WorldWideScience

Sample records for ensambles tipo bwr

  1. Líneas de Ensamble Auto-balanceables

    OpenAIRE

    Palomino Sánchez, José Manuel

    2011-01-01

    Este documento presenta una monografía de las líneas de ensamble auto-balanceables. Este tipo de líneas se han popularizado con la implementación de la manufactura esbelta en muchas empresas de diferentes ramos. Sin embargo, su estudio es aún incipiente, por lo que el objetivo de este proyecto es hacer una revisión de la literatura existente con el propósito de identificar posibles trabajos en esta área. Las líneas de ensamble auto-balanceables, también descritas en la literatura como Buck...

  2. Planeación asistida por computadora del proceso tecnológico de ensamble.

    Directory of Open Access Journals (Sweden)

    L. L. Tomás García

    2008-01-01

    Full Text Available El presente trabajo está dedicado a la optimización bajo criterios múltiples de la planificación de procesos de ensamble mecánico a partir de su modelo geométrico tridimensional. Se soporta sobre un enfoque que integra tanto información geométrica como restricciones tecnológicas del proceso de ensamble. En el desarrollo de la misma quedó demostrado, que una vez conocido el modelo geométrico tridimensional de un ensamble, la aplicación de criterios tecnológicos y geométricos al proceso inverso de desensamble y su posterior tratamiento con métodos evolutivos, genera planes deensamble mecánico próximos a los óptimos de acuerdo al sistema de preferencias del decisor. La integración de la información permite disminuir el número de secuencias a evaluar y de elementos a procesar, con lo que se evita la generación y evaluación de todas las secuencias posibles con la consecuente disminución del tiempo de procesamiento. Como resultado de la aplicación del modelo integrado propuesto, se obtiene la planificación del proceso de ensamblemecánico con una reducción del tiempo de ensamble debido a que en las secuencias obtenidas se reduce el número de cambios de dirección de ensamble, los cambios de herramientas y de puestos de trabajo, así como se minimiza la distancia a recorrer debido al cambio de puestos de trabajo. Esto se logra mediante un modelo de optimización multiobjetivo basado en algoritmos genéticos.This work deals with the combinatorial problem of generating and optimizing technologically feasible assembly sequences and process planning involving tools and work places. The assembly sequences and related technological decisions are obtained from a 3D model of the assembled parts based on mating conditions along with a set of technological criteria, which allows automatically analyzing and generating the sequences. The generated assembly sequences are pre-processed and optimized for the assembly Process Planning using

  3. Solution to the transport equation with anisotropic dispersion in a BWR type assembly using the AZTRAN code; Solucion de la ecuacion de transporte con dispersion anisotropica en un ensamble tipo BWR usando el codigo AZTRAN

    Energy Technology Data Exchange (ETDEWEB)

    Chepe P, M. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico); Xolocostli M, J. V.; Gomez T, A. M. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Del Valle G, E., E-mail: liaison.web@gmail.com [IPN, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, Col. San Pedro Zacatenco, 07730 Ciudad de Mexico (Mexico)

    2016-09-15

    Due to the current computing power, the deterministic codes for analyzing nuclear reactors that have been used for several years are becoming more relevant, since much more precise solution techniques can be used; the last century would have been very difficult, since memory and processor capacities were very limited or had high prices on the components. In this work we analyze the effect of the anisotropic dispersion of the effective dispersion section, compared to the isotropic dispersion. The anisotropy implementation was carried out in the AZTRAN transport code, which is part of the AZTLAN platform for nuclear reactors analysis (in development). The AZTRAN code solves the Boltzmann transport equation in one, two and three dimensions at steady state, using the multi-group technique for energy discretization, the RTN-0 nodal method in spatial discretization and for angular discretization the discrete ordinates without considering anisotropy originally. The effect of the anisotropy dispersion on the effective multiplication factor and the axial and radial power on a fuel assembly BWR type are analyzed. (Author)

  4. sistemas de producción tipo kanban: Descripción, componentes, diseño del sistema, y bibliografía relacionada

    Directory of Open Access Journals (Sweden)

    Oscar Javier Parra Ortega

    2013-06-01

    Full Text Available El presente artículo tiene como objeto de estudio, los sistemas de producción tipo ensamble (tree structure tipo Kanban, mono-producto, con tiempos de procesamiento aleatorios para las estaciones que lo conforman, y con capacidad limitada de producción para cada estación. Adicionalmente, se restringe el análisis de dichos sistemas, para horizontes finitos de producción. Después de una descripción del mecanismo de operación de un sistema Kanban simple, de los elementos que los componen, y del estado del arte en sistemas de producción tipo Kanban, se propone e implementa un modelo heurístico para determinar el número de kanbans, minimizando el costo promedio del inventario en proceso.

  5. BWR 90 and BWR 90+: Two advanced BWR design generations from ABB

    International Nuclear Information System (INIS)

    Haukeland, S.; Ivung, B.; Pedersen, T.

    1999-01-01

    ABB has two evolutionary advanced light water reactors available today - the BWR 90 boiling water reactor and the System 80+ pressurised water reactor. The BWR 90 is based on the design, construction, commissioning and operation of the BWR 75 plants. The operation experience of the six plants of this advanced design has been very good. The average annual energy availability is above 90%, and total power generation costs have been low. When developing the BWR 90 specific changes were introduced to a reference design, to adapt to technological progress, new safety requirements and to achieve cost savings. The thermal power rating of BWR 90 is 3800 MWth (providing a nominal 1374 MWe net), slightly higher than that of the reference plant ABB Atom has taken advantage of margins gained using a new generation of its SVEA fuel to attain this power rating without major design modifications. The BWR 90 design was completed and offered to the TVO utility in Finland in 1991, as one of the contenders for the fifth Finnish nuclear power plant project. Hence, the design is available today for deployment in new plant projects. Utility views were incorporated through co-operation with the Finnish utility TVO, owner and operator of the two Olkiluoto plants of BWR 75 design. A review against the European Utility Requirement (EUR) set of requirements has been performed, since the design, in 1997, was selected by the EUR Steering Committee to be the first BWR to be evaluated against the EUR documents. The review work was completed in 1998. It will be the subject of an 'EUR Volume 3 Subset for BWR 90' document. ABB is continuing its BWR development work with an 'evolutionary' design called BWR 90+, which aims at developing the BWR as a competitive option for the anticipated revival of the market for new nuclear plants beyond the turn of the century, as well as feeding ideas and inputs to the continuous modernisation efforts at operating plants. The development is performed by ABB Atom

  6. BWR 90: The ABB advanced BWR design

    International Nuclear Information System (INIS)

    Haukeland, S.; Ivung, B.; Pedersen, T.

    1999-01-01

    ABB has two evolutionary advanced fight water reactors available today - the BWR 90 boiling water reactor and the System 80+ pressurised water reactor. The BWR 90 is based on the design, construction, commissioning and operation of the BWR 75 plants. The operation experience of the six plants of this advanced design has been very good. The average annual energy availability is above 90%, and the total power generation costs have been low. In the development of BWR 90 specific changes were introduced to the reference design, to adapt to technological progress, new safety requirements and to achieve cost savings. The thermal power rating of BWR 90 is 3800 MWth (providing a nominal 1374 MWe net), slightly higher dim that of the reference plant ABB Atom has taken advantage of margins gained using a new generation of its SVEA fuel to attain this power rating without major design modifications. The BWR 90 design was completed and offered to the TVO utility in Finland in 1991, as one of the contenders for the fifth Finnish nuclear power plant project. Thus, the design is available today for deployment in new plant projects. Utility views were incorporated through co-operation with the Finnish utility TVO, owner and operator of the two Olkiluoto plants of BWR 75 design. A review against the European Utility Requirement (EUR) set of requirements has been performed, since the design, in 1997, was selected by the EUR Steering Committee to be the first BWR to be evaluated against the EUR documents. The work is scheduled for completion in 1998. It will be the subject of an 'EUR Volume 3 Subset for BWR 90' document. ABB is continuing its BWR development work with the 'evolutionary' design BWR 90+. The primary design goal is to develop the BWR as a competitive option for the anticipated revival of the market for new nuclear plants beyond the turn of the century, as well as feeding ideas and inputs to the continuous modernisation efforts at operating plants. The development is

  7. Diseño de un calibrador de calidad para disminuir el desperdicio en el área de ensamble de un componente para automóvil

    Directory of Open Access Journals (Sweden)

    Paloma Michelle Torres Hernández

    2015-10-01

    Full Text Available Esta investigación de tipo aplicada es realizada en una empresa dentro de la industria automotriz en Ciudad Juárez Chihuahua México, en la cual se presenta un problema en el área de preforme para el doblez de los pines de los transistores que son ensamblados en un dispositivo llamado AFC (Automotive Fan Control, por sus siglas en inglés, el cual es utilizado para el funcionamiento del encendido y apagado de los ventiladores de enfriamiento del motor de un vehículo. El propósito de este proyecto es el diseñar un calibrador de calidad (Gage Go no Go, traducido al inglés mediante el método de la función de despliegue de la calidad para verificar el correcto ensamble de estos componentes, debido a que actualmente la empresa no cuenta con dicho calibrador. Los resultados muestran que la función de despliegue de la calidad es una metodología que garantiza el diseño satisfactorio de este tipo de dispositivo.

  8. Diseño de un calibrador de calidad para disminuir el desperdicio en el área de ensamble de un componente para automóvil

    Directory of Open Access Journals (Sweden)

    Paloma Michelle Torres Hernández

    2015-11-01

    Full Text Available Esta investigación de tipo aplicada es realizada en una empresa dentro de la industria automotriz en Ciudad Juárez Chihuahua México, en la cual se presenta un problema en el área de preforme para el doblez de los pines de los transistores que son ensamblados en un dispositivo llamado AFC (Automotive Fan Control, por sus siglas en inglés, el cual es utilizado para el funcionamiento del encendido y apagado de los ventiladores de enfriamiento del motor de un vehículo. El propósito de este proyecto es el diseñar un calibrador de calidad (Gage Go no Go, traducido al inglés mediante el método de la función de despliegue de la calidad para verificar el correcto ensamble de estos componentes, debido a que actualmente la empresa no cuenta con dicho calibrador. Los resultados muestran que la función de despliegue de la calidad es una metodología que garantiza el diseño satisfactorio de este tipo de dispositivo.

  9. ENSAMBLES ALGALES EN UN MICROECOSISTEMA NATURAL DE LA PLANTA CARNÍVORA TROPICAL UTRICULARIA FOLIOSA L.

    Directory of Open Access Journals (Sweden)

    Diaz-Olarte J

    2009-12-01

    Full Text Available Se estudió la abundancia y la composición de los ensambles algales asociadosa Utricularia foliosa en siete plantas localizadas en la quebrada Yahuarcaca(Amazonas - Colombia. Los objetivos fueron determinar los ensambles algalesdentro del microecosistema de U. foliosa y sus variaciones de acuerdo con lascondiciones de los nutrientes. Los cambios en la riqueza y la abundancia de losensambles estuvieron infl uenciados por las fl uctuaciones en el nivel del agua y laconcentración de PO . En los ensambles de aguas abiertas se observó la dominanciade cianobacterias heterocitadas, diatomeas y organismos de gran capacidad móvilcomo euglenófi tos. Las condiciones del microambiente creadas por U. foliosacontrolan la diversidad y las densidades algales. Esto hace muy posible que U.foliosa genere condiciones fi siológicas óptimas que favorecen una alta riquezade especies tico-epífi tas como desmidias y diatomeas perifíticas. Se forma así unmicroecosistema del cual obtiene más benefi cios de la comunidad que de la mismaestrategia de la carnivoría desarrollada por U. foliosa. Se analiza además la relaciónentre la composición algal y las variables físicas y químicas por medio de un análisisde correspondencia canónica distendida.

  10. Incorporación de Riesgos Ergonómicos en el Balanceo de Líneas de Ensamble en U

    Directory of Open Access Journals (Sweden)

    Jairo R. Coronado-Hernandez

    2013-09-01

    Full Text Available En este trabajo se presenta un modelo de optimización en el balanceo de línea en U considerando riesgos ergonómicos de las tareas dentro de las estaciones de trabajo. El documento, explora diferentes métodos ergonómicos, los cuales pueden ser involucrados dentro de una línea de ensamble. Por medio de un ejemplo, se evidencia como se balancea las tareas en diferentes estaciones de trabajo, respetando el nivel aceptable ergonómico en actividades repetitivas, valorado por medio del método Check List OCRA para una línea de ensamble en U.

  11. Compact modular BWR (CM-BWR)

    International Nuclear Information System (INIS)

    Fennern, Larry; Boardman, Charles; Carroll, Douglas G.; Hida, Takahiko

    2003-01-01

    A preliminary assessment has shown that a small 350 MWe BWR reactor can be placed within a close fitting steel containment vessel that is 7.1 meters inside diameter. This allows the technology and manufacturing capability currently used to fabricate large ABWR reactor vessels to be used to provide a factory fabricated containment vessel for a 350 MWe BWR. When a close fitted steel containment is combined with a passive closed loop isolation condenser system and a natural circulating reactor system that contains a large water inventory, primary system leaks cannot uncover the core. This eliminates many of the safety systems needed in response to a LOCA that are common to large, conventional plant designs including. Emergency Core Flooding, Automatic Depressurization System, Active Residual Heat Removal, Safety Related Auxiliary Cooling, Safety Related Diesel Generators, Hydrogen Re-Combiners, Ex-vessel Core Retention and Cooling. By fabricating the containment in a factory and eliminating most of the conventional safety systems, the construction schedule is shortened and the capital cost reduced to levels that would not otherwise be possible for a relatively small modular BWR. This makes the CM-BWR a candidate for applications where smaller incremental power additions are desired relative to a large ALWR or where the local infrastructure is not able to accommodate a conventional ALWR plant rated at 1350 MWe or more. This paper presents a preliminary design description of a Compact Modular BWR (CM-BWR) whose design features dramatically reduce the size and cost of the reactor building and associated safety systems. (author)

  12. Planificación y optimización asistida por computadora de secuencias de ensamble mecánico // Computer aided Planning and optimization for mechanical assembly.

    Directory of Open Access Journals (Sweden)

    L. L. Tomás-García

    2009-01-01

    Full Text Available El presente trabajo versa sobre la generación, planificación y optimización de secuencias deensamble mecánico a partir de su modelo geométrico tridimensional. Se soporta sobre un enfoqueque integra tanto información geométrica como restricciones tecnológicas del proceso deensamble. En el desarrollo de la misma quedó demostrado, que una vez conocido el modelogeométrico tridimensional de un ensamble, la aplicación de criterios tecnológicos y geométricos alproceso inverso de desensamble y su posterior tratamiento con el método de algoritmosevolutivos, genera una planificación optimizada del su proceso de ensamble mecánico. Laintegración de la información permite disminuir el número de secuencias a evaluar y de elementosa procesar, con lo que se evita la generación y evaluación de todas las secuencias posibles con laconsecuente disminución del tiempo de procesamiento. Como resultado de la aplicación delmodelo integrado propuesto, se obtiene la planificación del proceso de ensamble mecánico conuna reducción del tiempo de ensamble debido a que en las secuencias de ensamble obtenidas sereduce el número de cambios de dirección de ensamble, los cambios de herramientas y de puestosde trabajo, así como se minimiza la distancia a recorrer debido al cambio de puestos de trabajo.Esto se logra mediante un modelo de optimización multiobjetivo basado en algoritmos evolutivos.Palabras claves: ensamble mecánico, algoritmos genéticos, optimización multiobjetivo.____________________________________________________________________________AbstractThis work deals with the combinatorial problem of generating and optimizing feasible assemblysequences and doing the process planning involving tools and work places. The assembly sequencesare obtained from a 3D model of the assembled parts based on mating conditions along with a setof technological criteria, which allows automatically analyzing and generating the sequences. Thegenerated

  13. Neutron dosimetry. Environmental monitoring in a BWR type reactor; Dosimetria de neutrones. Monitoreo ambiental en un reactor del tipo BWR

    Energy Technology Data Exchange (ETDEWEB)

    Tavera D, L; Camacho L, M E

    1991-01-15

    The measurements carried out on reactor dosimetry are applied mainly to the study on the effects of the radiation in 108 materials of the reactor; little is on the environmental dosimetry outside of the primary container of BWR reactors. In this work the application of a neutron spectrometer formed by plastic detectors of nuclear traces manufactured in the ININ, for the environmental monitoring in penetrations around the primary container of the unit I of the Laguna Verde central is presented. The neutron monitoring carries out with purposes of radiological protection, during the operational tests of the reactor. (Author)

  14. Development of a BWR core burn-up calculation code COREBN-BWR

    International Nuclear Information System (INIS)

    Morimoto, Yuichi; Okumura, Keisuke

    1992-05-01

    In order to evaluate core performances of BWR type reactors, the three dimensional core burnup calculation code COREBN-BWR and the fuel management code HIST-BWR have been developed. In analyses of BWR type reactors, thermal hydraulics calculations must be coupled with neutronics calculations to evaluate core performances, because steam void distribution changes according to the change of the power distribution. By installing new functions as follows to the three dimensional core burnup code COREBN2 developed in JAERI for PWR type reactor analyses, the code system becomes to be applicable to burnup analyses of BWR type reactors. (1) Macroscopic cross section calculation function taking into account of coolant void distribution. (2) Thermal hydraulics calculation function to evaluate core flow split, coolant void distribution and thermal margin. (3) Burnup calculation function under the Haling strategy. (4) Fuel management function to incorporate the thermal hydraulics information. This report consists of the general description, calculational models, input data requirements and their explanations, detailed information on usage and sample input. (author)

  15. Design of a mixed recharge with MOX assemblies of greater relation of moderation for a BWR reactor; Diseno de una recarga mixta con ensambles MOX de mayor relacion de moderacion para un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J.R.; Alonso V, G.; Palacios H, J. [ININ, Carretera Mexico-Toluca Km. 36.5, 52045 Estado de Mexico (Mexico)]. e-mail: jrrs@nuclear.inin.mx

    2004-07-01

    The study of the fuel of mixed oxides of uranium and plutonium (MOX) it has been topic of investigation in many countries of the world and those are even discussed in many places the benefits of reprocessing the spent fuel to extract the plutonium created during the irradiation of the fuel in the nuclear power reactors. At the moment those reactors that have been loaded partially with MOX fuel, are mainly of the type PWR where a mature technology has been achieved in some countries like they are France, Belgium and England, however the experience with reactors of the type BWR is more limited and it is continued studying the best way to introduce this type of fuel in BWRs, one of the main problems to introduce MOX in reactors BWR is the neutronic design of the same one, existing different concepts to introduce the plutonium in the assemblies of fuel and one of them is the one of increasing the relationship of moderation of the assemble. In this work a MOX fuel assemble design is presented and the obtained results so far in the ININ. These results indicate that the investigated concept has some exploitable advantages in the use of the MOX fuel. (Author)

  16. Use of the program TNHXY in assemblies type MOX in comparison with CASMO-4; Utilizacion del programa TNHXY en ensambles tipo MOX en comparacion con CASMO-4

    Energy Technology Data Exchange (ETDEWEB)

    Xolocostli M, J. V.; Enriquez C, P. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Del Valle G, E., E-mail: vicente.xolocostli@inin.gob.mx [IPN, Escuela Superior de Fisica y Matematicas, U. P. Adolfo Lopez Mateos, Col. Lindavista, 07738 Mexico D. F. (Mexico)

    2011-11-15

    In this work a comparison is made in the analysis of fuel assemblies type MOX among the CASMO-4 code and the program TNHXY (Transport of neutrons with Hybrid Nodal schemes in X Y geometry) which solves the equation of neutrons transport in stationary state and X Y geometry using nodal schemes type finite element -hybrid-, such named in correspondence to the parameters that interpolate. The program TNHXY has been validated previously by means of different test problems or benchmark that some authors have solved using other numeric techniques. In addition to analyzing assemblies type BWR. Some of the codes with which have been realized the validations are TWOTRAN as well as other commercial codes as, Helios, MCNP-4B and Cpm-3. The reason of to do this comparative is to able to observe the versatility of the program TNHXY with regard to CASMO-4 relating to the assemblies analysis type MOX and BWR, offering an alternative in the analysis of the same assemblies and with this comparison is confirmed even more the program TNHXY. For the comparison was analyzed a fuel assembly of the type GNF2 for a reactor type BWR that contains MOX with 10 enrichment types for a specific burnt pass. (Author)

  17. Ensambles de aves en agroecosistemas de la provincia de Buenos Aires: su relación con los patrones de uso de la tierra y las características del paisaje

    OpenAIRE

    Codesido, Mariano

    2010-01-01

    Entre enero de 2006 y enero de 2008 se estudió estacionalmente la estructura de los ensambles de aves en los agroecosistemas de las diferentes unidades ecológicas de la Región Pampeana comprendidas dentro de la provincia de Buenos Aires (Pampa Ondulada, Pampa Interior Plana, Pampa Interior Arenosa, Pampa Deprimida y Pampa Austral). Los objetivos generales de la tesis son: a) describir la estructura de los ensambles de aves terrestres de los agroecosistemas de la provincia de Buenos Aires, b) ...

  18. The BWR Stability Issue

    International Nuclear Information System (INIS)

    D'Auria, F.

    2008-01-01

    The purpose of this paper is to supply general information about Boiling Water Reactor (BWR) stability. The main concerned topics are: phenomenological aspects, experimental database, modelling features and capabilities, numerical models, three-dimensional modelling, BWR system performance during stability, stability monitoring and licensing aspects.

  19. SCORPIO-BWR: status and future plans

    International Nuclear Information System (INIS)

    Porsmyr, Jan; Bodal, Terje; Beere, William H.

    2004-01-01

    Full text: During the years from 2000 to 2003 a joint project has been performed by IFE, Halden and TEPCO Systems Corporation, Japan, to develop a core monitoring system for BWRs based on the their existing core monitoring system TiARA and the SCORPIO framework. It has been emphasised to develop a reliable, flexible, adaptable and user-friendly system, which is easy to maintain. Therefore, a rather general framework (SCORPIO Framework) has been used which facilitates easy software modifications as well as adding/ replacing physics modules. The software modules is integrated in the SCORPIO framework using the Software Bus as the communication tool and with the Picasso UIMS tool for MMI. The SCORPIO-BWR version is developed on a Windows-PC platform. The SCORPIO-BWR version provides all functions, which are necessary for all analyses and operations performed on a BWR plant and comprises functions for on-line core monitoring, predictive analysis and core management with interfaces to plant instrumentation and physics codes. Functions for system initialisation and maintenance are also included. A SCORPIO-BWR version adapted for ABWR was installed in TEPSYS facilities in Tokyo in January 2003, where the final acceptance tests were carried out and accepted. The ABWR version of the system is now in the verification and validation phase. In the period from April 2003 until March 2004 a project for realizing an offline-version of SCORPIO-BWR system, which supports the offline tasks of BWR in-core fuel management for ABWR and BWR-5 type of reactors, was developed. The offline-version of the SCORPIO-BWR system for ABWR and BWR-5 type of reactors was installed at TEPSYS in March 2003, where the final acceptance tests were carried out and accepted. Plans for the next version of this system is to study the possibility of adapting SCORPIO-BWR to work with 'mobile technology'. This means that it should be possible to access and display information from the SCORPIO-BWR system on a

  20. SCORPIO-BWR: status and future plans

    Energy Technology Data Exchange (ETDEWEB)

    Porsmyr, Jan; Bodal, Terje; Beere, William H. (and others)

    2004-07-01

    Full text: During the years from 2000 to 2003 a joint project has been performed by IFE, Halden and TEPCO Systems Corporation, Japan, to develop a core monitoring system for BWRs based on the their existing core monitoring system TiARA and the SCORPIO framework. It has been emphasised to develop a reliable, flexible, adaptable and user-friendly system, which is easy to maintain. Therefore, a rather general framework (SCORPIO Framework) has been used which facilitates easy software modifications as well as adding/ replacing physics modules. The software modules is integrated in the SCORPIO framework using the Software Bus as the communication tool and with the Picasso UIMS tool for MMI. The SCORPIO-BWR version is developed on a Windows-PC platform. The SCORPIO-BWR version provides all functions, which are necessary for all analyses and operations performed on a BWR plant and comprises functions for on-line core monitoring, predictive analysis and core management with interfaces to plant instrumentation and physics codes. Functions for system initialisation and maintenance are also included. A SCORPIO-BWR version adapted for ABWR was installed in TEPSYS facilities in Tokyo in January 2003, where the final acceptance tests were carried out and accepted. The ABWR version of the system is now in the verification and validation phase. In the period from April 2003 until March 2004 a project for realizing an offline-version of SCORPIO-BWR system, which supports the offline tasks of BWR in-core fuel management for ABWR and BWR-5 type of reactors, was developed. The offline-version of the SCORPIO-BWR system for ABWR and BWR-5 type of reactors was installed at TEPSYS in March 2003, where the final acceptance tests were carried out and accepted. Plans for the next version of this system is to study the possibility of adapting SCORPIO-BWR to work with 'mobile technology'. This means that it should be possible to access and display information from the SCORPIO-BWR

  1. Solution of the transport equation in stationary state, in one and two dimensions, for BWR assemblies using nodal methods; Solucion de la ecuacion de transporte en estado estacionario, en 1 y 2 dimensiones, para ensambles tipo BWR usando metodos nodales

    Energy Technology Data Exchange (ETDEWEB)

    Xolocostli M, J.V

    2002-07-01

    The main objective of this work is to solve the neutron transport equation in one and two dimensions (slab geometry and X Y geometry, respectively), with no time dependence, for BWR assemblies using nodal methods. In slab geometry, the nodal methods here used are the polynomial continuous (CMPk) and discontinuous (DMPk) families but only the Linear Continuous (also known as Diamond Difference), the Quadratic Continuous (QC), the Cubic Continuous (CC), the Step Discontinuous (also known as Backward Euler), the Linear Discontinuous (LD) and the Quadratic Discontinuous (QD) were considered. In all these schemes the unknown function, the angular neutron flux, is approximated as a sum of basis functions in terms of Legendre polynomials, associated to the values of the neutron flux in the edges (left, right, or both) and the Legendre moments in the cell, depending on the nodal scheme used. All these schemes were implemented in a computer program developed in previous thesis works and known with the name TNX. This program was modified for the purposes of this work. The program discreetizes the domain of concern in one dimension and determines numerically the angular neutron flux for each point of the discretization when the number of energy groups and regions are known starting from an initial approximation for the angular neutron flux being consistent with the boundary condition imposed for a given problem. Although only problems with two-energy groups were studied the computer program does not have limitations regarding the number of energy groups and the number of regions. The two problems analyzed with the program TNX have practically the same characteristics (fuel and water), with the difference that one of them has a control rod. In the part corresponding to two-dimensional problems, the implemented nodal methods were those designated as hybrids that consider not only the edge and cell Legendre moments, but also the values of the neutron flux in the corner points

  2. High Fidelity BWR Fuel Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Su Jong [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    This report describes the Consortium for Advanced Simulation of Light Water Reactors (CASL) work conducted for completion of the Thermal Hydraulics Methods (THM) Level 3 milestone THM.CFD.P13.03: High Fidelity BWR Fuel Simulation. High fidelity computational fluid dynamics (CFD) simulation for Boiling Water Reactor (BWR) was conducted to investigate the applicability and robustness performance of BWR closures. As a preliminary study, a CFD model with simplified Ferrule spacer grid geometry of NUPEC BWR Full-size Fine-mesh Bundle Test (BFBT) benchmark has been implemented. Performance of multiphase segregated solver with baseline boiling closures has been evaluated. Although the mean values of void fraction and exit quality of CFD result for BFBT case 4101-61 agreed with experimental data, the local void distribution was not predicted accurately. The mesh quality was one of the critical factors to obtain converged result. The stability and robustness of the simulation was mainly affected by the mesh quality, combination of BWR closure models. In addition, the CFD modeling of fully-detailed spacer grid geometry with mixing vane is necessary for improving the accuracy of CFD simulation.

  3. BWR core melt progression phenomena: Experimental analyses

    International Nuclear Information System (INIS)

    Ott, L.J.

    1992-01-01

    In the BWR Core Melt in Progression Phenomena Program, experimental results concerning severe fuel damage and core melt progression in BWR core geometry are used to evaluate existing models of the governing phenomena. These include control blade eutectic liquefaction and the subsequent relocation and attack on the channel box structure; oxidation heating and hydrogen generation; Zircaloy melting and relocation; and the continuing oxidation of zirconium with metallic blockage formation. Integral data have been obtained from the BWR DF-4 experiment in the ACRR and from BWR tests in the German CORA exreactor fuel-damage test facility. Additional integral data will be obtained from new CORA BWR test, the full-length FLHT-6 BWR test in the NRU test reactor, and the new program of exreactor experiments at Sandia National Laboratories (SNL) on metallic melt relocation and blockage formation. an essential part of this activity is interpretation and use of the results of the BWR tests. The Oak Ridge National Laboratory (ORNL) has developed experiment-specific models for analysis of the BWR experiments; to date, these models have permitted far more precise analyses of the conditions in these experiments than has previously been available. These analyses have provided a basis for more accurate interpretation of the phenomena that the experiments are intended to investigate. The results of posttest analyses of BWR experiments are discussed and significant findings from these analyses are explained. The ORNL control blade/canister models with materials interaction, relocation and blockage models are currently being implemented in SCDAP/RELAP5 as an optional structural component

  4. Development of advanced BWR

    International Nuclear Information System (INIS)

    Toyota, Masatoshi

    1982-01-01

    The Japanese technology and domestic production of BWR type nuclear power plants have been established through the experiences in the construction and operation of BWRs in addition to the technical agreement with the General Electric Co. In early days, the plants experienced some trouble such as stress corrosion cracking and some inconvenience in the operation and maintenance. The government, electric power companies and BWR manufacturers have endeavored to standardize and improve the design of LWRs for the purpose of improving the safety, reliability and the rate of operation and reducing the radiation exposure dose of plant workers. The first and second stages of the standardization and improvement of LWRs have been completed. Five manufacturers of BWRs in the world have continued the conceptual design of a new version of BWR power plants. It was concluded that this is the most desirable version of BWR nuclear power stations, but the technical and economic evaluation must be made before the commercial application. Six electric power companies and three manufacturers of BWRs in Japan set up the organization to develop the technology in cooperation. The internal pump system, the new control rod drive mechanism and others are the main features. (Kako, I.)

  5. CODIFICACIÓN DE ESTADOS FUNCIONALES EN REDES NEURONALES BIOLÓGICAS

    OpenAIRE

    Luis Carrillo-Reid; José Barga

    2008-01-01

    Un tema central para las neurociencias consiste en descifrar la forma en la cual las redes neuronales biológicas procesan la información y guardan memorias. En 1949 Donald Hebb propuso que la actividad reverberante de pequeños circuitos neuronales llamados "ensambles" funcionaría como el sustrato sobre el cual se construyen las rutas de la memoria. Sin embargo, para poder almacenar cualquier tipo de información compleja, los ensambles neuronales deberían tener la habilidad de organizarse en j...

  6. Solution of the transport equation in stationary state, in one and two dimensions, for BWR assemblies using nodal methods; Solucion de la ecuacion de transporte en estado estacionario, en 1 y 2 dimensiones, para ensambles tipo BWR usando metodos nodales

    Energy Technology Data Exchange (ETDEWEB)

    Xolocostli M, J V

    2002-07-01

    The main objective of this work is to solve the neutron transport equation in one and two dimensions (slab geometry and X Y geometry, respectively), with no time dependence, for BWR assemblies using nodal methods. In slab geometry, the nodal methods here used are the polynomial continuous (CMPk) and discontinuous (DMPk) families but only the Linear Continuous (also known as Diamond Difference), the Quadratic Continuous (QC), the Cubic Continuous (CC), the Step Discontinuous (also known as Backward Euler), the Linear Discontinuous (LD) and the Quadratic Discontinuous (QD) were considered. In all these schemes the unknown function, the angular neutron flux, is approximated as a sum of basis functions in terms of Legendre polynomials, associated to the values of the neutron flux in the edges (left, right, or both) and the Legendre moments in the cell, depending on the nodal scheme used. All these schemes were implemented in a computer program developed in previous thesis works and known with the name TNX. This program was modified for the purposes of this work. The program discreetizes the domain of concern in one dimension and determines numerically the angular neutron flux for each point of the discretization when the number of energy groups and regions are known starting from an initial approximation for the angular neutron flux being consistent with the boundary condition imposed for a given problem. Although only problems with two-energy groups were studied the computer program does not have limitations regarding the number of energy groups and the number of regions. The two problems analyzed with the program TNX have practically the same characteristics (fuel and water), with the difference that one of them has a control rod. In the part corresponding to two-dimensional problems, the implemented nodal methods were those designated as hybrids that consider not only the edge and cell Legendre moments, but also the values of the neutron flux in the corner points

  7. BWR Radiation Assessment and Control Program: assessment and control of BWR radiation fields. Volume 1. Executive summary

    International Nuclear Information System (INIS)

    Anstine, L.D.

    1983-05-01

    This report covers work on the BWR Radiation Assessment and Control (BRAC) Program from 1978 to 1982. The major activities during this report period were assessment of the radiation-level trends in BWRs, evaluation of the effects of forward-pumped heater drains on BWR water quality, installation and operation of a corrosion-product deposition loop in an operating BWR, and analyzation of fuel-deposit samples from two BWRs. Radiation fields were found to be controlled by cobalt-60 and to vary from as low as 50 mr/hr to as high as 800 mr/hr on the recirculation-system piping. Detailed information on BWR corrosion films and system deposits is presented in the report. Additionally, the results of an oxygen-injection experiment and recontamination monitoring studies are provided

  8. BWR Full Integral Simulation Test (FIST) Phase II test results and TRAC-BWR model qualification

    International Nuclear Information System (INIS)

    Sutherland, W.A.; Alamgir, M.; Findlay, J.A.; Hwang, W.S.

    1985-10-01

    Eight matrix tests were conducted in the FIST Phase I. These tests investigated the large break, small break and steamline break LOCA's, as well as natural circulation and power transients. There are nine tests in Phase II of the FIST program. They include the following LOCA tests: BWR/6 LPCI line break, BWR/6 intermediate size recirculation break, and a BWR/4 large break. Steady state natural circulation tests with feedwater makeup performed at high and low pressure, and at high pressure with HPCS makeup, are included. Simulation of a transient without rod insertion, and with controlled depressurization, was performed. Also included is a simulation of the Peach Bottom turbine trip test. The final two tests simulated a failure to maintain water level during a postulated accident. A FIST program objective is to assess the TRAC code by comparisons with test data. Two post-test predictions made with TRACB04 are compared with Phase II test data in this report. These are for the BWR/6 LPCI line break LOCA, and the Peach Bottom turbine trip test simulation

  9. Best-estimate analysis development for BWR systems

    International Nuclear Information System (INIS)

    Sutherland, W.A.; Alamgir, M.; Kalra, S.P.; Beckner, W.D.

    1986-01-01

    The Full Integral Simulation Test (FIST) Program is a three pronged approach to the development of best-estimate analysis capability for BWR systems. An experimental program in the FIST BWR system simulator facility extends the LOCA data base and adds operational transients data. An analytical method development program with the BWR-TRAC computer program extends the modeling of BWR specific components and major interfacing systems, and improves numerical techniques to reduce computer running time. A method qualification program tests TRAC-B against experiments run in the FIST facility and extends the results to reactor system applications. With the completion and integration of these three activities, the objective of a best-estimate analysis capability has been achieved. (author)

  10. Panorama of the BWR reactors - Evolution of the concept

    Energy Technology Data Exchange (ETDEWEB)

    Novotny, C.; Uhrig, E. [AREVA NP GmbH, Safety Engineering Department - PEPS-G (Germany)

    2012-01-15

    Nowadays, a fleet of more than 50 boiling water reactors (BWR) are in operation in the world. This article gives a short overview on the developments of nuclear power plants of the BWR type, with a focus on the European builds. It describes the technical bases from the early designs in the fifties, sketches the innovations of the sixties and seventies in the types BWR 69 and 72 (Baulinie 69 and 72) and gives an outlook of a possible next generation BWR. A promising approach in recent BWR developments is the the combination of passive safety systems with established design basis

  11. BWR AXIAL PROFILE

    International Nuclear Information System (INIS)

    Huffer, J.

    2004-01-01

    The purpose of this calculation is to develop axial profiles for estimating the axial variation in burnup of a boiling water reactor (BWR) assembly spent nuclear fuel (SNF) given the average burnup of an assembly. A discharged fuel assembly typically exhibits higher burnup in the center and lower burnup at the ends of the assembly. Criticality safety analyses taking credit for SNF burnup must account for axially varying burnup relative to calculations based on uniformly distributed assembly average burnup due to the under-burned tips. Thus, accounting for axially varying burnup in criticality analyses is also referred to as accounting for the ''end effect'' reactivity. The magnitude of the reactivity change due to ''end effect'' is dependent on the initial assembly enrichment, the assembly average burnup, and the particular axial profile characterizing the burnup distribution. The set of bounding axial profiles should incorporate multiple BWR core designs and provide statistical confidence (95 percent confidence that 95 percent of the population is bound by the profile) that end nodes are conservatively represented. The profiles should also conserve the overall burnup of the fuel assembly. More background on BWR axial profiles is provided in Attachment I

  12. GPE-BWR and the containment venting and filtering issue

    International Nuclear Information System (INIS)

    Palomo, J.; Santiago, J. de

    1988-01-01

    The Spanish Boiling Water Reactor Owner's Group (GPE-BWR) is formed by three utilities, owning four units: Santa Maria de Garona (46 MWe, BWR3, Mark I containment), Cofrentes (975 MWe, BWR6, Mark III containment) and Valdecaballeros (2x975 MWe, BWR6, Mark III containment) - all of the reactors having been supplied by General Electric. One of the GPE-BWR's several committees is the Safety and Licensing Committee, which follows up the evolution of severe accident topics and particularly the containment venting and filtering issue. In September 1987, the Consejo de Seguridad Nuclear (CSN), the Spanish Regulatory Body, asked the GPE-BWR to define its position on the installation of a containment venting system. The GPE-BWR created a Working Group which presented a Report on Containment Venting to the CSN in January 1987 gathered from: the US Nuclear Regulatory Commission (NRC); some US utilities; and several European countries, especially France, Germany and Sweden. CSN's review of the containment venting Report and the Action Plan proposed by the GPE-BWR finished in April 1988. The conclusion of the Report and the proposed Action Plan take into account the US NRC's identified open items on severe accidents and the R and D programs scheduled to close these items

  13. BWR stability analysis

    International Nuclear Information System (INIS)

    Valtonen, K.

    1990-01-01

    The objective of this study has been to examine TVO-I oscillation incident, which occured in February 22.1987 and to find out safety implications of oscillations in ATWS incidents. Calculations have been performed with RAMONA-3B and TRAB codes. RAMONA-3B is a BWR transient analysis code with three-dimencional neutron kinetics and nonequilibrium, nonhomogeneous thermal hydraulics. TRAB code is a one-dimencional BWR transient code which uses methods similar to RAMONA-3B. The results have shown that both codes are capable of analyzing of the oscillation incidents. Both out-of-phase and in-phase oscillations are possible. If the reactor scram fails (ATWS) during oscillations the severe fuel failures are always possible and the reactor core may exceed the prompt criticality

  14. Fundamentals of boiling water reactor (BWR)

    International Nuclear Information System (INIS)

    Bozzola, S.

    1982-01-01

    These lectures on fundamentals of BWR reactor physics are a synthesis of known and established concepts. These lectures are intended to be a comprehensive (even though descriptive in nature) presentation, which would give the basis for a fair understanding of power operation, fuel cycle and safety aspects of the boiling water reactor. The fundamentals of BWR reactor physics are oriented to design and operation. In the first lecture general description of BWR is presented, with emphasis on the reactor physics aspects. A survey of methods applied in fuel and core design and operation is presented in the second lecture in order to indicate the main features of the calculational tools. The third and fourth lectures are devoted to review of BWR design bases, reactivity requirements, reactivity and power control, fuel loading patterns. Moreover, operating limits are reviewed, as the actual limits during power operation and constraints for reactor physics analyses (design and operation). The basic elements of core management are also presented. The constraints on control rod movements during the achieving of criticality and low power operation are illustrated in the fifth lecture. Some considerations on plant transient analyses are also presented in the fifth lecture, in order to show the impact between core and fuel performance and plant/system performance. The last (sixth) lecture is devoted to the open vessel testing during the startup of a commercial BWR. A control rod calibration is also illustrated. (author)

  15. BWR Refill-Reflood Program, Task 4.7 - model development: TRAC-BWR component models

    International Nuclear Information System (INIS)

    Cheung, Y.K.; Parameswaran, V.; Shaug, J.C.

    1983-09-01

    TRAC (Transient Reactor Analysis Code) is a computer code for best-estimate analysis for the thermal hydraulic conditions in a reactor system. The development and assessment of the BWR component models developed under the Refill/Reflood Program that are necessary to structure a BWR-version of TRAC are described in this report. These component models are the jet pump, steam separator, steam dryer, two-phase level tracking model, and upper-plenum mixing model. These models have been implemented into TRAC-B02. Also a single-channel option has been developed for individual fuel-channel analysis following a system-response calculation

  16. Boiling water system of nuclear power plants (BWR)

    International Nuclear Information System (INIS)

    Martias Nurdin

    1975-01-01

    About 85% of the world electric generators are light water reactors. It shows that LWR is technologically and economically competitive with other generators. The Boiling Water Reactor (BWR) is one of the two systems in the LWR group. The techniques of BWR operation in several countries, especially low and moderate power BWR, are presented. The discussion is made in relation with the interconnection problems of electric installation in developing countries, including Indonesia, where the total electric energy installation is low. The high reliability and great flexibility of the operation of a boiling water reactor for a sufficiently long period are also presented. Component standardization for BWR system is discussed to get a better technological and economical performance for further development. (author)

  17. Synergistic failure of BWR internals

    International Nuclear Information System (INIS)

    Ware, A. G.; Chang, T.Y.

    1999-01-01

    Boiling Water Reactor (BWR) core shrouds and other reactor internals important to safety are experiencing intergranular stress corrosion cracking (IGSCC). The United States Nuclear Regulatory Commission has followed the problem, and as part of its investigations, contracted with the Idaho National Engineering and Environmental Laboratory to conduct a risk assessment. The overall project objective is to assess the potential consequences and risks associated with the failure of IGSCC-susceptible BWR vessel internals, with specific consideration given to potential cascading and common mode effects. An initial phase has been completed in which background material was gathered and evaluated, and potential accident sequences were identified. A second phase is underway to perform a simplified, quantitative probabilistic risk assessment on a representative high-power BWR/4. Results of the initial study conducted on the jet pumps show that any cascading failures would not result in a significant increase in the core damage frequency. The methodology is currently being extended to other major reactor internals components

  18. Utility experience with BWR-PSMS

    International Nuclear Information System (INIS)

    Bond, G.R.

    1986-01-01

    The BWR Power Shape Monitoring System (BWR-PSMS) has proven to be an effective and versatile tool for core monitoring. GPU Nuclear Corporation's (GPUN) Oyster Creek plant has been involved in the PSMS development since its inception, having been selected by EPRI as the initial demonstration site. Beginning with Cycle 10, Oyster Creek has been applying the BWR-PSMS as the primary core monitoring tool. Although the system has been in operation at Oyster Creek for the past several cycles, this is the first time the PSMS was used to monitor compliance to the plant technical specifications, to guide adherence to vendore fuel maneuvering recommendations and to develop data for certain performance records such as fuel burnup, isotopic accounting, etc. This paper will discuss the bases for the decision to apply PSMS as the fundamental core monitoring system, the experience in implementing the PSMS in this mode, activities currently underway or planned related to PSMS, and potential future extensions and applications of PSMS at Oyster Creek

  19. EPRI BWR Water Chemistry Guidelines Revision

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Giannelli, Joseph F.

    2014-01-01

    BWRVIP-190: BWR Water Chemistry Guidelines – 2008 Revision has been revised. The revision committee consisted of U.S. and non-U.S. utilities (members of the BWR Vessel and Internals Protection (BWRVIP) Mitigation Committee), reactor system manufacturers, fuel suppliers, and EPRI and industry experts. The revised document, BWRVIP-190 Revision 1, was completely reformatted into two volumes, with a simplified presentation of water chemistry control, diagnostic and good practice parameters in Volume 1 and the technical bases in Volume 2, to facilitate use. The revision was developed in parallel and in coordination with preparation of the Fuel Reliability Guidelines Revision 1: BWR Fuel Cladding Crud and Corrosion. Guidance is included for plants operating under normal water chemistry (NWC), moderate hydrogen water chemistry (HWC-M), and noble metal application (GE-Hitachi NobleChem™) plus hydrogen injection. Volume 1 includes significant changes to BWR feedwater and reactor water chemistry control parameters to provide increased assurance of intergranular stress corrosion cracking (IGSCC) mitigation of reactor materials and fuel reliability during all plant conditions, including cold shutdown (≤200°F (93°C)), startup/hot standby (>200°F (93°C) and ≤ 10%) and power operation (>10% power). Action Level values for chloride and sulfate have been tightened to minimize environmentally assisted cracking (EAC) of all wetted surfaces, including those not protected by hydrogen injection, with or without noble metals. Chemistry control guidance has been enhanced to minimize shutdown radiation fields by clarifying targets for depleted zinc oxide (DZO) injection while meeting requirements for fuel reliability. Improved tabular presentations of parameter values explicitly indicate levels at which actions are to be taken and required sampling frequencies. Volume 2 provides the technical bases for BWR water chemistry control for control of EAC, flow accelerated corrosion

  20. Heurística para el balance de líneas de ensamble con consideraciones ergonómicas

    OpenAIRE

    Emilsy Medina Chacón; Ruth Illada García

    2015-01-01

    El presente artículo expone el diseño de un método heurístico para el Balance de líneas de ensamble con consideraciones ergonómicas, el cual está basado en la combinación de las teorías de balance de líneas tradicionales y dos métodos de evaluación ergonómica, el Método REBA y la evaluación multitarea de carga física, lográndose que con una única herramienta, se alcance un equilibrio de las variables de tiempo y  biomecánicas. El valor agregado del planteamiento radica en el tratamiento simul...

  1. Heurística para el balance de líneas de ensamble con consideraciones ergonómicas

    OpenAIRE

    Emilsy Medina Chacón; Ruth Illada García

    2015-01-01

    El presente artículo expone el diseño de un método heurístico para el Balance de líneas de ensamble con consideraciones ergonómicas, el cual está basado en la combinación de las teorías de balance de líneas tradicionales y dos métodos de evaluación ergonómica, el Método REBA y la evaluación multitarea de carga física, lográndose que con una única herramienta, se alcance un equilibrio de las variables de tiempo y biomecánicas. El valor agregado del planteamiento radica en el tratamiento simul...

  2. BWR Services maintenance training program

    International Nuclear Information System (INIS)

    Cox, J.H.; Chittenden, W.F.

    1979-01-01

    BWR Services has implemented a five-phase program to increase plant availability and capacity factor in operating BWR's. One phase of this program is establishing a maintenance training program on NSSS equipment; the scope encompasses maintenance on both mechanical equipment and electrical control and instrumentation equipment. The program utilizes actual product line equipment for practical Hands-on training. A total of 23 formal courses will be in place by the end of 1979. The General Electric Company is making a multimillion dollar investment in facilities to support this training. These facilities are described

  3. Behaviour of the reactivity for BWR fuel cells; Comportamiento de la reactividad para celdas de combustible BWR

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, J. A.; Alonso, G.; Delfin, A.; Vargas, S. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Del Valle G, E., E-mail: galonso@inin.gob.mx [IPN, Escuela Superior de Fisica y Matematicas, U. P. Adolfo Lopez Mateos, Col. Lindavista, 07738 Mexico D. F. (Mexico)

    2011-11-15

    In this work the behaviour of the reactivity of a fuel assembly type BWR was studied, the objective is to obtain some expressions that consider the average enrichment of U-235 and the gadolinium concentration like a function of the fuel cells burnt. Also, the applicability of the lineal reactivity model was analyzed for fuel cells type BWR. The analysis was carried out with the CASMO-4 code. (Author)

  4. Moderator temperature coefficient in BWR core

    International Nuclear Information System (INIS)

    Naito, Yoshitaka

    1977-01-01

    Temperature dependences of infinite multiplication factor k sub(infinity) and neutron leakage from the core must be examined for estimation of moderator temperature coefficient. Temperature dependence on k sub(infinity) has been investigated by many researchers, however, the dependence on neutron leakage of a BWR with cruciformed control rods has hardly been done. Because there are difficulties and necessity on calculations of three space dimensional and multi-energy groups neutron distribution in a BWR core. In this study, moderator temperature coefficients of JPDR-II (BWR) core were obtained by calculation with DIFFUSION-ACE, which is newly developed three-dimensional multi-group computer code. The results were compared with experimental data measured from 20 to 275 0 C of the moderator temperature and the good agreement was obtained between calculation and measurement. In order to evaluate neutron leakage from the core, the other two calculations were carried out, adjusting criticality by uniform absorption rate and by material buckling. The former underestimated neutron leakage and the latter overestimated it. Discussion on the results shows that in order to estimate the temperature coefficient of BWR, neutron leakage must be evaluated precisely, therefore the calculation at actual pattern of control rods is necessary. (auth.)

  5. BWR stability analysis at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Wulff, W.; Cheng, H.S.; Mallen, A.N.; Rohatgi, U.S.

    1991-01-01

    Following the unexpected, but safely terminated, power and flow oscillations in the LaSalle-2 Boiling Water Reactor (BWR) on March 9, 1988, the Nuclear Regulatory Commission (NRC) Offices of Nuclear Reactor Regulation (NRR) and of Analysis and Evaluation of Operational Data (AEOD) requested that the Office of Nuclear Regulatory Research (RES) carry out BWR stability analyses, centered around fourteen specific questions. Ten of the fourteen questions address BWR stability issues in general and are dealt with in this paper. The other four questions address local, out-of-phase oscillations and matters of instrumentation; they fall outside the scope of the work reported here. It was the purpose of the work documented in this report to answer ten of the fourteen NRC-stipulated questions. Nine questions are answered by analyzing the LaSalle-2 instability and related BWR transients with the BNL Engineering Plant Analyzer (EPA) and by performing an uncertainty assessment of the EPA predictions. The tenth question is answered on the basis of first principles. The ten answers are summarized

  6. Residual stress analysis in BWR pressure vessel attachments

    International Nuclear Information System (INIS)

    Dexter, R.J.; Leung, C.P.; Pont, D.

    1992-06-01

    Residual stresses from welding processes can be the primary driving force for stress corrosion cracking (SCC) in BWR components. Thus, a better understanding of the causes and nature of these residual stresses can help assess and remedy SCC. Numerical welding simulation software, such as SYSWELD, and material property data have been used to quantify residual stresses for application to SCC assessments in BWR components. Furthermore, parametric studies using SYSWELD have revealed which variables significantly affect predicted residual stress. Overall, numerical modeling techniques can be used to evaluate residual stress for SCC assessments of BWR components and to identify and plan future SCC research

  7. BWR Refill-Reflood Program. Final report

    International Nuclear Information System (INIS)

    Myers, L.L.

    1983-09-01

    The BWR Refill-Reflood Program is part of the continuing Loss of Coolant Accident (LOCA) research in the United States which is jointly sponsored by the Nuclear Regulatory Commission, the Electric Power Research Institute, and the General Electric Company. The current program expanded the focus of this research to include full scale experimental evaluations of multidimensional and multichannel effects during system refill. The program has also made major contributions to the BWR version of the Transient Reactor Analysis Code (TRAC) which has been developed cooperatively with the Idaho National Engineering Laboratory (INEL) for application to BWR transients. A summary description of the complete program is provided including the principal findings and main conclusions of the program. The results of the program have shown that multidimensional and parallel channel effects have the potential to significantly improve the system response over that observed in single channel tests

  8. BWR Steam Dryer Alternating Stress Assessment Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Morante, R. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hambric, S. A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ziada, S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-12-01

    This report presents an overview of Boiling Water Reactor (BWR) steam dryer design; the fatigue cracking failures that occurred at the Quad Cities (QC) plants and their root causes; a history of BWR Extended Power Uprates (EPUs) in the USA; and a discussion of steam dryer modifications/replacements, alternating stress mechanisms on steam dryers, and structural integrity evaluations (static and alternating stress).

  9. Development of the radiation models of a BWR type reactor and it facility in the SUN-RAH; Desarrollo de modelos de radiacion de un reactor tipo BWR y su instalacion en el SUN-RAH

    Energy Technology Data Exchange (ETDEWEB)

    Barron A, I. [Facultad de Ingenieria, UNAM, 04510 Mexico D.F. (Mexico)]. e-mail: isbarron@yahoo.com.mx

    2005-07-01

    This work about generation models, transport in processes and radioactive contamination of areas of a BWR central, is an amplification to the project developed in the UNAM to have a support tool in subjects or electric generation courses. It is planned about the implementation of models of radiation generation in a BWR type reactor for complement the functions developed in the University Simulator of Nucleo electric- Boiling water reactor (SUN-RAH) which it has been implemented in Simulink of MatLab and it has a model for the dynamics of one nucleo electric central that presents the main characteristics of the reactor vessel, the recirculation system, steam lines, turbines, generator, condensers and feeding water, defined by the main processes that intervene in the generation of energy of these plants. By this way the radiation monitoring systems for area and process, operate simultaneously with the processes of energy generation, with that is possible to observe the changes that present with respect to the operation conditions of the plant, and likewise to appreciate the radiation transport process through the components of the reactor, steam lines and turbines, for different operation conditions and possible faults that they could be presented during the reactor operation. (Author)

  10. Simplified distributed parameters BWR dynamic model for transient and stability analysis

    International Nuclear Information System (INIS)

    Espinosa-Paredes, Gilberto; Nunez-Carrera, Alejandro; Vazquez-Rodriguez, Alejandro

    2006-01-01

    This paper describes a simplified model to perform transient and linear stability analysis for a typical boiling water reactor (BWR). The simplified transient model was based in lumped and distributed parameters approximations, which includes vessel dome and the downcomer, recirculation loops, neutron process, fuel pin temperature distribution, lower and upper plenums reactor core and pressure and level controls. The stability was determined by studying the linearized versions of the equations representing the BWR system in the frequency domain. Numerical examples are used to illustrate the wide application of the simplified BWR model. We concluded that this simplified model describes properly the dynamic of a BWR and can be used for safety analysis or as a first approach in the design of an advanced BWR

  11. ABB advanced BWR and PWR fuel

    International Nuclear Information System (INIS)

    Junkrans, S.; Helmersson, S.; Andersson, S.

    1999-01-01

    Fuel designed and fabricated by ABB is now operating in 40 PWRs and BWRs in Europe, the United States and Korea. An excellent fuel reliability track record has been established. High burnups are proven for both BWR and PWR. Thermal margin improving features and advanced burnable absorber concepts enable the utilities to adopt demanding duty cycles to meet new economic objectives. In particular we note the excellent reliability record of ABB PWR fuel equipped with Guardian TM debris filter, proven to meet the -6 rod-cycles fuel failure goal, and the out-standing operating record of the SVEA 10x10 BWR fuel, where ABB is the only vendor to date with multi batch experience to high burnup. ABB is dedicated to maintain high fuel reliability as well as continually improve and develop a broad line of BWR and PWR products. ABB's development and fuel follow-up activities are performed in close co-operation with its customers. (orig.)

  12. BWR control blade replacement strategies

    Energy Technology Data Exchange (ETDEWEB)

    Kennard, M W [Stoller Nuclear Fuel, NAC International, Pleasantville, NY (United States); Harbottle, J E [Stoller Nuclear Fuel, NAC International, Thornbury, Bristol (United Kingdom)

    2000-02-01

    The reactivity control elements in a BWR, the control blades, perform three significant functions: provide shutdown margin during normal and accident operating conditions; provide overall core reactivity control; and provide axial power shaping control. As such, the blades are exposed to the core's neutron flux, resulting in irradiation of blade structural and absorber materials. Since the absorber depletes with time (if B{sub 4}C is used, it also swells) and the structural components undergo various degradation mechanisms (e.g., embrittlement, corrosion), the blades have limits on their operational lifetimes. Consequently, BWR utilities have implemented strategies that aim to maximize blade lifetimes while balancing operational costs, such as extending a refuelling outage to shuffle high exposure blades. This paper examines the blade replacement strategies used by BWR utilities operating in US, Europe and Asia by assembling information related to: the utility's specific blade replacement strategy; the impact the newer blade designs and changes in core operating mode were having on those strategies; the mechanical and nuclear limits that determined those strategies; the methods employed to ensure that lifetime limits were not exceeded during operation; and blade designs used (current and replacement blades). (author)

  13. BWR control blade replacement strategies

    International Nuclear Information System (INIS)

    Kennard, M.W.; Harbottle, J.E.

    2000-01-01

    The reactivity control elements in a BWR, the control blades, perform three significant functions: provide shutdown margin during normal and accident operating conditions; provide overall core reactivity control; and provide axial power shaping control. As such, the blades are exposed to the core's neutron flux, resulting in irradiation of blade structural and absorber materials. Since the absorber depletes with time (if B 4 C is used, it also swells) and the structural components undergo various degradation mechanisms (e.g., embrittlement, corrosion), the blades have limits on their operational lifetimes. Consequently, BWR utilities have implemented strategies that aim to maximize blade lifetimes while balancing operational costs, such as extending a refuelling outage to shuffle high exposure blades. This paper examines the blade replacement strategies used by BWR utilities operating in US, Europe and Asia by assembling information related to: the utility's specific blade replacement strategy; the impact the newer blade designs and changes in core operating mode were having on those strategies; the mechanical and nuclear limits that determined those strategies; the methods employed to ensure that lifetime limits were not exceeded during operation; and blade designs used (current and replacement blades). (author)

  14. Burnup credit feasibility for BWR spent fuel shipments

    International Nuclear Information System (INIS)

    Broadhead, B.L.

    1990-01-01

    Considerable interest in the allowance of reactivity credit for the exposure history of power reactor fuel currently exists. This ''burnup credit'' issue has the potential to greatly reduce risk and cost when applied to the design and certification of spent of fuel casks used for transportation and storage. Analyses 1 have shown the feasibility estimated the risk and economic incentives for allowing burnup credit in pressurized water reactor (PWR) spent fuel shipping cask applications. This paper summarizes the extension of the previous PWR feasibility assessments to boiling water reactor (BWR) fuel. As with the PWR analysis, the purpose was not verification of burnup credit (see ref. 2 for ongoing work in this area) but a reasonable assessment of the feasibility and potential gains from its use in BWR applications. This feasibility analysis aims to apply simple methods that adequately characterize the time-dependent isotopic compositions of typical BWR fuel. An initial analysis objective was to identify a simple and reliable method for characterizing BWR spent fuel. The method includes characterization of a typical pin-cell spectrum, using a one-dimensional (1-D) model of a BWR assembly. The calculated spectrum allows burnup-dependent few-group material constants to be generated. Point depletion methods were then used to obtain the time-varying characteristics of the fuel. These simple methods were validated, where practical, with multidimensional methods. 6 refs., 1 tab

  15. Safety analysis of thorium-based fuels in the General Electric Standard BWR

    International Nuclear Information System (INIS)

    Colby, M.J.; Townsend, D.B.; Kunz, C.L.

    1980-06-01

    A denatured (U-233/Th)O 2 fuel assembly has been designed which is energy equivalent to and hardware interchangeable with a modern boiling water reactor (BWR) reference reload assembly. Relative to the reference UO 2 fuel, the thorium fuel design shows better performance during normal and transient reactor operation for the BWR/6 product line and will meet or exceed current safety and licensing criteria. Power distributions are flattened and thermal operating margins are increased by reduced steam void reactivity coefficients caused by U-233. However, a (U-233/Th)O 2 -fueled BWR will likely have reduced operating flexibility. A (U-235/Th)O 2 -fueled BWR should perform similar to a UO 2 -fueled BWR under all operating conditions. A (Pu/Th)O 2 -fueled BWR may have reduced thermal margins and similar accident response and be less stable than a UO 2 -fueled BWR. The assessment is based on comparisions of point model and infinite lattice predictions of various nuclear reactivity parameters, including void reactivity coefficients, Doppler reactivity coefficients, and control blade worths

  16. BWR vessel and internals project (BWRVIP)

    International Nuclear Information System (INIS)

    Bilanin, W.J.; Dyle, R.L.

    1996-01-01

    Recent Boiling Water Reactor (BWR) inspections indicate that Intergranular Stress Corrosion Cracking (IGSCC) is a significant technical issue for some BWR internals. IN response, the Boiling Water Reactor Vessel and Internals Project (BWRVIP) was formed by an associated of domestic and international utilities which own and operate BWRs. The project is identifying or developing generic, cost-effective strategies for managing degradation of reactor internals from which each utility can select the alternative most appropriate for their plant. The Electric Power Research Institute manages the technical program, implementing the utility defined programs. The BWRVIP is organized into four technical tasks: Assessment, Inspection, Repair and Mitigation. An Integration task coordinates the work. The goal of the Assessment task is to develop methodologies for evaluation of vessel and internal components in support of decisions for operation, inspection, mitigation or repair. The goal of the Inspection task is to develop and assess effective and predictable inspection techniques which can be used to determine the condition of BWR vessel and internals that are potentially susceptible to service-related SCC degradation. The goal of the Repair task is to assure the availability of cost-effective repair/replacement alternatives. The goal of the Mitigation task is to develop and demonstrate countermeasures for SCC degradation. This paper summarizes the BWRVIP approach for addressing BWR internals SCC degradation and illustrates how utilities are utilizing BWRVIP products to successfully manage the effect of SCC on core shrouds

  17. Strategies of operation cycles in BWR type reactors

    International Nuclear Information System (INIS)

    Molina, D.; Sendino, F.

    1996-01-01

    The article analyzes the operation cycles in BWR type reactors. The cycle size of operation is the consequence on the optimization process of the costs with the technical characteristics of nuclear fuel and the characteristics of demand and production. The authors analyze the cases of Garona NP and Cofrentes NP, both with BWR reactors. (Author)

  18. Is there redundancy in bioengineering for molluscan assemblages on the rocky shores of central Chile? ¿Existe redundancia en la bioingeniería de los ensambles de moluscos de las costas rocosas de Chile central?

    Directory of Open Access Journals (Sweden)

    BRENDAN P KELAHER

    2007-06-01

    través de sus propias estructuras físicas e incrementan la diversidad local. En costas rocosas existen grandes solapamientos en la composición de las comunidades asociadas a bioingenieros que forman habitats frondosos (algas o mitílidos. Nosotros investigamos la potencial redundancia en la provisión de este tipo de habitat comparando ensambles faunísticos asociados a mantos de Perumytilus purpuratus y frondas de Corallina officinalis var. chilenis, Gelidium chilense y Gastroclonium cylindricum. En tres oportunidades, entre septiembre de 2003 y enero de 2004, muestreamos ensambles de moluscos asociados a cada uno de estos bioingenieros, en alturas de mareas similares en dos áreas rocosas de Chile central. De las 31 especies de moluscos identificados, 30 fueron encontrados en Corallina y 19-22 fueron identificados en los otros habitat. El conjunto de especies asociado a cada bioingeniero se sobrepone ampliamente, demostrando el potencial de redundancia en la provisión de habitat y poca especificidad de habitat. Sin embargo, análisis multivariados y univariados mostraron que los bioingenieros, con excepción de Gastroclonium, contenían un ensamble de moluscos único en al menos uno de los periodos de muestreo, ya sea en la variación en la frecuencia de ocurrencia, riqueza y abundancia total. Estudios recientes han destacado diversos procesos antropogénicos y naturales que influencian directamente la diversidad y composición de especies en bioingenieros de costas rocosas. Se demuestra que para la costa de Chile central la pérdida de cualquier de los bioingenieros analizados no alteraría sustancialmente el conjunto total de especies de moluscos, alojados en ellos. Sin embargo, la pérdida de cualquier bioingeniero, excepto Gastroclonium, resultaría en una disminución local de la biodiversidad debido a que cada uno de los ensambles de moluscos en Perumytilus, Corallina y Gelidium, contiene una estructura comunitaria significativamente diferente, en al menos

  19. HEURÍSTICA PARA EL EQUILIBRADO DE LÍNEAS DE ENSAMBLES DEL TIPO TSS HEURISTIC FOR THE TSS ASSEMBLY LINE BALANCING PROBLEM

    Directory of Open Access Journals (Sweden)

    Pedro Palominos Belmar

    2010-12-01

    Full Text Available El propósito de este trabajo es presentar una heurística para el problema de equilibrado de líneas para células conformadas en "U". Particularmente para el sistema de fabricación denominado Toyota Sewing System (TSS, que representa un nuevo concepto de organización en una línea de producción. Si bien este tipo de sistema ha sido abordado en la literatura bajo el título de sistemas de producción autoequilibrado, en donde el equilibrio se logra mediante la utilización de dos reglas básicas, creemos que estas reglas no son suficientes para lograr el autoequilibrio. Por lo cual incorporamos el concepto de zonas de enlace que facilita el equilibrado de la línea. De los resultados obtenidos mediante simulación, concluimos que la heurística es eficiente para este tipo de sistemas de producción.The purpose of this paper is to present a heuristic for the assembly line balancing problem in U-shaped cells, particularly for the manufacturing system called Toyota Sewing System (TSS, which represents a new production line organization concept. Although this type of system has been approached in the literature under the name of self-balanced production system, where the balance is achieved using two basic rules, we believe that these rules are not sufficient to achieve self-balance, so we have incorporated the concept of linkage zones that facilitate balancing the line. From the results obtained by simulation we conclude that the heuristic is efficient for this kind of production system.

  20. Review of international solutions to NEACRP benchmark BWR lattice cell problems

    International Nuclear Information System (INIS)

    Halsall, M.J.

    1977-12-01

    This paper summarises international solutions to a set of BWR benchmark problems. The problems, posed as an activity sponsored by the Nuclear Energy Agency Committee on Reactor Physics, were as follows: 9-pin supercell with central burnable poison pin, mini-BWR with 4 pin-cells and water gaps and control rod cruciform, full 7 x 7 pin BWR lattice cell with differential U 235 enrichment, and full 8 x 8 pin BWR lattice cell with water-hole, Pu-loading, burnable poison, and homogenised cruciform control rod. Solutions have been contributed by Denmark, Japan, Sweden, Switzerland and the UK. (author)

  1. Improvement for BWR operator training, 3

    International Nuclear Information System (INIS)

    Noji, Kunio; Toeda, Susumu; Saito, Genhachi; Suzuki, Koichi

    1990-01-01

    BWR Operator Training Center Corporation (BTC) is conducting training for BWR plant operators using Full-scope Simulators. There are several courses for individual operators and one training course for shift crew (Family Training Course) in BTC. Family Training is carried out by all members of the operating shift-crew. BTC has made efforts to improve the Family Training in order to acquire more effective training results and contribute to up-grade team performance of all crews. This paper describes some items of our efforts towards Family Training improvement. (author)

  2. Assessment of two BWR accident management strategies

    International Nuclear Information System (INIS)

    Hodge, S.A.; Petek, M.

    1991-01-01

    Candidate mitigative strategies for management of in-vessel events during the late phase (after core degradation has occurred) of postulated BWR severe accidents were considered at Oak Ridge National Laboratory (ORNL) during 1990. The identification of new strategies was subject to the constraint that they should, to the maximum extent possible, make use of the existing equipment and water resources of the BWR facilities and not require major equipment modifications or additions. As a result of this effort, two of these candidate strategies were recommended for additional assessment. The first is a strategy for containment flooding to maintain the core and structural debris within the reactor vessel in the event that vessel injection cannot be restored to terminate a severe accident sequence. The second strategy pertains to the opposite case, for which vessel injection would be restored after control blade melting had begun; its purpose is to provide an injection source of borated water at the concentration necessary to preclude criticality upon recovering a damaged BWR core. Assessments of these two strategies have been performed during 1991 under the auspices of the Detailed Assessment of BWR In-Vessel Strategies Program. This paper provides a discussion of the motivation for and purpose of these strategies and the potential for their success. 33 refs., 9 figs

  3. Kinematics of two-phase mixture level motion in BWR pressure vessels

    International Nuclear Information System (INIS)

    Wulff, W.; Cheng, H.S.; Mallen, A.N.; Stritar, A.

    1985-01-01

    A model is presented for predicting two-phase mixture level elevations in BWR systems. The model accounts for the particular geometry and conditions in a BWR system during Small-Break Loss of Coolant Accidents. The model presented here is particularly suitable for efficient, high-speed simulations on small minicomputers. The model has been implemented and tested. Results are shown from BWR ATWS simulations

  4. Improvement for BWR operator training

    International Nuclear Information System (INIS)

    Tsuchiya, Toshio; Masuda, Hisao; Isono, Tomoyuki; Noji, Kunio; Togo, Toshiki

    1989-01-01

    BWR Operator Training Center Corporation (BTC) was established in April 1971 for the purpose of training the operators from all BWR utilities in Japan. Since April 1974, more than 2600 operators and 1000 shift teams have been trained with the full-scope simulators in BTC up to the end of March 1988. To get the satisfactory results of the training, BTC has been making every effort to improve the facilities, the training materials, the instruction methods and the curricula. In this paper, such a series of recent improvements in the instruction methods and the curricula are presented that are effective to expand the knowledge and to improve the skills of middle or senior class operators. (author)

  5. Application of gadolinia credit to cask transportation of BWR-STEP3 SFAs

    International Nuclear Information System (INIS)

    Kikuchi, Tsukasa; Mitsuhashi, Ishi; Ito, Dai-ichiro; Nakamura, Yu

    2003-01-01

    Instead of the fresh-fuel assumption, the application of gadolinia credit to cask transportation of BWR SFAs is studied. Its efficacy for BWR-STEP2 SFAs had already been estimated. This paper reports on the application of gadolinia credit to cask transportation of BWR-STEP3 SFAs. (author)

  6. Seismic risk assessment of a BWR: status report

    International Nuclear Information System (INIS)

    Chuang, T.Y.; Bernreuter, D.L.; Wells, J.E.; Johnson, J.J.

