

  16. Entanglement of Generalized Two-Mode Binomial States and Teleportation

    International Nuclear Information System (INIS)

    Wang Dongmei; Yu Youhong

    2009-01-01

    The entanglement of the generalized two-mode binomial states in the phase damping channel is studied by making use of the relative entropy of the entanglement. It is shown that the factors of q and p play the crucial roles in control the relative entropy of the entanglement. Furthermore, we propose a scheme of teleporting an unknown state via the generalized two-mode binomial states, and calculate the mean fidelity of the scheme. (general)

  17. Optimal detection of entanglement in Greenberger-Horne-Zeilinger states

    International Nuclear Information System (INIS)

    Kay, Alastair

    2011-01-01

    We present a broad class of N-qubit Greenberger-Horne-Zeilinger (GHZ)-diagonal states such that nonpositivity under the partial transpose operation is necessary and sufficient for the presence of entanglement, including many naturally arising instances such as dephased GHZ states. Furthermore, our proof directly leads to an entanglement witness which saturates this bound. The witness is applied to thermal GHZ states to prove that the entanglement can be extremely robust to system imperfections.

  18. Entanglement of two ground state neutral atoms using Rydberg blockade

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; Browaeys, Antoine; Evellin, Charles

    2011-01-01

    We report on our recent progress in trapping and manipulation of internal states of single neutral rubidium atoms in optical tweezers. We demonstrate the creation of an entangled state between two ground state atoms trapped in separate tweezers using the effect of Rydberg blockade. The quality...... of the entanglement is measured using global rotations of the internal states of both atoms....

  19. Relationship between squeezing and entangled state transformations

    CERN Document Server

    Fan Hong Yi

    2003-01-01

    We show that c-number dilation transform in the Einstein-Podolsky-Rosen (EPR) entangled state, i.e. vertical bar eta sub 1 , eta sub 2) -> vertical bar eta sub 1 , eta sub 2 /mu) (or vertical bar eta sub 1 , eta sub 2) -> vertical bar eta sub 1 /mu, eta sub 2)), maps onto a kind of one-sided two-mode squeezing operator exp left brace i lambda/2(P sub 1 + P sub 2)(Q sub 1 + Q sub 2) - lambda/2 right brace, (or exp left brace i lambda/2(P sub 1 - P sub 2)(Q sub 1 - Q sub 2) - lambda/2 right brace). Using the IWOP technique, we derive their normally ordered form and construct the corresponding squeezed states. In doing so, some new relationship between squeezing and entangled state transformation is revealed. The dynamic Hamiltonian for such a kind of squeezing evolution is derived. The properties and application of the one-sided squeezed state are briefly discussed. These states can also be obtained with the use of a beam splitter.

  20. Geometry of spin coherent states

    Science.gov (United States)

    Chryssomalakos, C.; Guzmán-González, E.; Serrano-Ensástiga, E.

    2018-04-01

    Spin states of maximal projection along some direction in space are called (spin) coherent, and are, in many respects, the ‘most classical’ available. For any spin s, the spin coherent states form a 2-sphere in the projective Hilbert space \

  1. Scheme for entanglement concentration of unknown atomic entangled states by interference of polarized photons

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China); Yeon, Kyu-Hwang, E-mail: hfwang@ybu.edu.c, E-mail: szhang@ybu.edu.c [Department of Physics and BK21 Program for Device Physics, College of Natural Science, Chungbuk National University, Cheongju, Chungbuk 361-763 (Korea, Republic of)

    2010-12-14

    Based on the interference effect of polarized photons, we propose a practical scheme for entanglement concentration of unknown atomic entangled states. In the scheme, two {lambda}{lambda}-type atoms belonging to different entangled pairs are individually trapped in two spatially separated cavities. By the subsequent detection of the polarized photons leaking out of the separate optical cavities, Alice and Bob as two distant parties can probabilistically extract one maximally entangled four-atom Greenberger-Horne-Zeilinger (GHZ) state from two identical partially entangled Einstein-Podolsky-Rosen (EPR) pairs. We also discuss the influence of cavity decay on the success probability of the scheme. The scheme is feasible and within the reach of current experimental technology.

  2. Remote information concentration by a Greenberger-Horne-Zeilinger state and by a bound entangled state

    International Nuclear Information System (INIS)

    Yu, Yafei; Zhan, Mingsheng; Feng, Jian

    2003-01-01

    We compare remote quantum information concentration by a Greenberger-Horne-Zeilinger (GHZ) state with an unlockable bound entangled state. We find that in view of communication security the bound entangled state works better than the GHZ state

  3. Thermal entanglement and teleportation of a thermally mixed entangled state of a Heisenberg chain through a Werner state

    Institute of Scientific and Technical Information of China (English)

    Huang Li-Yuan; Fang Mao-Fa

    2008-01-01

    The thermal entanglement and teleportation of a thermally mixed entangled state of a two-qubit Heisenberg XXX chain under the Dzyaloshinski-Moriya (DM) anisotropic antisymmetric interaction through a noisy quantum channel given by a Werner state is investigated. The dependences of the thermal entanglement of the teleported state on the DM coupling constant, the temperature and the entanglement of the noisy quantum channel are studied in detail for both the ferromagnetic and the antiferromagnetic cases. The result shows that a minimum entanglement of the noisy quantum channel must be provided in order to realize the entanglement teleportation. The values of fidelity of the teleported state are also studied for these two cases. It is found that under certain conditions, we can transfer an initial state with a better fidelity than that for any classical communication protocol.

  4. Channel capacities versus entanglement measures in multiparty quantum states

    International Nuclear Information System (INIS)

    Sen, Aditi; Sen, Ujjwal

    2010-01-01

    For quantum states of two subsystems, highly entangled states have a higher capacity of transmitting classical as well as quantum information, and vice versa. We show that this is no more the case in general: Quantum capacities of multiaccess channels, motivated by communication in quantum networks, do not have any relation with genuine multiparty entanglement measures. Importantly, the statement is demonstrated for arbitrary multipartite entanglement measures. Along with revealing the structural richness of multiaccess channels, this gives us a tool to classify multiparty quantum states from the perspective of its usefulness in quantum networks, which cannot be visualized by any genuine multiparty entanglement measure.

  5. The revised geometric measure of entanglement for isotropic state

    International Nuclear Information System (INIS)

    Cao Ya

    2011-01-01

    Based on the revised geometric measure of entanglement (RGME), we obtain the analytical expression of isotropic state and generalize to n-particle and d-dimension mixed state case. Meantime, we obtain the relation about isotropic state E-tilde sin 2 (ρ) ≤ E re (ρ). The results indicate RGME is an appropriate measure of entanglement. (authors)

  6. Optimally cloned binary coherent states

    Science.gov (United States)

    Müller, C. R.; Leuchs, G.; Marquardt, Ch.; Andersen, U. L.

    2017-10-01

    Binary coherent state alphabets can be represented in a two-dimensional Hilbert space. We capitalize this formal connection between the otherwise distinct domains of qubits and continuous variable states to map binary phase-shift keyed coherent states onto the Bloch sphere and to derive their quantum-optimal clones. We analyze the Wigner function and the cumulants of the clones, and we conclude that optimal cloning of binary coherent states requires a nonlinearity above second order. We propose several practical and near-optimal cloning schemes and compare their cloning fidelity to the optimal cloner.

  7. Entanglement dynamics of three-qubit states in noisy channels

    Energy Technology Data Exchange (ETDEWEB)

    Siomau, Michael [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Fritzsche, Stephan [Department of Physical Sciences, University of Oulu (Finland); Institute for Advanced Studies, Frankfurt am Main (Germany)

    2010-07-01

    The implementation of schemes for quantum teleportation requires the quantification of entanglement for states that, in general, are mixed due to the interaction with the environment. We study the entanglement dynamics of three-qubit GHZ and W states under the influence of the environment. As noise models for the influence of the environment we use {sigma}{sub z}, {sigma}{sub x} and {sigma}{sub y} Pauli as well as the depolarizing channel. The entanglement of the states is quantified with the lower bound to the three-qubit concurrence. We show that the GHZ state preserves more entanglement than the W state in transmission through {sigma}{sub x} and {sigma}{sub y} Pauli and the depolarizing channels. For {sigma}{sub z} Pauli channel, in contrast, the W state preserves more entanglement than the GHZ state.

  8. Two Schemes for Generation of Entanglement for Vibronic Collective States of Multiple Trapped Ions

    International Nuclear Information System (INIS)

    Yang Wenxing; Li Jiahua; Zheng Anshou

    2007-01-01

    We propose two schemes to prepare entanglement for the vibronic collective states of multiple trapped ions. The first scheme aims to generating multipartite entanglement for vibrational modes of trapped ions, which only requires a single laser beam tuned to the ionic carrier frequency. Our scheme works in the mediated excitation regime, in which the corresponding Rabi frequency is equal to the trap frequency. Beyond their fundamental importance, these states may be of interest for experimental studies on decoherence since the present scheme operates in a fast way. The second scheme aims to preparing the continuous variable multimode maximally Greenberger-Horne-Zeilinger state. The distinct advantage is that the operation time is only limited by the available laser intensity, not by the inherent mechanisms such as off-resonant excitations. This makes it promising to obtain entanglement of multiple coherent and squeezing states with desired amplitudes in a reasonable time.

  9. Teleportation of Quantum States through Mixed Entangled Pairs

    Institute of Scientific and Technical Information of China (English)

    ZHENG Shi-Biao

    2006-01-01

    @@ We describe a protocol for quantum state teleportation via mixed entangled pairs. With the help of an ancilla,near-perfect teleportation might be achieved. For pure entangled pairs, perfect teleportation might be achieved with a certain probability without using an ancilla. The protocol is generalized to teleportation of multiparticle states and quantum secret sharing.

  10. Quantifying entanglement in two-mode Gaussian states

    Science.gov (United States)

    Tserkis, Spyros; Ralph, Timothy C.

    2017-12-01

    Entangled two-mode Gaussian states are a key resource for quantum information technologies such as teleportation, quantum cryptography, and quantum computation, so quantification of Gaussian entanglement is an important problem. Entanglement of formation is unanimously considered a proper measure of quantum correlations, but for arbitrary two-mode Gaussian states no analytical form is currently known. In contrast, logarithmic negativity is a measure that is straightforward to calculate and so has been adopted by most researchers, even though it is a less faithful quantifier. In this work, we derive an analytical lower bound for entanglement of formation of generic two-mode Gaussian states, which becomes tight for symmetric states and for states with balanced correlations. We define simple expressions for entanglement of formation in physically relevant situations and use these to illustrate the problematic behavior of logarithmic negativity, which can lead to spurious conclusions.

  11. Continuous-variable quantum teleportation of even and odd coherent states through varied gain channels

    Institute of Scientific and Technical Information of China (English)

    Li Ying; Zhang Jing; Zhang Jun-Xiang; Zhang Tian-Cai

    2006-01-01

    This paper has investigated quantum teleportation of even and odd coherent states in terms of the EPR entanglement states for continuous variables. It discusses the relationship between the fidelity and the entanglement of EPR states, which is characterized by the degree of squeezing and the gain of classical channels. It shows that the quality of teleporting quantum states also depends on the characteristics of the states themselves. The properties of teleporting even and odd coherent states at different intensities are investigated. The difference of teleporting two such kinds of quantum states are analysed based on the quantum distance function.

  12. Heralded generation of a micro-macro entangled state

    DEFF Research Database (Denmark)

    Andersen, Ulrik Lund; Neergaard-Nielsen, Jonas Schou

    2013-01-01

    Using different optical setups based on squeezed state and photon subtraction we show how optical entanglement between a macroscopic and a microscopic state-the so-called Schro¨dinger cat state or micro-macro state-can be generated. The entangled state is heralded and is thus produced a priori....... Furthermore, we show that the state can be used to map a microscopic qubit onto a macroscopic one thereby linking a qubit processor with a qumode processor....

  13. Decoherence and Fidelity in Teleportation of Coherent Photon-Added Two-Mode Squeezed Thermal States

    Science.gov (United States)

    Li, Heng-Mei; Yuan, Hong-Chun; Wan, Zhi-Long; Wang, Zhen

    2018-04-01

    We theoretically introduce a kind of non-Gaussian entangled resources, i.e., coherent photon-added two-mode squeezed thermal states (CPA-TMSTS), by successively performing coherent photon addition operation to the two-mode squeezed thermal states. The normalization factor related to bivariate Hermite polynomials is obtained. Based upon it, the nonclassicality and decoherence process are analyzed by virtue of the Wigner function. It is shown that the coherent photon addition operation is an effective way in generating partial negative values of Wigner function, which clearly manifests the nonclassicality and non-Gaussianity of the target states. Additionally, the fidelity in teleporting coherent states using CPA-TMSTS as entangled resource is quantified both analytically and numerically. It is found that the CPA-TMSTS is an entangled resource of high-efficiency and high-fidelity in quantum teleportation.

  14. Semiquantum secret sharing using entangled states

    International Nuclear Information System (INIS)

    Li Qin; Chan, W. H.; Long Dongyang

    2010-01-01

    Secret sharing is a procedure for sharing a secret among a number of participants such that only the qualified subsets of participants have the ability to reconstruct the secret. Even in the presence of eavesdropping, secret sharing can be achieved when all the members are quantum. So what happens if not all the members are quantum? In this paper, we propose two semiquantum secret sharing protocols by using maximally entangled Greenberger-Horne-Zeilinger-type states in which quantum Alice shares a secret with two classical parties, Bob and Charlie, in a way that both parties are sufficient to obtain the secret, but one of them cannot. The presented protocols are also shown to be secure against eavesdropping.

  15. An entanglement concentration protocol for cluster states using ...

    Indian Academy of Sciences (India)

    Permanent link: http://www.ias.ac.in/article/fulltext/pram/086/05/0973-0983 ... The purpose of this paper is a proposal on entanglement concentration protocol forcluster states. The protocol ... We also make a comparative numerical study of the residual entanglement left out after the execution of each step of the protocol.

  16. Geometric measure of pairwise quantum discord for superpositions of multipartite generalized coherent states

    International Nuclear Information System (INIS)

    Daoud, M.; Ahl Laamara, R.

    2012-01-01

    We give the explicit expressions of the pairwise quantum correlations present in superpositions of multipartite coherent states. A special attention is devoted to the evaluation of the geometric quantum discord. The dynamics of quantum correlations under a dephasing channel is analyzed. A comparison of geometric measure of quantum discord with that of concurrence shows that quantum discord in multipartite coherent states is more resilient to dissipative environments than is quantum entanglement. To illustrate our results, we consider some special superpositions of Weyl–Heisenberg, SU(2) and SU(1,1) coherent states which interpolate between Werner and Greenberger–Horne–Zeilinger states. -- Highlights: ► Pairwise quantum correlations multipartite coherent states. ► Explicit expression of geometric quantum discord. ► Entanglement sudden death and quantum discord robustness. ► Generalized coherent states interpolating between Werner and Greenberger–Horne–Zeilinger states

  17. Geometric measure of pairwise quantum discord for superpositions of multipartite generalized coherent states

    Energy Technology Data Exchange (ETDEWEB)

    Daoud, M., E-mail: m_daoud@hotmail.com [Department of Physics, Faculty of Sciences, University Ibnou Zohr, Agadir (Morocco); Ahl Laamara, R., E-mail: ahllaamara@gmail.com [LPHE-Modeling and Simulation, Faculty of Sciences, University Mohammed V, Rabat (Morocco); Centre of Physics and Mathematics, CPM, CNESTEN, Rabat (Morocco)

    2012-07-16

    We give the explicit expressions of the pairwise quantum correlations present in superpositions of multipartite coherent states. A special attention is devoted to the evaluation of the geometric quantum discord. The dynamics of quantum correlations under a dephasing channel is analyzed. A comparison of geometric measure of quantum discord with that of concurrence shows that quantum discord in multipartite coherent states is more resilient to dissipative environments than is quantum entanglement. To illustrate our results, we consider some special superpositions of Weyl–Heisenberg, SU(2) and SU(1,1) coherent states which interpolate between Werner and Greenberger–Horne–Zeilinger states. -- Highlights: ► Pairwise quantum correlations multipartite coherent states. ► Explicit expression of geometric quantum discord. ► Entanglement sudden death and quantum discord robustness. ► Generalized coherent states interpolating between Werner and Greenberger–Horne–Zeilinger states.

  18. Ordering states with various coherence measures

    Science.gov (United States)

    Yang, Long-Mei; Chen, Bin; Fei, Shao-Ming; Wang, Zhi-Xi

    2018-04-01

    Quantum coherence is one of the most significant theories in quantum physics. Ordering states with various coherence measures is an intriguing task in quantification theory of coherence. In this paper, we study this problem by use of four important coherence measures—the l_1 norm of coherence, the relative entropy of coherence, the geometric measure of coherence and the modified trace distance measure of coherence. We show that each pair of these measures give a different ordering of qudit states when d≥3. However, for single-qubit states, the l_1 norm of coherence and the geometric coherence provide the same ordering. We also show that the relative entropy of coherence and the geometric coherence give a different ordering for single-qubit states. Then we partially answer the open question proposed in Liu et al. (Quantum Inf Process 15:4189, 2016) whether all the coherence measures give a different ordering of states.

  19. Quantifying tripartite entanglement for three-qubit generalized Werner states

    Energy Technology Data Exchange (ETDEWEB)

    Siewert, Jens [Departamento de Quimica Fisica, Universidad del Pais Vasco, 48080 Bilbao (Spain); Ikerbasque, Basque Foundation for Science, 48011 Bilbao (Spain); Eltschka, Christopher [Institut fuer Theoretische Physik, Universitaet Regensburg, D-93040 Regensburg (Germany)

    2012-07-01

    The adequate quantification of entanglement in multipartite mixed states is still a theoretically unsolved problem, even in the case of three qubits. In order to investigate the robustness of entanglement against noise one often employs the so-called generalized Werner states, i.e., pure maximally entangled states mixed with the completely unpolarized state. Even for those states there are no quantitative results available. In this contribution, we present the solution of the problem for three-qubit generalized Werner states (as well as for the whole family of full-rank mixed states which obey the Greenberger-Horne-Zeilinger symmetry) by providing an exact quantitative account of the tripartite entanglement contained in those states.

  20. Gaussian-state entanglement in a quantum beat laser

    International Nuclear Information System (INIS)

    Tahira, Rabia; Ikram, Manzoor; Nha, Hyunchul; Zubairy, M. Suhail

    2011-01-01

    Recently quantum beat lasers have been considered as a source of entangled radiation [S. Qamar, F. Ghafoor, M. Hillery, and M. S. Zubairy, Phys. Rev. A 77, 062308 (2008)]. We investigate and quantify the entanglement of this system when the initial cavity modes are prepared in a Gaussian two-mode state, one being a nonclassical state and the other a thermal state. It is investigated how the output entanglement varies with the nonclassicality of the input Gaussian state, thermal noise, and the strength of the driving field.

  1. Feasible Teleportation Schemes with Five-Atom Entangled State

    Institute of Scientific and Technical Information of China (English)

    XUE Zheng-Yuan; YI You-Min; CAO Zhuo-Liang

    2006-01-01

    Teleportation schemes with a five-atom entangled state are investigated. In the teleportation scheme Bell state measurements (BSMs) are difficult for physical realization, so we investigate another strategy using separate measurements instead of BSM based on cavity quantum electrodynamics techniques. The scheme of two-atom entangled state teleportation is a controlled and probabilistic one. For the teleportation of the three-atom entangled state, the scheme is a probabilistic one. The fidelity and the probability of the successful teleportation are also obtained.

  2. Entanglement properties of boundary state and thermalization

    Science.gov (United States)

    Guo, Wu-zhong

    2018-06-01

    We discuss the regularized boundary state {e}^{-{τ}_0H}\\Big|{.B>}_a on two aspects in both 2D CFT and higher dimensional free field theory. One is its entanglement and correlation properties, which exhibit exponential decay in 2D CFT, the parameter 1 /τ 0 works as a mass scale. The other concerns with its time evolution, i.e., {e}^{-itH}{e}^{-{τ}_0H}\\Big|{.B>}_a . We investigate the Kubo-Martin-Schwinger (KMS) condition on correlation function of local operators to detect the thermal properties. Interestingly we find the correlation functions in the initial state {e}^{-{τ}_0H}\\Big|{.B>}_a also partially satisfy the KMS condition. In the limit t → ∞, the correlators will exactly satisfy the KMS condition. We generally analyse quantum quench by a pure state and obtain some constraints on the possible form of 2-point correlation function in the initial state if assuming they satisfies KMS condition in the final state. As a byproduct we find in an large τ 0 limit the thermal property of 2-point function in {e}^{-{τ}_0H}\\Big|{.B>}_a also appears.

  3. Proposed Entanglement Swapping in Continuous Variable Systems via Braiding

    International Nuclear Information System (INIS)

    Su Hongyi; Chen Jingling; Deng Dongling; Wu Chunfeng

    2010-01-01

    We study entanglement swapping in continuous variable systems by using braiding transformations. It is found that entanglement swapping in two-mode squeezed vacuum states and squeezed coherent states can be realized based on the braiding operators. (general)

  4. Relative entropy as a measure of entanglement for Gaussian states

    Institute of Scientific and Technical Information of China (English)

    Lu Huai-Xin; Zhao Bo

    2006-01-01

    In this paper, we derive an explicit analytic expression of the relative entropy between two general Gaussian states. In the restriction of the set for Gaussian states and with the help of relative entropy formula and Peres-Simon separability criterion, one can conveniently obtain the relative entropy entanglement for Gaussian states. As an example,the relative entanglement for a two-mode squeezed thermal state has been obtained.

  5. Entanglement measure for general pure multipartite quantum states

    International Nuclear Information System (INIS)

    Heydari, Hoshang; Bjoerk, Gunnar

    2004-01-01

    We propose an explicit formula for a measure of entanglement of pure multipartite quantum states. We discuss the mathematical structure of the measure and give a brief explanation of its physical motivation. We apply the measure on some pure, tripartite, qubit states and demonstrate that, in general, the entanglement can depend on what actions are performed on the various subsystems, and specifically if the parties in possession of the subsystems cooperate or not. We also give some simple but illustrative examples of the entanglement of four-qubit and m-qubit states

  6. Fast entanglement detection for unknown states of two spatial qutrits

    International Nuclear Information System (INIS)

    Lima, G.; Gomez, E. S.; Saavedra, C.; Vargas, A.; Vianna, R. O.

    2010-01-01

    We investigate the practicality of the method proposed by Maciel et al. [Phys. Rev. A. 80, 032325 (2009).] for detecting the entanglement of two spatial qutrits (three-dimensional quantum systems), which are encoded in the discrete transverse momentum of single photons transmitted through a multislit aperture. The method is based on the acquisition of partial information of the quantum state through projective measurements, and a data processing analysis done with semidefinite programs. This analysis relies on generating gradually an optimal entanglement witness operator, and numerical investigations have shown that it allows for the entanglement detection of unknown states with a cost much lower than full state tomography.

  7. Pedagogical introduction to the entropy of entanglement for Gaussian states

    Science.gov (United States)

    Demarie, Tommaso F.

    2018-05-01

    In quantum information theory, the entropy of entanglement is a standard measure of bipartite entanglement between two partitions of a composite system. For a particular class of continuous variable quantum states, the Gaussian states, the entropy of entanglement can be expressed elegantly in terms of symplectic eigenvalues, elements that characterise a Gaussian state and depend on the correlations of the canonical variables. We give a rigorous step-by-step derivation of this result and provide physical insights, together with an example that can be useful in practice for calculations.

  8. Coherent states on Hilbert modules

    International Nuclear Information System (INIS)

    Ali, S Twareque; Bhattacharyya, T; Roy, S S

    2011-01-01

    We generalize the concept of coherent states, traditionally defined as special families of vectors on Hilbert spaces, to Hilbert modules. We show that Hilbert modules over C*-algebras are the natural settings for a generalization of coherent states defined on Hilbert spaces. We consider those Hilbert C*-modules which have a natural left action from another C*-algebra, say A. The coherent states are well defined in this case and they behave well with respect to the left action by A. Certain classical objects like the Cuntz algebra are related to specific examples of coherent states. Finally we show that coherent states on modules give rise to a completely positive definite kernel between two C*-algebras, in complete analogy to the Hilbert space situation. Related to this, there is a dilation result for positive operator-valued measures, in the sense of Naimark. A number of examples are worked out to illustrate the theory. Some possible physical applications are also mentioned.

  9. Coherent states in quantum physics

    CERN Document Server

    Gazeau, Jean-Pierre

    2009-01-01

    This self-contained introduction discusses the evolution of the notion of coherent states, from the early works of Schrödinger to the most recent advances, including signal analysis. An integrated and modern approach to the utility of coherent states in many different branches of physics, it strikes a balance between mathematical and physical descriptions.Split into two parts, the first introduces readers to the most familiar coherent states, their origin, their construction, and their application and relevance to various selected domains of physics. Part II, mostly based on recent original results, is devoted to the question of quantization of various sets through coherent states, and shows the link to procedures in signal analysis. Title: Coherent States in Quantum Physics Print ISBN: 9783527407095 Author(s): Gazeau, Jean-Pierre eISBN: 9783527628292 Publisher: Wiley-VCH Dewey: 530.12 Publication Date: 23 Sep, 2009 Pages: 360 Category: Science, Science: Physics LCCN: Language: English Edition: N/A LCSH:

  10. Coherent states for quadratic Hamiltonians

    International Nuclear Information System (INIS)

    Contreras-Astorga, Alonso; Fernandez C, David J; Velazquez, Mercedes

    2011-01-01

    The coherent states for a set of quadratic Hamiltonians in the trap regime are constructed. A matrix technique which allows us to directly identify the creation and annihilation operators will be presented. Then, the coherent states as simultaneous eigenstates of the annihilation operators will be derived, and will be compared with those attained through the displacement operator method. The corresponding wavefunction will be found, and a general procedure for obtaining several mean values involving the canonical operators in these states will be described. The results will be illustrated through the asymmetric Penning trap.

  11. Generation, concentration and purification for ionic entangled states

    International Nuclear Information System (INIS)

    Yang Ming; Cao Zhuoliang

    2007-01-01

    In cavity QED, the atoms would be sent through the sequential arrays of cavities for the generation of multi-cavity entanglement, or several atoms would be sent into the same cavity mode one bye one for the generation of multi-atom entanglement. The complexity of these processes will impose limitations on the experimental feasibility of it. So, following our previous publication [International Journal Of Quantum Information 2, 231 (2004)] we will propose an alternative scheme for the preparation of multi-cavity W state via cavity QED, which uses the geometrical method to do what other authors have proposed previously using sequential arrays of cavities. Due to the impossibility that one quantum system can be isolated from the environment absolutely, the entanglement of the entangled objects will decrease exponentially with the propagating distance of the objects, and the practically available quantum entangled states are all non-maximally entangled states or the more general case--mixed states. Following our previous publications [Phys. Rev. A 72, 042307 (2005), ibid. 71, 012308 (2005)], we will propose an entanglement generation, concentration and purification scheme for atomic or ionic system, which is mainly based on Cavity QED and linear optical elements. This purification process avoids the controlled-NOT (C-NOT) operations needed in the original purification protocol, which simplifies the whole purification process

  12. Polarization entanglement purification for concatenated Greenberger-Horne-Zeilinger state

    Science.gov (United States)

    Zhou, Lan; Sheng, Yu-Bo

    2017-10-01

    Entanglement purification plays a fundamental role in long-distance quantum communication. In the paper, we put forward the first polarization entanglement purification protocol (EPP) for one type of nonlocal logic-qubit entanglement, i.e., concatenated Greenberger-Horne-Zeilinger (C-GHZ) state, resorting to the photon-atom interaction in low-quality (Q) cavity. In contrast to existing EPPs, this protocol can purify the bit-flip error and phase-flip error in both physic and logic level. Instead of measuring the photons directly, this protocol only requires to measure the atom states to judge whether the protocol is successful. In this way, the purified logic entangled states can be preserved for further application. Moreover, it makes this EPP repeatable so as to obtain a higher fidelity of logic entangled states. As the logic-qubit entanglement utilizes the quantum error correction (QEC) codes, which has an inherent stability against noise and decoherence, this EPP combined with the QEC codes may provide a double protection for the entanglement from the channel noise and may have potential applications in long-distance quantum communication.

  13. Steady-state entanglement activation in optomechanical cavities

    Science.gov (United States)

    Farace, Alessandro; Ciccarello, Francesco; Fazio, Rosario; Giovannetti, Vittorio

    2014-02-01

    Quantum discord, and related indicators, are raising a relentless interest as a novel paradigm of nonclassical correlations beyond entanglement. Here, we discover a discord-activated mechanism yielding steady-state entanglement production in a realistic continuous-variable setup. This comprises two coupled optomechanical cavities, where the optical modes (OMs) communicate through a fiber. We first use a simplified model to highlight the creation of steady-state discord between the OMs. We show next that such discord improves the level of stationary optomechanical entanglement attainable in the system, making it more robust against temperature and thermal noise.

  14. Probabilistic Teleportation of a Four-Particle Entangled W State

    Institute of Scientific and Technical Information of China (English)

    ZHAN You-Bang; FU Hao

    2005-01-01

    In this paper, two schemes for teleporting an unknown four-particle entangled W state is proposed. In the first scheme, two partial entangled four-particle states are used as quantum channels, while in the second scheme,four non-maximally entangled particle pairs are considered as quantum channels. It is shown that the teleportation can be successfully realized with certain probability, for both schemes, if a receiver adopts some appropriate unitary transformations. It is also shown that the successful probabilities of these two schemes are different.

  15. Teleportation of a Kind of Three-Mode Entangled States of Continuous Variables

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A quantum teleportation scheme to teleport a kind of tripartite entangled states of continuous variables by using a quantum channel composed of three bipartite entangled states is proposed. The joint Bell measurement is feasible because the bipartite entangled states are complete and the squeezed state has a natural representation in the entangled state basis. The calculation is greatly simplified by using the Schmidt decomposition of the entangled states.

  16. Induced bipartite entanglement from three qubit states and quantum teleportation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dae-Kil; Son, Jin-Woo; Cha, Seong-Keuck [Kyungnam University, Masan (Korea, Republic of)

    2010-06-15

    Only Greenberger-Horne-Zeilinger and W states are well known to have genuine tripartite entanglement in all three qubit states. The entanglement of quantum state is also well known to play an important role in various quantum information processes. Then, the following question naturally arises: which one is better between the Greenberger-Horne-Zeilinger and the W states in real quantum information processing? We try to give an answer to this question from two aspects. First, we compute the induced bipartite entanglement for a mixture consisting of Greenberger-Horne-Zeilinger and W states. If the entanglement is the only physical resource for information processing, the induced bipartite entanglement suggests that Greenberger-Horne-Zeilinger and W states are equally good. Second, we choose the bipartite teleportation scheme as an example of quantum information processing using the mixture as a quantum channel and compute the average fidelities. Our calculation shows that the W state is slightly more robust than the Greenberger-Horne-Zeilinger state when a small perturbation disturbs the teleportation process. This slight discrepancy seems to imply that entanglement is not the only resource for quantum information processing.

  17. Induced bipartite entanglement from three qubit states and quantum teleportation

    International Nuclear Information System (INIS)

    Park, Dae-Kil; Son, Jin-Woo; Cha, Seong-Keuck

    2010-01-01

    Only Greenberger-Horne-Zeilinger and W states are well known to have genuine tripartite entanglement in all three qubit states. The entanglement of quantum state is also well known to play an important role in various quantum information processes. Then, the following question naturally arises: which one is better between the Greenberger-Horne-Zeilinger and the W states in real quantum information processing? We try to give an answer to this question from two aspects. First, we compute the induced bipartite entanglement for a mixture consisting of Greenberger-Horne-Zeilinger and W states. If the entanglement is the only physical resource for information processing, the induced bipartite entanglement suggests that Greenberger-Horne-Zeilinger and W states are equally good. Second, we choose the bipartite teleportation scheme as an example of quantum information processing using the mixture as a quantum channel and compute the average fidelities. Our calculation shows that the W state is slightly more robust than the Greenberger-Horne-Zeilinger state when a small perturbation disturbs the teleportation process. This slight discrepancy seems to imply that entanglement is not the only resource for quantum information processing.

  18. Irreversibility of entanglement distillation for a class of symmetric states

    International Nuclear Information System (INIS)

    Vollbrecht, Karl Gerd H.; Wolf, Michael M.; Werner, Reinhard F.

    2004-01-01

    We investigate the irreversibility of entanglement distillation for a symmetric (d+1)-parameter family of mixed bipartite quantum states acting on Hilbert spaces of arbitrary dimension dxd. We prove that in this family the entanglement cost is generically strictly larger than the distillable entanglement, so that the set of states for which the distillation process is asymptotically reversible is of measure zero. This remains true even if the distillation process is catalytically assisted by pure-state entanglement and every operation is allowed, which preserves the positivity of the partial transpose. It is shown that reversibility occurs only in cases where the state is a tagged mixture. The reversible cases are shown to be completely characterized by minimal uncertainty vectors for entropic uncertainty relations

  19. Partial separability and entanglement criteria for multiqubit quantum states

    NARCIS (Netherlands)

    Seevinck, M.P.; Uffink, J.B.M.

    2008-01-01

    We explore the subtle relationships between partial separability and entanglement of subsystems in multiqubit quantum states and give experimentally accessible conditions that distinguish between various classes and levels of partial separability in a hierarchical order. These conditions take the

  20. Stability of global entanglement in thermal states of spin chains

    International Nuclear Information System (INIS)

    Brennen, Gavin K.; Bullock, Stephen S.

    2004-01-01

    We investigate the entanglement properties of a one-dimensional chain of qubits coupled via nearest-neighbor spin-spin interactions. The entanglement measure used is the n-concurrence, which is distinct from other measures on spin chains such as bipartite entanglement in that it can quantify 'global' entanglement across the spin chain. Specifically, it computes the overlap of a quantum state with its time-reversed state. As such, this measure is well suited to study ground states of spin-chain Hamiltonians that are intrinsically time-reversal-symmetric. We study the robustness of n-concurrence of ground states when the interaction is subject to a time-reversal antisymmetric magnetic field perturbation. The n-concurrence in the ground state of the isotropic XX model is computed and it is shown that there is a critical magnetic field strength at which the entanglement experiences a jump discontinuity from the maximum value to zero. The n-concurrence for thermal mixed states is derived and a threshold temperature is computed below which the system has nonzero entanglement

  1. Entanglement entropy from tensor network states for stabilizer codes

    Science.gov (United States)

    He, Huan; Zheng, Yunqin; Bernevig, B. Andrei; Regnault, Nicolas

    2018-03-01

    In this paper, we present the construction of tensor network states (TNS) for some of the degenerate ground states of three-dimensional (3D) stabilizer codes. We then use the TNS formalism to obtain the entanglement spectrum and entropy of these ground states for some special cuts. In particular, we work out examples of the 3D toric code, the X-cube model, and the Haah code. The latter two models belong to the category of "fracton" models proposed recently, while the first one belongs to the conventional topological phases. We mention the cases for which the entanglement entropy and spectrum can be calculated exactly: For these, the constructed TNS is a singular value decomposition (SVD) of the ground states with respect to particular entanglement cuts. Apart from the area law, the entanglement entropies also have constant and linear corrections for the fracton models, while the entanglement entropies for the toric code models only have constant corrections. For the cuts we consider, the entanglement spectra of these three models are completely flat. We also conjecture that the negative linear correction to the area law is a signature of extensive ground-state degeneracy. Moreover, the transfer matrices of these TNSs can be constructed. We show that the transfer matrices are projectors whose eigenvalues are either 1 or 0. The number of nonzero eigenvalues is tightly related to the ground-state degeneracy.

  2. Multiparticle quantum superposition and stimulated entanglement by parity selective amplification of entangled states

    International Nuclear Information System (INIS)

    Martini, F. de; Giuseppe, G. di

    2001-01-01

    A multiparticle quantum superposition state has been generated by a novel phase-selective parametric amplifier of an entangled two-photon state. This realization is expected to open a new field of investigations on the persistence of the validity of the standard quantum theory for systems of increasing complexity, in a quasi decoherence-free environment. Because of its nonlocal structure the new system is expected to play a relevant role in the modern endeavor on quantum information and in the basic physics of entanglement. (orig.)

  3. Asymmetric Penning trap coherent states

    International Nuclear Information System (INIS)

    Contreras-Astorga, Alonso; Fernandez, David J.

    2010-01-01

    By using a matrix technique, which allows to identify directly the ladder operators, the coherent states of the asymmetric Penning trap are derived as eigenstates of the appropriate annihilation operators. They are compared with those obtained through the displacement operator method.

  4. Optimally cloned binary coherent states

    DEFF Research Database (Denmark)

    Mueller, C. R.; Leuchs, G.; Marquardt, Ch

    2017-01-01

    their quantum-optimal clones. We analyze the Wigner function and the cumulants of the clones, and we conclude that optimal cloning of binary coherent states requires a nonlinearity above second order. We propose several practical and near-optimal cloning schemes and compare their cloning fidelity to the optimal...

  5. Optimal quantum error correcting codes from absolutely maximally entangled states

    Science.gov (United States)

    Raissi, Zahra; Gogolin, Christian; Riera, Arnau; Acín, Antonio

    2018-02-01

    Absolutely maximally entangled (AME) states are pure multi-partite generalizations of the bipartite maximally entangled states with the property that all reduced states of at most half the system size are in the maximally mixed state. AME states are of interest for multipartite teleportation and quantum secret sharing and have recently found new applications in the context of high-energy physics in toy models realizing the AdS/CFT-correspondence. We work out in detail the connection between AME states of minimal support and classical maximum distance separable (MDS) error correcting codes and, in particular, provide explicit closed form expressions for AME states of n parties with local dimension \

  6. Teleportation with Tripartite Entangled State via Thermal Cavity

    Institute of Scientific and Technical Information of China (English)

    XUE Zheng-Yuan; YI You-Min; CAO Zhuo-Liang

    2006-01-01

    Teleportation schemes with a tripartite entangled state in cavity QED are investigated. The schemes do not need Bell state measurements and the successful probabilities reach optimality. In addition, the schemes are insensitive to both the cavity decay and the thermal field. We first consider two teleportation schemes via a tripartite GHZ state.The first one is a controlled one for an unknown single-qubit state. The second scheme is teleportation of unknown two-atom entangled state. Then we consider teleporting of single-qubit arbitrary state via a tripartite W state.

