WorldWideScience

Sample records for enriched uranium heu

  1. 31 CFR 540.306 - Highly Enriched Uranium (HEU).

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Highly Enriched Uranium (HEU). 540...) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.306 Highly Enriched Uranium (HEU). The term highly...

  2. Supply of low enriched (LEU) and highly enriched uranium (HEU) for research reactors

    International Nuclear Information System (INIS)

    Mueller, H.

    1997-01-01

    Enriched uranium for research reactors in the form of LEU /= low enriched uranium at 19.75% U-235) and HEU (= highly enriched uranium at 90 to 93% U-235) was and is - due to its high U-235 enrichment - a political fuel other than enriched uranium for power reactors. The sufficient availability of LEU and HEU is a vital question for research reactors, especially in Europe, in order to perform their peaceful research reactor programs. In the past the USA were in the Western hemisphere sole supplier of LEU and HEU. Today the USA have de facto stopped the supply of LEU and HEU, for HEU mainly due to political reasons. This paper deals, among others, with the present availability of LEU and HEU for European research reactors and touches the following topics: - historical US supplies, - influence of the RERTR-program, - characteristics of LEU and HEU, - military HEU enters the civil market, -what is the supply situation for LEU and HEU today? - outlook for safe supplies of LEU and HEU. (author)

  3. Highly enriched uranium (HEU) storage and disposition program plan

    International Nuclear Information System (INIS)

    Arms, W.M.; Everitt, D.A.; O'Dell, C.L.

    1995-01-01

    Recent changes in international relations and other changes in national priorities have profoundly affected the management of weapons-usable fissile materials within the United States (US). The nuclear weapon stockpile reductions agreed to by the US and Russia have reduced the national security requirements for these fissile materials. National policies outlined by the US President seek to prevent the accumulation of nuclear weapon stockpiles of plutonium (Pu) and HEU, and to ensure that these materials are subjected to the highest standards of safety, security and international accountability. The purpose of the Highly Enriched Uranium (HEU) Storage and Disposition Program Plan is to define and establish a planned approach for storage of all HEU and disposition of surplus HEU in support of the US Department of Energy (DOE) Fissile Material Disposition Program. Elements Of this Plan, which are specific to HEU storage and disposition, include program requirements, roles and responsibilities, program activities (action plans), milestone schedules, and deliverables

  4. TRANSPARENCY: Tracking Uranium under the U.S./Russian HEU Purchase Agreement

    International Nuclear Information System (INIS)

    Benton, J B; Decman, D J; Leich, D A

    2005-01-01

    By the end of August, 2005, the Russia Federation delivered to the United States (U.S.) more than 7,000 metric tons (MT) of low enriched uranium (LEU) containing approximately 46 million SWU and 75,000 MT of natural uranium. This uranium was blended down from weapons-grade (nominally enriched to 90% 235 U) highly enriched uranium (HEU) under the 1993 HEU Purchase Agreement that provides for the blend down of 500 MT HEU into LEU for use as fuel in commercial nuclear reactors. The HEU Transparency Program, under the National Nuclear Security Administration (NNSA), monitored the conversion and blending of the more than 250 MT HEU used to produce this LEU. The HEU represents more than half of the 500 MT HEU scheduled to be blended down through the year 2013 and is equivalent to the elimination of more than 10,000 nuclear devices. The HEU Transparency Program has made considerable progress in its mission to develop and implement transparency measures necessary to assure that Russian HEU extracted from dismantled Russian nuclear weapons is blended down into LEU for delivery to the United States. U.S. monitor observations include the inventory of inprocess containers, observation of plant operations, nondestructive assay measurements to determine 235 U enrichment, as well as the examination of Material Control and Accountability (MC and A) documents. During 2005, HEU Transparency Program personnel will conduct 24 Special Monitoring Visits (SMVs) to four Russian uranium processing plants, in addition to staffing a Transparency Monitoring Office (TMO) at one Russian site

  5. Disposition of Highly Enriched Uranium (HEU) and Pu from nuclear weapons

    International Nuclear Information System (INIS)

    Neff, T.L.

    1992-01-01

    Last year, as the Soviet Union began to crumble and the Bush-Gorbachev talks had advanced to consider the dismantling of actual warheads instead of mere delivery systems, Dr. Thomas L. Neff, a senior member of MIT's Center for International Studies, tinkered with the notion that one day soon the US could be buying Russian uranium from scrapped nuclear arms. He also considered the costly business of dismantlement and set to work on an ingenious proposal. The basic idea was simply to purchase the HEU from Russia using funds derived from savings in the US Department of Energy's enrichment enterprise. The proposal, now part of an umbrella agreement between the US and Russia announced in early September, promises large strategic benefits for the US in terms of both financing dismantlement (to the tune of $100 million annually), as well as political oversight for the operation itself. In the words of Dr. Neff, who made briefings to both governments on the proposal, open-quotes It's a budget-neutral, win-win solution.close quotes What follows is an illustrated, step-by-step analysis of the proposal, as well as a reprint of Dr. Neff's paper, Disposition of HEU and Pu from Nuclear Weapons, as presented to the Uranium Institute's annual symposium last month

  6. Stationary and protable instruments for assay of HEU [highly enriched uranium] solids holdup

    International Nuclear Information System (INIS)

    Russo, P.A.; Sprinkle, J.K. Jr.; Stephens, M.M.; Brumfield, T.L.; Gunn, C.S.; Watson, D.R.

    1987-01-01

    Two NaI(Tl)-based instruments, one stationary and one portable, designed for automated assay of highly enriched uranium (HEU) solids holdup, are being evaluated at the scrap recovery facility of the Oak Ridge Y-12 Plant. The stationary instrument, a continuous monitor of HEU within the filters of the chip burner exhaust system, measures the HEU deposits that accumulate erratically and rapidly during chip burner operation. The portable system was built to assay HEU in over 100 m of elevated piping used to transfer UO 3 , UO 2 , and UF 4 powder to, from, and between the fluid bed conversion furnances and the powder storage hoods. Both instruments use two detector heads. Both provide immediate automatic readout of accumulated HEU mass. The 186-keV 235 U gamma ray is the assay signature, and the 60-keV gamma ray from an 241 Am source attached to each detector is used to normalize the 186-keV rate. The measurement geometries were selected for compatibility with simple calibration models. The assay calibrations were calculated from these models and were verified and normalized with measurements of HEU standards built to match geometries of uniform accumulations on the surfaces of the process equipment. This instrumentation effort demonstrates that simple calibration models can often be applied to unique measurement geometries, minimizing the otherwise unreasonable requirements for calibration standards and allowing extension of the measurements to other process locations

  7. Conversion and Blending Facility highly enriched uranium to low enriched uranium as oxide. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-05

    This Conversion and Blending Facility (CBF) will have two missions: (1) convert HEU materials into pure HEU oxide and (2) blend the pure HEU oxide with depleted and natural uranium oxide to produce an LWR grade LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. To the extent practical, the chemical and isotopic concentrations of blended LEU product will be held within the specifications required for LWR fuel. Such blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry. Otherwise, blended LEU will be produced as a waste suitable for storage or disposal.

  8. Conversion and Blending Facility Highly enriched uranium to low enriched uranium as uranium hexafluoride. Revision 1

    International Nuclear Information System (INIS)

    1995-01-01

    This report describes the Conversion and Blending Facility (CBF) which will have two missions: (1) convert surplus HEU materials to pure HEU UF 6 and a (2) blend the pure HEU UF 6 with diluent UF 6 to produce LWR grade LEU-UF 6 . The primary emphasis of this blending be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The chemical and isotopic concentrations of the blended LEU product will be held within the specifications required for LWR fuel. The blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry

  9. Conversion and Blending Facility Highly enriched uranium to low enriched uranium as uranium hexafluoride. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-05

    This report describes the Conversion and Blending Facility (CBF) which will have two missions: (1) convert surplus HEU materials to pure HEU UF{sub 6} and a (2) blend the pure HEU UF{sub 6} with diluent UF{sub 6} to produce LWR grade LEU-UF{sub 6}. The primary emphasis of this blending be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The chemical and isotopic concentrations of the blended LEU product will be held within the specifications required for LWR fuel. The blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry.

  10. Supply of enriched uranium for research reactors

    International Nuclear Information System (INIS)

    Mueller, H.

    2004-01-01

    Since the RERTR-Meeting in Newport/USA in 1990 recommended in several papers to the research reactor community to agree upon a worldwide unified technical specification for low enriched uranium (LEU) and high enriched uranium (HEU) in order to facilitate supplies of LEU and HEU to fabricators for acceptance and for fabrication of fresh fuel elements. This target for unified and simplified specification has only been partially reached due to different interests of the fabricators because they want to receive the uranium as pure as possible. As a result of various investigations, however, it became clear that both LEU and HEU received from the United States since the late fifties had different qualities which we have to deal with today due to the availability of stocks. We are now one step forward to know more precisely the properties of LEU and HEU we have received in the past. This uranium was never virgin and we have to cope with this situation. Therefore in my present paper I have concentrated on the documentation of analytical work performed on samples of LEU and HEU received in the past. I propose furthermore a frame of unified specifications for so-called virgin LEU and HEU including uranium from a Zero-experiment. In addition I am giving a recommendation for specifications of LEU obtained by blending of reprocessed HEU. Finally I am touching the question of secure supplies of fresh LEU. (author)

  11. 31 CFR 540.308 - Low Enriched Uranium (LEU).

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Low Enriched Uranium (LEU). 540.308... OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.308 Low Enriched Uranium (LEU). The term low enriched...

  12. Detection of illicit HEU production in gaseous centrifuge enrichment plants using neutron counting techniques on product cylinders

    International Nuclear Information System (INIS)

    Freeman, Corey R.; Geist, William H.

    2010-01-01

    Innovative and novel safeguards approaches are needed for nuclear energy to meet global energy needs without the threat of nuclear weapons proliferation. Part of these efforts will include creating verification techniques that can monitor uranium enrichment facilities for illicit production of highly-enriched uranium (HEU). Passive nondestructive assay (NDA) techniques will be critical in preventing illicit HEU production because NDA offers the possibility of continuous and unattended monitoring capabilities with limited impact on facility operations. Gaseous centrifuge enrichment plants (GCEP) are commonly used to produce low-enriched uranium (LEU) for reactor fuel. In a GCEP, gaseous UF 6 spins at high velocities in centrifuges to separate the molecules containing 238 U from those containing the lighter 235 U. Unfortunately, the process for creating LEU is inherently the same as HEU, creating a proliferation concern. Insuring that GCEPs are producing declared enrichments poses many difficult challenges. In a GCEP, large cascade halls operating thousands of centrifuges work together to enrich the uranium which makes effective monitoring of the cascade hall economically prohibitive and invasive to plant operations. However, the enriched uranium exiting the cascade hall fills product cylinders where the UF 6 gas sublimes and condenses for easier storage and transportation. These product cylinders hold large quantities of enriched uranium, offering a strong signal for NDA measurement. Neutrons have a large penetrability through materials making their use advantageous compared to gamma techniques where the signal is easily attenuated. One proposed technique for detecting HEU production in a GCEP is using neutron coincidence counting at the product cylinder take off stations. This paper discusses findings from Monte Carlo N-Particle eXtended (MCNPX) code simulations that examine the feasibility of such a detector.

  13. Management of high enriched uranium for peaceful purposes: Status and trends

    International Nuclear Information System (INIS)

    2005-06-01

    Arms control agreements between some Nuclear Weapon States have led to the dismantling of many of the nuclear weapons in their military stockpiles, which in turn have produced stockpiles of excess weapons-grade high enriched uranium (HEU) from the dismantled weapons. Considering the proliferation potential of HEU, the management, control and disposition of this fissile material has become a primary focus of nuclear non-proliferation efforts worldwide. To lessen the proliferation threat of excess HEU stockpiles, the USA agreed to purchase several tonnes of excess Russian HEU down-blended to low enriched uranium (LEU). Proliferation concerns about HEU have also resulted in a global effort to convert research reactors from HEU to LEU fuel and to minimize civilian use of HEU. This publication addresses HEU management declared excesses, non-proliferation programmes and options for the use of HEU stockpiles, including disposition programmes. Also addressed are the influence of LEU derived from surplus HEU on the global market for uranium, technical issues associated with utilization and the disposition of HEU

  14. Conversion and Blending Facility highly enriched uranium to low enriched uranium as metal. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-05

    The mission of this Conversion and Blending Facility (CBF) will be to blend surplus HEU metal and alloy with depleted uranium metal to produce an LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal.

  15. Conversion and Blending Facility highly enriched uranium to low enriched uranium as metal. Revision 1

    International Nuclear Information System (INIS)

    1995-01-01

    The mission of this Conversion and Blending Facility (CBF) will be to blend surplus HEU metal and alloy with depleted uranium metal to produce an LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal

  16. Research reactor core conversion from the use of highly enriched uranium to the use of low enriched uranium fuels guidebook

    International Nuclear Information System (INIS)

    1980-08-01

    In view of the proliferation concerns caused by the use of highly enriched uranium (HEU) and in anticipation that the supply of HEU to research and test reactors will be more restricted in the future, this document has been prepared to assist reactor operators in determining whether conversion to the use of low enriched uranium (LEU) fuel designs is technically feasible for their specific reactor, and to assist in making a smooth transition to the use of LEU fuel designs where appropriate

  17. Conversion of the University of Missouri-Rolla Reactor from high-enriched uranium to low-enriched uranium fuel

    International Nuclear Information System (INIS)

    Bolon, A.E.; Straka, M.; Freeman, D.W.

    1997-01-01

    The objectives of this project were to convert the UMR Reactor fuel from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel and to ship the HEU fuel back to the Department of Energy Savannah River Site. The actual core conversion was completed in the summer of 1992. The HEU fuel was offloaded to an onsite storage pit where it remained until July, 1996. In July, 1996, the HEU fuel was shipped to the DOE Savannah River Site. The objectives of the project have been achieved. DOE provided the following funding for the project. Several papers were published regarding the conversion project and are listed in the Attachment. In retrospect, the conversion project required much more time and effort than originally thought. Several difficulties were encountered including the unavailability of a shipping cask for several years. The authors are grateful for the generous funding provided by DOE for this project but wish to point out that much of their efforts on the conversion project went unfunded

  18. Conversion and Blending Facility highly enriched uranium to low enriched uranium as uranyl nitrate hexahydrate. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-05

    This Conversion and Blending Facility (CBF) will have two missions: (1) convert HEU materials to pure HEU uranyl nitrate (UNH) and (2) blend pure HEU UNH with depleted and natural UNH to produce HEU UNH crystals. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. To the extent practical, the chemical and isotopic concentrations of blended LEU product will be held within the specifications required for LWR fuel. Such blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry. Otherwise, blended LEU Will be produced as a waste suitable for storage or disposal.

  19. The Impact of Climatological Conditions on Low Enriched Uranium Loading Station Operations for the HEU Blend Down Project

    International Nuclear Information System (INIS)

    Chang, R.C.

    2002-01-01

    A computer model was developed using COREsim to perform a time motion study for the Low Enriched Uranium (LEU) Loading Station operations. The project is to blend Highly Enriched Uranium (HEU) with Natural Uranium (NU) to produce LEU to be shipped to Tennessee Valley Authority (TVA) for further processing. To cope with a project cost reduction, the LEU Loading Station concept has changed from an enclosed building with air-conditioning to a partially enclosed building without air conditioning. The LEU Loading Station is within a radiological contaminated area; two pairs of coveralls and negative pressure respirator are required. As a result, inclement weather conditions, especially heat stress, will affect and impact the LEU loading operations. The purposes of the study are to determine the climatological impacts on LEU Loading operations, resources required for committed throughputs, and to find out the optimum process pathways for multi crews working simultaneously in the space-lim ited LEU Loading Station

  20. HIGHLY ENRICHED URANIUM BLEND DOWN PROGRAM AT THE SAVANNAH RIVER SITE PRESENT AND FUTURE

    International Nuclear Information System (INIS)

    Magoulas, V; Charles Goergen, C; Ronald Oprea, R

    2008-01-01

    The Department of Energy (DOE) and Tennessee Valley Authority (TVA) entered into an Interagency Agreement to transfer approximately 40 metric tons of highly enriched uranium (HEU) to TVA for conversion to fuel for the Browns Ferry Nuclear Power Plant. Savannah River Site (SRS) inventories included a significant amount of this material, which resulted from processing spent fuel and surplus materials. The HEU is blended with natural uranium (NU) to low enriched uranium (LEU) with a 4.95% 235U isotopic content and shipped as solution to the TVA vendor. The HEU Blend Down Project provided the upgrades needed to achieve the product throughput and purity required and provided loading facilities. The first blending to low enriched uranium (LEU) took place in March 2003 with the initial shipment to the TVA vendor in July 2003. The SRS Shipments have continued on a regular schedule without any major issues for the past 5 years and are due to complete in September 2008. The HEU Blend program is now looking to continue its success by dispositioning an additional approximately 21 MTU of HEU material as part of the SRS Enriched Uranium Disposition Project

  1. 78 FR 72123 - Request To Amend a License to Export High-Enriched Uranium

    Science.gov (United States)

    2013-12-02

    ... NUCLEAR REGULATORY COMMISSION Request To Amend a License to Export High-Enriched Uranium Pursuant... manufacture HEU targets in Belgium. National Nuclear Security Uranium (HEU) uranium France for irradiation in... 5.8 kg of U- 235 contained in 6.2 kg uranium to a new cumulative total of 12.615 kg of U-235...

  2. Unattended Monitoring of HEU Production in Gaseous Centrifuge Enrichment Plants using Automated Aerosol Collection and Laser-based Enrichment Assay

    International Nuclear Information System (INIS)

    Anheier, Norman C.; Bushaw, Bruce A.

    2010-01-01

    Nuclear power is enjoying rapid growth as government energy policies and public demand shift toward low carbon energy production. Pivotal to the global nuclear power renaissance is the development and deployment of robust safeguards instrumentation that allows the limited resources of the IAEA to keep pace with the expansion of the nuclear fuel cycle. Undeclared production of highly enriched uranium (HEU) remains a primary proliferation concern for modern gaseous centrifuge enrichment plants (GCEPs), due to their massive separative work unit (SWU) processing power and comparably short cascade equilibrium timescale. The Pacific Northwest National Laboratory is developing an unattended safeguards instrument, combining continuous aerosol particulate collection with uranium isotope assay, to provide timely detection of HEU production within a GCEP. This approach is based on laser vaporization of aerosol particulates, followed by laser spectroscopy to characterize the uranium enrichment level. Our prior investigation demonstrated single-shot detection sensitivity approaching the femtogram range and relative isotope ratio uncertainty better than 10% using gadolinium as a surrogate for uranium. In this paper we present measurement results on standard samples containing traces of depleted, natural, and low enriched uranium, as well as measurements on aerodynamic size uranium particles mixed in background materials (e.g., dust, minerals, soils). Improvements and optimizations in the detection electronics, signal timing, calibration, and laser alignment have lead to significant improvements in detection sensitivity and enrichment accuracy, contributing to an overall reduction in the false alarm probability. The sample substrate media was also found to play a significant role in facilitating laser-induced vaporization and the production of energetic plasma conditions, resulting in ablation optimization and further improvements in the isotope abundance sensitivity.

  3. Verification experiment on the downblending of high enriched uranium (HEU) at the Portsmouth Gaseous Diffusion Plant. Digital video surveillance of the HEU feed stations

    International Nuclear Information System (INIS)

    Martinez, R.L.; Tolk, K.; Whiting, N.; Castleberry, K.; Lenarduzzi, R.

    1998-01-01

    As part of a Safeguards Agreement between the US and the International Atomic Energy Agency (IAEA), the Portsmouth Gaseous Diffusion Plant, Piketon, Ohio, was added to the list of facilities eligible for the application of IAEA safeguards. Currently, the facility is in the process of downblending excess inventory of HEU to low enriched uranium (LEU) from US defense related programs for commercial use. An agreement was reached between the US and the IAEA that would allow the IAEA to conduct an independent verification experiment at the Portsmouth facility, resulting in the confirmation that the HEU was in fact downblended. The experiment provided an opportunity for the DOE laboratories to recommend solutions/measures for new IAEA safeguards applications. One of the measures recommended by Sandia National Laboratories (SNL), and selected by the IAEA, was a digital video surveillance system for monitoring activity at the HEU feed stations. This paper describes the SNL implementation of the digital video system and its integration with the Load Cell Based Weighing System (LCBWS) from Oak Ridge National Laboratory (ORNL). The implementation was based on commercially available technology that also satisfied IAEA criteria for tamper protection and data authentication. The core of the Portsmouth digital video surveillance system was based on two Digital Camera Modules (DMC-14) from Neumann Consultants, Germany

  4. Candidate processes for diluting the 235U isotope in weapons-capable highly enriched uranium

    International Nuclear Information System (INIS)

    Snider, J.D.

    1996-02-01

    The United States Department of Energy (DOE) is evaluating options for rendering its surplus inventories of highly enriched uranium (HEU) incapable of being used to produce nuclear weapons. Weapons-capable HEU was earlier produced by enriching uranium in the fissile 235 U isotope from its natural occurring 0.71 percent isotopic concentration to at least 20 percent isotopic concentration. Now, by diluting its concentration of the fissile 235 U isotope in a uranium blending process, the weapons capability of HEU can be eliminated in a manner that is reversible only through isotope enrichment, and therefore, highly resistant to proliferation. To the extent that can be economically and technically justified, the down-blended uranium product will be made suitable for use as commercial reactor fuel. Such down-blended uranium product can also be disposed of as waste if chemical or isotopic impurities preclude its use as reactor fuel

  5. Profile of World Uranium Enrichment Programs - 2007

    International Nuclear Information System (INIS)

    Laughter, Mark D.

    2007-01-01

    It is generally agreed that the most difficult step in building a nuclear weapon is acquiring weapons grade fissile material, either plutonium or highly enriched uranium (HEU). Plutonium is produced in a nuclear reactor, while HEU is produced using a uranium enrichment process. Enrichment is also an important step in the civil nuclear fuel cycle, in producing low enriched uranium (LEU) for use in fuel for nuclear reactors. However, the same equipment used to produce LEU for nuclear fuel can also be used to produce HEU for weapons. Safeguards at an enrichment plant are the array of assurances and verification techniques that ensure uranium is only enriched to LEU, no undeclared LEU is produced, and no uranium is enriched to HEU or secretly diverted. There are several techniques for enriching uranium. The two most prevalent are gaseous diffusion, which uses older technology and requires a lot of energy, and gas centrifuge separation, which uses more advanced technology and is more energy efficient. Gaseous diffusion plants (GDPs) provide about 40% of current world enrichment capacity, but are being phased out as newer gas centrifuge enrichment plants (GCEPs) are constructed. Estimates of current and future enrichment capacity are always approximate, due to the constant upgrades, expansions, and shutdowns occurring at enrichment plants, largely determined by economic interests. Currently, the world enrichment capacity is approximately 53 million kg-separative work units (SWU) per year, with 22 million in gaseous diffusion and 31 million in gas centrifuge plants. Another 23 million SWU/year of capacity are under construction or planned for the near future, almost entirely using gas centrifuge separation. Other less-efficient techniques have also been used in the past, including electromagnetic and aerodynamic separations, but these are considered obsolete, at least from a commercial perspective. Laser isotope separation shows promise as a possible enrichment technique

  6. Highly enriched uranium (HEU) politics: An enigma wrapped up in a warhead and boxed in political chaos

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    It could be fairly said that while the Cold War arose in an atmosphere of mutual mistrust and hostility, it is ending with an equal amount of confusion and uncertainty. More than a year has passed since the US and Russia signed a tentative HEU agreement in August 1992. Many of the details have been worked out, but major questions remain. And they're not just on the Russian side. The fine points of President Clinton's overall nuclear policy are only now beginning to emerge. In his first major foreign policy address, before the United Nations in late September, Clinton called for a worldwide ban on the production of plutonium and HEU for nuclear weapons. open-quotes Growing global stockpiles of plutonium and highly enriched uranium are raising the danger of nuclear terrorism for all nations,close quotes said Clinton before the UN. open-quotes We will press for an international agreement that would ban production of these materials for weapons forever.close quotes As the veil lifts from Clinton's nuclear policy, it appears the Administration realizes that Russia may have more HEU than originally thought. That possibility has been confirmed by Minatom Minister Mikhailov's disclosures to the NUKEM Market Report, which brought a greater degree of certainty to estimates that had been floating around for some time. When the Bush Administration signed the HEU pact, it apparently thought the 500 metric tons comprised most of the former Soviet Union's nuclear arsenal. Now that the number appears higher, Clinton may propose to accelerate and enlarge the HEU deal. He is due to summit with Yeltsin, if Yeltsin survives, next spring. The 500-metric-ton deal may only be the first step

  7. Minimizing civilian use of highly enriched uranium - FRM II and global developments

    Energy Technology Data Exchange (ETDEWEB)

    Englert, Matthias [Oeko-Institut e.V., Darmstadt (Germany)

    2016-07-01

    The need to use highly enriched uranium (HEU) in civil nuclear applications is shrinking due to international efforts worldwide in the last three decades. Today low enriched uranium (LEU) that is not suitable for nuclear weapon purposes can be used instead in almost all civil applications. An overview of the current HEU use worldwide will be presented before focusing more on the use of HEU in research reactors and the conversion of existing reactors to LEU. Specifically interesting is the case of the German research reactor in Munich, the FRM-II. The reactor operates since ten years after intense national and international discussions over the use of weapon usable HEU to fuel the reactor. Since its construction the reactor is therefore obliged to convert to lower enrichment levels as soon as a suitable fuel becomes available. Despite huge international efforts to develop new fuels it is still not clear if and when the reactor can be converted.

  8. Profile of World Uranium Enrichment Programs-2009

    International Nuclear Information System (INIS)

    Laughter, Mark D.

    2009-01-01

    It is generally agreed that the most difficult step in building a nuclear weapon is acquiring fissile material, either plutonium or highly enriched uranium (HEU). Plutonium is produced in a nuclear reactor, whereas HEU is produced using a uranium enrichment process. Enrichment is also an important step in the civil nuclear fuel cycle, in producing low enriched uranium (LEU) for use as fuel for nuclear reactors to generate electricity. However, the same equipment used to produce LEU for nuclear reactor fuel can also be used to produce HEU for weapons. Safeguards at an enrichment plant are the array of assurances and verification techniques that ensure uranium is not diverted or enriched to HEU. There are several techniques for enriching uranium. The two most prevalent are gaseous diffusion, which uses older technology and requires a lot of energy, and gas centrifuge separation, which uses more advanced technology and is more energy efficient. Gaseous diffusion plants (GDPs) provide about 40% of current world enrichment capacity but are being phased out as newer gas centrifuge enrichment plants (GCEPs) are constructed. Estimates of current and future enrichment capacity are always approximate, due to the constant upgrades, expansions, and shutdowns occurring at enrichment plants, largely determined by economic interests. Currently, the world enrichment capacity is approximately 56 million kilogram separative work units (SWU) per year, with 22.5 million in gaseous diffusion and more than 33 million in gas centrifuge plants. Another 34 million SWU/year of capacity is under construction or planned for the near future, almost entirely using gas centrifuge separation. Other less-efficient techniques have also been used in the past, including electromagnetic and aerodynamic separations, but these are considered obsolete, at least from a commercial perspective. Laser isotope separation shows promise as a possible enrichment technique of the future but has yet to be

  9. Disposition of surplus highly enriched uranium: Draft environmental impact statement

    International Nuclear Information System (INIS)

    1995-10-01

    This document assesses the environmental impacts at four potential sites that may result from alternatives for the disposition of United States-origin weapons-usable highly enriched uranium (HEU) that has been or may be declared surplus to national defense or defense-related program needs. In addition to the no action alternative, it assesses four alternatives that would eliminate the weapons-usability of HEU by blending it with depleted uranium, natural uranium, or low-enriched uranium (LEU) to create low-enriched uranium, either as commercial reactor fuel feedstock or as low-level radioactive waste. The potential blending sites are DOE's Y-12 Plant at Oak Ridge Reservation in Oak Ridge, Tennessee; DOE's Savannah River Site in Aiken, South Carolina; the Babcock ampersand Wilcox Naval Nuclear Fuel Division Facility in Lynchburg, Virginia; and the Nuclear Fuel Services Fuel Fabrication Plant in Erwin, Tennessee. Evaluations of impacts on site infrastructure, water resources, air quality and noise, socioeconomic resources, waste management, public and occupational health, and environmental justice for the potential blending sites are included in the assessment. The intersite transportation of nuclear and hazardous materials is also assessed. The preferred alternative is to blend down surplus HEU to LEU for maximum commercial use as reactor fuel feed which would likely be done at a combination of DOE and commercial sites

  10. Use of highly enriched uranium at the FRM-II

    Energy Technology Data Exchange (ETDEWEB)

    Boening, K. [Forschungs-Neutronenquelle FRM-II, Technische Universitaet Muenchen, D-85747 Garching bei Muenchen (Germany)

    2002-07-01

    The new FRM-II research reactor in Munich, Germany, provides a high flux of thermal neutrons outside of the core at only 20 MW power. This is achieved by using a single compact, cylindrical fuel element with highly enriched uranium (HEU) which is cooled by light water and placed in the center of a large heavy water tank. The paper outlines the arguments which have led to this core concept and summarizes its performance. It also reports on alternative studies which have been performed for the case of low enriched uranium (LEU) and compares the data of the two concepts, with the conclusion that the FRM-II cannot be converted to LEU. A concept using medium enriched uranium (MEU) is described as well as plans to develop such a fuel element in the future. Finally, it is argued that the use of HEU fuel elements at the FRM-II does not - realistically -involve any risk of proliferation. (author)

  11. Development of dissolution process for metal foil target containing low enriched uranium

    International Nuclear Information System (INIS)

    Srinivasan, B.; Hutter, J.C.; Johnson, G.K.; Vandegrift, G.F.

    1994-01-01

    About six times more low enriched uranium (LEU) metal is needed to produce the same quantity of 99 Mo as from a high enriched uranium (HEU) oxide target, under similar conditions of neutron irradiation. In view of this, the post-irradiation processing procedures of the LEU target are likely to be different from the Cintichem process procedures now in use for the HEU target. The authors have begun a systematic study to develop modified procedures for LEU target dissolution and 99 Mo separation. The dissolution studies include determination of the dissolution rate, chemical state of uranium in the solution, and the heat evolved in the dissolution reaction. From these results the authors conclude that a mixture of nitric and sulfuric acid is a suitable dissolver solution, albeit at higher concentration of nitric acid than in use for the HEU targets. Also, the dissolver vessel now in use for HEU targets is inadequate for the LEU target, since higher temperature and higher pressure will be encountered in the dissolution of LEU targets. The desire is to keep the modifications to the Cintichem process to a minimum, so that the switch from HEU to LEU can be achieved easily

  12. Conversion of the Worcester Polytechnic Institute nuclear reactor to low enriched uranium

    International Nuclear Information System (INIS)

    Newton, T.H. Jr.

    1991-01-01

    The Training Reactor was converted to Low-Enriched Uranium (LEU) aluminide fuel in 1988 and 1989. Tests on the Highly-Enriched Uranium (HEU) core and LEU cores were performed and comparisons made. The testing consisted of critical loading, thermal neutron flux distribution, excess reactivity, regulating blade reactivity worth, and temperature coefficient of reactivity measurement. Comparisons between the LEU and HEU showed that the critical loading configurations were somewhat different with the HEU core consisting of 24 elements and the LEU core consisting of 21 1/3 elements with excess reactivities of 0.24% ΔK/K for the HEU and 0.16% for the LEU. Thermal neutron flux distributions showed similar trends in both the LEU and HEU cores. The regulating blade worth showed a larger LEU value due to thermal peaking in the blade region and temperature coefficients showed a more negative LEU value due to Doppler broadening. Low induced activity of the HEU fuel permitted shipment to the Westinghouse Savannah River Facility using DOT-6M type B containers on 8 August, 1989. (orig.)

  13. Continuing investigations for technology assessment of 99Mo production from LEU [low enriched uranium] targets

    International Nuclear Information System (INIS)

    Vandegrift, G.F.; Kwok, J.D.; Marshall, S.L.; Vissers, D.R.; Matos, J.E.

    1987-01-01

    Currently much of the world's supply of 99m Tc for medical purposes is produced from 99 Mo derived from the fissioning of high enriched uranium (HEU). This paper presents the results of our continuing studies on the effects of substituting low enriched uranium (LEU) for HEU in targets for the production of fission product 99 Mo. Improvements in the electrodeposition of thin films of uranium metal continue to increase the appeal for the substitution of LEU metal for HEU oxide films in cylindrical targets. The process is effective for targets fabricated from stainless steel or zircaloy. Included is a cost estimate for setting up the necessary equipment to electrodeposit uranium metal on cylindrical targets. Further investigations on the effect of LEU substitution on processing of these targets are also reported. Substitution of uranium silicides for the uranium-aluminium alloy or uranium aluminide dispersed fuel used in current target designs will allow the substitution of LEU for HEU in these targets with equivalent 99 Mo-yield per target and no change in target geometries. However, this substitution will require modifications in current processing steps due to 1) the insolubility of uranium silicides in alkaline solutions and 2) the presence of significant quantities of silicate in solution. Results to date suggest that substitution of LEU for HEU can be achieved. (Author)

  14. Supply of enriched uranium for research reactors

    International Nuclear Information System (INIS)

    Mueller, Hans; Laucht, Juergen

    1996-01-01

    Since the RERTR meeting in 1990 at Newport/USA, NUKEM recommended that the research reactor community agree upon a worldwide unified technical specification for low enriched uranium (LEU) and high enriched uranium (HEU) since there existed numerous specifications both from suppliers/fabricators and research reactors. The target recommended by NUKEM is to arrive at a worldwide unified standard specification in order to facilitate supplies of LEU and HEU to fabricators for fabrication of research reactor fuel elements. In our paper presented at the RERTR meeting at Paris in September 1995, we pointed out that LEU and HEU supplied by the U.S. Department of Energy (DOE) in the past was never 'virgin' material, i.e., it was mixed with reprocessed uranium. Our recommendation was to include this fact in the proposed unified specification. Since the RERTR meeting in 1995 progress on a unified standard specification has been made and we would like to provide more specific information about that in this paper. Furthermore, we will deal with the question whether there is a secure supply of LEU for converted research reactors. We list current and potential suppliers of LEU, noting however, that the DOE has for a number of years been unable to supply any LEU due to production problems. The future availability of LEU of U.S. origin is, of course, essential for those research reactor operators which have converted their reactors from HEU to LEU and which are intending to return spent fuel of U.S. origin to the U.S.A. (author)

  15. Technical problems in case of utilizing uranium of medium enrichment for a research reactor

    International Nuclear Information System (INIS)

    Kanda, Keiji; Shibata, Shun-ichi

    1979-01-01

    Usually, highly enriched uranium of 90 - 93% is used for research reactors, but the US government proposed the strong policy to use low enriched uranium of the uranium of medium enrichment in unavoidable case from the viewpoint of the resistance to nuclear proliferation in November, 1977. This policy is naturally applied to Japan also. The export of highly enriched uranium will be permitted only when the President approves it after the technical and economical evaluations by the government. The Kyoto University high flux reactor has the features which are not seen in other research reactors, such as medical irradiation, and it is hard to attain the objectives of researches unless HEU is used. The application for the export of HEU was accepted in February, 1978. The nuclear characteristics of the KUHFR when medium or low enriched uranium is used, the criticality experiment in the KUCA using the uranium of medium enrichment, and the burning test on the uranium fuel plates of medium enrichment are described. The research project to lower the degree of enrichment in the fuel for research and test reactors is expected to be continued down to less than 20%. The MEU of 45% enrichment will be actually used in 1983. (Kako, I.)

  16. Use of Savannah River Site facilities for blend down of highly enriched uranium

    International Nuclear Information System (INIS)

    Bickford, W.E.; McKibben, J.M.

    1994-02-01

    Westinghouse Savannah River Company was asked to assess the use of existing Savannah River Site (SRS) facilities for the conversion of highly enriched uranium (HEU) to low enriched uranium (LEU). The purpose was to eliminate the weapons potential for such material. Blending HEU with existing supplies of depleted uranium (DU) would produce material with less than 5% U-235 content for use in commercial nuclear reactors. The request indicated that as much as 500 to 1,000 MT of HEU would be available for conversion over a 20-year period. Existing facilities at the SRS are capable of producing LEU in the form of uranium trioxide (UO 3 ) powder, uranyl nitrate [UO 2 (NO 3 ) 2 ] solution, or metal. Additional processing, and additional facilities, would be required to convert the LEU to uranium dioxide (UO 2 ) or uranium hexafluoride (UF 3 ), the normal inputs for commercial fuel fabrication. This study's scope does not include the cost for new conversion facilities. However, the low estimated cost per kilogram of blending HEU to LEU in SRS facilities indicates that even with fees for any additional conversion to UO 2 or UF 6 , blend-down would still provide a product significantly below the spot market price for LEU from traditional enrichment services. The body of the report develops a number of possible facility/process combinations for SRS. The primary conclusion of this study is that SRS has facilities available that are capable of satisfying the goals of a national program to blend HEU to below 5% U-235. This preliminary assessment concludes that several facility/process options appear cost-effective. Finally, SRS is a secure DOE site with all requisite security and safeguard programs, personnel skills, nuclear criticality safety controls, accountability programs, and supporting infrastructure to handle large quantities of special nuclear materials (SNM)

  17. Neutronic performance of a 14 MW TRIGA reactor: LEU vs HEU fuel

    International Nuclear Information System (INIS)

    Bretscher, M.M.; Snelgrove, J.L.; Cornella, R.J.

    1983-01-01

    A primary objective of the US Reduced Enrichment Research and Test Reactor (RERTR) Program is to develop means for replacing, wherever possible, currently used highly-enriched uranium (HEU) fuel ( 235 U enrichment > 90%) with low-enriched uranium (LEU) fuel ( 235 U enrichment < 20%) without significantly degrading the performance of research and test reactors. The General Atomic Company has developed a low-enriched but high uranium content Er-U-ZrH/sub 1.6/ fuel to enable the conversion of TRIGA reactors (and others) from HEU to LEU. One possible application is to the water-moderated 14 MW TRIGA Steady State Reactor (SSR) at the Romanian Institute for Nuclear Power Reactors. The work reported here was undertaken for the purpose of comparing the neutronic performance of the SSR for HEU fuel with that for LEU fuel. In order to make these relative comparisons as valid as possible, identical methods and models were used for the neutronic calculations

  18. Research reactor preparations for the air shipment of highly enriched uranium from Romania

    International Nuclear Information System (INIS)

    Bolshinsky, I.; Allen, K.J.; Biro, L.L.; Budu, M.E.; Zamfir, N.V.; Dragusin, M.; Paunoiu, C.; Ciocanescu, M.

    2010-01-01

    In June 2009 two air shipments transported both unirradiated (fresh) and irradiated (spent) Russian-origin highly enriched uranium (HEU) nuclear fuel from two research reactors in Romania to the Russian Federation (RF) for conversion to low enriched uranium (LEU). The Institute for Nuclear Research at Pitesti (SCN Pitesti) shipped 30.1 kg of HEU fresh fuel pellets to Dimitrovgrad, Russia and the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH) shipped 23.7 kilograms of HEU spent fuel assemblies from the VVR-S research reactor at Magurele, Romania, to Ozersk, Russia. Both HEU shipments were coordinated by the Russian Research Reactor Fuel Return Program (RRRFR) as part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), were managed in Romania by the National Commission for Nuclear Activities Control (CNCAN), and were conducted in cooperation with the Russian Federation State Corporation for Atomic Energy Rosatom and the International Atomic Energy Agency (IAEA). Both shipments were transported by truck to and from respective commercial airports in Romania and the Russian Federation and stored at secure nuclear facilities in Russia until the material is converted into low enriched uranium. These shipments resulted in Romania becoming the 3rd country under the RRRFR program and the 14th country under the GTRI program to remove all HEU. This paper describes the research reactor preparations and license approvals that were necessary to safely and securely complete these air shipments of nuclear fuel. (author)

  19. Continuing investigations for technology assessment of 99Mo production from LEU [low enriched Uranium] targets

    International Nuclear Information System (INIS)

    Vandergrift, G.F.; Kwok, J.D.; Marshall, S.L.; Vissers, D.R.; Matos, J.E.

    1987-01-01

    Currently much of the world's supply of /sup 99m/Tc for medical purposes is produced from 99 Mo derived from the fissioning of high enriched uranium (HEU). The need for /sup 99m/Tc is continuing to grow, especially in developing countries, where needs and national priorities call for internal production of 99 Mo. This paper presents the results of our continuing studies on the effects of substituting low enriched Uranium (LEU) for HEU in targets for the production of fission product 99 Mo. Improvements in the electrodeposition of thin films of uranium metal are reported. These improvements continue to increase the appeal for the substitution of LEU metal for HEU oxide films in cylindrical targets. The process is effective for targets fabricated from stainless steel or hastaloy. A cost estimate for setting up the necessary equipment to electrodeposit uranium metal on cylindrical targets is reported. Further investigations on the effect of LEU substitution on processing of these targets are also reported. Substitution of uranium silicides for the uranium-aluminum alloy or uranium aluminide dispersed fuel used in other current target designs will allow the substitution of LEU for HEU in these targets with equivalent 99 Mo-yield per target and no change in target geometries. However, this substitution will require modifications in current processing steps due to (1) the insolubility of uranium silicides in alkaline solutions and (2) the presence of significant quantities of silicate in solution. Results to date suggest that both concerns can be handled and that substitution of LEU for HEU can be achieved

  20. Active interrogation of highly enriched uranium

    Science.gov (United States)

    Fairrow, Nannette Lea

    Safeguarding special nuclear material (SNM) in the Department of Energy Complex is vital to the national security of the United States. Active and passive nondestructive assays are used to confirm the presence of SNM in various configurations ranging from waste to nuclear weapons. Confirmation measurements for nuclear weapons are more challenging because the design complicates the detection of a distinct signal for highly enriched uranium. The emphasis of this dissertation was to investigate a new nondestructive assay technique that provides an independent and distinct signal to confirm the presence of highly enriched uranium (HEU). Once completed and tested this assay method could be applied to confirmation measurements of nuclear weapons. The new system uses a 14-MeV neutron source for interrogation and records the arrival time of neutrons between the pulses with a high efficiency detection system. The data is then analyzed by the Feynman reduced variance method. The analysis determined the amount of correlation in the data and provided a unique signature of correlated fission neutrons. Measurements of HEU spheres were conducted at Los Alamos with the new system. Then, Monte Carlo calculations were performed to verify hypothesis made about the behavior of the neutrons in the experiment. Comparisons of calculated counting rates by the Monte Carlo N-Particle Transport Code (MCNP) were made with the experimental data to confirm that the measured response reflected the desired behavior of neutron interactions in the highly enriched uranium. In addition, MCNP calculations of the delayed neutron build-up were compared with the measured data. Based on the results obtained from this dissertation, this measurement method has the potential to be expanded to include mass determinations of highly enriched uranium. Although many safeguards techniques exist for measuring special nuclear material, the number of assays that can be used to confirm HEU in shielded systems is

  1. Using low-enriched uranium in research reactors: The RERTR program

    International Nuclear Information System (INIS)

    Travelli, A.

    1994-01-01

    The goal of the RERTR program is to minimize and eventually eliminate use of highway enriched uranium (HEU) in research and test reactors. The program has been very successful, and has developed low-enriched uranium (LEU) fuel materials and designs which can be used effectively in approximately 90 percent of the research and test reactors which used HEU when the program began. This progress would not have been possible without active international cooperation among fuel developers, commercial vendors, and reactor operators. The new tasks which the RERTR program is undertaking at this time include development of new and better fuels that will allow use of LEU fuels in all research and test reactors; cooperation with Russian laboratories, which will make it possible to minimize and eventually eliminate use of HEU in research reactors throughout the world, irrespective of its origin; and development of an LEU-based process for the production of 99 Mo. Continuation and intensification of international cooperation are essential to the achievement of the ultimate goals of the RERTR program

  2. 78 FR 60928 - Request To Amend a License To Export High-Enriched Uranium

    Science.gov (United States)

    2013-10-02

    ... NUCLEAR REGULATORY COMMISSION Request To Amend a License To Export High-Enriched Uranium Pursuant... manufacture HEU The Netherlands. National Nuclear Security Uranium uranium (17.1 targets in France... export from 9.4 kg of U-235 contained in 10.1 kg uranium to a new cumulative total of 17.1 kg of U-235...

  3. Performance and economic penalties of some LEU [low enriched uranium] conversion options for the Australian Reactor HIFAR

    International Nuclear Information System (INIS)

    McCulloch, D.B.; Robinson, G.S.

    1987-01-01

    Performance calculations for the conversion of HIFAR to low enriched uranium (LEU) fuel have been extended to a wide range of 235 U loadings per fuel element. Using a simple approximate algorithm for the likely costs of LEU compared with highly enriched uranium (HEU) fuel elements, the increases in annual fuelling costs for LEU compared with HEU fuel are examined for a range of conversion options involving different performance penalties. No significant operational/safety problems were found for any of the options canvassed. (Author)

  4. Converting targets and processes for fission-product molybdenum-99 from high- to low-enriched uranium

    International Nuclear Information System (INIS)

    Vandegrift, G.F.; Snelgrove, J.L.; Aase, S.

    1999-01-01

    Most of the world's supply of 99 Mo is produced by the fissioning of 235 U in high-enriched uranium targets (HEU, generally 93% 235 U). To reduce nuclear-proliferation concerns, the U.S. Reduced Enrichment for Research and Test Reactor Program is working to convert the current HEU targets to low-enriched uranium (LEU, 235 U). Switching to LEU targets also requires modifying the separation processes. Current HEU processes can be classified into two main groups based on whether the irradiated target is dissolved in acid or base. Our program has been working on both fronts, with development of targets for acid-side processes being the furthest along. However, using an LEU metal foil target may allow the facile replacement of HEU for both acid and basic dissolution processes. Demonstration of the irradiation and 99 Mo separation processes for the LEU metal-foil targets is being done in cooperation with researchers at the Indonesian PUSPIPTEK facility. We are also developing LEU UO 2 /Al dispersion plates as substitutes for HEU UA1 x /A1 dispersion plates for base-side processes. Results show that conversion to LEU is technically feasible; working with producers is essential to lowering any economic penalty associated with conversion. (author)

  5. Conversion of research and test reactors to low enriched uranium fuel: technical overview and program status

    International Nuclear Information System (INIS)

    Roglans-Ribas, J.

    2008-01-01

    Many of the nuclear research and test reactors worldwide operate with high enriched uranium fuel. In response to worries over the potential use of HEU from research reactors in nuclear weapons, the U.S Department of Energy (DOE) initiated a program - the Reduced Enrichment for Research and Test Reactors (RERTR) - in 1978 to develop the technology necessary to reduce the use of HEU fuel by converting research reactors to low enriched uranium (LEU) fuel. The Reactor Conversion program is currently under the DOE's National Nuclear Security Administration's Global Threat Reduction Initiative (GTRI). 55 of the 129 reactors included in the scope have been already converted to LEU fuel or have shutdown prior to conversion. The major technical activities of the Conversion Program include: (1) the development of advanced LEU fuels; (2) conversion analysis and conversion support; and (3) technology development for the production of Molybdenum-99 (Mo 99 ) with LEU targets. The paper provides an overview of the status of the program, the technical challenges and accomplishments, and the role of international collaborations in the accomplishment of the Conversion Program objectives. Nuclear research and test reactors worldwide have been in operation for over 60 years. Many of these facilities operate with high enriched uranium fuel. In response to increased worries over the potential use of HEU from research reactors in the manufacturing of nuclear weapons, the U.S Department of Energy (DOE) initiated a program - the Reduced Enrichment for Research and Test Reactors (RERTR) - in 1978 to develop the technology necessary to reduce the use of HEU fuel in research reactors by converting them to low enriched uranium (LEU) fuel. The reactor conversion program was initially focused on U.S.-supplied reactors, but in the early 1990s it expanded and began to collaborate with Russian institutes with the objective of converting Russian supplied reactors to the use of LEU fuel.

  6. Conversion and standardization of university reactor fuels using low-enrichment uranium - options and costs

    International Nuclear Information System (INIS)

    Harris, D.R.; Matos, J.E.; Young, H.H.

    1985-01-01

    The highly-enriched uranium (HEU) fuel used in twenty United States university reactors can be viewed as contributing to the risk of theft or diversion of weapons-useable material. The US Nuclear Regulatory Commission has issued a policy statement expressing its concern and has published a proposed rule on limiting the use of HEU in NRC-licensed non-power reactors. The fuel options, functional impacts, licensing, and scheduling of conversion and standardization of these reactor fuels to use of low-enrichment uranium (LEU) have been assessed. The university reactors span a wide range in form and function, from medium-power intense neutron sources where HEU fuel may be required, to low-power training and research facilities where HEU fuel is unnecessary. Conversion provides an opportunity to standardize university reactor fuels and improve reactor utilization in some cases. The entire program is estimated to cost about $10 million and to last about five years. Planning for conversion and standardization is facilitated by the US Department of Energy. 20 refs., 1 tab

  7. Conversion and standardization of university reactor fuels using low-enrichment uranium - Options and costs

    International Nuclear Information System (INIS)

    Harris, D.R.; Matos, J.E.; Young, H.H.

    1985-01-01

    The highly-enriched uranium (HEU) fuel used in twenty United States university reactors can be viewed as contributing to the risk of theft or diversion of weapons-useable material. The U.S. Nuclear Regulatory Commission has issued a policy statement expressing its concern and has published a proposed rule on limiting the use of HEU in NRC-licensed non-power reactors. The fuel options, functional impacts, licensing, and scheduling of conversion and standardization of these reactor fuels to use of low-enrichment uranium (LEU) have been assessed. The university reactors span a wide range in form and function, from medium-power intense neutron sources where HEU fuel may be required, to low-power training and research facilities where HEU fuel is unnecessary. Conversion provides an opportunity to standardize university reactor fuels and improve reactor utilization in some cases. The entire program is estimated to cost about $10 million and to last about five years. Planning for conversion and standardization is facilitated by the U.S. Department of Energy. (author)

  8. HEU Transparency Implementation Program and its Radiation Safety Program

    International Nuclear Information System (INIS)

    Radev, R

    2002-01-01

    In February 1993, the Governments of the United States (U.S.) and the Russian Federation (R.F.) signed a bilateral Agreement for the U.S. purchase of low enriched uranium (LEU) derived from 500 metric tons (MT) of highly enriched uranium (HEU) resulting from the dismantlement of Russian nuclear weapons. The HEU Purchase Agreement serves important national security and nonproliferation policy imperatives for both countries since its implementation reduces the quantity of surplus Russian HEU that could be stolen and diverted for weapons use. In return, Russia receives much needed U.S. dollars over a 20-year delivery period. In 2001, Russia received over half a billion US dollars from the purchase of the LEU blended from 30 MT HEU. As part of this Agreement, transparency rights were agreed upon that provide confidence to both governments that the nonproliferation objectives of the Agreement are being fulfilled. While the U.S. Department of State, in concert with the U.S. Department of Energy's (DOE) National Nuclear Security Administration (NNSA) is responsible negotiating transparency rights associated with this nuclear material, the NNSA is responsible for implementing those rights. These rights allow U.S. and R.F., personnel (called ''monitors'') to visit the processing facilities and observe the steps for processing the HEU into fuel for nuclear reactors. In this fashion, the processing of HEU to LEU is made ''transparent.'' For DOE, there are three transparency objectives: (1) that the HEU is extracted from nuclear weapons, (2) that this same HEU is oxidized, and (3) that the HEU is blended into LEU. For MINATOM, the transparency objective is: (1) that the LEU is fabricated into fuel for commercial nuclear power reactors: The transparency is based on visits by designated transparency monitors (100 preapproved U.S. and Russian monitors) with specific rights to monitor and to access storage and processing areas to provide confidence that the nonproliferation goals

  9. Implementation of the United States/Russian HEU Agreement: Current Status and Prospects

    International Nuclear Information System (INIS)

    Rutkowski, E

    2003-01-01

    During Calendar Year (CY) 2002, the Russian Federation (R.F.) delivered low enriched uranium (LEU) from the conversion and processing of 30 metric tons (MT) of weapons-grade (90% 235 U assay) uranium. Through July 2003, the Highly Enriched Uranium (HEU) Transparency Implementation Program (TIP) will have monitored the conversion of over 190 MT HEU into LEU. This total represents about 38 percent of the projected 500 MT HEU scheduled to be blended down through the year 2013 and is equivalent to the destruction of 7,600 nuclear devices. The National Nuclear Security Administration's (NNSA) HEU-TIP monitors the processing of this HEU at four Russian uranium-processing plants. During CY 2002, United States (U.S.) personnel monitored this process for a total of 194 monitor-weeks by staffing a Transparency Monitoring Office (TMO) located in Novouralsk, and through a series of five-day Special Monitoring Visits (SMV) to the four plants. U.S. monitor observations include the inventory of in-process containers, the observation of operations and non-destructive assay measurements (NDA) to determine 235 U enrichment, as well as the examination and validation of Russian Material Control and Accountability (MC and A) documents. In addition, the U.S. designed Blend Down Monitoring System (BDMS) installed at the Ural Electrochemical Integrated Plant (UEIP) in January 1999 monitored all HEU blended at that facility, which is about 50 percent of the HEU blended into LEU during CY 2002. Recently we installed a BDMS at the Electrochemical Plant (ECP) in Zelenogorsk and plans are underway to install a BDMS at the Siberian Chemical Enterprise (SChE) in Seversk in late 2004. On a very positive note, interpersonal interactions between U.S. and Russian technical experts continues to expand and have proven to be an important element of the transparency regime. On the tenth anniversary of the HEU Purchase Agreement, the Ministry of the R.F. for Atomic Energy (Minatom) also saluted the

  10. Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual Report for FY 2008

    Energy Technology Data Exchange (ETDEWEB)

    Primm, Trent [ORNL; Chandler, David [ORNL; Ilas, Germina [ORNL; Miller, James Henry [ORNL; Sease, John D [ORNL; Jolly, Brian C [ORNL

    2009-03-01

    This report documents progress made during FY 2008 in studies of converting the High Flux Isotope Reactor (HFIR) from highly enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in reactor performance from the current level. Results of selected benchmark studies imply that calculations of LEU performance are accurate. Scoping experiments with various manufacturing methods for forming the LEU alloy profile are presented.

  11. Low-Enriched Uranium Fuel Conversion Activities for the High Flux Isotope Reactor, Annual Report for FY 2011

    Energy Technology Data Exchange (ETDEWEB)

    Renfro, David G [ORNL; Cook, David Howard [ORNL; Freels, James D [ORNL; Griffin, Frederick P [ORNL; Ilas, Germina [ORNL; Sease, John D [ORNL; Chandler, David [ORNL

    2012-03-01

    This report describes progress made during FY11 in ORNL activities to support converting the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum (UMo) alloy. With both radial and axial contouring of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current levels achieved with HEU fuel. Studies are continuing to demonstrate that the fuel thermal safety margins can be preserved following conversion. Studies are also continuing to update other aspects of the reactor steady state operation and accident response for the effects of fuel conversion. Technical input has been provided to Oregon State University in support of their hydraulic testing program. The HFIR conversion schedule was revised and provided to the GTRI program. In addition to HFIR conversion activities, technical support was provided directly to the Fuel Fabrication Capability program manager.

  12. Low-Enriched Uranium Fuel Conversion Activities for the High Flux Isotope Reactor, Annual Report for FY 2011

    International Nuclear Information System (INIS)

    Renfro, David G.; Cook, David Howard; Freels, James D.; Griffin, Frederick P.; Ilas, Germina; Sease, John D.; Chandler, David

    2012-01-01

    This report describes progress made during FY11 in ORNL activities to support converting the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum (UMo) alloy. With both radial and axial contouring of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current levels achieved with HEU fuel. Studies are continuing to demonstrate that the fuel thermal safety margins can be preserved following conversion. Studies are also continuing to update other aspects of the reactor steady state operation and accident response for the effects of fuel conversion. Technical input has been provided to Oregon State University in support of their hydraulic testing program. The HFIR conversion schedule was revised and provided to the GTRI program. In addition to HFIR conversion activities, technical support was provided directly to the Fuel Fabrication Capability program manager.

  13. Comparison of the FRM-II HEU design with an alternative LEU design

    International Nuclear Information System (INIS)

    Mo, S.C.; Hanan, N.A.; Matos, J.E.

    2004-01-01

    The FRM-II reactor design of the Technical University of Munich has a compact core that utilizes fuel plates containing highly-enriched uranium (HEU, 93%). This paper presents an alternative core design utilizing low-enriched uranium (LEU, 3 that provides nearly the same neutron flux for experiments as the HEU design, but has a less favourable fuel cycle economy. If an LEU fuel with a uranium density of 6.0 - 6.5 g/cm 3 . were developed, the alternative design would provide the same neutron flux and use the same number of cores per year as the HEU design. The results of this study show that there are attractive possibilities for using LEU fuel instead of HEU fuel in the FRM-II. Further optimization of the LEU design and near-term availability of LEU fuel with a uranium density greater than 4.8 g/cm 3 would enhance the performance of the LEU core. The REKIR Program is ready to exchange information with the Technical University of Munich to resolve any differences that may exist and to identify design modifications that would optimize reactor performance utilizing LEU fuel. (author)

  14. Repository emplacement costs for Al-clad high enriched uranium spent fuel

    International Nuclear Information System (INIS)

    McDonell, W.R.; Parks, P.B.

    1994-01-01

    A range of strategies for treatment and packaging of Al-clad high-enriched uranium (HEU) spent fuels to prevent or delay the onset of criticality in a geologic repository was evaluated in terms of the number of canisters produced and associated repository costs incurred. The results indicated that strategies in which neutron poisons were added to consolidated forms of the U-Al alloy fuel generally produced the lowest number of canisters and associated repository costs. Chemical processing whereby the HEU was removed from the waste form was also a low cost option. The repository costs generally increased for isotopic dilution strategies, because of the substantial depleted uranium added. Chemical dissolution strategies without HEU removal were also penalized because of the inert constituents in the final waste glass form. Avoiding repository criticality by limiting the fissile mass content of each canister incurred the highest repository costs

  15. HEU to LEU conversion experience at the UMass-Lowell research reactor

    International Nuclear Information System (INIS)

    White, John R.; Bobek, Leo M.

    2005-01-01

    The UMass-Lowell Research Reactor (UMLRR) operated safely with high-enriched uranium (HEU) fuel for over 25 years. Having reached the end of core lifetime and due to proliferation concerns, the reactor was recently converted to low-enriched uranium silicide (LEU) fuel. The actual process for converting the UMLRR from HEU to LEU fuel covered a period of over 15 years. The conversion effort - from the initial conceptual design studies in the late 1980s to the final offsite shipment of the spent HEU fuel in August 2004 - was a unique experience for the faculty and staff of a small university research reactor. This paper gives a historical view of the process and it highlights several key milestones along the road to successful completion of this project. (author)

  16. Highly enriched uranium, a dangerous substance that should be eliminated

    Energy Technology Data Exchange (ETDEWEB)

    Schaper, Annette

    2013-07-01

    Either highly enriched uranium (HEU) or plutonium is needed to construct a nuclear weapon. While plutonium is radioactive and hazardous in handling, HEU is far less dangerous. Furthermore, it is more difficult to detect by technical means. Therefore, in comparison to plutonium, HEU is much easier to divert, smuggle and hide. Moreover, a crude nuclear explosive made of HEU can be constructed in a much simpler way than one made using plutonium. For these reasons, HEU is the material most wanted by terrorists. A few tens of kilograms are sufficient for one explosive, but the quantities existing in the world add up to hundreds of tons. Due to the disarmament at the end of the Cold War, the NPT nuclear weapon states possess large quantities of HEU in excess of their needs for nuclear weapons. Therefore, these countries have not produced HEU for many years. Several international projects are working towards reducing the proliferation risks posed by HEU. The projects include the reduction of existing HEU by converting it to civilian reactor fuel that cannot be easily used for nuclear weapons. Other projects work towards reducing the number of countries and sites where HEU is stored by transferring it back to the countries of origin. And there are yet other projects which seek to minimize uses which would require new production of HEU. An international non-proliferation goal should be to eliminate all uses of HEU and thus to eliminate the need for any future production. Uses of HEU other than for nuclear weapons are as fuel in civilian research reactors, as base material for the production of special isotopes used in medical diagnostics, so-called medical targets and as fuel in military naval reactors. It is desirable to replace the HEU in all these applications with other materials and thus cease all HEU production forever. Use as fuel in civilian reactors has been greatly reduced during the last few decades. Within an international campaign, the Reduced Enrichment for

  17. Highly enriched uranium, a dangerous substance that should be eliminated

    International Nuclear Information System (INIS)

    Schaper, Annette

    2013-01-01

    Either highly enriched uranium (HEU) or plutonium is needed to construct a nuclear weapon. While plutonium is radioactive and hazardous in handling, HEU is far less dangerous. Furthermore, it is more difficult to detect by technical means. Therefore, in comparison to plutonium, HEU is much easier to divert, smuggle and hide. Moreover, a crude nuclear explosive made of HEU can be constructed in a much simpler way than one made using plutonium. For these reasons, HEU is the material most wanted by terrorists. A few tens of kilograms are sufficient for one explosive, but the quantities existing in the world add up to hundreds of tons. Due to the disarmament at the end of the Cold War, the NPT nuclear weapon states possess large quantities of HEU in excess of their needs for nuclear weapons. Therefore, these countries have not produced HEU for many years. Several international projects are working towards reducing the proliferation risks posed by HEU. The projects include the reduction of existing HEU by converting it to civilian reactor fuel that cannot be easily used for nuclear weapons. Other projects work towards reducing the number of countries and sites where HEU is stored by transferring it back to the countries of origin. And there are yet other projects which seek to minimize uses which would require new production of HEU. An international non-proliferation goal should be to eliminate all uses of HEU and thus to eliminate the need for any future production. Uses of HEU other than for nuclear weapons are as fuel in civilian research reactors, as base material for the production of special isotopes used in medical diagnostics, so-called medical targets and as fuel in military naval reactors. It is desirable to replace the HEU in all these applications with other materials and thus cease all HEU production forever. Use as fuel in civilian reactors has been greatly reduced during the last few decades. Within an international campaign, the Reduced Enrichment for

  18. Loading and initial start-up testing of the low-enrichment uranium core for the Ohio State University research reactor

    International Nuclear Information System (INIS)

    Talnagi, J.W.