    1985-02-01

    The seismic risk methodology developed in the US NRC Seismic Safety Margins Research Program (SSMRP) was demonstrated by its application to the Zion nuclear power plant, a pressurized water reactor (PWR). A detailed model of Zion, including systems analysis models (initiating events, event trees, and fault trees), SSI and structure models, and piping models was developed and analyzed. The SSMRP methodology can equally be applied to a boiling water reactor (BWR). To demonstrate its applicability, to identify fundamental differences in seismic risk between a PWR and a BWR, and to provide a basis of comparison of seismic risk between a PWR and a BWR when analyzed with comparable methodology and assumptions, a seismic risk analysis is being performed on the LaSalle County Station nuclear power plant

  7. BWR plant analyzer development at BNL

    International Nuclear Information System (INIS)

    Cheng, H.S.; Wulff, W.; Mallen, A.N.; Lekach, S.V.; Stritar, A.; Cerbone, R.J.

    1985-01-01

    Advanced technology for high-speed interactive nuclear power plant simulations is of great value for timely resolution of safety issues, for plant monitoring, and for computer-aided emergency responses to an accident. Presented is the methodology employed at BNL to develop a BWR plant analyzer capable of simulating severe plant transients at much faster than real-time process speeds. Five modeling principles are established and a criterion is given for selecting numerical procedures and efficient computers to achieve the very high simulation speeds. Typical results are shown to demonstrate the modeling fidelity of the BWR plant analyzer

  8. Development of new irradiation facility for BWR safety research

    International Nuclear Information System (INIS)

    Okada, Yuji; Magome, Hirokatsu; Iida, Kazuhiro; Hanawa, Hiroshi; Ohmi, Masao

    2013-01-01

    In JAEA (Japan Atomic Energy Agency), about the irradiation embrittlement of the reactor pressure vessel and the stress corrosion cracking of reactor core composition apparatus concerning the long-term use of the light water reactor (BWR), in order to check the influence of the temperature, pressure, and water quality, etc on BWR condition. The water environmental control facility which performs irradiation assisted stress corrosion-cracking (IASCC) evaluation under BWR irradiation environment was fabricated in JMTR (Japan Materials Testing Reactor). This report is described the outline of manufacture of the water environmental control facility for doing an irradiation test using the saturation temperature capsule after JMTR re-operation. (author)

  9. Interpretation of incore noise measurements in BWR's

    International Nuclear Information System (INIS)

    Dam, H. van

    1982-01-01

    A survey is given of the main incentives for power reactor noise research and the differences and similarities of noise in power and zero power systems are touched on. The basic characteristics of the adjoint method in reactor noise theory are treated. The detector adjoint functions describe the transfer functions between spatially distributed noise sources and a (neutron or gamma) detector. In particular, the spatial dependence of these functions explains the 'local' and 'global' effects in BWR noise measurements. By including thermal hydraulic feedback effects in the adjoint analysis, it is shown that the common idea of a dominant global effect at low frequencies which should result in point kinetic behaviour, is erroneous. The same analysis provides a method for nonperturbing on-line measurement of the reactor transfer function, which is demonstrated by results from measurements on a BWR in the Netherlands. In the final part of the paper some ideas are given for further research in the field of BWR noise. (author)

  10. Interpretation of incore noise measurements in BWR's

    International Nuclear Information System (INIS)

    Dam, H. van

    1983-01-01

    A survey is given of the main incentives for power reactor noise research, and the differences and similarities of noise in power and zero power systems are shown. After a short outline of historical developments the basic characteristics of the adjoint method in reactor noise theory are dealt with. The detector adjoint functions describe the transfer functions between spatially distributed noise sources and a (neutron or gamma) detector. In particular, the spatial dependence of these functions explains the 'local' and 'global' effects in BWR noise measurements. By including thermal hydraulic feedback effects in the adjoint analysis, it is shown that the common idea of a dominant global effect at low frequencies, which should result in point kinetic behaviour, is erroneous. The same analysis provides a method for nonperturbing on-line measurements on a BWR in The Netherlands. In the final part of the paper some ideas are given for further research in the field of BWR noise. (author)

  11. Implement of MOX fuel assemblies in the design of the fuel reload for a BWR; Implemento de ensambles de combustible MOX en el diseno de la recarga de combustible para un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Enriquez C, P.; Ramirez S, J. R.; Alonso V, G.; Palacios H, J. C., E-mail: pastor.enriquez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-11-15

    At the present time the use of mixed oxides as nuclear fuel is a technology that has been implemented in mixed reloads of fuel for light water reactors. Due to the plutonium production in power reactors, is necessary to realize a study that presents the plutonium use like nuclear fuel. In this work a study is presented that has been carried out on the design of a fuel assembly with MOX to be proposed in the supply of a fuel reload. The fissile relationship of uranium to plutonium is presented for the design of the MOX assembly starting from plutonium recovered in the reprocessing of spent fuel and the comparison of the behavior of the infinite multiplication factor is presented and of the local power peak factor, parameters of great importance in the fuel assemblies design. The study object is a fuel assembly 10 x 10 GNF2 type for a boiling water reactor. The design of the fuel reload pattern giving fuel assemblies with MOX, so the comparison of the behavior of the stop margin for a fuel reload with UO{sub 2} and a mixed reload, implementing 12 and 16 fuel assemblies with MOX are presented. The results show that the implement of fuel assemblies with MOX in a BWR is possible, but this type of fuels creates new problems that are necessary to study with more detail. In the development of this work the calculus tools were the codes: INTREPIN-3, CASMO-4, CMSLINK and SIMULATE-3. (Author)

  12. The HAMBO BWR simulator of HAMMLAB

    International Nuclear Information System (INIS)

    Karlsson, Tommy; Jokstad, Haakon; Meyer, Brita D.; Nihlwing, Christer; Norrman, Sixten; Puska, Eija Karita; Raussi, Pekka; Tiihonen, Olli

    2001-02-01

    Modernisation of control rooms of the nuclear power plants has been a major issue in Sweden and Finland the last few years, and this will continue in the years to come. As an aid in the process of introducing new technology into the control rooms, the benefit of having an experimental simulator where proto typing of solutions can be performed, has been emphasised by many plants. With this as a basis, the BWR plants in Sweden and Finland decided to fund, in co-operation with the Halden Project, an experimental BWR simulator based on the Forsmark 3 plant in Sweden. The BWR simulator development project was initiated in January 1998. VTT Energy in Finland developed the simulator models with the aid of their APROS tool, while the operator interface was developed by the Halden Project. The simulator was thoroughly tested by experienced HRP personnel and professional Forsmark 3 operators, and accepted by the BWR utilities in June 2000. The acceptance tests consisted of 19 well-defined transients, as well as the running of the simulator from full power down to cold shutdown and back up again with the use of plant procedures. This report describes the HAMBO simulator, with its simulator models, the operator interface, and the underlying hardware and software infrastructure. The tools used for developing the simulator, APROS, Picasso-3 and the Integration Platform, are also briefly described. The acceptance tests are described, and examples of the results are presented, to illustrate the level of validation of the simulator. The report concludes with an indication of the short-term usage of the simulator. (Author)

  13. Development of next BWR plant

    International Nuclear Information System (INIS)

    Moriya, Kumiaki; Tanikawa, Naoshi; Kinoshita, Shoichiro; Utena, Shunsuke

    1995-01-01

    It is expected that BWR power generation will be main nuclear power generation for long period hereafter, and in the ABWRs being constructed at present, the safety, reliability, operation performance, economical efficiency and so on are further heightend as compared with conventional BWRs. On the other hand, in order to cope with future social change, the move to develop the next reactor type following ABWRs was begun already by the cooperation of electirc power companies and plant manufacturers. Hitachi Ltd. has advanced eagerly the development of new light water reactors. Also the objective of BWR power generation hereafter is to heighten the safety, reliability, operation performance and economical efficiency, and the development has been advanced, aiming at bearing the main roles of nuclear power generation. At present, ABWRs are under construction as No. 6 and 7 plants in Kashiwazaki Kariwa Nuclear Power Station, Tokyo Electric Power Co., Inc. In order to let ABWRs take root, the further improvement of economy by the standardization, the rationalization by revising the specification and the improvement of machinery and equipment is necessary. As the needs of the development of next generation BWRs, the increase of power output, the heightening of safety and economical efficiency are discussed. The concept of the next generation BWR plant aiming at the start of operation around 2010 is shown. (K.I.)

  14. Development of next BWR plant

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Kumiaki; Tanikawa, Naoshi; Kinoshita, Shoichiro; Utena, Shunsuke [Hitachi Ltd., Ibaraki (Japan). Hitachi Works

    1995-04-01

    It is expected that BWR power generation will be main nuclear power generation for long period hereafter, and in the ABWRs being constructed at present, the safety, reliability, operation performance, economical efficiency and so on are further heightend as compared with conventional BWRs. On the other hand, in order to cope with future social change, the move to develop the next reactor type following ABWRs was begun already by the cooperation of electirc power companies and plant manufacturers. Hitachi Ltd. has advanced eagerly the development of new light water reactors. Also the objective of BWR power generation hereafter is to heighten the safety, reliability, operation performance and economical efficiency, and the development has been advanced, aiming at bearing the main roles of nuclear power generation. At present, ABWRs are under construction as No. 6 and 7 plants in Kashiwazaki Kariwa Nuclear Power Station, Tokyo Electric Power Co., Inc. In order to let ABWRs take root, the further improvement of economy by the standardization, the rationalization by revising the specification and the improvement of machinery and equipment is necessary. As the needs of the development of next generation BWRs, the increase of power output, the heightening of safety and economical efficiency are discussed. The concept of the next generation BWR plant aiming at the start of operation around 2010 is shown. (K.I.).

  15. El ensamble carábidológico: un indicador de sustentabilidad en los agroecosistemas de vid de la costa de Berisso, Buenos Aires, Argentina

    OpenAIRE

    Paleologos, María Fernanda; Cicchino, Armando; Sarandón, Santiago Javier

    2015-01-01

    Existen estudios que han señalado una relación positiva entre la diversidad de la vegetación, la complejidad del hábitat y los procesos del ecosistema. La familia Carabidae (Coleoptera) ha demostrado ser buena indicadora del grado de disturbio, de ciertas condiciones ambientales y de factores antrópicos. Se analizó el ensamble de carábidos (dominancia relativa y composición) en una parcela de vid y sus ambientes seminaturales (monte ribereño y canal colector de agua) de la zona de Berisso, Bu...

  16. Transmutation of minor actinide using thorium fueled BWR core

    International Nuclear Information System (INIS)

    Susilo, Jati

    2002-01-01

    One of the methods to conduct transmutation of minor actinide is the use of BWR with thorium fuel. Thorium fuel has a specific behaviour of producing a little secondary minor actinides. Transmutation of minor actinide is done by loading it in the BWR with thorium fuel through two methods, namely close recycle and accumulation recycle. The calculation of minor actinide composition produced, weigh of minor actinide transmuted, and percentage of reminder transmutation was carried SRAC. The calculations were done to equivalent cell modeling from one fuel rod of BWR. The results show that minor actinide transmutation is more effective using thorium fuel than uranium fuel, through both close recycle and accumulation recycle. Minor actinide transmutation weight show that the same value for those recycle for 5th recycle. And most of all minor actinide produced from 5 unit BWR uranium fuel can transmuted in the 6 t h of close recycle. And, the minimal value of excess reactivity of the core is 12,15 % Δk/k, that is possible value for core operation

  17. Decay ratio studies in BWR and PWR using wavelet

    International Nuclear Information System (INIS)

    Ciftcioglu, Oe.

    1996-10-01

    The on-line stability of BWR and PWR is studied using the neutron noise signals as the fluctuations reflect the dynamic characteristics of the reactor. Using appropriate signal modeling for time domain analysis of noise signals, the stability parameters can be directly obtained from the system impulse response. Here in particular for BWR, an important stability parameter is the decay ratio (DR) of the impulse response. The time series analysis involves the autoregressive modeling of the neutron detector signal. The DR determination is strongly effected by the low frequency behaviour since the transfer function characteristic tends to be a third order system rather than a second order system for a BWR. In a PWR low frequency behaviour is modified by the Boron concentration. As a result of these phenomena there are difficulties in the consistent determination of the DR oscillations. The enhancement of the consistency of this DR estimation is obtained by wavelet transform using actual power plant data from BWR and PWR. A comparative study of the Restimation with and without wavelets are presented. (orig.)

  18. BWR radiation exposure--experience and projection

    International Nuclear Information System (INIS)

    Falk, C.F.; Wilkinson, C.D.; Hollander, W.R.

    1979-01-01

    The BWR/6 Mark III radiation exposures are projected to be about half of those of current average operating experience of 725 man-rem. These projections are said to be realistic and based on current achievements and not on promises of future development. The several BWRs operating with low primary system radiation levels are positive evidence that radiation sources can be reduced. Improvements have been made in reducing the maintenance times for the BWR/6, and further improvements can be made by further attention to cost-effective plant arrangement and layout during detail design to improve accessibility and maintainability of each system and component

  19. The BWR Hybrid 4 control rod

    International Nuclear Information System (INIS)

    Gross, H.; Fuchs, H.P.; Lippert, H.J.; Dambietz, W.

    1988-01-01

    The service life of BWR control rods designed in the past has been unsatisfactory. The main reason was irradiation assisted stress corrosion cracking of B 4 C rods caused by external swelling of the B 4 C powder. By this reason KWU developed an improved BWR control rod (Hybrid 4 control rod) with extended service life and increased control rod worth. It also allows the procedure for replacing and rearranging fuel assemblies to be considerably simplified. A complete set of Hydbrid 4 control rods is expected to last throughout the service life of a plant (assumption: ca. 40 years) if an appropriate control rod reshuffling management program is used. (orig.)

  20. An overview of the BWR ECCS strainer blockage issues

    International Nuclear Information System (INIS)

    Serkiz, A.W.; Marshall, M.L. Jr.; Elliott, R.

    1996-01-01

    This Paper provides a brief overview of actions taken in the mid 1980s to resolve Unresolved Safety Issue (USI) A-43, open-quotes Containment Emergency Sump Performance,close quotes and their relationship to the BWR strainer blockage issue; the importance of insights gained from the Barseback-2 (a Swedish BWR) incident in 1992 and from ECCS strainer testing and inspections at the Perry nuclear power plant in 1992 and 1993; an analysis of an US BWR/4 with a Mark I containment; an international community sharing of knowledge relevant to ECCS strainer blockage, additional experimental programs; and identification of actions needed to resolve the strainer blockage issue and the status of such efforts

  1. BWR type nuclear reactors

    International Nuclear Information System (INIS)

    Yamamoto, Toru.

    1987-01-01

    Purpose: To obtain reactor core characteristics with less changes in the excess reactivity due to fuel burnup even when the operation period varies. Constitution: In a BWR type reactor where fuel assemblies containing fuel rods incorporated with burnable poisons are arranged, the fuel assemblies are grouped into first fuel assemblies and second fuel assemblies. Then, the number of fuel rods incorporated with burnable poisons within the first fuel assemblies is made greater than that of the second fuel rods, while the concentration of the burnable poisons in the fuel rods incorporated with the burnable poisons in the first fuel assemblies is made lower than that of the fuel rods incorporated with the burnable poisons in the second fuel assemblies. In the BWR type reactor constituted in this way, the reactor core characteristics can be improved by changing the ratio between the first fuel assemblies and the second fuel assemblies charged to the reactor core, thereby decreasing the changes in the burnup of the excess reactivity. (Kamimura, M.)

  2. Operator training simulator for BWR nuclear power plant

    International Nuclear Information System (INIS)

    Watanabe, Tadasu

    1988-01-01

    For the operation management of nuclear power stations with high reliability and safety, the role played by operators is very important. The effort of improving the man-machine interface in the central control rooms of nuclear power stations is energetically advanced, but the importance of the role of operators does not change. For the training of the operators of nuclear power stations, simulators have been used from the early stage. As the simulator facilities for operator training, there are the full scope simulator simulating faithfully the central control room of an actual plant and the small simulator mainly aiming at learning the plant functions. For BWR nuclear power stations, two full scope simulators are installed in the BWR Operator Training Center, and the training has been carried out since 1974. The plant function learning simulators have been installed in respective electric power companies as the education and training facilities in the companies. The role of simulators in operator training, the BTC No.1 simulator of a BWR-4 of 780 MWe and the BTC No.2 simulator of a BWR-5 of 1,100 MWe, plant function learning simulators, and the design of the BTC No.2 simulator and plant function learning simulators are reported. (K.I.)

  3. FIST small break accident analysis with BWR TRACBO2-pretest predictions

    International Nuclear Information System (INIS)

    Alamgir, M.; Sutherland, W.A.

    1984-01-01

    The BWR Full Integral Simulation Test (FIST) program includes experimental simulation and analytical evaluation of BWR thermal-hydraulic phenomena during transient events. One such event is a small size break in the suction line of one of the recirculation pumps. The results from a test simulating this transient in the FIST facility are compared with a system analysis using the Transient Reactor Analysis Code (TRACB02). This comparison demonstrates BWR-TRAC capability for small break analyses and provides detailed understanding of the phenomena

  4. The JAERI code system for evaluation of BWR ECCS performance

    International Nuclear Information System (INIS)

    Kohsaka, Atsuo; Akimoto, Masayuki; Asahi, Yoshiro; Abe, Kiyoharu; Muramatsu, Ken; Araya, Fumimasa; Sato, Kazuo

    1982-12-01

    Development of respective computer code system of BWR and PWR for evaluation of ECCS has been conducted since 1973 considering the differences of the reactor cooling system, core structure and ECCS. The first version of the BWR code system, of which developmental work started earlier than that of the PWR, has been completed. The BWR code system is designed to provide computational tools to analyze all phases of LOCAs and to evaluate the performance of the ECCS including an ''Evaluation Model (EM)'' feature in compliance with the requirements of the current Japanese Evaluation Guideline of ECCS. The BWR code system could be used for licensing purpose, i.e. for ECCS performance evaluation or audit calculations to cross-examine the methods and results of applicants or vendors. The BWR code system presented in this report comprises several computer codes, each of which analyzes a particular phase of a LOCA or a system blowdown depending on a range of LOCAs, i.e. large and small breaks in a variety of locations in the reactor system. The system includes ALARM-B1, HYDY-B1 and THYDE-B1 for analysis of the system blowdown for various break sizes, THYDE-B-REFLOOD for analysis of the reflood phase and SCORCH-B2 for the calculation of the fuel assembl hot plane temperature. When the multiple codes are used to analyze a broad range of LOCA as stated above, it is very important to evaluate the adequacy and consistency between the codes used to cover an entire break spectrum. The system consistency together with the system performance are discussed for a large commercial BWR. (author)

  5. Report on the BWR owners group radiation protection/ALARA Committee

    International Nuclear Information System (INIS)

    Aldrich, L.R.

    1995-01-01

    Radiation protection programs at U.S. boiling water reactor (BWR) stations have evolved during the 1980s and early 1990s from a regulatory adherence-based endeavor to a proactive, risk-based radiation protection and prevention mission. The objectives are no longer to merely monitor and document exposure to radiation and radioactive materials. The focus of the current programs is the optimization of radiation protection of occupational workers consistent with the purpose of producing cost-effective electric power. The newly revised 10 CFR 20 defines the term ALARA (as low as reasonably achievable) to take into account the state of technology, the economics of improvements in relation to the state of the technology, and the benefits to the public health and safety. The BWR Owners Group (BWROG) initially formed the Radiation Protection/ALARA Committee in January 1990 to evaluate methods of reducing occupational radiation exposure during refueling outages. Currently, twenty U.S. BWR owner/operators (representing 36 of the operational 37 domestic BWR units), as well as three foreign BWR operators (associate members), have broadened the scope to promote information exchange between BWR radiation protection professionals and develop good practices which will affect optimization of their radiation protection programs. In search of excellence and the challenge of becoming open-quotes World Classclose quotes performers in radiation protection, the BWROG Radiation Protection/ALARA Committee has recently accepted a role in assisting the member utilities in improving radiation protection performance in a cost-effective manner. This paper will summarize the recent activities of this Committee undertaken to execute their role of exchanging information in pursuit of optimizing the improvement of their collective radiation protection performance

  6. Report on the BWR owners group radiation protection/ALARA Committee

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, L.R. [Commonwealth Edison Co., Downers Grove, IL (United States)

    1995-03-01

    Radiation protection programs at U.S. boiling water reactor (BWR) stations have evolved during the 1980s and early 1990s from a regulatory adherence-based endeavor to a proactive, risk-based radiation protection and prevention mission. The objectives are no longer to merely monitor and document exposure to radiation and radioactive materials. The focus of the current programs is the optimization of radiation protection of occupational workers consistent with the purpose of producing cost-effective electric power. The newly revised 10 CFR 20 defines the term ALARA (as low as reasonably achievable) to take into account the state of technology, the economics of improvements in relation to the state of the technology, and the benefits to the public health and safety. The BWR Owners Group (BWROG) initially formed the Radiation Protection/ALARA Committee in January 1990 to evaluate methods of reducing occupational radiation exposure during refueling outages. Currently, twenty U.S. BWR owner/operators (representing 36 of the operational 37 domestic BWR units), as well as three foreign BWR operators (associate members), have broadened the scope to promote information exchange between BWR radiation protection professionals and develop good practices which will affect optimization of their radiation protection programs. In search of excellence and the challenge of becoming {open_quotes}World Class{close_quotes} performers in radiation protection, the BWROG Radiation Protection/ALARA Committee has recently accepted a role in assisting the member utilities in improving radiation protection performance in a cost-effective manner. This paper will summarize the recent activities of this Committee undertaken to execute their role of exchanging information in pursuit of optimizing the improvement of their collective radiation protection performance.

  7. Advanced methods for BWR transient and stability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, A; Wehle, F; Opel, S; Velten, R [AREVA, AREVA NP, Erlangen (Germany)

    2008-07-01

    The design of advanced Boiling Water Reactor (BWR) fuel assemblies and cores is governed by the basic requirement of safe, reliable and flexible reactor operation with optimal fuel utilization. AREVA NP's comprehensive steady state and transient BWR methodology allows the designer to respond quickly and effectively to customer needs. AREVA NP uses S-RELAP5/RAMONA as the appropriate methodology for the representation of the entire plant. The 3D neutron kinetics and thermal-hydraulics code has been developed for the prediction of system, fuel and core behavior and provides additional margins for normal operation and transients. Of major importance is the extensive validation of the methodology. The validation is based on measurements at AREVA NP's test facilities, and comparison of the predictions with a great wealth of measured data gathered from BWR plants during many years of operation. Three of the main fields of interest are stability analysis, operational transients and reactivity initiated accidents (RIAs). The introduced 3D methodology for operational transients shows significant margin regarding the operational limit of critical power ratio, which has been approved by the German licensing authority. Regarding BWR stability a large number of measurements at different plants under various conditions have been performed and successfully post-calculated with RAMONA. This is the basis of reliable pre-calculations of the locations of regional and core-wide stability boundaries. (authors)

  8. Advanced methods for BWR transient and stability analysis

    International Nuclear Information System (INIS)

    Schmidt, A.; Wehle, F.; Opel, S.; Velten, R.

    2008-01-01

    The design of advanced Boiling Water Reactor (BWR) fuel assemblies and cores is governed by the basic requirement of safe, reliable and flexible reactor operation with optimal fuel utilization. AREVA NP's comprehensive steady state and transient BWR methodology allows the designer to respond quickly and effectively to customer needs. AREVA NP uses S-RELAP5/RAMONA as the appropriate methodology for the representation of the entire plant. The 3D neutron kinetics and thermal-hydraulics code has been developed for the prediction of system, fuel and core behavior and provides additional margins for normal operation and transients. Of major importance is the extensive validation of the methodology. The validation is based on measurements at AREVA NP's test facilities, and comparison of the predictions with a great wealth of measured data gathered from BWR plants during many years of operation. Three of the main fields of interest are stability analysis, operational transients and reactivity initiated accidents (RIAs). The introduced 3D methodology for operational transients shows significant margin regarding the operational limit of critical power ratio, which has been approved by the German licensing authority. Regarding BWR stability a large number of measurements at different plants under various conditions have been performed and successfully post-calculated with RAMONA. This is the basis of reliable pre-calculations of the locations of regional and core-wide stability boundaries. (authors)

  9. Study of behavior on bonding and failure mode of pressurized and doped BWR fuel rod

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki

    1992-03-01

    The study of transient behavior on the bonding and the failure mode was made using the pressurized/doped 8 x 8 BWR type fuel rod. The dopant was mullite minerals consisted mainly of silicon and aluminum up to 1.5 w/o. Pressurization of the fuel rod with pure helium was made to the magnitude about 0.6 MPa. As a reference, the non-pressurized/non-doped 8 x 8 BWR fuel rod and the pressurized/7 x 7 BWR fuel rod up to 0.6 MPa were prepared. Magnitude of energy deposition given to the tested fuel rods was 248, 253, and 269 cal/g·fuel, respectively. Obtained results from the pulse irradiation in NSRR are as follows. (1) It was found from the experiment that alternation of the fuel design by the adoption of pressurization up to 0.6 MPa and the use of wider gap up to 0.38 mm could avoid the dopant BWR fuel from the overall bonding. The failure mode of the present dopant fuel was revealed to be the melt combined with rupture. (2) The time of fuel failure of the pressurized/doped 8 x 8 BWR fuel defected by the melt/rupture mode is of order of two times shorter than that of the pressurized/ 7 x 7 BWR defected by the rupture mode. Failure threshold of the pressurized/doped 8 x 8 BWR BWR tended to be lower than that of non-pressurized/non-doped 8 x 8 BWR one. Cracked area of the pressurized/doped 8 x 8 BWR was more wider and magnitude of oxidation at the place is relatively larger than the other tested fuels. (3) Failure mode of the non-pressurized/ 8 x 8 BWR fuel rod was the melt/brittle accompanied with a significant bonding at failed location. While, failure mode of the pressurized/ 7 x 7 BWR fuel rod was the cladding rupture accompanied with a large ballooning. No bonding at failed location of the latter was observed. (author)

  10. Assessment of the Prony's method for BWR stability analysis

    International Nuclear Information System (INIS)

    Ortiz-Villafuerte, Javier; Castillo-Duran, Rogelio; Palacios-Hernandez, Javier C.

    2011-01-01

    Highlights: → This paper describes a method to determine the degree of stability of a BWR. → Performance comparison between Prony's and common AR techniques is presented. → Benchmark data and actual BWR transient data are used for comparison. → DR and f results are presented and discussed. → The Prony's method is shown to be a robust technique for BWR stability. - Abstract: It is known that Boiling Water Reactors are susceptible to present power oscillations in regions of high power and low coolant flow, in the power-flow operational map. It is possible to fall in one of such instability regions during reactor startup, since both power and coolant flow are being increased but not proportionally. One other possibility for falling into those areas is the occurrence of a trip of recirculation pumps. Stability monitoring in such cases can be difficult, because the amount or quality of power signal data required for calculation of the stability key parameters may not be enough to provide reliable results in an adequate time range. In this work, the Prony's Method is presented as one complementary alternative to determine the degree of stability of a BWR, through time series data. This analysis method can provide information about decay ratio and oscillation frequency from power signals obtained during transient events. However, so far not many applications in Boiling Water Reactors operation have been reported and supported to establish the scope of using such analysis for actual transient events. This work presents first a comparison of decay ratio and frequency oscillation results obtained by Prony's method and those results obtained by the participants of the Forsmark 1 and 2 Boiling Water Reactor Stability Benchmark using diverse techniques. Then, a comparison of decay ratio and frequency oscillation results is performed for four real BWR transient event data, using Prony's method and two other techniques based on an autoregressive modeling. The four

  11. Analysis of multidimensional and countercurrent effects in a BWR loss-of-coolant accident

    International Nuclear Information System (INIS)

    Shiralkar, B.S.; Dix, G.E.; Alamgir, M.

    1991-01-01

    The presence of parallel enclosed channels in a boiling water reactor (BWR) provides opportunities for multiple flow regimes in cocurrent and countercurrent flow under loss-of-coolant accident (LOCA) conditions. To address and understand these phenomena, an integrated experimental and analytical study has been conducted. The primary experimental facility was the steam sector test facility (SSFT), which simulated a full scale 30deg sector of a BWR/6 reactor vessel. Both steady-state separate effects tests an integral transients with vessel vlowdown and refill were performed. The presence of multidimensional and parallel-channel effects was found to be very beneficial to BWR LOCA performance. The best estimate TRAC-BWR computer code was extended as part of this study by incorporation of a phenomenological upper plenum mixing model. TRAC-BWR was applied to the analysis of these full scale experiments. Excellent predictions of phenomena and experimental trends were achieved. (orig.)

  12. An A BWR demonstration simulator for training and developing technical staff

    International Nuclear Information System (INIS)

    Powers, J.; Yonezawa, H.; Aoyagi, Y.; Kataoka, K.

    2015-09-01

    The US-Advanced Boiling Water Reactor (A BWR), certified by the US NRC, is a third generation, evolutionary boiling water reactor design which is the reference for the South Texas Project Units 3 and 4 (STP3-4) Combined License Application (Cola). Nuclear Innovation North America (Nina) is the License Applicant for this new build project, and Toshiba is the selected primary technology contractor. Toshiba has developed a Demonstration Simulator of the A BWR control room that provides a realistic experience for training and education on BWR principles and operations fundamentals. The Demonstration Simulator is located in the Toshiba America Nuclear Energy (Tane) office in Charlotte, North Carolina and is composed of standard office computer equipment set up in a specific arrangement that is representative of the layout of an A BWR control room. The Demonstration Simulator is not intended for licensed operator training, but can provide a framework for encouraging entry level technically oriented nuclear workers to enter the operations field; strengthening the linkage between university energy field curricula and real-life application of theory; and, improving understanding of integrated plant operations for developing station technical staff. This paper describes the A BWR Demonstration Simulator and its applications for training and educating future nuclear workers. (Author)

  13. An A BWR demonstration simulator for training and developing technical staff

    Energy Technology Data Exchange (ETDEWEB)

    Powers, J. [Toshiba America Nuclear Energy, Charlotte, North Carolina (United States); Yonezawa, H.; Aoyagi, Y.; Kataoka, K., E-mail: jim.powers@toshiba.com [Toshiba Corporation, Kawasaki, Kanagawa (Japan)

    2015-09-15

    The US-Advanced Boiling Water Reactor (A BWR), certified by the US NRC, is a third generation, evolutionary boiling water reactor design which is the reference for the South Texas Project Units 3 and 4 (STP3-4) Combined License Application (Cola). Nuclear Innovation North America (Nina) is the License Applicant for this new build project, and Toshiba is the selected primary technology contractor. Toshiba has developed a Demonstration Simulator of the A BWR control room that provides a realistic experience for training and education on BWR principles and operations fundamentals. The Demonstration Simulator is located in the Toshiba America Nuclear Energy (Tane) office in Charlotte, North Carolina and is composed of standard office computer equipment set up in a specific arrangement that is representative of the layout of an A BWR control room. The Demonstration Simulator is not intended for licensed operator training, but can provide a framework for encouraging entry level technically oriented nuclear workers to enter the operations field; strengthening the linkage between university energy field curricula and real-life application of theory; and, improving understanding of integrated plant operations for developing station technical staff. This paper describes the A BWR Demonstration Simulator and its applications for training and educating future nuclear workers. (Author)

  14. Power oscillations in BWR reactors

    International Nuclear Information System (INIS)

    Espinosa P, G.

    2002-01-01

    One of the main problems in the operation of BWR type reactors is the instability in power that these could present. One type of oscillations and that is the objective of this work is the named density wave, which is attributed to the thermohydraulic processes that take place in the reactor core. From the beginnings of the development of BWR reactors, the stability of these has been an important aspect in their design, due to its possible consequences on the fuel integrity. The reactor core operates in two phase flow conditions and it is observed that under certain power and flow conditions, power instabilities appear. Studying this type of phenomena is complex, due to that a reactor core is constituted approximately by 27,000 fuel bars with different distributions of power and flow. The phenomena that cause the instability in BWR reactors continue being matter of scientific study. In the literature mainly in nuclear subject, it can be observed that exist different methods and approximations for studying this type of phenomena, nevertheless, their results are focused to establish safety limits in the reactor operation, instead of studying in depth of the knowledge about. Also in this line sense of the reactor data analysis, the oscillations characteristic frequencies are obtained for trying to establish if the power is growing or decreasing. In addition to that before mentioned in this paper it is presented a rigorous study applying the volumetric average method, for obtaining the vacuum waves propagation velocities and its possible connection with the power oscillations. (Author)

  15. Scaling and uncertainty in BWR instability problems

    International Nuclear Information System (INIS)

    Di Auria, F.; Pellicoro, V.

    1995-01-01

    This paper deals with a critical review of activities, performed at the DCMN of Pisa University, in relation to the thermo-hydraulic oscillations in two-phase systems. Stability analyses, including model development and achievement of experimental data, are generally performed for BWRs in order to achieve the following objectives: to reach a common understanding in relation to the predictive capabilities of system codes and to the influence of various parameters on the instability; to establish a data base for the qualification of the analytical tools already or becoming available; to set-up qualified tools (code/models + nodalization + user assumption) suitable for predicting the unstable behaviour of the nuclear plants of interest (current BWR, SBWR, ABWR and RBMK). These considerations have been the basis for the following researches: 1) proposal of the Boiling Instability Program (BIP) (1) 2) evaluation of stability tests in PIPER-ONE apparatus (2) 3) coupled thermal-hydraulic and neutronic instabilities in the LaSalle-2 BWR plant (3) 4) participation to the NEA-OECD BWR Benchmark (4) The RELAP/MOD2 and RELAP5/MOD3 codes have been used. (author)

  16. Tritium in liquid phase in a BWR-5 like Laguna Verde; Tritio en fase liquida en un BWR-5 como Laguna Verde

    Energy Technology Data Exchange (ETDEWEB)

    Tijerina S, F.; Vargas A, A.; Cardenas J, J., E-mail: francisco.tijerina@cfe.gob.mx [Comision Federal de Electricidad, Central Nucleoelectrica Laguna Verde, Subgerencia de Ingenieria, Carretera Veracruz-Medellin Km 7.5, Veracruz (Mexico)

    2011-11-15

    In boiling water reactors (BWR), the tritium (H{sub 3}) takes place mainly as a result of ternary fissions in the nuclear reactors, of those which 75% are in gaseous form and 25% in liquid form. In the liquid phase, the tritium is transported to the pipes of the primary coolant toward condensed tanks or tanks of drainage excesses of radioactive equipment, located in external areas of a BWR, as well as to the processes of radioactive wastes to be able to be directed to the liquid effluents. For that reason, is necessary to know the possible routes of the transport and processes of the tritium in a BWR to control this radioisotope in the site of the event of leaks in equipment s and buried pipes, avoiding that emigrates toward underground flowing and an impact to the environment and to the people in general. (Author)

  17. Material operating behaviour of ABB BWR control rods

    International Nuclear Information System (INIS)

    Rebensdorff, B.; Bart, G.

    2000-01-01

    The BWR control rods made by ABB use boron carbide (B 4 C and hafnium as absorber material within a cladding of stainless steel. The general behaviour under operation has proven to be very good. ABB and many of their control rod customers have performed extensive inspection programs of control rod behaviour. However, due to changes in the material properties under fast and thermal neutron irradiation defects may occur in the control rods at high neutron fluences. Examinations of irradiated control rod materials have been performed in hot cell laboratories. The examinations have revealed the defect mechanism Irradiation Assisted Stress Corrosion Cracking (IASCC) to appear in the stainless steel cladding. For IASCC to occur three factors have to act simultaneously. Stress, material sensitization and an oxidising environment. Stress may be obtained from boron carbide swelling due to irradiation. Stainless steel may be sensitized to intergranular stress corrosion cracking under irradiation. Normally the reactor environment in a BWR is oxidising. The presentation focuses on findings from hot cell laboratory work on irradiated ABB BWR control rods and studies of irradiated control rod materials in the hot cells at PSI. Apart from physical, mechanical and microstructural examinations, isotope analyses were performed to describe the local isotopic burnup of boron. Consequences (such as possible B 4 C washout) of a under operation in a ABB BWR, after the occurrence of a crack is discussed based on neutron radiographic examinations of control rods operated with cracks. (author)

  18. General Electric's training program for BWR chemists

    International Nuclear Information System (INIS)

    Osborn, R.N.; Lim, W.

    1981-01-01

    This paper describes the development and implementation of the General Electric boiling water reactor chemistry training program from 1959 to the present. The original intention of this program was to provide practical hands on type training in radiochemistry to BWR chemistry supervisors with fossil station experience. This emphasis on radiochemistry has not changed through the years, but the training has expanded to include the high purity water chemistry of the BWR and has been modified to include new commission requirements, engineering developments and advanced instrumentation. Student and instructor qualifications are discussed and a description of the spin off courses for chemistry technicians and refresher training is presented

  19. BWR SFAT, gross-defect verification of spent BWR fuel. Final report on Task FIN A563 on the Finnish Support Programme to IAEA Safeguards including BWR SFAT User Manual

    International Nuclear Information System (INIS)

    Tarvainen, M.; Paakkunainen, M.; Tiitta, A.; Sarparanta, K.

    1994-04-01

    A measurement instrument called Spent Fuel Attribute Tester, SFAT, has been designed, fabricated and taken into use by the IAEA in gross defect verification of spent BWR fuel assemblies. The equipment consists of an underwater measurement head connected with cables to a control unit on the bridge of the fuel handling machine as well as to a PMCA for measurement of the gamma spectra. The BWR SFAT is optimized for the AFR interim storage, TVO KPA-STORE, of the TVO Power Company in Olkiluoto, Finland. It has a shape and it is moved like a fuel assembly using the fuel handling machine. No fuel movements are needed. Spent fuel specific radiation from the fission product 137 Cs at the gamma-ray energy of 662 keV is detected above the assemblies in the storage rack using a NaI(Tl) detector. In the design and in licensing the requirements of the IAEA, operator and the safety authority have been taken into account. The BWR SFAT allows modifications for other LWR fuel types with minor changes. The work has been carried out under the task FIN A 563 of the Finnish Support Programme to IAEA Safeguards. (orig.) (9 refs., 22 figs.)

  20. Reducing BWR O and M costs through on-line performance monitoring

    International Nuclear Information System (INIS)

    Jonas, T.; Gross, R.; Logback, F.; Josyula, R.

    1995-01-01

    Competition in the electric power industry has placed significant emphasis on reducing operating and maintenance (O and M) costs at nuclear facilities. Therefore, on-line performance monitoring to locate power losses for boiling water reactor (BWR) plants is creating tremendous interest. In addition, the ability to automate activities such as data collection, analysis, and reporting increases the efficiency of plant engineers and gives them more time to concentrate on solving plant efficiency problems. This capability is now available with a unique software product called GEBOPS. GE Nuclear Energy, in conjunction with Joint Venture partner Black and Veatch, has undertaken development of the General Electric/Black and Veatch On-line Performance System (GEBOPS), an on-line performance monitoring system for BWR plants. The experience and expertise of GE Nuclear Energy with BWR plants, coupled with the proven on-line monitoring software development experience and capability of Black and Veatch, provide the foundation for a unique product which addresses the needs of today's BWR plants

  1. Peach Bottom transient analysis with BWR TRACB02

    International Nuclear Information System (INIS)

    Alamgir, M.; Sutherland, W.A.

    1984-01-01

    TRAC calculations have been performed for a Turbine Trip transient (TT1) in the Peach Bottom BWR power plant. This study is a part of the qualification of the BWR-TRAC code. The simulation is aimed at reproducing the observed thermal hydraulic behavior in a pressurization transient. Measured core power is an input to the calculation. Comparison with data show the code reasonably well predicts the generation and propagation of the pressure waves in the main steam line and associated pressurization of the reactor vessel following the closure of the turbine stop valve

  2. Methyl Iodide Decomposition at BWR Conditions

    International Nuclear Information System (INIS)

    Pop, Mike; Bell, Merl

    2012-09-01

    Based on favourable results from short-term testing of methanol addition to an operating BWR plant, AREVA has performed numerous studies in support of necessary Engineering and Plant Safety Evaluations prior to extended injection of methanol. The current paper presents data from a study intended to provide further understanding of the decomposition of methyl iodide as it affects the assessment of methyl iodide formation with the application of methanol at BWR Plants. This paper describes the results of the decomposition testing under UV-C light at laboratory conditions and its effect on the subject methyl iodide production evaluation. The study as to the formation and decomposition of methyl iodide as it is effected by methanol addition is one phase of a larger AREVA effort to provide a generic plant Safety Evaluation prior to long-term methanol injection to an operating BWR. Other testing phases have investigated the compatibility of methanol with fuel construction materials, plant structural materials, plant consumable materials (i.e. elastomers and coatings), and ion exchange resins. Methyl iodide is known to be very unstable, typically preserved with copper metal or other stabilizing materials when produced and stored. It is even more unstable when exposed to light, heat, radiation, and water. Additionally, it is known that methyl iodide will decompose radiolytically, and that this effect may be simulated using ultra-violet radiation (UV-C) [2]. In the tests described in this paper, the use of a UV-C light source provides activation energy for the formation of methyl iodide. Thus is similar to the effect expected from Cherenkov radiation present in a reactor core after shutdown. Based on the testing described in this paper, it is concluded that injection of methanol at concentrations below 2.5 ppm in BWR applications to mitigate IGSCC of internals is inconsequential to the accident conditions postulated in the FSAR as they are related to methyl iodide formation

  3. TRAC-BWR development

    International Nuclear Information System (INIS)

    Weaver, W.L.; Rouhani, S.Z.

    1983-01-01

    The TRAC-BD1/MOD1 code containing many new or improved models has been assembled and is undergoing developmental assessment and testing and should be available shortly. The preparation of the manual for this code version is underway and should be available to the USNRC and their designated contractors by April of 1984. Finally work is currently underway on a fast running version of TRAC-BWR which will contain a one-dimensional neutron kinetics model

  4. Interfaz entre el plan de producción y el programa de producción en ambientes de ensamble Interface between the production plan and the master production schedule in assembly environments

    Directory of Open Access Journals (Sweden)

    Marcos Moya Navarro

    2012-11-01

    Full Text Available En un entorno de producción existe una relación directa entre el mercado y los procesos de manufactura de los bienes. Sin embargo, cuando la producción está inmersa en un ambiente de ensamble, el procedimiento de la planificación y la programación se vuelve complejo, con el riesgo de que la empresa pierda ventaja competitiva en términos de incumplimiento de las fechas de entrega y elevados costos de planificación y control. La programación lineal constituye una herramienta apropiada para construir modelos de programación y control de la producción en entornos de manufactura complejos. El objetivo de este trabajo es mostrar la interfaz entre el plan de producción y el programa de producción en ambientes de ensamble mediante el modelado por programación lineal. Para ello, se seleccionó un entorno que produce tres productos finales cuya estructura de producto está dispuesta en tres niveles con un máximo de ocho componentes. Los datos proporcionados por el plan de producción se desglosaron en diez órdenes, cada una indicando el tipo de producto, la cantidad por producir y su respectiva fecha de entrega. Los resultados obtenidos en el programa de producción establecieron la recepción de pedidos planificados y el programa de componentes totales requeridos en cada periodo de producción, para minimizar los costos totales de emisión de órdenes de producción e inventario.In a production environment there is a direct relationship between the market and the manufacturing process of goods.When production is immersed in an assembly environment, the process of production planning and scheduling becomes complex, and the enterprises have the risk of losing competitive advantages in terms of not meeting delivery dates and production high costs. Linear programming has become an appropriate tool for production planning and scheduling in complex manufacturing environments. The aim of this paper is to show the interface between both the

  5. BWR mechanics and materials technology update

    International Nuclear Information System (INIS)

    Kiss, E.

    1983-01-01

    This paper discusses technical results obtained from a variety of important programs underway at General Electric's Nuclear Engineering Division. The principal objective of these programs is to qualify and improve BWR product related technologies that fall broadly under the disciplines of Applied Mechanics and Materials Engineering. The paper identifies and deals with current technical issues that are of general importance to the LWR industry albeit the specific focus is directed to the development and qualification of analytical predictive methods and criteria, and improved materials for use in the design of the BWR. In this paper, specific results and accomplishments are summarized to provide a braod perspective of technology advances. Results are presented in sections which discuss: dynamic analysis and modeling; fatigue and fracture evaluation; materials engineering advances; and flow induced vibration. (orig.)

  6. Water chemistry control practices and data of the European BWR fleet

    International Nuclear Information System (INIS)

    Stellwag, B.; Laendner, A.; Weiss, S.; Huettner, F.

    2010-01-01

    Nineteen BWR plants are in operation in Europe, nine built by ASEA Atom, six by Siemens KWU and four by General Electric. This paper gives an overview of water chemistry operation practices and parameters of the European BWR plants. General design characteristics of the plants are described. Chemistry control strategies and underlying water chemistry guidelines are summarized. Chemistry data are presented and discussed with regard to plant design characteristics. The paper is based on a contract of the European BWR Forum with AREVA on a chemistry sourcebook for member plants. The survey of chemistry data was conducted for the years 2002 to 2008. (author)

  7. The BWR owners' group planning guide for life extension

    International Nuclear Information System (INIS)

    Smith, S.K.; Lehnert, D.F.; Locke, R.K.

    1991-01-01

    Extending the operating life of a commercial nuclear power plant has been shown to be economically beneficial to both the utility and the electric customer. As such, many utilities are planning and implementing plant life extension (PLEX) programs. A document has been developed which provides guidance to utilities in formulating a PLEX program plant for one or more boiling water reactor (BWR) plants. The guide has been developed by the BWR Owners' Group Plant Life Extension Committee. The principal bases for this guide were the BWR Pilot and Lead Plant Programs. These programs were used as models to develop the 'base plan' described in this guide. By formulating their program plant utilizing the base plan, utilities will be able to maximize the use of existing evaluations and results. The utility planner will build upon the base plan by adding any tasks or features that are unique to their programs. (author)

  8. Simulation of decreasing reactor power level with BWR simulator

    International Nuclear Information System (INIS)

    Suwoto; Zuhair; Rivai, Abu Khalid

    2002-01-01

    Study on characteristic of BWR using Desktop PC Based Simulator Program was analysed. This simulator is more efficient and cheaper for analyzing of characteristic and dynamic respond than full scope simulator for decreasing power level of BW. Dynamic responses of BWR reactor was investigated during the power level reduction from 100% FP (Full Power) which is 3926 MWth to 0% FP with 25% steps and 1 % FP/sec rate. The overall results for core flow rate, reactor steam flow, feed-water flow and turbine-generator power show tendency proportional to reduction of reactor power. This results show that reactor power control in BWR could be done by control of re-circulation flow that alter the density of water used as coolant and moderator. Decreasing the re-circulation flow rate will decrease void density which has negative reactivity and also affect the position of control rods

  9. Metallurgical factors that contribute to cracking in BWR piping

    International Nuclear Information System (INIS)

    Weeks, J.R.

    1975-01-01

    During the fall of 1974 and early winter of 1975, cracks have been discovered in the 4 in. bypass lines of several Boiling Water Reactors (BWR's) in the United States. Further, similar cracks were discovered at two BWR's in Japan during the same period. More recently, cracks have been discovered in the core spray piping and in a furnace-sensitized ''safe end'' and adjacent ''dutchman'' at the Dresden Nuclear Power Station, Unit No. 2. Although inspections at all other U.S. BWR's have not disclosed further instances of cracking in core spray piping, leaking cracks have been found in the core spray piping of two BWR's overseas. Metallurgical examinations of these cracks are not yet complete. The following observations have been made to date. All cracks (except those in the furnace-sensitized safe end and dutchman) occurred in seamless type 304 stainless steel piping or in elbows fabricated from such piping, in the outer heat affected zone of either field or shop welds, in lines isolated from the main primary coolant flow during full power operation, except for the not yet examined cracks in the Monticello bypass lines. The cracks are exclusively intergranular, and occur in metal that has been lightly sensitized by the welding process, with only intermittent grain boundary carbides. They developed in the areas of peak axial residual stresses from welding rather than in the most heavily sensitized areas. No fatigue striations have been found on the fracture surfaces. The evidence received to date strongly indicates that these cracks were caused by intergranular stress corrosion of weld-sensitized stainless steel by BWR water containing greater than 0.2 ppM oxygen. The possible role of fatigue or alternating stresses in this corrosion is not clear. Further, not all the cracks detected to date necessarily have occurred by the same mechanism

  10. BWR chemistry control status: a summary of industry chemistry status relative to the BWR water chemistry guidelines

    International Nuclear Information System (INIS)

    Garcia, S.E.; Giannelli, J.F.; Jarvis, M.L.

    2010-01-01

    The EPRI Boiling Water Reactor (BWR) Water Chemistry Guidelines were revised and issued in October 2008. The 2008 Revision of the Guidelines continues to focus on intergranular stress corrosion cracking (IGSCC), which can limit the service life of susceptible materials and components exposed to water chemistry environments. The 2008 Revision also places increased emphasis on fuel performance and meeting the industry goal of zero fuel failures by 2010. As an industry consensus document, the Guidelines were created to provide proactive water chemistry control strategies for mitigating IGSCC, maintaining fuel integrity and controlling radiation fields. The Guidelines provide a technically-based framework for an effective BWR water chemistry program. This paper provides an overview of industry experience relative to the Guidelines. Over the past few years, many BWR units have implemented noble metal chemical application technologies either during plant hot or cold shutdown or at normal power operating conditions. This paper explores plant experience with optimized water chemistry, implementation of various additive chemistries such as noble metal application and zinc addition, and compliance with the Guidelines recommendations. Depleted zinc oxide addition has been broadly applied across the BWR fleet since the 1980s. The guidance for zinc addition has been revised in the Guidelines to reflect concerns with fuel performance. While zinc addition is a successful method for shutdown dose rate control, concerns still exist for high zinc deposition on fuel surfaces, especially when feedwater iron is elevated and as fuel cores are being driven to provide maximum power output over longer fuel cycles. Recent plant experience has shown that the utilization of online noble metal application and continued zinc addition may provide additional benefits for radiation control. Dose rate experiences at plants utilizing the online noble metal application technology and zinc addition

  11. BWR chemistry control status: a summary of industry chemistry status relative to the BWR water chemistry guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, S.E., E-mail: sgarcia@epri.com [Electric Power Research Inst. (EPRI), Palo Alto, California (United States); Giannelli, J.F.; Jarvis, M.L., E-mail: jgiannelli@finetech.com [Finetech, Inc., Parsippany, NJ (United States)

    2010-07-01

    The EPRI Boiling Water Reactor (BWR) Water Chemistry Guidelines were revised and issued in October 2008. The 2008 Revision of the Guidelines continues to focus on intergranular stress corrosion cracking (IGSCC), which can limit the service life of susceptible materials and components exposed to water chemistry environments. The 2008 Revision also places increased emphasis on fuel performance and meeting the industry goal of zero fuel failures by 2010. As an industry consensus document, the Guidelines were created to provide proactive water chemistry control strategies for mitigating IGSCC, maintaining fuel integrity and controlling radiation fields. The Guidelines provide a technically-based framework for an effective BWR water chemistry program. This paper provides an overview of industry experience relative to the Guidelines. Over the past few years, many BWR units have implemented noble metal chemical application technologies either during plant hot or cold shutdown or at normal power operating conditions. This paper explores plant experience with optimized water chemistry, implementation of various additive chemistries such as noble metal application and zinc addition, and compliance with the Guidelines recommendations. Depleted zinc oxide addition has been broadly applied across the BWR fleet since the 1980s. The guidance for zinc addition has been revised in the Guidelines to reflect concerns with fuel performance. While zinc addition is a successful method for shutdown dose rate control, concerns still exist for high zinc deposition on fuel surfaces, especially when feedwater iron is elevated and as fuel cores are being driven to provide maximum power output over longer fuel cycles. Recent plant experience has shown that the utilization of online noble metal application and continued zinc addition may provide additional benefits for radiation control. Dose rate experiences at plants utilizing the online noble metal application technology and zinc addition

  12. Advanced BWR core component designs and the implications for SFD analysis

    International Nuclear Information System (INIS)

    Ott, L.J.

    1997-01-01

    Prior to the DF-4 boiling water reactor (BWR) severe fuel damage (SFD) experiment conducted at the Sandia National Laboratories in 1986, no experimental data base existed for guidance in modeling core component behavior under postulated severe accident conditions in commercial BWRs. This paper will present the lessons learned from the DF-4 experiment (and subsequent German CORA BWR SFD tests) and the impact on core models in the current generation of SFD codes. The DF-4 and CORA BWR test assemblies were modeled on the core component designs circa 1985; that is, the 8 x 8 fuel assembly with two water rods and a cruciform control blade constructed of B 4 C-filled tubelets. Within the past ten years, the state-of-the-art with respect to BWR core component development has out-distanced the current SFD experimental data base and SFD code capabilities. For example, modern BWR control blade design includes hafnium at the tips and top of each control blade wing for longer blade operating lifetimes; also water rods have been replaced by larger water channels for better neutronics economy; and fuel assemblies now contain partial-length fuel rods, again for better neutronics economy. This paper will also discuss the implications of these advanced fuel assembly and core component designs on severe accident progression and on the current SFD code capabilities

  13. Analysis of multi-dimensional and countercurrent effects in a BWR loss-of-coolant accident

    International Nuclear Information System (INIS)

    Shiralkar, B.S.; Dix, G.E.; Alamgir, M.

    1989-01-01

    The presence of parallel enclosed channels in a BWR provides opportunities for multiple flow regimes in co-current and countercurrent flow under Loss-of-Coolant Accident (LOCA) conditions. To address and understand these phenomena, an integrated experimental and analytical study has been conducted. The primary experimental facility was the Steam Sector Test Facility (SSTF) which simulated a full scale 30deg sector of a BWR/6 reactor vessel. Both steady-state separate effects tests and integral transients with vessel blowdown and refill were performed. The present of multi-dimensional and parallel channel effects was found to be very beneficial to BWR LOCA performance. The best estimate TRAC-BWR computer code was extended as part of this study by incorporation of a phenomenological upper plenum mixing model. TRAC-BWR was applied to the analysis of these full scale experiments. Excellent predictions of phenomena and experimental trends were achieved. (orig.)

  14. Assessment of two BWR accident management strategies

    International Nuclear Information System (INIS)

    Hodge, S.A.; Petek, M.

    1994-01-01

    Candidate mitigative strategies for the management of in-vessel events during the late phase (after-core degradation has occurred) of postulated boiling water reactor (BWR) severe accidents were considered at Oak Ridge National Laboratory (ORNL) during 1990. The identification of new strategies was subject to the constraint that they should, to the maximum extent possible, make use of the existing equipment and water resources of the BWR facilities, and not require major equipment modifications or additions. As a result of this effort, two of these candidate strategies were recommended for further assessment. The first was a strategy for containment flooding to maintain the core and structural debris within the reactor vessel in the event that vessel injection cannot be restored to terminate a severe accident sequence. The second strategy pertained to the opposite case, for which vessel injection would be restored after control blade melting had begun; its purpose was to provide an injection source of borated water at the concentration necessary to preclude criticality upon recovering a damaged BWR core. Assessments of these two strategies were performed during 1991 and this paper provides a discussion of the motivation for and purpose of these strategies, and the potential for their success. ((orig.))

  15. BWR plant dynamic analysis code BWRDYN user's manual

    International Nuclear Information System (INIS)

    Yokobayashi, Masao; Yoshida, Kazuo; Fujiki, Kazuo

    1989-06-01

    Computer code BWRDYN has been developed for thermal-hydraulic analysis of a BWR plant. It can analyze the various types of transient caused by not only small but also large disturbances such as operating mode changes and/or system malfunctions. The verification of main analytical models of the BWRDYN code has been performed with measured data of actual BWR plant. Furthermore, the installation of BOP (Balance of Plant) model has made it possible to analyze the effect of BOP on reactor system. This report describes on analytical models and instructions for user of the BWRDYN code. (author)

  16. Modern technology applied in the advanced BWR (ABWR)

    International Nuclear Information System (INIS)

    Hucik, S.A.

    1988-01-01

    The advanced boiling water reactor (ABWR) represents the next generation of light water reactors (LWR) to be introduced into commercial operation in the 1990's. The ABWR is the result of the continuing evolution of the BWR, incorporating state-of-the-art technology and improvements based on worldwide experience, and extensive design and test and development programs. This paper discusses how the ABWR development objective focused on an optimized selection of advanced technologies and proven BWR technologies. A technical evaluation of the ABWR shows its superiority in terms of performance characteristics and economics relative to current LWR designs

  17. BWR recirculation pump diagnostic expert system

    International Nuclear Information System (INIS)

    Chiang, S.C.; Morimoto, C.N.; Torres, M.R.

    2004-01-01

    At General Electric (GE), an on-line expert system to support maintenance decisions for BWR recirculation pumps for nuclear power plants has been developed. This diagnostic expert system is an interactive on-line system that furnishes diagnostic information concerning BWR recirculation pump operational problems. It effectively provides the recirculation pump diagnostic expertise in the plant control room continuously 24 hours a day. The expert system is interfaced to an on-line monitoring system, which uses existing plant sensors to acquire non-safety related data in real time. The expert system correlates and evaluates process data and vibration data by applying expert rules to determine the condition of a BWR recirculation pump system by applying knowledge based rules. Any diagnosis will be automatically displayed, indicating which pump may have a problem, the category of the problem, and the degree of concern expressed by the validity index and color hierarchy. The rules incorporate the expert knowledge from various technical sources such as plant experience, engineering principles, and published reports. These rules are installed in IF-THEN formats and the resulting truth values are also expressed in fuzzy terms and a certainty factor called a validity index. This GE Recirculation Pump Expert System uses industry-standard software, hardware, and network access to provide flexible interfaces with other possible data acquisition systems. Gensym G2 Real-Time Expert System is used for the expert shell and provides the graphical user interface, knowledge base, and inference engine capabilities. (author)

  18. Economic analysis of hydride fueled BWR

    International Nuclear Information System (INIS)

    Ganda, F.; Shuffler, C.; Greenspan, E.; Todreas, N.

    2009-01-01

    The economic implications of designing BWR cores with hydride fuels instead of conventional oxide fuels are analyzed. The economic analysis methodology adopted is based on the lifetime levelized cost of electricity (COE). Bracketing values (1970 and 3010 $/kWe) are used for the overnight construction costs and for the power scaling factors (0.4 and 0.8) that correlate between a change in the capital cost to a change in the power level. It is concluded that a newly constructed BWR reactor could substantially benefit from the use of 10 x 10 hydride fuel bundles instead of 10 x 10 oxide fuel bundles design presently in use. The cost saving would depend on the core pressure drop constraint that can be implemented in newly constructed BWRs - it is between 2% and 3% for a core pressure drop constraint as of the reference BWR, between 9% and 15% for a 50% higher core pressure drop, and between 12% and 21% higher for close to 100% core pressure. The attainable cost reduction was found insensitive to the specific construction cost but strongly dependent on the power scaling factor. The cost advantage of hydride fuelled cores as compared to that of the oxide reference core depends only weakly on the uranium and SWU prices, on the 'per volume base' fabrication cost of hydride fuels, and on the discount rate used. To be economically competitive, the uranium enrichment required for the hydride fuelled core needs to be around 10%.

  19. Application of the MOVE algorithm for the identification of reduced order models of a core of a BWR type reactor; Aplicacion del algoritmo MOVE para la identificacion de modelos de orden reducido del nucleo de un reactor tipo BWR

    Energy Technology Data Exchange (ETDEWEB)

    Victoria R, M.A.; Morales S, J.B. [UNAM, DEPFI, Campus Morelos, en IMTA Jiutepec, Morelos (Mexico)]. e-mail: angelvr@gmail.com

    2005-07-01

    Presently work is applied the modified algorithm of the ellipsoid of optimal volume (MOVE) to a reduced order model of 5 differential equations of the core of a boiling water reactor (BWR) with the purpose of estimating the parameters that model the dynamics. The viability is analyzed of carrying out an analysis that calculates the global dynamic parameters that determine the stability of the system and the uncertainty of the estimate. The modified algorithm of the ellipsoid of optimal volume (MOVE), is a method applied to the parametric identification of systems, in particular to the estimate of groups of parameters (PSE for their initials in English). It is looked for to obtain the ellipsoid of smaller volume that guarantees to contain the real value of the parameters of the model. The PSE MOVE is a recursive identification method that can manage the sign of noise and to ponder it, the ellipsoid represents an advantage due to its easy mathematical handling in the computer, the results that surrender are very useful for the design of Robust Control since to smaller volume of the ellipsoid, better is in general the performance of the system to control. The comparison with other methods presented in the literature to estimate the reason of decline (DR) of a BWR is presented. (Author)

  20. Analysis of a BWR direct cycle forced circulation power plants operation

    International Nuclear Information System (INIS)

    Andrade, G.G. de.

    1973-01-01

    First, it is established a general view over the operational problems of the BWR direct cycle forced circulation power plants, and then it is analysed the possibility of the utilization of the energy purged from the turbine as an additional energy for the electrical generation. To simulate the BWR power plant and to obtain the solution of the mathematical model it was developed a computer code named ATOR which shows the feasibility of the proposed method. In this way it is shown the possibility to get a better maneuvering allowance for the BWR power plant whenever it is permitted a convenient use of the vapor extracted from the turbine for the feedwater pre-heaters of the reactor. (author)

  1. BWR Water Chemistry Guidelines: 1993 Revision, Normal and hydrogen water chemistry

    International Nuclear Information System (INIS)

    Karlberg, G.; Goddard, C.; Fitzpatrick, S.

    1994-02-01

    The goal of water chemistry control is to extend the operating life of the reactor and rector coolant system, balance-of-plant components, and turbines while simultaneously controlling costs to safeguard the continued economic viability of the nuclear power generation investment. To further this goal an industry committee of chemistry personnel prepared guidelines to identify the benefits, risks, and costs associated with water chemistry in BWRs and to provide a template for an optimized water chemistry program. This document replaces the BWR Normal Water Chemistry Guidelines - 1986 Revision and the BWR Hydrogen Water Chemistry Guidelines -- 1987 Revision. It expands on the previous guidelines documents by covering the economic implications of BWR water chemistry control

  2. Development of the BWR Dry Core Initial and Boundary Conditions for the SNL XR2 Experiments; TOPICAL

    International Nuclear Information System (INIS)

    Ott, L.J.

    1994-01-01

    The objectives of the Boiling Water Reactor Experimental Analysis and Model Development for Severe Accidents (BEAMD) Program at the Oak Ridge National Laboratory (ORNL) are: (1) the development of a sound quantitative understanding of boiling water reactor (BWR) core melt progression; this includes control blade and channel box effects, metallic melt relocation and possible blockage formation under severe accident conditions, and (2) provision of BWR melt progression modeling capabilities in SCDAP/RELAP5 (consistent with the BWR experimental data base). This requires the assessment of current modeling of BWR core melt progression against the expanding BWR data base. Emphasis is placed upon data from the BWR tests in the German CORA test facility and from the ex-reactor experiments[Sandia National Laboratories (SNL)] on metallic melt relocation and blockage formation in BWRs, as well as upon in-reactor data from the Annular Core Research Reactor (ACRR) DF-4 BWR test (conducted in 1986 at SNL). The BEAMD Program is a derivative of the BWR Severe Accident Technology Programs at ORNL. The ORNL BWR programs have studied postulated severe accidents in BWRs and have developed a set of models specific to boiling water reactor response under severe accident conditions. These models, in an experiment-specific format, have been successfully applied to both pretest and posttest analyses of the DF-4 experiment, and the BWR severe fuel damage (SFD) experiments performed in the CORA facility at the Kernforschungszentrum Karlsruhe (KfK) in Germany, resulting in excellent agreement between model prediction and experiment. The ORNL BWR models have provided for more precise predictions of the conditions in the BWR experiments than were previously available. This has provided a basis for more accurate interpretation of the phenomena for which the experiments are performed. The experiment-specific models, as used in the ORNL DF-4 and CORA BWR experimental analyses, also provide a basis

  3. Thermohydraulic stability coupled to the neutronic in a BWR; Estabilidad termohidraulica acoplada a la neutronica en un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Calleros M, G.; Zapata Y, M.; Gomez H, R.A.; Mendez M, A. [Comision Federal de Electricidad, Central Nucleoelectrica de Laguna Verde, Carretera Cardel-Nautla Km. 42.5, Mpio. Alto Lucero, Veracruz (Mexico); Castlllo D, R. [ININ, Carretera Mexico-Toluca Km 36.5, La Marquesa, Estado de Mexico (Mexico)]. e-mail: gcm9acpp@cfe.gob.mx

    2006-07-01

    In a BWR type reactor the phenomenon of the nuclear fission is presented, in which are liberated in stochastic form neutrons, originating that the population of the same ones varies in statistic form around a mean value. This variation will cause that when the neutron flow impacts on the neutron detectors, its are had as a result neutron flow signals with fluctuations around an average value. In this article it is shown that it conforms it lapses the time, this variations in the neutron flow (and therefore, in the flow signal due only to the fission), they presented oscillations inside a stable range, which won't be divergent. Considering that the BWR is characterized because boiling phenomena are presented, which affect the moderation of the neutrons, additional variations will be had in the signal coming from the neutron detectors, with relationship to the fission itself, which will be influenced by the feedback of the moderator's reactivity and of the temperature of the fuel pellet. Also, as the BWR it has coupled control systems to maintain the coolant level one and of the thermal power of the reactor, for each control action it was affected the neutron population. This means that the reactor could end up straying of a stable state condition. By it previously described, the study of the thermohydraulic stability coupled to the neutronic is complex. In this work it is shown the phenomenology, the mathematical models and the theoretical behavior associated to the stability of the BWR type reactor; the variables that affect it are identified, the models that reproduce the behavior of the thermohydraulic stability coupled to the neutronic, the way to maintain stable the reactor and the instrumentation that can settle to detect and to suppress uncertainties is described. In particular, is make reference to the evolution of the methods to maintain the stability of the reactor and the detection system and suppression of uncertainties implemented in the

  4. Flex concept for US-A BWR extended loss of AC power events

    International Nuclear Information System (INIS)

    Powers, J.; Aoyagi, Y.; Kataoka, K.; Thomas, S.; Mookhoek, B.

    2015-09-01

    The US-Advanced Boiling Water Reactor (US-A BWR), certified by the US NRC, is a third generation, evolutionary boiling water reactor design which is the reference for the South Texas Project Units 3 and 4 (Stp 3 and 4) Combined License Application (Cola) and incorporates numerous design and technology enhancements for improved safety performance. Nuclear Innovation North America (NINA) is the License Applicant for this new build project, and Toshiba is the selected primary technology contractor. The Stp 3 and 4 project has finished the US NRC technical review of the Cola, and the final safety evaluation report (FSER) is scheduled to be issued by the US NRC in 2015. Following the accident at the Fukushima Dai-ichi plant, the US-A BWR was reviewed for Beyond Design Basis Event (BDBE) safety using industry and regulatory guidance for US NRC Order EA-12-049 Order Modifying Licenses with Regard to Requirements for Mitigation of Beyond Design Basis External Events (BDBEE). By virtue of the design approach, the US-A BWR is capable of providing an indefinite coping period for a station blackout. The use of installed systems with extended coping times is a significant advantage of the US-A BWR compared to most of the plants currently operating in the U.S. In addition, the Stp 3 and 4 design incorporates enhancements consistent with the current US industry Diverse and Flexible Coping Strategies (Flex) initiative. The final technical topic requiring review by the US NRC Advisory Committee on Reactor Safeguards was the Flex Integrated Plan submitted by NINA, and this review was successfully completed. This paper summarizes the progress of the US-A BWR in licensing the Flex Integrated Plan for the project, and describes the technology and features of the US-A BWR design that contribute to safety post-Fukushima. It also provides an informational comparison of the design capabilities of the US-A BWR for extreme external events, and relates these capabilities to re

  5. Flex concept for US-A BWR extended loss of AC power events

    Energy Technology Data Exchange (ETDEWEB)

    Powers, J. [Toshiba America Nuclear Energy, Charlotte, North Carolina (United States); Aoyagi, Y.; Kataoka, K. [Toshiba Corporation, Kawasaki, Kanagawa (Japan); Thomas, S.; Mookhoek, B., E-mail: jim.powers@toshiba.com [Nuclear Innovation North America, Lake Jackson, Texas (United States)

    2015-09-15

    The US-Advanced Boiling Water Reactor (US-A BWR), certified by the US NRC, is a third generation, evolutionary boiling water reactor design which is the reference for the South Texas Project Units 3 and 4 (Stp 3 and 4) Combined License Application (Cola) and incorporates numerous design and technology enhancements for improved safety performance. Nuclear Innovation North America (NINA) is the License Applicant for this new build project, and Toshiba is the selected primary technology contractor. The Stp 3 and 4 project has finished the US NRC technical review of the Cola, and the final safety evaluation report (FSER) is scheduled to be issued by the US NRC in 2015. Following the accident at the Fukushima Dai-ichi plant, the US-A BWR was reviewed for Beyond Design Basis Event (BDBE) safety using industry and regulatory guidance for US NRC Order EA-12-049 Order Modifying Licenses with Regard to Requirements for Mitigation of Beyond Design Basis External Events (BDBEE). By virtue of the design approach, the US-A BWR is capable of providing an indefinite coping period for a station blackout. The use of installed systems with extended coping times is a significant advantage of the US-A BWR compared to most of the plants currently operating in the U.S. In addition, the Stp 3 and 4 design incorporates enhancements consistent with the current US industry Diverse and Flexible Coping Strategies (Flex) initiative. The final technical topic requiring review by the US NRC Advisory Committee on Reactor Safeguards was the Flex Integrated Plan submitted by NINA, and this review was successfully completed. This paper summarizes the progress of the US-A BWR in licensing the Flex Integrated Plan for the project, and describes the technology and features of the US-A BWR design that contribute to safety post-Fukushima. It also provides an informational comparison of the design capabilities of the US-A BWR for extreme external events, and relates these capabilities to re

  6. Maximum thermal loading test of BWR fuel assembly

    International Nuclear Information System (INIS)

    Nakajima, Yoshitaka; Yoshimura, Kunihiro; Nakamura, Satoshi; Ishizuka, Takao.