  7. Nonlinear Entanglement and its Application to Generating Cat States

    Science.gov (United States)

    Shen, Y.; Assad, S. M.; Grosse, N. B.; Li, X. Y.; Reid, M. D.; Lam, P. K.

    2015-03-01

    The Einstein-Podolsky-Rosen (EPR) paradox, which was formulated to argue for the incompleteness of quantum mechanics, has since metamorphosed into a resource for quantum information. The EPR entanglement describes the strength of linear correlations between two objects in terms of a pair of conjugate observables in relation to the Heisenberg uncertainty limit. We propose that entanglement can be extended to include nonlinear correlations. We examine two driven harmonic oscillators that are coupled via third-order nonlinearity can exhibit quadraticlike nonlinear entanglement which, after a projective measurement on one of the oscillators, collapses the other into a cat state of tunable size.

  8. Theory and practice of dressed coherent states in circuit QED

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, Frank [Theoretical Physics, Saarland University, Campus E 2.6, 66123 Saarbruecken (Germany); Govia, Luke C.G. [Theoretical Physics, Saarland University, Campus E 2.6, 66123 Saarbruecken (Germany); Department of Physics, McGill University, Montreal (Canada)

    2016-07-01

    In the dispersive regime of qubit-cavity coupling, classical cavity drive populates the cavity, but leaves the qubit state unaffected. However, the dispersive Hamiltonian is derived after both a frame transformation and an approximation. Therefore, to connect to external experimental devices, the inverse frame transformation from the dispersive frame back to the lab frame is necessary. We show that in the lab frame the system is best described by an entangled state known as the dressed coherent state, and thus even in the dispersive regime, entanglement is generated between the qubit and the cavity. Also, we show that further qubit evolution depends on both the amplitude and phase of the dressed coherent state. This provides a limitation to readout in the dispersive regime. We show that only in the limit of infinite measurement time is this protocol QND, as the formation of a dressed coherent state in the qubit-cavity system applies an effective rotation to the qubit state. We show how this rotation can be corrected by a unitary operation, leading to improved qubit initialization by measurement and unitary feedback.

  9. Entangled states decoherence in coupled molecular spin clusters

    Science.gov (United States)

    Troiani, Filippo; Szallas, Attila; Bellini, Valerio; Affronte, Marco

    2010-03-01

    Localized electron spins in solid-state systems are widely investigated as potential building blocks of quantum devices and computers. While most efforts in the field have been focused on semiconductor low-dimensional structures, molecular antiferromagnets were recently recognized as alternative implementations of effective few-level spin systems. Heterometallic, Cr-based spin rings behave as effective spin-1/2 systems at low temperature and show long decoherence times [1]; besides, they can be chemically linked and magnetically coupled in a controllable fascion [2]. Here, we theoretically investigate the decoherence of the Bell states in such ring dimers, resulting from hyperfine interactions with nuclear spins. Based on a microscopic description of the molecules [3], we simulate the effect of inhomogeneous broadening, spectral diffusion and electron-nuclear entanglement on the electron-spin coherence, estimating the role of the different nuclei (and of possible chemical substitutions), as well as the effect of simple spin-echo sequences. References: [1] F. Troiani, et al., Phys. Rev. Lett. 94, 207208 (2005). [2] G. A. Timco, S: Carretta, F. Troiani et al., Nature Nanotech. 4, 173 (2009). [3] F. Troiani, V. Bellini, and M. Affronte, Phys. Rev. B 77, 054428 (2008).

  10. Approximating local observables on projected entangled pair states

    Science.gov (United States)

    Schwarz, M.; Buerschaper, O.; Eisert, J.

    2017-06-01

    Tensor network states are for good reasons believed to capture ground states of gapped local Hamiltonians arising in the condensed matter context, states which are in turn expected to satisfy an entanglement area law. However, the computational hardness of contracting projected entangled pair states in two- and higher-dimensional systems is often seen as a significant obstacle when devising higher-dimensional variants of the density-matrix renormalization group method. In this work, we show that for those projected entangled pair states that are expected to provide good approximations of such ground states of local Hamiltonians, one can compute local expectation values in quasipolynomial time. We therefore provide a complexity-theoretic justification of why state-of-the-art numerical tools work so well in practice. We finally turn to the computation of local expectation values on quantum computers, providing a meaningful application for a small-scale quantum computer.

  11. Entanglement between electronic states in silicene and photons

    Energy Technology Data Exchange (ETDEWEB)

    Rastgoo, S. [Physics Department, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Shirkani, H. [Physics Department, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of); Golshan, M.M., E-mail: golshan@susc.ac.ir [Physics Department, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of)

    2015-06-12

    Temporal behavior of entanglement between electrons in silicene and single mode radiations is reported. We show that the corresponding total Hamiltonian and time evolution operators are block diagonal. Initial states are divided into two categories for which buckling and the intrinsic spin–orbit effects are either of opposite or the same signs. Negativity shows that π-electrons and photons periodically become entangled for both categories. The entanglement spontaneously shows abrupt variations when buckling and the spin–orbit effects are equal but opposite in sign, leading to quantum phase transitions. As photonic excitations increase, the entanglement exhibits plateaus of constant durations for such initial states. - Highlights: • Time evolution of entanglement between π-electrons and photons in silicene is reported. • Intrinsic spin–orbit coupling (ISOC) and buckling effect (BE) are taken into account. • Initial states with ISOC and BE of opposite signs show quantum phase transitions. • Quantum phase transitions spontaneously occur when ISOC is equal to BE. • Periodic plateaus of maximal entanglement are observed for high photonic excitations.

  12. Coherent states for polynomial su(2) algebra

    International Nuclear Information System (INIS)

    Sadiq, Muhammad; Inomata, Akira

    2007-01-01

    A class of generalized coherent states is constructed for a polynomial su(2) algebra in a group-free manner. As a special case, the coherent states for the cubic su(2) algebra are discussed. The states so constructed reduce to the usual SU(2) coherent states in the linear limit

  13. Loss-induced limits to phase measurement precision with maximally entangled states

    International Nuclear Information System (INIS)

    Rubin, Mark A.; Kaushik, Sumanth

    2007-01-01

    The presence of loss limits the precision of an approach to phase measurement using maximally entangled states, also referred to as NOON states. A calculation using a simple beam-splitter model of loss shows that, for all nonzero values L of the loss, phase measurement precision degrades with increasing number N of entangled photons for N sufficiently large. For L above a critical value of approximately 0.785, phase measurement precision degrades with increasing N for all values of N. For L near zero, phase measurement precision improves with increasing N down to a limiting precision of approximately 1.018L radians, attained at N approximately equal to 2.218/L, and degrades as N increases beyond this value. Phase measurement precision with multiple measurements and a fixed total number of photons N T is also examined. For L above a critical value of approximately 0.586, the ratio of phase measurement precision attainable with NOON states to that attainable by conventional methods using unentangled coherent states degrades with increasing N, the number of entangled photons employed in a single measurement, for all values of N. For L near zero this ratio is optimized by using approximately N=1.279/L entangled photons in each measurement, yielding a precision of approximately 1.340√(L/N T ) radians

  14. Minimum-error discrimination of entangled quantum states

    International Nuclear Information System (INIS)

    Lu, Y.; Coish, N.; Kaltenbaek, R.; Hamel, D. R.; Resch, K. J.; Croke, S.

    2010-01-01

    Strategies to optimally discriminate between quantum states are critical in quantum technologies. We present an experimental demonstration of minimum-error discrimination between entangled states, encoded in the polarization of pairs of photons. Although the optimal measurement involves projection onto entangled states, we use a result of J. Walgate et al. [Phys. Rev. Lett. 85, 4972 (2000)] to design an optical implementation employing only local polarization measurements and feed-forward, which performs at the Helstrom bound. Our scheme can achieve perfect discrimination of orthogonal states and minimum-error discrimination of nonorthogonal states. Our experimental results show a definite advantage over schemes not using feed-forward.

  15. Discrete coherent and squeezed states of many-qudit systems

    International Nuclear Information System (INIS)

    Klimov, Andrei B.; Munoz, Carlos; Sanchez-Soto, Luis L.

    2009-01-01

    We consider the phase space for n identical qudits (each one of dimension d, with d a primer number) as a grid of d n xd n points and use the finite Galois field GF(d n ) to label the corresponding axes. The associated displacement operators permit to define s-parametrized quasidistributions on this grid, with properties analogous to their continuous counterparts. These displacements allow also for the construction of finite coherent states, once a fiducial state is fixed. We take this reference as one eigenstate of the discrete Fourier transform and study the factorization properties of the resulting coherent states. We extend these ideas to include discrete squeezed states, and show their intriguing relation with entangled states of different qudits.

  16. Entanglement sharing via qudit channels: Nonmaximally entangled states may be necessary for one-shot optimal singlet fraction and negativity

    Science.gov (United States)

    Pal, Rajarshi; Bandyopadhyay, Somshubhro

    2018-03-01

    We consider the problem of establishing entangled states of optimal singlet fraction and negativity between two remote parties for every use of a noisy quantum channel and trace-preserving local operations and classical communication (LOCC) under the assumption that the parties do not share prior correlations. We show that for a family of quantum channels in every finite dimension d ≥3 , one-shot optimal singlet fraction and entanglement negativity are attained only with appropriate nonmaximally entangled states. A consequence of our results is that the ordering of entangled states in all finite dimensions may not be preserved under trace-preserving LOCC.

  17. Operational classification and quantification of multipartite entangled states

    International Nuclear Information System (INIS)

    Rigolin, Gustavo; Oliveira, Thiago R. de; Oliveira, Marcos C. de

    2006-01-01

    We formalize and extend an operational multipartite entanglement measure introduced by T. R. Oliveira, G. Rigolin, and M. C. de Oliveira, Phys. Rev. A 73, 010305(R) (2006), through the generalization of global entanglement (GE) [D. A. Meyer and N. R. Wallach, J. Math. Phys. 43, 4273 (2002)]. Contrarily to GE the main feature of this measure lies in the fact that we study the mean linear entropy of all possible partitions of a multipartite system. This allows the construction of an operational multipartite entanglement measure which is able to distinguish among different multipartite entangled states that GE failed to discriminate. Furthermore, it is also maximum at the critical point of the Ising chain in a transverse magnetic field, being thus able to detect a quantum phase transition

  18. Entanglement swapping of noisy states: A kind of superadditivity in nonclassicality

    International Nuclear Information System (INIS)

    Sen, Aditi; Sen, Ujjwal; Brukner, Caslav; Buzek, Vladimir; Zukowski, Marek

    2005-01-01

    We address the question as to whether an entangled state that satisfies local realism will give a violation of the same after entanglement swapping in a suitable scenario. We consider such a possibility as a kind of superadditivity in nonclassicality. Importantly, it will indicate that checking for violation of local realism, in the state obtained after entanglement swapping, can be a method for detecting entanglement in the input state of the swapping procedure. We investigate various entanglement swapping schemes, which involve mixed initial states. The strength of violation of local realism by the state obtained after entanglement swapping is compared with the one for the input states. We obtain a kind of superadditivity of violation of local realism for Werner states, consequent upon entanglement swapping involving Greenberger-Horne-Zeilinger-state measurements. We also discuss whether entanglement swapping of specific states may be used in quantum repeaters with a substantially reduced need to perform the entanglement distillation step

  19. Entanglement swapping of a GHZ state via a GHZ-like state

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Chia-Wei; Hwang, Tzonelih, E-mail: hwangtl@ismail.csie.ncku.edu.t [National Cheng Kung University, Department of Computer Science and Information Engineering, No. 1 Ta-Hsueh Road, Tainan City 701, Taiwan (China)

    2011-10-15

    This study uses the Greenberger-Horne-Zeilinger (GHZ)-like state |G>= 1/2 (|001>+|010>+|100>+|111>) to establish an entanglement swapping protocol on a pure GHZ state. A quantum circuit is proposed to assist in teleporting the entanglement of the pure GHZ state. Furthermore, on the basis of the generation of the GHZ-like state, an improved protocol to reduce the number of transmitted photons required in the process of entanglement swapping is proposed.

  20. Effects of black hole evaporation on the quantum entangled state

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Doyeol [University of Seoul, Seoul (Korea, Republic of)

    2010-10-15

    We investigate the effect of black hole evaporation on the entangled state in which one party of a pair, Alice, falls into the black hole at formation while the other party, Bob, remains outside the black hole. The final state of a black hole is studied by taking into account a general unitary evolution of a black-hole matter state. The mixedness is found to decrease under a general unitary transformation when the initial matter state is in a mixed state and the mean fidelity at the evaporation is smaller than the fidelity of the quantum teleportation by a factor of the inverse square of the number of states of a black hole. The change in the entanglement of the Alice-Bob pair at evaporation is studied by calculating the entanglement fidelity and eigenvalues of the partial transposed block density matrix. The entanglement fidelity is found to be inversely proportional to the square of the Hilbert space dimension N, and the entanglement could survive the evaporation process.

  1. Revivals and entanglement from initially entangled mixed states of a damped Jaynes-Cummings model

    International Nuclear Information System (INIS)

    Rendell, R.W.; Rajagopal, A.K.

    2003-01-01

    An exact density matrix of a phase-damped Jaynes-Cummings model (JCM) with entangled Bell-like initial states formed from a model two-state atom and sets of adjacent photon number states of a single-mode radiation field is presented. The entanglement of the initial states and the subsequent time evolution is assured by finding a positive lower bound on the concurrence of local 2x2 projections of the full 2x∞ JCM density matrix. It is found that the time evolution of the lower bound of the concurrence systematically captures the corresponding collapse and revival features in atomic inversion, relative entropies of atomic and radiation, mutual entropy, and quantum deficit. The atom and radiation subsystems exhibit alternating sets of collapses and revivals in a complementary fashion due to the initially mixed states of the atom and radiation employed here. This is in contrast with the result obtained when the initial state of the dissipationless system is a factored pure state of the atom and radiation, where the atomic and radiation entropies are necessarily the same. The magnitudes of the entanglement lower bound and the atomic and radiation revivals become larger as both the magnitude and phase of the Bell-like initial state contribution increase. The time evolution of the entropy difference of the total system and that of the radiation subsystem exhibit negative regions called 'supercorrelated' states which do not appear in the atomic subsystem. Entangled initial states are found to enhance this supercorrelated feature. Finally, the effect of phase damping is to randomize both the subsystems for asymptotically long times. It may be feasible to experimentally investigate the results presented here using the Rabi oscillation methods of microwave and optical cavity quantum electrodynamics since pure photon number states have recently been produced and observed

  2. Multi-state Quantum Teleportation via One Entanglement State

    International Nuclear Information System (INIS)

    Guo Ying; Zeng Guihua; Lee, Moon Ho

    2008-01-01

    A multi-sender-controlled quantum teleportation scheme is proposed to teleport several secret quantum states from different senders to a distance receiver based on only one Einstein-Podolsky-Rosen (EPR) pair with controlled-NOT (CNOT) gates. In the present scheme, several secret single-qubit quantum states are encoded into a multi-qubit entangled quantum state. Two communication modes, i.e., the detecting mode and the message mode, are employed so that the eavesdropping can be detected easily and the teleported message may be recovered efficiently. It has an advantage over teleporting several different quantum states for one scheme run with more efficiency than the previous quantum teleportation schemes

  3. Transformation of bipartite non-maximally entangled states into a ...

    Indian Academy of Sciences (India)

    We present two schemes for transforming bipartite non-maximally entangled states into a W state in cavity QED system, by using highly detuned interactions and the resonant interactions between two-level atoms and a single-mode cavity field. A tri-atom W state can be generated by adjusting the interaction times between ...

  4. Hybrid entanglement swapping of photons: Creating the orbital angular momentum Bell states and Greenberger-Horne-Zeilinger states

    International Nuclear Information System (INIS)

    Chen Lixiang; She Weilong

    2011-01-01

    Twisted photons offer a high-dimensional Hilbert space with the degree of freedom of orbital angular momentum (OAM). Entanglement swapping allows entangling photons that never interact. We report in this paper the hybrid entanglement swapping from multiphoton spin-entangled states to multiphoton OAM entangled states with the aid of N-pair hybrid spin-OAM entangled photons. Our scheme provides a feasible method for creating the two-photon OAM Bell states (N=2) or multiphoton multidimensional OAM Greenberger-Horne-Zeilinger states (N≥3). We highlight the advantage of multiparticle, multidimensional entangled states in some applications of quantum information protocols.

  5. Dynamical creation of entanglement versus disentanglement in a system of three-level atoms with vacuum-induced coherences

    Energy Technology Data Exchange (ETDEWEB)

    Derkacz, Lukasz [Institute of Theoretical Physics, University of Wroclaw, Plac Maxa Borna 9, 50-204 Wroclaw (Poland); Jakobczyk, Lech [Institute of Theoretical Physics, University of Wroclaw, Plac Maxa Borna 9, 50-204 Wroclaw (Poland)], E-mail: ljak@ift.uni.wroc.pl

    2008-12-08

    The dynamics of entanglement between three-level atoms coupled to the common vacuum is investigated. We show that the collective effects such as collective damping, dipole-dipole interaction and the cross coupling between orthogonal dipoles, play a crucial role in the process of creation of entanglement. In particular, the additional cross coupling enhances the production of entanglement. For the specific initial states we find that the effect of delayed sudden birth of entanglement, recently invented by Ficek and Tanas [Ficek, R. Tanas, Phys. Rev. A 77 (2008) 054301] in the case of two-level atoms, can also be observed in the system. When the initial state is entangled, the process of spontaneous emission causes destruction of correlations and its disentanglement. We show that the robustness of initial entanglement against the noise can be changed by local operations performed on the state.

  6. Teleportation of a multiqubit state by an entangled qudit channel

    Institute of Scientific and Technical Information of China (English)

    郑亦庄; 顾永建; 吴桂初; 郭光灿

    2003-01-01

    We investigate the problem of teleportation of an M-qubit state by using an entangled qudit pair as a quantum channe; and show that the teleportation of a multiparticle state can correspond to the teleportation of a multidimensional state.We also introduce a quantum-state converter composed of beamspliter arrays,on /off -detectors and coross-Kerr couplers and demonstrate that the stte concersion from an M-qubit to an N-dimensional qudit and vice versa can be implemented with this converter,where N=2M,Based on this ,an experimentallu feasible for the teleportation of an M-qubit via an entangl;ed N-level qudit pair channel is proposed.

  7. Low-energy-state dynamics of entanglement for spin systems

    International Nuclear Information System (INIS)

    Jafari, R.

    2010-01-01

    We develop the ideas of the quantum renormalization group and quantum information by exploring the low-energy-state dynamics of entanglement resources of a system close to its quantum critical point. We demonstrate that low-energy-state dynamical quantities of one-dimensional magnetic systems can show a quantum phase transition point and show scaling behavior in the vicinity of the transition point. To present our idea, we study the evolution of two spin entanglements in the one-dimensional Ising model in the transverse field. The system is initialized as the so-called thermal ground state of the pure Ising model. We investigate the evolution of the generation of entanglement with increasing magnetic field. We obtain that the derivative of the time at which the entanglement reaches its maximum with respect to the transverse field diverges at the critical point and its scaling behaviors versus the size of the system are the same as the static ground-state entanglement of the system.

  8. Impossibility criterion for obtaining pure entangled states from mixed states by purifying protocols

    International Nuclear Information System (INIS)

    Chen Pingxing; Liang Linmei; Li Chengzu; Huang Mingqiu

    2002-01-01

    Purifying noisy entanglement is a protocol that can increase the entanglement of a mixed state (as a source) at the expense of the entanglement of others (such as an ancilla) by collective measurement. A protocol with which one can get a pure entangled state from a mixed state is defined as purifying mixed states. We address a basic question: can one get a pure entangled state from a mixed state? We give a necessary and sufficient condition of purifying a mixed state by fit local operations and classical communication and show that for a class of source states and ancilla states in arbitrary bipartite systems purifying mixed states is impossible by finite rounds of purifying protocols. For 2x2 systems, it is proved that arbitrary states cannot be purified by individual measurement. The possible application and meaning of the conclusion are discussed

  9. Generating maximally-path-entangled number states in two spin ensembles coupled to a superconducting flux qubit

    Science.gov (United States)

    Maleki, Yusef; Zheltikov, Aleksei M.

    2018-01-01

    An ensemble of nitrogen-vacancy (NV) centers coupled to a circuit QED device is shown to enable an efficient, high-fidelity generation of high-N00N states. Instead of first creating entanglement and then increasing the number of entangled particles N , our source of high-N00N states first prepares a high-N Fock state in one of the NV ensembles and then entangles it to the rest of the system. With such a strategy, high-N N00N states can be generated in just a few operational steps with an extraordinary fidelity. Once prepared, such a state can be stored over a longer period of time due to the remarkably long coherence time of NV centers.

  10. Quantum entanglement of localized excited states at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Caputa, Paweł [Yukawa Institute for Theoretical Physics (YITP), Kyoto University,Kyoto 606-8502 (Japan); Nordita, KTH Royal Institute of Technology and Stockholm University,Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); Simón, Joan; Štikonas, Andrius [School of Mathematics and Maxwell Institute for Mathematical Sciences,University of Edinburgh,King’s Buildings, Edinburgh EH9 3FD (United Kingdom); Takayanagi, Tadashi [Yukawa Institute for Theoretical Physics (YITP), Kyoto University,Kyoto 606-8502 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU),University of Tokyo,Kashiwa, Chiba 277-8582 (Japan)

    2015-01-20

    In this work we study the time evolutions of (Renyi) entanglement entropy of locally excited states in two dimensional conformal field theories (CFTs) at finite temperature. We consider excited states created by acting with local operators on thermal states and give both field theoretic and holographic calculations. In free field CFTs, we find that the growth of Renyi entanglement entropy at finite temperature is reduced compared to the zero temperature result by a small quantity proportional to the width of the localized excitations. On the other hand, in finite temperature CFTs with classical gravity duals, we find that the entanglement entropy approaches a characteristic value at late time. This behaviour does not occur at zero temperature. We also study the mutual information between the two CFTs in the thermofield double (TFD) formulation and give physical interpretations of our results.

  11. Quantum State Engineering Via Coherent-State Superpositions

    Science.gov (United States)

    Janszky, Jozsef; Adam, P.; Szabo, S.; Domokos, P.

    1996-01-01

    The quantum interference between the two parts of the optical Schrodinger-cat state makes possible to construct a wide class of quantum states via discrete superpositions of coherent states. Even a small number of coherent states can approximate the given quantum states at a high accuracy when the distance between the coherent states is optimized, e. g. nearly perfect Fock state can be constructed by discrete superpositions of n + 1 coherent states lying in the vicinity of the vacuum state.

  12. Generalized Remote Preparation of Arbitrary m-qubit Entangled States via Genuine Entanglements

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2015-03-01

    Full Text Available Herein, we present a feasible, general protocol for quantum communication within a network via generalized remote preparation of an arbitrary m-qubit entangled state designed with genuine tripartite Greenberger–Horne–Zeilinger-type entangled resources. During the implementations, we construct novel collective unitary operations; these operations are tasked with performing the necessary phase transfers during remote state preparations. We have distilled our implementation methods into a five-step procedure, which can be used to faithfully recover the desired state during transfer. Compared to previous existing schemes, our methodology features a greatly increased success probability. After the consumption of auxiliary qubits and the performance of collective unitary operations, the probability of successful state transfer is increased four-fold and eight-fold for arbitrary two- and three-qubit entanglements when compared to other methods within the literature, respectively. We conclude this paper with a discussion of the presented scheme for state preparation, including: success probabilities, reducibility and generalizability.

  13. Transformation of bipartite non-maximally entangled states into a ...

    Indian Academy of Sciences (India)

    We present two schemes for transforming bipartite non-maximally entangled states into a W state in cavity QED system, by using highly detuned interactions and the resonant interactions between ... Proceedings of the International Workshop/Conference on Computational Condensed Matter Physics and Materials Science

  14. Quantum communication network utilizing quadripartite entangled states of optical field

    International Nuclear Information System (INIS)

    Shen Heng; Su Xiaolong; Jia Xiaojun; Xie Changde

    2009-01-01

    We propose two types of quantum dense coding communication networks with optical continuous variables, in which a quadripartite entangled state of the optical field with totally three-party correlations of quadrature amplitudes is utilized. In the networks, the exchange of information between any two participants can be manipulated by one or two of the remaining participants. The channel capacities for a variety of communication protocols are numerically calculated. Due to the fact that the quadripartite entangled states applied in the communication systems have been successfully prepared already in the laboratory, the proposed schemes are experimentally accessible at present.

  15. Threshold quantum state sharing based on entanglement swapping

    Science.gov (United States)

    Qin, Huawang; Tso, Raylin

    2018-06-01

    A threshold quantum state sharing scheme is proposed. The dealer uses the quantum-controlled-not operations to expand the d-dimensional quantum state and then uses the entanglement swapping to distribute the state to a random subset of participants. The participants use the single-particle measurements and unitary operations to recover the initial quantum state. In our scheme, the dealer can share different quantum states among different subsets of participants simultaneously. So the scheme will be very flexible in practice.

  16. Bell-inequality tests with macroscopic entangled states of light

    Energy Technology Data Exchange (ETDEWEB)

    Stobinska, M. [Max Planck Institute for the Science of Light, Erlangen (Germany); Institute for Theoretical Physics II, Erlangen-Nuernberg University, Erlangen (Germany); Sekatski, P.; Gisin, N. [Group of Applied Physics, University of Geneva, Geneva (Switzerland); Buraczewski, A. [Faculty of Electronics and Information Technology, Warsaw University of Technology, Warsaw (Poland); Leuchs, G. [Max Planck Institute for the Science of Light, Erlangen (Germany); Institute for Optics, Information and Photonics, Erlangen-Nuernberg University, Erlangen (Germany)

    2011-09-15

    Quantum correlations may violate the Bell inequalities. Most experimental schemes confirming this prediction have been realized in all-optical Bell tests suffering from the detection loophole. Experiments which simultaneously close this loophole and the locality loophole are highly desirable and remain challenging. An approach to loophole-free Bell tests is based on amplification of the entangled photons (i.e., on macroscopic entanglement), for which an optical signal should be easy to detect. However, the macroscopic states are partially indistinguishable by classical detectors. An interesting idea to overcome these limitations is to replace the postselection by an appropriate preselection immediately after the amplification. This is in the spirit of state preprocessing revealing hidden nonlocality. Here, we examine one of the possible preselections, but the presented tools can be used for analysis of other schemes. Filtering methods making the macroscopic entanglement useful for Bell tests and quantum protocols are the subject of an intensive study in the field nowadays.

  17. Entanglement spectrum and boundary theories with projected entangled-pair states

    Energy Technology Data Exchange (ETDEWEB)

    Cirac, Ignacio [Max-Planck-Institut fuer Quantenoptik, Garching (Germany); Poilblanc, Didier [Laboratoire de Physique Theorique, C.N.R.S. and Universite de Toulouse, Toulouse (France); Schuch, Norbert [California Institute of Technology, Pasadena, CA (United States); Verstraete, Frank [Vienna Univ. (Austria)

    2012-07-01

    In many physical scenarios, close relations between the bulk properties of quantum systems and theories associated to their boundaries have been observed. In this work, we provide an exact duality mapping between the bulk of a quantum spin system and its boundary using Projected Entangled Pair States (PEPS). This duality associates to every region a Hamiltonian on its boundary, in such a way that the entanglement spectrum of the bulk corresponds to the excitation spectrum of the boundary Hamiltonian. We study various models and find that a gapped bulk phase with local order corresponds to a boundary Hamiltonian with local interactions, whereas critical behavior in the bulk is reflected on a diverging interaction length of the boundary Hamiltonian. Furthermore, topologically ordered states yield non-local Hamiltonians. As our duality also associates a boundary operator to any operator in the bulk, it in fact provides a full holographic framework for the study of quantum many-body systems via their boundary.

  18. Generation of atom-photon entangled states in atomic Bose-Einstein condensate via electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Kuang Leman; Zhou Lan

    2003-01-01

    In this paper, we present a method to generate continuous-variable-type entangled states between photons and atoms in atomic Bose-Einstein condensate (BEC). The proposed method involves an atomic BEC with three internal states, a weak quantized probe laser, and a strong classical coupling laser, which form a three-level Λ-shaped BEC system. We consider a situation where the BEC is in electromagnetically induced transparency with the coupling laser being much stronger than the probe laser. In this case, the upper and intermediate levels are unpopulated, so that their adiabatic elimination enables an effective two-mode model involving only the atomic field at the lowest internal level and the quantized probe laser field. Atom-photon quantum entanglement is created through laser-atom and interatomic interactions, and two-photon detuning. We show how to generate atom-photon entangled coherent states and entangled states between photon (atom) coherent states and atom-(photon-) macroscopic quantum superposition (MQS) states, and between photon-MQS and atom-MQS states

  19. Generating entangled state of Bose-Einstein condensate using electromagnetically induced transparency

    Science.gov (United States)

    Li, Song-Song

    2018-01-01

    We put forward a scheme on how to generate entangled state of Bose-Einstein condensate (BEC) using electromagnetically induced transparency (EIT). It is shown that we can rapidly generate the entangled state in the dynamical process and the entangled state maintained a long time interval. It is also shown that the better entangled state can be generated by decreasing coupling strengths of two classical laser fields, increasing two-photon detuning and total number of atoms.

  20. Accessibility of physical states and non-uniqueness of entanglement measure

    International Nuclear Information System (INIS)

    Morikoshi, Fumiaki; Santos, Marcelo Franca; Vedral, Vlatko

    2004-01-01

    Ordering physical states is the key to quantifying some physical property of the states uniquely. Bipartite pure entangled states are totally ordered under local operations and classical communication (LOCC) in the asymptotic limit and uniquely quantified by the well-known entropy of entanglement. However, we show that mixed entangled states are partially ordered under LOCC even in the asymptotic limit. Therefore, non-uniqueness of entanglement measure is understood on the basis of an operational notion of asymptotic convertibility

  1. Maximal overlap with a fully separable state and translational invariance for multipartite entangled states

    International Nuclear Information System (INIS)

    Cui, H. T.; Yuan Di; Tian, J. L.

    2010-01-01

    The maximal overlap with the fully separable state for the multipartite entangled pure state with translational invariance is studied explicitly by some exact and numerical evaluations, focusing on the one-dimensional qubit system and some representative types of translational invariance. The results show that the translational invariance of the multipartite state could have an intrinsic effect on the determination of the maximal overlap and the nearest fully separable state for multipartite entangled states. Furthermore, a hierarchy of the basic entangled states with translational invariance is found, from which one could readily find the maximal overlap and a related fully separable state for the multipartite state composed of different translational invariance structures.

  2. Circuit QED: generation of two-transmon-qutrit entangled states via resonant interaction

    Science.gov (United States)

    Ye, Xi-Mei; Zheng, Zhen-Fei; Lu, Dao-Ming; Yang, Chui-Ping

    2018-04-01

    We present a way to create entangled states of two superconducting transmon qutrits based on circuit QED. Here, a qutrit refers to a three-level quantum system. Since only resonant interaction is employed, the entanglement creation can be completed within a short time. The degree of entanglement for the prepared entangled state can be controlled by varying the weight factors of the initial state of one qutrit, which allows the prepared entangled state to change from a partially entangled state to a maximally entangled state. Because a single cavity is used, only resonant interaction is employed, and none of identical qutrit-cavity coupling constant, measurement, and auxiliary qutrit is needed, this proposal is easy to implement in experiments. The proposal is quite general and can be applied to prepare a two-qutrit partially or maximally entangled state with two natural or artificial atoms of a ladder-type level structure, coupled to an optical or microwave cavity.

  3. Nuclear structure with coherent states

    CERN Document Server

    Raduta, Apolodor Aristotel

    2015-01-01

    This book covers the essential features of a large variety of nuclear structure properties, both collective and microscopic in nature. Most of results are given in an analytical form thus giving deep insight into the relevant phenomena. Using coherent states as variational states, which allows a description in the classical phase space, or provides the generating function for a boson basis, is an efficient tool to account, in a realistic fashion, for many complex properties. A detailed comparison with all existing nuclear structure models provides readers with a proper framework and, at the same time, demonstrates the prospects for new developments. The topics addressed are very much of current concern in the field. The book will appeal to practicing researchers and, due to its self-contained account, can also be successfully read and used by new graduate students.

  4. Local Hamiltonians for maximally multipartite-entangled states

    Science.gov (United States)

    Facchi, P.; Florio, G.; Pascazio, S.; Pepe, F.

    2010-10-01

    We study the conditions for obtaining maximally multipartite-entangled states (MMESs) as nondegenerate eigenstates of Hamiltonians that involve only short-range interactions. We investigate small-size systems (with a number of qubits ranging from 3 to 5) and show some example Hamiltonians with MMESs as eigenstates.

  5. Local Hamiltonians for maximally multipartite-entangled states

    International Nuclear Information System (INIS)

    Facchi, P.; Florio, G.; Pascazio, S.; Pepe, F.

    2010-01-01

    We study the conditions for obtaining maximally multipartite-entangled states (MMESs) as nondegenerate eigenstates of Hamiltonians that involve only short-range interactions. We investigate small-size systems (with a number of qubits ranging from 3 to 5) and show some example Hamiltonians with MMESs as eigenstates.

  6. Continuous Variable Entanglement of Orbital Angular Momentum States

    DEFF Research Database (Denmark)

    Lassen, Mikael Østergaard; Leuchs, G.; Andersen, Ulrik Lund

    2009-01-01

    We have generated a new quantum state of light composed of quadrature entangled Laguerre-Gaussian (LG) modes. For the generation we used an OPO operating in a new regime where all field parameters are degenerate except for its spatial degree of freedom for which it is two-fold degenerate. The ent...

  7. Continuous Variable Entanglement and Squeezing of Orbital Angular Momentum States

    DEFF Research Database (Denmark)

    Lassen, Mikael Østergaard; Leuchs, Gerd; Andersen, Ulrik Lund

    2009-01-01

    We report the first experimental characterization of the first-order continuous variable orbital angular momentum states. Using a spatially nondegenerate optical parametric oscillator (OPO) we produce quadrature entanglement between the two first-order Laguerre-Gauss modes. The family of orbital...

  8. Quantum oscillators in the canonical coherent states

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, R. de Lima [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Lima, A.F. de; Ferreira, K. de Araujo [Paraiba Univ., Campina Grande, PB (Brazil). Dept. de Fisica; Vaidya, A.N. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Fisica

    2001-11-01

    The main characteristics of the quantum oscillator coherent states including the two-particle Calogero interaction are investigated. We show that these Calogero coherent states are the eigenstates of the second-order differential annihilation operator which is deduced via Wigner-Heisenberg algebraic technique and correspond exactly to the pure uncharged-bosonic states. They posses the important properties of non-orthogonality and completeness. The minimum uncertainty relation for the Wigner oscillator coherent states are investigated. New sets of even and odd coherent states are point out. (author)

  9. The Radical Pair Mechanism and the Avian Chemical Compass: Quantum Coherence and Entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yiteng [Purdue Univ., West Lafayette, IN (United States); Kais, Sabre [Purdue Univ., West Lafayette, IN (United States); Berman, Gennady Petrovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-02

    We review the spin radical pair mechanism which is a promising explanation of avian navigation. This mechanism is based on the dependence of product yields on 1) the hyperfine interaction involving electron spins and neighboring nuclear spins and 2) the intensity and orientation of the geomagnetic field. One surprising result is that even at ambient conditions quantum entanglement of electron spins can play an important role in avian magnetoreception. This review describes the general scheme of chemical reactions involving radical pairs generated from singlet and triplet precursors; the spin dynamics of the radical pairs; and the magnetic field dependence of product yields caused by the radical pair mechanism. The main part of the review includes a description of the chemical compass in birds. We review: the general properties of the avian compass; the basic scheme of the radical pair mechanism; the reaction kinetics in cryptochrome; quantum coherence and entanglement in the avian compass; and the effects of noise. We believe that the quantum avian compass can play an important role in avian navigation and can also provide the foundation for a new generation of sensitive and selective magnetic-sensing nano-devices.

  10. Entanglement dynamics of high-dimensional bipartite field states inside the cavities in dissipative environments

    Energy Technology Data Exchange (ETDEWEB)

    Tahira, Rabia; Ikram, Manzoor; Zubairy, M Suhail [Centre for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Bougouffa, Smail [Department of Physics, Faculty of Science, Taibah University, PO Box 30002, Madinah (Saudi Arabia)

    2010-02-14

    We investigate the phenomenon of sudden death of entanglement in a high-dimensional bipartite system subjected to dissipative environments with an arbitrary initial pure entangled state between two fields in the cavities. We find that in a vacuum reservoir, the presence of the state where one or more than one (two) photons in each cavity are present is a necessary condition for the sudden death of entanglement. Otherwise entanglement remains for infinite time and decays asymptotically with the decay of individual qubits. For pure two-qubit entangled states in a thermal environment, we observe that sudden death of entanglement always occurs. The sudden death time of the entangled states is related to the number of photons in the cavities, the temperature of the reservoir and the initial preparation of the entangled states.