    1989-01-01

    Conversion of the Ohio State University Research Reactor (OSURR) from high-enrichment uranium (HEU) fuel to low-enrichment uranium (LEU) fuel elements was begun in August 1985, with funding provided by the U.S. Department of Energy (DOE) and the university. Conversion of the OSURR from HEU to LEU fuel was successfully completed. The reactor is operational at 10-kW steady-state thermal power. Measurements of selected core parameters have been made and compared with predicted values and previous values for the HEU core. In general, measured results agree well with predicted performance, and minor changes have been detected in certain core parameters as a result of the change to LEU fuel. Future plans include additional core testing and a possible increase in operating power

  19. The SLOWPOKE-2 reactor with low enrichment uranium oxide fuel

    International Nuclear Information System (INIS)

    Townes, B.M.; Hilborn, J.W.

    1985-06-01

    A SLOWPOKE-2 reactor core contains less than 1 kg of highly enriched uranium (HEU) and the proliferation risk is very low. However, to overcome proliferation concerns a new low enrichment uranium (LEU) fuelled reactor core has been designed. This core contains approximately 180 fuel elements based on the Zircaloy-4 clad UOsub(2) CANDU fuel element, but with a smaller outside diameter. The physics characteristics of this new reactor core ensure the inherent safety of the reactor under all conceivable conditions and thus the basic SLOWPOKE safety philosophy which permits unattended operation is not affected

  20. Production, inventories and HEU in the world uranium market: Production's vital role

    International Nuclear Information System (INIS)

    Underhill, D.H.

    1997-01-01

    This paper analyses recent uranium supply and demand relationship and projects supply through 2010. The extremely depressed record low market prices have led to the ongoing annual inventory drawdown of over 25,000 t U resulting from the current 45% world production shortfall. The policy of the European Union and anti-dumping related activities in the USA are restricting imports of uranium from CIS producers to a majority of the world's nuclear utilities. These factors are reducing low priced uranium supply and forcing buyers to again obtain more of their requirements from producers. It discusses how the sale of Low Enriched Uranium (LEU) produced from of 550 t High Enriched Uranium (HEU) from Russia and Ukraine could potentially supply about 15% of world requirements through 2010. However, legislation currently being developed by the US Congress may ration the sale of this material, extending the LEU supply well into the next century. Nuclear generation capacity and its uranium requirements are projected to grow at about 1.5% through 2010. Demand for new uranium purchases is however, increasing at the much higher rate of 25-30% over the next 10-15 years. This increasing demand in the face of decreasing supply is resulting in a market recovery in which the spot price for non-CIS produced uranium has risen over 25% since October 1994. Prices will continue to increase as the market equilibrium shifts from a balance with alternative excess low priced supply to an equilibrium between production and demand. 19 refs, 14 figs, 2 tabs

  1. Technology for down-blending weapons grade uranium into commercial reactor-usable uranium

    International Nuclear Information System (INIS)

    Arbital, J.G.; Snider, J.D.

    1996-01-01

    The US Department of Energy (DOE) is evaluating options for rendering surplus inventories of highly enriched uranium (HEU) incapable of being used in nuclear weapons. Weapons-capable HEU was earlier produced by enriching the uranium isotope 235 U from its natural occurring 0.71 percent isotopic concentration to at least 20 percent isotopic concentration. Now, by permanently diluting the concentration of the 235 U isotope, the weapons capability of HEU can be eliminated in a manner that is reversible only through isotope re-enrichment, and therefore, highly resistant to proliferation. To the extent that can be economically and technically justified, the down-blended, low-enriched uranium product will be made suitable for use as commercial reactor fuel. Such down-blended uranium product can also be disposed of as waste if chemical or isotopic impurities preclude its use as reactor fuel. The DOE has evaluated three candidate processes for down blending surplus HEU. These candidate processes are: (1) uranium hexafluoride blending; (2) molten uranium metal blending; and (3) uranyl nitrate solution blending. This paper describes each of these candidate processes. It also compares the relative advantages and disadvantages of each process with respect to: (1) the various forms and compounds of HEU comprising the surplus inventory, (2) the use of down-blended product as commercial reactor fuel, or (3) its disposal as waste

  2. Accident Analyses for Conversion of the University of Missouri Research Reactor (MURR) from Highly-Enriched to Low-Enriched Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Stillman, J. A. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Div., Research and Test Reactor Dept.; Feldman, E. E. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Div., Research and Test Reactor Dept.; Wilson, E. H. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Div., Research and Test Reactor Dept.; Foyto, L. P. [Univ. of Missouri, Columbia, MO (United States). Research Reactor; Kutikkad, K. [Univ. of Missouri, Columbia, MO (United States). Research Reactor; McKibben, J. C. [Univ. of Missouri, Columbia, MO (United States). Research Reactor; Peters, N. J. [Univ. of Missouri, Columbia, MO (United States). Research Reactor; Cowherd, W. M. [Univ. of Missouri, Columbia, MO (United States). College of Engineering, Nuclear Engineering Program; Rickman, B. [Univ. of Missouri, Columbia, MO (United States). College of Engineering, Nuclear Engineering Program

    2014-12-01

    This report contains the results of reactor accident analyses for the University of Missouri Research Reactor (MURR). The calculations were performed as part of the conversion from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL), the MURR Facility, and the Nuclear Engineering Program – College of Engineering, University of Missouri-Columbia. The core conversion to LEU is being performed with financial support from the U. S. government. This report contains the results of reactor accident analyses for the University of Missouri Research Reactor (MURR). The calculations were performed as part of the conversion from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL), the MURR Facility, and the Nuclear Engineering Program – College of Engineering, University of Missouri-Columbia. The core conversion to LEU is being performed with financial support from the U. S. government. In the framework of non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context most research and test reactors, both domestic and international, have started a program of conversion to the use of LEU fuel. A new type of LEU fuel based on an alloy of uranium and molybdenum (U-Mo) is expected to allow the conversion of U.S. domestic high performance reactors like MURR. This report presents the results of a study of core behavior under a set of accident conditions for MURR cores fueled with HEU U-Alx dispersion fuel or LEU monolithic U-Mo alloy fuel with 10 wt% Mo

  3. Operational experience in the production of 131Molybdenum and 99Iodine with high and low uranium enrichment

    International Nuclear Information System (INIS)

    Bravo, C.; Cristini, Pablo R..; Novello, A.; Bronca, M.; Cestau, Daniel; Centurion, R.; Bavaro, R.; Cestau, J.; Gualda, E.; Bronca, P.; Carranza, Eduardo C.

    2009-01-01

    In 1992, in an effort to curtail use of Highly Enriched Uranium (HEU), hoping to alleviate nuclear security concerns, United States passed the Schumer amendment to the Energy Policy Act. This legislation conditioned U.S. export of HEU to foreign companies, understanding that these companies would switch as soon as possible to Lowly Enriched Uranium (LEU). This paper describes 99 Mo production flow chart, characteristics of process cells, shielding, systems of manipulation at distance, cell ventilation system and the method for personal dose monitoring. Production evolution for the span of years 1998 to 2007 is given by indicators, keeping in mind enrichment proportion change. Evolution shown on the indicators is directly related to the application of Safety Culture concepts adopted by personnel. (author)

  4. The NNSA global threat reduction initiative's efforts to minimize the use of highly enriched uranium for medical isotope production

    International Nuclear Information System (INIS)

    Staples, Parrish

    2010-01-01

    The mission of the National Nuclear Security Administration's (NNSA) Office of Global Threat Reduction (GTRI) is to reduce and protect vulnerable nuclear and radiological materials located at civilian sites worldwide. GTRI is a key organization for supporting domestic and global efforts to minimize and, to the extent possible, eliminate the use of highly enriched uranium (HEU) in civilian nuclear applications. GTRI implements the following activities in order to achieve its threat reduction and HEU minimization objectives: Converting domestic and international civilian research reactors and isotope production facilities from the use of HEU to low enriched uranium (LEU); Demonstrating the viability of medical isotope production technologies that do not use HEU; Removing or disposing excess nuclear and radiological materials from civilian sites worldwide; and Protecting high-priority nuclear and radiological materials worldwide from theft and sabotage. This paper provides a brief overview on the recent developments and priorities for GTRI program activities in 2010, with a particular focus on GTRI's efforts to demonstrate the viability of non-HEU based medical isotope production technologies. (author)

  5. How is uranium supply affecting enrichment?

    International Nuclear Information System (INIS)

    Steve Kidd

    2007-01-01

    As a result of the enlivened uranium market, momentum has in turn picked up in the enrichment sector. What are the consequences of higher uranium prices? There is, of course, a link between uranium and enrichment supply to the extent that they are at least partial substitutes. On the enrichment supply side, the most obvious feature is the gradual replacement of the old gas diffusion facilities of Usec in the USA and EURODIF in France with more modern and economical centrifuge plants. Assuming Usec can overcome the financing and technical issues surrounding its plans, the last gas diffusion capacity should disappear around 2015 and the entire enrichment market should then be using centrifuges. On the commercial side, the key anticipated developments are mostly in Russia. Although there should still continue to be substantial quantities of surplus Russian HEU available for down blending in the period beyond 2013, it is now reasonable to expect that it will be mostly consumed by internal needs, to fuel Russian-origin reactors both at home and in export markets such as China and India. Finally, as a key sensitive area for the non-proliferation of nuclear weapons, the enrichment sector is likely to be a central point of the new international arrangements which must be developed to support a buoyant nuclear sector throughout this century.

  6. Neutronic analysis of the conversion of HEU to LEU fuel for a 5-MW MTR core

    International Nuclear Information System (INIS)

    Pazirandeh, A.; Bartsch, G.

    1987-01-01

    In recent years, due to cessation of highly enriched uranium (HEU) fuel supply, practical steps have been taken to substitute HEU fuel in almost all research reactors by medium-enriched uranium or low-enriched uranium (LEU) fuels. In this study, a neutronic calculation of a 5-MW research reactor core fueled with HEU (93% 235 U) is presented. In order to assess the performance of the core with the LEU ( 235 U loadings were examined. The core consists of 22 standard fuel elements (SFEs) and 6 control fuel elements (CFEs). Each fuel elements has 18 curved plates of which two end plates are dummies. Initial 235 U content is 195 g 235 U/SFE and 9.7 g 235 U/CFE or /PFE. In all calculations the permitted changes to the fuel elements are (a) 18 active plates per SFE, (b) fuel plates assumed to be flat, and (c) 8 or 9 active plates per CFE

  7. HEU to LEU conversion and blending facility: Metal blending alternative to produce LEU oxide for disposal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    US DOE is examining options for disposing of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. The nuclear material is converted to a form more proliferation- resistant than the original form. Blending HEU (highly enriched uranium) with less-enriched uranium to form LEU has been proposed as a disposition option. Five technologies are being assessed for blending HEU. This document provides data to be used in environmental impact analysis for the HEU-LEU disposition option that uses metal blending with an oxide waste product. It is divided into: mission and assumptions, conversion and blending facility descriptions, process descriptions and requirements, resource needs, employment needs, waste and emissions from plant, hazards discussion, and intersite transportation.

  8. HEU to LEU conversion and blending facility: Metal blending alternative to produce LEU oxide for disposal

    International Nuclear Information System (INIS)

    1995-09-01

    US DOE is examining options for disposing of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. The nuclear material is converted to a form more proliferation- resistant than the original form. Blending HEU (highly enriched uranium) with less-enriched uranium to form LEU has been proposed as a disposition option. Five technologies are being assessed for blending HEU. This document provides data to be used in environmental impact analysis for the HEU-LEU disposition option that uses metal blending with an oxide waste product. It is divided into: mission and assumptions, conversion and blending facility descriptions, process descriptions and requirements, resource needs, employment needs, waste and emissions from plant, hazards discussion, and intersite transportation

  9. Multilateral nonproliferation cooperation: US - Led effort to remove HEU/LEU fresh and spent fuels from the Republic of Georgia to Dounreay, Scotland

    International Nuclear Information System (INIS)

    Shelton, Thomas A.; Viebrock, James M.; Riedy, Alexander W.; Moses, Stanley D.; Bird, Helen M.

    1998-01-01

    This paper presents the efforts led by United States for removing HEU/LEU fresh and spent fuel from dhe Republic of Georgia to Dounreay, Scotland. These efforts are resulted from a plan approved by the United States Government, in cooperation with the United Kingdom and Georgia Governments to rapidly retrieve and transport circa 4.3 kilograms of enriched uranium. This material consisted largely of highly enriched uranium (HEU) and a small amount of low enriched uranium (LEU) fresh fuel, as well as about 800 grams of HEU/LEU-based spent fuel from a shutdown IR T-M research reactor on the outskirts of Table's, Georgia. The technical team lead by DOE consisted of HEU handling, packaging and transportation experts from the Oak Ridge Y-12 plant, managed and operated by Lockheed Martin Energy Systems, and fuel handling and transportation experts from Nac International in Norcross, Georgia, United States

  10. Environmental assessment for the purchase of Russian low enriched uranium derived from the dismantlement of nuclear weapons in the countries of the former Soviet Union

    International Nuclear Information System (INIS)

    1994-01-01

    The United States is proposing to purchase from the Russian Federation low enriched uranium (LEU) derived from highly enriched uranium (HEU) resulting from the dismantlement of nuclear weapons in the countries of the former Soviet Union. The purchase would be accomplished through a proposed contract requiring the United States to purchase 15,250 metric tons (tonnes) of LEU (or 22,550 tonnes of UF 6 ) derived from blending 500 metric tones uranium (MTU) of HEU from nuclear warheads. The LEU would be in the form of uranium hexafluoride (UF 6 ) and would be converted from HEU in Russia. The United States Enrichment Corporation (USEC) is the entity proposing to undertake the contract for purchase, sale, and delivery of the LEU from the Russian Federation. The US Department of Energy (DOE) is negotiating the procedure for gaining confidence that the LEU is derived from HEU that is derived from dismantled nuclear weapons (referred to as ''transparency),'' and would administer the transparency measures for the contract. There are six environments that could potentially be affected by the proposed action; marine (ocean); US ports of entry; truck or rail transportation corridors; the Portsmouth GDP; the electric power industry; and the nuclear fuel cycle industry. These environmental impacts are discussed

  11. Environmental assessment for the purchase of Russian low enriched uranium derived from the dismantlement of nuclear weapons in the countries of the former Soviet Union

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The United States is proposing to purchase from the Russian Federation low enriched uranium (LEU) derived from highly enriched uranium (HEU) resulting from the dismantlement of nuclear weapons in the countries of the former Soviet Union. The purchase would be accomplished through a proposed contract requiring the United States to purchase 15,250 metric tons (tonnes) of LEU (or 22,550 tonnes of UF{sub 6}) derived from blending 500 metric tones uranium (MTU) of HEU from nuclear warheads. The LEU would be in the form of uranium hexafluoride (UF{sub 6}) and would be converted from HEU in Russia. The United States Enrichment Corporation (USEC) is the entity proposing to undertake the contract for purchase, sale, and delivery of the LEU from the Russian Federation. The US Department of Energy (DOE) is negotiating the procedure for gaining confidence that the LEU is derived from HEU that is derived from dismantled nuclear weapons (referred to as ``transparency),`` and would administer the transparency measures for the contract. There are six environments that could potentially be affected by the proposed action; marine (ocean); US ports of entry; truck or rail transportation corridors; the Portsmouth GDP; the electric power industry; and the nuclear fuel cycle industry. These environmental impacts are discussed.

  12. Measurements of the HEU and LEU in-core spectra at the Ford Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wehe, D K [Oak Ridge National Laboratory, Oak Ridge, TN (United States); King, J S; Lee, J C; Martin, W R [Department of Nuclear Engineering, University of Michigan, Ann Arbor, MI (United States)

    1985-07-01

    The Ford Nuclear Reactor (FNR) at the University of Michigan has been serving as the test site for a low-enriched uranium (LEU) fuel whole-core demonstration. As part of the experimental program, the differential neutron spectrum has been measured in a high-enriched uranium (HEU) core and an LEU core. The HEU and LEU spectra were determined by unfolding the measured activities of foils that were irradiated in the reactor. When the HEU and LEU spectra are compared from meV to 10 MeV, significant differences between the two spectra are apparent below 10 eV. These are probably caused by the additional {sup 238}U resonance absorption in the LEU fuel. No measurable difference occurs in the shape of the spectra above MeV. (author)

  13. Comparison of HEU and LEU neutron spectra in irradiation facilities at the Oregon State TRIGA® Reactor

    International Nuclear Information System (INIS)

    Schickler, R.A.; Marcum, W.R.; Reese, S.R.

    2013-01-01

    Highlights: • The Oregon State TRIGA ® Reactor neutron spectra is characterized herein. • Neutron spectra between highly enriched uranium and low enriched uranium cores are compared. • Discussion is given as to differences between HEU and LEU core spectra results and impact on experiments. -- Abstract: In 2008, the Oregon State TRIGA ® Reactor (OSTR) was converted from highly enriched uranium (HEU) fuel lifetime improvement plan (FLIP) fuel to low-enriched uranium (LEU) fuel. This effort was driven and supported by the Department of Energy's (DoE's) Reduced Enrichment for Research and Test Reactors (RERTR) program. The basis behind the RERTR program's ongoing conversion effort is to reduce the nuclear proliferation risk of civilian research and test reactors. The original intent of the HEU FLIP fuel was to provide fuel to research reactors that could be utilized for many years before a necessary refueling cycle. As a research reactor, the OSTR provides irradiation facilities for a variety of applications, such as activation analysis, fission-track dating, commercial isotope production, neutron radiography, prompt gamma characterization, and many others. In order to accurately perform these research functions, several studies had been conducted on the HEU FLIP fuel core to characterize the neutron spectra in various experimental facilities of the OSTR (Tiyapun, 1997; Ashbaker, 2005). As useful as these analyses were, they are no longer valid due to the change in fuel composition and the resulting alteration of core performance characteristics. Additionally, the core configuration (fuel reconfiguration) was altered between the HEU and LEU cores. This study characterizes the neutron spectra in various experimental facilities within and around the current LEU core. It also compares the spectra to that which was yielded in the HEU core through use of Monte Carlo n-Particle 5 (MCNP5) and experimental adjustment via a least-squares technique. The quantification of

  14. Criticality safety of storage barrels for enriched uranium fresh fuel at the RB research reactor

    International Nuclear Information System (INIS)

    Pesic, M. P.

    1997-01-01

    Study on criticality safety of fresh low and high enriched uranium (LEU and HEU) fuel elements in the storage/transport barrels at the RB research reactor is carried out by using the well-known MCNP computer code. It is shown that studied arrays of tightly closed fuel barrels, each entirely loaded with 100 fresh (HEU or LEU) fuel slugs, are far away from criticality, even in cases of an unexpected flooding by light water.(author)

  15. Licensing considerations in converting NRC-licensed non-power reactors from high-enriched to low-enriched uranium fuels

    International Nuclear Information System (INIS)

    Carter, R.E.

    1985-01-01

    During the mid-1970s, there was increasing concern with the possibility that highly enriched uranium (HEU), widely used in non-power reactors around the world, might be diverted from its intended peaceful uses. In 1982 the U.S. Nuclear Regulatory Commission (NRC) issued a policy statement that was intended to conform with the perceived international thinking, and that addressed the two relevant areas in which NRC has statutory responsibility, namely, export of special nuclear materials for non-USA non-power reactors, and the licensing of USA-based non-power reactors not owned by the Federal government. To further address the second area, NRC issued a proposed rule for public comment that would require all NRC-licensed non-power reactors using HEU to convert to low enriched uranium (LEU) fuel, unless they could demonstrate a unique purpose. Currently the NRC staff is revising the proposed rule. An underlying principle guiding the staff is that as long as a change in enrichment does not lead to safety-related reactor modifications, and does not involve an unreviewed safety question, the licensee could convert the core without prior NRC approval. At the time of writing this paper, a regulatory method of achieving this principle has not been finalized. (author)

  16. Licensing considerations in converting NRC-licensed non-power reactors from high-enriched to low-enriched uranium fuels

    Energy Technology Data Exchange (ETDEWEB)

    Carter, R E

    1985-07-01

    During the mid-1970s, there was increasing concern with the possibility that highly enriched uranium (HEU), widely used in non-power reactors around the world, might be diverted from its intended peaceful uses. In 1982 the U.S. Nuclear Regulatory Commission (NRC) issued a policy statement that was intended to conform with the perceived international thinking, and that addressed the two relevant areas in which NRC has statutory responsibility, namely, export of special nuclear materials for non-USA non-power reactors, and the licensing of USA-based non-power reactors not owned by the Federal government. To further address the second area, NRC issued a proposed rule for public comment that would require all NRC-licensed non-power reactors using HEU to convert to low enriched uranium (LEU) fuel, unless they could demonstrate a unique purpose. Currently the NRC staff is revising the proposed rule. An underlying principle guiding the staff is that as long as a change in enrichment does not lead to safety-related reactor modifications, and does not involve an unreviewed safety question, the licensee could convert the core without prior NRC approval. At the time of writing this paper, a regulatory method of achieving this principle has not been finalized. (author)

  17. DESIGN STUDY FOR A LOW-ENRICHED URANIUM CORE FOR THE HIGH FLUX ISOTOPE REACTOR, ANNUAL REPORT FOR FY 2010

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David Howard [ORNL; Freels, James D [ORNL; Ilas, Germina [ORNL; Jolly, Brian C [ORNL; Miller, James Henry [ORNL; Primm, Trent [ORNL; Renfro, David G [ORNL; Sease, John D [ORNL; Pinkston, Daniel [ORNL

    2011-02-01

    This report documents progress made during FY 2010 in studies of converting the High Flux Isotope Reactor (HFIR) from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current level. Studies are reported of support to a thermal hydraulic test loop design, the implementation of finite element, thermal hydraulic analysis capability, and infrastructure tasks at HFIR to upgrade the facility for operation at 100 MW. A discussion of difficulties with preparing a fuel specification for the uranium-molybdenum alloy is provided. Continuing development in the definition of the fuel fabrication process is described.

  18. Disposition of highly enriched uranium obtained from the Republic of Kazakhstan. Environmental assessment

    International Nuclear Information System (INIS)

    1995-05-01

    This EA assesses the potential environmental impacts associated with DOE's proposal to transport 600 kg of Kazakhstand-origin HEU from Y-12 to a blending site (B ampersand W Lynchburg or NFS Erwin), transport low-enriched UF6 blending stock from a gaseous diffusion plant to GE Wilmington and U oxide blending stock to the blending site, blending the HEU and uranium oxide blending stock to produce LEU in the form of uranyl nitrate, and transport the uranyl nitrate from the blending site to USEC Portsmouth

  19. Overview of Russian HEU transparency issues

    International Nuclear Information System (INIS)

    Kempf, C.R.; Bieniawski, A.

    1993-01-01

    The U.S. has signed an agreement with the Russian Federation for the purchase of 500 metric tons of highly-enriched uranium (HEU) taken from dismantled nuclear weapons. The HEU will be blended down to low-enriched uranium and will be transported to the U.S. to be used by fuel fabricators to make fuel for commercial nuclear power plants. Both the U.S. and Russia have been preparing to institute transparency measures to provide assurance that nonproliferation and arms control objectives specified in the agreement are met. This paper provides background information on the original agreement and on subsequent negotiations with the Russians, as well as discussion of technical aspects of developing transparency measures suited to the facilities and processes which are expected to be involved. Transparency has been defined as those agreed-upon measures which build confidence that arms control and non-proliferation objectives shared by the parties are met. Transparency is a departure from exhaustive, detailed arms control verification regimes of past agreements, which were based on a presumption of detecting transgressions as opposed to confirming compliance

  20. Implementation of the United States-Russian Highly Enriched Uranium Agreement: Current Status and Prospects

    International Nuclear Information System (INIS)

    R.rutkowski, E; Armantrout, G; Mastal, E; Glaser, J; Benton, J

    2004-01-01

    The National Nuclear Security Administration's (NNSA) Highly Enriched Uranium (HEU) Transparency Implementation Program (TIP) monitors and provides assurance that Russian weapons-grade HEU is processed into low enriched uranium (LEU) under the transparency provisions of the 1993 United States (U.S.)-Russian HEU Purchase Agreement. Meeting the Agreement's transparency provisions is not just a program requirement; it is a legal requirement. The HEU Purchase Agreement requires transparency measures to be established to provide assurance that the nonproliferation objectives of the Agreement are met. The Transparency concept has evolved into a viable program that consists of complimentary elements that provide necessary assurances. The key elements include: (1) monitoring by technical experts; (2) independent measurements of enrichment and flow; (3) nuclear material accountability documents from Russian plants; and (4) comparison of transparency data with declared processing data. In the interest of protecting sensitive information, the monitoring is neither full time nor invasive. Thus, an element of trust is required regarding declared operations that are not observed. U.S. transparency monitoring data and independent instrument measurements are compared with plant accountability records and other declared processing data to provide assurance that the nonproliferation objectives of the 1993 Agreement are being met. Similarly, Russian monitoring of U. S. storage and fuel fabrication operations provides assurance to the Russians that the derived LEU is being used in accordance with the Agreement. The successful implementation of the Transparency program enables the receipt of Russian origin LEU into the United States. Implementation of the 1993 Agreement is proceeding on schedule, with the permanent elimination of over 8,700 warhead equivalents of HEU. The successful implementation of the Transparency program has taken place over the last 10 years and has provided the

  1. Isotope Enrichment Detection by Laser Ablation - Laser Absorption Spectrometry: Automated Environmental Sampling and Laser-Based Analysis for HEU Detection

    International Nuclear Information System (INIS)

    Anheier, Norman C.; Bushaw, Bruce A.

    2010-01-01

    The global expansion of nuclear power, and consequently the uranium enrichment industry, requires the development of new safeguards technology to mitigate proliferation risks. Current enrichment monitoring instruments exist that provide only yes/no detection of highly enriched uranium (HEU) production. More accurate accountancy measurements are typically restricted to gamma-ray and weight measurements taken in cylinder storage yards. Analysis of environmental and cylinder content samples have much higher effectiveness, but this approach requires onsite sampling, shipping, and time-consuming laboratory analysis and reporting. Given that large modern gaseous centrifuge enrichment plants (GCEPs) can quickly produce a significant quantity (SQ ) of HEU, these limitations in verification suggest the need for more timely detection of potential facility misuse. The Pacific Northwest National Laboratory (PNNL) is developing an unattended safeguards instrument concept, combining continuous aerosol particulate collection with uranium isotope assay, to provide timely analysis of enrichment levels within low enriched uranium facilities. This approach is based on laser vaporization of aerosol particulate samples, followed by wavelength tuned laser diode spectroscopy to characterize the uranium isotopic ratio through subtle differences in atomic absorption wavelengths. Environmental sampling (ES) media from an integrated aerosol collector is introduced into a small, reduced pressure chamber, where a focused pulsed laser vaporizes material from a 10 to 20-(micro)m diameter spot of the surface of the sampling media. The plume of ejected material begins as high-temperature plasma that yields ions and atoms, as well as molecules and molecular ions. We concentrate on the plume of atomic vapor that remains after the plasma has expanded and then cooled by the surrounding cover gas. Tunable diode lasers are directed through this plume and each isotope is detected by monitoring absorbance

  2. CONCEPTUAL PROCESS DESCRIPTION FOR THE MANUFACTURE OF LOW-ENRICHED URANIUM-MOLYBDENUM FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Daniel M. Wachs; Curtis R. Clark; Randall J. Dunavant

    2008-02-01

    The National Nuclear Security Agency Global Threat Reduction Initiative (GTRI) is tasked with minimizing the use of high-enriched uranium (HEU) worldwide. A key component of that effort is the conversion of research reactors from HEU to low-enriched uranium (LEU) fuels. The GTRI Convert Fuel Development program, previously known as the Reduced Enrichment for Research and Test Reactors program was initiated in 1978 by the United States Department of Energy to develop the nuclear fuels necessary to enable these conversions. The program cooperates with the research reactors’ operators to achieve this goal of HEU to LEU conversion without reduction in reactor performance. The programmatic mandate is to complete the conversion of all civilian domestic research reactors by 2014. These reactors include the five domestic high-performance research reactors (HPRR), namely: the High Flux Isotope Reactor at the Oak Ridge National Laboratory, the Advanced Test Reactor at the Idaho National Laboratory, the National Bureau of Standards Reactor at the National Institute of Standards and Technology, the Missouri University Research Reactor at the University of Missouri–Columbia, and the MIT Reactor-II at the Massachusetts Institute of Technology. Characteristics for each of the HPRRs are given in Appendix A. The GTRI Convert Fuel Development program is currently engaged in the development of a novel nuclear fuel that will enable these conversions. The fuel design is based on a monolithic fuel meat (made from a uranium-molybdenum alloy) clad in Al-6061 that has shown excellent performance in irradiation testing. The unique aspects of the fuel design, however, necessitate the development and implementation of new fabrication techniques and, thus, establishment of the infrastructure to ensure adequate fuel fabrication capability. A conceptual fabrication process description and rough estimates of the total facility throughput are described in this document as a basis for

  3. Report of the Working Party on the conversion of HIFAR to low enrichment uranium fuel

    International Nuclear Information System (INIS)

    1986-06-01

    This report states the effect on research reactor operations and applications of international and national political decisions relating to fuel enrichment. Technical work done in Australia and overseas to establish parameters for conversion of research reactors from High Enrichment Uranium (HEU) to Low Enrichment Uranium (LEU) have been considered in developing a strategy for HIFAR. The requirements of the research groups, isotope production group and reactor operating staff have been considered. For HIFAR to continue to provide the required facilities in support of the national need, it is concluded these should be no reduction of neutron flux

  4. Passive Time Coincidence Measurements with HEU and DU Metal Castings

    International Nuclear Information System (INIS)

    McConchie, Seth M.; Hausladen, Paul; Mihalczo, John T.; Wright, Michael C.; Archer, Daniel E.

    2008-01-01

    A Department of Energy sponsored Oak Ridge National Laboratory/Y-12 National Security Complex program of passive time coincidence measurements has been initiated at Y-12 to evaluate the ability to determine the presence of high enriched uranium (HEU) and distinguish it from depleted uranium (DU). This program uses the Nuclear Materials Identification System (NMIS) without an active interrogation source. Previous passive NMIS measurements with Pu metal and Pu oxide have been successful in determining the Pu mass, assuming a known 240Pu content. The spontaneous fission of uranium metal is considerably lower than Pu and measurements of this type have been performed at Lawrence Livermore National Laboratory. This work presents results of measurements of HEU and DU metal castings using moderated 3He detectors.

  5. Comparison of HEU and LEU neutron spectra in irradiation facilities at the Oregon State TRIGA{sup ®} Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Schickler, R.A., E-mail: robert.schickler@oregonstate.edu; Marcum, W.R., E-mail: wade.marcum@oregonstate.edu; Reese, S.R.

    2013-09-15

    Highlights: • The Oregon State TRIGA{sup ®} Reactor neutron spectra is characterized herein. • Neutron spectra between highly enriched uranium and low enriched uranium cores are compared. • Discussion is given as to differences between HEU and LEU core spectra results and impact on experiments. -- Abstract: In 2008, the Oregon State TRIGA{sup ®} Reactor (OSTR) was converted from highly enriched uranium (HEU) fuel lifetime improvement plan (FLIP) fuel to low-enriched uranium (LEU) fuel. This effort was driven and supported by the Department of Energy's (DoE's) Reduced Enrichment for Research and Test Reactors (RERTR) program. The basis behind the RERTR program's ongoing conversion effort is to reduce the nuclear proliferation risk of civilian research and test reactors. The original intent of the HEU FLIP fuel was to provide fuel to research reactors that could be utilized for many years before a necessary refueling cycle. As a research reactor, the OSTR provides irradiation facilities for a variety of applications, such as activation analysis, fission-track dating, commercial isotope production, neutron radiography, prompt gamma characterization, and many others. In order to accurately perform these research functions, several studies had been conducted on the HEU FLIP fuel core to characterize the neutron spectra in various experimental facilities of the OSTR (Tiyapun, 1997; Ashbaker, 2005). As useful as these analyses were, they are no longer valid due to the change in fuel composition and the resulting alteration of core performance characteristics. Additionally, the core configuration (fuel reconfiguration) was altered between the HEU and LEU cores. This study characterizes the neutron spectra in various experimental facilities within and around the current LEU core. It also compares the spectra to that which was yielded in the HEU core through use of Monte Carlo n-Particle 5 (MCNP5) and experimental adjustment via a least

  6. Radioactive Waste Issues related to Production of Fission-based Mo-99 by using Low Enriched Uranium (LEU)

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Muhmood ul; Ryu, Ho Jin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    In order to produce fission-based Mo-99 from research reactors, two types of targets are being used and they are highly enriched uranium (HEU) targets with {sup 235}U enrichment more than 90wt% of {sup 235}U and low enriched uranium (LEU) targets with {sup 235}U enrichment less than 20wt% of {sup 235}U. It is worth noting that medium enriched uranium i.e. 36wt% of {sup 235}U as being used in South Africa is also regarded as non-LEU from a nuclear security point of view. In order to cope with the proliferation issues, international nuclear security policy is promoting the use of LEU targets in order to minimize the civilian use of HEU. It is noteworthy that Mo-99 yield of the LEU target is less than 20% of the HEU target, which requires approximately five times more LEU targets to be irradiated and consequently results in increased volume of waste. The waste generated from fission Mo-99 production can be mainly due to: target fabrication, assembling of target, irradiation in reactor and processing of irradiated targets. During the fission of U-235 in a reactor, a large number of radionuclides with different chemical and physical properties are formed. The waste produced from these practices may be a combination of low level waste (LLW) and intermediate level waste (ILW) comprised of all three types, i.e., solid, liquid and gas. Handling and treatment of the generated waste are dependent on its form and activity. In case of the large production facility, waste storage facility should be constructed in order to limit the radiation exposures of the workers and the environment. In this study, we discuss and compare mainly the radioactive waste generated by alkaline digestion of both HEU and LEU targets to assist in planning and deciding the choice of the technology with better arrangements for proper handling and disposal of generated waste. With the use of the LEU targets in Mo-99 production facility, significant increase in liquid and solid waste has been expected.

  7. Past and present supply of enriched uranium for research reactors in the European Union

    International Nuclear Information System (INIS)

    Mueller, H.

    2002-01-01

    In the last decade research reactor operators have focused mainly on the issues of disposal of spent research reactor fuel and the development of high density fuels. The safe supply of fresh uranium did not receive as much attention. This is surprising since the United States - who was the main supplier for LEU and HEU since the late 1950's - stopped supplying non-US research reactors with enriched uranium a decade ago. The reason for this stop of supply is described in this paper. This paper explains how research reactors in the E U continued to operate during the last decade, in spite of the fact that their primary supply source had not provided LEU and HEU over the same period. (author)

  8. Technical basis in support of the conversion of the University of Missouri Research Reactor (MURR) core from highly-enriched to low-enriched uranium - core neutron physics

    Energy Technology Data Exchange (ETDEWEB)

    Stillman, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Feldman, E. [Univ. of Missouri, Columbia, MO (United States). Columbia Research Reactor; Foyto, L [Univ. of Missouri, Columbia, MO (United States). Columbia Research Reactor; Kutikkad, K [Univ. of Missouri, Columbia, MO (United States). Columbia Research Reactor; McKibben, J C [Univ. of Missouri, Columbia, MO (United States). Columbia Research Reactor; Peters, N. [Univ. of Missouri, Columbia, MO (United States). Columbia Research Reactor; Stevens, J. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2012-09-01

    This report contains the results of reactor design and performance for conversion of the University of Missouri Research Reactor (MURR) from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL) and the MURR Facility. The core conversion to LEU is being performed with financial support of the U. S. government.

  9. 31 CFR 540.317 - Uranium feed; natural uranium feed.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Uranium feed; natural uranium feed... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.317 Uranium feed; natural uranium feed. The...

  10. Nonproliferation analysis of the reduction of excess separated plutonium and high-enriched uranium

    International Nuclear Information System (INIS)

    Persiani, P.J.

    1995-01-01

    The purpose of this preliminary investigation is to explore alternatives and strategies aimed at the gradual reduction of the excess inventories of separated plutonium and high-enriched uranium (HEU) in the civilian nuclear power industry. The study attempts to establish a technical and economic basis to assist in the formation of alternative approaches consistent with nonproliferation and safeguards concerns. The analysis addresses several options in reducing the excess separated plutonium and HEU, and the consequences on nonproliferation and safeguards policy assessments resulting from the interacting synergistic effects between fuel cycle processes and isotopic signatures of nuclear materials

  11. Accident Analyses for Conversion of the University of Missouri Research Reactor (MURR) from Highly-Enriched to Low-Enriched Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Stillman, J. A. [Argonne National Lab. (ANL), Argonne, IL (United States); Feldman, E. E. [Argonne National Lab. (ANL), Argonne, IL (United States); Jaluvka, D. [Argonne National Lab. (ANL), Argonne, IL (United States); Wilson, E. H. [Argonne National Lab. (ANL), Argonne, IL (United States); Foyto, L. P. [Univ. of Missouri, Columbia, MO (United States); Kutikkad, K. [Univ. of Missouri, Columbia, MO (United States); McKibben, J. C. [Univ. of Missouri, Columbia, MO (United States); Peters, N. J. [Univ. of Missouri, Columbia, MO (United States)

    2017-02-01

    This report contains the results of reactor accident analyses for the University of Missouri Research Reactor (MURR). The calculations were performed as part of the conversion from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members in the Research and Test Reactor Department at the Argonne National Laboratory (ANL) and the MURR Facility. MURR LEU conversion is part of an overall effort to develop and qualify high-density fuel within the U.S. High Performance Research Reactor Conversion (USHPRR) program conducted by the U.S. Department of Energy National Nuclear Security Administration’s Office of Material Management and Minimization (M3).

  12. Safeguards considerations for uranium enrichment facilities, as applied to gas centrifuge and gaseous diffusion facilities

    International Nuclear Information System (INIS)

    1979-03-01

    The goals and objectives of IAEA safeguards as they are understood by the authors based on published documents are reviewed. These goals are then used to derive safeguards concerns, diversion strategies, and potential safeguards measures for four base cases, the production of highly enriched uranium (HEU) at a diffusion plant, the diversion of low enriched uranium (LEU) at a diffusion plant, the diversion of HEU at a gas centrifuge plant, and the diversion of LEU at a gas centrifuge plant. Tables of estimated capabilities are given for each case, under the assumption that the inspector would have access: to the cascade perimeter at or after the start of operations, to the cascade perimeter throughout construction and operation, to the cascade perimeter during operation plus a one-time access to the cascade itself, to the cascade during construction but only its perimeter during operation, or to the cascade itself during construction and operation

  13. Low-Enriched Uranium Fuel Design with Two-Dimensional Grading for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Germina [ORNL; Primm, Trent [ORNL

    2011-05-01

    An engineering design study of the conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel is ongoing at Oak Ridge National Laboratory. The computational models developed during fiscal year 2010 to search for an LEU fuel design that would meet the requirements for the conversion and the results obtained with these models are documented and discussed in this report. Estimates of relevant reactor performance parameters for the LEU fuel core are presented and compared with the corresponding data for the currently operating HEU fuel core. The results obtained indicate that the LEU fuel design would maintain the current performance of the HFIR with respect to the neutron flux to the central target region, reflector, and beam tube locations under the assumption that the operating power for the reactor fueled with LEU can be increased from the current value of 85 MW to 100 MW.

  14. Determination of Dancoff correction thermal utilization and thermal disadvantage factors of HEU and LEU cores of an MNSR

    International Nuclear Information System (INIS)

    Ofori, Y. T.

    2013-07-01

    Ghana Research Reactor-1 (GHARR-1), an MNSR (Miniature Neutron Source Reactor) is to be converted from HEU (Highly Enriched Uranium) to LEU (Low Enriched Uranium) fuel, along with all current MNSRs in various other countries. The purpose of the conversion is to minimize the use of HEU for non-proliferation of high-grade nuclear fuel. In this research work, a comparative study has been performed for the determination of the Dancoff, thermal utilization and thermal disadvantage factors of highly enriched uranium (HEU) and potential low enriched uranium (LEU) cores of GHARR-1. A one group transport theory and collision probability based methodologies was used to develop mathematical formulations for thermal utilization factor and thermal disadvantage factor assuming isotropic scattering. This methodology was implemented in a FORTRAN 95 based computer program THERMCALC, which uses Bessell and BesselK as subroutines developed to calculate the modified Bessel functions I n and K n respectively using the polynomial approximation method. Furthermore, a Dancoff correction factor of 0.1519 thermal utilization factor of 0.9767 and a thermal disadvantage factor of 1.894 were obtained for the 90.2% highly enriched Uranium core of GHARR-1. The results compare favorably with literature. Thus THERMCALC can be used as a reliable tool for the calculation of Dancoff, thermal utilization and disadvantage factors of MNSR cores. Other potential LEU cores; UO 2 (with different fuel meat densities and enrichments) and U 3 Si 2 have also been analysed. UO 2 with 12.6% of Uranium-235 was chosen as the most potential LEU core for the GHARR-1. (au)

  15. Air Shipment of Highly Enriched Uranium Spent Nuclear Fuel from Romania

    Energy Technology Data Exchange (ETDEWEB)

    K. J. Allen; I. Bolshinsky; L. L. Biro; M. E. Budu; N. V. Zamfir; M. Dragusin

    2010-07-01

    Romania safely air shipped 23.7 kilograms of Russian origin highly enriched uranium (HEU) spent nuclear fuel from the VVR S research reactor at Magurele, Romania, to the Russian Federation in June 2009. This was the world’s first air shipment of spent nuclear fuel transported in a Type B(U) cask under existing international laws without special exceptions for the air transport licenses. This shipment was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in cooperation with the Romania National Commission for Nuclear Activities Control (CNCAN), the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), and the Russian Federation State Corporation Rosatom. The shipment was transported by truck to and from the respective commercial airports in Romania and the Russian Federation and stored at a secure nuclear facility in Russia where it will be converted into low enriched uranium. With this shipment, Romania became the 3rd country under the RRRFR program and the 14th country under the GTRI program to remove all HEU. This paper describes the work, equipment, and approvals that were required to complete this spent fuel air shipment.

  16. Air Shipment of Highly Enriched Uranium Spent Nuclear Fuel from Romania

    International Nuclear Information System (INIS)

    Allen, K.J.; Bolshinsky, I.; Biro, L.L.; Budu, M.E.; Zamfir, N.V.; Dragusin, M.

    2010-01-01

    Romania safely air shipped 23.7 kilograms of Russian-origin highly enriched uranium (HEU) spent nuclear fuel from the VVR-S research reactor at Magurele, Romania, to the Russian Federation in June 2009. This was the world's first air shipment of spent nuclear fuel transported in a Type B(U) cask under existing international laws without special exceptions for the air transport licenses. This shipment was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in cooperation with the Romania National Commission for Nuclear Activities Control (CNCAN), the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), and the Russian Federation State Corporation Rosatom. The shipment was transported by truck to and from the respective commercial airports in Romania and the Russian Federation and stored at a secure nuclear facility in Russia where it will be converted into low enriched uranium. With this shipment, Romania became the 3. country under the RRRFR program and the 14. country under the GTRI program to remove all HEU. This paper describes the work, equipment, and approvals that were required to complete this spent fuel air shipment. (authors)

  17. Criticality safety evaluation for the Advanced Test Reactor enhanced low enriched uranium fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Montierth, Leland M. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-07-19

    The Global Threat Reduction Initiative (GTRI) convert program is developing a high uranium density fuel based on a low enriched uranium (LEU) uranium-molybdenum alloy. Testing of prototypic GTRI fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. GTRI Enhanced LEU Fuel (ELF) elements based on the ATR-Standard Size elements (all plates fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). While a specific ELF element design will eventually be provided for detailed analyses and in-core testing, this criticality safety evaluation (CSE) is intended to evaluate a hypothetical ELF element design for criticality safety purposes. Existing criticality analyses have analyzed Standard (HEU) ATR elements from which controls have been derived. This CSE documents analysis that determines the reactivity of the hypothetical ELF fuel elements relative to HEU ATR elements and whether the existing HEU ATR element controls bound the ELF element. The initial calculations presented in this CSE analyzed the original ELF design, now referred to as Mod 0.1. In addition, as part of a fuel meat thickness optimization effort for reactor performance, other designs have been evaluated. As of early 2014 the most current conceptual designs are Mk1A and Mk1B, that were previously referred to as conceptual designs Mod 0.10 and Mod 0.11, respectively. Revision 1 evaluates the reactivity of the ATR HEU Mark IV elements for a comparison with the Mark VII elements.

  18. Criticality safety evaluation for the Advanced Test Reactor enhanced low enriched uranium fuel elements

    International Nuclear Information System (INIS)

    Montierth, Leland M.

    2016-01-01

    The Global Threat Reduction Initiative (GTRI) convert program is developing a high uranium density fuel based on a low enriched uranium (LEU) uranium-molybdenum alloy. Testing of prototypic GTRI fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. GTRI Enhanced LEU Fuel (ELF) elements based on the ATR-Standard Size elements (all plates fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). While a specific ELF element design will eventually be provided for detailed analyses and in-core testing, this criticality safety evaluation (CSE) is intended to evaluate a hypothetical ELF element design for criticality safety purposes. Existing criticality analyses have analyzed Standard (HEU) ATR elements from which controls have been derived. This CSE documents analysis that determines the reactivity of the hypothetical ELF fuel elements relative to HEU ATR elements and whether the existing HEU ATR element controls bound the ELF element. The initial calculations presented in this CSE analyzed the original ELF design, now referred to as Mod 0.1. In addition, as part of a fuel meat thickness optimization effort for reactor performance, other designs have been evaluated. As of early 2014 the most current conceptual designs are Mk1A and Mk1B, that were previously referred to as conceptual designs Mod 0.10 and Mod 0.11, respectively. Revision 1 evaluates the reactivity of the ATR HEU Mark IV elements for a comparison with the Mark VII elements.

  19. RUSSIAN-ORIGIN HIGHLY ENRICHED URANIUM SPENT NUCLEAR FUEL SHIPMENT FROM BULGARIA

    Energy Technology Data Exchange (ETDEWEB)

    Kelly Cummins; Igor Bolshinsky; Ken Allen; Tihomir Apostolov; Ivaylo Dimitrov

    2009-07-01

    In July 2008, the Global Threat Reduction Initiative and the IRT 2000 research reactor in Sofia, Bulgaria, operated by the Institute for Nuclear Research and Nuclear Energy (INRNE), safely shipped 6.4 kilograms of Russian origin highly enriched uranium (HEU) spent nuclear fuel (SNF) to the Russian Federation. The shipment, which resulted in the removal of all HEU from Bulgaria, was conducted by truck, barge, and rail modes of transport across two transit countries before reaching the final destination at the Production Association Mayak facility in Chelyabinsk, Russia. This paper describes the work, equipment, organizations, and approvals that were required to complete the spent fuel shipment and provides lessons learned that might assist other research reactor operators with their own spent nuclear fuel shipments.

  20. Russian-Origin Highly Enriched Uranium Spent Nuclear Fuel Shipment From Bulgaria

    International Nuclear Information System (INIS)

    Cummins, Kelly; Bolshinsky, Igor; Allen, Ken; Apostolov, Tihomir; Dimitrov, Ivaylo

    2009-01-01

    In July 2008, the Global Threat Reduction Initiative and the IRT 2000 research reactor in Sofia, Bulgaria, operated by the Institute for Nuclear Research and Nuclear Energy (INRNE), safely shipped 6.4 kilograms of Russian origin highly enriched uranium (HEU) spent nuclear fuel (SNF) to the Russian Federation. The shipment, which resulted in the removal of all HEU from Bulgaria, was conducted by truck, barge, and rail modes of transport across two transit countries before reaching the final destination at the Production Association Mayak facility in Chelyabinsk, Russia. This paper describes the work, equipment, organizations, and approvals that were required to complete the spent fuel shipment and provides lessons learned that might assist other research reactor operators with their own spent nuclear fuel shipments.

  1. Conversion of highly enriched uranium in thorium-232 based oxide fuel for light water reactors: MOX-T fuel

    Energy Technology Data Exchange (ETDEWEB)

    Vapirev, E I; Jordanov, T; Christoskov, I [Sofia Univ. (Bulgaria). Fizicheski Fakultet

    1994-12-31

    The idea of conversion of highly enriched uranium (HEU) from warheads without mixing it with natural uranium as well as the utilization of plutonium as fuel component is discussed. A nuclear fuel which is a mixture of 4% {sup 235}U (HEU) as a fissile isotope and 96 % {sup 232}Th (ThO{sub 2}) as a non-fissile isotope in a mixed oxide with thorium fuel is proposed. It is assumed that plutonium can also be used in the proposed fuel in a mixture with {sup 235}U. The following advantages of the use of HEU in LWRs in mixed {sup 235}U - Th fuel are pointed out: (1) No generation of long-living plutonium and americium isotopes (in case of reprocessing the high level radioactive wastes will contain only fission fragments and uranium); (2) The high conversion ratio of Th extends the expected burnup by approximately 1/3 without higher initial enrichment (the same initial enrichment simplifies the problem for compensation of the excess reactivity in the beginning with burnable poison and boric acid); (3) The high conversion ratio of Th allows the fuel utilization with less initial enrichment (by approx. 1/3) for the same burnup; thus less excess reactivity has to be compensated after reloading; in case of fuel reprocessing all fissile materials ({sup 235}U + {sup 233}U) could be chemically extracted. Irrespectively to the optimistic expectations outlined, further work including data on optimal loading and reloading schemes, theoretical calculations of thermal properties of {sup 235}U + Th fuel rods, manufacturing of several test fuel assemblies and investigations of their operational behaviour in a reactor core is still needed. 1 fig., 7 refs.

  2. ADS with HEU in the Vinca Institute

    International Nuclear Information System (INIS)

    Pesic, M.; Sobolevsky, N.

    2000-01-01

    The 'Conceptual design of ADS' is a new project proposed in the Vin.a Institute for the next three years. In this paper, an option in the project - an idea of high-enriched uranium (HEU) - H 2 O low-flux ADS is shown. Preliminary results of design study and calculations of the beam-target interaction and neutronics of proposed sub-critical system are given. (author)

  3. Moderator configuration options for a low-enriched uranium fueled Kilowatt-class Space Nuclear Reactor

    International Nuclear Information System (INIS)

    King, Jeffrey C.; Mencarini, Leonardo de Holanda; Guimaraes, Lamartine N. F.

    2015-01-01

    The Brazilian Air Force, through its Institute for Advanced Studies (Instituto de Estudos Avancados, IEAv/DCTA), and the Colorado School of Mines (CSM) are studying the feasibility of a space nuclear reactor with a power of 1-5 kW e and fueled with Low-Enriched Uranium (LEU). This type of nuclear reactor would be attractive to signatory countries of the Non-Proliferation Treaty (NPT) or commercial interests. A LEU-fueled space reactor would avoid the security concerns inherent with Highly Enriched Uranium (HEU) fuel. As an initial step, the HEU-fueled Kilowatt Reactor Using Stirling Technology (KRUSTY) designed by the Los Alamos National Laboratory serves as a basis for a similar reactor fueled with LEU fuel. Using the computational code MCNP6 to predict the reactor neutronics performance, the size of the resulting reactor fueled with 19.75 wt% enriched uranium-10 wt% molybdenum alloy fuel is adjusted to match the excess reactivity of KRUSTY. Then, zirconium hydride moderator is added to the core to reduce the size of the reactor. This work presents the preliminary results of the computational modeling, with special emphasis on the comparison between homogeneous and heterogeneous moderator systems, in terms of the core diameter required to meet a specific multiplication factor (k eff = 1.035). This comparison illustrates the impact of moderator configuration on the size and performance of a LEU-fueled kilowatt-class space nuclear reactor. (author)

  4. Moderator configuration options for a low-enriched uranium fueled Kilowatt-class Space Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    King, Jeffrey C., E-mail: kingjc@mines.edu [Nuclear Science and Engineering Program, Colorado School of Mines (CSM), Golden, CO (United States); Mencarini, Leonardo de Holanda; Guimaraes, Lamartine N. F., E-mail: guimaraes@ieav.cta.br, E-mail: mencarini@ieav.cta.br [Instituto de Estudos Avancados (IEAV), Sao Jose dos Campos, SP (Brazil). Divisao de Energia Nuclear

    2015-07-01

    The Brazilian Air Force, through its Institute for Advanced Studies (Instituto de Estudos Avancados, IEAv/DCTA), and the Colorado School of Mines (CSM) are studying the feasibility of a space nuclear reactor with a power of 1-5 kW{sub e} and fueled with Low-Enriched Uranium (LEU). This type of nuclear reactor would be attractive to signatory countries of the Non-Proliferation Treaty (NPT) or commercial interests. A LEU-fueled space reactor would avoid the security concerns inherent with Highly Enriched Uranium (HEU) fuel. As an initial step, the HEU-fueled Kilowatt Reactor Using Stirling Technology (KRUSTY) designed by the Los Alamos National Laboratory serves as a basis for a similar reactor fueled with LEU fuel. Using the computational code MCNP6 to predict the reactor neutronics performance, the size of the resulting reactor fueled with 19.75 wt% enriched uranium-10 wt% molybdenum alloy fuel is adjusted to match the excess reactivity of KRUSTY. Then, zirconium hydride moderator is added to the core to reduce the size of the reactor. This work presents the preliminary results of the computational modeling, with special emphasis on the comparison between homogeneous and heterogeneous moderator systems, in terms of the core diameter required to meet a specific multiplication factor (k{sub eff} = 1.035). This comparison illustrates the impact of moderator configuration on the size and performance of a LEU-fueled kilowatt-class space nuclear reactor. (author)

  5. Assessment of the effectiveness of personal visual observation as a safeguards measure in a uranium enrichment facility

    International Nuclear Information System (INIS)

    Ohno, Fubito; Okamoto, Tsuyoshi; Yokochi, Akira; Nidaira, Kazuo

    2003-01-01

    In a centrifuge enrichment facility, a cascade that produces low enriched uranium is composed of a large number of UF 6 gas centrifuges interconnected with pipes. It is possible to divert the cascade to the illegal production of highly enriched uranium (HEU) by changing the piping arrangement within the cascade. If integrated type centrifuges that contain a few tens of advanced centrifuges are introduced into the facility, the number of pipes will greatly decrease. The smaller the number of pipes, the less the labor required to change the piping arrangement. Because personal visual observation by an inspector is considered as one of measures against changing the piping arrangement, its effectiveness is assessed in this study. First, a model centrifuge enrichment facility that has a capacity of 2,400 ton-SWU/y is designed. In this model facility, integrated type centrifuges that contain advanced centrifuges are installed. Second, the diversion path analysis is carried out for the model facility under the assumption that a facility operator's goal is to produce 75 kg of HEU with 20% enrichment in a month. The analysis shows that, in our assumed diversion path, changes of the piping arrangement can be certainly detected by personal visual observation of a part of pipes connected with integrated type centrifuges that compose the cascade diverted to the HEU production. Finally, inspections in a cascade area are modeled as two-person noncooperative games between the inspector and the facility operator. As a result, it is found that all the cascades in the model facility will be investigated if the inspector can devote the inspection effort of 0.83 man-day per month to personal visual observation in the cascade area. Therefore, it is suggested that personal visual observation of the piping arrangement is worth carrying out in a uranium enrichment facility where integrated type centrifuges that contain advanced centrifuges are installed. (author)

  6. Analysis of civilian processing programs in reduction of excess separated plutonium and high-enriched uranium

    International Nuclear Information System (INIS)

    Persiani, P.J.

    1995-01-01

    The purpose of this preliminary investigation is to explore alternatives and strategies aimed at the gradual reduction of the excess inventories of separated plutonium and high-enriched uranium (HEU) in the civilian nuclear power industry. The study attempts to establish a technical and economic basis to assist in the formation of alternative approaches consistent with nonproliferation and safeguards concerns. The analysis addresses several options in reducing the excess separated plutonium and HEU, and the consequences on nonproliferation and safeguards policy assessments resulting from the interacting synergistic effects between fuel cycle processes and isotopic signatures of nuclear materials

  7. HEU to LEU conversion and blending facility: UNH blending alternative to produce LEU oxide for disposal

    International Nuclear Information System (INIS)

    1995-09-01

    The United States Department of Energy (DOE) is examining options for the disposition of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. Disposition is a process of use or disposal of material that results in the material being converted to a form that is substantially and inherently more proliferation-resistant than is the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. This report provides data to be used in the environmental impact analysis for the uranyl nitrate hexahydrate blending option to produce oxide for disposal. This the Conversion and Blending Facility (CBF) alternative will have two missions (1) convert HEU materials into HEU uranyl nitrate (UNH) and (2) blend the HEU uranyl nitrate with depleted and natural assay uranyl nitrate to produce an oxide that can be stored until an acceptable disposal approach is available. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal

  8. HEU to LEU conversion and blending facility: UNH blending alternative to produce LEU oxide for disposal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The United States Department of Energy (DOE) is examining options for the disposition of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. Disposition is a process of use or disposal of material that results in the material being converted to a form that is substantially and inherently more proliferation-resistant than is the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. This report provides data to be used in the environmental impact analysis for the uranyl nitrate hexahydrate blending option to produce oxide for disposal. This the Conversion and Blending Facility (CBF) alternative will have two missions (1) convert HEU materials into HEU uranyl nitrate (UNH) and (2) blend the HEU uranyl nitrate with depleted and natural assay uranyl nitrate to produce an oxide that can be stored until an acceptable disposal approach is available. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal.

  9. Unallocated Off-Specification Highly Enriched Uranium: Recommendations for Disposition

    Energy Technology Data Exchange (ETDEWEB)

    Bridges, D. N.; Boeke, S. G.; Tousley, D. R.; Bickford, W.; Goergen, C.; Williams, W.; Hassler, M.; Nelson, T.; Keck, R.; Arbital, J.

    2002-02-27

    The U.S. Department of Energy (DOE) has made significant progress with regard to disposition planning for 174 metric tons (MTU) of surplus Highly Enriched Uranium (HEU). Approximately 55 MTU of this 174 MTU are ''offspec'' HEU. (''Off-spec'' signifies that the isotopic or chemical content of the material does not meet the American Society for Testing and Materials standards for commercial nuclear reactor fuel.) Approximately 33 of the 55 MTU have been allocated to off-spec commercial reactor fuel per an Interagency Agreement between DOE and the Tennessee Valley Authority (1). To determine disposition plans for the remaining {approx}22 MTU, the DOE National Nuclear Security Administration (NNSA) Office of Fissile Materials Disposition (OFMD) and the DOE Office of Environmental Management (EM) co-sponsored this technical study. This paper represents a synopsis of the formal technical report (NNSA/NN-0014). The {approx} 22 MTU of off-spec HEU inventory in this study were divided into two main groupings: one grouping with plutonium (Pu) contamination and one grouping without plutonium. This study identified and evaluated 26 potential paths for the disposition of this HEU using proven decision analysis tools. This selection process resulted in recommended and alternative disposition paths for each group of HEU. The evaluation and selection of these paths considered criteria such as technical maturity, programmatic issues, cost, schedule, and environment, safety and health compliance. The primary recommendations from the analysis are comprised of 7 different disposition paths. The study recommendations will serve as a technical basis for subsequent programmatic decisions as disposition of this HEU moves into the implementation phase.

  10. Nuclear characteristics evaluation for Kyoto University Research Reactor with low-enriched uranium core

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Ken; Unesaki, Hironobu [Kyoto University Research Reactor Institute, Kumatori-cho Sennan-gun Osaka (Japan)

    2008-07-01

    A project to convert the fuel of Kyoto University Research Reactor (KUR) from highly enriched uranium (HEU) to low-enriched uranium (LEU) is in progress as a part of RERTR program. Prior to the operation of LEU core, the nuclear characteristics of the core have been evaluated to confirm the safety operation. In the evaluation, nuclear parameters, such as the excess reactivity, shut down margin control rod worth, reactivity coefficients, were calculated, and they were compared with the safety limits. The results of evaluation show that the LEU core is able to satisfy the safety requirements for operation, i.e. all the parameters satisfy the safety limits. Consequently, it was confirmed that the LEU fuel core has the proper nuclear characteristics for the safety operation. (authors)

  11. 2009 Annual Health Physics Report for the HEU Transparency Program

    International Nuclear Information System (INIS)

    Radev, R.

    2010-01-01

    During the 2009 calendar year, Lawrence Livermore National Laboratory (LLNL) provided health physics support for the Highly Enriched Uranium (HEU) Transparency Program for external and internal radiation protection. LLNL also provided technical expertise related to BDMS radioactive sources and Russian radiation safety regulatory compliance. For the calendar year 2009, there were 159 person-trips that required dose monitoring of the U.S. monitors. Of the 159 person-trips, 149 person-trips were SMVs and 10 person-trips were Transparency Monitoring Office (TMO) trips. There were 4 monitoring visits by TMO monitors to facilities other than UEIE and 10 to UEIE itself. LLNL's Hazard Control Department laboratories provided the dosimetry services for the HEU Transparency monitors. In 2009, the HEU Transparency activities in Russia were conducted in a radiologically safe manner for the HEU Transparency monitors in accordance with the expectations of the HEU Transparency staff, NNSA and DOE. The HEU Transparency Program now has over fifteen years of successful experience in developing and providing health and safety support in meeting its technical objectives.

  12. Uranium enrichment

    International Nuclear Information System (INIS)

    1990-01-01

    This report looks at the following issues: How much Soviet uranium ore and enriched uranium are imported into the United States and what is the extent to which utilities flag swap to disguise these purchases? What are the U.S.S.R.'s enriched uranium trading practices? To what extent are utilities required to return used fuel to the Soviet Union as part of the enriched uranium sales agreement? Why have U.S. utilities ended their contracts to buy enrichment services from DOE?

  13. A simple method for rapidly processing HEU from weapons returns

    Energy Technology Data Exchange (ETDEWEB)

    McLean, W. II; Miller, P.E.

    1994-01-01

    A method based on the use of a high temperature fluidized bed for rapidly oxidizing, homogenizing and down-blending Highly Enriched Uranium (HEU) from dismantled nuclear weapons is presented. This technology directly addresses many of the most important issues that inhibit progress in international commerce in HEU; viz., transaction verification, materials accountability, transportation and environmental safety. The equipment used to carry out the oxidation and blending is simple, inexpensive and highly portable. Mobile facilities to be used for point-of-sale blending and analysis of the product material are presented along with a phased implementation plan that addresses the conversion of HEU derived from domestic weapons and related waste streams as well as material from possible foreign sources such as South Africa or the former Soviet Union.

  14. Calibration of the Lawrence Livermore National Laboratory Passive-Active Neutron Drum Shuffler for Measurement of Highly Enriched Uranium in Mixed Oxide

    International Nuclear Information System (INIS)

    Mount, M.; O'Connell, W.; Cochran, C.; Rinard, P.; Dearborn, D.; Endres, E.