    1987-01-01

    Various proving tests on the reliability of nuclear power plants have been conducted at the Nuclear Power Engineering Test Center and at the Japan Power Plant Engineering and Inspection Corporation. The tests were initiated at the request of the Ministry of International Trade and Industry (MITI). Toshiba undertook one of the proving tests on the reliability of nuclear fuel assembly; the maximum thermal loading test of BWR fuel assembly from the Nuclear Power Engineering Test Center. These tests are part of the proving tests mentioned above, and their purpose is to confirm the reliability of the thermal hydraulic engineering techniques. Toshiba has been engaged for the past nine years in the design, fabrication and testing of the equipment. For the project, a test model fuel assembly was used to measure the critical power of the BWR fuel assembly and the void and fluidity of the coolant. From the test results, it has been confirmed that the heat is transferred safely from the fuel assembly to the coolant in the BWR nuclear power plant. In addition, the propriety and reliability of the thermal hydraulic engineering techniques for the fuel assembly have been proved. (author)

  7. Large bundle BWR test CORA-18: Test results

    International Nuclear Information System (INIS)

    Hagen, S.; Hofmann, P.; Noack, V.; Sepold, L.; Schanz, G.; Schumacher, G.

    1998-04-01

    The CORA out-of-pile experiments are part of the international Severe Fuel Damage (SFD) Program. They were performed to provide information on the damage progression of Light Water Reactor (LWR) fuel elements in Loss-of-coolant Accidents in the temperature range 1200 C to 2400 C. CORA-18 was the large BWR bundle test corresponding to the PWR test CORA-7. It should investigate if there exists an influence of the BWR bundle size on the fuel damage behaviour. Therefore, the standard-type BWR CORA bundle with 18 fuel rod simulators was replaced by a large bundle with two additional surrounding rows of 30 rods (48 rods total). Power input and steam flow were increased proportionally to the number of fuel rod simulators to give the same initial heat-up rate of about 1 K/s as in the smaller bundles. Emphasis was put on the initial phase of the damage progression. More information on the chemical composition of initial and intermediate interaction products and their relocation behaviour should be obtained. Therefore, power and steam input were terminated after the onset of the temperature escalation. (orig.) [de

  8. BWR shutdown analyzer using artificial intelligence (AI) techniques

    International Nuclear Information System (INIS)

    Cain, D.G.

    1986-01-01

    A prototype alarm system for detecting abnormal reactor shutdowns based on artificial intelligence technology is described. The system incorporates knowledge about Boiling Water Reactor (BWR) plant design and component behavior, as well as knowledge required to distinguish normal, abnormal, and ATWS accident conditions. The system was developed using a software tool environment for creating knowledge-based applications on a LISP machine. To facilitate prototype implementation and evaluation, a casual simulation of BWR shutdown sequences was developed and interfaced with the alarm system. An intelligent graphics interface for execution and control is described. System performance considerations and general observations relating to artificial intelligence application to nuclear power plant problems are provided

  9. BWR condensate filtration studies

    International Nuclear Information System (INIS)

    Wilson, J.A.; Pasricha, A.; Rekart, T.E.

    1993-09-01

    Poor removal of particulate corrosion products (especially iron) from condensate is one of the major problems in BWR systems. The presence of activated corrosion products creates ''hot spots'' and increases piping dose rates. Also, fuel efficiency is reduced and the risk of fuel failure is increased by the deposit of corrosion products on the fuel. Because of these concerns, current EPRI guidelines call for a maximum of 2 ppb of iron in the reactor feedwater with a level of 0.5 ppb being especially desirable. It has become clear that conventional deep bed resins are incapable of meeting these levels. While installation of prefilter systems is an option, it would be more economical for plants with naked deep beds to find an improved bead resin for use in existing systems. BWR condensate filtration technologies are being tested on a condensate side stream at Hope Creek Nuclear Generating Station. After two years of testing, hollow fiber filters (HFF) and fiber matrix filters (FMF), and low crosslink cation resin, all provide acceptable results. The results are presented for pressure drop, filtration efficiency, and water quality measurements. The costs are compared for backwashable non-precoat HFF and FMF. Results are also presented for full deep bed vessel tests of the low crosslink cation resin

  10. Characteristics of fluctuating pressure generated in BWR main steam lines

    International Nuclear Information System (INIS)

    Takahashi, Shiro; Okuyama, Keita; Tamura, Akinori

    2009-01-01

    The BWR-3 steam dryer in the Quad Cities Unit 2 Nuclear Power Plant was damaged by high cycle fatigue due to acoustic-induced vibration. The dryer failure was as attributed to flow-induced acoustic resonance at the stub pipes of safety relief valves (SRVs) in the main steam lines (MSLs). The acoustic resonance was considered to be generated by interaction between the sound field and an unstable shear layer across the closed side branches with SRV stub pipes. We have started a research program on BWR dryers to develop their loading evaluation methods. Moreover, it has been necessary to evaluate the dryer integrity of BWR-5 plants which are the main type of BWR in Japan. In the present study, we used 1/10-scale BWR tests and analyses to investigate the flow-induced acoustic resonance and acoustic characteristics in MSLs. The test apparatus consisted of a steam dryer, a steam dome and 4 MSLs with 20 SRV stub pipes. A finite element method (FEM) was applied for the calculation of three-dimensional wave equations in acoustic analysis. We demonstrated that remarkable fluctuating pressures occurred in high and low frequency regions. High frequency fluctuating pressures was generated by the flow-induced acoustic resonance in the SRV stub pipes. Low frequency fluctuating pressure was generated in an MSL with the dead leg. The frequency of the latter almost coincided with the natural frequency of the MSL with the dead leg. The amplitude of the fluctuating pressures in the multiple stub pipes became more intense because of interaction between them compared with that in the single stub pipe. Acoustic analysis results showed that the multiple stub pipes caused several natural frequencies in the vicinity of the natural frequency of the single stub pipe and several modes of the standing wave in the MSLs. (author)

  11. The BWR vessel and internals project - 2001 and beyond

    International Nuclear Information System (INIS)

    Wagoner, V.; Mulford, T.

    2001-01-01

    The BWR Vessel and Internals Project (BWRVIP) is an international association of utilities owning boiling water reactors (BWRs). Figure 1 contains a list of current BWRVIP member utilities. The association was formed in 1994 with the following objectives: to lead the BWR industry toward generic resolution of reactor pressure vessel and internals material condition issues; to identify or develop generic, cost-effective strategies from which each operating plant will select the most appropriate alternative; to serve as the focal point for the regulatory interface with the industry on BWR vessel and internals issues; and to share information and promote communication and cooperation among participating utilities. The initial issue faced by the BWRVIP was core shroud cracking that had been observed in a number of BWRs. The BWRVIP reacted by quickly developing a set of industry guidelines to assist utilities in inspecting, evaluating, and, if necessary, repairing cracked shrouds. Subsequently, the BWRVIP pro-actively developed a comprehensive set of guidelines for managing degradation in other reactor internal components, including the reactor pressure vessel itself. The major components addressed by the BWRVIP are included. (author)

  12. The BWR vessel and internals project - 2001 and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Wagoner, V. [Carolina Power and Light, Progress Energy Building, NC (United States); Mulford, T. [Electric Power Research Institute, Palo Alto, CA (United States)

    2001-07-01

    The BWR Vessel and Internals Project (BWRVIP) is an international association of utilities owning boiling water reactors (BWRs). Figure 1 contains a list of current BWRVIP member utilities. The association was formed in 1994 with the following objectives: to lead the BWR industry toward generic resolution of reactor pressure vessel and internals material condition issues; to identify or develop generic, cost-effective strategies from which each operating plant will select the most appropriate alternative; to serve as the focal point for the regulatory interface with the industry on BWR vessel and internals issues; and to share information and promote communication and cooperation among participating utilities. The initial issue faced by the BWRVIP was core shroud cracking that had been observed in a number of BWRs. The BWRVIP reacted by quickly developing a set of industry guidelines to assist utilities in inspecting, evaluating, and, if necessary, repairing cracked shrouds. Subsequently, the BWRVIP pro-actively developed a comprehensive set of guidelines for managing degradation in other reactor internal components, including the reactor pressure vessel itself. The major components addressed by the BWRVIP are included. (author)

  13. Advanced chemistry management system to optimize BWR chemistry control

    International Nuclear Information System (INIS)

    Maeda, K.; Nagasawa, K.

    2002-01-01

    BWR plant chemistry control has close relationships among nuclear safety, component reliability, radiation field management and fuel integrity. Advanced technology is required to improve chemistry control [1,3,6,7,10,11]. Toshiba has developed TACMAN (Toshiba Advanced Chemistry Management system) to support BWR chemistry control. The TACMAN has been developed as response to utilities' years of requirements to keep plant operation safety, reliability and cost benefit. The advanced technology built into the TACMAN allows utilities to make efficient chemistry control and to keep cost benefit. TACMAN is currently being used in response to the needs for tools those plant chemists and engineers could use to optimize and identify plant chemistry conditions continuously. If an incipient condition or anomaly is detected at early stage, root causes evaluation and immediate countermeasures can be provided. Especially, the expert system brings numerous and competitive advantages not only to improve plant chemistry reliability but also to standardize and systematize know-how, empirical knowledge and technologies in BWR chemistry This paper shows detail functions of TACMAN and practical results to evaluate actual plant. (authors)

  14. Crud deposition modeling on BWR fuel rods

    International Nuclear Information System (INIS)

    Kucuk, Aylin; Cheng, Bo; Potts, Gerald A.; Shiralkar, Bharat; Morgan, Dave; Epperson, Kenny; Gose, Garry

    2014-01-01

    Deposition of boiling water reactor (BWR) system corrosion products (crud) on operating fuel rods has resulted in performance-limiting conditions in a number of plants. The operational impact of performance-limiting conditions involving crud deposition can be detrimental to a BWR operator, resulting in unplanned or increased frequency of fuel inspections, fuel failure and associated radiological consequences, operational restrictions including core power derate and/or forced shutdowns to remove failed fuel, premature discharge of individual bundles or entire reloads, and/or undesirable core design restrictions. To facilitate improved management of crud-related fuel performance risks, EPRI has developed the CORAL (Crud DepOsition Risk Assessment ModeL) tool. This paper presents a summary of the CORAL elements and benchmarking results. Applications of CORAL as a tool for fuel performance risk assessment are also discussed. (author)

  15. Optimal estimate of the coolant flow in the assemblies of a BWR of natural circulation in real time; Estimacion optima del flujo de refrigerante en los ensambles de un BWR de circulacion natural en tiempo real

    Energy Technology Data Exchange (ETDEWEB)

    Valle H, J.; Morales S, J. B. [UNAM, Facultad de Ingenieria, Division de Estudios de Posgrado, Laboratorio de Analisis de Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, Col. Progreso, 62550 Jiutepec, Morelos (Mexico); Espinosa P, G., E-mail: julfi_jg@yahoo.com.mx [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (Mexico)

    2012-10-15

    The present work exposes the design and the implementation of an advanced controller that allows estimating the coolant flow in the fuel assemblies of a BWR reactor of natural circulation in real time. To be able to reduce the penalizations that are established in the calculations of the operation limits due to the magnitude of the uncertainties in the coolant flows of a natural circulation reactor, is the objective of this research. In this work the construction of the optimal controller that allows estimating the coolant flows in a fuel channels group of the reactor is shown, as well as the operation of this applied to a reduced order model that simulates the dynamics of a natural circulation reactor. The controller design required of an estimator of the valuation variables not directly of the plant and of the estimates use of the local distributions of the coolant flow. The controller construction of the estimator was based mathematically in the filter Kalman whose algorithm allows to be carried out an advanced control of the system. To prove the estimator operation was development a simplified model that reproduces the basic dynamics of the flowing coolant in the reactor, which works as observer of the system, this model is coupled by means of the estimator controller to a detail model of the plant. The results are presented by means of graphics of the interest variables and the estimate flow, and they are documented in the chart that is presented at the end of this article. (Author)

  16. Secondary systems of PWR and BWR

    International Nuclear Information System (INIS)

    Schindler, N.

    1981-01-01

    The secondary systems of a nuclear power plant comprises the steam, condensate and feedwater cycle, the steam plant auxiliary or ancillary systems and the cooling water systems. The presentation gives a general review about the main systems which show a high similarity of PWR and BWR plants. (orig./RW)

  17. Development and recent trend of design of BWR nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kani, J [Tokyo Shibaura Electric Co. Ltd., Kawasaki, Kanagawa (Japan)

    1977-11-01

    Many improvements have been carried out in BWR nuclear power plants from BWR-1, represented by Dresden No. 1 plant, to the present BWR-6 as the capacity has increased. In Japan, the plants up to BWR-5 have been constructed. In addition, further fine design improvements are being performed in the complete domestic manufacturing of BRWs based on the operational experiences to date. A variety of investigations on the standardization of nuclear power facilities have been progressing under the leadership of Japanese Ministry of International Trade and Industry since 1975. In this standardization, it is intended to forward the plant design taking eight concrete items into consideration, mainly aiming at carrying cut unerringly the maintenance and inspection, reduction of exposure of employees to radiation, and improvements of the rate of operation of plants and equipment reliability. The containment vessel has been developed in three forms, from Mark 1 through 3, adopting the pressure control system consistently since BWR-2. Mark 1 and 2 were constructed in Japan. However, these designs sacrificed the workability and increased radiation exposure during maintenance as a result of placing emphasis on the safety facilities, therefore Toshiba Electric has investigated the advanced Mark 1 type. Its features are the design for improving the work efficiency in a containment vessel, reducing the radiation exposure of workers, shortening plant construction period, and considering the aseismatic capability. In addition, the following themes are being planned as future standardization: (1) electrically driven control rod driving system, (2) improved design of reactor core, and (3) internal pump system as compared with external re-circulation.

  18. Development and recent trend of disign of BWR nuclear power plants

    International Nuclear Information System (INIS)

    Kani, Jiro

    1977-01-01

    Many improvements have been carried out in BWR nuclear power plants from BWR-1, represented by Dresden No. 1 plant, to the present BWR-6 as the capacity has increased. In Japan, the plants up to BWR-5 have been constructed. In addition, further fine design improvements are being performed in the complete domestic manufacturing of BRWs based on the operational experiences to date. A variety of investigations on the standardization of nuclear power facilities have been progressing under the leadership of Japanese Ministry of International Trade and Industry since 1975. In this standardization, it is intended to forward the plant design taking eight concrete items into consideration, mainly aiming at carrying cut unerringly the maintenance and inspection, reduction of exposure of employees to radiation, and improvements of the rate of operation of plants and equipment reliability. The containment vessel has been developed in three forms, from Mark 1 through 3, adopting the pressure control system consistently since BWR-2. Mark 1 and 2 were constructed in Japan. However, these designs sacrificed the workability and increased radiation exposure during maintenance as a result of placing emphasis on the safety facilities, therefore Toshiba Electric has investigated the advanced Mark 1 type. Its features are the design for improving the work efficiency in a containment vessel, reducing the radiation exposure of workers, shortening plant construction period, and considering the aseismatic capability. In addition, the following themes are being planned as future standardization: (1) electrically driven control rod driving system, (2) improved design of reactor core, and (3) internal pump system as compared with external re-circulation. (Wakatsuki, Y.)

  19. Identification and assessment of BWR in-vessel severe accident mitigation strategies

    International Nuclear Information System (INIS)

    Hodge, S.A.; Kress, T.S.; Cleveland, J.C.; Petek, M.

    1992-01-01

    This paper briefly describes the results of work carried out in support of the US Nuclear Regulatory Commission Accident Management Research Program to evaluate the effectiveness and feasibility of current and proposed strategies for BWR severe accident management. These results are described in detail in the just-released report Identification and Assessment of BWR In-Vessel Severe Accident Mitigation Strategies, NUREG/CR-5869, which comprises three categories of findings. First, an assessment of the current status of accident management strategies for the mitigation of in-vessel events for BWR severe accident sequences is combined with a review of the BWR Owners' Group Emergency Procedure Guidelines (EPGs) to determine the extent to which they currently address the characteristic events of an unmitigated severe accident. Second, where considered necessary, new candidate accident management strategies are proposed for mitigation of the late-phase (after core damage has occurred) events. Finally, two of the four candidate strategies identified by this effort are assessed in detail. These are (1) preparation of a boron solution for reactor vessel refill should control blade damage occur during a period of temporary core dryout and (2) containment flooding to maintain the core debris within the reactor vessel if the injection systems cannot be restored

  20. BWR level estimation using Kalman Filtering approach

    International Nuclear Information System (INIS)

    Garner, G.; Divakaruni, S.M.; Meyer, J.E.

    1986-01-01

    Work is in progress on development of a system for Boiling Water Reactor (BWR) vessel level validation and failure detection. The levels validated include the liquid level both inside and outside the core shroud. This work is a major part of a larger effort to develop a complete system for BWR signal validation. The demonstration plant is the Oyster Creek BWR. Liquid level inside the core shroud is not directly measured during full power operation. This level must be validated using measurements of other quantities and analytic models. Given the available sensors, analytic models for level that are based on mass and energy balances can contain open integrators. When such a model is driven by noisy measurements, the model predicted level will deviate from the true level over time. To validate the level properly and to avoid false alarms, the open integrator must be stabilized. In addition, plant parameters will change slowly with time. The respective model must either account for these plant changes or be insensitive to them to avoid false alarms and maintain sensitivity to true failures of level instrumentation. Problems are addressed here by combining the extended Kalman Filter and Parity Space Decision/Estimator. The open integrator is stabilized by integrating from the validated estimate at the beginning of each sampling interval, rather than from the model predicted value. The model is adapted to slow plant/sensor changes by updating model parameters on-line

  1. Investigation of BWR stability in Forsmark 2

    International Nuclear Information System (INIS)

    Oguma, R.; Reisch, F.; Bergdahl, B.G.; Lorenzen, J.; Aakerhielm, F.; Kellner, S.

    1988-01-01

    A series of noise measurements have been conducted at the Forsmark-2 reactor during its start-up operation after the revision in 1987. The main purpose was to investigate the BWR stability problem based on noise analysis, i.e. the problem of resonant power oscillation with frequency of about 0.5 Hz, which tends to arise at high power and low core flow condition. The noise analysis was performed to estimate the noise source which gives rise to the power oscillation, to evaluate the stability condition of the Forsmark-2 reactor in terms of the decay ratio (DR), as well as to investigate a safety related problem in connection with the BWR stability. The results indicate that the power oscillation is due to dynamic coupling between the neutron kinetics and thermal-hydraulics via void reactivity feedback. The DR reached as high as ≅ 0.7 at 63% of the rated power and 4100 kg/s of the total core flow. An investigation was made for the noise recording which represents a strong pressure oscillation with a peak frequency at 0.33 Hz. The result suggests that such pressure oscillation, if the peak frequency coincided with that of the resonant power oscillation, might become a cause of scram. The present noise analysis indicates the importance of a BWR on-line surveillance system with functions like stability condition monitoring and control system diagnosis. (orig.)

  2. Current and anticipated use of thermal-hydraulic codes for BWR transient and accident analyses in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Kenji; Ebata, Shigeo [Toshiba Corp., Yokohama (Japan)

    1997-07-01

    This paper summarizes the current and anticipated use of the thermal-hydraulic and neutronic codes for the BWR transient and accident analyses in Japan. The codes may be categorized into the licensing codes and the best estimate codes for the BWR transient and accident analyses. Most of the licensing codes have been originally developed by General Electric. Some codes have been updated based on the technical knowledge obtained in the thermal hydraulic study in Japan, and according to the BWR design changes. The best estimates codes have been used to support the licensing calculations and to obtain the phenomenological understanding of the thermal hydraulic phenomena during a BWR transient or accident. The best estimate codes can be also applied to a design study for a next generation BWR to which the current licensing model may not be directly applied. In order to rationalize the margin included in the current BWR design and develop a next generation reactor with appropriate design margin, it will be required to improve the accuracy of the thermal-hydraulic and neutronic model. In addition, regarding the current best estimate codes, the improvement in the user interface and the numerics will be needed.

  3. Corrosion issues in the BWR and their mitigation for plant life extension

    International Nuclear Information System (INIS)

    Gordon, B.M.

    1988-01-01

    Corrosion is a major service life limiting mechanism for both pressurized water reactors (PWRs) and boiling water reactors (BWRs). For the BWR, stress corrosion cracking of piping has been the major source of concern where extensive research has led to a number of qualified remedies and currently > 90% of susceptible welds have been mitigated or replaced. Stress corrosion cracking of reactor internals due to the interaction of irradiation, as discussed elsewhere in this conference, is also a possible life limiting phenomenon. This paper focusses on two corrosion phenomena in the BWR which have only recently been identified as impacting the universal goal of BWR life extension: the general corrosion of containment structures and the erosion-corrosion of carbon steel piping

  4. BWR Assembly Optimization for Minor Actinide Recycling

    Energy Technology Data Exchange (ETDEWEB)

    G. Ivan Maldonado; John M. Christenson; J.P. Renier; T.F. Marcille; J. Casal

    2010-03-22

    The Primary objective of the proposed project is to apply and extend the latest advancements in LWR fuel management optimization to the design of advanced boiling water reactor (BWR) fuel assemblies specifically for the recycling of minor actinides (MAs).

  5. LAPUR5 BWR stability analysis in Kuosheng nuclear power plant

    International Nuclear Information System (INIS)

    Kunlung Wu; Chunkuan Shih; Wang, J.R.; Kao, L.S.

    2005-01-01

    Full text of publication follows: Unstable oscillation of a nuclear power reactor core is one of the main reasons that causes minor core damage. Stability analysis needs to be performed to predict the potential problem as early as possible and to prevent core instability events from happening. Nuclear Regulatory Commission (NRC) requests all BWR licensees to examine each core reload and to impose operating limitations, as appropriate, to ensure compliance with GDC 10 and 12. GDC 10 requires that the reactor core be designed with appropriate margin to assure that specified acceptable fuel design limits will not be exceeded during any condition of normal operation, including anticipated operational occurrences. GDC 12 requires assurance that power oscillations which can result in conditions exceeding specified acceptable fuel design limits are either not possible or can be reliably and readily detected and suppressed. Therefore, the core instability is directly related to the fuel design limits. The core and channel DR (decay ratio) calculation are commonly performed to determine system's stability when new fuel designs are introduced in the core. In order to establish the independent analysis technology for BWR licensees and verifications, the Institute of Nuclear Energy Research (INER) has obtained agreement from NRC and implemented the 'Methodology and Procedure for Calculation of Core and Channel Decay Ratios with LAPUR', which was developed by the IBERINCO in 2001. LAPUR5 uses a multi-nodal description of the neutron dynamics, together with a distributed parameter model of the core thermal hydrodynamics to produce a space-dependent representation of the dynamics of a BWR in the frequency domain for small perturbations around a steady state condition. From the output of LAPUR5, the following results are obtained: global core decay ratio, out-of phase core decay ratio, and channel decay ratio. They are key parameters in the determination of BWR core stability

  6. Advances in BWR water chemistry

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Giannelli, Joseph F.; Jarvis, Mary L.

    2012-09-01

    This paper reviews recent advances in Boiling Water Reactor (BWR) water chemistry control with examples of plant experiences at U.S. designed BWRs. Water chemistry advances provide some of the most effective methods for mitigating materials degradation, reducing fuel performance concerns and lowering radiation fields. Mitigation of stress corrosion cracking (SCC) of materials remains a high priority and improved techniques that have been demonstrated in BWRs will be reviewed, specifically hydrogen injection combined with noble metal chemical addition (NMCA) and the newer on-line noble metal application process (OLNC). Hydrogen injection performance, an important part of SCC mitigation, will also be reviewed for the BWR fleet, highlighting system improvements that have enabled earlier injection of hydrogen including the potential for hydrogen injection during plant startup. Water chemistry has been significantly improved by the application of pre-filtration and optimized use of ion exchange resins in the CP (condensate polishing) and reactor water cleanup (RWCU) systems. EPRI has monitored and supported water treatment improvements to meet water chemistry goals as outlined in the EPRI BWR Water Chemistry Guidelines, particularly those for SCC mitigation of reactor internals and piping, minimization of fuel risk due to corrosion and crud deposits and chemistry control for radiation field reduction. In recent years, a significant reduction has occurred in feedwater corrosion product input, particularly iron. A large percentage of plants are now reporting <0.1 ppb feedwater iron. The impacts to plant operation and chemistry of lower feedwater iron will be explored. Depleted zinc addition is widely practiced across the fleet and the enhanced focus on radiation reduction continues to emphasize the importance of controlling radiation source term. In addition, shutdown chemistry control is necessary to avoid excessive release of activated corrosion products from fuel

  7. Seismic proving test of BWR primary loop recirculation system

    International Nuclear Information System (INIS)

    Sato, H.; Shigeta, M.; Karasawa, Y.

    1987-01-01

    The seismic proving test of BWR Primary Loop Recirculation system is the second test to use the large-scale, high-performance vibration table of Tadotsu Engineering Laboratory. The purpose of this test is to prove the seismic reliability of the primary loop recirculation system (PLR), one of the most important safety components in the BWR nuclear plants, and also to confirm the adequacy of seismic analysis method used in the current seismic design. To achieve the purpose, the test was conducted under conditions and scale as near as possible to actual systems. The strength proving test was carried out with the test model mounted on the vibration table in consideration of basic design earthquake ground motions and other conditions to confirm the soundness of structure and the strength against earthquakes. Detailed analysis and analytic evaluation of the data obtained from the test was conducted to confirm the adequacy of the seismic analysis method and earthquake response analysis method used in the current seismic design. Then, on the basis of the results obtained, the seismic safety and reliability of BWR primary loop recirculation of the actual plants was fully evaluated

  8. Complete BWR--EM LOCA analysis using the WRAP--EM system

    International Nuclear Information System (INIS)

    Beckmeyer, R.R.; Gregory, M.V.; Buckner, M.R.

    1979-01-01

    The Water Reactor Analysis Package, Evaluation Model (WRAP--EM), provides a complete analysis of postulated loss-of-coolant accidents (LOCA's) in light--water nuclear power reactors. The system is being developed at the Savannah River Laboratory (SRL) for use by the Nuclear Regulatory Commission (NRC) to interpret and evaluate reactor vendor, evaluation model (EM) analyses. The initial version of the WRAP--EM system for analysis of boiling water reactors (BWR's) is operational. To demonstrate the complete capability of the WRAP--BWR--EM system, a LOCA analysis has been performed for the Hope Creek Plant

  9. Computational fluid dynamics modeling of two-phase flow in a BWR fuel assembly

    International Nuclear Information System (INIS)

    Andrey Ioilev; Maskhud Samigulin; Vasily Ustinenko; Simon Lo; Adrian Tentner

    2005-01-01

    Full text of publication follows: The goal of this project is to develop an advanced Computational Fluid Dynamics (CFD) computer code (CFD-BWR) that allows the detailed analysis of the two-phase flow and heat transfer phenomena in a Boiling Water Reactor (BWR) fuel bundle under various operating conditions. This code will include more fundamental physical models than the current generation of sub-channel codes and advanced numerical algorithms for improved computational accuracy, robustness, and speed. It is highly desirable to understand the detailed two-phase flow phenomena inside a BWR fuel bundle. These phenomena include coolant phase changes and multiple flow regimes which directly influence the coolant interaction with fuel assembly and, ultimately, the reactor performance. Traditionally, the best analysis tools for the analysis of two-phase flow phenomena inside the BWR fuel assembly have been the sub-channel codes. However, the resolution of these codes is still too coarse for analyzing the detailed intra-assembly flow patterns, such as flow around a spacer element. Recent progress in Computational Fluid Dynamics (CFD), coupled with the rapidly increasing computational power of massively parallel computers, shows promising potential for the fine-mesh, detailed simulation of fuel assembly two-phase flow phenomena. However, the phenomenological models available in the commercial CFD programs are not as advanced as those currently being used in the sub-channel codes used in the nuclear industry. In particular, there are no models currently available which are able to reliably predict the nature of the flow regimes, and use the appropriate sub-models for those flow regimes. The CFD-BWR code is being developed as a customized module built on the foundation of the commercial CFD Code STAR-CD which provides general two-phase flow modeling capabilities. The paper describes the model development strategy which has been adopted by the development team for the

  10. Limerick BWR turbine control and protection system upgrade success

    International Nuclear Information System (INIS)

    Tang, C.K.; Pietryka, T.S.; Federico, P.A.; Williams, J.C.

    2015-01-01

    Westinghouse and Exelon have successfully implemented a digital electro-hydraulic control (DEHC) at Limerick BWR Unit 1 Station to perform the turbine control, protection and reactor pressure functions. The DEHC replaces analog controls and addressed system performance, obsolescence and reliability. This was a first-of-a-kind application for control and protection of the main turbine and BWR pressure control for the distributed control system utilized. The demolition of analog equipment, main control room and front standard modifications, and acceptance testing were completed on schedule during the normal 2014 outage. Key aspects of the project that facilitated this success will be discussed and presented. (author)

  11. Limerick BWR turbine control and protection system upgrade success

    Energy Technology Data Exchange (ETDEWEB)

    Tang, C.K.; Pietryka, T.S.; Federico, P.A., E-mail: tangck@westinghouse.com, E-mail: pietryt@westinghouse, E-mail: federipa@westinghouse.com [Westinghouse Electric Company, LLC, Cranberry Township, PA (United States); Williams, J.C., E-mail: Jonathan.Williams@exeloncorp.com [Exelon Nuclear, Warrenville, IL (United States)

    2015-07-01

    Westinghouse and Exelon have successfully implemented a digital electro-hydraulic control (DEHC) at Limerick BWR Unit 1 Station to perform the turbine control, protection and reactor pressure functions. The DEHC replaces analog controls and addressed system performance, obsolescence and reliability. This was a first-of-a-kind application for control and protection of the main turbine and BWR pressure control for the distributed control system utilized. The demolition of analog equipment, main control room and front standard modifications, and acceptance testing were completed on schedule during the normal 2014 outage. Key aspects of the project that facilitated this success will be discussed and presented. (author)

  12. Tritium in liquid phase in a BWR-5 like Laguna Verde

    International Nuclear Information System (INIS)

    Tijerina S, F.; Vargas A, A.; Cardenas J, J.

    2011-11-01

    In boiling water reactors (BWR), the tritium (H 3 ) takes place mainly as a result of ternary fissions in the nuclear reactors, of those which 75% are in gaseous form and 25% in liquid form. In the liquid phase, the tritium is transported to the pipes of the primary coolant toward condensed tanks or tanks of drainage excesses of radioactive equipment, located in external areas of a BWR, as well as to the processes of radioactive wastes to be able to be directed to the liquid effluents. For that reason, is necessary to know the possible routes of the transport and processes of the tritium in a BWR to control this radioisotope in the site of the event of leaks in equipment s and buried pipes, avoiding that emigrates toward underground flowing and an impact to the environment and to the people in general. (Author)

  13. Behavior of small-sized BWR fuel under reactivity initiated accident conditions

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Fujishiro, Toshio; Horiki, Oichiro; Chen Dianshan; Takeuchi, Kiyoshi.

    1992-01-01

    The present work was performed on this small-sized BWR fuel, where Zr liner and rod prepressurization were taken as experimental parameters. Experiment was done under simulated reactivity initiated accident (RIA) conditions at Nuclear Safety Research Reactor (NSRR) belonged to Japan Atomic Energy Research Institute (JAERI). Major remarks obtained are as follows: (1) Three different types of the fuel rods consisted of (a) Zr lined/pressurized (0.65MPa), (b) Zr lined/non-pressurized and (c) non-Zr lined/pressurized (o.65MPa) were used, respectively. Failure thresholds of these were not less than that (260 cal/g·fuel) described in Japanese RIA Licensing Guideline. Small-sized BWR and conventional 8 x 8 BWR fuels were considered to be in almost the same level in failure threshold. Failure modes of the three were (a) cladding melt/brittle, (b) cladding melt/brittle and (c) rupture by large ballooning, respectively. (2) The magnitude of pressure pulse at fuel fragmentation was also studied by lined/pressurized and non-lined/pressurized fuels. Above the energy deposition of 370 cal/g·fuel, mechanical energy (or pressure) was found to be released from these fragmented fuels. No measurable difference was, however, observed between the tested fuels and NSRR standard (and conventional 8 x 8 BWR) fuels. (3) It is worthy of mentioning that Zr liner tended to prevent the cladding from large ballooning. Non-lined/pressurized fuel tended to cause wrinkle deformation at cladding. Hence, cladding external was notched much by the wrinkles. (4) Time to fuel failure measured from the tested BWR fuels (pressurization < 0.6MPA) was longer than that measured from PWR fuels (pressurization < 3.2MPa). The magnitude of the former was of the order of 3 ∼ 6s, while that of the latter was < 1s. (J.P.N.)

  14. BWR stability: history and state-of-the-art

    International Nuclear Information System (INIS)

    Yadigaroglu, George

    2014-01-01

    The paper briefly recalls the historical developments, reviews the important phenomena, the analytical and simulation tools that are used for the analysis of BWR stability focussing on the linear, frequency domain methods

  15. Parallel channel effects under BWR LOCA conditions

    International Nuclear Information System (INIS)

    Suzuki, H.; Hatamiya, S.; Murase, M.

    1988-01-01

    Due to parallel channel effects, different flow patterns such as liquid down-flow and gas up-flow appear simultaneously in fuel bundles of a BWR core during postulated LOCAs. Applying the parallel channel effects to the fuel bundle, water drain tubes with a restricted bottom end have been developed in order to mitigate counter-current flow limiting and to increase the falling water flow rate at the upper tie plate. The upper tie plate with water drain tubes is an especially effective means of increasing the safety margin of a reactor with narrow gaps between fuel rods and high steam velocity at the upper tie plate. The characteristics of the water drain tubes have been experimentally investigated using a small-scaled steam-water system simulating a BWR core. Then, their effect on the fuel cladding temperature was evaluated using the LOCA analysis program SAFER. (orig.)

  16. Key Parameters for Operator Diagnosis of BWR Plant Condition during a Severe Accident

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dwight A [ORNL; Poore III, Willis P [ORNL

    2015-01-01

    The objective of this research is to examine the key information needed from nuclear power plant instrumentation to guide severe accident management and mitigation for boiling water reactor (BWR) designs (specifically, a BWR/4-Mark I), estimate environmental conditions that the instrumentation will experience during a severe accident, and identify potential gaps in existing instrumentation that may require further research and development. This report notes the key parameters that instrumentation needs to measure to help operators respond to severe accidents. A follow-up report will assess severe accident environmental conditions as estimated by severe accident simulation model analysis for a specific US BWR/4-Mark I plant for those instrumentation systems considered most important for accident management purposes.

  17. LBB application in Swedish BWR design

    Energy Technology Data Exchange (ETDEWEB)

    Kornfeldt, H.; Bjoerk, K.O.; Ekstroem, P. [ABB Atom, Vaesteras (Sweden)

    1997-04-01

    The protection against dynamic effects in connection with potential pipe breaks has been implemented in different ways in the development of BWR reactor designs. First-generation plant designs reflect code requirements in effect at that time which means that no piping restraint systems were designed and built into those plants. Modern designs have, in contrast, implemented full protection against damage in connection with postulated pipe breaks, as required in current codes and regulations. Moderns standards and current regulatory demands can be met for the older plants by backfitting pipe whip restraint hardware. This could lead to several practical difficulties as these installations were not anticipated in the original plant design and layout. Meeting the new demands by analysis would in this situation have great advantages. Application of leak-before-break criteria gives an alternative opportunity of meeting modem standards in reactor safety design. Analysis takes into account data specific to BWR primary system operation, actual pipe material properties, piping loads and leak detection capability. Special attention must be given to ensure that the data used reflects actual plant conditions.

  18. LBB application in Swedish BWR design

    International Nuclear Information System (INIS)

    Kornfeldt, H.; Bjoerk, K.O.; Ekstroem, P.

    1997-01-01

    The protection against dynamic effects in connection with potential pipe breaks has been implemented in different ways in the development of BWR reactor designs. First-generation plant designs reflect code requirements in effect at that time which means that no piping restraint systems were designed and built into those plants. Modern designs have, in contrast, implemented full protection against damage in connection with postulated pipe breaks, as required in current codes and regulations. Moderns standards and current regulatory demands can be met for the older plants by backfitting pipe whip restraint hardware. This could lead to several practical difficulties as these installations were not anticipated in the original plant design and layout. Meeting the new demands by analysis would in this situation have great advantages. Application of leak-before-break criteria gives an alternative opportunity of meeting modem standards in reactor safety design. Analysis takes into account data specific to BWR primary system operation, actual pipe material properties, piping loads and leak detection capability. Special attention must be given to ensure that the data used reflects actual plant conditions

  19. Evaluation on transmutation performance of minor actinides with high-flux BWR

    International Nuclear Information System (INIS)

    Setiawan, M.B.; Kitamoto, A.; Taniguchi, A.

    2001-01-01

    The performance of high-flux BWR (HFBWR) for burning and/or transmutation (B/T) treatment of minor actinides (MA) and long-lived fission products (LLFP) was discussed herein for estimating an advanced waste disposal with partitioning and transmutation (P and T). The concept of high-flux B/T reactor was based on a current 33 GWt-BWR, to transmute the mass of long-lived transuranium (TRU) to short-lived fission products (SLFP). The nuclide selected for B/T treatment was MA (Np-237, Am-241, and Am-243) included in the discharged fuel of LWR. The performance of B/T treatment of MA was evaluated by a new function, i.e. [F/T ratio], defined by the ratio of the fission rate to the transmutation rate in the core, at an arbitrary burn-up, due to all MA nuclides. According to the results, HFBWR could burn and/or transmute MA nuclides with higher fission rate than BWR, but the fission rate did not increase proportionally to the flux increment, due to the higher rate of neutron adsorption. The higher B/T fraction of MA would result in the higher B/T capacity, and will reduce the units of HFBWR needed for the treatment of a constant mass of MA. In addition, HFBWR had a merit of higher mass transmutation compared to the reference BWR, under the same mass loading of MA

  20. Verification of a BWR code package by gamma scan measurements

    International Nuclear Information System (INIS)

    Nakajima, Tsuyoshi; Iwamoto, Tatsuya; Kumanomido, Hironori

    1996-01-01

    High-burnup 8 x 8 fuel with a large central water rod (called step 2 fuel) has been recently introduced to the latest Japanese boiling water reactor (BWR) plants. Lanthanum-140 gamma intensity is almost directly related to nodal powers. By gamma scan measurement, the axial distribution of 140 La in the exposed fuel was measured at the end of cycle (EOC) 1 and was compared with the calculation by a BWR code package TGBLA/LOGOS. The multienrichment fuel-type core (MEC) design was adopted for the initial cycle core of the plants. The MEC design contains three different enrichment types of fuels to simulate the equilibrium cycles, achieve much higher discharge exposure, and save fuel cycle cost, and the low-enrichment fuels are loaded in periphery and in control cells. Such MEC design could be a challenge to the BWR design methods because of the large spectrum mismatch among the fuel assemblies of the different enrichments. The aforementioned comparison has shown that the accuracy of the TGBLA/LOGOS code package is satisfactory

  1. Comparative analysis of mechanical characteristics of solidified concentrates from BWR system using Yugoslav and Italian cements

    International Nuclear Information System (INIS)

    Plecas, I.; Peric, A.; Drljaca, J.; Kostadinovic, A.

    1987-01-01

    In this paper, properties of Italian and Yugoslav cement mixture with BWR evaporation concentrates were compared, research was held upon fifteen samples, according to the adequate formulations. Samples were made in standard cube form, side 10 cm. Functional relationship between decreasing the compressive strength and amount of incorporated BWR concentrate cement mixture was developed. The results of research showed nearly the same mechanical properties of solidified BWR concentrate with Italian and Yugoslav cements. (author)

  2. Predictive uncertainty reduction in coupled neutron-kinetics/thermal hydraulics modeling of the BWR-TT2 benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Badea, Aurelian F., E-mail: aurelian.badea@kit.edu [Karlsruhe Institute of Technology, Vincenz-Prießnitz-Str. 3, 76131 Karlsruhe (Germany); Cacuci, Dan G. [Center for Nuclear Science and Energy/Dept. of ME, University of South Carolina, 300 Main Street, Columbia, SC 29208 (United States)

    2017-03-15

    Highlights: • BWR Turbine Trip 2 (BWR-TT2) benchmark. • Substantial (up to 50%) reduction of uncertainties in the predicted transient power. • 6660 uncertain model parameters were calibrated. - Abstract: By applying a comprehensive predictive modeling methodology, this work demonstrates a substantial (up to 50%) reduction of uncertainties in the predicted total transient power in the BWR Turbine Trip 2 (BWR-TT2) benchmark while calibrating the numerical simulation of this benchmark, comprising 6090 macroscopic cross sections, and 570 thermal-hydraulics parameters involved in modeling the phase-slip correlation, transient outlet pressure, and total mass flow. The BWR-TT2 benchmark is based on an experiment that was carried out in 1977 in the NPP Peach Bottom 2, involving the closure of the turbine stop valve which caused a pressure wave that propagated with attenuation into the reactor core. The condensation of the steam in the reactor core caused by the pressure increase led to a positive reactivity insertion. The subsequent rise of power was limited by the feedback and the insertion of the control rods. The BWR-TT2 benchmark was modeled with the three-dimensional reactor physics code system DYN3D, by coupling neutron kinetics with two-phase thermal-hydraulics. All 6660 DYN3D model parameters were calibrated by applying a predictive modeling methodology that combines experimental and computational information to produce optimally predicted best-estimate results with reduced predicted uncertainties. Simultaneously, the predictive modeling methodology yields optimally predicted values for the BWR total transient power while reducing significantly the accompanying predicted standard deviations.

  3. Predictive uncertainty reduction in coupled neutron-kinetics/thermal hydraulics modeling of the BWR-TT2 benchmark

    International Nuclear Information System (INIS)

    Badea, Aurelian F.; Cacuci, Dan G.

    2017-01-01

    Highlights: • BWR Turbine Trip 2 (BWR-TT2) benchmark. • Substantial (up to 50%) reduction of uncertainties in the predicted transient power. • 6660 uncertain model parameters were calibrated. - Abstract: By applying a comprehensive predictive modeling methodology, this work demonstrates a substantial (up to 50%) reduction of uncertainties in the predicted total transient power in the BWR Turbine Trip 2 (BWR-TT2) benchmark while calibrating the numerical simulation of this benchmark, comprising 6090 macroscopic cross sections, and 570 thermal-hydraulics parameters involved in modeling the phase-slip correlation, transient outlet pressure, and total mass flow. The BWR-TT2 benchmark is based on an experiment that was carried out in 1977 in the NPP Peach Bottom 2, involving the closure of the turbine stop valve which caused a pressure wave that propagated with attenuation into the reactor core. The condensation of the steam in the reactor core caused by the pressure increase led to a positive reactivity insertion. The subsequent rise of power was limited by the feedback and the insertion of the control rods. The BWR-TT2 benchmark was modeled with the three-dimensional reactor physics code system DYN3D, by coupling neutron kinetics with two-phase thermal-hydraulics. All 6660 DYN3D model parameters were calibrated by applying a predictive modeling methodology that combines experimental and computational information to produce optimally predicted best-estimate results with reduced predicted uncertainties. Simultaneously, the predictive modeling methodology yields optimally predicted values for the BWR total transient power while reducing significantly the accompanying predicted standard deviations.

  4. Specifications of the BWR simulator for HAMMLAB 2000

    International Nuclear Information System (INIS)

    Grini, Rolf-Einar; Miettinen, Jaakko; Nurmilaukas, Pekka; Raussi; Pekka; Saarni, Ray; Stokke; Egil; Soerensen, Aimar; Tiihonen, Olli

    1998-02-01

    The Boiling Water Reactor (BWR) simulator for HAMMLAB 2000 will be a model of the Swedish plant Forsmark-3. This report gives the specifications of the BWR simulator. The bulk of the report is a copy of the relevant addendum to the contract with the developer, and to the contract with the group of utilities and with ABB Atom. After a general overview, each plant system is described one after the other (using the reference plant system coding), and the simulation of each system is specified. Even the systems that shall not be simulated are included; in those cases the specification is: It is not required that ... is simulated. A list of malfunctions is given, as well as a list of validation transients. Finally the operator interface is specified. (author)

  5. Standard Technical Specifications, General Electric plants, BWR/4

    International Nuclear Information System (INIS)

    1992-09-01

    This NUREG contains improved Standard Technical Specifications (STS) for General Electric Plants, BWR/4, and documents the positions of the Nuclear Regulatory Commission based on the BWR Owners Group's proposed STS. This document is the result of extensive technical meetings and discussions among the NRC staff, the Nuclear Steam Supply System (NSSS) Owners Groups, the NSSS vendors, and the Nuclear Management and Resources Council (NUMARC). The improved STS were developed based on the criteria in the interim Commission Policy Statement on Technical Specification Improvements for Nuclear Power Reactors, dated February 6, 1987. The improved STS will be used as the basis for individual nuclear power specifications. This report contains three volumes. This document, Volume 2, contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS

  6. BWR zinc addition Sourcebook

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Giannelli, Joseph F.; Jarvis, Alfred J.

    2014-01-01

    Boiling Water Reactors (BWRs) have been injecting zinc into the primary coolant via the reactor feedwater system for over 25 years for the purpose of controlling primary system radiation fields. The BWR zinc injection process has evolved since the initial application at the Hope Creek Nuclear Station in 1986. Key transitions were from the original natural zinc oxide (NZO) to depleted zinc oxide (DZO), and from active zinc injection of a powdered zinc oxide slurry (pumped systems) to passive injection systems (zinc pellet beds). Zinc addition has continued through various chemistry regimes changes, from normal water chemistry (NWC) to hydrogen water chemistry (HWC) and HWC with noble metals (NobleChem™) for mitigation of intergranular stress corrosion cracking (IGSCC) of reactor internals and primary system piping. While past reports published by the Electric Power Research Institute (EPRI) document specific industry experience related to these topics, the Zinc Sourcebook was prepared to consolidate all of the experience gained over the past 25 years. The Zinc Sourcebook will benefit experienced BWR Chemistry, Operations, Radiation Protection and Engineering personnel as well as new people entering the nuclear power industry. While all North American BWRs implement feedwater zinc injection, a number of other BWRs do not inject zinc. This Sourcebook will also be a valuable resource to plants considering the benefits of zinc addition process implementation, and to gain insights on industry experience related to zinc process control and best practices. This paper presents some of the highlights from the Sourcebook. (author)

  7. BWR full integral simulation test (FIST) pretest predictions with TRACBO2

    International Nuclear Information System (INIS)

    Sutherland, W.A.; Alamgir, M.

    1984-01-01

    The Full Integral Simulation Test program is a three pronged approach to the development of best-estimate analysis capability for BWR systems. An analytical method development program is underway to extend the BWR-TRAC computer code to model reactor kinetics and major interfacing systems, including balance-of-plant, to improve application modeling flexibility, and to reduce computer running time. An experimental program is underway in a new single bundle system test facility to extend the large break loss-of-coolant accident LOCA data base to small breaks and operational transients. And a method qualification program is underway to test TRACBO2 against experiments in the FIST facility. The recently completed Phase 1 period included a series of LOCA and power transient tests, and successful pretest analysis of the large and small break LOCA tests with TRACBO2. These comparisons demonstrate BWR-TRAC capability for small and large break analysis, and provide detailed understanding of the phenomena

  8. BWR water chemistry impurity studies

    International Nuclear Information System (INIS)

    Ljungberg, L.G.; Korhonen, S.; Renstroem, K.; Hofling, C.G.; Rebensdorff, B.

    1990-03-01

    Laboratory studies were made on the effect of water impurities on environmental cracking in simulated BWR water of stainless steel, low alloy steel and nickel-base alloys. Constant elongation rate tensile (CERT) tests were run in simulated normal water chemistry (NWC), hydrogen water chemistry (HWC), or start-up environment. Sulfate, chloride and copper with chloride added to the water at levels of a fraction of a ppM were found to be extremely deleterious to all kinds of materials except Type 316 NG. Other detrimental impurities were fluoride, silica and some organic acids, although acetic acid was beneficial. Nitrate and carbon dioxide were fairly inoccuous. Corrosion fatigue and constant load tests on compact tension specimens were run in simulated normal BWR water chemistry (NWC) or hydrogen water chemistry (HWC), without impurities or with added sulfate or carbon dioxide. For sensitized Type 304 SS in NWC, 0.1 ppM sulfate increased crack propagation rates in constant load tests by up to a factor of 100, and in fatigue tests up to a factor of 10. Also, cracking in Type 316 nuclear grade SS and Alloy 600 was enhanced, but to a smaller degree. Carbon dioxide was less detrimental than sulfate. 3 figs., 4 tabs

  9. Coretran/Vipre assembly critical power assessment against Nupec BWR experiments

    International Nuclear Information System (INIS)

    Aounallah, Y.

    2001-01-01

    This study has been performed, in the framework of the STARS project, to assess CORETRAN-01/VIPRE-02 code capability to predict critical heat flux conditions for BWR fuel assemblies. The assessment is based on comparisons of the code results with the NUPEC steady-state critical power measurements on full-scale assemblies tested under a range of flow conditions. Two assembly types were considered, the standard BWR 8 x 8 and the so-called ''high-burnup'' assembly, similar to GE-10. Code modelling options that have a significant impact on the results have been identified, along with code limitations. (author)

  10. Recent BWR fuel management reactor physics advances

    International Nuclear Information System (INIS)

    Crowther, R.L.; Congdon, S.P.; Crawford, B.W.; Kang, C.M.; Martin, C.L.; Reese, A.P.; Savoia, P.J.; Specker, S.R.; Welchly, R.

    1982-01-01

    Improvements in BWR fuel management have been under development to reduce uranium and separative work (SWU) requirements and reduce fuel cycle costs, while also maintaining maximal capacity factors and high fuel reliability. Improved reactor physics methods are playing an increasingly important role in making such advances feasible. The improved design, process computer and analysis methods both increase knowledge of the thermal margins which are available to implement fuel management advance, and improve the capability to reliably and efficiently analyze and design for fuel management advances. Gamma scan measurements of the power distributions of advanced fuel assembly and advanced reactor core designs, and improved in-core instruments also are important contributors to improving 3-d predictive methods and to increasing thermal margins. This paper is an overview of the recent advances in BWR reactor physics fuel management methods, coupled with fuel management and core design advances. The reactor physics measurements which are required to confirm the predictions of performance fo fuel management advances also are summarized

  11. BWR normal water chemistry guidelines: 1986 revision

    International Nuclear Information System (INIS)

    1988-09-01

    Boiling water reactors (BWRs) have experienced stress corrosion cracking in the reactor cooling system piping resulting in adverse impacts on plant availability and personnel radiation exposure. The BWR Owners Group and EPRI have sponsored a major research and development program to provide remedies for this stress corrosion cracking problem. This work shows that the likelihood of cracking depends on the plant's water chemistry performance (environment) as well as on material condition and stress level. Plant experience and other research demonstrate that water quality also affects fuel performance and radiation field buildup in BWRs. This report,''BWR Normal Water Chemistry Guidelines: 1986 Revision,'' presents suggested generic water chemistry specifications, justifies the proposed water chemistry limits, suggests responses to out-of-specification water chemistry, discusses available chemical analysis methods as well as data management and surveillance schemes, and details the management philosophy required to successfully implement a water chemistry control program. An appendix contains recommendations for water quality of auxiliary systems. 73 refs., 20 figs., 9 tabs

  12. Hydrogen injection device in BWR type reactor

    International Nuclear Information System (INIS)

    Takagi, Jun-ichi; Kubo, Koji.

    1988-01-01

    Purpose: To reduce the increasing ratio of main steam system dose rate due to N-16 activity due to excess hydrogen injection in the hydrogen injection operation of BWR type reactors. Constitution: There are provided a hydrogen injection mechanism for injecting hydrogen into primary coolants of a BWR type reactor, and a chemical injection device for injecting chemicals such as methanol, which makes nitrogen radioisotopes resulted in the reactor water upon hydrogen injection non-volatile, into the pressure vessel separately from hydrogen. Injected hydrogen and the chemicals are not reacted in the feedwater system, but the reaction proceeds due to the presence of radioactive rays after the injection into the pressure vessel. Then, hydrogen causes re-combination in the downcomer portion to reduce the dissolved oxygen concentration. Meanwhile, about 70 % of the chemicals is supplied by means of a jet pump directly to the reactor core, thereby converting the chemical form of N-16 in the reactor core more oxidative (non-volatile). (Kawakami, Y.)

  13. BWR radiation buildup control with ionic zinc

    International Nuclear Information System (INIS)

    Marble, W.J.; Wood, C.J.; Leighty, C.E.; Green, T.A.

    1986-01-01

    In 1983 a hypothesis was disclosed which suggested that the presence of ionic zinc in the reactor water of the BWR could reduce radiation buildup. This hypothesis was developed from correlations of plant data, and subsequently, from laboratory experiments which demonstrated clearly that ionic zinc inhibits the corrosion of stainless steel. The benefits of zinc addition have been measured at the Vallecitos Nuclear Center under and EPRI/GE project. Experimentation and analyses have been performed to evaluate the impact of intentional zinc addition on the IGSCC characteristics of primary system materials and on the performance of the nuclear fuel. It has been concluded that no negative effects are expected. The author conclude that the intentional addition of ionic zinc to the BWR reactor water at a concentration of approximately 10 ppb will provide major benefits in controlling the Co-60 buildup on primary system stainless steel surfaces. The intentional addition of zinc is now a qualified technique for use in BWRs

  14. Crescimento de genótipos de frangos tipo caipira

    Directory of Open Access Journals (Sweden)

    R. C. Veloso

    2015-10-01

    Full Text Available RESUMOObjetivou-se com este trabalho comparar o padrão de crescimento, mediante ajustes das respectivas curvas de crescimento por modelos não lineares, bem como estudar o desenvolvimento de cortes de carcaça em relação ao peso da carcaça em diferentes genótipos de frangos tipo caipira. Foram utilizados 840 pintos de um dia, machos, distribuídos em delineamento inteiramente ao acaso, dos seguintes genótipos da linhagem Redbro: Caboclo, Carijó, Colorpak, Gigante Negro, Pesadão Vermelho, Pescoço Pelado e Tricolor. As aves foram alojadas em 28 boxes, sendo 30 aves/boxe, em galpão de alvenaria com acesso a um piquete de 45m², com quatro repetições. O peso corporal individual dos frangos foi medido ao nascer, aos 14, 28, 42, 56, 70 e 84 dias de idade. Para a determinação das curvas de crescimento do peso corporal das aves, os dados coletados foram avaliados por meio dos modelos não lineares: Brody, Gompertz, Logístico, Richards e von Bertalanffy. Foi empregado o PROC NLIN do SAS, utilizando-se o método interativo de Gauss-Newton. Os critérios usados para escolha do modelo de melhor ajuste da curva de crescimento foram o coeficiente de determinação, o desvio padrão assintótico, o desvio médio absoluto dos resíduos e o índice assintótico. As análises para obtenção dos coeficientes alométricos foram realizadas por meio do PROC GLM do SAS para os genótipos Carijó, Colorpak, Pesadão Vermelho, Pescoço Pelado e Tricolor. Foram avaliados os pesos da carcaça, do peito, das coxas, das sobrecoxas, das pernas e das asas das aves abatidas aos 85 dias de idade. Apenas as equações propostas por Gompertz, von Bertalanffy e Logístico atingiram a convergência, e o modelo proposto por von Bertalanffy foi o mais adequado para descrever o crescimento dos genótipos de frangos caipiras. Todos os cortes avaliados apresentaram crescimento tardio em relação ao peso da carcaça em genótipos de frangos tipo caipira.

  15. Delivering high performance BWR fuel reliably

    International Nuclear Information System (INIS)

    Schardt, J.F.

    1998-01-01

    Utilities are under intense pressure to reduce their production costs in order to compete in the increasingly deregulated marketplace. They need fuel, which can deliver high performance to meet demanding operating strategies. GE's latest BWR fuel design, GE14, provides that high performance capability. GE's product introduction process assures that this performance will be delivered reliably, with little risk to the utility. (author)

  16. Heurística para el balance de líneas de ensamble con consideraciones ergonómicas

    Directory of Open Access Journals (Sweden)

    Emilsy Medina Chacón

    2015-04-01

    Full Text Available El presente artículo expone el diseño de un método heurístico para el Balance de líneas de ensamble con consideraciones ergonómicas, el cual está basado en la combinación de las teorías de balance de líneas tradicionales y dos métodos de evaluación ergonómica, el Método REBA y la evaluación multitarea de carga física, lográndose que con una única herramienta, se alcance un equilibrio de las variables de tiempo y biomecánicas. El valor agregado del planteamiento radica en el tratamiento simultáneo de dos aspectos que por ahora han sido abordados de forma independiente, y se alcanza a través de una función multi-objetivo que valora parámetros de capacidad de producción, ocio y nivel de riesgo músculo esquelético en las soluciones generadasa través del algoritmo. Con el método heurístico diseñado, se obtiene un abanico de soluciones adecuadas que proporcionan un equilibrio entre productividad y salud del trabajador. De este grupo de soluciones, se selecciona la más ajustada a los requerimientos y necesidades, según la experiencia de las personas encargadas de la toma de decisiones en la organización. El método desarrollado, debido a su estructura genérica, puede ser implementado en cualquier línea de ensamble, ajustando los datos para cada caso específico. This paper presents the design of a Heuristic Method to Balance Assembly Lines with Ergonomic considerations, which is based on the combination of traditional balance lines theoriesand two methods of ergonomic evaluation, the “REBA” method and the Multitasking Rating of Physical Load, whereby a balance between the time variable and biomechanical is achieved in the same tool, which is an innovative method since at present these two aspects are evaluated separately. This is done through a multi-objective function that values parameters of production capacity, leisure and risk level of skeletal muscle in the solutions generated by the algorithm.With the

  17. Heurística para el balance de líneas de ensamble con consideraciones ergonómicas

    Directory of Open Access Journals (Sweden)

    Emilsy Medina Chacón

    2015-04-01

    Full Text Available El presente artículo expone el diseño de un método heurístico para el Balance de líneas de ensamble con consideraciones ergonómicas, el cual está basado en la combinación de las teorías de balance de líneas tradicionales y dos métodos de evaluación ergonómica, el Método REBA y la evaluación multitarea de carga física, lográndose que con una única herramienta, se alcance un equilibrio de las variables de tiempo y  biomecánicas. El valor agregado del planteamiento radica en el tratamiento simultáneo de dos aspectos que por ahora han sido abordados de forma independiente, y se alcanza a través de una función multi-objetivo que valora parámetros de capacidad de producción, ocio y nivel de riesgo músculo esquelético en las soluciones generadasa través del algoritmo. Con el método heurístico diseñado, se obtiene un abanico de soluciones adecuadas que proporcionan un equilibrio entre productividad y salud del trabajador. De este grupo de soluciones, se selecciona la más ajustada a los requerimientos y necesidades, según la experiencia de las personas encargadas de la toma de decisiones en la organización. El método desarrollado, debido a su estructura genérica, puede ser implementado en cualquier línea de ensamble,  ajustando los datos para cada caso específico.   This paper presents the design of a Heuristic Method to Balance Assembly Lines with Ergonomic considerations, which is based on the combination of traditional balance lines theoriesand two methods of ergonomic evaluation, the “REBA” method and the Multitasking Rating of Physical Load, whereby a balance between the time variable and biomechanical is achieved in the same tool, which is an innovative method since at present these two aspects are evaluated separately. This is done through a multi-objective function that values parameters of production capacity, leisure and risk level of skeletal muscle in the solutions generated by the algorithm

  18. Condensate polishing guidelines for PWR and BWR plants

    International Nuclear Information System (INIS)

    Robbins, P.; Crinigan, P.; Graham, B.; Kohlmann, R.; Crosby, C.; Seager, J.; Bosold, R.; Gillen, J.; Kristensen, J.; McKeen, A.; Jones, V.; Sawochka, S.; Siegwarth, D.; Keeling, D.; Polidoroff, T.; Morgan, D.; Rickertsen, D.; Dyson, A.; Mills, W.; Coleman, L.

    1993-03-01

    Under EPRI sponsorship, an industry committee, similar in form and operation to other guideline committees, was created to develop Condensate Polishing Guidelines for both PWR and BWR systems. The committee reviewed the available utility and water treatment industry experience on system design and performance and incorporated operational and state-of-the-art information into document. These guidelines help utilities to optimize present condensate polisher designs as well as be a resource for retrofits or new construction. These guidelines present information that has not previously been presented in any consensus industry document. The committee generated guidelines that cover both deep bed and powdered resin systems as an integral part of the chemistry of PWR and BWR plants. The guidelines are separated into sections that deal with the basis for condensate polishing, system design, resin design and application, data management and performance and management responsibilities

  19. Role of BWR MK I secondary containments in severe accident mitigation

    International Nuclear Information System (INIS)

    Greene, S.R.

    1986-01-01

    The recent advent of detailed containment analysis codes such as CONTAIN and MELCOR has facilitated the development of the first large-scale, architectural-based BWR secondary containment models. During the past year ORNL has developed detailed, plant-specific models of the Browns Ferry and Peach Bottom secondary containments, and applied these models in a variety of studies designed to evaluate the role and effectiveness of BWR secondary containments in severe accident mitigation. The topology and basis for these models is discussed, together with some of the emerging insights from these studies

  20. Automatic refueling platform and CRD remote handling device for BWR plant

    International Nuclear Information System (INIS)

    Kato, Hiroaki; Takagi, Kaoru

    1978-01-01

    In BWR plants, machines for replacing fuel assemblies and control rod drives are usually operated directly by personnel. An automatic refueling platform and a CRD remote handling device aiming at radiation exposure reduction and handling perfectness are described, which are already used in BWR plants. Automation of the former is achieved in transporting fuel assemblies between a reactor pressure vessel and a fuel storage pool, shuffling fuel assemblies in a reactor core and moving fuel assemblies in a fuel storage pool. In the latter, replacement of CRDs is nearly all performed remotely. (Mori, K.)

  1. BWR fuel performance

    International Nuclear Information System (INIS)

    Baily, W.E.; Armijo, J.S.; Jacobson, J.; Proebstle, R.A.

    1979-01-01

    The General Electric experience base on BWR fuel includes over 29,000 fuel assemblies which contain 1,600,000 fuel rods. Over the last five years, design, process and operating changes have been introduced which have had major effects in improving fuel performance. Monitoring this fuel performance in BWRs has been accomplished through cooperative programs between GE and utilities. Activities such as plant fission product monitoring, fuel sipping and fuel and channel surveillance programs have jointly contributed to the value of this extensive experience base. The systematic evaluation of this data has established well-defined fuel performance trends which provide the assurance and confidence in fuel reliability that only actual operating experience can provide

  2. Sensitivity of BWR shutdown margin tests to local reactivity anomalies

    International Nuclear Information System (INIS)

    Cokinos, D.M.; Carew, J.F.

    1987-01-01

    Successful shutdown margin (SDM) demonstration is a required procedure in the startup of a newly configured boiling water reactor (BWR) core. In its most reactive condition throughout a cycle, a BWR core must be capable of being made subcritical by a specified margin with the highest worth control rod fully withdrawn and all other rods at their fully inserted positions. Two different methods are used to demonstrate SDM: (a) the adjacent-rod test and (b) the in-sequence test. In the adjacent-rod test, the strongest rod is fully withdrawn and an adjacent rod is withdrawn to reach criticality. In the in-sequence test, control rods spread throughout the core are withdrawn in a predetermined sequence of withdrawals. Larger than expected core k/sub eff/ values have been observed during the performance of BWR SDM tests. The purpose of the work summarized in this paper has been to investigated and quantify the sensitivity of both the adjacent-rod and in-sequence SDM tests to local reactivity anomalies. This was accomplished by introducing reactivity perturbations at selected four-bundle cell locations and by evaluating their effect on core reactivity in each of the two tests

  3. Reduction of radiation exposure in Japanese BWR Nuclear Power Plants

    International Nuclear Information System (INIS)

    Morikawa, Yoshitake

    1995-01-01

    The reduction of occupational exposure to radiation during the annual inspection and maintenance outages of Japanese boiling water reactors (BWR) is one of the most important objectives for stable and reliable operation. It was shown that this radiation exposure is caused by radionuclides, such as Co-60, Co-58 and Mn-54 which are produced from the metal elements Co, Ni, and Fe present in the corrosion products of structural materials that had been irradiated by neutrons. Therefore, to reduce radiation sources and exposures in Japanese BWRs, attempts have been reinforced to remove corrosion products and activated corrosion products from the primary coolant system. This paper describes the progress of the application of these measures to Japanese BWRs. Most Japanese BWR-4 and BWR-5 type nuclear power plants started their commercial operations during the 1970s. With the elapse of time during operations, a problem came to the forefront, namely that occupational radiation exposure during plant outages gradually increased, which obstructed the smooth running of inspections and maintenance work. To overcome this problem, extensive studies to derive effective countermeasures for radiation exposure reduction were undertaken, based on the evaluation of the plants operation data

  4. Reduction of radiation exposure in Japanese BWR Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Morikawa, Yoshitake [ISOGO Nuclear Engineering Center, Yokohama (Japan)

    1995-03-01

    The reduction of occupational exposure to radiation during the annual inspection and maintenance outages of Japanese boiling water reactors (BWR) is one of the most important objectives for stable and reliable operation. It was shown that this radiation exposure is caused by radionuclides, such as Co-60, Co-58 and Mn-54 which are produced from the metal elements Co, Ni, and Fe present in the corrosion products of structural materials that had been irradiated by neutrons. Therefore, to reduce radiation sources and exposures in Japanese BWRs, attempts have been reinforced to remove corrosion products and activated corrosion products from the primary coolant system. This paper describes the progress of the application of these measures to Japanese BWRs. Most Japanese BWR-4 and BWR-5 type nuclear power plants started their commercial operations during the 1970s. With the elapse of time during operations, a problem came to the forefront, namely that occupational radiation exposure during plant outages gradually increased, which obstructed the smooth running of inspections and maintenance work. To overcome this problem, extensive studies to derive effective countermeasures for radiation exposure reduction were undertaken, based on the evaluation of the plants operation data.

  5. Study of the Utilization BWR Type Nuclear Power Reactor for Desalination Process

    International Nuclear Information System (INIS)

    Itjeu Karliana; Sumijanto; Dhandhang Purwadi, M.

    2008-01-01

    The needs of fresh water increased by rapid population growth and industrials expansion, but these demands can not be prepared naturally. Following this case, seawater desalination becomes the primer option which can fulfill the need through the nuclear desalination technology. The coupled nuclear power reactor enables to supply thermal energy for auxiliary equipment and pumps operation. The utilization study of power reactor type BWR coupled with desalination process has been performed. The goal of study is to obtain characteristic data of desalted water specification which desalination system coupling with nuclear power plant produced energy for desalination process. The study is carried out by browsing data and information, and comprehensive review of thermal energy correlation between NPP with desalination process installation. According to reviewing are found that the thermal energy and electric power utilization from the nuclear power reactor are enable to remove the seawater to produce desalted water and also to operate auxiliary equipments. The assessment results is VK-300 reactor prototype, BWR type 250 MW(e) power are cogeneration unit can supplied hot steam temperature 285 °C to the extraction turbine to empower 150 MW electric power, and a part of hot steam 130 °C is use to operate desalination process and remind heat is distribute to the municipal and offices at that region. The coupled of VK-300 reactor power type BWR with desalination installation of MED type enable to produce desalted water with high quality distillate. Based on the economic calculation that the VK-300 reactor power of BWR type produced water distillate capacity is 300.000 m 3 /hour with cost US$ 0.58/m 3 . The coupling VK-300 reactor power type BWR with MED desalination plant is competitive economically. (author)

  6. Design guideline to prevent the pipe rupture by radiolysis gases in BWR steam piping

    International Nuclear Information System (INIS)

    Inagaki, T.; Miyagawa, M.; Ota, T.; Sato, T.; Sakata, K.

    2009-01-01

    In late 2001, pipe rupture accidents due to fast combustion of radiolysis gas occurred in Japan and elsewhere's BWR power plants. TENPES began to set up the guideline as action to such a new problem to prevent accumulation and combustion of radiolysis gas in BWR steam piping. And then, the first edition of guideline was published in October 2005. Afterwards, the experimental study about combustion/detonation of radiolysis gas have been continued. And in March 2007, TENPES published a revised edition of the guideline. This is the report of the revised edition of that guideline. According to this guideline, it became possible to design BWR's steam piping to prevent accumulation of radiolysis gas. (author)

  7. Neutron noise analysis of BWR using time series analysis

    International Nuclear Information System (INIS)

    Fukunishi, Kohyu

    1976-01-01

    The main purpose of this paper is to give more quantitative understanding of noise source in neutron flux and to provide a useful tool for the detection and diagnosis of reactor. The space dependent effects of distributed neutron flux signals at the axial direction of two different strings are investigated by the power contribution ratio among neutron fluxes and the incoherent noise spectra of neutron fluxes derived from autoregressive spectra. The signals are measured on the medium sized commercial BWR of 460 MWe in Japan. From the obtained results, local and global noise sources in neutron flux are discussed. This method is indicated to be a useful tool for detection and diagnosis of anomalous phenomena in BWR. (orig./RW) [de

  8. A BWR 24-month cycle analysis using multicycle techniques

    International Nuclear Information System (INIS)

    Hartley, K.D.