  11. Entanglement dynamics of high-dimensional bipartite field states inside the cavities in dissipative environments

    International Nuclear Information System (INIS)

    Tahira, Rabia; Ikram, Manzoor; Zubairy, M Suhail; Bougouffa, Smail

    2010-01-01

    We investigate the phenomenon of sudden death of entanglement in a high-dimensional bipartite system subjected to dissipative environments with an arbitrary initial pure entangled state between two fields in the cavities. We find that in a vacuum reservoir, the presence of the state where one or more than one (two) photons in each cavity are present is a necessary condition for the sudden death of entanglement. Otherwise entanglement remains for infinite time and decays asymptotically with the decay of individual qubits. For pure two-qubit entangled states in a thermal environment, we observe that sudden death of entanglement always occurs. The sudden death time of the entangled states is related to the number of photons in the cavities, the temperature of the reservoir and the initial preparation of the entangled states.

  12. Coherent states in quaternionic quantum mechanics

    Science.gov (United States)

    Adler, Stephen L.; Millard, Andrew C.

    1997-05-01

    We develop Perelomov's coherent states formalism to include the case of a quaternionic Hilbert space. We find that, because of the closure requirement, an attempted quaternionic generalization of the special nilpotent or Weyl group reduces to the normal complex case. For the case of the compact group SU(2), however, coherent states can be formulated using the quaternionic half-integer spin matrices of Finkelstein, Jauch, and Speiser, giving a nontrivial quaternionic analog of coherent states.

  13. All pure bipartite entangled states can be self-tested

    Science.gov (United States)

    Coladangelo, Andrea; Goh, Koon Tong; Scarani, Valerio

    2017-05-01

    Quantum technologies promise advantages over their classical counterparts in the fields of computation, security and sensing. It is thus desirable that classical users are able to obtain guarantees on quantum devices, even without any knowledge of their inner workings. That such classical certification is possible at all is remarkable: it is a consequence of the violation of Bell inequalities by entangled quantum systems. Device-independent self-testing refers to the most complete such certification: it enables a classical user to uniquely identify the quantum state shared by uncharacterized devices by simply inspecting the correlations of measurement outcomes. Self-testing was first demonstrated for the singlet state and a few other examples of self-testable states were reported in recent years. Here, we address the long-standing open question of whether every pure bipartite entangled state is self-testable. We answer it affirmatively by providing explicit self-testing correlations for all such states.

  14. Geometry of generalized coherent states

    International Nuclear Information System (INIS)

    Bacry, H.; Centre National de la Recherche Scientifique, 13 - Marseille; Grossmann, A.; Zak, J.

    1975-09-01

    Various attempts have been made to generalize the concept of coherent states (c.s.). One of them, due to Perelomov, seems to be very promising but no restrictive enough. The Perelomov c.s. are briefly reviewed. One shows how his definition gives rise to Radcliffe's c.s. Relationship between the usual and Radcliffe's c.s. can be investigated either from group contraction point of view (Arecchi et al.) or from a physical point of view (with the aid of the Poincare sphere of elliptic polarizations of electromagnetic plane waves). The question of finding complete subsets of c.s. is revisited and an attempt is made to restrict the Perelomov definition [fr

  15. QCD jets from coherent states

    Energy Technology Data Exchange (ETDEWEB)

    Curci, G [European Organization for Nuclear Research, Geneva (Switzerland); Greco, M; Srivastava, Y [Istituto Nazionale di Fisica Nucleare, Frascati (Italy). Lab. Nazionale di Frascati

    1979-11-19

    A recently proposed approach to the problem of infrared and mass singularities in QCD based on the formalism of coherent states, is extended to discuss massless quark and gluon jets. The present results include all leading (ln delta) terms as well as finite terms in the energy loss epsilon, in addition to the usual ln epsilon associated with ln delta. The formulae agree with explicit perturbative calculations, whenever available. Explicit expressions for the total Ksub(T) distributions are given which take into account transverse-momentum conservation. Predictions are also made for the Q/sup 2/ dependence of the mean Ksub(T)/sup 2/ for quark and gluon jets. The jet ksub(T) distributions are extrapolated for low ksub(T) and shown to describe with good accuracy the data for eanti e..-->..qanti q..-->.. hadrons. Numerical predictions are also presented for the forthcoming PETRA, PEP and LEP machines.

  16. Faithful remote state preparation using finite classical bits and a nonmaximally entangled state

    International Nuclear Information System (INIS)

    Ye Mingyong; Zhang Yongsheng; Guo Guangcan

    2004-01-01

    We present many ensembles of states that can be remotely prepared by using minimum classical bits from Alice to Bob and their previously shared entangled state and prove that we have found all the ensembles in two-dimensional case. Furthermore we show that any pure quantum state can be remotely and faithfully prepared by using finite classical bits from Alice to Bob and their previously shared nonmaximally entangled state though no faithful quantum teleportation protocols can be achieved by using a nonmaximally entangled state

  17. Hybrid Long-Distance Entanglement Distribution Protocol

    DEFF Research Database (Denmark)

    Brask, J.B.; Rigas, I.; Polzik, E.S.

    2010-01-01

    We propose a hybrid (continuous-discrete variable) quantum repeater protocol for long-distance entanglement distribution. Starting from states created by single-photon detection, we show how entangled coherent state superpositions can be generated by means of homodyne detection. We show that near......-deterministic entanglement swapping with such states is possible using only linear optics and homodyne detectors, and we evaluate the performance of our protocol combining these elements....

  18. Entanglement of three-qubit Greenberger-Horne-Zeilinger-symmetric states.

    Science.gov (United States)

    Eltschka, Christopher; Siewert, Jens

    2012-01-13

    The first characterization of mixed-state entanglement was achieved for two-qubit states in Werner's seminal work [Phys. Rev. A 40, 4277 (1989)]. A physically important extension concerns mixtures of a pure entangled state [such as the Greenberger-Horne-Zeilinger (GHZ) state] and the unpolarized state. These mixed states serve as benchmark for the robustness of multipartite entanglement. They share the symmetries of the GHZ state. We call such states GHZ symmetric. Here we give a complete description of the entanglement in the family of three-qubit GHZ-symmetric states and, in particular, of the three-qubit generalized Werner states. Our method relies on the appropriate parametrization of the states and on the invariance of entanglement properties under general local operations. An application is the definition of a symmetrization witness for the entanglement class of arbitrary three-qubit states.

  19. Parametric source of two-photon states with a tunable degree of entanglement and mixing: Experimental preparation of Werner states and maximally entangled mixed states

    International Nuclear Information System (INIS)

    Cinelli, C.; Di Nepi, G.; De Martini, F.; Barbieri, M.; Mataloni, P.

    2004-01-01

    A parametric source of polarization-entangled photon pairs with striking spatial characteristics is reported. The distribution of the output electromagnetic k modes excited by spontaneous parametric down-conversion and coupled to the output detectors can be very broad. Using these states realized over a full entanglement ring output distribution, the nonlocal properties of the generated entanglement have been tested by standard Bell measurements and by Ou-Mandel interferometry. A 'mode-patchwork' technique based on the quantum superposition principle is adopted to synthesize in a straightforward and reliable way any kind of mixed state, of large conceptual and technological interest in modern quantum information. Tunable Werner states and maximally entangled mixed states have indeed been created by this technique and investigated by quantum tomography. A study of the entropic and nonlocal properties of these states has been undertaken experimentally and theoretically, by a unifying variational approach

  20. Information cloning of harmonic oscillator coherent states

    Indian Academy of Sciences (India)

    We show that in the case of unknown harmonic oscillator coherent statesit is possible to achieve what we call perfect information cloning. By this we mean that it is still possible to make arbitrary number of copies of a state which has exactly the same information content as the original unknown coherent state. By making use ...

  1. Coherent State Quantization and Moment Problem

    Directory of Open Access Journals (Sweden)

    J. P. Gazeau

    2010-01-01

    Full Text Available Berezin-Klauder-Toeplitz (“anti-Wick” or “coherent state” quantization of the complex plane, viewed as the phase space of a particle moving on the line, is derived from the resolution of the unity provided by the standard (or gaussian coherent states. The construction of these states and their attractive properties are essentially based on the energy spectrum of the harmonic oscillator, that is on natural numbers. We follow in this work the same path by considering sequences of non-negative numbers and their associated “non-linear” coherent states. We illustrate our approach with the 2-d motion of a charged particle in a uniform magnetic field. By solving the involved Stieltjes moment problem we construct a family of coherent states for this model. We then proceed with the corresponding coherent state quantization and we show that this procedure takes into account the circle topology of the classical motion.

  2. Duality and the geometric measure of entanglement of general multiqubit W states

    International Nuclear Information System (INIS)

    Tamaryan, Sayatnova; Sudbery, Anthony; Tamaryan, Levon

    2010-01-01

    We find the nearest product states for arbitrary generalized W states of n qubits, and show that the nearest product state is essentially unique if the W state is highly entangled. It is specified by a unit vector in Euclidean n-dimensional space. We use this duality between unit vectors and highly entangled W states to find the geometric measure of entanglement of such states.

  3. Werner State Structure and Entanglement Classification

    Directory of Open Access Journals (Sweden)

    David W. Lyons

    2012-01-01

    Full Text Available We present applications of the representation theory of Lie groups to the analysis of structure and local unitary classification of Werner states, sometimes called the decoherence-free states, which are states of n quantum bits left unchanged by local transformations that are the same on each particle. We introduce a multiqubit generalization of the singlet state and a construction that assembles these qubits into Werner states.

  4. Nonlinear entanglement witnesses, covariance matrices and the geometry of separable states

    Energy Technology Data Exchange (ETDEWEB)

    Guehne, Otfried [Institut fuer Quantenoptik und Quanteninformation, Oesterreichische Akademie der Wissenschaften, A-6020 Innsbruck (Austria); Luetkenhaus, Norbert [Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada)

    2007-05-15

    Entanglement witnesses provide a standard tool for the analysis of entanglement in experiments. We investigate possible nonlinear entanglement witnesses from several perspectives. First, we demonstrate that they can be used to show that the set of separable states has no facets. Second, we give a new derivation of nonlinear witnesses based on covariance matrices. Finally, we investigate extensions to the multipartite case.

  5. Teleportation via thermally entangled states of a two-qubit Heisenberg XXZ chain

    Institute of Scientific and Technical Information of China (English)

    QIN Meng; TAO Ying-Juan; TIAN Dong-Ping

    2008-01-01

    We investigate quantum teleportation as a tool to study the thermally entangled state of a twoqubit Heisenberg XXZ chain.Our work is mainly to investigate the characteristics of a Heisenberg XXZ chain and get some analytical results of the fully entangled fraction.We also consider the entanglement teleportation via a two-qubit Heisenberg XXZ chain.

  6. Quantum-enhanced spectroscopy with entangled multiphoton states

    Science.gov (United States)

    Dinani, Hossein T.; Gupta, Manish K.; Dowling, Jonathan P.; Berry, Dominic W.

    2016-06-01

    Traditionally, spectroscopy is performed by examining the position of absorption lines. However, at frequencies near the transition frequency, additional information can be obtained from the phase shift. In this work we consider the information about the transition frequency obtained from both the absorption and the phase shift, as quantified by the Fisher information in an interferometric measurement. We examine the use of multiple single-photon states, NOON states, and numerically optimized states that are entangled and have multiple photons. We find the optimized states that improve over the standard quantum limit set by independent single photons for some atom number densities.

  7. Quantum Secure Direct Communication with Five-Qubit Entangled State

    International Nuclear Information System (INIS)

    Lin Song; Liu Xiao-Fen; Gao Fei

    2011-01-01

    Recently, a genuine five-qubit entangled state has been achieved by Brown et al.[J. Phys. A 38 (2005) 1119]. Later it was indicated that this state can be used for quantum teleportation and quantum state sharing. Here we build a quantum secure direct communication protocol with this state, and prove that it is secure in ideal conditions. In the protocol, the sender performs unitary transformations to encode a secret message on his/her particles and sends them to the receiver. The receiver then performs projective determinate measurement to decode the secret message directly. Furthermore, this protocol utilizes superdense coding to achieve a high intrinsic efficiency and source capacity. (general)

  8. Evaluation of the non-Gaussianity of two-mode entangled states over a bosonic memory channel via cumulant theory and quadrature detection

    Science.gov (United States)

    Xiang, Shao-Hua; Wen, Wei; Zhao, Yu-Jing; Song, Ke-Hui

    2018-04-01

    We study the properties of the cumulants of multimode boson operators and introduce the phase-averaged quadrature cumulants as the measure of the non-Gaussianity of multimode quantum states. Using this measure, we investigate the non-Gaussianity of two classes of two-mode non-Gaussian states: photon-number entangled states and entangled coherent states traveling in a bosonic memory quantum channel. We show that such a channel can skew the distribution of two-mode quadrature variables, giving rise to a strongly non-Gaussian correlation. In addition, we provide a criterion to determine whether the distributions of these states are super- or sub-Gaussian.

  9. Gaussian measures of entanglement versus negativities: Ordering of two-mode Gaussian states

    International Nuclear Information System (INIS)

    Adesso, Gerardo; Illuminati, Fabrizio

    2005-01-01

    We study the entanglement of general (pure or mixed) two-mode Gaussian states of continuous-variable systems by comparing the two available classes of computable measures of entanglement: entropy-inspired Gaussian convex-roof measures and positive partial transposition-inspired measures (negativity and logarithmic negativity). We first review the formalism of Gaussian measures of entanglement, adopting the framework introduced in M. M. Wolf et al., Phys. Rev. A 69, 052320 (2004), where the Gaussian entanglement of formation was defined. We compute explicitly Gaussian measures of entanglement for two important families of nonsymmetric two-mode Gaussian state: namely, the states of extremal (maximal and minimal) negativities at fixed global and local purities, introduced in G. Adesso et al., Phys. Rev. Lett. 92, 087901 (2004). This analysis allows us to compare the different orderings induced on the set of entangled two-mode Gaussian states by the negativities and by the Gaussian measures of entanglement. We find that in a certain range of values of the global and local purities (characterizing the covariance matrix of the corresponding extremal states), states of minimum negativity can have more Gaussian entanglement of formation than states of maximum negativity. Consequently, Gaussian measures and negativities are definitely inequivalent measures of entanglement on nonsymmetric two-mode Gaussian states, even when restricted to a class of extremal states. On the other hand, the two families of entanglement measures are completely equivalent on symmetric states, for which the Gaussian entanglement of formation coincides with the true entanglement of formation. Finally, we show that the inequivalence between the two families of continuous-variable entanglement measures is somehow limited. Namely, we rigorously prove that, at fixed negativities, the Gaussian measures of entanglement are bounded from below. Moreover, we provide some strong evidence suggesting that they

  10. Coherent states approach to Penning trap

    International Nuclear Information System (INIS)

    Fernandez, David J; Velazquez, Mercedes

    2009-01-01

    By using a matrix technique, which allows us to identify directly the ladder operators, the Penning trap coherent states are derived as eigenstates of the appropriate annihilation operators. These states are compared with those obtained through the displacement operator. The associated wavefunctions and mean values for some relevant operators in these states are also evaluated. It turns out that the Penning trap coherent states minimize the Heisenberg uncertainty relation

  11. Bell nonlocality and fully entangled fraction measured in an entanglement-swapping device without quantum state tomography

    Czech Academy of Sciences Publication Activity Database

    Bartkiewicz, K.; Lemr, K.; Černoch, Antonín; Miranowicz, A.

    2017-01-01

    Roč. 95, č. 3 (2017), s. 1-7, č. článku 030102. ISSN 2469-9926 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : Bell nonlocality * fully entangled fraction * entanglement-swapping device * quantum state tomography Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 2.925, year: 2016

  12. Coherent and squeezed states in phase space

    International Nuclear Information System (INIS)

    Jannussis, A.; Bartzis, V.; Vlahos, E.

    1990-01-01

    In the present paper, the coherent and the squeezed states in phase space have been studied. From the wave functions of the coherent and the squeezed state, their corresponding Wigner distribution functions are calculated. Especially the calculation of the corresponding Wigner functions for the above states permits the determination of the mean values of position and momentum and thus the Heisenberg uncertainty relation. In fact, from the related results, it is concluded that the uncertainty relation of the coherent and associated squeezed states is the same

  13. Discrimination strategies for inequivalent classes of multipartite entangled states

    International Nuclear Information System (INIS)

    Niekamp, Soenke; Kleinmann, Matthias; Guehne, Otfried

    2010-01-01

    How can one discriminate different inequivalent classes of multiparticle entanglement experimentally? We present an approach for the discrimination of an experimentally prepared state from the equivalence class of another state. We consider two possible measures for the discrimination strength of an observable. The first measure is based on the difference of expectation values, the second on the relative entropy of the probability distributions of the measurement outcomes. The interpretation of these measures and their usefulness for experiments with limited resources are discussed. In the case of graph states, the stabilizer formalism is employed to compute these quantities and to find sets of observables that result in the most decisive discrimination.

  14. Teleportation of continuous variable multimode Greeberger-Horne-Zeilinger entangled states

    International Nuclear Information System (INIS)

    He Guangqiang; Zhang Jingtao; Zeng Guihua

    2008-01-01

    Quantum teleportation protocols of continuous variable (CV) Greeberger-Horne-Zeilinger (GHZ) and Einstein-Podolsky-Rosen (EPR) entangled states are proposed, and are generalized to teleportation of arbitrary multimode GHZ entangled states described by Van Loock and Braunstein (2000 Phys. Rev. Lett. 84 3482). Each mode of a multimode entangled state is teleported using a CV EPR entangled pair and classical communication. The analytical expression of fidelity for the multimode Gaussian states which evaluates the teleportation quality is presented. The analytical results show that the fidelity is a function of both the squeezing parameter r, which characterizes the multimode entangled state to be teleported, and the channel parameter p, which characterizes the EPR pairs shared by Alice and Bob. The fidelity increases with increasing p, but decreases with increasing r, i.e., it is more difficult to teleport the more perfect multimode entangled states. The entanglement degree of the teleported multimode entangled states increases with increasing both r and p. In addition, the fact is proved that our teleportation protocol of EPR entangled states using parallel EPR pairs as quantum channels is the best case of the protocol using four-mode entangled states (Adhikari et al 2008 Phys. Rev. A 77 012337).

  15. Analytic coherent states for generalized potentials

    International Nuclear Information System (INIS)

    Nieto, M.M.; Simmons, L.M. Jr.

    1978-01-01

    A prescription is given for finding coherent states in generalized potentials. By coherent states is meant states which in time follow the motion that a classical particle would. This prescription is based upon finding those natural classical variables which vary as the sine and the cosine of the classical ω/sub c/t. As an example, the symmetric Rosen--Morse potential is discussed in detail

  16. Coherent states in quaternionic quantum mechanics

    International Nuclear Information System (INIS)

    Adler, S.L.; Millard, A.C.

    1997-01-01

    We develop Perelomov close-quote s coherent states formalism to include the case of a quaternionic Hilbert space. We find that, because of the closure requirement, an attempted quaternionic generalization of the special nilpotent or Weyl group reduces to the normal complex case. For the case of the compact group SU(2), however, coherent states can be formulated using the quaternionic half-integer spin matrices of Finkelstein, Jauch, and Speiser, giving a nontrivial quaternionic analog of coherent states. copyright 1997 American Institute of Physics

  17. Joint quantum state tomography of an entangled qubit–resonator hybrid

    International Nuclear Information System (INIS)

    LinPeng, X Y; Zhang, H Z; Xu, K; Li, C Y; Zhong, Y P; Wang, Z L; Wang, H; Xie, Q W

    2013-01-01

    The integration of superconducting qubits and resonators in one circuit offers a promising solution for quantum information processing (QIP), which also realizes the on-chip analogue of cavity quantum electrodynamics (QED), known as circuit QED. In most prototype circuit designs, qubits are active processing elements and resonators are peripherals. As resonators typically have better coherence performance and more accessible energy levels, it is proposed that the entangled qubit–resonator hybrid can be used as a processing element. To achieve such a goal, an accurate measurement of the hybrid is first necessary. Here we demonstrate a joint quantum state tomography (QST) technique to fully characterize an entangled qubit–resonator hybrid. We benchmarked our QST technique by generating and accurately characterizing multiple states, e.g. |gN〉 + |e(N − 1)〉 where (|g〉 and |e〉) are the ground and excited states of the qubit and (|0〉,…,|N〉) are Fock states of the resonator. We further provided a numerical method to improve the QST efficiency and measured the decoherence dynamics of the bipartite hybrid, witnessing dissipation coming from both the qubit and the N-photon Fock state. As such, the joint QST presents an important step toward actively using the qubit–resonator element for QIP in hybrid quantum devices and for studying circuit QED. (paper)

  18. Painlevé IV coherent states

    International Nuclear Information System (INIS)

    Bermudez, David; Contreras-Astorga, Alonso; Fernández C, David J.

    2014-01-01

    A simple way to find solutions of the Painlevé IV equation is by identifying Hamiltonian systems with third-order differential ladder operators. Some of these systems can be obtained by applying supersymmetric quantum mechanics (SUSY QM) to the harmonic oscillator. In this work, we will construct families of coherent states for such subset of SUSY partner Hamiltonians which are connected with the Painlevé IV equation. First, these coherent states are built up as eigenstates of the annihilation operator, then as displaced versions of the extremal states, both involving the related third-order ladder operators, and finally as extremal states which are also displaced but now using the so called linearized ladder operators. To each SUSY partner Hamiltonian corresponds two families of coherent states: one inside the infinite subspace associated with the isospectral part of the spectrum and another one in the finite subspace generated by the states created through the SUSY technique. - Highlights: • We use SUSY QM to obtain Hamiltonians with third-order differential ladder operators. • We show that these systems are related with the Painlevé IV equation. • We apply different definitions of coherent states to these Hamiltonians using the third-order ladder operators and some linearized ones. • We construct families of coherent states for such systems, which we called Painlevé IV coherent states

  19. Painlevé IV coherent states

    Energy Technology Data Exchange (ETDEWEB)

    Bermudez, David, E-mail: david.bermudez@weizmann.ac.il [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel); Departamento de Física, Cinvestav, A.P. 14-740, 07000 México D.F. (Mexico); Contreras-Astorga, Alonso, E-mail: aloncont@iun.edu [Department of Mathematics and Actuarial Science, Indiana University Northwest, 3400 Broadway, Gary IN 46408 (United States); Departamento de Física, Cinvestav, A.P. 14-740, 07000 México D.F. (Mexico); Fernández C, David J., E-mail: david@fis.cinvestav.mx [Departamento de Física, Cinvestav, A.P. 14-740, 07000 México D.F. (Mexico)

    2014-11-15

    A simple way to find solutions of the Painlevé IV equation is by identifying Hamiltonian systems with third-order differential ladder operators. Some of these systems can be obtained by applying supersymmetric quantum mechanics (SUSY QM) to the harmonic oscillator. In this work, we will construct families of coherent states for such subset of SUSY partner Hamiltonians which are connected with the Painlevé IV equation. First, these coherent states are built up as eigenstates of the annihilation operator, then as displaced versions of the extremal states, both involving the related third-order ladder operators, and finally as extremal states which are also displaced but now using the so called linearized ladder operators. To each SUSY partner Hamiltonian corresponds two families of coherent states: one inside the infinite subspace associated with the isospectral part of the spectrum and another one in the finite subspace generated by the states created through the SUSY technique. - Highlights: • We use SUSY QM to obtain Hamiltonians with third-order differential ladder operators. • We show that these systems are related with the Painlevé IV equation. • We apply different definitions of coherent states to these Hamiltonians using the third-order ladder operators and some linearized ones. • We construct families of coherent states for such systems, which we called Painlevé IV coherent states.

  20. Robust entangled qutrit states in atmospheric turbulence

    CSIR Research Space (South Africa)

    Brunner, T

    2013-06-01

    Full Text Available of two qubits. Phys. Rev. Lett., 80:2245–2248, 1998. [17] F. Mintert, M. Kus´, and A. Buchleitner. Concurrence of mixed bipartite quantum states in arbitrary dimensions. Phys. Rev. Lett., 92:167902, 2004. ...

  1. An operator description of entanglement matching in quantum teleportation

    International Nuclear Information System (INIS)

    Kurucz, Z; Koniorczyk, M; Adam, P; Janszky, J

    2003-01-01

    The antilinear operator representation of bipartite pure states of the relative state formulation of quantum mechanics is applied to describe quantum teleportation schemes utilizing an arbitrary pure state as the entangled resource. Bennett type teleportation schemes with nonmaximally entangled pure states are characterized and the notion of 'entanglement matching' is introduced in general. Examples, including a scheme based on coherent-state superposition states of the electromagnetic field, are provided

  2. Entanglement Potential Versus Negativity of Wigner Function for SUP-Operated Quantum States

    Science.gov (United States)

    Chatterjee, Arpita

    2018-02-01

    We construct a distinct category of nonclassical quantum states by applying a superposition of products (SUP) of field annihilation (\\hat {a}) and creation (\\hat {a}^{\\dagger }) operators of the type (s\\hat {a}\\hat {a}^{\\dagger }+t\\hat {a}^{\\dagger }\\hat {a}), with s2+t2=1, upon thermal and even coherent states. We allow these SUP operated states to undergo a decoherence process and then describe the nonclassical features of the resulted field by using the entanglement potential (EP) and the negativity of the Wigner distribution function. Our analysis reveals that both the measures are reduced in the linear loss process. The partial negativity of the Wigner function disappears when losses exceed 50% but EP exists always.

  3. Characterizing symmetries in a projected entangled pair state

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Garcia, D; Gonzalez-Guillen, C E [Departamento Analisis Matematico and IMI, Universidad Complutense de Madrid, 28040 Madrid (Spain); Sanz, M; Cirac, J I [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching (Germany); Wolf, M M [Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen (Denmark)], E-mail: dperez@mat.ucm.es

    2010-02-15

    We show that two different tensors defining the same translational invariant injective projected entangled pair state (PEPS) in a square lattice must be the same up to a trivial gauge freedom. This allows us to characterize the existence of any local or spatial symmetry in the state. As an application of these results we prove that a SU(2) invariant PEPS with half-integer spin cannot be injective, which can be seen as a Lieb-Shultz-Mattis theorem in this context. We also give the natural generalization for U(1) symmetry in the spirit of Oshikawa-Yamanaka-Affleck, and show that a PEPS with Wilson loops cannot be injective.

  4. Entanglement Classification of extended Greenberger-Horne-Zeilinger-Symmetric States

    OpenAIRE

    Jung, Eylee; Park, DaeKil

    2013-01-01

    In this paper we analyze entanglement classification of extended Greenberger-Horne-Zeilinger-symmetric states $\\rho^{ES}$, which is parametrized by four real parameters $x$, $y_1$, $y_2$ and $y_3$. The condition for separable states of $\\rho^{ES}$ is analytically derived. The higher classes such as bi-separable, W, and Greenberger-Horne-Zeilinger classes are roughly classified by making use of the class-specific optimal witnesses or map from the extended Greenberger-Horne-Zeilinger symmetry t...

  5. Efficient entanglement purification for polarization logic Bell state with the photonic Faraday rotation

    OpenAIRE

    Zhou, Lan; Sheng, Yu-Bo

    2016-01-01

    Logic-qubit entanglement is a promising resource in quantum information processing, especially in future large-scale quantum networks. In the paper, we put forward an efficient entanglement purification protocol (EPP) for nonlocal mixed logic entangled states with the bit-flip error in the logic qubits of the logic Bell state, resorting to the photon-atom interaction in low-quality (Q) cavity and atomic state measurement. Different from existing EPPs, this protocol can also purify the logic p...

  6. Generation of picosecond pulsed coherent state superpositions

    DEFF Research Database (Denmark)

    Dong, Ruifang; Tipsmark, Anders; Laghaout, Amine

    2014-01-01

    We present the generation of approximated coherent state superpositions-referred to as Schrodinger cat states-by the process of subtracting single photons from picosecond pulsed squeezed states of light. The squeezed vacuum states are produced by spontaneous parametric down-conversion (SPDC...... which exhibit non-Gaussian behavior. (C) 2014 Optical Society of America...

  7. Coherent states, pseudodifferential analysis and arithmetic

    Science.gov (United States)

    Unterberger, André

    2012-06-01

    Basic questions regarding families of coherent states include describing some constructions of such and the way they can be applied to operator theory or partial differential equations. In both questions, pseudodifferential analysis is important. Recent developments indicate that they can contribute to methods in arithmetic, especially modular form theory. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’.

  8. Approximate and Conditional Teleportation of an Unknown Atomic-Entangled State Without Bell-State Measurement

    Institute of Scientific and Technical Information of China (English)

    CHEN Chang-Yong; LI Shao-Hua

    2007-01-01

    A scheme for approximately and conditionally teleporting an unknown atomic-entangled state in cavity QED is proposed.It is the novel extension of the scheme of [Phys.Rev.A 69 (2004) 064302],where the state to be teleported is an unknown atomic state and where only a time point of system evolution and the corresponding fidelity implementing the teleportation are given.In fact,there exists multi-time points and the corresponding fidclities,which are shown in this paper and then are used to realize the approximate and conditional teleportation of the unknown atomic-entangled state.Naturally,our scheme does not involve the Bell-state measurement or an additional atom,which is required in the Bell-state measurement,only requiring one single-mode cavity.The scheme may be generalized to not only the teleportation of the cavity-mode-entangled-state by means of a single atom but also the teleportation of the unknown trapped-ion-entangled-state in a linear ion trap and the teleportation of the multi-atomic entangled states included in generalized GHZ states.

  9. Security bound of continuous-variable quantum key distribution with noisy coherent states and channel

    International Nuclear Information System (INIS)

    Shen Yong; Yang Jian; Guo Hong

    2009-01-01

    Security of a continuous-variable quantum key distribution protocol based on noisy coherent states and channel is analysed. Assuming that the noise of coherent states is induced by Fred, a neutral party relative to others, we prove that the prepare-and-measurement scheme (P and M) and entanglement-based scheme (E-B) are equivalent. Then, we show that this protocol is secure against Gaussian collective attacks even if the channel is lossy and noisy, and, further, a lower bound to the secure key rate is derived.

  10. Security bound of continuous-variable quantum key distribution with noisy coherent states and channel

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yong; Yang Jian; Guo Hong, E-mail: hongguo@pku.edu.c [CREAM Group, State Key Laboratory of Advanced Optical Communication Systems and Networks (Peking University) and Institute of Quantum Electronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871 (China)

    2009-12-14

    Security of a continuous-variable quantum key distribution protocol based on noisy coherent states and channel is analysed. Assuming that the noise of coherent states is induced by Fred, a neutral party relative to others, we prove that the prepare-and-measurement scheme (P and M) and entanglement-based scheme (E-B) are equivalent. Then, we show that this protocol is secure against Gaussian collective attacks even if the channel is lossy and noisy, and, further, a lower bound to the secure key rate is derived.

  11. Generalizing entanglement

    Science.gov (United States)

    Jia, Ding

    2017-12-01

    The expected indefinite causal structure in quantum gravity poses a challenge to the notion of entanglement: If two parties are in an indefinite causal relation of being causally connected and not, can they still be entangled? If so, how does one measure the amount of entanglement? We propose to generalize the notions of entanglement and entanglement measure to address these questions. Importantly, the generalization opens the path to study quantum entanglement of states, channels, networks, and processes with definite or indefinite causal structure in a unified fashion, e.g., we show that the entanglement distillation capacity of a state, the quantum communication capacity of a channel, and the entanglement generation capacity of a network or a process are different manifestations of one and the same entanglement measure.

  12. Entanglement detection

    Energy Technology Data Exchange (ETDEWEB)

    Guehne, Otfried [Institut fuer Quantenoptik und Quanteninformation, Osterreichische Akademie der Wissenschaften, Technikerstrasse 21A, A-6020 Innsbruck (Austria); Institut fuer theoretische Physik, Universitaet Innsbruck, Technikerstrasse 25, A-6020 Innsbruck (Austria)], E-mail: otfried.guehne@uibk.ac.at; Toth, Geza [Department of Theoretical Physics, University of the Basque Country, P.O. Box 644, E-48080 Bilbao (Spain); Ikerbasque-Basque Foundation for Science, Alameda Urquijo 36, E-48011 Bilbao (Spain); ICFO-Institute of Photonic Sciences, Mediterranean Technology Park, E-08860 Castelldefels (Barcelona) (Spain); Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary)

    2009-04-15

    How can one prove that a given quantum state is entangled? In this paper we review different methods that have been proposed for entanglement detection. We first explain the basic elements of entanglement theory for two or more particles and then entanglement verification procedures such as Bell inequalities, entanglement witnesses, the determination of nonlinear properties of a quantum state via measurements on several copies, and spin squeezing inequalities. An emphasis is given to the theory and application of entanglement witnesses. We also discuss several experiments, where some of the presented methods have been implemented.

  13. Entanglement and Teleportation of Pair Cat States in Amplitude Decoherence Channel

    International Nuclear Information System (INIS)

    Xu Hangshi; Xu Jingbo

    2009-01-01

    The dynamic behavior of the entanglement for the pair cat states in the amplitude decoherence channel is studied by adopting the entanglement of formation determined by the concurrence. Then, we consider the teleportation by using joint measurements of the photon-number sum and phase difference with the pair cat states as an entangle resource and discuss the influence of amplitude decoherence on the mean fidelity of the teleportation.

  14. Maximally entangled mixed states of two atoms trapped inside an optical cavity

    International Nuclear Information System (INIS)

    Li Shangbin; Xu Jingbo

    2009-01-01

    In some off-resonant cases, the reduced density matrix of two atoms symmetrically coupled with an optical cavity can very approximately approach maximally entangled mixed states or maximal Bell violation mixed states in their evolution. The influence of a phase decoherence on the generation of a maximally entangled mixed state is also discussed

  15. Gradient optimization of finite projected entangled pair states

    Science.gov (United States)

    Liu, Wen-Yuan; Dong, Shao-Jun; Han, Yong-Jian; Guo, Guang-Can; He, Lixin

    2017-05-01

    Projected entangled pair states (PEPS) methods have been proven to be powerful tools to solve strongly correlated quantum many-body problems in two dimensions. However, due to the high computational scaling with the virtual bond dimension D , in a practical application, PEPS are often limited to rather small bond dimensions, which may not be large enough for some highly entangled systems, for instance, frustrated systems. Optimization of the ground state using the imaginary time evolution method with a simple update scheme may go to a larger bond dimension. However, the accuracy of the rough approximation to the environment of the local tensors is questionable. Here, we demonstrate that by combining the imaginary time evolution method with a simple update, Monte Carlo sampling techniques and gradient optimization will offer an efficient method to calculate the PEPS ground state. By taking advantage of massive parallel computing, we can study quantum systems with larger bond dimensions up to D =10 without resorting to any symmetry. Benchmark tests of the method on the J1-J2 model give impressive accuracy compared with exact results.

  16. General entanglement-assisted transformation for bipartite pure quantum states

    Science.gov (United States)

    Song, Wei; Huang, Yan; Nai-LeLiu; Chen, Zeng-Bing

    2007-01-01

    We introduce the general catalysts for pure entanglement transformations under local operations and classical communications in such a way that we disregard the profit and loss of entanglement of the catalysts per se. As such, the possibilities of pure entanglement transformations are greatly expanded. We also design an efficient algorithm to detect whether a k × k general catalyst exists for a given entanglement transformation. This algorithm can also be exploited to witness the existence of standard catalysts.

  17. Manipulating Quantum Coherence in Solid State Systems

    CERN Document Server

    Flatté, Michael E; The NATO Advanced Study Institute "Manipulating Quantum Coherence in Solid State Systems"

    2007-01-01

    The NATO Advanced Study Institute "Manipulating Quantum Coherence in Solid State Systems", in Cluj-Napoca, Romania, August 29-September 9, 2005, presented a fundamental introduction to solid-state approaches to achieving quantum computation. This proceedings volume describes the properties of quantum coherence in semiconductor spin-based systems and the behavior of quantum coherence in superconducting systems. Semiconductor spin-based approaches to quantum computation have made tremendous advances in the past several years. Coherent populations of spins can be oriented, manipulated and detected experimentally. Rapid progress has been made towards performing the same tasks on individual spins (nuclear, ionic, or electronic) with all-electrical means. Superconducting approaches to quantum computation have demonstrated single qubits based on charge eigenstates as well as flux eigenstates. These topics have been presented in a pedagogical fashion by leading researchers in the fields of semiconductor-spin-based qu...

  18. von Neumann's hypothesis concerning coherent states

    International Nuclear Information System (INIS)

    Zak, J

    2003-01-01

    An orthonormal basis of modified coherent states is constructed. Each member of the basis is an infinite sum of coherent states on a von Neumann lattice. A single state is assigned to each unit cell of area h (Planck constant) in the phase plane. The uncertainties of the coordinate x and the square of the momentum p 2 for these states are shown to be similar to those for the usual coherent states. Expansions in the newly established set are discussed and it is shown that any function in the kq-representation can be written as a sum of two fixed kq-functions. Approximate commuting operators for x and p 2 are defined on a lattice in phase plane according to von Neumann's prescription. (leeter to the editor)

  19. Entanglement between particle partitions in itinerant many-particle states

    NARCIS (Netherlands)

    Haque, M.; Zozulya, O.S.; Schoutens, K.

    2009-01-01

    We review 'particle-partitioning entanglement' for itinerant many-particle systems. This is defined as the entanglement between two subsets of particles making up the system. We identify generic features and mechanisms of particle entanglement that are valid over whole classes of itinerant quantum

  20. Entangled entanglement: A construction procedure

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Gabriele, E-mail: Gabriele.Uchida@univie.ac.at [University of Vienna, Faculty of Computer Science, Währinger Strasse 29, 1090 Vienna (Austria); Bertlmann, Reinhold A., E-mail: Reinhold.Bertlmann@univie.ac.at [University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna (Austria); Hiesmayr, Beatrix C., E-mail: Beatrix.Hiesmayr@univie.ac.at [University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna (Austria)

    2015-10-30

    The familiar Greenberger–Horne–Zeilinger (GHZ) states can be rewritten by entangling the Bell states for two qubits with a third qubit state, which is dubbed entangled entanglement. We show that in a constructive way we obtain all eight independent GHZ states that form the simplex of entangled entanglement, the magic simplex. The construction procedure allows a generalization to higher dimensions both, in the degrees of freedom (considering qudits) as well as in the number of particles (considering n-partite states). Such bases of GHZ-type states exhibit a cyclic geometry, a Merry Go Round, that is relevant for experimental and quantum information theoretic applications.