    2002-01-01

    As a follow-on to the Lawrence Livermore National Laboratory (LLNL) effort to calibrate the LLNL passive-active neutron drum (PAN) shuffler for measurement of highly enriched uranium (HEU) oxide, a method has been developed to extend the use of the PAN shuffler to the measurement of HEU in mixed uranium-plutonium (U-Pu) oxide. This method uses the current LLNL HEU oxide calibration algorithms, appropriately corrected for the mixed U-Pu oxide assay time, and recently developed PuO 2 calibration algorithms to yield the mass of 235 U present via differences between the expected count rate for the PuO 2 and the measured count rate of the mixed U-Pu oxide. This paper describes the LLNL effort to use PAN shuffler measurements of units of certified reference material (CRM) 149 (uranium (93% Enriched) Oxide - U 3 O 8 Standard for Neutron Counting Measurements) and CRM 146 (uranium Isotopic Standard for Gamma Spectrometry Measurements) and a selected set of LLNL PuO 2 -bearing containers in consort with Monte Carlo simulations of the PAN shuffler response to each to (1) establish and validate a correction to the HEU calibration algorithm for the mixed U-Pu oxide assay time, (2) develop a PuO 2 calibration algorithm that includes the effect of PuO 2 density (2.4 g/cm 3 to 4.8 g/cm 3 ) and container size (8.57 cm to 9.88 cm inside diameter and 9.60 cm to 13.29 cm inside height) on the PAN shuffler response, and (3) develop and validate the method for establishing the mass of 235 U present in an unknown of mixed U-Pu oxide.

  15. Finding of no significant impact: Interim storage of enriched uranium above the maximum historical level at the Y-12 Plant Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-01-01

    The US Department of Energy (DOE) has prepared an Environmental Assessment (EA) for the Proposed Interim Storage of Enriched Uranium Above the Maximum Historical Storage Level at the Y-12 Plant, Oak Ridge, Tennessee (DOE/EA-0929, September, 1994). The EA evaluates the environmental effects of transportation, prestorage processing, and interim storage of bounding quantities of enriched uranium at the Y-12 Plant over a ten-year period. The State of Tennessee and the public participated in public meetings and workshops which were held after a predecisional draft EA was released in February 1994, and after the revised pre-approval EA was issued in September 1994. Comments provided by the State and public have been carefully considered by the Department. As a result of this public process, the Department has determined that the Y-12 Plant-would store no more than 500 metric tons of highly enriched uranium (HEU) and no more than 6 metric tons of low enriched uranium (LEU). The bounding storage quantities analyzed in the pre-approval EA are 500 metric tons of HEU and 7,105.9 metric tons of LEU. Based on-the analyses in the EA, as revised by the attachment to the Finding of No Significant Impact (FONSI), DOE has determined that interim storage of 500 metric tons of HEU and 6 metric tons of LEU at the Y-12 Plant does not constitute a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an Environmental Impact Statement (EIS) is not required and the Department is issuing this FONSI

  16. HEU Holdup Measurements on 321-M A-Lathe

    International Nuclear Information System (INIS)

    Dewberry, R.A.

    2002-01-01

    The Analytical Development Section of SRTC was requested by the Facilities Disposition Division (FDD) of the Savannah River Site to determine the holdup of enriched uranium in the 321-M facility as part of an overall deactivation project of the facility. The 321-M facility was used to fabricate enriched uranium fuel assemblies, lithium-aluminum target tubes, neptunium assemblies, and miscellaneous components for the production reactors. The results of the holdup assays are essential for determining compliance with the solid waste Waste Acceptance Criteria, Material Control and Accountability, and to meet criticality safety controls. Three measurement systems were used to determine highly enriched uranium (HEU) holdup. This report covers holdup measurements on the A-Lathe that was used to machine uranium-aluminum-alloy (U-Al). Our results indicated that the lathe contained more than the limits stated in the Waste Acceptance Criteria (WAC) for the solid waste E-Area Vaults. Thus the lathe was decontaminated three times and assayed four times in order to bring the amounts of uranium to an acceptable content. This report will discuss the methodology, Non-Destructive Assay (NDA) measurements, and results of the U-235 holdup on the lathe

  17. Preliminary investigations for technology assessment of 99Mo production from LEU [low enriched uranium] targets

    International Nuclear Information System (INIS)

    Vandegrift, G.F.; Chaiko, D.J.; Heinrich, R.R.; Kucera, E.T.; Jensen, K.J.; Poa, D.S.; Varma, R.; Vissers, D.R.

    1986-11-01

    This paper presents the results of preliminary studies on the effects of substituting low enriched uranium (LEU) for highly enriched uranium (HEU) in targets for the production of fission product 99 Mo. Issues that were addressed are: (1) purity and yield of the 99 Mo//sup 99m/Tc product, (2) fabrication of LEU targets and related concerns, and (3) radioactive waste. Laboratory experimentation was part of the efforts for issues (1) and (2); thus far, radioactive waste disposal has only been addressed in a paper study. Although the reported results are still preliminary, there is reason to be optimistic about the feasibility of utilizing LEU targets for 99 Mo production. 37 refs., 1 fig., 5 tabs

  18. Development of uranium metal targets for 99Mo production

    International Nuclear Information System (INIS)

    Wiencek, T.C.; Hofman, G.L.

    1993-10-01

    A substantial amount of high enriched uranium (HEU) is used for the production of medical-grade 99 Mo. Promising methods of producing irradiation targets are being developed and may lead to the reduction or elimination of this HEU use. To substitute low enriched uranium (LEU) for HEU in the production of 99 Mo, the target material may be changed to uranium metal foil. Methods of fabrication are being developed to simplify assembly and disassembly of the targets. Removal of the uranium foil after irradiation without dissolution of the cladding is a primary goal in order to reduce the amount of liquid radioactive waste material produced in the process. Proof-of-concept targets have been fabricated. Destructive testing indicates that acceptable contact between the uranium foil and the cladding can be achieved. Thermal annealing tests, which simulate the cladding/uranium diffusion conditions during irradiation, are underway. Plans are being made to irradiate test targets

  19. Heat-transfer analysis of the existing HEU and proposed LEU cores of Pakistan research reactor

    International Nuclear Information System (INIS)

    Khan, L.A.; Nabbi, R.

    1987-02-01

    In connection with conversion of Pakistan Research Reactor (PARR) from the use of Highly Enriched Uranium (HEU) fuel to the use of Low Enriched Uranium (LEU) fuel, steady-state thermal hydraulic analysis of both existing HEU and proposed LEU cores has been carried out. Keeping in mind the possibility of power upgrading, the performance of proposed LEU core, under 10 MW operating conditions, has also been evaluated. Computer code HEATHYD has been used for this purpose. In order to verify the reliability of the code, IAEA benchmark 2 MW reactor was analyzed. The cooling parameters evaluated include: coolant velocity, critical velocity, pressure drop, temperature distribution in the core, heat fluxes at onset of nucleate boiling, flow instability and burnout and corresponding safety margins. From the results of the study it can be concluded that the conversion of the core to LEU fuel will result in higher safety margins, as compared to existing HEU core, mainly because the increased number of fuel plates in the proposed design will reduce the average heat flux significantly. Anyhow upgrading of the reactor power to 10 MW will need the flow rate to be adjusted between 850 to 900 m 3 /hr, to achieve reasonable safety margins, at least, comparable with the existing HEU core. (orig.)

  20. Feasibility of Low Enriched Uranium Fuel for Space Nuclear Propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Venneri, Paolo; Kim, Yonghee [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-05-15

    The purpose of this initial study is to create a baseline with which to perform further analysis and to build a solid understanding of the neutronic characteristics of a solid core for the nuclear thermal rocket. Once consistency with work done at Idaho National Laboratory (INL) is established, this paper will provide a study of other fuel types, such as low and medium-enriched uranium fuels. This paper will examine how the implementation of each fuel type affects the multiplication factor of the reactor, and will then explore different possibilities for alterations needed to accommodate their successful usage. The reactor core analysis was done using the MCNP5 code. While this study has not shown that the SNRE can be easily retrofitted for low-enriched U fuel, it has made a detailed study of the SNRE, and identified the difficulties of the implementation of low-enriched fuels in small nuclear rockets. These difficulties are the need for additional moderation and fuel mass in order to achieve a critical mass. Neither of these is insurmountable. Future work includes finding the best method by which to increase the internal moderation of the reactor balanced with appropriate sizing to prevent neutron leakage. Both of these are currently being studied. This paper will present a study of the Small Nuclear Rocket Engine (SNRE) and the feasibility of using low enriched Uranium (LEU) instead of the traditional high enriched Uranium (HEU) fuels.

  1. Thermal-hydraulic calculations for KUHFR with reduced enrichment uranium fuel

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Shibata, Toshikazu.

    1982-01-01

    This report provides the preliminary results of the thermal-hydraulic calculations to study the safety aspects in fueling the KUHFR with reduced enrichment uranium. The calculations were based on what was outlined in the Safety Analysis Report for the KUHFR and the guidebook for research reactor core conversion, IAEA-TECDOC-233, published by the International Atomic Energy Agency. No significant differences in the thermal-hydraulic operating conditions have been found between HEU and MEU fuels. However, in LEU cases, the combination of three factors - larger power peaking with LEU fuel, smaller thermal conductivity of U 3 O 8 -Al fuel with high uranium densities, and thicker fuel meat - resulted in higher maximum fuel and surface temperatures with the LEU oxide fuel. (author)

  2. A feasibility study concerning the conversion of the TR-2 reactor from using highly enriched uranium to light enriched uranium

    International Nuclear Information System (INIS)

    Aldemir, T.; Turgut, H.M.; Bretscher, M.M.; Snelgrove, L.J.

    1983-01-01

    A study has been made of the feasibility of converting the 5-MW TR-2 reactor at CNAEM to use fuel with uranium enrichment of 3 O 8 -Al fuel meat with a uranium density in the range 2.3 to 3.0 g/cm 3 in the fuel meat with meat thickness varying between 0.9 and 1.00 mm, the number of plates in the LEU element being reduced from 23 in the HEU element to 19 to 20 to maintain adequate cooling. Fuels within this density range are expected to be commercially available within the next two years. From the results of the study it appears to be feasible to safely operate the TR-2 reactor using LEU fuel without increased fuel cycle costs or decreased performance using U 2 O 8 fuels with densities in the 2.3 to 3.0 gU/cm 3 range. (author)

  3. Department of Energy, highly enriched uranium ES ampersand H vulnerability assessment, Idaho National Engineering Laboratory site assessment team report

    International Nuclear Information System (INIS)

    1996-01-01

    In accordance with the February 22, 1996 directive issued by Secretary of Energy O'Leary on the Vulnerability Assessment of Highly Enriched Uranium (HEU) Storage, the Idaho National Engineering Laboratory conducted an assessment of the site's HEU holdings and any associated vulnerabilities. The assessment was conducted between April 25 and May 24, 1996. The scope of this assessment, as defined in the Assessment Plan, included all HEU, and any spent fuel not evaluated in the Spent Fuel Vulnerability Assessment. Addressed in this assessment were all of the holdings at the Idaho National Engineering Laboratory (INEL) except any located at Argonne National Laboratory-West (ANL-W) and the Naval Reactors Facility. Excluded from the assessment were those HEU holdings previously assessed in the Idaho National Engineering Laboratory Spent Nuclear Fuel Inventory and Vulnerability Site Assessment Report and any HEU holdings evaluated in the Plutonium Vulnerability Assessment Report

  4. Uranium enrichment plans

    International Nuclear Information System (INIS)

    Thomas, D.C.; Gagne, R.W.

    1978-01-01

    The following topics are covered: the status of the Government's existing uranium enrichment services contracts, natural uranium requirements based on the latest contract information, uncertainty in predicting natural uranium requirements based on uranium enrichment contracts, and domestic and foreign demand assumed in enrichment planning

  5. Active neutron and gamma-ray imaging of highly enriched uranium for treaty verification.

    Science.gov (United States)

    Hamel, Michael C; Polack, J Kyle; Ruch, Marc L; Marcath, Matthew J; Clarke, Shaun D; Pozzi, Sara A

    2017-08-11

    The detection and characterization of highly enriched uranium (HEU) presents a large challenge in the non-proliferation field. HEU has a low neutron emission rate and most gamma rays are low energy and easily shielded. To address this challenge, an instrument known as the dual-particle imager (DPI) was used with a portable deuterium-tritium (DT) neutron generator to detect neutrons and gamma rays from induced fission in HEU. We evaluated system response using a 13.7-kg HEU sphere in several configurations with no moderation, high-density polyethylene (HDPE) moderation, and tungsten moderation. A hollow tungsten sphere was interrogated to evaluate the response to a possible hoax item. First, localization capabilities were demonstrated by reconstructing neutron and gamma-ray images. Once localized, additional properties such as fast neutron energy spectra and time-dependent neutron count rates were attributed to the items. For the interrogated configurations containing HEU, the reconstructed neutron spectra resembled Watt spectra, which gave confidence that the interrogated items were undergoing induced fission. The time-dependent neutron count rate was also compared for each configuration and shown to be dependent on the neutron multiplication of the item. This result showed that the DPI is a viable tool for localizing and confirming fissile mass and multiplication.

  6. Establishing a Cost Basis for Converting the High Flux Isotope Reactor from High Enriched to Low Enriched Uranium Fuel

    International Nuclear Information System (INIS)

    Primm, Trent; Guida, Tracey

    2010-01-01

    Under the auspices of the Global Threat Reduction Initiative Reduced Enrichment for Research and Test Reactors Program, the National Nuclear Security Administration/Department of Energy (NNSA/DOE) has, as a goal, to convert research reactors worldwide from weapons grade to non-weapons grade uranium. The High Flux Isotope Reactor (HFIR) at Oak Ridge National Lab (ORNL) is one of the candidates for conversion of fuel from high enriched uranium (HEU) to low enriched uranium (LEU). A well documented business model, including tasks, costs, and schedules was developed to plan the conversion of HFIR. Using Microsoft Project, a detailed outline of the conversion program was established and consists of LEU fuel design activities, a fresh fuel shipping cask, improvements to the HFIR reactor building, and spent fuel operations. Current-value costs total $76 million dollars, include over 100 subtasks, and will take over 10 years to complete. The model and schedule follows the path of the fuel from receipt from fuel fabricator to delivery to spent fuel storage and illustrates the duration, start, and completion dates of each subtask to be completed. Assumptions that form the basis of the cost estimate have significant impact on cost and schedule.

  7. Sealing of process valves for the HEU downblending verification experiment at Portsmouth

    International Nuclear Information System (INIS)

    Baldwin, G.T.; Bartberger, J.C.; Jenkins, C.D.; Perlinski, A.W.; Schoeneman, J.L.; Gordon, D.M.; Whiting, N.E.; Bonner, T.N.; Castle, J.M.

    1998-01-01

    At the Portsmouth Gaseous Diffusion Plant in Piketon, Ohio, USA, excess inventory of highly-enriched uranium (HEU) from US defense programs is being diluted to low-enriched uranium (LEU) for commercial use. The conversion is subject to a Verification Experiment overseen by the International Atomic Energy Agency (IAEA). The Verification Experiment is making use of monitoring technologies developed and installed by several DOE laboratories. One of the measures is a system for sealing valves in the process piping, which secures the path followed by uranium hexafluoride gas (UF 6 ) from cylinders at the feed stations to the blend point, where the HEU is diluted with LEU. The Authenticated Item Monitoring System (AIMS) was the alternative proposed by Sandia National Laboratories that was selected by the IAEA. Approximately 30 valves were sealed by the IAEA using AIMS fiber-optic seals (AFOS). The seals employ single-core plastic fiber rated to 125 C to withstand the high-temperature conditions of the heated piping enclosures at Portsmouth. Each AFOS broadcasts authenticated seal status and state-of-health messages via a tamper-protected radio-frequency transmitter mounted outside of the heated enclosure. The messages are received by two collection stations, operated redundantly

  8. A level-playing field for medical isotope production - How to phase-out reliance on HEU

    International Nuclear Information System (INIS)

    Kuperman, A.J.

    1999-01-01

    Two decades ago, civilian commerce in highly enriched uranium (HEU) for use as targets in the production of medical isotopes was considered a relatively minor security concern for three reasons. First, the number of producers was small. Second, the amount of HEU involved was small. Third, the amount of HEU was dwarfed by the quantities of HEU in civilian commerce as fuel for nuclear research and test reactors. Now, however, all three variables have changed. First, as the use of medical isotopes has expanded rapidly, production programs are proliferating. Second, as the result of such new producers and the expansion of existing production facilities, the amounts of HEU involved are growing. Third, as the RERTR program has facilitated the phase-out of HEU as fuel in most research and test reactors, the quantities of HEU for isotope production have come to represent a significant percentage of global commerce in this weapons-usable material. Medical isotope producers in several states are cooperating with the RERTR program to convert to low-enriched uranium (LEU) targets within the next few years, and one already relies on LEU for isotope production. However, the three biggest isotope producers - in Canada and the European Union - continue to rely on HEU, creating a double-standard that endangers the goal of the RERTR program. Each of these three producers has expressed economic concerns about being put at a competitive disadvantage if it alone converts. This paper proposes forging a firmer international consensus that all present and future isotope producers should convert to LEU, and calls for codifying such a commitment in a statement of intent to be prepared by producers over the next year. With such a level playing field, no producer would need fear being put at a competitive disadvantage by conversion, or being stigmatized by pressure groups for continued reliance on HEU. The phase-out of all HEU commerce for isotope production could be achieved within about

  9. 2011 Annual Health Physics Report for the HEU transparency Program

    International Nuclear Information System (INIS)

    Radev, R.

    2012-01-01

    During the 2008 calendar year, Lawrence Livermore National Laboratory (LLNL) provided health physics support for the Highly Enriched Uranium (HEU) Transparency Program for external and internal radiation protection. They also provided technical expertise related to BDMS radioactive sources and Russian radiation safety regulatory compliance. For the calendar year 2008, there were 158 person-trips that required dose monitoring of the U.S. monitors. Of the 158 person-trips, 148 person-trips were SMVs and 10 person-trips were Transparency Monitoring Office (TMO) trips. There were 6 monitoring visits by TMO monitors to facilities other than UEIE and 8 to UEIE itself. There were three monitoring visits (source changes) that were back-to-back with a total of 24 monitors. LLNL's Hazard Control Department laboratories provided the dosimetry services for the HEU Transparency monitors. In 2008, the HEU Transparency activities in Russia were conducted in a radiologically safe manner for the HEU Transparency monitors in accordance with the expectations of the HEU Transparency staff, NNSA and DOE. The HEU Transparency now has thirteen years of successful experience in developing and providing health and safety support in meeting its technical objectives.

  10. 31 CFR 540.309 - Natural uranium.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Natural uranium. 540.309 Section 540... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.309 Natural uranium. The term natural uranium means uranium found in...

  11. Uranium enrichment

    International Nuclear Information System (INIS)

    1989-01-01

    GAO was asked to address several questions concerning a number of proposed uranium enrichment bills introduced during the 100th Congress. The bill would have restructured the Department of Energy's uranium enrichment program as a government corporation to allow it to compete more effectively in the domestic and international markets. Some of GAO's findings discussed are: uranium market experts believe and existing market models show that the proposed DOE purchase of a $750 million of uranium from domestic producers may not significantly increase production because of large producer-held inventories; excess uranium enrichment production capacity exists throughout the world; therefore, foreign producers are expected to compete heavily in the United States throughout the 1990s as utilities' contracts with DOE expire; and according to a 1988 agreement between DOE's Offices of Nuclear Energy and Defense Programs, enrichment decommissioning costs, estimated to total $3.6 billion for planning purposes, will be shared by the commercial enrichment program and the government

  12. Ion-induced gammas for photofission interrogation of HEU.

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, Barney Lee (Sandia National Laboratories, Albuquerque, NM); Antolak, Arlyn J.; Morse, Daniel H.; Provencio, Paula Polyak (Sandia National Laboratories, Albuquerque, NM)

    2006-03-01

    High-energy photons and neutrons can be used to actively interrogate for heavily shielded special nuclear material (SNM), such as HEU (highly enriched uranium), by detecting prompt and/or delayed induced fission signatures. In this work, we explore the underlying physics for a new type of photon source that generates high fluxes of mono-energetic gamma-rays from low-energy (<500 keV) proton-induced nuclear reactions. The characteristic energies (4- to 18-MeV) of the gamma-rays coincide with the peak of the photonuclear cross section. The source could be designed to produce gamma-rays of certain selected energies, thereby improving the probability of detecting shielded HEU or providing a capability to determine enrichment inside sealed containers. The fundamental physics of such an interrogation source were studied in this LDRD through scaled ion accelerator experiments and radiation transport modeling. The data were used to assess gamma and neutron yields, background, and photofission-induced signal levels from several (p,{gamma}) target materials under consideration.

  13. Calibration Tools for Measurement of Highly Enriched Uranium in Oxide and Mixed Uranium-Plutonium Oxide with a Passive-Active Neutron Drum Shuffler

    International Nuclear Information System (INIS)

    Mount, M; O'Connell, W; Cochran, C; Rinard, P

    2003-01-01

    Lawrence Livermore National Laboratory (LLNL) has completed an extensive effort to calibrate the LLNL passive-active neutron drum (PAN) shuffler (Canberra Model JCC-92) for accountability measurement of highly enriched uranium (HEU) oxide and HEU in mixed uranium-plutonium (U-Pu) oxide. Earlier papers described the PAN shuffler calibration over a range of item properties by standards measurements and an extensive series of detailed simulation calculations. With a single normalization factor, the simulations agree with the HEU oxide standards measurements to within ±1.2% at one standard deviation. Measurement errors on mixed U-Pu oxide samples are in the ±2% to ±10% range, or ±20 g for the smaller items. The purpose of this paper is to facilitate transfer of the LLNL procedure and calibration algorithms to external users who possess an identical, or equivalent, PAN shuffler. Steps include (1) measurement of HEU standards or working reference materials (WRMs); (2) MCNP simulation calculations for the standards or WRMs and a range of possible masses in the same containers; (3) a normalization of the calibration algorithms using the standard or WRM measurements to account for differences in the 252 Cf source strength, the delayed-neutron nuclear data, effects of the irradiation protocol, and detector efficiency; and (4) a verification of the simulation series trends against like LLNL results. Tools include EXCEL/Visual Basic programs which pre- and post-process the simulations, control the normalization, and embody the calibration algorithms

  14. HEU to LEU conversion and blending facility: Oxide blending alternative to produce LEU oxide for commercial use

    International Nuclear Information System (INIS)

    1995-09-01

    The United States Department of Energy (DOE) is examining options for the disposition of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. Disposition is a process of use or disposal of material that results in the material being converted to a form that is substantially and inherently more proliferation-resistant than the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. This document provides data to be used in the environmental impact analysis for the oxide blending HEU disposition option. This option provides for a yearly HEU throughput of 1 0 metric tons (MT) of uranium metal with an average U235 assay of 50% blended with 165 MT of natural assay triuranium octoxide (U 3 O 8 ) per year to produce 177 MT of 4% U235 assay U 3 O 8 , for LWR fuel. Since HEU exists in a variety of forms and not necessarily in the form to be blended, worst case scenarios for preprocessing prior to blending will be assumed for HEU feed streams

  15. Uranium enrichment

    International Nuclear Information System (INIS)

    Rae, H.K.; Melvin, J.G.

    1988-06-01

    Canada is the world's largest producer and exporter of uranium, most of which is enriched elsewhere for use as fuel in LWRs. The feasibility of a Canadian uranium-enrichment enterprise is therefore a perennial question. Recent developments in uranium-enrichment technology, and their likely impacts on separative work supply and demand, suggest an opportunity window for Canadian entry into this international market. The Canadian opportunity results from three particular impacts of the new technologies: 1) the bulk of the world's uranium-enrichment capacity is in gaseous diffusion plants which, because of their large requirements for electricity (more than 2000 kW·h per SWU), are vulnerable to competition from the new processes; 2) the decline in enrichment costs increases the economic incentive for the use of slightly-enriched uranium (SEU) fuel in CANDU reactors, thus creating a potential Canadian market; and 3) the new processes allow economic operation on a much smaller scale, which drastically reduces the investment required for market entry and is comparable with the potential Canadian SEU requirement. The opportunity is not open-ended. By the end of the century the enrichment supply industry will have adapted to the new processes and long-term customer/supplier relationships will have been established. In order to seize the opportunity, Canada must become a credible supplier during this century

  16. The Y-12 National Security Complex Foreign Research Reactor Uranium Supply Production

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, T. [Nuclear Technology and Nonproliferation Programs, B and W Y-12, L.L.C., Y-12 National Security Complex, Oak Ridge, Tennessee (United States); Keller, A.P. [Disposition and Supply Programs, B and W Y-12, L.L.C., Y-12 National Security Complex, Oak Ridge, Tennessee (United States)

    2011-07-01

    The Foreign Research Reactor (FRR) Uranium Supply Program at the Y-12 National Security Complex supports the nonproliferation objectives of the National Nuclear Security Administration (NNSA) HEU Disposition, the Reduced Enrichment Research and Test Reactors (RERTR), and the United States (U.S.) FRR Spent Nuclear Fuel (SNF) Acceptance Programs. The FRR Supply Program supports the important U.S. government nuclear nonproliferation commitment to serve as a reliable and cost-effective uranium supplier for those foreign research reactors that are converting or have converted to Low-Enriched Uranium (LEU) fuel under the RERTR Program. The NNSA Y-12 Site Office maintains the prime contracts with foreign government agencies for the supply of LEU for their research reactors. The LEU is produced by down blending Highly Enriched Uranium (HEU) that has been declared surplus to the U.S. national defense needs. The down blending and sale of the LEU supports the Surplus HEU Disposition Program Record of Decision to make the HEU non-weapons usable and to recover the economic value of the uranium to the extent feasible. In addition to uranium metal feedstock for fuel fabrication, Y-12 can produce LEU in different forms to support new fuel development or target fabrication for medical isotope production. With production improvements and efficient delivery preparations, Y-12 continues to successfully support the global research reactor community. (author)

  17. Derived enriched uranium market

    International Nuclear Information System (INIS)

    Rutkowski, E.

    1996-01-01

    The potential impact on the uranium market of highly enriched uranium from nuclear weapons dismantling in the Russian Federation and the USA is analyzed. Uranium supply, conversion, and enrichment factors are outlined for each country; inventories are also listed. The enrichment component and conversion components are expected to cause little disruption to uranium markets. The uranium component of Russian derived enriched uranium hexafluoride is unresolved; US legislation places constraints on its introduction into the US market

  18. HEU to LEU Conversion and Blending Facility: UNH blending alternative to produce LEU UNH for commercial use

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    US DOE is examining options for disposing of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. The nuclear material is converted to a form that is more proliferation-resistant than the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. Five technologies for blending HEU will be assessed. This document provides data to be used in the environmental impact analysis for the UNH blending HEU disposition option. Process requirements, resource needs, employment needs, waste/emissions from plant, hazards, accident scenarios, and intersite transportation are discussed.

  19. Automated instruments for in-line accounting of highly enriched uranium at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    Russo, P.A.; Strittmatter, R.B.; Sandford, E.L.; Stephens, M.M.; Brumfield, T.L.; Smith, S.E.; McCullough, E.E.; Jeter, I.W.; Bowers, G.L.

    1985-02-01

    Two automated nondestructive assay instruments developed at Los Alamos in support of nuclear materials accounting needs are currently operating in-line at the Oak Ridge Y-12 facility for recovery of highly enriched uranium (HEU). One instrument provides the HEU inventory in the secondary solvent extraction system, and the other monitors HEU concentration in the secondary intermediate evaporator. Both instruments were installed in December 1982. Operational evaluation of these instruments was a joint effort of Y-12 and Los Alamos personnel. This evaluation included comparison of the solvent extraction system inventories with direct measurements performed on the dumped solution components of the solvent extraction system and comparison of concentration assay results with the external assays of samples withdrawn from the process. The function and design of the instruments and detailed results of the operational evaluation are reported

  20. Impact of the use of low or medium enriched uranium on the masses of space nuclear reactor power systems

    International Nuclear Information System (INIS)

    1994-12-01

    The design process for determining the mass increase for the substitution of low-enriched uranium (LEU) for high-enriched uranium (HEU) in space nuclear reactor systems is an optimization process which must simultaneously consider several variables. This process becomes more complex whenever the reactor core operates on an in-core thermionic power conversion, in which the fissioning of the nuclear fuel is used to directly heat thermionic emitters, with the subsequent elimination of external power conversion equipment. The increased complexity of the optimization process for this type of system is reflected in the work reported herein, where considerably more information has been developed for the moderated in-core thermionic reactors

  1. Uranium enrichment plans

    International Nuclear Information System (INIS)

    Gagne, R.W.; Thomas, D.C.

    1977-01-01

    The status of existing uranium enrichment contracts in the US is reviewed and expected natural uranium requirements for existing domestic uranium enrichment contracts are evaluated. Uncertainty in natural uranium requirements associated with requirements-type and fixed-commitment type contracts is discussed along with implementation of variable tails assay

  2. Study on usage of low enriched uranium Russian type fuel elements for design of an experimental ADS research reactor

    International Nuclear Information System (INIS)

    Pesic, M.P.

    2005-01-01

    Conceptual design of an accelerator driven sub-critical experimental research reactor (ADSRR) was initiated in 1999 at the Vinca Institute of Nuclear Sciences, Serbia and Montenegro. Initial results of neutronic analyses of the proposed ADSRR-H were carried out by Monte Carlo based codes and available high-enriched uranium dioxide (HEU) dispersed Russian type TVR-S fuel elements (FE) placed in a lead matrix. Beam of charged particles (proton or deuteron) would be extracted from the high-energy channel H5B of the VINCY cyclotron of the TESLA Accelerator Installation. In 2002, the Vinca Institute has, in compliance with the Reduced Enrichment for Research and Test Reactors (RERTR) Program, returned fresh HEU TVR-S type FEs back to the Russian Federation. Since usage of HEU FEs in research reactors is not further recommended, a new study of an ADSRR-L conceptual design has initiated in Vinca Institute in last two years, based on assumed availability of low-enriched uranium (LEU) dispersed type TVR-S FEs. Initial results of numerical simulations of this new ADSRR-L, published for the first time in this paper, shows that such a small low neutron flux system can be used as an experimental - 'demonstration' - ADS with neutron characteristics similar to proposed well-known lead moderated and cooled power sub-critical ADS with intermediate neutron spectrum. Neutron spectrum characteristics of the ADSRR-L are compared to ones of the ADSRR-H with the same mass (7.7 g) of 235 U nuclide per TVR-S FE. (author)

  3. Development of long-life low enrichment fuel

    International Nuclear Information System (INIS)

    Gietzen, A.J.; West, G.B.

    1978-01-01

    With only a few exceptions, TRIGA reactors have always used low-enriched-uranium (LEU) fuel with an enrichment of 19.9%. The exceptions have either been converted from the standard low-enriched fuel to the 70% enriched FLIP fuel in order to achieve extended lifetime, or are higher powered reactors which were designed for long life using 93%-enriched uranium during the time when the use and export of highly enriched uranium (HEU) was not restricted. The advent of international policies focusing attention on non-proliferation and safeguards made the HEU fuels obsolete. General Atomic immediately undertook a development effort (nearly two years ago) in order to be in a position to comply with these policies for all future export sales and also to provide a low-enriched alternative to fully enriched plate-type fuels. This important work was subsequently partially supported by the U. S. Department of Energy. The laboratory and production tests have shown that higher uranium densities can be achieved to compensate for reducing the enrichment to 20%, and that the fuels maintain the characteristics of the very thoroughly proven standard TRIGA fuels. In May of this year, General Atomic announced that these fuels were available for TRIGA reactors and for plate-type reactors with power levels up to 15 MW with GA's standard commercial warranty

  4. Foreign research reactor uranium supply program: The Y-12 national security complex process

    International Nuclear Information System (INIS)

    Nelson, T.; Eddy, B.G.

    2010-01-01

    The Foreign Research Reactor (FRR) Uranium Supply Program at the Y-12 National Security Complex supports the nonproliferation objectives of the HEU Disposition Program, the Reduced Enrichment Research and Test Reactors (RERTR) Program, and the United States FRR Spent Nuclear Fuel (SNF) Acceptance Program. The Y-12 National Nuclear Security Administration (NNSA) Y-12 Site Office maintains the prime contracts with foreign governments for the supply of Low-Enriched Uranium (LEU) for their research reactors. The LEU is produced by down blending Highly Enriched Uranium (HEU) that has been declared surplus to the U.S. national defense needs. The down blending and sale of the LEU supports the Surplus HEU Disposition Program Record of Decision to make the HEU non-weapons usable and to recover the economic value of the uranium to the extent feasible. This program supports the important U.S. government and nuclear nonproliferation commitment to serve as a reliable and cost-effective uranium supplier for those foreign research reactors that are converting or have converted to LEU fuel under the guidance of the NNSA RERTR Program. In conjunction with the FRR SNF Acceptance Program which supports the global nonproliferation efforts to disposition U.S.-origin HEU, the Y-12 FRR Uranium Supply Program can provide the LEU for the replacement fuel fabrication. In addition to feedstock for fuel fabrication, Y-12 supplies LEU for target fabrication for medical isotope production. The Y-12 process uses supply forecasting tools, production improvements and efficient delivery preparations to successfully support the global research reactor community

  5. Irradiation tests of 99Mo isotope production targets employing uranium metal foils

    International Nuclear Information System (INIS)

    Hofman, G.L.; Wiencek, T.C.; Wood, E.L.; Snelgrove, J.L.; Suripto, A.; Nasution, H.; Lufti-Amin, D.; Gogo, A.

    1996-01-01

    Most of the world's supply of 99 mTc for medical purposes is currently produced from the decay of 99 Mo derived from the fissioning of high-enriched uranium (HEU). Substitution of low-enriched uranium (LEU) metal foils for the HEU UO 2 used in current target designs will allow equivalent 99 Mo yields with little change in target geometries. Substitution of uranium metal for uranium alloy and aluminide in other target designs will also allow the conversion of HEU to LEU. Several uranium-metal-foil targets have been fabricated at ANL and irradiated to prototypic burnup in the Indonesian RSG-GAS reactor. Postirradiation examination of the initial test indicated that design modifications were required to allow the irradiated foil to be removed for chemical processing. The latest test has shown good irradiation behavior, satisfactory dismantling and foil removal when the U-foil is separated from its containment by metallic, fission-recoil absorbing barriers. (author)

  6. Irradiation tests of 99Mo isotope production targets employing uranium metal foils

    International Nuclear Information System (INIS)

    Hofman, G.L.; Wiencek, T.C.; Wood, E.L.; Snelgrove, J.L.; Suripto, A.; Nasution, H.; Lufti-Amin, D.; Gogo, A.

    1996-01-01

    Most of the world's supply of 99m Tc for medical purposes is currently produced form the decay of 99 Mo derived from the fissioning of high-enriched uranium (HEU). Substitution of low-enriched uranium (LEU) metal foils for the HEU UO 2 used in current target designs will allow equivalent 99 Mo yields with little change in target geometries. Substitution of uranium metal for uranium alloy and aluminide in other target designs will also allow the conversion of HEU to LEU. Several uranium-metal-foil targets have been fabricated at ANL and irradiated to prototypic burnup in the Indonesian RSG-GAS reactor. Postirradiation examination of the initial test indicated that design modifications were required to allow the irradiated foil to be removed for chemical processing. The latest test has shown good irradiation behavior, satisfactory dismantling and foil removal when the U-foil is separated from its containment by metallic, fission-recoil absorbing barriers

  7. HEU to LEU conversion and blending facility: Oxide blending alternative to produce LEU oxide for commercial use

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The United States Department of Energy (DOE) is examining options for the disposition of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. Disposition is a process of use or disposal of material that results in the material being converted to a form that is substantially and inherently more proliferation-resistant than the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. This document provides data to be used in the environmental impact analysis for the oxide blending HEU disposition option. This option provides for a yearly HEU throughput of 1 0 metric tons (MT) of uranium metal with an average U235 assay of 50% blended with 165 MT of natural assay triuranium octoxide (U{sub 3} O{sub 8}) per year to produce 177 MT of 4% U235 assay U{sub 3} O{sub 8}, for LWR fuel. Since HEU exists in a variety of forms and not necessarily in the form to be blended, worst case scenarios for preprocessing prior to blending will be assumed for HEU feed streams.

  8. Design Study for a Low-enriched Uranium Core for the High Flux Isotope Reactor, Annual Report for FY 2007

    Energy Technology Data Exchange (ETDEWEB)

    Primm, Trent [ORNL; Ellis, Ronald James [ORNL; Gehin, Jess C [ORNL; Ilas, Germina [ORNL; Miller, James Henry [ORNL; Sease, John D [ORNL

    2007-11-01

    This report documents progress made during fiscal year 2007 in studies of converting the High Flux Isotope Reactor (HFIR) from highly enriched uranium (HEU) fuel to low enriched uranium fuel (LEU). Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. A high volume fraction U/Mo-in-Al fuel could attain the same neutron flux performance as with the current, HEU fuel but materials considerations appear to preclude production and irradiation of such a fuel. A diffusion barrier would be required if Al is to be retained as the interstitial medium and the additional volume required for this barrier would degrade performance. Attaining the high volume fraction (55 wt. %) of U/Mo assumed in the computational study while maintaining the current fuel plate acceptance level at the fuel manufacturer is unlikely, i.e. no increase in the percentage of plates rejected for non-compliance with the fuel specification. Substitution of a zirconium alloy for Al would significantly increase the weight of the fuel element, the cost of the fuel element, and introduce an as-yet untried manufacturing process. A monolithic U-10Mo foil is the choice of LEU fuel for HFIR. Preliminary calculations indicate that with a modest increase in reactor power, the flux performance of the reactor can be maintained at the current level. A linearly-graded, radial fuel thickness profile is preferred to the arched profile currently used in HEU fuel because the LEU fuel media is a metal alloy foil rather than a powder. Developments in analysis capability and nuclear data processing techniques are underway with the goal of verifying the preliminary calculations of LEU flux performance. A conceptual study of the operational cost of an LEU fuel fabrication facility yielded the conclusion that the annual fuel cost to the HFIR would increase significantly from the current, HEU fuel cycle. Though manufacturing can be accomplished with existing technology

  9. TRIGA low enrichment fuel

    International Nuclear Information System (INIS)

    Gietzen, A.

    1993-01-01

    Sixty TRIGA reactors have been sold and the earliest of these are now passing twenty years of operation. All of these reactors use the uranium zirconium hydride fuel (UZrH) which provides certain unique advantages arising out of its large prompt negative temperature coefficient, very low fission product release, and high temperature capability. Eleven of these Sixty reactors are conversions from plate fuel to TRIGA fuel which were made as a result of these advantages. With only a few exceptions, TRIGA reactors have always used low-enriched uranium (LEU) fuel with an enrichment of 19.9%. The exceptions have either been converted from the standard low-enriched fuel to the 70% enriched FLIP fuel in order to achieve extended lifetime, or are higher powered reactors which were designed for long life using 93%-enriched uranium during the time when the use and export of highly enriched uranium (HEU) was not restricted. The advent of international policies focusing attention on nonproliferation and safeguards made the HEU fuels obsolete. General Atomic immediately undertook a development effort (nearly two years ago) in order to be in a position to comply with these policies for all future export sales and also to provide a low-enriched alternative to fully enriched plate-type fuels. This important work was subsequently partially supported by the U.S. Department of Energy. The laboratory and production tests have shown that higher uranium densities can be achieved to compensate for reducing the enrichment to 20%, and that the fuels maintain the characteristics of the very thoroughly proven standard TRIGA fuels. In May of 1978, General Atomic announced that these fuels were available for TRIGA reactors and for plate-type reactors with power levels up to 15 MW with General Atomic's standard commercial warranty

  10. TRIGA low enrichment fuel

    International Nuclear Information System (INIS)

    Gietzen, A.

    1993-01-01

    Sixty TRIGA reactors have been sold and the earliest of these are now passing twenty years of operation. All of these reactors use the uranium-zirconium hydride fuel (UZrH) which provides certain unique advantages arising out of its large prompt negative temperature coefficient, very low fission product release, and high temperature capability. Eleven of these Sixty reactors are conversions from plate fuel to TRIGA fuel which were made as a result of these advantages. With only a few exceptions, TRIGA reactors have always used low-enriched-uranium (LEU) fuel with an enrichment of 19.9%. The exceptions have either been converted from the standard low-enriched fuel to the 70% enriched FLIP fuel in order to achieve extended lifetime, or are higher powered reactors which were designed for long life using 93%-enriched uranium during the time when the use and export of highly enriched uranium (HEU) was not restricted. The advent of international policies focusing attention on nonproliferation and safeguards made the HEU fuels obsolete. General Atomic immediately undertook a development effort (nearly two years ago) in order to be in a position to comply with these policies for all future export sales and also to provide a low-enriched alternative to fully enriched plate-type fuels. This important work was subsequently partially supported by the U.S. Department of Energy. The laboratory and production tests have shown that higher uranium densities can be achieved to compensate for reducing the enrichment to 20%, and that the fuels maintain the characteristics of the very thoroughly proven standard TRIGA fuels. In May of 1978, General Atomic announced that these fuels were available for TRIGA reactors and for plate-type reactors with power levels up to 15 MW with GA's standard commercial warranty

  11. Uranium silicide activities at Babcock and Wilcox

    International Nuclear Information System (INIS)

    Noel, W.W.; Freim, J.B.

    1983-01-01

    Babcock and Wilcox, Naval Nuclear Fuel Division (NNFD) in conjunction with Argonne National Laboratory (ANL) is actively involved in the Reduced Enrichment Research Test Reactor (RERTR) Program to produce low enriched fuel elements for research reactors. B and W and ANL have undertaken a joint effort in which NNFD will fabricate two low enriched uranium (LEU), Oak Ridge Reactor (ORR) elements with uranium silicide fuel furnished by ANL. These elements are being fabricated for irradiation testing at Oak Ridge National Laboratory (ORNL). Concurrently with this program, NNFD is developing and implementing the uranium silicide and uranium aluminide fuel fabrication technology. NNFD is fabricating the uranium silicide ORR elements in a two-phase program, Development and Production. To summarize: 1. Full size fuel plates can be made with U 3 SiAl but the fabricator must prevent oxidation of the compact prior to hot roll bonding; 2. Providing the ANL U 3 Si x irradiation results are successful, NNFD plans to provide two ORR elements during February 1983; 3. NNFD is developing and implementing U 3 Si x and UAI x fuel fabrication technology to be operational in 1983; 4. NNFD can supply U 3 O 8 high enriched uranium (HEU) or low enriched uranium (LEU) research reactor elements; 5. NNFD is capable of providing high quality, cost competitive LEU or HEU research reactor elements to meet the needs of the customer

  12. HEU core conversion of Russian production reactors: a major threat to the international RERTR regime

    International Nuclear Information System (INIS)

    Kuperman, Alan J.; Leventhal, Paul L.

    1998-01-01

    This paper calls the attention for the major threat to the International Reduced Enrichment for Research and Test Reactors (RERTR) program, represented by the HEU core conversion of russian production reactors. This program aims to reduce and eventually eliminate international civilian commerce in nuclear weapons-usable, highly enriched uranium , and thereby significantly lower risks of the material being stolen or diverted by terrorist or states for producing nuclear weapons

  13. Blueprint for domestic uranium enrichment

    International Nuclear Information System (INIS)

    1981-01-01

    The AEC advisory committee on domestic production of uranium enrichment has studied for more than a year how to achieve the domestic enrichment of uranium by the construction and operation of a commercial enriching plant using centrifugal separation method, and the report was submitted to the Atomic Energy Commission on August 18, 1980. Japan has depended wholly on overseas services for her uranium enrichment needs, but the development of domestic enrichment has been carried on in parallel. The AEC decided to construct a uranium enrichment pilot plant using centrifuges, and it has been forwarded as a national project. The plant is operated by the Power Reactor and Nuclear Fuel Development Corp. since 1979. The capacity of the plant will be raised to approximately 75 ton SWU a year. The centrifuges already operated have provided the first delivery of fuel of about 1 ton for the ATR ''Fugen''. The demand-supply balance of uranium enrichment service, the significance of the domestic enrichment of uranium, the evaluation of uranium enrichment technology, the target for domestic enrichment plan, the measures to promote domestic uranium enrichment, and the promotion of the construction of a demonstration plant are reported. (Kako, I.)

  14. RERTR end-game: A win-win framework. Phasing out remaining global HEU commerce by conditionally and temporarily renewing U.S. exports of HEU

    International Nuclear Information System (INIS)

    Kuperman, Alan J.; Leventhal, Paul L.

    1997-01-01

    The RERTR program stands on the brink of fulfilling its historic mission. However, a series of missteps and misunderstandings have recently raised the risk that defeat will be snatched from the jaws of victory. Perhaps the most serious threat to the RERTR regime is posed by France's pending import of 625 kilograms of bomb-grade, highly enriched uranium (HEU) from Russia, intended primarily to fuel its high-flux research reactor at the Institute Laue-Langevin in Grenoble, as well as its Orphee research reactor. As the first export of HEU from Russia to a facility outside the former Soviet bloc, this precedential transaction would establish Russia as a new global supplier of bomb-grade uranium, potentially setting the stage for a rise in international HEU commerce, rather than its phase-out as envisioned under the RERTR program. Apparently, France turned to Russia for supply of the fuel because the United States was perceived as unable or unwilling to continue supplying such fuel in the wake of the U.S. Energy Policy Act of 1992, which, pursuant to its so-called Schumer Amendment, places sharp restrictions on HEU exports. Unexplained delays in Russia's shipment of this material to France provide a fortuitous window of opportunity in which efforts can and should be made by France and the United States to resolve present differences in a manner beneficial to each, as well as in the interest of global security. This paper proposes an arrangement under which the United States would renew exports of HEU to France, in exchange for pledges from France enabling the export to comply with the principles and objectives of the RERTR program as embodied in U.S. law. In so doing, the arrangement would obviate the need for Russian HEU export, thereby avoiding its dangerous precedent. By enabling high quality scientific research to continue, while simultaneously helping to fulfill the RERTR program's original goal, such an arrangement would truly be a 'win-win' solution. (author)

  15. ORSPHERE: CRITICAL, BARE, HEU(93.2)-METAL SPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Margaret A. Marshall

    2013-09-01

    In the early 1970’s Dr. John T. Mihalczo (team leader), J.J. Lynn, and J.R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) in an attempt to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950’s (HEU-MET-FAST-001). The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared with the GODIVA I experiments. “The very accurate description of this sphere, as assembled, establishes it as an ideal benchmark for calculational methods and cross-section data files.” (Reference 1) While performing the ORSphere experiments care was taken to accurately document component dimensions (±0. 0001 in. for non-spherical parts), masses (±0.01 g), and material data The experiment was also set up to minimize the amount of structural material in the sphere proximity. A three part sphere was initially assembled with an average radius of 3.4665 in. and was then machined down to an average radius of 3.4420 in. (3.4425 in. nominal). These two spherical configurations were evaluated and judged to be acceptable benchmark experiments; however, the two experiments are highly correlated.

  16. 31 CFR 540.315 - Uranium-235 (U235).

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Uranium-235 (U235). 540.315 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.315 Uranium-235 (U235). The term uranium-235 or U235 means the fissile...

  17. Promotion of uranium enrichment business

    International Nuclear Information System (INIS)

    Kurushima, Morihiro

    1981-01-01

    The Committee on Nuclear Power has studied on the basic nuclear power policy, establishing its five subcommittees, entrusted by the Ministry of Nternational Trade and Industry. The results of examination by the subcommittee on uranium enrichment business are given along with a report in this connection by the Committee. In order to establish the nuclear fuel cycle, the aspect of uranium enrichment is essential. The uranium enrichment by centrifugal process has proceeded steadily in Power Reactor and Nuclear Fuel Development Corporation. The following matters are described: the need for domestic uranium enrichment, the outlook for overseas enrichment services and the schedule for establishing domestic enrichment business, the current state of technology development, the position of the prototype enrichment plant, the course to be taken to establish enrichment business the main organization operating the prototype and commercial plants, the system of supplying centrifuges, the domestic conversion of natural uranium the subsidies for uranium enrichment business. (J.P.N.)

  18. Nonproliferation and safeguards aspects of fuel cycle programs in reduction of excess separated plutonium and high-enriched uranium

    International Nuclear Information System (INIS)

    Persiani, P.J.

    1995-01-01

    The purpose of this preliminary investigation is to explore alternatives and strategies aimed at the gradual reduction of the excess inventories of separated plutonium and high-enriched uranium (HEU) in the civilian nuclear power industry. The study attempts to establish a technical and economic basis to assist in the formation of alternative approaches consistent with nonproliferation and safeguards concerns. Reference annual mass flows and inventories for a representative 1,400 Mwe Pressurized Water Reactor (PWR) fuel cycle have been investigated for three cases: the 100 percent uranium oxide UO 2 fuel loading once through cycle, and the 33 percent mixed oxide MOX loading configuration for a first and second plutonium recycle. The analysis addresses fuel cycle developments; plutonium and uranium inventory and flow balances; nuclear fuel processing operations; UO 2 once-through and MOX first and second recycles; and the economic incentives to draw-down the excess separated plutonium stores. The preliminary analysis explores several options in reducing the excess separated plutonium arisings and HEU, and the consequences of the interacting synergistic effects between fuel cycle processes and isotopic signatures of nuclear materials on nonproliferation and safeguards policy assessments

  19. Return of 80% highly enriched uranium fresh fuel from Yugoslavia to Russia

    International Nuclear Information System (INIS)

    Pesic, M.; Sotic, O.; Subotic, K.; Hopwood, W. Jr; Moses, S.; Wander, T.; Smirnov, A.; Kanashov, B.; Eshcherkin, A.; Efarov, S.; Olivieri, C.; Loghin, N. E.

    2003-01-01

    The transport of almost 50 kg of highly enriched (80%) uranium (HEU), in the form of fresh TVR-S fuel elements, from the Vin a Institute of Nuclear Sciences, Yugoslavia, to the Russian Federation for uranium reprocessing was carried out in August 2002. This act was a contribution of the Government of the Federal Republics of Yugoslavia (now Serbia and Montenegro) to the world's joint efforts to prevent possible actions of terrorists against nuclear material that potentially would be usable for the production of nuclear weapons. Basic aspects of this complex operation, carried out mainly by transport teams of the Vinca Institute and of the Institute for Safe Transport of Nuclear Materials from Dimitrovgrad, Russian Federation, are described in this paper. A team of IAEA safety inspectors and experts from the DOE, USA, for transport and non-proliferation, supported the whole operation. (author)

  20. Return of 80% highly enriched uranium fresh fuel from Yugoslavia to Russia

    International Nuclear Information System (INIS)

    Pesic, M.; Sotic, O.; Subotic, K.; Hopwood, W. Jr; Moses, S.; Wander, T.; Smirnov, A.; Kanashov, B.; Eshcherkin, A.; Efarov, S.; Olivieri, C.; Loghin, N. E.

    2003-01-01

    The transport of almost 50 kg of highly enriched (80%) uranium (HEU), in the form of fresh TVR-S fuel elements, from the Vinca Institute of Nuclear Sciences, Yugoslavia, to the Russian Federation for uranium reprocessing was carried out in August 2002. This act was a contribution of the Government of the Federal Republics of Yugoslavia (now Serbia and Montenegro) to the world's joint efforts to prevent possible actions of terrorists against nuclear material that potentially would be usable for the production of nuclear weapons. Basic aspects of this complex operation, carried out mainly by transport teams of the Vinca Institute and of the Institute for Safe Transport of Nuclear Materials from Dimitrovgrad, Russian Federation, are described in this paper. A team of IAEA safety inspectors and experts from the DOE, USA, for transport and non-proliferation, supported the whole operation. (author)

  1. Uranium management activities

    International Nuclear Information System (INIS)

    Jackson, D.; Marshall, E.; Sideris, T.; Vasa-Sideris, S.

    2001-01-01

    One of the missions of the Department of Energy's (DOE) Oak Ridge Office (ORO) has been the management of the Department's uranium materials. This mission has been accomplished through successful integration of ORO's uranium activities with the rest of the DOE complex. Beginning in the 1980's, several of the facilities in that complex have been shut down and are in the decommissioning process. With the end of the Cold War, the shutdown of many other facilities is planned. As a result, inventories of uranium need to be removed from the Department facilities. These inventories include highly enriched uranium (HEU), low enriched uranium (LEU), normal uranium (NU), and depleted uranium (DU). The uranium materials exist in different chemical forms, including metals, oxides, solutions, and gases. Much of the uranium in these inventories is not needed to support national priorities and programs. (author)

  2. Alternative dispositioning methods for HEU spent nuclear fuel at the Savannah River Site

    International Nuclear Information System (INIS)

    Krupa, J.F.; McKibben, J.M.; Parks, P.B.; DuPont, M.E.

    1995-01-01

    The United States has a strong policy on prevention of the international spread of nuclear weapons. This policy was announced in Presidential Directive PDD-13 and summarized in a White House press release September 27, 1993. Two cornerstones of this policy are: seek to eliminate where possible the accumulation of stockpiles of highly- enriched uranium or plutonium; propose hor-ellipsis prohibiting the production of highly-enriched uranium (HEU) or plutonium for nuclear explosives purposes or outside international safeguards. The Department of Energy is currently struggling to devise techniques that safely and efficiently dispose of spent nuclear fuel (SNF) while satisfying national non-proliferation policies. SRS plans and proposals for disposing of their SNF are safe and cost effective, and fully satisfy non-proliferation objectives

  3. Orsphere: Physics Measurments For Bare, HEU(93.2)-Metal Sphere

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Margaret A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bess, John D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Briggs, J. Blair [Idaho National Lab. (INL), Idaho Falls, ID (United States); White, Christine E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dyrda, James P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tancock, Nigel P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mihalczo, John [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    In the early 1970s Dr. John T. Mihalczo (team leader), J.J. Lynn, and J.R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) in an attempt to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950s (HEU-MET-FAST-001). The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared with the GODIVA I experiments. “The very accurate description of this sphere, as assembled, establishes it as an ideal benchmark for calculational methods and cross-section data files” (Reference 1). While performing the ORSphere experiments care was taken to accurately document component dimensions (±0.0001 inches), masses (±0.01 g), and material data. The experiment was also set up to minimize the amount of structural material in the sphere proximity. Two, correlated spheres were evaluated and judged to be acceptable as criticality benchmark experiments. This evaluation is given in HEU-MET-FAST-100. The second, smaller sphere was used for additional reactor physics measurements. Worth measurements (Reference 1, 2, 3 and 4), the delayed neutron fraction (Reference 3, 4 and 5) and surface material worth coefficient (Reference 1 and 2) are all measured and judged to be acceptable as benchmark data. The prompt neutron decay (Reference 6), relative fission density (Reference 7) and relative neutron importance (Reference 7) were measured, but are not evaluated. Information for the evaluation was compiled from References 1 through 7, the experimental logbooks 8 and 9 ; additional drawings and notes provided by the experimenter; and communication with the lead experimenter, John T. Mihalczo.

  4. On the importance of ending the use of HEU in the nuclear fuel cycle: An updated assessment

    International Nuclear Information System (INIS)

    Glaser, Alexander; Hippel, Frank von

    2002-01-01

    The events of September 2001 have created a renewed urgency with regard to the disposition and future use and management of nuclear-weapons-usable materials. Highly enriched uranium (HEU) has received particular attention because it is relatively easy to use in a nuclear weapon and therefore an obvious candidate for diversion or theft by state or nonstate actors. The role of the RERTR program in this context and its contribution to global security can hardly be overemphasized. This article reviews existing or proposed activities to reduce the threat posed by HEU, how these activities are linked to the RERTR program, and outlines the most urgent steps to be taken to approach the ultimate objective of eliminating non-weapons HEU inventories in the world. (author)

  5. Validation of COG10 and ENDFB6R7 on the Auk Workstation for General Application to Highly Enriched Uranium Systems

    Energy Technology Data Exchange (ETDEWEB)

    Percher, Catherine G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-08-08

    The COG 10 code package1 on the Auk workstation is now validated with the ENBFB6R7 neutron cross section library for general application to highly enriched uranium (HEU) systems by comparison of the calculated keffective to the expected keffective of several relevant experimental benchmarks. This validation is supplemental to the installation and verification of COG 10 on the Auk workstation2.

  6. Development of on-line uranium enrichment monitor of gaseous UF6 for uranium enrichment plant

    International Nuclear Information System (INIS)

    Lu Xuesheng; Liu Guorong; Jin Huimin; Zhao Yonggang; Li Jinghuai; Hao Xueyuan; Ying Bin; Yu Zhaofei

    2013-01-01

    An on-line enrichment monitor was developed to measure the enrichment of UF 6 , flowing through the processing pipes in uranium enrichment plant. A Nal (Tl) detector was used to measure the count rates of the 185.7 keV γ-ray emitted from 235 U, and the total quantity of uranium was determined from thermodynamic characteristics of gaseous uranium hexafluoride. The results show that the maximum relative standard deviation is less than 1% when the measurement time is 120 s or more and the pressure is more than 2 kPa in the measurement chamber. Uranium enrichment of gaseous uranium hexafluoride in the output end of cascade can be monitored continuously by using the device. It should be effective for nuclear materials accountability verifications and materials balance verification at uranium enrichment plant. (authors)

  7. United States uranium enrichment policies

    International Nuclear Information System (INIS)

    Roberts, R.W.

    1977-01-01

    ERDA's uranium enrichment program policies governing the manner in which ERDA's enrichment complex is being operated and expanded to meet customer requirements for separative work, research and development activities directed at providing technology alternatives for future enrichment capacity, and establishing the framework for additional domestic uranium enrichment capacity to meet the domestic and foreign nuclear industry's growing demand for enrichment services are considered. The ERDA enrichment complex consists of three gaseous diffusion plants located in Oak Ridge, Tennessee; Paducah, Kentucky; and Portsmouth, Ohio. Today, these plants provide uranium enrichment services for commercial nuclear power generation. These enrichment services are provided under contracts between the Government and the utility customers. ERDA's program involves a major pilot plant cascade, and pursues an advanced isotope separation technique for the late 1980's. That the United States must develop additional domestic uranium enrichment capacity is discussed

  8. Department of Energy HEU ES and H vulnerability assessment, Savannah River Site, Site Assessment Team report. Revision 2

    International Nuclear Information System (INIS)

    Geddes, R.L.; Barone, A.; Shook, H.E. Varner, C.E.; Rollins, R.

    1996-01-01

    This report fulfills the directive issued by the Secretary of Energy on February 22, 1996 to complete a comprehensive assessment of potential vulnerabilities associated with the management of highly enriched uranium (HEU) throughout the DOE complex. In a subsequent letter instruction, the DOE-SR Field Office formally directed WSRC to conduct an assessment of the HEU materials at SRS. The term ''ES and H vulnerabilities'' is defined for the purpose of this assessment to mean conditions or weaknesses that could lead to unnecessary or increased exposure of workers or the public to radiation or to HEU-associated chemical hazards, or to the release of radioactive materials to the environment. The assessment will identify and prioritize ES and H vulnerabilities, and will serve as an information base for identifying corrective actions for the safe management of HEU. Primary facilities that hold HEU at SRS are H-Canyon, K-Reactor assembly area, K, L, and P-Reactor disassembly basins, and the Receiving Basin for Offsite Fuels (RBOF)

  9. HEU to LEU Conversion and Blending Facility: UF6 blending alternative to produce LEU UF6 for commercial use

    International Nuclear Information System (INIS)

    1995-09-01

    US DOE is examining options for disposing of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials; the nuclear material will be converted to a form more proliferation- resistant than the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. Five technologies for blending HEU will be assessed; blending as UF 6 to produce a UF 6 product for commercial use is one of them. This document provides data to be used in the environmental impact analysis for the UF 6 blending HEU disposition option. Resource needs, employment needs, waste and emissions from plant, hazards, accident scenarios, and intersite transportation are discussed

  10. Update on Calibration of the Lawrence Livermore National Laboratory Passive-Active Neutron Drum Shuffler for Measurement of Highly Enriched Uranium Oxide

    International Nuclear Information System (INIS)

    Mount, M.; O'Connell, W.; Cochran, C.; Rinard, P.; Dearborn, D.; Endres, E.

    2002-01-01

    In October of 1999, Lawrence Livermore National Laboratory (LLNL) began an effort to calibrate the LLNL passive-active neutron (PAN) drum shuffler for measurement of highly enriched uranium (HEU) oxide. A single unit of certified reference material (CRM) 149 (Uranium (93% Enriched) Oxide - U 3 O 8 Standard for Neutron Counting Measurements) was used to (1) develop a mass calibration curve for HEU oxide in the nominal range of 393 g to 3144 g 235 U, and (2) perform a detailed axial and radial mapping of the detector response over a wide region of the PAN shuffler counting chamber. Results from these efforts were reported at the Institute of Nuclear Materials Management 4lSt Annual Meeting in July 2000. This paper describes subsequent efforts by LLNL to use a unit of CRM 146 (Uranium Isotopic Standard for Gamma Spectrometry Measurements) in consort with Monte Carlo simulations of the PAN shuffler response to CRM 149 and CRM 146 units and a selected set of containers with CRM 149-equivalent U 3 O 8 to (1) extend the low range of the reported mass calibration curve to 10 g 235 U, (2) evaluate the effect of U 3 O 8 density (2.4 g/cm 3 to 4.8 g/cm 3 ) and container size (5.24 cm to 12.17 cm inside diameter and 6.35 cm to 17.72 cm inside height) on the PAN shuffler response, and (3) develop mass calibration curves for U 3 O 8 enriched to 20.1 wt% 235 U and 52.5 wt% 235 U.

  11. Comparison Of A Neutron Kinetics Parameter For A Polyethylene Moderated Highly Enriched Uranium System

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, IV, George Espy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Goda, Joetta Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Grove, Travis Justin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sanchez, Rene Gerardo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-04-17

    This paper examines the comparison of MCNP® code’s capability to calculate kinetics parameters effectively for a thermal system containing highly enriched uranium (HEU). The Rossi-α parameter was chosen for this examination because it is relatively easy to measure as well as easy to calculate using MCNP®’s kopts card. The Rossi-α also incorporates many other parameters of interest in nuclear kinetics most of which are more difficult to precisely measure. The comparison looks at two different nuclear data libraries for comparison to the experimental data. These libraries are ENDF/BVI (.66c) and ENDF/BVII (.80c).

  12. Beta activity of enriched uranium

    International Nuclear Information System (INIS)

    Nambiar, P.P.V.J.; Ramachandran, V.

    1975-01-01

    Use of enriched uranium as reactor fuel necessitates its handling in various forms. For purposes of planning and organising radiation protection measures in enriched uranium handling facilities, it is necessary to have a basic knowledge of the radiation status of enriched uranium systems. The theoretical variations in beta activity and energy with U 235 enrichment are presented. Depletion is considered separately. Beta activity build up is also studied for two specific enrichments, in respect of which experimental values for specific alpha activity are available. (author)

  13. Fast critical assembly safeguards: NDA methods for highly enriched uranium. Summary report, October 1978-September 1979

    International Nuclear Information System (INIS)

    Bellinger, F.O.; Winslow, G.H.