    1993-01-01

    Boiling water reactor (BWR) fuel cycle design analyses have become increasingly challenging in the past several years. As utilities continue to seek improved capacity factors, reduced power generation costs, and reduced outage costs, longer cycle lengths and fuel design optimization become important considerations. Accurate multicycle analysis techniques are necessary to determine the viability of fuel designs and cycle operating strategies to meet reactor operating requirements, e.g., meet thermal and reactivity margin constraints, while minimizing overall fuel cycle costs. Siemens Power Corporation (SPC), Nuclear Division, has successfully employed multi-cycle analysis techniques with realistic rodded cycle depletions to demonstrate equilibrium fuel cycle performance in 24-month cycles. Analyses have been performed by a BWR/5 reactor, at both rated and uprated power conditions

  9. Coretran/Vipre assembly critical power assessment against Nupec BWR experiments

    Energy Technology Data Exchange (ETDEWEB)

    Aounallah, Y. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    2001-07-01

    This study has been performed, in the framework of the STARS project, to assess CORETRAN-01/VIPRE-02 code capability to predict critical heat flux conditions for BWR fuel assemblies. The assessment is based on comparisons of the code results with the NUPEC steady-state critical power measurements on full-scale assemblies tested under a range of flow conditions. Two assembly types were considered, the standard BWR 8 x 8 and the so-called ''high-burnup'' assembly, similar to GE-10. Code modelling options that have a significant impact on the results have been identified, along with code limitations. (author)

  10. Development of RBWR (Resource-renewable BWR) for environmental burden reduction of radioactive wastes

    International Nuclear Information System (INIS)

    Hino, Tetsushi; Ohtsuka, Masaya; Moriya, Kumiaki; Matsuura, Masayoshi

    2014-01-01

    Accumulation of long-life transuranium elements produced as by-products with uranium fuel burning became an issue of nuclear power. Hitachi had been developing the reactor with transuranium elements burning as fuels based on BWR type reactors successfully used as commercial reactors: RBWR (Resource-renewable BWR). Efficient transmutation and fissioning of transuranium elements needed adjustment of in-core neutron energy spectra distribution better for nuclear reaction of transuranium elements. Taking advantage of characteristics of BWR type reactors with neutron spectra hardening more easily adjustable than other type of reactors, multiple recycling and fissioning transuranium elements as fuels could make environmental burden reduction of radioactive wastes and efficient use of resources compatible. This article described the concept and history of RBWR and showed its specifications and reactor core characteristics. (T. Tanaka)

  11. Corrosion resistance improvement of ferritic steels through hydrogen additions to the BWR coolant

    International Nuclear Information System (INIS)

    Gordon, B.M.; Jewett, C.W.; Pickett, A.E.; Indig, M.E.

    1984-01-01

    Motivated by the success of oxygen suppression for mitigation of intergranular stress corrosion cracking (IGSCC) in weld sensitized austenitic materials used in Boiling Water Reactors (BWRs), oxygen suppression, through hydrogen additions to the feedwater was investigated to determine its affect on the corrosion resistance of ferritic and martensitic BWR structural materials. The results of these investigations are presented in this paper, where particular emphasis is placed on the corrosion performance of BWR pressure vessel low alloy steels, carbon steel piping materials and martensitic pump materials. It is important to note that the corrosion resistance of these materials in the BWR environment is excellent. Consequently this investigation was also motivated to determine whether there were any detrimental effects of hydrogen additions, as well as to identify any additional margin in ferritic/martensitic materials corrosion performance

  12. Phenomenology of BWR fuel assembly degradation

    Science.gov (United States)

    Kurata, Masaki; Barrachin, Marc; Haste, Tim; Steinbrueck, Martin

    2018-03-01

    Severe accidents occurred at the Fukushima-Daiichi Nuclear Power Station (FDNPS) which required an immediate re-examination of fuel degradation phenomenology. The present paper reviews the updated knowledge on the phenomenology of the fuel degradation, focusing mainly on the BWR fuel assembly degradation at the macroscopic scale and that of the individual interactions at the meso-scale. Oxidation of boron carbide (B4C) control rods potentially generates far larger amounts of heat and hydrogen under BWR accident conditions. All integral tests with B4C control rods or control blades have shown early failure, liquefaction, relocation and oxidation of B4C starting at temperatures around 1250 °C, well below the significant interaction temperatures of UO2-Zry. These interactions or reactions potentially influence the progress of fuel degradation in the early phase. The steam-starved conditions, which are being discussed as a likely scenario at the FDNPS accident, highly influence the individual interactions and potentially lead the fuel degradation in non-prototypical directions. The detailed phenomenology of individual interactions and their influence on the transient and on the late phase of the severe accidents are also discussed.

  13. Analysis of BWR out-of-phase instabilities in the frequency domain

    International Nuclear Information System (INIS)

    Farawila, Y.M.; Pruitt, D.W.; Kreuter, D.

    1992-01-01

    During startup or because of an inadvertent recirculation pump trip, a boiling water reactor (BWR) may operate at relatively low flow and high power conditions. At these conditions, a BWR is susceptible to coupled flow and power oscillations that could result in undesirable reactor scram unless appropriate countermeasures are taken. This contribution to analytical methods has been developed to address in part a general industrywide and regulatory concern about BWR stability initiated by the LaSalle 2 instability event in March 1988. This work is designed to extend the capability of the one-dimensional parallel channel frequency domain code STAIF to predict the regional oscillation decay ratio. The basic theory follows that developed by March-Leuba and Blakeman, where the oscillation mechanism is identified as the excitation of a subcritical neutronic mode with a constant core pressure drop boundary condition. The improvements to the basic theory include applying the theory to one-dimensional neutronics instead of point kinetics and taking account of the actual three-dimensional harmonic flux distribution

  14. The use of the partial coherence function technique for the investigation of BWR noise dynamics

    International Nuclear Information System (INIS)

    Kostic, Lj.

    1983-01-01

    The extensive experimental investigations, at the last time, indicate that the partial coherence function technique can be a powerful method of the investigation of BWR noise dynamics. Symple BWR noise dynamics model for the global noise study, based on different noise phenomena, is proposed in this paper. (author)

  15. Delivering high performance BWR fuel reliably

    Energy Technology Data Exchange (ETDEWEB)

    Schardt, J.F. [GE Nuclear Energy, Wilmington, NC (United States)

    1998-07-01

    Utilities are under intense pressure to reduce their production costs in order to compete in the increasingly deregulated marketplace. They need fuel, which can deliver high performance to meet demanding operating strategies. GE's latest BWR fuel design, GE14, provides that high performance capability. GE's product introduction process assures that this performance will be delivered reliably, with little risk to the utility. (author)

  16. Novel modular natural circulation BWR design and safety evaluation

    International Nuclear Information System (INIS)

    Ishii, Mamoru; Shi, Shanbin; Yang, Won Sik; Wu, Zeyun; Rassame, Somboon; Liu, Yang

    2015-01-01

    Highlights: • Introduction of BWR-type natural circulation small modular reactor preliminary design (NMR-50). • Design of long fuel cycle length for the NMR-50. • Design of double passive safety systems for the NMR-50. • RELAP5 analyses of design basis accidents for the NMR-50. - Abstract: The Purdue NMR (Novel Modular Reactor) represents a BWR-type small modular reactor with a significantly reduced reactor pressure vessel (RPV) height. Specifically, it has one third the height of a conventional BWR RPV with an electrical output of 50 MWe. The preliminary design of the NMR-50 including reactor, fuel cycle, and safety systems is described and discussed. The improved neutronics design of the NMR-50 extends the fuel cycle length up to 10 years. The NMR-50 is designed with double passive engineering safety system, which is intended to withstand a prolonged station black out with loss of ultimate heat sink accident such as experienced at Fukushima. In order to evaluate the safety features of the NMR-50, two representative design basis accidents, i.e. main steam line break (MSLB) and bottom drain line break (BDLB), are simulated by using the best-estimate thermal–hydraulic code RELAP5. The RPV water inventory, containment pressure, and the performance of engineering safety systems are investigated for about 33 h after the initiation of the accidents

  17. Application of TRAC-BD1/MOD1 to a BWR/4 feedwater control failure ATWS

    International Nuclear Information System (INIS)

    Rouhani, S.Z.; Giles, M.M.; Mohr, C.M. Jr.; Weaver, W.L. III.

    1984-01-01

    This paper begins with a short description of the Transient Reactor Analysis Code for Boiling Water Reactors (TRAC-BWR), briefly mentioning some of its main features such as specific BWR models and input structure. Next, an input model of a BWR/4 is described, and, the assumptions used in performing an analysis of the loss of a feedwater controller without scram are listed. The important features of the calculated trends in flows, pressure, reactivity, and power are shown graphically and commented in the text. A comparison of some of the main predicted trends with the calculated results from a similar study by General Electric is also presented

  18. Construction techniques and management methods for BWR plants

    International Nuclear Information System (INIS)

    Shimizu, Yohji; Tateishi, Mizuo; Hayashi, Yoshishige

    1989-01-01

    Toshiba is constantly striving for safer and more efficient plant construction to realize high-quality BWR plants within a short construction period. To achieve these aims, Toshiba has developed and improved a large number of construction techniques and construction management methods. In the area of installation, various techniques have been applied such as the modularization of piping and equipment, shop installation of reactor internals, etc. Further, installation management has been upgraded by the use of pre-installation review programs, the development of installation control systems, etc. For commissioning, improvements in commissioning management have been achieved through the use of computer systems, and testing methods have also been upgraded by the development of computer systems for the recording and analysis of test data and the automatic adjustment of controllers in the main control system of the BWR. This paper outlines these construction techniques and management methods. (author)

  19. Paired replacement fuel assemblies for BWR-type reactor

    International Nuclear Information System (INIS)

    Oguchi, Kazushige.

    1997-01-01

    There are disposed a large-diameter water rod constituting a non-boiling region at a central portion and paired replacement fuel assemblies for two streams having the same average enrichment degree and different amount of burnable poisons. The paired replacement fuel assemblies comprise a first fuel assembly having a less amount of burnable poisons and a second fuel assembly having a larger amount of burnable poisons. A number of burnable poison-containing fuel rods in adjacent with the large diameter water rod is increased in the second fuel assembly than the first fuel assembly. Then, the poison of the paired replacement fuel assemblies for the BWR type reactor can be annihilated simultaneously at the final stage of the cycle. Accordingly, fuels for a BWR type reactor excellent in economical property and safety and facilitating the design of the replacement reactor core can be obtained. (N.H.)

  20. TLTA/6431, Two-Loop-Test-Apparatus, BWR/6 Simulator, Small-Break LOCA

    International Nuclear Information System (INIS)

    1992-01-01

    1 - Description of test facility: The Two-Loop-Test-Apparatus (TLTA) is a 1:624 volume scaled BWR/6 simulator. It was the predecessor of the better-scaled FIST facility. The facility is capable of full BWR system pressure and has a simulated core with a full size 8 x 8, full power single bundle of indirect electrically heated rods. All major BWR systems are simulated including lower plenum, guide tube, core region (bundle and bypass), upper plenum, steam separator, steam dome, annular downcomer, recirculation loops and ECC injection systems. The fundamental scaling consideration was to achieve real-time response. A number of the scaling compromises present in TLTA were corrected in the FIST configuration. These compromises include a number of regional volumes and component elevations. 2 - Description of test: 64.45 sqcm small break LOCA with activation of the full emergency core cooling system, but without activation of the automatic decompression system

  1. Thermohydraulic stability coupled to the neutronic in a BWR

    International Nuclear Information System (INIS)

    Calleros M, G.; Zapata Y, M.; Gomez H, R.A.; Mendez M, A.; Castlllo D, R.

    2006-01-01

    In a BWR type reactor the phenomenon of the nuclear fission is presented, in which are liberated in stochastic form neutrons, originating that the population of the same ones varies in statistic form around a mean value. This variation will cause that when the neutron flow impacts on the neutron detectors, its are had as a result neutron flow signals with fluctuations around an average value. In this article it is shown that it conforms it lapses the time, this variations in the neutron flow (and therefore, in the flow signal due only to the fission), they presented oscillations inside a stable range, which won't be divergent. Considering that the BWR is characterized because boiling phenomena are presented, which affect the moderation of the neutrons, additional variations will be had in the signal coming from the neutron detectors, with relationship to the fission itself, which will be influenced by the feedback of the moderator's reactivity and of the temperature of the fuel pellet. Also, as the BWR it has coupled control systems to maintain the coolant level one and of the thermal power of the reactor, for each control action it was affected the neutron population. This means that the reactor could end up straying of a stable state condition. By it previously described, the study of the thermohydraulic stability coupled to the neutronic is complex. In this work it is shown the phenomenology, the mathematical models and the theoretical behavior associated to the stability of the BWR type reactor; the variables that affect it are identified, the models that reproduce the behavior of the thermohydraulic stability coupled to the neutronic, the way to maintain stable the reactor and the instrumentation that can settle to detect and to suppress uncertainties is described. In particular, is make reference to the evolution of the methods to maintain the stability of the reactor and the detection system and suppression of uncertainties implemented in the Laguna Verde

  2. BWR and PWR chemistry operating experience and perspectives

    International Nuclear Information System (INIS)

    Fruzzetti, K.; Garcia, S.; Lynch, N.; Reid, R.

    2014-01-01

    It is well recognized that proper control of water chemistry plays a critical role in ensuring the safe and reliable operation of Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). State-of-the-art water chemistry programs reduce general and localized corrosion of reactor coolant system, steam cycle equipment, and fuel cladding materials; ensure continued integrity of cycle components; and reduce radiation fields. Once a particular nuclear plant component has been installed or plant system constructed, proper water chemistry provides a global tool to mitigate materials degradation problems, thereby reducing the need for costly repairs or replacements. Recognizing the importance of proper chemistry control and the value in understanding the relationship between chemistry guidance and actual operating experience, EPRI continues to collect, monitor, and evaluate operating data from BWRs and PWRs around the world. More than 900 cycles of valuable BWR and PWR operating chemistry data has been collected, including online, startup and shutdown chemistry data over more than 10 years (> 20 years for BWRs). This paper will provide an overview of current trends in BWR and PWR chemistry, focusing on plants in the U.S.. Important chemistry parameters will be highlighted and discussed in the context of the EPRI Water Chemistry Guidelines requirements (i.e., those parameters considered to be of key importance as related to the major goals identified in the EPRI Guidelines: materials integrity; fuel integrity; and minimizing plant radiation fields). Perspectives will be provided in light of recent industry initiatives and changes in the EPRI BWR and PWR Water Chemistry Guidelines. (author)

  3. Generic safety evaluation report regarding integrity of BWR scram system piping

    International Nuclear Information System (INIS)

    1981-08-01

    Safety concerns associated with postulated pipe breaks in the boiling water reactor (BWR) scram system were identified during the staff's continuing investigation of the Browns Ferry Unit 3 control rod partial insertion failure on June 28, 1980. This report includes an evaluation of the licensing basis for the BWR scram discharge volume (SDV) piping and an assessment of the potential for the SDV piping to fail while in service. A discussion of the means available for mitigation an unlikely SDV system failure is provided. Generic recommendations are made to improve mitigation capability and ensure that system integrity is maintained in service

  4. Repair and preventive maintenance technology for BWR reactor internals and piping

    International Nuclear Information System (INIS)

    Ootsubo, Tooru; Itou, Takashi; Sakashita, Akihiro

    2009-01-01

    Stress corrosion cracking of welding portion has found in many domestic and foreign BWR reactor internals and Primary Loop Recirculation piping. Also, repair and preventive maintenance technologies for SCC has been developed and/or adopted to BWRs in recent years. This paper introduces the sample of these technologies, such as seal-welding for SCC on BWR reactor internals, preventive maintenance technology for PLR piping such as Corrosion Resistant Cladding, Internal Polishing and Induction Heating Stress Improvement. These technologies are introduced on 'E-Journal of Advanced Maintenance', which is an international journal on a exclusive website of Japan Society of Maintenology. (author)

  5. BWR type reactors

    International Nuclear Information System (INIS)

    Yano, Ryoichi; Sato, Takashi; Osaki, Masahiko; Hirayama, Fumio; Watabe, Atsushi.

    1980-01-01

    Purpose: To effectively eliminate radioactive substances released upon loss of coolant accidents in BWR type reactors. Constitution: A high pressure gas jetting device having a plurality of small aperture nozzles is provided above a spray nozzle, that is, at the top of a dry well. The jetting device is connected to a vacuum breaker provided in a pressure suppression chamber. Upon loss of coolant accident, coolants are sprayed from the spray nozzle and air or nitrogen is jetted from the gas jetting device as well. Then, the gases in the dry well are disturbed, whereby radioactive iodine at high concentration liable to be accumulated in the dry well is forced downwardly, dissolved in the spray water and eliminated. (Ikeda, J.)

  6. Initiation model for intergranular stress corrosion cracking in BWR pipes

    International Nuclear Information System (INIS)

    Hishida, Mamoru; Kawakubo, Takashi; Nakagawa, Yuji; Arii, Mitsuru.

    1981-01-01

    Discussions were made on the keys of intergranular stress corrosion cracking of austenitic stainless steel in high-temperature water in laboratories and stress corrosion cracking incidents in operating plants. Based on these discussions, a model was set up of intergranular stress corrosion cracking initiation in BWR pipes. Regarding the model, it was presumed that the intergranular stress corrosion cracking initiates during start up periods whenever heat-affected zones in welded pipes are highly sensitized and suffer dynamic strain in transient water containing dissolved oxygen. A series of BWR start up simulation tests were made by using a flowing autoclave system with slow strain rate test equipment. Validity of the model was confirmed through the test results. (author)

  7. Validation and application of the system code ATHLET-CD for BWR severe accident analyses

    Energy Technology Data Exchange (ETDEWEB)

    Di Marcello, Valentino, E-mail: valentino.marcello@kit.edu; Imke, Uwe; Sanchez, Victor

    2016-10-15

    Highlights: • We present the application of the system code ATHLET-CD code for BWR safety analyses. • Validation of core in-vessel models is performed based on KIT CORA experiments. • A SB-LOCA scenario is simulated on a generic German BWR plant up to vessel failure. • Different core reflooding possibilities are investigated to mitigate the accident consequences. • ATHLET-CD modelling features reflect the current state of the art of severe accident codes. - Abstract: This paper is aimed at the validation and application of the system code ATHLET-CD for the simulation of severe accident phenomena in Boiling Water Reactors (BWR). The corresponding models for core degradation behaviour e.g., oxidation, melting and relocation of core structural components are validated against experimental data available from the CORA-16 and -17 bundle tests. Model weaknesses are discussed along with needs for further code improvements. With the validated ATHLET-CD code, calculations are performed to assess the code capabilities for the prediction of in-vessel late phase core behaviour and reflooding of damaged fuel rods. For this purpose, a small break LOCA scenario for a generic German BWR with postulated multiple failures of the safety systems was selected. In the analysis, accident management measures represented by cold water injection into the damaged reactor core are addressed to investigate the efficacy in avoiding or delaying the failure of the reactor pressure vessel. Results show that ATHLET-CD is applicable to the description of BWR plant behaviour with reliable physical models and numerical methods adopted for the description of key in-vessel phenomena.

  8. Boiling transition phenomenon in BWR fuel assemblies effect of fuel spacer shape on critical power

    International Nuclear Information System (INIS)

    Yamamoto, Yasushi; Morooka, Shin-ichi; Mitsutake, Toru; Yokobori, Seiichi; Kimura, Jiro.

    1996-01-01

    A thorough understanding of the thermal-hydraulic phenomena near fuel spacer is necessary for the accurate prediction of the critical power of BWR fuel assemblies, and is thus essential for effective developments of a new BWR fuel assembly. The main purpose of this study is to develop an accurate method for predicting the effect of spacer shapes on critical power. Tests have been conducted under actual BWR operating conditions, using an annulus flow channel consisting of a heated rod and circular-tube channel, and BWR simulated 4x4 rod bundles with heater rods unheated just upsteam of spacer. The effect of spacer shapes on critical power was predicted analytically based on the droplet deposition rate estimation. The droplet deposition rate for different spacer shapes was calculated using a single-phase flow model. The prediction results were compared with the test results for the annulus flow channel using ring-type spacers. Analytical results of critical power agreed with measured critical power from point of the effects of changes in the rod-spacer clearance and the spacer thickness on critical power. (author)

  9. Divergência genética entre genótipos de frangos tipo caipira

    Directory of Open Access Journals (Sweden)

    R. C. Veloso

    2015-10-01

    Full Text Available RESUMOObjetivou-se com este trabalho verificar a divergência genética entre sete genótipos de frangos tipo caipira da linhagem Redbro utilizando as características de desempenho por meio de técnicas de análise multivariada. Foram utilizados 840 pintos de um dia, machos, distribuídos em delineamento inteiramente ao acaso, dos seguintes genótipos: Caboclo, Carijó, Colorpak, Gigante Negro, Pesadão Vermelho, Pescoço Pelado e Tricolor. Após a consistência dos dados, foram avaliadas as seguintes variáveis: ganho em peso médio diário, consumo de ração médio diário e conversão alimentar, para os períodos: 1 a 28, 1 a 56, 1 a 70 e 1 a 84 dias de idade; peso corporal ao nascimento, aos 28, 56, 70 e aos 84 dias de idade. O desempenho dos genótipos foi avaliado por meio da análise de variância multivariada e da função discriminante linear de Fisher, usando os testes do maior autovalor de Roy e da união-interseção de Roy para as comparações múltiplas. O estudo da divergência genética foi feito por meio da análise por variáveis canônicas e pelo método de otimização de Tocher. Os genótipos Caboclo e Gigante Negro apresentaram médias canônicas diferentes dos demais genótipos. As duas primeiras variáveis canônicas explicaram 97,41% da variação entre os genótipos. A divergência genética entre os genótipos avaliados permitiu a formação de quatro grupos com os seguintes genótipos: grupo 1 - Colorpak; grupo 2 - Pesadão Vermelho e Pescoço Pelado; grupo 3 - Carijó e Tricolor; e grupo 4 - Caboclo e Gigante Negro.

  10. Prediction of BWR performance under the influence of Isolation Condenser-using RAMONA-4 code

    International Nuclear Information System (INIS)

    Khan, H.J.; Cheng, H.S.; Rohatgi, U.S.

    1992-01-01

    The purpose of the Boiling Water Reactor (BWR) Isolation Condenser (IC) is to passively control the reactor pressure by removing heat from the system. This type of control is expected to reduce the frequency of opening and closing of the Safety Relief Valves (SRV). A comparative analysis is done for a BWR operating with and without the influence of an IC under Main Steam Isolation Valve (MSIV) closure. A regular BWR, with forced flow and high thermal power, has been considered for analysis. In addition, the effect of ICs on the BWR performance is studied for natural convection flow at lower power and modified riser geometry. The IC is coupled to the steam dome for the steam inlet flow and the Reactor Pressure Vessel (RPV) near the feed water entrance for the condensate return flow. Transient calculations are performed using prescribed pressure set points for the SRVs and given time settings for MSIV closure. The effect of the IC on the forced flow is to reduce the rate of pressure rise and thereby decrease the cycling frequency ofthe SRVS. This is the primary objective of any operating IC in a BWR (e.g. Oyster Creek). The response of the reactor thermal and fission power, steam flow rate, collapsed liquid level, and core average void fraction are found to agree with the trend of pressure. The variations in the case of an active IC can be closely related to the creation of a time lag and changes in the cycling frequency of the SRVS. An analysis for natural convection flow in a BWR indicates that the effect of an IC on its transient performance is similar to that for the forced convection system. In this case, the MSIV closure, has resulted in a lower peak pressure due to the magnitude of reduced power. However, the effect of reduced cycling frequency of the SRV due to the IC, and the time lag between the events, are comparable to that for forced convection

  11. Subchannel analysis of a critical power test, using simulated BWR 8x8 fuel assembly

    International Nuclear Information System (INIS)

    Mitsutake, T.; Terasaka, H.; Yoshimura, K.; Oishi, M.; Inoue, A.; Akiyama, M.

    1990-01-01

    Critical power predictions have been compared with the critical power test data obtained in simulated BWR 8x8 fuel rod assemblies. Two analytical methods for the critical power prediction in rod assemblies are used in the prediction, which are the subchannel analysis using the COBRA/BWR subchannel computer code with empirical critical heat flux (CHF) correlations and the liquid film dryout estimation using the CRIPP-3F 'multi-fluid' computer code. Improvements in both the analytical methods were made for spacer effect modeling, though they were specific for application to the current BWR rod assembly type. In general a reasonable agreement was obtained, though comparisons, between the prediction and the obtained test data. (orig.)

  12. The impact of BWR MK I primary containment failure dynamics on secondary containment integrity

    International Nuclear Information System (INIS)

    Greene, S.R.

    1987-01-01

    During the past four years, the ORNL BWRSAT Program has developed a series of increasingly sophisticated BWR secondary containment models. These models have been applied in a variety of studies to evaluate the severe accident mitigation capability of BWR secondary containments. This paper describes the results of a recent ORNL study of the impact of BWR MK I primary containment failure dynamics on secondary containment integrity. A 26-cell MELCOR Browns Ferry secondary containment model is described and the predicted thermodynamic response of the secondary containment to a variety of postulated primary containment failure modes is presented. The effects of primary containment failure location, timing, and ultimate hole size on secondary containment response is investigated, and the potential impact of hydrogen deflagrations on secondary containment integrity is explored

  13. BWR internals life assurance

    International Nuclear Information System (INIS)

    Herrera, M.L.; Stancavage, P.P.

    1988-01-01

    Boiling water reactor (BWR) internal components play an important role in power plant life extension. Many important internals were not designed for easy removal and changes in material properties and local environmental effects due to high radiation makes stress corrosion cracking more likely and more difficult to correct. Over the past several years, operating experience has shown that inspection, monitoring and refurbishment can be accomplished for internal structures with existing technology. In addition, mitigation techniques which address the causes of degradation are available to assure that life extension targets can be met. This paper describes the many considerations and aspects when evaluating life extension for reactor vessel internals

  14. Damage by radiation in structural materials of BWR reactor vessels; Dano por radiacion en materiales estructurales de vasijas de reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Robles, E.; Balcazar, M.; Alpizar, A.M.; Calderon, B.E. [Departamento de Sintesis y Caracterizacion de Materiales, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    The structural materials which are manufactured the pressure vessels of the BWR reactors undergo degradation in their mechanical properties mainly due to the damage produced by the fast neutrons (E> 1 MeV) coming from the reactor core. The mechanisms of neutron damage in this type of materials are experimentally studied, through the irradiation of vessel steel in experimental reactors for a quickly ageing. Alternately the neutron damage through steel irradiation with heavy ions is simulated. In this work the first results of the damage induced by irradiation of a similar steel to the vessel of a BWR reactor are shown. The irradiation was performed with fast neutrons (E> 1 MeV, fluence of 1.45 x 10{sup 18} n/cm{sup 2}) in the TRIGA Mark III Salazar reactor and separately with Ni{sup +3} ions in a Tandetrom accelerator (E= 4.8 MeV and an ion flux rank of 0.1 to 53 ions/A{sup 2}). (Author)

  15. Eulerian fluid-structure analysis of BWR

    International Nuclear Information System (INIS)

    McMaster, W.H.

    1979-05-01

    A fluid-structure-interaction algorithm is developed for the analysis of the dynamic response of a BWR pressure-suppression pool and containment structure. The method is incorporated into a two-dimensional semi-implicit Eulerian hydrodynamics code, PELE-IC, for the solution of incompressible flow coupled to flexible structures. The fluid, structure, and coupling algorithms have been verified by calculation of solved problems from the literature and by comparison with air and steam blowdown experiments

  16. ZZ BWRSB-RINGHALS1, Stability Benchmark Data from BWR RINGHALS-1

    International Nuclear Information System (INIS)

    2002-01-01

    Description of program or function: The purpose of this benchmark is to enable code developers to test their codes and also to validate the predictive capability of their respective codes and models for BWR stability analysis. Emphasis is put on the modelling of flow dynamics of the reactor core and in-vessel flow loop wit detailed neutronic and thermodynamic feedback. The secondary systems as well as the control and production systems will be neglected. Data provided comes from measurements in beginning of cycle (BOC) 14, 15, 16 and 17 and middle of cycle (MOC) 16 in the Swedish BWR reactor Ringhals 1. For these measurements complete data sets are given

  17. Simplified system for the pressure control of a Nucleo electric central of the BWR type; Sistema simplificado para el control de presion de una central Nucleoelectrica del tipo BWR

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez J, J. [FI-UNAM, DEPFI Campus Morelos, Jiutepec, Morelos (Mexico)

    2003-07-01

    One of the main preoccupations of the electric power generator stations is the appropriate operation of the same ones. The operators must be qualified to respond in an adequate way and to be able to take to these power stations to an optimal, sure and stable operation condition under any circumstance. The Laboratory of Analysis in Nuclear Reactors Engineering (LAIRN) of the Engineering Faculty of UNAM (Fl) in collaboration with the International Atomic Energy Agency (IAEA), it develops an interactive classroom simulator in which simulations of the phenomena which take place in a nuclear power station are executed. The classroom simulator bases its operation on specialized nuclear codes feeding interactive graphic unfolding with those that it is possible to make a monitoring, supervision and control of the behavior of the power station under any operation regime, either in normal operation, transitory events or postulated accident sequence. The development of this classroom simulator includes a modular and re configurable structure. Due to it is indispensable to count with a higher inter activity with the system it is included the simulation of the control system of the plant and inside the same, one of those more important it is the reactor pressure control system. The present work describes the conceptual design and the used methodology for the development and implementation in the simulator of a simplified model of the pressure control system for a BWR generic central. The reach of the development will allow to accomplish the necessary tests to demonstrate that this has an adequate performance according to the carried out simplifications. (Author)

  18. BWR Fuel Assemblies Physics Analysis Utilizing 3D MCNP Modeling

    International Nuclear Information System (INIS)

    Chiang, Ren-Tai; Williams, John B.; Folk, Ken S.

    2008-01-01

    MCNP is used to model a partially controlled BWR fresh fuel four assemblies (2x2) system for better understanding BWR fuel behavior and for benchmarking production codes. The impact of the GE14 plenum regions on axial power distribution is observed by comparing against the GE13 axial power distribution, in which the GE14 relative power is lower than the GE13 relative power at the 15. node and at the 16. node due to presence of the plenum regions in GE14 fuel in these two nodes. The segmented rod power distribution study indicates that the azimuthally dependent power distribution is very significant for the fuel rods next to the water gap in the uncontrolled portion. (authors)

  19. BWR Fuel Assemblies Physics Analysis Utilizing 3D MCNP Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Ren-Tai [University of Florida, Gainesville, Florida 32611 (United States); Williams, John B.; Folk, Ken S. [Southern Nuclear Company, Birmingham, Alabama 35242 (United States)

    2008-07-01

    MCNP is used to model a partially controlled BWR fresh fuel four assemblies (2x2) system for better understanding BWR fuel behavior and for benchmarking production codes. The impact of the GE14 plenum regions on axial power distribution is observed by comparing against the GE13 axial power distribution, in which the GE14 relative power is lower than the GE13 relative power at the 15. node and at the 16. node due to presence of the plenum regions in GE14 fuel in these two nodes. The segmented rod power distribution study indicates that the azimuthally dependent power distribution is very significant for the fuel rods next to the water gap in the uncontrolled portion. (authors)

  20. Product Evaluation Task Force Phase Two report for BWR/PWR dissolver wastes

    International Nuclear Information System (INIS)

    Francis, A.J.

    1990-01-01

    It has been proposed that all Intermediate Level Wastes arising at Sellafield should be encapsulated prior to ultimate disposal. The Product Evaluation Task Force (PETF) was set up to investigate possible encapsulants and to produce an adequate data base to justify the preferred matrices. This report details the work carried out, under Phase 2 of the Product Evaluation Task Force programme, on BWR/PWR Dissolver Wastes. Three possible types of encapsulants for BWR/PWR Dissolver Wastes:- Inorganic cements, Polymer cements and Polymers are evaluated using the Kepner Tregoe decision analysis technique. This technique provides a methodology for scoring and ranking alternative options and evaluating any risks associated with an option. The analysis shows that for all four stages of waste management operations ie Storage, Transport, handling and emplacement, Disposal and Process, cement matrices are considerably superior to other potential matrices. A matrix, consisting of three parts Blast Furnace Slag (BFS) to one part Ordinary Portland Cement (OPC), is recommended for Phase 3 studies on BWR/PWR Dissolver Wastes. (author)

  1. MCTP, a code for the thermo-mechanical analysis of a fuel rod of BWR type reactors (Neutron part); MCTP, un codigo para el analisis termo-mecanico de una barra combustible de reactores tipo BWR (Parte Neutronica)

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez L, H; Ortiz V, J [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    In the National Institute of Nuclear Research of Mexico a code for the thermo-mechanical analysis of the fuel rods of the BWR type reactors of the Nucleo electric Central of Laguna Verde is developed. The code solves the diffusion equation in cylindrical coordinates with several energy groups. The code, likewise, calculates the temperature distribution and power distribution in those fuel rods. The code is denominated Multi groups With Temperatures and Power (MCTP). In the code, the energy with which the fission neutrons are emitted it is divided in six groups. They are also considered the produced perturbations by the changes in the temperatures of the materials that constitute the fuel rods, the content of fission products, the uranium consumption and in its case the gadolinium, as well as the plutonium production. In this work there are present preliminary results obtained with the code, using data of operation of the Nucleo electric Central of Laguna Verde. (Author)

  2. System control model of a turbine for a BWR; Modelo del sistema de control de una turbina para un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Vargas O, Y. [Universidad del Valle de Mexico, Campus Toluca, Av. Las Palmas No. 136, Col. San Jorge Pueblo Nuevo, 52140 Metepec, Estado de Mexico (Mexico); Amador G, R.; Ortiz V, J.; Castillo D, R.; Delfin L, A. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)], e-mail: rodolfo.amador@inin.gob.mx

    2009-10-15

    In this work is presented a design of a control system of a turbine for a nuclear power plant with a BWR like energy source. The model seeks to implement later on at thermal hydraulics code of better estimate RELAP/SCDAPSIM. The model is developed for control and protection of turbine, and the consequent protection to the BWR, considering that the turbine control could be employed for one or several turbines in series. The quality of present designs of control pattern of turbine it is that it considers the parameters more important in the operation of a turbine besides that is has incorporated at control the secondary parameters that will be activated originally as true when the turbine model is substituted by a model more detailed. The development of control model of a turbine will be good in short and medium term to realize analysis about the operation of turbine with different operation conditions, of vapor extraction specific steps of turbine to feed other equipment s, besides analyzing the separate effect and integrated effect. (Author)

  3. Studies of fragileness in steels of vessels of BWR reactors; Estudios de fragilizacion en aceros de vasija de reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Robles, E.F.; Balcazar, M.; Alpizar, A.M.; Calderon, B.E. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    The structural materials with those that are manufactured the pressure vessels of the BWR reactors, suffer degradation in its mechanical properties mainly to the damage taken place by the fast neutrons (E > 1 MeV) coming from the reactor core. Its are experimentally studied those mechanisms of neutron damage in this material type, by means of the irradiation of steel vessel in experimental reactors to age them quickly. Alternatively it is simulated the neutron damage by means of irradiation of steel with heavy ions. In this work those are shown first results of the damage induced by irradiation from a similar steel to the vessel of a BWR reactor. The irradiation was carried out with fast neutrons (E > 1 MeV, fluence of 1.45 x 10{sup 18} n/cm{sup 2}) in the TRIGA MARK lll reactor and separately with Ni{sup +3} ions in a Tandetrom accelerator, E = 4.8 MeV and range of the ionic flow of 0.1 to 53 iones/A{sup 2}. (Author)

  4. Prevention of organic iodide formation in BWR's

    International Nuclear Information System (INIS)

    Karjunen, T.; Laitinen, T.; Piippo, J.; Sirkiae, P.

    1996-01-01

    During an accident, many different forms of iodine may emerge. Organic iodides, such as methyl iodide and ethyl iodide, are relatively volatile, and thus their appearance leads to increased concentration of gaseous iodine. Since organic iodides are also relatively immune to most accident mitigation measures, such as sprays and filters, they can affect the accident source term significantly even when only a small portion of iodine is in organic form. Formation of organic iodides may not be limited by the amount of organic substances available. Excessive amounts of methane can be produced, for example, during oxidation of boron carbide, which is used in BWR's as a neutron absorber material. Another important source is cable insulation. In a BWR, a large quantity of cables is placed below the pressure vessel. Thus a large quantity of pyrolyse gases will be produced, should the vessel fail. Organic iodides can be formed as a result of many different reactions, but at least in certain conditions the main reaction takes place between an organic radical produced by radiolysis and elemental iodine. A necessary requirement for prevention of organic iodide production is therefore that the pH in the containment water pools is kept high enough to eliminate formation of elemental iodine. In a typical BWR the suppression pool water is usually unbuffered. As a result, the pH may be dominated by chemicals introduced during an accident. If no system for adding basic chemicals is operable, the main factor affecting pool water pH may be hydrochloric acid released during cable degradation. Should this occur, the conditions could be very favorable for production of elemental iodine and, consequently, formation of organic iodides. Although high pH is necessary for iodine retention, it could have also adverse effects. High pH may, for example, accelerate corrosion of containment materials and alter the characteristics of the solid corrosion products. (author) 6 figs., 1 tab., 13 refs

  5. Prony's method application for BWR instabilities characterization

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, Rogelio, E-mail: rogelio.castillo@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Estado de México 52750 (Mexico); Ramírez, J. Ramón, E-mail: ramon.ramirez@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Estado de México 52750 (Mexico); Alonso, Gustavo, E-mail: gustavo.alonso@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Estado de México 52750 (Mexico); Instituto Politecnico Nacional, Unidad Profesional Adolfo Lopez Mateos, Ed. 9, Lindavista, D.F. 07300 (Mexico); Ortiz-Villafuerte, Javier, E-mail: javier.ortiz@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Estado de México 52750 (Mexico)

    2015-04-01

    Highlights: • Prony's method application for BWR instability events. • Several BWR instability benchmark are assessed using this method. • DR and frequency are obtained and a new parameter is proposed to eliminate false signals. • Adequate characterization of in-phase and out-of-phase events is obtained. • The Prony's method application is validated. - Abstract: Several methods have been developed for the analysis of reactor power signals during BWR power oscillations. Among them is the Prony's method, its application provides the DR and the frequency of oscillations. In this paper another characteristic of the method is proposed to determine the type of oscillations that can occur, in-phase or out-of-phase. Prony's method decomposes a given signal in all the frequencies that it contains, therefore the DR of the fundamental mode and the first harmonic are obtained. To determine the more dominant pole of the system a normalized amplitude W of the system is calculated, which depends on the amplitude and the damping coefficient. With this term, it can be analyzed which type of oscillations is present, if W of the fundamental mode frequency is the greater, the type of oscillations is in-phase, if W of the first harmonic frequency is the greater, the type of oscillations is out-of-phase. The method is applied to several stability benchmarks to assess its validity. Results show the applicability of the method as an alternative analysis method to determine the type of oscillations occurred.

  6. Prony's method application for BWR instabilities characterization

    International Nuclear Information System (INIS)

    Castillo, Rogelio; Ramírez, J. Ramón; Alonso, Gustavo; Ortiz-Villafuerte, Javier

    2015-01-01

    Highlights: • Prony's method application for BWR instability events. • Several BWR instability benchmark are assessed using this method. • DR and frequency are obtained and a new parameter is proposed to eliminate false signals. • Adequate characterization of in-phase and out-of-phase events is obtained. • The Prony's method application is validated. - Abstract: Several methods have been developed for the analysis of reactor power signals during BWR power oscillations. Among them is the Prony's method, its application provides the DR and the frequency of oscillations. In this paper another characteristic of the method is proposed to determine the type of oscillations that can occur, in-phase or out-of-phase. Prony's method decomposes a given signal in all the frequencies that it contains, therefore the DR of the fundamental mode and the first harmonic are obtained. To determine the more dominant pole of the system a normalized amplitude W of the system is calculated, which depends on the amplitude and the damping coefficient. With this term, it can be analyzed which type of oscillations is present, if W of the fundamental mode frequency is the greater, the type of oscillations is in-phase, if W of the first harmonic frequency is the greater, the type of oscillations is out-of-phase. The method is applied to several stability benchmarks to assess its validity. Results show the applicability of the method as an alternative analysis method to determine the type of oscillations occurred

  7. BWR-stability investigation at Forsmark 1

    International Nuclear Information System (INIS)

    Bergdahl, B.G.; Reisch, F.; Oguma, R.; Lorenzen, J.; Aakerhielm, F.

    1988-01-01

    A series of noise measurements have been conducted at Forsmark 1 during start-up operation after the revision summer '87. The main purpose was to investigate BWR-stability problems, i.e. resonant power oscillations of 0.5 Hz around 65% power and 4100 kg/s core flow, which tend to arise at high power and low core flow conditions. The analysis was performed to estimate the noise source which gives rise to the oscillation, to evaluate the measure of stability, i.e. the Decay Ratio (Dr) as well as to investigate other safety related problems. The result indicates that the oscillation is due to the dynamic coupling between the neutron kinetics and thermal hydraulics via void reactivity feedback. The Dr ranged between values of 0.7 and > 0.9, instead of expected 0.6 (Dr=1 is defined as instability). These high values imply that the core cannot suppress oscillations fast enough and a small perturbation can cause scram. Further it was found that the entire core is oscillating in phase (LPRM's) with varying strength where any connection to the consequences of different fuel (8x8, 9x9) being present simultaneously cannot be excluded. This report elucidates the importance of an on-line BWR-stability surveillance system with functions like stability condition monitoring and control system diagnosis. (orig.)

  8. Identification and assessment of BWR in-vessel severe accident mitigation strategies

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, S.A.; Cleveland, J.C.; Kress, T.S.; Petek, M. [Oak Ridge National Lab., TN (United States)

    1992-10-01

    This report provides the results of work carried out in support of the US Nuclear Regulatory Commission Accident Management Research Program to develop a technical basis for evaluating the effectiveness and feasibility of current and proposed strategies for boiling water reactor (BWR) severe accident management. First, the findings of an assessment of the current status of accident management strategies for the mitigation of in-vessel events for BWR severe accident sequences are described. This includes a review of the BWR Owners` Group Emergency Procedure Guidelines (EPGSs) to determine the extent to which they currently address the characteristic events of an unmitigated severe accident and to provide the basis for recommendations for enhancement of accident management procedures. Second, where considered necessary, new candidate accident management strategies are proposed for mitigation of the late-phase (after core damage has occurred) events. Finally, recommendations are made for consideration of additional strategies where warranted, and two of the four candidate strategies identified by this effort are assessed in detail: (1) preparation of a boron solution for reactor vessel refill should control blade damage occur during a period of temporary core dryout and (2) containment flooding to maintain the core debris within the reactor vessel if the injection systems cannot be restored.

  9. Identification and assessment of BWR in-vessel severe accident mitigation strategies

    International Nuclear Information System (INIS)

    Hodge, S.A.; Cleveland, J.C.; Kress, T.S.; Petek, M.

    1992-10-01

    This report provides the results of work carried out in support of the US Nuclear Regulatory Commission Accident Management Research Program to develop a technical basis for evaluating the effectiveness and feasibility of current and proposed strategies for boiling water reactor (BWR) severe accident management. First, the findings of an assessment of the current status of accident management strategies for the mitigation of in-vessel events for BWR severe accident sequences are described. This includes a review of the BWR Owners' Group Emergency Procedure Guidelines (EPGSs) to determine the extent to which they currently address the characteristic events of an unmitigated severe accident and to provide the basis for recommendations for enhancement of accident management procedures. Second, where considered necessary, new candidate accident management strategies are proposed for mitigation of the late-phase (after core damage has occurred) events. Finally, recommendations are made for consideration of additional strategies where warranted, and two of the four candidate strategies identified by this effort are assessed in detail: (1) preparation of a boron solution for reactor vessel refill should control blade damage occur during a period of temporary core dryout and (2) containment flooding to maintain the core debris within the reactor vessel if the injection systems cannot be restored

  10. BWR 9 X 9 Fuel Assembly Thermal-Hydraulic Tests (2): Hydraulic Vibration Test

    International Nuclear Information System (INIS)

    Yoshiaki Tsukuda; Katsuichiro Kamimura; Toshiitsu Hattori; Akira Tanabe; Noboru Saito; Masahiko Warashina; Yuji Nishino

    2002-01-01

    Nuclear Power Engineering Corporation (NUPEC) conducted thermal-hydraulic projects for verification of thermal-hydraulic design reliability for BWR high-burnup 8 x 8 and 9 x 9 fuel assemblies, entrusted by the Ministry of Economy, Trade and Industry (METI). As a part of the NUPEC thermal-hydraulic projects, hydraulic vibration tests using full-scale test assemblies simulating 9 x 9 fuel assemblies were carried out to evaluate BWR fuel integrity. The test data were applied to development of a new correlation for the estimation of fuel rod vibration amplitude. (authors)

  11. Standard Technical Specifications, General Electric Plants, BWR/6

    International Nuclear Information System (INIS)

    1992-09-01

    This NUREG contains improved Standard Technical Specifications (STS) for General Electric Plants, BWR/4, and documents the positions of the Nuclear Regulatory Commission based on the BWR Owners Group's proposed STS. This document is the result of extensive technical meetings and discussions among the NRC staff, the Nuclear Steam Supply System (NSSS) Owners Groups, the NSSS vendors, and the Nuclear Management and Resources Council (NUMARC). The improved STS were developed based on the criteria in the interim Commission Policy Statement on Technical Specification Improvements for Nuclear Power Reactors, dated February 6, 1987. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. Volume 1 contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. Volume 3, contains the Bases for Sections 3.4--3.10 of the improved STS

  12. BWR power oscillation evaluation methodologies in core design

    International Nuclear Information System (INIS)

    Hotta, Akitoshi

    1995-01-01

    At the initial stage of BWR development, the power oscillation due to the nuclear-thermal interaction originated in random boiling phenomena and nuclear void feedback was feared. But it was shown that under the high pressure condition in the normal operation of recent commercial BWRs, the core is in very stable state. However, power oscillation events have been observed in actual machines, and it is necessary to do the stability evaluation that sufficiently reflects the detailed operation conditions of actual plants. As the cause of power oscillation events, the instability of control system and nuclear-thermal coupling instability are important, and their mechanisms are explained. As the model for analyzing the stability of BWR core, the nuclear-thermal coupling model in frequency domain is the central existence. As the information for the design, the parameters of fuel assemblies, and the nuclear parameters and the thermohydraulic parameters of cores are enumerated. LAPUR-TSI is a nuclear-thermal coupling model. The analysis system in the software of Tokyo Electric Power Co. is outlined, and the analysis model was verified. (K.I.)

  13. Standard Technical Specifications, General Electric plants, BWR/4

    International Nuclear Information System (INIS)

    1992-09-01

    This NUREG contains improved Standard Technical Specifications (STS) for General Electric Plants, BWR/6, and documents the positions of the Nuclear Regulatory Commission based on the BWR Owners Group's proposed STS. This document is the result of extensive technical meetings and discussions among the NRC staff, the Nuclear Steam Supply System (NSSS) Owners Groups, the NSSS vendors, and the Nuclear Management and Resources Council (NUMARC). The improved STS were developed based on the criteria in the interim Commission Policy Statement on Technical Specification Improvements for Nuclear Power Reactors, dated February 6, 1987. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. This document Volume 1 contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. Volume 3 contains the Bases for Sections 3.4--3.10 of the improved STS

  14. MELCOR 1.8.2 assessment: The DF-4 BWR Damaged Fuel experiment

    International Nuclear Information System (INIS)

    Tautges, T.J.

    1993-10-01

    MELCOR is a fully integrated, engineering-level computer code being developed at Sandia National Laboratories for the USNRC, that models the entire spectrum of severe accident phenomena in a unified framework for both BWRs and PWRs. As a part of an ongoing assessment, program, MELCOR has been used to model the ACRR in-pile DF-4 Damaged Fuel experiment. DF-4 provided data for early phase melt progression in BWR fuel assemblies, particularly for phenomena associated with eutectic interactions in the BWR control blade and zircaloy oxidation in the canister and cladding. MELCOR provided good agreement with experimental data in the key areas of eutectic material behavior and canister and cladding oxidation. Several shortcomings associated with the MELCOR modeling of BWR geometries were found and corrected. Twenty-five sensitivity studies were performed on COR, HS and CVH parameters. These studies showed that the new MELCOR eutectics model played an important role in predicting control blade behavior. These studies revealed slight time step dependence and no machine dependencies. Comparisons made with the results from four best-estimate codes showed that MELCOR did as well as these codes in matching DF-4 experimental data

  15. BWR ATWS mitigation by Fine Motion Control Rod

    International Nuclear Information System (INIS)

    Rohatgi, U.S.; Cheng, H.S.; Khan, H.; Mallen, A.; Diamond, D.

    1994-01-01

    Two main methods of ATWS mitigation in a SBWR are: fine Motion control Rods (FMCRD) and Boron injection via the Standby Liquid control System (SLCS). This study has demonstrated that the use of FMCRD along with feedwater runback mitigated the conditions due to reactivity insertion and possible ATWS in a BWR which is similar to SBWR

  16. The development of emergency core cooling systems in the PWR, BWR, and HWR Candu type of nuclear power plants

    International Nuclear Information System (INIS)

    Mursid Djokolelono.

    1976-01-01

    Emergency core cooling systems in the PWR, BWR, and HWR-Candu type of nuclear power plant are reviewed. In PWR and BWR the emergency cooling can be catagorized as active high pressure, active low pressure, and a passive one. The PWR uses components of the shutdown cooling system: whereas the BWR uses components of pressure suppression contaiment. HWR Candu also uses the shutdown cooling system similar to the PWR except some details coming out from moderator coolant separation and expensive cost of heavy water. (author)

  17. High burnup (41 - 61 GWd/tU) BWR fuel behavior under reactivity initiated accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Takehiko; Kusagaya, Kazuyuki; Yoshinaga, Makio; Uetsuka, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    High burnup boiling water reactor (BWR) fuel was pulse irradiated in the Nuclear Safety Research Reactor (NSRR) to investigate fuel behavior under cold startup reactivity initiated accident (RIA) conditions. Temperature, deformation, failure, and fission gas release behavior under the simulated RIA condition was studied in the tests. Fuel failure due to pellet-cladding mechanical interaction (PCMI) did not occur in the tests with typical domestic BWR fuel at burnups up to 56 GWd/tU, because they had limited cladding embrittlement due to hydrogen absorption of about 100 ppm or less. However, the cladding failure occurred in tests with fuel at a burnup of 61 GWd/tU, in which the peak hydrogen content in the cladding was above 150 ppm. This type of failure was observed for the first time in BWR fuels. The cladding failure occurred at fuel enthalpies of 260 to 360 J/g (62 to 86 cal/g), which were higher than the PCMI failure thresholds decided by the Japanese Nuclear Safety Commission. From post-test examinations of the failed fuel, it was found that the crack in the BWR cladding progressed in a manner different from the one in PWR cladding failed in earlier tests, owing to its more randomly oriented hydride distribution. Because of these differences, the BWR fuel was judged to have failed at hydrogen contents lower than those of the PWR fuel. Comparison of the test results with code calculations revealed that the PCMI failure was caused by thermal expansion of pellets, rather than by the fission gas expansion in the pellets. The gas expansion, however, was found to cause large cladding hoop deformation later after the cladding temperature escalated. (author)

  18. Hybrid Reactor Simulation and 3-D Information Display of BWR Out-of-Phase Oscillation

    International Nuclear Information System (INIS)

    Edwards, Robert; Huang, Zhengyu

    2001-01-01

    The real-time hybrid reactor simulation (HRS) capability of the Penn State TRIGA reactor has been expanded for boiling water reactor (BWR) out-of-phase behavior. During BWR out-of-phase oscillation half of the core can significantly oscillate out of phase with the other half, while the average power reported by the neutronic instrumentation may show a much lower amplitude for the oscillations. A description of the new HRS is given; three computers are employed to handle all the computations required, including real-time data processing and graph generation. BWR out-of-phase oscillation was successfully simulated. By adjusting the reactivity feedback gains from boiling channels to the TRIGA reactor and to the first harmonic mode power simulation, limit cycle can be generated with both reactor power and the simulated first harmonic power. A 3-D display of spatial power distributions of fundamental mode, first harmonic, and total powers over the reactor cross section is shown

  19. Siemens Nuclear Power Corporation methods development for BWR/PWR reactor licensing

    International Nuclear Information System (INIS)

    Pruitt, D.W.

    1992-01-01

    This presentation addresses the Siemens Nuclear Power Corporation (SNP) perspective on the primary forces driving methods development in the nuclear industry. These forces are fuel design, computational environment and industry requirement evolution. The first segment of the discussion presents the SNP experience base. SNP develops, manufactures and licenses both BWR and PWR reload fuel. A review of this experience base highlights the accelerating rate at which new fuel designs are being introduced into the nuclear industry. The application of advanced BWR lattice geometries provides an example of fuel design trends. The second aspect of the presentation is the rapid evolution of the computing environment. The final subject in the presentation is the impact of industry requirements on code or methods development

  20. Recent SCDAP/RELAP5 improvements for BWR severe accident simulations

    International Nuclear Information System (INIS)

    Griffin, F.P.

    1995-01-01

    A new model for the SCDAP/RELAP5 severe accident analysis code that represents the control blade and channel box structures in a boiling water reactor (BWR) has been under development since 1991. This model accounts for oxidation, melting, and relocation of these structures, including the effects of material interactions between B 4 C, stainless steel, and Zircaloy. This paper describes improvements that have been made to the BWR control blade/channel box model during 1994 and 1995. These improvements include new capabilities that represent the relocation of molten material in a more realistic manner and modifications that improve the usability of the code by reducing the frequency of code failures. This paper also describes a SCDAP/RELAP5 assessment calculation for the Browns Ferry Nuclear Plant design based upon a short-term station blackout accident sequence

  1. Actores del aborto: estado, iglesia católica y movimiento feminista.

    OpenAIRE

    Varea Viteri, María Soledad

    2015-01-01

    Esta investigación aborda dos tipos de efectos de los debates contemporáneos alrededor del aborto en Ecuador. De un lado, sobre los sujetos y sus esferas públicas afectivas; y de otro, sobre los ensambles territoriales. Los debates capturados para este estudio son aquellos sostenidos entre el Estado ecuatoriano, la Iglesia Católica conservadora y el feminismo; los hitos de los debates son la discusión sobre el Código Integral de Salud en el año 2004, el debate constitucional del año 2007 y, f...

  2. Logical model for the control of a BWR turbine;Modelo logico para el control de una turbina de un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Vargas O, Y. [Universidad del Valle de Mexico, Campus Toluca, Av. Las Palmas No. 136, Col. San Jorge Pueblo Nuevo, 52140 Metepec, Estado de Mexico (Mexico); Amador G, R.; Ortiz V, J.; Castillo D, R., E-mail: yonaeton@hotmail.co [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2009-07-01

    In this work a design of a logical model is presented for the turbine control of a nuclear power plant with a BWR like energy source. The model is sought to implement later on inside the thermal hydraulics code of better estimate RELAP/SCDAPSIM. The logical model is developed for the control and protection of the turbine, and the consequent protection to the BWR, considering that the turbine control will be been able to use for one or several turbines in series. The quality of the present design of the logical model of the turbine control is that it considers the most important parameters in the operation of a turbine, besides that they have incorporated to the logical model the secondary parameters that will be activated originally as true when the turbine model is substituted by a detailed model. The development of the logical model of a turbine will be of utility in the short and medium term to carry out analysis on the turbine operation with different operation conditions, of vapor extraction, specific steps of the turbine to feed other equipment s, in addition to analyze the separate and the integrated effect. (Author)

  3. Signal analysis of acoustic and flow-induced vibrations of BWR main steam line

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa-Paredes, G., E-mail: gepe@xanum.uam.mx [División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, México, D.F. 09340 (Mexico); Prieto-Guerrero, A. [División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, México, D.F. 09340 (Mexico); Núñez-Carrera, A. [Comisión Nacional de Seguridad Nuclear y Salvaguardias, Doctor Barragán 779, Col. Narvarte, México, D.F. 03020 (Mexico); Vázquez-Rodríguez, A. [División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, México, D.F. 09340 (Mexico); Centeno-Pérez, J. [Instituto Politécnico Nacional, Escuela Superior de Física y Matemáticas Unidad Profesional “Adolfo López Mateos”, Av. IPN, s/n, México, D.F. 07738 (Mexico); Espinosa-Martínez, E.-G. [Departamento de Sistemas Energéticos, Universidad Nacional Autónoma de México, México, D.F. 04510 (Mexico); and others

    2016-05-15

    Highlights: • Acoustic and flow-induced vibrations of BWR are analyzed. • BWR performance after extended power uprate is considered. • Effect of acoustic side branches (ASB) is analyzed. • The ASB represents a reduction in the acoustic loads to the steam dryer. • Methodology developed for simultaneous analyzing the signals in the MSL. - Abstract: The aim of this work is the signal analysis of acoustic waves due to phenomenon known as singing in Safety Relief Valves (SRV) of the main steam lines (MSL) in a typical BWR5. The acoustic resonance in SRV standpipes and fluctuating pressure is propagated from SRV to the dryer through the MSL. The signals are analyzed with a novel method based on the Multivariate Empirical Mode Decomposition (M-EMD). The M-EMD algorithm has the potential to find common oscillatory modes (IMF) within multivariate data. Based on this fact, we implement the M-EMD technique to find the oscillatory mode in BWR considering the measurements obtained collected by the strain gauges located around the MSL. These IMF, analyzed simultaneously in time, allow obtaining an estimation of the effects of the multiple-SRV in the MSL. Two scenarios are analyzed: the first is the signal obtained before the installation of the acoustic dampers (ASB), and the second, the signal obtained after installation. The results show the effectiveness of the ASB to damp the strong resonances when the steam flow increases, which represents an important reduction in the acoustic loads to the steam dryer.

  4. Signal analysis of acoustic and flow-induced vibrations of BWR main steam line

    International Nuclear Information System (INIS)

    Espinosa-Paredes, G.; Prieto-Guerrero, A.; Núñez-Carrera, A.; Vázquez-Rodríguez, A.; Centeno-Pérez, J.; Espinosa-Martínez, E.-G.

    2016-01-01

    Highlights: • Acoustic and flow-induced vibrations of BWR are analyzed. • BWR performance after extended power uprate is considered. • Effect of acoustic side branches (ASB) is analyzed. • The ASB represents a reduction in the acoustic loads to the steam dryer. • Methodology developed for simultaneous analyzing the signals in the MSL. - Abstract: The aim of this work is the signal analysis of acoustic waves due to phenomenon known as singing in Safety Relief Valves (SRV) of the main steam lines (MSL) in a typical BWR5. The acoustic resonance in SRV standpipes and fluctuating pressure is propagated from SRV to the dryer through the MSL. The signals are analyzed with a novel method based on the Multivariate Empirical Mode Decomposition (M-EMD). The M-EMD algorithm has the potential to find common oscillatory modes (IMF) within multivariate data. Based on this fact, we implement the M-EMD technique to find the oscillatory mode in BWR considering the measurements obtained collected by the strain gauges located around the MSL. These IMF, analyzed simultaneously in time, allow obtaining an estimation of the effects of the multiple-SRV in the MSL. Two scenarios are analyzed: the first is the signal obtained before the installation of the acoustic dampers (ASB), and the second, the signal obtained after installation. The results show the effectiveness of the ASB to damp the strong resonances when the steam flow increases, which represents an important reduction in the acoustic loads to the steam dryer.

  5. BWR Assembly Optimization for Minor Actinide Recycling

    International Nuclear Information System (INIS)

    Maldonado, G. Ivan; Christenson, John M.; Renier, J.P.; Marcille, T.F.; Casal, J.

    2010-01-01

    The Primary objective of the proposed project is to apply and extend the latest advancements in LWR fuel management optimization to the design of advanced boiling water reactor (BWR) fuel assemblies specifically for the recycling of minor actinides (MAs). A top-level objective of the Advanced Fuel Cycle Systems Analysis program element of the DOE NERI program is to investigate spent fuel treatment and recycling options for current light water reactors (LWRs). Accordingly, this project targets to expand the traditional scope of nuclear fuel management optimization into the following two complementary specific objectives: (1) To develop a direct coupling between the pin-by-pin within-bundle loading control variables and core-wide (bundle-by-bundle) optimization objectives, (2) to extend the methodology developed to explicitly encompass control variables, objectives, and constraints designed to maximize minor actinide incineration in BWR bundles and cycles. The first specific objective is projected to 'uncover' dormant thermal margin made available by employing additional degrees of freedom within the optimization process, while the addition of minor actinides is expected to 'consume' some of the uncovered thermal margin. Therefore, a key underlying goal of this project is to effectively invest some of the uncovered thermal margin into achieving the primary objective.

  6. Thermochemistry in BWR. An overview of applications of program codes and databases

    International Nuclear Information System (INIS)

    Hermansson, H-P.; Becker, R.

    2010-01-01

    The Swedish work on thermodynamics of metal-water systems relevant to BWR conditions has been ongoing since the 70ies, and at present time a compilation and adaptation of codes and thermodynamic databases are in progress. In the previous work, basic thermodynamic data were compiled for parts of the system Fe-Cr-Ni-Co-Zn-S-H 2 O at 25-300 °C. Since some thermodynamic information necessary for temperature extrapolations of data up to 300 °C was not published in the earlier works, these data have now been partially recalculated. This applies especially to the parameters of the HKF-model, which are used to extrapolate the thermodynamic data for ionic and neutral aqua species from 25 °C to BWR temperatures. Using the completed data, e.g. the change in standard Gibbs energy (ΔG 0 ) and the equilibrium constant (log K) can be calculated for further applications at BWR/LWR conditions. In addition a computer program is currently being developed at Studsvik for the calculation of equilibrium conductivity in high temperature water. The program is intended for PWR applications, but can also be applied to BWR environment. Data as described above will be added to the database of this program. It will be relatively easy to further develop the program e.g. to calculate Pourbaix diagrams, and these graphs could then be calculated at any temperature. This means that there will be no limitation to the temperatures and total concentrations (usually 10 -6 to 10 -8 mol/kg) as reported in earlier work. It is also easy to add a function generating ΔG 0 and log K values at selected temperatures. One of the fundamentals for this work was also to overview and collect publicly available thermodynamic program codes and databases of relevance for BWR conditions found in open sources. The focus has been on finding already done compilations and reviews, and some 40 codes and 15 databases were found. Codes and data-bases are often integrated and such a package is often developed for

  7. Applied methods for mitigation of damage by stress corrosion in BWR type reactors; Metodos aplicados para la mitigacion del dano por corrosion bajo esfuerzo en reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez C, R.; Diaz S, A.; Gachuz M, M.; Arganis J, C. [Instituto Nacional de Investigaciones Nucleares, Gerencia de Ciencia de Materiales, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1998-07-01

    The Boiling Water nuclear Reactors (BWR) have presented stress corrosion problems, mainly in components and pipes of the primary system, provoking negative impacts in the performance of energy generator plants, as well as the increasing in the radiation exposure to personnel involucred. This problem has caused development of research programs, which are guided to find solution alternatives for the phenomena control. Among results of greater relevance the control for the reactor water chemistry stands out particularly in the impurities concentration and oxidation of radiolysis products; as well as the supervision in the materials selection and the stresses levels reduction. The present work presents the methods which can be applied to diminish the problems of stress corrosion in BWR reactors. (Author)

  8. Power plant design: ESBWR - the latest passive BWR

    International Nuclear Information System (INIS)

    Arnold, H.; Yadigaroglu, G.; Stoop, P.C.

    1997-01-01

    When General Electric said it would end development of its 670 MWe SBWR (Simplified Boiling Water Reactor), it was not quite the end of the story. Also on the drawing board at the time was the larger ESBWR (standing for either European or Economic Simplified BWR) whose goal was to provide the improved economic performance that the SBWR could not. (UK)

  9. BWR fuel experience with zinc injection

    International Nuclear Information System (INIS)

    Levin, H.A.; Garcia, S.E.

    1995-01-01

    In 1982 a correlation between low primary recirculation system dose rates in BWR's and the presence of ionic zinc in reactor water was identified. The source of the zinc was primarily from Admiralty brass condensers. Plants with brass condensers are called ''natural zinc'' plants. Brass condensers were also a source of copper that was implicated in crude induced localized corrosion (CILC) fuel failures. In 1986 the first BWR intentionally injected zinc for the benefits of dose rate control. Although zinc alone was never implicated in fuel degradation of failures, a comprehensive fuel surveillance program was initiated to monitor fuel performance. Currently there are 14 plants that are injecting zinc. Six of these plants are also on hydrogen water chemistry. This paper describes the effect on both Zircaloy corrosion and the cruding characteristics as a result of these changes in water chemistry. Fuel rod corrosion was found to be independent of the specific water chemistry of the plants. The corrosion behavior was the same with the additions of zinc alone or zinc plus hydrogen and well within the operating experience for fuel without either of these additions. No change was observed in the amounts of crude deposited on the fuel rods, both for the adherent and loosely held deposits. One of the effects of the zinc addition was the trend to form more of the zinc rich iron spinel in the fuel deposits rather than the hematite deposits that are predominantly formed with non additive water chemistry

  10. Assessment of boiling transition analysis code against data from NUPEC BWR full-size fine-mesh bundle tests

    International Nuclear Information System (INIS)

    Utsuno, Hideaki; Ishida, Naoyuki; Masuhara, Yasuhiro; Kasahara, Fumio

    2004-01-01

    Transient BT analysis code TCAPE based on mechanistic methods coupled with subchannel analysis has been developed for the evaluation on fuel integrity under abnormal operations in BWR. TCAPE consisted mainly of the drift-flux model, the cross-flow model, the film model and the heat transfer model. Assessment of TCAPE has been performed against data from BWR full-size fine-mesh bundle tests (BFBT), which consisted of two major parts: the void distribution measurement and the critical power measurement. Code and data comparison was made for void distributions with varying number of unheated rods in simulated actual fuel assembly. Prediction of steady-state critical power was compared with the measurement on full-scale bundle under a range of BWR operational conditions. Although the cross-sectional averaged void fraction was underestimated when it became lower, the accuracy was obtained that the averaged ratio 0.910 and its standard deviation 0.076. The prediction of steady-state critical power agreed well with the data in the range of BWR operations, where the prediction accuracy was obtained that the averaged ratio 0.997 and its standard deviation 0.043. These results demonstrated that TCAPE is well capable to predict two-phase flow distribution and liquid film dryout phenomena occurring in BWR rod bundles. Part of NUPEC BFBT database will be made available for an international benchmark exercise. The code assessment shall be continued against the OECD/NRC benchmark based on BFBT database. (author)

  11. Dose rate reduction method for NMCA applied BWR plants

    International Nuclear Information System (INIS)

    Nagase, Makoto; Aizawa, Motohiro; Ito, Tsuyoshi; Hosokawa, Hideyuki; Varela, Juan; Caine, Thomas

    2012-09-01

    BRAC (BWR Radiation Assessment and Control) dose rate is used as an indicator of the incorporation of activated corrosion by products into BWR recirculation piping, which is known to be a significant contributor to dose rate received by workers during refueling outages. In order to reduce radiation exposure of the workers during the outage, it is desirable to keep BRAC dose rates as low as possible. After HWC was adopted to reduce IGSCC, a BRAC dose rate increase was observed in many plants. As a countermeasure to these rapid dose rate increases under HWC conditions, Zn injection was widely adopted in United States and Europe resulting in a reduction of BRAC dose rates. However, BRAC dose rates in several plants remain high, prompting the industry to continue to investigate methods to achieve further reductions. In recent years a large portion of the BWR fleet has adopted NMCA (NobleChem TM ) to enhance the hydrogen injection effect to suppress SCC. After NMCA, especially OLNC (On-Line NobleChem TM ), BRAC dose rates were observed to decrease. In some OLNC applied BWR plants this reduction was observed year after year to reach a new reduced equilibrium level. This dose rate reduction trends suggest the potential dose reduction might be obtained by the combination of Pt and Zn injection. So, laboratory experiments and in-plant tests were carried out to evaluate the effect of Pt and Zn on Co-60 deposition behaviour. Firstly, laboratory experiments were conducted to study the effect of noble metal deposition on Co deposition on stainless steel surfaces. Polished type 316 stainless steel coupons were prepared and some of them were OLNC treated in the test loop before the Co deposition test. Water chemistry conditions to simulate HWC were as follows: Dissolved oxygen, hydrogen and hydrogen peroxide were below 5 ppb, 100 ppb and 0 ppb (no addition), respectively. Zn was injected to target a concentration of 5 ppb. The test was conducted up to 1500 hours at 553 K. Test

  12. Vertical Drop of 44-BWR Waste Package With Lifting Collars

    Energy Technology Data Exchange (ETDEWEB)

    A.K. Scheider

    2005-08-23

    The objective of this calculation is to determine the structural response of a waste package (WP) dropped flat on its bottom from a specified height. The WP used for that purpose is the 44-Boiling Water Reactor (BWR) WP. The scope of this document is limited to reporting the calculation results in terms of stress intensities. The Uncanistered Waste Disposal Container System is classified as Quality Level 1 (Ref. 4, page 7). Therefore, this calculation is subject to the requirements of the Quality Assurance Requirements and Description (Ref. 16). AP-3. 12Q, Design Calculations and Analyses (Ref. 11) is used to perform the calculation and develop the document. The information provided by the sketches attached to this calculation is that of the potential design of the type of 44-BWR WP considered in this calculation and provides the potential dimensions and materials for that design.