  1. A light-matter quantum interface : ion-photon entanglement and state mapping

    International Nuclear Information System (INIS)

    Stute, A.

    2012-01-01

    Quantum mechanics promises to have a great impact on computation. Motivated by the long-term vision of a universal quantum computer that speeds up certain calculations, the field of quantum information processing has been growing steadily over the last decades. Although a variety of quantum systems consisting of a few qubits have been used to implement initial algorithms successfully, decoherence makes it difficult to scale up these systems. A powerful technique, however, could surpass any size limitation: the connection of individual quantum processors in a network. In a quantum network, ''flying'' qubits coherently transfer information between the stationary nodes of the network that store and process quantum information. Ideal candidates for the physical implementation of nodes are single atoms that exhibit long storage times; optical photons, which travel at the speed of light, are ideal information carriers. For coherent information transfer between atom and photon, a quantum interface has to couple the atom to a particular optical mode. This thesis reports on the implementation of a quantum interface by coupling a single trapped 40 Ca+ ion to the mode of a high-finesse optical resonator. Single intra-cavity photons are generated in a vacuum-stimulated Raman process between two atomic states driven by a laser and the cavity vacuum field. In this Raman process, all Zeeman substates of the atom are spectroscopically resolved by tuning the frequency of the laser; via addressing specific atomic states, the polarization of the generated cavity photon is controlled, defining the photonic qubit. The electronic state of the ion is initialized, coherently manipulated, and read out via driving the quadrupole transition. With these techniques in hand, we have demonstrated two protocols for quantum communication. The first protocol, ion-photon entanglement, is regarded as a key resource of distributed quantum information processing. In our realization, we control both

  2. Enhancing the entanglement of a teleported state by local collective noises

    Energy Technology Data Exchange (ETDEWEB)

    Hu Xueyuan; Gu Ying; Gong Qihuang; Guo Guangcan, E-mail: ygu@pku.edu.cn [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)

    2011-04-14

    We show that the entanglement of the two-qubit teleported state via a class of four-qubit entangled channel states can be increased by collective amplitude damping locally acting on one part of the channel state. Specifically, we compare the entanglement contained in the output state of teleportation before and after the action of the collective amplitude damping on the channel state, and show that for a wide range of input entangled two-qubit states, the local decoherence can result in an increase in the output entanglement. In this process, the average fidelity of the teleportation is also increased. Our result reveals that some quantum properties of the four-qubit channel state are definitely improved in the process of enhancing the fidelity by local noise.

  3. State-independent uncertainty relations and entanglement detection

    Science.gov (United States)

    Qian, Chen; Li, Jun-Li; Qiao, Cong-Feng

    2018-04-01

    The uncertainty relation is one of the key ingredients of quantum theory. Despite the great efforts devoted to this subject, most of the variance-based uncertainty relations are state-dependent and suffering from the triviality problem of zero lower bounds. Here we develop a method to get uncertainty relations with state-independent lower bounds. The method works by exploring the eigenvalues of a Hermitian matrix composed by Bloch vectors of incompatible observables and is applicable for both pure and mixed states and for arbitrary number of N-dimensional observables. The uncertainty relation for the incompatible observables can be explained by geometric relations related to the parallel postulate and the inequalities in Horn's conjecture on Hermitian matrix sum. Practical entanglement criteria are also presented based on the derived uncertainty relations.

  4. Spin quantum tunneling via entangled states in a dimer of exchange coupled single-molecule magnets

    Science.gov (United States)

    Tiron, R.; Wernsdorfer, W.; Aliaga-Alcalde, N.; Foguet-Albiol, D.; Christou, G.

    2004-03-01

    A new family of supramolecular, antiferromagnetically exchange-coupled dimers of single-molecule magnets (SMMs) has recently been reported [W. Wernsdorfer, N. Aliaga-Alcalde, D.N. Hendrickson, and G. Christou, Nature 416, 406 (2002)]. Each SMM acts as a bias on its neighbor, shifting the quantum tunneling resonances of the individual SMMs. Hysteresis loop measurements on a single crystal of SMM-dimers have now established quantum tunneling of the magnetization via entangled states of the dimer. This shows that the dimer really does behave as a quantum-mechanically coupled dimer. The transitions are well separated, suggesting long coherence times compared to the time scale of the energy splitting. This result is of great importance if such systems are to be used for quantum computing. It also allows the measurement of the longitudinal and transverse superexchange coupling constants [Phys. Rev. Lett. 91, 227203 (2003)].

  5. Evolution of tripartite entangled states in a decohering environment and their experimental protection using dynamical decoupling

    Science.gov (United States)

    Singh, Harpreet; Arvind, Dorai, Kavita

    2018-02-01

    We embarked upon the task of experimental protection of different classes of tripartite entangled states, namely, the maximally entangled Greenberger-Horne-Zeilinger (GHZ) and W states and the tripartite entangled state called the W W ¯ state, using dynamical decoupling. The states were created on a three-qubit NMR quantum information processor and allowed to evolve in the naturally noisy NMR environment. Tripartite entanglement was monitored at each time instant during state evolution, using negativity as an entanglement measure. It was found that the W state is most robust while the GHZ-type states are most fragile against the natural decoherence present in the NMR system. The W W ¯ state, which is in the GHZ class yet stores entanglement in a manner akin to the W state, surprisingly turned out to be more robust than the GHZ state. The experimental data were best modeled by considering the main noise channel to be an uncorrelated phase damping channel acting independently on each qubit, along with a generalized amplitude damping channel. Using dynamical decoupling, we were able to achieve a significant protection of entanglement for GHZ states. There was a marginal improvement in the state fidelity for the W state (which is already robust against natural system decoherence), while the W W ¯ state showed a significant improvement in fidelity and protection against decoherence.

  6. Teleportation of an unknown bipartite state via non-maximally entangled two-particle state

    Institute of Scientific and Technical Information of China (English)

    Cao Hai-Jing; Guo Yan-Qing; Song He-Shan

    2006-01-01

    In this paper a new scheme for teleporting an unknown entangled state of two particles is proposed. To weaken the requirement for the quantum channel, without loss of generality, two communicators only share a non-maximally entangled two-particle state. Teleportation can be probabilistically realized if sender performs Bell-state measurements and Hadamard transformation and receiver introduces two auxiliary particles, operates G-not operation, single-qubit measurements and appropriate unitary transformations. The probability of successful teleportation is determined by the smaller one among the coefficients' absolute values of the quantum channel.

  7. Continuous variable tangle, monogamy inequality, and entanglement sharing in Gaussian states of continuous variable systems

    International Nuclear Information System (INIS)

    Adesso, Gerardo; Illuminati, Fabrizio

    2006-01-01

    For continuous-variable (CV) systems, we introduce a measure of entanglement, the CV tangle (contangle), with the purpose of quantifying the distributed (shared) entanglement in multimode, multipartite Gaussian states. This is achieved by a proper convex-roof extension of the squared logarithmic negativity. We prove that the contangle satisfies the Coffman-Kundu-Wootters monogamy inequality in all three-mode Gaussian states, and in all fully symmetric N-mode Gaussian states, for arbitrary N. For three-mode pure states, we prove that the residual entanglement is a genuine tripartite entanglement monotone under Gaussian local operations and classical communication. We show that pure, symmetric three-mode Gaussian states allow a promiscuous entanglement sharing, having both maximum tripartite residual entanglement and maximum couplewise entanglement between any pair of modes. These states are thus simultaneous CV analogues of both the GHZ and the W states of three qubits: in CV systems monogamy does not prevent promiscuity, and the inequivalence between different classes of maximally entangled states, holding for systems of three or more qubits, is removed

  8. Continuous variable tangle, monogamy inequality, and entanglement sharing in Gaussian states of continuous variable systems

    Energy Technology Data Exchange (ETDEWEB)

    Adesso, Gerardo; Illuminati, Fabrizio [Dipartimento di Fisica ' E R Caianiello' , Universita degli Studi di Salerno (Italy); CNISM and CNR-Coherentia, Gruppo di Salerno (Italy); and INFN Sezione di Napoli-Gruppo Collegato di Salerno (Italy); Via S Allende, 84081 Baronissi, SA (Italy)

    2006-01-15

    For continuous-variable (CV) systems, we introduce a measure of entanglement, the CV tangle (contangle), with the purpose of quantifying the distributed (shared) entanglement in multimode, multipartite Gaussian states. This is achieved by a proper convex-roof extension of the squared logarithmic negativity. We prove that the contangle satisfies the Coffman-Kundu-Wootters monogamy inequality in all three-mode Gaussian states, and in all fully symmetric N-mode Gaussian states, for arbitrary N. For three-mode pure states, we prove that the residual entanglement is a genuine tripartite entanglement monotone under Gaussian local operations and classical communication. We show that pure, symmetric three-mode Gaussian states allow a promiscuous entanglement sharing, having both maximum tripartite residual entanglement and maximum couplewise entanglement between any pair of modes. These states are thus simultaneous CV analogues of both the GHZ and the W states of three qubits: in CV systems monogamy does not prevent promiscuity, and the inequivalence between different classes of maximally entangled states, holding for systems of three or more qubits, is removed.

  9. Entropy of entangled states and SU(1,1) and SU(2) symmetries

    International Nuclear Information System (INIS)

    Santana, A.E.; Khanna, F.C.; Revzen, M.

    2002-01-01

    Based on a recent definition of a measure for entanglement [Plenio and Vedral, Contemp. Phys. 39, 431 (1998)], examples of maximum entangled states are presented. The construction of such states, which have symmetry SU(1,1) and SU(2), follows the guidance of thermofield dynamics formalism

  10. Steady State Entanglement and Saturation Effects in Correlated Spontaneous Emission Lasers

    International Nuclear Information System (INIS)

    Fei, Wang; Xiang-Ming, Hu; Wen-Xing, Shi

    2009-01-01

    It has recently been shown that correlated spontaneous emission lasers (CEL) exhibit transient entanglement in the linear regime. Here we re-examine the quantum correlations in two-photon CEL and explore the saturation effects on continuous variable entanglement. It is shown that the steady state entanglement is obtainable in the weak or moderate saturation regime, while is washed out in the deep saturation regime. (general)

  11. Coherent states for quantum compact groups

    International Nuclear Information System (INIS)

    Jurco, B.; Stovicek, P.; CTU, Prague

    1996-01-01

    Coherent states are introduced and their properties are discussed for simple quantum compact groups A l , B l , C l and D l . The multiplicative form of the canonical element for the quantum double is used to introduce the holomorphic coordinates on a general quantum dressing orbit. The coherent state is interpreted as a holomorphic function on this orbit with values in the carrier Hilbert space of an irreducible representation of the corresponding quantized enveloping algebra. Using Gauss decomposition, the commutation relations for the holomorphic coordinates on the dressing orbit are derived explicitly and given in a compact R-matrix formulation (generalizing this way the q-deformed Grassmann and flag manifolds). The antiholomorphic realization of the irreducible representations of a compact quantum group (the analogue of the Borel-Weil construction) is described using the concept of coherent state. The relation between representation theory and non-commutative differential geometry is suggested. (orig.)

  12. Coherent states for quantum compact groups

    Energy Technology Data Exchange (ETDEWEB)

    Jurco, B. [European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.; Stovicek, P. [Ceske Vysoke Uceni Technicke, Prague (Czech Republic). Dept. of Mathematics]|[CTU, Prague (Czech Republic). Doppler Inst.

    1996-12-01

    Coherent states are introduced and their properties are discussed for simple quantum compact groups A{sub l}, B{sub l}, C{sub l} and D{sub l}. The multiplicative form of the canonical element for the quantum double is used to introduce the holomorphic coordinates on a general quantum dressing orbit. The coherent state is interpreted as a holomorphic function on this orbit with values in the carrier Hilbert space of an irreducible representation of the corresponding quantized enveloping algebra. Using Gauss decomposition, the commutation relations for the holomorphic coordinates on the dressing orbit are derived explicitly and given in a compact R-matrix formulation (generalizing this way the q-deformed Grassmann and flag manifolds). The antiholomorphic realization of the irreducible representations of a compact quantum group (the analogue of the Borel-Weil construction) is described using the concept of coherent state. The relation between representation theory and non-commutative differential geometry is suggested. (orig.)

  13. Coherent states for quantum compact groups

    CERN Document Server

    Jurco, B

    1996-01-01

    Coherent states are introduced and their properties are discussed for all simple quantum compact groups. The multiplicative form of the canonical element for the quantum double is used to introduce the holomorphic coordinates on a general quantum dressing orbit and interpret the coherent state as a holomorphic function on this orbit with values in the carrier Hilbert space of an irreducible representation of the corresponding quantized enveloping algebra. Using Gauss decomposition, the commutation relations for the holomorphic coordinates on the dressing orbit are derived explicitly and given in a compact R--matrix formulation (generalizing this way the q--deformed Grassmann and flag manifolds). The antiholomorphic realization of the irreducible representations of a compact quantum group (the analogue of the Borel--Weil construction) are described using the concept of coherent state. The relation between representation theory and non--commutative differential geometry is suggested.}

  14. Affine coherent states and Toeplitz operators

    Science.gov (United States)

    Hutníková, Mária; Hutník, Ondrej

    2012-06-01

    We study a parameterized family of Toeplitz operators in the context of affine coherent states based on the Calderón reproducing formula (= resolution of unity on L_2( {R})) and the specific admissible wavelets (= affine coherent states in L_2( {R})) related to Laguerre functions. Symbols of such Calderón-Toeplitz operators as individual coordinates of the affine group (= upper half-plane with the hyperbolic geometry) are considered. In this case, a certain class of pseudo-differential operators, their properties and their operator algebras are investigated. As a result of this study, the Fredholm symbol algebras of the Calderón-Toeplitz operator algebras for these particular cases of symbols are described. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’.

  15. Geometric characterization of separability and entanglement in pure Gaussian states by single-mode unitary operations

    Science.gov (United States)

    Adesso, Gerardo; Giampaolo, Salvatore M.; Illuminati, Fabrizio

    2007-10-01

    We present a geometric approach to the characterization of separability and entanglement in pure Gaussian states of an arbitrary number of modes. The analysis is performed adapting to continuous variables a formalism based on single subsystem unitary transformations that has been recently introduced to characterize separability and entanglement in pure states of qubits and qutrits [S. M. Giampaolo and F. Illuminati, Phys. Rev. A 76, 042301 (2007)]. In analogy with the finite-dimensional case, we demonstrate that the 1×M bipartite entanglement of a multimode pure Gaussian state can be quantified by the minimum squared Euclidean distance between the state itself and the set of states obtained by transforming it via suitable local symplectic (unitary) operations. This minimum distance, corresponding to a , uniquely determined, extremal local operation, defines an entanglement monotone equivalent to the entropy of entanglement, and amenable to direct experimental measurement with linear optical schemes.

  16. Geometric characterization of separability and entanglement in pure Gaussian states by single-mode unitary operations

    International Nuclear Information System (INIS)

    Adesso, Gerardo; Giampaolo, Salvatore M.; Illuminati, Fabrizio

    2007-01-01

    We present a geometric approach to the characterization of separability and entanglement in pure Gaussian states of an arbitrary number of modes. The analysis is performed adapting to continuous variables a formalism based on single subsystem unitary transformations that has been recently introduced to characterize separability and entanglement in pure states of qubits and qutrits [S. M. Giampaolo and F. Illuminati, Phys. Rev. A 76, 042301 (2007)]. In analogy with the finite-dimensional case, we demonstrate that the 1xM bipartite entanglement of a multimode pure Gaussian state can be quantified by the minimum squared Euclidean distance between the state itself and the set of states obtained by transforming it via suitable local symplectic (unitary) operations. This minimum distance, corresponding to a, uniquely determined, extremal local operation, defines an entanglement monotone equivalent to the entropy of entanglement, and amenable to direct experimental measurement with linear optical schemes

  17. Success rate and entanglement measure in Grover's search algorithm for certain kinds of four qubit states

    International Nuclear Information System (INIS)

    Chamoli, Arti; Bhandari, C.M.

    2005-01-01

    Entanglement plays a crucial role in the efficacy of quantum algorithms. Whereas the role of entanglement is quite obvious and conspicuous in teleportation and superdense coding, it is not so distinct in other situations such as in search algorithm. The starting state in Grover's search algorithm is supposedly a uniform superposition state (not entangled) with a success probability around unity. An operational entanglement measure has been defined and investigated analytically for two qubit states [O. Biham, M.A. Neilsen, T. Osborne, Phys. Rev. A 65 (2002) 062312, Y. Shimoni, D. Shapira, O. Biham, Phys. Rev. A 69 (2004) 062303] seeking a relationship with the success rate of search algorithm. This Letter examines the success rate of search algorithm for various four-qubit states. Analytic expressions for the same have been worked out which can provide the success rate and entanglement measure for certain kinds of four qubit input states

  18. Bernstein's paradox of entangled quantum states

    International Nuclear Information System (INIS)

    Belinsky, A V; Chirkin, A S

    2013-01-01

    Bernstein's classical paradox of a regular colored-faced tetrahedron, while designed to illustrate the subtleties of probability theory, is strongly flawed in being asymmetric. Faces of tetrahedron are nonequivalent: three of them are single-colored, and one is many-colored. Therefore, even prior to formal calculations, a strong suspicion as to the independence of the color resulting statistics arises. Not so with entangled quantum states. In the schematic solutions proposed, while photon detection channels are completely symmetric and equivalent, the events that occur in them turn out to be statistically dependent, making the Bernstein paradox even more impressive due to the unusual behavior of quantum particles not obeying classical laws. As an illustrative example of the probability paradox, Greenberger–Horne–Zeilinger multiqubit states are considered. (methodological notes)

  19. Quantum secret sharing using orthogonal multiqudit entangled states

    Science.gov (United States)

    Bai, Chen-Ming; Li, Zhi-Hui; Liu, Cheng-Ji; Li, Yong-Ming

    2017-12-01

    In this work, we investigate the distinguishability of orthogonal multiqudit entangled states under restricted local operations and classical communication. According to these properties, we propose a quantum secret sharing scheme to realize three types of access structures, i.e., the ( n, n)-threshold, the restricted (3, n)-threshold and restricted (4, n)-threshold schemes (called LOCC-QSS scheme). All cooperating players in the restricted threshold schemes are from two disjoint groups. In the proposed protocol, the participants use the computational basis measurement and classical communication to distinguish between those orthogonal states and reconstruct the original secret. Furthermore, we also analyze the security of our scheme in four primary quantum attacks and give a simple encoding method in order to better prevent the participant conspiracy attack.

  20. Hilbert W*-modules and coherent states

    International Nuclear Information System (INIS)

    Bhattacharyya, T; Roy, S Shyam

    2012-01-01

    Hilbert C*-module valued coherent states was introduced earlier by Ali, Bhattacharyya and Shyam Roy. We consider the case when the underlying C*-algebra is a W*-algebra. The construction is similar with a substantial gain. The associated reproducing kernel is now algebra valued, rather than taking values in the space of bounded linear operators between two C*-algebras. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (paper)

  1. Sudden entanglement death, and ways to avoid it

    International Nuclear Information System (INIS)

    Eberly, J.H.; Ting Yu

    2005-01-01

    We report that non-communicating but entangled qubit pairs are almost universally liable to sudden entanglement death. In the presence of minor and purely local environmental noises their mixed-state entanglement may abruptly become zero long before the noises are able to destroy the local qubit coherence. Despite the inability of unitary transformations to alter entanglement, for example of Werner states, unitary transformations have been found to delay or defeat the sudden death event. These results upset the conventional understanding that entanglement lifetime can be estimated from qubit lifetime. This is not even approximately or qualitatively true. (author)

  2. Scalability of GHZ and random-state entanglement in the presence of decoherence

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Fernando de; Tiersch, Markus; Buchleitner, Andreas [Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg (Germany); Aolita, Leandro; Cavalcanti, Daniel [ICFO - Institut de Ciencies Fotoniques (Spain); Acin, Antonio [ICFO - Institut de Ciencies Fotoniques (Spain); ICREA - Institucio Catalana de Recerca i Estudis Avancats (Spain); Salles, Alejo [Instituto de Fisica, Universidade Federal do Rio de Janeiro (Brazil); Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg (Germany)

    2009-07-01

    We derive analytical upper bounds for the entanglement of generalized Greenberger-Horne-Zeilinger (GHZ) states locally coupled to dephasing, depolarizing, and thermal reservoirs. The derivation is carried out under very weak constraints, and holds for any convex quantifier of entanglement. The obtained bounds reveal an exponential entanglement decay with the number of qubits - the robustness of the generalized GHZ states decreases exponentially with the system size. This poses a severe limitation to many quantum communication protocols. A comparison between the entanglement decay of randomly generated states with the GHZ family shows that the former decays slower, thus violating the previously obtained bounds. Furthermore, the random state's entanglement is more robust against noise for larger system size.

  3. Coherent states in the quantum multiverse

    International Nuclear Information System (INIS)

    Robles-Perez, S.; Hassouni, Y.; Gonzalez-Diaz, P.F.

    2010-01-01

    In this Letter, we study the role of coherent states in the realm of quantum cosmology, both in a second-quantized single universe and in a third-quantized quantum multiverse. In particular, most emphasis will be paid to the quantum description of multiverses made of accelerated universes. We have shown that the quantum states involved at a quantum mechanical multiverse whose single universes are accelerated are given by squeezed states having no classical analogs.

  4. Coherent states in the quantum multiverse

    Energy Technology Data Exchange (ETDEWEB)

    Robles-Perez, S., E-mail: salvarp@imaff.cfmac.csic.e [Colina de los Chopos, Centro de Fisica ' Miguel Catalan' , Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain); Estacion Ecologica de Biocosmologia, Medellin (Spain); Hassouni, Y. [Laboratoire de Physique Theorique, Faculte des Sciences-Universite Sidi Med Ben Abdellah, Avenue Ibn Batouta B.P: 1014, Agdal Rabat (Morocco); Gonzalez-Diaz, P.F. [Colina de los Chopos, Centro de Fisica ' Miguel Catalan' , Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain); Estacion Ecologica de Biocosmologia, Medellin (Spain)

    2010-01-11

    In this Letter, we study the role of coherent states in the realm of quantum cosmology, both in a second-quantized single universe and in a third-quantized quantum multiverse. In particular, most emphasis will be paid to the quantum description of multiverses made of accelerated universes. We have shown that the quantum states involved at a quantum mechanical multiverse whose single universes are accelerated are given by squeezed states having no classical analogs.

  5. Probabilistic teleportation of an arbitrary three-particle state via a partial entangled four-particle state and a partial entangled pair

    Institute of Scientific and Technical Information of China (English)

    戴宏毅; 李承祖; 陈平行

    2003-01-01

    We present a scheme to probabilistically teleport an arbitrary and unknown three-particle state via a two-particle non-maximally entangled state and a four-particle non-maximally entangled state as the quantum channel. With the help of Bell-state measurements, an arbitrary three-particle state can be perfectly teleported if a receiver introduces a collective unitary transformation. All kinds of unitary transformations are given in greater detail. This scheme can be generalized to the teleportation of an arbitrary and unknown multiparticle state.

  6. Sustainable Entangled State of Two Qutrits Under Laser Irradiation

    Directory of Open Access Journals (Sweden)

    Biryukov A.А.

    2015-01-01

    Full Text Available We study the evolution of quantum entanglement in the model of two identical qubits interacting with a single-mode laser field. The density matrix and Peres-Horodecki parameter are calculated within the frameworks of path-integral formalism. The quantum entanglement measure is shown to be strongly dependent upon the phase difference between the laser radiation acting on each cubit. This observation may offer the possibility of quantum entanglement stationary control by varying the distance between the qubits.

  7. Sudden birth versus sudden death of entanglement for the extended Werner-like state in a dissipative environment

    International Nuclear Information System (INIS)

    Chuan-Jia, Shan; Tao, Chen; Ji-Bing, Liu; Wei-Wen, Cheng; Tang-Kun, Liu; Yan-Xia, Huang; Hong, Li

    2010-01-01

    In this paper, we investigate the dynamical behaviour of entanglement in terms of concurrence in a bipartite system subjected to an external magnetic field under the action of dissipative environments in the extended Werner-like initial state. The interesting phenomenon of entanglement sudden death as well as sudden birth appears during the evolution process. We analyse in detail the effect of the purity of the initial entangled state of two qubits via Heisenberg XY interaction on the apparition time of entanglement sudden death and entanglement sudden birth. Furthermore, the conditions on the conversion of entanglement sudden death and entanglement sudden birth can be generalized when the initial entangled state is not pure. In particular, a critical purity of the initial mixed entangled state exists, above which entanglement sudden birth vanishes while entanglement sudden death appears. It is also noticed that stable entanglement, which is independent of different initial states of the qubits (pure or mixed state), occurs even in the presence of decoherence. These results arising from the combination of the extended Werner-like initial state and dissipative environments suggest an approach to control and enhance the entanglement even after purity induced sudden birth, death and revival. (general)

  8. Joint Remote State Preparation of a Single-Atom Qubit State via a GHZ Entangled State

    Science.gov (United States)

    Xiao, Xiao-Qi; Yao, Fengwei; Lin, Xiaochen; Gong, Lihua

    2018-04-01

    We proposed a physical protocol for the joint remote preparation of a single-atom qubit state via a three-atom entangled GHZ-type state previously shared by the two senders and one receiver. Only rotation operations of single-atom, which can be achieved though the resonant interaction between the two-level atom and the classical field, are required in the scheme. It shows that the splitting way of the classical information of the secret qubit not only determines the success of reconstruction of the secret qubit, but also influences the operations of the senders.

  9. Coherent states in the fermionic Fock space

    International Nuclear Information System (INIS)

    Oeckl, Robert

    2015-01-01

    We construct the coherent states in the sense of Gilmore and Perelomov for the fermionic Fock space. Our treatment is from the outset adapted to the infinite-dimensional case. The fermionic Fock space becomes in this way a reproducing kernel Hilbert space of continuous holomorphic functions. (paper)

  10. Accurate calculation of the geometric measure of entanglement for multipartite quantum states

    Science.gov (United States)

    Teng, Peiyuan

    2017-07-01

    This article proposes an efficient way of calculating the geometric measure of entanglement using tensor decomposition methods. The connection between these two concepts is explored using the tensor representation of the wavefunction. Numerical examples are benchmarked and compared. Furthermore, we search for highly entangled qubit states to show the applicability of this method.

  11. Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement

    International Nuclear Information System (INIS)

    Sheng Yubo; Deng Fuguo

    2010-01-01

    Entanglement purification is a very important element for long-distance quantum communication. Different from all the existing entanglement purification protocols (EPPs) in which two parties can only obtain some quantum systems in a mixed entangled state with a higher fidelity probabilistically by consuming quantum resources exponentially, here we present a deterministic EPP with hyperentanglement. Using this protocol, the two parties can, in principle, obtain deterministically maximally entangled pure states in polarization without destroying any less-entangled photon pair, which will improve the efficiency of long-distance quantum communication exponentially. Meanwhile, it will be shown that this EPP can be used to complete nonlocal Bell-state analysis perfectly. We also discuss this EPP in a practical transmission.

  12. Controlled ultrafast transfer and stability degree of generalized coherent states of a kicked two-level ion

    Science.gov (United States)

    Chen, Hao; Kong, Chao; Hai, Wenhua

    2018-06-01

    We investigate quantum dynamics of a two-level ion trapped in the Lamb-Dicke regime of a δ -kicked optical lattice, based on the exact generalized coherent states rotated by a π / 2 pulse of Ramsey type experiment. The spatiotemporal evolutions of the spin-motion entangled states in different parameter regions are illustrated, and the parameter regions of different degrees of quantum stability described by the quantum fidelity are found. Time evolutions of the probability for the ion being in different pseudospin states reveal that the ultrafast entanglement generation and population transfers of the system can be analytically controlled by managing the laser pulses. The probability in an initially disentangled state shows periodic collapses (entanglement) and revivals (de-entanglement). Reduction of the stability degree results in enlarging the period of de-entanglement, while the instability and potential chaos will cause the sustained entanglement. The results could be justified experimentally in the existing setups and may be useful in engineering quantum dynamics for quantum information processing.

  13. Monogamy relations of quantum entanglement for partially coherently superposed states

    Science.gov (United States)

    Shi, Xian

    2017-12-01

    Not Available Project partially supported by the National Key Research and Development Program of China (Grant No. 2016YFB1000902), the National Natural Science Foundation of China (Grant Nos. 61232015, 61472412, and 61621003), the Beijing Science and Technology Project (2016), Tsinghua-Tencent-AMSS-Joint Project (2016), and the Key Laboratory of Mathematics Mechanization Project: Quantum Computing and Quantum Information Processing.

  14. Quantum states and their marginals. From multipartite entanglement to quantum error-correcting codes

    International Nuclear Information System (INIS)

    Huber, Felix Michael

    2017-01-01

    At the heart of the curious phenomenon of quantum entanglement lies the relation between the whole and its parts. In my thesis, I explore different aspects of this theme in the multipartite setting by drawing connections to concepts from statistics, graph theory, and quantum error-correcting codes: first, I address the case when joint quantum states are determined by their few-body parts and by Jaynes' maximum entropy principle. This can be seen as an extension of the notion of entanglement, with less complex states already being determined by their few-body marginals. Second, I address the conditions for certain highly entangled multipartite states to exist. In particular, I present the solution of a long-standing open problem concerning the existence of an absolutely maximally entangled state on seven qubits. This sheds light on the algebraic properties of pure quantum states, and on the conditions that constrain the sharing of entanglement amongst multiple particles. Third, I investigate Ulam's graph reconstruction problems in the quantum setting, and obtain legitimacy conditions of a set of states to be the reductions of a joint graph state. Lastly, I apply and extend the weight enumerator machinery from quantum error correction to investigate the existence of codes and highly entangled states in higher dimensions. This clarifies the physical interpretation of the weight enumerators and of the quantum MacWilliams identity, leading to novel applications in multipartite entanglement.

  15. Entanglement of solid vortex matter: a boomerang-shaped reduction forced by disorder in interlayer phase coherence in Bi2Sr2CaCu2O8+y.

    Science.gov (United States)

    Kato, T; Shibauchi, T; Matsuda, Y; Thompson, J R; Krusin-Elbaum, L

    2008-07-11

    We present evidence for entangled solid vortex matter in a glassy state in a layered superconductor Bi2Sr2CaCu2O8+y containing randomly splayed linear defects. The interlayer phase coherence--probed by the Josephson plasma resonance--is enhanced at high temperatures, reflecting the recoupling of vortex liquid by the defects. At low temperatures in the vortex solid state, the interlayer coherence follows a boomerang-shaped reentrant temperature path with an unusual low-field decrease in coherence, indicative of meandering vortices. We uncover a distinct temperature scaling between in-plane and out-of-plane critical currents with opposing dependencies on field and time, consistent with the theoretically proposed "splayed-glass" state.

  16. Coherent states in constrained systems

    International Nuclear Information System (INIS)

    Nakamura, M.; Kojima, K.

    2001-01-01

    When quantizing the constrained systems, there often arise the quantum corrections due to the non-commutativity in the re-ordering of constraint operators in the products of operators. In the bosonic second-class constraints, furthermore, the quantum corrections caused by the uncertainty principle should be taken into account. In order to treat these corrections simultaneously, the alternative projection technique of operators is proposed by introducing the available minimal uncertainty states of the constraint operators. Using this projection technique together with the projection operator method (POM), these two kinds of quantum corrections were investigated

  17. Entanglement revival can occur only when the system-environment state is not a Markov state

    Science.gov (United States)

    Sargolzahi, Iman

    2018-06-01

    Markov states have been defined for tripartite quantum systems. In this paper, we generalize the definition of the Markov states to arbitrary multipartite case and find the general structure of an important subset of them, which we will call strong Markov states. In addition, we focus on an important property of the Markov states: If the initial state of the whole system-environment is a Markov state, then each localized dynamics of the whole system-environment reduces to a localized subdynamics of the system. This provides us a necessary condition for entanglement revival in an open quantum system: Entanglement revival can occur only when the system-environment state is not a Markov state. To illustrate (a part of) our results, we consider the case that the environment is modeled as classical. In this case, though the correlation between the system and the environment remains classical during the evolution, the change of the state of the system-environment, from its initial Markov state to a state which is not a Markov one, leads to the entanglement revival in the system. This shows that the non-Markovianity of a state is not equivalent to the existence of non-classical correlation in it, in general.

  18. Continuous variable entanglement distillation of non-Gaussian states

    DEFF Research Database (Denmark)

    Lassen, Mikael Østergaard; Dong, Ruifang; Heersink, Joel

    2009-01-01

    We experimentally demonstrate distillation of continuous variable entangled light that has undergone non-Gaussian attenuation loss. The continuous variable entanglement is generated with optical fibers and sent through a lossy channel, where the transmission is varying in time. By employing simple...

  19. Quantification of entanglement entropies for doubly excited resonance states in two-electron atomic systems

    International Nuclear Information System (INIS)

    Ho, Yew Kam; Lin, Chien-Hao

    2015-01-01

    In this work, we study the quantum entanglement for doubly excited resonance states in two-electron atomic systems such as the H - and Ps - ions and the He atom by using highly correlated Hylleraas type functions The resonance states are determined by calculation of density of resonance states with the stabilization method. The spatial (electron-electron orbital) entanglement entropies (linear and von Neumann) for the low-lying doubly excited states are quantified using the Schmidt-Slater decomposition method. (paper)

  20. Scheme for Entanglement Concentration of Unknown Multiparticle Greenberger-Horne-Zeilinger or W Class States

    International Nuclear Information System (INIS)

    Song Wei

    2007-01-01

    We present two schemes for concentrating unknown nonmaximally entangled Greenberger-Horme-Zeilinger (GHZ) or W class states. The first scheme for concentrating the nonmaximally entangled GHZ state is based on linear optical devices. The second scheme for concentrating the W class states can be applied to a wide variety of atomic state. Both of our schemes are not postselection ones and are within the current technologies.

  1. Improved contraction schemes for projected entangled pair states

    Energy Technology Data Exchange (ETDEWEB)

    Lubasch, Michael; Cirac, Juan Ignacio; Banuls, Mari-Carmen [Max Planck Institute of Quantum Optics, Hans-Kopfermann-Strasse 1, 85748 Garching (Germany)

    2013-07-01

    Projected Entangled Pair States (PEPS) represent the natural generalization of Matrix Product States (MPS) in higher dimensions. The strength of MPS in the numerical simulation of 1D quantum many-body systems is well established, as they are the variational class of states underlying the Density Matrix Renormalization Group and the latter is nowadays considered numerically exact for systems comprising hundreds of quantum particles. In algorithms based on MPS or PEPS, the bond dimension D of the state determines the number of variational parameters and the computational cost. While bond dimensions on the order of hundreds and thousands are feasible with MPS, standard 2D PEPS algorithms are limited to values in the range 2 to 6 due to the much worse scaling of the computational cost with D. Recently, a new algorithm based on an alternative contraction has been proposed that reduces this cost significantly. It resorts to the single-layer picture where the contraction is done in ket and bra separately. We investigate the advantages and disadvantages of this algorithm which can be understood in terms of the PEPS's boundary approximation.

  2. Continuous-variable entanglement distillation of non-Gaussian mixed states

    International Nuclear Information System (INIS)

    Dong Ruifang; Lassen, Mikael; Heersink, Joel; Marquardt, Christoph; Leuchs, Gerd; Filip, Radim; Andersen, Ulrik L.

    2010-01-01

    Many different quantum-information communication protocols such as teleportation, dense coding, and entanglement-based quantum key distribution are based on the faithful transmission of entanglement between distant location in an optical network. The distribution of entanglement in such a network is, however, hampered by loss and noise that is inherent in all practical quantum channels. Thus, to enable faithful transmission one must resort to the protocol of entanglement distillation. In this paper we present a detailed theoretical analysis and an experimental realization of continuous variable entanglement distillation in a channel that is inflicted by different kinds of non-Gaussian noise. The continuous variable entangled states are generated by exploiting the third order nonlinearity in optical fibers, and the states are sent through a free-space laboratory channel in which the losses are altered to simulate a free-space atmospheric channel with varying losses. We use linear optical components, homodyne measurements, and classical communication to distill the entanglement, and we find that by using this method the entanglement can be probabilistically increased for some specific non-Gaussian noise channels.

  3. Quantum-Secret-Sharing Scheme Based on Local Distinguishability of Orthogonal Seven-Qudit Entangled States

    Science.gov (United States)

    Liu, Cheng-Ji; Li, Zhi-Hui; Bai, Chen-Ming; Si, Meng-Meng

    2018-02-01

    The concept of judgment space was proposed by Wang et al. (Phys. Rev. A 95, 022320, 2017), which was used to study some important properties of quantum entangled states based on local distinguishability. In this study, we construct 15 kinds of seven-qudit quantum entangled states in the sense of permutation, calculate their judgment space and propose a distinguishability rule to make the judgment space more clearly. Based on this rule, we study the local distinguishability of the 15 kinds of seven-qudit quantum entangled states and then propose a ( k, n) threshold quantum secret sharing scheme. Finally, we analyze the security of the scheme.

  4. Bell's inequalities for three-qubit entangled states with white noise

    International Nuclear Information System (INIS)

    Chang, Jinho; Kwon, Younghun

    2009-01-01

    We consider three-qubit entangled states classified by Acin et al. and evaluate Bell's inequalities for them when the white noise exists, which may be a real situation for the experiment of the Bells inequality to three-qubit entangled states. We obtain the maximum violation for the Bell inequality in each case and find the condition for exceeding the classical limit. And we observe that even when there would exist quite amount of white noise, some of three-qubit entangled states(for example 2b, 3a, 3b-I, 3b-II and 3b-III types) might show the violation of the Bell inequality.