    1980-12-01

    Nondestructive assay (NDA) methods, principally passive gamma measurements and active neutron interrogation, have been studied for their safeguards effectiveness and programmatic impact as tools for making inventories of highly enriched uranium fast critical assembly fuel plates. It was concluded that no NDA method is the sole answer to the safeguards problem, that each of those emphasized here has its place in an integrated safeguards system, and that each has minimum facility impact. It was found that the 185-keV area, as determined with a NaI detector, was independent of highly-enriched uranium (HEU) plate irradiation history, though the random neutron driver methods used here did not permit accurate assay of irradiated plates. Containment procedures most effective for accurate assaying were considered, and a particular geometry is recommended for active interrogation by a random driver. A model, pertinent to that geometry, which relates the effects of multiplication and self-absorption, is described. Probabilities of failing to detect that plates are missing are examined

  14. Uranium Enrichment, an overview

    International Nuclear Information System (INIS)

    Coates, J.H.

    1994-01-01

    This general presentation on uranium enrichment will be followed by lectures on more specific topics including descriptions of enrichment processes and assessments of the prevailing commercial and industrial situations. I shall therefore avoid as much as possible duplications with these other lectures, and rather dwell on: some theoretical aspects of enrichment in general, underlying the differences between statistical and selective processes, a review and comparison between enrichment processes, remarks of general order regarding applications, the proliferation potential of enrichment. It is noteworthy that enrichment: may occur twice in the LWR fuel cycle: first by enriching natural uranium, second by reenriching uranium recovered from reprocessing, must meet LWR requirements, and in particular higher assays required by high burn up fuel elements, bears on the structure of the entire front part of the fuel cycle, namely in the conversion/reconversion steps only involving UF 6 for the moment. (author). tabs., figs., 4 refs

  15. Subcritical Neutron Multiplication Measurements of HEU Using Delayed Neutrons as the Driving Source

    International Nuclear Information System (INIS)

    Hollas, C.L.; Goulding, C.A.; Myers, W.L.

    1999-01-01

    A new method for the determination of the multiplication of highly enriched uranium systems is presented. The method uses delayed neutrons to drive the HEU system. These delayed neutrons are from fission events induced by a pulsed 14-MeV neutron source. Between pulses, neutrons are detected within a medium efficiency neutron detector using 3 He ionization tubes within polyethylene enclosures. The neutron detection times are recorded relative to the initiation of the 14-MeV neutron pulse, and subsequently analyzed with the Feynman reduced variance method to extract singles, doubles and triples neutron counting rates. Measurements have been made on a set of nested hollow spheres of 93% enriched uranium, with mass values from 3.86 kg to 21.48 kg. The singles, doubles and triples counting rates for each uranium system are compared to calculations from point kinetics models of neutron multiplicity to assign multiplication values. These multiplication values are compared to those from MC NP K-Code calculations

  16. Performance of an active well coincidence counter for HEU samples

    International Nuclear Information System (INIS)

    Ferrari, Francesca; Peerani, Paolo

    2010-01-01

    Neutron coincidence counting is the reference NDA technique used in nuclear safeguards to measure the mass of nuclear material in samples. For high-enriched uranium (HEU) samples active neutron interrogation is generally performed and the most common device used by nuclear inspectors is the Active Well Coincidence Counter (AWCC). Within her master thesis at the Polytechnic of Milan, the first author performed an intensive study on the characteristics and performances of the AWCC in order to assess the 235 U mass in HEU oxide samples at the PERLA laboratory of JRC. The work has been summarised in this paper that starts with the optimisation of the use of AWCC for nuclear safeguards, describing the calibration procedure, reporting results of a series of verification measurements, summarising the performances that can be obtained with this instruments during inspections at fuel production plants and concluding with the discussion of uncertainties related to these measurements.

  17. Present state of development of uranium enrichment

    International Nuclear Information System (INIS)

    1979-01-01

    The pilot plant for uranium enrichment started the operation on September 12, 1979. The pilot plant has been constructed by the Power Reactor and Nuclear Fuel Development Corp. in Ningyo Pass, Okayama Prefecture. 7000 centrifugal separators will be installed by mid 1981, and yearly production of 70 t SWU is expected. The Uranium Enrichment Committee of Japan Atomic Industrial Forum has made the proposal on the method of forwarding the development of uranium enrichment in Japan to Atomic Energy Commission and related government offices in December, 1978. This survey summarized the trends of uranium enrichment in Japan and foreign countries and the problems about nuclear non-proliferation, and provides with the reference materials. The demand and supply of uranium enrichment in the world, the present states and plans in USA, Europe, USSR and others, the demand and supply of uranium enrichment and the measures for securing it in Japan, the present state and future plan of uranium enrichment project in Japan, the international regulation of uranium enrichment, the recent policy of USA and INFCE, and the trend of the regulation of utilizing enriched uranium are described. Moreover, the concept of separation works in uranium enrichment and the various technologies of separation are explained. (Kako, I.)

  18. HEU to LEU Conversion and Blending Facility: UF{sub 6} blending alternative to produce LEU UF{sub 6} for commercial use

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    US DOE is examining options for disposing of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials; the nuclear material will be converted to a form more proliferation- resistant than the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. Five technologies for blending HEU will be assessed; blending as UF{sub 6} to produce a UF{sub 6} product for commercial use is one of them. This document provides data to be used in the environmental impact analysis for the UF{sub 6} blending HEU disposition option. Resource needs, employment needs, waste and emissions from plant, hazards, accident scenarios, and intersite transportation are discussed.

  19. Preliminary Assessment of the Impact on Reactor Vessel dpa Rates Due to Installation of a Proposed Low Enriched Uranium (LEU) Core in the High Flux Isotope Reactor (HFIR)

    Energy Technology Data Exchange (ETDEWEB)

    Daily, Charles R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    An assessment of the impact on the High Flux Isotope Reactor (HFIR) reactor vessel (RV) displacements-per-atom (dpa) rates due to operations with the proposed low enriched uranium (LEU) core described by Ilas and Primm has been performed and is presented herein. The analyses documented herein support the conclusion that conversion of HFIR to low-enriched uranium (LEU) core operations using the LEU core design of Ilas and Primm will have no negative impact on HFIR RV dpa rates. Since its inception, HFIR has been operated with highly enriched uranium (HEU) cores. As part of an effort sponsored by the National Nuclear Security Administration (NNSA), conversion to LEU cores is being considered for future HFIR operations. The HFIR LEU configurations analyzed are consistent with the LEU core models used by Ilas and Primm and the HEU balance-of-plant models used by Risner and Blakeman in the latest analyses performed to support the HFIR materials surveillance program. The Risner and Blakeman analyses, as well as the studies documented herein, are the first to apply the hybrid transport methods available in the Automated Variance reduction Generator (ADVANTG) code to HFIR RV dpa rate calculations. These calculations have been performed on the Oak Ridge National Laboratory (ORNL) Institutional Cluster (OIC) with version 1.60 of the Monte Carlo N-Particle 5 (MCNP5) computer code.

  20. Reducing enrichment of fuel for research reactors

    International Nuclear Information System (INIS)

    Kanda, Keiji; Matsuura, Shojiro.

    1980-01-01

    In research reactors, highly enriched uranium (HEU) is used as fuel for their purposes of operation. However, the United States strongly required in 1977 that these HEU should be replaced by low enrichment uranium (LEU) of 20% or less, or even in unavoidable cases, it should be replaced by medium enrichment uranium (MEU). INFCE (International Nuclear Fuel Cycle Evaluation) which started its activity just at that time decided to discuss this problem in the research reactor group of No. 8 sectional committee. Japan has been able to forward the work, taking a leading part in the international opinion because she has taken the countermeasures quickly. INFCE investigated the problem along the lines of policy that the possibility of reducing the degree of enrichment should be limited to the degree in which the core structures and equipments of research reactors will be modified as little as possible, and the change of fuel element geometry will be done within the permissible thermohydrodynamic capacity, and concluded that it might be possible in near future to reduce the degree of enrichment to about 45% MEU, while the reduction to 20% LEU might require considerable research, development and verification. On the other hand, the joint researches by Kyoto University and ANL (Argonne National Laboratory) and by Japan Atomic Energy Research Institute and ANL are being continued. IAEA has edited the guidebook (IAEA-TECDOC-233) for reducing the degree of enrichment for developing countries. (Wakatsuki, Y.)

  1. Fuel depletion analyses for the HEU core of GHARR-1: Part II: Fission product inventory

    International Nuclear Information System (INIS)

    Anim-Sampong, S.; Akaho, E.H.K.; Boadu, H.O.; Intsiful, J.D.K.; Osae, S.

    1999-01-01

    The fission product isotopic inventories have been estimated for a 90.2% highly enriched uranium (HEU) fuel lattice cell of the Ghana Research Reactor-1 (GHARR-1) using the WIMSD/4 transport lattice code. The results indicate a gradual decrease in the Xe 135 inventory, and saturation trend for Sm 149 , Cs 134 and Cs 135 inventories as the fuel is depleted to 10,000 MWd/tU. (author)

  2. Coordination Between the HEU Transparency Program and the Material Protection, Control and Accountability Program

    International Nuclear Information System (INIS)

    Glaser, J.; Hernandez, J.; Dougherty, D.; Bieniawski, A.; Cahalane, P.; Mastal, E.

    2000-01-01

    DOE sponsored programs such as Material Protection Control and Accountability (MPC and A) and implementation of the Highly-Enriched Uranium (HEU) Transparency Program send US personnel into Russian nuclear facilities and receive Russian representatives from these programs. While there is overlap in the Russian nuclear facilities visited by these two programs, there had not been any formal mechanism to share information between them. Recently, an MPC and A/HEU Working Group was developed to facilitate the sharing of appropriate information and to address concerns expressed by Minatom and Russian facility personnel such as US visit scheduling conflicts. This paper discusses the goals of the Working Group and ways it has helped to allow the programs to work more efficiently with the Russian facilities

  3. Why does the need of HEU for high flux research reactors remain?

    International Nuclear Information System (INIS)

    Glaeser, W.

    1991-01-01

    It has shown that high performance high flux reactors need an ongoing supply of highly enriched uranium. The new fuel materials in their highly enriched version offer prospective for advanced and better neutron sources vital for the future of neutron research. This is another very attractive result of the RERTR programme. One-sided restriction would only provide marginal or no values for research. If we adopt the sometimes expressed views that high enriched RERTR developed fuel should only be made available when unique benefits to mankind could be obtained, then certainly basic research at the forefront belongs to this category. HEU would only pose theoretical difficulties, if it would remain under proper safeguards and obviously this is the way to be pursued. (orig.)

  4. Report of the Subcommittee on Domestic Uranium Enrichment

    International Nuclear Information System (INIS)

    1981-01-01

    A report by the Subcommittee on Domestic Uranium Enrichment to the Atomic Energy Commission is described; which covers the procedure of the domestic uranium enrichment by centrifugal process up to the commercial production, reviewing the current situation in this field. Domestic uranium enrichment is important in the aspects of securing stable enrichment service, establishing sound fuel cycle, and others. As the future target, the production around the year 2000 is set at 3,000 tons SWU per year at least. The business of uranium enrichment, which is now developed in the Power Reactor and Nuclear Fuel Development Corporation, is to be carried out by private enterprise. The contents are as follows: demand and supply balance of uranium enrichment service, significance of domestic uranium enrichment, evaluation of centrifugal uranium enrichment technology, the target of domestic uranium enrichment, the policy of domestic uranium enrichment promotion. (J.P.N.)

  5. 31 CFR 540.316 - Uranium enrichment.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Uranium enrichment. 540.316 Section 540.316 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF... REGULATIONS General Definitions § 540.316 Uranium enrichment. The term uranium enrichment means the process of...

  6. Operation of automated NDA instruments for in-line HEU accounting at Y-12

    International Nuclear Information System (INIS)

    Russo, P.A.; Strittmatter, R.B.; Sandford, E.L.; Jeter, I.W.; McCullough, E.; Bowers, G.L.

    1983-01-01

    Two automated nondestructive assay instruments developed at Los Alamos in support of nuclear materials accounting needs are currently operating in-line at the Y-12 Plant for recovery of highly enriched uranium. One instrument provides the HEU inventory in the secondary solvent extraction system, and the other monitors HEU concentration in the secondary intermediate evaporator. Both instruments were installed in December 1982. Operational evaluation of these instruments has been a joint effort of Y-12 and Los Alamos. This has included comparison of the solvent extraction system inventories with direct measurement performed on the dumped solution components of the solvent extraction system, as well as comparisons of concentration assay results with the external assays of samples withdrawn from the process. The function, design, and preliminary results of the operational evaluation are reported

  7. Prospects and problems of uranium enrichment

    International Nuclear Information System (INIS)

    Imai, Ryukichi

    1974-01-01

    The problem of uranium enrichment now concerns principally peaceful nuclear power generation. With the current oil crisis, energy resources assume unprecedented importance. However, the requirements for enriched uranium vary with the vicissitude of the world situation in nuclear power generation; the enterprise of uranium enrichment is related to economic aspect. The following matters are described: dimension of enrichment problem, political factors, changes in requirements, projects in each country, and strategy of enrichment in Japan. (Mori, K.)

  8. Getting the plutonium disposition job done: the concept of a joint-venture disposition enterprise financed by additional sales of highly enriched uranium

    International Nuclear Information System (INIS)

    Bunn, M.

    1996-01-01

    The paper gives an outline of a concept which has the potential to provide both substantial financing needed for disposition of plutonium from excess nuclear weapons and the long-term management structure required to implement this effort. The three most important issues were underlined. First, it is urgent to modernize security and accounting systems for all weapon-usable nuclear materials, particularly from former Soviet Union. Second, excess plutonium and Highly Enriched Uranium (HEU) must be brought under international monitoring to ensure irreversibility of nuclear arms reduction. Third, quick move should be done towards actual disposition of excess plutonium and HEU. Technology already exists, but the key issues are how to get finance and manage this operation, particularly given its immense scope and controversial nature. An international joint venture 'Enterprise for nuclear Security' that would build and operate plutonium disposition facilities under stringent non-proliferation controls, financed through additional sales of HEU is a potentially promising approach to addressing the most difficult issues facing the disposition problem

  9. Reduced Enrichment for Research and Test Reactors. Proceedings of the XVIII international meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Almost 50 papers presented were showing the status of the national programs related to conversion of research reactor cores from highly enriched (HEU) to low enriched uranium (LEU) fuel elements. Design of new fuel elements (uranium silicides) and safety related calculations were dealt with taking into account fuel cycle issues, meaning spent fuel storage and transportation. A number of presentations were devoted to Mo-99 production using LEU targets.

  10. Reduced Enrichment for Research and Test Reactors. Proceedings of the XVIII international meeting

    International Nuclear Information System (INIS)

    2004-01-01

    Almost 50 papers presented were showing the status of the national programs related to conversion of research reactor cores from highly enriched (HEU) to low enriched uranium (LEU) fuel elements. Design of new fuel elements (uranium silicides) and safety related calculations were dealt with taking into account fuel cycle issues, meaning spent fuel storage and transportation. A number of presentations were devoted to Mo-99 production using LEU targets

  11. Fuel enrichment reduction for heavy water moderated research reactors

    International Nuclear Information System (INIS)

    McCulloch, D.B.

    1984-01-01

    Twelve heavy-water-moderated research reactors of significant power level (5 MW to 125 MW) currently operate in a number of countries, and use highly enriched uranium (HEU) fuel. Most of these reactors could in principle be converted to use uranium of lower enrichment, subject in some cases to the successful development and demonstration of new fuel materials and/or fuel element designs. It is, however, generally accepted as desirable that existing fuel element geometry be retained unaltered to minimise the capital costs and licensing difficulties associated with enrichment conversion. The high flux Australian reactor, HIFAR, at Lucas Heights, Sydney is one of 5 Dido-class reactors in the above group. It operates at 10 MW using 80% 235 U HEU fuel. Theoretical studies of neutronic, thermohydraulic and operational aspects of converting HIFAR to use fuels of reduced enrichment have been made over a period. It is concluded that with no change of fuel element geometry and no penalty in the present HEU fuel cycle burn-up performance, conversion to MEU (nominally 45% 235 U) would be feasible within the limits of current fully qualified U-Al fuel materials technology. There would be no significant, adverse effects on safety-related parameters (e.g. reactivity coefficients) and only small penalties in reactor flux. Conversion to LEU (nominally 20% 235 U) a similar basis would require that fuel materials of about 2.3 g U cm -3 be fully qualified, and would depress the in-core thermal neutron flux by about 15 per cent relative to HEU fuelling. In qualitative terms, similar conclusions would be expected to hold for a majority of the above heavy water moderated reactors. (author)

  12. AEC determines uranium enrichment policy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The Advisory Committee on Uranium Enrichment of the Atomic Energy Commission (AEC) has submitted a report to AEC chairman concerning the promotion of the introduction of advanced material, high performance centrifuges to replace conventional metallic drum centrifuges, and the development of next generation advanced centrifuges. The report also called for the postponement until around 1997 of the decision whether the development should be continued or not on atomic vapor laser isotope separation (AVLIS) and molecular laser isotope separation (MLIS) processes, as well as the virtual freezing of the construction of a chemical process demonstration plant. The report was approved by the AEC chairman in August. The uranium enrichment service market in the world will continue to be characterized by oversupply. The domestic situation of uranium enrichment supply-demand trend, progress of the expansion of Rokkasho enrichment plant, the trend in the development of gas centrifuge process and the basic philosophy of commercializing domestic uranium enrichment are reported. (K.I.)

  13. Development of empirical relation for isotope of uranium in enriched uranium matrix

    International Nuclear Information System (INIS)

    Srivastava, S.K.; Vidyasagar, D.; Jha, S.K.; Tripathi, R.M.

    2018-01-01

    Uranium enriched in 235 U is required in commercial light water reactors to produce a controlled nuclear reaction. Enrichment allows the 235 U isotopes to be increased from 0.71% to a range between 2% to 5% depending upon requirement. The enriched uranium in the form of sintered UO 2 pellet is used for any commercially operating boiling light water reactors. The enriched uranium fuel bundle surface swipes sample is being analysed to assess the tramp uranium as a quality control parameter. It is known that the 234 U isotope also enriched along with 235 U isotope in conventional gaseous diffusion enrichment process. The information about enrichment percentage of 234 U helps to characterize isotopic properties of enriched uranium. A few reports provide the empirical equation and graphs for finding out the specific activity, activity percentage, activity ratio of 234 U isotopes for enriched uranium. Most of them have not provided the reference for the data used and their source. An attempt has been made to model the relationship between 234 U and 235 U as a function of uranium enrichment at low level

  14. Enrichment into the 21st century

    International Nuclear Information System (INIS)

    Rutkowski, E.

    1995-01-01

    This article discusses the future of the enrichment services market into the next century. It is estimated that demand for enrichment services will reach 31 million SWU by the end of the century and remain constant for the following 10 years. The current world enrichment capacity is 44 million SWU, or some 50% ahead of the demand. This oversupply is projected to continue into the next century, but in spite of this, several suppliers are planning new enrichment facilities. HEU as a source of enriched uranium is examined. Overall, long-term prices for enrichment services are expected to decline in the coming decade

  15. A view from the top: US enrichment Corp.'s William H. Timbers, Jr

    International Nuclear Information System (INIS)

    Giltenan, E.

    1993-01-01

    Nick Timbers took over as the first Transition Manager of the US Enrichment Corporation upon its founding last July 1st. Although USEC is not involved in negotiating the HEU deal, the fledgling company will be in charge of actually buying and selling the resulting LEU. Whenever the deal is finally signed. After the politics and haggling are over, it will be up to Nick Timbers to make the deal work on the global uranium market. The view from USEC is resolute. No matter what shape the final HEU deal takes, Nick Timbers promises that USEC will remain a competitive supplier of enrichment services. Timbers pledges that any extra costs associated with the HEU deal will not be passed on to customers. He took time out from his recent busy schedule to share his thoughts on HEU and its aftermath

  16. Uranium-enriched granites in Sweden

    International Nuclear Information System (INIS)

    Wilson, M.R.; Aakerblom, G.

    1980-01-01

    Granites with uranium contents higher than normal occur in a variety of geological settings in the Swedish Precambrian, and represent a variety of granite types and ages. They may have been generated by the anatexis of continental crust or processes occurring at a much greater depth. They commonly show enrichment in F, Sn, W and/or Mo. Only in one case is an important uranium mineralization thought to be directly related to a uranium-enriched granite, while the majority of epigenetic uranium mineralizations with economic potential are related to hydrothermal processes in areas where the bedrock is regionally uranium-enhanced. (author)

  17. Uranium enriched granites in Sweden

    International Nuclear Information System (INIS)

    Wilson, M.R.; Aakerblom, G.

    1980-01-01

    Granites with uranium contents higher than normal occur in a variety of geological settings in the Swedish Precambrian, and represent a variety of granite types and ages. They may have been generated by (1) the anatexis of continental crust (2) processes occurring at a much greater depth. They commonly show enrichement in F, Sn, W and/or Mo. Only in one case is an important uranium mineralization thought to be directly related to a uranium-enriched granite, while the majority of epigenetic uranium mineralizations with economic potential are related to hydrothermal processes in areas where the bedrock is regionally uranium-enhanced. (Authors)

  18. An Effort to Improve Uranium Foil Target Fabrication Technology by Single Roll Method

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Moon Soo; Lee, Jong Hyeon [Chungnam National University, Daejeon (Korea, Republic of); Kim, Chang Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Technetium-99({sup 99m}Tc) is the most commonly used radioisotope in nuclear medicine for diagnostic procedures. It is produced from the decay of its parent Mo-99, which is sent to the hospital or clinic in the form of a generator. Recently, all of the major providers of Mo-99 have used high-enrichment uranium (HEU) as a target material in a research and test reactor. As a part of a nonproliferation effort, the RERTR program has investigated the production of the fission isotope Mo-99 using low-enrichment uranium(LEU) instead of HEU since 1993, a parent nuclide of {sup 99m}Tc , which is a major isotope for a medical diagnosis. As uranium foils have been produced by the conventional method on a laboratory scale by a repetitive hot-rolling method with significant problems in foil quality, productivity and economic efficiency, attention has shifted to the planar flow casting(PFC) method. In KAERI, many experiments are performed using depleted uranium(DU).

  19. Uranium Conversion & Enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-06

    The isotopes of uranium that are found in nature, and hence in ‘fresh’ Yellowcake’, are not in relative proportions that are suitable for power or weapons applications. The goal of conversion then is to transform the U3O8 yellowcake into UF6. Conversion and enrichment of uranium is usually required to obtain material with enough 235U to be usable as fuel in a reactor or weapon. The cost, size, and complexity of practical conversion and enrichment facilities aid in nonproliferation by design.

  20. Critical review of uranium resources and production capability to 2020

    International Nuclear Information System (INIS)

    1998-08-01

    This report was prepared to assess the changing uranium supply and demand situation as well as the adequacy of uranium resources and the production capability to supply uranium concentrate to meet reactor demand through 2020. Uranium production has been meeting only 50 to 60 percent of the world requirements with the balance met from sale of excess inventory offered on the market at low prices. It is generally agreed by most specialists that the end of the excess inventory is approaching. With inventory no longer able to meet the production shortfall it is necessary to significantly expand uranium production to fill an increasing share of demand. Non-production supplies of uranium, such as the blending of highly enriched uranium (HEU) warheads to produce low enriched reactor fuel and reprocessing of spent fuel, are also expected to grow in importance as a fuel source. This analysis addresses three major concerns as follows: adequacy of resources to meet projected demand; adequacy of production capability to produce the uranium; and market prices to sustain production to fill demand. This analysis indicates uranium mine production to be the primary supply providing about 76 to 78 percent of cumulative needs through 2020. Alternative sources supplying the balance, in order of relative importance are: (1) low enriched uranium (LEU) blended from 500 tonnes of highly enriched uranium (HEU) Russian weapons, plus initial US Department of Energy (US DOE) stockpile sales (11 to 13%); (2) reprocessing of spent nuclear fuel (6%) and; (3) utility and Russian stockpiles. Further this report gives uranium production profiles by countries: CIS producers (Kazakhstan, Russian Federation, Ukraine, Uzbekistan) and other producers (Australia, Canada, China, Gabon, Mongolia, Namibia, Niger, South Africa, United States of America)

  1. Transition from HEU to LEU fuel in Romania's 14-MW TRIGA reactor

    International Nuclear Information System (INIS)

    Bretscher, M.M.; Snelgrove, J.L.

    1995-01-01

    The 14-MW TRIGA steady state reactor (SSR) located in Pitesti, Romania, first went critical in the fall of 1979. Initially, the core configuration for full power operation used 29 fuel clusters each containing a 5 x 5 square array of HEU U (10 wt% - ZrH - Er 2.8 wt%) fuel-moderator rods (1.295 cm o.d.) clad in Incoloy. With a total inventory of 35 HEU fuel clusters, burnup, considerations required a gradual expansion of the core from 29 to 32 and finally to 35 clusters before the reactor was shut down because of insufficient excess reactivity. At this time each of the original 29 fuel clusters had an average 235 U burnup in the range from 50 to 62%. Because of the U.S. policy regarding the export of highly enriched uranium, fresh HEU TRIGA replacement fuel is not available. After a number of safety-related measurements, the SSR is expected to resume full power operation in the near future using a mixed core containing five LEU TRIGA clusters of the same geometry as the original fuel but with fuel-moderator rods containing 45 wt% U (19.7% 235 U enrichment) and 1.1 wt% Er. Rods for 14 additional LEU fuel clusters will be fabricated by General Atomics. In support of the SSR mixed core operation numerous neutronic calculations have been performed. This paper presents some of the results of those calculations. (author)

  2. Neutronic calculations for the conversion of the University of Florida Training Reactor from HEU to LEU fuel

    International Nuclear Information System (INIS)

    Dugan, E.T.; Diaz, N.J.; Kniedler, G.S.

    1983-01-01

    The University of Florida Training Reactor (UFTR) is located on the University of Florida campus in Gainesville, Florida. The reactor is the Argonaut type, heterogeneous in design and currently fueled with 93% enriched, uranium-aluminum alloy MTR plate-type fuel. Investigations are being performed to examine te feasibility of replacing the highly-enriched fuel of the current UFTR with 4.8% enriched, cylindrical pin SPERT fuel. The SPERT fuel is stainless steel clad and contains uranium dioxide (UO 2 ) pellets. On a broad spectrum, training reactor conversion from high enrichment uranium (HEU) to low enrichment uranium (LEU) fueled facilities has been a continuing concern in the International Atomic Energy Agency (IAEA) and significant work has been done in this area by the Argonne RERTR Program. The International Atomic Energy Agency cites three reasons for reactor conversion to low-enriched uranium. The main reason is the desire to reduce the proliferation potential of research reactor fuels. The second is to increase the assurance of continued fuel availability in the face of probable restrictions on the supply of highly-enriched uranium. The third reason is the possible reduction in requirements for physical security measures during fabrication, transportation, storage and use. This same IAEA report points out that the three reasons stated for the conversion of the fuel of research reactors are interrelated and cannot be considered individually. The concerns of the Nuclear Engineering Sciences Department at the University of Florida relating to the HEU fuel of the UFTR coincide with those of the International Atomic Energy Agency. The primary reason for going to low-enriched pin-type fuel is the concern with proliferation provoked by the highly-enriched plate fuel which has led to tighter security of nuclear facilities such as the UFTR. A second reason for changing to the pin-type fuel is because of difficulties that are being encountered in the supply of the

  3. Neutronic calculations for the conversion of the University of Florida Training Reactor from HEU to LEU fuel

    Energy Technology Data Exchange (ETDEWEB)

    Dugan, E T; Diaz, N J [Department of Nuclear Engineering Sciences, University of Florida, Gainesville, FL (United States); Kniedler, G S [Reactor Analysis Group, TVA, Chattanooga, TN (United States)

    1983-09-01

    The University of Florida Training Reactor (UFTR) is located on the University of Florida campus in Gainesville, Florida. The reactor is the Argonaut type, heterogeneous in design and currently fueled with 93% enriched, uranium-aluminum alloy MTR plate-type fuel. Investigations are being performed to examine te feasibility of replacing the highly-enriched fuel of the current UFTR with 4.8% enriched, cylindrical pin SPERT fuel. The SPERT fuel is stainless steel clad and contains uranium dioxide (UO{sub 2}) pellets. On a broad spectrum, training reactor conversion from high enrichment uranium (HEU) to low enrichment uranium (LEU) fueled facilities has been a continuing concern in the International Atomic Energy Agency (IAEA) and significant work has been done in this area by the Argonne RERTR Program. The International Atomic Energy Agency cites three reasons for reactor conversion to low-enriched uranium. The main reason is the desire to reduce the proliferation potential of research reactor fuels. The second is to increase the assurance of continued fuel availability in the face of probable restrictions on the supply of highly-enriched uranium. The third reason is the possible reduction in requirements for physical security measures during fabrication, transportation, storage and use. This same IAEA report points out that the three reasons stated for the conversion of the fuel of research reactors are interrelated and cannot be considered individually. The concerns of the Nuclear Engineering Sciences Department at the University of Florida relating to the HEU fuel of the UFTR coincide with those of the International Atomic Energy Agency. The primary reason for going to low-enriched pin-type fuel is the concern with proliferation provoked by the highly-enriched plate fuel which has led to tighter security of nuclear facilities such as the UFTR. A second reason for changing to the pin-type fuel is because of difficulties that are being encountered in the supply of

  4. Civilian inventories of plutonium and highly enriched uranium

    International Nuclear Information System (INIS)

    Albright, D.

    1987-01-01

    In the future, commercial laser isotope enrichment technologies, currently under development, could make it easier for national to produce highly enriched uranium secretly. The head of a US firm that is developing a laser enrichment process predicts that in twenty years, major utilities and small countries will have relatively small, on-site, laser-based uranium enrichment facilities. Although these plants will be designed for the production of low enriched uranium, they could be modified to produce highly enriched uranium, an option that raises the possibility of countries producing highly enriched uranium in small, easily hidden facilities. Against this background, most of this report describes the current and future quantities of plutonium and highly enriched uranium in the world, their forms, the facilities in which they are produced, stored, and used, and the extent to which they are transported. 5 figures, 10 tables

  5. Uranium enrichment

    International Nuclear Information System (INIS)

    1991-08-01

    This paper reports that in 1990 the Department of Energy began a two-year project to illustrate the technical and economic feasibility of a new uranium enrichment technology-the atomic vapor laser isotope separation (AVLIS) process. GAO believes that completing the AVLIS demonstration project will provide valuable information about the technical viability and cost of building an AVLIS plant and will keep future plant construction options open. However, Congress should be aware that DOE still needs to adequately demonstrate AVLIS with full-scale equipment and develop convincing cost projects. Program activities, such as the plant-licensing process, that must be completed before a plant is built, could take many years. Further, an updated and expanded uranium enrichment analysis will be needed before any decision is made about building an AVLIS plant. GAO, which has long supported legislation that would restructure DOE's uranium enrichment program as a government corporation, encourages DOE's goal of transferring AVLIS to the corporation. This could reduce the government's financial risk and help ensure that the decision to build an AVLIS plant is based on commercial concerns. DOE, however, has no alternative plans should the government corporation not be formed. Further, by curtailing a planned public access program, which would have given private firms an opportunity to learn about the technology during the demonstration project, DOE may limit its ability to transfer AVLIS to the private sector

  6. Uranium enrichment in the United States

    International Nuclear Information System (INIS)

    Hill, J.H.; Parks, J.W.

    1975-01-01

    History, improvement programs, status of electrical power availability, demands for uranium enrichment, operating plan for the U. S. enriching facilities, working inventory of enriched uranium, possible factors affecting deviations in the operating plan, status of gaseous diffusion technology, status of U. S. gas centrifuge advances, transfer of enrichment technology, gaseous diffusion--gas centrifuge comparison, new enrichment capacity, U. S. separative work pricing, and investment in nuclear energy are discussed. (LK)

  7. Uranium enrichment. Enrichment processes

    International Nuclear Information System (INIS)

    Alexandre, M.; Quaegebeur, J.P.

    2009-01-01

    Despite the remarkable progresses made in the diversity and the efficiency of the different uranium enrichment processes, only two industrial processes remain today which satisfy all of enriched uranium needs: the gaseous diffusion and the centrifugation. This article describes both processes and some others still at the demonstration or at the laboratory stage of development: 1 - general considerations; 2 - gaseous diffusion: physical principles, implementation, utilisation in the world; 3 - centrifugation: principles, elementary separation factor, flows inside a centrifuge, modeling of separation efficiencies, mechanical design, types of industrial centrifuges, realisation of cascades, main characteristics of the centrifugation process; 4 - aerodynamic processes: vortex process, nozzle process; 5 - chemical exchange separation processes: Japanese ASAHI process, French CHEMEX process; 6 - laser-based processes: SILVA process, SILMO process; 7 - electromagnetic and ionic processes: mass spectrometer and calutron, ion cyclotron resonance, rotating plasmas; 8 - thermal diffusion; 9 - conclusion. (J.S.)

  8. U.S. forms uranium enrichment corporation

    International Nuclear Information System (INIS)

    Seltzer, R.

    1993-01-01

    After almost 40 years of operation, the federal government is withdrawing from the uranium enrichment business. On July 1, the Department of Energy turned over to a new government-owned entity--the US Enrichment Corp. (USEC)--both the DOE enrichment plants at Paducah, Ky., and Portsmouth, Ohio, and domestic and international marketing of enriched uranium from them. Pushed by the inability of DOE's enrichment operations to meet foreign competition, Congress established USEC under the National Energy Policy Act of 1992, envisioning the new corporation as the first step to full privatization. With gross revenues of $1.5 billion in fiscal 1992, USEC would rank 275th on the Fortune 500 list of top US companies. USEC will lease from DOE the Paducah and Portsmouth facilities, built in the early 1950s, which use the gaseous diffusion process for uranium enrichment. USEC's stock is held by the US Treasury, to which it will pay annual dividends. Martin Marietta Energy Systems, which has operated Paducah since 1984 and Portsmouth since 1986 for DOE, will continue to operate both plants for USEC. Closing one of the two facilities will be studied, especially in light of a 40% world surplus of capacity over demand. USEC also will consider other nuclear-fuel-related ventures. USEC will produce only low-enriched uranium, not weapons-grade material. Indeed, USEC will implement a contract now being completed under which the US will purchase weapons-grade uranium from dismantled Russian nuclear weapons and convert it into low-enriched uranium for power reactor fuel

  9. Preliminary Accident Analyses for Conversion of the Massachusetts Institute of Technology Reactor (MITR) from Highly Enriched to Low Enriched Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Floyd E. [Argonne National Lab. (ANL), Argonne, IL (United States); Olson, Arne P. [Argonne National Lab. (ANL), Argonne, IL (United States); Wilson, Erik H. [Argonne National Lab. (ANL), Argonne, IL (United States); Sun, Kaichao S. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Newton, Jr., Thomas H. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Hu, Lin-wen [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2013-09-30

    The Massachusetts Institute of Technology Reactor (MITR-II) is a research reactor in Cambridge, Massachusetts designed primarily for experiments using neutron beam and in-core irradiation facilities. It delivers a neutron flux comparable to current LWR power reactors in a compact 6 MW core using Highly Enriched Uranium (HEU) fuel. In the framework of its non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context most research and test reactors, both domestic and international, have started a program of conversion to the use of LEU fuel. A new type of LEU fuel based on an alloy of uranium and molybdenum (U-Mo) is expected to allow the conversion of U.S. domestic high performance reactors like MITR. This report presents the preliminary accident analyses for MITR cores fueled with LEU monolithic U-Mo alloy fuel with 10 wt% Mo. Preliminary results demonstrate adequate performance, including thermal margin to expected safety limits, for the LEU accident scenarios analyzed.

  10. Uranium enrichment techniques

    International Nuclear Information System (INIS)

    Hamdoun, N.A.

    2007-01-01

    This article includes an introduction about the isotopes of natural uranium, their existence and the difficulty of the separation between them. Then it goes to the details of a number of methods used to enrich uranium: Gaseous Diffusion method, Electromagnetic method, Jet method, Centrifugal method, Chemical method, Laser method and Plasma method.

  11. Study on the radiotoxicology of enriched uranium

    International Nuclear Information System (INIS)

    Zhu Shoupeng; Zheng Siying; Wang Guolin; Wang Chongdao; Cao Genfa

    1987-12-01

    A study on the retentive peculiarity of soluble enriched uranium UO 2 F 2 were observed after iv once or consecutive ip qd x 3d to Wistar male rats. The dynamic retention of radioactivity in the body showed that the enriched uranium UO 2 F 2 was chiefly localized in kidney, and then in skeleton and liver. The radioactivity of the enriched uranium UO 2 F 2 in skeleton rose steadily while the concentratoin in kidney and liver droped. When enriched uranium UO 2 F 2 was accumulated in organism, it caused chromosome aberrations on bone marrow cells. Results indicated that the chromosome aberration rates were elevated when the dose of the enriched uranium UO 2 F 2 was increased, at the same time, the cell division was depressed. Accumulation of insoluble enriched uranium U 3 O 8 in gastrointestinal tract was well described by a two exponential expression. Values of retention estimate for fast component, T 1 = 0.34 d, and for relatively long term component, T 2 = 4.05 d. The deposition of UO 2 F 2 in the intact skin was only 0.16 to 0.18% of the total contaminated UO 2 F 2 . Penetration of the enriched uranium UO 2 F 2 was dominantly increased in abraded skin. This value is about 25 to 32 times as compaired with that in intact skin. Retention of the enriched uranium UO 2 F 2 through abraded skins was dominantly localized in kidney and skeleton

  12. HEU age determination by the activity ratio {sup 227}Th/{sup 235}U

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junjie; Zeng, Lina; Wu, Jian; Zheng, Chun; Li, Jiansheng, E-mail: lastljj@hotmail.com

    2014-02-15

    It is important to measure the age of a highly enriched uranium (HEU) assembly for authentication of the material in the frame of arms control inspections. A new non-destructive gamma spectrometric method for HEU age-dating is reported. This method relies on measuring the daughter/parent activity ratio {sup 227}Th/{sup 235}U by high-resolution gamma spectrometry. Only a narrow gamma range of energy of uranium from 230 keV to 242 keV will be used for analysis. The relative efficiency of every characteristic gamma ray changes in a small range because it has a near energy, which makes the results more accurate in theory. It provides a quick and reliable method for HEU age determination. Several gamma spectra of the same HEU assembly have been measured with different conditions (gain settings, distance and measurement time). When a branching ratio of 12.6% was chosen for the 235.96 keV line of {sup 227}Th, we obtained the activity ratios of (5.61 ± 0.40) × 10{sup −4}, (5.17 ± 0.39) × 10{sup −4}, (5.26 ± 0.39) × 10{sup −4}, (5.10 ± 0.35) × 10{sup −4}, (5.50 ± 0.44) × 10{sup −4} and (5.47 ± 0.42) × 10{sup −4}, respectively. These ratios correspond to ages of 52.2 ± 2.4 years, 49.7 ± 2.3 years, 50.1 ± 2.3 years, 49.3 ± 2.2 years, 51.6 ± 2.5 years and 51.5 ± 2.4 years, respectively, which are consistent with the known age of this material and the results of the U–Bi method.

  13. Detection of uranium enrichment activities using environmental monitoring techniques

    International Nuclear Information System (INIS)

    Belew, W.L.; Carter, J.A.; Smith, D.H.; Walker, R.L.

    1993-01-01

    Uranium enrichment processes have the capability of producing weapons-grade material in the form of highly enriched uranium. Thus, detection of undeclared uranium enrichment activities is an international safeguards concern. The uranium separation technologies currently in use employ UF 6 gas as a separation medium, and trace quantities of enriched uranium are inevitably released to the environment from these facilities. The isotopic content of uranium in the vegetation, soil, and water near the plant site will be altered by these releases and can provide a signature for detecting the presence of enriched uranium activities. This paper discusses environmental sampling and analytical procedures that have been used for the detection of uranium enrichment facilities and possible safeguards applications of these techniques

  14. Analysis on possible North Korea's uranium stock by using open source information

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Hyun [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2012-10-15

    The gas centrifuge plant in Yongbyon is the only revealed uranium enrichment plant in North Korea. Yongbyon enrichment plant is believed producing only LEU below 5 percent uranium 235 for use as fuel in the LWR, as they said. But the plant could be easily converted to producing HEU for nuclear weapons. In this paper, we estimated the enrichment capability of the Yongbyon plant based on the known characteristics of its centrifuges and cascades. And then we developed the four possible uranium enrichment scenarios, to examine the future options that North Korea may use to enhance its enrichment capability. Finally, we suggested several key measures to stop North Korea from pursing its nuclear ambitions.

  15. Long term assurance of supply of uranium enrichment

    International Nuclear Information System (INIS)

    1978-01-01

    After elaborating a number of key questions on uranium enrichment, the representatives of 10 countries and of the EC commission present their answers. Attention is paid to the assurance of uranium supply, to uranium enrichment, market trends and flexibility in enrichment agreements

  16. Evaluation of the uranium enrichment demonstration plant project

    International Nuclear Information System (INIS)

    Sugitsue, Noritake

    2001-01-01

    In this report, the organization system of the uranium enrichment business is evaluated, based on the operation of the uranium enrichment demonstration plant. As a result, in uranium enrichment technology development or business, it was acknowledged that maintenance of the organization which has the Trinity of a research/engineering/operation was necessary in an industrialization stage by exceptional R and D cycle. Japan Nuclear Fuel Ltd. (JNFL) set up the Rokkashomura Aomori Uranium Enrichment Research and Development Center in November 2000. As a result, the system that company directly engaged in engineering development was prepared. And results obtained in this place is expected toward certain establishment of the uranium enrichment business of Japan. (author)

  17. Effect of reduced enrichment on the fuel cycle for research reactors

    International Nuclear Information System (INIS)

    Travelli, A.

    1982-01-01

    The new fuels developed by the RERTR Program and by other international programs for application in research reactors with reduced uranium enrichment (<20% EU) are discussed. It is shown that these fuels, combined with proper fuel-element design and fuel-management strategies, can provide at least the same core residence time as high-enrichment fuels in current use, and can frequently significantly extend it. The effect of enrichment reduction on other components of the research reactor fuel cycle, such as uranium and enrichment requirements, fuel fabrication, fuel shipment, and reprocessing are also briefly discussed with their economic implications. From a systematic comparison of HEU and LEU cores for the same reference research reactor, it is concluded that the new fuels have a potential for reducing the research reactor fuel cycle costs while reducing, at the same time, the uranium enrichment of the fuel

  18. Current perspective of the uranium enrichment market

    International Nuclear Information System (INIS)

    Laughon, K.O.

    1986-01-01

    Over the past several years, developments in the uranium enrichment market have required the Department of Energy (DOE) to make a number of changes in the U.S. enrichment enterprise. These changes have been made to allow DOE to conduct our enrichment business so as to be more responsive to changing market forces. Needless to say, some of these changes have been difficult, but they have been necessary if they are to conduct a healthy and competitive uranium enrichment business in the United States. This paper discusses several topics, including: The Uranium Enrichment Market, Utility Services (US) Contracts, Reduced Prices, Incentive Pricing, Better Customer Services, and Advanced Technology. In addition to these topics, information is provided on the recent court action regarding the US Contracts and the viability finding on the uranium mining industry

  19. The conversion of NRU from HEU to LEU fuel

    International Nuclear Information System (INIS)

    Sears, D.F.; Atfield, M.D.; Kennedy, I.C.

    1990-01-01

    The program at Chalk River Nuclear Laboratories (CRNL) to develop and test low-enriched uranium fuel (LEU, 3 Si, USiAl, USi Al and U 3 Si 2 (U-3.96 wt% Si; U-3.5 wt% Si-1.5 wt% AL; U-3.2 wt%; Si-3 wt% Al; U-7.3 wt% Si, respectively). Fuel elements were fabricated with uranium loadings suitable for NRU, 3.15 gU/cm 3 , and for NRX, 4.5 gU/cm 3 , and were irradiated under normal fuel-operating conditions. Eight experimental irradiations involving 100 mini-elements and 84 full-length elements (7X12-element rods) were completed to qualify the LEU fuel and the fabrication technology. Post irradiation examinations confirmed that the performance of the LEU fuel, and that of a medium enrichment uranium (MEU, 45% U-235) alloy fuel tested as a back-up, was comparable to the HEU fuel. The uranium silicide dispersion fuel swelling was approximately linear up to burnups exceeding NRU's design terminal burnup (80 at%). NRU was partially converted to LEU fuel when the first 31 prototype fuel rods manufactured with industrial scale production equipment were installed in the reactor. The rods were loaded in NRU at a fuelling rate of about two rods per week over the period 1988 September to December. This partial LEU core (one third of a full NRU core) has allowed the reactor engineers and physicists to evaluate the bulk effects of the LEU conversion on NRU operations. As expected, the irradiation is proceeding without incident

  20. Uranium enrichment

    International Nuclear Information System (INIS)

    Mohrhauer, H.

    1982-01-01

    The separation of uranium isotopes in order to enrich the fuel for light water reactors with the light isotope U-235 is an important part of the nuclear fuel cycle. After the basic principals of isotope separation the gaseous diffusion and the centrifuge process are explained. Both these techniques are employed on an industrial scale. In addition a short review is given on other enrichment techniques which have been demonstrated at least on a laboratory scale. After some remarks on the present situation on the enrichment market the progress in the development and the industrial exploitation of the gas centrifuge process by the trinational Urenco-Centec organisation is presented. (orig.)

  1. Some Main Results of Commissioning of the Dalat Research Reactor with Low Enriched Fuel

    International Nuclear Information System (INIS)

    Nguyen Nhi Dien; Luong Ba Vien; Pham Van Lam; Le Vinh Vinh; Huynh Ton Nghiem

    2014-01-01

    After completion of design calculation of the Dalat Nuclear Research Reactor (DNRR) for conversion from high-enriched uranium fuel (HEU) to low-enriched uranium (LEU) fuel, the commissioning programme for DNRR with entire core loaded with LEU fuel was successfully carried out from 24 November 2011 to 13 January 2012. The experimental results obtained during the implementation of commissioning programme showed a good agreement with design calculations and affirmed that the DNRR with LEU core have met all safety and exploiting requirements. (author)

  2. Review of uranium enrichment prospects in Canada, 1976

    International Nuclear Information System (INIS)

    Developments since 1971 which affect the prospects for uranium enrichment in Canada from the federal government point of view are reviewed. The market for enriched uranium to the year 2000 is similar to that projected in 1971. The committed enrichment capacity of the world will be sufficient until 1990. The Canadian uranium mining capability may be adequate to supply an enrichment plant, but the present reserves policy along with the currently known resources are likely to restrict exports of its products during the plant life. Prices for enriched uranium produced in Canada would be higher than those reported by other proposed new plants; however, newer enrichment techniques have some potential for cost reductions. Application of enrichment with U235 (or plutonium and U233/thorium) to CANDU offers some uranium resource conservation and possible slight power cost reductions. Construction of an enrichment plant in Canada to supply the export market is less attractive in 1976 than in 1971, but there is potential for such a business in the future. (L.L.)

  3. Equations of state for enriched uranium and uranium alloy to 3500 MPa

    International Nuclear Information System (INIS)

    Bai Chaomao; Hai Yuying; Liu Jenlong; Li Zhenrong

    1990-04-01

    The volume compressions of 6 kinds of cast materials including enriched uranium, poor uranium, U-0.57 wt% Ti, U-0.33 wt% Nb, U-2.85 wt% Nb and U-7.5 wt% Nb-3.3 wt% Zr have been determined by monitoring piston displacements in a piston cylinder apparatus with double strengthening rings to 3500 MPa at room temperature. The dilation of the cylinder vessel and the press deformation were corrected by some experiments. The calculational data free from using the standard sample closed with used standard sample. The volume compressions of enriched uranium and poor uranium are nearly coincident. Pure uranium is more compressible than uranium alloys. These values of enriched uranium are in close agreement with values of Bridgman's pure uranium. The fitting coefficients of Bridgman's polynomial and Anderson's equation of state and isothermal bulk modules for the above materials are given

  4. The isotopic enrichment of uranium in 1979

    International Nuclear Information System (INIS)

    Baron, M.

    1979-01-01

    The Eurodif uranium enrichment plant built on the Tricastin site is described. The uranium isotope separation plants in service abroad are presented. The main characteristics of the international enrichment market are defined [fr

  5. Enriched uranium recovery flowsheet improvements

    International Nuclear Information System (INIS)

    Holt, D.L.

    1986-01-01

    Savannah River uses 7.5% TBP to recover and purify enriched uranium. Adequate decontamination from fission products is necessary to reduce personnel exposure and to ensure that the enriched uranium product meets specifications. Initial decontamination of the enriched uranium from the fission products is carried out in the 1A bank, 16 stages of mixer-settlers. Separation of the enriched uranium from the fission product, 95 Zr, has been adequate, but excessive solvent degradation caused by the long phase contact times in the mixer-settlers has limited the 95 Zr decontamination factor (DF). An experimental program is investigating the replacement of the current 1A bank with either centrifugal contactors or a combination of centrifugal contactors and mixer-settlers. Experimental work completed has compared laboratory-scale centrifugal contactors and mixer-settlers for 95 Zr removal efficiencies. Feed solutions spiked with actual plant solutions were used. The 95 Zr DF was significantly better in the mixer-settlers than in the centrifugal contactors. As a result of this experimental study, a hybrid equipment flowsheet has been proposed for plant use. The hybrid equipment flowsheet combines the advantages of both types of solvent extraction equipment. Centrifugal contactors would be utilized in the extraction and initial scrub sections, followed by additional scrub stages of mixer-settlers

  6. Uranium enrichment. Technology, economics, capacity

    International Nuclear Information System (INIS)

    Voigt, W.R. Jr.; Saire, D.E.; Gestson, D.K.; Peske, S.E.; Vanstrum, P.R.

    1983-01-01

    Large-scale enrichment of uranium has now been carried out for 40 years. While the gaseous diffusion process was the original choice of several countries and continues today to provide the major component of the world production of separative work, the last two decades have witnessed the development of a number of alternative processes for enrichment. These processes, which are being studied and deployed around the world, offer a wide range of technical and economic characteristics which will be useful in assuring adequate capacity to meet projected reactor fuel market needs through the rest of this century at competitive prices. With present uncertainties in future enriched uranium needs, it is apparent that flexibility in the deployment and operation of any enrichment process will be one of the prime considerations for the future. More economical production of separative work not only can have a beneficial impact on reactor fuel costs, but also tends to conserve natural uranium resources. This paper reviews the world scene in the enrichment component of the fuel cycle, including existing or planned commercial-scale facilities and announced R+D efforts on various processes. (author)

  7. Uranium enrichment: technology, economics, capacity

    Energy Technology Data Exchange (ETDEWEB)

    Voigt, Jr., W. R.; Vanstrum, P. R.; Saire, D. E.; Gestson, D. K.; Peske, S. E.

    1982-08-01

    Large-scale enrichment of uranium has now been carried out for 40 years. While the gaseous diffusion process was the original choice of several countries and continues today to provide the major component of the world production of separative work, the last two decades have witnessed the development of a number of alternative processes for enrichment. These processes, which are being studied and deployed around the world, offer a wide range of technical and economic characteristics which will be useful in assuring adequate capacity to meet projected reactor fuel market needs through the rest of this century at competitive prices. With present uncertainties in future enriched uranium needs, it is apparent that flexibility in the deployment and operation of any enrichment process will be one of the prime considerations for the future. More economical production of separative work not only can have a beneficial impact on reactor fuel costs, but also tends to conserve natural uranium resources. This paper reviews the world scene in the enrichment component of the fuel cycle, including existing or planned commercial-scale facilities and announced R and D efforts on various processes.

  8. Uranium enrichment: technology, economics, capacity

    International Nuclear Information System (INIS)

    Voigt, W.R. Jr.; Vanstrum, P.R.; Saire, D.E.; Gestson, D.K.; Peske, S.E.

    1982-01-01

    Large-scale enrichment of uranium has now been carried out for 40 years. While the gaseous diffusion process was the original choice of several countries and continues today to provide the major component of the world production of separative work, the last two decades have witnessed the development of a number of alternative processes for enrichment. These processes, which are being studied and deployed around the world, offer a wide range of technical and economic characteristics which will be useful in assuring adequate capacity to meet projected reactor fuel market needs through the rest of this century at competitive prices. With present uncertainties in future enriched uranium needs, it is apparent that flexibility in the deployment and operation of any enrichment process will be one of the prime considerations for the future. More economical production of separative work not only can have a beneficial impact on reactor fuel costs, but also tends to conserve natural uranium resources. This paper reviews the world scene in the enrichment component of the fuel cycle, including existing or planned commercial-scale facilities and announced R and D efforts on various processes

  9. Calibration of the Lawrence Livermore National Laboratory Passive-Active Neutron Drum Shuffler for Measurement of Highly Enriched Uranium in Oxides within DOE-STD-3013-2000 Containers

    International Nuclear Information System (INIS)

    Mount, M E; O'Connell, W J

    2005-01-01

    Lawrence Livermore National Laboratory (LLNL) uses the LLNL passive-active neutron drum (PAN) shuffler (Canberra Model JCC-92) for accountability measurement of highly enriched uranium (HEU) oxide and HEU in mixed uranium-plutonium (U-Pu) oxide. In June 2002, at the 43rd Annual Meeting of the Institute of Nuclear Material Management, LLNL reported on an extensive effort to calibrate this shuffler, based on standards measurements and extensive simulations, for HEU oxides and mixed U-Pu oxides in thin-walled primary and secondary containers. In August 2002, LLNL began to also use DOE-STD-3013-2000 containers for HEU oxide and mixed U-Pu oxide. These DOE-STD-3013-2000 containers are comprised of a stainless steel convenience can enclosed in welded stainless steel primary and secondary containers. Compared to the double thin-walled containers, the DOE-STD-3013-2000 containers have substantially thicker walls, and the density of materials in these containers was found to extend over a greater range (1.35 g/cm 3 to 4.62 g/cm 3 ) than foreseen for the double thin-walled containers. Further, the DOE-STD-3013-2000 Standard allows for oxides containing at least 30 wt% Pu plus U whereas the calibration algorithms for thin-walled containers were derived for virtually pure HEU or mixed U-Pu oxides. An initial series of Monte Carlo simulations of the PAN shuffler response to given quantities of HEU oxide and mixed U-Pu oxide in DOE-STD-3013-2000 containers was generated and compared with the response predicted by the calibration algorithms for thin-walled containers. Results showed a decrease on the order of 10% in the count rate, and hence a decrease in the calculated U mass for measured unknowns, with some varying trends versus U mass. Therefore a decision was made to develop a calibration algorithm for the PAN shuffler unique to the DOE-STD-3013-2000 container. This paper describes that effort and selected unknown item measurement results

  10. Advances in uranium enrichment processes

    International Nuclear Information System (INIS)

    Rae, H.K.; Melvin, J.G.; Slater, J.B.

    1986-05-01

    Advances in gas centrifuges and development of the atomic vapour laser isotope separation process promise substantial reductions in the cost of enriched uranium. The resulting reduction in LWR fuel costs could seriously erode the economic advantage of CANDU, and in combination with LWR design improvements, shortened construction times and increased operational reliability could allow the LWR to overtake CANDU. CANDU's traditional advantages of neutron economy and high reliability may no longer be sufficient - this is the challenge. The responses include: combining neutron economy and dollar economy by optimizing CANDU for slightly enriched uranium fuel; developing cost-reducing improvements in design, manufacture and construction; and reducing the cost of heavy water. Technology is a renewable resource which must be continually applied to a product for it to remain competitive in the decades to come. Such innovation is a prerequisite to Canada increasing her share of the international market for nuclear power stations. The higher burn-up achievable with enriched fuel in CANDU can reduce the fuel cycle costs by 20 to 40 percent for a likely range of costs for yellowcake and separative work. Alternatively, some of the benefits of a higher fissile content can take the form of a cheaper reactor core containing fewer fuel channels and less heavy water, and needing only a single fuelling machine. An opportunity that is linked to this need to introduce an enriched uranium fuel cycle into CANDU is to build an enrichment business in Canada. This could offer greater value added to our uranium exports, security of supply for enriched CANDUs, technological growth in Canada and new employment opportunities. AECL has a study in progress to define this opportunity

  11. Uranium enrichment plans and policies

    International Nuclear Information System (INIS)

    Schwennesen, J.L.

    1981-01-01

    Significant progress has been made in US efforts to expand its enrichment capacity. The Cascade Improvement Program (CIP) and Cascade Upgrading Program (CUP) are now complete at Oak Ridge and Paducah and almost complete at Portsmouth. Considerable progress has also been made in constructing the Gas Centrifuge Enrichment Plant (GCEP), and physical construction of the first process building is well under way. Current plans are to have two process buildings on-line by 1989 with the remaining six buildings to be added sequentially as needed to meet demand. The status of DOE enrichment services contracts is essentially unchanged from that reported at last year's seminar. The OUEA latest forecast of nuclear power growth, however, is considerably lower than reported last year, although a leveling trend is becoming apparent. The Variable Tails Assay Option (VTAO) of the AFC contract was made available for the third time for FY 1983. The DOE inventories of natural uranium still remain high. The Department of Energy will dispose of this material by using it for Government programs and for enrichment plant operations. It appears that Government inventories of uranium are adequate through at least the mid-1990s. It remains DOE policy not to dispose of its natural uranium stocks through direct sales in the marketplace, except for very small quantities or if an emergency situation would exist and all reasonable attempts had been made, without success, to obtain natural uranium from commercial sources. Finally, with regard to DOE plans on future transaction tails assays, it still appears likely that the current 0.20 percent uranium-235 reference tails assay will be maintained until well into the 1990s, at which time it might be increased up to 0.25 percent uranium-235

  12. Some economic aspects of the low enriched uranium production

    International Nuclear Information System (INIS)

    1990-05-01

    At the Technical Committee Meeting on Economics of Low Enriched Uranium 14 papers were presented. A separate abstract was prepared for each of these papers. The five technical sessions covered several economic aspects of uranium concentrates production, conversion into uranium hexafluoride and uranium enrichment and the recycling of U and Pu in LWR. Four Panel discussions were held to discuss the uranium market trends, the situation of conversion industry, the reprocessing and the uranium market, the future trends of enrichment and the economics of LWRs compared with other reactors. Refs, figs and tabs

  13. Ningyo Toge uranium enrichment pilot plant comes into full

    International Nuclear Information System (INIS)

    1982-01-01

    The uranium enrichment pilot plant of the Power Reactor and Nuclear Fuel Development Corporation at Ningyo Toge went into full operation on March 26, 1982. This signifies that the front end of the nuclear fuel cycle in Japan, from uranium ore to enrichment, is only a step away from commercialization. On the same day, the pilot plant of uranium processing and conversion to UF 6 , the direct purification of uranium ore into uranium hexafluoride, began batch operation at the same works. The construction of the uranium enrichment pilot plant has been advanced in three stages: i.e. OP-1A with 1000 centrifuges, OP-1B with 3000 centrifuges and OP-2 with 3000 centrifuges. With a total of 7000 centrifuges, the pilot plant, the first enrichment plant in Japan, has now a capacity of supplying enriched uranium for six months operation of a 1,000 MW nuclear power plant. (J.P.N.)

  14. Mixed core management: Use of 93% and 72% enriched uranium in the BR2 reactor

    International Nuclear Information System (INIS)

    Ponsard, B.

    2000-01-01

    The BR2 reactor, put into operation in 1963 and refurbished from July 1995 till April 1997, is a 100 MW high-flux Materials Testing Reactor, using 93% 235 U enriched uranium as standard fuel, light water as coolant and beryllium as moderator. The present operating regime consists of five irradiation cycles per year at an operating power between 50 and 70 MW; each cycle is characterized by 21 days operation. In the framework of a 'qualification programme', six 72% 235 U fuel elements fabricated with uranium recovered from the reprocessing of BR2 spent fuel at UKAEA-Dounreay have been successfully irradiated in the period 1994-1995 reaching a maximum mean burnup of 48% without the release of fission products. Since 1998, this type of fuel element is irradiated routinely together with standard 93% 235 U fuel elements in order to optimize the utilization of the available HEU inventory. The purpose of this paper is to present the strategy developed in order to optimize the mixed core management of the BR2 reactor. (author)

  15. Uses for Uranium-233: What Should Be Kept for Future Needs?

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Lewis, L.C.

    1999-01-01

    Since the end of the cold war, the United States has been evaluating what fissile materials to keep for potential uses and what fissile materials to declare excess. There are three major fissile materials: high-enriched uranium (HEU), plutonium, and uranium-233 ( 233 U). Both HEU and plutonium were produced in large quantities for use in nuclear weapons and for reactor fuel. Uranium-233 was investigated for use in nuclear weapons and as a reactor fuel; however, it was never deployed in nuclear weapons or used commercially as a nuclear fuel. Uranium-233 has limited current uses, but it could have several future uses. Because of (1) the cost of storing 233 U and (2) arms control considerations, the U.S. government must decide how much of the existing 233 U inventory should be kept for future use and how much should be disposed of as waste. The objective of this report is to provide technical and economic input to make a use-or-dispose decision

  16. NRC licensing of uranium enrichment plants

    International Nuclear Information System (INIS)

    Moran, B.W.

    1991-01-01

    The US Nuclear Regulatory Commission (NRC) is preparing a rule making that establishes the licensing requirements for low-enriched uranium enrichment plants. Although implementation of this rule making is timed to correspond with receipt of a license application for the Louisiana Energy Services centrifuge enrichment plant, the rule making is applicable to all uranium enrichment technologies. If ownership of the US gaseous diffusion plants and/or atomic vapor laser isotope separation is transferred to a private or government corporation, these plants also would be licensable under the new rule making. The Safeguards Studies Department was tasked by the NRC to provide technical assistance in support of the rule making and guidance preparation process. The initial and primary effort of this task involved the characterization of the potential safeguards concerns associated with a commercial enrichment plant, and the licensing issues associated with these concerns. The primary safeguards considerations were identified as detection of the loss of special nuclear material, detection of unauthorized production of material of low strategic significance, and detection of production of uranium enriched to >10% 235 U. The primary safeguards concerns identified were (1) large absolute limit of error associated with the material balance closing, (2) the inability to shutdown some technologies to perform a cleanout inventory of the process system, and (3) the flexibility of some technologies to produce higher enrichments. Unauthorized production scenarios were identified for some technologies that could prevent conventional material control and accounting programs from detecting the production and removal of 5 kg 235 U as highly enriched uranium. Safeguards techniques were identified to mitigate these concerns

  17. The case for enrichment of uranium in Australia

    International Nuclear Information System (INIS)

    George, D.W.