  13. Study on thermal performance and margins of BWR fuel elements

    International Nuclear Information System (INIS)

    Stosic, Zoran

    1999-01-01

    This paper contributes to developing a methodology of predicting and analyzing thermal performance and margins of Boiling Water Reactor (BWR) fuel assemblies under conditions of reaching high quality Boiling Crisis and subsequent post-dryout thermal hydraulics causing temperature excursion of fuel cladding. Operational margins against dryout and potential for increasing fuel performance with appropriate benefits are discussed. The philosophy of modeling with its special topics are demonstrated on the HECHAN (HEated CHannel ANalyzer) model as the state-of-art for thermal-hydraulics analysis of BWR fuel assemblies in pre- and post-dryout two-phase flow regimes. The scope of further work either being or has to be performed concerning implementation of new physical aspects, including domain extension of HECHAN model applications to the Pressurized Water Reactors (PWRs), is discussed. Finally, a comprehensive overview of the literature dealing with development of the model is given. (author)

  14. Sophistication of operator training using BWR plant simulator

    International Nuclear Information System (INIS)

    Ohshiro, Nobuo; Endou, Hideaki; Fujita, Eimitsu; Miyakita, Kouji

    1986-01-01

    In Japanese nuclear power stations, owing to the improvement of fuel management, thorough maintenance and inspection, and the improvement of facilities, high capacity ratio has been attained. The thorough training of operators in nuclear power stations also contributes to it sufficiently. The BWR operator training center was established in 1971, and started the training of operators in April, 1974. As of the end of March, 1986, more than 1800 trainees completed training. At present, in the BWR operator training center, No.1 simulator of 800 MW class and No.2 simulator of 1100 MW class are operated for training. In this report, the method, by newly adopting it, good result was obtained, is described, that is, the method of introducing the feeling of being present on the spot into the place of training, and the new testing method introduced in retraining course. In the simulator training which is apt to place emphasis on a central control room, the method of stimulating trainees by playing the part of correspondence on the spot and heightening the training effect of multiple monitoring was tried, and the result was confirmed. The test of confirmation on the control board was added. (Kako, I.)

  15. Control in fabrication of PWR and BWR type reactor fuel elements

    International Nuclear Information System (INIS)

    Gorskij, V.V.

    1981-01-01

    Both destructive and non-destructive testing methods now in use in fabrication of BWR and PWR type reactor fuel elements at foreign plants are reviewed. Technological procedures applied in fabrication of fuel elements and fuel assemblies are described. Major attention is paid to radiographic, ultrasonic, metallographic, visual and autoclavic testings. A correspondence of the methods applied to the ASTM standards is discussed. The most part of the countries are concluded the apply similar testing methods enabling one to reliably evaluate the quality of primary materials and fabricated fuel elements and thus meeting the demands to contemporary PWR and BWR type reactor fuel elements. Practically all fuel element and pipe fabrication plants in Western Europe, Asia and America use the ASTM standards as the basis for the quality contr [ru

  16. Development of a computerized operator support system for BWR power plant

    International Nuclear Information System (INIS)

    Monta, K.; Sekimizu, K.; Sato, N.; Araki, T.; Mori, N.

    1985-01-01

    A computerized operator support system for BWR power plant has been developed since 1980 supported by the Japanese government. The main functions of the systems are post trip operational guidance, disturbance analysis, standby system management, operational margin monitoring and control rod operational guidance. The former two functions aim at protection against incidents during operation of nuclear power plants and the latter three functions aim at their prevention. As the final stage of the development, these functions are combined with the plant supervision function and are organized as an advanced man-machine interface for BWR power plant. During the above process, operator task analyses are performed to enable synthesis of these support functions for right fit to operator tasks and to realize a hierarchical structure for CRT displays for right fit to operators cognitive needs. (author)

  17. Prediction of droplet deposition around BWR fuel spacer by FEM flow analysis

    International Nuclear Information System (INIS)

    Yamamoto, Yasushi; Morooka, Shinichi

    1997-01-01

    The critical power of the BWR fuel assembly has been remarkably increased. That increase mainly depends on the improvement of the spacer which keeps fixed gaps between fuel rods. So far, these improvements have been carried out on the basis of what developers consider to be appropriate and the results of mockup tests of the BWR fuel assembly. However, continued reliance on these approaches for the development of a higher performance fuel assembly will prove time-consuming and costly. Therefore, it is hoped that the spacer effects for the critical power can be investigated by computer simulation, and it is significantly important to develop the critical power prediction method. Direct calculation of the two-phase flow in a BWR fuel channel s still difficult. Accordingly, a new method for predicting the critical power was proposed. Our method consists of CFD (computer fluid dynamics) code based on the single-phase flow analysis method and the subchannel analysis code. To verify our method, the critical power predictions for various spacer geometries were performed. The predicted results of the critical power were compared with the experimental data. The result of the comparison showed a good agreement and the applicability of our method for various spacer geometries. (author)

  18. Water chemistry control and decontamination experience with TEPCO BWR`s and the measures planned for the future

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, N.; Miyamaru, K. [Tokyo Electric Power Co. (Japan)

    1995-03-01

    The new TEPCO BWR`s are capable of having the occupational radiation exposure controlled successfully at a low level by selecting low cobalt steel, using corrosion-resistant steel, employing dual condensate polishing systems, and controlling Ni/Fe ratio during operation. The occupational radiation exposure of the old BWR`s, on the other hand, remains high though reduced substantially through the use of low cobalt replacement steel and the partial addition of a filter in the condensate polishing system. Currently under review is the overall decontamination procedure for the old BWR`s to find out to measures needed to reduce the amount of crud that is and has been carried over into the nuclear reactor. The current status of decontamination is reported below.

  19. PREDICTIVE METHODS FOR STABILITY MARGIN IN BWR

    OpenAIRE

    MELARA SAN ROMÁN, JOSÉ

    2016-01-01

    [EN] Power and flow oscillations in a BWR are very undesirable. One of the major concerns is to ensure, during power oscillations, compliance with GDC 10 and 12. GDC 10 requires that the reactor core be designed with appropriate margin to assure that specified acceptable fuel design limits will not be exceeded during any condition of normal operation, including the effects of anticipated operational occurrences. GDC 12 requires assurance that power oscillations which can result in conditions ...

  20. Valuation of power oscillations in a BWR after control rod banks withdrawal events

    International Nuclear Information System (INIS)

    Costa, A. L.; Pereira, C.; Da Silva, C. A. M.; Veloso, M. A. F.

    2009-01-01

    The out-of-phase mode of oscillation is a very challenging type of instability occurring in BWR (Boiling Water Reactor) and its study is relevant because of the safety implications related to the capability to promptly detect any such inadvertent occurrence by in-core neutron detectors, thus triggering the necessary countermeasures in terms of selected rod insertion or even reactor shutdown. In this work, control rod banks (CRB) withdrawal transient was considered to study the power instability occurring in a BWR. To simulate this transient, the control rod banks were continuously removed from the BWR core in different cases. The simulation resulted in a very large increase of power. To perform the instability simulations, the RELAP5/MOD3.3 thermal hydraulic system code was coupled with the PARCS/2.4 3D neutron kinetic code. Data from a real BWR, the Peach Bottom, have been used as reference conditions and reactor parameters. The trend of the mass flow rate, pressure, coolant temperature and the void fraction to four thermal hydraulic channels symmetrically located in the core with respect to the core centre, were taken. It appears that the velocity of the rod bank withdrawal is a very important aspect for reactor stability. The slowest CRB withdrawal (180 s) did not cause power perturbation while the fast removal (20 s) triggered a slow power oscillation that little by little amplified to reach levels of more 100% of the initial power after about 210 s. The investigation of the related thermo hydraulic parameters showed that the mass flow rate, the void fraction and also the coolant temperature began to oscillate at approximately the same time interval

  1. Analysis of Core Physics Experiments on Irradiated BWR MOX Fuel in REBUS Program

    International Nuclear Information System (INIS)

    Yamamoto, Toru; Ando, Yoshihira; Hayashi, Yamato

    2008-01-01

    As part of analyses of experimental data of a critical core containing a irradiated BWR MOX test bundle in the REBUS program, depletion calculations was performed for the BWR MOX fuel assemblies from that the MOX test rods were selected by using a general purpose neutronics code system SRAC. The core analyses were carried out using SRAC and a continuous energy Monte Carlo code MVP. The calculated k eff s were compared with those of the core containing a fresh MOX fuel bundle in the program. The SRAC-diffusion calculation underestimates k eff s of the both cores by 1.0 to 1.3 %dk and the k eff s of MVP are 1.001. The difference in k eff between the irradiated BWR MOX test bundle core and the fresh MOX one is 0.4 %dk in the SRAC-diffusion calculation and 0.0 %dk in the MVP calculation. The calculated fission rate distributions are in good agreement with the measurement in the SRAC-diffusion and MVP calculations. The calculated neutron flux distributions are also in good agreement with the measurement. The calculated burnup reactivity in the both calculations well reproduce the measurements. (authors)

  2. Prevention of organic iodide formation in BWR`s

    Energy Technology Data Exchange (ETDEWEB)

    Karjunen, T [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland); Laitinen, T; Piippo, J; Sirkiae, P [VTT Manufacturing Technology (Finland)

    1996-12-01

    During an accident, many different forms of iodine may emerge. Organic iodides, such as methyl iodide and ethyl iodide, are relatively volatile, and thus their appearance leads to increased concentration of gaseous iodine. Since organic iodides are also relatively immune to most accident mitigation measures, such as sprays and filters, they can affect the accident source term significantly even when only a small portion of iodine is in organic form. Formation of organic iodides may not be limited by the amount of organic substances available. Excessive amounts of methane can be produced, for example, during oxidation of boron carbide, which is used in BWR`s as a neutron absorber material. Another important source is cable insulation. In a BWR, a large quantity of cables is placed below the pressure vessel. Thus a large quantity of pyrolyse gases will be produced, should the vessel fail. Organic iodides can be formed as a result of many different reactions, but at least in certain conditions the main reaction takes place between an organic radical produced by radiolysis and elemental iodine. A necessary requirement for prevention of organic iodide production is therefore that the pH in the containment water pools is kept high enough to eliminate formation of elemental iodine. In a typical BWR the suppression pool water is usually unbuffered. As a result, the pH may be dominated by chemicals introduced during an accident. If no system for adding basic chemicals is operable, the main factor affecting pool water pH may be hydrochloric acid released during cable degradation. Should this occur, the conditions could be very favorable for production of elemental iodine and, consequently, formation of organic iodides. Although high pH is necessary for iodine retention, it could have also adverse effects. High pH may, for example, accelerate corrosion of containment materials and alter the characteristics of the solid corrosion products. (author) 6 figs., 1 tab., 13 refs.

  3. OECD/NRC BWR Turbine Trip Transient Benchmark as a Basis for Comprehensive Qualification and Studying Best-Estimate Coupled Codes

    International Nuclear Information System (INIS)

    Ivanov, Kostadin; Olson, Andy; Sartori, Enrico

    2004-01-01

    An Organisation for Economic Co-operation and Development (OECD)/U.S. Nuclear Regulatory Commission (NRC)-sponsored coupled-code benchmark has been initiated for a boiling water reactor (BWR) turbine trip (TT) transient. Turbine trip transients in a BWR are pressurization events in which the coupling between core space-dependent neutronic phenomena and system dynamics plays an important role. In addition, the available real plant experimental data make this benchmark problem very valuable. Over the course of defining and coordinating the BWR TT benchmark, a systematic approach has been established to validate best-estimate coupled codes. This approach employs a multilevel methodology that not only allows for a consistent and comprehensive validation process but also contributes to the study of different numerical and computational aspects of coupled best-estimate simulations. This paper provides an overview of the OECD/NRC BWR TT benchmark activities with emphasis on the discussion of the numerical and computational aspects of the benchmark

  4. Requests on domestic nuclear data library from BWR design

    International Nuclear Information System (INIS)

    Maruyama, Hiromi

    2003-01-01

    Requests on the domestic nuclear data library JENDL and activities of the Nuclear Data Center have been presented from the perspective of BWR design and design code development. The requests include a standard multi-group cross section library, technical supports, and clarification of advantage of JENDL as well as requests from physical aspects. (author)

  5. AREVA solutions to licensing challenges in PWR and BWR reload and safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Curca-Tivig, Florin [AREVA GmbH, Erlangen (Germany)

    2016-05-15

    Regulatory requirements for reload and safety analyses are evolving: new safety criteria, request for enlarged qualification databases, statistical applications, uncertainty propagation.. In order to address these challenges and access more predictable licensing processes, AVERA is implementing consistent code and methodology suites for PWR and BWR core design and safety analysis, based on first principles modeling and extremely broad verification and validation data base. Thanks to the high computational power increase in the last decades methods' development and application now include new capabilities. An overview of the main AREVA codes and methods developments is given covering PWR and BWR applications in different licensing environments.

  6. A study of heat capacity temperature limit of BWR

    International Nuclear Information System (INIS)

    Wang, Shih-Jen; Chen, Jyh-Jun; Chien, Chun-Sheng; Teng, Jyh-Tong

    2012-01-01

    Highlights: ► The purpose of this study is to verify the HCTL. ► MAAP4 was used as code to generate a realistic and convenient HCTL. ► The current HCTL curve causes confusing in reading data. ► The revised HCTL curves developed in this study. ► Users can obtain important parameters from the revised HCTL without confusion and interpolation. - Abstract: Heat capacity temperature limit (HCTL) is an important parameter for operation of BWR. Current version of the HCTL was derived, based on simple model of computation aids (CA) of BWR owners’ group (BWROG). However, some parts of the current HCTL are confusing to the users in reading data. The purpose of this study is to verify the HCTL by applying the MAAP4 code to the field of emergency operating procedure (EOP). The trends of HCTL generated by MAAP4 code are consistent with those obtained from CA. A series of revised HCTL evaluated at various times after scram are provided and the confusing part is eliminated.

  7. System control model of a turbine for a BWR

    International Nuclear Information System (INIS)

    Vargas O, Y.; Amador G, R.; Ortiz V, J.; Castillo D, R.; Delfin L, A.

    2009-10-01

    In this work is presented a design of a control system of a turbine for a nuclear power plant with a BWR like energy source. The model seeks to implement later on at thermal hydraulics code of better estimate RELAP/SCDAPSIM. The model is developed for control and protection of turbine, and the consequent protection to the BWR, considering that the turbine control could be employed for one or several turbines in series. The quality of present designs of control pattern of turbine it is that it considers the parameters more important in the operation of a turbine besides that is has incorporated at control the secondary parameters that will be activated originally as true when the turbine model is substituted by a model more detailed. The development of control model of a turbine will be good in short and medium term to realize analysis about the operation of turbine with different operation conditions, of vapor extraction specific steps of turbine to feed other equipment s, besides analyzing the separate effect and integrated effect. (Author)

  8. A study of heat capacity temperature limit of BWR

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shih-Jen, E-mail: sjenwang@iner.gov.tw [Institute of Nuclear Energy Research (INER), 1000, Wunhua Rd., Jiaan Village, Longtan Township, Taoyuan County 32546, Taiwan (China); Chen, Jyh-Jun [Department of Mechanical Engineering, Chung Yuan Christian University, 200, Chung Pei Rd., Chung Li City, Taoyuan County 32023, Taiwan (China); Chien, Chun-Sheng [Institute of Nuclear Energy Research (INER), 1000, Wunhua Rd., Jiaan Village, Longtan Township, Taoyuan County 32546, Taiwan (China); Teng, Jyh-Tong [Department of Mechanical Engineering, Chung Yuan Christian University, 200, Chung Pei Rd., Chung Li City, Taoyuan County 32023, Taiwan (China)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer The purpose of this study is to verify the HCTL. Black-Right-Pointing-Pointer MAAP4 was used as code to generate a realistic and convenient HCTL. Black-Right-Pointing-Pointer The current HCTL curve causes confusing in reading data. Black-Right-Pointing-Pointer The revised HCTL curves developed in this study. Black-Right-Pointing-Pointer Users can obtain important parameters from the revised HCTL without confusion and interpolation. - Abstract: Heat capacity temperature limit (HCTL) is an important parameter for operation of BWR. Current version of the HCTL was derived, based on simple model of computation aids (CA) of BWR owners' group (BWROG). However, some parts of the current HCTL are confusing to the users in reading data. The purpose of this study is to verify the HCTL by applying the MAAP4 code to the field of emergency operating procedure (EOP). The trends of HCTL generated by MAAP4 code are consistent with those obtained from CA. A series of revised HCTL evaluated at various times after scram are provided and the confusing part is eliminated.

  9. TRAB, a transient analysis program for BWR. Part 1

    International Nuclear Information System (INIS)

    Rajamaeki, Markku.

    1980-03-01

    TRAB is a transient analysis program for BWR. The present report describes its principles. The program has been developed from TRAWA-program. It models the interior of the pressure vessel and related subsystems of BWR viz. reactor core, recirculation loop including the upper part of the vessel, recirculation pumps, incoming and outgoing flow systems, and control and protection systems. Concerning core phenomena and all flow channel hydraulics the submodels are one-dimensional of main features. The geometry is very flexible. The program has been made particularly to simulate various reactivity transients, but it is applicable more generally to reactor incidents and accidents in which no flow reversal or no emptying of the circuit must occur below the water level. The program is extensively supplied by input and output capabilities. The user can act upon the simulation of a transient by defining external disturbances, scheduled timevariations for any system variable, by modeling new subsystems, which are representable with ordinary linear differential equations, and by defining relations of functional form between system variables. The run of the program can be saved and restarted. (author)

  10. Impact of advanced BWR core physics method on BWR core monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Moon, H; Wells, A [Siemens Power Corporation, Richland (United States)

    2000-07-01

    Siemens Power Corporation recently initiated development of POWERPLEX{sup TM}-III for delivery to the Grand Gulf Nuclear Power Station. The main change introduced in POWERPLEX{sup TM}-III as compared to its predecessor POWERPLEX{sup TM}-II is the incorporation of the advances BWR core simulator MICROBURN-B2. A number of issues were identified and evaluated relating to the implementation of MICROBURN-B2 and its impact on core monitoring. MICROBURN-B2 demands about three to five times more memory and two to three times more computing time than its predecessor MICROBURN-B in POWERPLEX {sup TM}-II. POWERPLEX{sup TM}-III will improve thermal margin prediction accuracy and provide more accurate plant operating conditions to operators than POWERPLEX{sup TM}-II due to its improved accuracy in predicted TIP values and critical k-effective. The most significant advantage of POWERPLEX{sup TM}-III is its capability to monitor a relaxed rod sequence exchange operation. (authors)

  11. Development of membrane moisture separator for BWR off-gas system

    International Nuclear Information System (INIS)

    Ogata, H.; Kawamura, S.; Kumasaka, M.; Nishikubo, M.

    2001-01-01

    In BWR plant off-gas treatment systems, dehumidifiers are used to maintain noble gas adsorption efficiency in the first half of the charcoal hold-up units. From the perspective of simplifying and reducing the cost of such a dehumidification system, Japanese BWR utilities and plant fabricators have been developing a dehumidification system employing moisture separation membrane of the type already proven in fields such as medical instrumentation and precision measuring apparatus. The first part of this development involved laboratory testing to simulate the conditions found in an actual off-gas system, the results of which demonstrated satisfactory results in terms of moisture separation capability and membrane durability, and suggested favorable prospects for application in actual off-gas systems. Further, in-plant testing to verify moisture separation capability and membrane durability in the presence of actual gases is currently underway, with results so far suggesting that the system is capable of obtaining good moisture separation capability. (author)

  12. Flux and power distributions in BWR multi-bundle fuel arrays

    International Nuclear Information System (INIS)

    Cheng, H.S.

    1976-02-01

    Multi-bundle calculations have been performed in order to shed some light on an abnormal TIP trace recently discovered in a BWR/3. Transport theory was employed to perform the calculations with ENDF/B-IV data. The results indicate that a strong variation of the TIP reading does exist along the narrow water gap of a BWR due to the steep gradient of the thermal neutron flux; the maxima occurring at the intersections of the water gaps and the minima in between. Using this characteristic behavior of the TIP reading, together with the observed normal TIP trace, the abnormal behavior of the affected TIP trace exhibiting three peaks along the channel was roughly simulated. The calculations confirmed that the observed TIP trace anomaly was caused by the severe bending of the affected instrument tube as was actually discovered. The effect of hot water intrusion into the TIP guide tube, as well as that of loading the new 8 x 8 reload bundles, was also evaluated

  13. Damage by radiation in structural materials of BWR reactor vessels

    International Nuclear Information System (INIS)

    Robles, E.; Balcazar, M.; Alpizar, A.M.; Calderon, B.E.

    2002-01-01

    The structural materials which are manufactured the pressure vessels of the BWR reactors undergo degradation in their mechanical properties mainly due to the damage produced by the fast neutrons (E> 1 MeV) coming from the reactor core. The mechanisms of neutron damage in this type of materials are experimentally studied, through the irradiation of vessel steel in experimental reactors for a quickly ageing. Alternately the neutron damage through steel irradiation with heavy ions is simulated. In this work the first results of the damage induced by irradiation of a similar steel to the vessel of a BWR reactor are shown. The irradiation was performed with fast neutrons (E> 1 MeV, fluence of 1.45 x 10 18 n/cm 2 ) in the TRIGA Mark III Salazar reactor and separately with Ni +3 ions in a Tandetrom accelerator (E= 4.8 MeV and an ion flux rank of 0.1 to 53 ions/A 2 ). (Author)

  14. Studies of fragileness in steels of vessels of BWR reactors

    International Nuclear Information System (INIS)

    Robles, E.F.; Balcazar, M.; Alpizar, A.M.; Calderon, B.E.

    2003-01-01

    The structural materials with those that are manufactured the pressure vessels of the BWR reactors, suffer degradation in its mechanical properties mainly to the damage taken place by the fast neutrons (E > 1 MeV) coming from the reactor core. Its are experimentally studied those mechanisms of neutron damage in this material type, by means of the irradiation of steel vessel in experimental reactors to age them quickly. Alternatively it is simulated the neutron damage by means of irradiation of steel with heavy ions. In this work those are shown first results of the damage induced by irradiation from a similar steel to the vessel of a BWR reactor. The irradiation was carried out with fast neutrons (E > 1 MeV, fluence of 1.45 x 10 18 n/cm 2 ) in the TRIGA MARK lll reactor and separately with Ni +3 ions in a Tandetrom accelerator, E = 4.8 MeV and range of the ionic flow of 0.1 to 53 iones/A 2 . (Author)

  15. Accident sequence analysis for a BWR [Boiling Water Reactor] during low power and shutdown operations

    International Nuclear Information System (INIS)

    Whitehead, D.W.; Hake, T.M.

    1990-01-01

    Most previous Probabilistic Risk Assessments have excluded consideration of accidents initiated in low power and shutdown modes of operation. A study of the risk associated with operation in low power and shutdown is being performed at Sandia National Laboratories for a US Boiling Water Reactor (BWR). This paper describes the proposed methodology for the analysis of the risk associated with the operation of a BWR during low power and shutdown modes and presents preliminary information resulting from the application of the methodology. 2 refs., 2 tabs

  16. Seismic PRA of a BWR plant

    International Nuclear Information System (INIS)

    Nishio, Masahide; Fujimoto, Haruo

    2014-01-01

    Since the occurrence of nuclear power plant accidents in the Fukushima Daichi nuclear power station, the regulatory framework on severe accident (SA) has been discussed in Japan. The basic concept is to typify and identify the accident sequences leading to core/primary containment vessel (PCV) damage and to implement SA measures covering internal and external events extensively. As Japan is an earthquake-prone country and earthquakes and tsunami are important natural external events for nuclear safety of nuclear power plants, JNES performed the seismic probabilistic risk assessment (PRA) on a typical nuclear power plant and evaluated the dominant accident sequences leading to core/PCV damage to discuss dominant scenarios of severe accident (SA). The analytical models and the results of level-1 seismic PRA on a 1,100 MWe BWR-5 plant are shown here. Seismic PRA was performed for a typical BWR5 plant. Initiating events with large contribution to core damage frequency are the loss of all AC powers (station blackout) and the large LOCA. The top of dominant accident sequences is the simultaneous occurrence of station blackout and large LOCA. Important components to core damage frequency are electric power supply equipment. It needs to keep in mind that the results are influenced on site geologic characteristic to a greater or lesser. In the process of analysis, issues such as conservative assumptions related to damages of building or structure and success criteria for excessive LOCA are left to be resolved. These issues will be further studied including thermal hydric analysis in the future. (authors)

  17. Experimental study on reduced moderation BWR with Advanced Recycle System (BARS)

    International Nuclear Information System (INIS)

    Hiraiwa, K.; Yoshioka, K.; Yamamoto, Y.; Akiba, M.; Yamaoka, M.; Abe, N.; Mimatsu, J.

    2004-01-01

    Experimental study has been done for reduced-moderation spectrum boiling water reactor named BARS (BWR with Advanced Recycle System). The critical assembly experiment for triangular tight uranium lattice has been done in TOSHIBA critical assembly (NCA). Experimental method based on modified conversion ratio was adopted to evaluate the void reactivity effect. Void fraction was simulated by formed polystyrene in this experiment. The measured void coefficient for tight uranium lattice agreed with calculation. The thermal hydraulic test study has been done to study the coolability of BARS lattice. Visual test and high-pressure thermal hydraulic test have been done as the thermal hydraulic test. Visual test has indicated the flow behavior for BARS lattice is same as that of current BWR. The high-pressure thermal hydraulic test has indicated the applicability of modified Arai's correlation to the BARS lattice. (authors)

  18. Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR) are compared

    International Nuclear Information System (INIS)

    Greneche, D.

    2014-01-01

    This article compares the 2 types of light water reactors that are used to produce electricity: the Pressurized Water Reactor (PWR) and the Boiling Water Reactor (BWR). Historically the BWR concept was developed after the PWR concept. Today 80% of light water reactors operating in the world are of PWR-type. This comparison is comprehensive and detailed. First the main technical features are reviewed and compared: reactor architecture, core and fuel design, reactivity control, reactor vessel, cooling systems and reactor containment. Secondly, various aspects concerning reactor operations like reactor control, fuel management, maintenance, inspections, radiation protection, waste generation and reactor reliability are presented and compared for both reactors. As for the issue of safety, it is highlighted that the accidental situations are too different for the 2 reactors to be compared. The main features of reactor safety are explained for both reactors

  19. Influence of the voids fraction in the power distribution for two different types of fuel assemblies; Influencia de la fraccion de vacios en la distribucion de potencia para dos diferentes tipos de ensambles de combustible

    Energy Technology Data Exchange (ETDEWEB)

    Jacinto C, S.; Del Valle G, E. [IPN, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, 07738 Ciudad de Mexico (Mexico); Alonso V, G.; Martinez C, E., E-mail: sid.jcl@gmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2017-09-15

    In this work an analysis of the influence of the voids fraction in the power distribution was carried out, in order to understand more about the fission process and the energy produced by the fuel assembly type BWR. The fast neutron flux was analyzed considering neutrons with energies between 0.625 eV and 10 MeV. Subsequently, the thermal neutron flux analysis was carried out in a range between 0.005 eV and 0.625 eV. Likewise, its possible implications in the power distribution of the fuel cell were also analyzed. These analyzes were carried out for different void fraction values: 0.2, 0.4 and 0.8. The variations in different burn steps were also studied: 20, 40 and 60 Mwd / kg. These values were studied in two different types of fuel cells: Ge-12 and SVEA-96, with an average initial enrichment of 4.11%. (Author)

  20. Results of the Simulator smart against synthetic signals using a model of reduced order of BWR with additive and multiplicative noise; Resultados del simulador smart frente a senales sinteticas utilizando un modelo de orden reducido de BWR con ruido aditivo y multiplicativo

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Cobo, J. L.; Montesino, M. E.; Pena, J.; Escriva, A.; Melara, J.

    2011-07-01

    Results of SMART-simulator front of synthetic signals with models of reduced order of BWR with additive and multiplicative noise Under the SMART project, which aims to monitor the signals Cofrentes nuclear plant, we have developed a signal generator of synthetics BWR that will allow together real signals of plant the validation of the monitor.

  1. Spatio-temporal variability in ontogenetic guild structure of an intertidal fish assemblage in central Chile Variabilidad espacio-temporal en la estructura de gremios ontogenéticos de un ensamble de peces intermareales de Chile central

    Directory of Open Access Journals (Sweden)

    PATRICIA A BERRÍOS

    2011-12-01

    variabilidad en las condiciones ambientales, especialmente en peces intermareales, los que alcanzan varios órdenes de magnitud en tamaño corporal. Sin embargo, la influencia de los cambios ontogenéticos en la membresía gremial sobre la estructura espacio-temporal de los ensambles de peces permanece virtualmente desconocida. En este trabajo estudiamos la variabilidad espacio-temporal en la estructura de los gremios alimenticios ontogenéticos (OFG de los ensambles de peces intermareales que ocurren en el intermareal rocoso de la costa de Chile central. Para esto realizamos an��lisis de componentes principales (PCA y pruebas de aleatorización (pruebas R de la composición relativa de las OFG de estos ensambles, obtenidos de muestreos estacionales en diez pozas intermareales ubicadas en dos alturas de mareas en la zona intermareal en tres localidades entre los 33° y 34° S. En general, los PCA y pruebas R sugieren que la variabilidad espacial domina sobre la variabilidad temporal en la estructura de las OFG, debido principalmente a la alta representatividad de las especies omnívoras en las pozas altas del intermareal en dos de las tres localidades muestreadas. Sin embargo, cambios relacionados a la fenología en la representación de las clases de tamaño de los peces (i.e. reclutamiento de carnívoros en primavera-verano junto con diferencias ontogenéticas en la selección de hábitat (e.g., selección por pozas del intermareal bajo por la OFG de carnívoros de gran tamaño contribuyeron a una diferenciación espacial y temporal de la estructura de la OFG. Finalmente, la representación relativa de cada OFG se correlacionó con la de sus especies dominantes, sin evidencia de una compensación por densidad. Esto sugiere bajos niveles de redundancia funcional entre las especies en cada OFG, lo cual denota la vulnerabilidad del funcionamiento de estos ensambles a perturbaciones sesgadas en tamaño corporal tales como la pesca.

  2. Caracterización de la composición y fluctuaciones en la densidad y diversidad de los ensambles planctónicos en cuatro humedales de Tarapacá

    Directory of Open Access Journals (Sweden)

    Esteban Quinan

    2016-12-01

    Full Text Available La limnología de los humedales interiores en Tarapacá presenta ciclos productivos altamente dependientes de las lluvias estivales y las condiciones fisicoquímicas del medio. Entre 2013 y 2015 se estudiaron ensambles planctónicos de dos lagunas de evaporación y dos quebradas, durante dos temporadas productivas y dos vegetativas, junto con esto se observaron las condiciones fisicoquímicas asociadas. Los resultados mostraron que el fitoplancton en general estuvo dominado por diatomeas y solo en una quebrada por algas verdes, mientras que el zooplancton presentó composiciones muy distintas entre las lagunas y entre las quebradas, con importantes variaciones temporales. En lagunas las densidades altas de zooplancton asociaron positivamente con sólidos disueltos totales y su diversidad inversamente con la temperatura, por su parte la diversidad de fitoplancton mantuvo una relación inversa con la riqueza de zooplancton.

  3. Aging assessment of BWR control rod drive systems

    International Nuclear Information System (INIS)

    Greene, R.H.

    1992-01-01

    This Phase 1 Nuclear Plant Aging Research (NPAR) study examines the aging phenomena associated with boiling water reactor (BWR) control rod drive mechanisms (CRDMs) and assesses the merits of various methods of managing this aging. Information for this study was acquired from (1) the results of a special CRDM aging questionnaire distributed to each US BWR utility, (2) a first-of-its-kind workshop held to discuss CRDM aging and maintenance concerns, (3) an analysis of NPRDS failure cases attributed to the CRD system, and (4) personal information exchange. As part of this study, nearly 3,500 NPRDS failure reports have been analyzed to examine the prevailing failure trends for CRD system components. An investigation has been conducted that summarizes the occurrence frequency of these component failures, discovery methods, reported failure causes, their respective symptoms, and actions taken by utilities to restore component and system service. The results of this research have identified the predominant CRDM failure modes and causes. In addition, recommendations are presented regarding specific actions that utilities can implement to mitigate CRDM aging. An evaluation has also been made of certain practices and tooling which have enabled some utilities to reduce ALARA exposures received from routine CRDM replacement and rebuilding activities

  4. Aging assessment of BWR control rod drive systems

    International Nuclear Information System (INIS)

    Greene, R.H.

    1991-01-01

    This study examines the aging phenomena associated with boiling water reactor (BWR) control rod drive mechanisms (CRDMs) and assess the merits of various methods of managing this aging. Information for this study was acquired from (1) the results of a special CRDM aging questionnaire distributed to each US BWR utility, (2) a first-of-its-kind workshop held to discuss CRDM aging and maintenance concerns, (3) an analysis of Nuclear Plant Reliability Data System (NPRDS) failure cases attributed to the CRD system, and (4) personal information exchange with industry experts. As part of this study, nearly 3500 NPRDS failure reports have been analyzed to examine the prevailing failure trends for CRD system components. An investigation was conducted to summarize the occurrence frequency of these component failures, discovery methods, reported failure causes, their respective symptoms, and actions taken by utilities to restore component and system service. The results of this research have identified the predominant CRDM failure modes and causes. In addition, recommendations are presented that identify specific actions utilities can implement to mitigate CRDM aging. An evaluation has also been made of certain maintenance practices and tooling which have enabled some utilities to reduce ALARA exposures received from routine CRDM replacement and rebuilding activities. 5 refs., 8 figs., 2 tabs

  5. Appraisal of BWR plutonium burners for energy centers

    International Nuclear Information System (INIS)

    Williamson, H.E.

    1976-01-01

    The design of BWR cores with plutonium loadings beyond the self-generation recycle (SGR) level is investigated with regard to their possible role as plutonium burners in a nuclear energy center. Alternative plutonium burner approaches are also examined including the substitution of thorium for uranium as fertile material in the BWR and the use of a high-temperature gas reactor (HTGR) as a plutonium burner. Effects on core design, fuel cycle facility requirements, economics, and actinide residues are considered. Differences in net fissile material consumption among the various plutonium-burning systems examined were small in comparison to uncertainties in HTGR, thorium cycle, and high plutonium-loaded LWR technology. Variation in the actinide content of high-level wastes is not likely to be a significant factor in determining the feasibility of alternate systems of plutonium utilization. It was found that after 10,000 years the toxicity of actinide high-level wastes from the plutonium-burning fuel cycles was less than would have existed if the processed natural ores had not been used for nuclear fuel. The implications of plutonium burning and possible future fuel cycle options on uranium resource conservation are examined in the framework of current ERDA estimates of minable uranium resources

  6. Aging assessment of BWR control rod drive systems

    International Nuclear Information System (INIS)

    Greene, R.H.

    1991-01-01

    This Phase 1 Nuclear Plant Aging Research (NPAR) study examines the aging phenomena associated with boiling water reactor (BWR) control rod drive mechanisms (CRDMs) and assesses the merits of various methods of managing this aging. Information for this study was acquired from (1) the results of a special CRDM aging questionnaire distributed to each US BWR utility, (2) a first-of-its-kind workshop held to discuss CRDM aging and maintenance concerns, (3) an analysis of NPRDS failure cases attributed to the CRD system, and (4) personal information exchange. As part of this study, nearly 3,500 NPRDS failure reports have been analyzed to examine the prevailing failure trends for CRD system components. An investigation has been conducted that summarizes the occurrence frequency of these component failures, discovery methods, reported failure causes, their respective symptoms, and actions taken by utilities to restore component and system service. The results of this research have identified the predominant CRDM failure modes and causes. In addition, recommendations are presented regarding specific actions that utilities can implement to mitigate CRDM aging. An evaluation has also been made of certain practices and tooling which have enabled some utilities to reduce ALARA exposures received from routine CRDM replacement and rebuilding activities

  7. Safety evaluation of BWR off-gas treatment systems

    International Nuclear Information System (INIS)

    Schultz, R.J.; Schmitt, R.C.

    1975-01-01

    Some of the results of a safety evaluation performed on current generic types of BWR off-gas treatment systems including cooled and ambient temperature adsorber beds and cryogenics are presented. The evaluation covered the four generic types of off-gas systems and the systems of five major vendors. This study was part of original work performed under AEC contract for the Directorate of Regulatory Standards. The analysis techniques employed for the safety evaluation of these systems include: Fault Tree Analysis; FMECA (Failure Mode Effects and Criticality Analysis); general system comparisons, contaminant, system control, and design adequacy evaluations; and resultant Off-Site Dose Calculations. The salient areas presented are some of the potential problem areas, the approach that industry has taken to mitigate or design against potential upset conditions, and areas where possible deficiencies still exist. Potential problem areas discussed include hydrogen detonation, hydrogen release to equipment areas, operator/automatic control interface, and needed engineering evaluation to insure safe system operation. Of the systems reviewed, most were in the category of advanced or improved over that commonly in use today, and a conclusion from the study was that these systems offer excellent potential for noble gas control for BWR power plants where more stringent controls may be specified -- now or in the future. (U.S.)

  8. A detailed BWR recirculation loop model for RELAP

    Energy Technology Data Exchange (ETDEWEB)

    Araiza-Martínez, Enrique, E-mail: enrique.araiza@inin.gob.mx; Ortiz-Villafuerte, Javier, E-mail: javier.ortiz@inin.gob.mx; Castillo-Durán, Rogelio, E-mail: rogelio.castillo@inin.gob.mx

    2017-01-15

    Highlights: • A new detailed BWR recirculation loop model was developed for RELAP. • All jet pumps, risers, manifold, suction and control valves, and recirculation pump are modeled. • Model is tested against data from partial blockage of two jet pumps. • For practical applications, simulation results showed good agreement with available data. - Abstract: A new detailed geometric model of the whole recirculation loop of a BWR has been developed for the code RELAP. This detailed model includes the 10 jet pumps, 5 risers, manifold, suction and control valves, and the recirculation pump, per recirculation loop. The model is tested against data from an event of partial blockage at the entrance nozzle of one jet pump in both recirculation loops. For practical applications, simulation results showed good agreement with data. Then, values of parameters considered as figure of merit (reactor power, dome pressure, core flow, among others) for this event are compared against those from the common 1 jet pump per loop model. The results show that new detailed model led to a closer prediction of the reported power change. The detailed recirculation loop model can provide more reliable boundary condition data to a CFD models for studies of, for example, flow induced vibration, wear, and crack initiation.

  9. Stability analysis of a recycling circuit of a BWR type reactor. Theoretical study; Analisis de estabilidad de un circuito de recirculacion de un reactor del tipo BWR. Estudio teorico

    Energy Technology Data Exchange (ETDEWEB)

    Salinas H, J.G.; Espinosa P, G. [Universidad Autonoma Metropolitana-Iztapalapa, 09000 Mexico D.F. (Mexico); Gonzalez M, V.M. [Comision Nacional de Seguridad Nuclear y Salvaguardias, 04000 Mexico D.F. (Mexico)

    2000-07-01

    The Technology, Regulation and Services Management of the National Commission of Nuclear Safety and Safeguards financed and in coordinate form with the I.P.H. Department of the Metropolitan Autonomous-Iztapalapa University developed the present project with the purpose of studying the effect of the recycling system on the linear stability of a BWR reactor whose reference central is the Laguna Verde power station. The present project forms part of a work series focused to the linear stability of the nuclear reactor of the Unit 1 at Laguna Verde power station. The components of the recycling system considered for the study of stability are the recycling external circuit (recycling pumps, valves) and the internal circuit (downcomer, jet pumps, lower full, driers, separators). The mathematical model is obtained applying mass balances and movement quantity in each one of the mentioned circuits. With respect to the nucleus model two regions are considered, the first one is made of a flow in one phase and the second one of a flow in two phases. For modelling the biphasic region it is considered homogenous flow. Generally it is studied the system behavior in the frequency domain starting from the transfer function applied to four operational states which correspond to the lower stability zone in the map power-flow of the Unit 1 of Laguna Verde power station. The Nyquist diagrams corresponding to each state as well as their characteristic frequency were determined. The results show that exists a very clear dependence of the power-flow relation on the stability of the system. It was found that the boiling length is an important parameter for the linear stability of the system. The obtained results show that the characteristic frequencies in unstability zones are similar to the reported data of the Unit 1 of the Laguna Verde power station in the event of power oscillations carried out in January 1995. (Author)

  10. Modification of porosity in the catalyst layer of membrane electrode assemblies using pore-forming agents; Modificacion de la porosidad en la capa catalitica de ensambles membrana-electrodo empleando agentes formadores de poros

    Energy Technology Data Exchange (ETDEWEB)

    Flores Hernandez, J. Roberto [Instituto de Investigaciones Electricas Cuernavaca, Morelos (Mexico)] e-mail: jrflores@iie.org.mx; Reyes, Brenda [UNAM. Facultad de Quimica, Mexico D.F. (Mexico); Barbosa P., Romeli [Centro de Investigacion en Energia, UNAM, Temixco, Morelos (Mexico); Cano Castillo, Ulises; Albarran, Lorena [Instituto de Investigaciones Electricas Cuernavaca, Morelos (Mexico)

    2009-09-15

    Membrane electrode assemblies (MEA) are the most important part of PEM fuel cells since their interface results in the electrochemical reactions that make the generation of electricity possible. The MEA is composed of a proton exchange membrane, both sides of which are impregnated with a catalyst layer, normally of carbon-supported platinum. Depending on the technique used for its fabrication (atomization, serigraphy, brush methods, chemical reduction, etc.), the properties of the MEA can be different in terms of porosity, distribution of the catalyst, thickness and structure of the catalyst layer, and the quality of the union between the catalyst layer and the membrane, etc. Currently, the porosity of the electrodes is generated by isopropanol evaporation (solvent used in the dye) during the fabrication process conducted in the Instituto de Investigaciones Electricas (IIE). This document presents the results obtained from adding a porous agent to the catalytic dye base composition used in the fabrication of MEA at the IIE. [Spanish] Los Ensambles Membrana-Electrodo (MEA's) son la parte mas importante en las celdas de combustibles tipo PEM, ya que en su interfaz se llevan a cabo las reacciones electroquimicas que hacen posible la generacion de electricidad. El MEA esta compuesto de una membrana de intercambio protonico a la cual se le impregna en ambos lados una capa catalitica normalmente de platino soportado en carbon. Dependiendo de la tecnica empleada en su fabricacion (atomizado, serigrafia, brocha, reduccion quimica, etc.), las propiedades del MEA pueden ser diferentes en cuanto a porosidad, distribucion del catalizador, grosor y estructura de la capa catalitica, asi como la calidad de la union entre la capa catalizadora y la membrana, etc. Actualmente, la porosidad de los electrodos es generada por la evaporacion del isopropanol (solvente utilizado en la tinta) durante el proceso de fabricacion que se realiza en el Instituto de Investigaciones

  11. Maintenance of BWR control rod drive mechanisms

    International Nuclear Information System (INIS)

    Greene, R.H.

    1991-01-01

    Control rod drive mechanism (CRDM) replacement and rebuilding is one of the highest dose, most physically demanding, and complicated maintenance activities routinely accomplished by BWR utilities. A recent industry workshop sponsored by the Oak Ridge National Laboratory, which dealt with the effects of CRDM aging, revealed enhancements in maintenance techniques and tooling which have reduced ALARA, improved worker comfort and productivity, and have provided revised guidelines for CRDM changeout selection. Highlights of this workshop and ongoing research on CRDM aging are presented in this paper

  12. Sensitiaztion of austenitic stainless steels and its significance as regards stress-corrosion cracking of BWR pipe systems

    International Nuclear Information System (INIS)

    Roberts, W.; Otterberg, R.

    1984-05-01

    A critical literature evaluation dealing with sensitization of austenitic stainless steels and its importance in the context of intergranular stress-corrosion cracking (IGSCC) in high-temperature, oxygenated water is presented. The factors influencing the degree of sensitization are discussed, principally for type-304 stainless steels, both as regards sensitization arising as a result of isothermal holding within the critical temperature range and weld sensitization. The phenomenon of low-temperature sensitization is described and its potential significance under BWR operating conditions speculated upon. The principal features of and mechanisms controlling IGSCC of sensitized 304 steels in BWR-type environments are reviewed and some thoughts are given to the relevance of laboratory SCC testing in predicting the occurrence of cracking in actual BWR systems. Finally various countermeasures against IGSCC in existing and projected reactors are presented and discussed. (Author)

  13. Application of eddy current inspection to the Inconel weld of BWR internals

    International Nuclear Information System (INIS)

    Machida, Eiji; Yusa, Noritaka

    2004-01-01

    In order to definite the basic specifications of application of ECT (Eddy Current Test) to Inconel weld of BWR internals, the inspection and numerical analysis were carried out. The characteristics of the existing ECT probe were studied by making sample as same as CRD stud tube, measuring the relative permeability and electric conductivity of Inconel and alloy and evaluating ECT probe. On the basis of the results obtained, the basic specifications were determined and a new eddy current probe for inspection was designed and produced. The new ECT probe was able to detect small notch in Inconel weld, to classify the defects by eddy current inspection signal and sizing the length and depth. It is concluded that the new ECT probe is able to apply the Inconel weld of BWR internals. (S.Y.)

  14. IFPE/IFA-432, Fission Gas Release, Mechanical Interaction BWR Fuel Rods, Halden

    International Nuclear Information System (INIS)

    Turnbull, J.A.

    1996-01-01

    Description: It contains data from experiments that have been performed at the IFE/OECD Halden Reactor Project, available for use in fuel performance studies. It covers experiments on thermal performance, fission product release, clad properties and pellet clad mechanical interaction. It includes also experimental data relevant to high burn-up behaviour. IFA-432: Measurements of fuel temperature response, fission gas release and mechanical interaction on BWR-type fuel rods up to high burn-ups. The assembly featured several variations in rod design parameters, including fuel type, fuel/cladding gap size, fill gas composition (He and Xe) and fuel stability. It contained 6 BWR-type fuel rods with fuel centre thermocouples at two horizontal planes, rods were also equipped with pressure transducers and cladding extensometers. Only data from 6 rods are compiled here

  15. Feasibility study on development of plate-type heat exchanger for BWR plants

    International Nuclear Information System (INIS)

    Ohyama, Nobuhiro; Suda, Kenichi; Ogata, Hiroshi; Matsuda, Shinichi; Nagasaka, Kazuhiro; Fujii, Toshi; Nozawa, Toshiya; Ishihama, Kiyoshi; Higuchi, Tomokazu

    2004-01-01

    In order to apply plate-type heat exchanger to RCW, TCW and FPC system in BWR plants, heat test and seismic test of RCW system heat exchanger sample were carried out. The results of these tests showed new design plate-type heat exchanger satisfied the fixed pressure resistance and seismic resistance and keep the function. The evaluation method of seismic design was constructed and confirmed by the results of tests. As anti-adhesion measure of marine organism, an ozone-water circulation method, chemical-feed method and combination of circulation of hot water and air bubbling are useful in place of the chlorine feeding method. Application of the plate-type heat exchanger to BWR plant is confirmed by these investigations. The basic principles, structure, characteristics, application limit and reliability are stated. (S.Y.)

  16. TVA experience in BWR reload design and licensing

    International Nuclear Information System (INIS)

    Robertson, J.D.

    1986-01-01

    TVA has developed and implemented the capability to perform BWR reload core design and licensing analyses. The advantages accruing from this capability include the tangible cost-savings from performing reload analyses in-house. Also, ''intangible'' benefits such as increased operating flexibility and the ability to accommodate multivendor fuel designs have been demonstrated. The major disadvantage with performing in-house analyses is the cost associated with development and maintenance of the analytical methods and staff expertise

  17. Aggressive chemical decontamination tests on small valves from the Garigliano BWR

    International Nuclear Information System (INIS)

    Bregani, F.

    1990-01-01

    In order to check the effectiveness of direct chemical decontamination on small and complex components, usually considered for storage without decontamination because of the small amount, some tests were performed on the DECO experimental loop. Four small stainless steel valves from the primary system of the Garigliano BWR were decontaminated using mainly aggressive chemicals such as HC1, HF, HNO 3 and their mixtures. On two valves, before the treatment with aggressive chemicals, a step with soft chemical (oxalic and citric acid mixture) was performed in order to see whether a softening action enhances the following aggressive decontamination. Moreover, in order to increase as much as possible the decontamination effectiveness, a decontamination process using ultrasounds jointly with aggressive chemicals was investigated. After an intensive laboratory testing programme, two smaller stainless steel valves from the primary system of the Garigliano BWR were decontaminated using ultrasounds in aggressive chemical solutions

  18. Analysis of void reactivity measurements in full MOX BWR physics experiments

    International Nuclear Information System (INIS)

    Ando, Yoshihira; Yamamoto, Toru; Umano, Takuya

    2008-01-01

    In the full MOX BWR physics experiments, FUBILA, four 9x9 test assemblies simulating BWR full MOX assemblies were located in the center of the core. Changing the in-channel moderator condition of the four assemblies from 0% void to 40% and 70% void mock-up, void reactivity was measured using Amplified Source Method (ASM) technique in the subcritical cores, in which three fission chambers were located. ASM correction factors necessary to express the consistency of the detector efficiency between measured core configurations were calculated using collision probability cell calculation and 3D-transport core calculation with the nuclear data library, JENDL-3.3. Measured reactivity worth with ASM correction factor was compared with the calculated results obtained through a diffusion, transport and continuous energy Monte Carlo calculation respectively. It was confirmed that the measured void reactivity worth was reproduced well by calculations. (author)

  19. Status report: Intergranular stress corrosion cracking of BWR core shrouds and other internal components

    International Nuclear Information System (INIS)

    1996-03-01

    On July 25, 1994, the US Nuclear Regulatory Commission (NRC) issued Generic Letter (GL) 94-03 to obtain information needed to assess compliance with regulatory requirements regarding the structural integrity of core shrouds in domestic boiling water reactors (BWRs). This report begins with a brief description of the safety significance of intergranular stress corrosion cracking (IGSCC) as it relates to the design and function of BWR core shrouds and other internal components. It then presents a brief history of shroud cracking events both in the US and abroad, followed by an indepth summary of the industry actions to address the issue of IGSCC in BWR core shrouds and other internal components. This report summarizes the staff's basis for issuing GL 94-03, as well as the staff's assessment of plant-specific responses to GL 94-03. The staff is continually evaluating the licensee inspection programs and the results from examinations of BWR core shrouds and other internal components. This report is representative of submittals to and evaluations by the staff as of September 30, 1995. An update of this report will be issued at a later date

  20. Analysis CFD for the hydrogen transport in the primary containment of a BWR; Analisis CFD para el transporte de hidrogeno en la contencion primaria de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez P, D. A.; Del Valle G, E. [IPN, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, Edificio 9, Col. San Pedro Zacatenco, 07738 Mexico D. F. (Mexico); Gomez T, A. M., E-mail: guerreroazteca_69@hotmail.com [ININ, Departamento de Sistemas Nucleares, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    This study presents a qualitative and quantitative comparison among the CFD GASFLOW and OpenFOAM codes which are related with the phenomenon of hydrogen transport and other gases in the primary containment of a Boiling Water Reactor (BWR). GASFLOW is a commercial license code that is well validated and that was developed in Germany for the analysis of the gases transport in containments of nuclear reactors. On the other hand, OpenFOAM is an open source code that offers several evaluation solvers for different types of phenomena; in this case, the solver reacting-Foam is used to analyze the hydrogen transport inside the primary containment of the BWR. The results that offer the solver reacting-Foam of OpenFOAM are evaluated in the hydrogen transport calculation and the results are compared with those of the program of commercial license GASFLOW to see if is viable the use of the open source code in the case of the hydrogen transport in the primary containment of a BWR. Of the obtained results so much quantitative as qualitative some differences were identified between both codes, the differences (with a percentage of maximum error of 4%) in the quantitative results are small and they are considered acceptable for this analysis type, also, these differences are attributed mainly to the used transport models, considering that OpenFOAM uses a homogeneous model and GASFLOW uses a heterogeneous model. (Author)

  1. Effect of the inlet throttling on the thermal-hydraulic instability of the natural circulation BWR

    International Nuclear Information System (INIS)

    Furuya, Masahiro; Inada, Fumio; Yoneda, Kimitoshi

    1997-01-01

    Although it is well-established that inlet restriction has a stabilizing for forced circulation BWR, the effect of inlet on the thermal-hydraulic stability of natural circulation BWR remains unknown since increasing inlet restriction affect thermal-hydraulic stability due to reduction of the recirculation flow rate. Therefore experiments have been conducted to investigate the effect of inlet restriction on the thermal-hydraulic stability. A test facility used in this experiments was designed and constructed to have non-dimensional values which are nearly equal to those of natural circulation BWR. Experimental results showed that driving force of the natural circulation was described as a function of heat flux and inlet subcooling independent of inlet restriction. Stability maps in reference to the channel inlet subcooling, heat flux were presented for various inlet restriction which were carried out by an analysis based on the homogeneous flow various using this function. Instability region during the inlet subcooling shifted to the higher inlet subcooling with increasing inlet restriction and became larger with increasing heat flux. (author)

  2. Development of a coordinated control system for BWR nuclear power plant and HVDC transmission system

    International Nuclear Information System (INIS)

    Ishikawa, M.; Hara, T.; Hirayama, K.; Sekiya, K.

    1986-01-01

    The combined use of dc and ac transmissions or so-called hybrid transmission was under study, employing both dc and ac systems to enable stable transmission of 10,000 MW of electric power generated by the BWR nuclear plant, scheduled to be built about 800 km away from the center of the load. It was thus necessary to develop a hybrid power transmission control system, the hybrid power transmission system consisting of a high voltage dc transmission system (HVDC) and an ultrahigh ac transmission system (UHVAC). It was also necessary to develop a control system for HVDC transmission which protects the BWR nuclear power plant from being influenced by any change in transmission mode that occurs as a result of faults on the UHVAC side when the entire power of the BWR plant is being sent by the HVDC transmission. This paper clarifies the requirements for the HVDC system control during hybrid transmission and also during dc transmission. The control method that satisfies these requirements was studied to develop a control algorithm

  3. CECP, Decommissioning Costs for PWR and BWR

    International Nuclear Information System (INIS)

    Bierschbach, M.C.

    1997-01-01

    1 - Description of program or function: The Cost Estimating Computer Program CECP, designed for use on an IBM personal computer or equivalent, was developed for estimating the cost of decommissioning boiling water reactor (BWR) and light-water reactor (PWR) power stations to the point of license termination. 2 - Method of solution: Cost estimates include component, piping, and equipment removal costs; packaging costs; decontamination costs; transportation costs; burial volume and costs; and manpower staffing costs. Using equipment and consumables costs and inventory data supplied by the user, CECP calculates unit cost factors and then combines these factors with transportation and burial cost algorithms to produce a complete report of decommissioning costs. In addition to costs, CECP also calculates person-hours, crew-hours, and exposure person-hours associated with decommissioning. 3 - Restrictions on the complexity of the problem: The program is designed for a specific waste charge structure. The waste cost data structure cannot handle intermediate waste handlers or changes in the charge rate structures. The decommissioning of a reactor can be divided into 5 periods. 200 different items for special equipment costs are possible. The maximum amount for each special equipment item is 99,999,999$. You can support data for 10 buildings, 100 components each; ESTS1071/01: There are 65 components for 28 systems available to specify the contaminated systems costs (BWR). ESTS1071/02: There are 75 components for 25 systems available to specify the contaminated systems costs (PWR)

  4. A BWR licensing experience in the USA

    International Nuclear Information System (INIS)

    Powers, J.; Ogura, C.; Arai, K.; Thomas, S.; Mookhoek, B.

    2015-09-01

    The US-Advanced Boiling Water Reactor (A BWR), certified by the United States Nuclear Regulatory Commission (US NRC), is a third generation, evolutionary boiling water reactor design which is the reference for the South Texas Project Units 3 and 4 (STP3-4) Combined License Application (Cola). Nuclear Innovation North America (Nina) is the License Applicant for this new build project, and Toshiba is the selected primary technology contractor. The STP3-4 project has finished the US NRC technical review of the Cola through the final meeting of the Advisory Committee on Reactor Safeguards (ACRS), and the Final Safety Evaluation Report (FSER) is scheduled to be issued by the US NRC in the middle of 2015. The next steps are to support the Mandatory Hearing process, and voting by the NRC commissioners on the motion to grant the Combined License, which is scheduled beginning of 2016 according to US NRC schedule as of March 30, 2015. This paper summarizes the history and progress of the US-A BWR licensing, including the experiences of the Licensee, Nina, and Toshiba as the Epc team worked through the Code of Federal Regulations Title 10 (10-Cfr) Part 52 process, and provides some perspectives on how the related licensing material would also be of value within a 10-Cfr Part 50, two-step process to minimize schedule and financial risks which could arise from ongoing technical developments and regulatory reviews. (Author)

  5. A BWR licensing experience in the USA

    Energy Technology Data Exchange (ETDEWEB)

    Powers, J.; Ogura, C. [Toshiba America Nuclear Energy, Charlotte, North Carolina (United States); Arai, K. [Toshiba Corporation, Yokohama, Kanagawa (Japan); Thomas, S.; Mookhoek, B., E-mail: jim.powers@toshiba.com [Nuclear Innovation North America, Lake Jackson, Texas (United States)

    2015-09-15

    The US-Advanced Boiling Water Reactor (A BWR), certified by the United States Nuclear Regulatory Commission (US NRC), is a third generation, evolutionary boiling water reactor design which is the reference for the South Texas Project Units 3 and 4 (STP3-4) Combined License Application (Cola). Nuclear Innovation North America (Nina) is the License Applicant for this new build project, and Toshiba is the selected primary technology contractor. The STP3-4 project has finished the US NRC technical review of the Cola through the final meeting of the Advisory Committee on Reactor Safeguards (ACRS), and the Final Safety Evaluation Report (FSER) is scheduled to be issued by the US NRC in the middle of 2015. The next steps are to support the Mandatory Hearing process, and voting by the NRC commissioners on the motion to grant the Combined License, which is scheduled beginning of 2016 according to US NRC schedule as of March 30, 2015. This paper summarizes the history and progress of the US-A BWR licensing, including the experiences of the Licensee, Nina, and Toshiba as the Epc team worked through the Code of Federal Regulations Title 10 (10-Cfr) Part 52 process, and provides some perspectives on how the related licensing material would also be of value within a 10-Cfr Part 50, two-step process to minimize schedule and financial risks which could arise from ongoing technical developments and regulatory reviews. (Author)

  6. BWR type reactors

    International Nuclear Information System (INIS)

    Watanabe, Shoichi

    1986-01-01

    Purpose: To enable to remove water not by way of mechanical operation in a reactor core and improve the fuel economy in BWR type reactors. Constitution: A hollow water removing rod of a cross-like profile made of material having a smaller neutron absorption cross section than the moderator is disposed to the water gap for each of unit structures composed of four fuel assemblies, and water is charged and discharged to and from the water removing rod. Water is removed from the water removing rod to decrease the moderators in the water gap to carry out neutron spectrum shift operation from the initial to the medium stage of reactor core cycles. At the final stage of the cycle, airs in the water removing rod are extracted and the moderator is introduced. The moderator is filled and the criticality is maintained with the accumulated nuclear fission materials. The neutron spectrum shift operation can be attained by eliminating hydrothermodynamic instability and using a water removing rod of a simple structure. (Horiuchi, T.)

  7. Transmutation of minor actinide using BWR fueled mixed oxide

    International Nuclear Information System (INIS)

    Susilo, Jati

    2000-01-01

    Nuclear spent fuel recycle has a strategic importance in the aspect of nuclear fuel economy and prevention of its spread-out. One among other application of recycle is to produce mixed oxide fuel (Mo) namely mixed Plutonium and uranium oxide. As for decreasing the burden of nuclear high level waste (HLW) treatment, transmutation of minor actinide (MA) that has very long half life will be carried out by conversion technique in nuclear reactor. The purpose of this study was to know influence of transition fuel cell regarding the percent weight of transmutation MA in the BWR fueled MOX. Calculation of cell BWR was used SRAC computer code, with assume that the reactor in equilibrium. The percent weight of transmutation MA to be optimum by increasing the discharge burn-up of nuclear fuel, raising ratio of moderator to fuel volume (Vm/Vf), and loading MA with percent weight about 3%-6% and also reducing amount of percent weight Pu in MOX fuel. For mixed fuel standard reactor, reactivity value were obtained between about -50pcm ∼ -230pcm for void coefficient and -1.8pcm ∼ -2.6pcm for fuel temperature coefficient

  8. Evaluation of thermal margin during BWR neutron flux oscillation

    International Nuclear Information System (INIS)

    Takeuchi, Yutaka; Takigawa, Yukio; Chuman, Kazuto; Ebata, Shigeo

    1992-01-01

    Fuel integrity is very important, from the view point of nuclear power plant safety. Recently, neutron flux oscillations were observed at several BWR plants. The present paper describes the evaluations of the thermal margin during BWR neutron flux oscillations, using a three-dimensional transient code. The thermal margin is evaluated as MCPR (minimum critical power ratio). The LaSalle-2 event was simulated and the MCPR during the event was evaluated. It was a core-wide oscillation, at which a large neutron flux oscillation amplitude was observed. The results indicate that the MCPR had a sufficient margin with regard to the design limit. A regional oscillation mode, which is different from a core-wide oscillation, was simulated and the MCPR response was compared with that for the LaSalle-2 event. The MCPR decrement is greater in the regional oscillation, than in the core wide -oscillation, because of the sensitivity difference in a flow-to-power gain. A study was carried out about regional oscillation detectability, from the MCPR response view point. Even in a hypothetically severe case, the regional oscillation is detectable by LPRM signals. (author)

  9. Logical model for the control of a BWR turbine

    International Nuclear Information System (INIS)

    Vargas O, Y.; Amador G, R.; Ortiz V, J.; Castillo D, R.

    2009-01-01

    In this work a design of a logical model is presented for the turbine control of a nuclear power plant with a BWR like energy source. The model is sought to implement later on inside the thermal hydraulics code of better estimate RELAP/SCDAPSIM. The logical model is developed for the control and protection of the turbine, and the consequent protection to the BWR, considering that the turbine control will be been able to use for one or several turbines in series. The quality of the present design of the logical model of the turbine control is that it considers the most important parameters in the operation of a turbine, besides that they have incorporated to the logical model the secondary parameters that will be activated originally as true when the turbine model is substituted by a detailed model. The development of the logical model of a turbine will be of utility in the short and medium term to carry out analysis on the turbine operation with different operation conditions, of vapor extraction, specific steps of the turbine to feed other equipment s, in addition to analyze the separate and the integrated effect. (Author)

  10. Power ramp tests of BWR-MOX fuels

    International Nuclear Information System (INIS)

    Asahi, K.; Oguma, M.; Higuchi, S.; Kamimua, K.; Shirai, Y.; Bodart, S.; Mertens, L.

    1996-01-01

    Power ramp test of BWR-MOX and UO 2 fuel rods base irradiated up to about 60 GWd/t in Dodewaard reactor have been conducted in BR2 reactor in the framework of the international DOMO programme. The MOX pellets were provided by BN (MIMAS process) and PNC (MH method). The MOX fuel rods with Zr-liner and non-liner cladding and the UO 2 fuel rods with Zr-liner cladding remained intact during the stepwise power ramp tests to about 600 W/cm, even at about 60 GWd/t

  11. Developing and modeling of the 'Laguna Verde' BWR CRDA benchmark

    International Nuclear Information System (INIS)

    Solis-Rodarte, J.; Fu, H.; Ivanov, K.N.; Matsui, Y.; Hotta, A.

    2002-01-01

    Reactivity initiated accidents (RIA) and design basis transients are one of the most important aspects related to nuclear power reactor safety. These events are re-evaluated whenever core alterations (modifications) are made as part of the nuclear safety analysis performed to a new design. These modifications usually include, but are not limited to, power upgrades, longer cycles, new fuel assembly and control rod designs, etc. The results obtained are compared with pre-established bounding analysis values to see if the new core design fulfills the requirements of safety constraints imposed on the design. The control rod drop accident (CRDA) is the design basis transient for the reactivity events of BWR technology. The CRDA is a very localized event depending on the control rod insertion position and the fuel assemblies surrounding the control rod falling from the core. A numerical benchmark was developed based on the CRDA RIA design basis accident to further asses the performance of coupled 3D neutron kinetics/thermal-hydraulics codes. The CRDA in a BWR is a mostly neutronic driven event. This benchmark is based on a real operating nuclear power plant - unit 1 of the Laguna Verde (LV1) nuclear power plant (NPP). The definition of the benchmark is presented briefly together with the benchmark specifications. Some of the cross-sections were modified in order to make the maximum control rod worth greater than one dollar. The transient is initiated at steady-state by dropping the control rod with maximum worth at full speed. The 'Laguna Verde' (LV1) BWR CRDA transient benchmark is calculated using two coupled codes: TRAC-BF1/NEM and TRAC-BF1/ENTREE. Neutron kinetics and thermal hydraulics models were developed for both codes. Comparison of the obtained results is presented along with some discussion of the sensitivity of results to some modeling assumptions

  12. Recycling systems for BWR type reactors

    International Nuclear Information System (INIS)

    Takagi, Akio; Yamamoto, Fumiaki; Fukumoto, Ryuji.

    1986-01-01

    Purpose: To stabilize the coolant flowing characteristics and reactor core reactivity. Constitution: The recycling system in a BWR type reactor comprises a recycling pump disposed to the outside of a reactor pressure vessel, a ring header connected to the recycling pump through main pipe ways, and a plurality of pipes branched from and connected with the ring header and connected to a plurality of jet pumps within the pressure vessel. Then, by making the diameter for the pipeways of each of the branched pipes different from each other, the effective cross-sectional area is varied to thereby average the coolant flow rate supplied to each of the jet pumps. (Seki, T.)

  13. Evaluation of PWR and BWR pin cell benchmark results

    International Nuclear Information System (INIS)

    Pijlgroms, B.J.; Gruppelaar, H.; Janssen, A.J.; Hoogenboom, J.E.; Leege, P.F.A. de; Voet, J. van der; Verhagen, F.C.M.

    1991-12-01

    Benchmark results of the Dutch PINK working group on PWR and BWR pin cell calculational benchmark as defined by EPRI are presented and evaluated. The observed discrepancies are problem dependent: a part of the results is satisfactory, some other results require further analysis. A brief overview is given of the different code packages used in this analysis. (author). 14 refs., 9 figs., 30 tabs

  14. Evaluation of PWR and BWR pin cell benchmark results

    Energy Technology Data Exchange (ETDEWEB)

    Pijlgroms, B.J.; Gruppelaar, H.; Janssen, A.J. (Netherlands Energy Research Foundation (ECN), Petten (Netherlands)); Hoogenboom, J.E.; Leege, P.F.A. de (Interuniversitair Reactor Inst., Delft (Netherlands)); Voet, J. van der (Gemeenschappelijke Kernenergiecentrale Nederland NV, Dodewaard (Netherlands)); Verhagen, F.C.M. (Keuring van Electrotechnische Materialen NV, Arnhem (Netherlands))

    1991-12-01

    Benchmark results of the Dutch PINK working group on PWR and BWR pin cell calculational benchmark as defined by EPRI are presented and evaluated. The observed discrepancies are problem dependent: a part of the results is satisfactory, some other results require further analysis. A brief overview is given of the different code packages used in this analysis. (author). 14 refs., 9 figs., 30 tabs.

  15. Evaluation of PWR and BWR pin cell benchmark results

    Energy Technology Data Exchange (ETDEWEB)

    Pilgroms, B.J.; Gruppelaar, H.; Janssen, A.J. (Netherlands Energy Research Foundation (ECN), Petten (Netherlands)); Hoogenboom, J.E.; Leege, P.F.A. de (Interuniversitair Reactor Inst., Delft (Netherlands)); Voet, J. van der (Gemeenschappelijke Kernenergiecentrale Nederland NV, Dodewaard (Netherlands)); Verhagen, F.C.M. (Keuring van Electrotechnische Materialen NV, Arnhem (Netherlands))

    1991-12-01

    Benchmark results of the Dutch PINK working group on the PWR and BWR pin cell calculational benchmark as defined by EPRI are presented and evaluated. The observed discrepancies are problem dependent: a part of the results is satisfactory, some other results require further analysis. A brief overview is given of the different code packages used in this analysis. (author). 14 refs.; 9 figs.; 30 tabs.

  16. Applied methods for mitigation of damage by stress corrosion in BWR type reactors

    International Nuclear Information System (INIS)

    Hernandez C, R.; Diaz S, A.; Gachuz M, M.; Arganis J, C.