  5. Entanglement of a class of non-Gaussian states in disordered harmonic oscillator systems

    Science.gov (United States)

    Abdul-Rahman, Houssam

    2018-03-01

    For disordered harmonic oscillator systems over the d-dimensional lattice, we consider the problem of finding the bipartite entanglement of the uniform ensemble of the energy eigenstates associated with a particular number of modes. Such an ensemble defines a class of mixed, non-Gaussian entangled states that are labeled, by the energy of the system, in an increasing order. We develop a novel approach to find the exact logarithmic negativity of this class of states. We also prove entanglement bounds and demonstrate that the low energy states follow an area law.

  6. Schemes for Probabilistic Teleportation of an Unknown Three-Particle Three-Level Entangled State

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this paper, two schemes for teleporting an unknown three-particle three-level entangled state are proposed. In the first scheme, two partial three-particle three-level entangled states are used as the quantum channels, while in the second scheme, three two-particle three-level non-maximally entangled states are employed as quantum channels.It is shown that the teleportation can be successfully realized with certain probability, for both two schemes, if a receiver adopts some appropriate unitary transformations. It is shown also that the successful probabilities of these two schemes are different.

  7. Inefficiency and classical communication bounds for conversion between partially entangled pure bipartite states

    International Nuclear Information System (INIS)

    Fortescue, Ben; Lo, H.-K.

    2005-01-01

    We derive lower limits on the inefficiency and classical communication costs of dilution between two-term bipartite pure states that are partially entangled. We first calculate explicit relations between the allowable error and classical communication costs of entanglement dilution using a previously described protocol, then consider a two-stage dilution from singlets with this protocol followed by some unknown protocol for conversion between partially entangled states. Applying overall lower bounds on classical communication and inefficiency to this two-stage protocol, we derive bounds for the unknown protocol. In addition we derive analogous (but looser) bounds for general pure states

  8. Quantum communication with coherent states of light

    Science.gov (United States)

    Khan, Imran; Elser, Dominique; Dirmeier, Thomas; Marquardt, Christoph; Leuchs, Gerd

    2017-06-01

    Quantum communication offers long-term security especially, but not only, relevant to government and industrial users. It is worth noting that, for the first time in the history of cryptographic encoding, we are currently in the situation that secure communication can be based on the fundamental laws of physics (information theoretical security) rather than on algorithmic security relying on the complexity of algorithms, which is periodically endangered as standard computer technology advances. On a fundamental level, the security of quantum key distribution (QKD) relies on the non-orthogonality of the quantum states used. So even coherent states are well suited for this task, the quantum states that largely describe the light generated by laser systems. Depending on whether one uses detectors resolving single or multiple photon states or detectors measuring the field quadratures, one speaks of, respectively, a discrete- or a continuous-variable description. Continuous-variable QKD with coherent states uses a technology that is very similar to the one employed in classical coherent communication systems, the backbone of today's Internet connections. Here, we review recent developments in this field in two connected regimes: (i) improving QKD equipment by implementing front-end telecom devices and (ii) research into satellite QKD for bridging long distances by building upon existing optical satellite links. This article is part of the themed issue 'Quantum technology for the 21st century'.

  9. Coherent states in quantum mechanics; Estados coerentes em mecanica quantica

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, R. de Lima [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mail: rafaelr@cbpf.br; Fernandes Junior, Damasio; Batista, Sheyla Marques [Paraiba Univ., Campina Grande, PB (Brazil). Dept. de Engenharia Eletrica

    2001-12-01

    We present a review work on the coherent states is non-relativistic quantum mechanics analysing the quantum oscillators in the coherent states. The coherent states obtained via a displacement operator that act on the wave function of ground state of the oscillator and the connection with Quantum Optics which were implemented by Glauber have also been considered. A possible generalization to the construction of new coherent states it is point out. (author)

  10. Bounds on the entanglement attainable from unitary transformed thermal states in liquid-state nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Yu, Terri M.; Brown, Kenneth R.; Chuang, Isaac L.

    2005-01-01

    The role of mixed-state entanglement in liquid-state nuclear magnetic resonance (NMR) quantum computation is not yet well understood. In particular, despite the success of quantum-information processing with NMR, recent work has shown that quantum states used in most of those experiments were not entangled. This is because these states, derived by unitary transforms from the thermal equilibrium state, were too close to the maximally mixed state. We are thus motivated to determine whether a given NMR state is entanglable - that is, does there exist a unitary transform that entangles the state? The boundary between entanglable and nonentanglable thermal states is a function of the spin system size N and its temperature T. We provide bounds on the location of this boundary using analytical and numerical methods; our tightest bound scales as N∼T, giving a lower bound requiring at least N∼22 000 proton spins to realize an entanglable thermal state at typical laboratory NMR magnetic fields. These bounds are tighter than known bounds on the entanglability of effective pure states

  11. Experimental entanglement and nonlocality of a two-photon six-qubit cluster state.

    Science.gov (United States)

    Ceccarelli, Raino; Vallone, Giuseppe; De Martini, Francesco; Mataloni, Paolo; Cabello, Adán

    2009-10-16

    We create a six-qubit linear cluster state by transforming a two-photon hyperentangled state in which three qubits are encoded in each particle, one in the polarization and two in the linear momentum degrees of freedom. For this state, we demonstrate genuine six-qubit entanglement, persistency of entanglement against the loss of qubits, and higher violation than in previous experiments on Bell inequalities of the Mermin type.

  12. Coherent semiclassical states for loop quantum cosmology

    International Nuclear Information System (INIS)

    Corichi, Alejandro; Montoya, Edison

    2011-01-01

    The spatially flat Friedmann-Robertson-Walker cosmological model with a massless scalar field in loop quantum cosmology admits a description in terms of a completely solvable model. This has been used to prove that: (i) the quantum bounce that replaces the big bang singularity is generic; (ii) there is an upper bound on the energy density for all states, and (iii) semiclassical states at late times had to be semiclassical before the bounce. Here we consider a family of exact solutions to the theory, corresponding to generalized coherent Gaussian and squeezed states. We analyze the behavior of basic physical observables and impose restrictions on the states based on physical considerations. These turn out to be enough to select, from all the generalized coherent states, those that behave semiclassical at late times. We study then the properties of such states near the bounce where the most 'quantum behavior' is expected. As it turns out, the states remain sharply peaked and semiclassical at the bounce and the dynamics is very well approximated by the ''effective theory'' throughout the time evolution. We compare the semiclassicality properties of squeezed states to those of the Gaussian semiclassical states and conclude that the Gaussians are better behaved. In particular, the asymmetry in the relative fluctuations before and after the bounce are negligible, thus ruling out claims of so-called 'cosmic forgetfulness'.

  13. Completely mixed state is a critical point for three-qubit entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Tamaryan, Sayatnova, E-mail: sayat@mail.yerphi.am [Department of Theoretical Physics, A. Alikhanyan National Laboratory, Yerevan (Armenia)

    2011-06-06

    Pure three-qubit states have five algebraically independent and one algebraically dependent polynomial invariants under local unitary transformations and an arbitrary entanglement measure is a function of these six invariants. It is shown that if the reduced density operator of a some qubit is a multiple of the unit operator, than the geometric entanglement measure of the pure three-qubit state is absolutely independent of the polynomial invariants and is a constant for such tripartite states. Hence a one-particle completely mixed state is a critical point for the geometric measure of entanglement. -- Highlights: → Geometric measure of pure three-qubits is expressed in terms of polynomial invariants. → When one Bloch vector is zero the measure is independent of the remaining invariants. → Hence a one-particle completely mixed state is a critical point for the geometric measure. → The existence of the critical points is an inherent feature of the entanglement.

  14. Completely mixed state is a critical point for three-qubit entanglement

    International Nuclear Information System (INIS)

    Tamaryan, Sayatnova

    2011-01-01

    Pure three-qubit states have five algebraically independent and one algebraically dependent polynomial invariants under local unitary transformations and an arbitrary entanglement measure is a function of these six invariants. It is shown that if the reduced density operator of a some qubit is a multiple of the unit operator, than the geometric entanglement measure of the pure three-qubit state is absolutely independent of the polynomial invariants and is a constant for such tripartite states. Hence a one-particle completely mixed state is a critical point for the geometric measure of entanglement. -- Highlights: → Geometric measure of pure three-qubits is expressed in terms of polynomial invariants. → When one Bloch vector is zero the measure is independent of the remaining invariants. → Hence a one-particle completely mixed state is a critical point for the geometric measure. → The existence of the critical points is an inherent feature of the entanglement.

  15. Coherent states associated to the Jacobi group

    International Nuclear Information System (INIS)

    Berceanu, S.

    2007-01-01

    .The coherent states (CS) offer a useful connection between classical and quantum mechanics. In several previous works we have constructed CS attached to the Jacobi group. It is well known that the Jacobi group appears in Quantum Mechanics, Geometric Quantization, Optics. The mathematicians have given the name 'Jacobi group' to the semidirect product of the Heisenberg-Weyl group and the symplectic group. The same group is known to physicists under other names, as the Schroedinger group. Also the name 'Weyl-symplectic' group is used for the same semi-direct product of the Heisenberg-Weyl group and the symplectic group. In this paper we review and discuss some properties of the coherent states associated to the Jacobi group. (author)

  16. K-dimensional trio coherent states

    International Nuclear Information System (INIS)

    Yi, Hyo Seok; Nguyen, Ba An; Kim, Jaewan

    2004-01-01

    We introduce a novel class of higher-order, three-mode states called K-dimensional trio coherent states. We study their mathematical properties and prove that they form a complete set in a truncated Fock space. We also study their physical content by explicitly showing that they exhibit nonclassical features such as oscillatory number distribution, sub-Poissonian statistics, Cauchy-Schwarz inequality violation and phase-space quantum interferences. Finally, we propose an experimental scheme to realize the state with K = 2 in the quantized vibronic motion of a trapped ion

  17. Spectral coherent-state quantum cryptography.

    Science.gov (United States)

    Cincotti, Gabriella; Spiekman, Leo; Wada, Naoya; Kitayama, Ken-ichi

    2008-11-01

    A novel implementation of quantum-noise optical cryptography is proposed, which is based on a simplified architecture that allows long-haul, high-speed transmission in a fiber optical network. By using a single multiport encoder/decoder and 16 phase shifters, this new approach can provide the same confidentiality as other implementations of Yuen's encryption protocol, which use a larger number of phase or polarization coherent states. Data confidentiality and error probability for authorized and unauthorized receivers are carefully analyzed.

  18. Entanglement of mixed quantum states for qubits and qudit in double photoionization of atoms

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, M., E-mail: bminakshi@yahoo.com [Department of Physics, Asansol Girls’ College, Asansol 713304 (India); Sen, S. [Department of Physics, Triveni Devi Bhalotia College, Raniganj 713347 (India)

    2015-08-15

    Highlights: • We study tripartite entanglement between two electronic qubits and an ionic qudit. • We study bipartite entanglement between any two subsystems of a tripartite system. • We have presented a quantitative application of entangled properties in Neon atom. - Abstract: Quantum entanglement and its paradoxical properties are genuine physical resources for various quantum information tasks like quantum teleportation, quantum cryptography, and quantum computer technology. The physical characteristic of the entanglement of quantum-mechanical states, both for pure and mixed, has been recognized as a central resource in various aspects of quantum information processing. In this article, we study the bipartite entanglement of one electronic qubit along with the ionic qudit and also entanglement between two electronic qubits. The tripartite entanglement properties also have been investigated between two electronic qubits and an ionic qudit. All these studies have been done for the single-step double photoionization from an atom following the absorption of a single photon without observing spin orbit interaction. The dimension of the Hilbert space of the qudit depends upon the electronic state of the residual photoion A{sup 2+}. In absence of SOI, when Russell–Saunders coupling (L–S coupling) is applicable, dimension of the qudit is equal to the spin multiplicity of A{sup 2+}. For estimations of entanglement and mixedness, we consider the Peres–Horodecki condition, concurrence, entanglement of formation, negativity, linear and von Neumann entropies. In case of L–S coupling, all the properties of a qubit–qudit system can be predicted merely with the knowledge of the spins of the target atom and the residual photoion.

  19. Transformation of bipartite non-maximally entangled states into a ...

    Indian Academy of Sciences (India)

    Ministry of Education, School of Physics & Material Science, Anhui University, Hefei ... MS received 9 October 2014; revised 10 January 2015; accepted 22 April 2015 ... in some sense, be regarded as an entanglement concentration process.

  20. Studying entanglement-assisted entanglement transformation

    International Nuclear Information System (INIS)

    Hsu Liyi

    2004-01-01

    In this paper, we study catalysis of entanglement transformations for n-level pure entangled states. We propose an algorithm of finding the required catalystic entanglement. We introduce several examples by way of demonstration. We evaluate the lower and upper bound of the required inequalities for deciding whether there are m-level appropriate catalyst states for entanglement transformations for two n-level pure entangled states

  1. Scheme for teleportation of entangled states without Bell-state measurement by using one atom

    Energy Technology Data Exchange (ETDEWEB)

    Qiang Wenchao; Zhang Lei; Zhang Aiping [Faculty of Science, Xi' an University of Architecture and Technology, Xi' an 710055 (China); Dong Shihai, E-mail: qwcqj@163.com [Departamento de Fisica, Esc. Sup de Fisica y Matematicas, Instituto Politecnico Nacional, Edificio 9, Unidad Profesional Adolfo Lopez Mateos, Mexico, DF 07738 (Mexico)

    2011-07-01

    We propose a scheme for approximately and conditionally teleporting an entanglement of zero- and one-photon states from a cavity with left- and right-polarized modes to another similar one, with a fidelity exceeding 99%. Instead of using the Bell-state measurement, only one atom is used in our scheme. The time spent, the success probability and the feasibility of the proposed scheme are also discussed.

  2. Steady-state entanglement and thermalization of coupled qubits in two common heat baths

    Science.gov (United States)

    Hu, Li-Zhen; Man, Zhong-Xiao; Xia, Yun-Jie

    2018-03-01

    In this work, we study the steady-state entanglement and thermalization of two coupled qubits embedded in two common baths with different temperatures. The common bath is relevant when the two qubits are difficult to be isolated to only contact with their local baths. With the quantum master equation constructed in the eigenstate representation of the coupled qubits, we have demonstrated the variations of steady-state entanglement with respect to various parameters of the qubits' system in both equilibrium and nonequilibrium cases of the baths. The coupling strength and energy detuning of the qubits as well as the temperature gradient of the baths are found to be beneficial to the enhancement of the entanglement. We note a dark state of the qubits that is free from time-evolution and its initial population can greatly influence the steady-state entanglement. By virtues of effective temperatures, we also study the thermalization of the coupled qubits and their variations with energy detuning.

  3. Entanglement concentration for two-mode Gaussian states in non-inertial frames

    International Nuclear Information System (INIS)

    Di Noia, Maurizio; Giraldi, Filippo; Petruccione, Francesco

    2017-01-01

    Entanglement creation and concentration by means of a beam splitter (BS) is analysed for a generic two-mode bipartite Gaussian state in a relativistic framework. The total correlations, the purity and the entanglement in terms of logarithmic negativity are analytically studied for observers in an inertial state and in a non-inertial state of uniform acceleration. The dependence of entanglement on the BS transmissivity due to the Unruh effect is analysed in the case when one or both observers undergo uniform acceleration. Due to the Unruh effect, depending on the initial Gaussian state parameters and observed accelerations, the best condition for entanglement generation limited to the two modes of the observers in their regions is not always a balanced beam splitter, as it is for the inertial case. (paper)

  4. Entanglement in bipartite pure states of an interacting boson gas obtained by local projective measurements

    International Nuclear Information System (INIS)

    Paraan, Francis N. C.; Korepin, Vladimir E.; Molina-Vilaplana, Javier; Bose, Sougato

    2011-01-01

    We quantify the extractable entanglement of excited states of a Lieb-Liniger gas that are obtained from coarse-grained measurements on the ground state in which the boson number in one of two complementary contiguous partitions of the gas is determined. Numerically exact results obtained from the coordinate Bethe ansatz show that the von Neumann entropy of the resulting bipartite pure state increases monotonically with the strength of repulsive interactions and saturates to the impenetrable-boson limiting value. We also present evidence indicating that the largest amount of entanglement can be extracted from the most probable projected state having half the number of bosons in a given partition. Our study points to a fundamental difference between the nature of the entanglement in free-bosonic and free-fermionic systems, with the entanglement in the former being zero after projection, while that in the latter (corresponding to the impenetrable-boson limit) being nonzero.

  5. Quantum key distribution with entangled photon sources

    International Nuclear Information System (INIS)

    Ma Xiongfeng; Fung, Chi-Hang Fred; Lo, H.-K.

    2007-01-01

    A parametric down-conversion (PDC) source can be used as either a triggered single-photon source or an entangled-photon source in quantum key distribution (QKD). The triggering PDC QKD has already been studied in the literature. On the other hand, a model and a post-processing protocol for the entanglement PDC QKD are still missing. We fill in this important gap by proposing such a model and a post-processing protocol for the entanglement PDC QKD. Although the PDC model is proposed to study the entanglement-based QKD, we emphasize that our generic model may also be useful for other non-QKD experiments involving a PDC source. Since an entangled PDC source is a basis-independent source, we apply Koashi and Preskill's security analysis to the entanglement PDC QKD. We also investigate the entanglement PDC QKD with two-way classical communications. We find that the recurrence scheme increases the key rate and the Gottesman-Lo protocol helps tolerate higher channel losses. By simulating a recent 144-km open-air PDC experiment, we compare three implementations: entanglement PDC QKD, triggering PDC QKD, and coherent-state QKD. The simulation result suggests that the entanglement PDC QKD can tolerate higher channel losses than the coherent-state QKD. The coherent-state QKD with decoy states is able to achieve highest key rate in the low- and medium-loss regions. By applying the Gottesman-Lo two-way post-processing protocol, the entanglement PDC QKD can tolerate up to 70 dB combined channel losses (35 dB for each channel) provided that the PDC source is placed in between Alice and Bob. After considering statistical fluctuations, the PDC setup can tolerate up to 53 dB channel losses

  6. Do all pure entangled states violate Bell's inequalities for correlation functions?

    Science.gov (United States)

    Zukowski, Marek; Brukner, Caslav; Laskowski, Wiesław; Wieśniak, Marcin

    2002-05-27

    Any pure entangled state of two particles violates a Bell inequality for two-particle correlation functions (Gisin's theorem). We show that there exist pure entangled N>2 qubit states that do not violate any Bell inequality for N particle correlation functions for experiments involving two dichotomic observables per local measuring station. We also find that Mermin-Ardehali-Belinskii-Klyshko inequalities may not always be optimal for refutation of local realistic description.

  7. Arbitrated quantum signature scheme based on χ-type entangled states

    International Nuclear Information System (INIS)

    Zuo, Huijuan; Huang, Wei; Qin, Sujuan

    2013-01-01

    An arbitrated quantum signature scheme, which is mainly applied in electronic-payment systems, is proposed and investigated. The χ-type entangled states are used for quantum key distribution and quantum signature in this protocol. Compared with previous quantum signature schemes which also utilize χ-type entangled states, the proposed scheme provides higher efficiency. Finally, we also analyze its security under various kinds of attacks. (paper)

  8. Probabilistic teleportation scheme of two-mode entangled photon states by using linear optic element

    Institute of Scientific and Technical Information of China (English)

    XIANG Shao-hua

    2003-01-01

    A scheme for teleporting two-mode entangled photon states with the successful probability 33.3% is proposed. In the scheme, the teleporte d qubit is two-mode photon entangled states, and two pairs of EPR pair are used as quantum channel between a sender and a receiver. This procedure is achieved by using two 50/50 symmetric beam splitters and four photon number detectors wit h the help of classical information.

  9. A Protocol for Bidirectional Quantum Secure Communication Based on Genuine Four-Particle Entangled States

    International Nuclear Information System (INIS)

    Gao Gan; Wang Liping

    2010-01-01

    By swapping the entanglement of genuine four-particle entangled states, we propose a bidirectional quantum secure communication protocol. The biggest merit of this protocol is that the information leakage does not exist. In addition, the ideas of the 'two-step' transmission and the block transmission are employed in this protocol. In order to analyze the security of the second sequence transmission, decoy states are used. (general)

  10. Practical single-photon-assisted remote state preparation with non-maximally entanglement

    Science.gov (United States)

    Wang, Dong; Huang, Ai-Jun; Sun, Wen-Yang; Shi, Jia-Dong; Ye, Liu

    2016-08-01

    Remote state preparation (RSP) and joint remote state preparation (JRSP) protocols for single-photon states are investigated via linear optical elements with partially entangled states. In our scheme, by choosing two-mode instances from a polarizing beam splitter, only the sender in the communication protocol needs to prepare an ancillary single-photon and operate the entanglement preparation process in order to retrieve an arbitrary single-photon state from a photon pair in partially entangled state. In the case of JRSP, i.e., a canonical model of RSP with multi-party, we consider that the information of the desired state is split into many subsets and in prior maintained by spatially separate parties. Specifically, with the assistance of a single-photon state and a three-photon entangled state, it turns out that an arbitrary single-photon state can be jointly and remotely prepared with certain probability, which is characterized by the coefficients of both the employed entangled state and the target state. Remarkably, our protocol is readily to extend to the case for RSP and JRSP of mixed states with the all optical means. Therefore, our protocol is promising for communicating among optics-based multi-node quantum networks.

  11. Coherent states versus De Broglie-Wavelets

    International Nuclear Information System (INIS)

    Barut, A.O.

    1993-08-01

    There are two types of nonspreading localized wave forms representing a stable, individual, indivisible, single quantum particle with interference properties endowed with classical (hidden) parameters, i.e. initial positions and velocity: coherent states and wavelets. The first is exactly known for oscillator, the second for free particles. Their relation and their construction is discussed from a new unified point of view. We then extend this contraction to the Coulomb problem, where with the introduction of a new time variable T, nonspreading states are obtained. (author). 10 refs

  12. On the dynamics of generalized coherent states

    International Nuclear Information System (INIS)

    Nikolov, B.A.; Trifonov, D.A.

    1981-01-01

    The exact and stable evolutions of generalized coherent states (GCS) for quantum system are considered by making use of the time- dependent integrals of motion method and of the Klauder approach to the relationship between quantum and classical mechanics. It is shown that one can construct for any quantum system overcomplete family of states, related to the unitary representations of the Lie group G by means of integral of motion generators, and the possibility of using this group as a dynamic symmetry group is pointed out. The relation of the GCS with quantum measurement theory is also established [ru

  13. Einstein-Podolsky-Rosen-steering swapping between two Gaussian multipartite entangled states

    Science.gov (United States)

    Wang, Meihong; Qin, Zhongzhong; Wang, Yu; Su, Xiaolong

    2017-08-01

    Multipartite Einstein-Podolsky-Rosen (EPR) steering is a useful quantum resource for quantum communication in quantum networks. It has potential applications in secure quantum communication, such as one-sided device-independent quantum key distribution and quantum secret sharing. By distributing optical modes of a multipartite entangled state to space-separated quantum nodes, a local quantum network can be established. Based on the existing multipartite EPR steering in a local quantum network, secure quantum communication protocol can be accomplished. In this manuscript, we present swapping schemes for EPR steering between two space-separated Gaussian multipartite entangled states, which can be used to connect two space-separated quantum networks. Two swapping schemes, including the swapping between a tripartite Greenberger-Horne-Zeilinger (GHZ) entangled state and an EPR entangled state and that between two tripartite GHZ entangled states, are analyzed. Various types of EPR steering are presented after the swapping of two space-separated independent multipartite entanglement states without direct interaction, which can be used to implement quantum communication between two quantum networks. The presented schemes provide technical reference for more complicated quantum networks with EPR steering.

  14. Representations of coherent states in non-orthogonal bases

    International Nuclear Information System (INIS)

    Ali, S Twareque; Roknizadeh, R; Tavassoly, M K

    2004-01-01

    Starting with the canonical coherent states, we demonstrate that all the so-called nonlinear coherent states, used in the physical literature, as well as large classes of other generalized coherent states, can be obtained by changes of bases in the underlying Hilbert space. This observation leads to an interesting duality between pairs of generalized coherent states, bringing into play a Gelfand triple of (rigged) Hilbert spaces. Moreover, it is shown that in each dual pair of families of nonlinear coherent states, at least one family is related to a (generally) non-unitary projective representation of the Weyl-Heisenberg group, which can then be thought of as characterizing the dual pair

  15. Entanglement and discord of the superposition of Greenberger-Horne-Zeilinger states

    International Nuclear Information System (INIS)

    Parashar, Preeti; Rana, Swapan

    2011-01-01

    We calculate the analytic expression for geometric measure of entanglement for arbitrary superposition of two N-qubit canonical orthonormal Greenberger-Horne-Zeilinger (GHZ) states and the same for two W states. In the course of characterizing all kinds of nonclassical correlations, an explicit formula for quantum discord (via relative entropy) for the former class of states has been presented. Contrary to the GHZ state, the closest separable state to the W state is not classical. Therefore, in this case, the discord is different from the relative entropy of entanglement. We conjecture that the discord for the N-qubit W state is log 2 N.

  16. Quantum communication for satellite-to-ground networks with partially entangled states

    International Nuclear Information System (INIS)

    Chen Na; Quan Dong-Xiao; Pei Chang-Xing; Yang-Hong

    2015-01-01

    To realize practical wide-area quantum communication, a satellite-to-ground network with partially entangled states is developed in this paper. For efficiency and security reasons, the existing method of quantum communication in distributed wireless quantum networks with partially entangled states cannot be applied directly to the proposed quantum network. Based on this point, an efficient and secure quantum communication scheme with partially entangled states is presented. In our scheme, the source node performs teleportation only after an end-to-end entangled state has been established by entanglement swapping with partially entangled states. Thus, the security of quantum communication is guaranteed. The destination node recovers the transmitted quantum bit with the help of an auxiliary quantum bit and specially defined unitary matrices. Detailed calculations and simulation analyses show that the probability of successfully transferring a quantum bit in the presented scheme is high. In addition, the auxiliary quantum bit provides a heralded mechanism for successful communication. Based on the critical components that are presented in this article an efficient, secure, and practical wide-area quantum communication can be achieved. (paper)

  17. Dissipative entanglement swapping in the presence of detuning and Kerr medium: Bell state measurement method

    Science.gov (United States)

    Ghasemi, M.; Tavassoly, M. K.; Nourmandipour, A.

    2017-12-01

    In this paper, we investigate the possibility of entanglement swapping between two independent nonperfect cavities consisting of an atom with finite lifetime of atomic levels (as two independent sources of dissipation), which interacts with a quantized electromagnetic field in the presence of detuning and Kerr medium. In fact, there is no direct interaction between the two atoms, therefore, no entanglement exists between them. We use the Bell state measurement performed on the photons leaving the cavities to swap the entanglement stored between the atom-fields in each cavity into atom-atom. Our motivation comes from the fact that two-qubit entangled states are of great interest for quantum information science and technologies. We discuss the effect of the initial state of the system, the detuning parameter, the Kerr medium and the two dissipation sources on the swapped entanglement to atom-atom. We interestingly find that when the atomic decay rates and photonic leakages from the cavities are equal, our system behaves as an ideal system with no dissipation. Our results show that it is possible to create a long-living atom-atom maximally entangled state in the presence of Kerr effect and dissipation; we determine these conditions in detail and also establish the final atom-atom Bell state.

  18. Improving the maximum transmission distance of continuous-variable quantum key distribution with noisy coherent states using a noiseless amplifier

    International Nuclear Information System (INIS)

    Wang, Tianyi; Yu, Song; Zhang, Yi-Chen; Gu, Wanyi; Guo, Hong

    2014-01-01

    By employing a nondeterministic noiseless linear amplifier, we propose to increase the maximum transmission distance of continuous-variable quantum key distribution with noisy coherent states. With the covariance matrix transformation, the expression of secret key rate under reverse reconciliation is derived against collective entangling cloner attacks. We show that the noiseless linear amplifier can compensate the detrimental effect of the preparation noise with an enhancement of the maximum transmission distance and the noise resistance. - Highlights: • Noiseless amplifier is applied in noisy coherent state quantum key distribution. • Negative effect of preparation noise is compensated by noiseless amplification. • Maximum transmission distance and noise resistance are both enhanced

  19. Complete Bell-state analysis for a single-photon hybrid entangled state

    International Nuclear Information System (INIS)

    Sheng Yu-Bo; Zhou Lan; Cheng Wei-Wen; Gong Long-Yan; Wang Lei; Zhao Sheng-Mei

    2013-01-01

    We propose a scheme capable of performing complete Bell-state analysis for a single-photon hybrid entangled state. Our single-photon state is encoded in both polarization and frequency degrees of freedom. The setup of the scheme is composed of polarizing beam splitters, half wave plates, frequency shifters, and independent wavelength division multiplexers, which are feasible using current technology. We also show that with this setup we can perform complete two-photon Bell-state analysis schemes for polarization degrees of freedom. Moreover, it can also be used to perform the teleportation scheme between different degrees of freedom. This setup may allow extensive applications in current quantum communications

  20. General Einstein-Podolsky-Rosen-type entanglement of continuous variables for bosons

    International Nuclear Information System (INIS)

    Jiang Nianquan; Zheng Yizhuang

    2006-01-01

    We show that general Einstein-Podolsky-Rosen-type (EPR-type) entanglement of continuous variables with arbitrary eigenvalues for bosons can be yielded. For bosons of nonzero resting mass EPR-type entangled state can be achieved by the use of atomic beam splitters in particles of a position eigenstate and n-1 momentum eigenstates. For light field in which resting mass of the photon is zero, approximate EPR-type entanglement can be experimentally generated when we apply optical beam splitters to one position-squeezed coherence state and n-1 momentum-squeezed coherence states, this approximate version tends to perfect EPR entanglement in the limit of infinite squeezing

  1. The coordinate coherent states approach revisited

    International Nuclear Information System (INIS)

    Miao, Yan-Gang; Zhang, Shao-Jun

    2013-01-01

    We revisit the coordinate coherent states approach through two different quantization procedures in the quantum field theory on the noncommutative Minkowski plane. The first procedure, which is based on the normal commutation relation between an annihilation and creation operators, deduces that a point mass can be described by a Gaussian function instead of the usual Dirac delta function. However, we argue this specific quantization by adopting the canonical one (based on the canonical commutation relation between a field and its conjugate momentum) and show that a point mass should still be described by the Dirac delta function, which implies that the concept of point particles is still valid when we deal with the noncommutativity by following the coordinate coherent states approach. In order to investigate the dependence on quantization procedures, we apply the two quantization procedures to the Unruh effect and Hawking radiation and find that they give rise to significantly different results. Under the first quantization procedure, the Unruh temperature and Unruh spectrum are not deformed by noncommutativity, but the Hawking temperature is deformed by noncommutativity while the radiation specturm is untack. However, under the second quantization procedure, the Unruh temperature and Hawking temperature are untack but the both spectra are modified by an effective greybody (deformed) factor. - Highlights: ► Suggest a canonical quantization in the coordinate coherent states approach. ► Prove the validity of the concept of point particles. ► Apply the canonical quantization to the Unruh effect and Hawking radiation. ► Find no deformations in the Unruh temperature and Hawking temperature. ► Provide the modified spectra of the Unruh effect and Hawking radiation.

  2. Entanglement of two-mode Gaussian states: characterization and experimental production and manipulation

    Energy Technology Data Exchange (ETDEWEB)

    Laurat, Julien [Laboratoire Kastler Brossel, Case 74, Universite Pierre et Marie curie, 4 Place Jussieu, 75252 Paris cedex 05 (France); Keller, Gaelle [Laboratoire Kastler Brossel, Case 74, Universite Pierre et Marie curie, 4 Place Jussieu, 75252 Paris cedex 05 (France); Oliveira-Huguenin, Jose Augusto [Laboratoire Kastler Brossel, Case 74, Universite Pierre et Marie curie, 4 Place Jussieu, 75252 Paris cedex 05 (France); Fabre, Claude [Laboratoire Kastler Brossel, Case 74, Universite Pierre et Marie curie, 4 Place Jussieu, 75252 Paris cedex 05 (France); Coudreau, Thomas [Laboratoire Kastler Brossel, Case 74, Universite Pierre et Marie curie, 4 Place Jussieu, 75252 Paris cedex 05 (France); Laboratoire Materiaux et Phenomenes Quantiques, Case 7021, Universite Denis Diderot, 2 Place Jussieu, 75251 Paris cedex 05 (France); Serafini, Alessio [Dipartimento di Fisica ' E R Caianiello' , Universita di Salerno (Italy); CNR-Coherentia, Gruppo di Salerno (Italy); and INFN Sezione di Napoli-Gruppo Collegato di Salerno, Via S Allende, 84081 Baronissi (Saudi Arabia) (Italy); Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Adesso, Gerardo [Dipartimento di Fisica ' E R Caianiello' , Universita di Salerno (Italy); CNR-Coherentia, Gruppo di Salerno (Italy); and INFN Sezione di Napoli-Gruppo Collegato di Salerno, Via S Allende, 84081 Baronissi (Saudi Arabia) (Italy); Illuminati, Fabrizio [Dipartimento di Fisica ' E R Caianiello' , Universita di Salerno (Italy) and CNR-Coherentia, Gruppo di Salerno (Italy) and INFN Sezione di Napoli-Gruppo Collegato di Salerno, Via S Allende, 84081 Baronissi (SA) (Italy)

    2005-12-01

    A powerful theoretical structure has emerged in recent years on the characterization and quantification of entanglement in continuous-variable systems. After reviewing this framework, we will illustrate it with an original set-up based on a type-II OPO (optical parametric oscillator) with adjustable mode coupling. Experimental results allow a direct verification of many theoretical predictions and provide a sharp insight into the general properties of two-mode Gaussian states and entanglement resource manipulation.

  3. Entanglement of two-mode Gaussian states: characterization and experimental production and manipulation

    International Nuclear Information System (INIS)

    Laurat, Julien; Keller, Gaelle; Oliveira-Huguenin, Jose Augusto; Fabre, Claude; Coudreau, Thomas; Serafini, Alessio; Adesso, Gerardo; Illuminati, Fabrizio

    2005-01-01

    A powerful theoretical structure has emerged in recent years on the characterization and quantification of entanglement in continuous-variable systems. After reviewing this framework, we will illustrate it with an original set-up based on a type-II OPO (optical parametric oscillator) with adjustable mode coupling. Experimental results allow a direct verification of many theoretical predictions and provide a sharp insight into the general properties of two-mode Gaussian states and entanglement resource manipulation

  4. Entanglement and purity of two-mode Gaussian states in noisy channels

    International Nuclear Information System (INIS)

    Serafini, Alessio; Illuminati, Fabrizio; De Siena, Silvio; Paris, Matteo G.A.

    2004-01-01

    We study the evolution of purity, entanglement, and total correlations of general two-mode continuous variable Gaussian states in arbitrary uncorrelated Gaussian environments. The time evolution of purity, von Neumann entropy, logarithmic negativity, and mutual information is analyzed for a wide range of initial conditions. In general, we find that a local squeezing of the bath leads to a faster degradation of purity and entanglement, while it can help to preserve the mutual information between the modes

  5. Quantum entanglement and nonlocality properties of two-mode Gaussian squeezed states

    International Nuclear Information System (INIS)

    Shao-Hua, Xiang; Bin, Shao; Ke-Hui, Song

    2009-01-01

    Quantum entanglement and nonlocality properties of a family of two-mode Gaussian pure states have been investigated. The results show that the entanglement of these states is determined by both the two-mode squeezing parameter and the difference of the two single-mode squeezing parameters. For the same two-mode squeezing parameter, these states show larger entanglement than the usual two-mode squeezed vacuum state. The violation of Bell inequality depends strongly on all the squeezing parameters of these states and disappears completely in the limit of large squeezing. In particular, these states can exhibit much stronger violation of local realism than two-mode squeezed vacuum state in the range of experimentally available squeezing values. (general)

  6. Tensor Renormalization of Quantum Many-Body Systems Using Projected Entangled Simplex States

    Directory of Open Access Journals (Sweden)

    Z. Y. Xie

    2014-02-01

    Full Text Available We propose a new class of tensor-network states, which we name projected entangled simplex states (PESS, for studying the ground-state properties of quantum lattice models. These states extend the pair-correlation basis of projected entangled pair states to a simplex. PESS are exact representations of the simplex solid states, and they provide an efficient trial wave function that satisfies the area law of entanglement entropy. We introduce a simple update method for evaluating the PESS wave function based on imaginary-time evolution and the higher-order singular-value decomposition of tensors. By applying this method to the spin-1/2 antiferromagnetic Heisenberg model on the kagome lattice, we obtain accurate and systematic results for the ground-state energy, which approach the lowest upper bounds yet estimated for this quantity.

  7. Tripartite entanglement versus tripartite nonlocality in three-qubit Greenberger-Horne-Zeilinger-class states.

    Science.gov (United States)

    Ghose, S; Sinclair, N; Debnath, S; Rungta, P; Stock, R

    2009-06-26

    We analyze the relationship between tripartite entanglement and genuine tripartite nonlocality for three-qubit pure states in the Greenberger-Horne-Zeilinger class. We consider a family of states known as the generalized Greenberger-Horne-Zeilinger states and derive an analytical expression relating the three-tangle, which quantifies tripartite entanglement, to the Svetlichny inequality, which is a Bell-type inequality that is violated only when all three qubits are nonlocally correlated. We show that states with three-tangle less than 1/2 do not violate the Svetlichny inequality. On the other hand, a set of states known as the maximal slice states does violate the Svetlichny inequality, and exactly analogous to the two-qubit case, the amount of violation is directly related to the degree of tripartite entanglement. We discuss further interesting properties of the generalized Greenberger-Horne-Zeilinger and maximal slice states.