    1981-01-01

    Information is presented on the number of nuclear power plants in operation and under construction and on the extent of the use of uranium. The case for enrichment of uranium in Australia is then considered in detail and the status of feasbility studies being carried out is discussed. Arguments to support an enrichment industry include: the need for additional enrichment capacity; added value; potential profitability; increased employment and industrial opportunities; and retention of depleted uranium

  18. Airborne uranium, its concentration and toxicity in uranium enrichment facilities

    International Nuclear Information System (INIS)

    Thomas, J.; Mauro, J.; Ryniker, J.; Fellman, R.

    1979-02-01

    The release of uranium hexafluoride and its hydrolysis products into the work environment of a plant for enriching uranium by means of gas centrifuges is discussed. The maximum permissible mass and curie concentration of airborne uranium (U) is identified as a function of the enrichment level (i.e., U-235/total U), and chemical and physical form. A discussion of the chemical and radiological toxicity of uranium as a function of enrichment and chemical form is included. The toxicity of products of UF 6 hydrolysis in the atmosphere, namely, UO 2 F 2 and HF, the particle size of toxic particulate material produced from this hydrolysis, and the toxic effects of HF and other potential fluoride compounds are also discussed. Results of an investigation of known effects of humidity and temperature on particle size of UO 2 F 2 produced by the reaction of UF 6 with water vapor in the air are reported. The relationship of the solubility of uranium compounds to their toxic effects was studied. Identification and discussion of the standards potentially applicable to airborne uranium compounds in the working environment are presented. The effectiveness of High Efficiency Particulate (HEPA) filters subjected to the corrosive environment imposed by the presence of hydrogen fluoride is discussed

  19. Comment on the contribution of S.C. Mo, N.A. Hanan and J.E. Matos: 'Comparison of the FRM-II HEU design with an alternative LEU design'

    International Nuclear Information System (INIS)

    Boening, K.

    2004-01-01

    The results of the reference paper, which came to our attention for the first time during this RERTR Meeting, are more or less consistent with neutronic data we have obtained earlier within the FRM-II project (i.e. with own calculations and extrapolations). However, a realistic comparison of the HEU design of the FR.M-II (HEU = highly enriched uranium, 93 % U-235) with an alternative LEU design (LEU = low enriched uranium, 20 % U-235) is only possible on the basis of identical assumptions on the input parameters and has to consider more than neutronic data only. Serious scientists and experts should not confuse the politicians with academic studies touching some aspects of the full story only. The comparison has shown that the performance and reliability of the FRM-II design, which uses HEU fuel, is so advantageous that it can not - not even approximately - be met by an alternative design using LEU fuel. A change of the FRM-II design from HEU to LEU fuel with the results as shown above - i.e. less performance, higher costs, more nuclear waste and higher risk potential, and all of this with a delay of at least 5 years this could never be justified. If a future development of more advanced fuels should allow us to achieve our scientific goals at the conditions as identified above also with uranium of reduced enrichment - there would be no objection to a corresponding later conversion. Activities to realize a new neutron source in Germany go back to the late 70's with the project of a new middle flux beam reactor (MSR), which was abandoned shortly later in favour of an ambitious new spallation neutron source (SNQ). After this project also having been terminated around 1985 because of too high costs and technological risks, the hopes of the German community of neutron scientists focussed on the FRM-II. If non-technical pressure would damage this project this would equally provide irreversible damage to the large and still prospering field of neutron research in Germany

  20. Packaging and transportation of derived enriched uranium for the ''megatons to megawatts'' USA/Russia agreement

    International Nuclear Information System (INIS)

    Darrough, E.; Ewing, L.; Ravenscroft, N.

    1998-01-01

    In January 1998 the United States Enrichment Corporation (USEC) and Techsnabexport Co., Ltd (TENEX) of Russia celebrated the fourth anniversary of the signing of the 20-year contract between these two executive agents. USEC and TENEX are responsible for implementing the Government to-Government agreement between the United States and the Russian Federation for the purchase of uranium derived from dismantled nuclear weapons from the former Soviet Union. This program, entitled 'Megatons to Megawatts', is the first time nuclear warheads have been turned into fuel as well as the first time a commercial contract has been used to implement such a program. As of the fourth anniversary, the equivalent of almost 1,200 nuclear warheads had been converted to fuel. USEC is responsible for making all of the arrangements to transport the Russian LEU derived from HEU--hence the term, derived enriched uranium (DEU)--from St Petersburg. Russia to the USEC plant near portsmouth, Ohio. Edlow International Company is working with USEC to implement the shipping campaign and is responsible for coordination of the port delivery within Russia, as well. The organization responsible for these shipments within Russia is IZOTOP. While the program has been a major new responsibility for USEC, the early years of the program prepared all parties for the future challenges such as increased numbers of shipments, additional originating sites in Russia and witnessing requirements in Russia. (authors)

  1. NUCLEAR ISOTOPIC DILUTION OF HIGHLY ENRICHED URANIUM BY DRY BLENDING VIA THE RM-2 MILL TECHNOLOGY

    International Nuclear Information System (INIS)

    Rajamani, Raj K.; Latchireddi, Sanjeeva; Devrani, Vikas; Sethi, Harappan; Henry, Roger; Chipman, Nate

    2003-01-01

    DOE has initiated numerous activities to focus on identifying material management strategies to disposition various excess fissile materials. In particular the INEEL has stored 1,700 Kg of offspec HEU at INTEC in CPP-651 vault facility. Currently, the proposed strategies for dispositioning are (a) aqueous dissolution and down blending to LEU via facilities at SRS followed by shipment of the liquid LEU to NFS for fabrication into LWR fuel for the TVA reactors and (b) dilution of the HEU to 0.9% for discard as a waste stream that would no longer have a criticality or proliferation risk without being processed through some type of enrichment system. Dispositioning this inventory as a waste stream via aqueous processing at SRS has been determined to be too costly. Thus, dry blending is the only proposed disposal process for the uranium oxide materials in the CPP-651 vault. Isotopic dilution of HEU to typically less than 20% by dry blending is the key to solving the dispositioning issue (i.e., proliferation) posed by HEU stored at INEEL. RM-2 mill is a technology developed and successfully tested for producing ultra-fine particles by dry grinding. Grinding action in RM-2 mill produces a two million-fold increase in the number of particles being blended in a centrifugal field. In a previous study, the concept of achieving complete and adequate blending and mixing (i.e., no methods were identified to easily separate and concentrate one titanium compound from the other) in remarkably short processing times was successfully tested with surrogate materials (titanium dioxide and titanium mono-oxide) with different particle sizes, hardness and densities. In the current project, the RM-2 milling technology was thoroughly tested with mixtures of natural uranium oxide (NU) and depleted uranium oxide (DU) stock to prove its performance. The effects of mill operating and design variables on the blending of NU/DU oxides were evaluated. First, NU and DU both made of the same oxide

  2. Future of uranium enrichment

    International Nuclear Information System (INIS)

    Hosmer, C.

    1981-01-01

    The increasing amount of separative work being done in government facilities to produce low-enriched uranium fuel for nuclear utilities again raises the question: should this business-type, industrial function be burned over the private industry. The idea is being looked at by the Reagan administration, but faces problems of national security as well as from the unique nature of the business. This article suggests that a joint government-private venture combining enriching, reprocessing, and waste disposal could be the answer. Further, a separate entity using advanced laser technology to deplete existing uranium tails and lease them for fertile blankets in breeder reactors might earn substantial revenues to help reduce the national debt

  3. Low-resolution gamma-ray measurements of uranium enrichment

    International Nuclear Information System (INIS)

    Sprinkle, J.K. Jr.; Christiansen, A.; Cole, R.; Collins, M.L.

    1996-01-01

    Facilities that process special nuclear material perform periodic inventories. In bulk facilities that process low-enriched uranium, these inventories and their audits are based primarily on weight and enrichment measurements. Enrichment measurements determine the 211 U weight fraction of the uranium compound from the passive gamma-ray emissions of the sample. Both international inspectors and facility operators rely on the capability to make in-field gamma-ray measurements of uranium enrichment. These users require rapid, portable measurement capability. Some in-field measurements have been biased, forcing the inspectors to resort to high-resolution measurements or mass spectrometry to accomplish their goals

  4. 77 FR 14838 - General Electric-Hitachi Global Laser Enrichment LLC, Commercial Laser-Based Uranium Enrichment...

    Science.gov (United States)

    2012-03-13

    ... Laser Enrichment LLC, Commercial Laser-Based Uranium Enrichment Facility, Wilmington, North Carolina... a license to General Electric-Hitachi Global Laser Enrichment LLC (GLE or the applicant) to authorize construction of a laser-based uranium enrichment facility and possession and use of byproduct...

  5. Highly Enriched Uranium Metal Cylinders Surrounded by Various Reflector Materials

    International Nuclear Information System (INIS)

    Bernard Jones; J. Blair Briggs; Leland Monteirth

    2007-01-01

    A series of experiments was performed at Los Alamos Scientific Laboratory in 1958 to determine critical masses of cylinders of Oralloy (Oy) reflected by a number of materials. The experiments were all performed on the Comet Universal Critical Assembly Machine, and consisted of discs of highly enriched uranium (93.3 wt.% 235U) reflected by half-inch and one-inch-thick cylindrical shells of various reflector materials. The experiments were performed by members of Group N-2, particularly K. W. Gallup, G. E. Hansen, H. C. Paxton, and R. H. White. This experiment was intended to ascertain critical masses for criticality safety purposes, as well as to compare neutron transport cross sections to those obtained from danger coefficient measurements with the Topsy Oralloy-Tuballoy reflected and Godiva unreflected critical assemblies. The reflector materials examined in this series of experiments are as follows: magnesium, titanium, aluminum, graphite, mild steel, nickel, copper, cobalt, molybdenum, natural uranium, tungsten, beryllium, aluminum oxide, molybdenum carbide, and polythene (polyethylene). Also included are two special configurations of composite beryllium and iron reflectors. Analyses were performed in which uncertainty associated with six different parameters was evaluated; namely, extrapolation to the uranium critical mass, uranium density, 235U enrichment, reflector density, reflector thickness, and reflector impurities. In addition to the idealizations made by the experimenters (removal of the platen and diaphragm), two simplifications were also made to the benchmark models that resulted in a small bias and additional uncertainty. First of all, since impurities in core and reflector materials are only estimated, they are not included in the benchmark models. Secondly, the room, support structure, and other possible surrounding equipment were not included in the model. Bias values that result from these two simplifications were determined and associated

  6. The Global Threat Reduction Initiative's Return of Highly Enriched Uranium from Chile

    Energy Technology Data Exchange (ETDEWEB)

    Messick, C.E.; Dickerson, S.L.; Greenberg, R.F. Jr. [U.S. Department of Energy, National Nuclear Security Administration, Washington D.C. (United States); Andes, T.C. [Y-12 National Security Complex, Oak Ridge, TN (United States)

    2011-07-01

    In March 2010, the U.S. National Nuclear Security Administration's Office of Global Threat Reduction (GTRI), in collaboration with the Chilean Nuclear Energy Commission (CCHEN), completed a shipment of 18.2 kilograms of non-U.S.-origin highly enriched uranium (HEU) to the United States. The HEU was in the form of 71 aluminium-clad material test reactor (MTR) fuel elements and was the first GTRI Gap Program shipment that included non-U.S. origin irradiated nuclear fuel. Although shipments of research reactor fuels are not unique, this shipment served as a cornerstone to the first Presidential Nuclear Security Summit held in Washington, D.C., in April 2010. Carrying out the shipment became critical when a severe earthquake struck Chile just one day before the shipment was to occur. As the fuel had already been packaged in casks and the ocean vessels were nearing the port, U.S. and Chilean officials decided that it was most imperative that the shipment continue as planned. After careful analysis of the situation, inspection of the transportation packages, roadways, and port services, the shipment team was able to make the shipment occur in a safe and secure manner. This paper describes the loading activities at both the RECH-1 and RECH-2 reactors as well as the transportation of the loaded casks to the port of departure. (author)

  7. Characterization of Uranium-Bearing Material by Passive Non-Destructive Gamma Spectrometry

    International Nuclear Information System (INIS)

    Lakosi, L.; Zsigrai, J.; Nguyen, C.T.

    2009-01-01

    Characterization of nuclear materials is equally important in nuclear safeguards (inventory verification) and in nuclear security (revealing illicit trafficking). Analysis of materials is a key issue in both fields. Natural (NU), depleted (DU), low-enriched (LEU), and high-enriched uranium (HEU) samples were analysed by high resolution gamma spectrometry (HRGS). Isotopic composition and total U-content of reactor fuel pellets and powder were determined. A unique HRGS method was developed for the first time for determining the production date of the material of unknown origin. Identifying reprocessed uranium proved to be possible by HRGS as well.

  8. Disposition Options for Uranium-233

    International Nuclear Information System (INIS)

    Beahm, E.C.; Dole, L.R.; Forsberg, C.W.; Icenhour, A.S.; Storch, S.N.

    1999-01-01

    The U.S. Department of Energy (DOE) Fissile Materials Disposition Program (MD), in support of the U.S. arms-control and nonproliferation policies, has initiated a program to disposition surplus weapons-usable fissile material by making it inaccessible and unattractive for use in nuclear weapons. Weapons-usable fissile materials include plutonium, high-enriched uranium (HEU), and uranium-233 (sup 233)U. In support of this program, Oak Ridge National Laboratory led DOE's contractor efforts to identify and characterize options for the long-term storage and disposal of excess (sup 233)U. Five storage and 17 disposal options were identified and are described herein

  9. Reduced enrichment program for the FRM-II, status 2004

    International Nuclear Information System (INIS)

    Roehrmoser, A.; Petry, W.; Boening, K; Wieschalla, N.

    2005-01-01

    The new research reactor FRM-II of the Technische Universitaet Muenchen (TUM) has been designed to provide a maximal thermal neutron flux at mere 20 MW power. The single element design uses silicide fuel of densities 3.0 and 1.5 g/cm 3 of highly enriched uranium (HEU, 93 % U-235). With the nuclear license, that was granted in May 2003, a condition was imposed to reduce the enrichment of FRM-II to medium enriched uranium (MEU) with not more than 50 % U-235 until the end of the year 2010. The TUM has established an international working group to meet this target. This paper presents the backgrounds and the results and plannings for the first of three 2 1/2 year periods to reach the conversion in time. (author)

  10. The future cost of uranium enrichment

    International Nuclear Information System (INIS)

    Pouris, A.

    1986-01-01

    The cost of uranium enrichment is the most important factor determining the fuel cost of nuclear energy. This paper attempts to forecast the future direction of the price of separative work by examining the forces that determine it. It is argued that the interplay among the characteristics of enrichment technologies, the structure of the international market, and the balance of supply and demand determine the enrichment price. The analysis indicates that all forces point towards a price much lower than the current one. It is predicted that, depending on the technological advances, the price of separative work unit for uranium enrichment will range between $40 and $90 by the year 2000. (author)

  11. The assisting system for uranium enrichment plant operation

    International Nuclear Information System (INIS)

    Nakazawa, Hiroaki; Yamamoto, Fumio

    1990-01-01

    We have been developing an operation assisting system, partially supported by AI system, for uranium enrichment plant. The AI system is a proto-type system aiming a final one which can be applied to any future large uranium enrichment plant and also not only to specific operational area but also to complex and multi-phenomenon operational area. An existing AI system, for example facility diagnostic system that utilizes the result of CCT analysis as knowledge base, has weakness in flexibility and potentiality. To build AI system, we have developed the most suitable knowledge representations using deep knowledge for each facility or operation of uranium enrichment plant. This paper describes our AI proto-type system adopting several knowledge representations that can represent an uranium enrichment plant's operation with deep knowledge. (author)

  12. Criticality safety concerns of uranium deposits in cascade equipment

    International Nuclear Information System (INIS)

    Plaster, M.J.

    1996-01-01

    The Paducah and Portsmouth Gaseous Diffusion Plants enrich uranium in the 235 U isotope by diffusing gaseous uranium hexafluoride (UF 6 ) through a porous barrier. The UF 6 gaseous diffusion cascade utilized several thousand open-quotes stagesclose quotes of barrier to produce highly enriched uranium (HEU). Historically, Portsmouth has enriched the Paducah Gaseous Diffusion Plant's product (typically 1.8 wt% 235 U) as well as natural enrichment feed stock up to 97 wt%. Due to the chemical reactivity of UF 6 , particularly with water, the formation of solid uranium deposits occur at a gaseous diffusion plant. Much of the equipment operates below atmospheric pressure, and deposits are formed when atmospheric air enters the cascade. Deposits may also be formed from UF 6 reactions with oil, UF 6 reactions with the metallic surfaces of equipment, and desublimation of UF 6 . The major deposits form as a result of moist air in leakage due to failure of compressor casing flanges, blow-off plates, seals, expansion joint convolutions, and instrument lines. This report describes criticality concerns and deposit disposition

  13. Uranium enrichment: an overview

    International Nuclear Information System (INIS)

    Cazalet, J.

    1995-01-01

    This paper is a general presentation of uranium enrichment processes and assessments of the prevailing commercial and industrial situations. It gives first some theoretical aspects of enrichment in general and explains the differences between statistical and selective processes in particular. Then a review of the different processes is made with a comparison between them. Finally, some general remarks concerning applications are given and the risks of proliferation related to enrichment are mentioned. (J.S.). 4 refs., 5 figs., 8 tabs

  14. Assuaging Nuclear Energy Risks: The Angarsk International Uranium Enrichment Center

    International Nuclear Information System (INIS)

    Myers, Astasia

    2011-01-01

    The recent nuclear renaissance has motivated many countries, especially developing nations, to plan and build nuclear power reactors. However, domestic low enriched uranium demands may trigger nations to construct indigenous enrichment facilities, which could be redirected to fabricate high enriched uranium for nuclear weapons. The potential advantages of establishing multinational uranium enrichment sites are numerous including increased low enrichment uranium access with decreased nuclear proliferation risks. While multinational nuclear initiatives have been discussed, Russia is the first nation to actualize this concept with their Angarsk International Uranium Enrichment Center (IUEC). This paper provides an overview of the historical and modern context of the multinational nuclear fuel cycle as well as the evolution of Russia's IUEC, which exemplifies how international fuel cycle cooperation is an alternative to domestic facilities.

  15. Evaluation of economical at a uranium enrichment demonstration plant

    International Nuclear Information System (INIS)

    Sugitsue, Noritake

    2001-01-01

    In this report, the economy of technical achievement apply in the uranium enrichment demonstration plant is evaluated. From the evaluation, it can be concluded that the expected purpose was achieved because there was a definite economic prospect to commercial plant. The benefit analysis of thirteen years operation of the uranium enrichment demonstration plant also provides a financial aspect of the uranium enrichment business. Therefore, the performance, price and reliability of the centrifuge is an important factor in the uranium enrichment business. And the continuous development of a centrifuge while considering balance with the development cost is necessary for the business in the future. (author)

  16. Evaluating the effectiveness of dilution of the recovered uranium with depleted uranium and low-enriched uranium to obtain fuel for VVER reactors

    International Nuclear Information System (INIS)

    Smirnov, A Yu; Sulaberidze, G A; Dudnikov, A A; Nevinitsa, V A

    2016-01-01

    The possibility of the recovered uranium enrichment in a cascade of gas centrifuges with three feed flows (depleted uranium, low-enriched uranium, recovered uranium) with simultaneous dilution of U-232,234,236 isotopes was shown. A series of numerical experiments were performed for different content of U-235 in low-enriched uranium. It has been demonstrated that the selected combination of diluents can simultaneously reduce the cost of separative work and the consumption of natural uranium, not only with respect to the previously used multi-flow cascade schemes, but also in comparison to the standard cascade for uranium enrichment. (paper)

  17. Experiments with HEU (93.14 wt.%) metal annuli with internal graphite cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaobo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bess, John D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wehmann, Udo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mihalczo, John T. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    A variety of critical experiments were constructed of enriched uranium metal (oralloy ) during the 1960s and 1970s at the Oak Ridge Critical Experiments Facility (ORCEF) in support of criticality safety operations at the Y-12 Plant. The purposes of these experiments included the evaluation of storage, casting, and handling limits for the Y-12 Plant and providing data for verification of calculation methods and cross-sections for nuclear criticality safety applications. These included solid cylinders of various diameters, annuli of various inner and outer diameters, two and three interacting cylinders of various diameters, and graphite and polyethylene reflected cylinders and annuli. Of the hundreds of delayed critical experiments, only three experimental configurations are described here. They are internal graphite reflected metal uranium assemblies with three different diameter HEU annuli (15-9 inches, 15-7 inches and 13-7 inches). These experiments can be found in Reference 1 and in their associated logbook

  18. Uranium enrichment capacity: public versus private ownership

    International Nuclear Information System (INIS)

    Fraser, J.T.

    1977-01-01

    Continual growth of conventional nuclear capacity requires an assured supply of enriched uranium and, hence, potential expansion of domestic uranium enrichment capacity. The question of ownership of new enrichment capacity, i.e., public or private, entails not only the social-opportunity costs of alternative investments but also technical parameters of uranium utilization and advanced reactor development. Inclusion of risk preferences in both the public and private sectors produces interesting results in terms of optimal investment strategies with respect to choice of technology and scale of investment. Utilization of a nuclear fuel cycle requirements process model allows explicit specification of production technology. Integration of process model output with a least-cost investment model permits flexibility in parametric analysis. Results indicate minimum incentive for Government subsidy of a private enrichment sector through 2000 given moderate to low nuclear growth assumptions. The long-run scenario, to 2020, exhibits potentially greater incentives for private enrichment investment

  19. The evolution of the enriched uranium markets

    International Nuclear Information System (INIS)

    Arnaiz, J.; Moleres, C.; Tarin, F.

    2004-01-01

    This paper deals with the evolution of the enriched uranium component markets (uranium concentrates, conversion and enrichment), starting with the situation of historically low prices that occurred during 2000. The situation that has been reached as on December 2003, when the concentrates and conversion markets were 44% and 70% (current US$) respectively, and the enrichment prices 30%, higher, is analysed. Finally, the negative impact of the 90's depressed prices, due to abundant alternative sources of uranium components, on the primary production of all three components and, as a conclusion, the impact of the new situation on the transport logistics, and the need of appropriate economic conditions to make the future primary production sustainable, is commented. (Author)

  20. Uranium enrichment

    International Nuclear Information System (INIS)

    1991-11-01

    This paper analyzes under four different scenarios the adequacy of a $500 million annual deposit into a fund to pay for the cost of cleaning up the Department of Energy's (DOE) three aging uranium enrichment plants. These plants are located in Oak Ridge, Tennessee; Paducah, Kentucky; and Portsmouth, Ohio. In summary the following was found: A fixed annual $500 million deposit made into a cleanup fund would not be adequate to cover total expected cleanup costs, nor would it be adequate to cover expected decontamination and decommissioning (D and D) costs. A $500 million annual deposit indexed to an inflation rate would likely be adequate to pay for all expected cleanup costs, including D and D costs, remedial action, and depleted uranium costs

  1. Production of Mo-99 using low-enriched uranium silicide

    International Nuclear Information System (INIS)

    Hutter, J.C.; Srinivasan, B.; Vicek, M.; Vandegrift, G.F.

    1994-01-01

    Over the last several years, uranium silicide fuels have been under development as low-enriched uranium (LEU) targets for Mo-99. The use of LEU silicide is aimed at replacing the UAl x alloy in the highly-enriched uranium dissolution process. A process to recover Mo-99 from low-enriched uranium silicide is being developed at Argonne National Laboratory. The uranium silicide is dissolved in alkaline hydrogen peroxide. Experiments performed to determine the optimum dissolution procedure are discussed, and the results of dissolving a portion of a high-burnup (>40%) U 3 Si 2 miniplate are presented. Future work related to Mo-99 separation and waste disposal are also discussed

  2. Report of Sectional Committee on Industrialization of Uranium Enrichment

    International Nuclear Information System (INIS)

    1981-01-01

    In order to accelerate the development and utilization of atomic energy which is the core of the substitute energies for petroleum, it is indispensable requirement to establish independent fuel cycle as the base. In particular, the domestic production of enriched uranium is necessary to eliminate the obstacles to secure the energy supply in Japan. The construction and operation of the pilot plant for uranium enrichment by centrifugal separation method have progressed smoothly, and the technical base for the domestic production of enriched uranium is being consolidated. For the time being, the service of uranium enrichment is given by USA and France, but it is expected that the short supply will arise around 1990. The start of operation of the uranium enrichment plant in Japan is scheduled around 1990, and the scale of the plant will be expanded stepwise thereafter. The scale of production is assumed as 3000 t SWU/year in 2000. Prior to this commercial plant, the prototype plant of up to 250 t SWU/year capacity will be operated in 1986, starting the production of centrifugal separators in 1983. The production line for centrifugal separators will have the capacity of up to 125 t SWU/year. The organization for operating these plants, the home production of natural uranium conversion, the uranium enrichment by chemical method and others are described. (Kako, I.)

  3. ZPR-3 Assembly 11: A cylindrical sssembly of highly enriched uranium and depleted uranium with an average 235U enrichment of 12 atom % and a depleted uranium reflector

    International Nuclear Information System (INIS)

    Lell, R.M.; McKnight, R.D.; Tsiboulia, A.; Rozhikhin, Y.

    2010-01-01

    Specificationsa and has historically been used as a data validation benchmark assembly. Loading of ZPR-3 Assembly 11 began in early January 1958, and the Assembly 11 program ended in late January 1958. The core consisted of highly enriched uranium (HEU) plates and depleted uranium plates loaded into stainless steel drawers, which were inserted into the central square stainless steel tubes of a 31 x 31 matrix on a split table machine. The core unit cell consisted of two columns of 0.125 in.-wide (3.175 mm) HEU plates, six columns of 0.125 in.-wide (3.175 mm) depleted uranium plates and one column of 1.0 in.-wide (25.4 mm) depleted uranium plates. The length of each column was 10 in. (254.0 mm) in each half of the core. The axial blanket consisted of 12 in. (304.8 mm) of depleted uranium behind the core. The thickness of the depleted uranium radial blanket was approximately 14 in. (355.6 mm), and the length of the radial blanket in each half of the matrix was 22 in. (558.8 mm). The assembly geometry approximated a right circular cylinder as closely as the square matrix tubes allowed. According to the logbook and loading records for ZPR-3/11, the reference critical configuration was loading 10 which was critical on January 21, 1958. Subsequent loadings were very similar but less clean for criticality because there were modifications made to accommodate reactor physics measurements other than criticality. Accordingly, ZPR-3/11 loading 10 was selected as the only configuration for this benchmark. As documented below, it was determined to be acceptable as a criticality safety benchmark experiment. A very accurate transformation to a simplified model is needed to make any ZPR assembly a practical criticality-safety benchmark. There is simply too much geometric detail in an exact (as-built) model of a ZPR assembly, even a clean core such as ZPR-3/11 loading 10. The transformation must reduce the detail to a practical level without masking any of the important features of the critical

  4. The Supply of Medical Radioisotopes. Market impacts of converting to low-enriched uranium targets for medical isotope production

    International Nuclear Information System (INIS)

    Westmacott, Chad; Cameron, Ron

    2012-01-01

    The reliable supply of molybdenum-99 ( 99 Mo) and its decay product, technetium-99m ( 99m Tc), is a vital component of modern medical diagnostic practices. At present, most of the global production of 99 Mo is from highly enriched uranium (HEU) targets. However, all major 99 Mo-producing countries have recently agreed to convert to using low-enriched uranium (LEU) targets to advance important non-proliferation goals, a decision that will have implications for the global supply chain of 99 Mo/ 99m Tc and the long-term supply reliability of these medical isotopes. This study provides the findings and analysis from an extensive examination of the 99 Mo/ 99m Tc supply chain by the OECD/NEA High-level Group on the Security of Supply of Medical Radioisotopes (HLG-MR). It presents a comprehensive evaluation of the potential impacts of converting to the use of LEU targets for 99 Mo production on the global 99 Mo/ 99m Tc market in terms of costs and available production capacity, and the corresponding implications for long-term supply reliability. In this context, the study also briefly discusses the need for policy action by governments in their efforts to ensure a stable and secure long-term supply of 99 Mo/ 99m Tc

  5. Development of an On-Line Uranium Enrichment Monitor

    International Nuclear Information System (INIS)

    Xuesheng, L.; Guorong, L.; Yonggang, Z.; Xueyuan, H. X.-Y.

    2015-01-01

    An on-line enrichment monitor was developed to measure the enrichment of UF6 flowing through the processing pipes in centrifuge uranium enrichment plant. A NaI(Tl) detector was used to measure the count rates of the 186 keV gamma ray emitted from 235U, and the total quantity of uranium was determined from thermodynamic characteristics of gaseous uranium hexafluoride. The results show that the maximum relative standard deviation is less than 1% when the measurement time is 120 s or more and the pressure is more than 2 kPa in the measurement chamber. There are two working models for the monitor. The monitor works normally in the continuous model, When the gas's pressure in the pipe fluctuates greatly, it can work in the intermittent model, and the measurement result is very well. The background of the monitor can be measured automatically periodically. It can control automatically electromagnetic valves open and close, so as to change the gas's quantity in the chamber. It is a kind of unattended and remote monitor, all of data can be transfer to central control room. It should be effective for nuclear materials accountability verifications and materials balance verification at uranium enrichment plant by using the monitor to monitor Uranium enrichment of gaseous uranium hexafluoride in the output end of cascade continuously. (author)

  6. EURODIF: the uranium enrichment by gaseous diffusion

    International Nuclear Information System (INIS)

    Rougeau, J.P.

    1981-01-01

    During the seventies the nuclear power programme had an extremely rapid growth rate which entailed to increase the world uranium enrichment capacity. EURODIF is the largest undertaking in this field. This multinational joint venture built and now operates and enrichment plant using the gaseous diffusion process at Tricastin (France). This plant is delivering low enriched uranium since two years and has contracted about 110 million SWU's till 1990. Description, current activity and prospects are given in the paper. (Author) [pt

  7. The Mailbox Computer System for the IAEA verification experiment on HEU downblending at the Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Aronson, A.L.; Gordon, D.M.

    2000-01-01

    IN APRIL 1996, THE UNITED STATES (US) ADDED THE PORTSMOUTH GASEOUS DIFFUSION PLANT TO THE LIST OF FACILITIES ELIGIBLE FOR THE APPLICATION OF INTERNATIONAL ATOMIC ENERGY AGENCY (IAEA) SAFEGUARDS. AT THAT TIME, THE US PROPOSED THAT THE IAEA CARRY OUT A ''VERIFICATION EXPERIMENT'' AT THE PLANT WITH RESPECT TO DOOWNBLENDING OF ABOUT 13 METRIC TONS OF HIGHLY ENRICHED URANIUM (HEU) IN THE FORM OF URANIUM HEXAFLUROIDE (UF6). DURING THE PERIOD DECEMBER 1997 THROUGH JULY 1998, THE IAEA CARRIED OUT THE REQUESTED VERIFICATION EXPERIMENT. THE VERIFICATION APPROACH USED FOR THIS EXPERIMENT INCLUDED, AMONG OTHER MEASURES, THE ENTRY OF PROCESS-OPERATIONAL DATA BY THE FACILITY OPERATOR ON A NEAR-REAL-TIME BASIS INTO A ''MAILBOX'' COMPUTER LOCATED WITHIN A TAMPER-INDICATING ENCLOSURE SEALED BY THE IAEA

  8. Experience with environmental sampling at gas centrifuge enrichment plants

    International Nuclear Information System (INIS)

    Ekenstam, G. af; Bush, W.; Janov, J.; Kuhn, E.; Ryjinski, M.

    2001-01-01

    Environmental sampling has been used routinely by the IAEA since 1996 after the IAEA Board of Governors approved it in March 1995 as a new technique to strengthen safeguards and improve efficiency. In enrichment plants it is used to confirm that there has been no production of highly enriched uranium (HEU), or production of uranium at above the declared enrichment. The use of environmental sampling is based on the assumption that every process, no matter how leak tight, will release small amounts of process material to the environment. Even though these releases of nuclear material are extremely small in gas centrifuge enrichment plants, and well below levels of concern from a health physics and safety standpoint, they are detectable and their analysis provides an indication of the enrichment of the material that has been processed in the plant. The environmental samples at enrichment plants are collected by swiping selected areas of the plant with squares of cotton cloth (10x10 cm) from sampling kits prepared in ultra clean condition. The squares of cotton cloth sealed in plastic bags are sent for analysis to the Network Analytical Laboratories. The analysis includes the measurement of the uranium isotopic composition in uranium-containing particles by Thermal lonization Mass Spectroscopy (TIMS) or Secondary ION Mass Spectroscopy (SIMS). Since the implementation of environmental sampling, swipes have been collected from 240 sampling points at three gas centrifuge plants of URENCO, which have a total throughput of more than 8,000 tonnes of uranium per year. The particle analysis results generally reflected the known operational history of the plants and confirmed that they had only been operated to produce uranium with enrichment less than 5% 235 U. The information about the content of the minor isotopes 234 U and 236 U also indicates that depleted and recycled uranium were sometimes used as feed materials in some plants. An example is given of the TIMS particle

  9. Safety criteria of uranium enrichment plants

    International Nuclear Information System (INIS)

    Nardocci, A.C.; Oliveira Neto, J.M. de

    1994-01-01

    The applicability of nuclear reactor safety criteria applied to uranium enrichment plants is discussed, and a new criterion based on the soluble uranium compounds and hexafluoride chemical toxicities is presented. (L.C.J.A.). 21 refs, 4 tabs

  10. IAEA Mission Sees High Commitment to Safety at Ghana's Research Reactor After HEU to LEU Fuel Conversion

    International Nuclear Information System (INIS)

    2018-01-01

    An International Atomic Energy Agency (IAEA) team of experts said the operator of Ghana’s research reactor has demonstrated a high commitment to safety following the conversion of the reactor core to use low enriched uranium (LEU) as fuel instead of high enriched uranium (HEU). The team also made recommendations for further safety enhancements. The Integrated Safety Assessment for Research Reactors (INSARR) team concluded a five-day mission today to assess the safety of the GHARR-1 research reactor, originally commissioned in 1994. The 30 kW reactor, operated by the Ghana Atomic Energy Commission (GAEC) at the National Nuclear Research Institute in the capital Accra, is used primarily for trace element analysis for industrial or agricultural purposes, research, education and training. In 2017, the reactor core was converted in a joint effort by Ghana, the United States and China, with assistance from the IAEA. The IAEA supported the operation to eliminate proliferation risks associated with HEU, while maintaining important scientific research. The team made recommendations for improvements to the GAEC, including: • Completing the revision of reactor safety and operating documents to reflect the results of the commissioning of the reactor after the core fuel conversion. • Enhancing the training and qualification programme for operating personnel. • Improving the capability for monitoring operational safety parameters under all conditions. • Strengthening radiation protection by establishing an effective radiation monitoring of workplace. The GAEC said it will request a follow-up INSARR mission by 2020.

  11. Perspectives for the uranium enrichment in Brazil

    International Nuclear Information System (INIS)

    Senna, J.G.S.M.

    1991-01-01

    Through an analysis of the electrical energy future in Brazil, the needs for enriched uranium are discussed, and therefore the importance of developing local capability for self-production. A description of the production processes that are well established is given first, then the analysis itself is performed and finally a visualization of the International Market for enriched uranium is shown. (author)

  12. Enriched uranium recovery at Los Alamos

    International Nuclear Information System (INIS)

    Herrick, C.C.

    1984-01-01

    Graphite casting scrap, fuel elements and nongraphite combustibles are calcined to impure oxides. These materials along with zircaloy fuel elements and refractory solids are leach-dissolved separately in HF-HNO 3 acid to solubilize the contained enriched uranium. The resulting slurry is filtered and the clear filtrate (to which mineral acid solutions bearing enriched uranium may be added) are passed through solvent extraction. The solvent extraction product is filtered, precipitated with H 2 O 2 and the precipitate calcined to U 3 O 8 . Metal is made from U 3 O 8 by conversion to UO 2 , hydrofluorination and reduction to metal. Throughput is 150 to 900 kg uranium per year depending on the type of scrap

  13. Low Enrichment Uranium (LEU)-fueled SLOWPOKE-2 nuclear reactor simulation with the Monte-Carlo based MCNP 4A code

    International Nuclear Information System (INIS)

    Pierre, J.R.M.

    1996-01-01

    Following the commissioning of the Low Enrichment Uranium (LEU) Fuelled SLOWPOKE-2 research reactor at the Royal Military College-College Militaire Royal (RMC-CMR), excess reactivity measurements were conducted over a range of temperature and power. The results showed a maximum excess reactivity of 3.37 mk at 33 o C. Several deterministic models using computer codes like WIMS-CRNL, CITATION, TRIVAC and DRAGON have been used to try to reproduce the excess reactivity and temperature trend of both the LEU and HEU SLOWPOKE-2 reactors. The best simulations had been obtained at Ecole Polytechnique de Montreal. They were able to reproduce the temperature trend of their HEU-fuelled reactor using TRIVAC calculations, but this model over-estimated the absolute value of the excess reactivity by 119 mk. Although calculations using DRAGON did not reproduce the temperature trend as well as TRIVAC, these calculations represented a significant improvement on the absolute value at 20 o C reducing the discrepancy to 13 mk. Given the advance in computer technology, a probabilistic approach was tried in this work, using the Monte-Carlo N-Particle Transport Code System MCNP 4A, to model the RMC-CMR SLOWPOKE-2 reactor.

  14. Use of enriched uranium in Canada's power reactors

    International Nuclear Information System (INIS)

    Dormuth, K.W.; Jackson, D.P.

    2011-01-01

    Recent trends in Canadian nuclear power reactor design and proposed development of nuclear power in Canada have indicated the possibility that Canada will break with its tradition of natural uranium fuelled systems, designed for superior neutron economy and, hence, superior uranium utilization. For instance, the Darlington B new reactor project procurement process included three reactor designs, all employing enriched fuel, although a natural uranium reactor design was included at a late stage in the ensuing environmental assessment for the project as an alternative technology. An evaluation of the alternative designs should include an assessment of the environmental implications through the entire fuel cycle, which unfortunately is not required by the environmental assessment process. Examples of comparative environmental implications of the reactor designs throughout the fuel cycle indicate the importance of these considerations when making a design selection. As Canada does not have enrichment capability, a move toward the use of enriched fuel would mean that Canada would be exporting natural uranium and buying back enriched uranium with value added. From a waste management perspective, Canada would need to deal with mill, refinery, and conversion tailings, as well as with the used fuel from its own reactors, while the enrichment supplier would retain depleted uranium with some commercial value. On the basis of reasoned estimates based on publicly available information, it is expected that enrichment in Canada is likely to be more profitable than exporting natural uranium and buying back enriched uranium. Further, on the basis of environmental assessments for enrichment facilities in other countries, it is expected that an environmental assessment of a properly sited enrichment facility would result in approval. (author)

  15. ZPR-3 Assembly 11 : A cylindrical sssembly of highly enriched uranium and depleted uranium with an average {sup 235}U enrichment of 12 atom % and a depleted uranium reflector.

    Energy Technology Data Exchange (ETDEWEB)

    Lell, R. M.; McKnight, R. D.; Tsiboulia, A.; Rozhikhin, Y.; National Security; Inst. of Physics and Power Engineering

    2010-09-30

    Working Group (CSEWG) Benchmark Specificationsa and has historically been used as a data validation benchmark assembly. Loading of ZPR-3 Assembly 11 began in early January 1958, and the Assembly 11 program ended in late January 1958. The core consisted of highly enriched uranium (HEU) plates and depleted uranium plates loaded into stainless steel drawers, which were inserted into the central square stainless steel tubes of a 31 x 31 matrix on a split table machine. The core unit cell consisted of two columns of 0.125 in.-wide (3.175 mm) HEU plates, six columns of 0.125 in.-wide (3.175 mm) depleted uranium plates and one column of 1.0 in.-wide (25.4 mm) depleted uranium plates. The length of each column was 10 in. (254.0 mm) in each half of the core. The axial blanket consisted of 12 in. (304.8 mm) of depleted uranium behind the core. The thickness of the depleted uranium radial blanket was approximately 14 in. (355.6 mm), and the length of the radial blanket in each half of the matrix was 22 in. (558.8 mm). The assembly geometry approximated a right circular cylinder as closely as the square matrix tubes allowed. According to the logbook and loading records for ZPR-3/11, the reference critical configuration was loading 10 which was critical on January 21, 1958. Subsequent loadings were very similar but less clean for criticality because there were modifications made to accommodate reactor physics measurements other than criticality. Accordingly, ZPR-3/11 loading 10 was selected as the only configuration for this benchmark. As documented below, it was determined to be acceptable as a criticality safety benchmark experiment. A very accurate transformation to a simplified model is needed to make any ZPR assembly a practical criticality-safety benchmark. There is simply too much geometric detail in an exact (as-built) model of a ZPR assembly, even a clean core such as ZPR-3/11 loading 10. The transformation must reduce the detail to a practical level without masking any of

  16. Highly Enriched Uranium Metal Annuli and Cylinders with Polyethylene Reflectors and/or Internal Polyethylene Moderator

    International Nuclear Information System (INIS)

    Tyler Sumner; J. Blair Briggs; Leland Montierth

    2007-01-01

    A variety of critical experiments were constructed of enriched uranium metal during the 1960s and 1970s at the Oak Ridge Critical Experiments Facility in support of criticality safety operations at the Y-12 Plant. The purposes of these experiments included the evaluation of storage, casting, and handling limits for the Y-12 Plant and providing data for verification of calculation methods and cross-sections for nuclear criticality safety applications. These included solid cylinders of various diameters, annuli of various inner and outer diameters, two and three interacting cylinders of various diameters, and graphite and polyethylene reflected cylinders and annuli. Of the hundreds of delayed critical experiments, experiments of uranium metal annuli with and without polyethylene reflectors and with the central void region either empty or filled with polyethylene were evaluated under ICSBEP Identifier HEU-MET-FAST-076. The outer diameter of the uranium annuli varied from 9 to 15 inches in two-inch increments. In addition, there were uranium metal cylinders with diameters varying from 7 to 15 inches with complete reflection and reflection on one flat surface to simulate floor reflection. Most of the experiments were performed between February 1964 and April 1964. Five partially reflected (reflected on the top only) experiments were assembled in November 1967, but are judged by the evaluators not to be of benchmark quality. Twenty-four of the twenty-five experiments have been determined to have fast spectra. The only exception has a mixed spectrum. Analyses were performed in which uncertainty associated with five different parameters associated with the uranium parts and three associated with the polyethylene parts was evaluated. Included were uranium mass, height, diameter, isotopic content, and impurity content and polyethylene mass, diameter, and impurity content. There were additional uncertainties associated with assembly alignment, support structure, and the value

  17. Health and safety considerations for U.S. monitors in the Russian transparency program

    International Nuclear Information System (INIS)

    Boggs, C. J.

    1998-01-01

    In 1993 the US and the Russian Federation signed an agreement allowing the US to purchase highly enriched uranium (HEU) from Russia over a 20-year period. This Highly Enriched Uranium Purchase Agreement permits the purchase of 500 metric tons of HEU from dismantled Russian nuclear weapons in the form of low-enriched uranium (LEU) for use as power reactor fuel in the US. Under the HEU Agreement, the US and Russia are cooperating in a ''Transparency Program'' to ensure that arms control and nonproliferation objectives are being met. The Transparency Program measures, which are a departure from traditional, intrusive measures of verification, include sending individuals from the US to Russia to monitor the processing of the HEU

  18. South Australia, uranium enrichment

    International Nuclear Information System (INIS)

    1976-02-01

    The Report sets out the salient data relating to the establishment of a uranium processing centre at Redcliff in South Australia. It is conceived as a major development project for the Commonwealth, the South Australian Government and Australian Industry comprising the refining and enrichment of uranium produced from Australian mines. Using the data currently available in respect of markets, demand, technology and possible financial return from overseas sales, the project could be initiated immediately with hexafluoride production, followed rapidly in stages by enrichment production using the centrifuge process. A conceptual development plan is presented, involving a growth pattern that would be closely synchronised with the mining and production of yellowcake. The proposed development is presented in the form of an eight-and-half-year programme. Costs in this Report are based on 1975 values, unless otherwise stated. (Author)

  19. Uranium enrichment by gas centrifuge

    International Nuclear Information System (INIS)

    Heriot, I.D.

    1988-01-01

    After recalling the physical principles and the techniques of centrifuge enrichment the report describes the centrifuge enrichment programmes of the various countries concerned and compares this technology with other enrichment technologies like gaseous diffusion, laser, aerodynamic devices and chemical processes. The centrifuge enrichment process is said to be able to replace with advantage the existing enrichment facilities in the short and medium term. Future prospects of the process are also described, like recycled uranium enrichment and economic improvements; research and development needs to achieve the economic prospects are also indicated. Finally the report takes note of the positive aspect of centrifuge enrichment as far as safeguards and nuclear safety are concerned. 27 figs, 113 refs

  20. The uranium enrichment industry and the SILEX process

    International Nuclear Information System (INIS)

    Goldsworthy, M.

    1999-01-01

    Silex Systems Limited has been developing a new laser isotope separation process since 1992. The principle application of the SILEX Technology is Uranium Enrichment, the key step in the production of fuel for nuclear power plants. The Uranium Enrichment industry, today worth ∼ US$3.5 Billion p.a., is dominated by four major players, the largest being USEC with almost 40% of the market. In 1996, an agreement was signed between Silex and USEC to develop SILEX Technology for potential application to Uranium Enrichment. The SILEX process is a low cost, energy efficient scheme which may provide significant commercial advantage over current technology and competing laser processes. Silex is also investigating possible application to the enrichment of Silicon, Carbon and other materials. Significant markets may develop for such materials, particularly in the semiconductor industry

  1. Uranium enrichment: heading for the abyss

    International Nuclear Information System (INIS)

    Norman, C.

    1983-01-01

    This article discusses the federal government's $2.3 billion a year business enriching uranium for nuclear power plants which is heading toward a major crisis. Due to miscalculations by the Department of Energy, it is caught with billions of dollars of construction in progress just as projected demand for enriched uranium is decreasing. At the center of the controversy is the Gas Centrifuge Plant at Portsmouth, Ohio - estimated to cost $10 billion dollars. A review of how DOE got into this situation and how they plan to solve it is presented

  2. Determination of uranium enrichment by using gamma-spectrometric methods

    International Nuclear Information System (INIS)

    Kutnyj, D.V.; Telegin, Yu.N.; Odejchuk, N.P.; Mikhailov, V.A.; Tovkanets, V.E.

    2009-01-01

    By using commercial analysis programs MGAU (LLNL, USA) and FRAM (LANL, USA) the summary error of gamma-spectrometric uranium enrichment measurements was investigated. Uranium samples with enrichments of 0,71; 4,46 and 20,1 % were measured. The coaxial high purity germanium detector (type GC) and the planar germanium detector (type LEGe) were used as gamma-radiation detectors. It was shown that experimental equipment and mathematical software available in NSC KIPT allow us to measure uranium enrichment by nondestructive method with accuracy of not worse than 2%.

  3. How the radiologic and nuclear medical communities can improve nuclear security.

    Science.gov (United States)

    Kahn, Laura H; von Hippel, Frank

    2007-04-01

    Highly enriched uranium (HEU) is used to manufacture technetium-99m, the most widely used medical radioisotope in the world. Highly enriched uranium is also used to make nuclear bombs; 50 kg of HEU is enough to make a Hiroshima-type bomb. It is generally agreed that this technology is within the reach of a terrorist group; the main obstacle is acquiring HEU. Currently, as a legacy of the US and Soviet Atoms for Peace Program, there are civilian users of HEU in 40 countries, and about 1,000 kg are still being shipped each year. Unfortunately, the major international manufacturers of technetium-99m have been refusing to convert their production facilities to use low-enriched uranium (LEU), which cannot be used to make a nuclear bomb. Only 1% to 2% of the HEU is consumed in the process of producing technetium-99m. The remainder is accumulating in radioactive waste storage facilities. The radiologic and nuclear medical communities could make a tremendous contribution to a safer world by supporting the replacement of HEU with LEU in the production of technetium-99m. Low-enriched uranium is just as cost effective as HEU for the manufacture of technetium-99m and does not contribute to the risk for nuclear terrorism.

  4. Nuclear fuel cycle head-end enriched uranium purification and conversion into metal

    International Nuclear Information System (INIS)

    Bonini, A.; Cabrejas, J.; Lio, L. de; Dell'Occhio, L.; Devida, C.; Dupetit, G.; Falcon, M.; Gauna, A.; Gil, D.; Guzman, G.; Neuringer, P.; Pascale, A.; Stankevicius, A.

    1998-01-01

    The CNEA (Comision Nacional de Energia Atomica - Argentina) operated two facilities at the Ezeiza Atomic Center which supply purified enriched uranium employed in the production of nuclear fuels. At one of those facilities, the Triple Height Laboratory scraps from the production of MTR type fuel elements (mainly out of specification U 3 O 8 plates or powder) are purified to nuclear grade. The purification is accomplished by a solvent extraction process. The other facility, the Enriched Uranium Laboratory produces 90% enriched uranium metal to be used in Mo 99 production (originally the uranium was used for the manufacture of MTR fuel elements made of aluminium-uranium alloy). This laboratory also provided metallic uranium with a lower enrichment (20%) for a first uranium-silicon testing fuel element, and in the near future it is going to recommence 20% enriched uranium related activities in order to provide the metal for the silicon-based fuel elements production (according to the policy of enrichment reduction for MTR reactors). (author)

  5. 10 CFR 70.23a - Hearing required for uranium enrichment facility.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Hearing required for uranium enrichment facility. 70.23a... MATERIAL License Applications § 70.23a Hearing required for uranium enrichment facility. The Commission... license for construction and operation of a uranium enrichment facility. The Commission will publish...

  6. Criticality of mixtures of plutonium and high enriched uranium

    International Nuclear Information System (INIS)

    Grolleau, E.; Lein, M.; Leka, G.; Maidou, B.; Klenov, P.

    2003-01-01

    This paper presents a criticality evaluation of moderated homogeneous plutonium-uranium mixtures. The fissile media studied are homogeneous mixtures of plutonium and high enriched uranium in two chemical forms: aqueous mixtures of metal and mixtures of nitrate solutions. The enrichment of uranium considered are 93.2wt.% 235 U and 100wt.% 235 U. The 240 Pu content in plutonium varies from 0wt.% 240 Pu to 12wt.% 240 Pu. The critical parameters (radii and masses of a 20 cm water reflected sphere) are calculated with the French criticality safety package CRISTAL V0. The comparison of the calculated critical parameters as a function of the moderator-to-fuel atomic ratio shows significant ranges in which high enriched uranium systems, as well as plutonium-uranium mixtures, are more reactive than plutonium systems. (author)

  7. Preliminary Evaluation of Alternate Designs for HFIR Low-Enriched Uranium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Renfro, David [ORNL; Chandler, David [ORNL; Cook, David [ORNL; Ilas, Germina [ORNL; Jain, Prashant [ORNL; Valentine, Jennifer [ORNL

    2014-10-30

    Engineering design studies of the feasibility of conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL) as part of an effort sponsored by the U.S. Department of Energy’s Global Threat Reduction Initiative (GTRI)/Reduced Enrichment for Research and Test Reactors (RERTR) program. The fuel type selected by the program for the conversion of the five high-power research reactors in the U.S. that still use HEU fuel is a new U-Mo monolithic fuel. Studies by ORNL have previously indicated that HFIR can be successfully converted using the new fuel provided (1) the reactor power can be increased from 85 MW to 100 MW and (2) the fuel can be fabricated to a specific reference design. Fabrication techniques for the new fuel are under development by the program but are still immature, especially for the “complex” aspects of the HFIR fuel design. In FY 2012, the program underwent a major shift in focus to emphasize developing and qualifying processes for the fabrication of reliable and affordable LEU fuel. In support of this new focus and in an effort to ensure that the HFIR fuel design is as suitable for reliable fabrication as possible, ORNL undertook the present study to propose and evaluate several alternative design features. These features include (1) eliminating the fuel zone axial contouring in the previous reference design by substituting a permanent neutron absorber in the lower unfueled region of all of the fuel plates, (2) relocating the burnable neutron absorber from the fuel plates of the inner fuel element to the side plates of the inner fuel element (the fuel plates of the outer fuel element do not contain a burnable absorber), (3) relocating the fuel zone inside the fuel plate to be centered on the centerline of the depth of the plate, and (4) reshaping the radial contour of the relocated fuel zone to be symmetric about this centerline. The

  8. Preliminary Evaluation of Alternate Designs for HFIR Low-Enriched Uranium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Renfro, David G [ORNL; Chandler, David [ORNL; Cook, David Howard [ORNL; Ilas, Germina [ORNL; Jain, Prashant K [ORNL; Valentine, Jennifer R [ORNL

    2014-11-01

    Engineering design studies of the feasibility of conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL) as part of an effort sponsored by the U.S. Department of Energy s Global Threat Reduction Initiative (GTRI)/Reduced Enrichment for Research and Test Reactors (RERTR) program. The fuel type selected by the program for the conversion of the five high-power research reactors in the U.S. that still use HEU fuel is a new U-Mo monolithic fuel. Studies by ORNL have previously indicated that HFIR can be successfully converted using the new fuel provided (1) the reactor power can be increased from 85 MW to 100 MW and (2) the fuel can be fabricated to a specific reference design. Fabrication techniques for the new fuel are under development by the program but are still immature, especially for the complex aspects of the HFIR fuel design. In FY 2012, the program underwent a major shift in focus to emphasize developing and qualifying processes for the fabrication of reliable and affordable LEU fuel. In support of this new focus and in an effort to ensure that the HFIR fuel design is as suitable for reliable fabrication as possible, ORNL undertook the present study to propose and evaluate several alternative design features. These features include (1) eliminating the fuel zone axial contouring in the previous reference design by substituting a permanent neutron absorber in the lower unfueled region of all of the fuel plates, (2) relocating the burnable neutron absorber from the fuel plates of the inner fuel element to the side plates of the inner fuel element (the fuel plates of the outer fuel element do not contain a burnable absorber), (3) relocating the fuel zone inside the fuel plate to be centered on the centerline of the depth of the plate, and (4) reshaping the radial contour of the relocated fuel zone to be symmetric about this centerline. The present

  9. Enriched uranium cycles in pressurized heavy water reactors

    International Nuclear Information System (INIS)

    Mazzola, A.

    1994-01-01

    A study was made on the substitution of natural uranium with enriched and on plutonium recycle in unmodified PHWRs (pressure vessel reactor). Results clearly show the usefulness of enriched fuel utilisation for both uranium ore consumption (savings of 30% around 1.3% enrichment) and decreasing fuel cycle coasts. This is also due to a better plutonium exploitation during the cycle. On the other hand plutonium recycle in these reactors via MOX-type fuel appears economically unfavourable under any condition

  10. Safety analysis report for packaging, Oak Ridge Y-12 Plant, model DC-1 package with HEU oxide contents. Change pages for Rev.1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-18

    This Safety Analysis Report for Packaging for the Oak Ridge Y-12 Plant for the Model DC-1 package with highly enriched uranium (HEU) oxide contents has been prepared in accordance with governing regulations form the Nuclear Regulatory Commission and the Department of Transportation and orders from the Department of energy. The fundamental safety requirements addressed by these regulations and orders pertain to the containment of radioactive material, radiation shielding, and nuclear subcriticality. This report demonstrates how these requirements are met.

  11. Safety analysis report for packaging, Oak Ridge Y-12 Plant, model DC-1 package with HEU oxide contents. Change pages for Rev.1

    International Nuclear Information System (INIS)

    1995-01-01

    This Safety Analysis Report for Packaging for the Oak Ridge Y-12 Plant for the Model DC-1 package with highly enriched uranium (HEU) oxide contents has been prepared in accordance with governing regulations form the Nuclear Regulatory Commission and the Department of Transportation and orders from the Department of energy. The fundamental safety requirements addressed by these regulations and orders pertain to the containment of radioactive material, radiation shielding, and nuclear subcriticality. This report demonstrates how these requirements are met

  12. Slightly enriched uranium fuel for a PHWR

    International Nuclear Information System (INIS)

    Notari, C.; Marajofsky, A.

    1997-01-01

    An improved fuel element design for a PHWR using slightly enriched uranium fuel is presented. It maintains the general geometric disposition of the currently used in the argentine NPP's reactors, replacing the outer ring of rods by rods containing annular pellets. Power density reduction is achieved with modest burnup losses and the void volume in the pellets can be used to balance these two opposite effects. The results show that with this new design, the fuel can be operated at higher powers without violating thermohydraulic limits and this means an improvement in fuel management flexibility, particularly in the transition from natural uranium to slightly enriched uranium cycle. (author)

  13. Uranium enrichment services in the United States

    International Nuclear Information System (INIS)

    Jelinek, P.; Lenders, M.

    1994-01-01

    The United States of America is the world's largest market for uranium enrichment services. After the disintegration of the Soviet Union, Russian uranium is entering the world market on an increasing scale. The U.S. tries to protect its market and, in this connection, also the European market from excessive price drops by taking anti-dumping measures. In order to become more competitive, American companies have adapted modern enrichment techniques from Europe. European - U.S. joint ventures are to help, also technically and economically, to integrate military uranium, accumulating as a consequence of worldwide disarmament, into the commercial fuel cycle for the peaceful use of nuclear power. (orig.) [de

  14. A comparison between thorium-uranium and low enrichment uranium cycles in the high temperature reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cerles, J M

    1973-03-15

    In a previous report, it was shown that the Uranium cycle could be used as well with multi-hole block (GGA type) as with tubular elements. Now, in a F.S.V. geometry, a comparison is made between Thorium cycle and Uranium cycle. This comparison will be concerned with the physical properties of the materials, the needs of natural Uranium, the fissile material inventory and, at last, an attempt of economical considerations. In this report the cycle will be characterizd by the fertile material. So, we write ''Thorium cycle'' for Highly Enriched Uranium - Thorium cycle and ''Uranium cycle'' for low Enrichment Uranium cycle.

  15. Technical investigation of a pyrophoric event involving corrosion products from HEU ZPPR fuel plates

    International Nuclear Information System (INIS)

    Totemeier, T. C.

    2000-01-01

    A pyrophoric event recently occurred which involved corrosion products collected from highly-enriched uranium (HEU) fuel plates used in the Zero Power Physics Reactor (ZPPR). This paper summarizes the event and its background, and presents the results of an investigation into its source and mechanism. The investigation focused on characterization of corrosion product samples similar to those involved in the event using thermo-gravimetric analysis (TGA). Burning curve TGA tests were performed to measure the ignition temperature and hydride fractions of corrosion products in several different conditions to assess the effects of passivation treatment and long-term storage on chemical reactivity. The hydride fraction and ignition temperature of the corrosion products were found to be strongly dependent on the corrosion extent of the source metal. The results indicate that the energy source for the event was a considerable quantity of uranium hydride present in the corrosion products, but the specific ignition mechanism could not be identified

  16. Uranium enrichment: a vital new industry

    International Nuclear Information System (INIS)

    1975-10-01

    The energy problem facing the nation and the need for nuclear power are pointed out. Uranium enrichment and the demand for it are discussed. Reasons for, and obstacles to, private enrichment are outlined. The President's plan (including the Nuclear Fuel Assurance Act) is summarized

  17. Calculation of mixed HEU-LEU cores for the HOR research reactor with the scale code system

    International Nuclear Information System (INIS)

    Leege, P.F.A. de; Gibcus, H.P.M.; Hoogenboom, J.E.; Vries, J.W. de

    1997-01-01

    The HOR reactor of Interfaculty Reactor Institute (IRI), Delft, The Netherlands, will be converted to use low enriched fuel (LEU) assemblies. As there are still many usable high enriched (HEU) fuel assemblies present, there will be a considerable reactor operation time with mixed cores with both HEU and LEU fuel assemblies. At IRI a comprehensive reactor physics code system and evaluated nuclear data is implemented for detailed core calculations. One of the backbones of the IRI code system is the well-known SCALE code system package. Full core calculations are performed with the diffusion theory code BOLD VENTURE, the nodal code SILWER, and the Monte Carlo code KENO Va. Results are displayed of a strategy from a HEU core to a mixed HEU-LEU core and eventually a LEU core. (author)

  18. Criticality analysis in uranium enrichment plant

    International Nuclear Information System (INIS)

    Okamoto, Tsuyoshi; Kiyose, Ryohei

    1977-01-01

    In a large scale uranium enrichment plant, uranium inventory in cascade rooms is not very large in quantity, but the facilities dealing with the largest quantity of uranium in that process are the UF 6 gas supply system and the blending system for controlling the product concentration. When UF 6 spills out of these systems, the enriched uranium is accumulated, and the danger of criticality accident is feared. If a NaF trap is placed at the forestage of waste gas treatment system, plenty of UF 6 and HF are adsorbed together in the NaF trap. Thus, here is the necessity of checking the safety against criticality. Various assumptions were made to perform the computation surveying the criticality of the system composed of UF 6 and HF adsorbed on NaF traps with WIMS code (transport analysis). The minimum critical radius resulted in about 53 cm in case of 3.5% enriched fuel for light water reactors. The optimum volume ratio of fissile material in the double salt UF 6 .2NaF and NaF.HF is about 40 vol. %. While, criticality survey computation was also made for the annular NaF trap having the central cooling tube, and it was found that the effect of cooling tube radius did not decrease the multiplication factor up to the cooling tube radius of about 5 cm. (Wakatsuki, Y.)

  19. The gas centrifuge, uranium enrichment and nuclear proliferation

    International Nuclear Information System (INIS)

    Chapman, A.