    1998-01-01

    The Boiling Water nuclear Reactors (BWR) have presented stress corrosion problems, mainly in components and pipes of the primary system, provoking negative impacts in the performance of energy generator plants, as well as the increasing in the radiation exposure to personnel involucred. This problem has caused development of research programs, which are guided to find solution alternatives for the phenomena control. Among results of greater relevance the control for the reactor water chemistry stands out particularly in the impurities concentration and oxidation of radiolysis products; as well as the supervision in the materials selection and the stresses levels reduction. The present work presents the methods which can be applied to diminish the problems of stress corrosion in BWR reactors. (Author)

  17. BWR stability using a reducing dynamical model; Estabilidad de un BWR con un modelo dinamico reducido

    Energy Technology Data Exchange (ETDEWEB)

    Ballestrin Bolea, J M; Blazquez Martinez, J B

    1990-07-01

    BWR stability can be treated with reduced order dynamical models. When the parameters of the model came from dynamical models. When the parameters of the model came from experimental data, the predictions are accurate. In this work an alternative derivation for the void fraction equation is made, but remarking the physical structure of the parameters. As the poles of power/reactivity transfer function are related with the parameters, the measurement of the poles by other techniques such as noise analysis will lead to the parameters, but the system of equations is non-linear. Simple parametric calculation of decay ratio are performed, showing why BWRs become unstable when they are operated at low flow and high power. (Author)

  18. Fission product model for BWR analysis with improved accuracy in high burnup

    International Nuclear Information System (INIS)

    Ikehara, Tadashi; Yamamoto, Munenari; Ando, Yoshihira

    1998-01-01

    A new fission product (FP) chain model has been studied to be used in a BWR lattice calculation. In attempting to establish the model, two requirements, i.e. the accuracy in predicting burnup reactivity and the easiness in practical application, are simultaneously considered. The resultant FP model consists of 81 explicit FP nuclides and two lumped pseudo nuclides having the absorption cross sections independent of burnup history and fuel composition. For the verification, extensive numerical tests covering over a wide range of operational conditions and fuel compositions have been carried out. The results indicate that the estimated errors in burnup reactivity are within 0.1%Δk for exposures up to 100GWd/t. It is concluded that the present model can offer a high degree of accuracy for FP representation in BWR lattice calculation. (author)

  19. European BWR R and D cluster for innovative passive safety systems

    International Nuclear Information System (INIS)

    Hicken, E.F.; Lensa, W. von

    1996-01-01

    The main technological innovation trends for future nuclear power plants tend towards a broader use of passive safety systems for the prevention, mitigation and managing of severe accident scenarios. Several approaches have been undertaken in a number of European countries to study and demonstrate the feasibility and charateristics of innovative passive safety systems. The European BWR R and D Cluster combines those experimental and analytical efforts that are mainly directed to the introduction of passive safety systems into boiling water reactor technology. The Cluster is grouped around thermohydraulic test facilities in Europe for the qualification of innovative BWR safety systems, also taking into account especially the operating experience of the nuclear power plant Dodewaard and other BWRs, which already incorporated some passive safety features. The background, the objectives, the structure of the project and the work programme are presented in this paper as well as an outline of the significance of the expected results. (orig.) [de

  20. Thermal-hydraulics stability of natural circulation BWR under startup. Flashing effects

    International Nuclear Information System (INIS)

    Hu, Rui; Kazimi, Mujid S.

    2009-01-01

    To help achieve the necessary natural circulation flow, a fairly long chimney is installed in a boiling natural circulation reactor like the ESBWR. In such systems, thermal-hydraulic stability during low pressure start-up should be examined while considering the flashing induced by the pressure drop in the channel and the chimney due to gravity head. In this work, a BWR stability analysis code in the frequency domain, named FISTAB (Flashing-Induced STability Analysis for BWR), was developed to address the issue of flashing-induced instability. A thermal-hydraulics non-homogeneous equilibrium model (NHEM) based on a drift flux formulation along with a lumped fuel dynamics model is incorporated in the work. The vapor generation rate is derived from the mixture energy conservation equation while considering the effect of flashing. The functionality of the FISTAB code was confirmed by comparison to experimental results from SIRIUS-N facility at CRIEPI, Japan. Both stationary and perturbation results agree well with the experimental results. (author)

  1. Detection of failed fuel rods in shrouded BWR fuel assemblies

    International Nuclear Information System (INIS)

    Baero, G.; Boehm, W.; Goor, B.; Donnelly, T.

    1988-01-01

    A manipulator and an ultrasonic testing (UT) technique were developed to identify defective fuel rods in shrouded BWR fuel assemblies. The manipulator drives a UT probe axially through the bottom tie plate into the water channels between the fuel rods. The rotating UT probe locates defective fuel rods by ingressed water which attenuates the UT-signal. (author)

  2. Assessment of severe accident prevention and mitigation features: BWR, Mark II containment design

    International Nuclear Information System (INIS)

    Lehner, J.R.; Hsu, C.J.; Eltawila, F.; Perkins, K.R.; Luckas, W.J.; Fitzpatrick, R.G.; Pratt, W.T.

    1988-07-01

    Plant features and operator actions, which have been found to be important in either preventing or mitigating severe accidents in BWRs with Mark II containments (BWR Mark II's) have been identified. These features and actions were developed from insights derived from reviews of in-depth risk assessments performed specifically for the Limerick and Shoreham plants and from other relevant studies. Accident sequences that dominate the core-damage frequency and those accident sequences that are of potentially high consequence were identified. Vulnerabilities of the BWR Mark II to severe-accident containment loads were also noted. In addition, those features of a BWR Mark II, which are important for preventing core damage and are available for mitigating fission-product release to the environment were also identified. This report is issued to provide focus to an analyst examining an individual plant. This report calls attention to plant features and operator actions and provides a list of deterministic attributes for assessing those features and actions found to be helpful in reducing the overall risk for Mark II plants. Thus, the guidance is offered as a resource in examining the subject plant to determine if the same, or similar, plant features and operator actions will be of value in reducing overall plant risk. This report is intended to serve solely as guidance

  3. Examination of minor actinide annihilation by BWR core

    International Nuclear Information System (INIS)

    Hida, Kazuki

    1995-01-01

    From the viewpoint of reducing burden for disposing high level waste generated from spent fuel, the examination of recycling minor actinide (MA) to reactors and reducing its accumulation has been advanced. In this study, the possibility of annihilation in the case of recycling it to a BWR was examined. The main MAs are 237 Np, 241 Am, 243 Am, 242 Cm, and 244 Cm. However, as for Cm isotopes, the half life is short, the amount of generation is small, and the rate of neutron emission is high, therefore, those are disposed as waste, and 237 Np, 241 Am and 243 Am were taken as the objects of recycling. In order to grasp the basic characteristics in the case of recycling MAs to a BWR, MAs were added to UO 2 fuel, MOX fuel and HCR fuel and burned, and the nuclear conversion characteristics were examined. As the result, it was found that they were converted to short half life nuclides, and as the neutron spectra were softer, the rate of annihilation was higher. In the case of recycling MAs by concentrating to a specific reactor, reactivity loss, the degree of uranium enrichment required for compensating reactivity, and the rate of MA annihilation were calculated. Based on these data, the MA recycling system was set up, and the rate of MA annihilation was evaluated. This is reported. (K.I.)

  4. Simplified compact containment BWR plant

    International Nuclear Information System (INIS)

    Heki, H.; Nakamaru, M.; Tsutagawa, M.; Hiraiwa, K.; Arai, K.; Hida, T.

    2004-01-01

    The reactor concept considered in this paper has a small power output, a compact containment and a simplified BWR configuration with comprehensive safety features. The Compact Containment Boiling Water Reactor (CCR), which is being developed with matured BWR technologies together with innovative systems/components, is expected to prove attractive in the world energy markets due to its flexibility in regard to both energy demands and site conditions, its high potential for reducing investment risk and its safety features facilitating public acceptance. The flexibility is achieved by CCR's small power output of 300 MWe class and capability of long operating cycle (refueling intervals). CCR is expected to be attractive from view point of investment due to its simplification/innovation in design such as natural circulation core cooling with the bottom located short core, internal upper entry control rod drives (CRDs) with ring-type dryers and simplified ECCS system with high pressure containment concept. The natural circulation core eliminates recirculation pumps and the maintenance of such pumps. The internal upper entry CRDs reduce the height of the reactor vessel (RPV) and consequently reduce the height of the primary containment vessel (PCV). The safety features mainly consist of large water inventory above the core without large penetration below the top of the core, passive cooling system by isolation condenser (IC), passive auto catalytic recombiner and in-vessel retention (IVR) capability. The large inventory increases the system response time in the case of design-base accidents, including loss of coolant accidents. The IC suppresses PCV pressure by steam condensation without any AC power. The recombiner decreases hydrogen concentration in the PCV in the case of a severe accident. Cooling the molten core inside the RPV if the core should be damaged by loss of core coolability could attain the IVR. The feasibility of CCR safety system has been confirmed by LOCA

  5. Stress corrosion cracking of L-grade stainless steels in boiling water reactor (BWR) plants

    International Nuclear Information System (INIS)

    Suzuki, Shunichi; Fukuda, Toshihiko; Yamashita, Hironobu

    2004-01-01

    L-grade stainless steels as 316NG, SUS316L and SUS304L have been used for the BWR reactor internals and re-circulation pipes as SCC resistant materials. However, SCC of the L-grade material components were reported recently in many Japanese BWR plants. The detail investigation of the components showed the fabrication process such as welding, machining and surface finishing strongly affected SCC occurrence. In this paper, research results of SCC of L-grade stainless steels, metallurgical investigation of core shrouds and re-circulation pipings, and features of SCC morphology were introduced. Besides, the structural integrity of components with SCC, countermeasures for SCC and future R and D planning were introduced. (author)

  6. Estereótipos e mulheres na cultura marroquina

    OpenAIRE

    Sadiqi,Fatima

    2008-01-01

    Estereótipos sobre as mulheres no Marrocos podem ser caracterizados como crenças culturais incompletas e inexatas mantidas por algumas pessoas e que se encontram inscritos em expressões lingüísticas ou em discursos subliminares. A cultura popular marroquina emprega representações poderosas para transmitir e sustentar tais estereótipos. Embora existam alguns estereótipos positivos, a maioria dos estereótipos sobre as mulheres no Marrocos é negativa e reflete ditames patriarcais subliminares qu...

  7. Operation status display and monitoring system for BWR nuclear power plant

    International Nuclear Information System (INIS)

    Wakabayashi, Yasuo; Hayakawa, Hiroyasu; Kawamura, Atsuo; Kaneda, Mitsunori.

    1982-01-01

    Lately, the development of the system has been made for BWR plants, which monitors the operating status not only in normal operation but also in abnormal state and also for plant safety. Recently, the improvement of man-machine interface has been tried through the practical use of technique which displays data collectively on a CRT screen relating them mutually. As one of those results, the practical use of an electronic computer and color CRT display for No. 1 unit in the Fukushima No. 2 Nuclear Power Station (2F-1), Tokyo Electric Power Co., is described. Also, new centralized control panels containing such systems were used for the 1100 MWe BWR nuclear power plants now under construction, No. 3 unit of the Fukushima No. 2 Power Station and No. 1 unit of Kashiwazaki-Kariwa Nuclear Power Station (2F-3 and K-1, respectively). The display and monitoring system in 2F-1 plant is the first one in which a computer and color CRTs were practically employed for a BWR plant in Japan, and already in commercial operation. The advanced operating status monitoring system, to which the result of evaluation of the above system was added, was incorporated in the new centralized control panels presently under production for 2F-3 and K-1 plants. The outline of the system, the functions of an electronic computer, plant operating status monitor, surveillance test guide, the automation of plant operation and auxiliary operation guide are reported for these advanced monitoring system. It was confirmed that these systems are useful means to improve the man-machine communication for plant operation minitoring. (Wakatsuki, Y.)

  8. BWR [boiling water reactor] core criticality versus water level during an ATWS [anticipated transient without scram] event

    International Nuclear Information System (INIS)

    Sehgal, B.R.; Peng, C.M.; Maly, J.

    1988-01-01

    The BWR [boiling water reactor] emergency procedures guidelines recommend management of core water level to reduce the power generated during an anticipated transient without scram (ATWS) event. BWR power level variation has traditionally been calculated in the system codes using a 1-D [one-dimensional] 2-group neutron kinetics model to determine criticality. This methodology used also for calculating criticality of the partially covered BWR cores has, however, never been validated against data. In this paper, the power level versus water level issues in an ATWS severe accident are introduced and the accuracy of the traditional methodology is investigated by comparing with measured data. It is found that the 1-D 2-group treatment is not adequate for accurate predictions of criticality and therefore the system power level for the water level variations that may be encountered in a prototypical ATWS severe accident. It is believed that the current predictions for power level may be too high

  9. ECP measurements in the BWR-1 water loop relative to water composition changes

    Energy Technology Data Exchange (ETDEWEB)

    Kus, P.; Vsolak, R.; Kysela, J., E-mail: ksp@ujv.cz [Nuclear Research Inst. Rez plc, Husinec - Rez (Czech Republic); Hanawa, S.; Nakamura, T.; Uchida, S., E-mail: hanawa.satoshi@jaea.go.jp [Japan Atomic Energy Agency, Tokai-mura, Ibaraki (Japan)

    2010-07-01

    The goal of this study is to investigate the usage of ECP sensors in nuclear power plants. ECP sensors were tested using the LVR-15 reactor at the Nuclear Research Institute Rez plc (NRI) in the Czech Republic. The experiment took place on the BWR-1 loop, which was designed for investigating the behaviour of structural materials and radioactivity transport under BWR conditions. The BWR-1 loop facilitates irradiation experiments within a wide range of operating parameters (max. pressure of 10 MPa, max. temperature of 573 K and a neutron flux of 1.0* 10{sup 18} n/m{sup 2}s). This study involves the measurement of electrochemical potential (ECP). Corrosion potential is the main parameter for monitoring of water composition changes in nuclear power plants (NPP). The electrochemical potentials of stainless steel were measured under high temperatures in a test loop (BWR-1) under different water composition conditions. Total neutron flux was ∼10{sup -3} to ∼10{sup 12} n/cm{sup 2}s (>0.1 MeV) at a temperature of 560K, neutral pH, and water resistivity of 18.2 MOhm. ECP sensor response related to changes in water composition was monitored. Switching from NWC (normal water conditions) to HWC (hydrogen water conditions) was controlled using oxygen dosage. Water chemistry was monitored approx. 50 meters from the active channel. The active channel temperature was maintained within a range of 543 - 561 K from the start of irradiation for the entire duration of the experiment. A total of 24 reference electrodes composed of platinum (Pt), silver/silver chloride (Ag/AgCl) and a zircon membrane containing silver oxide (Ag{sub 2}O) powder were installed inside the active channel of the LVR-15 test reactor. The active channel (Field tube) was divided into four zones, with each zone containing six sensors. A mathematical radiolysis code model was created in cooperation with the Japan Atomic Energy Agency. (author)

  10. Stability monitoring for BWR based on singular value decomposition method using artificial neural network

    International Nuclear Information System (INIS)

    Tsuji, Masashi; Shimazu, Yoichiro; Michishita, Hiroshi

    2005-01-01

    A new method for evaluating the decay ratios in a boiling water reactor (BWR) using the singular value decomposition (SVD) method had been proposed. In this method, a signal component closely related to the BWR stability can be extracted from independent components of the neutron noise signal decomposed by the SVD method. However, real-time stability monitoring by the SVD method requires an efficient procedure for screening such components. For efficient screening, an artificial neural network (ANN) with three layers was adopted. The trained ANN was actually applied to decomposed components of local power range monitor (LPRM) signals that were measured in stability experiments conducted in the Ringhals-1 BWR. In each LPRM signal, multiple candidates were screened from the decomposed components. However, decay ratios could be estimated by introducing appropriate criterions for selecting the most suitable component among the candidates. The estimated decay ratios are almost identical to those evaluated by visual screening in a previous study. The selected components commonly have the largest singular value, the largest decay ratio and the least squared fitting error among the candidates. By virtue of excellent screening performance of the trained ANN, the real-time stability monitoring by the SVD method can be applied in practice. (author)

  11. CARACTERIZAÇÃO PÓS-COLHEITA E SENSORIAL DE GENÓTIPOS DE BANANEIRAS TIPO PRATA

    Directory of Open Access Journals (Sweden)

    ARIANE CASTRICINI

    2015-03-01

    Full Text Available RESUMO O norte de Minas Gerais é grande produtor de banana ‘Prata-Anã’ irrigada, cultura altamente suscetível ao Mal-do-Panamá. O uso de genótipos resistentes é uma alternativa, mas os frutos devem apresentar características pós-colheita o mais próximo possível da ‘Prata-Anã’, para melhor aceitação pelos consumidores. O objetivo do trabalho foi caracterizar frutos em pós-colheita, identificar a preferência e a intenção de compra de diferentes genótipos de bananeira tipo Prata. Os genótipos Prata-Anã, BRS Platina e Fhia-18. foram caracterizados no ponto de colheita (verdes e maduros (estádio seis de maturação, por avaliações químicas, físicas e sensoriais. Quando verde, ‘BRS Platina’ apresentou maior massa fresca e tamanho que ‘Fhia-18’ e ‘Prata-Anã’. ‘Fhia-18.’ teve a tonalidade verde da casca mais intensa que a dos demais genótipos. Madura, ‘BRS Platina’ foi mais firme, mas com a mesma resistência ao despencamento que ‘Fhia-18’ e superior à ‘Prata-Anã’. ‘Fhia-18’ apresentou cor da casca com amarelo mais clara e tão brilhante quanto da ‘Prata-Anã’, mas ‘BRS Platina’ teve a tonalidade de amarelo mais intensa. Bananas ‘Fhia-18’ foram mais ácidas, ‘BRS Platina’, com menor acidez titulável, e ‘Prata-Anã’, o maior teor de sólidos solúveis. Os genótipos Prata-Anã e BRS Platina tiveram maior preferência e intenção de compra pelos consumidores, sendo as bananas ‘Prata-Anã’ em dedos e ‘BRS Platina’ e ‘Fhia-18’ em dedos, buquê e penca, as mais preferidas. Entretanto, a maioria compraria bananas ‘Prata-Anã’ em buquê e ‘BRS Platina’ e ‘Fhia-18’ em penca. Enquanto verdes, os genótipos foram semelhantes à ‘Prata-Anã’, e maiores diferenças químicas e físicas ocorreram quando maduros.

  12. Assessment of two BWR accident management strategies

    International Nuclear Information System (INIS)

    Hodge, S.A.; Petek, M.

    1991-01-01

    A recently completed Oak Ridge effort proposes two management strategies for mitigation of the events that might occur in-vessel after the onset of significant core damage in a BWR severe accident. While the probability of such an accident is low, there may be effective yet inexpensive mitigation measures that could be implemented employing the existing plant equipment and requiring only additions to the plant emergency procedures. In this spirit, accident management strategies have been proposed for use of a borated solution for reactor vessel refill should control blade damage occur during a period of temporary core dryout and for containment flooding to maintain the core debris within the reactor vessel if injection systems cannot be restored. The proposed strategy for poisoning of the water used for vessel reflood should injection systems be restored after control blade damage has occurred has great promise, using only the existing plant equipment but employing a different chemical form for the boron poison. The dominant BWR severe accident sequence is Station Blackout and without means for mechanical stirring or heating of the storage tank, the question of being able to form the poisoned solution under accident conditions becomes of supreme importance. On the other hand, the proposed strategy for drywell flooding to cool the reactor vessel bottom head and prevent the core and structure debris from escaping to the drywell holds less promise. This strategy does, however, have potential for future plant designs in which passive methods might be employed to completely submerge the reactor vessel under severe accident conditions without the need for containment venting

  13. CFD predictions of standby liquid control system mixing in lower plenum of a BWR

    International Nuclear Information System (INIS)

    Boyd, Christopher; Skarda, Raymond

    2014-01-01

    Highlights: • Computational fluid dynamics analysis of BWR lower plenum. • Mixing and stratification of the standby liquid control system injection. • Scoping study highlights the expected flow paths and limitations of experiments. - Abstract: During an anticipated transient without scram (ATWS) scenario in certain boiling water reactor (BWR) systems, a standby liquid control system (SLCS) is used to inject a sodium pentaborate solution into the reactor system in order to quickly shut down (scram) the reactor without the use of the control rods. Some BWR designs utilize a SLCS that injects through a set of nozzles on a vertical pipe in the peripheral region of the lower plenum of the reactor vessel. During the scenario, system water levels are reduced and natural circulation flow rates down through the jet pump nozzles and up into the core are a small fraction of the rated system flow. It is during this period that the SLCS flows are considered. This work outlines some initial scoping studies completed by the staff at the Nuclear Regulatory Commission (NRC). An attempt at benchmarking the computational fluid dynamics (CFD) approach using a set of available test data from a small facility is outlined. Due to our lack of information related to specific details of the facility geometry along with the limited data available from the test, the benchmark exercise produced only a qualitative basis for selecting turbulence models and mesh density. A CFD model simulating a full-scale reactor system is developed for the lower plenum of a representative BWR/4 design and SLCS flows and mixing are studied under a range of flow conditions. The full-scale BWR simulation builds upon the lessons learned from the benchmark exercise. One challenge for this work is the large size of the domain and the relatively small size of the geometric details such as flow passages and gaps. The geometry is simplified to make meshing feasible by eliminating some of the small features. The

  14. Assessment of the fracture toughness of irradiated stainless steel for BWR core shrouds

    International Nuclear Information System (INIS)

    Carter, R.G.; Gamble, R.M.

    2002-01-01

    Data from previously performed experiments were collected and evaluated to determine the relationship between fracture toughness and neutron fluence for conditions representative of BWR core shrouds. This relationship together with EPFM (elastic-plastic fracture mechanics) analysis methods similar to those in Appendix K of Section XI of the ASME Code were used to compute margin against failure as a function of neutron fluence for postulated cracks in BWR core shrouds. The results indicate that EPFM analyses can be used for flaw evaluation of core shrouds at fluence levels less than 3.10 21 n/cm 2 (E > 1 MeV). At fluence levels equal to or greater than 3.10 21 n/cm 2 , LEFM (linear-elastic fracture mechanics) analyses should be used with K Ic = 55 MPa-(m) 0.5 . (authors)

  15. Investigations on the thermal-hydraulics of a natural circulation cooled BWR fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Kok, H.V.; Hagen, T.H.J.J. van der; Mudde, R.F. [Delft Univ. of Technology (Netherlands)

    1995-09-01

    A scaled natural circulation loop facility has been built after the Dodewaard Boiling Water Reactor, which is the only operating natural circulation cooled BWR in the world. The loop comprises one fuel assembly, a riser with a downcomer and a condenser with a cooling system. Freon-12 is used as a scaling liquid. This paper reports on the first measurements done with this facility. Quantities like the circulation flow, carry-under and the void-fraction have been measured as a function of power, pressure, liquid level, riser length, condensate temperature and friction factors. The behavior of the circulation flow can be understood by considering the driving force. Special attention has been paid to the carry-under, which has been shown to have a very important impact on the dynamics of a natural circulation cooled BWR.

  16. International comparison calculations for a BWR lattice with adjacent gadolinium pins

    International Nuclear Information System (INIS)

    Maeder, C.; Wydler, P.

    1984-09-01

    The results of burnup calculations for a simplified BWR fuel element with two adjacent gadolinium rods are presented and discussed. Ten complete solutions were contributed by Denmark, France, Italy (3), Japan (3), Switzerland and the UK. Partial results obtained from Poland and the USA are included in an Appendix. (Auth.)

  17. Trend of field data on pipe wall thinning for BWR power plants

    International Nuclear Information System (INIS)

    Hakii, Junichi; Hiranuma, Naoki; Hidaka, Akitaka

    2009-01-01

    Strongly motivated by every stakeholder not to repeat Mihama Nuclear Power Station pipe rupture accident in August 2004, JSME Main Committee on Codes and Standards on Power Generation Facilities immediately launched a special task force to develop Rules on Pipe Wall Thinning Management for BWR, PWR and fossil Power Plants respectively. The authors describes the process of the development of Rules for BWR Power Plans from the view point of collections and analysis of fields data of pipe wall thinning. Through its activities, the authors confirmed the existing findings, like the effect of Oxygen injection, turbulence and dependence on coolant temperature, derived from series of laboratory-scaled experiments in FAC and coolant velocities effects in LDI. Further based upon the said proven findings with field data, they explain the adequacy of major concept of the rule such as separate treatment of FAC (Flow Accelerated Corrosion) and LDI (Liquid Droplet Impingement). (author)

  18. BWR - Spent Fuel Transport and Storage with the TNTM9/4 and TNTM24BH Casks

    International Nuclear Information System (INIS)

    Wattez, L.; Marguerat, Y.; Hoesli, C.

    2006-01-01

    The Swiss Nuclear Utilities have started in 2001 to store spent fuel in dry metallic dual-purpose casks at ZWILAG, the Swiss interim storage facility. BKW FMB Energy Ltd., the Muehleberg Nuclear Power Plant owner, is involved in this process and has elected to store its BWR spent fuel in a new high capacity dual-purpose cask, the TNeTeM24BH from the COGEMA Logistics/TRANSNUCLEAR TN TM 24 family. The Muehleberg BWR spent fuels are transported by road in a medium size shuttle transport cask and then transferred to a heavy transport/storage cask (dry transfer) in the hot cell of ZWILAG site. For that purpose, COGEMA Logistics designed and supplied: - Two shuttle casks, TN TM 9/4, mainly devoted to transport of spent fuel from Muehleberg NPP to ZWILAG. Licensed according to IAEA 1996, the TN TM 9/4 is a 40 ton transport cask, for 7 BWR high bum-up spent fuel assemblies. - A series of new high capacity dual-purpose casks, TN TM 24BH, holding 69 BWR spent fuels. Two transport campaigns took place in 2003 and 2004. For each campaign, ten TN TM 9/4 round trips are performed, and one TN TM 24BH is loaded. 5 additional TN TM 24BH are being manufactured for BKW, and the next transport campaigns are scheduled from 2006. The TN TM 24BH high capacity dual purpose cask and the TN TM 9/4 transport cask characteristics and capabilities will then be detailed. (authors)

  19. Applicability of the diffusion and simplified P3 theories for BWR pin-by-pin core analysis

    International Nuclear Information System (INIS)

    Tada, Kenichi; Yamamoto, Akio; Kitamura, Yasunori; Yamane, Yoshihiro; Watanabe, Masato; Noda, Hiroshi

    2007-01-01

    The pin-by-pin fine mesh core calculation method is considered as a candidate of next-generation core calculation method for BWR. In this study, the diffusion and the simplified P 3 (SP 3 ) theories are applied to the pin-by-pin core analysis of BWR. Performances of the diffusion and the SP 3 theories for cell-homogeneous pin-by-pin fine mesh BWR core analysis are evaluated through comparison with cell-heterogeneous detailed transport calculation by the method of characteristics (MOC). In this study, two-dimensional, 2x2 multi-assemblies geometry is used to compare the prediction accuracies of the diffusion and the SP 3 theories. The 2x2 multi- assemblies geometry consists of two types of 9x9 UO 2 assembly that have two different enrichment splittings. To mitigate the cell-homogenization error, the SPH method is applied for the pin-by-pin fine mesh calculation. The SPH method is a technique that reproduces a result of heterogeneous calculation by that of homogeneous calculation. The calculation results indicated that diffusion theory shows larger discrepancy than that of SP 3 theory on pin-wise fission rates. Furthermore, the accuracy of the diffusion theory would not be sufficient for the pin-by-pin fine mesh calculation. In contrast to the diffusion theory, the SP 3 theory shows much better accuracy on pin wise fission rates. Therefore, if the SP 3 theory is applied, the accuracy of the pin-by-pin fine mesh BWR core analysis will be higher and will be sufficient for production calculation. (author)

  20. A simplified spatial model for BWR stability

    International Nuclear Information System (INIS)

    Berman, Y.; Lederer, Y.; Meron, E.

    2012-01-01

    A spatial reduced order model for the study of BWR stability, based on the phenomenological model of March-Leuba et al., is presented. As one dimensional spatial dependence of the neutron flux, fuel temperature and void fraction is introduced, it is possible to describe both global and regional oscillations of the reactor power. Both linear stability analysis and numerical analysis were applied in order to describe the parameters which govern the model stability. The results were found qualitatively similar to past results. Doppler reactivity feedback was found essential for the explanation of the different regions of the flow-power stability map. (authors)

  1. Level 2 PRA for a German BWR

    International Nuclear Information System (INIS)

    Sassen, F.; Rapp, W.; Tietsch, W.; Roess, P.

    2007-01-01

    A concept for a Level 2 Probabilistic Risk Assessment (L2 PRA) for a German Boiling Water Reactor (BWR) has been developed taking into account the role of L2 PRA within the German regulatory landscape. According to this concept, a plant specific evaluation of the severe accident phenomenology as well as analyses of the accident progression for the severe accident scenarios has been performed. Furthermore a plant specific MELCOR 1.8.6 model has been developed and special MELCOR source term calculations have been performed for the different release paths. This paper will present examples from the different areas described above. (author)

  2. Protecting AREVA ATRIUM™ BWR fuel from debris fretting failure

    International Nuclear Information System (INIS)

    Cole, Steven E.; Garner, Norman L.; Lippert, Hans-Joachim; Graebert, Rüdiger; Mollard, Pierre; Hahn, Gregory C.

    2014-01-01

    Historically, debris fretting has been the leading cause of fuel rod failure in BWR fuel assemblies, costing the industry millions of dollars in lost generation and negatively impacting the working area of plant site personnel. In this paper the focus will be on recent BWR fuel product innovation designed to eliminate debris related failures. Experience feedback from more than three decades of operation history with non-line-of-sight FUELGUARD™ lower tie plate debris filters will be presented. The development and relative effectiveness of successive generations of filtration technology will be discussed. It will be shown that modern, state of the art debris filters are an effective defense against debris fretting failure. Protective measures extend beyond inlet nozzle debris filters. The comprehensive debris resistance features built into AREVA’s newest fuel design, the ATRIUM™ 11, reduce the overall risk of debris entrapment as well as providing a degree of protection from debris that may fall down on the fuel assembly from above, e.g., during refueling operations. The positive recent experience in a debris sensitive plant will be discussed showing that the combination of advanced fuel technology and a robust foreign material exclusion program at the reactor site can eliminate the debris fretting failure mechanism. (author)

  3. Managing the aging of BWR control rod drive systems

    International Nuclear Information System (INIS)

    Greene, R.H.; Farmer, W.S.

    1992-01-01

    This Phase I Nuclear Plant Aging Research (NPAR) study examines the aging phenomena associated with BWR control and rod drive mechanisms (CRDMs) and assesses the merits of various methods of ''imaging'' this aging. Information for this study was acquired from (1) the results of a special CRDM aging questionnaire distributed to each US BWR utility, (2) a first-of-its-kind workshop held to discuss CRDM aging and maintenance concerns, (3) an analysis of the Nuclear Plant Reliability Data System (NPRDS) failure cases attributed to the control rod drive (CRD) system, and (4) personal information exchange with nuclear industry CRDM maintenance experts. The report documenting the findings of this research, NUREG-5699, will be published this year. Nearly 23% of the NPRDS CRD system component failure reports were attributed to the CRDM. The CRDM components most often requiring replacement due to aging are the Graphitar seals. The predominant causes of aging for these seals are mechanical wear and thermal embrittlement. More than 59% of the NPRDS CRD system failure reports were attributed to components that comprise the hydraulic control unit (HCU). The predominant HCU components experiencing the effects of service wear and aging are value seals, discs, seats, stems, packing, and diaphragms

  4. Physical model of nonlinear noise with application to BWR stability

    International Nuclear Information System (INIS)

    March-Leuba, J.; Perez, R.B.

    1983-01-01

    Within the framework of the present model it is shown that the BWR reactor cannot be unstable in the linear sense, but rather it executes limited power oscillations of a magnitude that depends on the operating conditions. The onset of these oscillations can be diagnosed by the decrease in stochasticity in the power traces and by the appearance of harmonics in the PSD

  5. BWR transient analysis using neutronic / thermal hydraulic coupled codes including uncertainty quantification

    International Nuclear Information System (INIS)

    Hartmann, C.; Sanchez, V.; Tietsch, W.; Stieglitz, R.

    2012-01-01

    The KIT is involved in the development and qualification of best estimate methodologies for BWR transient analysis in cooperation with industrial partners. The goal is to establish the most advanced thermal hydraulic system codes coupled with 3D reactor dynamic codes to be able to perform a more realistic evaluation of the BWR behavior under accidental conditions. For this purpose a computational chain based on the lattice code (SCALE6/GenPMAXS), the coupled neutronic/thermal hydraulic code (TRACE/PARCS) as well as a Monte Carlo based uncertainty and sensitivity package (SUSA) has been established and applied to different kind of transients of a Boiling Water Reactor (BWR). This paper will describe the multidimensional models of the plant elaborated for TRACE and PARCS to perform the investigations mentioned before. For the uncertainty quantification of the coupled code TRACE/PARCS and specifically to take into account the influence of the kinetics parameters in such studies, the PARCS code has been extended to facilitate the change of model parameters in such a way that the SUSA package can be used in connection with TRACE/PARCS for the U and S studies. This approach will be presented in detail. The results obtained for a rod drop transient with TRACE/PARCS using the SUSA-methodology showed clearly the importance of some kinetic parameters on the transient progression demonstrating that the coupling of a best-estimate coupled codes with uncertainty and sensitivity tools is very promising and of great importance for the safety assessment of nuclear reactors. (authors)

  6. Performance of the PdNi and PdNiSe as cathodes in PEM fuel cells; Desempeno de PdNi y PdNiSe como catodos en celdas de combustible tipo PEM

    Energy Technology Data Exchange (ETDEWEB)

    Santana, A.; Ramos-Sanchez, G.; Vazquez, G.; Solorza-Feria, O. [Centro de Investigaciones y de Estudios Avanzados del IPN, Mexico D.F. (Mexico)]. E-mail: gramos@cinvestav.mx

    2009-09-15

    The search for new materials capable of catalyzing oxygen reactions in low temperature fuel cells continues to be one of the key issues in the development of a hydrogen economy. Electrochemical and physical characterization studies have demonstrated that the PdNi and PdNiSe catalysts have adequate properties for use as cathodes in fuel cells. Nevertheless, the performance of the materials in proton exchange membrane (PEM) fuel cells depends not only on the catalytic properties but also on the adequate preparation of the electrocatalyst membrane interface (EMI). This work presents the results of the search for optimal conditions to prepare the EMIs with PdNi and PdNiSe cathodes. There are many variables for handling the preparation of the interfaces, nevertheless our search focuses on two: catalyst ratio/Vulcan Carbon® and the catalyst amount. Interfaces were prepared with an active area of 5 cm{sup 2} with PdNi and PdNiSe cathodes and carbon fabric anode with Pt E-tek®. These interfaces were tested with an ElectroChem model under different gas pressure and temperature conditions. The optimization method was carried out using a simplex method with the variables mentioned above and power density per unit mass and catalyst area as response variables. [Spanish] La busqueda de nuevos materiales capaces de catalizar la Reaccion de Oxigeno (RRO) en celdas de combustible de baja temperatura, sigue siendo uno de los temas clave para el desarrollo de una Economia del Hidrogeno. Estudios electroquimicos y de caracterizacion fisica han demostrado que los catalizadores PdNi y PdNiSe, tienen las propiedades adecuadas para poder ser utilizados como catodos en celdas de combustible; sin embargo el desempeno de los materiales en celdas de combustible de membrana de intercambio protonico (PEM), no solo depende de las propiedades del catalizador, sino tambien de la preparacion adecuada del Ensamble Membrana Electrocatalizador (EME). En este trabajo se presentan los resultados de la

  7. TIPOS DE DISCURSO

    OpenAIRE

    Garcia, Afrânio; UERJ

    2012-01-01

    O professor Adilson Citelli, em seu excelente livro Linguageme persuasão, apresenta cinco tipos de discurso:§ discurso dominante§ discurso autorizado§ discurso polêmico,§ discurso lúdico§ discurso autoritário.

  8. VIM Monte Carlo versus CASMO comparisons for BWR advanced fuel designs

    International Nuclear Information System (INIS)

    Pallotta, A.S.; Blomquist, R.N.

    1994-01-01

    Eigenvalues and two-dimensional fission rate distributions computed with the CASMO-3G lattice physics code and the VIM Monte Carlo Code are compared. The cases assessed are two advanced commercial BWR pin bundle designs. Generally, the two codes show good agreement in K inf , fission rate distributions, and control rod worths

  9. Development of a detailed BWR core thermal-hydraulic analysis method based on the Japanese post-BT standard using a best-estimate code

    International Nuclear Information System (INIS)

    Ono, H.; Mototani, A.; Kawamura, S.; Abe, N.; Takeuchi, Y.

    2004-01-01

    The post-BT standard is a new fuel integrity standard or the Atomic Energy Society of Japan that allows temporary boiling transition condition in the evaluation for BWR anticipated operational occurrences. For application of the post-BT standard to BWR anticipated operational occurrences evaluation, it is important to identify which fuel assemblies and which axial, radial positions of fuel rods have temporarily experienced the post-BT condition and to evaluates how high the fuel cladding temperature rise was and how long the dryout duration continued. Therefore, whole bundle simulation, in which each fuel assembly is simulated independently by one thermal-hydraulic component, is considered to be an effective analytical method. In the present study, a best-estimate thermal-hydraulic code, TRACG02, has been modified to extend it predictive capability by implementing the post-BT evaluation model such as the post-BT heat transfer correlation and rewetting correlation and enlarging the number of components used for BWR plant simulation. Based on new evaluation methods, BWR core thermal-hydraulic behavior has been analyzed for typical anticipated operational occurrence conditions. The location where boiling transition occurs and the severity of fuel assembly in the case of boiling transition conditions such as fuel cladding temperature, which are important factors in determining whether the reuse of the fuel assembly can be permitted, were well predicted by the proposed evaluation method. In summary, a new evaluation method for a detailed BWR core thermal-hydraulic analysis based on the post-BT standard of the Atomic Energy Society of Japan has been developed and applied to the evaluation of the post-BT standard during the actual BWR plant anticipated operational occurrences. (author)

  10. Pre-study of dynamic loads on the internals caused by a large pipe break in a BWR; Foerstudie av stroemningsinducerade laster paa interndelar vid brott i huvudcirkulationskretsarna i BWR

    Energy Technology Data Exchange (ETDEWEB)

    Marcinkiewicz, Jerzy; Lindgren, Anders [Det Norske Veritas Nuclear Technology AB, Stockholm (Sweden)

    2002-12-01

    Det Norske Veritas Nuclear Technology has performed a literature study of dynamic load on a BWR (Boiling Water Reactor) internals caused by a large pipe break. The goal of the study was to improve the knowledge about the physics of phenomena occurring in the RPV (Reactor Pressure Vessel) after pipe break in the main circulation system and also to make a review of calculation methods, models and computer programs including their capabilities when calculating the dynamic loads. The report presents description of relevant parts of a BWR, initial and boundary conditions, and phenomena determining the loads - rapid depressurization and propagation of pressure wave (including none-equilibrium). Furthermore, the report generally describes possible methodologies for calculating the dynamic loads on internals after the pipe break and the experiences from calculations the dynamic loads with different methods (computer programs) including comparisons with experimental data. Fluid-Structure Interaction methodology and its importance for calculation of dynamic loads on reactor internals is discussed based on experimental data. A very intensive research program for studying and calculating the dynamic loads on internals after pipe breaks has been performed in USA and Germany during the seventies and the eighties. Several computer programs have been developed and a number of large-scale experiments have been performed to calibrate the calculation methods. In spite of the fact that all experiments were performed for PWR several experiences should be valid also for BWR. These experiences, connected mainly to capabilities of computer programs calculating dynamic loads, are discussed in the report.

  11. An analysis of instabilities of nuclear-coupled density-wave in BWR using modern frequency-domain control theory

    International Nuclear Information System (INIS)

    Zhao Yangping; Gao Huahun; Fu Longzhou

    1991-01-01

    A state-of-the-art multi-variable frequency-domain model has been developed for analysis of instabilities of nuclear-coupled density-wave in BWR core. The characteristic locus method is used for analysing the stability of BWR. A computer code-NUCTHIA has been derived. The model has been tested against the existing experimental data and compared with results of past single-variable analyses. By using the NUCTHIA code, the investigations of effects of main system parameters on BWW core stability have also been made. All the results are consistent with the experimental data

  12. BWR containments license renewal industry report; revision 1. Final report

    International Nuclear Information System (INIS)

    Smith, S.; Gregor, F.

    1994-07-01

    The U.S. nuclear power industry, through coordination by the Nuclear Management and Resources Council (NUMARC), and sponsorship by the U.S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI), has evaluated age-related degradation effects for a number of major plant systems, structures, and components, in the license renewal technical Industry Reports (IR's). License renewal applicants may choose to reference these IR's in support of their plant-specific license renewal applications as an equivalent to the integrated plant assessment provisions of the license renewal rule (IOCFR54). The scope of the IR provides the technical basis for license renewal for U.S. Boiling Water Reactor (BWR) containments. The scope of the report includes containments constructed of reinforced or prestressed concrete with steel liners and freestanding stell containments. Those domestic BWR containments designated as Mark I, Mark II or Mark III are covered, but no containments are addressed before these designs. The report includes those items within the jurisdictional boundaries for metal and concrete containments defined by Section III of the ASME Boiler and Pressure Vessel Code, Division 1, Subsection NE (Class MC) and Division 2 (Class CC) and their supports, but excluding snubbers

  13. A direct comparison of MELCOR 1.8.3 and MAAP4 results for several PWR ampersand BWR accident sequences

    International Nuclear Information System (INIS)

    Leonard, M.T.; Ashbaugh, S.G.; Cole, R.K.; Bergeron, K.D.; Nagashima, K.

    1996-01-01

    This paper presents a comparison of calculations of severe accident progression for several postulated accident sequences for representative Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR) nuclear power plants performed with the MELCOR 1.8.3 and the MAAP4 computer codes. The PWR system examined in this study is a 1100 MWe system similar in design to a Westinghouse 3-loop plant with a large dry containment; the BWR is a 1100 MWe system similar in design to General Electric BWR/4 with a Mark I containment. A total of nine accident sequences were studied with both codes. Results of these calculations are compared to identify major differences in the timing of key events in the calculated accident progression or other important aspects of severe accident behavior, and to identify specific sources of the observed differences

  14. Comparative analysis of results between CASMO, MCNP and Serpent for a suite of Benchmark problems on BWR reactors; Analisis comparativo de resultados entre CASMO, MCNP y SERPENT para una suite de problemas Benchmark en reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Xolocostli M, J. V.; Vargas E, S.; Gomez T, A. M. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Reyes F, M. del C.; Del Valle G, E., E-mail: vicente.xolocostli@inin.gob.mx [IPN, Escuela Superior de Fisica y Matematicas, UP - Adolfo Lopez Mateos, Edif. 9, 07738 Mexico D. F. (Mexico)

    2014-10-15

    In this paper a comparison is made in analyzing the suite of Benchmark problems for reactors type BWR between CASMO-4, MCNP6 and Serpent code. The Benchmark problem consists of two different geometries: a fuel cell of a pin and assembly type BWR. To facilitate the study of reactors physics in the fuel pin their nuclear characteristics are provided to detail, such as burnt dependence, the reactivity of selected nuclide, etc. With respect to the fuel assembly, the presented results are regarding to infinite multiplication factor for burning different steps and different vacuum conditions. Making the analysis of this set of Benchmark problems provides comprehensive test problems for the next fuels generation of BWR reactors with high extended burned. It is important to note that when making this comparison the purpose is to validate the methodologies used in modeling for different operating conditions, if the case is of other BWR assembly. The results will be within a range with some uncertainty, considering that does not depend on code that is used. Escuela Superior de Fisica y Matematicas of Instituto Politecnico Nacional (IPN (Mexico) has accumulated some experience in using Serpent, due to the potential of this code over other commercial codes such as CASMO and MCNP. The obtained results for the infinite multiplication factor are encouraging and motivate the studies to continue with the generation of the X S of a core to a next step a respective nuclear data library is constructed and this can be used by codes developed as part of the development project of the Mexican Analysis Platform of Nuclear Reactors AZTLAN. (Author)

  15. Analysis CFD for the hydrogen transport in the primary containment of a BWR

    International Nuclear Information System (INIS)

    Jimenez P, D. A.; Del Valle G, E.; Gomez T, A. M.

    2014-10-01

    This study presents a qualitative and quantitative comparison among the CFD GASFLOW and OpenFOAM codes which are related with the phenomenon of hydrogen transport and other gases in the primary containment of a Boiling Water Reactor (BWR). GASFLOW is a commercial license code that is well validated and that was developed in Germany for the analysis of the gases transport in containments of nuclear reactors. On the other hand, OpenFOAM is an open source code that offers several evaluation solvers for different types of phenomena; in this case, the solver reacting-Foam is used to analyze the hydrogen transport inside the primary containment of the BWR. The results that offer the solver reacting-Foam of OpenFOAM are evaluated in the hydrogen transport calculation and the results are compared with those of the program of commercial license GASFLOW to see if is viable the use of the open source code in the case of the hydrogen transport in the primary containment of a BWR. Of the obtained results so much quantitative as qualitative some differences were identified between both codes, the differences (with a percentage of maximum error of 4%) in the quantitative results are small and they are considered acceptable for this analysis type, also, these differences are attributed mainly to the used transport models, considering that OpenFOAM uses a homogeneous model and GASFLOW uses a heterogeneous model. (Author)

  16. Analysis of radiological consequences in a typical BWR with a mark-II containment

    International Nuclear Information System (INIS)

    Funayama, Kyoko; Kajimoto, Mitsuhiro

    2003-01-01

    INS/NUPEC in Japan has been carrying out the Level 3 PSA program. In the program, the MACCS2 code has been extensively applied to analyze radiological consequences for typical BWR and PWR plants in Japan. The present study deals with analysis of effects of the AMs, which were implemented by industries, on radiological consequence for a typical BWR with a Mark-II containment. In the present study, source terms and their frequencies of source terms were used based on results of Level 2 PSA taking into account AM countermeasures. Radiological consequences were presented with dose risks (Sv/ry), which were multiplied doses (Sv) by containment damage frequencies (/ry), and timing of radionuclides release to the environment. The results of the present study indicated that the dose risks became negligible in most cases taking AM countermeasures and evacuations. (author)

  17. Efforts for optimization of BWR core internals replacement

    International Nuclear Information System (INIS)

    Iizuka, N.

    2000-01-01

    The core internal components replacement of a BWR was successfully completed at Fukushima-Daiichi Unit 3 (1F3) of the Tokyo Electric Power Company (TEPCO) in 1998. The core shroud and the majority of the internal components made by type 304 stainless steel (SS) were replaced with the ones made of low carbon type 316L SS to improve Intergranular Stress Corrosion Cracking (IGSCC) resistance. Although this core internals replacement project was completed, several factors combined to result in a longer-than-expected period for the outage. It was partly because the removal work of the internal components was delayed. Learning a lesson from whole experience in this project, some methods were adopted for the next replacement project at Fukushima-Daiichi Unit 2 (1F2) to shorten the outage and reduce the total radiation exposure. Those are new removal processes and new welding machine and so on. The core internals replacement work was ended at 1F2 in 1999, and both the period of outage and the total radiation exposure were the same degree as expected previous to starting of this project. This result shows that the methods adopted in this project are basically applicable for the core internals replacement work and the whole works about the BWR core internals replacement were optimized. The outline of the core internals replacement project and applied technologies at 1F3 and 1F2 are discussed in this paper. (author)

  18. Radiation buildup and control in BWR recirculation piping

    International Nuclear Information System (INIS)

    Meyer, W.; Wood, R.M.; Rao, T.V.; Vook, R.W.

    1987-01-01

    Boiling water nuclear reactors (BWRs) employ stainless steel (Types 304 or 316 NG) pipes in which high-purity water at temperatures of ∼ 275 0 C are circulated. Various components of the system, such as valves and bearings, often contain hard facing metal alloys such as Stellite-6. These components, along with the stainless steel tubing and feedwater, serve as sources of 59 Co. This cobalt, along with other soluble and insoluble impurities, is carried along with the circulating water to the reactor core where it is converted to radioactive 60 Co. After reentering the circulating water, the 60 Co can be incorporated into a complex corrosion layer in the form of CoCr 2 O 4 and/or CoFe 2 O 4 . The presence of even small amounts of 60 Co on the walls of BWR cooling systems is the dominant contributor to inplant radiation levels. Thus BWR owners and their agents are expending significant time and resources in efforts to reduce both the rate and amount of 60 Co buildup. The object of this research is twofold: (a) to form a thin diffusion barrier against the outward migration of cobalt from a cobalt-containing surface and (b) to prevent the growth of a 60 Co-containing corrosion film. The latter goal was the more important since most of the radioactive cobalt will originate from sources other than the stainless steel piping itself

  19. Knowledge management method for knowledge based BWR Core Operation Management System

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Yutaka; Fukuzaki, Takaharu; Kobayashi, Yasuhiro

    1989-03-01

    A knowledge management method is proposed to support an except whose knowledge is stored in a knowledge base in the BWR Core Operation Management System. When the alterations in the operation plans are motivated by the expert after evaluating them, the method attempts to find the knowledge which must be modified and to give the expert guidances. In this way the resultant operation plans are improved by modifying values of referenced data. Using data dependency among data, which are defined and referred during inference, data to be modified are retrieved. In generating modification guidances, data reference and definition procedures are classified by syntactic analysis of knowledge. The modified data values are calculated with a sensitivity between the increment in the data to be modified and the resultant one in the performance of operation plans. The efficiency of the knowledge management by the proposed method, when applied to the knowledge based system including 500 pieces of knowledge for BWR control rod programming, is higher than that for interactive use of existing general purpose editors. (author).

  20. Strain-induced corrosion cracking in ferritic components of BWR primary circuits

    International Nuclear Information System (INIS)

    Seifert, H.-P.; Ritter, S.; Ineichen, U.; Tschanz, U.; Gerodetti, B.

    2003-04-01

    The present final report of the RIKORR project is a summary of a literature survey and of the experimental work performed by PSI on the environmentally-assisted cracking (EAC) and dynamic strain ageing (DSA) susceptibility of low-alloy steels (LAS) in high-temperature (HT) water. Within this project, the EAC crack growth behaviour of different low-alloy RPV steels, weld filler and weld heat-affected zone materials has been investigated under simulated transient and steady-state BWR/NWC power operation conditions. The strain-induced corrosion cracking (SICC) / low-frequency corrosion fatigue (CF) and stress corrosion cracking (SCC) crack growth behaviour of different low-alloy RPV steels under simulated transient and stationary BWR/NWC conditions was characterized by slow rising load / low-frequency corrosion fatigue and constant load / periodical partial unloading / ripple load tests with pre-cracked fracture mechanics specimens in oxygenated HT water at temperatures of either 288, 250, 200 or 150 o C. Modern high-temperature water loops, on-line crack growth monitoring and fractographic analysis by scanning electron microscopy (SEM) were used to quantify the cracking response. (author)

  1. Knowledge management method for knowledge based BWR Core Operation Management System

    International Nuclear Information System (INIS)

    Wada, Yutaka; Fukuzaki, Takaharu; Kobayashi, Yasuhiro

    1989-01-01

    A knowledge management method is proposed to support an except whose knowledge is stored in a knowledge base in the BWR Core Operation Management System. When the alterations in the operation plans are motivated by the expert after evaluating them, the method attempts to find the knowledge which must be modified and to give the expert guidances. In this way the resultant operation plans are improved by modifying values of referenced data. Using data dependency among data, which are defined and referred during inference, data to be modified are retrieved. In generating modification guidances, data reference and definition procedures are classified by syntactic analysis of knowledge. The modified data values are calculated with a sensitivity between the increment in the data to be modified and the resultant one in the performance of operation plans. The efficiency of the knowledge management by the proposed method, when applied to the knowledge based system including 500 pieces of knowledge for BWR control rod programming, is higher than that for interactive use of existing general purpose editors. (author)

  2. Simulation of hydrogen deflagration and detonation in a BWR reactor building

    International Nuclear Information System (INIS)

    Manninen, M.; Silde, A.; Lindholm, I.; Huhtanen, R.; Sjoevall, H.

    2002-01-01

    A systematic study was carried out to investigate the hydrogen behaviour in a BWR reactor building during a severe accident. BWR core contains a large amount of Zircaloy and the containment is relatively small. Because containment leakage cannot be totally excluded, hydrogen can build up in the reactor building, where the atmosphere is normal air. The objective of the work was to investigate, whether hydrogen can form flammable and detonable mixtures in the reactor building, evaluate the possibility of onset of detonation and assess the pressure loads under detonation conditions. The safety concern is, whether the hydrogen in the reactor building can detonate and whether the external detonation can jeopardize the containment integrity. The analysis indicated that the possibility of flame acceleration and deflagration-to-detonation transition (DDT) in the reactor building could not be ruled out in case of a 20 mm 2 leakage from the containment. The detonation analyses indicated that maximum pressure spike of about 7 MPa was observed in the reactor building room selected for the analysis

  3. Advanced Construction of Compact Containment BWR

    International Nuclear Information System (INIS)

    Takahashi, M.; Maruyama, T.; Mori, H.; Hoshino, K.; Hijioka, Y.; Heki, H.; Nakamaru, M.; Hoshi, T.

    2006-01-01

    The reactor concept considered in this paper has a mid/small power output, a compact containment and a simplified BWR configuration with comprehensive safety features. Compact Containment BWR (CCR) is being developed with matured BWR technologies together with innovative systems/components, will provide attractiveness for the energy market in the world due to its flexibility in energy demands as well as in site conditions, its high potential in reducing investment risk and its safety feature facilitating public acceptance. The flexibility is achieved by CCR's mid/small power output of 400 MWe class and capability of long operating cycle (refueling intervals). The high investment potential is expected from CCR's simplification/innovation in design such as natural circulation core cooling with the bottom located short core, top mounted upper entry control rod drives (CRDs) with ring-type dryers and simplified safety system with high pressure resistible primary containment vessel (PCV) concept. The natural circulation core eliminates recirculation pumps as well as needs for maintenance of such pumps. The top mounted upper entry CRDs enable the bottom located short core in RPV. The safety feature mainly consists of large water inventory above the core without large penetration below the top of the core, passive cooling system by isolation condenser (IC), high pressure resistible PCV and in-vessel retention (IVR) capability. The large inventory increases the system response time in case of design base accidents including loss of coolant accidents. The IC suppresses PCV pressure by steam condensation without any AC power. Cooling the molten core inside the RPV if the core should be damaged by loss of core coolability could attain the IVR. CCR's specific self-standing steel high pressure resistible PCV is designed to contain minimum piping and valves inside with reactor pressure vessel (RPV), only 13 m in diameter and 24 m in height. This compact PCV makes it possible to

  4. Lesao óssea em leucemias agudas linfoblásticas tipo T e TIPO nao T / nao B

    OpenAIRE

    Martins, Fernando Lopes

    2013-01-01

    Resumo: O AUTOR APRESENTA OS RESULTADOS DO ESTUDO RADIOLÓGICO DE ESQUELETO DE 61 PACIENTES PORTADORES DE LEUCEMIA AGUDA LINFOBLÁSTICA, CORRELACIONANDO A PRESENÇA OU NÃO DE Lesões ÓSSEAS COM A CLASSIFICAÇÃO IMUNOLÓGICA DE LAL TIPO T E TIPO não T / não B

  5. Decontamination and materials corrosion concerns in the BWR

    International Nuclear Information System (INIS)

    Gordon, B.M.; Gordon, G.M.

    1988-01-01

    The qualification of chemical decontamination processes to decontaminate complete systems or individual components in essential if effective inspection, maintenance, repair or replacement of plant components is to be achieved with minimum exposure of workers to ionizing radiation. However, it is critical that the benefits of decontamination processes are not overshadowed by deleterious materials/ corrosion side effects during the application of the process or during subsequent operation. This paper discusses such potential corrosion/materials problems in the BWR and presents relevant available corrosion data for the various commercial decontamination processes. (author)

  6. BWR alloy 182 stress Corrosion Cracking Experience

    International Nuclear Information System (INIS)

    Horn, R.M.; Hickling, J.

    2002-01-01

    Modern Boiling Water Reactors (BWR) have successfully operated for more than three decades. Over that time frame, different materials issues have continued to arise, leading to comprehensive efforts to understand the root cause while concurrently developing different mitigation strategies to address near-term, continued operation, as well as provide long-term paths to extended plant life. These activities have led to methods to inspect components to quantify the extent of degradation, appropriate methods of analysis to quantify structural margin, repair designs (or strategies to replace the component function) and improved materials for current and future application. The primary materials issue has been the occurrence of stress corrosion cracking (SCC). While this phenomenon has been primarily associated with austenitic stainless steel, it has also been found in nickel-base weldments used to join piping and reactor internal components to the reactor pressure vessel consistent with fabrication practices throughout the nuclear industry. The objective of this paper is to focus on the history and learning gained regarding Alloy 182 weld metal. The paper will discuss the chronology of weld metal cracking in piping components as well as in reactor internal components. The BWR industry has pro-actively developed inspection processes and procedures that have been successfully used to interrogate different locations for the existence of cracking. The recognition of the potential for cracking has also led to extensive studies to understand cracking behavior. Among other things, work has been performed to characterize crack growth rates in both oxygenated and hydrogenated environments. The latter may also be relevant to PWR systems. These data, along with the understanding of stress corrosion cracking processes, have led to extensive implementation of appropriate mitigation measures. (authors)

  7. Application of process computers and colour CRT displays in the plant control room of a BWR

    International Nuclear Information System (INIS)

    Itoh, M.; Hayakawa, H.; Kawahara, H.; Neda, T.; Wakabayashi, Y.

    1983-01-01

    The recent application of a CRT display system in an 1100-MW(e) BWR plant control room and the design features of a new control room whose installation is planned for the next generation are discussed. As reactor unit capacity and the need for plant safety and reliability continue to increase, instrumentation and control equipment is growing in number and complexity. In consequence, control and supervision of plant operations require improvement. Thus, because of recent progress in the field of process computers and display equipment (colour CRTs), efficient improvements of the control room are under way in the Japanese BWR plant. In the recently constructed BWR plant (1100 MW(e)), five CRTs on the bench board and two process computers were additionally installed in the control room during the construction stage to improve plant control and supervisory functions by implementing the lessons learned from the Three Mile Island incident. The major functions of the new computers and display systems are to show integrated graphic displays of the plant status, to monitor the standby condition of the safety system, to show the condition of the integrated alarm system, etc. In practice, in the actual plant, this newly installed system performs well. On the basis of the experience gained in these activities, a new computerized control and monitoring system is now being designed for subsequent domestic BWR plants. This advanced system will incorporate not only the functions already mentioned, but also a surveillance guide system and plant automation. For future plants, a diagnostic system and an instructional system that can analyse a disturbance and give operational guidance to the plant operator are being developed in a government-sponsored programme. (author)

  8. Role of BWR secondary containments in severe accident mitigation: issues and insights from recent analyses

    International Nuclear Information System (INIS)

    Greene, S.R.

    1988-01-01

    All commercial boiling water reactor (BWR) plants in the US employ primary containments of the pressure suppression design. These primary containments are surrounded and enclosed by a secondary containment consisting of a reactor building and refueling bay (MK I and MK II designs), a shield building, auxiliary building and fuel building (MK III), or an auxiliary building and enclosure building (Grand Gulf style MK III). Although secondary containment designs are highly plant specific, their purpose is to minimize the ground level release of radioactive material for a spectrum of traditional design basis accidents. While not designed for severe accident mitigation, these secondary containments might also reduce the radiological consequences of severe accidents. This issue is receiving increasing attention due to concerns that BWR MK I primary containment integrity would be lost should a significant mass of molten debris escape the reactor vessel during a severe accident. This paper presents a brief overview of domestic BWR secondary containment designs and highlights plant-specific features that could influence secondary containment severe accident survivability and accident mitigation effectiveness. Current issues surrounding secondary containment performance are discussed, and insights gained from recent ORNL secondary containment studies of Browns Ferry, Peach Bottom, and Shoreham are presented. Areas of significant uncertainty are identified and recommendations for future research are presented

  9. Optimization of axial enrichment and gadolinia distributions for BWR fuel under control rod programming, (2)

    International Nuclear Information System (INIS)

    Hida, Kazuki; Yoshioka, Ritsuo

    1992-01-01

    A method has been developed for optimizing the axial enrichment and gadolinia distributions for the reload BWR fuel under control rod programming. The problem was to minimize the enrichment requirement subject to the criticality and axial power peaking constraints. The optimization technique was based on the successive linear programming method, each linear programming problem being solved by a goal programming algorithm. A rapid and practically accurate core neutronics model, named the modified one-dimensional core model, was developed to describe the batch-averaged burnup behavior of the reload fuel. A core burnup simulation algorithm, employing a burnup-power-void iteration, was also developed to calculate the rigorous equilibrium cycle performance. This method was applied to the optimization of axial two- and 24-region fuels for demonstrative purposes. The optimal solutions for both fuels have proved the optimality of what is called burnup shape optimization spectral shift. For the two-region fuel with a practical power peaking of 1.4, the enrichment distribution was nearly uniform, because a bottom-peaked burnup shape flattens the axial power shape. Optimization of the 24-region fuel has shown a potential improvement in BWR fuel cycle economics, which will guide future advancement in BWR fuel designs. (author)

  10. Genusa Bepu methodologies for the safety analysis of BWRs; Metodologias Bepu de Genusa para el analisis de seguridad de reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Trueba, M.; Garcia, J.; Goodson, C.; Ibarra, L.

    2016-08-01

    This article describes the BEPU methodologies developed by General Electric-Hitachi (GEH) for the evaluation of the BWR reactor safety analysis based on the TRACG best-estimate code. These methodologies are applicable to a wide range of events, operational transients (AOO), anticipated transients without scram (ATWS), loss of coolant accidents (LOCA) and instability events; to different BWR types operating commercially. General Electric (GE( designs and other vendors, including Generation III+ESBWR; to the new operation strategies, and to all types of BWR fuel. Their application achieves, among other benefits, a better understanding of the overall plant response and an improvement in margins to the operating limits; thus, the increase of flexibility in reactor operation and reduction in generation costs. (Author)

  11. PWR and BWR light water reactor systems in the USA and their fuel cycle

    International Nuclear Information System (INIS)

    Crawford, W.D.

    1977-01-01

    Light water reactor operating experience in the USA can be considered to date from the choice of the pressurized water reactor (PWR) for use in the naval reactor program and the subsequent construction and operation of the nuclear power plant at Shippingport, Pennsylvania in 1957. The development of the boiling water reactor (BWR) in 1954 and its selection for the plant at Dresden, Illinois in 1959 established this concept as the other major reactor type in the US nuclear power program. The subsequent growth profile is presented, leading to 31 PWR's and 23 BWR's currently in operation as well as to plants in the planning and construction phase. A significant operating record has been accumulated concerning the availability of each of these reactor types as determined by: (1) outage for refueling, (2) component reliability, (3) maintenance requirements, and (4) retrofitting required by government regulation. In addition, the use and performance of BWR's and PWR's in meeting system load requirements is discussed. The growing concern regarding possible terrorist activities and other potential threats has resulted in systems and procedures designed to assure effective safeguards at nuclear power installations. Safeguards measures currently in place are described. Environmental effects of operating plants are subject to both radiological and non-radiological monitoring to verify that results are within the limits established in the licensing process. The operating results achieved and the types of modifications that have been required of operating plants by the Nuclear Regulatory Commission are reviewed. The PWR and BWR Fuel Cycle is examined in terms of: (1) fuel burnup experience and prospects for improvement, (2) the status and outlook for natural uranium resources, (3) enrichment capacity, (4) reprocessing and recycle, and the interrelationships among the latter three factors. High level waste management currently involving on-site storage of spent fuel is discussed

  12. Funcionamiento psicofisiológico y susceptibilidad a la sintomatología premenstrual en mujeres Tipo A y Tipo B

    Directory of Open Access Journals (Sweden)

    Francesc Palmero

    2002-01-01

    Full Text Available El presente trabajo se centra en explorar el papel que juega el componente emocional del Patrón de Conducta Tipo A (PCTA en diversas áreas relacionadas con la salud. En este contexto nuestra investigación desarrolla dos objetivos diferenciados. El primero trata de constatar la relación entre determinadas características del PCTA y el mecanismo psicofisiológico en una tarea experimental de estrés real (situación de examen, considerando si existen diferencias entre los dos grupos de personas, Tipo A y Tipo B, tanto en la dimensión tónica como en la dimensión fásica de la tasa cardiaca. El segundo de nuestros objetivos trata de establecer la relación existente entre determinadas características del PCTA y la experiencia de sintomatología relacionada con el ciclo menstrual, considerando tanto la sintomatología premenstrual global, como la sintomatología premenstrual específica, diferenciando tres grandes grupos de síntomas: fisiológicos, psicológicos y conductuales. La muestra final estuvo conformada por 28 mujeres Tipo A y 29 mujeres Tipo B. Los instrumentos utilizados fueron el inventario de Actividad de Jenkins (JAS, el calendario menstrual de síntomas de registro diario (CMSRD y un polígrafo que permitió registrar la tasa cardiaca. En cuanto a nuestro primer objetivo, los datos hacen pensar en la existencia de distintos perfiles psicofisiológicos en ambos grupos de mujeres; en el segundo objetivo, parece que las mujeres Tipo A experimentan de forma clara más síntomas psicológicos que las mujeres Tipo B.

  13. BWR stability using a reduced dynamical model

    International Nuclear Information System (INIS)

    Ballestrin Bolea, J.M.; Blazquez, J.B.

    1990-01-01

    BWR stability can be treated with reduced order dynamical models. When the parameters of the model came from experimental data, the predictions are accurate. In this work an alternative derivation for the void fraction equation is made, but remarking the physical struct-ure of the parameters. As the poles of power/reactivity transfer function are related with the parameters, the measurement of the poles by other techniques such as noise analysis will lead to the parameters, but the system of equations in non-linear. Simple parametric calculat-ion of decay ratio are performed, showing why BWRs become unstable when they are operated at low flow and high power. (Author). 7 refs

  14. Study on reactor vessel replacement (RVR) for 1100 MW class BWR plants in Japan

    International Nuclear Information System (INIS)

    Mizutani, J.; Kawamura, S.; Aoki, M.; Mori, T.

    2001-01-01

    Plant Life Management (PLM) is being studied in Japan, and reactor vessel replacement (RVR) is being considered as one option. Since reactor internals, except for reusable parts, and the reactor pressure vessel (RPV) are replaced, the RVR provides an effective technology for extending the service life of nuclear power plants substantially. At ICONE 7, we reported on the technical viability of the RVR for BWR4-type 800 MWe class plants. This time, we rationalized the RVR method through a study for BWR5-type 1100 MWe class plants to reduce the RVR duration and evaluated the technical viability and the economic efficiency of the method. In addition, we discuss how to dispose of the RPV to complete a scenario of the process from the RVR to its final disposal. (author)

  15. Reação de resistência tipo I e tipo II a Giberela em cultivares de trigo

    Directory of Open Access Journals (Sweden)

    Rafael Hansen Alves

    2013-09-01

    Full Text Available O objetivo deste trabalho foi avaliar as reações de resistência tipo I e tipo II à giberela em 28 cultivares de trigo em casa de vegetação. A inoculação de Fusarium graminearum foi realizada no estádio de florescimento. Para a resistência tipo I, a avaliação foi feita 21 dias após a inoculação. Foi determinada a severidade no estádio de espiga seca e a porcentagem de grãos giberelados. A avaliação da severidade foi feita pela porcentagem de espiguetas infectadas, no estádio de espiga verde atribuindo-se uma nota em uma escala linear de zero (nenhuma infecção a 100 (100% de espiguetas infectadas. Para a resistência tipo II, as avaliações foram realizadas aos 7, 14 e 21 dias após a inoculação, contando-se as espiguetas com sintomas da doença, excluindo as duas espiguetas que foram inoculadas. As cultivares Frontana, BRS 177, BRS 179, BRS Umbu, BRS Camboim, Abalone, Ônix, Pampeano e Fundacep 30 apresentaram menor severidade da doença e menor porcentagem de grãos giberelados, demonstrando serem fontes de resistência tipo I. As cultivares BRS Guamirim, CD 120, Onix, Rubi, Fundacep 50, BRS 179, Pampeano, Abalone, CD 114, IPR 85, Safira, BRS Louro, CD 117, CDF 2002116, CD 115, BRS 177, CD 0529 e BRS Camboim apresentaram a menor área abaixo da curva de progresso da doença, demonstrando a presença da resistência do tipo II.

  16. BWROPT: A multi-cycle BWR fuel cycle optimization code

    Energy Technology Data Exchange (ETDEWEB)

    Ottinger, Keith E.; Maldonado, G. Ivan, E-mail: Ivan.Maldonado@utk.edu

    2015-09-15

    Highlights: • A multi-cycle BWR fuel cycle optimization algorithm is presented. • New fuel inventory and core loading pattern determination. • The parallel simulated annealing algorithm was used for the optimization. • Variable sampling probabilities were compared to constant sampling probabilities. - Abstract: A new computer code for performing BWR in-core and out-of-core fuel cycle optimization for multiple cycles simultaneously has been developed. Parallel simulated annealing (PSA) is used to optimize the new fuel inventory and placement of new and reload fuel for each cycle considered. Several algorithm improvements were implemented and evaluated. The most significant of these are variable sampling probabilities and sampling new fuel types from an ordered array. A heuristic control rod pattern (CRP) search algorithm was also implemented, which is useful for single CRP determinations, however, this feature requires significant computational resources and is currently not practical for use in a full multi-cycle optimization. The PSA algorithm was demonstrated to be capable of significant objective function reduction and finding candidate loading patterns without constraint violations. The use of variable sampling probabilities was shown to reduce runtime while producing better results compared to using constant sampling probabilities. Sampling new fuel types from an ordered array was shown to have a mixed effect compared to random new fuel type sampling, whereby using both random and ordered sampling produced better results but required longer runtimes.

  17. Alternative Zr alloys with irradiation resistant precipitates for high burnup BWR application

    International Nuclear Information System (INIS)

    Garzarolli, F.; Ruhmann, H.; Van Swan, L.