  8. Charcterization of multipartite entanglement

    International Nuclear Information System (INIS)

    Chong, Bo

    2006-01-01

    In this thesis, we discuss several aspects of the characterization of entanglement in multipartite quantum systems, including detection, classification and quantification of entanglement. First, we discuss triqubit pure entanglement and propose a special true tripartite entanglement, the mixed entanglement, besides the Greenberger-Horne-Zeilinger (GHZ) entanglement and the W entanglement. Then, based on quantitative complementarity relations, we draw entanglement Venn diagrams for triqubit pure states with different entanglements and introduce the total tangle τ (T) to quantify total entanglement of triqubit pure states by defining the union I that is equivalent to the total tangle τ (T) from the mathematical point of view. The generalizations of entanglement Venn diagrams and the union I to N-qubit pure states are also discussed. Finally, based on the ranks of reduced density matrices, we discuss the separability of multiparticle arbitrary-dimensional pure and mixed states, respectively. (orig.)

  9. Charcterization of multipartite entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Chong, Bo

    2006-06-23

    In this thesis, we discuss several aspects of the characterization of entanglement in multipartite quantum systems, including detection, classification and quantification of entanglement. First, we discuss triqubit pure entanglement and propose a special true tripartite entanglement, the mixed entanglement, besides the Greenberger-Horne-Zeilinger (GHZ) entanglement and the W entanglement. Then, based on quantitative complementarity relations, we draw entanglement Venn diagrams for triqubit pure states with different entanglements and introduce the total tangle {tau}{sup (T)} to quantify total entanglement of triqubit pure states by defining the union I that is equivalent to the total tangle {tau}{sup (T)} from the mathematical point of view. The generalizations of entanglement Venn diagrams and the union I to N-qubit pure states are also discussed. Finally, based on the ranks of reduced density matrices, we discuss the separability of multiparticle arbitrary-dimensional pure and mixed states, respectively. (orig.)

  10. q-deformed charged fermion coherent states and SU(3) charged, Hyper-charged fermion coherent states

    International Nuclear Information System (INIS)

    Hao Sanru; Li Guanghua; Long Junyan

    1994-01-01

    By virtue of the algebra of the q-deformed fermion oscillators, the q-deformed charged fermion coherent states and SU(3) charged, hyper-charged fermion coherent states are discussed. The explicit forms of the two kinds of coherent states mentioned above are obtained by making use of the completeness of base vectors in the q-fermion Fock space. By comparing the q-deformed results with the ordinary results, it is found that the q-deformed charged fermion coherent states and SU(3) charged, hyper-charged fermion coherent states are automatically reduced to the ordinary charged fermion coherent states and SU(3) charged hyper-charged fermion coherent states if the deformed parameter q→1

  11. Quantum nonlinear lattices and coherent state vectors

    DEFF Research Database (Denmark)

    Ellinas, Demosthenes; Johansson, M.; Christiansen, Peter Leth

    1999-01-01

    for the state vectors invokes the study of the Riemannian and symplectic geometry of the CSV manifolds as generalized phase spaces. Next, we investigate analytically and numerically the behavior of mean values and uncertainties of some physically interesting observables as well as the modifications...... (FP) model. Based on the respective dynamical symmetries of the models, a method is put forward which by use of the associated boson and spin coherent state vectors (CSV) and a factorization ansatz for the solution of the Schrodinger equation, leads to quasiclassical Hamiltonian equations of motion...... state vectors, and accounts for the quantum correlations of the lattice sites that develop during the time evolution of the systems. (C) 1999 Elsevier Science B.V. All rights reserved....

  12. Multiple Quantum Coherences (MQ) NMR and Entanglement Dynamics in the Mixed-Three-Spin XXX Heisenberg Model with Single-Ion Anisotropy

    Science.gov (United States)

    Hamid, Arian Zad

    2016-12-01

    We analytically investigate Multiple Quantum (MQ) NMR dynamics in a mixed-three-spin (1/2,1,1/2) system with XXX Heisenberg model at the front of an external homogeneous magnetic field B. A single-ion anisotropy property ζ is considered for the spin-1. The intensities dependence of MQ NMR coherences on their orders (zeroth and second orders) for two pairs of spins (1,1/2) and (1/2,1/2) of the favorite tripartite system are obtained. It is also investigated dynamics of the pairwise quantum entanglement for the bipartite (sub)systems (1,1/2) and (1/2,1/2) permanently coupled by, respectively, coupling constants J}1 and J}2, by means of concurrence and fidelity. Then, some straightforward comparisons are done between these quantities and the intensities of MQ NMR coherences and ultimately some interesting results are reported. We also show that the time evolution of MQ coherences based on the reduced density matrix of the pair spins (1,1/2) is closely connected with the dynamics of the pairwise entanglement. Finally, we prove that one can introduce MQ coherence of the zeroth order corresponds to the pair spins (1,1/2) as an entanglement witness at some special time intervals.

  13. Multiple quantum spin dynamics of entanglement

    International Nuclear Information System (INIS)

    Doronin, Serge I.

    2003-01-01

    The dynamics of entanglement is investigated on the basis of exactly solvable models of multiple quantum (MQ) NMR spin dynamics. It is shown that the time evolution of MQ coherences of systems of coupled nuclear spins in solids is directly connected with dynamics of the quantum entanglement. We studied analytically the dynamics of entangled states for two- and three-spin systems coupled by the dipole-dipole interaction. In this case the dynamics of the quantum entanglement is uniquely determined by the time evolution of MQ coherences of the second order. The real part of the density matrix describing MQ dynamics in solids is responsible for MQ coherences of the zeroth order while its imaginary part is responsible for the second order. Thus, one can conclude that the dynamics of the entanglement is connected with transitions from the real part of the density matrix to the imaginary one, and vice versa. A pure state which generalizes the Greenberger-Horne-Zeilinger (GHZ) and W states is found. Different measures of the entanglement of this state are analyzed for tripartite systems

  14. Atom lasers, coherent states, and coherence II. Maximally robust ensembles of pure states

    International Nuclear Information System (INIS)

    Wiseman, H.M.; Vaccaro, John A.

    2002-01-01

    As discussed in the preceding paper [Wiseman and Vaccaro, preceding paper, Phys. Rev. A 65, 043605 (2002)], the stationary state of an optical or atom laser far above threshold is a mixture of coherent field states with random phase, or, equivalently, a Poissonian mixture of number states. We are interested in which, if either, of these descriptions of ρ ss as a stationary ensemble of pure states, is more natural. In the preceding paper we concentrated upon the question of whether descriptions such as these are physically realizable (PR). In this paper we investigate another relevant aspect of these ensembles, their robustness. A robust ensemble is one for which the pure states that comprise it survive relatively unchanged for a long time under the system evolution. We determine numerically the most robust ensembles as a function of the parameters in the laser model: the self-energy χ of the bosons in the laser mode, and the excess phase noise ν. We find that these most robust ensembles are PR ensembles, or similar to PR ensembles, for all values of these parameters. In the ideal laser limit (ν=χ=0), the most robust states are coherent states. As the phase noise or phase dispersion is increased through ν or the self-interaction of the bosons χ, respectively, the most robust states become more and more amplitude squeezed. We find scaling laws for these states, and give analytical derivations for them. As the phase diffusion or dispersion becomes so large that the laser output is no longer quantum coherent, the most robust states become so squeezed that they cease to have a well-defined coherent amplitude. That is, the quantum coherence of the laser output is manifest in the most robust PR ensemble being an ensemble of states with a well-defined coherent amplitude. This lends support to our approach of regarding robust PR ensembles as the most natural description of the state of the laser mode. It also has interesting implications for atom lasers in particular

  15. The application of asymmetric entangled states in quantum games

    International Nuclear Information System (INIS)

    Li Ye; Qin Gan; Zhou Xianyi; Du Jiangfeng

    2006-01-01

    We propose a more general entangling operator in the quantization of Cournot model. It is discovered that the total profit at the Nash equilibrium always achieves maximum once the von Neumann entropy tends to infinity. Moreover, the asymmetry introduced here would cause some 'encouraging' and 'suppressing' effect on players' profit

  16. Experimental demonstration of a Hadamard gate for coherent state qubits

    Energy Technology Data Exchange (ETDEWEB)

    Tipsmark, Anders; Laghaout, Amine; Andersen, Ulrik L. [Department of Physics, Technical University of Denmark, Fysikvej, DK-2800 Kgs. Lyngby (Denmark); Dong, Ruifang [Quantum Frequency Standards Division, National Time Service Center (NTSC), Chinese Academy of Sciences, 710600 Lintong, Shaanxi (China); Department of Physics, Technical University of Denmark, Fysikvej, DK-2800 Kgs. Lyngby (Denmark); Marek, Petr [Department of Optics, Palacky University, 17. listopadu 12, CZ-77146 Olomouc (Czech Republic); Jezek, Miroslav [Department of Optics, Palacky University, 17. listopadu 12, CZ-77146 Olomouc (Czech Republic); Department of Physics, Technical University of Denmark, Fysikvej, DK-2800 Kgs. Lyngby (Denmark)

    2011-11-15

    We discuss and make an experimental test of a probabilistic Hadamard gate for coherent state qubits. The scheme is based on linear optical components, nonclassical resources, and the joint projective action of a photon counter and a homodyne detector. We experimentally characterize the gate for the coherent states of the computational basis by full tomographic reconstruction of the transformed output states. Based on the parameters of the experiment, we simulate the fidelity for all coherent state qubits on the Bloch sphere.

  17. Experimental demonstration of a Hadamard gate for coherent state qubits

    DEFF Research Database (Denmark)

    Tipsmark, Anders; Dong, Ruifang; Laghaout, Amine

    2011-01-01

    We discuss and make an experimental test of a probabilistic Hadamard gate for coherent state qubits. The scheme is based on linear optical components, nonclassical resources, and the joint projective action of a photon counter and a homodyne detector. We experimentally characterize the gate for t...... for the coherent states of the computational basis by full tomographic reconstruction of the transformed output states. Based on the parameters of the experiment, we simulate the fidelity for all coherent state qubits on the Bloch sphere....

  18. Proposal for demonstration of long-range cluster state entanglement in the presence of photon loss

    Directory of Open Access Journals (Sweden)

    Thomas Nutz

    2017-06-01

    Full Text Available Photonic cluster states are a crucial resource for optical quantum computing. Recently a quantum dot single photon source has been demonstrated to produce strings of single photons in a small linear cluster state. Sources of this kind could produce much larger cluster states, but high photon loss rates make it impossible to characterize the entanglement generated by quantum state tomography. We present a benchmarking method for such sources that can be used to demonstrate useful long-range entanglement with currently available collection/detection efficiencies below 1%. The measurement of the polarization state of single photons in different bases can provide an estimate for the three-qubit correlation function ⟨ZXZ⟩. This value constrains correlations spanning more than three qubits, which in turn provide a lower bound for the localizable entanglement between any two qubits in the large state produced by the source. Finite localizable entanglement can be established by demonstrating ⟨ZXZ⟩>23. This result enables photonic experiments demonstrating computationally useful entanglement with currently available technology.

  19. Construction of classical and non-classical coherent photon states

    International Nuclear Information System (INIS)

    Honegger, Reinhard; Rieckers, Alfred

    2001-01-01

    It is well known that the diagonal matrix elements of all-order coherent states for the quantized electromagnetic field have to constitute a Poisson distribution with respect to the photon number. The present work gives first the summary of a constructive scheme, developed previously, which determines in terms of an auxiliary Hilbert space all possible off-diagonal elements for the all-order coherent density operators in Fock space and which identifies all extremal coherent states. In terms of this formalism it is then demonstrated that each pure classical coherent state is a uniformly phase locked (quantum) coherent superposition of number states. In a mixed classical coherent state the exponential of the locked phase is shown to be replaced by a rather arbitrary unitary operator in the auxiliary Hilbert space. On the other hand classes for density operators--and for their normally ordered characteristic functions--of non-classical coherent states are obtained, especially by rather weak perturbations of classical coherent states. These illustrate various forms of breaking the classical uniform phase locking and exhibit rather peculiar properties, such as asymmetric fluctuations for the quadrature phase operators. Several criteria for non-classicality are put forward and applied to the elaborated non-classical coherent states, providing counterexamples against too simple arguments for classicality. It is concluded that classicality is only a stable concept for coherent states with macroscopic intensity

  20. Simplified Scheme for Teleportation of a Multipartite Quantum State Using a Single Entangled Pair

    Institute of Scientific and Technical Information of China (English)

    YAN Li-Hua; GAO Yun-Feng

    2009-01-01

    A simple scheme for teleporting an unknown M-qubit cat-like state is proposed.The steps of this scheme can be summarized simpIy: disentangle-teleport-reconstruct entanglement.If proper unitary operations and measurements from senders are given, the teleportation of an unknown M-qubit cat-like state can be converted into single qubit teleportation.In the meantime, the receiver should also carry out right unitary operations with the introduction of appropriate ancillary qubits to confirm the successful teleportation of the demanded entangled state.The present scheme can be generalized to teleport an unknown M-quNit state, i.e., an M-quNit state can be teleported by a single quNit entangled pair.

  1. Symmetric structures of coherent states in superfluid helium-4

    International Nuclear Information System (INIS)

    Ahmad, M.

    1981-02-01

    Coherent States in superfluid helium-4 are discussed and symmetric structures are assigned to these states. Discrete and continuous series functions are exhibited for such states. Coherent State structure has been assigned to oscillating condensed bosons and their inter-relations and their effects on the superfluid system are analysed. (author)

  2. Symmetric discrete coherent states for n-qubits

    International Nuclear Information System (INIS)

    Muñoz, C; Klimov, A B; Sánchez-Soto, L L

    2012-01-01

    We put forward a method of constructing discrete coherent states for n qubits. After establishing appropriate displacement operators, the coherent states appear as displaced versions of a fiducial vector that is fixed by imposing a number of natural symmetry requirements on its Q-function. Using these coherent states, we establish a partial order in the discrete phase space, which allows us to picture some n-qubit states as apparent distributions. We also analyze correlations in terms of sums of squared Q-functions. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (paper)

  3. Einstein-Podolsky-Rosen entanglement and steering in two-well Bose-Einstein-condensate ground states

    Science.gov (United States)

    He, Q. Y.; Drummond, P. D.; Olsen, M. K.; Reid, M. D.

    2012-08-01

    We consider how to generate and detect Einstein-Podolsky-Rosen (EPR) entanglement and the steering paradox between groups of atoms in two separated potential wells in a Bose-Einstein condensate. We present experimental criteria for this form of entanglement and propose experimental strategies for detecting entanglement using two- or four-mode ground states. These approaches use spatial and/or internal modes. We also present higher-order criteria that act as signatures to detect the multiparticle entanglement present in this system. We point out the difference between spatial entanglement using separated detectors and other types of entanglement that do not require spatial separation. The four-mode approach with two spatial and two internal modes results in an entanglement signature with spatially separated detectors, conceptually similar to the original EPR paradox.

  4. Coherent-state representation for the QCD ground state

    International Nuclear Information System (INIS)

    Celenza, L.S.; Ji, C.; Shakin, C.M.

    1987-01-01

    We make use of the temporal gauge to construct a coherent state which is meant to describe the gluon condensate in the QCD vacuum under the assumption that the condensate is in a zero-momentum mode. The state so constructed is a color singlet and will yield finite, nonperturbative vacuum expectation values such as . (This matrix element is found to have a value of about 0.012 GeV 4 in QCD sum-rule studies.)

  5. New Three-Mode Squeezing Operators Gained via Tripartite Entangled State Representation

    International Nuclear Information System (INIS)

    Jiang Nianquan; Fan Hongyi

    2008-01-01

    We show that the Agarwal-Simon representation of single-mode squeezed states can be generalized to find new form of three-mode squeezed states. We use the tripartite entangled state representations |p,y,z> and |x,u,v> to realize this goal.

  6. Proof of the insecurity of quantum secret sharing based on the Smolin bound entangled states

    International Nuclear Information System (INIS)

    Ya-Fei, Yu; Zhi-Ming, Zhang

    2009-01-01

    This paper reconsiders carefully the possibility of using the Smolin bound entangled states as the carrier for sharing quantum secret. It finds that the process of quantum secret sharing based on Smolin states has insecurity though the Smolin state was reported to violate maximally the two-setting Bell-inequality. The general proof is given. (general)

  7. Generation of Werner states and preservation of entanglement in a noisy environment

    Energy Technology Data Exchange (ETDEWEB)

    Jakobczyk, Lech [Institute of Theoretical Physics, University of Wroclaw, Pl. M. Borna 9, 50-204 Wroclaw (Poland)]. E-mail: ljak@ift.uni.wroc.pl; Jamroz, Anna [Institute of Theoretical Physics, University of Wroclaw, Pl. M. Borna 9, 50-204 Wroclaw (Poland)

    2005-12-05

    We study the influence of noisy environment on the evolution of two-atomic system in the presence of collective damping. Generation of Werner states as asymptotic stationary states of evolution is described. We also show that for some initial states the amount of entanglement is preserved during the evolution.

  8. Improving spatial resolution in quantum imaging beyond the Rayleigh diffraction limit using multiphoton W entangled states

    Energy Technology Data Exchange (ETDEWEB)

    Wen Jianming, E-mail: jianming.wen@gmail.co [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Department of Physics, University of Arkansas, Fayetteville, AR 72701 (United States); Du, Shengwang [Department of Physics, Hong Kong University of Science and Technology, Clear Bay (Hong Kong); Xiao Min [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Department of Physics, University of Arkansas, Fayetteville, AR 72701 (United States); School of Modern Engineering and Applied Science, Nanjing University, Nanjing 210093 (China)

    2010-08-23

    Using multiphoton entangled states, we demonstrate improving spatial imaging resolution beyond the Rayleigh diffraction limit in the quantum imaging process. In particular, we examine resolution enhancement using triphoton W state and a factor of 2 is achievable as with the use of the Greenberger-Horne-Zeilinger state, compared to using a classical-light source.

  9. Coherent states and covariant semi-spectral measures

    International Nuclear Information System (INIS)

    Scutaru, H.

    1976-01-01

    The close connection between Mackey's theory of imprimitivity systems and the so called generalized coherent states introduced by Perelomov is established. Coherent states give a covariant description of the ''localization'' of a quantum system in the phase space in a similar way as the imprimitivity systems give a covariant description of the localization of a quantum system in the configuration space. The observation that for any system of coherent states one can define a covariant semi-spectral measure made possible a rigurous formulation of this idea. A generalization of the notion of coherent states is given. Covariant semi-spectral measures associated with systems of coherent states are defined and characterized. Necessary and sufficient conditions for a unitary representation of a Lie group to be i) a subrepresentation of an induced one and ii) a representation with coherent states are given (author)

  10. Gaussian cloning of coherent states with known phases

    International Nuclear Information System (INIS)

    Alexanian, Moorad

    2006-01-01

    The fidelity for cloning coherent states is improved over that provided by optimal Gaussian and non-Gaussian cloners for the subset of coherent states that are prepared with known phases. Gaussian quantum cloning duplicates all coherent states with an optimal fidelity of 2/3. Non-Gaussian cloners give optimal single-clone fidelity for a symmetric 1-to-2 cloner of 0.6826. Coherent states that have known phases can be cloned with a fidelity of 4/5. The latter is realized by a combination of two beam splitters and a four-wave mixer operated in the nonlinear regime, all of which are realized by interaction Hamiltonians that are quadratic in the photon operators. Therefore, the known Gaussian devices for cloning coherent states are extended when cloning coherent states with known phases by considering a nonbalanced beam splitter at the input side of the amplifier

  11. Bounds on absolutely maximally entangled states from shadow inequalities, and the quantum MacWilliams identity

    Science.gov (United States)

    Huber, Felix; Eltschka, Christopher; Siewert, Jens; Gühne, Otfried

    2018-04-01

    A pure multipartite quantum state is called absolutely maximally entangled (AME), if all reductions obtained by tracing out at least half of its parties are maximally mixed. Maximal entanglement is then present across every bipartition. The existence of such states is in many cases unclear. With the help of the weight enumerator machinery known from quantum error correction and the shadow inequalities, we obtain new bounds on the existence of AME states in dimensions larger than two. To complete the treatment on the weight enumerator machinery, the quantum MacWilliams identity is derived in the Bloch representation. Finally, we consider AME states whose subsystems have different local dimensions, and present an example for a 2×3×3×3 system that shows maximal entanglement across every bipartition.

  12. Electronic Entanglement Concentration for the Concatenated Greenberger-Horne-Zeilinger State

    Science.gov (United States)

    Ding, Shang-Ping; Zhou, Lan; Gu, Shi-Pu; Wang, Xing-Fu; Sheng, Yu-Bo

    2017-06-01

    Concatenated Greenberger-Horne-Zeilinger (C-GHZ) state, which encodes many physical qubits in a logic qubit will have important applications in both quantum communication and computation. In this paper, we will describe an entanglement concentration protocol (ECP) for electronic C-GHZ state, by exploiting the electronic polarization beam splitters (PBSs) and charge detection. This protocol has several advantages. First, the parties do not need to know the exact coefficients of the initial less-entangled C-GHZ state, which makes this protocol feasible. Second, with the help of charge detection, the distilled maximally entangled C-GHZ state can be remained for future application. Third, this protocol can be repeated to obtain a higher success probability. We hope that this protocol can be useful in future quantum computation based on electrons.

  13. Converting multilevel nonclassicality into genuine multipartite entanglement

    Science.gov (United States)

    Regula, Bartosz; Piani, Marco; Cianciaruso, Marco; Bromley, Thomas R.; Streltsov, Alexander; Adesso, Gerardo

    2018-03-01

    Characterizing genuine quantum resources and determining operational rules for their manipulation are crucial steps to appraise possibilities and limitations of quantum technologies. Two such key resources are nonclassicality, manifested as quantum superposition between reference states of a single system, and entanglement, capturing quantum correlations among two or more subsystems. Here we present a general formalism for the conversion of nonclassicality into multipartite entanglement, showing that a faithful reversible transformation between the two resources is always possible within a precise resource-theoretic framework. Specializing to quantum coherence between the levels of a quantum system as an instance of nonclassicality, we introduce explicit protocols for such a mapping. We further show that the conversion relates multilevel coherence and multipartite entanglement not only qualitatively, but also quantitatively, restricting the amount of entanglement achievable in the process and in particular yielding an equality between the two resources when quantified by fidelity-based geometric measures.

  14. General linear-optical quantum state generation scheme: Applications to maximally path-entangled states

    International Nuclear Information System (INIS)

    VanMeter, N. M.; Lougovski, P.; Dowling, Jonathan P.; Uskov, D. B.; Kieling, K.; Eisert, J.

    2007-01-01

    We introduce schemes for linear-optical quantum state generation. A quantum state generator is a device that prepares a desired quantum state using product inputs from photon sources, linear-optical networks, and postselection using photon counters. We show that this device can be concisely described in terms of polynomial equations and unitary constraints. We illustrate the power of this language by applying the Groebner-basis technique along with the notion of vacuum extensions to solve the problem of how to construct a quantum state generator analytically for any desired state, and use methods of convex optimization to identify bounds to success probabilities. In particular, we disprove a conjecture concerning the preparation of the maximally path-entangled |n,0>+|0,n> (NOON) state by providing a counterexample using these methods, and we derive a new upper bound on the resources required for NOON-state generation

  15. Strong violations of Bell-type inequalities for path-entangled number states

    International Nuclear Information System (INIS)

    Wildfeuer, Christoph F.; Dowling, Jonathan P.; Lund, Austin P.

    2007-01-01

    We show that nonlocal correlation experiments on the two spatially separated modes of a maximally path-entangled number state may be performed. They lead to a violation of a Clauser-Horne Bell inequality for any finite photon number N. We also present an analytical expression for the two-mode Wigner function of a maximally path-entangled number state and investigate a Clauser-Horne-Shimony-Holt Bell inequality for such a state. We test other Bell-type inequalities. Some are violated by a constant amount for any N

  16. Quantum Entanglement and Shannon Information Entropy for the Doubly Excited Resonance State in Positronium Negative Ion

    Directory of Open Access Journals (Sweden)

    Chien-Hao Lin

    2015-09-01

    Full Text Available In the present work, we report an investigation on quantum entanglement in the doubly excited 2s2 1Se resonance state of the positronium negative ion by using highly correlated Hylleraas type wave functions, determined by calculation of the density of resonance states with the stabilization method. Once the resonance wave function is obtained, the spatial (electron-electron orbital entanglement entropies (von Neumann and linear can be quantified using the Schmidt decomposition method. Furthermore, Shannon entropy in position space, a measure for localization (or delocalization for such a doubly excited state, is also calculated.

  17. Emergence of entanglement with temperature and time in factorization-surface states

    Science.gov (United States)

    Chanda, Titas; Das, Tamoghna; Sadhukhan, Debasis; Pal, Amit Kumar; SenDe, Aditi; Sen, Ujjwal

    2018-01-01

    There exist zero-temperature states in quantum many-body systems that are fully factorized, thereby possessing vanishing entanglement, and hence being of no use as resource in quantum information processing tasks. Such states can become useful for quantum protocols when the temperature of the system is increased, and when the system is allowed to evolve under either the influence of an external environment, or a closed unitary evolution driven by its own Hamiltonian due to a sudden change in the system parameters. Using the one-dimensional anisotropic XY model in a uniform and an alternating transverse magnetic field, we show that entanglement of the thermal states, corresponding to the factorization points in the space of the system parameters, revives once or twice with increasing temperature. We also study the closed unitary evolution of the quantum spin chain driven out of equilibrium when the external magnetic fields are turned off, and show that considerable entanglement is generated during the dynamics, when the initial state has vanishing entanglement. Interestingly, we find that creation of entanglement for a pair of spins is possible when the system is made open to an external heat bath, interacting with the system through that spin-pair via a repetitive quantum interaction.

  18. Evolution of entanglement under echo dynamics

    International Nuclear Information System (INIS)

    Prosen, Tomaz; Znidaric, Marko; Seligman, Thomas H.

    2003-01-01

    Echo dynamics and fidelity are often used to discuss stability in quantum-information processing and quantum chaos. Yet fidelity yields no information about entanglement, the characteristic property of quantum mechanics. We study the evolution of entanglement in echo dynamics. We find qualitatively different behavior between integrable and chaotic systems on one hand and between random and coherent initial states for integrable systems on the other. For the latter the evolution of entanglement is given by a classical time scale. Analytic results are illustrated numerically in a Jaynes-Cummings model

  19. Coherent states of systems with quadratic Hamiltonians

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V.G., E-mail: bagrov@phys.tsu.ru [Department of Physics, Tomsk State University, Tomsk (Russian Federation); Gitman, D.M., E-mail: gitman@if.usp.br [Tomsk State University, Tomsk (Russian Federation); Pereira, A.S., E-mail: albertoufcg@hotmail.com [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Fisica

    2015-06-15

    Different families of generalized coherent states (CS) for one-dimensional systems with general time-dependent quadratic Hamiltonian are constructed. In principle, all known CS of systems with quadratic Hamiltonian are members of these families. Some of the constructed generalized CS are close enough to the well-known due to Schroedinger and Glauber CS of a harmonic oscillator; we call them simply CS. However, even among these CS, there exist different families of complete sets of CS. These families differ by values of standard deviations at the initial time instant. According to the values of these initial standard deviations, one can identify some of the families with semiclassical CS. We discuss properties of the constructed CS, in particular, completeness relations, minimization of uncertainty relations and so on. As a unknown application of the general construction, we consider different CS of an oscillator with a time dependent frequency. (author)

  20. Coherent states of systems with quadratic Hamiltonians

    International Nuclear Information System (INIS)

    Bagrov, V.G.; Gitman, D.M.; Pereira, A.S.

    2015-01-01

    Different families of generalized coherent states (CS) for one-dimensional systems with general time-dependent quadratic Hamiltonian are constructed. In principle, all known CS of systems with quadratic Hamiltonian are members of these families. Some of the constructed generalized CS are close enough to the well-known due to Schroedinger and Glauber CS of a harmonic oscillator; we call them simply CS. However, even among these CS, there exist different families of complete sets of CS. These families differ by values of standard deviations at the initial time instant. According to the values of these initial standard deviations, one can identify some of the families with semiclassical CS. We discuss properties of the constructed CS, in particular, completeness relations, minimization of uncertainty relations and so on. As a unknown application of the general construction, we consider different CS of an oscillator with a time dependent frequency. (author)

  1. Fuzzy spheres from inequivalent coherent states quantizations

    International Nuclear Information System (INIS)

    Gazeau, Jean Pierre; Huguet, Eric; Lachieze-Rey, Marc; Renaud, Jacques

    2007-01-01

    The existence of a family of coherent states (CS) solving the identity in a Hilbert space allows, under certain conditions, to quantize functions defined on the measure space of CS parameters. The application of this procedure to the 2-sphere provides a family of inequivalent CS quantizations based on the spin spherical harmonics (the CS quantization from usual spherical harmonics appears to give a trivial issue for the Cartesian coordinates). We compare these CS quantizations to the usual (Madore) construction of the fuzzy sphere. Due to these differences, our procedure yields new types of fuzzy spheres. Moreover, the general applicability of CS quantization suggests similar constructions of fuzzy versions of a large variety of sets

  2. Optimal dynamics for quantum-state and entanglement transfer through homogeneous quantum systems

    International Nuclear Information System (INIS)

    Banchi, L.; Apollaro, T. J. G.; Cuccoli, A.; Vaia, R.; Verrucchi, P.

    2010-01-01

    The capability of faithfully transmit quantum states and entanglement through quantum channels is one of the key requirements for the development of quantum devices. Different solutions have been proposed to accomplish such a challenging task, which, however, require either an ad hoc engineering of the internal interactions of the physical system acting as the channel or specific initialization procedures. Here we show that optimal dynamics for efficient quantum-state and entanglement transfer can be attained in generic quantum systems with homogeneous interactions by tuning the coupling between the system and the two attached qubits. We devise a general procedure to determine the optimal coupling, and we explicitly implement it in the case of a channel consisting of a spin-(1/2)XY chain. The quality of quantum-state and entanglement transfer is found to be very good and, remarkably, almost independent of the channel length.

  3. Heralded noiseless amplification for single-photon entangled state with polarization feature

    Science.gov (United States)

    Wang, Dan-Dan; Jin, Yu-Yu; Qin, Sheng-Xian; Zu, Hao; Zhou, Lan; Zhong, Wei; Sheng, Yu-Bo

    2018-03-01

    Heralded noiseless amplification is a promising method to overcome the transmission photon loss in practical noisy quantum channel and can effectively lengthen the quantum communication distance. Single-photon entanglement is an important resource in current quantum communications. Here, we construct two single-photon-assisted heralded noiseless amplification protocols for the single-photon two-mode entangled state and single-photon three-mode W state, respectively, where the single-photon qubit has an arbitrary unknown polarization feature. After the amplification, the fidelity of the single-photon entangled state can be increased, while the polarization feature of the single-photon qubit can be well remained. Both the two protocols only require the linear optical elements, so that they can be realized under current experimental condition. Our protocols may be useful in current and future quantum information processing.

  4. Entangling two transportable neutral atoms via local spin exchange.

    Science.gov (United States)

    Kaufman, A M; Lester, B J; Foss-Feig, M; Wall, M L; Rey, A M; Regal, C A

    2015-11-12

    To advance quantum information science, physical systems are sought that meet the stringent requirements for creating and preserving quantum entanglement. In atomic physics, robust two-qubit entanglement is typically achieved by strong, long-range interactions in the form of either Coulomb interactions between ions or dipolar interactions between Rydberg atoms. Although such interactions allow fast quantum gates, the interacting atoms must overcome the associated coupling to the environment and cross-talk among qubits. Local interactions, such as those requiring substantial wavefunction overlap, can alleviate these detrimental effects; however, such interactions present a new challenge: to distribute entanglement, qubits must be transported, merged for interaction, and then isolated for storage and subsequent operations. Here we show how, using a mobile optical tweezer, it is possible to prepare and locally entangle two ultracold neutral atoms, and then separate them while preserving their entanglement. Ground-state neutral atom experiments have measured dynamics consistent with spin entanglement, and have detected entanglement with macroscopic observables; we are now able to demonstrate position-resolved two-particle coherence via application of a local gradient and parity measurements. This new entanglement-verification protocol could be applied to arbitrary spin-entangled states of spatially separated atoms. The local entangling operation is achieved via spin-exchange interactions, and quantum tunnelling is used to combine and separate atoms. These techniques provide a framework for dynamically entangling remote qubits via local operations within a large-scale quantum register.

  5. Remote entanglement distribution

    International Nuclear Information System (INIS)

    Sanders, B.C.; Gour, G.; Meyer, D.A.

    2005-01-01

    Full text: Shared bipartite entanglement is a crucial shared resource for many quantum information tasks such as teleportation, entanglement swapping, and remote state preparation. In general different nodes of a quantum network share an entanglement resource, such as ebits, that are consumed during the task. In practice, generating entangled states is expensive, but here we establish a protocol by which a quantum network requires only a single supplier of entanglement to all nodes who, by judicious measurements and classical communication, provides the nodes with a unique pair wise entangled state independent of the measurement outcome. Furthermore, we extend this result to a chain of suppliers and nodes, which enables an operational interpretation of concurrence. In the special case that the supplier shares bipartite states with two nodes, and such states are pure and maximally entangled, our protocol corresponds to entanglement swapping. However, in the practical case that initial shared entanglement between suppliers and nodes involves partially entangled or mixed states, we show that general local operations and classical communication by all parties (suppliers and nodes) yields distributions of entangled states between nodes. In general a distribution of bipartite entangled states between any two nodes will include states that do not have the same entanglement; thus we name this general process remote entanglement distribution. In our terminology entanglement swapping with partially entangled states is a particular class of remote entanglement distribution protocols. Here we identify which distributions of states that can or cannot be created by remote entanglement distribution. In particular we prove a powerful theorem that establishes an upper bound on the entanglement of formation that can be produced between two qubit nodes. We extend this result to the case of a linear chain of parties that play the roles of suppliers and nodes; this extension provides

  6. Reconstruction of high-dimensional states entangled in orbital angular momentum using mutually unbiased measurements

    CSIR Research Space (South Africa)

    Giovannini, D

    2013-06-01

    Full Text Available : QELS_Fundamental Science, San Jose, California United States, 9-14 June 2013 Reconstruction of High-Dimensional States Entangled in Orbital Angular Momentum Using Mutually Unbiased Measurements D. Giovannini1, ⇤, J. Romero1, 2, J. Leach3, A...

  7. Teleportation of an Arbitrary Two-Atom Entangled State via Thermal Cavity

    Institute of Scientific and Technical Information of China (English)

    WANG Dong; LIU Yi-Min; GAO Gan; SHI Shou-Hua; ZHANG Zhan-Jun

    2007-01-01

    We present an experimentally feasible scheme for teleportation of an arbitrary unknown two-atom entangled state by using two-atom Bell states in driven thermal cavities.In this scheme,the effects of thermal field and cavity decay can be all eliminated.Moreover,the present scheme is feasible according to current technologies.

  8. Probing quantum entanglement, quantum discord, classical correlation, and the quantum state without disturbing them

    International Nuclear Information System (INIS)

    Li Zhenni; Jin Jiasen; Yu Changshui

    2011-01-01

    We present schemes for a type of one-parameter bipartite quantum state to probe quantum entanglement, quantum discord, the classical correlation, and the quantum state based on cavity QED. It is shown that our detection does not influence all these measured quantities. We also discuss how the spontaneous emission introduced by our probe atom influences our detection.

  9. Entanglement and quantum state geometry of a spin system with all-range Ising-type interaction

    Science.gov (United States)

    Kuzmak, A. R.

    2018-04-01

    The evolution of an N spin-1/2 system with all-range Ising-type interaction is considered. For this system we study the entanglement of one spin with the rest spins. It is shown that the entanglement depends on the number of spins and the initial state. Also, the geometry of the manifold, which contains entangled states, is obtained. For this case we find the dependence of entanglement on the scalar curvature of the manifold and examine it for different numbers of spins in the system. Finally we show that the transverse magnetic field leads to a change in the manifold topology.

  10. Efficient quantum secret sharing scheme with two-particle entangled states

    International Nuclear Information System (INIS)

    Zhu Zhen-Chao; Fu An-Min; Zhang Yu-Qing

    2011-01-01

    This paper proposes a protocol for multi-party quantum secret sharing utilizing four non-orthogonal two-particle entangled states following some ideas in the schemes proposed by Liu et al. (2006 Chin. Phys. Lett. 23 3148) and Zhang et al. (2009 Chin. Phys. B 18 2149) respectively. The theoretical efficiency for qubits of the new protocol is improved from 50% to approaching 100%. All the entangled states can be used for generating the private key except those used for the eavesdropping check. The validity of a probable attack called opaque cheat attack to this kind of protocols is considered in the paper for the first time. (general)

  11. Teleportation of a two-atom entangled state using a single EPR pair in cavity QED

    Institute of Scientific and Technical Information of China (English)

    Ji Xin; Li Ke; Zhang Shou

    2006-01-01

    We propose a scheme for teleporting a two-atom entangled state in cavity quantum electrodynamics(QED).In the scheme,we choose a single Einstein-Podolsky-Rosen (EPR) pair as the quantum channel which is shared by the sender and the receiver.By using the atom-cavity-field interaction and introducing an additional atom,we can teleport the two-atom entangled state successfully with a probability of 1.0.Moreover,we show that the scheme is insensitive to cavity decay and thermal field.