    1988-01-01

    The author considers the consequences for controlling nuclear proliferation of the emergence of the gas centrifuge method for enriching uranium and succeeds in the difficult and delicate task of saying enough about gas centrifuge techniques for readers to judge, what may be involved in fully embracing gas centrifuge enrichment within the constraints of an anti-proliferation strategy, whilst at the same time saying nothing that could be construed as encouraging an interest in the gas centrifuge route to highly enriched uranium where none had before existed. (author)

  20. Yalina booster subcritical assembly performance with low enriched uranium fuel

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Yousry

    2011-01-01

    The YALINA Booster facility is a subcritical assembly located in Minsk, Belarus. The facility has special features that result in fast and thermal neutron spectra in different zones. The fast zone of the assembly uses a lead matrix and uranium fuels with different enrichments: 90% and 36%, 36%, or 21%. The thermal zone of the assembly contains 10% enriched uranium fuel in a polyethylene matrix. This study discusses the performance of the three YALINA Booster configurations with the different fuel enrichments. In order to maintain the same subcriticality level in the three configurations, the number of fuel rods in the thermal zone is increased as the uranium fuel enrichment in the fast zone is decreased. The maximum number of fuel rods that can be loaded in the thermal zone is about 1185. Consequently, the neutron multiplication of the configuration with 21% enriched uranium fuel in the fast zone is enhanced by changing the position of the boron carbide and the natural uranium absorber rods, located between the fast and the thermal zones, to form an annular rather than a square arrangement. (author)

  1. Yalina booster subcritical assembly performance with low enriched uranium fuel

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto; Gohar, Yousry, E-mail: alby@anl.gov [Argonne National Laboratory, Lemont, IL (United States)

    2011-07-01

    The YALINA Booster facility is a subcritical assembly located in Minsk, Belarus. The facility has special features that result in fast and thermal neutron spectra in different zones. The fast zone of the assembly uses a lead matrix and uranium fuels with different enrichments: 90% and 36%, 36%, or 21%. The thermal zone of the assembly contains 10% enriched uranium fuel in a polyethylene matrix. This study discusses the performance of the three YALINA Booster configurations with the different fuel enrichments. In order to maintain the same subcriticality level in the three configurations, the number of fuel rods in the thermal zone is increased as the uranium fuel enrichment in the fast zone is decreased. The maximum number of fuel rods that can be loaded in the thermal zone is about 1185. Consequently, the neutron multiplication of the configuration with 21% enriched uranium fuel in the fast zone is enhanced by changing the position of the boron carbide and the natural uranium absorber rods, located between the fast and the thermal zones, to form an annular rather than a square arrangement. (author)

  2. Experiments of JRR-4 low-enriched-uranium-silicied fuel core

    International Nuclear Information System (INIS)

    Hirane, Nobuhiko; Ishikuro, Yasuhiro; Nagadomi, Hideki; Yokoo, Kenji; Horiguchi, Hironori; Nemoto, Takumi; Yamamoto, Kazuyoshi; Yagi, Masahiro; Arai, Nobuyoshi; Watanabe, Shukichi; Kashima, Yoichi

    2006-03-01

    JRR-4, a light-water-moderated and cooled, swimming pool type research reactor using high-enriched uranium plate-type fuels had been operated from 1965 to 1996. In order to convert to low-enriched-uranium-silicied fuels, modification work had been carried out for 2 years, from 1996 to 1998. After the modification, start-up experiments were carried out to obtain characteristics of the low-enriched-uranium-silicied fuel core. The measured excess reactivity, reactor shutdown margin and the maximum reactivity addition rate satisfied the nuclear limitation of the safety report for licensing. It was confirmed that conversion to low-enriched-uranium-silicied fuels was carried out properly. Besides, the necessary data for reactor operation were obtained, such as nuclear, thermal hydraulic and reactor control characteristics. This report describes the results of start-up experiments and burnup experiments. The first criticality of low-enriched-uranium-silicied core was achieved on 14th July 1998, and the operation for joint-use has been carried out since 6th October 1998. (author)

  3. The development of uranium foil farication technology utilizing twin roll method for Mo-99 irradiation target

    CERN Document Server

    Kim, C K; Park, H D

    2002-01-01

    MDS Nordion in Canada, occupying about 75% of global supply of Mo-99 isotope, has provided the irradiation target of Mo-99 using the rod-type UAl sub x alloys with HEU(High Enrichment Uranium). ANL (Argonne National Laboratory) through co-operation with BATAN in Indonesia, leading RERTR (Reduced Enrichment for Research and Test Reactors) program substantially for nuclear non-proliferation, has designed and fabricated the annular cylinder of uranium targets, and successfully performed irradiation test, in order to develop the fabrication technology of fission Mo-99 using LEU(Low Enrichment Uranium). As the uranium foils could be fabricated in laboratory scale, not in commercialized scale by hot rolling method due to significant problems in foil quality, productivity and economic efficiency, attention has shifted to the development of new technology. Under these circumstances, the invention of uranium foil fabrication technology utilizing twin-roll casting method in KAERI is found to be able to fabricate LEU or...

  4. The Passive Neutron Enrichment Meter for Uranium Cylinder Assay

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Karen A.; Menlove, Howard O.; Swinhoe, Martyn T.; Marlow, Johanna B. [Safeguards Science and Technology Group (N-1), Los Alamos National Laboratory, Los Alamos (United States)

    2011-12-15

    As fuel cycle technology becomes more prevalent around the world, international safeguards have become increasingly important in verifying that nuclear materials have not been diverted. Uranium enrichment technology is a critical pathway to nuclear weapons development, making safeguards of enrichment facilities especially important. Independently-verifiable material accountancy is a fundamental measure in detecting diversion of nuclear materials. This paper is about a new instrument for uranium cylinder assay for enrichment plant safeguards called the Passive Neutron Enrichment Meter (PNEM). The measurement objective is to simultaneously verify uranium mass and enrichment in Uf6 cylinders. It can be used with feed, product, and tails cylinders. Here, we consider the enrichment range up to 5% {sup 235}U. The concept is to use the Doubles-to-Singles count rate to give a measure of the {sup 235}U enrichment and the Singles count rate to provide a measure of the total uranium mass. The cadmium ratio is an additional signature for the enrichment that is especially useful for feed and tails cylinders. PNEM is a {sup 3}He-based system that consists of two portable detector pods. Uranium enrichment in UF{sub 6} cylinders is typically determined using a gamma-ray-based method that only samples a tiny volume of the cylinder's content and requires knowledge of the cylinder wall thickness. The PNEM approach has several advantages over gamma-ray-based methods including a deeper penetration depth into the cylinder, meaning it can be used with heterogeneous isotopic mixtures of UF{sub 6}. In this paper, we describe a Monte Carlo modelling study where we have examined the sensitivity of the system to systematic uncertainties such as the distribution of UF{sub 6} within the cylinder. We also compare characterization measurements of the PNEM prototype to the expected measurements calculated with Monte Carlo simulations.

  5. Eliminating Stockpiles of Highly Enriched Uranium. Options for an Action Agenda in Co-operation with the Russian Federation. Report submitted to the Swedish Ministry for Foreign Affairs

    International Nuclear Information System (INIS)

    Arbman, Gunnar; Calogero, Francesco; Martellini, Maurizio; Bremer Maerli, Morten; Nikitin, Alexander; Prawitz, Jan

    2004-04-01

    This study is of an exploratory nature. It provides preliminary assessments of issues of relevance for HEU elimination in Russia including: (a) technical issues concerning the HEU down-blending; uranium transparency and verification requirements; description of current Russian HEU locations; the HEU down-blending capacities, and the HEU logistics, and (b) various political and financial requirements and considerations. For future, practical project measures to be put in place, further investigations that deal with HEU logistics and handling are needed. Such studies - that obviously should include and engage key Russian actors - are possible, if they take legitimate Russian security and sensitivity concerns into consideration. Interestingly, there is a growing perception in Russia that large stocks of HEU are not required and that they could, in fact, constitute a source of danger

  6. Enriched uranium sales: effect on supply industry

    International Nuclear Information System (INIS)

    Andersen, R.K.

    1985-01-01

    The subject is covered in sections: introduction (combined effect of low-enriched uranium (LEU) inventory sales and utility services enrichment contract terms); enrichment market overview; enrichment market dynamics; the reaction of the US Department of Energy; elimination of artificial demand; draw down of inventories; purchase and sale of LEU inventories; tails assay option; unfulfilled requirements for U 3 O 8 ; conclusions. (U.K.)

  7. 77 FR 51579 - Application for a License To Export High-Enriched Uranium

    Science.gov (United States)

    2012-08-24

    ... NUCLEAR REGULATORY COMMISSION Application for a License To Export High-Enriched Uranium Pursuant.... Complex, July 30, 2012, August Uranium (93.35%). uranium-235 high-enriched 1, 2012, XSNM3726, 11006037. contained in 7.5 uranium in the kilograms uranium. form of broken metal to the Atomic Energy of Canada...

  8. Automated assay of uranium solution concentration and enrichment

    International Nuclear Information System (INIS)

    Horley, E.C.; Gainer, K.; Hansen, W.J.; Kelley, T.A.; Parker, J.L.; Sampson, T.E.; Walton, G.; Jones, S.A.

    1992-01-01

    For the first time, the concentration and enrichment of uranium solutions can be measured in one step. We have developed a new instrument to automatically measure the concentration and enrichment of uranium solutions through the adaptation of a commercial robot. Two identical solution enrichment systems are being installed in the Portsmouth Gaseous Diffusion Plant. These automated systems will reduce radiation exposure to personnel and increase the reliability and repeatability of the measurements. Each robotic system can process up to 40 batch and 8 priority samples in an unattended mode. Both passive gamma-ray and x-ray fluorescence (XRF) analyses are performed to determine total uranium concentration and 235 U enrichment. Coded samples are read by a bar-code reader to determine measurement requirements, then assayed by either or both of the gamma-ray and XRF instruments. The robot moves the sample containers and operates all shield doors and shutters, reducing hardware complexity. If the robots is out of service, an operator can manually perform all operations

  9. Standard specification for uranium hexafluoride enriched to less than 5 % 235U

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This specification covers nuclear grade uranium hexafluoride (UF6) that either has been processed through an enrichment plant, or has been produced by the blending of Highly Enriched Uranium with other uranium to obtain uranium of any 235U concentration below 5 % and that is intended for fuel fabrication. The objectives of this specification are twofold: (1) To define the impurity and uranium isotope limits for Enriched Commercial Grade UF6 so that, with respect to fuel design and manufacture, it is essentially equivalent to enriched uranium made from natural UF6; and (2) To define limits for Enriched Reprocessed UF6 to be expected if Reprocessed UF6 is to be enriched without dilution with Commercial Natural UF6. For such UF6, special provisions, not defined herein, may be needed to ensure fuel performance and to protect the work force, process equipment, and the environment. 1.2 This specification is intended to provide the nuclear industry with a standard for enriched UF6 that is to be used in the pro...

  10. Energy consumption of chemical uranium enrichment

    International Nuclear Information System (INIS)

    Miyake, T.; Takeda, K.; Obanawa, H.

    1987-01-01

    A quantitative study of chemical separation energy for enriching uranium-235 by the redox chromatography was conducted. Isotope exchange reactions between U 4+ -UO 2 2+ ions in the enrichment column are maintained by the redox reactions. The chemical separation energy is ultimately supplied by hydrogen and oxygen gas for regenerating redox agents. The redox energy for the isotope separation is theoretically predicted as a function of the dynamic enrichment factor observed in the chromatographic development of uranium adsorption band. Thermodynamic treatments of the equilibrium reactions implies and inverse redox reaction which can be enhanced by the chemical potential of the ion-exchange reaction of oxidant. Experimental results showed 30 to 90% recovery of the redox energy by the inverse reaction. These results will devise a simplified redox chromatography process where a number of columns in one module is reduced

  11. Material control and accounting requirements for uranium enrichment facilities

    International Nuclear Information System (INIS)

    Ting, P.

    1991-01-01

    This paper reports that the U.S. Nuclear Regulatory Commission has defined material control and accounting (MC and A) requirement for low-enriched uranium enrichment plants licensed under 10 CFR parts 40 and 70. Following detailed assessment of potential safeguards issues relevant to these facilities, a new MC and A rule was developed. The primary safeguards considerations are detection of the loss of special nuclear material, detection of clandestine production of special nuclear material of low strategic significance for unauthorized use or distribution, and detection of unauthorized production of uranium enriched to ≥10 wt % U-235. The primary safeguards concerns identified were the large absolute limit of error associated with the material balance closing, the inability to shutdown some uranium enrichment technologies to perform a cleanout inventory of the process system, and the flexibility of some of these technologies to produce higher enrichments. Unauthorized production scenarios were identified for some technologies that could circumvent the detection of the production and removal of 5 kilograms of U-235 as high-enriched uranium through conventional material control and accounting programs. Safeguards techniques, including the use of production and process control information, measurements, and technical surveillance, were identified to compensate for these concerns

  12. Energy–angle correlation of neutrons and gamma-rays emitted from an HEU source

    Energy Technology Data Exchange (ETDEWEB)

    Miloshevsky, G., E-mail: gennady@purdue.edu; Hassanein, A.

    2014-06-01

    Special Nuclear Materials (SNM) yield very unique fission signatures, namely correlated neutrons and gamma-rays. A major challenge is not only to detect, but also to rapidly identify and recognize SNM with certainty. Accounting for particle multiplicity and correlations is one of standard ways to detect SNM. However, many parameter data such as joint distributions of energy, angle, lifetime, and multiplicity of neutrons and gamma-rays can lead to better recognition of SNM signatures in the background radiation noise. These joint distributions are not well understood. The Monte Carlo simulations of the transport of neutrons and gamma-rays produced from spontaneous and interrogation-induced fission of SNM are carried out using the developed MONSOL computer code. The energy spectra of neutrons and gamma-rays from a bare Highly Enriched Uranium (HEU) source are investigated. The energy spectrum of gamma-rays shows spectral lines by which HEU isotopes can be identified, while those of neutrons do not show any characteristic lines. The joint probability density function (JPDF) of the energy–angle association of neutrons and gamma-rays is constructed. Marginal probability density functions (MPDFs) of energy and angle are derived from JPDF. A probabilistic model is developed for the analysis of JPDF and MPDFs. This probabilistic model is used to evaluate mean values, standard deviations, covariance and correlation between the energy and angle of neutrons and gamma-rays emitted from the HEU source. For both neutrons and gamma-rays, it is found that the energy–angle variables are only weakly correlated.

  13. Effects of enriched uranium on developing brain damage of neonatal rats

    International Nuclear Information System (INIS)

    Gu Guixiong; Zhu Shoupeng; Wang Liuyi; Yang Shuqin; Zhu Lingli

    2001-01-01

    The model of irradiation-induced brain damage in vivo was settled first of all. The micro-auto-radiographic tracing showed that when the rat's brain at postnatal day after lateral ventricle injection with enriched uranium 235 U the radionuclides were mainly accumulated in the nucleus. At the same time autoradiographic tracks appeared in the cytoplasm and interval between cells. The effects of cerebrum exposure to alpha irradiation by enriched uranium on somatic growth and neuro-behavior development of neonatal rats were examined by determination of multiple parameters. In the growth and development of the neonatal rat's cerebrum exposure to enriched uranium, the somatic growth such as body weight and brain weight increase was lower significantly. The data indicated that the neonatal wistar rats having cerebrum exposure to alpha irradiation by enriched uranium showed delayed growth and abnormal neuro-behavior. The changes of neuron specific enolase (NSE), interleukin-1 β (IL- β), superoxide dismutase (SOD), and endothelin (ET) in cerebellum, cerebral cortex, hippocampus, diencephalons of the rat brain after expose to alpha irradiation by enriched uranium were examined with radioimmunoassay. The results showed that SOD and ET can be elevated by the low dose irradiation of enriched uranium, and can be distinctly inhibited by the high dose. The data in view of biochemistry indicated firstly that alpha irradiation from enriched uranium on the developing brain damage of neonatal rats were of sensibility, fragility and compensation in nervous cells

  14. Effects of enriched uranium on developing brain damage of neonatal rats

    Energy Technology Data Exchange (ETDEWEB)

    Guixiong, Gu; Shoupeng, Zhu; Liuyi, Wang; Shuqin, Yang; Lingli, Zhu [Suzhou Medical College, Suzhou (China)

    2001-04-01

    The model of irradiation-induced brain damage in vivo was settled first of all. The micro-auto-radiographic tracing showed that when the rat's brain at postnatal day after lateral ventricle injection with enriched uranium {sup 235}U the radionuclides were mainly accumulated in the nucleus. At the same time autoradiographic tracks appeared in the cytoplasm and interval between cells. The effects of cerebrum exposure to alpha irradiation by enriched uranium on somatic growth and neuro-behavior development of neonatal rats were examined by determination of multiple parameters. In the growth and development of the neonatal rat's cerebrum exposure to enriched uranium, the somatic growth such as body weight and brain weight increase was lower significantly. The data indicated that the neonatal wistar rats having cerebrum exposure to alpha irradiation by enriched uranium showed delayed growth and abnormal neuro-behavior. The changes of neuron specific enolase (NSE), interleukin-1 {beta} (IL- {beta}), superoxide dismutase (SOD), and endothelin (ET) in cerebellum, cerebral cortex, hippocampus, diencephalons of the rat brain after expose to alpha irradiation by enriched uranium were examined with radioimmunoassay. The results showed that SOD and ET can be elevated by the low dose irradiation of enriched uranium, and can be distinctly inhibited by the high dose. The data in view of biochemistry indicated firstly that alpha irradiation from enriched uranium on the developing brain damage of neonatal rats were of sensibility, fragility and compensation in nervous cells.

  15. Transformations of highly enriched uranium into metal or oxide

    International Nuclear Information System (INIS)

    Nollet, P.; Sarrat, P.

    1964-01-01

    The enriched uranium workshops in Cadarache have a double purpose on the one hand to convert uranium hexafluoride into metal or oxide, and on the other hand to recover the uranium contained in scrap materials produced in the different metallurgical transformations. The principles that have been adopted for the design and safety of these workshops are reported. The nuclear safety is based on the geometrical limitations of the processing vessels. To establish the processes and the technology of these workshops, many studies have been made since 1960, some of which have led to original achievements. The uranium hexafluoride of high isotopic enrichment is converted either by injection of the gas into ammonia or by an original process of direct hydrogen reduction to uranium tetrafluoride. The uranium contained m uranium-zirconium metal scrap can be recovered by combustion with hydrogen chloride followed treatment of the uranium chloride by fluorine in order to obtain the uranium in the hexafluoride state. Recovery of the uranium contained m various scrap materials is obtained by a conventional refining process combustion of metallic scrap, nitric acid dissolution of the oxide, solvent purification by tributyl phosphate, ammonium diuranate precipitation, calcining, reduction and hydro fluorination into uranium tetrafluoride, bomb reduction by calcium and slag treatment. Two separate workshops operate along these lines one takes care of the uranium with an isotopic enrichment of up to 3 p. 100, the other handles the high enrichments. The handling of each step of this process, bearing in mind the necessity for nuclear safety, has raised some special technological problems and has led to the conception of new apparatus, in particular the roasting furnace for metal turnings, the nitric acid dissolution unit, the continuous precipitator and ever safe filter and dryer for ammonium diuranate, the reduction and hydro fluorination furnace and the slag recovery apparatus These are

  16. Uranium enrichment by centrifuge in Japan

    International Nuclear Information System (INIS)

    Watanabe, T.; Murase, T.

    1977-01-01

    The demand for enriched uranium is on the increase with nuclear power capacity in which the LWR predominates and is estimated to exceed the supply from the present facilities in the world in less than ten years. Therefore, the basic strategy for enriched uranium is investigated on the following three-point long-range program in Japan: 1. To continue negotiations to extend the current allocation by the long-term contract; 2. To seek active participation in international enrichment projects; and 3. To make efforts to develop uranium enrichment technology and to construct inland facilities. On this basis, a vigorous development program of gas centrigue process for industrialization was launched out in 1972 as a national project. Ever since substantial progress in this field has been made and development works have been increased year after year. At present, a concrete plan of a pilot plant is taking shape. Up to now, several types of centrifuges were developed, of which some were completed as prototype models, and subjected to life tests and also to extensive earthquake-resistivity tests for the characteristics of Japanese geological condition. An enrichment plant is composed of so many centrifuges that the installation and piping system of centrifuges is an important factor which has an effect on plant economy and reliability. Two types of the experimental cascade were constructed in Japan. One has been in operation since 1973, and the other since 1975. Valuable empirical data have been accumulated on cascade characteristics, maintenance scheme and so on. It will be important for the coming plants to have a flexibility to escalation of labor and energy cost, or to variation of the separative work requirement and further. An economic prospect of centrifuge enrichment process is presented

  17. A PHWR with slightly enriched uranium about the first core

    International Nuclear Information System (INIS)

    Notari, C.

    1997-01-01

    Many different studies have been performed in Argentina regarding the use of slightly enriched uranium in the PHWR nuclear plants. These referred mainly to operating plants so that a transition had to be considered from the present natural uranium fuel cycle to the slightly enriched one. In this analysis, technical and economical arguments are presented which favor the use of a natural uranium initial core. The levelized fuel costs are shown to be practically insensitive to the first core and a fast transition is more influential than an initially enriched core. (author)

  18. The supply of the European community countries with enriched uranium

    International Nuclear Information System (INIS)

    1975-02-01

    A discussion is given of a survey regarding the supply of enriched uranium to the countries of the European Community. Costs of enriched uranium imports were not available but import values were calculated using world market prices. (R.L.)

  19. Uranium enrichment: an evolving market

    International Nuclear Information System (INIS)

    Longenecker, J.; Witzel, R.

    1997-01-01

    With over half of the world uranium enrichment market uncommitted to any supplier early in the next century, competition is certain to be fierce. In the meantime the outlood remains unclear, with the market dominated by a number of developments -privatisation of the United States Enrichment Corp (USEC), increasing availability of Russian and US military inventories, the deployment of advanced technology and the closure of nuclear power plants due to deregulation. (author)

  20. A disposition strategy for highly enriched, aluminum-based fuel from research and test reactors

    International Nuclear Information System (INIS)

    McKibben, J.M.; Gould, T.H.; McDonell, W.R.; Bickford, W.E.

    1994-01-01

    The strategy proposed in this paper offers the Department of Energy an approach for disposing of aluminum-based, highly enriched uranium (HEU) spent fuels from foreign and domestic research reactors. The proposal is technically, socially, and economically sound. If implemented, it would advance US non-proliferation goals while also disposing of the spent fuel's waste by timely and proven methods using existing technologies and facilities at SRS without prolonged and controversial storage of the spent fuel. The fuel would be processed through 221-H. The radioactive fission products (waste) would be treated along with existing SRS high level waste by vitrifying it as borosilicate glass in the Defense Waste Processing Facility (DWPF) for disposal in the national geological repository. The HEU would be isotopically diluted, during processing, to low-enriched uranium (LEU) which can not be used to make weapons, thus eliminating proliferation concerns. The LEU can be sold to fabricators of either research reactor fuel or commercial power fuel. This proposed processing-LEU recycle approach has several important advantages over other alternatives, including: Lowest capital investment; lowest net total cost; quickest route to acceptable waste form and final geologic disposal; and likely lowest safety, health, and environmental impacts

  1. Choice and utilization of slightly enriched uranium fuel for high performance research reactors

    International Nuclear Information System (INIS)

    Cerles, J.M.; Schwartz, J.P.

    1978-01-01

    Problems relating to the replacement of highly enriched (90% or 93% U 235 ) uranium fuel: by moderately enriched (20% or 40% in U 235 ) metallic uranium fuel and slightly enriched (3% or 8% in U 235 ) uranium oxide fuel are discussed

  2. Safety of uranium enrichment plant

    International Nuclear Information System (INIS)

    Yonekawa, Shigeru; Morikami, Yoshio; Morita, Minoru; Takahashi, Tsukasa; Tokuyasu, Takashi.

    1991-01-01

    With respect to safety evaluation of the gas centrifuge enrichment facility, several characteristic problems are described as follows. Criticality safety in the cascade equipments can be obtained to maintain the enrichment of UF 6 below 5 %. External radiation dose equivalent rate of the 30B cylinder is low enough, the shield is not necessary. Penetration ratio of the two-stage HEPA filters for UF 6 aerosol is estimated at 10 -9 . From the experimental investigation, vacuum tightness is not damaged by destruction of gas centrifuge rotor. Carbon steel can be used for uranium enrichment equipments under the condition below 100degC. (author)

  3. Development of Nitride Coating Using Atomic Layer Deposition for Low-Enriched Uranium Fuel Powder

    Science.gov (United States)

    Bhattacharya, Sumit

    High-performance research reactors require fuel that operates at high specific power and can withstand high fission density, but at relatively low temperatures. The design of the research reactor fuels is done for efficient heat emission, and consists of assemblies of thin-plates cladding made from aluminum alloy. The low-enriched fuels (LEU) were developed for replacing high-enriched fuels (HEU) for these reactors necessitates a significantly increased uranium density in the fuel to counterbalance the decrease in enrichment. One of the most promising new fuel candidate is U-Mo alloy, in a U-Mo/Al dispersion fuel form, due to its high uranium loading as well as excellent irradiation resistance performance, is being developed extensively to convert from HEU fuel to LEU fuel for high-performance research reactors. However, the formation of an interaction layer (IL) between U-Mo particles and the Al matrix, and the associated pore formation, under high heat flux and high burnup conditions, degrade the irradiation performance of the U-Mo/Al dispersion fuel. From the recent tests results accumulated from the surface engineering of low enriched uranium fuel (SELENIUM) and MIR reactor displayed that a surface barrier coating like physical vapor deposited (PVD) zirconium nitride (ZrN) can significantly reduce the interaction layer. The barrier coating performed well at low burn up but above a fluence rate of 5x 1021 ions/cm2 the swelling reappeared due to formation interaction layer. With this result in mind the objective of this research was to develop an ultrathin ZrN coating over particulate uranium-molybdenum nuclear fuel using a modified savannah 200 atomic layer deposition (ALD) system. This is done in support of the US Department of Energy's (DOE) effort to slow down the interaction at fluence rate and reach higher burn up for high power research reactor. The low-pressure Savannah 200 ALD system is modified to be designed as a batch powder coating system using the

  4. The world market-situation for uranium and its enrichment

    International Nuclear Information System (INIS)

    Lurf, G.

    1977-01-01

    The development of the uranium market is described as well as all pertinent facts which may have contributed to the strong rise in uranium prices of the past three years. The policies of countries which may in the future become major uranium exporters are discussed. For the conversion of uranium there is sufficient capacity. However, if construction of new plants is not started soon shortages could occur in the early 80ies. The market for enrichment has characterized in past years by substantial overcapacities. If new enrichment plants are constructed according to present schedules this overcapacity may prevail into the early 90ies. (orig.) [de

  5. Supply of enriched uranium for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, H. [NUKEM GmbH, Alzenau (Germany)

    1997-08-01

    Since the RERTR-meeting In Newport/USA in 1990 the author delivered a series of papers in connection with the fuel cycle for research reactors dealing with its front-end. In these papers the author underlined the need for unified specifications for enriched uranium metal suitable for the production of fuel elements and made proposals with regard to the re-use of in Europe reprocessed highly enriched uranium. With regard to the fuel cycle of research reactors the research reactor community was since 1989 more concentrating on the problems of its back-end since the USA stopped the acceptance of spent research reactor fuel on December 31, 1988. Now, since it is apparent that these back-end problem have been solved by AEA`s ability to reprocess and the preparedness of the USA to again accept physically spent research reactor fuel the author is focusing with this paper again on the front-end of the fuel cycle on the question whether there is at all a safe supply of low and high enriched uranium for research reactors in the future.

  6. Supply of enriched uranium for research reactors

    International Nuclear Information System (INIS)

    Mueller, H.

    1997-01-01

    Since the RERTR-meeting In Newport/USA in 1990 the author delivered a series of papers in connection with the fuel cycle for research reactors dealing with its front-end. In these papers the author underlined the need for unified specifications for enriched uranium metal suitable for the production of fuel elements and made proposals with regard to the re-use of in Europe reprocessed highly enriched uranium. With regard to the fuel cycle of research reactors the research reactor community was since 1989 more concentrating on the problems of its back-end since the USA stopped the acceptance of spent research reactor fuel on December 31, 1988. Now, since it is apparent that these back-end problem have been solved by AEA's ability to reprocess and the preparedness of the USA to again accept physically spent research reactor fuel the author is focusing with this paper again on the front-end of the fuel cycle on the question whether there is at all a safe supply of low and high enriched uranium for research reactors in the future

  7. Valence-associated uranium isotope fractionation of uranium enriched phosphate in a shallow aquifer, Lee County, Florida

    International Nuclear Information System (INIS)

    Weinberg, J.M.; Levine, B.R.; Cowart, J.B.

    1993-01-01

    The source of anomalously high concentrations of uranium, characterized by U-234/U-238 activity ratios significantly less than unity, in shallow groundwaters of Lee County, Florida, was investigated. Uranium in cores samples was separated into U(IV) and U(VI) oxidation state fractions, and uranium analyses were conducted by alpha spectrometry. Uranium mobility was also studied in selected leaching experiments. Results indicate that mobilization of unusually soluble uranium, present in uranium enriched phosphate of the Pliocene age Tamiami Formation at determined concentrations of up to 729 ppm, is the source for high uranium concentrations in groundwater. In leaching experiments, approximately one-third of the uranium present in the uranium enriched phosphate was mobilized into the aqueous phase. Results of previous investigations suggest that U-234, produced in rock by U-238 decay, is selectively oxidized to U(VI). The uranium enriched phosphate studied in this investigation is characterized by selective reduction of U-234, with a pattern of increasing isotopic fractionation with core depth. As a consequence, U-234/U-238 activity ratios greater than 1.0 in the U(IV) fraction, and less than 1.0 in the U(VI) fraction have developed in the rock phase. In leaching experiments, the U(VI) fraction from the rock was preferentially mobilized into the aqueous phase, suggesting that U-234/U-238 activity ratios of leaching groundwaters are strongly influenced by the isotopic characteristics of the U(VI) fraction of rock. It is suggested that preferential leaching of U(VI), present in selectivity reduced uranium enriched phosphate, is the source for low activity ratio groundwaters in Lee County

  8. ZPR-3 Assembly 6F : A spherical assembly of highly enriched uranium, depleted uranium, aluminum and steel with an average {sup 235}U enrichment of 47 atom %.

    Energy Technology Data Exchange (ETDEWEB)

    Lell, R. M.; McKnight, R. D; Schaefer, R. W.; Nuclear Engineering Division

    2010-09-30

    Assembly 6F (ZPR-3/6F), the final phase of the Assembly 6 program, simulated a spherical core with a thick depleted uranium reflector. ZPR-3/6F was designed as a fast reactor physics benchmark experiment with an average core {sup 235}U enrichment of approximately 47 at.%. Approximately 81.4% of the total fissions in this assembly occur above 100 keV, approximately 18.6% occur below 100 keV, and essentially none below 0.625 eV - thus the classification as a 'fast' assembly. This assembly is Fast Reactor Benchmark No. 7 in the Cross Section Evaluation Working Group (CSEWG) Benchmark Specifications and has historically been used as a data validation benchmark assembly. Loading of ZPR-3/6F began in late December 1956, and the experimental measurements were performed in January 1957. The core consisted of highly enriched uranium (HEU) plates, depleted uranium plates, perforated aluminum plates and stainless steel plates loaded into aluminum drawers, which were inserted into the central square stainless steel tubes of a 31 x 31 matrix on a split table machine. The core unit cell consisted of three columns of 0.125 in.-wide (3.175 mm) HEU plates, three columns of 0.125 in.-wide depleted uranium plates, nine columns of 0.125 in.-wide perforated aluminum plates and one column of stainless steel plates. The maximum length of each column of core material in a drawer was 9 in. (228.6 mm). Because of the goal to produce an approximately spherical core, core fuel and diluent column lengths generally varied between adjacent drawers and frequently within an individual drawer. The axial reflector consisted of depleted uranium plates and blocks loaded in the available space in the front (core) drawers, with the remainder loaded into back drawers behind the front drawers. The radial reflector consisted of blocks of depleted uranium loaded directly into the matrix tubes. The assembly geometry approximated a reflected sphere as closely as the square matrix tubes, the drawers and the

  9. A premature demise for RERTR [Reduced Enrichment for Research and Test Reactors programme]?

    International Nuclear Information System (INIS)

    Rydell, R.J.

    1990-01-01

    A common commitment from France, Belgium, Germany and the US to eliminate highly enriched uranium from their research reactors is needed to help guard against this material falling into the wrong hands. In the US, an essential part of this commitment would be rekindling the weakened Reduced Enrichment for Research and Test Reactors programme (RERTR). This is an American initiative to develop low-enrichment uranium fuel for research reactors that have previously required weapons-usable material. Underway since 1978 at Argonne National Laboratory, RERTR has achieved some impressive results: the development of higher density, low enriched fuels that are suitable for use at over 90% of the world's research reactors; a net reduction of US exports of highly enriched uranium (HEU) from the annual 700kg levels in the late 1970s to a 1990 level of just over 100kg; the encouragement of international scientific co-operation aimed at developing new fuels and facilitating the conversion of existing reactors to these fuels. However, in recent years, the US commitment to RERTR has been declining -budgets have fallen and advanced fuel development work has terminated. (author)

  10. Standard specification for uranium metal enriched to more than 15 % and less Than 20 % 235U

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This specification covers nuclear grade uranium metal that has either been processed through an enrichment plant, or has been produced by the blending of highly enriched uranium with other uranium, to obtain uranium of any 235U concentration below 20 % (and greater than 15 %) and that is intended for research reactor fuel fabrication. The scope of this specification includes specifications for enriched uranium metal derived from commercial natural uranium, recovered uranium, or highly enriched uranium. Commercial natural uranium, recovered uranium and highly enriched uranium are defined in Section 3. The objectives of this specification are to define the impurity and uranium isotope limits for commercial grade enriched uranium metal. 1.2 This specification is intended to provide the nuclear industry with a standard for enriched uranium metal which is to be used in the production of research reactor fuel. In addition to this specification, the parties concerned may agree to other appropriate conditions. ...

  11. Correlation function measurement of uranium casting driven by tagged DT neutrons

    International Nuclear Information System (INIS)

    Li Jiansheng; Ye Cenming; Xie Wenxiong; Huang Po; Zeng Liheng; Jin Yu; Xie Qilin; Zhang Yi

    2013-01-01

    integration of 4-kg HEU is 24.8%. The C 23 (τ) can demonstrate reliably the existence of HEU casting. The C 12 (τ) and C 13 (τ) values between HEU and DU casting with similar mass are different obviously. Conclusions: The spontaneous neutron decay constants of the components are stable, it can be used as an important parameter independently for the uranium casting verification. The correlation function C 23 (τ) is effective to judge the existence of uranium casting. By use of the integrations of the C 12 (τ), C 13 (τ) and C 23 (τ), the mass or enrichment of the uranium casting can be distinguished. (authors)

  12. Uranium enrichment: investment options for the long term

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The US government supplies a major portion of the enriched uranium used to fuel most of the nuclear power plants that furnish electricity in the free world. As manager of the US uranium enrichment concern, the Department of Energy (DOE) is investigating a number of technological choices to improve enrichment service and remain a significant world supplier. The Congress will ultimately select a strategy for federal investment in the uranium enrichment enterprise. A fundamental policy choice between possible future roles - that of the free world's main supplier of enrichment services, and that of a mainly domestic supplier - will underlie any investment decision the Congress makes. The technological choices are gaseous diffusion, gas centrifuge, and atomic vapor laser isotope separation (AVLIS). A base plan and four alternatives were examined by DOE and the Congressional Budget Office. In terms of total enterprise costs, Option IV, ultimately relying on advanced gas centrifuges for enrichment services, would offer the most economic approach, with costs over the full projection period totaling $123.5 billion. Option III, ultimately relying on AVLIS without gas centrifuge enrichment or gaseous diffusion, falls next in the sequence, with costs of $128.2 billion. Options I and II, involving combinations of the gas centrifuge and AVLIS technologies, follow closely with costs of $128.7 and $129.6 billion. The base plan has costs of $136.8 billion over the projection period. 1 figure, 22 tables

  13. Long-term outlook for global natural uranium and uranium enrichment supply and demand situations after the impact of Fukushima Daiichi Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Matsuo, Yuhji; Murakami, Tomoko

    2012-01-01

    In this paper, the authors propose long-term projections of global nuclear power generation, uranium production, and uranium enrichment capacities by region, and estimate the trade flows of natural uranium and uranium enrichment activities in 2020 and 2035. In spite of the rapid nuclear power generation capacity growth expected especially in Asia, the natural uranium and uranium enrichment trade will not be tightened by 2020 due to the projected increase in both natural uranium production and uranium enrichment capacities, which may cause a drop in natural uranium and uranium enrichment prices. Thus, there is a great possibility that the current projects for capacity expansion will be delayed considerably. However, in the 'high-demand scenario', where nuclear expansion will be accelerated due to growing concerns about global warming and energy security issues, additional investments in uranium production and enrichment facilities will be needed by 2035. In Asia, the self-sufficiency ratio for both natural uranium supply and uranium enrichment activities will remain relatively low until 2035. However, the Herfindahl-Hirschman (HH) index of natural uranium and uranium enrichment activity trade to Asia will be lowered considerably up to 2035, indicating that nuclear capacity expansion can contribute to enhancing energy security in Asia. (author)

  14. Electrically Cooled Germanium System for Measurements of Uranium Enrichments in UF6 Cylinders

    International Nuclear Information System (INIS)

    Dvornyak, P.; Koestlbauer, M.; Lebrun, A.; Murray, M.; Nizhnik, V.; Saidler, C.; Twomey, T.

    2010-01-01

    Measurements of Uranium enrichment in UF6 cylinders is a significant part of the IAEA Safeguards verification activities at enrichment and conversion plants. Nowadays, one of the main tools for verification of Uranium enrichment in UF6 cylinders used by Safeguards inspectors is the gamma spectroscopy system with HPGe detector cooled with liquid nitrogen. Electrically Cooled Germanium System (ECGS) is a new compact and portable high resolution gamma spectrometric system free from liquid nitrogen cooling, which can be used for the same safeguards applications. It consists of the ORTEC Micro-trans-SPEC HPGe Portable Spectrometer, a special tungsten collimator and UF6 enrichment measurement software. The enrichment of uranium is determined by of quantifying the area of the 185.7 keV peak provided that the measurement is performed with a detector viewing an infinite thickness of material. Prior starting the verification of uranium enrichment at the facility, the ECGS has to be calibrated with a sample of known uranium enrichment, material matrix, container wall thickness and container material. Evaluation of the ECGS capabilities was performed by carrying out a field test on actual enrichment verification of uranium in UF6 cylinder or other forms of uranium under infinite thickness conditions. The results of these evaluations allow to say that the use of ECGS will enhance practicality of the enrichment measurements and support unannounced inspection activities at enrichment and conversion plants. (author)

  15. Uranium enrichment activities: the SILVA program

    International Nuclear Information System (INIS)

    Guyot, J.; Cazalet, J.; Camarcat, N.; Figuet, J.

    1994-01-01

    Through its commitment to a nuclear electricity generation policy, France holds today a specific position in the uranium enrichment market thanks to the modern multinational EURODIF gaseous diffusion plant. France has, altogether, a long-term goal in developing SILVA, a laser uranium enrichment process, based on the selective photo-ionization of U-235. After reviewing the fundamentals of SILVA (the laser system with copper vapor lasers and dye lasers and the separator system), a description of the general organization of the R and D program is provided going through basic research, subsystems assessment, production demonstrations and simulations (with the LACAN code), plant design and economics. The general schedule of SILVA is outlined, leading to the possible construction of a commercial plant. 7 figs., 11 refs

  16. HEU and Leu FueL Shielding Comparative Study Applied for Spent Fuel Transport

    International Nuclear Information System (INIS)

    Margeanu, C.A.; Margeanu, S.; Barbos, D.

    2009-01-01

    INR Pitesti owns and operates a TRIGA dual-core Research Reactor for material testing, power reactor fuel and nuclear safety studies. The dual core concept involves the operation of a 14 MW TRIGA steady-state, high flux research and material testing reactor at one end of a large pool, and the independent operation of an annular-core pulsing reactor (TRIGA-ACPR) at the other end of the pool. The steady-state reactor is mostly used for long term testing of power reactor fuel components (pellets, pins, subassemblies and fuel assemblies) followed by post-irradiation examination. Following the general trend to replace the He fuel type (High Enriched Uranium) by Leu fuel type (Low Enriched Uranium), in the light of international agreements between IAEA and the states using He fuel in their nuclear reactors, Inr Past's have been accomplished the TRIGA research reactor core full conversion on May 2006. The He fuel repatriation in US in the frame of Foreign Research Reactor Spent Nuclear Fuel Return Programme effectively started in 1999, the final stage being achieved in summer of 2008. Taking into account for the possible impact on the human and environment, in all activities associated to nuclear fuel cycle, the spent fuel or radioactive waste characteristics must be well known. Shielding calculations basic tasks consist in radiation doses calculation, in order to prevent any risks both for personnel protection and impact on the environment during the spent fuel manipulation, transport and storage. The paper is a comparative study of Leu and He fuel utilization effects for the shielding analysis during spent fuel transport. A comparison against the measured data for He spent fuel, available from the last stage of the spent fuel repatriation, is presented. All the geometrical and material data related on the spent fuel shipping cask were considered according to the Nac-Lt Cask approved model. The shielding analysis estimates radiation doses to shipping cask wall surface

  17. Shipment of VINCA Institute's HEU fresh fuel to Russia

    International Nuclear Information System (INIS)

    Pesic, Milan; Sotic, Obrad

    2002-01-01

    This paper shows, for the first time, the basic data related to the recent shipment of the fresh HEU fuel elements from Yugoslavia back to Russia for uranium down blending. In this way, Yugoslavia gives its contribution to the RERTR program and to the world's joint efforts to prevent possible terrorist action against nuclear material potentially usable for production of nuclear weapons. (author)

  18. Development of LEU targets for 99Mo production and their chemical processing status 1989

    International Nuclear Information System (INIS)

    Vandegrift, G.F.; Kwok, J.D.; Chamberlain, D.B.; Hoh, J.C.; Streets, E.W.; Vogler, S.; Thresh, H.R.; Domagala, R.F.; Wiencek, T.C.; Matos, J.E.

    1991-01-01

    Most of the world's supply of Tc-99m for medical purposes is currently produced from Mo-99 derived from the fissioning of high enriched uranium (HEU). Substitution of low enriched uranium (LEU) silicide fuel for the HEU alloy and aluminide fuels used in current target designs will allow equivalent Mo-99 yields with no change in target geometries. Substitution of uranium metal will also allow the substitution of LEU for HEU. Efforts performed in 1989 focused on (1) fabrication of a uranium metal target by Hot Isostatic Pressing uranium metal foil to zirconium, (2) experimental investigation of the dissolution step for U 3 Si 2 targets, allowing us to present a conceptual design for the dissolution process and equipment, and (3) investigation of the procedures used to reclaim irradiated uranium from Mo-production targets, allowing us to further analyze the waste and by-product problems associated with the substitution of LEU for HEU. (orig.)

  19. 10 CFR 40.33 - Issuance of a license for a uranium enrichment facility.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Issuance of a license for a uranium enrichment facility... License Applications § 40.33 Issuance of a license for a uranium enrichment facility. (a) The Commission... the licensing of the construction and operation of a uranium enrichment facility. The Commission will...

  20. Remote Handling Devices for Disposition of Enriched Uranium Reactor Fuel Using Melt-Dilute Process

    International Nuclear Information System (INIS)

    Heckendorn, F.M.

    2001-01-01

    Remote handling equipment is required to achieve the processing of highly radioactive, post reactor, fuel for the melt-dilute process, which will convert high enrichment uranium fuel elements into lower enrichment forms for subsequent disposal. The melt-dilute process combines highly radioactive enriched uranium fuel elements with deleted uranium and aluminum for inductive melting and inductive stirring steps that produce a stable aluminum/uranium ingot of low enrichment

  1. Nuclear threat initiative - Kazakhstan project on elimination of high-enriched uranium. 8 October 2005, Ust Kamenogorsk, Kazakhstan

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2005-01-01

    Since its establishment in 2001, NTI (Nuclear Threat Initiative) has made important contributions towards securing weapon-usable nuclear material and reducing the threat of nuclear terrorism. Shortly after the terrorist attacks of September 2001, NTI pledged $1.15 million to the Agency?s Nuclear Security Fund, which has been used to achieve tangible nuclear security improvements: upgrades to physical protection of nuclear facilities and nuclear and radioactive material; urgently needed training in nuclear security for national officials; enhanced detection capabilities at border crossings; and improved national and international readiness for responding to terrorist acts. NTI has consistently sought to target its contributions to address areas of high priority. A primary point of focus has been to secure (and, where possible, eliminate) material that could be diverted for weapons purposes. In P roject Vinca , NTI committed $5 million in 2002 to help remove high enriched uranium fuel from a research reactor near Belgrade, for return to Russia. With support from Russia, the United States and NTI, seven transfers of fresh fuel back to Russia have been made since 2002 - a total of 112 kilograms of HEU. Current plans foresee further shipments of fresh HEU from another three countries in the next 15 months. The IAEA is also continuing to work on arrangements for the repatriation of spent research reactor fuel of Russian origin. In 2001, Sam Nunn and NTI president Charles Curtis approached the Kazakh Government to offer support for the safe transportation of the unused nuclear fuel from the shutdown BN-350 reactor - nearly 3000 kilograms - to the Ulba Metallurgical Plant JSC (UMP), where it could be dismantled and down-blended into LEU (NTI-Kazakhstan project). By the end of this year, 2897 kilograms of HEU - enough to produce dozens of nuclear bombs - will have been down-blended to LEU and placed in safe storage. Throughout the project, the IAEA has been implementing

  2. Advanced uranium enrichment processes

    International Nuclear Information System (INIS)

    Clerc, M.; Plurien, P.

    1986-01-01

    Three advanced Uranium enrichment processes are dealt with in the report: AVLIS (Atomic Vapour LASER Isotope Separation), MLIS (Molecular LASER Isotope Separation) and PSP (Plasma Separation Process). The description of the physical and technical features of the processes constitutes a major part of the report. If further presents comparisons with existing industrially used enrichment technologies, gives information on actual development programmes and budgets and ends with a chapter on perspectives and conclusions. An extensive bibliography of the relevant open literature is added to the different subjects discussed. The report was drawn up by the nuclear research Centre (CEA) Saclay on behalf of the Commission of the European Communities

  3. URENCO. Uranium enrichment with advanced technology

    International Nuclear Information System (INIS)

    2011-01-01

    URENCO Deutschland is a subsidiary of URENCO Enrichment Company Limited, an international enterprise founded in 1970 in the State Treaty of Almelo, which offers uranium enrichment for nuclear power plants all over the world with the use of advanced technology. URENCO facilities at present are operated in the United Kingdom, the Netherlands, USA, and in Germany. The German URENCO location is Gronau, Westphalia, where cascades have been in operation since 1985 using centrifuge technology to enrich nuclear fuel to up to 5% uranium-235. The URENCO Group supplies nuclear power plants in Europe and overseas countries with a world market share, at present, of more than 25% with a rising tendency. The first uranium separation plant in Gronau (UTA-1) attained its full separation performance of 1,800 t USW/a in late 2005. In February 2005, construction and operation of another plant had been licensed, which can raise the aggregate capacity on site to 4,500 t USW per annum. Construction of the new plant (UTA-2) was begun in summer 2005. UTA-2 will use the latest, most powerful URENCO centrifuge. URENCO has more than 3,500 visitors a year at its German location alone, thus demonstrating its pro-active information policy and offering to the public a maximum of opportunities to acquire information by attending presentations and tours of the plant. (orig.)

  4. Distribution of uranium supply and enrichment

    International Nuclear Information System (INIS)

    Bamford, F.W.

    1982-01-01

    Uranium supply and demand is examined from the perspective of companies in the uranium hexafluoride (UF6) conversion business whose main interest is their sources of uranium supply and UF6 destinations because of transportation costs. Because of the variations in yellowcake transport, charges for conversion, and UF6 transport costs, most converters don't have standard prices. Companies try to look ahead to determine patterns of supplies and delivery points when they analyze the market and estimate future prices. Market analyses must take into account the purchasing policies of utilities around the world. The presentation shows North America supplying about 40% of world uranium, with about 13% of the enrichment done elsewhere. It also shows North American converters getting 53% of the business, but that will require importing uranium from outside North America. 6 tables

  5. Uranium enrichment: a competitive market in the future?

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Andre Ferreira; Honaiser, Eduardo Henrique Rangel [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil)]. E-mail: 20-1@ctemsp.mar.mil.br

    2005-07-01

    Uranium enrichment is the costly step in the nuclear fuel cycle. It has born as a an activity for the military in the 40s, financed by governments, such as the United States (US) and the former Soviet Union. Later, other major nations have joined them in the nuclear weapons development. The activity of enrichment was done in each country that developed nuclear weapons, and the nuclear weapons countries, especially the US and Soviet Union, dictated the mined uranium market. In the 70s, with the growth of the commercial use of nuclear energy, uranium enrichment started to be treated as a market, which gradually have structured itself, strongly influenced by the historical background. Today, the market is an oligopoly of four major government-owned (or government-influenced) companies. In this paper, the trends in the enrichment market are identified, focusing on competitiveness. Through the conduction of a market analysis (past and future), and the study of the market structure evolution, a more competitive market is shown, but still influenced by the governmental participation. Competitiveness is dictated by government support, verticalization capacity, and, mainly by technological advantages. (author)

  6. Uranium enrichment: a competitive market in the future?

    International Nuclear Information System (INIS)

    Marques, Andre Ferreira; Honaiser, Eduardo Henrique Rangel

    2005-01-01

    Uranium enrichment is the costly step in the nuclear fuel cycle. It has born as a an activity for the military in the 40s, financed by governments, such as the United States (US) and the former Soviet Union. Later, other major nations have joined them in the nuclear weapons development. The activity of enrichment was done in each country that developed nuclear weapons, and the nuclear weapons countries, especially the US and Soviet Union, dictated the mined uranium market. In the 70s, with the growth of the commercial use of nuclear energy, uranium enrichment started to be treated as a market, which gradually have structured itself, strongly influenced by the historical background. Today, the market is an oligopoly of four major government-owned (or government-influenced) companies. In this paper, the trends in the enrichment market are identified, focusing on competitiveness. Through the conduction of a market analysis (past and future), and the study of the market structure evolution, a more competitive market is shown, but still influenced by the governmental participation. Competitiveness is dictated by government support, verticalization capacity, and, mainly by technological advantages. (author)

  7. R and D on laser uranium enrichment

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    An AEC Advisory Committee on Uranium Enrichment has completed investigations into the actual condition of laser isotope separation. The working group set up for the purpose has issued a report on the series of investigations made on its development and measures for promoting it. The report says that the development of the process in Japan is at a fundamental stage. Noting that further efforts are needed before its future can be predicted, the report proposes a cource of research and development for the immediate future. For the atomic vapor laser isotope separation (AVLIS), government organizations are engaged in data base buildup and conducting basis engineering tests, and Japan Atomic Energy Research Institute will consider the re-enrichment of uranium recovered from reprocessing. Non-governmental unions of researchers will promote the combination of copper-vapor laser and dye laser. For the molecular laser isotope separation (MLIS), the Institute of Physical and Chemical Research will take up studies with the cooperation of the Power Reactor and Nuclear Fuel Development Corporation. In chapters covering the philosophy of laser uranium enrichment technology development, the report deals with its significance, actual conditions and tasks, and goals and measures for its promotion. (Nogami, K.)

  8. Status of the German AF-programme. Considerations with respect to INFCE recommendations and criteria[AF = Anreicherungsreduzierung in Forschungsreaktoren (Enrichment reduction in research reactors)

    Energy Technology Data Exchange (ETDEWEB)

    Thamm, Gerd H [Kernforschungsanlage Juelich GmbH, Research Reactor Division, Juelich (Germany)

    1983-09-01

    As is generally known, the INFCE studies carried out on a worldwide scale from 1977 to 1979 for research reactors using primarily highly enriched uranium (HEU 80% to 93% U-235) have led to the important recommendation that an effective reduction in the proliferation of weapons-usable nuclear material can be achieved by converting the fuel cycles from HEU to low-enriched uranium (LEU, U-235 enrichment 20%). Further recommendations made by INFCE to the effect of restricting or markedly reducing the stockpiles of HEU materials and diminishing the production of fissile materials due to irradiation in research reactors, however, have been given secondary attention in the course of development as compared to the first recommendation mentioned above. As a result of the INFCE studies, national programmes were initiated in various countries aiming at enrichment reduction in research reactors. Essential work in this connection was commenced above all in the USA (RERTR programme), in France, Japan and in the Federal Republic of Germany (AF programme). Added to this was an IAEA support programme intended primarily for developing and threshold countries. Essential conditions in the form of criteria were elaborated by the INFCE Working Group 8C in connection with the recommendation for enrichment reduction in research reactors. These criteria are: 1. The safety margins and fuel reliability should not be reduced by a conversion from HEU to LEU cycles. 2. Losses in reactor performance (e.g. the ratio of neutron flux available for experiments) to reactor power should not be more than marginal. 3. The cost of conversion for research reactors should be kept as low as possible. 4. Any increase in operating costs after conversion should not be more than marginal. The first three criteria mentioned have been given particular attention and have a good chance of being complied with in the current worldwide development activities for a conversion of research reactors to LEU fuel cycle

  9. White Paper – Use of LEU for a Space Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Poston, David Irvin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mcclure, Patrick Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-11

    Historically space reactors flown or designed for the U.S. and Russia used Highly Enriched Uranium (HEU) for fuel. HEU almost always produces a small and lighter reactor. Since mass increases launch costs or decreases science payloads, HEU was the natural choice. However in today’s environment, the proliferation of HEU has become a major concern for the U.S. government and hence a policy issue. In addition, launch costs are being reduced as the space community moves toward commercial launch vehicles. HEU also carries a heavy security cost to process, test, transport and launch. Together these issues have called for a re-investigation into space reactors the use Low Enriched Uranium (LEU) fuel.

  10. 76 FR 72984 - Revised Application for a License To Export High-Enriched Uranium

    Science.gov (United States)

    2011-11-28

    ... NUCLEAR REGULATORY COMMISSION Revised Application for a License To Export High-Enriched Uranium The application for a license to export high-enriched Uranium has been revised as noted below. Notice... fabricate fuel France. Security Complex; October 18, Uranium (93.35%). uranium (174.0 elements in France...

  11. 75 FR 15743 - Application for a License To Export High-Enriched Uranium

    Science.gov (United States)

    2010-03-30

    ... NUCLEAR REGULATORY COMMISSION Application for a License To Export High-Enriched Uranium Pursuant to 10 CFR 110.70(c) ``Public notice of receipt of an application,'' please take notice that the...-Enriched 160.0 kilograms To fabricate fuel France. Complex, March 3, 2010. Uranium (93.35%). uranium (149...

  12. Environmental Development Plan: uranium enrichment

    International Nuclear Information System (INIS)

    1979-09-01

    This Environmental Development Plan identifies and examines the environmental, health, safety, and socioeconomic concerns and corresponding requirements associated with the DOE research, development, demonstration, and operation of the Uranium Enrichment program, including the gaseous diffusion process, the centrifuge process, centrifuge rotor fabrication, and related research and development activities

  13. Optimal set of selected uranium enrichments that minimizes blending consequences

    International Nuclear Information System (INIS)

    Nachlas, J.A.; Kurstedt, H.A. Jr.; Lobber, J.S. Jr.

    1977-01-01

    Identities, quantities, and costs associated with producing a set of selected enrichments and blending them to provide fuel for existing reactors are investigated using an optimization model constructed with appropriate constraints. Selected enrichments are required for either nuclear reactor fuel standardization or potential uranium enrichment alternatives such as the gas centrifuge. Using a mixed-integer linear program, the model minimizes present worth costs for a 39-product-enrichment reference case. For four ingredients, the marginal blending cost is only 0.18% of the total direct production cost. Natural uranium is not an optimal blending ingredient. Optimal values reappear in most sets of ingredient enrichments

  14. 77 FR 13367 - General Electric-Hitachi Global Laser Enrichment, LLC, Proposed Laser-Based Uranium Enrichment...

    Science.gov (United States)

    2012-03-06

    ... NUCLEAR REGULATORY COMMISSION [NRC-2009-0157] General Electric-Hitachi Global Laser Enrichment, LLC, Proposed Laser-Based Uranium Enrichment Facility, Wilmington, NC AGENCY: Nuclear Regulatory... Impact Statement (EIS) for the proposed General Electric- Hitachi Global Laser Enrichment, LLC (GLE...

  15. Multinational uranium enrichment in the Middle East

    International Nuclear Information System (INIS)

    Ahmad, Ali; Salahieh, Sidra; Snyder, Ryan

    2017-01-01

    The Joint Comprehensive Plan of Action (JCPOA) agreed to by Iran and the P5+1 in July 2015 placed restrictions on Iran’s nuclear program while other Middle Eastern countries– Egypt, Jordan, Saudi Arabia, Turkey, and the United Arab Emirates–are planning to build their own nuclear power plants to meet increasing electricity demands. Although the JCPOA restricts Iran's uranium enrichment program for 10–15 years, Iran's neighbors may choose to develop their own national enrichment programs giving them a potential nuclear weapons capability. This paper argues that converting Iran's national enrichment program to a more proliferation-resistant multinational arrangement could offer significant economic benefits–reduced capital and operational costs–due to economies of scale and the utilization of more efficient enrichment technologies. In addition, the paper examines policy aspects related to financing, governance, and how multinational enrichment could fit into the political and security context of the Middle East. A multinational enrichment facility managed by regional and international partners would provide more assurance that it remains peaceful and could help build confidence between Iran and its neighbors to cooperate in managing other regional security challenges. - Highlights: • Freezing Iran's nuclear program is an opportunity to launch joint initiatives in ME. • A joint uranium enrichment program in the Middle East offers economic benefits. • Other benefits include improved nuclear security and transparency in the region.

  16. Uranium enrichment. 1980 annual report

    International Nuclear Information System (INIS)

    1981-05-01

    This report contains data and related information on the production of enriched uranium at the gaseous diffusion plants and an update on the construction and project control center for the gas centrifuge plant. Power usage at the gaseous diffusion plants is illustrated. The report contains several glossy color pictures of the plants and processes described. In addition to gaseous diffusion and the centrifuge process, three advanced isotope separation process are now being developed. The business operation of the enrichment plants is described; charts on revenue, balance sheets, and income statements are included

  17. Criticality of moderated and undermoderated low-enriched uranium oxide systems

    International Nuclear Information System (INIS)

    Goebel, G.R.

    1980-06-01

    Uranium oxide was enriched to 4.46 wt % 235 U compacted to a density of 4.68 g/cm 3 . The uranium oxide was packed into cubical aluminum cans and water added to the oxide until an H/U atomic ratio of 0.77 was achieved. A 5 x 5 x 5 array of uranium oxide cans for the experiments were used when no plastic moderator material was placed between cans. High enriched uranium drivers were used to achieve criticality. Criticality was achieved for smaller arrays without a driver when 24.5 mm plastic moderator material was placed between the cans. Twelve critical experiments are reported, six in each reflector

  18. Loss-of-Flow and Loss-of-Pressure Simulations of the BR2 Research Reactor with HEU and LEU Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Licht, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Bergeron, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Dionne, B. [Argonne National Lab. (ANL), Argonne, IL (United States); Sikik, E. [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium); Van den Branden, G. [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium); Koonen, E. [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium)

    2016-01-01

    Belgian Reactor 2 (BR2) is a research and test reactor located in Mol, Belgium and is primarily used for radioisotope production and materials testing. The Materials Management and Minimization (M3) Reactor Conversion Program of the National Nuclear Security Administration (NNSA) is supporting the conversion of the BR2 reactor from Highly Enriched Uranium (HEU) fuel to Low Enriched Uranium (LEU) fuel. The reactor core of BR2 is located inside a pressure vessel that contains 79 channels in a hyperboloid configuration. The core configuration is highly variable as each channel can contain a fuel assembly, a control or regulating rod, an experimental device, or a beryllium or aluminum plug. Because of this variability, a representative core configuration, based on current reactor use, has been defined for the fuel conversion analyses. The code RELAP5/Mod 3.3 was used to perform the transient thermal-hydraulic safety analyses of the BR2 reactor to support reactor conversion. The input model has been modernized relative to that historically used at BR2 taking into account the best modeling practices developed by Argonne National Laboratory (ANL) and BR2 engineers.

  19. Uranium enrichment management review. Final report

    International Nuclear Information System (INIS)

    Ellett, J.D.; Rieke, W.B.; Simpson, J.W.; Sullivan, P.E.

    1980-01-01

    The uranium enrichment enterprise of the US Department of Energy (DOE) provides enriched nuclear fuel for private and government utilities domestically and abroad. The enterprise, in effect, provides a commercial service and represents a signficant business operation within the US government: more than $1 billion in revenues annually and future capital expenditures estimated at several billions of dollars. As a result, in May 1980, the Assistant Secretary for Resource Applications within DOE requested that a group of experienced business executives be assembled to review the operation, financing, and management of the uranium enrichment enterprise as a basis for advising the Secretary of Energy. The review group was specifically asked to focus on the management activities to which sound business practices could be applied. The group developed findings and recommendations in six areas: management of operations and construction; long-range planning; marketing of enrichment services; financial management; research and development; and general management. The chapters of this report present first the management review group's recommendations in the six areas evaluated and then the findings and issues in each area. An appendix provides the group's calendar of meetings. A list of major reference sources used in the course of the study is also included. 12 references

  20. Long Range Active Detection of HEU Based on Thermal Neutron Multiplication

    Energy Technology Data Exchange (ETDEWEB)

    Forman L.; Dioszegi I.; Salwen, C.; and Vanier, P.E.

    2010-05-24

    We report on the results of measurements of proton irradiation on a series of targets at Brookhaven National Laboratory’s (BNL) Alternate Gradient Synchrotron Facility (AGS), in collaboration with LANL and SNL. We examined the prompt radiation environment in the tunnel for the DTRA-sponsored series (E 972), which investigated the penetration of air and subsequent target interaction of 4 GeV proton pulses. Measurements were made by means of an organic scintillator with a 500 MHz bandwidth system. We found that irradiation of a depleted uranium (DU) target resulted in a large gamma-ray signal in the 100-500 µsec time region after the proton flash when the DU was surrounded by polyethylene, but little signal was generated if it was surrounded by boron-loaded polyethylene. Subsequent Monte Carlo (MCNPX) calculations indicated that the source of the signal was consistent with thermal neutron capture in DU. The MCNPX calculations also indicated that if one were to perform the same experiment with a highly enriched uranium (HEU) target there would be a distinctive fast neutron yield in this 100-500 µsec time region from thermal neutron-induced fission. The fast neutrons can be recorded by the same direct current system and differentiated from gamma ray pulses in organic scintillator by pulse shape discrimination.

  1. Mortality (1968-2008) in a French cohort of uranium enrichment workers potentially exposed to rapidly soluble uranium compounds.