    2002-01-01

    In the core of BWRs, the second-phase particles (SPP) of Zircaloy-2 and Zircaloy-4, the Zr(FeCr) 2 and the Zr 2 (FeNi) phase, release Fe and dissolve. The degree of dissolution depends on initial size and fluence. These SPP, however, are important for the corrosion behavior of Zircaloy. Zircaloy shows an increase of corrosion at a certain burnup, depending on the initial SPP size and fast neutron fluence. Only Zr alloys with irradiation resistant SPP avoid this type of increased corrosion completely. Two types of irradiation resistant materials were considered. One is a Zr-Sn-Fe alloy containing the Zr 3 Fe phase, which is irradiation resistant under BWR conditions. The other material is a Zr-Sn-Nb alloy containing the irradiation resistant β-Nb phase. In-BWR tests have shown that a Sn content of >0.8% is mandatory to minimize the nodular corrosion. Two prototypes of irradiation resistant alloys, Zr1.3Sn0.25-0.3 Fe and Zr1Sn2-3Nb, were irradiated in a BWR for 1372 days to a fast fluence of 9 x 10 21 n/cm 2 (E > 1 MeV). These irradiation tests showed that Zr1.3Sn0.25-0.3 Fe has a little lower resistance against nodular corrosion than optimized LTP (Low Temperature Process) Zircaloy-2/4 and revealed that Zr1Sn2-3Nb is superior to LTP Zircaloy-2/4 with respect to nodular and shadow corrosion resistance. The BWR corrosion resistance of Zr1Sn2-3Nb depends on heat treatment. The lowest corrosion was observed with material fabricated completely in the α-range, but also material manufactured in the lower (α+β)-range exhibits low corrosion. Material fabricated in the upper (α+β)-range showed a somewhat higher corrosion, a corrosion behavior similar to LTP Zircaloy-2/4. As far as final annealing is concerned, a long time annealing at 540 deg C is superior to a standard recrystallization treatment (e.g., at 580 deg C), which still leads to a corrosion behavior that is better than stress relieved Zr1Sn2-3Nb. Zr1Sn2-3Nb is resistant to shadow corrosion, when fabricated

  18. AREVA 10x10 BWR fuel experience feedback and on going upgrading

    International Nuclear Information System (INIS)

    Lippert, Hans Joachim; Rentmeister, Thomas; Garner, Norman; Tandy, Jay; Mollard, Pierre

    2008-01-01

    Established with engineering and manufacturing operations in the US and Europe, AREVA NP has been and is supplying nuclear fuel assemblies and associated core components to boiling water reactors worldwide, representing today more than 63 000 fuel assemblies. The evolution of BWR fuel rod arrays from early 6x6 designs to the 10x10 designs first introduced in the mid 1990's yielded significant improvements in thermal mechanical operating limits, critical power level, cold shutdown margin, discharge burnup, as well as other key operational capabilities. Since first delivered in 1992, ATRIUM T M 1 0 fuel assemblies have now been supplied to a total of 32 BWR plants in the US, Europe, and Asia resulting in an operating experience over 20 000 fuel assemblies. This article presents in detail the operational experience consolidated by these more than 20 000 ATRIUM T M 1 0 BWR assemblies already supplied to utilities. Within the different 10x10 fuel assemblies available, the Fuel Assembly design is chosen and tailored to the operating strategies of each reactor. Among them, the latest versions of ATRIUM T M a re ATRIUM T M 1 0XP and ATRIUM T M 1 0XM fuel assemblies which have been delivered to several utilities worldwide. The article details key aspects of ATRIUM T M 1 0 fuel assemblies in terms of reliability and performance. Special attention is paid to key proven features, ULTRAFLOW T M s pacer grids, the use of part length fuel rods (PLFRs) and their geometrical optimization, water channel and load chain, upgraded features available for inclusion with most advanced designs. Regular upgrading of the product has been made possible thanks to a continuous improvement process with the aim of further upgrading BWR fuel assembly performance and reliability. Regarding thermal mechanical behavior of fuel rods, chromia (Cr2O3) doped fuel pellets, described in Reference 1, well illustrate this improvement strategy to reduce fission gas release, increase power thresholds for PCI

  19. BWR emergency procedure guidelines

    International Nuclear Information System (INIS)

    Post, J.S.; Karner, E.F.; Stratman, R.A.

    1984-01-01

    This chapter describes plans for dealing with reactor accidents developed by the Boiling Water Reactor (BWR) Owners' Group in response to post-Three Mile Island US NRC requirements. The devised Emergency Procedure Guidelines (EPGs), applicable to all BWRs, are symptom-based rather than event-based. According to the EPGs, the operator does not need to identify what event is occurring in the plant in order to decide what action to take, but need only observe the symptoms (values and trends of key control parameters) which exist and take appropriate action to control these symptoms. The original objective was to provide reactor operator guidance in responding to a small break loss-of-coolant accident (LOCA), but subsequent revisions have included other types of reactor accidents. Topics considered include the reactor pressure vessel (RPV) control guideline, the primary containment control guideline, the secondary containment control guideline, the radioactivity release control guideline, multiple failures vs. the design basis, safe limits vs. technical specifications, the technical status, licensing, and implementation. The EPGs are based upon maintaining both adequate core cooling and primary containment integrity

  20. BWR type reactor

    International Nuclear Information System (INIS)

    Okano, Shigeru.

    1992-01-01

    In a BWR type reactor, control rod drives are disposed in the upper portion of a reactor pressure vessel, and a control rod guide tube is disposed in adjacent with a gas/liquid separator at a same height, as well as a steam separator is disposed in the control rod guide tube. The length of a connection rod can be shortened by so much as the control rod guide tube and the gas/liquid separator overlapping with each other. Since the control rod guide tube and the gas/liquid separator are at the same height, the number of the gas/liquid separators to be disposed is decreased and, accordingly, even if the steam separation performance by the gas/liquid separator is lowered, it can be compensated by the steam separator of the control rod guide tube. In view of the above, since the direction of emergent insertion of the control rod is not against gravitational force but it is downward direction utilizing the gravitational force, reliability for the emergent insertion of the control rod can be further improved. Further, the length of the connection rod can be minimized, thereby enabling to lower the height of the reactor pressure vessel. The construction cost for the nuclear power plant can be reduced. (N.H.)

  1. Método predictivo de volatilidad tipo cambio

    Directory of Open Access Journals (Sweden)

    Jeffrey Viales Abellán

    2011-01-01

    Full Text Available Las series temporales descritas por precios de ciertos activos financieros tales como el de las acciones y divisas presentan dos principales características, excesos de kurtosis y clustering de volatilidad. Para recoger estas características se han utilizado modelos no lineales tales como los modelos Garch o Volatilidad Condicionada y los modelos de Volatilidad Estocástica, ambos tipos de modelo son empleados para la gestión del riesgo cambiario a corto plazo; el primer tipo de modelos definen la volatilidad en función de la misma volatilidad rezagada y de los shocks (innovaciones de volatilidad; el segundo tipo de modelos son similares a los modelos Garch con la variante de que la volatilidad incluye por si misma un término aleatorio de tipo proceso Wienner2; estos modelos son empleados para simular caminatas aleatorias del tipo de cambio con volatilidades simuladas por las ecuación estocásticas de volatilidad.En el presente trabajo se analizará el desempeño del modelo Garch en comparación a las medidas de volatilidad utilizadas actualmente para la gestión del riesgo cambiario; sus implicaciones para la gestión de riesgos.

  2. Analysis of the behavior of irradiated BWR fuel rod in storage dry conditions; Analisis del comportamiento de una barra combustible irradiada BWR en condiciones de almacenamiento en seco

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, A.; Montes, D.; Ruiz-Hervias, J.; Munoz-Reja, C.

    2014-07-01

    In order to complete previous studies of creep on PWR sheath material, developed a joint experimental program by CSN, ENRESA and ENUSA about BWR (Zircaloy-2) sheath material. This program consisted in creep tests and then on the material under creep, compression testing diametral obtaining the permissible displacement of the sheath to break. (Author)

  3. BWR Servicing and Refueling Improvement Program: Phase I summary report

    Energy Technology Data Exchange (ETDEWEB)

    Perry, D.R.

    1978-09-01

    Under the U.S. Department of Energy sponsorship, General Electric Co. (GE) undertook a study of boiling water reactor (BWR) refueling outages for the purpose of recommending the development and demonstration of critical path time savings improvements. The Tennessee Valley Authority (TVA) joined the study as a subcontractor, providing monitoring assistance and making the Browns Ferry Site available for improvement demonstrations. Agreement was also reached with Georgia Power Co., Power Authority of the State of New York, and Commonwealth Edison Co. for monitoring and data collection at Hatch 1, FitzPatrick, and Quad Cities 1 nuclear plants, respectively. The objective was to identify, develop, and demonstrate improved refueling, maintenance, and inspection procedures and equipment. The improvements recommended in this study are applicable to BWR nuclear plants currently in operation as well as those in the design and construction phases. The recommendations and outage information can be used as a basis to plan and conduct the first outages of new plants and to improve the planning and facilities of currently operating plants. Many of the recommendations can readily be incorporated in plants currently in the design and construction phases as well as in the design of future plants. Many of these recommended improvements can be implemented immediately by utilities without further technical development.

  4. BWR Servicing and Refueling Improvement Program: Phase I summary report

    International Nuclear Information System (INIS)

    Perry, D.R.

    1978-09-01

    Under the U.S. Department of Energy sponsorship, General Electric Co. (GE) undertook a study of boiling water reactor (BWR) refueling outages for the purpose of recommending the development and demonstration of critical path time savings improvements. The Tennessee Valley Authority (TVA) joined the study as a subcontractor, providing monitoring assistance and making the Browns Ferry Site available for improvement demonstrations. Agreement was also reached with Georgia Power Co., Power Authority of the State of New York, and Commonwealth Edison Co. for monitoring and data collection at Hatch 1, FitzPatrick, and Quad Cities 1 nuclear plants, respectively. The objective was to identify, develop, and demonstrate improved refueling, maintenance, and inspection procedures and equipment. The improvements recommended in this study are applicable to BWR nuclear plants currently in operation as well as those in the design and construction phases. The recommendations and outage information can be used as a basis to plan and conduct the first outages of new plants and to improve the planning and facilities of currently operating plants. Many of the recommendations can readily be incorporated in plants currently in the design and construction phases as well as in the design of future plants. Many of these recommended improvements can be implemented immediately by utilities without further technical development

  5. Development of alternative materials for BWR fuel springs

    International Nuclear Information System (INIS)

    Uruma, Y.; Osato, T.; Yamazaki, K.

    2002-01-01

    Major sources of radioactivity introduced into reactor water of BWR were estimated fuel crud and in-core materials (especially, fuel springs). Fuel springs are used for fixation of fuel cladding tubes with spacer grid. Those are small parts (total length is only within 25 mm) and so many numbers are loaded simultaneously and then total surfaces area are calculated up to about 200 m 2 . Fuel springs are located under high radiation field and high oxidative environment. Conventional fuel spring is made of alloy-X750 which is one of nickel-based alloy and is reported to show relatively higher corrosion release rate. 58 Co and 60 Co will be released directly into reactor water from intensely radio-activated fuel springs surface and increase radioactivity concentrations in primary coolant. Corrosion release control from fuel springs is an important technical item and a development of alternative material instead of alloy-X750 for fuel spring is a key subject to achieve ultra low man-rem exposure BWR plant. In present work, alloy-X718 which started usage for PWR fuel springs and stainless steel type 316L which has many mechanical property data are picked up for alternative materials and compared their corrosion behaviors with conventional material. Corrosion experiment was conducted under vapor-water two phases flow which is simulated fuel cladding surface boiling condition. After exposure, corrosion film formed under corrosion test was analyzed in detail and corrosion film amount and corrosion release amount are estimated among three materials. (authors)

  6. Parâmetros de desempenho e carcaça de genótipos de frangos tipo caipira

    Directory of Open Access Journals (Sweden)

    R.C. Veloso

    2014-08-01

    Full Text Available Objetivou-se com este trabalho avaliar as características de desempenho e de carcaça de sete genótipos de frangos tipo caipira da linhagem Redbro. Foram utilizados 840 pintos de um dia, machos, distribuídos em delineamento inteiramente ao acaso, dos seguintes genótipos: Caboclo, Carijó, Colorpak, Gigante Negro, Pesadão Vermelho, Pescoço Pelado e Tricolor. Os frangos foram alojados em 28 boxes, sendo 30 frangos por boxe, em galpão de alvenaria com acesso a um piquete de 45m², em quatro repetições. As características de desempenho (conversão alimentar, ganho em peso médio diário, consumo de ração médio diário foram avaliadas nos períodos: um a 28, um a 56, um a 70 e um a 84 dias de idade. O peso corporal foi avaliado aos 28, 56, 70 e 84 dias de idade. As características de carcaça (peso e rendimento de carcaça, peito e pernas foram obtidas a partir do abate de dois frangos por boxe, aos 85 dias de idade. As análises estatísticas foram realizadas utilizando-se o "proc glm" do SAS. Verificou-se que, em todos os períodos, os frangos do genótipo Colorpak apresentaram maior peso corporal, consumo de ração médio diário, ganho em peso médio diário e melhor conversão alimentar. Entretanto, os genótipos Caboclo e Gigante Negro apresentaram menores consumo de ração médio diário, ganho de peso médio diário e pior conversão alimentar. Quanto ao rendimento de cortes, observou-se que os genótipos Caboclo e Gigante Negro apresentaram os menores valores, e o Carijó, Colorpak, Pesadão Vermelho, Pescoço Pelado e Tricolor obtiveram os melhores rendimentos de pernas. Para o rendimento de peito, o Carijó e o Pesadão Vermelho obtiveram os maiores valores. A escolha do genótipo deve ser feita de acordo com o interesse do mercado, pois há diferenças no desempenho e no rendimento de carcaça e dos cortes.

  7. High fidelity analysis of BWR fuel assembly with COBRA-TF/PARCS and trace codes

    International Nuclear Information System (INIS)

    Abarca, A.; Miro, R.; Barrachina, T.; Verdu, G.; Soler, A.

    2013-01-01

    The growing importance of detailed reactor core and fuel assembly description for light water reactors (LWRs) as well as the sub-channel safety analysis requires high fidelity models and coupled neutronic/thermalhydraulic codes. Hand in hand with advances in the computer technology, the nuclear safety analysis is beginning to use a more detailed thermal hydraulics and neutronics. Previously, a PWR core and a 16 by 16 fuel assembly models were developed to test and validate our COBRA-TF/PARCS v2.7 (CTF/PARCS) coupled code. In this work, a comparison of the modeling and simulation advantages and disadvantages of modern 10 by 10 BWR fuel assembly with CTF/PARCS and TRACE codes has been done. The objective of the comparison is making known the main advantages of using the sub-channel codes to perform high resolution nuclear safety analysis. The sub-channel codes, like CTF, permits obtain accurate predictions, in two flow regime, of the thermalhydraulic parameters important to safety with high local resolution. The modeled BWR fuel assembly has 91 fuel rods (81 full length and 10 partial length fuel rods) and a big square central water rod. This assembly has been modeled with high level of detail with CTF code and using the BWR modeling parameters provided by TRACE. The same neutronic PARCS's model has been used for the simulation with both codes. To compare the codes a coupled steady state has be performed. (author)

  8. Development of internal CRD for next generation BWR-endurance and robustness tests of ball-bearing materials in high-pressure and high-temperature water

    International Nuclear Information System (INIS)

    Shoji Goto; Shuichi Ohmori; Michitsugu Mori; Shohei Kawano; Tadashi Narabayashi; Shinichi Ishizato

    2005-01-01

    An internal CRD using a heatproof ceramics insulated coil is under development to be a competitive and higher performance as Next- Generation BWR. In the case of the 1700MWe next generation BWR, adapting the internal CRDs, the reactor pressure vessel is almost equivalent to that of 1356 MWe ABWR. The endurance and robustness tests were examined in order to confirm the durability of the bearing for the internal CRD. The durability of the ball bearing for the internal CRD was performed in the high-pressure and high-temperature reactor water of current BWR conditions. The experimental results confirmed the durability of rotational numbers for the operation length of 60 years. We added the cruds into water to confirm the robustness of the ball bearing. The test results also showed good robustness even in high-density crud conditions, compared with the current BWR. This program is conducted as one of the selected offers for the advertised technical developments of the Institute of Applied Energy founded by METI (Ministry of Economy, Trade and Industry) of Japan. (authors)

  9. Seismic risk assessment of a BWR

    International Nuclear Information System (INIS)

    Wells, J.E.; Bernreuter, D.L.; Chen, J.C.; Lappa, D.A.; Chuang, T.Y.; Murray, R.C.; Johnson, J.J.

    1987-01-01

    The simplified seismic risk methodology developed in the USNRC Seismic Safety Margins Research Program (SSMRP) was demonstrated by its application to the Zion nuclear power plant (PWR). The simplified seismic risk methodology was developed to reduce the costs associated with a seismic risk analysis while providing adequate results. A detailed model of Zion, including systems analysis models (initiating events, event trees, and fault trees), SSI and structure models, and piping models, was developed and used in assessing the seismic risk of the Zion nuclear power plant (FSAR). The simplified seismic risk methodology was applied to the LaSalle County Station nuclear power plant, a BWR; to further demonstrate its applicability, and if possible, to provide a basis for comparing the seismic risk from PWRs and BWRs. (orig./HP)

  10. Effect of nitrogen in austenitic stainless steel on deformation behavior and stress corrosion cracking susceptibility in BWR simulated environment

    International Nuclear Information System (INIS)

    Roychowdhury, S.; Kain, V.; Dey, G.K.

    2012-01-01

    Intergranular stress corrosion cracking (IGSCC) of austenitic stainless steel (SS) components in boiling water reactor (BWR has been a serious issue and is generic in nature. Initial cracking incidences were attributed to weld induced sensitisation and low temperature sensitisation which was mitigated by the use of low carbon grade of SS and molybdenum and nitrogen containing nuclear grade SS. However, IGSCC has occurred in these SS in the non-sensitised condition which was attributed to residual weld induced strain. Strain hardening in SS has been identified as a major cause for enhanced IGSCC susceptibility in BWR environment. Nitrogen in SS has a significant effect on the strain hardening characteristics and has potential to affect the IGSCC susceptibility in BWR environment. Type 304LN stainless steel is a candidate material for use in future reactors with long design life like the Advanced Heavy Water Reactor (AHWR), in which the operating conditions are similar to BWR. This study reports the effect of nitrogen in type 304LN stainless steel on the strain hardening behaviour and deformation characteristics and its effect on the IGSCC susceptibility in BWR/AHWR environment. Two heats of type 304LN stainless steel were used containing different levels of nitrogen, 0.08 and 0.16 wt % (SS alloys A and B, respectively). Both the SS was strain hardened by cross rolling at 200℃ to simulate the strain hardened regions having higher IGSCC susceptibility in BWRs. Tensile testing was done at both room temperature and 288℃(temperature simulating operating BWR conditions) and the effect of nitrogen on the tensile properties were established. Tensile testing was done at strain rates similar to the crack tip strain rates associated with a growing IGSCC in SS. Detailed transmission electron microscopic (TEM) studies were done to establish the effect of nitrogen on the deformation modes. Results indicated twinning was the major mode of deformation during cross rolling while

  11. The mechanical structure of the SVEA BWR fuel

    International Nuclear Information System (INIS)

    Nylund, O.; Johansson, A.; Junkrans, S.

    1985-01-01

    The SVEA BWR fuel assembly design is characterized by a double-wall cruciform internal structure forming an internal water gap and dividing the assembly into 4 subbundles. The effect is a favourable distribution of fuel and moderator, a minimum amount of structural material in active core, a combination of structural stability and flexibility for minimum control rod friction in reduced gaps and a reduced creep deformation of the fuel assembly. The results of a laboratory test program confirm the much lower friction force obtained with the SVEA fuel assemblies while withdrawing and inserting the control rod. (RF)

  12. In-situ testing of BWR closure head studs

    International Nuclear Information System (INIS)

    deRaad, J.A.; Wolters, J.T.

    1988-01-01

    Mechanized ultrasonic inspection of closure head studs often is on the critical path. In German BWR's, a floodcompensator is used which allows human access to the studs despite the water is up to a much higher level. For stud inspection this provides a potential solution to get out of the critical path. However, the space restrictions around the studs due to the geometry of the floodcompensator did not allow the use of the existing manipulators. This paper describes the design of a dedicated compact manipulator of a construction which copes with the restricted space available around the studs

  13. BWR water chemistry guidelines and PWR primary water chemistry guidelines in Japan – Purpose and technical background

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Hirotaka, E-mail: kawamuh@criepi.denken.or.jp [Central Research Institute of Electric Power Industry (Japan); Hirano, Hideo [Central Research Institute of Electric Power Industry (Japan); Katsumura, Yousuke [University of Tokyo (Japan); Uchida, Shunsuke [Tohoku University (Japan); Mizuno, Takayuki [Mie University (Japan); Kitajima, Hideaki; Tsuzuki, Yasuo [Japan Nuclear Safety Institute (Japan); Terachi, Takumi [Institute of Nuclear Safety System, Inc. (Japan); Nagase, Makoto; Usui, Naoshi [Hitachi-GE Nuclear Energy, Ltd. (Japan); Takagi, Junichi; Urata, Hidehiro [Toshiba Corporation (Japan); Shoda, Yasuhiko; Nishimura, Takao [Mitsubishi Heavy Industry, Ltd. (Japan)

    2016-12-01

    Highlights: • Framework of BWR/PWR water chemistry Guidelines in Japan are presented. • Guideline necessity, definitions, philosophy and technical background are mentioned. • Some guideline settings for control parameters and recommendations are explaines. • Chemistry strategy is also mentioned. - Abstract: After 40 years of light water reactor (LWR) operations in Japan, the sustainable development of water chemistry technologies has aimed to ensure the highest coolant system component integrity and fuel reliability performance for maintaining LWRs in the world; additionally, it aimed to achieve an excellent dose rate reduction. Although reasonable control and diagnostic parameters are utilized by each boiling water reactor (BWR) and pressurized water reactor (PWR) owner, it is recognized that specific values are not shared among everyone involved. To ensure the reliability of BWR and PWR operation and maintenance, relevant members of the Atomic Energy Society of Japan (AESJ) decided to establish guidelines for water chemistry. The Japanese BWR and PWR water chemistry guidelines provide strategies to improve material and fuel reliability performance as well as to reduce dosing rates. The guidelines also provide reasonable “control values”, “diagnostic values” and “action levels” for multiple parameters, and they stipulate responses when these levels are exceeded. Specifically, “conditioning parameters” are adopted in the Japanese PWR primary water chemistry guidelines. Good practices for operational conditions are also discussed with reference to long-term experience. This paper presents the purpose, technical background and framework of the preliminary water chemistry guidelines for Japanese BWRs and PWRs. It is expected that the guidelines will be helpful as an introduction to achieve safety and reliability during operations.

  14. Parametric study of the potential for BWR ECCS strainer blockage due to LOCA generated debris. Final report

    International Nuclear Information System (INIS)

    Zigler, G.; Brideau, J.; Rao, D.V.; Shaffer, C.; Souto, F.; Thomas, W.

    1995-10-01

    This report documents a plant-specific study for a BWR/4 with a Mark I containment that evaluated the potential for LOCA generated debris and the probability of losing long term recirculation capability due ECCS pump suction strainer blockage. The major elements of this study were: (1) acquisition of detailed piping layouts and installed insulation details for a reference BWR; (2) analysis of plant specific piping weld failure probabilities to estimate the LOCA frequency; (3) development of an insulation and other debris generation and drywell transport models for the reference BWR; (4) modeling of debris transport in the suppression pool; (5) development of strainer blockage head loss models for estimating loss of NPSH margin; (6) estimation of core damage frequency attributable to loss of ECCS recirculation capability following a LOCA. Elements 2 through 5 were combined into a computer code, BLOCKAGE 2.3. A point estimate of overall DEGB pipe break frequency (per Rx-year) of 1.59E-04 was calculated for the reference plant, with a corresponding overall ECCS loss of NPSH frequency (per Rx-year) of 1.58E-04. The calculated point estimate of core damage frequency (per Rx-year) due to blockage related accident sequences for the reference BWR ranged from 4.2E-06 to 2.5E-05. The results of this study show that unacceptable strainer blockage and loss of NPSH margin can occur within the first few minutes after ECCS pumps achieve maximum flows when the ECCS strainers are exposed to LOCA generated fibrous debris in the presence of particulates (sludge, paint chips, concrete dust). Generic or unconditional extrapolation of these reference plant calculated results should not be undertaken

  15. Application of EASY5 and MMS modules to BWR controller design

    International Nuclear Information System (INIS)

    Carmichael, L.A.; Rayes, L.; Yasutake, T.

    1987-01-01

    The application of EPRI's MMS Library and BCS' EASY5 simulation language to the design of a digital feedwater control system for the Monticello Boiling Water Nuclear Power Plant is discussed. In order to first design and then verify the digital feedwater controller algorithms, a digital simulation model of the Monticello plant was constructed using a combination of custom designed modules, existing MMS two-phase library modules, and standard modules available in the EASY5 library. Details of the process models, namely the BWR nuclear steam supply system, the steamline piping, and the feedwater piping are described in a companion paper. Details of the models for the existing BWR turbine pressure inlet pressure control and recirculation flow control system are described. These models are required to be operational during the transient analysis portion of the feedwater controller design verification, since they interact strongly with the reactor steam flow and water level. The design of the digital feedwater flow control loop is described. Its design is of particular interest because it requires consideration of control loop interaction and is, therefore, a simple example of multivariable non-interacting control design

  16. Interpretation of the results of the CORA-33 dry core BWR test

    International Nuclear Information System (INIS)

    Ott, L.J.; Hagen, S.

    1993-01-01

    All BWR degraded core experiments performed prior to CORA-33 were conducted under ''wet'' core degradation conditions for which water remains within the core and continuous steaming feeds metal/steam oxidation reactions on the in-core metallic surfaces. However, one dominant set of accident scenarios would occur with reduced metal oxidation under ''dry'' core degradation conditions and, prior to CORA-33, this set had been neglected experimentally. The CORA-33 experiment was designed specifically to address this dominant set of BWR ''dry'' core severe accident scenarios and to partially resolve phenomenological uncertainties concerning the behavior of relocating metallic melts draining into the lower regions of a ''dry'' BWR core. CORA-33 was conducted on October 1, 1992, in the CORA tests facility at KfK. Review of the CORA-33 data indicates that the test objectives were achieved; that is, core degradation occurred at a core heatup rate and a test section axial temperature profile that are prototypic of full-core nuclear power plant (NPP) simulations at ''dry'' core conditions. Simulations of the CORA-33 test at ORNL have required modification of existing control blade/canister materials interaction models to include the eutectic melting of the stainless steel/Zircaloy interaction products and the heat of mixing of stainless steel and Zircaloy. The timing and location of canister failure and melt intrusion into the fuel assembly appear to be adequately simulated by the ORNL models. This paper will present the results of the posttest analyses carried out at ORNL based upon the experimental data and the posttest examination of the test bundle at KfK. The implications of these results with respect to degraded core modeling and the associated safety issues are also discussed

  17. BWR stability using a reducing dynamical model

    International Nuclear Information System (INIS)

    Ballestrin Bolea, J. M.; Blazquez Martinez, J. B.

    1990-01-01

    BWR stability can be treated with reduced order dynamical models. When the parameters of the model came from dynamical models. When the parameters of the model came from experimental data, the predictions are accurate. In this work an alternative derivation for the void fraction equation is made, but remarking the physical structure of the parameters. As the poles of power/reactivity transfer function are related with the parameters, the measurement of the poles by other techniques such as noise analysis will lead to the parameters, but the system of equations is non-linear. Simple parametric calculation of decay ratio are performed, showing why BWRs become unstable when they are operated at low flow and high power. (Author)

  18. Crud removal with deep bed type condensate demineralizer in Tokai-2 BWR

    International Nuclear Information System (INIS)

    Abe, Ayumi; Takiguchi, Hideki; Numata, Kunio; Saito, Toshihiko

    1996-01-01

    The major objective and functions for the installation of the deep bed type condensate polishers in BWR power plants is to remove both ionic impurities caused by sea water leakage and suspended impurities called crud mainly consisting of metal oxides which are produced from metal corrosion. In considering the reduction of occupational radiation exposure level, it is extremely important to remove the crud effectively. In recent Japanese BWR power plants, condensate pre-filters with powdered ion exchange resins or with hollow fiber membrane have been installed to remove the crud at the upper stream of the deep bed polishers. In such plants, the crud removal is conventionally the secondary objective for the deep bed polishers. The Japan Atomic Power Company has introduced the small particle ion exchange resin and a soak regeneration method since April 1985, and then applied the low cross-linked resin since July 1995 at Tokai-2 Power Station, to improve the crud removal performance by using only deep bed type condensate demineralizer, and as a result condensate demineralizer outlet iron level has been kept below 1 ppb since 1991

  19. BWR type nuclear power plant

    International Nuclear Information System (INIS)

    Matsumoto, Kosuke.

    1991-01-01

    In a BWR type nuclear power plant in which reactor water in a reactor pressure vessel can be drained to a waste processing system by way of reactor recycling pipeways and remaining heat removal system pipeways, a pressurized air supply device is disposed for supplying air for pressurizing reactor water to the inside of the reactor pressure vessel by way of an upper head. With such a constitution, since the pressurized air sent from the pressurized air supply device above the reactor pressure vessel for the reactor water discharging pressure upon draining, the water draining pressure is increased compared with a conventional case and, accordingly, the amount of drained water is not reduced even in the latter half of draining. Accordingly, the draining efficiency can be improved and only a relatively short period of time is required till the completion of the draining, which can improve safety and save labors. (T.M.)

  20. Design criteria for confidence in the manufacture of BWR fuel rods

    International Nuclear Information System (INIS)

    Anantharaman, K.; Basu, S.; Anand, A.K.; Mehta, S.K.

    Based on the experience of fuel manufacture for BWR type reactors in India, the parameters which need stringent quality control, are discussed. The design specifications of the fuel rods as well as the cladding material and tubes are reported. The defect mechanisms to be taken into account and the fuel failure in reference to the variation of mechanical properties of the cladding are also described. (K.B.)

  1. Analysis of BWR/Mark III drywell failure during degraded core accidents

    International Nuclear Information System (INIS)

    Yang, J.W.

    1983-01-01

    The potential for a hydrogen detonation due to the accumulation of a large amount of hydrogen in the drywell region of a BWR Mark III containment is analyzed. Loss of integrity of the drywell wall causes a complete bypass of the suppression pool and leads to pressurization of the containment building. However, the predicted peak containment pressure does not exceed the estimates of containment failure pressure

  2. On the fast estimation of transit times application to BWR simulated data

    International Nuclear Information System (INIS)

    Antonopoulos-Domis, M.; Marseguerra, M.; Padovani, E.

    1996-01-01

    Real time estimators of transit times are proposed. BWR noise is simulated including a global component due to rod vibration. The time obtained form the simulation is used to investigate the robustness and noise immunity of the estimators. It is found that, in presence of a coincident (global) signal, the cross-correlation function is the worst estimator. (authors)

  3. An optimized BWR fuel lattice for improved fuel utilization

    International Nuclear Information System (INIS)

    Bernander, O.; Helmersson, S.; Schoen, C.G.

    1984-01-01

    Optimization of the BWR fuel lattice has evolved into the water cross concept, termed ''SVEA'', whereby the improved moderation within bundles augments reactivity and thus improves fuel cycle economy. The novel design introduces into the assembly a cruciform and double-walled partition containing nonboiling water, thus forming four subchannels, each of which holds a 4x4 fuel rod bundle. In Scandinavian BWRs - for which commercial SVEA reloads are now scheduled - the reactivity gain is well exploited without adverse impact in other respects. In effect, the water cross design improves both mechanical and thermal-hydraulic performance. Increased average burnup is also promoted through achieving flatter local power distributions. The fuel utilization savings are in the order of 10%, depending on the basis of comparison, e.g. choice of discharge burnup and lattice type. This paper reviews the design considerations and the fuel utilization benefits of the water cross fuel for non-Scandinavian BWRs which have somewhat different core design parameters relative to ASEA-ATOM reactors. For one design proposal, comparisons are made with current standard 8x8 fuel rod bundles as well as with 9x9 type fuel in reactors with symmetric or asymmetric inter-assembly water gaps. The effect on reactivity coefficients and shutdown margin are estimated and an assessment is made of thermal-hydraulic properties. Consideration is also given to a novel and advantageous way of including mixed-oxide fuel in BWR reloads. (author)

  4. O oraloma da diabetes melitos tipo 1 vs diabetes melitos tipo 2 - um estudo comparativo

    OpenAIRE

    Brás, Vítor Daniel Moreira

    2013-01-01

    A Diabetes Melitos é uma doença de grande prevalência a nível mundial e os seus mecanismos fisiopatológicos não são ainda totalmente conhecidos. Actualmente, a terapêutica seguida em casos de Diabetes Melitos é eminentemente sintomática consistindo na administração de insulina nos casos de Diabetes Melitos tipo 1 ou quando se verifica a falência das células beta do pâncreas de pacientes com Diabetes Melitos tipo 2, ou no controlo da glicemia nos casos de Diabetes Melitos ...

  5. Connected analysis nuclear-thermo-hydraulic of parallel channels of a BWR reactor using distributed computation; Analisis acoplado nuclear-termohidraulico de canales paralelos de un reactor BWR empleando computacion distribuida

    Energy Technology Data Exchange (ETDEWEB)

    Campos Gonzalez, Rina Margarita

    2007-07-15

    This work consists of the integration of three models previously developed which are described widely in Literature: model of the thermo-hydraulic channel, model of the modal neutronic and the model of the recirculation bows. The tool used for this connection of models is the PVM system, Parallel Virtual Machine that allowed paralleling the model by means of the concept of distributed computation. The purpose of making this connection of models is the one of obtaining a more complete tool than better represents the real configuration and the phenomenology of the nucleus of a BWR reactor, thus obtaining better results. In addition to maintaining the flexibility to improve the resulting model at any time, since the very complex or sophisticated models are difficult to improve being impossible to modify the equations they use and can include variables that are not of primary importance in the tackled problem or that mask relations among variables due to the excess of results. Also maintaining the flexibility for adding component of models or systems of the BWR reactor, all of this following the modeling needs. The Swedish Ringhals power plant was chosen to characterize the resulting connected model for counting on a Stability Benchmark that offers the opportunity to count on real plant data. Besides that in case 9 of cycle 14 of this Benchamark oscillations outside phase appeared, which are from great interest because the detection systems that register the average of the power of the nucleus do not detect them. Additionally in this work the model of the recirculation bows as an independent module is obtained in an individual way, since this model belongs to another work and works connected to the reactor vessel. The model of the recirculation bows is able to model several transients of interest, as it is shown in the Appendix A of this work, among which are found the tripping of recirculation pumps or the transference at low or high velocity of them. The scope of the

  6. Results of modeling advanced BWR fuel designs using CASMO-4

    International Nuclear Information System (INIS)

    Knott, D.; Edenius, M.

    1996-01-01

    Advanced BWR fuel designs from General Electric, Siemens and ABB-Atom have been analyzed using CASMO-4 and compared against fission rate distributions and control rod worths from MCNP. Included in the analysis were fuel storage rack configurations and proposed mixed oxide (MOX) designs. Results are also presented from several cycles of SIMULATE-3 core follow analysis, using nodal data generated by CASMO-4, for cycles in transition from 8x8 designs to advanced fuel designs. (author)

  7. BWR type reactor core

    International Nuclear Information System (INIS)

    Tatemichi, Shin-ichiro.

    1981-01-01

    Purpose: To eliminate the variation in the power distribution of a BWR type reactor core in the axial direction even if the flow rate is increased or decreased by providing a difference in the void coefficient between the upper part and the lower parts of the reactor core, and increasing the void coefficient at the lower part of the reactor core. Constitution: The void coefficient of the lower region from the center to the lower part along the axial direction of a nuclear fuel assembly is increased to decrease the dependence on the flow rate of the axial power distribution of the nuclear fuel assembly. That is, a water/fuel ratio is varied, the water in non-boiled region is increased or the neutron spectrum is varied so as to vary the void coefficient. In order to exemplify it, the rate of the internal pellets of the fuel rod of the nuclear fuel assembly or the shape of the channel box is varied. Accordingly, the power does not considerably vary even if the flow rate is altered since the power is varied in the power operation. (Yoshihara, H.)

  8. Genótipos de haptoglobina e hipertensão refratária em pacientes com diabete melito tipo 2

    Directory of Open Access Journals (Sweden)

    Vânia Pereira Albuquerque Wobeto

    2011-10-01

    Full Text Available FUNDAMENTO: Tem sido sugerido que o polimorfismo da haptoglobina pode influenciar na patogênese das complicações microvasculares e macrovasculares em pacientes diabéticos. OBJETIVO: O objetivo principal deste estudo transversal foi de realizar uma investigação da existência ou não de uma associação entre os genótipos de haptoglobina e a prevalência de eventos isquêmicos cardiovasculares (angina estável, angina instável e infarto agudo do miocárdio, hipertensão arterial sistêmica, hipertensão refratária, obesidade e dislipidemia em 120 pacientes com diabete melito tipo 2, seguidos no Hospital Universitário da Unicamp, em Campinas, Estado de São Paulo. MÉTODOS: A genotipagem da haptoglobina foi realizada por reações em cadeia da polimerase alelo-específicas. As frequências dos genótipos de haptoglobina foram comparadas com a presença/ausência de doença cardiovascular, hipertensão arterial sistêmica, hipertensão refratária, obesidade e dislipidemia; medições de pressão arterial sistólica e diastólica; glicemia, colesterol (total, lipoproteínas de alta densidade - HDL e lipoproteínas de baixa densidade - LDL e triglicerídeos; assim como níveis de creatinina sérica. RESULTADOS: Embora nenhuma associação entre o genótipo de haptoglobina e a presença de doença cardiovascular tenha sido identificada, encontramos um excesso significativo de pacientes com o genótipo Hp2-1 entre as pessoas com hipertensão refratária, que também apresentavam uma maior pressão arterial sistólica e diastólica e níveis de colesterol total e LDL. CONCLUSÃO: Nossos resultados sugerem que os pacientes com diabete melito tipo 2 com o genótipo Hp2-1 podem apresentar uma maior chance de desenvolver hipertensão refratária. Estudos adicionais em populações diabéticas são necessários para confirmar esses achados.

  9. Improved point-kinetics model for the BWR control rod drop accident

    International Nuclear Information System (INIS)

    Neogy, P.; Wakabayashi, T.; Carew, J.F.

    1985-01-01

    A simple prescription to account for spatial feedback weighting effects in RDA (rod drop accident) point-kinetics analyses has been derived and tested. The point-kinetics feedback model is linear in the core peaking factor, F/sub Q/, and in the core average void fraction and fuel temperature. Comparison with detailed spatial kinetics analyses indicates that the improved point-kinetics model provides an accurate description of the BWR RDA

  10. The noise analysis and the BWR operation map

    International Nuclear Information System (INIS)

    Blazquez, J.; Ballestrin, J.

    1996-01-01

    An analytical expression for the Decay Ratio is obtained: DR = exp(-bW / P 1/2 ). The physics behind is also explained. It applies to a commercial BWR Operation Map, on the vicinity of the power instability. This functional form seems fitting to the structure of the Operation map. The power P and the coolant flow are measured straightforward; the Decay Ratio is obtained by neutron noise analysis techniques. The parameter b, depending on the void reactivity coefficient, is then calculated on line during the Reactor Operation. New DR value is now predicted for each new displacement on the Map, so unexpected instability events are more likely avoided. (authors)

  11. BWR plant advanced central control panel PODIA

    International Nuclear Information System (INIS)

    Fujii, K.; Hayakawa, H.; Ikeda, Y.; Neda, T.; Suto, O.; Takamiya, S.

    1983-01-01

    BWR plant central control panels have become more and more enlarged and complicated recently due to the magnification of the scale of a plant and the requirement to reinforce safety. So, it is important to make communication between men and the complicated central control panel smooth. Toshiba has developed an advanced central control panel, named PODIA, which uses many computers and color CRTs, and PODIA is now in the stage of application to practical plants. In this article, the writers first touch upon control functions transition in the central control room, the PODIA position concerning the world-wide trend in this technology phase and the human engineering on the design. Then they present concrete design concepts for the control board and computer system which constitute PODIA

  12. Evaluation of internal flooding in a BWR

    International Nuclear Information System (INIS)

    Shiu, K.; Papazoglou, I.A.; Sun, Y.H.; Anavim, E.; Ilberg, D.

    1985-01-01

    Flooding inside a nuclear power station is capable of concurrently disabling redundant safety systems. This paper presents the results of a recent review study performed on internally-generated floods inside a boiling water reactor (BWR) reactor building. The study evaluated the flood initiator frequency due to either maintenance or ruptures using Markovian models. A time phased event tree approach was adopted to quantify the core damage frequency based on the flood initiator frequency. It is found in the study that the contribution to the total core damage due to internal flooding events is not insignificant and is comparable to other transient contributors. The findings also indicate that the operator plays an important role in the prevention as well as the mitigation of a flooding event

  13. Manufacturing technology and process for BWR fuel

    International Nuclear Information System (INIS)

    Kato, Shigeru

    1996-01-01

    Following recent advanced technologies, processes and requests of the design changes of BWR fuel, Nuclear Fuel Industries, Ltd. (NFI) has upgraded the manufacturing technology and honed its own skills to complete its brand-new automated facility in Tokai in the latter half of 1980's. The plant uses various forms of automation throughout the manufacturing process: the acceptance of uranium dioxide powder, pelletizing, fuel rod assembling, fuel bundle assembling and shipment. All processes are well computerized and linked together to establish the integrated control system with three levels of Production and Quality Control, Process Control and Process Automation. This multi-level system plays an important role in the quality assurance system which generates the highest quality of fuels and other benefits. (author)

  14. Comparative analysis of results between CASMO, MCNP and Serpent for a suite of Benchmark problems on BWR reactors

    International Nuclear Information System (INIS)

    Xolocostli M, J. V.; Vargas E, S.; Gomez T, A. M.; Reyes F, M. del C.; Del Valle G, E.

    2014-10-01

    In this paper a comparison is made in analyzing the suite of Benchmark problems for reactors type BWR between CASMO-4, MCNP6 and Serpent code. The Benchmark problem consists of two different geometries: a fuel cell of a pin and assembly type BWR. To facilitate the study of reactors physics in the fuel pin their nuclear characteristics are provided to detail, such as burnt dependence, the reactivity of selected nuclide, etc. With respect to the fuel assembly, the presented results are regarding to infinite multiplication factor for burning different steps and different vacuum conditions. Making the analysis of this set of Benchmark problems provides comprehensive test problems for the next fuels generation of BWR reactors with high extended burned. It is important to note that when making this comparison the purpose is to validate the methodologies used in modeling for different operating conditions, if the case is of other BWR assembly. The results will be within a range with some uncertainty, considering that does not depend on code that is used. Escuela Superior de Fisica y Matematicas of Instituto Politecnico Nacional (IPN (Mexico) has accumulated some experience in using Serpent, due to the potential of this code over other commercial codes such as CASMO and MCNP. The obtained results for the infinite multiplication factor are encouraging and motivate the studies to continue with the generation of the X S of a core to a next step a respective nuclear data library is constructed and this can be used by codes developed as part of the development project of the Mexican Analysis Platform of Nuclear Reactors AZTLAN. (Author)

  15. Development of a BWR loading pattern design system based on modified genetic algorithms and knowledge

    International Nuclear Information System (INIS)

    Martin-del-Campo, Cecilia; Francois, Juan Luis; Avendano, Linda; Gonzalez, Mario

    2004-01-01

    An optimization system based on Genetic Algorithms (GAs), in combination with expert knowledge coded in heuristics rules, was developed for the design of optimized boiling water reactor (BWR) fuel loading patterns. The system was coded in a computer program named Loading Pattern Optimization System based on Genetic Algorithms, in which the optimization code uses GAs to select candidate solutions, and the core simulator code CM-PRESTO to evaluate them. A multi-objective function was built to maximize the cycle energy length while satisfying power and reactivity constraints used as BWR design parameters. Heuristic rules were applied to satisfy standard fuel management recommendations as the Control Cell Core and Low Leakage loading strategies, and octant symmetry. To test the system performance, an optimized cycle was designed and compared against an actual operating cycle of Laguna Verde Nuclear Power Plant, Unit I

  16. Latest experiences in inspecting the inside of BWR vessel shields

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, R.; Gonzalez, E.

    2001-07-01

    In the last few years, the owners of BWR nuclear power plants have been forced to address new fuel shield inspection requirements, TECNATOM has responded to this situation by launching the TEIDE projects, which include development of an inspection machine and the corresponding Non-Destructive Tests to examine the inside of this shield. With these projects, TECNATOM has performed more than 12 fuel shield inspections in different countries. This article describes the experience gained in the last three years. (Author)

  17. BWR stability: analysis of cladding temperature for high amplitude oscillations - 146

    International Nuclear Information System (INIS)

    Pohl, P.; Wehle, F.

    2010-01-01

    Power oscillations associated with density waves in boiling water reactors (BWRs) have been studied widely. Industrial research in this area is active since the invention of the first BWR. Stability measurements have been performed in various plants during commissioning phase but especially the magnitude and divergent nature of the oscillations during the LaSalle Unit 2 nuclear power plant event on March 9, 1988, renewed concern about the state of knowledge on BWR instabilities and possible consequences to fuel rod integrity. The objective of this paper is to present a simplified stability tool, applicable for stability analysis in the non-linear regime, which extends to high amplitude oscillations where inlet reverse flow occurs. In case of high amplitude oscillations a cyclical dryout and rewetting process at the fuel rod may take place, which leads in turn to rapid changes of the heat transfer from the fuel rod to the coolant. The application of this stability tool allows for a conservative determination of the fuel rod cladding temperature in case of high amplitude oscillations during the dryout / re-wet phase. Moreover, it reveals in good agreement to experimental findings the stabilizing effect of the reverse bundle inlet flow, which might be obtained for large oscillation amplitudes. (authors)

  18. Ensamble de crustáceos bentónicos en un lago salino tropical Benthic crustaceans assemblage in a tropical, saline lake

    Directory of Open Access Journals (Sweden)

    Ma. del Carmen Hernández

    2010-10-01

    Full Text Available El presente trabajo reconoce la composición, estructura y distribución espacial del ensamble de crustáceos bentónicos de Alchichica, un lago salino tropical ubicado en el extremo oriental del altiplano mexicano. El lago presenta una riqueza taxonómica de crustáceos bentónicos compuesta por 1 anfípodo (Hyalella azteca, 1 isópodo (Caecidotea williamsi y 2 ostrácodos (Limnocythere inopinata y Candona sp.. Comparada con otros lagos tropicales, la riqueza de especies es reducida. A pesar de lo anterior, es importante mencionar el grado elevado de endemismo representado por C. williamsi, recientemente descrita para el lago Alchichica; adicionalmente, es factible que tanto Candona como H. azteca sean especies nuevas y endémicas del lago. Los crustáceos bentónicos se distribuyen desde la zona litoral hasta la zona más profunda del lago (62 m con abundancias y riqueza taxonómica variables. Los ostrácodos fueron los crustáceos que con mayor frecuencia se recolectaron en el lago, en la zona litoral, en el talud, y en la zona profunda de la que son habitantes exclusivos. Los anfípodos constituyeron el segundo grupo en abundancia de la zona litoral y talud y estuvieron ausentes en la zona profunda. Los isópodos sólo se encuentran asociados a los depósitos de tufa, hábitat característico del lago que se extiende a lo largo del talud, por lo que con las técnicas de muestreo tradicional empleadas en el presente estudio no fueron capturados. En este ensamble de crustáceos predominan las especies de desarrollo directo y con posiciones tróficas que incluyen componentes herbívoros (H. azteca, omnívoros (C. williamsi y bacterívoros (L. inopinata y Candona sp..This work acknowledges the composition, structure and spatial distribution of the benthic crustaceans assemblage of Alchichica, a tropical saline lake located in the easternmost portion of the Mexican highlands. The benthic crustaceans' assemblage was comprised by 1 amphipod

  19. ROSA-III/971, BWR Rig of Safety Assessment LOCA, Loss of Offsite Power Transient

    International Nuclear Information System (INIS)

    1992-01-01

    1 - Description of test facility: ROSA-III is a 1/124 scaled down test facility with electrically heated core designed to study the response of engineered safety features to loss-of-coolant accidents in in commercial BWR. It consists of the following, fully instrumented subsystems: (a) the pressure vessel with a core simulating four half-length fuel assemblies and control rod; (b) steam line and feed water line, which are independent open loops; (c) coolant recirculation system, which consists of two loops provided with a recirculation pump and two jet pumps in each loop; (d) emergency cooling system, including HPCS, LPCS, LPCI, and ADS. 2 - Description of test: Run 971 simulated a BWR LOSS of off-site power transient. The core scram was assumed to occur at 6 seconds after the transient initiated by the turbine trip. HPCS failure was assumed. After ADS started, the upper half of the core was uncovered by steam. The core was re-flooded by LPCS alone

  20. Thermalydraulic processes in the reactor coolant system of a BWR under severe accident conditions

    International Nuclear Information System (INIS)

    Hodge, S.A.

    1990-01-01

    Boiling water reactors (BWRs) incorporate many unique structural features that make their expected response under severe accident conditions very different from that predicted in the case of pressurized water reactor accident sequences. Automatic main steam isolation valve (MIV) closure as the vessel water level approaches the top of the core would cause reactor vessel isolation while automatic recirculation pump trip would limit the in-vessel flows to those characteristic of natural circulation (as disturbed by vessel relief valve actuation). This paper provides a discussion of the BWR control blade, channel box, core plate, control rod guide tube, and reactor vessel safety relief valve (SRV) configuration and the effects of these structural components upon thermal hydraulic processes within the reactor vessel under severe accident conditions. The dominant BWR severe accident sequences as determined by probabilistic risk assessment are described and the expected timing of events for the unmitigated short-term station blackout severe accident sequence at the Peach Bottom atomic power station is presented

  1. TRACE/PARCS analysis of the OECD/NEA Oskarshamn-2 BWR stability benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, T. [Univ. of Illinois, Urbana-Champaign, IL (United States); Downar, T.; Xu, Y.; Wysocki, A. [Univ. of Michigan, Ann Arbor, MI (United States); Ivanov, K.; Magedanz, J.; Hardgrove, M. [Pennsylvania State Univ., Univ. Park, PA (United States); March-Leuba, J. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Hudson, N.; Woodyatt, D. [Nuclear Regulatory Commission, Rockville, MD (United States)

    2012-07-01

    On February 25, 1999, the Oskarshamn-2 NPP experienced a stability event which culminated in diverging power oscillations with a decay ratio of about 1.4. The event was successfully modeled by the TRACE/PARCS coupled code system, and further analysis of the event is described in this paper. The results show very good agreement with the plant data, capturing the entire behavior of the transient including the onset of instability, growth of the oscillations (decay ratio) and oscillation frequency. This provides confidence in the prediction of other parameters which are not available from the plant records. The event provides coupled code validation for a challenging BWR stability event, which involves the accurate simulation of neutron kinetics (NK), thermal-hydraulics (TH), and TH/NK. coupling. The success of this work has demonstrated the ability of the 3-D coupled systems code TRACE/PARCS to capture the complex behavior of BWR stability events. The problem was released as an international OECD/NEA benchmark, and it is the first benchmark based on measured plant data for a stability event with a DR greater than one. Interested participants are invited to contact authors for more information. (authors)

  2. Final results of the XR2-1 BWR metallic melt relocation experiment

    International Nuclear Information System (INIS)

    Gauntt, R.O.; Humphries, L.L.

    1997-08-01

    This report documents the final results of the XR2-1 boiling water reactor (BWR) metallic melt relocation experiment, conducted at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission. The objective of this experiment was to investigate the material relocation processes and relocation pathways in a dry BWR core following a severe nuclear reactor accident such as an unrecovered station blackout accident. The imposed test conditions (initial thermal state and the melt generation rates) simulated the conditions for the postulated accident scenario and the prototypic design of the lower core test section (in composition and in geometry) ensured that thermal masses and physical flow barriers were modeled adequately. The experiment has shown that, under dry core conditions, the metallic core materials that melt and drain from the upper core regions can drain from the core region entirely without formation of robust coherent blockages in the lower core. Temporary blockages that suspended pools of molten metal later melted, allowing the metals to continue draining downward. The test facility and instrumentation are described in detail. The test progression and results are presented and compared to MERIS code analyses. 6 refs., 55 figs., 4 tabs

  3. Quantitative evaluation for training results of nuclear plant operator on BWR simulator

    International Nuclear Information System (INIS)

    Sato, Takao; Sato, Tatsuaki; Onishi, Hiroshi; Miyakita, Kohji; Mizuno, Toshiyuki

    1985-01-01

    Recently, the reliability of neclear power plants has largely risen, and the abnormal phenomena in the actual plants are rarely encountered. Therefore, the training using simulators becomes more and more important. In BWR Operator Training Center Corp., the training of the operators of BWR power plants has been continued for about ten years using a simulator having the nearly same function as the actual plants. The recent high capacity ratio of nuclear power plants has been mostly supported by excellent operators trained in this way. Taking the opportunity of the start of operation of No.2 simulator, effort has been exerted to quantitatively grasp the effect of training and to heighten the quality of training. The outline of seven training courses is shown. The technical ability required for operators, the items of quantifying the effect of training, that is, operational errors and the time required for operation, the method of quantifying, the method of collecting the data and the results of the application to the actual training are described. It was found that this method is suitable to quantify the effect of training. (Kako, I.)

  4. Validations of BWR nuclear design code using ABWR MOX numerical benchmark problems

    International Nuclear Information System (INIS)

    Takano, Shou; Sasagawa, Masaru; Yamana, Teppei; Ikehara, Tadashi; Yanagisawa, Naoki

    2017-01-01

    BWR core design code package (the HINES assembly code and the PANACH core simulator), being used for full MOX-ABWR core design, has been benchmarked against the high-fidelity numerical solutions as references, for the purpose of validating its capability of predicting the BWR core design parameters systematically from UO 2 to 100% MOX cores. The reference solutions were created by whole core critical calculations using MCNPs with the precisely modeled ABWR cores both in hot and cold conditions at BOC and EOC of the equilibrium cycle. A Doppler-Broadening Rejection Correction (DCRB) implemented MCNP5-1.4 with ENDF/B-VII.0 was mainly used to evaluate the core design parameters, except for effective delayed neutron fraction (β eff ) and prompt neutron lifetime (l) with MCNP6.1. The discrepancies in the results between the design codes HINES-PANACH and MCNPs for the core design parameters such as the bundle powers, hot pin powers, control rod worth, boron worth, void reactivity, Doppler reactivity, β eff and l, are almost within target accuracy, leading to the conclusion that HINES-PANACH has sufficient fidelity for application to full MOX-ABWR core design. (author)

  5. Low temperature sensitization of austenitic stainless steel: an ageing effect during BWR service

    International Nuclear Information System (INIS)

    Shah, B.K.; Sinha, A.K.; Rastogi, P.K.; Kulkarni, P.G.

    1994-01-01

    Sensitization in austenitic stainless steel refers to chromium carbide precipitation at the grain boundaries with concomitant depletion of chromium below 12% near grain boundaries. This makes the material susceptible to either intergranular corrosion (IGC) or intergranular stress corrosion cracking (IGSCC). This effect is predominant whenever austenitic stainless steel is subjected to thermal exposure in the temperature range 723-1073K either during welding or during heat treatment. Low temperature sensitization (LTS) refers to sensitization at temperature below the typical range of sensitization i.e. 723-1073K. A prerequisite for LTS phenomenon is reported to be the presence of chromium carbide nuclei at the grain boundaries which can grow during boiling water reactor service even at a relatively lower temperature of around 560K. LTS can lead to failure of BWR pipe due to IGSCC. The paper reviews the phenomenological and mechanistic aspects of LTS. Studies carried out regarding effect of prior cold work on LTS are reported. Summary of the studies reported in literature to examine the occurrence of LTS during BWR service has also been included. (author). 10 refs., 3 figs

  6. TRACE/PARCS validation for BWR stability based on OECD/NEA Oskarshamn-2 benchmark

    International Nuclear Information System (INIS)

    Kozlowski, T.; Roshan, S.; Lefvert, T.; Downar, T.; Xu, Y.; Wysocki, A.; Ivanov, K.; Magedanz, J.; Hardgrove, M.; Netterbrant, C.; March-Leuba, J.; Hudson, N.; Sandervag, O.; Bergman, A.

    2011-01-01

    On February 25, 1999, the Oskarshamn-2 NPP experienced a stability event, which culminated in diverging power oscillations with decay ratio greater than 1.3. The event was successfully modeled by TRACE/PARCS coupled code system and the details of the modeling and solution are described in the paper. The obtained results show excellent agreement with the plant data, capturing the entire behavior of the transient including onset of instability, growth of oscillation (decay ratio) and the oscillation frequency. The event allows coupled code validation for BWR with a real, challenging stability event, which challenges accuracy of neutron kinetics (NK), thermal-hydraulics (TH) and TH/NK coupling. The success of this work has demonstrated the ability of 3-D coupled code systems to capture the complex behavior of BWR stability events. The problem is released as an international OECD/NEA benchmark, and it is the first benchmark based on measured plant data for a stability event with a DR greater than one. Interested participants are invited to contact authors for more information. (author)

  7. Analysis of natural circulation BWR dynamics with stochastic and deterministic methods

    International Nuclear Information System (INIS)

    VanderHagen, T.H.; Van Dam, H.; Hoogenboom, J.E.; Kleiss, E.B.J.; Nissen, W.H.M.; Oosterkamp, W.J.

    1986-01-01

    Reactor kinetic, thermal hydraulic and total plant stability of a natural convection cooled BWR was studied using noise analysis and by evaluation of process responses to control rod steps and to steamflow control valve steps. An estimate of the fuel thermal time constant and an impression of the recirculation flow response to power variations was obtained. A sophisticated noise analysis method resulted in more insight into the fluctuations of the coolant velocity

  8. Experience and development of on-line BWR surveillance system at Onagawa nuclear power station unit-1

    International Nuclear Information System (INIS)

    Kishi, A.; Chiba, K.; Kato, K.; Ebata, S.; Ando, Y.; Sakamoto, H.

    1986-01-01

    ONAGAWA nuclear power station Unit-1 (Tohoku Electric Power Co.) is a BWR-4 nuclear power station of 524 MW electric power which started commercial operation in June 1984. To attain high reliability and applicability for ONAGAWA-1, Tohoku Electric Power Co. and Toshiba started a Research and Development project on plant surveillance and diagnosis from April 1982. Main purposes of this project are to: (1) Develop an on-line surveillance system and acquire its operating experience at a commercial BWR, (2) Assist in plant operation and maintenance by data acquisition and analysis, (3) Develop a new technique for plant surveillance and diagnosis. An outline of the project, operating experience gained from the on-line surveillance system and an introduction to new diagnosis techniques are reported in this paper. (author)

  9. CFD Simulation of rigid venting of the containment of a BWR-5 Mark-II reactor; Simulacion CFD de los venteos rigidos de la contencion de un reactor BWR-5 Mark-II

    Energy Technology Data Exchange (ETDEWEB)

    Galindo G, I. F.; Vazquez B, A. K.; Velazquez E, L. [Instituto Nacional de Electricidad y Energias Limpias, Reforma 113, Col. Palmira, 62490 Cuernavaca, Morelos (Mexico); Tijerina S, F.; Tapia M, R., E-mail: francisco.tijerina@cfe.gob.mx [CFE, Central Nucleoelectrica Laguna Verde, Carretera Federal Cardel-Nautla Km 42.5, 91476 Municipio Alto Lucero, Veracruz (Mexico)

    2016-09-15

    In conditions of prolonged loss of external energy or a severe accident, venting to the atmosphere is an alternative to prevent overpressure and release of fission products from the primary containment of a nuclear reactor. Due to the importance of flow determination through rigid vents, a computational fluid dynamics (CFD) model is proposed to verify the capacity of rigid vents in the primary containment of a boiling water reactor (BWR) under different operating conditions (pressure, temperature and compositions of the fluids). The model predicts and provides detailed information on variables such as mass flow and velocity of the venting gases. In the proposed model the primary containment gas is vented to the atmosphere via rigid vents (pipes) from the dry and wet pit. Is assumed that the container is pressurized because is in a defined scenario, and at one point the venting is open and the gas released into the atmosphere. The objective is to characterize the flow and validate the CFD model for the overpressure conditions that occur in an accident such as a LOCA, Sbo, etc. The model is implemented with Ansys-Fluent general-purpose CFD software based on the geometry of the venting ducts of the containment of a BWR. The model is developed three-dimensional and resolves at steady state for compressible flow and includes the effects of the turbulence represented by the Reynolds stress model. The CFD results are compared with the values of a one-dimensional and isentropic model for compressible flow. The relative similarity of results leads to the conclusion that the proposed CFD model can help to predict the rigid venting capacity of the containment of a BWR, however more information is required for full validation of the proposed model. (Author)

  10. Effect of zinc injection on BWR fuel cladding corrosion. Pt. 1. Study on an accelerated corrosion condition to evaluate corrosion resistance of zircaloy-2 fuel cladding

    International Nuclear Information System (INIS)

    Kawamura, Hirotaka; Kanbe, Hiromu; Furuya, Masahiro

    2002-01-01

    Japanese BWR utilities have a plan to apply zinc injection to the primary coolant in order to reduce radioactivity accumulation on the structure. Prior to applying the zinc injection to BWR plants, it is necessary to evaluate the effect of zinc injection on corrosion resistance of fuel cladding. The objective of this report was to examine the accelerated corrosion condition for evaluation of BWR fuel cladding corrosion resistance under non-irradiated conditions, as the first step of a zinc injection evaluation study. A heat transfer corrosion test facility, in which a two phase flow condition could be achieved, was designed and constructed. The effects of heat flux, void fraction and solution temperature on BWR fuel cladding corrosion resistance were quantitatively investigated. The main findings were as follows. (1) In situ measurements using high speed camera and a void sensor together with one dimensional two phase flow analysis results showed that a two phase flow simulated BWR core condition can be obtained in the corrosion test facility. (2) The heat transfer corrosion test results showed that the thickness of the zirconium oxide layer increased with increasing solution temperature and was independent of heat flux and void fraction. The corrosion accelerating factor was about 2.5 times in the case of a temperature increase from 288degC to 350degC. (author)

  11. A practical methodology of radiological protection for the reduction of hot particles in BWR type reactors; Una metodologia practica de proteccion radiologica para la reduccion de particulas calientes en reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez G, G [Comision Federal de Electricidad, Gerencia del Proyecto Nucleoelectrico Laguna Verde, Disciplina de Fisica Aplicada (Mexico)

    1991-07-01

    The purpose of this work, in general form, is to describe a practical method for reduction of hot particles generated as consequence of the operational activities of BWR nuclear reactors. This methodology provides a description of the localizations and/or probable activities of finding particles highly radioactive denominated hot particles. For this purpose it was developed a strategy based on the decontamination lineaments, as well as the manipulation, gathering, registration, contention, documentation, control and final disposition of the hot particles. In addition, some recommendations are reiterated and alternative, in order to gathering the hot particles in a dynamic way given to the activities of the personal occupationally exposed in highly radioactive areas. The structure of the methodology of hot particles is supported in the radiological controls based on the Code of Federal Regulation 10 CFR 20 as well as the applicable regulatory documents. It provides an idea based on administrative controls of radiological protection, in order to suggesting the responsibilities and necessary directing for the control of the hot particles required in nuclear plants of the BWR type. (author)

  12. Studies on core melt behaviour in a BWR pressure vessel lower head

    International Nuclear Information System (INIS)

    Lindholm, I.; Ikonen, K.; Hedberg, K.

    1999-01-01

    Core debris behaviour in the Nordic BWR lower head was investigated numerically using MELCOR and MAAP4 codes. Lower head failure due to penetration failure was studied with more detailed PASULA code taking thermal boundary conditions from MELCOR calculations. Creep rupture failure mode was examined with the two integral codes. Also, the possibility to prevent vessel failure by late reflooding was assessed in this study. (authors)

  13. Neutron dosimetry. Environmental monitoring in a BWR type reactor

    International Nuclear Information System (INIS)

    Tavera D, L.; Camacho L, M.E.

    1991-01-01

    The measurements carried out on reactor dosimetry are applied mainly to the study on the effects of the radiation in 108 materials of the reactor; little is on the environmental dosimetry outside of the primary container of BWR reactors. In this work the application of a neutron spectrometer formed by plastic detectors of nuclear traces manufactured in the ININ, for the environmental monitoring in penetrations around the primary container of the unit I of the Laguna Verde central is presented. The neutron monitoring carries out with purposes of radiological protection, during the operational tests of the reactor. (Author)

  14. Void effects on BWR Doppler and void reactivity feedback

    International Nuclear Information System (INIS)

    Hsiang-Shou Cheng; Diamond, D.J.

    1978-01-01

    The significance of steam voids and control rods on the Doppler feedback in a gadolinia shimmed BWR is demonstrated. The importance of bypass voids when determining void feedback is also shown. Calculations were done using a point model, i.e., feedback was expressed in terms of reactivity coefficients which were determined for individual four-bundle configurations and then appropriately combined to yield reactor results. For overpower transients the inclusion of the void effect of control rods is to reduce Doppler feedback. For overpressurization transients the inclusion of the effect of bypass void wil increase the reactivity due to void collapse. (author)

  15. Corrosion failure of a BWR embedded reactor containment liner

    International Nuclear Information System (INIS)

    Wegemar, B.

    2006-01-01

    Following sixteen fuel cycles, leakage through a BWR embedded reactor containment liner (carbon steel) was discovered. Leakage was located at a penetration for electrical conductors as a result of penetrating corrosion attack. During construction, porous cement structures and air pockets/cavities were formed due to erroneous injection of grout. Corrosion attacks on the CS steel liner were located at the relatively small, active surfaces in contact with the porous cement structure. The corrosion mechanism was supposed to be anodic dissolution of the steel liner in areas with insufficient passivation. The penetrations were restored according to original design requirements. (author)

  16. A study on the feasibility of minor actinides in BWR

    International Nuclear Information System (INIS)

    Abdul Waris; Budiono

    2008-01-01

    Preliminary study on the feasibility of actinides minor (MA) recycling without mixing them with plutonium in boiling water reactor (BWR) has been carried out. The results show that increasing of fissile MA content in mixed oxide fuel (MOX) and/or reducing void fraction can enlarge the effective multiplication factor at the beginning of cycle, but the reactor still can not obtain its criticality condition. Furthermore, dropping the void fraction results in higher reactivity swing and therefore plummeting the safety factor of the reactor. (author)

  17. BWR startup and shutdown activity transport control

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, S.E., E-mail: sgarcia@epri.com [Electric Power Research Inst. (EPRI), Palo Alto, California (United States); Giannelli, J.F.; Jarvis, A.J., E-mail: jgiannelli@finetech.com, E-mail: ajarvis@finetech.com [Finetech, Inc., Parsippany, New Jersey (United States)

    2010-07-01

    This paper summarizes BWR industry experience on good practices for controlling the transport of corrosion product activity during shutdowns, particularly refueling outages, and for startup chemistry control to minimize IGSCC (intergranular stress corrosion cracking). For shutdown, overall goals are to minimize adverse impacts of crud bursts and the time required to remove activated corrosion products from the reactor coolant during the shutdown process prior to refueling, and to assist plants in predicting and controlling radiation exposure during outages. For startup, the overall goals are to highlight conditions during early heatup and startup when sources of reactor coolant oxidants are high, when there is a greater likelihood for chemical excursions associated with refueling outage work activities, and when hydrogen injection is not available to mitigate IGSCC due to system design limitations. BWR water chemistry has changed significantly in recent years with the adoption of hydrogen water chemistry, zinc addition and noble metal chemical applications. These processes have, in some instances, resulted in significant activity increases during shutdown evolutions, which together with reduced time for cleanup because of shorter outages, has consequently increased outage radiation exposure. A review several recent outages shows that adverse effects from these conditions can be minimized, leading to the set of good practice recommendations for shutdown chemistry control. Most plants lose the majority of their hydrogen availability hours during early startup because feedwater hydrogen injection systems were not originally designed to inject hydrogen below 20% power. Hydrogen availability has improved through modifications to inject hydrogen at lower power levels, some near 5%. However, data indicate that IGSCC is accelerated during early startup, when dissolved oxygen and hydrogen peroxide levels are high and reactor coolant temperatures are in the 300 to 400 {sup o

  18. Boron concentration evolution in the temporary curtains of a BWR reactor. Burcur code

    International Nuclear Information System (INIS)

    Cano Aguado, M.; Perlado Martin, J.M.; Minguez Torres, E.

    1977-01-01

    The theoretical model and the user's guide of the code Burcur is included. This code analyzes the burnable poison concentration of the temporary curtains as a function of time, for BWR reactors of the 7 x 7 design. The computing time being reasonably short, the number of burnup steps is as high as necessary.(author) [es

  19. A proposal for accident management optimization based on the study of accident sequence analysis for a BWR

    International Nuclear Information System (INIS)

    Sobajima, M.