  12. Reply to the comment on 'Correlative amplitude-operational phase entanglement embodied by the EPR-pair eigenstate ({eta})'[42.50.Dv Nonclassical states of the electromagnetic field, including entangled photon states; quantum state engineering and measurements; 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox, Bell's inequalities, GHZ states, etc.);

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Hongyi [CCAST (World Laboratory), PO Box 8730, Beijing 100080, People' s Republic of (China); Hu, Haipeng [Department of Material Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People' s Republic of China (China)

    2003-01-10

    We compare and contrast our amplitude-phase entanglement with that of Luis in his comment. Luis's entangled state is defined in a finite Fock space. His comment on the operational phase operator seems to be contradicting the original meaning of Mandel et al. (reply)

  13. Reply to the comment on "Correlative amplitude-operational phase entanglement embodied by the EPR-pair eigenstate |eta) 42.50.Dv Nonclassical states of the electromagnetic field, including entangled photon states; quantum state engineering and measurements; 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox, Bell's inequalities, GHZ states, etc.)"

    CERN Document Server

    Fan, H

    2003-01-01

    We compare and contrast our amplitude-phase entanglement with that of Luis in his comment. Luis's entangled state is defined in a finite Fock space. His comment on the operational phase operator seems to be contradicting the original meaning of Mandel et al. (reply)

  14. Multipartite entanglement gambling: The power of asymptotic state transformations assisted by a sublinear amount of quantum communication

    International Nuclear Information System (INIS)

    Thapliyal, Ashish V.; Smolin, John A.

    2003-01-01

    Reversible state transformations under entanglement nonincreasing operations give rise to entanglement measures. It is well known that asymptotic local operations and classical communication (LOCC) are required to get a simple operational measure of bipartite pure state entanglement. For bipartite mixed states and multipartite pure states it is likely that a more powerful class of operations will be needed. To this end more powerful versions of state transformations (or reducibilities), namely, LOCCq (asymptotic LOCC with a sublinear amount of quantum communication) and CLOCC (asymptotic LOCC with catalysis) have been considered in the literature. In this paper we show that LOCCq state transformations are only as powerful as asymptotic LOCC state transformations for multipartite pure states. The basic tool we use is multipartite entanglement gambling: Any pure multipartite entangled state can be transformed to an Einstein-Podolsky-Rosen pair shared by some pair of parties and any irreducible m-party pure state (m≥2) can be used to create any other state (pure or mixed) using LOCC. We consider applications of multipartite entanglement gambling to multipartite distillability and to characterizations of multipartite minimal entanglement generating sets. We briefly consider generalizations of this result to mixed states by defining the class of cat-distillable states, i.e., states from which cat states (vertical bar 0 xm >+vertical bar 1 xm >) may be distilled

  15. GHZ argument for four-qubit entangled states in the presence of white and colored noise

    International Nuclear Information System (INIS)

    Shi Mingjun; Ren Changliang; Chong Bo; Du Jiangfeng

    2008-01-01

    Greenberger-Horn-Zeilinger (GHZ) argument of nonlocality without inequalities is extended to the case of four-qubit mixed states. Three different kinds of entangled states are analyzed in presence of white and colored noise. The nonlocality properties of these states will be weakened and destroyed by the noise. We found that all these states have the same ability to resist the influence of white noise, while the cluster state is the most robust against colored noise

  16. Driving a mechanical resonator into coherent states via random measurements

    International Nuclear Information System (INIS)

    Garcia, Ll; Wu, L-A; Chhajlany, R W; Li, Y

    2013-01-01

    We propose dynamical schemes to engineer coherent states of a mechanical resonator (MR) coupled to an ancillary, superconducting flux qubit. The flux qubit, when repeatedly projected on to its ground state, drives the MR into a coherent state in probabilistic, albeit heralded fashion. Assuming no operations on the state of the MR during the protocol, coherent states are successfully generated only up to a certain value of the displacement parameter. This restriction can be overcome at the cost of a one-time operation on the initial state of the MR. We discuss the possibility of experimental realization of the presented schemes. (paper)

  17. On the dynamics of generalized coherent states

    International Nuclear Information System (INIS)

    Nikolov, B.A.; Trifonov, D.A.

    1981-01-01

    Using the Klauder approach the stable evolution of generalized coherent states (GCS) for some groups (SU(2), SU(1.1) and U(N)) is considered and it is shown that one and the same classical solution z(t) can correctly characterize the quantum evolution for many different (in general nonequivalent) systems. As examples some concrete systems are treated in greater detail: it is obtained that the nonstationary systems of the singular oscillator, of the particle motion in a magnetic field and of the oscillator with a friction all have stable SU(1.1) GCS whose quantum evolution is determined by one and the same classical function z(t). The physical properties of the constructed SU(1.1)GCS are discussed and it is shown particularly that in the case of discrete series Dsub(k)sup((+)) they are those states for which the quantum mean value coincides with the statistical one for an oscillator in a thermostat [ru

  18. Witnessing Multipartite Entanglement by Detecting Asymmetry

    Directory of Open Access Journals (Sweden)

    Davide Girolami

    2017-03-01

    Full Text Available The characterization of quantum coherence in the context of quantum information theory and its interplay with quantum correlations is currently subject of intense study. Coherence in a Hamiltonian eigenbasis yields asymmetry, the ability of a quantum system to break a dynamical symmetry generated by the Hamiltonian. We here propose an experimental strategy to witness multipartite entanglement in many-body systems by evaluating the asymmetry with respect to an additive Hamiltonian. We test our scheme by simulating asymmetry and entanglement detection in a three-qubit Greenberger–Horne–Zeilinger (GHZ diagonal state.

  19. Statistical Aspects of Coherent States of the Higgs Algebra

    Science.gov (United States)

    Shreecharan, T.; Kumar, M. Naveen

    2018-04-01

    We construct and study various aspects of coherent states of a polynomial angular momentum algebra. The coherent states are constructed using a new unitary representation of the nonlinear algebra. The new representation involves a parameter γ that shifts the eigenvalues of the diagonal operator J 0.

  20. Experimental demonstration of macroscopic quantum coherence in Gaussian states

    DEFF Research Database (Denmark)

    Marquardt, C.; Andersen, Ulrik Lund; Leuchs, G.

    2007-01-01

    We witness experimentally the presence of macroscopic coherence in Gaussian quantum states using a recently proposed criterion [E. G. Cavalcanti and M. D. Reid, Phys. Rev. Lett. 97 170405 (2006)]. The macroscopic coherence stems from interference between macroscopically distinct states in phase...

  1. Non-linear wave packet dynamics of coherent states

    Indian Academy of Sciences (India)

    In recent years, the non-linear quantum dynamics of these states have revealed some striking features. It was found that under the action of a Hamil- tonian which is a non-linear function of the photon operator(s) only, an initial coherent state loses its coherent structure quickly due to quantum dephasing induced by the non-.

  2. Coherent states of general time-dependent harmonic oscillator

    Indian Academy of Sciences (India)

    Abstract. By introducing an invariant operator, we obtain exact wave functions for a general time-dependent quadratic harmonic oscillator. The coherent states, both in x- and p-spaces, are calculated. We confirm that the uncertainty product in coherent state is always larger than Η/2 and is equal to the minimum of the ...

  3. Completeness for coherent states in a magnetic–solenoid field

    International Nuclear Information System (INIS)

    Bagrov, V G; Gavrilov, S P; Gitman, D M; Górska, K

    2012-01-01

    This paper completes our study of coherent states in the so-called magnetic–solenoid field (a collinear combination of a constant uniform magnetic field and Aharonov–Bohm solenoid field) presented in Bagrov et al (2010 J. Phys. A: Math. Theor. 43 354016, 2011 J. Phys. A: Math. Theor. 44 055301). Here, we succeeded in proving nontrivial completeness relations for non-relativistic and relativistic coherent states in such a field. In addition, we solve here the relevant Stieltjes moment problem and present a comparative analysis of our coherent states and the well-known, in the case of pure uniform magnetic field, Malkin–Man’ko coherent states. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (paper)

  4. The coherent state on SUq(2) homogeneous space

    International Nuclear Information System (INIS)

    Aizawa, N; Chakrabarti, R

    2009-01-01

    The generalized coherent states for quantum groups introduced by Jurco and StovIcek are studied for the simplest example SU q (2) in full detail. It is shown that the normalized SU q (2) coherent states enjoy the property of completeness, and allow a resolution of the unity. This feature is expected to play a key role in the application of these coherent states in physical models. The homogeneous space of SU q (2), i.e. the q-sphere of Podles, is reproduced in complex coordinates by using the coherent states. Differential calculus in the complex form on the homogeneous space is developed. The high spin limit of the SU q (2) coherent states is also discussed.

  5. Genuine tripartite entangled states with a local hidden-variable model

    International Nuclear Information System (INIS)

    Toth, Geza; Acin, Antonio

    2006-01-01

    We present a family of three-qubit quantum states with a basic local hidden-variable model. Any von Neumann measurement can be described by a local model for these states. We show that some of these states are genuine three-partite entangled and also distillable. The generalization for larger dimensions or higher number of parties is also discussed. As a by-product, we present symmetric extensions of two-qubit Werner states

  6. Probabilistic teleportation via multi-parameter measurements and partially entangled states

    Science.gov (United States)

    Wei, Jiahua; Shi, Lei; Han, Chen; Xu, Zhiyan; Zhu, Yu; Wang, Gang; Wu, Hao

    2018-04-01

    In this paper, a novel scheme for probabilistic teleportation is presented with multi-parameter measurements via a non-maximally entangled state. This is in contrast to the fact that the measurement kinds for quantum teleportation are usually particular in most previous schemes. The detail implementation producers for our proposal are given by using of appropriate local unitary operations. Moreover, the total success probability and classical information of this proposal are calculated. It is demonstrated that the success probability and classical cost would be changed with the multi-measurement parameters and the entanglement factor of quantum channel. Our scheme could enlarge the research range of probabilistic teleportation.

  7. Comparative Study of Entanglement and Wigner Function for Multi-Qubit GHZ-Squeezed State

    Science.gov (United States)

    Siyouri, Fatima-Zahra

    2017-12-01

    In this paper we address the possibility of using the Wigner function to capture the quantum entanglement present in a multi-qubit system. For that purpose, we calculate both the degree of entanglement and the Wigner function for mixed tripartite squeezed states of Greenberger-Horne-Zeilinger (GHZ) type then we compare their behaviors. We show that the role of Wigner function in detecting and quantifying bipartite quantum correlation [Int. J. Mod. Phys. B 30 (2016) 1650187] may be generalized to the multipartite case.

  8. New Aspects of Field Entropy Squeezing as an Indicator for Mixed State Entanglement in an Effective Two-Level System with Stark Shift

    Institute of Scientific and Technical Information of China (English)

    S.Abdel-Khalek; M.M.A.Ahmed; A-S F.Obada

    2011-01-01

    We present an effective two-level system in interaction through two-photon processes with a single mode quantized electromagnetic field,initially prepared in a coherent state.Field entropy squeezing as an indicator of the entanglement in a mixed state system is suggested.The temporal evolution of the negativity,Wehrl entropy,Wehrl phase distribution and field entropy squeezing are investigated.The results highlight the important roles played by both the Stark shift parameters and the mixed state setting in the dynamics of the Wehrl entropy,Wehrl phase distribution and field entropy squeezing.%We present an effective two-level system in interaction through two-photon processes with a single mode quantized electromagnetic Reid, initially prepared in a coherent state. Field entropy squeezing as an indicator of the entanglement in a mixed state system is suggested. The temporal evolution of the negativity, Wehrl entropy, Wehrl phase distribution and field entropy squeezing are investigated. The results highlight the important roles played by both the Stark shift parameters and the mixed state setting in the dynamics of the Wehrl entropy, Wehrl phase distribution and field entropy squeezing.

  9. Experimental investigation of tripartite entanglement and nonlocality in three-qubit generalized Greenberger–Horne–Zeilinger states

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jia-Qiang; Cao, Lian-Zhen; Wang, Xiao-Qin [Department of Physics and Electronic Science, Weifang University, Weifang, Shandong 261061 (China); Lu, Huai-Xin, E-mail: huaixinlu@yahoo.cn [Department of Physics and Electronic Science, Weifang University, Weifang, Shandong 261061 (China)

    2012-07-16

    We investigate theoretically and experimentally the tripartite entanglement defined by V. Coffman [Phys. Rev. A 61 (2000) 052306] and nonlocality expressed by the Mermin inequality [Phys. Rev. Lett. 65 (1990) 1838] in three-qubit generalized Greenberger–Horne–Zeilinger (GGHZ) states. Using our GGHZ states with fidelity ∼0.84, we demonstrate experimentally the theoretical results of tripartite entanglement and the Mermin theorem successfully. It is shown that the experimental results are in good agreement with the theoretical predictions. -- Highlights: ► We theoretically calculated the tripartite entanglement and expressed the expectation value of Mermin operator in three-qubit generalized Greenberger–Horne–Zeilinger (GGHZ) states. ► We demonstrate experimentally the theoretical results of tripartite entanglement and Mermin theorem successfully. ► The unique relationship between tripartite entanglement and tripartite nonlocality in GGHZ states have been shown.

  10. Experimental investigation of tripartite entanglement and nonlocality in three-qubit generalized Greenberger–Horne–Zeilinger states

    International Nuclear Information System (INIS)

    Zhao, Jia-Qiang; Cao, Lian-Zhen; Wang, Xiao-Qin; Lu, Huai-Xin

    2012-01-01

    We investigate theoretically and experimentally the tripartite entanglement defined by V. Coffman [Phys. Rev. A 61 (2000) 052306] and nonlocality expressed by the Mermin inequality [Phys. Rev. Lett. 65 (1990) 1838] in three-qubit generalized Greenberger–Horne–Zeilinger (GGHZ) states. Using our GGHZ states with fidelity ∼0.84, we demonstrate experimentally the theoretical results of tripartite entanglement and the Mermin theorem successfully. It is shown that the experimental results are in good agreement with the theoretical predictions. -- Highlights: ► We theoretically calculated the tripartite entanglement and expressed the expectation value of Mermin operator in three-qubit generalized Greenberger–Horne–Zeilinger (GGHZ) states. ► We demonstrate experimentally the theoretical results of tripartite entanglement and Mermin theorem successfully. ► The unique relationship between tripartite entanglement and tripartite nonlocality in GGHZ states have been shown.

  11. Coherent states and parasupersymmetric quantum mechanics

    Science.gov (United States)

    Debergh, Nathalie

    1992-01-01

    It is well known that Parafermi and Parabose statistics are natural extensions of the usual Fermi and Bose ones, enhancing trilinear (anti)commutation relations instead of bilinear ones. Due to this generalization, positive parameters appear: the so-called orders of paraquantization p (= 1, 2, 3, ...) and h sub 0 (= 1/2, 1, 3/2, ...), respectively, the first value leading in each case to the usual statistics. The superpostion of the parabosonic and parafermionic operators gives rise to parasupermultiplets for which mixed trilinear relations have already been studied leading to two (nonequivalent) sets: the relative Parabose and the relative Parafermi ones. For the specific values p = 1 = 2h sub 0, these sets reduce to the well known supersymmetry. Coherent states associated with this last model have been recently put in evidence through the annihilation operator point of view and the group theoretical approach or displacement operator context. We propose to realize the corresponding studies within the new context p = 2 = 2h sub 0, being then directly extended to any order of paraquantization.

  12. Clifford coherent state transforms on spheres

    Science.gov (United States)

    Dang, Pei; Mourão, José; Nunes, João P.; Qian, Tao

    2018-01-01

    We introduce a one-parameter family of transforms, U(m)t,t > 0, from the Hilbert space of Clifford algebra valued square integrable functions on the m-dimensional sphere, L2(Sm , dσm) ⊗Cm+1, to the Hilbert spaces, ML2(R m + 1 ∖ { 0 } , dμt) , of solutions of the Euclidean Dirac equation on R m + 1 ∖ { 0 } which are square integrable with respect to appropriate measures, dμt. We prove that these transforms are unitary isomorphisms of the Hilbert spaces and are extensions of the Segal-Bargman coherent state transform, U(1) :L2(S1 , dσ1) ⟶ HL2(C ∖ { 0 } , dμ) , to higher dimensional spheres in the context of Clifford analysis. In Clifford analysis it is natural to replace the analytic continuation from Sm to SCm as in (Hall, 1994; Stenzel, 1999; Hall and Mitchell, 2002) by the Cauchy-Kowalewski extension from Sm to R m + 1 ∖ { 0 } . One then obtains a unitary isomorphism from an L2-Hilbert space to a Hilbert space of solutions of the Dirac equation, that is to a Hilbert space of monogenic functions.

  13. Controlled dense coding for continuous variables using three-particle entangled states

    CERN Document Server

    Jing Zhang; Kun Chi Peng; 10.1103/PhysRevA.66.032318

    2002-01-01

    A simple scheme to realize quantum controlled dense coding with a bright tripartite entangled state light generated from nondegenerate optical parametric amplifiers is proposed in this paper. The quantum channel between Alice and Bob is controlled by Claire. As a local oscillator and balanced homodyne detector are not needed, the proposed protocol is easy to be realized experimentally. (15 refs)

  14. Quasideterministic generation of maximally entangled states of two mesoscopic atomic ensembles by adiabatic quantum feedback

    International Nuclear Information System (INIS)

    Di Lisi, Antonio; De Siena, Silvio; Illuminati, Fabrizio; Vitali, David

    2005-01-01

    We introduce an efficient, quasideterministic scheme to generate maximally entangled states of two atomic ensembles. The scheme is based on quantum nondemolition measurements of total atomic populations and on adiabatic quantum feedback conditioned by the measurements outputs. The high efficiency of the scheme is tested and confirmed numerically for ideal photodetection as well as in the presence of losses

  15. Generating Generalized Bessel Equations by Virtue of Bose Operator Algebra and Entangled State Representations

    International Nuclear Information System (INIS)

    Fan Hongyi; Wang Yong

    2006-01-01

    With the help of Bose operator identities and entangled state representation and based on our previous work [Phys. Lett. A 325 (2004) 188] we derive some new generalized Bessel equations which also have Bessel function as their solution. It means that for these intricate higher-order differential equations, we can get Bessel function solutions without using the expatiatory power-series expansion method.

  16. Resonating-valence-bond superconductors with fermionic projected entangled pair states

    NARCIS (Netherlands)

    Poilblanc, D.; Corboz, P.; Schuch, N.; Cirac, J.I.

    2014-01-01

    We construct a family of simple fermionic projected entangled pair states (fPEPS) on the square lattice with bond dimension D=3 which are exactly hole-doped resonating valence bond (RVB) wave functions with short-range singlet bonds. Under doping the insulating RVB spin liquid evolves immediately

  17. Connections of geometric measure of entanglement of pure symmetric states to quantum state estimation

    International Nuclear Information System (INIS)

    Chen Lin; Zhu Huangjun; Wei, Tzu-Chieh

    2011-01-01

    We study the geometric measure of entanglement (GM) of pure symmetric states related to rank 1 positive-operator-valued measures (POVMs) and establish a general connection with quantum state estimation theory, especially the maximum likelihood principle. Based on this connection, we provide a method for computing the GM of these states and demonstrate its additivity property under certain conditions. In particular, we prove the additivity of the GM of pure symmetric multiqubit states whose Majorana points under Majorana representation are distributed within a half sphere, including all pure symmetric three-qubit states. We then introduce a family of symmetric states that are generated from mutually unbiased bases and derive an analytical formula for their GM. These states include Dicke states as special cases, which have already been realized in experiments. We also derive the GM of symmetric states generated from symmetric informationally complete POVMs (SIC POVMs) and use it to characterize all inequivalent SIC POVMs in three-dimensional Hilbert space that are covariant with respect to the Heisenberg-Weyl group. Finally, we describe an experimental scheme for creating the symmetric multiqubit states studied in this article and a possible scheme for measuring the permanence of the related Gram matrix.

  18. Correlation properties of entangled multiphoton states and Bernstein’s paradox

    International Nuclear Information System (INIS)

    Chirkin, A. S.; Belyaeva, O. V.; Belinsky, A. V.

    2013-01-01

    A normally ordered characteristic function (NOCF) of Bose operators is calculated for a number of discrete-variable entangled states (Greenberger-Horne-Zeilinger (GHZ) and Werner (W) qubit states and a cluster state). It is shown that such NOCFs contain visual information on two types of correlations: pseudoclassical and quantum correlations. The latter manifest themselves in the interference terms of the NOCFs and lead to quantum paradoxes, whereas the pseudoclassical correlations of photons and their cumulants satisfy the relations for classical random variables. Three- and four-qubit states are analyzed in detail. An implementation of an analog of Bernstein’s paradox on discrete quantum variables is discussed. A measure of quantumness of an entangled state is introduced that is not related to the entropy approach. It is established that the maximum of the degree of quantumness substantiates the numerical values of the coefficients in multiqubit vector states derived from intuitive considerations.

  19. Correlation properties of entangled multiphoton states and Bernstein's paradox

    Energy Technology Data Exchange (ETDEWEB)

    Chirkin, A. S., E-mail: aschirkin@rambler.ru; Belyaeva, O. V., E-mail: lisenok.msu@gmail.com; Belinsky, A. V., E-mail: belinsky@inbox.ru [Moscow State University (Russian Federation)

    2013-01-15

    A normally ordered characteristic function (NOCF) of Bose operators is calculated for a number of discrete-variable entangled states (Greenberger-Horne-Zeilinger (GHZ) and Werner (W) qubit states and a cluster state). It is shown that such NOCFs contain visual information on two types of correlations: pseudoclassical and quantum correlations. The latter manifest themselves in the interference terms of the NOCFs and lead to quantum paradoxes, whereas the pseudoclassical correlations of photons and their cumulants satisfy the relations for classical random variables. Three- and four-qubit states are analyzed in detail. An implementation of an analog of Bernstein's paradox on discrete quantum variables is discussed. A measure of quantumness of an entangled state is introduced that is not related to the entropy approach. It is established that the maximum of the degree of quantumness substantiates the numerical values of the coefficients in multiqubit vector states derived from intuitive considerations.

  20. Preparation of freezing quantum state for quantum coherence

    Science.gov (United States)

    Yang, Lian-Wu; Man, Zhong-Xiao; Zhang, Ying-Jie; Han, Feng; Du, Shao-jiang; Xia, Yun-Jie

    2018-06-01

    We provide a method to prepare the freezing quantum state for quantum coherence via unitary operations. The initial product state consists of the control qubit and target qubit; when it satisfies certain conditions, the initial product state converts into the particular Bell diagonal state under the unitary operations, which have the property of freezing of quantum coherence under quantum channels. We calculate the frozen quantum coherence and corresponding quantum correlations, and find that the quantities are determined by the control qubit only when the freezing phenomena occur.

  1. A practical introduction to tensor networks: Matrix product states and projected entangled pair states

    Energy Technology Data Exchange (ETDEWEB)

    Orús, Román, E-mail: roman.orus@uni-mainz.de

    2014-10-15

    This is a partly non-technical introduction to selected topics on tensor network methods, based on several lectures and introductory seminars given on the subject. It should be a good place for newcomers to get familiarized with some of the key ideas in the field, specially regarding the numerics. After a very general introduction we motivate the concept of tensor network and provide several examples. We then move on to explain some basics about Matrix Product States (MPS) and Projected Entangled Pair States (PEPS). Selected details on some of the associated numerical methods for 1d and 2d quantum lattice systems are also discussed. - Highlights: • A practical introduction to selected aspects of tensor network methods is presented. • We provide analytical examples of MPS and 2d PEPS. • We provide basic aspects on several numerical methods for MPS and 2d PEPS. • We discuss a number of applications of tensor network methods from a broad perspective.

  2. Standard forms and entanglement engineering of multimode Gaussian states under local operations

    International Nuclear Information System (INIS)

    Serafini, Alessio; Adesso, Gerardo

    2007-01-01

    We investigate the action of local unitary operations on multimode (pure or mixed) Gaussian states and single out the minimal number of locally invariant parameters which completely characterize the covariance matrix of such states. For pure Gaussian states, central resources for continuous-variable quantum information, we investigate separately the parameter reduction due to the additional constraint of global purity, and the one following by the local-unitary freedom. Counting arguments and insights from the phase-space Schmidt decomposition and in general from the framework of symplectic analysis, accompany our description of the standard form of pure n-mode Gaussian states. In particular, we clarify why only in pure states with n ≤ 3 modes all the direct correlations between position and momentum operators can be set to zero by local unitary operations. For any n, the emerging minimal set of parameters contains complete information about all forms of entanglement in the corresponding states. An efficient state engineering scheme (able to encode direct correlations between position and momentum operators as well) is proposed to produce entangled multimode Gaussian resources, its number of optical elements matching the minimal number of locally invariant degrees of freedom of general pure n-mode Gaussian states. Finally, we demonstrate that so-called 'block-diagonal' Gaussian states, without direct correlations between position and momentum, are systematically less entangled, on average, than arbitrary pure Gaussian states

  3. Entanglement branching operator

    Science.gov (United States)

    Harada, Kenji

    2018-01-01

    We introduce an entanglement branching operator to split a composite entanglement flow in a tensor network which is a promising theoretical tool for many-body systems. We can optimize an entanglement branching operator by solving a minimization problem based on squeezing operators. The entanglement branching is a new useful operation to manipulate a tensor network. For example, finding a particular entanglement structure by an entanglement branching operator, we can improve a higher-order tensor renormalization group method to catch a proper renormalization flow in a tensor network space. This new method yields a new type of tensor network states. The second example is a many-body decomposition of a tensor by using an entanglement branching operator. We can use it for a perfect disentangling among tensors. Applying a many-body decomposition recursively, we conceptually derive projected entangled pair states from quantum states that satisfy the area law of entanglement entropy.

  4. Scheme for the generation of three-atom Greenberger-Horne-Zeilinger states and teleportation of entangled atomic states

    International Nuclear Information System (INIS)

    Ye Liu; Guo Guangcan

    2003-01-01

    A scheme is proposed for the preparation of Greenberger-Horne-Zeilinger states for three atoms and for teleportation of an entangled atom pair by use of the triplet in cavity QED. The cavity is only virtually excited, and thus the scheme is insensitive to the cavity field states and the cavity decay. The preparation and teleportation can be achieved in a simple way

  5. Continuous multipartite entangled state in Wigner representation and violation of the Zukowski-Brukner inequality

    International Nuclear Information System (INIS)

    Wu Chunfeng; Chen Jingling; Oh, C.H.; Kwek, L.C.; Xue Kang

    2005-01-01

    We construct an explicit Wigner function for the N-mode squeezed state. Based on a previous observation that the Wigner function describes correlations in the joint measurement of the phase-space displaced parity operator, we investigate the nonlocality of the multipartite entangled state by the violation of the Zukowski-Brukner N-qubit Bell inequality. We find that quantum predictions for such a squeezed state violate these inequalities by an amount that grows with the number N

  6. Magnetic Field Effects on Pure-state and Thermal Entanglement of Anisotropic Magnetic Nanodots

    Science.gov (United States)

    Istomin, Andrei Y.

    2005-05-01

    Anisotropic magnetic nanodots have recently been proposed as promising candidates for qubits for scalable quantum computing [1,2]. The main advantages of such magnetic qubits are their well-separated energy levels (which may allow operation at temperature of the order of a few K), nanometer size (which simplifies fabrication), and large spin values (which facilitates measurement of qubit states). The entanglement properties of eigenstates of a pair of Heisenberg-interacting nanodots have been analyzed in [2], where we have shown that ferromagnetic (FM) coupling produces two significantly entangled excited states. Here we investigate the magnetic field effects on the entanglement of these and other states. We show that entanglement of excited FM eigenstates of two non-identical nanodots can be tuned to its maximum value by applying a relatively weak non-uniform magnetic field. [1] J. Tejada, E.M. Chudnovsky, E. del Barco, J.M. Hernandez, and T.P. Spiller, Nanotechnology 12, 181 (2001). [2] R. Skomski, A.Y. Istomin, A.F. Starace, and D.J. Sellmyer, Phys. Rev. A 70, 062307 (2004).

  7. Entanglement of Gaussian states and the applicability to quantum key distribution over fading channels

    International Nuclear Information System (INIS)

    Usenko, Vladyslav C; Filip, Radim; Heim, Bettina; Peuntinger, Christian; Wittmann, Christoffer; Marquardt, Christoph; Leuchs, Gerd

    2012-01-01

    Entanglement properties of Gaussian states of light as well as the security of continuous variable quantum key distribution with Gaussian states in free-space fading channels are studied. These qualities are shown to be sensitive to the statistical properties of the transmittance distribution in the cases when entanglement is strong or when channel excess noise is present. Fading, i.e. transmission fluctuations, caused by beam wandering due to atmospheric turbulence, is a frequent challenge in free-space communication. We introduce a method of fading discrimination and subsequent post-selection of the corresponding sub-states and show that it can improve the entanglement resource and restore the security of the key distribution over a realistic fading link. Furthermore, the optimal post-selection strategy in combination with an optimized entangled resource is shown to drastically increase the protocol's robustness to excess noise, which is confirmed for experimentally measured fading channel characteristics. The stability of the result against finite data ensemble size and imperfect channel estimation is also addressed. (paper)

  8. Perfect controlled joint remote state preparation independent of entanglement degree of the quantum channel

    International Nuclear Information System (INIS)

    An, Nguyen Ba; Bich, Cao Thi

    2014-01-01

    We construct a quantum circuit to produce a task-oriented partially entangled state and use it as the quantum channel for controlled joint remote state preparation. Unlike most previous works, where the parameters of the quantum channel are given to the receiver who can accomplish the task only probabilistically by consuming auxiliary resource, operation and measurement, here we give them to the supervisor. Thanks to the knowledge of the task-oriented quantum channel parameters, the supervisor can carry out proper complete projective measurement, which, combined with the feed-forward technique adapted by the preparers, not only much economizes (simplifies) the receiver's resource (operation) but also yields unit total success probability. Notably, such apparent perfection does not depend on the entanglement degree of the shared quantum channel. Our protocol is within the reach of current quantum technologies. - Highlights: • Controlled joint remote state preparation is considered. • Quantum circuit is proposed to produce task-oriented partially entangled channel. • The quantum channel parameter is given to the supervisor (not to the receiver). • Unit success probability without additional resource/operations/measurement. • Perfection is achieved regardless of the shared entanglement degree

  9. Exponentially Enhanced Light-Matter Interaction, Cooperativities, and Steady-State Entanglement Using Parametric Amplification

    Science.gov (United States)

    Qin, Wei; Miranowicz, Adam; Li, Peng-Bo; Lü, Xin-You; You, J. Q.; Nori, Franco

    2018-03-01

    We propose an experimentally feasible method for enhancing the atom-field coupling as well as the ratio between this coupling and dissipation (i.e., cooperativity) in an optical cavity. It exploits optical parametric amplification to exponentially enhance the atom-cavity interaction and, hence, the cooperativity of the system, with the squeezing-induced noise being completely eliminated. Consequently, the atom-cavity system can be driven from the weak-coupling regime to the strong-coupling regime for modest squeezing parameters, and even can achieve an effective cooperativity much larger than 100. Based on this, we further demonstrate the generation of steady-state nearly maximal quantum entanglement. The resulting entanglement infidelity (which quantifies the deviation of the actual state from a maximally entangled state) is exponentially smaller than the lower bound on the infidelities obtained in other dissipative entanglement preparations without applying squeezing. In principle, we can make an arbitrarily small infidelity. Our generic method for enhancing atom-cavity interaction and cooperativities can be implemented in a wide range of physical systems, and it can provide diverse applications for quantum information processing.

  10. On bipartite pure-state entanglement structure in terms of disentanglement

    Science.gov (United States)

    Herbut, Fedor

    2006-12-01

    Schrödinger's disentanglement [E. Schrödinger, Proc. Cambridge Philos. Soc. 31, 555 (1935)], i.e., remote state decomposition, as a physical way to study entanglement, is carried one step further with respect to previous work in investigating the qualitative side of entanglement in any bipartite state vector. Remote measurement (or, equivalently, remote orthogonal state decomposition) from previous work is generalized to remote linearly independent complete state decomposition both in the nonselective and the selective versions. The results are displayed in terms of commutative square diagrams, which show the power and beauty of the physical meaning of the (antiunitary) correlation operator inherent in the given bipartite state vector. This operator, together with the subsystem states (reduced density operators), constitutes the so-called correlated subsystem picture. It is the central part of the antilinear representation of a bipartite state vector, and it is a kind of core of its entanglement structure. The generalization of previously elaborated disentanglement expounded in this article is a synthesis of the antilinear representation of bipartite state vectors, which is reviewed, and the relevant results of [Cassinelli et al., J. Math. Anal. Appl. 210, 472 (1997)] in mathematical analysis, which are summed up. Linearly independent bases (finite or infinite) are shown to be almost as useful in some quantum mechanical studies as orthonormal ones. Finally, it is shown that linearly independent remote pure-state preparation carries the highest probability of occurrence. This singles out linearly independent remote influence from all possible ones.

  11. Quantum entanglement at high temperatures? Bosonic systems in nonequilibrium steady state

    International Nuclear Information System (INIS)

    Hsiang, Jen-Tsung; Hu, B.L.

    2015-01-01

    This is the second of a series of three papers examining how viable it is for entanglement to be sustained at high temperatures for quantum systems in thermal equilibrium (Case A), in nonequilibrium (Case B) and in nonequilibrium steady state (NESS) conditions (Case C). The system we analyze here consists of two coupled quantum harmonic oscillators each interacting with its own bath described by a scalar field, set at temperatures T_1>T_2. For constant bilinear inter-oscillator coupling studied here (Case C1) owing to the Gaussian nature, the problem can be solved exactly at arbitrary temperatures even for strong coupling. We find that the valid entanglement criterion in general is not a function of the bath temperature difference, in contrast to thermal transport in the same NESS setting http://arxiv.org/abs/1405.7642. Thus lowering the temperature of one of the thermal baths does not necessarily help to safeguard the entanglement between the oscillators. Indeed, quantum entanglement will disappear if any one of the thermal baths has a temperature higher than the critical temperature T_c, defined as the temperature above which quantum entanglement vanishes. With the Langevin equations derived we give a full display of how entanglement dynamics in this system depends on T_1, T_2, the inter-oscillator coupling and the system-bath coupling strengths. For weak oscillator-bath coupling the critical temperature T_c is about the order of the inverse oscillator frequency, but for strong oscillator-bath coupling it will depend on the bath cutoff frequency. We conclude that in most realistic circumstances, for bosonic systems in NESS with constant bilinear coupling, ‘hot entanglement’ is largely a fiction.

  12. Entangled states that cannot reproduce original classical games in their quantum version

    International Nuclear Information System (INIS)

    Shimamura, Junichi; Oezdemir, S.K.; Morikoshi, Fumiaki; Imoto, Nobuyuki

    2004-01-01

    A model of a quantum version of classical games should reproduce the original classical games in order to be able to make a comparative analysis of quantum and classical effects. We analyze a class of symmetric multipartite entangled states and their effect on the reproducibility of the classical games. We present the necessary and sufficient condition for the reproducibility of the original classical games. Satisfying this condition means that complete orthogonal bases can be constructed from a given multipartite entangled state provided that each party is restricted to two local unitary operators. We prove that most of the states belonging to the class of symmetric states with respect to permutations, including the N-qubit W state, do not satisfy this condition

  13. Coherent excitation of a single atom to a Rydberg state

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; Gaëtan, Alpha; Evellin, Charles

    2010-01-01

    We present the coherent excitation of a single Rubidium atom to the Rydberg state 58d3/2 using a two-photon transition. The experimental setup is described in detail, as are experimental techniques and procedures. The coherence of the excitation is revealed by observing Rabi oscillations between...

  14. Quantum coherence generated by interference-induced state selectiveness

    OpenAIRE

    Garreau, Jean Claude

    2001-01-01

    The relations between quantum coherence and quantum interference are discussed. A general method for generation of quantum coherence through interference-induced state selection is introduced and then applied to `simple' atomic systems under two-photon transitions, with applications in quantum optics and laser cooling.

  15. Pair q-coherent states and their antibunching effects

    International Nuclear Information System (INIS)

    Wang Zhongqing; Li Junhong; An Guanglei; Chongqing Univ. of Posts and Telecommunications, Chongqing

    2005-01-01

    Using the properties of the q-deformed boson creation and annihilation operators and their inverse operators, two kind of q-deformed pair coherent states are introduced. Antibunching effects and correlation properties between two modes in the states are investigated. It is shown that q-deformed pair coherent states exhibit antibunching effects and the photons of the two modes are correlated. These nonclassical effects are influenced by the parameter q. These effects increase when |lnq| increases. (authors)

  16. Wigner Function of Thermo-Invariant Coherent State

    International Nuclear Information System (INIS)

    Xue-Fen, Xu; Shi-Qun, Zhu

    2008-01-01

    By using the thermal Winger operator of thermo-field dynamics in the coherent thermal state |ξ) representation and the technique of integration within an ordered product of operators, the Wigner function of the thermo-invariant coherent state |z,ℵ> is derived. The nonclassical properties of state |z,ℵ> is discussed based on the negativity of the Wigner function. (general)

  17. Coherent states on horospheric three-dimensional Lobachevsky space

    Energy Technology Data Exchange (ETDEWEB)

    Kurochkin, Yu., E-mail: y.kurochkin@ifanbel.bas-net.by; Shoukavy, Dz., E-mail: shoukavy@ifanbel.bas-net.by [Institute of Physics, National Academy of Sciences of Belarus, 68 Nezalezhnasci Ave., Minsk 220072 (Belarus); Rybak, I., E-mail: Ivan.Rybak@astro.up.pt [Institute of Physics, National Academy of Sciences of Belarus, 68 Nezalezhnasci Ave., Minsk 220072 (Belarus); Instituto de Astrofísica e Ciências do Espaço, CAUP, Rua das Estrelas, 4150-762 Porto (Portugal); Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)

    2016-08-15

    In the paper it is shown that due to separation of variables in the Laplace-Beltrami operator (Hamiltonian of a free quantum particle) in horospheric and quasi-Cartesian coordinates of three dimensional Lobachevsky space, it is possible to introduce standard (“conventional” according to Perelomov [Generalized Coherent States and Their Applications (Springer-Verlag, 1986), p. 320]) coherent states. Some problems (oscillator on horosphere, charged particle in analogy of constant uniform magnetic field) where coherent states are suitable for treating were considered.