    Science.gov (United States)

    Zhivin, Sergey; Guseva Canu, Irina; Samson, Eric; Laurent, Olivier; Grellier, James; Collomb, Philippe; Zablotska, Lydia B; Laurier, Dominique

    2016-03-01

    Until recently, enrichment of uranium for civil and military purposes in France was carried out by gaseous diffusion using rapidly soluble uranium compounds. We analysed the relationship between exposure to soluble uranium compounds and exposure to external γ-radiation and mortality in a cohort of 4688 French uranium enrichment workers who were employed between 1964 and 2006. Data on individual annual exposure to radiological and non-radiological hazards were collected for workers of the AREVA NC, CEA and Eurodif uranium enrichment plants from job-exposure matrixes and external dosimetry records, differentiating between natural, enriched and depleted uranium. Cause-specific mortality was compared with the French general population via standardised mortality ratios (SMR), and was analysed via Poisson regression using log-linear and linear excess relative risk models. Over the period of follow-up, 131 161 person-years at risk were accrued and 21% of the subjects had died. A strong healthy worker effect was observed: all causes SMR=0.69, 95% CI 0.65 to 0.74. SMR for pleural cancer was significantly increased (2.3, 95% CI 1.06 to 4.4), but was only based on nine cases. Internal uranium and external γ-radiation exposures were not significantly associated with any cause of mortality. This is the first study of French uranium enrichment workers. Although limited in statistical power, further follow-up of this cohort, estimation of internal uranium doses and pooling with similar cohorts should elucidate potential risks associated with exposure to soluble uranium compounds. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  2. Uranium enrichment management review: summary of analysis

    International Nuclear Information System (INIS)

    1981-01-01

    In May 1980, the Assistant Secretary for Resource Applications within the Department of Energy requested that a group of experienced business executives be assembled to review the operation, financing, and management of the uranium enrichment enterprise as a basis for advising the Secretary of Energy. After extensive investigation, analysis, and discussion, the review group presented its findings and recommendations in a report on December 2, 1980. The following pages contain background material on which that final report was based. This report is arranged in chapters that parallel those of the uranium enrichment management review final report - chapters that contain summaries of the review group's discussion and analyses in six areas: management of operations and construction; long-range planning; marketing of enrichment services; financial management; research and development; and general management. Further information, in-depth analysis, and discussion of suggested alternative management practices are provided in five appendices

  3. Uranium enrichment management review: summary of analysis

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    In May 1980, the Assistant Secretary for Resource Applications within the Department of Energy requested that a group of experienced business executives be assembled to review the operation, financing, and management of the uranium enrichment enterprise as a basis for advising the Secretary of Energy. After extensive investigation, analysis, and discussion, the review group presented its findings and recommendations in a report on December 2, 1980. The following pages contain background material on which that final report was based. This report is arranged in chapters that parallel those of the uranium enrichment management review final report - chapters that contain summaries of the review group's discussion and analyses in six areas: management of operations and construction; long-range planning; marketing of enrichment services; financial management; research and development; and general management. Further information, in-depth analysis, and discussion of suggested alternative management practices are provided in five appendices.

  4. Status report on the cost and availability of enriched uranium for research reactors

    International Nuclear Information System (INIS)

    Mueller, Hans; Laucht, Juergen

    2005-01-01

    Availability and price development of enriched uranium contained in fuel elements for research reactors plays an important role with regard to reliability and economic and planning reasons. The leading price factors of LEU (19.75% enriched uranium metal), are the contained natural uranium equivalent in the form of UF6 (feed component), the separative work of the enrichment (SWU), conversion of the enriched uranium into metal form and associated services, such as transportation. World market price of feed material for enrichment was more or less stable in the last decades. After very moderate feed price increases between 2001 and mid-2003, the price gained momentum and almost doubled in the short period between the 2nd half of 2003 and year-end 2004. (author)

  5. Preliminary investigations on the use of uranium silicide targets for fission Mo-99 production

    Energy Technology Data Exchange (ETDEWEB)

    Cols, H.; Cristini, P.; Marques, R.

    1997-08-01

    The National Atomic Energy Commission (CNEA) of Argentine Republic owns and operates an installation for production of molybdenum-99 from fission products since 1985, and, since 1991, covers the whole national demand of this nuclide, carrying out a program of weekly productions, achieving an average activity of 13 terabecquerel per week. At present they are finishing an enlargement of the production plant that will allow an increase in the volume of production to about one hundred of terabecquerel. Irradiation targets are uranium/aluminium alloy with 90% enriched uranium with aluminium cladding. In view of international trends held at present for replacing high enrichment uranium (HEU) for enrichment values lower than 20 % (LEU), since 1990 the authors are in contact with the RERTR program, beginning with tests to adapt their separation process to new irradiation target conditions. Uranium silicide (U{sub 3}Si{sub 2}) was chosen as the testing material, because it has an uranium mass per volume unit, so that it allows to reduce enrichment to a value of 20%. CNEA has the technology for manufacturing miniplates of uranium silicide for their purposes. In this way, equivalent amounts of Molybdenum-99 could be obtained with no substantial changes in target parameters and irradiation conditions established for the current process with Al/U alloy. This paper shows results achieved on the use of this new target.

  6. New Prototype Safeguards Technology Offers Improved Confidence and Automation for Uranium Enrichment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Brim, Cornelia P.

    2013-04-01

    An important requirement for the international safeguards community is the ability to determine the enrichment level of uranium in gas centrifuge enrichment plants and nuclear fuel fabrication facilities. This is essential to ensure that countries with nuclear nonproliferation commitments, such as States Party to the Nuclear Nonproliferation Treaty, are adhering to their obligations. However, current technologies to verify the uranium enrichment level in gas centrifuge enrichment plants or nuclear fuel fabrication facilities are technically challenging and resource-intensive. NNSA’s Office of Nonproliferation and International Security (NIS) supports the development, testing, and evaluation of future systems that will strengthen and sustain U.S. safeguards and security capabilities—in this case, by automating the monitoring of uranium enrichment in the entire inventory of a fuel fabrication facility. One such system is HEVA—hybrid enrichment verification array. This prototype was developed to provide an automated, nondestructive assay verification technology for uranium hexafluoride (UF6) cylinders at enrichment plants.

  7. Status of the RERTR [Reduced Enrichment Research and Test Reactor] program in Argentina

    International Nuclear Information System (INIS)

    Giorsetti, D.R.

    1987-01-01

    The Argentine Atomic Energy Commission started in 1978 the Reduced Enrichment Research and Test Reactors in the field of reactor engineering; engineering, development and manufacturing of fuel elements and research reactors operators. This program was initiated with the conviction that it would contribute to the international efforts to reduce risks of nuclear weapons proliferation owing to an uncontrolled use of highly enriched uranium. It was intended to convert RA-3 reactor to make possible its operation with low enriched fuel (LEU), instead of high enriched fuel (HEU) and to develop manufacturing techniques for said LEU. Afterwards, this program was adapted to assist other countries in reactors conversion, development of the corresponding fuel elements and supply of fuel elements to other countries. (Author)

  8. Communication Received from Germany Concerning its Policies regarding the Management of Plutonium. Statements on the Management of Plutonium and of High Enriched Uranium

    International Nuclear Information System (INIS)

    2009-01-01

    The Director General has received a letter dated 16 July 2009 from the Permanent Mission of the Federal Republic of Germany to the IAEA in enclosures of which the Government of Germany, in keeping with its commitment under the Guidelines for the Management of Plutonium (contained in INFCIRC/5491 of 16 March 1998 and hereinafter referred to as the 'Guidelines'), and in accordance with Annexes B and C of the Guidelines, has made available annual figures for holdings of civil unirradiated plutonium and the estimated amounts of plutonium contained in spent civil reactor fuel as of 31 December 2008. 2. The Government of the Federal Republic of Germany has also made available a statement of its annual figures for holdings of civil high enriched uranium (HEU) as of 31 December 2008 [es

  9. Communication Received from Germany Concerning its Policies regarding the Management of Plutonium. Statements on the Management of Plutonium and of High Enriched Uranium

    International Nuclear Information System (INIS)

    2012-01-01

    The Director General has received a note verbale dated 14 October 2010 from the Permanent Mission of the Federal Republic of Germany to the IAEA in enclosures of which the Government of Germany, in keeping with its commitment under the Guidelines for the Management of Plutonium (contained in INFCIRC/5491 of 16 March 1998 and hereinafter referred to as the 'Guidelines'), and in accordance with Annexes B and C of the Guidelines, has made available annual figures for holdings of civil unirradiated plutonium and the estimated amounts of plutonium contained in spent civil reactor fuel as of 31 December 2009. The Government of the Federal Republic of Germany has also made available a statement of its annual figures for holdings of civil high enriched uranium (HEU) as of 31 December 2009 [es

  10. Communication Received from Germany Concerning its Policies regarding the Management of Plutonium. Statements on the Management of Plutonium and of High Enriched Uranium

    International Nuclear Information System (INIS)

    2012-01-01

    The Secretariat has received a note verbale dated 20 September 2012 from the Permanent Mission of the Federal Republic of Germany to the IAEA in the enclosures of which the Government of Germany, in keeping with its commitment under the Guidelines for the Management of Plutonium (contained in INFCIRC/5491 of 16 March 1998 and hereinafter referred to as the 'Guidelines'), and in accordance with Annexes B and C of the Guidelines, has made available annual figures for holdings of civil unirradiated plutonium and the estimated amounts of plutonium contained in spent civil reactor fuel as of 31 December 2011. The Government of the Federal Republic of Germany has also made available a statement of the estimated amounts of highly enriched uranium (HEU) as of 31 December 2011 [es

  11. Communication Received from Germany Concerning its Policies regarding the Management of Plutonium. Statements on the Management of Plutonium and of Highly Enriched Uranium

    International Nuclear Information System (INIS)

    2007-01-01

    The Director General has received a Note Verbale dated 3 July 2007 from the Permanent Mission of the Federal Republic of Germany to the IAEA in the enclosures of which the Government of Germany, in keeping with its commitment under the Guidelines for the Management of Plutonium (contained in INFCIRC/549 of 16 March 1998 and hereinafter referred to as the 'Guidelines'), and in accordance with Annexes B and C of the Guidelines, has made available annual figures for holdings of civil unirradiated plutonium and the estimated amounts of plutonium contained in spent civil reactor fuel as of 31 December 2006. The Government of the Federal Republic of Germany has also made available a statement of its annual figures for holdings of civil highly enriched uranium (HEU) as of 31 December 2006 [es

  12. Communication Received from Germany Concerning its Policies regarding the Management of Plutonium. Statements on the Management of Plutonium and of High Enriched Uranium

    International Nuclear Information System (INIS)

    2013-01-01

    The Secretariat has received a note verbale dated 2 July 2013 from the Permanent Mission of the Federal Republic of Germany to the IAEA in the enclosures of which the Government of Germany, in keeping with its commitment under the Guidelines for the Management of Plutonium (contained in INFCIRC/5491 of 16 March 1998 and hereinafter referred to as the 'Guidelines'), and in accordance with Annexes B and C of the Guidelines, has made available annual figures for holdings of civil unirradiated plutonium and the estimated amounts of plutonium contained in spent civil reactor fuel as of 31 December 2012. The Government of the Federal Republic of Germany has also made available a statement of the estimated amounts of highly enriched uranium (HEU) as of 31 December 2012 [es

  13. Communication Received from Germany Concerning its Policies regarding the Management of Plutonium. Statements on the Management of Plutonium and of High Enriched Uranium

    International Nuclear Information System (INIS)

    2011-01-01

    The Director General has received a note verbale dated 29 April 2011 from the Permanent Mission of the Federal Republic of Germany to the IAEA in enclosures of which the Government of Germany, in keeping with its commitment under the Guidelines for the Management of Plutonium (contained in INFCIRC/5491 of 16 March 1998 and hereinafter referred to as the 'Guidelines'), and in accordance with Annexes B and C of the Guidelines, has made available annual figures for holdings of civil unirradiated plutonium and the estimated amounts of plutonium contained in spent civil reactor fuel as of 31 December 2010. The Government of the Federal Republic of Germany has also made available a statement of its annual figures for holdings of civil high enriched uranium (HEU) as of 31 December 2010 [es

  14. Communication Received from Germany Concerning its Policies regarding the Management of Plutonium. Statements on the Management of Plutonium and of High Enriched Uranium

    International Nuclear Information System (INIS)

    2012-01-01

    The Secretariat has received a note verbale dated 20 September 2012 from the Permanent Mission of the Federal Republic of Germany to the IAEA in the enclosures of which the Government of Germany, in keeping with its commitment under the Guidelines for the Management of Plutonium (contained in INFCIRC/5491 of 16 March 1998 and hereinafter referred to as the 'Guidelines'), and in accordance with Annexes B and C of the Guidelines, has made available annual figures for holdings of civil unirradiated plutonium and the estimated amounts of plutonium contained in spent civil reactor fuel as of 31 December 2011. The Government of the Federal Republic of Germany has also made available a statement of the estimated amounts of highly enriched uranium (HEU) as of 31 December 2011

  15. Communication Received from Germany Concerning its Policies regarding the Management of Plutonium. Statements on the Management of Plutonium and of High Enriched Uranium

    International Nuclear Information System (INIS)

    2011-01-01

    The Director General has received a note verbale dated 14 October 2010 from the Permanent Mission of the Federal Republic of Germany to the IAEA in enclosures of which the Government of Germany, in keeping with its commitment under the Guidelines for the Management of Plutonium (contained in INFCIRC/5491 of 16 March 1998 and hereinafter referred to as the 'Guidelines'), and in accordance with Annexes B and C of the Guidelines, has made available annual figures for holdings of civil unirradiated plutonium and the estimated amounts of plutonium contained in spent civil reactor fuel as of 31 December 2009. The Government of the Federal Republic of Germany has also made available a statement of its annual figures for holdings of civil high enriched uranium (HEU) as of 31 December 2009

  16. Communication Received from Germany Concerning its Policies regarding the Management of Plutonium. Statements on the Management of Plutonium and of High Enriched Uranium

    International Nuclear Information System (INIS)

    2011-01-01

    The Director General has received a note verbale dated 29 April 2011 from the Permanent Mission of the Federal Republic of Germany to the IAEA in enclosures of which the Government of Germany, in keeping with its commitment under the Guidelines for the Management of Plutonium (contained in INFCIRC/5491 of 16 March 1998 and hereinafter referred to as the 'Guidelines'), and in accordance with Annexes B and C of the Guidelines, has made available annual figures for holdings of civil unirradiated plutonium and the estimated amounts of plutonium contained in spent civil reactor fuel as of 31 December 2010. The Government of the Federal Republic of Germany has also made available a statement of its annual figures for holdings of civil high enriched uranium (HEU) as of 31 December 2010

  17. Communication Received from Germany Concerning its Policies regarding the Management of Plutonium. Statements on the Management of Plutonium and of High Enriched Uranium

    International Nuclear Information System (INIS)

    2009-01-01

    The Director General has received a letter dated 16 July 2009 from the Permanent Mission of the Federal Republic of Germany to the IAEA in enclosures of which the Government of Germany, in keeping with its commitment under the Guidelines for the Management of Plutonium (contained in INFCIRC/5491 of 16 March 1998 and hereinafter referred to as the 'Guidelines'), and in accordance with Annexes B and C of the Guidelines, has made available annual figures for holdings of civil unirradiated plutonium and the estimated amounts of plutonium contained in spent civil reactor fuel as of 31 December 2008. 2. The Government of the Federal Republic of Germany has also made available a statement of its annual figures for holdings of civil high enriched uranium (HEU) as of 31 December 2008

  18. Communication Received from Germany Concerning its Policies regarding the Management of Plutonium. Statements on the Management of Plutonium and of High Enriched Uranium

    International Nuclear Information System (INIS)

    2013-01-01

    The Secretariat has received a note verbale dated 2 July 2013 from the Permanent Mission of the Federal Republic of Germany to the IAEA in the enclosures of which the Government of Germany, in keeping with its commitment under the Guidelines for the Management of Plutonium (contained in INFCIRC/5491 of 16 March 1998 and hereinafter referred to as the 'Guidelines'), and in accordance with Annexes B and C of the Guidelines, has made available annual figures for holdings of civil unirradiated plutonium and the estimated amounts of plutonium contained in spent civil reactor fuel as of 31 December 2012. The Government of the Federal Republic of Germany has also made available a statement of the estimated amounts of highly enriched uranium (HEU) as of 31 December 2012

  19. Communication Received from Germany Concerning its Policies regarding the Management of Plutonium. Statements on the Management of Plutonium and of Highly Enriched Uranium

    International Nuclear Information System (INIS)

    2007-01-01

    The Director General has received a Note Verbale dated 3 July 2007 from the Permanent Mission of the Federal Republic of Germany to the IAEA in the enclosures of which the Government of Germany, in keeping with its commitment under the Guidelines for the Management of Plutonium (contained in INFCIRC/549 of 16 March 1998 and hereinafter referred to as the 'Guidelines'), and in accordance with Annexes B and C of the Guidelines, has made available annual figures for holdings of civil unirradiated plutonium and the estimated amounts of plutonium contained in spent civil reactor fuel as of 31 December 2006. The Government of the Federal Republic of Germany has also made available a statement of its annual figures for holdings of civil highly enriched uranium (HEU) as of 31 December 2006

  20. Communication Received from Germany Concerning its Policies regarding the Management of Plutonium. Statements on the Management of Plutonium and of High Enriched Uranium

    International Nuclear Information System (INIS)

    2011-01-01

    The Director General has received a note verbale dated 29 April 2011 from the Permanent Mission of the Federal Republic of Germany to the IAEA in enclosures of which the Government of Germany, in keeping with its commitment under the Guidelines for the Management of Plutonium (contained in INFCIRC/5491 of 16 March 1998 and hereinafter referred to as the 'Guidelines'), and in accordance with Annexes B and C of the Guidelines, has made available annual figures for holdings of civil unirradiated plutonium and the estimated amounts of plutonium contained in spent civil reactor fuel as of 31 December 2010. The Government of the Federal Republic of Germany has also made available a statement of its annual figures for holdings of civil high enriched uranium (HEU) as of 31 December 2010 [fr

  1. Communication Received from Germany Concerning its Policies regarding the Management of Plutonium. Statements on the Management of Plutonium and of High Enriched Uranium

    International Nuclear Information System (INIS)

    2010-01-01

    The Director General has received a note verbale dated 14 October 2010 from the Permanent Mission of the Federal Republic of Germany to the IAEA in enclosures of which the Government of Germany, in keeping with its commitment under the Guidelines for the Management of Plutonium (contained in INFCIRC/5491 of 16 March 1998 and hereinafter referred to as the 'Guidelines'), and in accordance with Annexes B and C of the Guidelines, has made available annual figures for holdings of civil unirradiated plutonium and the estimated amounts of plutonium contained in spent civil reactor fuel as of 31 December 2009. The Government of the Federal Republic of Germany has also made available a statement of its annual figures for holdings of civil high enriched uranium (HEU) as of 31 December 2009

  2. Communication Received from Germany Concerning its Policies regarding the Management of Plutonium. Statements on the Management of Plutonium and of High Enriched Uranium

    International Nuclear Information System (INIS)

    2013-01-01

    The Secretariat has received a note verbale dated 2 July 2013 from the Permanent Mission of the Federal Republic of Germany to the IAEA in the enclosures of which the Government of Germany, in keeping with its commitment under the Guidelines for the Management of Plutonium (contained in INFCIRC/5491 of 16 March 1998 and hereinafter referred to as the 'Guidelines'), and in accordance with Annexes B and C of the Guidelines, has made available annual figures for holdings of civil unirradiated plutonium and the estimated amounts of plutonium contained in spent civil reactor fuel as of 31 December 2012. The Government of the Federal Republic of Germany has also made available a statement of the estimated amounts of highly enriched uranium (HEU) as of 31 December 2012 [fr

  3. Communication Received from Germany Concerning its Policies regarding the Management of Plutonium. Statements on the Management of Plutonium and of Highly Enriched Uranium

    International Nuclear Information System (INIS)

    2007-01-01

    The Director General has received a Note Verbale dated 3 July 2007 from the Permanent Mission of the Federal Republic of Germany to the IAEA in the enclosures of which the Government of Germany, in keeping with its commitment under the Guidelines for the Management of Plutonium (contained in INFCIRC/549 of 16 March 1998 and hereinafter referred to as the 'Guidelines'), and in accordance with Annexes B and C of the Guidelines, has made available annual figures for holdings of civil unirradiated plutonium and the estimated amounts of plutonium contained in spent civil reactor fuel as of 31 December 2006. The Government of the Federal Republic of Germany has also made available a statement of its annual figures for holdings of civil highly enriched uranium (HEU) as of 31 December 2006 [fr

  4. Communication Received from Germany Concerning its Policies regarding the Management of Plutonium. Statements on the Management of Plutonium and of High Enriched Uranium

    International Nuclear Information System (INIS)

    2010-01-01

    The Director General has received a note verbale dated 14 October 2010 from the Permanent Mission of the Federal Republic of Germany to the IAEA in enclosures of which the Government of Germany, in keeping with its commitment under the Guidelines for the Management of Plutonium (contained in INFCIRC/5491 of 16 March 1998 and hereinafter referred to as the 'Guidelines'), and in accordance with Annexes B and C of the Guidelines, has made available annual figures for holdings of civil unirradiated plutonium and the estimated amounts of plutonium contained in spent civil reactor fuel as of 31 December 2009. The Government of the Federal Republic of Germany has also made available a statement of its annual figures for holdings of civil high enriched uranium (HEU) as of 31 December 2009 [fr

  5. Communication Received from Germany Concerning its Policies regarding the Management of Plutonium. Statements on the Management of Plutonium and of High Enriched Uranium

    International Nuclear Information System (INIS)

    2012-01-01

    The Secretariat has received a note verbale dated 20 September 2012 from the Permanent Mission of the Federal Republic of Germany to the IAEA in the enclosures of which the Government of Germany, in keeping with its commitment under the Guidelines for the Management of Plutonium (contained in INFCIRC/5491 of 16 March 1998 and hereinafter referred to as the 'Guidelines'), and in accordance with Annexes B and C of the Guidelines, has made available annual figures for holdings of civil unirradiated plutonium and the estimated amounts of plutonium contained in spent civil reactor fuel as of 31 December 2011. The Government of the Federal Republic of Germany has also made available a statement of the estimated amounts of highly enriched uranium (HEU) as of 31 December 2011 [fr

  6. Reduced Enrichment for Research and Test Reactors. Proceedings of the XIV international meeting

    Energy Technology Data Exchange (ETDEWEB)

    Suripto, Asmedi; Hastowo, Hudi; Hersubeno, J B [eds.

    1995-07-01

    Apart from the progress of the Reduced Enrichment Research and Test Reactor (RERTR) Program the national programs of Indonesia, Japan and China were presented. The major events, findings, and activities of 1991 are reviewed with a brief summary of the results which the RERTR Program had achieved by the end of 1990 in collaboration with its many international partners. The RERTR program, has concentrated its efforts on technology transfer and implementation activities consistent with the guidance received from the Department of Energy at the end of 1990. A number of presentations were devoted to development of new fuel uranium silicide fuel elements, fuel irradiation testing and reactor core conversions from highly enriched (HEU) to slightly enriched uranium (LEU). Calculations and measurements of converted reactor core parameters were shown related to safety test and analysis. Fuel cycle issue were discussed as well. One should note that a significant number of papers were devoted to Indonesian GA SIWABESSY reactor core conversion and related topics.

  7. Reduced Enrichment for Research and Test Reactors. Proceedings of the XIV international meeting

    International Nuclear Information System (INIS)

    Suripto, Asmedi; Hastowo, Hudi; Hersubeno, J.B.

    1995-01-01

    Apart from the progress of the Reduced Enrichment Research and Test Reactor (RERTR) Program the national programs of Indonesia, Japan and China were presented. The major events, findings, and activities of 1991 are reviewed with a brief summary of the results which the RERTR Program had achieved by the end of 1990 in collaboration with its many international partners. The RERTR program, has concentrated its efforts on technology transfer and implementation activities consistent with the guidance received from the Department of Energy at the end of 1990. A number of presentations were devoted to development of new fuel uranium silicide fuel elements, fuel irradiation testing and reactor core conversions from highly enriched (HEU) to slightly enriched uranium (LEU). Calculations and measurements of converted reactor core parameters were shown related to safety test and analysis. Fuel cycle issue were discussed as well. One should note that a significant number of papers were devoted to Indonesian GA SIWABESSY reactor core conversion and related topics

  8. Uranium-236 in light water reactor spent fuel recycled to an enriching plant

    International Nuclear Information System (INIS)

    de la Garza, A.

    1977-01-01

    The introduction of 236 U to an enriching plant by recycling spent fuel uranium results in enriched products containing 236 U, a parasitic neutron absorber in reactor fuel. Convenient approximate methodology determines 235 236 U, and total uranium flowsheets with associated separative work requirements in enriching plant operations for use by investigators of the light water reactor fuel cycle not having recourse to specialized multicomponent cascade technology. Application of the methodology has been made to compensation of an enriching plant product for 236 U content and to the value at an enriching plant of spent fuel uranium. The approximate methodology was also confirmed with more exact calculations and with some experience with 236 U in an enriching plant

  9. Developments in uranium enrichment

    International Nuclear Information System (INIS)

    Mohrhauer, H.

    1995-01-01

    The enrichment services market is still characterized by overcapacities. While consumption worldwide will rise by some 15% to 39,000 t SWU/a over the next ten years, capacities amount to nearly 50,000 t SWU/a. The price for enrichment services probably has reached its all time low. Prices below U.S. $ 100/kg SWU are not likely to cover costs even of the economically most advanced enrichment processes. Urenco has prepared for the difficult enrichment business in the years to come by streamlining and cost cutting measures. The company intends to hold and increase its share of more than 10% in the world market. The uranium enrichment plant of Gronau will be expanded further. Expansion beyond 1000 t is subject to another permit being granted under the Atomic Energy Act, an application for which was filed in December 1994. Centrifuge technology is the superior enrichment technology, i.e., there is still considerable potential for further development. Construction of enrichment plants employing the centrifuge technology in the United States and in France is being pursued in various phases, from feasibility studies to licensing procedures. Before these plants could be implemented, however, considerable problems of organization would have to be solved, and the market would have to change greatly, respectively. The laser process, at the present time, does not seem to be able to develop into a major industrial competitor. (orig.) [de

  10. A confirmatory measurement technique for highly enriched uranium

    International Nuclear Information System (INIS)

    Sprinkle, J.K. Jr.

    1987-07-01

    This report describes a confirmatory measurement technique for measuring uranium items in their shipping containers. The measurement consists of a weight verification and the detection of three gamma rays. The weight can be determined very precisely, thus it severely constrains the options of the diverter who might want to imitate the gamma signal with a bogus item. The 185.7-keV gamma ray originates from 235 U, the 1001 keV originates from a daughter of 238 U, and the 2614 keV originates from a daughter of 232 U. These three gamma rays exhibit widely different attenuation properties, they correlate with enrichment and total uranium mass, and they rigorously discriminate against a likely diversion scenario (low-enriched uranium substitution). These four measured quantities, when combined, provide a signature that is very difficult to counterfeit

  11. The outline of clearance plan for Rokkasho uranium enrichment plant

    International Nuclear Information System (INIS)

    Kojima, Takuo; Sasaki, Hitoshi; Shouno, Shuuzou; Nozawa, Kenji

    2011-01-01

    Japan Nuclear Fuel Limited (JNFL) started operation of uranium enrichment by metal cylinder centrifuge at Rokkasho Uranium Enrichment Plant in 1992. Since operation start, JNFL has extended the plant capacity sequentially, but metal cylinder centrifuges ceased operation gradually with time. Replacement to advanced centrifuge is under construction now. Generally, Uranium Enrichment Plant continues operation by replacing centrifuges after a certain period of operation. So, many used centrifuges (metal waste) are generated through the operation period. JNFL is now considering the disposal plan. We can reduce the radioactivity level that is not necessary to treat as the radioactive waste by decontaminating the radioactive material sticking to the surface of metal materials of used centrifuge. And JNFL plants to recycle (reuse) metal material by making much of the clearance system. (author)

  12. Competitiveness through change: institutional restructuring of the United States uranium enrichment enterprise

    International Nuclear Information System (INIS)

    Longenecker, J.R.

    1987-01-01

    The position of the United States programme of uranium enrichment under the Department of Energy is explained. Its competitiveness has improved over the past few years by normalising supply and demand and by streamlining the costs of gaseous diffusion plant production. The historical aspects of the uranium enrichment service are explained. Revised criteria to describe the guidelines to cover pricing, contracting and other crucial functions are under discussion. Two aspects of the new criteria of particular interest -restrictions on foreign-origin uranium and recovery of Government costs - are noted. Possible private sector involvement in uranium enrichment is discussed. Technological innovations are explained and equipment illustrated. These should improve the industry's competitiveness. (U.K.)

  13. 78 FR 16303 - Request To Amend a License To Export; High-Enriched Uranium

    Science.gov (United States)

    2013-03-14

    ... NUCLEAR REGULATORY COMMISSION Request To Amend a License To Export; High-Enriched Uranium Pursuant to 10 CFR 110.70 (b) ``Public Notice of Receipt of an Application,'' please take notice that the... Application No. Docket No. U.S. Department of Energy, High-Enriched Uranium 10 kilograms uranium To...

  14. 77 FR 60482 - Regulatory Guide 5.67, Material Control and Accounting for Uranium Enrichment Facilities...

    Science.gov (United States)

    2012-10-03

    ... Accounting for Uranium Enrichment Facilities Authorized To Produce Special Nuclear Material of Low Strategic... Accounting for Uranium Enrichment Facilities Authorized to Produce Special Nuclear Material of Low Strategic... and is applicable to the Paducah GDP and other uranium enrichment facilities that have been licensed...

  15. Consequences of the new ICRP recommendations on uranium enrichment and uranium chemistry

    International Nuclear Information System (INIS)

    Bonnefoy-Claudet, J.

    1991-01-01

    From the first available information on the draft of new recommendations of the International Commission Radiological Protection, consequences should be very different depending upon industry type and handled products. That is to say: negligible for uranium enrichment by gaseous diffusion and important for future laser isotope separation techniques and for uranium chemistry especially for oxide treatment. This is enhanced when the products are coming from reprocessing [fr

  16. What the difference to use LEU and HEU fuel elements separately or together in a research reactor

    International Nuclear Information System (INIS)

    Kaya, S.; Uestuen, G.

    2005-01-01

    Concerning of nuclear material safety, most of the research reactors are advised to shift from HEU (high enriched-%93 U-235) to LEU (low enriched-%20 U-235) fuel elements. When LEU and HEU fuel elements are to be used together in a research reactor, some design and safety problems are encountered. According to use of the reactor, some research reactors such as MTR type may not show any considerable difference for HEU or LEU fuel elements, but the efficiency of radioisotope production generated by thermal neutron interaction may decrease about twenty-thirty percent when LEU fuel elements are used. Here, fine mesh-sized 3D neutronic analysis of TR-2 research reactor is presented to indicate the arising problem when LEU end HEU fuel elements are used together in a research reactor. Partial thermohydraulic analysis of the reactor is also given to show the betterness of the LEU fuel element design. However, there might be some points that should be noticed for safer operation of plate type fuelled research reactors. (author)

  17. Conceptual Process for the Manufacture of Low-Enriched Uranium/Molybdenum Fuel for the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Sease, J.D.; Primm, R.T. III; Miller, J.H.

    2007-01-01

    The U.S. nonproliferation policy 'to minimize, and to the extent possible, eliminate the use of HEU in civil nuclear programs throughout the world' has resulted in the conversion (or scheduled conversion) of many of the U.S. research reactors from high-enriched uranium (HEU) to low-enriched uranium (LEU). A foil fuel appears to offer the best option for using a LEU fuel in the High Flux Isotope Reactor (HFIR) without degrading the performance of the reactor. The purpose of this document is to outline a proposed conceptual fabrication process flow sheet for a new, foil-type, 19.75%-enriched fuel for HFIR. The preparation of the flow sheet allows a better understanding of the costs of infrastructure modifications, operating costs, and implementation schedule issues associated with the fabrication of LEU fuel for HFIR. Preparation of a reference flow sheet is one of the first planning steps needed in the development of a new manufacturing capacity for low enriched fuels for U.S. research and test reactors. The flow sheet can be used to develop a work breakdown structure (WBS), a critical path schedule, and identify development needs. The reference flow sheet presented in this report is specifically for production of LEU foil fuel for the HFIR. The need for an overall reference flow sheet for production of fuel for all High Performance Research Reactors (HPRR) has been identified by the national program office. This report could provide a starting point for the development of such a reference flow sheet for a foil-based fuel for all HPRRs. The reference flow sheet presented is based on processes currently being developed by the national program for the LEU foil fuel when available, processes used historically in the manufacture of other nuclear fuels and materials, and processes used in other manufacturing industries producing a product configuration similar to the form required in manufacturing a foil fuel. The processes in the reference flow sheet are within the

  18. Conceptual Process for the Manufacture of Low-Enriched Uranium/Molybdenum Fuel for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sease, J.D.; Primm, R.T. III; Miller, J.H.

    2007-09-30

    The U.S. nonproliferation policy 'to minimize, and to the extent possible, eliminate the use of HEU in civil nuclear programs throughout the world' has resulted in the conversion (or scheduled conversion) of many of the U.S. research reactors from high-enriched uranium (HEU) to low-enriched uranium (LEU). A foil fuel appears to offer the best option for using a LEU fuel in the High Flux Isotope Reactor (HFIR) without degrading the performance of the reactor. The purpose of this document is to outline a proposed conceptual fabrication process flow sheet for a new, foil-type, 19.75%-enriched fuel for HFIR. The preparation of the flow sheet allows a better understanding of the costs of infrastructure modifications, operating costs, and implementation schedule issues associated with the fabrication of LEU fuel for HFIR. Preparation of a reference flow sheet is one of the first planning steps needed in the development of a new manufacturing capacity for low enriched fuels for U.S. research and test reactors. The flow sheet can be used to develop a work breakdown structure (WBS), a critical path schedule, and identify development needs. The reference flow sheet presented in this report is specifically for production of LEU foil fuel for the HFIR. The need for an overall reference flow sheet for production of fuel for all High Performance Research Reactors (HPRR) has been identified by the national program office. This report could provide a starting point for the development of such a reference flow sheet for a foil-based fuel for all HPRRs. The reference flow sheet presented is based on processes currently being developed by the national program for the LEU foil fuel when available, processes used historically in the manufacture of other nuclear fuels and materials, and processes used in other manufacturing industries producing a product configuration similar to the form required in manufacturing a foil fuel. The processes in the reference flow sheet are

  19. 78 FR 17942 - Request To Amend a License To Export High-Enriched Uranium

    Science.gov (United States)

    2013-03-25

    ... NUCLEAR REGULATORY COMMISSION Request To Amend a License To Export High-Enriched Uranium Pursuant... Administration. Enriched Uranium contained in 99.7 Reactor in the be processed for March 6, 2013 (93.35%)) kilograms Czech Republic to medical isotope March 11, 2013 uranium) the list of production at the XSNM3622...

  20. Recent developments in the United States uranium enrichment enterprise

    International Nuclear Information System (INIS)

    Longenecker, J.R.

    1987-01-01

    In the near term, DOE is reducing production costs at the gaseous diffusion plants (GDPs), and we've made significant progress already. GDP production costs are expected to decline even further in the near future. DOE is also negotiating new power contracts for the GDPs. The new power contracts, capital improvements, and the use of more unfirm power should reduce our GDP average cost of production to about $60/SWU in the 1990s. Significant technical progress on the Atomic Vapor Laser Isotope Separation (AVLIS) advanced enrichment technology has been made recently. The highlight has been a series of half-scale integrated enrichment experiments using the Laser Demonstration Facility and the Mars separator. We are also ready to initiate testing in the full-scale Separator Demonstration Facility, including a 100 hour run that will vaporize over 5 tons of uranium. DOE is developing plans to restructure the enterprise into a more businesslike entity. The key objective in 1987 is to work with Congress to advance the restructuring of the U.S. uranium enrichment enterprise, to assure its long term competitiveness. We hope to establish in law the charter, objectives, and goals for the restructured enterprise. DOE expects that the world price for enrichment services will continue to decrease in the future. There should be sufficient excess enrichment capacity in the future to assure that competition will be keen. Such a healthy, competitive, world enrichment market will be beneficial to both suppliers and consumers of uranium enrichment services. (J.P.N.)

  1. DOE hands over uranium enrichment duties to government corporation

    International Nuclear Information System (INIS)

    Simpson, J.

    1993-01-01

    In an effort to renew the United States' competitiveness in the world market for uranium enrichment services, the Department of Energy (DOE) is turning over control of its Paducah, KY, and Portsmouth, OH, enrichment facilities to a for-profit organization, the United States Enrichment Corp. (USEC), which was created by last year's Energy Policy Act. William H. Timbers, Jr., a former investment banker who was appointed acting CEO in March, said the Act's mandate will mean more competitive prices for enriched reactor fuel and greater responsiveness to utility customers. As a government corporation, USEC, with current annual revenues estimated at $1.5 billion, will no longer be part of the federal budget appropriations process, but will use business management techniques, set market-based prices for enriched uranium, and pay annual dividends to the US Treasury-its sole stockholder-from earnings. The goal is to finish privatizing the corporation within two years, and to sell its stock to investors for an estimated $1 to $3 billion. USEC's success will depend in part on developing short- and long-term marketing plants to help stanch the flow of enriched-uranium customers to foreign suppliers. (DOE already has received notice from a number of US utilities that they want to be let out of their long-term enrichment contracts as they expire over the next several years).USEC's plans likely will include exploring new joint ventures with other businesses in the nuclear fuel cycle-such as suppliers, fabricators, and converters-and offering a broader range of enrichment services than DOE provided. The corporation will have to be responsive to utilities on an individual basis

  2. Improved verification methods for safeguards verifications at enrichment plants

    International Nuclear Information System (INIS)

    Lebrun, A.; Kane, S. C.; Bourva, L.; Poirier, S.; Loghin, N. E.; Langlands, D.

    2009-01-01

    The International Atomic Energy Agency (IAEA) has initiated a coordinated research and development programme to improve its verification methods and equipment applicable to enrichment plants. The programme entails several individual projects to meet the objectives of the IAEA Safeguards Model Approach for Gas Centrifuge Enrichment Plants updated in 2006. Upgrades of verification methods to confirm the absence of HEU (highly enriched uranium) production have been initiated and, in particular, the Cascade Header Enrichment Monitor (CHEM) has been redesigned to reduce its weight and incorporate an electrically cooled germanium detector. Such detectors are also introduced to improve the attended verification of UF 6 cylinders for the verification of the material balance. Data sharing of authenticated operator weighing systems such as accountancy scales and process load cells is also investigated as a cost efficient and an effective safeguards measure combined with unannounced inspections, surveillance and non-destructive assay (NDA) measurement. (authors)

  3. Improved verification methods for safeguards verifications at enrichment plants

    Energy Technology Data Exchange (ETDEWEB)

    Lebrun, A.; Kane, S. C.; Bourva, L.; Poirier, S.; Loghin, N. E.; Langlands, D. [Department of Safeguards, International Atomic Energy Agency, Wagramer Strasse 5, A1400 Vienna (Austria)

    2009-07-01

    The International Atomic Energy Agency (IAEA) has initiated a coordinated research and development programme to improve its verification methods and equipment applicable to enrichment plants. The programme entails several individual projects to meet the objectives of the IAEA Safeguards Model Approach for Gas Centrifuge Enrichment Plants updated in 2006. Upgrades of verification methods to confirm the absence of HEU (highly enriched uranium) production have been initiated and, in particular, the Cascade Header Enrichment Monitor (CHEM) has been redesigned to reduce its weight and incorporate an electrically cooled germanium detector. Such detectors are also introduced to improve the attended verification of UF{sub 6} cylinders for the verification of the material balance. Data sharing of authenticated operator weighing systems such as accountancy scales and process load cells is also investigated as a cost efficient and an effective safeguards measure combined with unannounced inspections, surveillance and non-destructive assay (NDA) measurement. (authors)

  4. Challenges dealing with depleted uranium in Germany - Reuse or disposal

    International Nuclear Information System (INIS)

    Moeller, Kai D.

    2007-01-01

    possibility could be the use of depleted uranium for the blending of High enriched Uranium (HEU) or with Plutonium to MOX-elements. (authors)

  5. Conversion and start up of Tehran Research Reactor with LEU fuel

    International Nuclear Information System (INIS)

    Zaker, M.

    2004-01-01

    The MW Tehran Research Reactor, Highly Enriched Uranium (HEU) fuel has been converted to Low Enriched Uranium (LEU) fuel using U 3 0 8 -Al with less than 20% enriched uranium. Measured value of excess reactivity, control rod worth and other parameters indicate good agreement with computational predictions. (author)

  6. Use of enriched uranium as a fuel in CANDU reactors

    International Nuclear Information System (INIS)

    Zech, H.J.

    1976-08-01

    The use of slightly enriched uranium as a fuel in CANDU-reactors is studied in a simple parametric way. The results show the possibility of 1) about 30% savings in natural uranium consumption 2) about 35% increase in the utilization of the natural uranium 3) a decrease in fuelling costs to about 70 - 80% of the normal case of natural uranium fuelling. (orig.) [de

  7. U.S. uranium supply to the research and test reactor community

    International Nuclear Information System (INIS)

    Parker, Elaine M.

    2002-01-01

    From the 1950s through the early 1990s, the U.S. Department of Energy (DOE) was the primary supplier of low enriched uranium (LEU) and highly enriched uranium (HEU) to research and test reactors worldwide. The formerly called Y-12 Plant in Oak Ridge, Tennessee, was put into operational stand down in 1994 due to inadequate safety documentation. This paper will discuss the re-start of the Y-12 Plant and its current capabilities. Additionally, the paper will address recent changes within the DOE, with the creation of the National Nuclear Security Administration (NNSA). It will show how the change to NNSA and an organizational re-alignment has improved efficiencies. NNSA is committed to operate its sales program so that it is complementary to, and in support of, the Reduced Enrichment for Research and Test Reactors (RERTR) and Foreign Research Reactor Spent Nuclear Fuel (FRR SNF) Return Programs. The NNSA is committed to provide an assurance of competitively-priced, high-quality uranium supply to the research and test reactor community under long-term contracts. This paper will discuss some of NNSA's recent successes in long-term contracting and meeting deliveries. (author)

  8. 78 FR 23312 - Uranium Enrichment Fuel Cycle Inspection Reports Regarding Louisiana Energy Services, National...

    Science.gov (United States)

    2013-04-18

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 70-3103; NRC-2010-0264] Uranium Enrichment Fuel Cycle Inspection Reports Regarding Louisiana Energy Services, National Enrichment Facility, Eunice, New Mexico..., National Enrichment Facility in Eunice, New Mexico, and has authorized the introduction of uranium...

  9. Prompt Neutron Lifetime for the NBSR Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, A.L.; Diamond, D.

    2012-06-24

    In preparation for the proposed conversion of the National Institute of Standards and Technology (NIST) research reactor (NBSR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel, certain point kinetics parameters must be calculated. We report here values of the prompt neutron lifetime that have been calculated using three independent methods. All three sets of calculations demonstrate that the prompt neutron lifetime is shorter for the LEU fuel when compared to the HEU fuel and longer for the equilibrium end-of-cycle (EOC) condition when compared to the equilibrium startup (SU) condition for both the HEU and LEU fuels.

  10. Measurement of enriched uranium and uranium-aluminum fuel materials with the AWCC

    International Nuclear Information System (INIS)

    Krick, M.S.; Menlove, H.O.; Zick, J.; Ikonomou, P.

    1985-05-01

    The active well coincidence counter (AWCC) was calibrated at the Chalk River Nuclear Laboratories (CRNL) for the assay of 93%-enriched fuel materials in three categories: (1) uranium-aluminum billets, (2) uranium-aluminum fuel elements, and (3) uranium metal pieces. The AWCC was a standard instrument supplied to the International Atomic Energy Agency under the International Safeguards Project Office Task A.51. Excellent agreement was obtained between the CRNL measurements and previous Los Alamos National Laboratory measurements on similar mockup fuel material. Calibration curves were obtained for each sample category. 2 refs., 8 figs., 15 tabs

  11. Active-interrogation measurements of fast neutrons from induced fission in low-enriched uranium

    International Nuclear Information System (INIS)

    Dolan, J.L.; Marcath, M.J.; Flaska, M.; Pozzi, S.A.; Chichester, D.L.; Tomanin, A.; Peerani, P.

    2014-01-01

    A detection system was designed with MCNPX-PoliMi to measure induced-fission neutrons from U-235 and U-238 using active interrogation. Measurements were then performed with this system at the Joint Research Centre in Ispra, Italy on low-enriched uranium samples. Liquid scintillators measured induced fission neutrons to characterize the samples in terms of their uranium mass and enrichment. Results are presented to investigate and support the use of organic liquid scintillators with active interrogation techniques to characterize uranium containing materials. -- Highlights: • We studied low-enriched uranium using active-interrogation experiments including a deuterium–tritium neutron generator and an americium–lithium isotopic neutron source. • Liquid scintillators measured induced-fission neutrons from the active-interrogation methods. • Fast-neutron (DT) and thermal-neutron (Am–Li) interrogation resulted in the measurement of trends in uranium mass and 235 U enrichment respectively. • MCNPX-PoliMi, the Monte Carlo transport code, simulated the measured induced-fission neutron trends in the liquid scintillators

  12. Active-interrogation measurements of fast neutrons from induced fission in low-enriched uranium

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, J.L., E-mail: jldolan@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Marcath, M.J.; Flaska, M.; Pozzi, S.A. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Chichester, D.L. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Tomanin, A.; Peerani, P. [European Commission, Joint Research Centre, Institute for Transuranium Elements, Ispra (Italy)

    2014-02-21

    A detection system was designed with MCNPX-PoliMi to measure induced-fission neutrons from U-235 and U-238 using active interrogation. Measurements were then performed with this system at the Joint Research Centre in Ispra, Italy on low-enriched uranium samples. Liquid scintillators measured induced fission neutrons to characterize the samples in terms of their uranium mass and enrichment. Results are presented to investigate and support the use of organic liquid scintillators with active interrogation techniques to characterize uranium containing materials. -- Highlights: • We studied low-enriched uranium using active-interrogation experiments including a deuterium–tritium neutron generator and an americium–lithium isotopic neutron source. • Liquid scintillators measured induced-fission neutrons from the active-interrogation methods. • Fast-neutron (DT) and thermal-neutron (Am–Li) interrogation resulted in the measurement of trends in uranium mass and {sup 235}U enrichment respectively. • MCNPX-PoliMi, the Monte Carlo transport code, simulated the measured induced-fission neutron trends in the liquid scintillators.

  13. Inventory control through gamma spectrometry at the enriched uranium laboratory

    International Nuclear Information System (INIS)

    Vicens, H.E.; Korob, R.O.; Goldschmidt, A.E.

    1987-01-01

    The enriched uranium laboratory processes alternatively uranium 90% and 20% enriched in U-235. The control of the isotopic composition of lots is made through mass spectrometry. In the laboratory operation wastes of both enrichments are generated and the recovery is performed with a time delay. To strengthen the administrative controls, avoid errors related to personnel replacement and/or deferred operations, it seemed suitable to adjust the gamma spectrometry as a fast, simple and available method to determine the enrichment. The laboratory work includes a wet and a dry process. The waste recovery necessarily involves the handling of liquid samples. For this reason, it was decided to determine the calibration curve for uranyl nitrate samples of fixed concentration and geometry. The samples were prepared from material purified through double precipitation of uranium peroxide and subsequent ignition to U 3 O 8 in platinum crucible, in tubular oven during 8 hours at 720 deg C. The preparation of samples, the measurement description, the discussion of results and the analysis of errors due to the presence of insoluble material and concentration changes are included. (Author)

  14. Status report on uranium enrichment associates

    International Nuclear Information System (INIS)

    Langley, R.A. Jr.; O'Donnell, A.J.; Garrett, G.A.

    1977-01-01

    Uranium Enrichment Associates (UEA) had as its priority project financing, an approach in which the total project is financially self-liquidating. UEA worked with financial institutions to define the combination of assurances and guarantees required by lenders in order to provide the required debt funding. UEA's assets against which the debt liability for the plant would be balanced would be the facilities under construction and the equipment on order. On the customer side, there was major concern on the part of the utilities of whether private industry would be able to complete and operate the plant owing to many of the same possibilities which concerned financial institutions. The disparity between the conditions under which financing could be obtained and the terms acceptable to utilities was a significant element in EUA's choice of process to use for its enrichment plants. UEA's technical staff then began to parallel conceptual designs of gaseous diffusion and gas cenrifuge plants. UEA negotiated with ERDA on the terms of a Cooperative Arrangement, within the provisions of the NFAA, providing the minimum conditions necessary to obtain financing and contracts with utilities for enrichment sources. The UEA plant has several features different from the ERDA plants. The UEA plant used only two basic stage sizes. The UEA design employed four main process buildings. The partners in UEA have mutually agreed to follow the private uranium enrichment project to a logical conclusion. 6 figures

  15. Research reactors. Problems of fuel element enrichment reduction. Deliberations and comments

    International Nuclear Information System (INIS)

    1978-10-01

    This paper summarises the main data from the major research reactors in the Federal Republic of Germany utilising highly enriched uranium (HEU) and presently available fuel technology for their fuel elements. The required modification for an adaption of the fabrication to lower enriched fuel are considered as well as the consequences on reactor performance operation and licensing. On the basis of past experience with reactor modifications a rough estimate of 82 months is given for the conversion of a reactor to a modified type of fuel and of 70 months for a fuel test program. The conclusions reflect the own calculations and data from other papers submitted to INFCE-WG 8C

  16. A new era in U.S. uranium enrichment

    International Nuclear Information System (INIS)

    Longenecker, J.R.

    1984-01-01

    Complex market conditions, including lower than anticipated electrical growth rates, creation of a large spot market of enriched uranium, fluctuations in currency exchange rates, and certain political considerations, have created an unstable market for all primary producers, including the United States. In response to these conditions, the Department of Energy made significant changes to the U.S. program including the issuance of the Utility Services contract on January 18, 1984. Other major changes include redirecting research and development efforts on the advanced gas centrifuge and atomic vapor laser isotope separation processes, rescoping of the Gas Centrifuge Enrichment Plant project, and reevaluation of the operational mode of the three gaseous diffusion plants. Taken together, we believe these actions will retain the U.S. position of leadership in uranium enrichment. In summary, we plan to compete--through introduction of the world's most advanced, lowest cost technology and through responsiveness to our customers' needs

  17. Effect of molybdenum addition on metastability of cubic γ-uranium

    International Nuclear Information System (INIS)

    Sinha, V.P.; Hegde, P.V.; Prasad, G.J.; Dey, G.K.; Kamath, H.S.

    2010-01-01

    Over the years U 3 Si 2 compound dispersed in aluminium matrix has been used successfully as the potential low enriched uranium (LEU 235 ) base dispersion fuel for use in new research and test reactors and also for converting high enriched uranium (HEU > 85%U 235 ) cores to LEU for most of the existing research and test reactors world over, though maximum 4.8 g U cm -3 density is achievable with U 3 Si 2 -Al dispersion fuel. To achieve a uranium density of 8.0-9.0 g U cm -3 in dispersion fuel with aluminium as matrix material, it is required to use γ-stabilized uranium metal powders. At Bhabha Atomic Research Centre (BARC), R and D efforts are on to develop these high density uranium base alloys. This paper describes the alloying behaviour of uranium with varying amount of molybdenum. The U-Mo alloys with different molybdenum content have been prepared by using an induction melting furnace with uranium and molybdenum metal pellets as starting materials. U-Mo alloys with different molybdenum content were characterized by X-ray diffraction (XRD) for phase identification and lattice parameter measurements. The optical microstructure of different U-Mo alloy composition has also been discussed in this paper. Quantitative image analysis was also carried out to determine the amount of various phases in each composition.

  18. The Complete Burning of Weapons Grade Plutonium and Highly Enriched Uranium with (Laser Inertial Fusion-Fission Energy) LIFE Engine

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Diaz de la Rubia, T; Moses, E

    2008-12-23

    The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spent nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission

  19. Update on international uranium and enrichment supply

    International Nuclear Information System (INIS)

    Cleveland, J.M.

    1987-01-01

    Commercial nuclear power generation came upon us in the late 1950s and should have been relatively uneventful due to its similarities to fossil-powered electrical generation. Procurement of nuclear fuel appears to have been treated totally different from the procurement of fossil fuel, however, and only recently have these practices started to change. The degree of utility reliance on US-mined uranium and US Dept. of Energy (DOE)-produced enrichment services has changed since the 1970s as federal government uncertainty, international fuel market opportunity, and public service commission scrutiny has increased. Accordingly, the uranium and enrichment market has recognized that it is international just like the fossil fuel market. There is now oversupply-driven competition in the international nuclear fuel market. Competition is increasing daily, as third-world countries develop their own nuclear resources. American utilities are now diversifying their fuel supply arrangements, as they do with their oil, coal, and gas supply. The degree of foreign fuel arrangements depends on each utility's risk posture and commitment to long-term contracts. In an era of rising capital, retrofit, operating, and maintenance costs, economical nuclear fuel supply is even more important. This economic advantage, however, may be nullified by congressional and judicial actions limiting uranium importation and access to foreign enrichment. Such artificial trade barriers will only defeat US nuclear generation and the US nuclear fuel industry in the long term

  20. Apparatus for enrichment of uranium by double photoionization

    International Nuclear Information System (INIS)

    Laude, J.P.

    1983-11-01

    The present invention concerns enrichment of uranium by double photoionization. The use of a beam from a dye laser for excitation of gaseous uranium is known and the present invention concerns an apparatus of this type. The purpose of the invention is essentially to produce an apparatus having high energy efficiency. This is achieved according to the invention by using a continuous wave laser

  1. Gamma-ray measurements for uranium enrichment standards

    International Nuclear Information System (INIS)

    Reilly, T.D.

    1979-01-01

    The gamma-ray spectroscopic measurement of uranium enrichment is one of the most widely used nondestructive analysis techniques. A study has been started of the precision and accuracy achievable with this technique and the physical parameters which affect it. The study was prompted by questions raised during the ongoing ESARDA-NBS experiment to produce uranium oxide reference counting materials for the technique. Results reported using a high-quality Ge(Li) spectrometer system show reproducibility comparable to that attainable with mass spectrometry

  2. The US uranium and enrichment industries: their fall and rise?

    International Nuclear Information System (INIS)

    Sewell, P.G.

    1988-01-01

    Strong government influence, monopolistic practices, free market forces and market orientation to customer needs are the conflicting forces which have shaped the evolution of the uranium and the uranium enrichment industries in the United States. These same factors are likely to continue to dictate to a large extent the future for each of these industries. Both the uranium and the uranium enrichment industries in the USA enjoyed the benefits and suffered the consequences of a monopolistic environment until the dynamics of a free market became prevalent in the 1980s. This resulted in the deterioration of both industries with respect to market share, sales and supply capacity needs. The history and environment of the two industries, the road to recovery for both, and the status and scope of legal and legislative initiatives to address the problems of each industry, are reviewed. (author)

  3. Comparison of the FRM-II HEU design with an alternative LEU design. Attachment

    International Nuclear Information System (INIS)

    Hanan, N.A.; Mo, S.C.; Smith, R.S.; Matos, J.E.

    2004-01-01

    After presentation of the foregoing paper by Dr. Nelson Hanan of Argonne National Laboratory (ANL) proposing an alternative LEU core with one fuel ring and a power level of 33 MW, a presentation was made by Dr. Klaus Boning of the Technical University of Munich comparing the FRM-II HEU design with an LEU design by Tlm that had two fuel rings and a power level of 40 MW. Dr. Boning raised the following issues concerning the use of LEU fuel in FRM-H reactor designs: (1) qualification of HEU and LEU silicide fuels, (2) gamma heating in the heavy water reflector, (3) the radiological consequences of hypothetical accidents, and (4) cost and schedule. These issues are addressed in this Attachment. In his presentation, Dr. Hanan mentioned that ANL was also investigating other LEU designs. This work led to a second alternative LEU design that has the same neutron flux performance (8 x 10 14 n/cm 2 /s peak neutron flux in the reflector) and the same fuel lifetime (50 full power days) as the HEU design, but uses LEU silicide fuel with a uranium density of only 4.5 g/cm 3 . This design was achieved by using a fuel plate that has a fuel meat thickness of 0.76 mm, a cladding thickness of 0.38 mm, and a water channel gap of 2.2 mm. A comparison is shown of the main characteristics of this second alternative LEU design with those of the FRM-II HEU design. The ANL core again has one fuel ring with the same dimensions. With this LEU design, a two stage process is no longer necessary because LEU silicide fuel with a uranium density of 4.5 g/cm 3 is fully qualified, licensable, and available now for use in a high flux reactor such as the FRM-II

  4. Low enrichment of uranium in the light of the nuclear weapon problem

    International Nuclear Information System (INIS)

    Barstad, G.

    1979-09-01

    A difficult problem in the immediate future will be to direct civil nuclear technology in such a way that the ability to produce nuclear weapons by additional countries is prevented. There are two main problems. First, enrichment plants can be used to produce high enriched uranium, which can be used in nuclear weapons, as well as low enriched reactor fuel. Second, plutonium produced during reactor operation can be used as nuclear weapon material, as well as for nuclear fuel. The problem discussed here is particularly the development of an enrichment process which is economic for low enriched reactor fuel, but which may not easily be adapted to produce high enriched uranium. (JIW)

  5. Use of highly enriched uranium in the material testing reactor BR2

    International Nuclear Information System (INIS)

    Beeckmans de West-Meerbeeck, A.

    1979-05-01

    In the material testing reactor BR2, the use of highly enriched uranium is determined by the consideration of the fast, epithermal and thermal neutron flux effectively available for the experimental devices. The choice of the core configuration is defined by combining the localisation of the experimental devices and of fuel elements of various burnup, such as to satisfy the irradiation conditions of the experimental load, compatible with an economic use of the fuel elements and safe operation of the reactor. Taking into account the present manufacturing technology for MTR fuels (37 Wt % uranium density in the fuel meat) the highly enriched uranium cannot be avoided; if higher concentration of uranium could be realised by some new manufacturing technology, the 235 U density of fuel elements at elimination should be kept at the required level and the enrichment could be reduced accordingly

  6. Use of highly enriched uranium in the material testing reactor BR2

    International Nuclear Information System (INIS)

    Beeckmans de West-Meerbeeck, A.

    1979-05-01

    In the material testing reactor BR2, the use of highly enriched uranium is determined by the consideration of the fast, epithermal and thermal neutron flux effectively available for the experimental devices. The choice of the core configuration is defined by combining the localisation of the experimental devices and of fuel elements of various burnup, such as to satisfy the irradiation conditions of the experimental load, compatible with an economic use of the fuel elements and safe operation of the reactor. Taking into account the present manufacturing technology for MTR fuels (37 Wt % uranium density in the fuel meat) the highly enriched uranium cannot be avoided: if higher concentration of uranium could be realised by some new manufacturing technology, the 235 U density of fuel elements at elimination should be kept at the required level and the enrichment could be reduced accordingly. (author)

  7. Technical solutions to nonproliferation challenges

    Science.gov (United States)

    Satkowiak, Lawrence

    2014-05-01

    The threat of nuclear terrorism is real and poses a significant challenge to both U.S. and global security. For terrorists, the challenge is not so much the actual design of an improvised nuclear device (IND) but more the acquisition of the special nuclear material (SNM), either highly enriched uranium (HEU) or plutonium, to make the fission weapon. This paper provides two examples of technical solutions that were developed in support of the nonproliferation objective of reducing the opportunity for acquisition of HEU. The first example reviews technologies used to monitor centrifuge enrichment plants to determine if there is any diversion of uranium materials or misuse of facilities to produce undeclared product. The discussion begins with a brief overview of the basics of uranium processing and enrichment. The role of the International Atomic Energy Agency (IAEA), its safeguard objectives and how the technology evolved to meet those objectives will be described. The second example focuses on technologies developed and deployed to monitor the blend down of 500 metric tons of HEU from Russia's dismantled nuclear weapons to reactor fuel or low enriched uranium (LEU) under the U.S.-Russia HEU Purchase Agreement. This reactor fuel was then purchased by U.S. fuel fabricators and provided about half the fuel for the domestic power reactors. The Department of Energy established the HEU Transparency Program to provide confidence that weapons usable HEU was being blended down and thus removed from any potential theft scenario. Two measurement technologies, an enrichment meter and a flow monitor, were combined into an automated blend down monitoring system (BDMS) and were deployed to four sites in Russia to provide 24/7 monitoring of the blend down. Data was downloaded and analyzed periodically by inspectors to provide the assurances required.

  8. Technical solutions to nonproliferation challenges

    Energy Technology Data Exchange (ETDEWEB)

    Satkowiak, Lawrence [Director, Nonproliferation, Safeguards and Security Programs, Oak Ridge National Laboratory, Oak Ridge, Tennessee (United States)

    2014-05-09

    The threat of nuclear terrorism is real and poses a significant challenge to both U.S. and global security. For terrorists, the challenge is not so much the actual design of an improvised nuclear device (IND) but more the acquisition of the special nuclear material (SNM), either highly enriched uranium (HEU) or plutonium, to make the fission weapon. This paper provides two examples of technical solutions that were developed in support of the nonproliferation objective of reducing the opportunity for acquisition of HEU. The first example reviews technologies used to monitor centrifuge enrichment plants to determine if there is any diversion of uranium materials or misuse of facilities to produce undeclared product. The discussion begins with a brief overview of the basics of uranium processing and enrichment. The role of the International Atomic Energy Agency (IAEA), its safeguard objectives and how the technology evolved to meet those objectives will be described. The second example focuses on technologies developed and deployed to monitor the blend down of 500 metric tons of HEU from Russia's dismantled nuclear weapons to reactor fuel or low enriched uranium (LEU) under the U.S.-Russia HEU Purchase Agreement. This reactor fuel was then purchased by U.S. fuel fabricators and provided about half the fuel for the domestic power reactors. The Department of Energy established the HEU Transparency Program to provide confidence that weapons usable HEU was being blended down and thus removed from any potential theft scenario. Two measurement technologies, an enrichment meter and a flow monitor, were combined into an automated blend down monitoring system (BDMS) and were deployed to four sites in Russia to provide 24/7 monitoring of the blend down. Data was downloaded and analyzed periodically by inspectors to provide the assurances required.

  9. 10 CFR 140.13b - Amount of liability insurance required for uranium enrichment facilities.

    Science.gov (United States)

    2010-01-01

    ... enrichment facilities. 140.13b Section 140.13b Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) FINANCIAL... required for uranium enrichment facilities. Each holder of a license issued under Parts 40 or 70 of this chapter for a uranium enrichment facility that involves the use of source material or special nuclear...

  10. 78 FR 33448 - Application for a License To Export High-Enriched Uranium

    Science.gov (United States)

    2013-06-04

    ... NUCLEAR REGULATORY COMMISSION Application for a License To Export High-Enriched Uranium Pursuant.... Security Complex, May 13, Uranium (93.35%). uranium-235 at the National 2013, May 21, 2013, XSNM3745, contained in 7.5 Research Universal 11006098. kilograms reactor in Canada for uranium. ultimate use in...

  11. Volatile behaviour of enrichment uranium in the total nuclear fuel price

    International Nuclear Information System (INIS)

    Arnaiz, J.; Inchausti, J. M.; Tarin, F.