    1998-01-01

    The paper describes a proposal for accident management optimization based on the study of accident sequence and source term analyses for a BWR. In Japan, accident management measures are to be implemented in all LWRs by the year 2000 in accordance with the recommendation of the regulatory organization and based on the PSAs carried out by the utilities. Source terms were evaluated by the Japan Atomic Energy Research Institute (JAERI) with the THALES code for all BWR sequences in which loss of decay heat removal resulted in the largest release. Identification of the priority and importance of accident management measures was carried out for the sequences with larger risk contributions. Considerations for optimizing emergency operation guides are believed to be essential for risk reduction. (author)

  20. Propagation of cracks by stress corrosion in conditions of BWR type reactor; Propagacion de grietas por corrosion bajo esfuerzo en condiciones de reactor de agua en ebullicion (BWR)

    Energy Technology Data Exchange (ETDEWEB)

    Merino C, F.J. [ININ, 52045 Estado de Mexico (Mexico); Fuentes C, P. [ITT, Metepec, Estado de Mexico (Mexico)]. E-mail: fjmc@nuclear.inin.mx

    2004-07-01

    In this work, the obtained results when applying the Hydrogen Chemistry to a test tube type Compact Tension (CT), built in austenitic stainless steel 304l, simulating the conditions to those that it operates a Boiling Water Reactor (BWR), temperature 288 C and pressure of 8 MPa are presented. With the application of this water chemistry, seeks to be proven the diminution of the crack propagation speed. (Author)

  1. CODIFICACIÓN DE ESTADOS FUNCIONALES EN REDES NEURONALES BIOLÓGICAS

    Directory of Open Access Journals (Sweden)

    Luis Carrillo-Reid

    2008-01-01

    Full Text Available Un tema central para las neurociencias consiste en descifrar la forma en la cual las redes neuronales biológicas procesan la información y guardan memorias. En 1949 Donald Hebb propuso que la actividad reverberante de pequeños circuitos neuronales llamados "ensambles" funcionaría como el sustrato sobre el cual se construyen las rutas de la memoria. Sin embargo, para poder almacenar cualquier tipo de información compleja, los ensambles neuronales deberían tener la habilidad de organizarse en jerarquías, es decir, pequeñas subrutinas que componen procedimientos más elaborados. Nuestros experimentos muestran que los circuitos con estas capacidades pueden encontrarse en pequeños pedazos de cerebro aislado in vitro y estudiarse con detalle. De esta manera, el cerebro como cualquier sistema puede ser entendido y estudiado de acuerdo con sus elementos básicos y sus reglas de composición; permitiéndonos entender desde la forma en la cual nos comunicamos hasta los hábitos que determinan nuestra vida cotidiana. Los hallazgos experimentales aquí descritos podrían sentar las bases para entender tanto los estados cerebrales normales como los patológicos, con lo cual será posible proponer soluciones para distintas enfermedades neurodegenerativas que tienen un gran impacto en la sociedad.

  2. Modeling of SCC initiation and propagation mechanisms in BWR environments

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmeister, Hans, E-mail: Hans.Hoffmeister@hsu-hh.de [Institute for Failure Analysis and Failure Prevention ISSV e.V., c/o Helmut Schmidt University of the Federal Armed Forces, D-22039 Hamburg (Germany); Klein, Oliver [Institute for Failure Analysis and Failure Prevention ISSV e.V., c/o Helmut Schmidt University of the Federal Armed Forces, D-22039 Hamburg (Germany)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer We show that SSC in BWR environments includes anodic crack propagation and hydrogen assisted cracking. Black-Right-Pointing-Pointer Hydrogen cracking is triggered by crack tip acidification following local impurity accumulations and subsequent phase precipitations. Black-Right-Pointing-Pointer We calculate effects of pH, chlorides, potentials and stress on crack SCC growth rates at 288 Degree-Sign C. - Abstract: During operation of mainly BWRs' (Boiling Water Reactors) excursions from recommended water chemistries may provide favorite conditions for stress corrosion cracking (SCC). Maximum levels for chloride and sulfate ion contents for avoiding local corrosion are therefore given in respective water specifications. In a previously published deterministic 288 Degree-Sign C - corrosion model for Nickel as a main alloying element of BWR components it was demonstrated that, as a theoretically worst case, bulk water chloride levels as low as 30 ppb provide local chloride ion accumulation, dissolution of passivating nickel oxide and precipitation of nickel chlorides followed by subsequent local acidification. In an extension of the above model to SCC the following work shows that, in a first step, local anodic path corrosion with subsequent oxide breakdown, chloride salt formation and acidification at 288 Degree-Sign C would establish local cathodic reduction of accumulated hydrogen ions inside the crack tip fluid. In a second step, local hydrogen reduction charges and increasing local crack tip strains from increasing crack lengths at given global stresses are time stepwise calculated and related to experimentally determined crack critical cathodic hydrogen charges and fracture strains taken from small scale SSRT tensile tests pieces. As a result, at local hydrogen equilibrium potentials higher than those of nickel in the crack tip solution, hydrogen ion reduction initiates hydrogen crack propagation that is enhanced with

  3. A Non-Linear Digital Computer Model Requiring Short Computation Time for Studies Concerning the Hydrodynamics of the BWR

    Energy Technology Data Exchange (ETDEWEB)

    Reisch, F; Vayssier, G

    1969-05-15

    This non-linear model serves as one of the blocks in a series of codes to study the transient behaviour of BWR or PWR type reactors. This program is intended to be the hydrodynamic part of the BWR core representation or the hydrodynamic part of the PWR heat exchanger secondary side representation. The equations have been prepared for the CSMP digital simulation language. By using the most suitable integration routine available, the ratio of simulation time to real time is about one on an IBM 360/75 digital computer. Use of the slightly different language DSL/40 on an IBM 7044 computer takes about four times longer. The code has been tested against the Eindhoven loop with satisfactory agreement.

  4. Experimental data report for Test TS-2 reactivity initiated accident test in NSRR with pre-irradiated BWR fuel rod

    International Nuclear Information System (INIS)

    Nakamura, Takehiko; Yoshinaga, Makio; Sobajima, Makoto; Fujishiro, Toshio; Kobayashi, Shinsho; Yamahara, Takeshi; Sukegawa, Tomohide; Kikuchi, Teruo

    1993-02-01

    This report presents experimental data for Test TS-2 which was the second test in a series of Reactivity Initiated Accident (RIA) condition test using pre-irradiated BWR fuel rods, performed at the Nuclear Safety Research Reactor (NSRR) in February, 1990. Test fuel rod used in the Test TS-2 was a short sized BWR (7x7) type rod which was fabricated from a commercial rod irradiated at Tsuruga Unit 1 power reactor. The fuel had an initial enrichment of 2.79% and a burnup of 21.3Gwd/tU (bundle average). A pulse irradiation of the test fuel rod was performed under a cooling condition of stagnant water at atmospheric pressure and at ambient temperature which simulated a BWR's cold start-up RIA event. The energy deposition of the fuel rod in this test was evaluated to be 72±5cal/g·fuel (66±5cal/g·fuel in peak fuel enthalpy) and no fuel failure was observed. Descriptions on test conditions, test procedures, transient behavior of the test rod during the pulse irradiation, and, results of pre and post pulse irradiation examinations are described in this report. (author)

  5. Operational experiences with on line BWR condenser tube leak verification

    International Nuclear Information System (INIS)

    Bryant, R.A.; Duvall, W.E.; Kirkley, W.B.; Zavadoski, R.W.

    1988-01-01

    Verifying condenser tube leaks at a boiling water reactor is, at best, a difficult task carried out in hot steamy water boxes with concurrent radiation exposure. For small apparent leaks with slight chemical changes there is always uncertainty of whether the problem is a condenser tube leak or a feedback from radwaste. Most conventional methods (e.g soap tests, Saran wrap suction, and helium tests) usually involve a load reduction to isolate the water boxes one at a time and hours of drain down on each box. The sensitivity of the most sensitive test (helium) is of the order of 7500 l per day per box. Sulfur hexafluoride has been successfully used at a BWR to identify one leaking water box out of four while the unit was at 100 % power. The actual tubes leakig in the water box were identified by injecting helium during drain down of the box and subsequent manifold testing. Additional tests with sulfur hexafluoride on the second BWR unit indicated tight water boxes to within the sensitivity of the measurement, i.e. less than 19 l per day for all four boxes. Problems encountered in both tests included sulfur hexafluoride carry over from the plume of the cooling towers and off gas considerations. In brief sulfur hexafluoride can be used to quickly identify which particular water box has a condenser tube leak or, just as quickly, establish the integrity of all the water boxes to a level not previously attainable. (author)

  6. OTROS TIPOS ESPECÍFICOS DE DIABETES MELLITUS

    Directory of Open Access Journals (Sweden)

    DRA. M. Gabriela Sanzana G.

    2016-03-01

    En las “Diabetes Atípicas” (no incluidas en la clasificación ADA, se mencionan la DM tipo 2 en niños y adolescentes, favorecida por el aumento de la obesidad y del sedentarismo; la diabetes propensa a la cetosis, que debutan en cetoacidosis, con etiopatogenia y evolución de DM2; los Latent Autoinmune Diabetes of Adults (LADA, DM tipo 1 de lenta aparición y la diabetes postrasplante.

  7. Axial profiles of burned and fraction of holes for calculations of criticality with credit for BWR fuel burning; Perfiles axiales de quemado y fraccion de huecos para calculos de criticidad con credito al quemado para combustible BWR

    Energy Technology Data Exchange (ETDEWEB)

    Casado Sanchez, C.; Rubio Oviedo, P.

    2014-07-01

    This paper presents a method to define surround profiles of burning and fraction of holes suited for use in applications of credit to burning of BWR fuel from results obtained with the module STARBUCS of SCALE. (Author)

  8. BWR 1 % main recirculation line break LOCA tests, RUNs 917 and 918, without HPCS at ROSA-III program

    International Nuclear Information System (INIS)

    Suzuki, Mitsuhiro; Okazaki, Motoaki; Anoda, Yoshinari; Kumamaru, Hiroshige; Nakamura, Hideo; Yonomoto, Taisuke; Koizumi, Yasuo; Tasaka, Kanji

    1988-07-01

    In a case of small break loss-of-coolant accident (LOCA) at a boiling water reactor (BWR) system, it is important to lower the system pressure to cool down the reactor system by using either the high pressure core spray (HPCS) or the automatic depressurization system (ADS). The report presents characteristic test results of RUNs 918 and 917, which were performed at the rig-of-safety assessment (ROSA)-III program simulating a 1 % break BWR LOCA with an assumption of HPCS failure, and clarifies effects of the ADS delay time on a small break LOCA. The ROSA-III test facility simulates principal components of a BWR/6 system with volumetric scaling factor of 1/424. It is experimentally concluded that the ADS delay time shorter than 4 minutes results in a similar PCT as that in a standard case, in which the PCT is observed after actuation of the low pressure core spray (LPCS). And the ADS delay time longer than 4 minutes results in higher PCT than in the standard case. In the latter, the PCT depends on the ADS time, a 220 K higher PCT, for example, in a case of 10 minutes ADS delay compared with the standard case. (author) 52 refs. 299 figs

  9. Catarata e diabetes mellitus tipo 1

    OpenAIRE

    Pizzol,Melissa Manfroi Dal; Esteves,Jorge Freita; Sccoco,Caio Augusto; Roggia,Murilo Felix; Rosa,Carolina Maurente da; Lambert,José Humberto Franco; Canani,Luís Henrique

    2008-01-01

    OBJETIVO: Avaliar a prevalência de catarata e seus fatores de risco em uma população portadora de diabetes mellitus tipo 1 (DM1). MÉTODOS: Estudo de casos e controles de um banco de dados de 181 pacientes (362 olhos) com diagnóstico de diabetes mellitus tipo 1. Os pacientes foram classificados como casos quando apresentavam diagnóstico de catarata. As variáveis estudadas foram a presença ou não de retinopatia diabética, tratamento com panfotocoagulação, presença de hipertensão arterial sistêm...

  10. Impact of modeling Choices on Inventory and In-Cask Criticality Calculations for Forsmark 3 BWR Spent Fuel

    International Nuclear Information System (INIS)

    Martinez-Gonzalez, Jesus S.; Ade, Brian J.; Bowman, Stephen M.; Gauld, Ian C.; Ilas, Germina; Marshall, William BJ J.

    2015-01-01

    Simulation of boiling water reactor (BWR) fuel depletion poses a challenge for nuclide inventory validation and nuclear criticality safety analyses. This challenge is due to the complex operating conditions and assembly design heterogeneities that characterize these nuclear systems. Fuel depletion simulations and in-cask criticality calculations are affected by (1) completeness of design information, (2) variability of operating conditions needed for modeling purposes, and (3) possible modeling choices. These effects must be identified, quantified, and ranked according to their significance. This paper presents an investigation of BWR fuel depletion using a complete set of actual design specifications and detailed operational data available for five operating cycles of the Swedish BWR Forsmark 3 reactor. The data includes detailed axial profiles of power, burnup, and void fraction in a very fine temporal mesh for a GE14 (10x10) fuel assembly. The specifications of this case can be used to assess the impacts of different modeling choices on inventory prediction and in-cask criticality, specifically regarding the key parameters that drive inventory and reactivity throughout fuel burnup. This study focused on the effects of the fidelity with which power history and void fraction distributions are modeled. The corresponding sensitivity of the reactivity in storage configurations is assessed, and the impacts of modeling choices on decay heat and inventory are addressed.

  11. RETRAN experience with BWR transients at Yankee Atomic Electric Company

    International Nuclear Information System (INIS)

    Ansari, A.A.F.; Cronin, J.T.; Slifer, B.C.

    1981-01-01

    Yankee Atomic Electric Company is actively involved in the development of licensing methods for BWR's. The computer code chosen for analyzing system response under transient conditions is RETRAN. This paper describes the RETRAN model developed for Vermont Yankee, and the results of the RETRAN checkout and qualification that has been achieved at YAEC through comparison of RETRAN predictions to the startup test results performed at the plant as part of the 100% power startup test program. In addition, abnormal operational transients typically analyzed for licensing are also presented

  12. Propagation of cracks by stress corrosion in conditions of BWR type reactor

    International Nuclear Information System (INIS)

    Merino C, F.J.; Fuentes C, P.

    2004-01-01

    In this work, the obtained results when applying the Hydrogen Chemistry to a test tube type Compact Tension (CT), built in austenitic stainless steel 304l, simulating the conditions to those that it operates a Boiling Water Reactor (BWR), temperature 288 C and pressure of 8 MPa are presented. With the application of this water chemistry, seeks to be proven the diminution of the crack propagation speed. (Author)

  13. BWR fuel clad behaviour following LOCA

    International Nuclear Information System (INIS)

    Chaudhry, S.M.; Vyas, K.N.; Dinesh Babu, R.

    1996-01-01

    Flow and pressure through the fuel coolant channel reduce rapidly following a loss of coolant accident. Due to stored energy and decay heat, fuel and cladding temperatures rise rapidly. Increase in clad temperature causes deterioration of mechanical properties of clad material. This coupled with increase of pressure inside the cladding due to accumulation of fission gases and de-pressurization of coolant causes the cladding to balloon. This phenomenon is important as it can reduce or completely block the flow passages in a fuel assembly causing reduction of emergency coolant flow. Behaviour of a BWR clad is analyzed in a design basis LOCA. Fuel and clad temperatures following a LOCA are calculated. Fission gas release and pressure is estimated using well established models. An elasto-plastic analysis of clad tube is carried out to determine plastic strains and corresponding deformations using finite-element technique. Analysis of neighbouring pins gives an estimate of flow areas available for emergency coolant flow. (author). 7 refs, 6 figs, 3 tabs

  14. A BWR Safety and Operability Improvements

    International Nuclear Information System (INIS)

    Sawyer, Craig D.

    1993-01-01

    The A BWR is the culmination of 30 years of design, development and operating experience of BWRs around the world. It represents across the board improvements is safety, operation and maintenance practices (O and M), economics, radiation exposure and rad waste generation. More than ten years and $20m5 went into the design and development of its new features, and it is now under construction in Japan. This paper concentrates on the safety and operability improvements. In the safety area, more than a decade improvement in core damage frequency (CDFR) has been assessed by formal PIRA techniques, with CDFR less than 10 -6 /year. Severe accident mitigation has also been formally addressed in the design. Plant operations were simplified by incorporation of better materials, optimum use of redundancy in mechanical and electrical equipment so that on-line maintenance can be performed, by better arrangements which account for required maintenance practices, and by an advanced control room

  15. Identification of dose-reduction techniques for BWR and PWR repetitive high-dose jobs

    International Nuclear Information System (INIS)

    Dionne, B.J.; Baum, J.W.

    1984-01-01

    As a result of concern about the apparent increase in collective radiation dose to workers at nuclear power plants, this project will provide information to industry in preplanning for radiation protection during maintenance operations. This study identifies Boiling Water Reactor (BWR) and Pressurized Water Reactor (PWR) repetitive jobs, and respective collective dose trends and dose reduction techniques. 3 references, 2 tables

  16. Comparison of the General Electric BWR/6 standard plant design to the IAEA NUSS codes and guides

    International Nuclear Information System (INIS)

    D'Ardenne, W.H.; Sherwood, G.G.

    1985-01-01

    The General Electric BWR/6 Mark III standard plant design meets or exceeds current requirements of published International Atomic Energy Agency (IAEA) Nuclear Safety Standards (NUSS) codes and guides. This conclusion is based on a review of the NUSS codes and guides by General Electric and by the co-ordinated US review of the NUSS codes and guides during their development. General Electric compared the published IAEA NUSS codes and guides with the General Electric design. The applicability of each code and guide to the BWR/6 Mark III standard plant design was determined. Each code or guide was reviewed by a General Electric engineer knowledgeable about the structures, systems and components addressed and the technical area covered by that code or guide. The results of this review show that the BWR/6 Mark III standard plant design meets or exceeds the applicable requirements of the published IAEA NUSS codes and guides. The co-ordinated US review of the IAEA NUSS codes and guides corroborates the General Electric review. In the co-ordinated US review, the USNRC and US industry organizations (including General Electric) review the NUSS codes and guides during their development. This review ensures that the NUSS codes and guides are consistent with the current US government regulations, guidance and regulatory practices, US voluntary industry codes and standards, and accepted US industry design, construction and operational practices. If any inconsistencies are identified, comments are submitted to the IAEA by the USNRC. All US concerns submitted to the IAEA have been resolved. General Electric design reviews and the Final Design Approval (FDA) issued by the USNRC have verified that the General Electric BWR/6 Mark III standard plant design meets or exceeds the current US requirements, guidance and practices. Since these requirements, guidance and practices meet or exceed those of the NUSS codes and guides, so does the General Electric design. (author)

  17. Ataxia espinocerebelar tipo 6: relato de caso

    Directory of Open Access Journals (Sweden)

    Bianca Simone Zeigelboim

    2014-10-01

    Full Text Available O objetivo deste estudo foi verificar as alterações vestibulococleares observadas em um caso de ataxia espinocerebelar tipo 6. O caso foi encaminhado do Hospital de Clínicas para o Laboratório de Otoneurologia de uma Instituição de Ensino e foi submetido aos seguintes procedimentos: anamnese, inspeção otológica, avaliações audiológica e vestibular. O caso retrata uma paciente com diagnóstico genético de ataxia espinocerebelar tipo 6, do sexo feminino, com 57 anos de idade, que referiu desequilíbrio à marcha com tendência a queda para a esquerda, disartria e disfonia. Na avaliação audiológica apresentou configuração audiométrica descendente a partir da frequência de 4kHz e curva timpanométrica do tipo "A" com presença dos reflexos estapedianos bilateralmente. No exame vestibular observou-se na pesquisa da vertigem posicional presença de nistagmo vertical inferior e oblíquo, espontâneo e semiespontâneo múltiplo com características centrais (ausência de latência, paroxismo, fatigabilidade e vertigem, nistagmooptocinético abolido e hiporreflexia à prova calórica. Constataram-se alterações labirínticas que indicaram afecção do sistema vestibular central evidenciando-se a importância dessa avaliação. A existência da possível relação entre os achados com os sintomas vestibulares apresentados pela paciente apontou a relevância do exame labiríntico neste tipo de ataxia uma vez que a presença do nistagmo vertical inferior demonstrou ser frequente neste tipo de patologia.

  18. Completion of high-efficiency BWR turbine plant 'Hamaoka unit No. 4'

    International Nuclear Information System (INIS)

    Tsuji, Kunio; Hamaura, Norikazu; Shibashita, Naoaki; Kazama, Seiichi

    1995-01-01

    Accompanying the increase of capacity of nuclear power plants in Japan, the plants having heightened economical efficiency, which are supported by the improvement of thermal efficiency and the reduction of dose, are demanded. Hitachi Ltd. has completed No. 4 turbine unit of 1137 MW output in Hamaoka Nuclear Power Station, Chubu Electric Power Co., Inc., which is the largest capacity machine in Japanese BWR plants. In this unit, the moisture separator heater, the steam turbine with high efficiency, and the hollow thread film condensate filter which treats the total flow rate of condensate are used as the reheating type BWR plant for the first time in Japan, and the plan of heightened economy and operation was adopted. It was confirmed by the trial for about 10 months that the planned performance was sufficiently satisfied, and the commercial operation was started in September, 1993. The features of the 1137 MW turbine unit are explained. The turbine is of tandem six-flow exhaust condensation type. Diffuser type low pressure turbine exhaust chambers, butterfly type combination intermediate valve are adopted. The stages with the blades having moisture-separating grooves were corrected. The reliability of the shaft system was improved. The adoption of the moisture separator heater and the application of the hollow thread film type condensate filter are explained. (K.I.)

  19. Technical Basis for Peak Reactivity Burnup Credit for BWR Spent Nuclear Fuel in Storage and Transportation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, William BJ J [ORNL; Ade, Brian J [ORNL; Bowman, Stephen M [ORNL; Gauld, Ian C [ORNL; Ilas, Germina [ORNL; Mertyurek, Ugur [ORNL; Radulescu, Georgeta [ORNL

    2015-01-01

    Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission have initiated a multiyear project to investigate application of burnup credit for boiling-water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase (1) investigates applicability of peak reactivity methods currently used in spent fuel pools (SFPs) to storage and transportation systems and (2) evaluates validation of both reactivity (keff) calculations and burnup credit nuclide concentrations within these methods. The second phase will focus on extending burnup credit beyond peak reactivity. This paper documents the first phase, including an analysis of lattice design parameters and depletion effects, as well as both validation components. Initial efforts related to extended burnup credit are discussed in a companion paper. Peak reactivity analyses have been used in criticality analyses for licensing of BWR fuel in SFPs over the last 20 years. These analyses typically combine credit for the gadolinium burnable absorber present in the fuel with a modest amount of burnup credit. Gadolinium burnable absorbers are used in BWR assemblies to control core reactivity. The burnable absorber significantly reduces assembly reactivity at beginning of life, potentially leading to significant increases in assembly reactivity for burnups less than 15–20 GWd/MTU. The reactivity of each fuel lattice is dependent on gadolinium loading. The number of gadolinium-bearing fuel pins lowers initial lattice reactivity, but it has a small impact on the burnup and reactivity of the peak. The gadolinium concentration in each pin has a small impact on initial lattice reactivity but a significant effect on the reactivity of the peak and the burnup at which the peak occurs. The importance of the lattice parameters and depletion conditions are primarily determined by their impact on the gadolinium depletion. Criticality code validation for BWR burnup

  20. Radiation field control at the latest BWR plants -- design principle, operational experience and future subjects

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Shunsuke [Energy Research Lab., Ibaraki (Japan); Ohsumi, Katsumi; Takashima, Yoshie [Hitachi Works, Ibaraki (Japan)

    1995-03-01

    Improvements of operational procedures to control water chemistry, e.g., nickel/iron control, as well as application of hardware improvements for reducing radioactive corrosion products resulted in an extremely low occupational exposure of less than 0.5 man.Sv/yr without any serious impact on the radwaste system, for BWR plants involved in the Japanese Improvement and Standardization Program. Recently, {sup 60}C radioactively in the reactor water has been increasing due to less crud fixation on the two smooth surfaces of new type high performance fuels and to the pH drop caused by chromium oxide anions released from stainless steel structures and pipings. This increase must be limited by changes in water chemistry, e.g., applications of modified nickel/iron ratio control and weak alkali control. Controlled water chemistry to optimize three points, the plant radiation level and integrities of fuel and structural materials, is the primary future subject for BWR water chemistry.

  1. Containment venting as a mitigation technique for BWR MARK I plant ATWS

    International Nuclear Information System (INIS)

    Harrington, R.M.

    1987-01-01

    Containment venting is studied as a mitigation strategy for preventing or delaying severe fuel damage following hypothetical BWR Anticipated Transient Without Scram (ATWS) accidents initiated by MSIV-closure, and compounded by failure of the Standby Liquid Control (SLC) system injection of sodium pentaborate solution and by the failure of manually initiated control rod insertion. The venting of primary containment after reaching 75 psia (0.52 MPa) is found to result in the release of the vented steam inside the reactor building, and to result in inadequate Net Positive Suction Head (NPSH) for any system pumping from the pressure suppression pool. CONTAIN code calculations show that personnel access to large portions of the reactor building would be lost soon after the initiation of venting and that the temperatures reached would be likely to result in independent equipment failures. It is concluded that containment venting would be more likely to cause or to hasten the onset of severe fuel damage than to prevent or to delay it. Two alternative strategies that do not require containment venting, but that could delay or prevent severe fuel damage, are analyzed. BWR-LTAS code results are presented for a successful mitigation strategy in which the reactor vessel is depressurized, and for one in which the reactor vessel remains at pressure

  2. Time-dependent coolant velocity measurements in an operating BWR

    International Nuclear Information System (INIS)

    Luebbesmeyer, D.; Crowe, R.D.

    1980-01-01

    A method to measure time-dependent fluid velocities in BWR-bundle elements by noise analysis of the incore-neutron-detector signals is shown. Two application examples of the new method are given. The time behaviour of the fluid velocity in the bundle element during a scheduled power excursion of the plant. The change of power was performed by changing the coolant flow through the core The apparent change of the fluid velocity due to thermal elongation of the helix-drive of the TIP-system. A simplified mathematical model was derived for this elongation to use as a reference to check the validity of the new method. (author)

  3. Tipos de pasteurização e agentes coagulantes na fabricação do queijo tipo prato

    OpenAIRE

    Ramos, Thaís de Melo

    2013-01-01

    O presente trabalho foi realizado com os objetivos de avaliar a influência do tipo de pasteurização pelos sistemas de aquecimento indireto high temperature short time, ou HTST, e injeção direta de vapor (IDV), e avaliar a influência de duas diferentes enzimas coagulantes na fabricação do queijo tipo prato. O delineamento experimental utilizado neste experimento foi um fatorial 2 x 2 x 5 inteiramente casualizado, sendo dois sistemas de pasteurização (HTST e IDV), duas enzimas coagulantes e cin...

  4. Design study of Thorium-232 and Protactinium-231 based fuel for long life BWR

    Energy Technology Data Exchange (ETDEWEB)

    Trianti, N.; Su' ud, Z.; Riyana, E. S. [Nuclear Physics and Biophysics Research Division Department of Physics - Institut Teknologi Bandung (ITB) Jalan Ganeca 10 Bandung 40132 (Indonesia)

    2012-06-06

    A preliminary design study for the utilization of thorium added with {sup 231}Pa based fuel on BWR type reactor has been performed. In the previous research utilization of fuel based Thorium-232 and Uranium-233 show 10 years operation time with maximum excess-reactivity about 4.075% dk/k. To increase reactor operation time and reduce excess-reactivity below 1% dk/k, Protactinium (Pa-231) is used as Burnable Poison. Protactinium-231 has very interesting neutronic properties, which enable the core to reduce initial excess-reactivity and simultaneously increase production of {sup 233}U to {sup 231}Pa in burn-up process. Optimizations of the content of {sup 231}Pa in the core enables the BWR core to sustain long period of operation time with reasonable burn-up reactivity swing. Based on the optimization of fuel element composition (Th and Pa) in various moderation ratio we can get reactor core with longer operation time, 20 {approx} 30 years operation without fuel shuffling or refuelling, with average power densities maximum of about 35 watt/cc, and maximum excess-reactivity 0.56% dk/k.

  5. Optimization of BWR fuel lattice enrichment and gadolinia distribution using genetic algorithms and knowledge

    International Nuclear Information System (INIS)

    Martin-del-Campo, Cecilia; Francois, Juan Luis; Carmona, Roberto; Oropeza, Ivonne P.

    2007-01-01

    An optimization methodology based on the Genetic Algorithms (GA) method was developed for the design of radial enrichment and gadolinia distributions for boiling water reactor (BWR) fuel lattices. The optimization algorithm was linked to the HELIOS code to evaluate the neutronic parameters included in the objective function. The goal is to search for a fuel lattice with the lowest average enrichment, which satisfy a reactivity target, a local power peaking factor (PPF), lower than a limit value, and an average gadolinia concentration target. The methodology was applied to the design of a 10 x 10 fuel lattice, which can be used in fuel assemblies currently used in the two BWRs operating at Mexico. The optimization process showed an excellent performance because it found forty lattice designs in which the worst one has a better neutronic performance than the reference lattice design. The main contribution of this study is the development of an efficient procedure for BWR fuel lattice design, using GA with an objective function (OF) which saves computing time because it does not require lattice burnup calculations

  6. Advanced technology for BWR operator training simulator

    International Nuclear Information System (INIS)

    Shibuya, Akira; Fujita, Eimitsu; Nakao, Toshihiko; Nakabaru, Mitsugu; Asaoka, Kouchi.

    1991-01-01

    This paper describes an operator training simulator for BWR nuclear power plants which went into service recently. The simulator is a full scope replica type simulator which faithfully replicates the control room environment of the reference plant with six main control panels and twelve auxiliary ones. In comparison with earlier simulators, the scope of the simulation is significantly extended in both width and depth. The simulation model is also refined in order to include operator training according to sympton-based emergency procedure guidelines to mitigate the results in accident cases. In particular, the core model and the calculational model of the radiation intensity distribution, if radioactive materials were released, are improved. As for simulator control capabilities by which efficient and effective training can be achieved, various advanced designs are adopted allowing easy use of the simulators. (author)

  7. Diabetes tipo 2 en niños: Serie de casos

    Directory of Open Access Journals (Sweden)

    Helard Manrique-Hurtado

    2015-01-01

    Full Text Available Objetivos: Describir las características clínicas y bioquímicas de un grupo de niños y adolescentes con diagnóstico reciente de diabetes tipo 2. Material y métodos: Estudio descriptivo, retrospectivo, tipo de serie de casos. Se definió caso al niño o adolescente con glucosa plasmática en ayunas mayor a 126 mg/dl, ausencia de antiGAD y péptido C mayor a 1,5 ng/dl. Se excluyeron a los pacientes con diagnóstico previo de diabetes mellitus tipo 1, diabetes tipo MODY o diabetes secundaria a uso de fármacos. Resultados: La edad media fue 14,3 años, 59% fueron mujeres y 43% tenía por lo menos un padre con diabetes tipo 2. Al momento del diagnóstico, el índice de masa corporal fue 32,8 kg/m2, 85% tenía acantosis nigricans y 68% estaba en estadio Tanner IV y V. El tratamiento inicial incluyó el uso de hipoglicemiantes orales en 75% de los casos, siendo más frecuente el uso de metformina (64,3%. Solamente el 41% de los pacientes recibía algún tipo de insulina. Conclusiones: Los niños y adolescentes con diabetes tipo 2, tienen una frecuencia aumentada de obesidad/sobrepeso, acantosis nigricans y antecedente familiar de DM2. En general, tienen mal control metabólico y reciben metformina como tratamiento inicial.

  8. Core heat transfer analysis during a BWR LOCA simulation experiment at ROSA-III

    International Nuclear Information System (INIS)

    Yonomoto, T.; Koizumi, Y.; Tasaka, K.

    1987-01-01

    The ROSA-III test facility is a 1/424-th volumetrically scaled BWR/6 simulator with an electrically heated core to study the thermal-hydraulic response during a postulated loss-of-coolant accident (LOCA). Heat transfer analyses for 5, 15, 50 and 200% break tests were conducted to understand the basic heat transfer behavior in the core under BWR LOCA conditions and to obtain a data base of post-critical heat flux (CHF) heat transfer coefficients and quench temperature. The results show that the convective heat transfer coefficient of dried-out rods at the core midplane during a steam cooling period is less than approximately 120 W/m 2 K. It is larger than existing data measured at lower pressures during a spray cooling period. Bottom-up quench temperatures are given by a simple equations: The sum of the saturation temperature and a constant of 262 K. Then the heat transfer model in the RELAP4/MOD6/U4/J3 code was revised using the present results. The rod surface temperature behavior in the 200% break test was calculated better by using the revised model although the model is very simple. (orig.)

  9. Fracture toughness of irradiated wrought and cast austenitic stainless steels in BWR environment

    International Nuclear Information System (INIS)

    Chopra, O.K.; Gruber, E.E.; Shack, W.J.

    2007-01-01

    Experimental data are presented on the fracture toughness of wrought and cast austenitic stainless steels (SSs) that were irradiated to a fluence of ∼ 1.5 x 10 21 n/cm 2 (E > 1 MeV) * (∼ 2.3 dpa) at 296-305 o C. To evaluate the possible effects of test environment and crack morphology on the fracture toughness of these steels, all tests were conducted in normal-water-chemistry boiling water reactor (BWR) environments at ∼ 289 o C. Companion tests were also conducted in air on the same material for comparison. The fracture toughness J-R curves for SS weld heat-affected-zone materials in BWR water were found to be comparable to those in air. However, the results of tests on sensitized Type 304 SS and thermally aged cast CF-8M steel suggested a possible effect of water environment. The available fracture toughness data on irradiated austenitic SSs were reviewed to assess the potential for radiation embrittlement of reactor-core internal components. The synergistic effects of thermal and radiation embrittlement of cast austenitic SS internal components are also discussed. (author)

  10. Development of methodology for early detection of BWR instabilities

    International Nuclear Information System (INIS)

    Alessandro Petruzzi; Shin Chin; Kostadin Ivanov; Asok Ray; Fan-Bill Cheung

    2005-01-01

    Full text of publication follows: The objective of the work presented in this paper research, which is supported by the US Department of Energy under the NEER program, is to develop an early anomaly detection methodology in order to enhance safety, availability, and operational flexibility of Boiling Water Reactor (BWR) nuclear power plants. The technical approach relies on suppression of potential power oscillations in BWRs by detecting small anomalies at an early stage and taking appropriate prognostic actions based on an anticipated operation schedule. The model of coupled (two-phase) thermal-hydraulic and neutron flux dynamics, based on the US NRC coupled code TRACE/PARCS, is being utilized as a generator of time series data for anomaly detection at an early stage. The concept of the methodology is based on the fact that nonlinear systems show bifurcation, which is a change in the qualitative behavior as the system parameters vary. Some of these parameters may change on their own accord and account for the anomaly, while certain parameters can be altered in a controlled fashion. The non-linear, non-autonomous BWR system model considered in this research exhibits phenomena at two time scales. Anomalies occur at the slow time scale while the observation of the dynamical behavior, based on which inferences are made, takes place at the fast time scale. It is assumed that: (i) the system behavior is stationary at the fast time scale; and (ii) any observable non-stationary behavior is associated with parametric changes evolving at the slow time scale. The goal is to make inferences about evolving anomalies based on the asymptotic behavior derived from the computer simulation. However, only sufficient changes in the slowly varying parameter may lead to detectable difference in the asymptotic behavior. The need to detect such small changes in parameters and hence early detection of an anomaly motivate the utilized stimulus-response approach. In this approach, the model

  11. Analysis of results of AZTRAN and AZKIND codes for a BWR; Analisis de resultados de los codigos AZTRAN y AZKIND para un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Bastida O, G. E.; Vallejo Q, J. A.; Galicia A, J.; Francois L, J. L. [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico); Xolocostli M, J. V.; Rodriguez H, A.; Gomez T, A. M., E-mail: gbo729@yahoo.com.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2016-09-15

    This paper presents an analysis of results obtained from simulations performed with the neutron transport code AZTRAN and the kinetic code of neutron diffusion AZKIND, based on comparisons with models corresponding to a typical BWR, in order to verify the behavior and reliability of the values obtained with said code for its current development. For this, simulations of different geometries were made using validated nuclear codes, such as CASMO, MCNP5 and Serpent. The results obtained are considered adequate since they are comparable with those obtained and reported with other codes, based mainly on the neutron multiplication factor and the power distribution of the same. (Author)

  12. Solution of a benchmark set problems for BWR and PWR reactors with UO2 and MOX fuels using CASMO-4

    International Nuclear Information System (INIS)

    Martinez F, M.A.; Valle G, E. del; Alonso V, G.

    2007-01-01

    In this work some of the results for a group of benchmark problems of light water reactors that allow to study the physics of the fuels of these reactors are presented. These benchmark problems were proposed by Akio Yamamoto and collaborators in 2002 and they include two fuel types; uranium dioxide (UO 2 ) and mixed oxides (MOX). The range of problems that its cover embraces three different configurations: unitary cell for a fuel bar, fuel assemble of PWR and fuel assemble of BWR what allows to carry out an understanding analysis of the problems related with the fuel performance of new generation in light water reactors with high burnt. Also these benchmark problems help to understand the fuel administration in core of a BWR like of a PWR. The calculations were carried out with CMS (of their initials in English Core Management Software), particularly with CASMO-4 that is a code designed to carry out analysis of fuels burnt of fuel bars cells as well as fuel assemblies as much for PWR as for BWR and that it is part in turn of the CMS code. (Author)

  13. Cobra-IE Evaluation by Simulation of the NUPEC BWR Full-Size Fine-Mesh Bundle Test (BFBT)

    International Nuclear Information System (INIS)

    Burns, C. J.; Aumiler, D.L.

    2006-01-01

    The COBRA-IE computer code is a thermal-hydraulic subchannel analysis program capable of simulating phenomena present in both PWRs and BWRs. As part of ongoing COBRA-IE assessment efforts, the code has been evaluated against experimental data from the NUPEC BWR Full-Size Fine-Mesh Bundle Tests (BFBT). The BFBT experiments utilized an 8 x 8 rod bundle to simulate BWR operating conditions and power profiles, providing an excellent database for investigation of the capabilities of the code. Benchmarks performed included steady-state and transient void distribution, single-phase and two-phase pressure drop, and steady-state and transient critical power measurements. COBRA-IE effectively captured the trends seen in the experimental data with acceptable prediction error. Future sensitivity studies are planned to investigate the effects of enabling and/or modifying optional code models dealing with void drift, turbulent mixing, rewetting, and CHF

  14. FIST/6IB1, BWR/6 System Responses to Intermediate Break in Recirculation Suction Line LINE

    International Nuclear Information System (INIS)

    1993-01-01

    1 - Description of test facility: BWR/6-218 standard plant. A full size bundle with electrically heated rods is used to simulate the reactor core. A scaling ratio of 1/624 is applied in the design of the system components. Key features of the FIST facility include: (1) Full height test vessel and internals; (2) correctly scaled fluid volume distribution; (3) simulation of ECCS, S/RV, and ADS; (4) level trip capability; (5) heated feedwater supply system, which provides the capability for steady state operation. 2 - Description of test: Test 6IB1 investigates system responses to an intermediate break in the recirculation suction line. BWR system licensing evaluations for various size recirculation break LOCA's indicates that a break size of about 0.2 sq.ft., without LPCS operation, is the highest PCT case for the intermediate break LOCA. Test 6IB1 simulates this event

  15. Update on materials performance and electrochemistry in hydrogen water chemistry at Dresden-2 BWR

    International Nuclear Information System (INIS)

    Indig, M.E.; Weber, J.E.; Davis, R.B.; Gordon, B.M.

    1985-01-01

    Previous studies performed in 1982 indicated that if sufficient hydrogen was injected into the Dresden-2 BWR, IGSCC of sensitized austenitic stainless steel was mitigated. The present series of experiments were aimed at verification of the above finding, determining how much time off hydrogen water chemistry (HWC) could be tolerated and how HWC affected pre-existing cracks

  16. Improvement for BWR operator training

    International Nuclear Information System (INIS)

    Kurisu, Takanori; Takahashi, Yoshitaka; Harada, Mitsuhiro; Takahashi, Iwao.

    1988-01-01

    BWR Operator Training Center was founded in April, 1971, and in April, 1974, training was begun, since then, 13 years elapsed. During this period, the curriculum and training facilities were strengthened to meet the training needs, and the new training techniques from different viewpoint were developed, thus the improvement of training has been done. In this report, a number of the training techniques which have been developed and adopted recently, and are effective for the improvement of the knowledge and skill of operators are described. Recently Japanese nuclear power stations have been operated at stable high capacity factor, accordingly the chance of experiencing the occurrence of abnormality and the usual start and stop of plants decreased, and the training of operators using simulators becomes more important. The basic concept on training is explained. In the standard training course and the short period fundamental course, the development of the guide for reviewing lessons, the utilization of VTRs and the development of the techniques for diagnosing individual degree of learning were carried out. The problems, the points of improvement and the results of these are reported. (Kako, I.)

  17. Colonial life under the Humboldt Current System: deep-sea corals from O'Higgins I seamount La vida colonial bajo el sistema de la corriente de Humboldt: corales de aguas profundas en el monte submarino O'Higgins I

    Directory of Open Access Journals (Sweden)

    Juan I Cañete

    2012-07-01

    Full Text Available A benthic community constituted by an assemblage of at least four species of deep-sea corals collected in only one trawl carried-out on the summit of the O'Higgins I seamount, central Chile. The corals were collected in only one trawl carried-out during a Chilean-Japanese cruise onboard the R/V" Koyo Maru" in December 29, 2004. Presence of oxygenated and cold Antarctic Intermediate Water (>400 m depth on the plateau was recorded under of the Equatorial Subsurface Water associated to the oxygen-minimum zone (OMZ, Se describe una comunidad bentónica constituida por un ensamble de cuatro especies de corales de profundidad recolectados mediante un lance de arrastre efectuado sobre el margen de la meseta del monte submarino O'Higgins I, Chile central. Sobre la meseta se detectó la presencia de agua oxigenadas frías correspondientes al Agua Intermedia Antártica (>400 m de profundidad y sobre ésta, el Agua Ecuatorial Subsuperficial asociada a la zona de mínimo de oxígeno (OMZ, <1 mL O2 L-1. La fauna muestra un origen biogeográfico de tipo subantártico sumado a la presencia de fauna típica del margen continental de la zona central de Chile. Este ensamble está representado por dos especies de Antipataria (Leiopathes sp. y Chrysopathes sp., una especie no identificada de la familia Paragorgiidae y una especie perteneciente a la familia Isididae (Acanella chilensis. Este estudio muestra que este ensamble de corales de profundidad provee un hábitat crítico para el camarón nailon (Heterocarpus reedi, crustáceo de importancia pesquera. La presencia de este crustáceo más algunos peces como el alfonsino (Beryx splendens y orange roughy (Hoplostethus atlanticus podrían atraer la atención de la industria sobre estas frágiles, singulares y escasamente conocidas comunidades bentónicas chilenas y por lo tanto se requiere con urgencia acciones para su conservación.

  18. Two types of a passive safety containment for a near future BWR with active and passive safety systems

    International Nuclear Information System (INIS)

    Sato, Takashi; Akinaga, Makoto; Kojima, Yoshihiro

    2009-01-01

    The paper presents two types of a passive safety containment for a near future BWR. They are named Mark S and Mark X containment. One of their common merits is very low peak pressure at severe accidents without venting the containment atmosphere to the environment. The PCV pressure can be moderated within the design pressure. Another merit is the capability to submerge the PCV and the RPV above the core level. The third merit is robustness against external events such as a large commercial airplane crash. Both the containments have a passive cooling core catcher that has radial cooling channels. The Mark S containment is made of reinforced concrete and applicable to a large power BWR up to 1830 MWe. The Mark X containment has the steel secondary containment and can be cooled by natural circulation of outside air. It can accommodate a medium power BWR up to 1380 MWe. In both cases the plants have active and passive safety systems constituting in-depth hybrid safety (IDHS). The IDHS provides not only hardware diversity between active and passive safety systems but also more importantly diversity of the ultimate heat sinks between the atmosphere and the sea water. Although the plant concept discussed in the paper uses well-established technology, plant performance including economy is innovatively and evolutionally improved. Nothing is new in the hardware but everything is new in the performance.

  19. Two types of a passive safety containment for a near future BWR with active and passive safety systems

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Takashi [Toshiba Corporation, IEC, Gen-SS, 8, Shinsugita-ho, Isogo-ku, Yokohama (Japan)], E-mail: takashi44.sato@glb.toshiba.co.jp; Akinaga, Makoto; Kojima, Yoshihiro [Toshiba Corporation, IEC, Gen-SS, 8, Shinsugita-ho, Isogo-ku, Yokohama (Japan)

    2009-09-15

    The paper presents two types of a passive safety containment for a near future BWR. They are named Mark S and Mark X containment. One of their common merits is very low peak pressure at severe accidents without venting the containment atmosphere to the environment. The PCV pressure can be moderated within the design pressure. Another merit is the capability to submerge the PCV and the RPV above the core level. The third merit is robustness against external events such as a large commercial airplane crash. Both the containments have a passive cooling core catcher that has radial cooling channels. The Mark S containment is made of reinforced concrete and applicable to a large power BWR up to 1830 MWe. The Mark X containment has the steel secondary containment and can be cooled by natural circulation of outside air. It can accommodate a medium power BWR up to 1380 MWe. In both cases the plants have active and passive safety systems constituting in-depth hybrid safety (IDHS). The IDHS provides not only hardware diversity between active and passive safety systems but also more importantly diversity of the ultimate heat sinks between the atmosphere and the sea water. Although the plant concept discussed in the paper uses well-established technology, plant performance including economy is innovatively and evolutionally improved. Nothing is new in the hardware but everything is new in the performance.

  20. Composition and Distribution of Tramp Uranium Contamination on BWR and PWR Fuel Rods

    International Nuclear Information System (INIS)

    Schienbein, Marcel; Zeh, Peter; Hurtado, Antonio; Rosskamp, Matthias; Mailand, Irene; Bolz, Michael

    2012-09-01

    In a joint research project of VGB and AREVA NP GmbH the behaviour of alpha nuclides in nuclear power plants with light water reactors has been investigated. Understanding the source and the behaviour of alpha nuclides is of big importance for planning radiation protection measures for outages and upcoming dismantling projects. Previous publications have shown the correlation between plant specific alpha contamination of the core and the so called 'tramp fuel' or 'tramp uranium' level which is linked to the defect history of fuel assemblies and accordingly the amount of previously washed out fuel from defective fuel rods. The methodology of tramp fuel estimation is based on fission product concentrations in reactor coolant but also needs a good knowledge of tramp fuel composition and in-core distribution on the outer surface of fuel rods itself. Sampling campaigns of CRUD deposits of irradiated fuel assemblies in different NPPs were performed. CRUD analyses including nuclide specific alpha analysis have shown systematic differences between BWR and PWR plants. Those data combined with literature results of fuel pellet investigations led to model improvements showing that a main part of fission products is caused by fission of Pu-239 an activation product of U-238. CRUD investigations also gave a better picture of the in-core composition and distribution of the tramp uranium contamination. It was shown that the tramp uranium distribution in PWR plants is time dependent. Even new fuel assemblies will be notably contaminated after only one cycle of operation. For PWR applies the following logic: the higher the local power the higher the contamination. With increasing burnup the local rod power usually decreases leading to decreasing tramp uranium contamination on the fuel rod surface. This is not applicable for tramp uranium contamination in BWR. CRUD contamination (including the tramp fuel deposits) is much more fixed and is constantly increasing

  1. Core damage frequency prespectives for BWR 3/4 and Westinghouse 4-loop plants based on IPE results

    International Nuclear Information System (INIS)

    Dingman, S.; Camp, S.; LaChance, J.; Mary Drouin

    1995-01-01

    This paper discusses the core damage frequency (CDF) insights gained by analyzing the results of the Individual Plant Examinations (IPES) for two groups of plants: boiling water reactor (BWR) 3/4 plants with Reactor Core Isolation Cooling systems, and Westinghouse 4-loop plants. Wide variability was observed for the plant CDFs and for the CDFs of the contributing accident classes. On average, transients-with loss of injection, station blackout sequences, and transients with loss of decay heat removal are important contributors for the BWR 3/4 plants, while transients, station blackout sequences, and loss-of-coolant accidents are important for the Westinghouse 4-loop plants. The key factors that contribute to the variability in the results are discussed. The results are often driven by plant-specific design and operational characteristics, but differences in modeling approaches are also important for some accident classes

  2. Development of high performance catalyst for off-gas treatment system in BWR

    International Nuclear Information System (INIS)

    Kawasaki, Toru; Kawabe, Kenichi; Maeda, Kiyomitsu; Matsubara, Hirofumi; Aizawa, Motohiro; Iizuka, Hidehiro; Kumagai, Naoki

    2011-01-01

    A high performance catalyst for off-gas treatment system in boiling water reactor (BWR) has been developed. The hydrogen concentration in the outlets of off-gas recombiners increased at several BWR plants in Japan. These phenomena were caused by deactivation of catalysts for the recombiners, and we assumed two types of deactivation mechanisms. The first cause was an increase of the amount of boehmite in the catalyst support due to alternation of the manufacturing process. The other cause was catalysts being poisoned by cyclic siloxanes that were introduced from the silicone sealant used in the upstream of the off-gas recombiners. The catalysts were manufactured by Pt adhering on alumina support. The conventional catalyst (CAT-A) used the aqueous solution of the chloroplatinic acid for adhesion of Pt. A dechlorination process by autoclave was applied to prevent the equipment at the downstream of the recombiners from stress corrosion cracking, but this process caused the support material to transform into boehmite. The boehmite-rich catalysts were deactivated more easily by organic silicon than gamma alumina-rich catalysts. Therefore, the CAT-A was replaced at many Japanese BWR plants by the improved catalyst (CAT-B), and their support was transformed into more stable gamma alumina by heating at 500degC. However, the siloxanes keep being detected in the off-gas though the source of siloxane had been removed and there still remain possibilities to deactivate the catalysts. Therefore, we have been developing high performance catalyst (CAT-C) that has higher activity and durability against poisoning. We investigated the properties of CAT-C by performance tests and instrumental analyses. The dependency of thermal output of nuclear reactor, and durability against siloxane poisoning were investigated. We found that CAT-C showed higher performance and better properties than CAT-B did. Moreover, we have been developing a modeling method to evaluate the hydrogen recombination

  3. Neutron activation analysis and activity in the vessel steel of a BWR reactor for their study without radiological risks in microscopy and spectrometry; Analisis de activacion neutronica y actividad en el acero de la vasija de un reactor nuclear tipo BWR para su estudio sin riesgos radiologicos en microscopia y espectrometria

    Energy Technology Data Exchange (ETDEWEB)

    Moranchel, M.; Garcia B, A. [IPN, Escuela Superior de Fisica y Matematicas, Departamento de Fisica, Unidad Profesional Adolfo Lopez Mateos, Zacatenco, 07738 Mexico D. F. (Mexico); Longoria G, L. C., E-mail: mmoranchel@ipn.mx [IAEA, Department of Technical Cooperation, Division for Latin America, Room B1109 Wagramerstrasse 5, PO Box 100, A-1400, Vienna (Austria)

    2012-07-01

    The vessel material of nuclear reactors is subject to irradiation damage induced by the bombardment of neutrons coming from the reactor core. Neutrons are classified as fast and thermal, which produce different effects. Fast neutrons cause damage to the material by dislocation or displacement of atoms in the crystal structure, while the effect of thermal neutrons is a nuclear transmutation that can significantly change the properties of the material. The type and intensity of damage is based on the characteristics of the material, the flow of neutrons and the modes of neutrons interaction with the atomic structures of the material, among others. This work, alluding to nuclear transmutation, makes an analysis of neutron activation of all isotopes in a steel boiling water nuclear reactor (BWR) vessel. An analytical expression is obtained in order to model activity of steel, on the basis of the weight percentage of its atomic components. Its activity is theoretically estimated in a witness sample of the same material as that of the vessel, placed within the nuclear reactor since the beginning of its commercial operation in April 1995, up to August 2010. It was theoretically determined that the witness sample, with a 0.56 g mass (1 x 1 x 0.07 cm{sup 3} dimensions or equivalent) does not present a radiological risks during the stage of preparation, observation and analysis of it in electron microscopy and X-ray diffraction equipment s. The theoretical results were checked experimentally by measuring the activity of the sample by means of gamma spectrometry, measurement of the exposure levels around the sample, as well as the induced level to whole body and limbs, using thermo-luminescent dosimetry (TLD). As a result of the theoretical analysis, new chemical elements are predicted, as a result of the activation phenomena and radioactive decay, whose presence can be a fundamental factor of change in the properties of the vessel. This work is a preamble to the

  4. Status update of the BWR cask simulator

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, Eric R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Durbin, Samuel G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    The performance of commercial nuclear spent fuel dry storage casks are typically evaluated through detailed numerical analysis of the system's thermal performance. These modeling efforts are performed by the vendor to demonstrate the performance and regulatory compliance and are independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Numerous studies have been previously conducted. Recent advances in dry storage cask designs have moved the storage location from above ground to below ground and significantly increased the maximum thermal load allowed in a cask in part by increasing the canister helium pressure. Previous cask performance validation testing did not capture these parameters. The purpose of the investigation described in this report is to produce a data set that can be used to test the validity of the assumptions associated with the calculations presently used to determine steady-state cladding temperatures in modern dry casks. These modern cask designs utilize elevated helium pressure in the sealed canister or are intended for subsurface storage. The BWR cask simulator (BCS) has been designed in detail for both the above ground and below ground venting configurations. The pressure vessel representing the canister has been designed, fabricated, and pressure tested for a maximum allowable pressure (MAWP) rating of 24 bar at 400 C. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly is being deployed inside of a representative storage basket and cylindrical pressure vessel that represents the canister. The symmetric single assembly geometry with well-controlled boundary conditions simplifies interpretation of results. Various configurations of outer concentric ducting will be used to mimic conditions for above and below ground storage configurations

  5. Summary report of seismic PSA of BWR model plant

    International Nuclear Information System (INIS)

    1999-05-01

    This report presents a seismic PSA (Probabilistic Safety Assessment) methodology developed at the Japan Atomic Energy Research Institute (JAERI) for evaluating risks of nuclear power plants (NPPs) and the results from an application of the methodology to a BWR plant in Japan, which is termed Model Plant'. The seismic PSA procedures developed at JAERI are to evaluate core damage frequency (CDF) and have the following four steps: (1) evaluation of seismic hazard, (2) evaluation of realistic response, (3) evaluation of component capacities and failure probabilities, and (4) evaluation of conditional probability of system failure and CDF. Although these procedures are based on the methodologies established and used in the United States, they include several unique features: (1) seismic hazard analysis is performed with use of available knowledge and database on seismological conditions in Japan; (2) response evaluation is performed with a response factor method which is cost effective and associated uncertainties can be reduced with use of modern methods of design calculations; (3) capacity evaluation is performed with use of test results available in Japan in combination with design information and generic capacity data in the U.S.A.; (4) systems reliability analysis, performed with use of the computer code SECOM-2 developed at JAERI, includes identification of dominant accident sequences, importance analysis of components and systems as well as the CDF evaluation with consideration of the effect of correlation of failures by a newly developed method based on the Monte Carlo method. The effect of correlation has been recognized as an important issue in seismic PSAs. The procedures was used to perform a seismic PSA of a 1100 MWe BWR plant. Results are shown as well as the insights derived and future research needs identified in this seismic PSA. (J.P.N.)

  6. PWR and BWR spent fuel assembly gamma spectra measurements

    Energy Technology Data Exchange (ETDEWEB)

    Vaccaro, S. [European Commission, DG Energy, Directorate EURATOM Safeguards Luxembourg (Luxembourg); Tobin, S.J.; Favalli, A. [Los Alamos National Laboratory, Los Alamos, NM (United States); Grogan, B. [Oak Ridge National Laboratory, Oak Ridge (United States); Jansson, P. [Uppsala University, Uppsala (Sweden); Liljenfeldt, H. [Oak Ridge National Laboratory, Oak Ridge (United States); Mozin, V. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Hu, J. [Oak Ridge National Laboratory, Oak Ridge (United States); Schwalbach, P. [European Commission, DG Energy, Directorate EURATOM Safeguards Luxembourg (Luxembourg); Sjöland, A. [Swedish Nuclear Fuel and Waste Management Company (SKB) (Sweden); Trellue, H.; Vo, D. [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2016-10-11

    A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative–Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of {sup 137}Cs, {sup 154}Eu, and {sup 134}Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. To compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.

  7. Single pin BWR benchmark problem for coupled Monte Carlo - Thermal hydraulics analysis

    International Nuclear Information System (INIS)

    Ivanov, A.; Sanchez, V.; Hoogenboom, J. E.

    2012-01-01

    As part of the European NURISP research project, a single pin BWR benchmark problem was defined. The aim of this initiative is to test the coupling strategies between Monte Carlo and subchannel codes developed by different project participants. In this paper the results obtained by the Delft Univ. of Technology and Karlsruhe Inst. of Technology will be presented. The benchmark problem was simulated with the following coupled codes: TRIPOLI-SUBCHANFLOW, MCNP-FLICA, MCNP-SUBCHANFLOW, and KENO-SUBCHANFLOW. (authors)

  8. Single pin BWR benchmark problem for coupled Monte Carlo - Thermal hydraulics analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, A.; Sanchez, V. [Karlsruhe Inst. of Technology, Inst. for Neutron Physics and Reactor Technology, Herman-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Hoogenboom, J. E. [Delft Univ. of Technology, Faculty of Applied Sciences, Mekelweg 15, 2629 JB Delft (Netherlands)

    2012-07-01

    As part of the European NURISP research project, a single pin BWR benchmark problem was defined. The aim of this initiative is to test the coupling strategies between Monte Carlo and subchannel codes developed by different project participants. In this paper the results obtained by the Delft Univ. of Technology and Karlsruhe Inst. of Technology will be presented. The benchmark problem was simulated with the following coupled codes: TRIPOLI-SUBCHANFLOW, MCNP-FLICA, MCNP-SUBCHANFLOW, and KENO-SUBCHANFLOW. (authors)

  9. Study on vertical seismic response model of BWR-type reactor building

    International Nuclear Information System (INIS)

    Konno, T.; Motohashi, S.; Izumi, M.; Iizuka, S.

    1993-01-01

    A study on advanced seismic design for LWR has been carried out by the Nuclear Power Engineering Corporation (NUPEC), under the sponsorship of the Ministry of International Trade and Industry (MITI) of Japan. As a part of the study, it has been investigated to construct an accurate analytical model of reactor buildings for a seismic response analysis, which can reasonably represent dynamic characteristics of the building. In Japan, vibration models of reactor buildings for horizontal ground motion have been studied and examined through many simulation analyses for forced vibration tests and earthquake observations of actual buildings. And now it is possible to establish a reliable horizontal vibration model on the basis of multi-lumped mass and spring model. However, vertical vibration models have not been so much studied as horizontal models, due to less observed data for vertical motions. In this paper, the vertical seismic response models of a BWR-type reactor building including soil-structure interaction effect are numerically studied, by comparing the dynamic characteristics of (1) three dimensional finite element model, (2) multi-stick lumped mass model with a flexible base-mat, (3) multi-stick lumped mass model with a rigid base-mat and (4) single-stick lumped mass model. In particular, the BWR-type reactor building has the long span truss roof which is considered to be one of the critical members to vertical excitation. The modelings of the roof trusses are also studied

  10. Passive BWR integral LOCA testing at the Karlstein test facility INKA

    Energy Technology Data Exchange (ETDEWEB)

    Drescher, Robert [AREVA GmbH, Erlangen (Germany); Wagner, Thomas [AREVA GmbH, Karlstein am Main (Germany); Leyer, Stephan [TH University of Applied Sciences, Deggendorf (Germany)

    2014-05-15

    KERENA is an innovative AREVA GmbH boiling water reactor (BWR) with passive safety systems (Generation III+). In order to verify the functionality of the reactor design an experimental validation program was executed. Therefore the INKA (Integral Teststand Karlstein) test facility was designed and erected. It is a mockup of the BWR containment, with integrated pressure suppression system. While the scaling of the passive components and the levels match the original values, the volume scaling of the containment compartments is approximately 1:24. The storage capacity of the test facility pressure vessel corresponds to approximately 1/6 of the KERENA RPV and is supplied by a benson boiler with a thermal power of 22 MW. In March 2013 the first integral test - Main Steam Line Break (MSLB) - was executed. The test measured the combined response of the passive safety systems to the postulated initiating event. The main goal was to demonstrate the ability of the passive systems to ensure core coverage, decay heat removal and to maintain the containment within defined limits. The results of the test showed that the passive safety systems are capable to bring the plant to stable conditions meeting all required safety targets with sufficient margins. Therefore the test verified the function of those components and the interplay between them. The test proved that INKA is an unique test facility, capable to perform integral tests of passive safety concepts under plant-like conditions. (orig.)

  11. Measurement of two-phase flow variables in a BWR by analysis of in-core neutron detector noise signals

    International Nuclear Information System (INIS)

    Stekelenburg, A.J.C.; Hagen, T.H.J.J. van der

    1996-01-01

    In this paper, the state of the art of the measurement of two-phase flow variables in a boiling water reactor (BWR) by analysis of in-core neutron detector noise signals is given. It is concluded that the neutronic processes involved in neutron noise are quite well understood, but that little is known about the density fluctuations in two-phase flow which are the main cause of the neutron noise. For this reason, the neutron noise measurements, like the well known two-detector velocity measurements, are still difficult to interpret. By analyzing neutron noise measurements in a natural circulation cooled BWR, it is illustrated that, once a theory on the density fluctuations is developed, two-phase flow can be monitored with a single in-core detector. (author). 70 refs, 4 figs

  12. Pressure vessel for a BWR type reactor

    International Nuclear Information System (INIS)

    Shimamoto, Yoshiharu.

    1980-01-01

    Purpose: To prevent the retention of low temperature water and also prevent the thermal fatigue of the pressure vessel by making large the curvature radius of a pressure vessel of a feed water sparger fitting portion and accelerating the mixing of low-temperature water at the feed water sparger base and in-pile hot water. Constitution: The curvature radius of the corner of the feed water sparger fitting portion in a pressure vessel is formed largely. In-pile circulating water infiltrates up to the base portion of the feed water sparger to carry outside low-temperature water at the base part, which is mixed with in-pile hot water. Accordingly, low temperature water does not stay at the base portion of the feed water sparger and generation of thermal fatigue in the pressure vessel can be prevented and the safety of the BWR type reactor can be improved. (Yoshino, Y.)

  13. Development of long operating cycle simplified BWR

    International Nuclear Information System (INIS)

    Heki, H.; Nakamaru, M.; Maruya, T.; Hiraiwa, K.; Arai, K.; Narabayash, T.; Aritomi, M.

    2002-01-01

    This paper describes an innovative plant concept for long operating cycle simplified BWR (LSBWR) In this plant concept, 1) Long operating cycle ( 3 to 15 years), 2) Simplified systems and building, 3) Factory fabrication in module are discussed. Designing long operating core is based on medium enriched U-235 with burnable poison. Simplified systems and building are realized by using natural circulation with bottom located core, internal CRD and PCV with passive system and an integrated reactor and turbine building. This LSBWR concept will have make high degree of safety by IVR (In Vessel Retention) capability, large water inventory above the core region and no PCV vent to the environment due to PCCS (Passive Containment Cooling System) and internal vent tank. Integrated building concept could realize highly modular arrangement in hull structure (ship frame structure), ease of seismic isolation capability and high applicability of standardization and factory fabrication. (authors)

  14. Efficient method for simulation of BWR severe accident sequence events before core uncovery

    International Nuclear Information System (INIS)

    Harrington, R.M.

    1984-01-01

    BWR-LACP has been a versatile tool for the ORNL SASA program. The development effort was minimal, and the code is fast running and economical. Operator actions are easily simulated and the complete scope of both reactor vessel and primary containment are modeled. Valuable insights have been gained into accident sequences. A Fortran version is under development and it will be modified for application to Mark II plants

  15. Seismic response analysis of BWR buildings with embedded foundation

    International Nuclear Information System (INIS)

    Fukuzawa, R.; Chiba, O.; Tohdo, M.

    1985-01-01

    An investigation on the effect of various types of foundations embedded into soil deposit to the responses of BWR buildings is made. The frequency characteristics of massless rigid foundations such as impedance functions and input motion are first obtained, depending on the embedment depth, contact condition of side wall to soil and the thickness of surface layer in a two-layered soil. From the results it is found that the embedment depth and the thickness of surface layer have a distinct effect to the responses contributed by the impedance functions and the response values characterized by the input motions are obviously influenced by the embedment depth and the contact length of side wall to soil deposit. (orig.)

  16. Characteristics of axial splits in failed BWR fuel rods

    International Nuclear Information System (INIS)

    Lysell, G.; Grigoriev, V.

    2000-01-01

    Secondary cladding defects in BWR fuel sometimes have the shape of long axial cracks or ''splits''. Due to the large open UO 2 surfaces exposed to the water, fission product and UO 2 release to the coolant can reach excessive levels leading to forced shut downs to remove the failed fuel rods. A number of such fuel rods have been examined in Studsvik over the last 10 years. The paper describes observations from the PIE of long cracks and discusses the driving force of the cracks. Details such as starting cracks, macroscopic and microscopic fracture surface appearance, cross sections of cracks, hydride precipitates, location and degree of plastic deformation are given. (author)

  17. Fault tree analysis on BWR core spray system

    International Nuclear Information System (INIS)

    Watanabe, Norio

    1982-06-01

    Fault Trees which describe the failure modes for the Core Spray System function in the Browns Ferry Nuclear Plant (BWR 1065MWe) were developed qualitatively and quantitatively. The unavailability for the Core Spray System was estimated to be 1.2 x 10 - 3 /demand. It was found that the miscalibration of four reactor pressure sensors or the failure to open of the two inboard valves (FCV 75-25 and 75-53) could reduce system reliability significantly. It was recommended that the pressure sensors would be calibrated independently. The introduction of the redundant inboard valves could improve the system reliability. Thus this analysis method was verified useful for system analysis. The detailed test and maintenance manual and the informations on the control logic circuits of each active component are necessary for further analysis. (author)

  18. CFD Simulation of rigid venting of the containment of a BWR-5 Mark-II reactor

    International Nuclear Information System (INIS)

    Galindo G, I. F.; Vazquez B, A. K.; Velazquez E, L.; Tijerina S, F.; Tapia M, R.

    2016-09-01

    In conditions of prolonged loss of external energy or a severe accident, venting to the atmosphere is an alternative to prevent overpressure and release of fission products from the primary containment of a nuclear reactor. Due to the importance of flow determination through rigid vents, a computational fluid dynamics (CFD) model is proposed to verify the capacity of rigid vents in the primary containment of a boiling water reactor (BWR) under different operating conditions (pressure, temperature and compositions of the fluids). The model predicts and provides detailed information on variables such as mass flow and velocity of the venting gases. In the proposed model the primary containment gas is vented to the atmosphere via rigid vents (pipes) from the dry and wet pit. Is assumed that the container is pressurized because is in a defined scenario, and at one point the venting is open and the gas released into the atmosphere. The objective is to characterize the flow and validate the CFD model for the overpressure conditions that occur in an accident such as a LOCA, Sbo, etc. The model is implemented with Ansys-Fluent general-purpose CFD software based on the geometry of the venting ducts of the containment of a BWR. The model is developed three-dimensional and resolves at steady state for compressible flow and includes the effects of the turbulence represented by the Reynolds stress model. The CFD results are compared with the values of a one-dimensional and isentropic model for compressible flow. The relative similarity of results leads to the conclusion that the proposed CFD model can help to predict the rigid venting capacity of the containment of a BWR, however more information is required for full validation of the proposed model. (Author)

  19. A macroscopic cross-section model for BWR pin-by-pin core analysis

    International Nuclear Information System (INIS)

    Fujita, Tatsuya; Endo, Tomohiro; Yamamoto, Akio

    2014-01-01

    A macroscopic cross-section model used in boiling water reactor (BWR) pin-by-pin core analysis is studied. In the pin-by-pin core calculation method, pin-cell averaged cross sections are calculated for many combinations of core state and depletion history variables and are tabulated prior to core calculations. Variations of cross sections in a core simulator are caused by two different phenomena (i.e. instantaneous and history effects). We treat them through the core state variables and the exposure-averaged core state variables, respectively. Furthermore, the cross-term effect among the core state and the depletion history variables is considered. In order to confirm the calculation accuracy and discuss the treatment of the cross-term effect, the k-infinity and the pin-by-pin fission rate distributions in a single fuel assembly geometry are compared. Some cross-term effects could be negligible since the impacts of them are sufficiently small. However, the cross-term effects among the control rod history (or the void history) and other variables have large impacts; thus, the consideration of them is crucial. The present macroscopic cross-section model, which considers such dominant cross-term effects, well reproduces the reference results and can be a candidate in practical applications for BWR pin-by-pin core analysis on the normal operations. (author)

  20. Control rod pattern exchange in a BWR/6 utilizing gang mode withdrawal

    International Nuclear Information System (INIS)

    Auvil, A.B. Jr.; Aldemir, T.; Hajek, B.K.

    1986-01-01

    The use of checkerboard pattern of alternating inserted and fully withdrawn control rods and the uneven void distribution in boiling water reactor (BWR) cores can cause large burnup gradients even after a short time of operation. To compensate for these effects, power has to be reshaped periodically (typically every two full-power months) by individually manipulating the control rods. During this manipulation process (called the control rod pattern exchange), the core power is reduced to 60% of nominal power by means of flow reduction to limit power swings to tolerable levels and to ensure that fuel thermal limits are not exceeded. A control rod pattern exchange by individual rod manipulation typically takes 4 to 8 h and represents a large cost burden to the utility in terms of reduced system output. The latest generation of BWRs, the BWR/6, possesses the capability to simultaneously move up to four symmetrically located control rods. The rods corresponding to a given gang may have rotational symmetry, mirror symmetry, or a combination of the two. This paper presents a pattern exchange procedure that exploits the capability of gang mode rod withdrawal to reduce the pattern exchange execution time and radial power distribution asymmetry associated with individual rod manipulation. The working model used in the study is the Perry Nuclear Power Plant Unit 1, located in Perry, Ohio, and owned by the Cleveland Electric Illuminating Company