  18. Overcoming a limitation of deterministic dense coding with a nonmaximally entangled initial state

    International Nuclear Information System (INIS)

    Bourdon, P. S.; Gerjuoy, E.

    2010-01-01

    Under two-party deterministic dense coding, Alice communicates (perfectly distinguishable) messages to Bob via a qudit from a pair of entangled qudits in pure state |Ψ>. If |Ψ> represents a maximally entangled state (i.e., each of its Schmidt coefficients is √(1/d)), then Alice can convey to Bob one of d 2 distinct messages. If |Ψ> is not maximally entangled, then Ji et al. [Phys. Rev. A 73, 034307 (2006)] have shown that under the original deterministic dense-coding protocol, in which messages are encoded by unitary operations performed on Alice's qudit, it is impossible to encode d 2 -1 messages. Encoding d 2 -2 messages is possible; see, for example, the numerical studies by Mozes et al. [Phys. Rev. A 71, 012311 (2005)]. Answering a question raised by Wu et al. [Phys. Rev. A 73, 042311 (2006)], we show that when |Ψ> is not maximally entangled, the communications limit of d 2 -2 messages persists even when the requirement that Alice encode by unitary operations on her qudit is weakened to allow encoding by more general quantum operators. We then describe a dense-coding protocol that can overcome this limitation with high probability, assuming the largest Schmidt coefficient of |Ψ> is sufficiently close to √(1/d). In this protocol, d 2 -2 of the messages are encoded via unitary operations on Alice's qudit, and the final (d 2 -1)-th message is encoded via a non-trace-preserving quantum operation.

  19. Renormalizing Entanglement Distillation

    Science.gov (United States)

    Waeldchen, Stephan; Gertis, Janina; Campbell, Earl T.; Eisert, Jens

    2016-01-01

    Entanglement distillation refers to the task of transforming a collection of weakly entangled pairs into fewer highly entangled ones. It is a core ingredient in quantum repeater protocols, which are needed to transmit entanglement over arbitrary distances in order to realize quantum key distribution schemes. Usually, it is assumed that the initial entangled pairs are identically and independently distributed and are uncorrelated with each other, an assumption that might not be reasonable at all in any entanglement generation process involving memory channels. Here, we introduce a framework that captures entanglement distillation in the presence of natural correlations arising from memory channels. Conceptually, we bring together ideas from condensed-matter physics—ideas from renormalization and matrix-product states and operators—with those of local entanglement manipulation, Markov chain mixing, and quantum error correction. We identify meaningful parameter regions for which we prove convergence to maximally entangled states, arising as the fixed points of a matrix-product operator renormalization flow.

  20. Two-party quantum key agreement protocol with four-particle entangled states

    Science.gov (United States)

    He, Yefeng; Ma, Wenping

    2016-09-01

    Based on four-particle entangled states and the delayed measurement technique, a two-party quantum key agreement protocol is proposed in this paper. In the protocol, two participants can deduce the measurement results of each other’s initial quantum states in terms of the measurement correlation property of four-particle entangled states. According to the corresponding initial quantum states deduced by themselves, two parties can extract the secret keys of each other by using the publicly announced value or by performing the delayed measurement, respectively. This guarantees the fair establishment of a shared key. Since each particle in quantum channel is transmitted only once, the protocol is congenitally free from the Trojan horse attacks. The security analysis shows that the protocol not only can resist against both participant and outsider attacks but also has no information leakage problem. Moreover, it has high qubit efficiency.

  1. Generation of multiparticle three-dimensional entanglement state via adiabatic passage

    International Nuclear Information System (INIS)

    Wu Xi; Chen Zhi-Hua; Ye Ming-Yong; Chen Yue-Hua; Lin Xiu-Min

    2013-01-01

    A scheme is proposed for generating a multiparticle three-dimensional entangled state by appropriately adiabatic evolutions, where atoms are respectively trapped in separated cavities so that individual addressing is needless. In the ideal case, losses due to the spontaneous transition of an atom and the excitation of photons are efficiently suppressed since atoms are all in ground states and the fields remain in a vacuum state. Compared with the previous proposals, the present scheme reduces its required operation time via simultaneously controlling four classical fields. This advantage would become even more obvious as the number of atoms increases. The experimental feasibility is also discussed. The successful preparation of a high-dimensional multiparticle entangled state among distant atoms provides better prospects for quantum communication and distributed quantum computation. (general)

  2. An Improved Quantum Information Hiding Protocol Based on Entanglement Swapping of χ-type Quantum States

    International Nuclear Information System (INIS)

    Xu Shu-Jiang; Wang Lian-Hai; Ding Qing-Yan; Zhang Shu-Hui; Chen Xiu-Bo

    2016-01-01

    In 2011, Qu et al. proposed a quantum information hiding protocol based on the entanglement swapping of χ-type quantum states. Because a χ-type state can be described by the 4-particle cat states which have good symmetry, the possible output results of the entanglement swapping between a given χ-type state and all of the 16 χ-type states are divided into 8 groups instead of 16 groups of different results when the global phase is not considered. So it is difficult to read out the secret messages since each result occurs twice in each line (column) of the secret messages encoding rule for the original protocol. In fact, a 3-bit instead of a 4-bit secret message can be encoded by performing two unitary transformations on 2 particles of a χ-type quantum state in the original protocol. To overcome this defect, we propose an improved quantum information hiding protocol based on the general term formulas of the entanglement swapping among χ-type states. (paper)

  3. Generalized coherent states for the Coulomb problem in one dimension

    International Nuclear Information System (INIS)

    Nouri, S.

    2002-01-01

    A set of generalized coherent states for the one-dimensional Coulomb problem in coordinate representation is constructed. At first, we obtain a mapping for proper transformation of the one-dimensional Coulomb problem into a nonrotating four-dimensional isotropic harmonic oscillator in the hyperspherical space, and the generalized coherent states for the one-dimensional Coulomb problem is then obtained in exact closed form. This exactly soluble model can provide an adequate means for a quantum coherency description of the Coulomb problem in one dimension, sample for coherent aspects of the exciton model in one-dimension example in high-temperature superconductivity, semiconductors, and polymers. Also, it can be useful for investigating the coherent scattering of the Coulomb particles in one dimension

  4. Three-party quantum secret sharing of secure direct communication based on χ-type entangled states

    International Nuclear Information System (INIS)

    Yu-Guang, Yang; Wei-Feng, Cao; Qiao-Yan, Wen

    2010-01-01

    Based on χ-type entangled states and the two-step protocol [Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317], a quantum secret sharing protocol of secure direct communication based on χ-type entangled states |χ 00 ) 3214 is proposed. Using some interesting entanglement properties of this state, the agent entirety can directly obtain the secret message from the message sender only if they collaborate together. The security of the scheme is also discussed. (general)

  5. Theoretical consideration of the use of mode entangled states to beat the minimal period of an interference pattern

    International Nuclear Information System (INIS)

    Podoshvedov, Sergey A

    2005-01-01

    We propose to use multi-photon mode entangled states to beat the minimal period of an interference pattern. Using the multi-photon mode entangled states, we show that it is possible to observe an interference effect with a period of minimum size λ/2N in an N-photon absorbing substrate. In the framework of the method developed, we propose a simple scheme for a quantum encoder with a two-photon quantum channel for producing a desired N-photon mode entangled state on which to write an interference pattern with a smaller period, as compared with the one in the case of the use of classical light

  6. Application of Bipartite Entangled States to Quantum Mechanical Version of Complex Wavelet Transforms

    International Nuclear Information System (INIS)

    Fan Hongyi; Lu Hailiang; Xu Xuefen

    2006-01-01

    We introduce the bipartite entangled states to present a quantum mechanical version of complex wavelet transform. Using the technique of integral within an ordered product of operators we show that the complex wavelet transform can be studied in terms of various quantum state vectors in two-mode Fock space. In this way the creterion for mother wavelet can be examined quantum-mechanically and therefore more deeply.

  7. Local commutativity versus Bell inequality violation for entangled states and versus non-violation for separable states

    International Nuclear Information System (INIS)

    Seevinck, Michael; Uffink, Jos

    2007-01-01

    By introducing a quantitative 'degree of commutativity' in terms of the angle between spin observables we present two tight quantitative trade-off relations in the case of two qubits. First, for entangled states, between the degree of commutativity of local observables and the maximal amount of violation of the Bell inequality: if both local angles increase from zero to π/2 (i.e., the degree of local commutativity decreases), the maximum violation of the Bell inequality increases. Secondly, a converse trade-off relation holds for separable states: if both local angles approach π/2 the maximal value obtainable for the correlations in the Bell inequality decreases and thus the non-violation increases. As expected, the extremes of these relations are found in the case of anticommuting local observables where, respectively, the bounds of 2√(2) and √(2) hold for the expectation value of the Bell operator. The trade-off relations show that noncommmutativity gives ''a more than classical result'' for entangled states, whereas ''a less than classical result'' is obtained for separable states. The experimental relevance of the trade-off relation for separable states is that it provides an experimental test for two qubit entanglement. Its advantages are twofold: in comparison to violations of Bell inequalities it is a stronger criterion and in comparison to entanglement witnesses it needs to make less strong assumptions about the observables implemented in the experiment

  8. Approximate Teleportation of an Unknown Atomic-Entangled State with Dissipative Atom-Cavity Resonant Jaynes-Cummings Model

    Institute of Scientific and Technical Information of China (English)

    LIU Zong-Liang; LI Shao-Hua; CHEN Chang-Yong

    2008-01-01

    We propose a scheme for approximately and conditionally teleporting an unknown atomic-entangled state in dissipative cavity QED.It is the further development of the scheme of [Phys.Rev.A 69 (2004) 064302],where the cavity mode decay has not been considered and the state teleportated is an unknown atomic state.In this paper,we investigate the influence of the decay on the approximate and conditional teleportation of the unknown atomic-entangled state,which is different from that teleportated in [Phys.Rev.A 69 (2004) 064302] and then give the fidelity of the teleportation,which depends on the cavity mode decay.The scheme may be generalized to not only the teleportation of the cavity-mode-entangled-state by means of a single atom but also the teleportation of the unknown trapped-ion-entangled-state in a linear ion trap.

  9. Numerical studies of entangled positive-partial-transpose states in composite quantum systems

    International Nuclear Information System (INIS)

    Leinaas, Jon Magne; Sollid, Per Oyvind; Myrheim, Jan

    2010-01-01

    We report here on the results of numerical searches for PPT states in a series of bipartite quantum systems of low dimensions. PPT states are represented by density matrices that remain positive semidefinite under partial transposition with respect to one of the subsystems, and our searches are for such states with specified ranks for the density matrix and its partial transpose. For a series of different ranks extremal PPT states and nonextremal entangled PPT states have been found. The results are listed in tables and charted in diagrams. Comparison of the results for systems of different dimensions reveals several regularities. We discuss lower and upper bounds on the ranks of extremal PPT states.

  10. Coherent states of an electron in a quantized electromagnetic wave

    International Nuclear Information System (INIS)

    Bagrov, V.G.; Bukhbinder, I.L.; Gitman, D.M.; Lavrov, P.M.

    1977-01-01

    Coherent states for interacting electrons and photons in a plane elecmagnetic wave are found. Trajectories of the electron and the characteristics of the electromagnetic field are investigated. Limiting transition to the given external field is studied

  11. Continuous Variable Quantum Key Distribution Using Polarized Coherent States

    Science.gov (United States)

    Vidiella-Barranco, A.; Borelli, L. F. M.

    We discuss a continuous variables method of quantum key distribution employing strongly polarized coherent states of light. The key encoding is performed using the variables known as Stokes parameters, rather than the field quadratures. Their quantum counterpart, the Stokes operators Ŝi (i=1,2,3), constitute a set of non-commuting operators, being the precision of simultaneous measurements of a pair of them limited by an uncertainty-like relation. Alice transmits a conveniently modulated two-mode coherent state, and Bob randomly measures one of the Stokes parameters of the incoming beam. After performing reconciliation and privacy amplification procedures, it is possible to distill a secret common key. We also consider a non-ideal situation, in which coherent states with thermal noise, instead of pure coherent states, are used for encoding.

  12. Coherent states of the real symplectic group in a complex analytic parametrization. I. Unitary-operator coherent states

    International Nuclear Information System (INIS)

    Quesne, C.

    1986-01-01

    In the present series of papers, the coherent states of Sp(2d,R), corresponding to the positive discrete series irreducible representations 1 +n/2> encountered in physical applications, are analyzed in detail with special emphasis on those of Sp(4,R) and Sp(6,R). The present paper discusses the unitary-operator coherent states, as defined by Klauder, Perelomov, and Gilmore. These states are parametrized by the points of the coset space Sp(2d,R)/H, where H is the stability group of the Sp(2d,R) irreducible representation lowest weight state, chosen as the reference state, and depends upon the relative values of lambda 1 ,...,lambda/sub d/, subject to the conditions lambda 1 > or =lambda 2 > or = x x x > or =lambda/sub d/> or =0. A parametrization of Sp(2d,R)/H corresponding to a factorization of the latter into a product of coset spaces Sp(2d,R)/U(d) and U(d)/H is chosen. The overlap of two coherent states is calculated, the action of the Sp(2d,R) generators on the coherent states is determined, and the explicit form of the unity resolution relation satisfied by the coherent states in the representation space of the irreducible representation is obtained. The Hilbert space of analytic functions arising from the coherent state representation is studied in detail. Finally, some applications of the formalism developed in the present paper are outlined

  13. Even and odd combinations of nonlinear coherent states

    International Nuclear Information System (INIS)

    De los Santos-Sanchez, O; Recamier, J

    2011-01-01

    In this work we present some statistical properties of even and odd combinations of nonlinear coherent states associated with two nonlinear potentials; one supporting a finite number of bound states and the other supporting an infinite number of bound states, within the framework of an f-deformed algebra. We calculate their normalized variance and the temporal evolution of their dispersion relations using nonlinear coherent states defined as (a) eigensates of the deformed annihilation operator and (b) those states created by the application of a deformed displacement operator upon the ground state of the oscillator.

  14. Scheme for Teleportation of a Multipartite Quantum State by Using a Single Entangled Pair as Quantum Channel

    Institute of Scientific and Technical Information of China (English)

    WANG Xin-Wen; WANG Zhi-Yong; XIA Li-Xin

    2007-01-01

    We present a theoretical scheme for perfect teleportation of an unknown multipartite two-level state by a single EPR (Einstein-Podolsky-Rosen) pair,and then generalize it to multilevel,i.e.,an N-quNit state can be teleported by a single quNit entangled pair,with additional local unitary operations.The feature of the scheme is that teleporting a multipartite state with a reduced amount of entanglement costs less classical bits.

  15. Two-party quantum key agreement with five-particle entangled states

    Science.gov (United States)

    He, Ye-Feng; Ma, Wen-Ping

    A two-party quantum key agreement protocol is proposed with five-particle entangled states and the delayed measurement technique. According to the measurement correlation property of five-particle entangled states, two participants can deduce the measurement results of each other’s initial quantum states. As a result, two parties can extract the secret keys of each other by using the publicly announced value or by performing the delayed measurement, respectively. Thus, a shared key is fairly established. Since each particle is transmitted only once in quantum channel, the protocol is congenitally free from the Trojan horse attacks. It is shown that the protocol not only is secure against both participant and outsider attacks but also has no information leakage problem. Moreover, it has high qubit efficiency.

  16. A novel quantum information hiding protocol based on entanglement swapping of high-level Bell states

    International Nuclear Information System (INIS)

    Xu Shu-Jiang; Wang Lian-Hai; Chen Xiu-Bo; Niu Xin-Xin; Yang Yi-Xian

    2015-01-01

    Using entanglement swapping of high-level Bell states, we first derive a covert layer between the secret message and the possible output results of the entanglement swapping between any two generalized Bell states, and then propose a novel high-efficiency quantum information hiding protocol based on the covert layer. In the proposed scheme, a covert channel can be built up under the cover of a high-level quantum secure direct communication (QSDC) channel for securely transmitting secret messages without consuming any auxiliary quantum state or any extra communication resource. It is shown that this protocol not only has a high embedding efficiency but also achieves a good imperceptibility as well as a high security. (paper)

  17. Entanglement properties of the two-dimensional SU(3) Affleck-Kennedy-Lieb-Tasaki state

    Science.gov (United States)

    Gauthé, Olivier; Poilblanc, Didier

    2017-09-01

    Two-dimensional (spin-2) Affleck-Kennedy-Lieb-Tasaki (AKLT) type valence bond solids on a square lattice are known to be symmetry-protected topological (SPT) gapped spin liquids [S. Takayoshi, P. Pujol, and A. Tanaka Phys. Rev. B 94, 235159 (2016), 10.1103/PhysRevB.94.235159]. Using the projected entangled pair state framework, we extend the construction of the AKLT state to the case of SU(3 ) , relevant for cold atom systems. The entanglement spectrum is shown to be described by an alternating SU(3 ) chain of "quarks" and "antiquarks", subject to exponentially decaying (with distance) Heisenberg interactions, in close similarity with its SU(2 ) analog. We discuss the SPT feature of the state.

  18. Deterministic secure direct communication using GHZ states and swapping quantum entanglement

    International Nuclear Information System (INIS)

    Gao, T; Yan, F L; Wang, Z X

    2005-01-01

    We present a deterministic secure direct communication scheme via entanglement swapping, where a set of ordered maximally entangled three-particle states (GHZ states), initially shared by three spatially separated parties, Alice, Bob and Charlie, functions as a quantum information channel. After ensuring the safety of the quantum channel, Alice and Bob apply a series of local operations on their respective particles according to the tripartite stipulation and the secret message they both want to send to Charlie. By three of Alice, Bob and Charlie's Bell measurement results, Charlie is able to infer the secret messages directly. The secret messages are faithfully transmitted from Alice and Bob to Charlie via initially shared pairs of GHZ states without revealing any information to a potential eavesdropper. Since there is no transmission of the qubits carrying the secret message between any two of them in the public channel, it is completely secure for direct secret communication if a perfect quantum channel is used

  19. Teleportation of two-atom entangled state in resonant cavity quantum electrodynamics

    Institute of Scientific and Technical Information of China (English)

    Yang Zhen-Biao

    2007-01-01

    An alternative scheme is presented for teleportation of a two-atom entangled state in cavity quantum electrodynamics (QED). It is based on the resonant atom-cavity field interaction. In the scheme, only one cavity is involved, and the number of the atoms needed to be detected is decreased compared with the previous scheme. Since the resonant atom-cavity field interaction greatly reduces the interaction time, the decoherence effect can be effectively suppressed during the teleportation process. The experimental feasibility of the scheme is discussed. The scheme can easily be generalized to the teleportation of N-atom Greeninger-Horne-Zeilinger (GHZ) entangled states. The number of atoms needed to be detected does not increase as the number of the atoms in the GHZ state increases.

  20. Alternative Scheme for Teleportation of Two-Atom Entangled State in Cavity QED

    Institute of Scientific and Technical Information of China (English)

    YANG Zhen-Biao

    2006-01-01

    We have proposed an alternative scheme for teleportation of two-atom entangled state in cavity QED. It is based on the degenerate Raman interaction of a single-mode cavity field with a ∧-type three-level atom. The prominent feature of the scheme is that only one cavity is required, which is prior to the previous one. Moreover, the atoms need to be detected are reduced compared with the previous scheme. The experimental feasibility of the scheme is discussed.The scheme can easily be generalized for teleportation of N-atom GHZ entangled states. The number of the atoms needed to be detected does not increase as the number of the atoms in GHZ state increases.

  1. Coherent states for certain time-dependent systems

    International Nuclear Information System (INIS)

    Pedrosa, I.A.

    1989-01-01

    Hartley and Ray have constructed and studied coherent states for the time-dependent oscillator. Here we show how to construct states for more general time-dependent systems. We also show that these states are equivalent to the well-known squeezed states. (author) [pt

  2. Projective measurement onto arbitrary superposition of weak coherent state bases

    DEFF Research Database (Denmark)

    Izumi, Shuro; Takeoka, Masahiro; Wakui, Kentaro

    2018-01-01

    One of the peculiar features in quantum mechanics is that a superposition of macroscopically distinct states can exist. In optical system, this is highlighted by a superposition of coherent states (SCS), i.e. a superposition of classical states. Recently this highly nontrivial quantum state and i...

  3. First-Order Polynomial Heisenberg Algebras and Coherent States

    International Nuclear Information System (INIS)

    Castillo-Celeita, M; Fernández C, D J

    2016-01-01

    The polynomial Heisenberg algebras (PHA) are deformations of the Heisenberg- Weyl algebra characterizing the underlying symmetry of the supersymmetric partners of the Harmonic oscillator. When looking for the simplest system ruled by PHA, however, we end up with the harmonic oscillator. In this paper we are going to realize the first-order PHA through the harmonic oscillator. The associated coherent states will be also constructed, which turn out to be the well known even and odd coherent states. (paper)

  4. Symmetric mixed states of n qubits: Local unitary stabilizers and entanglement classes

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, David W.; Walck, Scott N. [Lebanon Valley College, Annville, Pennsylvania 17003 (United States)

    2011-10-15

    We classify, up to local unitary equivalence, local unitary stabilizer Lie algebras for symmetric mixed states of n qubits into six classes. These include the stabilizer types of the Werner states, the Greenberger-Horne-Zeilinger state and its generalizations, and Dicke states. For all but the zero algebra, we classify entanglement types (local unitary equivalence classes) of symmetric mixed states that have those stabilizers. We make use of the identification of symmetric density matrices with polynomials in three variables with real coefficients and apply the representation theory of SO(3) on this space of polynomials.

  5. Entanglement entropy in quantum many-particle systems and their simulation via ansatz states

    International Nuclear Information System (INIS)

    Barthel, Thomas

    2009-01-01

    A main topic of this thesis is the development of efficient numerical methods for the simulation of strongly correlated quantum lattice models. For one-dimensional systems, the density-matrix renormalization-group (DMRG) is such a very successful method. The physical states of interest are approximated within a certain class of ansatz states. These ansatz states are designed in a way that the number of degrees of freedom are prevented from growing exponentially. They are the so-called matrix product states. The first part of the thesis, therefore, provides analytical and numerical analysis of the scaling of quantum nonlocality with the system size or time in different, physically relevant scenarios. For example, the scaling of Renyi entropies and their dependence on boundary conditions is derived within the 1+1-dimensional conformal field theory. Conjectures and analytical indications concerning the properties of entanglement entropy in critical fermionic and bosonic systems are confirmed numerically with high precision. For integrable models in the thermodynamic limit, general preconditions are derived under which subsystems converge to steady states. These steady states are non-thermal and retain information about the initial state. It is shown that the entanglement entropy in such steady states is extensive. For short times, the entanglement entropy grows typically linearly with time, causing an exponential increase in computation costs for the DMRG method. The second part of the thesis focuses on the development and improvement of the abovementioned numerical techniques. The time-dependent DMRG is complemented with an extrapolation technique for the evaluated observables. In this way, the problem of the entropy increase can be circumvented, allowing for a precise determination of spectral functions. The method is demonstrated using the example of the Heisenberg antiferromagnet and results are compared to Bethe-Ansatz data for T=0 and quantum Monte Carlo data

  6. Entanglement entropy in quantum many-particle systems and their simulation via ansatz states

    Energy Technology Data Exchange (ETDEWEB)

    Barthel, Thomas

    2009-12-10

    A main topic of this thesis is the development of efficient numerical methods for the simulation of strongly correlated quantum lattice models. For one-dimensional systems, the density-matrix renormalization-group (DMRG) is such a very successful method. The physical states of interest are approximated within a certain class of ansatz states. These ansatz states are designed in a way that the number of degrees of freedom are prevented from growing exponentially. They are the so-called matrix product states. The first part of the thesis, therefore, provides analytical and numerical analysis of the scaling of quantum nonlocality with the system size or time in different, physically relevant scenarios. For example, the scaling of Renyi entropies and their dependence on boundary conditions is derived within the 1+1-dimensional conformal field theory. Conjectures and analytical indications concerning the properties of entanglement entropy in critical fermionic and bosonic systems are confirmed numerically with high precision. For integrable models in the thermodynamic limit, general preconditions are derived under which subsystems converge to steady states. These steady states are non-thermal and retain information about the initial state. It is shown that the entanglement entropy in such steady states is extensive. For short times, the entanglement entropy grows typically linearly with time, causing an exponential increase in computation costs for the DMRG method. The second part of the thesis focuses on the development and improvement of the abovementioned numerical techniques. The time-dependent DMRG is complemented with an extrapolation technique for the evaluated observables. In this way, the problem of the entropy increase can be circumvented, allowing for a precise determination of spectral functions. The method is demonstrated using the example of the Heisenberg antiferromagnet and results are compared to Bethe-Ansatz data for T=0 and quantum Monte Carlo data

  7. Generation of multipartite entangled states for chains of atoms in the framework of cavity-QED

    Energy Technology Data Exchange (ETDEWEB)

    Gonta, Denis

    2010-07-07

    Cavity quantum electrodynamics is a research field that studies electromagnetic fields in confined spaces and the radiative properties of atoms in such fields. Experimentally, the simplest example of such system is a single atom interacting with modes of a high-finesse resonator. Theoretically, such system bears an excellent framework for quantum information processing in which atoms and light are interpreted as bits of quantum information and their mutual interaction provides a controllable entanglement mechanism. In this thesis, we present several practical schemes for generation of multipartite entangled states for chains of atoms which pass through one or more high-finesse resonators. In the first step, we propose two schemes for generation of one- and two-dimensional cluster states of arbitrary size. These schemes are based on the resonant interaction of a chain of Rydberg atoms with one or more microwave cavities. In the second step, we propose a scheme for generation of multipartite W states. This scheme is based on the off-resonant interaction of a chain of three-level atoms with an optical cavity and a laser beam. We describe in details all the individual steps which are required to realize the proposed schemes and, moreover, we discuss several techniques to reveal the non-classical correlations associated with generated small-sized entangled states. (orig.)

  8. Protecting unknown two-qubit entangled states by nesting Uhrig's dynamical decoupling sequences

    International Nuclear Information System (INIS)

    Mukhtar, Musawwadah; Soh, Wee Tee; Saw, Thuan Beng; Gong, Jiangbin

    2010-01-01

    Future quantum technologies rely heavily on good protection of quantum entanglement against environment-induced decoherence. A recent study showed that an extension of Uhrig's dynamical decoupling (UDD) sequence can (in theory) lock an arbitrary but known two-qubit entangled state to the Nth order using a sequence of N control pulses [Mukhtar et al., Phys. Rev. A 81, 012331 (2010)]. By nesting three layers of explicitly constructed UDD sequences, here we first consider the protection of unknown two-qubit states as superposition of two known basis states, without making assumptions of the system-environment coupling. It is found that the obtained decoherence suppression can be highly sensitive to the ordering of the three UDD layers and can be remarkably effective with the correct ordering. The detailed theoretical results are useful for general understanding of the nature of controlled quantum dynamics under nested UDD. As an extension of our three-layer UDD, it is finally pointed out that a completely unknown two-qubit state can be protected by nesting four layers of UDD sequences. This work indicates that when UDD is applicable (e.g., when the environment has a sharp frequency cutoff and when control pulses can be taken as instantaneous pulses), dynamical decoupling using nested UDD sequences is a powerful approach for entanglement protection.

  9. Generation of multipartite entangled states for chains of atoms in the framework of cavity-QED

    International Nuclear Information System (INIS)

    Gonta, Denis

    2010-01-01

    Cavity quantum electrodynamics is a research field that studies electromagnetic fields in confined spaces and the radiative properties of atoms in such fields. Experimentally, the simplest example of such system is a single atom interacting with modes of a high-finesse resonator. Theoretically, such system bears an excellent framework for quantum information processing in which atoms and light are interpreted as bits of quantum information and their mutual interaction provides a controllable entanglement mechanism. In this thesis, we present several practical schemes for generation of multipartite entangled states for chains of atoms which pass through one or more high-finesse resonators. In the first step, we propose two schemes for generation of one- and two-dimensional cluster states of arbitrary size. These schemes are based on the resonant interaction of a chain of Rydberg atoms with one or more microwave cavities. In the second step, we propose a scheme for generation of multipartite W states. This scheme is based on the off-resonant interaction of a chain of three-level atoms with an optical cavity and a laser beam. We describe in details all the individual steps which are required to realize the proposed schemes and, moreover, we discuss several techniques to reveal the non-classical correlations associated with generated small-sized entangled states. (orig.)

  10. Analysis of elliptically polarized maximally entangled states for bell inequality tests

    Science.gov (United States)

    Martin, A.; Smirr, J.-L.; Kaiser, F.; Diamanti, E.; Issautier, A.; Alibart, O.; Frey, R.; Zaquine, I.; Tanzilli, S.

    2012-06-01

    When elliptically polarized maximally entangled states are considered, i.e., states having a non random phase factor between the two bipartite polarization components, the standard settings used for optimal violation of Bell inequalities are no longer adapted. One way to retrieve the maximal amount of violation is to compensate for this phase while keeping the standard Bell inequality analysis settings. We propose in this paper a general theoretical approach that allows determining and adjusting the phase of elliptically polarized maximally entangled states in order to optimize the violation of Bell inequalities. The formalism is also applied to several suggested experimental phase compensation schemes. In order to emphasize the simplicity and relevance of our approach, we also describe an experimental implementation using a standard Soleil-Babinet phase compensator. This device is employed to correct the phase that appears in the maximally entangled state generated from a type-II nonlinear photon-pair source after the photons are created and distributed over fiber channels.

  11. An Improved Protocol for Controlled Deterministic Secure Quantum Communication Using Five-Qubit Entangled State

    Science.gov (United States)

    Kao, Shih-Hung; Lin, Jason; Tsai, Chia-Wei; Hwang, Tzonelih

    2018-03-01

    In early 2009, Xiu et al. (Opt. Commun. 282(2) 333-337 2009) presented a controlled deterministic secure quantum communication (CDSQC) protocol via a newly constructed five-qubit entangled quantum state. Later, Qin et al. (Opt. Commun. 282(13), 2656-2658 2009) pointed out two security loopholes in Xiu et al.'s protocol: (1) A correlation-elicitation (CE) attack can reveal the entire secret message; (2) A leakage of partial information for the receiver is noticed. Then, Xiu et al. (Opt. Commun. 283(2), 344-347 2010) presented a revised CDSQC protocol to remedy the CE attack problem. However, the information leakage problem still remains open. This work proposes a new CDSQC protocol using the same five-qubit entangled state which can work without the above mentioned security problems. Moreover, the Trojan Horse attacks can be automatically avoided without using detecting devices in the new CDSQC.

  12. Influence of intrinsic decoherence on tripartite entanglement and bipartite fidelity of polar molecules in pendular states

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jia-Xing; Hu, Yuan; Jin, Yu [Key Laboratory of Micro-Nano Measurement-Manipulation and Physics (Ministry of Education), School of Physics and Nuclear Energy Engineering, Beihang University, Xueyuan Road No. 37, Beijing 100191 (China); Zhang, Guo-Feng, E-mail: gf1978zhang@buaa.edu.cn [Key Laboratory of Micro-Nano Measurement-Manipulation and Physics (Ministry of Education), School of Physics and Nuclear Energy Engineering, Beihang University, Xueyuan Road No. 37, Beijing 100191 (China); State Key Laboratory of Software Development Environment, Beihang University, Xueyuan Road No. 37, Beijing 100191 (China); State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026 (China)

    2016-04-07

    An array of ultracold polar molecules trapped in an external electric field is regarded as a promising carrier of quantum information. Under the action of this field, molecules are compelled to undergo pendular oscillations by the Stark effect. Particular attention has been paid to the influence of intrinsic decoherence on the model of linear polar molecular pendular states, thereby we evaluate the tripartite entanglement with negativity, as well as fidelity of bipartite quantum systems for input and output signals using electric dipole moments of polar molecules as qubits. According to this study, we consider three typical initial states for both systems, respectively, and investigate the temporal evolution with variable values of the external field intensity, the intrinsic decoherence factor, and the dipole-dipole interaction. Thus, we demonstrate the sound selection of these three main parameters to obtain the best entanglement degree and fidelity.

  13. Quantum circuit implementation of the optimal information-disturbance tradeoff of maximally entangled states

    International Nuclear Information System (INIS)

    Zhang ShengLi; Zou Xubo; Li Ke; Jin Chenhui; Guo Guangcan

    2008-01-01

    We give a direct derivation for the information-disturbance tradeoff in estimating a maximally entangled state, which was first obtained by Sacchi (2006 Phys. Rev. Lett. 96 220502) in terms of the covariant positive operator valued measurement (POVM) and Jamiolkowski's isomorphism. We find that, the Cauchy-Schwarz inequality, which is one of the most powerful tools in deriving the tradeoff for a single-particle pure state still plays a key role in the case of the maximal entanglement estimation. Our result shows that the inequality becomes equality when the optimal tradeoff is achieved. Moreover, we demonstrate that such a tradeoff is physically achievable with a quantum circuit that only involves single- and two-particle logic gates and single-particle measurements

  14. An Improved Protocol for Controlled Deterministic Secure Quantum Communication Using Five-Qubit Entangled State

    Science.gov (United States)

    Kao, Shih-Hung; Lin, Jason; Tsai, Chia-Wei; Hwang, Tzonelih

    2018-06-01

    In early 2009, Xiu et al. (Opt. Commun. 282(2) 333-337 2009) presented a controlled deterministic secure quantum communication (CDSQC) protocol via a newly constructed five-qubit entangled quantum state. Later, Qin et al. (Opt. Commun. 282(13), 2656-2658 2009) pointed out two security loopholes in Xiu et al.'s protocol: (1) A correlation-elicitation (CE) attack can reveal the entire secret message; (2) A leakage of partial information for the receiver is noticed. Then, Xiu et al. (Opt. Commun. 283(2), 344-347 2010) presented a revised CDSQC protocol to remedy the CE attack problem. However, the information leakage problem still remains open. This work proposes a new CDSQC protocol using the same five-qubit entangled state which can work without the above mentioned security problems. Moreover, the Trojan Horse attacks can be automatically avoided without using detecting devices in the new CDSQC.

  15. Effect of dielectric medium on the nonclassical properties of nonlinear sphere coherent states

    Directory of Open Access Journals (Sweden)

    E Amooghorban

    2014-04-01

    Full Text Available In order to investigate the effect of a medium with dissipation and dispersion and also the curvature of the physical space on the properties of the incident quantum states, we use the quantization of electromagnetic field based on phenomenological approach to obtain input-output relations between radiations on both sides of dielectric slab. By using these relations the fidelity, the Wigner function, and also the quantum correlation of the outgoing state through dielectric slab are obtained for a situation in which the rightward incident state is a nonlinear coherent state on a sphere and the leftward incident state is a vacuum state. Here, the incident states are considered monochromatic and the modeling of the medium is given by the Lorentz' model. Accordingly, we study nonclassical properties of the output states such as the quantum entanglement. It will be observed that the nonclassical properties of the outgoing states depend strongly on the optical property of the medium and also on the curvature of the physical state.

  16. Security of a kind of quantum secret sharing with entangled states.

    Science.gov (United States)

    Wang, Tian-Yin; Liu, Ying-Zhao; Wei, Chun-Yan; Cai, Xiao-Qiu; Ma, Jian-Feng

    2017-05-30

    We present a new collusion attack to a kind of quantum secret sharing schemes with entangled states. Using this attack, an unauthorized set of agents can gain access to the shared secret without the others' cooperation. Furthermore, we establish a general model for this kind of quantum secret sharing schemes and then give some necessary conditions to design a secure quantum secret sharing scheme under this model.

  17. A New Quantum Proxy Multi-signature Scheme Using Maximally Entangled Seven-Qubit States

    Science.gov (United States)

    Cao, Hai-Jing; Zhang, Jia-Fu; Liu, Jian; Li, Zeng-You

    2016-02-01

    In this paper, we propose a new secure quantum proxy multi-signature scheme using seven-qubit entangled quantum state as quantum channels, which may have applications in e-payment system, e-government, e-business, etc. This scheme is based on controlled quantum teleportation. The scheme uses the physical characteristics of quantum mechanics to guarantee its anonymity, verifiability, traceability, unforgetability and undeniability.

  18. Nonlocality without inequalities for almost all entangled states of any quantum system

    International Nuclear Information System (INIS)

    Ghirardi, GianCarlo; Marinatto, Luca

    2005-01-01

    It is shown that it is possible to rule out all local and stochastic hidden variable models accounting for the quantum mechanical predictions implied by almost any entangled quantum state vector of any number of particles whose Hilbert spaces have arbitrary dimensions, without resorting to Bell-type inequalities. The present proof makes use of the mathematically precise notion of Bell locality and it involves only simple set theoretic arguments

  19. Preparation of Greenberger-Horne-Zeilinger Entangled States in the Atom-Cavity Systems

    Science.gov (United States)

    Xu, Nan

    2018-02-01

    We present a new simple scheme for the preparation of Greenberger-Horne-Zeilinger maximally entangled states of two two-level atoms. The distinct feature of the effective Hamiltonian is that there is no energy exchange between the atoms and the cavity.. Thus the scheme is insensitive to the effect of cavity field and the atom radiation.This protocol may be realizable in the realm of current physical experiment.

  20. Time-evolution of entanglement and Greenberger-Horne-Zeilinger states in two-mode Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Yin Wen; Zhang, G.-F.; Liang, J.-Q.; Yan, Q.-W.

    2004-01-01

    In this Brief Report we investigate the time evolution of entanglement in two-mode Bose-Einstein condensates (BEC's) with various parameters of the scattering lengths of interatoms collisions, Josephson coupling strength, and initial states. The degree of entanglement increases by strengthening the tunnel coupling and keeping the balance of the collision interaction. In the latter stage we show that the two-mode BEC's can be used for preparing the Greenberger-Home-Zeilinger state