    2004-01-01

    In this article the historical high volatile behaviour of the total nuclear fuel price is evaluated quantitatively and it is concluded that it has been due mainly to the fluctuations of the price of the principal components of enriched uranium (concentrates and enrichment). In order to avoid the negative effects of this volatiles behaviour as far as possible, a basic strategy in the uranium procurement activities is recommended (union of buyers, diversification of supplier, stock management, optimisation of contract portfolio and suitable currency management that guarantees a reliable uranium supply at reasonable prices. These guidelines are those that ENUSA has been following on behalf of the Spanish Utilities in the Commission of Uranium Procurement (CAU in Spanish). (Author) 11 refs

  12. Safety Analysis Report for Packaging, Y-12 National Security Complex, Model ES-3100 Package with Bulk HEU Contents

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, James [Y-12 National Security Complex, Oak Ridge, TN (United States); Goins, Monty [Y-12 National Security Complex, Oak Ridge, TN (United States); Paul, Pran [Y-12 National Security Complex, Oak Ridge, TN (United States); Wilkinson, Alan [Y-12 National Security Complex, Oak Ridge, TN (United States); Wilson, David [Y-12 National Security Complex, Oak Ridge, TN (United States)

    2015-09-03

    This safety analysis report for packaging (SARP) presents the results of the safety analysis prepared in support of the Consolidated Nuclear Security, LLC (CNS) request for licensing of the Model ES-3100 package with bulk highly enriched uranium (HEU) contents and issuance of a Type B(U) Fissile Material Certificate of Compliance. This SARP, published in the format specified in the Nuclear Regulatory Commission (NRC) Regulatory Guide 7.9 and using information provided in UCID-21218 and NRC Regulatory Guide 7.10, demonstrates that the Y-12 National Security Complex (Y-12) ES-3100 package with bulk HEU contents meets the established NRC regulations for packaging, preparation for shipment, and transportation of radioactive materials given in Title 10, Part 71, of the Code of Federal Regulations (CFR) [10 CFR 71] as well as U.S. Department of Transportation (DOT) regulations for packaging and shipment of hazardous materials given in Title 49 CFR. To protect the health and safety of the public, shipments of adioactive materials are made in packaging that is designed, fabricated, assembled, tested, procured, used, maintained, and repaired in accordance with the provisions cited above. Safety requirements addressed by the regulations that must be met when transporting radioactive materials are containment of radioactive materials, radiation shielding, and assurance of nuclear subcriticality.

  13. Uranium enrichment. Industrial and commercial aspect

    International Nuclear Information System (INIS)

    Lamorlette, G.

    1983-01-01

    The uranium enrichment, a key stage in the fuel cycle of light-water nuclear power stations, applies sophisticated and protected techniques in installations on a very large scale. This article shows how there was a sudden change from a monopoly position in production to a severe competition in a market which is depressed today but offers good prospects for the future. It indicates how the enrichment industrialist have adapted themselves to the fluctuations of the demand, while safeguarding the reliability of the rendered service and the necessary security of supplies for the proper development of the nuclear electric power [fr

  14. Comments on Smith Barney's uranium enrichment analysis

    International Nuclear Information System (INIS)

    Rezendes, V.S.

    1990-07-01

    In a May 1990 report, Smith Barney, Harris Upham and Co. concluded that DOE's uranium enrichment program should be restructured as a government corporation; all past costs have been recovered, and DOE's customers have been overcharged about $1.2 billion; the government should retain responsibility for environment and decommissioning costs associated with enriched uranium production before the corporation's formation; and at some future time the corporation could be sold to the private sector. This report agrees with Smith Barney's recommendation to restructure the enrichment program as a government corporation, but disagrees that DOE's customers have paid for all past costs. According to the author, Smith Barney did not identify the total environmental or decommissioning costs between the government and the corporation. Since these costs are largely undefined, but could amount to billions, Congress should immediately require the program to begin setting aside funds for these costs. DOE estimates that government purchases are responsible for 50 percent of the decommissioning costs; therefore, the government should share these costs by matching the corporation's fund contributions. This requirement should continue until the existing plants have been decommissioned

  15. 77 FR 73056 - Application for a License To Export High-Enriched Uranium

    Science.gov (United States)

    2012-12-07

    ... NUCLEAR REGULATORY COMMISSION Application for a License To Export High-Enriched Uranium Pursuant... Complex. Uranium (93.2%). uranium-235 at CERCA AREVA Romans October 10, 2012 contained in 6.2 in France and to October 12, 2012 kilograms irradiate targets at XSNM3729 uranium. the BR-2 Research 11006053...

  16. 77 FR 73055 - Application for a License To Export High-Enriched Uranium

    Science.gov (United States)

    2012-12-07

    ... NUCLEAR REGULATORY COMMISSION Application for a License To Export High-Enriched Uranium Pursuant.... Security Complex. Uranium uranium-235 at CERCA AREVA October 10, 2012 (93.35%). contained in Romans in France October 12, 2012 10.1 kilograms and to irradiate XSNM3730 uranium. targets at the HFR 11006054...

  17. Gasket for uranium enrichment plant

    Energy Technology Data Exchange (ETDEWEB)

    Kishi, S; Aiyoshi, H

    1977-02-08

    A gasket to be inserted between flange joints in the equipments and pipe lines of an uranium enrichment plant having neither permeability nor adsorptivity to water while maintaining mechanical, physical and chemical properties of an elastomer gasket is described. A gasket made of an elastomeric material such as a polymer is integratedly formed at its surface with anti-slip projections. The gasket is further surrounded at its upper and lower peripheral sides, as well as outer circumferential portion with a U-sectioned cover (enclosure) made of fluoro-plastics. In this arrangement, the gasket main body shows a gas-tightness for uranium hexafluoride gas and the cover exhibits a gas-tightness for other component gases such as moisture to thereby prevent degradation of the gasket due to absorption and permeation of the moisture.

  18. Topical papers on uranium conversion and enrichment

    International Nuclear Information System (INIS)

    Uranium conversion and enrichment are discussed in 5 papers by representatives of the USA, Great Britain and Switzerland. The state of the art is reviewed, and future prospects are given. Supply assurance is directly related to the necessary production capacities and the supply agreements

  19. The low enriched uranium fuel cycle in Ontario

    International Nuclear Information System (INIS)

    Archinoff, G.H.

    1979-02-01

    Six fuel-cycle strategies for use in CANDU reactors are examined in terms of their uranium-conserving properties and their ease of commercialization for three assumed growth rates of installed nuclear capacity in Ontario. The fuel cycle strategies considered assume the continued use of the natural uranium cycle up to the mid-1990's. At that time, the low-enriched uranium (LEU) cycle is gradually introduced into the existing power generation grid. In the mid-2020's one of four advanced cycles is introduced. The advanced cycles considered are: mixed oxide, intermediate burn-up thorium (Pu topping), intermediate burn-up thorium (U topping), and LMFBR. For comparison purposes an all natural uranium strategy and a natural uranium-LEU strategy (with no advanced cycle) are also included. None of the strategies emerges as a clear, overall best choice. (LL)

  20. SIGMA: the novel approach of a new non-proliferating uranium enrichment technology

    International Nuclear Information System (INIS)

    Rivarola, M.; Florido, P.; Brasnarof, D.; Bergallo, E.

    2000-01-01

    The SIGMA concept, under development by Argentina, represents the evolution of the Uranium Enrichment Gaseous Diffusion technology, updated to face the challenge of the new economic-based and competitive world frame. The Enrichment technology has been historically considered as a highly proliferating activity in the nuclear field, and central countries limited the access of the developing countries to this technology. The SIGMA concept incorporates innovative proliferation resistant criteria at the beginning of the design process, and inherits all the non-proliferation features of the gaseous diffusion plants (GDPs). The radical new proliferation resistance approach of the SIGMA technology suggests a new kind of global control of the uranium enrichment market, where some developing countries might access an Enrichment plant without access to the technology itself. In this paper, we investigate the economy of the SIGMA plants, and the implications of this technology on the Uranium Global Market. (authors)

  1. SIGMA, the novel approach of a new non-proliferating uranium enrichment technology

    International Nuclear Information System (INIS)

    Rivarola, M.; Florido, P.; Brasnarof, D.; Bergallo, J.

    2001-01-01

    The SIGMA concept, under development by Argentina, represents the evolution of the Uranium Enrichment Gaseous Diffusion technology, updated to face the challenge of the new economic-based and competitive world frame. The Enrichment technology has been historically considered as a highly proliferating activity in the nuclear field, and central countries have limited the access of the developing countries to this technology. The SIGMA concept incorporates innovative proliferation resistant criteria at the beginning of the design process, and inherits all the non-proliferation features of the Gaseous Diffusion Plants (GDPs). The radical new proliferation resistant approach of the SIGMA technology, suggest a new kind of global control of the Uranium Enrichment Market, were some developing countries might access to an Enrichment plant without accessing to the technology itself. In this paper, we analyse the economy of the SIGMA plants, and the implications of this technology on the Uranium Global Market. (authors)

  2. Criteria for the safe storage of enriched uranium at the Y-12 Plant

    International Nuclear Information System (INIS)

    Cox, S.O.

    1995-07-01

    Uranium storage practices at US Department of Energy (DOE) facilities have evolved over a period spanning five decades of programmatic work in support of the nuclear deterrent mission. During this period, the Y-12 Plant in Oak Ridge, Tennessee has served as the principal enriched uranium facility for fabrication, chemical processing, metallurgical processing and storage. Recent curtailment of new nuclear weapons production and stockpile reduction has created significant amounts of enriched uranium available as a strategic resource which must be properly and safely stored. This standard specifies criteria associated with the safe storage of enriched uranium at the Y-12 Plant. Because programmatic needs, compliance regulations and desirable materials of construction change with time, it is recommended that these standards be reviewed and amended periodically to ensure that they continue to serve their intended purpose

  3. Accumulation of enriched uranium UO2F2 in ultrastructure as studied by electron microscopic autoradiography

    International Nuclear Information System (INIS)

    Zhu Shoupeng; Wang Yuanchang

    1992-01-01

    A study was made on the retention of soluble enriched uranium UO 2 F 2 in ultrastructure by electron microscopic autoradiography. The early dynamic accumulation of radioactivity in the body showed that enriched uranium UO 2 F 2 was mainly localized in kidneys, especially accumulated in epithelial cells of proximal convoluted tubules leading to degeneration and necrosis of the tubules. In liver cells, enriched uranium UO 2 F 2 at first deposited in nuclei of the cells and in soluble proteins of the plasma, and later accumulated selectively in mitochondria and lysosomes. On electron microscopic autoradiographic study it was shown that the dynamic retention of radioactivity of enriched uranium UO 2 F 2 in skeleton increased steadily through the time period of exposure. Enriched uranium UO 2 F 2 chiefly deposited in nuclei and mitochondria of osteoblasts as well as of osteoclasts

  4. Enriched-uranium feed costs for the High-Temperature Gas-Cooled reactor: trends and comparison with other reactor concepts

    International Nuclear Information System (INIS)

    Thomas, W.E.

    1976-04-01

    This report discusses each of the components that affect the unit cost for enriched uranium; that is, ore costs, U 3 O 8 to UF 6 conversion cost, costs for enriching services, and changes in transaction tails assay. Historical trends and announced changes are included. Unit costs for highly enriched uranium (93.15 percent 235 U) and for low-enrichment uranium (3.0, 3.2, and 3.5 percent 235 U) are displayed as a function of changes in the above components and compared. It is demonstrated that the trends in these cost components will probably result in significantly less cost increase for highly enriched uranium than for low-enrichment uranium--hence favoring the High-Temperature Gas-Cooled Reactor

  5. Feasibility of uranium enrichment in Australia

    International Nuclear Information System (INIS)

    1979-10-01

    The Council considered that provided the balance between costs and markets was found to be acceptable, there was no valid reason against the Government proceeding with a study on the feasibility of, and perhaps participating in the establishment of a commercial uranium enrichment industry in Australia. Areas covered include technical expertise and industrial structure in Australia, environmental aspects and safeguards

  6. Use of minor uranium isotope measurements as an aid in safeguarding a uranium enrichment cascade

    International Nuclear Information System (INIS)

    Levin, S.A.; Blumkin, S.; Von Halle, E.

    1979-01-01

    Surveillance and containment, which are indispensable supporting measures for material accountability, do not provide those charged with safeguarding an installation with the assurance beyond the shadow of a doubt that all the input and output uranium will in fact be measured. Those who are concerned with developing non-intrusive techniques for safeguarding uranium enrichment plants under the Nuclear Non-Proliferation Treaty have perceived the possibility that data on the minor uranium isotope concentrations in an enrichment cascade withdrawal and feed streams may provide a means either to corroborate or to contradict the material accountability results. A basic theoretical study has been conducted to determine whether complete isotopic measurements on enrichment cascade streams may be useful for safeguards purposes. The results of the calculations made to determine the behaviour of the minor uranium isotopes ( 234 U and 236 U) in separation cascades, and the results of three plant tests made to substantiate the validity of the calculations, are reviewed briefly. Based on the fact that the 234 U and 236 U concentrations relative to that of 235 U in cascade withdrawal streams reflect the cascade flow-sheet, the authors conclude that the use of the minor isotope concentration measurements (MIST) in cascade withdrawal streams is a potentially valuable adjunct to material accounting for safeguarding a 235 U enrichment cascade. A characteristic of MIST, which qualifies it particularly for safeguards application under the NPT, is the fact that its use is entirely non-intrusive with regard to process technology and proprietary information. The usefulness of MIST and how it may be applied are discussed briefly. (author)

  7. Selected nondestructive assay instrumentation for an international safeguards system at uranium enrichment plants

    International Nuclear Information System (INIS)

    Tape, J.W.; Baker, M.P.; Strittmatter, R.; Jain, M.; Evans, M.L.

    1979-01-01

    A selected set of nondestructive assay instruments for an international safeguards system at uranium enrichment plants is currently under development. These instruments are of three types: in-line enrichment meters for feed, product, and tails streams; area radiation monitors for direct detection of high-enriched uranium production, and an enrichment meter for spent alumina trap material. The current status of the development of each of these instruments is discussed, with supporting data, as well as the role each would play in a total international safeguards system. 5 figures

  8. Strategic outlook for the US Dept. of Energy uranium enrichment enterprise

    International Nuclear Information System (INIS)

    Longenecker, J.R.

    1987-01-01

    Mounting problems in the early 1980s resulted in a business crisis for the US uranium enrichment enterprise. To address these problems, the US Dept. of Energy (DOE) developed and announced in 1984 a plan for reestablishing its competitive position in the world marketplace. This recovery plan has been very successful. The US DOE is now implementing the third phase of that strategy, institutional restructuring. Maintaining a healthy, stable, and competitive uranium enrichment capability in the US is a high-priority effort for DOE, whose uranium enrichment enterprise has two major goals: in the near term, DOE's goal is to provide reliable, competitive enrichment services to commercial and defense customers in a manner that assures a reasonable return on the government's investment. In the future, to assure adequate supplies of competitively priced nuclear fuel, DOE must adapt to the changing needs of the marketplace. Thus, we must stabilize and maintain the long-term vitality of the US enrichment enterprise by restructuring it and by providing the means by which the private sector can become involved in the business. Restructuring and private ownership obviously will require the approval of Congress. To achieve these goals, DOE has developed strategic objectives, which are briefly described

  9. Feasibility of nondestructive assay measurements in uranium enrichment plants

    Energy Technology Data Exchange (ETDEWEB)

    Walton, R.B.

    1978-04-01

    Applications of nondestructive assay methods to measurement problems in uranium enrichment facilities are reviewed. The results of a number of test and evaluation projects that were performed over the last decade at ORGDP and Portsmouth are presented. Measurements of the residual holdup in the top enrichment portion of the shut-down K-25 cascade were made with portable neutron and gamma-ray detectors, and inventory estimates based on these data were in good agreement with ORGDP estimates. In the operating cascade, the tests showed that portable NaI detectors are effective for monitoring NaF and alumina media for gaseous effluent traps and that gas phase enrichments and inventories, as well as large deposits of uranium, can be detected with portable neutron and gamma-ray instrumentation. A wide variety of scrap and waste materials, including barrier and compressor blades, incinerator ash and trapping media, and miscellaneous waste, were measured using passive gamma-ray and neutron methods and 14-MeV neutron interrogation. Methods developed for rapid verification of UF/sub 6/ in shipping containers with portable neutron and gamma-ray instruments are now used routinely by safeguards inspectors. Passive assay methods can also be used to measure continuously the enrichments of /sup 235/U and /sup 234/U in the UF/sub 6/ product and tails withdrawals of a gaseous diffusion plant. A system that was developed and installed in the extended-range product withdrawal station of the Portsmouth facility measures enrichment with a relative accuracy of 0.5%. A stand-alone neutron detector has also been successfully evaluated for the measurement of the isotopic abundance of /sup 234/U in UF/sub 6/ in sample cylinders, an application of potential importance to Minor Isotope Safeguards Technology. Recommendations are made on the role of NDA measurements for enrichment plant safeguards, including additional tests and evaluations that may be needed, particularly for advanced uranium

  10. Uranium enrichment by laser: a technology for the future

    International Nuclear Information System (INIS)

    Cazalet, J.

    1999-01-01

    The SILVA (Isotopic Separation by Laser on atomic Vapor of uranium) process, developed by CEA and COGEMA, is an innovative system of production of enriched uranium, to be used as the fuel of nuclear reactors. It is a sound research program, calling on advanced technologies that are quickly changing. The goal is to cut drastically the production cost in comparison with the operating cost of the present plants based on gaseous diffusion. its industrialization is forecast for the beginning of next century. The SILVA process consists in putting a vapor of uranium through a beam of photons emitted by finely tuned lasers capable of ionising selectively the isotopes 235. The ionised isotopes are attracted on plates by an electric field, they are condensed and collected on these plates. The very high selectivity of enrichment technologies by laser, which are quite new, pave the way for compact and modular plants, which will consume little energy. Accordingly their production cost will be very low. So a new process could take a significant part of the uranium enrichment market after 2010. Even if the multinational EURODIF gaseous diffusion plant is modern and performing, it will be necessary to strengthen the French industry of uranium enrichment to maintain or improve its competitive position on the world market. This could be achieved by smoothly replacing EURODIF by a high performance laser plant. This is the common goal of CEA and COGEMA: all the efforts are concentrated on SILVA, the qualities of which (high selectivity, separation in one single step) have been demonstrated in the facilities of Saclay and Pierrelatte. 400 researchers and technicians are involved, as well as many industrial firms. The budget is equally by CEA and COGEMA through a cooperation agreement. The program includes: a phase of scientific and technical research, which has been highlighted in 1997-1998 by a demonstration of feasibility of the process; a phase of technological development, with

  11. The use of medium enriched uranium fuel for research reactors

    International Nuclear Information System (INIS)

    1979-01-01

    The evaluation described in the present paper concerns the use of medium enriched uranium fuel for our research reactors. The underlying assumptions set up for the evaluation are as follows: (1) At first, the use of alternative fuel should not affect, even to a small extent, research and development programs in nuclear energy utilization, which were described in the previous paper. Hence the use of lower enrichment fuel should not cause any reduction in reactor performances. (2) The fuel cycle cost for operating research reactors with alternative fuel, excepting R and D cost for such fuel, should not increase beyond an acceptable limit. (3) The use of alternative fuel should be satisfactory with respect to non-proliferation purposes, to the almost same degree as the use of 20% enriched uranium fuel

  12. Status report on conversion of the Georgia Tech Research Reactor to low enrichment fuel

    International Nuclear Information System (INIS)

    Karam, R.A.; Matos, J.E.; Mo, S.C.; Woodruff, W.L.

    1995-01-01

    The 5 MW Georgia Tech Research Reactor (GTRR) is a heterogeneous, heavy water moderated and cooled reactor, fueled with highly-enriched uranium aluminum alloy fuel plates. The GTRR is required to convert to low enrichment (LEU) fuel in accordance with USNRC policy. The US Department of Energy is funding a program to compare reactor performance with high and low enrichment fuels. The goals of the program are: (1) to amend the SAR and the technical specifications of the GTRR so that LEU U 3 Si 2 -Al dispersion fuel plates can replace the current HEU U-Al alloy fuel, and (2) to optimize the LEU core such that maximum value neutron beams can be extracted for possible neutron capture therapy application. This paper presents a status report on the LEU conversion effort. (author)

  13. Status report on conversion of the Georgia Tech Research Reactor to low enrichment fuel

    International Nuclear Information System (INIS)

    Karam, R.A.; Matos, J.E.; Mo, S.C.; Woodruff, W.L.

    1991-01-01

    The 5 MW Georgia Tech Research Reactor (GTRR) is a heterogeneous, heavy water moderated and cooled reactor, fueled with highly-enriched uranium aluminum alloy fuel plates. The GTRR is required to convert to low enrichment (LEU) fuel in accordance with USNRC policy. The US Department of Energy is funding a program to compare reactor performance with high and low enrichment fuels. The goals of the program are: (1) to amend the SAR and the Technical Specifications of the GTRR so that LEU U 3 Si 2 -Al dispersion fuel plates can replace the current HEU U-Al alloy fuel, and (2) to optimize the LEU core such that maximum value neutron beams can be extracted for possible neutron capture therapy application. This paper presents a status report on the LEU conversion effort

  14. Effect of spermidine in PC12 cells on the cell apoptosis induced by enriched uranium

    International Nuclear Information System (INIS)

    Gu Guixiong; Zhu Shoupeng; Wang Liuyi; Yang Shuqin; Zhu Lingli

    2003-01-01

    This is a study on injurious effects of cellular spermidine to PC12 cells irradiated by enriched uranium. PC12 cells were cultured in DMEM/F12 medium with enriched uranium, and the exposure doses were calculated. The contents of free spermidine PC12 cells were examined with Dansyl-chloride reaction and thin-layer chromatography. Viability of the cells treated with enriched uranium reduced rapidly and DNA strand break increased significantly with increasing time of the irradiation. Autoradiographic tracks showed that the radionuclide located in the nucleus predominantly. The content of free spermidine in PC12 cells could markedly decrease as the irradiation time increased. The results suggested that PC12 cells exposured to enriched uranium were apoptotic and the free spermidine in cells might play some role in this process

  15. 75 FR 6223 - Application For a License To Export High-Enriched Uranium

    Science.gov (United States)

    2010-02-08

    ... NUCLEAR REGULATORY COMMISSION Application For a License To Export High-Enriched Uranium Pursuant to 10 CFR 110.70(c) ``Public notice of receipt of an application,'' please take notice that the..., Uranium (93.35%). uranium (16.3 targets for December 28, 2009, XSNM3623, kilograms U-235). irradiation in...

  16. 77 FR 1956 - Application for a License To Export High-Enriched Uranium

    Science.gov (United States)

    2012-01-12

    ... NUCLEAR REGULATORY COMMISSION Application for a License To Export High-Enriched Uranium Pursuant to 10 CFR 110.70(b) ``Public Notice of Receipt of an Application,'' please take notice that the.... Security Complex. Uranium uranium (9.3 targets at December 21, 2011 (93.35%). kilograms U- CERCA AREVA...

  17. 75 FR 7525 - Application for a License To Export High-Enriched Uranium

    Science.gov (United States)

    2010-02-19

    ... NUCLEAR REGULATORY COMMISSION Application for a License To Export High-Enriched Uranium Pursuant to 10 CFR 110.70(c) ``Public notice of receipt of an application,'' please take notice that the..., February 2, Uranium (93.35%). uranium (87.3 elements in 2010, February 2, 2010, kilograms U-235). France...

  18. A programme for Euratom safeguards inspectors, used in the assay of high enriched (H.E.U.) and low enriched (L.E.U.) uranium fuel materials by active neutron interrogation

    International Nuclear Information System (INIS)

    Vocino, V.; Farese, N.; Maucq, T.; Nebuloni, M.

    1991-01-01

    The programme AECC (Active Euratom Coincidence Counters) has been developed at the Joint Research Center, Ispra by the Euratom Safeguards Directorate, Luxembourg and the Safety Technology Institute, Ispra for the acquisition, evaluation, management and storage of measurement data originating from active neutron interrogation of HEU and LEU fuel materials. The software accommodates the implementation of the NDA (Non Destructive Assay) procedures for the Active Well Coincidence Counters and Active Neutron Coincidence Counters deployed by the Euratom Safeguards Directorate, Luxembourg

  19. Application of a method to measure uranium enrichment without use of standards

    International Nuclear Information System (INIS)

    Saule, F.A.; Righetti, M.A.

    1998-01-01

    Full text: The determination of uranium enrichment in the many different stages present at a gaseous diffusion enrichment plant (diffusers, cisterns, deposits in pipes, drums with rests of process), or materials of deposit (plates of fuel elements not irradiated and recipients with uranium oxide), that have several geometries and physics properties of the containers, is very important for safeguards inspections. In this work is tested a non destructive analysis technique to determine the value of uranium enrichment of different samples with uranium materials without use of standards, to apply in safeguards inspections. It was used a hyper pure germanium detector with efficiency of 20% to obtain the gamma spectrum of the samples. In each spectrum, were used the net area values corresponding to four lines of U-235 (at 143, 163, 186 and 205 keV) and three lines of U-238 (258, 766 and 1001 keV); these values were analysed with two different methods. The comparison of the calculated and declared values showed a discrepancy of about 10%. (author) [es

  20. Uranium Enrichment Determination of the InSTEC Sub Critical Ensemble Fuel by Gamma Spectrometry

    International Nuclear Information System (INIS)

    Borrell Munnoz, Jose L.; LopezPino, Neivy; Diaz Rizo, Oscar; D'Alessandro Rodriguez, Katia; Padilla Cabal, Fatima; Arbelo Penna, Yunieski; Garcia Rios, Aczel R.; Quintas Munn, Ernesto L.; Casanova Diaz, Amaya O.

    2009-01-01

    Low background gamma spectrometry was applied to analyze the uranium enrichment of the nuclear fuel used in the InSTEC Sub Critical ensemble. The enrichment was calculated by two variants: an absolute method using the Monte Carlo method to simulated detector volumetric efficiency, and an iterative procedure without using standard sources. The results confirm that the nuclear fuel of the ensemble is natural uranium without any additional degree of enrichment. (author)

  1. Present status of centrifuge method for uranium enrichment and PNC plant

    International Nuclear Information System (INIS)

    Nishikido, Yoshikazu

    1977-01-01

    Recentry, the tendency to adopt atomic energy owing to the oil shock, the delay in the construction of nuclear power stations worldwide, the uncertainty in the utilization of plutonium, and the prospect of supplying natural uranium are the situations affecting uranium enrichment. Anyway, the enrichment capacity in the world must be increased by the early years of 1980 s. The uranium enrichment technology by centrifugal method is being developed in various countries under strict control of informations, therefore the details are not known, but the general state in Great Britain, F.R. of Germany, Netherlands, U.S.A. and Japan is explained. The development of the centrifugal enrichment method in Japan was designated in 1972 as the national project aiming at operating the enriching plant with international competitive power by 1985. The PNC undertook the development work, and the research and development include the development of a centrifuge, cascade test, life span test, the development of the mass production technology, and safety test. The especially notable matter in this period was the rapid progress of a supercritical type centrifuge. It is judged that the technical basis for constructing a pilot plant has been established. The site for the pilot plant is being prepared now in the Ningyo Pass Mine, PNC, and the enrichment plant with 7000 centrifuges will be constructed there. The outline of the plant and the schedule for the construction are described. (Kako, I.)

  2. Uranium enrichment by jet nozzle separation process in the German-Brazil cooperation program

    International Nuclear Information System (INIS)

    Becker, E.W.

    1991-01-01

    It presents a lecture on technical and commercial aspects of uranium isotopic enrichment by the Get Lozzle Method in Brazil. The analysis is presented regarding the context of bilateral agreement German-Brazil it discusses the technical problems of a demonstration plant design as well as the commercial exportation viability of enriched uranium produced in Brazil by the Jet Nozzle Method. (author)

  3. Energies and media nr 32. Conditions for the nuclear sector. Uranium and its enrichment for EDF. The role of Russia

    International Nuclear Information System (INIS)

    2010-07-01

    After some comments on recent events in the nuclear sector in different countries (international conference, agreement between Rosatom and the IAEA, energy policy and projects in India, Turkey, Vietnam, France, Finland, UK, Sweden, USA, Germany), this publication discusses the uranium enrichment issue for EDF and the role of Russia. It refers to a report by the French High committee for transparency and information on nuclear safety (HCTISN) and to a hearing by the French Parliament. Different aspects are discussed: the national and international legal contexts and their relationship, the EDF reactor supply (enriched uranium of MOX, fixed elements in enrichment contracts, supply security), enrichment processes and installations (in France, natural uranium enrichment, use of reprocessed or recycle uranium, use of depleted uranium as a by-product of enrichment), how EDF and AREVA are working with Russia (enrichment of recycled uranium, use of depleted uranium)

  4. Expansion of U.S. uranium enrichment capacity. Final environmental statement

    International Nuclear Information System (INIS)

    1976-04-01

    Reasonably foreseeable environmental, social, economic, and technological costs and benefits of postulated expansion of U. S. enrichment capacity through the year 2000 and reasonably available alternatives to such expansion are described. Both the gas centrifuge and gaseous diffusion methods for the enrichment of uranium are considered in this impact assessment

  5. Expansion of U. S. uranium enrichment capacity. Final environmental statement

    Energy Technology Data Exchange (ETDEWEB)

    1976-04-01

    Reasonably foreseeable environmental, social, economic, and technological costs and benefits of postulated expansion of U. S. enrichment capacity through the year 2000 and reasonably available alternatives to such expansion are described. Both the gas centrifuge and gaseous diffusion methods for the enrichment of uranium are considered in this impact assessment. (JGB)

  6. Simulation of transportation of low enriched uranium solutions

    International Nuclear Information System (INIS)

    Hope, E.P.; Ades, M.J.

    1996-01-01

    A simulation of the transportation by truck of low enriched uranium solutions has been completed for NEPA purposes at the Savannah River Site. The analysis involves three distinct source terms, and establishes the radiological risks of shipment to three possible destinations. Additionally, loading accidents were analyzed to determine the radiological consequences of mishaps during handling and delivery. Source terms were developed from laboratory measurements of chemical samples from low enriched uranium feed materials being stored at SRS facilities, and from manufacturer data on transport containers. The transportation simulations were accomplished over the INTERNET using the DOE TRANSNET system at Sandia National Laboratory. The HIGHWAY 3.3 code was used to analyze routing scenarios, and the RADTRAN 4 code was used to analyze incident free and accident risks of transporting radiological materials. Loading accidents were assessed using the Savannah River Site AXAIR89Q and RELEASE 2 codes

  7. Aerodynamic isotope separation processes for uranium enrichment: process requirements

    International Nuclear Information System (INIS)

    Malling, G.F.; Von Halle, E.

    1976-01-01

    The pressing need for enriched uranium to fuel nuclear power reactors, requiring that as many as ten large uranium isotope separation plants be built during the next twenty years, has inspired an increase of interest in isotope separation processes for uranium enrichment. Aerodynamic isotope separation processes have been prominently mentioned along with the gas centrifuge process and the laser isotope separation methods as alternatives to the gaseous diffusion process, currently in use, for these future plants. Commonly included in the category of aerodynamic isotope separation processes are: (a) the separation nozzle process; (b) opposed gas jets; (c) the gas vortex; (d) the separation probes; (e) interacting molecular beams; (f) jet penetration processes; and (g) time of flight separation processes. A number of these aerodynamic isotope separation processes depend, as does the gas centrifuge process, on pressure diffusion associated with curved streamlines for the basic separation effect. Much can be deduced about the process characteristics and the economic potential of such processes from a simple and elementary process model. In particular, the benefit to be gained from a light carrier gas added to the uranium feed is clearly demonstrated. The model also illustrates the importance of transient effects in this class of processes

  8. Benchmark criticality experiments for fast fission configuration with high enriched nuclear fuel

    International Nuclear Information System (INIS)

    Sikorin, S.N.; Mandzik, S.G.; Polazau, S.A.; Hryharovich, T.K.; Damarad, Y.V.; Palahina, Y.A.

    2014-01-01

    Benchmark criticality experiments of fast heterogeneous configuration with high enriched uranium (HEU) nuclear fuel were performed using the 'Giacint' critical assembly of the Joint Institute for Power and Nuclear Research - Sosny (JIPNR-Sosny) of the National Academy of Sciences of Belarus. The critical assembly core comprised fuel assemblies without a casing for the 34.8 mm wrench. Fuel assemblies contain 19 fuel rods of two types. The first type is metal uranium fuel rods with 90% enrichment by U-235; the second one is dioxide uranium fuel rods with 36% enrichment by U-235. The total fuel rods length is 620 mm, and the active fuel length is 500 mm. The outer fuel rods diameter is 7 mm, the wall is 0.2 mm thick, and the fuel material diameter is 6.4 mm. The clad material is stainless steel. The side radial reflector: the inner layer of beryllium, and the outer layer of stainless steel. The top and bottom axial reflectors are of stainless steel. The analysis of the experimental results obtained from these benchmark experiments by developing detailed calculation models and performing simulations for the different experiments is presented. The sensitivity of the obtained results for the material specifications and the modeling details were examined. The analyses used the MCNP and MCU computer programs. This paper presents the experimental and analytical results. (authors)

  9. MCNP5 CRITICALITY VALIDATION AND BIAS FOR INTERMEDIATE ENRICHED URANIUM SYSTEMS

    International Nuclear Information System (INIS)

    Finfrock, S.H.

    2009-01-01

    The purpose of this analysis is to validate the Monte Carlo N-Particle 5 (MCNP5) code Version 1.40 (LA-UR-03-1987, 2005) and its cross-section database for k-code calculations of intermediate enriched uranium systems on INTEL(reg s ign) processor based PC's running any version of the WINDOWS operating system. Configurations with intermediate enriched uranium were modeled with the moderator range of 39 (le) H/Fissile (le) 1438. See Table 2-1 for brief descriptions of selected cases and Table 3-1 for the range of applicability for this validation. A total of 167 input cases were evaluated including bare and reflected systems in a single body or arrays. The 167 cases were taken directly from the previous (Version 4C [Lan 2005]) validation database. Section 2.0 list data used to calculate k-effective (k eff ) for the 167 experimental criticality benchmark cases using the MCNP5 code v1.40 and its cross section database. Appendix B lists the MCNP cross-section database entries validated for use in evaluating the intermediate enriched uranium systems for criticality safety. The dimensions and atom densities for the intermediate enriched uranium experiments were taken from NEA/NSC/DOC(95)03, September 2005, which will be referred to as the benchmark handbook throughout the report. For these input values, the experimental benchmark k eff is approximately 1.0. The MCNP validation computer runs ran to an accuracy of approximately ± 0.001. For the cases where the reported benchmark k eff was not equal to 1.0000 the MCNP calculational results were normalized. The difference between the MCNP validation computer runs and the experimentally measured k eff is the MCNP5 v1.40 bias. The USLSTATS code (ORNL 1998) was utilized to perform the statistical analysis and generate an acceptable maximum k eff limit for calculations of the intermediate enriched uranium type systems.

  10. Improved locations of reactivity devices in future CANDU reactors fuelled with natural uranium or enriched fuels

    International Nuclear Information System (INIS)

    Boczar, P.G.; Van Dyk, M.T.

    1987-02-01

    A new configuration of reactivity devices is proposed for future CANDU reactors which improves the core characteristics with enriched fuels, while still allowing the use of natural uranium fuel. Physics calculations for this new configuration are presented for four fuel types: natural uranium, mixed plutonium - uranium oxide (MOX) having a burnup of 21 MWd/kg, and slightly enriched uranium (SEU) having burnups of either 21 or 31 MWd/kg

  11. Status of fuel element technology for plate type dispersion fuels with high uranium density

    International Nuclear Information System (INIS)

    Hrovat, M.; Huschka, H.; Koch, K.H.; Nazare, S.; Ondracek, G.

    1983-01-01

    A number of about 20 Material Test and Research Reactors in Germany and abroad is supplied with fuel elements by the company NUKEM. The power of these reactors differs widely ranging from up to about 100 MW. Consequently, the uranium density of the fuel elements in the meat varies considerably depending on the reactor type and is usually within the range from 0.4 to 1.3 g U/cm 3 if HEU is used. In order to convert these reactors to lower uranium enrichment (19.75% 235-U) extensive work is carried out at NUKEM since about two years with the goal to develop fuel elements with high U-density. This work is sponsored by the German Ministry for Research and Technology in the frame of the AF-program. This paper reports on the present state of development for fuel elements with high U-density fuels at NUKEM is reported. The development works were so far concentrated on UAl x , U 3 O 8 and UO 2 fuels which will be described in more detail. In addition fuel plates with new fuels like e.g. U-Si or U-Fe compounds are developed in collaboration with KfK. The required uranium densities for some typical reactors with low, medium, and high power are listed allowing a comparison of HEU and LEU uranium density requirements. The 235-U-content in the case of LEU is raised by 18%. Two different meat thicknesses are considered: Standard thickness of 0.5 mm; and increased thickness of 0.76 mm. From this data compilation the objective follows: in the case of conversion to LEU (19.75% 235-U-enrichment), uranium densities have to be made available up to 24 gU/cm 3 meat for low power level reactors, up to 33 gU/cm 3 meat for medium power level reactors, and between 5.75 and 7.03 g/cm 3 meat for high power level reactors according to this consideration

  12. Air strikes on uranium enrichment plants as potential sources of radioecological danger

    Directory of Open Access Journals (Sweden)

    Živanov Dragan

    2007-01-01

    Full Text Available According to the Non Proliferation Treaty (NPT, the signatory countries are not forbidden to preform uranium enrichment for peaceful purposes. However, if there is a justified doubt that the uranium enrichment is performed with the aim to produce nuclear weapons, this certainly causes great concern. In this case, the international community can apply pressure to a certain country if it determines that the country does not want to cease activities of making its own nuclear weapons. The international community pressure on the country can be intesified until its political leadership is not made to question and cease all activities of producing nuclear weapons. This pressure can be political, economic, and as a last resort-military. As a gesture of goodwill the country can stop the uranium enrichment process. In this way, the country shows that it finally gives up the intention to produce nuclear weapons. However, when military pressure is applied, i.e. military strikes (air strikes for example on nuclear plants used for uranium enrichment, this certainly creates a risk of releasing radioactivity into the environment. That is why the aim of this paper is to signal this very fact. Using military force in these cases leads to additional radioactive contamination of the environment, so this way of solving conflicts should be avoided within the international community.

  13. A view of the uranium enrichment market of the late 1990's and beyond

    International Nuclear Information System (INIS)

    Longenecker, J.R.

    1991-01-01

    The author discusses the following topics related to the international uranium enrichment market: a market overview from the early 1980's, including price projections and the impact of new technologies; outlook for the market over the next decade, including military versus commercial requirements, supply and demand for enrichment services, uranium enrichment prices for the 1990's, utility procurement practices, new technologies, and an update on development and design activities related to laser isotope separation at CRISLA Technologies, Inc

  14. The Supply of Medical Radioisotopes. Policy Options for Ensuring Long-term Supply Security of Molybdenum-99 and/or Technetium-99m Produced Without Highly Enriched Uranium Targets

    International Nuclear Information System (INIS)

    Westmacott, Chad; Cameron, Ron

    2012-01-01

    Following the shortages of the key medical radioisotopes, molybdenum-99 ( 99 Mo) and its daughter technetium-99m (' 99m Tc), the OECD-Nuclear Energy Agency (NEA) created the High-level Group on the Security of Supply of Medical Radioisotopes (HLG-MR). Since 2009, this group has identified the reasons for the isotope shortages and developed a policy approach to address the challenges to a long-term secure supply of these important medical isotopes. On top of the ongoing concerns related to long-term reliability, all current long-term major 99 Mo-producing nations have agreed to convert to using low-enriched uranium (LEU) targets for the production of 99 Mo. This decision was made based on important nonproliferation reasons; however, the conversion will have potential impacts on the global supply chain - both in terms of costs and available capacity. Recognising that conversion is important and will occur, and also recognising the need to ensure a long-term secure supply of 99 Mo/' 99m Tc, the NEA, along with stakeholders, examined potential policy options that could be used by to ensure a reliable supply of 99 Mo and/or ' 99m Tc produced without highly enriched uranium (HEU), consistent with the time frames and policies of the HLG-MR. This discussion paper provides the various policy options available to governments to encourage a reliable supply of 99 Mo and/or ' 99m Tc produced without HEU. The examination of these options was done through the lens of ensuring a reliable supply, consistent with the time frames and policies of the HLG-MR. The options described in this document are meant to meet this objective by taking one of three general actions: - Making the option of purchasing or producing non-HEU-based 99 Mo and/or ' 99m Tc more attractive. - Making the option of purchasing or producing HEU-based 99 Mo and/or ' 99m Tc less attractive. - Limiting access to HEU-based 99 Mo and/or ' 99m Tc. This paper presents the options in each category and provides some views

  15. Continuous monitoring of variations in the 235U enrichment of uranium in the header pipework of a centrifuge enrichment plant

    International Nuclear Information System (INIS)

    Packer, T.W.

    1991-01-01

    Non-destructive assay equipment, based on gamma-ray spectrometry and x-ray fluorescence analysis has previously been developed for confirming the presence of low enriched uranium in the header pipework of UF 6 gas centrifuge enrichment plants. However inspections can only be carried out occasionally on a limited number of pipes. With the development of centrifuge enrichment technology it has been suggested that more frequent, or ideally, continuous measurements should be made in order to improve safeguards assurance between inspections. For this purpose we have developed non-destructive assay equipment based on continuous gamma-ray spectrometry and x-ray transmission measurements. This equipment is suitable for detecting significant changes in the 235 U enrichment of uranium in the header pipework of new centrifuge enrichment plants. Results are given in this paper of continuous measurements made in the laboratory and also on header pipework of a centrifuge enrichment plant at Capenhurst

  16. Uranium Enrichment Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Demuth, Scott F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trahan, Alexis Chanel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-26

    DIV of facility layout, material flows, and other information provided in the DIQ. Material accountancy through an annual PIV and a number of interim inventory verifications, including UF6 cylinder identification and counting, NDA of cylinders, and DA on a sample collection of UF6. Application of C/S technologies utilizing seals and tamper-indicating devices (TIDs) on cylinders, containers, storage rooms, and IAEA instrumentation to provide continuity of knowledge between inspection. Verification of the absence of undeclared material and operations, especially HEU production, through SNRIs, LFUA of cascade halls, and environmental swipe sampling

  17. Computational fluid mechanics in R and D on uranium enrichment

    International Nuclear Information System (INIS)

    Soubbaramayer, O.

    1988-01-01

    Uranium enrichment represents an essential link in the cycle of nuclear fuels for power production. There are many processes of uranium enrichment, but three of them dominate the nuclear history as well in the past (Gaseous diffusion and centrifugation) as in the present (Laser process). The important role played by the Numerical Fluid Mechanics in the three processes is pointed out. The type of problem raised by Gaseous Diffusion is Channel Flow with wall suction, by Centrifugation, flow of a Compressible gas in a strongly rotating cylinder (Stewartson and Ekman layers) and by Laser process, Thermocapillary-buoyancy flow of a molten metal in an evaporation crucible. The methods and results in these problems are reviewed. 18 refs, 11 figs

  18. Available Reprocessing and Recycling Services for Research Reactor Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    2017-01-01

    The high enriched uranium (HEU) take back programmes will soon have achieved their goals. When there are no longer HEU inventories at research reactors and no commerce in HEU for research reactors, the primary driver for the take back programmes will cease. However, research reactors will continue to operate in order to meet their various mission objectives. As a result, inventories of low enriched uranium spent nuclear fuel will continue to be created during the research reactors' lifetime and, therefore, there is a need to develop national final disposition routes. This publication is designed to address the issues of available reprocessing and recycling services for research reactor spent fuel and discusses the various back end management aspects of the research reactor fuel cycle.

  19. Transport of high enriched uranium fresh fuel from Yugoslavia to the Russian federation

    OpenAIRE

    Pešić Milan P.; Šotić Obrad; Hopwood William H.Jr

    2002-01-01

    This paper presents the relevant data related to the recent shipment (August 2002) of fresh highly enriched uranium fuel elements from Yugoslavia back to the Russian Federation for uranium down blending. In this way, Yugoslavia gave its contribution to the Reduced Enrichment for Research and Test Reactors (RERTR) Program and to the world's joint efforts to prevent possible terrorist actions against nuclear material potentially usable for the production of nuclear weapons.

  20. The contribution of radioisotopes in secular equilibrium in the transport index of fissile uranium compounds in different enrichments

    International Nuclear Information System (INIS)

    Silva, Teresinha de Moraes da; Sordi, Gian M.A.A.

    2008-01-01

    Full text: This work shows the contribution of radioisotopes in secular equilibrium in the transport index (TI) of some fissile uranium compounds: uranium oxides UO 2 , U 3 O 8 and uranium silicide U 3 Si 2 , taking into account the different enrichment grades.The range of enrichment (E%) studied was 3,4,5,7,10,20,30,40,50,93 and 100. Initially, the cell of optimum moderation ratio was built, since it represents the most reactive of the system (consisting of uranium), with maximum infinitive multiplication factor k∞, in certain concentration of uranium for each enrichment. This was made using the computer program Gamtec II. The critical radius of a sphere was calculated for a cell of optimum moderation ratio, in order to calculate the critical mass of the uranium compound or of the uranium element for each specific enrichment. For this the program Citation was used. In this study it was calculated the smallest critical mass of the uranium compound or the smallest critical mass of the uranium element. The objective was to match the largest mass of the uranium with each specific enrichment. The largest safety mass corresponds to 45% the critical mass the compound uranium or uranium element. Then, we calculated the uranium element safety mass, which it related to a fifth of this mass to the value 50, which corresponds to criticality safety index (CSI). That is, 20% of the safety mass is the value where the transport is carried out with subcritical mass, going in favor of the security. From the uranium element safety mass (USM) was determined for each enrichment , and it was calculated the mass of 235 U, activity 235 U and dose rate of 235 U, the same items were calculated for the isotope 238 U. The total dose rate was calculated for two isotopes, and applying the transport index definition as the gamma dose rate for the distance of 1 m from the packed, it was determined the TI for 20% of the safety mass for each enrichment of the compound studied. The study of

  1. International safeguards at the feed and withdrawal area of a gas centrifuge uranium enrichment plant

    International Nuclear Information System (INIS)

    Gordon, D.M.; Sanborn, J.B.

    1980-01-01

    This paper discusses the application of International Atomic Energy Agency (IAEA) safeguards at a model gas centrifuge uranium enrichment plant designed for the production of low-enriched uranium; particular emphasis is placed upon the verification by the IAEA of the facility material balance accounting. 13 refs

  2. A comparative and predictive study of the annual fuel cycle costs for HEU and LEU fuels in the High Flux Reactor, Petten, 1985-1993

    Energy Technology Data Exchange (ETDEWEB)

    Moss, R L; May, P

    1985-07-01

    The internationally agreed constraint on availability of supply of HEU fuels to Research and Test Reactors has necessitated that a cost analysis be carried out to determine the financial effect of converting the core of the HFR from HEU to LEU fuels. A computer program, written at Petten and based on information extracted from studies in Europe and the USA, identifies the major cost variables to be manufacturing, uranium, reprocessing and transport costs. Comparison between HEU and LEU cores have been carried out and includes the effects of inflation and exchange rate fluctuations. Conversion of the HFR core to LEU fuels is shown to be financially disadvantageous. (author)

  3. A comparative and predictive study of the annual fuel cycle costs for HEU and LEU fuels in the High Flux Reactor, Petten, 1985-1993

    International Nuclear Information System (INIS)

    Moss, R.L.; May, P.

    1985-01-01

    The internationally agreed constraint on availability of supply of HEU fuels to Research and Test Reactors has necessitated that a cost analysis be carried out to determine the financial effect of converting the core of the HFR from HEU to LEU fuels. A computer program, written at Petten and based on information extracted from studies in Europe and the USA, identifies the major cost variables to be manufacturing, uranium, reprocessing and transport costs. Comparison between HEU and LEU cores have been carried out and includes the effects of inflation and exchange rate fluctuations. Conversion of the HFR core to LEU fuels is shown to be financially disadvantageous. (author)

  4. Enriched but not depleted uranium affects central nervous system in long-term exposed rat.

    Science.gov (United States)

    Houpert, Pascale; Lestaevel, Philippe; Bussy, Cyrill; Paquet, François; Gourmelon, Patrick

    2005-12-01

    Uranium is well known to induce chemical toxicity in kidneys, but several other target organs, such as central nervous system, could be also affected. Thus in the present study, the effects on sleep-wake cycle and behavior were studied after chronic oral exposure to enriched or depleted uranium. Rats exposed to 4% enriched uranium for 1.5 months through drinking water, accumulated twice as much uranium in some key areas such as the hippocampus, hypothalamus and adrenals than did control rats. This accumulation was correlated with an increase of about 38% of the amount of paradoxical sleep, a reduction of their spatial working memory capacities and an increase in their anxiety. Exposure to depleted uranium for 1.5 months did not induce these effects, suggesting that the radiological activity induces the primary events of these effects of uranium.

  5. Japan-IAEA sefeguards demonstration programme in the gas centrifuge uranium enrichment facility

    International Nuclear Information System (INIS)

    Akiba, Mitsunori; Iwamoto, Tomonori; Omae, Masayoshi

    1985-01-01

    The Hexa-partite Safequard Project was started for the purpose of examining the effective techniques of safeguards for gas centrifuge uranium enrichment facilities. By the proposal of respective participating countries, it was decided to carry out the verifying test of various safeguard techniques at the actual plants. Japan carried out the verifying test of safeguard techniques at the Ningyotoge uranium enrichment pilot plant in June, 1982, and from November, 1983, to August, 1984. The contents of this test is reported. In Japan, this verifying test was positioned as a part of JASPAS (Japanese project of supporting IAEA safeguards). The verifying test of realtime and in-operation inventories, the verifying test of IAEA load cell type weighing machines for UF 6 cylinders, the verifying test of the measurement of the degree of enrichment in UF 6 cylinders by nondestructive test, the verifying test of confinement/watch system, and the verifying test of IAEA gas phase uranium enrichment monitors were carried out. The results were presented as the data for examination in the HSP, and evaluated as useful, informative and well compiled. It is necessary to pursue more cost-effective approaches. (Kako, I.)

  6. Measurement of the enrichment of uranium-hexafluoride gas in product pipes in the centrifuge enrichment plant at Almelo

    International Nuclear Information System (INIS)

    Packer, T.W.; Lees, E.W.; Aaldijk, J.K.; Harry, R.J.S.

    1987-09-01

    One of the objectives of safeguarding centrifuge enrichment plants is to apply non-destructive measurements inside the cascade area to confirm that the enrichment level is in the low enriched uranium range. Research in the UK and USA has developed a NDA instrument which can confirm the presence of low enriched uranium on a rapid go/no go basis in cascade header pipework of their centrifuge enrichment plants. The instrument is based on a gamma spectroscopic measurement coupled with an X-ray fluorescence analysis. This report gives the results of measurements carried out at Almelo by the UKAEA Harwell, ECN Petten and KFA Juelich to determine if these techniques could be employed at Almelo and Gronau. The energy dispersive X-ray fluorescence analysis has been applied to determine the total mass of uranium in the gas phase, and the deposit correction technique and the two geometry technique have been applied at Almelo to correct the measured gamma intensities for those emitted by the deposit. After an executive summary the report discusses the principles of the two correction methods. A short description of the equipment precedes the presentation of the results of the measurements and the discussion. After the conclusions the report contains two appendices which contain the derivation of the formulae for the deposit correction technique and a discussion of the systematic errors of this technique. 8 figs.; 11 refs.; 6 tables

  7. Summary of the Effort to Use Active-induced Time Correlation Techniques to Measure the Enrichment of HEU

    Energy Technology Data Exchange (ETDEWEB)

    McConchie, Seth M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Crye, Jason Michael [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Pena, Kirsten [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Sword, Eric [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mihalczo, John T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-30

    This document summarizes the effort to use active-induced time correlation techniques to measure the enrichment of bulk quantities of enriched uranium. In summary, these techniques use an external source to initiate fission chains, and the time distribution of the detected fission chain neutrons is sensitive to the fissile material enrichment. The number of neutrons emitted from a chain is driven by the multiplication of the item, and the enrichment is closely coupled to the multiplication of the item. As the enrichment increases (decreases), the multiplication increases (decreases) if the geometry is held constant. The time distribution of fission chain neutrons is a complex function of the enrichment and material configuration. The enrichment contributes to the probability of a subsequent fission in a chain via the likelihood of fissioning on an even-numbered isotope versus an odd-numbered isotope. The material configuration contributes to the same probability via solid angle effects for neutrons inducing subsequent fissions and the presence of any moderating material. To simplify the ability to accurately measure the enrichment, an associated particle imaging (API) D-T neutron generator and an array of plastic scintillators are used to simultaneously image the item and detect the fission chain neutrons. The image is used to significantly limit the space of enrichment and material configuration and enable the enrichment to be determined unambiguously.

  8. World nuclear-fuel procurement: relationships between uranium and enrichment markets. Final report. International energies studies program

    International Nuclear Information System (INIS)

    Neff, T.L.

    1982-03-01

    This article explores the relationships between international uranium and enrichment markets under current contracting and equity arrangements and in comparison with actual feed requirements for existing and committed reactors. We begin with an overview of the world situation, examining current and prospective conditions. We then consider enrichment and uranium supply and demand situations of the three consumer nations outside the United States with the largest nuclear programs: France, Japan, and the Federal Republic of Germany. We conclude with an evaluation of likely directions of change in the coupled markets for uranium and enrichment services

  9. Comparative analysis of calculations and experiment for uranium-graphite lattices with natural and slightly-enriched uranium

    International Nuclear Information System (INIS)

    Khrennikov, N.N.; Shchukin, A.V.

    1988-01-01

    Three sets of experiments carried out at different times and in different laboratories on measuring the material parameter for uranium-graphite lattices using natural and slightly enriched uranium are analyzed. Comparison with the calculations by the TRIFOGR and MCU (the Monte Carlo method) codes reveals resonable agreement between the calculation and experiment (of the order of 0.4% in K eff ). 17 refs.; 3 tabs

  10. Transport of high enriched uranium fresh fuel from Yugoslavia to the Russian federation

    Directory of Open Access Journals (Sweden)

    Pešić Milan P.

    2002-01-01

    Full Text Available This paper presents the relevant data related to the recent shipment (August 2002 of fresh highly enriched uranium fuel elements from Yugoslavia back to the Russian Federation for uranium down blending. In this way, Yugoslavia gave its contribution to the Reduced Enrichment for Research and Test Reactors (RERTR Program and to the world's joint efforts to prevent possible terrorist actions against nuclear material potentially usable for the production of nuclear weapons.

  11. Development and industrial application of gas centrifuges to uranium enrichment in the USSR

    International Nuclear Information System (INIS)

    Abbakumov, E.I.; Bazhenov, V.A.; Verbin, Yu.V.

    1989-01-01

    Review of state and studies in the field of gaseous diffusion technology and centrifugal method of uranium enrichment in the USSR is given. Domestic industrial gas centrifuges, forming to-day the main part of separation capacities in the USSR, are noted for low specific energy consumption and high reliability. Centrifugal technology in the USSR is applied both to uranium enrichment (including one for export) and to separation of isotopes of other chemical elements

  12. Technical and economic aspects of new gaseous diffusion uranium enrichment capacity

    International Nuclear Information System (INIS)

    Langley, R.A. Jr.; O'Donnell, A.J.

    1977-01-01

    Work is well advanced on design and construction of the next major increment of U.S. uranium enrichment capacity. The plant will use the gaseous diffusion process to provide the required capacity and reliability at a competitive enrichment services cost. Gaseous diffusion technology is the base against which other processes are compared in order to assess their commercial viability. While it has generally been described as a mature technology with limited future development potential, work on design of the new U.S. plant has resulted in major improvement in plant design with corresponding decreases in plant capacity and operating costs. The paper describes major technological advances incorporated into the new plant design and their impact on enrichment costs. These include the effects of: - advanced barrier technology; - tandem compressor drive systems; - optimization of number of equipment sizes; - single level plant design; - development of rapid power level change capability; - electrical system simplification; - plant arrangement and layout. Resulting capital costs and projected enrichment costs are summarized. Enrichment costs are placed in the context of total nuclear fuel cycle costs. Trade-offs between uranium feed material quantities and enrichment plant tails assays are described, and optimization of this aspect of the nuclear fuel cycle is discussed. The effect on enrichment plant characteristics is described. Flexibility and capability of the new U.S. enrichment plant to meet these changing optimization conditions are described

  13. 76 FR 30326 - Proposed Subsequent Arrangement

    Science.gov (United States)

    2011-05-25

    ... content of 28.276 kg (24.541 ekg) of U.S.-origin highly enriched uranium (HEU) (26.342 kg U-235) and 0.0048 g of plutonium contained in three HEU driver fuels that have been irradiated in the YAYOI nuclear... three HEU driver fuels from the core of YAYOI to be cut and de-cladded in the reactor room into...

  14. Natural uranium/conversion services/enrichment services

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This article is the 1993 uranium market summary. During this reporting period, there were 50 deals in the concentrates market, 26 deals in the UF6 market, and 14 deals for enrichment services. In the concentrates market, the restricted value closed $0.15 higher at $9.85, and the unrestricted value closed down $0.65 at $7.00. In the UF6 market, restricted prices fluctuated and closed higher at $31.00, and unrestricted prices closed at their initial value of $24.75. The restricted transaction value closed at $10.25 and the unrestricted value closed at $7.15. In the enrichment services market, the restricted value moved steadily higher to close at $84.00 per SWU, and the unrestricted value closed at its initial value of $68.00 per SWU

  15. Calculation of the fissile mass of a graphite moderated critical assembly using 93% enriched uranium

    International Nuclear Information System (INIS)

    Correa, F.; Marzo, M.A.S.; Collussi, I.; Ferreira, A.C.A.

    1976-01-01

    The critical mass of uranium has been calculated for a graphite moderated set fueled with 93% enriched uranium to be mounted on the Instituto de Energia Atomica split table Zero Power Reactor. The core composition was optimized to permit the maximum number of configurations to be studied. Analysis of three core compositions shows that 8 Kg of uranium enriched to 93% - U-235 (by weight) and 100 Kg of thorium would be sufficient for criticality experiments [pt

  16. Active method of neutron time correlation coincidence measurement to authenticate mass and enrichment of uranium metal

    International Nuclear Information System (INIS)

    Zhang Songbai; Wu Jun; Zhu Jianyu; Tian Dongfeng; Xie Dong

    2011-01-01

    The active methodology of time correlation coincidence measurement of neutron is an effective verification means to authenticate uranium metal. A collimated 252 Cf neutron source was used to investigate mass and enrichment of uranium metal through the neutron transport simulation for different enrichments and different masses of uranium metal, then time correlation coincidence counts of them were obtained. By analyzing the characteristic of time correlation coincidence counts, the monotone relationships were founded between FWTH of time correlation coincidence and multiplication factor, between the total coincidence counts in FWTH for time correlation coincidence and mass of 235 U multiplied by multiplication factor, and between the ratio of neutron source penetration and mass of uranium metal. Thus the methodology to authenticate mass and enrichment of uranium metal was established with time correlation coincidence by active neutron investigation. (authors)

  17. An assessment of the effectiveness of personal visual observation for a uranium enrichment facility

    International Nuclear Information System (INIS)

    Ohno, Fubito; Okamoto, Tsuyoshi; Yokochi, Akira; Nidaira, Kazuo

    2002-01-01

    In a centrifuge uranium enrichment facility, a cascade producing low enriched uranium is composed of a large number of UF 6 gas centrifuges interconnected with pipes. If new advanced centrifuges are developed and they are installed in the facility, the number of centrifuges in the unit cascade will decrease. This means that the number of pipes connecting centrifuges will decrease also. In addition, if integrated type centrifuges containing a few tens of centrifuges are adopted for economical reasons, the number of pipes will further decrease. The smaller the number of pipes, the less the labor required to reconstruct the cascade by changing the piping arrangement so that it can produce highly enriched uranium. Because personal visual observation by inspectors is considered as one of safeguards measures against changing the piping arrangement, its effectiveness is assessed in this study. An inspection in a cascade area is modeled as a two-person non-cooperative game between an inspector and a facility operator. As a result, it is suggested that personal visual observation of the piping arrangement is worth carrying out in an advanced centrifuge uranium enrichment facility. (author)

  18. Adaptive control theory of concentration in the uranium enrichment plant

    International Nuclear Information System (INIS)

    Sugitsue, Noritake; Miyagawa, Hiroshi; Yokoyama, Kaoru; Nakakura, Hiroyuki

    1999-01-01

    This paper presents the new adaptive control of concentration in the uranium enrichment plant. The purpose of this control system is average concentration control in production tram. As a result the accuracy and practical use of this control system have already been confirmed by the operation of the uranium enrichment demonstration plant. Three elements of technology are required to this method. The first is the measurement of the concentration using product flow quantity change. This technology shall be called 'Qp difference to Xp transform method'. The second is the relationship between temperature change and flow quantity using G.M.D.H. (Groupe Method of Data Handling) and the third is the estimation of temperature change using AR (Auto-regressive) model. (author)

  19. Soviet supplies of enriched uranium to capitalist countries

    International Nuclear Information System (INIS)

    Valvoda, Z.

    1977-01-01

    The Soviet supplies of enriched uranium to the following capitalist countries are surveyed: Belgium, Finland, France, FRG, Austria, Spain, Sweden, and the United Kingdom. The time period, total supplies, average annual supplies, estimated average price per separation work unit, and the date of the conclusion of the contract are reported. (J.B.)

  20. Communication received from the United Kingdom of Great Britain and Northern Ireland concerning its policies regarding the management of plutonium. Statements on the management of plutonium and of highly enriched uranium

    International Nuclear Information System (INIS)

    2003-01-01

    The Director General has received a Note Verbale, dated 17 July 2003, from the Permanent Mission of the United Kingdom of Great Britain and Northern Ireland to the IAEA in the enclosures of which the Government of the United Kingdom, in keeping with its commitment under the Guidelines for the Management of Plutonium (contained in INFCIRC/549 of 16 March 1998 and hereinafter referred to as the 'Guidelines'), and in accordance with Annexes B and C of the Guidelines, has made available annual figures for its national holdings of civil unirradiated plutonium and the estimated amounts of plutonium contained in spent civil reactor fuel as of 31 December 2002. The Government of the United Kingdom has also made available a statement of its annual figures for holdings of civil high enriched uranium (HEU), and of civil depleted, natural and low enriched uranium (DNLEU) in the civil nuclear fuel cycle, as of 31 December 2002. 3. In the light of the requests expressed by the Government of the United Kingdom in its Note Verbale of 1 December 1997 concerning its policies regarding the management of plutonium (INFCIRC/549 of 16 March 1998) and in its Note Verbale of 17 July 2003, the Note Verbale of 17 July 2003 and the enclosures thereto are attached for the information of all Member States